

\

Cromemco

Instruction Manual
andUsersGuide

Copyright © 1978 by Cromemco Inc. All rights reserved.

[3cromemeo
incorporated
Tomorrow's Computers Today
280 BERNARDO AVE. MOUNTAIN VIEW,CA 94043

Part No. 023-0049
addendum -001 April 1979

Acknowledgment

Any organization interested in reproducing the COBOL
report and specifications in whole or in part, using ideas
taken from this report as the basis for an instruction manual
or for any other purpose is free to do so. However, all such
organizations are requested to reproduce this section as part
of the introduction to the document. Those using a short
passage, as in a book review, are requested to mention,
I COBOL I in acknowl edgment of the source, but need not quote
this entire section.

COBOL is an industry language and is not the property of
any company or group of companies, or of any organization or
group of organizations.

No warranty, expressed or implied, is made by any
contributor or by the COBOL Committee as to the accuracy and
functioning of the programming system and language.
Moreover, no responsibility is assumed by any contributor, or
by the committee, in connection therewith.

Procedures have been established for the maintenance of
COBOL. Inquiries concerning the procedures for proposing
changes should be directed to the Executive Committee of the
Conference on Data Systems Languages.

The authors and copyr ight holders of the copyr ighted
material used herein

FLOW-MATIC (Trademark of Sperry Rand Corporation),
Programming for the UNIVAC (R) I and II, Data Automation
Systems copyrighted 1958, 1959, by Sperry Rand Corporation;
IBM Commercial Translator, Form No. F28-8013, copyrighted
1959 by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell

have specifically authorized the use of this material in
whole or in part, in the COBOL specification in programming
manuals or similar publications.

--from the ANSI COBOL STANDARD
(X3. 23-1974)

CONTENTS

CROMEMCO COBOL REFERENCE MANUAL

PAGE

CHAPTER 2: Identification and Environment Divisions

CHAPTER 1:

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14

2.1
2.2

CHAPTER 3:

3.1

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

Introduction • • • •

Fundamental Concepts of COBOL

Character Set . • • •• •••••••
Punctuation . . . • • ••.
Word Formation • • •• . •••
Format Notation . . • • . .•
Level Numbers and Data-Names • • • . • . .
File-Names •
Condition-Names •.•
Mnemonic-Names •. ...•.•.•••
Li terals •
Figurative Constants .••....••.•
Structure of a Program • •.•••••
Coding Rules . . • • •. ..•••
Qualification of Names • • • •• . ••
COpy Statement • . . . • • . . • •

Identification Division •.•.•••
Environment Division .•
2.2.1 Configuration Section.
2.2.2 Input-Output Section

2.2.2.1 File-Control Entry ...•
2.2.2.2 I-O Control Paragraph

Data Division

Data Items ••••••.••...••
3.1.1 Group Items. . •••••.
3.1.2 Elementary Items .••••••
3.1.3 Numeric Items ..•.•••
Data Description Entry •.••••••••
Formats for Elementary Items •••••
USAGE Clause • •• • • • • • • • • • •
PICTURE Clause . • • •
VALUE Clause . • • • .. •.•.•.•
REDEFINES Clause . • •. •.•..••
OCCURS Clause ..••••. •••••
SYNCHRONIZED Clause • . • • • . . • •
BLANK WHEN ZERO Clause . • • •
JUSTIFIED Clause . . . • . • •
SIGN Clause. • • • •.• • .•••••
File Section, FD Entries
(Sequential I-O Only)
3.13.1 LABEL Clause ..••••

6

8

8
9

10
10
12
14
15
15
15
17
18
21
22
22

23
(

23
24
24
25
26
27

28

28
28
28
29
30
31
33
34
40
41
42
44
44
44
45

46
46

3.14
3.15
3.16

CHAPTER 4:

4.1
4.2
4.3
4.4
4.5

4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23

CHAPTER 5:

3.13.2 VALUE OF Clause ..•.••••.
3.13.3 DATA RECORDS Clause .
3.13.4 BLOCK Clause. . • .•
3.13.5 RECORD Clause .•..••.•
3.13.6 CODE-SET Clause ..•.•••
Working-Storage Section •• • ~ . • .
Linkage Section •. • • . • . . • • •
Level 88 Condition Names. . .•.

Procedure Division ••

Statements, Sentences, Procedures-Names
Organization of the P~oced~re Division
MOVE Statement•..
INSPECT Statement •• . • • . • • • . . •
Arithmetic Statements•.
4.5.1 SIZE ERROR Option .•.••...•
4.5.2 ROUNDED Option ..•.......
4.5.3 GIVING Option.. . .•..••
4.5.4 ADD Statement.. • .••.
4.5.5 SUBTRACT Statement •.••••
4.5.6 MULTIPLY Statement .
4.5.7 DIVIDE Statement •••••
4.5.8 COMPUTE Statement. . .•.
GO TO Statement • . • • • . . . •
STOP Statement • . . • • . . • • .
ACCEPT Statement • • • • • . . • •
DISPLAY Statement . . . • • .••
PERFORM Statement ••• ...•.
EXIT Statement • . . •. ..• • . . .
ALTER Statement .•• . . • • • • • • • •
IF Statement • • . • • . • . . • .
4.13.1 Conditions •...••
OPEN Statement (Sequential 1-0) ..••.
READ Statement (Sequential 1-0) •.•
WRITE Statement (Sequential 1-0) •..
CLOSE Statement (Sequential 1-0) .••
REWRITE Statement (Sequential 1-0)
General Note on I/O Error Handling
ACCEPT DATE/DAY/TIME • • • . • • .
STRING Statement • • • • • . . • . . . • •
UNSTRING Statement . . • • . . • •
Dynamic Debugging Statements .••

Inter-Program Communication

46
47
47

..48
48
49
49
49

51

51
52
53
55
58
59
59
60
60
61
62
62
63
65
65
66
66
67
68
69
69
70
73
74
75
77
77
78
79
80
81
83

85

5.1 USING List Appendage to Procedure Header. 85
5.2 CALL Statement • . • .. •••.. 86
5.3 EXIT PROGRAM Statement. • • • • • • • •• 86

CHAPTER 6: Table Handling by the Indexing Method 87

6.1 Index-Names and Index Items • • . 87
6.2 SET Statement • • • • . • • • 87
6.3 Relative Indexing•••••• 88
6.4 SEARCH Statement - Format 1 .••.••• 89
6.5 SEARCH Statement - Format 2 ••••• 90

CHAPTER 7: Indexed Files 94

94
94
95
95

96
97
98
99
99

• • 100

Definition of Indexed File Organization
Syntax Considerations
7.2.1 RECORD KEY Clause.
7.2.2 File Status Reporting •...•
Procedure Division Statements
for Indexed Files .•••.•. . . •
READ Statement • • . • • • • •
WRITE Statement . . • . • • • • •
REWRITE Statement • • •• ..••..
DELETE Statement •. ..•..••
START Statement •••••.•• • • •

7.1
7.2

7.4
7.5
7.6
7.7
7.8

7.3

CHAPTER 8: Relative Files • · • 101

8.1 Definition of Relative File Organization. 101
8.2 Syntax Considerations ••..••..•. 101

8.2.1 RELATIVE KEY Clause •••••.•• 102
8.3 Procedure Division Statements

for Relative Files . ••. . • 102
8.4 READ Statement • .. .•• . . 102
8.5 WRITE Statement ••••••••• 103
8.6 REWRITE Statement ••..••.••..• 104
8.7 DELETE Statement •••••.•.•.• 104
8.8 START Statement ••.•••..•.•.• 105

CHAPTER 9: DECLARATIVES and the USE Sentence • • 106

Appendix I: Evaluation Rules for Compound Conditions 108

Appendix II: Table of Permissible MOVE Operands .•• 111

Appendix III: Nesting of IF Statements. • • 112

Appendix IV: ASCII Character Set • • 114

Appendix V: Reserved Word List . 115

Appendix VI: PERFORM with VARYING and AFTER Clauses. 119

CROMEMCO COBOL USER'S GUIDE

SECTION 1 Compiling COBOL Programs •••• · 121

1.1 Cromemco COBOL Command Scanner •.••.. 121
1.1.1 Format of Commands •••.••.• 121
1.1.2 Cromemco COBOL Compilation Switches 124

1.2 Output Listings and Error Messages. • 124
1.3 Files Used by Cromemco COBOL ...•.•• 126

SECTION 2 Linking and Loading COBOL Programs . . 127

2.1 Command Format.•. • 127
2.2 LINK Switches • • • • • • • • •• 128

2.2.1 E (Exit to CDOS) •••....•. 128
2.2.2 G (Go - start execution) • •. 129
2.2.3 M (Map all symbols) • 129
2.2.4 R (Reset Linker) ••••..•.. 129
2.2.5 S (Search file) ..•• . .. 129
2.2.6 U (list all Undefined globals) 130

2.3 Format of Link-Compatible Object files .• 130
2.4 Link Error Messages •••..•.•• 132

2.4.1 Fatal Errors. . •• 132
2.4.2 Warnings....... • •.• 133

2.5 Examples of Linking Modules .•••••• 133

SECTION 3

3.1
3.2
3.3

Runtime Execution

Printer File Handling ••.
Disk File Handling ••
Runtime Errors .••.•.••••.

NOTE

The last pages of this manual
contain errata and supplemental
notes.

· 137

137
• 137
· 138

(.

CROMEMCO COBOL REFERENCE MANUAL
Introduction

Introduction

Cromemco COBOL is
Standard X3.23-1974.
are allocated to
processing "modules".

based upon American National
Elements of the COBOL language
twelve different functional

Each module of the COBOL Standard has two non-null
"levels" --level 1 represents a subset of the full
set of capabilities and features contained in level
2.

In order for a given system to be called COBOL, it
must provide at .least level 1 of the Nucleus, Table
Handling ·and Sequential I-O Modules.

The following summary specifies the content of
Cromemco COBOL with respect to the Standard.

Module

Nucleus

Features Available

All of levell, plus these features of
level 2:

CONDITIONS:
Level 88 conditions with value series or

range
Use of logical AND/OR/NOT in conditions
Use of algebraic relational symbols for

equality or inequalities
Implied subject, or both subject and

relation, in relational conditions
Sign test
Nested IF statements; parentheses in

conditions

VERBS:
ACCEPTance of data from DATE/DAY/TIME
STRING and UNSTRING statements
COMPUTE with multiple receiving fields
PERFORM all formats from standard

level 2

IDENTIFIERS:
Mnemonic-names for ACCEPT or DISPLAY

devices
Procedure-names consisting of digits

only

6

CROMEMCO COBOL REFERENCE MANUAL
Introduction

Qualification of Names (Procedure
Division only)

Sequential,
Relative and
Indexed I/O

Sequential I/O

Relative and
Indexed I/O

All of level 1 plus these features of
level 2:
RESERVE clause
Multiple operands in OPEN and CLOSE, with

individual options per file

EXTEND mode for OPEN

DYNAMIC access mode (with READ NEXT)
START (with key relations EQUAL, GREATER, or

NOT LESS)

Library Level 1

In ter-Program
Communication Level 1

Table Handling All of levell, plus full level 2 formats
for SEARCH statement

Debugging Special extensions to ANS-74
standard providing convenient
trace-style debugging. Conditional
compilation: lines with liD in
column 7" are bypassed unless WITH
DEBUGGING MODE is given in SOURCE­
COMPUTER paragraph.

f

7

CROMEMCO COBOL REFERENCE MANUAL
Fundamental Concepts of COBOL

CHAPTER 1

Fundamental Concepts of COBOL

1.1 Character Set

The COBOL source language character set consists of
the following characters:

Letters A through Z
Blank or space
Digits 0 through 9
Special characters:

+ Plus sign
- Minus sign
* Asterisk
= Equal sign
> Relational sign (greater than)
< Relational sign (less than)
$ Dollar sign
, Comma
; Semicolon
• Period or decimal point
II Quotation mark
(Left parenthesis
) Right parenthesis
, Apostrophe (alternate of quotation mark)
/ Slash

Of the previous set, the following characters are
used for words:

o through 9
A through Z
- (hyphen)

The following characters are used for punctuation:

(Left parenthesis
) Right parenthesis

Comma
• Period

Semicolon

8

CROMEMCO COBOL REFERENCE MANUAL
Fundamental Concepts of COBOL

The following relation characters are used in
simple conditions:

>
<
=

In the case of non-numeric (quoted)
comment entries, and comment lines,
character set is expanded to include the
entire character set.

1.2 Punctuation

literals,
the COBOL
computer's

The following general rules of punctuation apply in
writing source programs:

1. As punctuation, a period, semicolon, or comma
should not be preceded by a space, but must be
followed by a space.

between two
Two or more

single space,

2. At least one space must appear
successive words and/or literals.
successive spaces are treated as
except in non-numeric literals.

3. Relation characters should always be preceded by
a space and followed by another space.

4. When the period, comma, plus, or minus
characters are used in the PICTURE clause, they
are governed solely by rules for report items.

5. A comma may be used
successive operands of
two subscripts.

as a separator
a statement, or

between
between

6. A semicolon or comma may be used to separate a
series of statements or clauses.

9

CROMEMCO COBOL REFERENCE MANUAL
Fundamental Concepts of COBOL

1.3 Word Formation

User-defined and reserved words are composed of a
combination of not more than 30 characters, chosen
from the following set of 37 characters:

o through 9 (digits)
A through Z (letters)

(hyphen)

A word must begin with a letter; it may not end with
a hyphen. A word is ended by a space or by proper
punctuation. A word may contain more than one
embedded hyphen; consecutive embedded hyphens are
also permitted. All words are either reserved
words, which have preassigned meanings, or
programmer-supplied names. If a programmer-supplied
name is not unique, there must be a unique method of
reference to it by use of name qualifiers, e.g.,
TAX-RATE IN STATE-TABLE. Primarily, a non-reserved
word identifies a data item or field and is called a
data-name. Other cases of non-reserved words are
file-names, condition-names, mnemonic-names, and
procedure-names. (Procedure-names may begin wi th a
digit) •

1.4 Format Notation

Throughout this publication, "general formats" are
prescribed for various clauses and statements to
guide the programmer in wri ting statements. They
are pre sen ted ina un i for m s y stem 0 f notat ion,
explained in the following paragraphs.

1. All words printed entirely in capi tal letters
are rese rved wo rds. These are wo rds tha t have
preassigned meanings. In all formats, words in
capital letters represent actual occurrences of
those words.

2. All underlined reserved words are required
unless the portion of the format containing them
is i tsel f opt i onal. These are key wo rds. If
any key word is missing or is incorrectly
spelled, it is considered an error in the
program. Reserved words not underlined may be
included or omitted at the option of the

10

CROMEMCO COBOL REFERENCE MANUAL
Fundamental Concepts of COBOL

programmer. These words are optional words;
they are used solely for improving readabili ty
of the program.

3. The characters < > = (although not underlined)
are required when such formats are used.

4. All punctuation and other special characters
represent actual occurrences of those
characters. Punctuation is essential where it
is shown. Additional punctuation can be
inserted, according to the rules for punctuation
specified in Section 1.2. In general, terminal
periods are shown in formats in the manual
because they are required; semicolons and commas
are not usually shown because they are optional.
To be s e pa r a to rs, all comma s, semicolons and
periods must be followed by a space (or blank).

5. Words printed in lower-case letters in formats
represent generic terms (e.g., data-names) for
which the user must insert a valid entry in the
source program.

6. Any part of a statement or data description
entry that is enclosed in brackets is optional.
Parts between matching braces ({ }) represent a
choice of mutually exclusive options.

7. Certain entries in the formats consist of a
capitalized word(s) followed by the word
"Clause" or "Statement." These designate
clauses or statements that are described in
other formats, in appropriate sections of the
text.

8. In order to facil i tate reference to lower-case
words in the explanatory text, some of them are
followed by a hyphen and a digit or letter.
This modification does not change the
syntactical definition of the word.

9. Alternate options may be explained by separating
the mutually exclusive choices by a vertical
stroke, e.g.:

AREA I AREAS is equivalent to {AREA}
AREAS

11

CROMEMCO COBOL REFERENCE MANUAL
Fundamental Concepts of COBOL

10. The ellipsis (•••) indicates that the
immediately preceding unit may occur once, or
any number of times in succession. A unit means
either a single lower-case word, or agroup of
lower-case words and one or more reserved words
enclosed in brackets or braces. If a term is
enclosed in brackets or braces, the entire unit
of which it is part must be repeated when
repetition is specified.

11. Optional elements may be indicated by
parentheses instead of brackets, provided the
lack of formality represents no substantial bar
to clarity.

12. Comments, restrictions, and clarification on the
use and meaning of every format are contained in
the appropriate sections of this manual.

1.5 Level Numbers and Data-Names

Fo r purposes of process i ng, the con tents of a f i 1 e
are divided into logical records, with level number
01 initiating a logical record description.
Subordinate data items that constitute a logical
record are grouped in a heirarchy and identified
with level numbers 02 to 49, not necessarily
consecutive. Additionally, level number 77
identifies a "stand alone" item in Working Storage
or Linkage Sections; that is, it does not have
subordinate elementary items as does level 01.
Level 88 is used to define condition-names and
associated conditions. A level number less than 10
may be written as a single digit.

Levels allow specification of subdivisions of a
record necessary for referring to data. Once a
subdivision is specified, it may be further
subdivided to permit more detailed data reference.
This is illustrated by the following weekly timecard
record, which is divided into four major items:
name, employee-number, date and hours, with more
specific information appearing for name and date.

12

CROMEMCO COBOL REFERENCE MANUAL
Fundamental Concepts of COBOL

~LAST-NAME
NAME FIRST-IN IT

MIDDLE-INIT
EMPLOYEE-NUM

TIME-CARD
MONTH

WEEKS-END-DATE~DAY-NUMBER
~YEAR

HOURS-WORKED

Subd i vis ions of a record that are not themselves
further subdivided are called elementary items.
Data i terns that contain subdivisions are known as
group items. When a Procedure statement makes
reference to a group item, the' reference appl ies to
the area reserved for the entire group. All
elementary items must be described with a PICTURE or
USAGE IS INDEX clause. Consecutive logical records
(01) subordinate to any given file represent
implicit redefinitions of the same area whereas in
the Working-Storage section, each record (01) is the
definition of its own memory area.

Less inclusive groups are assigned numerically
higher level numbers. Level numbers of items within
groups need not be consecutive. A group whose level
is k includes all groups and elementary items
described under it until a level number less than or
equal to k is encountered.

Separate entries are written in the source program
for each level. To illustrate level numbers and
group items, the weekly timecard record in the
previous example may be described (in part) by Data
Division entries having the following level numbers,
data-names and PICTURE definitions.

PIC
PIC
PIC

PICTURE

01 TIME-CARD.
02 NAME.

03 LAST-NAME PICTURE
03 FIRST-IN IT PICTURE
03 MIDDLE-INIT PICTURE

02 EMPLOYEE-NUM PICTURE
02 WEEKS-END-DATE.

05 MONTH
05 DAY-NUMBER
05 YEAR

02 HOURS-WORKED

13

X(18).
X.
X.
99999.

99.
99.
99.
99V9.

CROMEMCO COBOL REFERENCE MANUAL
Fundamental Concepts of COBOL

A data-name is a word assigned by the user to
identify a data item used in a program. A data-name
always refers to a region of data, not to a
particular value. The item referred to often
assumes a number of different values during the
course of a program.

A data-name must begin with an alphabetic character.
A data-name or the key word FILLER must be the first
word following the level number in each Record
Description entry, as shown in the following general
fo rma t:

level number
{

da ta-name }
FILLER

This data-name is the defining name of the entry and
is used to refer to the associated data area
(containing the value of a data item).

If some of the characters in a record are not used
in the processing steps of a program, then the data
desc r ipt i on of these ,characters need not include a
data-name. In this case, FILLER is written in lieu
of a data-name after the level number.

1. 6 File Names

A f i 1 e is a colI e c t ion 0 fda tar e cord s , suehas a
printed listing or a region of floppy disk,
containing individual records of a similar class or
application. A file-name is defined by an FD entry
i nth e Da taD i vis ion's F i 1 e Sec t ion. FD i s a
reserved word which must be followed by a unique
programmer-supplied word called the file-name.
Rules for composition of the file-name word are
identical to those for data-names (see Section 1.3).
References to a file-name appear in Procedure
statements OPEN, CLOSE and READ, as well as in the
Envi ronmen t Di vi s ion. CAUTION: Fi 1 e names are not
to be confused with file IDs as described in section
3.13.2.

14

CROMEMCO COBOL REFERENCE MANUAL
Fundamental Concepts of COBOL

1.7 Condition-Names

A condition-name is defined in level 88 entries
within the Data Division. It is a name assigned to
a specific value, set or range of values, within the
complete set of values that a data item may assume.
Rules for formation of name words are specified in
Section 1.3. Explanations of condition-name
declarations and procedural statements employing
them are given in the chapters devoted to Data and
Procedure Divisions.

1.8 Mnemonic-Names

A mnemonic-name is assigned in the Environment
Division for reference in ACCEPT or DISPLAY
sta temen ts. It ass ig ns a use r-defi ned wo rd to an
implementor-chosen name, such as PRINTER. A
mnemonic-name is composed according to the rules in
Section 1. 3.

1.9 Literals

A literal is a constant that is not identified by a
data-name in a program, but is completely defined by
its own identity. A literal is either non-numeric
or numeric.

Non-Numeric Literals

A non-numeric literal must be bounded by matching
quotation marks or apostrophes and may consist of
any combination of characters in the ASCI,I set,
except quotation marks or apostrophe, respectively.
All spaces enclosed by the quotation marks are
included as part of the literal. A non-numeric
literal must not exceed 120 characters in length.

The following are examples of non-numeric literals:

"ILLEGAL CONTROL CARD"

'CHARACTER-STRING'

"DO's & DON'T'S"

Each character of a non-numeric li teral (following

15

CROMEMCO COBOL REFERENCE MANUAL
Fundamental Concepts of COBOL

the introductory delimiter) may be any character
other than the delimiter. That is, if the literal
is bounded by apostrophes, then quotation (") marks
may be wi thin the 1 iter aI, and v ice versa. Length
of a non-numeric literal exclud--e-s-the delimiters;
minimum length is one.

A succession of two "delimiters" within a literal is
interpreted as a single representation of the
delimiter within the literal.

Non-numer ic Ii terals may be "continued" from one
line to the next. When a non-numeric literal is of
a length such that it cannot be contained on one
line, the following rules apply to the next line of
coding (continuation line):

1. A hyphen is placed in column 7 of the
continuation line.

2. A delimiter is placed in Area B preceding the
continuation of the literal.

3. All spaces at the end of the previous line and
any spaces following the delimiter in the
continuation line and preceding the final
delimiter of the literal are considered to be
part of the literal.

4. On any continuation line, Area A should be
blank.

Numeric Literals

A numeric literal must contain at least one and not
more than 18 digits. A numeric literal may consist
of the characters 0 through 9 (optionally preceded
by a sign) and the decimal point. It may contain
only one sign character and only one decimal point.
The sign, if present, must appear as the leftmost
character in the numeric literal. If a numeric
literal is unsigned, it is assumed to be positive.

A decimal point may appear anywhere
numeric literal, except as the rightmost
If a numeric literal does not contain
point, it is considered to be an integer.

wi thin the
character.
a dec imal

The following are examples of numeric literals:

16

CROMEMCO COBOL REFERENCE MANUAL
Fundamental Concepts of COBOL

72 +1011 3.14159 -6 -.333 0.5

By use of the Environment specification DECIMAL­
POINT IS COMMA, the functions of characters period
and comma are interchanged, putting the "European"
nota tion into effect. In th i s case, the val ue of
"pi" would be 3,1416 when written as a numeric
literal.

1.10 Figurative Constants

A figurative constant is a special type of literal.
It represents a value to which a standard data-name
has been assigned. A figurative constant is not
bounded by quotation marks.

ZERO may be used· in many places in a program as a
numeric literal. Other figurative constants are
available to provide non-numeric data; the reserved
words representing various characters are as
follows:

SPACE

LOW-VALUE

HIGH-VALUE

the blank character represented
by "octal" 40

the character whose "octal"
representation is 00

the character whose "octal"
representation is 177

QUOTE the quotation mark,
"octal" representation
(7-8 in punched cards)

whose
is 42

ALL literal

The plural
acceptable·
effect. A
instances

one 0 r more instances of the
1 i t era1, wh i c h mus t be a 0 n e
character non-numeric or
figurative constant (other than
ALL literal), in which case ALL
is redundant but serves for
readability.

form s 0 f the s e fig urat i v e cons tan t s are
to the compiler but are equivalent in
figurative constant represents as many
of the associated character as are

17

CROMEMCO COBOL REFERENCE MANUAL
Fundamental Concepts of COBOL

required in the context of the statement.

A figurative constant may be used anywhere a literal
is called for in a "general format" except that
whenever the literal is restricted to being numeric,
the only figurative constant permitted is ZERO.

1.11 Structure of a Program

Every COBOL source program is divided into four
divisions. Each division must be placed in its
proper sequence, and each must begin with a division
header.

The four divisions, listed in sequence, and their
functions are:

IDENTIFICATION DIVISION, which names the
program.

ENVIRONMENT DIVISION, which-indicates the
computer equipment and features to be used
in the prog ram.

DATA DIVISION, which defines the names and
characteristics of data to be processed.

PROCEDURE DIVISION, which consists of
statements that direct the processing of
data at execution time.

18

CROMEMCO COBOL REFERENCE MANUAL
Fundamental Concepts of COBOL

The following skeletal coding defines program
component structure and order.

IDENTIFICATION DIVISION.

PROGRAM-ID.

[AUTHOR.

program-name.

comment-entry ..•]

[INSTALLATION. comment-entry •..]

[DATE-WRITTEN. comment-entry ...]

[DATE-COMPILED. comment-entry .•.]

[SECUR ITY • comment-entry •..]

ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.]

[SOURCE-COMPUTER. en try]

[OBJECT-COMPUTER. entry]

[SPECIAL-NAMES. entry]

[INPUT-OUTPUT SECTION.

FILE-CONTROL.

[I -O-CONTROL.

DATA DIVISION.

[FILE SECTION.

entry

entry •••]]

[file description entry

record description entry •..] ...]

[WORKING-STORAGE SECTION.

[data item description entry .••] .••]

[LINKAGE SECTION.

[data item description entry ...] ..•]

19

CROMEMCO COBOL REFERENCE MANUAL
Fundamental Concepts of COBOL

PROCEDURE DIVISION [USING identifier-I ••.].

[DECLARATIVES.

{section-name SECTION. USE Sentence.

[paragraph-name. [sentence] •••] ••• } •••

END DECLARATIVES.]

{[section-name SECTION.]

[paragraph-name. [sentence] •••] ••• } •••

20

CROMEMCO COBOL REFERENCE MANUAL
Fundamental Concepts of COBOL

1.12 Coding Rules

Sin c e C rom em co COB aLi s a subset 0 f Am e ric an
Na t ional Standa rds Ins ti t ute (ANSI) COBOL, progr ams
may be written on standard COBOL coding sheets, and
the following rules are applicable.

1. Each line of code should have
sequence number in columns 1-6'­
should be in ascending order.
permitted in columns 1-6.

a six-digit
These numbers

Blanks are

2. Reserved words for division, section, and
paragraph headers must begin in Area A (columns
8-11). Procedure-names must also appear in Area
A (at the point where they are defined). Level
numbers may appear in Area A. Level numbers 01,
7T and level indicator "FD" must begin in Area
A.

3. All other program elements should be confined to
columns 12-72, governed by the other rules of
statement punctuation.

4. Columns 73-80 are ignored by the compiler.
These columns may be used to contain program
identification.

5. Explanatory comments may be inserted on any line
within a source program by placing an asterisk
in column 7 of the line. The line will be
produced on the source listing but serves no
other purpose. If a slash (/) appears in column
7, the associated line i strea ted as a comment
line and will be printed at the top of a new
page when the compiler lists the program.

6. Any program element may be "continued" on the
following line of a source program. The rules
for- continuation of a non-numeric ("quoted")
literal are explained in Section 1.9. Any other
word or literal or other program element is
continued by placing a hyphen in the column 7
position of the continuation line. The effect
is concatenation of successive word parts,
excl us i ve of all tra i 1 ing spaces of the last
predecessor word and all leading spaces of the
first successor word on the continuation line.
On a continuation line, Area A must be blank.

21

CROMEMCO COBOL REFERENCE MANUAL
Fundamental Concepts of COBOL

1.13 Qualification of Names

When a data-name, condition-name or paragraph name
is not unique, procedural reference thereto may be
accomplished uniquely by use of qualifier names.
For example, if there were two or more items named
YEAR, the qualified reference

YEAR OF HIRE-DATE

might differentiate between year fields in HIRE-DATE
and TERMINATION-DATE.

Qualifiers are preceded by the word OF or IN;
successive data-name or condition-name qualifiers
must designate lesser-level-numbered groups that
contain all preceding names in the composite
reference, i.e., HIRE-DATE must be a group item (or
file-name) containing an item called YEAR.
Paragraph-names may be qualified by a section-name.

The maximum number of qualifiers is one for a
paragraph-name, five for a data-name or condition­
name. File-names and mnemonic-names must be unique.

A qualified name may only be written in the
Procedure Division. A reference to a multiply­
defined paragraph-name need not be qualified when
referred to from within the same section.

1.14 COPY Statement

The sta tement COPY text-name incorporates into a
sou r c e program abod y 0 f s tandard COB 0 L cod e
maintained in a "COPY Library" as a distinctly named
(text-name) entity. A COPY statement must be
terminated by a period. A COpy statement may appear
anywhere except within the copied entity itself.

The effect of copying is to augment the source
stream processed by the compiler by insertion of the
copied entity in place of the COpy statement, and
then to resume processing of the pr imary source of
input at the end of the copied entity.

After the text-name operand of a COpy statement, the
remainder of the source card must be blank (through
column 72).

22

CROMEMCO COBOL REFERENCE MANUAL
Identification and Environment Divisions

CHAPTER 2

Identification and Environment Divisions

2.1 Identification Division

Every COBOL program begins with the
IDENTIFICATION DIVISION. This division is
into paragraphs having preassigned names:

header:
divided

PROGRAM-ID.
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

program-name.
comments.
comments.
comments.
comments.
comments.

Only the PROGRAM-ID paragraph is required, and it
must be the first paragraph. Program-name is any
alphanumeric string of characters, the first of
which must be alphabetic. Only the first 6
characters of program-name are retained by the
compiler. The program-name identifies the object
program and is contained in headings on compilation
listings.

The contents of any other paragraphs are of no
consequence, serving only as documentary remarks.

23

CROMEMCO COBOL REFERENCE MANUAL
Identification and Environment Divisions

2.2 Environment Division

The Environment Division specifies a standard method
of expressing those aspects of a COBOL program that
are dependent upon physical characteristics of a
specific computer. It is required in every program.

The general format" of the Environment Division is:

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. Computer-name [WITH DEBUGGING MODE].

OBJECT-COMPUTER. Computer-name
[MEMORY SIZE integer WORDS I CHARACTERS
[PROGRAM COLLATING SEQUENCE IS ASCII].

MODULES]

SPECIAL-NAMES. [PRINTER IS mnemonic-name] ASCII IS {STANDARD-I}
NATIVE

[CURRENCY SIGN IS literal]

[DECIMAL-POINT IS COMMA].

INPUT-OUTPUT SECTION.

FILE-CONTROL.

I-O-CONTROL.

{file-control-entry} •••

[SAME AREA FOR file-name-2 •••] •••

2.2.1 CONFIGURATION SECTION

The CONFIGURATION SECTION, which has three possible
paragraphs, is optional. The three paragraphs are
SOURCE-COMPUTER, OBJECT-COMPUTER, and SPECIAL-NAMES.
The contents of the first two paragraphs are treated
as commentary, except for the clause WITH DEBUGGING
MODE, if present (see Section 4.23). The third
paragraph, SPECIAL-NAMES, relates implementor names
to user-defined names and changes default editing
characters. The PRINTER IS phrase allows definition
of a name to be used in the DISPLAY sta tement wi th
UPON.

In case the
the Dollar

cur rency symbol
Sign, the user

24

is not supposed
may specify a

to be
single

CROMEMCO COBOL REFERENCE MANUAL
Identification and_~nvironment Divisions

character non-numer ic 1 i teral in the CURRENCY SIGN
clause. However, the designated character may not
be a quote mark, nor any of the characters defined
for Picture representations, nor digits (0-9).

The "European" convention of separating integer and
fraction positions of numbers with the comma
character is specified by employment of the clause
DECIMAL-POINT IS COMMA.

No te tha t the rese rved wo rd IS is
en tr ies fo r currency sign def ini t ion
point convention specification.

requi red in
and decimal-

The entry ASCII IS NATIVE/STANDARD-l specifies that
data representation adheres to the American Standard
Code for Information Interchange. However, this
convention is assumed even if the ASCII-entry is not
specifically present. In this compiler, NATIVE and
STANDARD-l are identical, and refer to the character
set representation specified in Appendix IV.

2.2.2 INPUT-OUTPUT SECTION

The second section of the Environment Division is
mandatory unless the program has no data files; it
.begins with the header:

INPUT-OUTPUT SECTION.

This section has two paragraphs: FILE-CONTROL and
I-O-CONTROL. In this section, the programmer
defines the file assignment parameters, including
specification of buffering.

25

CROMEMCO COBOL REFERENCE MANUAL
Identification and Environment Divisions

2.2.2.1 FILE-CONTROL ENTRY (SELECT ENTRY)

For each file having records described in the Data
Division's File Section, a Sentence-Entry (beginning
with the reserved word SELECT) is required in the
FILE-CONTROL paragraph. The format of a Select
Sentence-Entry for a sequential file is:

SELECT file-name ASSIGN TO DISK I PRINTER

[RESERVE integer AREAS I AREA]

[FILE STATUS IS data-name-l]

[ACCESS MODE IS SEQUENTIAL] [ORGANIZATION IS SEQUENTIAL].

All phrases after "SELECT filename" can be in any
order. Both the ACCESS and ORGANIZATION clauses are
optional for sequential input-output processing.
For Indexed or Relative files, alternate formats are
available for this section, and are explained in the
chapters on Indexed and Relative files.

If the RESERVE clause is not present, the compiler
assigns buffer areas. An integer number of buffers
specified by the Reserve clause may be from 1 to 7,
but any number over 2 is treated as 2.

In the FILE STATUS entry, data-name-l must refer to
a two-character Working-Storage or Linkage i tern of
category alphanumeric into which the run-time data
management facility places status information after
an I-O statement. The left-hand character of data­
name-l assumes the values:

'0' for successful completion
'1' for End-of-File condition
'2' for Invalid Key (only

for Indexed and Relative files)
'3' for a non-recoverable (I-0) error
'9' for implementor-related errors

(see User's Guide)

The right-hand character
'0' if no further status
previous I-O operation.
of values are possible:

26

of data-name-l is set to
information exists for the
The following combinations

CROMEMCO COBOL REFERENCE MANUAL
Identification and Environment Divisions

File Status Left File Status Right Meaning

'0 ' '0 ' O.K.
'1 ' '0 ' EOF
'3 ' '0 ' Permanent error
'3 ' '4 ' Disk space full

For values of status-r ight when status-left has a
value of '2', see the chapters on Indexed or
Relative files.

2.2.2.2 I-O-CONTROL PARAGRAPH

The SAME AREA specification is optional. It permits
the programmer to enumerate files that are open only
at mutuall y excl us i ve times, in order tha t they may
share the same I-O buffer areas and conserve the
utilization of memory space.

The format of the SAME AREA entry (which designates
files that all share a common I-O area) is:

SAME AREA FOR file-name-2 file-name-3 •••

Files named in
have the same
file may be
clause.

a given SAME AREA clause need not all
org an i za ti on 0 r access. However, no
listed in more than one SAME AREA

27

CROMEMCO COBOL REFERENCE MANUAL
Data Division

CHAPTER 3

Data Division

The Data Division, which is one of
in a program, is subdivided into
Section, Working-Storage Section and
is discussed in Sections 3.13-3.15,
data specification that apply in
descr ibed.

3.1 Data Items

the required divisions
three sections: File
Linkage Section. Each
but first, aspects of
all sections will be

Several types of data items can
COBOL programs. These data items
the following paragraphs.

3.1.1 Group Items

be
are

described in
descr ibed in

A group item is defined as one having further
subdivisions, so that it contains one or more
elementary items. In addition, a group item may
contain other groups. An item is a group item if,
and only if, its level number is less than the level
number of the immediately succeeding item. If an
item is not a group item, then it is an elementary
item. The maximum size of a group item is 41095
characters.

3.1.2 Elementary Items

An elementary item is a data item containing no
subordinate items.

Alphanumeric Item: An alphanumeric item consists of
any combination of characters, making a "character
string" data field. If the associated picture
contains "editing" characters, it is an alphanumeric
edited item.

Report CEdi ted) Item: A report i tern is an edi ted
"numeric" item containing only digits and/or special
editing characters. It must not exceed 310
characters in length. A report i tern can be used
only as a receiving field for numeric data. It is

28

CROMEMCO COBOL REFERENCE MANUAL
Data Division

designed to receive a numeric item but cannot be
used as a numeric item itself.

3.1.3 Numeric Items

Numeric items are elementary items intended to
contain numeric data only.

External Decimal Item: An external data item is an
item in which onecomputer character (byte) is
employed to represent one digit. A maximum number
of 18 digits is permitted; the exact number of. digit
positions is defined by writing a specific number of
9-characters in the PICTURE description. For
exampl e, PICTURE 999 defines a 3-d ig i t item. Tha t
is, the maximum decimal value of the item is nine
hundred ninety-nine.

If the 'PICTURE begins with the letter S, then the
item also has the capability of containing an
"operational sign." An operational sign does not
occupy a separate character (byte), unless the
"SEPARATE" form of SIGN clause is included in the
i tern's des c rip t ion. Reg a r dIe s s 0 f the form 0 f
representation of an operational sign, its purpose
is to prov ide a sign that f unctions in the no rmal
algebraic manner.

The USAGE of an external decimal i tern is DISPLAY
(see USAGE clause, Section 3.4).

Internal Decimal Item: An internal decimal item is
stored in packed decimal format. It is attained by
inclusion of the COMPUTATIONAL-3 USAGE clause.

A packed decimal item defined by n 9's in its
PICTURE occupi es 1/2 of (n + 2) bytes in memo ry.
All bytes except the rightmost contain a pair of
digits, and each digit is represented by the binary
equivalent of a valid digit value from 0 to 9. The
item's low order digit and the operational sign are
found in the rightmost byte of a packed item. For
this reason, the compiler considers a packed item to
have an arithmetic sign, even if the original
PICTURE lacked an S-character.

Binary Item: A binary i tern uses the base 2 system
to represent an integer in the range -32768 to
32767. It occupies one 16 bi t word composed of two

29

CROMEMCO COBOL REFERENCE MANUAL
Data Division

eight bi t bytes. The leftmost bi t of the reserved
area is the operational sign. A binary item is
specified by USAGE IS COMPUTATIONAL.

Index Data-Item: An index-data item has no PICTURE;
USAGE IS INDEX. (Re fer to Chapte r 6, Table Handl i ng
by the Indexing Method.")

3.2 DATA DESCRIPTION ENTRY

A Data Description entry specifies the
characteristics of each field (item) in a data
record. Each item must be described in a separate
entry in the same order in which the items appear in
the record. Each Data Description entry consists of
a 1 evel number, a da ta-name, and a ser ies of
independent clauses followed by a period.

The general format of a Data Description entry is:

level-number {
data-name}
FILLER lREDEFINES-clause) (JUSTIFIED-clause)

(J2ICTURE-clause) (USAGE-clause) (SYNCHRONIZED-clause)

(OCCURS-cl ause) (BLANK-clause) (VALUE-clause) (S IGN-clause) •

When this format is applied to specific items of
data, it is limited by the nature of the data being
described. The format allowed for the description
of each data type appears below. Clauses that are
not shown in a format are specifically forbidden in
that format. Clauses that are mandatory in the
description of certain data items are shown without
parentheses. The clauses may appear in any order
except that a REDEFINES-clause, if used, should corne
first.

30

CROMEMCO COBOL REFERENCE MANUAL
Data Division

Group Item Format

level-number {
data-name}
FILLER (REDEFINES-clause) (USAGE-cl a use)

(OCCURS-clause) (SIGN-clause).

Example:

01 GROUP-NAME.
02 FIELD-B PICTURE X.
02 FIELD-C PICTURE X.

NOTE

The USAGE clause may be written
at a group level to avoid
repetitious writing of it at
the subordinate element level.

3.3 FORMATS FOR ELEMENTARY ITEMS

ALPHANUMERIC ITEM (also called a character-string item)

level-number {
data-name}
FILLER (REDEFINES-cl ause) (OCCURS-cl a use)

PICTURE IS an-form (USAGE IS DISPLAY) (JUSTIFIED-clause)

(VALUE IS non-numeric-literal) (SYNCHRONIZED-clause).

Examples:

02 MISC-l PIC X(53).
02 MISC-2 PICTURE BXXXBXXB.

31

level-number

CROMEMCO COBOL REFERENCE MANUAL
Data Division

REPORT ITEM (also called a numeric-edited item)

{
da ta-name}
FILLER (REDEFINES-cl ause) (OCCURS-clause)

PICTURE IS report-form (BLANK WHEN ZERO) (USAGE IS DISPLAY)

(VALUE IS non-numeric literal) (SYNCHRONIZED-clause).

Example:

02 XTOTAL PICTURE $999,999.99-.

DECIMAL ITEM

level-number {
data-name}
FILLER (REDEFINES-cl ause) (OCCURS-cl ause)

PICTURE IS numeric-form (SIGN-clause)

(USAGE-clause) (VALUE IS numeric-literal) (SYNCHRONIZED-clause).

Examples:

02 HOURS-WORKED PICTURE 99V9, USAGE IS DISPLAY.
02 HOURS-SCHEDULED PIC S99V9, SIGN IS TRAILING.

11 TAX-RATE PIC S99V999 VALUE 1.375, COMPUTATIONAL-3.

32

CROMEMCO COBOL REFERENCE MANUAL
Data Division

BINARY ITEM

level-number {
data-name}
.FI LLER (REDEFINES-clause) (OCCURS-cl ause)

PICTURE IS numeric-form

USAGE IS COMPUTATIONALICOMPIINDEX

(VALUE IS numer ic-l i teral) (SYNCHRONIZED-clause).

NOTE

A PICTURE or VALUE must not be
given for an INDEX Data Item.

Examples:

02 SUBSCRIPT CaMP, VALUE ZERO.
02 YEAR-TO-DATE COMPUTATIONAL.

3.4 USAGE CLAUSE

The USAGE clause specifies the form in which numeric
data is represented.

The USAGE clause may be wr i tten at any level. If
USAGE is not specified, the item is assumed to be in
DISPLAY" mode. The general format of the USAGE
clause is:

USAGE IS

{

COMPUTATIONAL }
INDEX
DISPLAY·
COMPUTATIONAL-3

INDEX is expla ined in Chapte r 6, Table Handl i ng.
COMPUTATIONAL, which may be abbreviated CaMP, usage
defines an integer binary field. COMPUTATIONAL-3,
which may be abbreviated COMP-3, defines a packed
(in ternal dec imal) field.

If a USAGE clause is given at a group level, it
applies to each elementary item in the group. The
USAGE clause for an elementary item must not
contradict the USAGE clause of a group to which the
item belongs.

33

CROMEMCO COBOL REFERENCE MANUAL
Data Division

3.5 PICTURE CLAUSE

The PICTURE clause specifies a detailed description
of an elementary level data i tern and may include
specification of special report editing. The
reserved word PICTURE may be appreviated PIC.

The general format of the PICTURE clause is:

PICTURE IS {

an-fo rm }
numeric-form
repor t-fo rm

There are three possible types of pictures: An­
form, Numeric-form and Report-form.

An-Form Option: This option applies to alphanumeric
(character string) items. The PICTURE of an
alphanumeric item is a combination of data
description characters X, A or 9 and, optionally,
editing characters B, 0 and I. An X indicates that
the character 'position may contain any character
from the computer's ASCII character set. A Picture
that contains at least one of the combinations:

(a) A and 9, 0 r
(b) X and 9, or
(c) X and A

in any order is considered as if every 9, A or X
character were X. The characters B, 0 and I may be
used to insert blanks or zeros or slashes in the
item. Thi sis then call ed an alphanumer i c-edi ted
item.

If the string has only A's and B's, it is considered
alph abe tic; i fit has 0 n 1 y 9' s , i tis n urne ric (see
below) •

Numeric-Form Option:
may con ta in a val id
characters:

The PICTURE of a numeric item
combination of the following

9 The character 9 indicates that the actual
or conceptual digit position contains a
numeric character. The maximum number of
9's in a PICTURE is 18.

34

CROMEMCO COBOL REFERENCE MANUAL
Data Division

v

S

P

The optional character V indicates the
position of an assumed decimal point.
Since a numeric item cannot contain an
actual decimal point, an assumed decimal
point is used to provide the compiler with
information concerning the scaling
alignment of items involved in
computations. Storage is never reserved
for the character V. Only one V is
permitted in any single PICTURE, and is
redundant if it is the rightmost
character.

The optional character S indicates that the
i tern has an operational sign. It must be
the first character of the PICTURE. See
also, SIGN clause, Section 3.12.

The character P indicates an assumed
decimal scaling position. It is used to
specify the location of an assumed decimal
point when the point is not within the
number that appears in the data item. The
scaling position character P is not counted
in the size of the data item; that is,
memory is not reserved for these positions.
However, scaling position characters are
counted in determining the maximum number
of digit positions (18) in numeric edited
i terns or in items tha t appear as operands
in arithmetic statements. The scaling
position character P may appear only to the
left or right of the other characters in
the string as a continuous string of pIS

within a PICTURE description. The sign
character S and the assumed decimal point V
are the only characters which may appear to
the left of a leftmost string of pIS.

Since the scaling position character P
implies an assumed decimal point (to the
left of the pIS if the pIS are leftmost
PICTURE characters and to the right of the
pIS if the pIS are rightmost PICTURE
characters), the assumed decimal point
symbol V is redundant as either the
leftmost or rightmost character within such
a PICTURE description.

Repo rt-Form Option:
item sui table as an

This option describes a data
"edited" receiving field for

35

CROMEMCO COBOL REFERENCE MANUAL
Data Division

presentation of a numeric value. The editing
characters that may be combined to describe a report
item are as follows:

9 V. Z CR DB , $ + * B a -P /

The characters 9, P and V have the same meaning as
for a numeric item. The meanings of the other
allowable editing characters are described as
follows. :

~he decimal point character specifies that
an actual dec imal point is to be inserted
in the indicated position and the source
item is to be aligned accordingly. Numeric
character positions to the right of an
act u a Idec i ma I po i n tin a PICT UREmus t
consi st of characters of one type. The
decimal point character must not be the
last character in the PICTURE character
string. Picture character 'pI may not· be
used if '.' is used.

Z

*

CR
DB

The characters Z and * are called replace­
men t cha r ac te r s • Each one represents a
digit position. During execution, leading
zeros to be placed in positions defined by
Z or * are suppressed, becoming blank or *.
Zero suppression terminates upon
encoun ter i ng the dec imal po in t (. 0 r V) 0 r
a non-zero digit. All digit positions to
be modified must be the same (either Z or
*), and contiguous starting from the left.
Z or * may appear to the right of an actual
decimal point only if all digit positions
are the same.

CR and DB are called credit and debit
symbols and may appear only at the right
end of a PICTURE. These symbols occupy two
character posi tions and indicate that the
spec i f i ed symbol is to appear in the
indicated positions if the value of a
source item is negative. If the value is
positive or zero, spaces will appear
instead. CR and DB and + and - are
mutually exclusive.

The comma specifies insertion of a comma
between d igi ts. Each insertion character

36

CROMEMCO COBOL REFERENCE MANUAL
Data Division

is counted in the size of the data item,
but does not represent a dig i t pos i t ion.
The comma may also appear in conj unction
with a floating string, as described below.
It must not be the last character in the
PICTURE character string.

A floating string is defined as a leading,
continuous series of one of either $ or + or -, or a
string composed of one such char~cter interrupted by
one or more insertion commas and/or decimal points.
For example:

$$,$$$,$$$
++++
-- --- --, ,
+ (8) • ++
$$,$$$.$$

A floating string containing N + I occurrences of $
or + or - defines N digit positions. When moving a
numer ic val ue in to a repo rt item, the appropr ia te
character floats from left to right, so that the
developed report item has exactly one actual $ or +
or - immediately to the left of the most significant
nonzero digit, in one of the positions indicated by
$ or + or - in the PICTURE. Blanks are placed in
all character positions to the left of the single
developed $ or + or If the most significant
digit appears in a position to the right of
positions defined by the floating string, then the
developed item contains $ or + or - in the rightmost
position of the floating string, and non-significant
zeros ·may follow. The presence of an actual or
implied decimal point in a floating string is
treated as if all dig i t posi tions to the right of
the point were indicated by the PICTURE character 9.
In the following examples, b represents a blank in
the developed items.

PICTURE

$$$999
--,---,999
$$$$$$

Numeric Value

14
-456
14

Developed Item

bb$014
bbbbbb-456
bbb$14

A floating string need not constitute the entire
PICTURE of a report item, as shown in the preceding

37

CROMEMCO COBOL REFERENCE MANUAL
Data Division

examples. Restrictions
f 0 11 0 wafloa t i ng s t ring
description.

on cha r ac te r s tha t
are given la ter in

may
the

When a comma appears to the right of a floating
string, the string character floats through the
comma in order to be as close to the lead ing dig i t
as possible.

+ The character + or - may appear in a
PICTURE either singly or in a floating
string. As a fixed sign control character,
the + or - must appear as the last symbol
in the PICTURE. The plus sign indicates
that the sign of the item is indicated by
either a plus or minus placed in the
character position, depending on the
algebraic sign of the numeric value placed
in the report field. The minus sign
indicates that blank or minus is placed in
the character position, depending on
whether the algebraic sign of the numeric
value placed in the report field is
positive or negative, respectively.

B Each appearance
represents a blank
val ue.

of
in

B in a Picture
the final edited

/ Each slash in a Picture represents a slash
in the final edited value.

Each appearance of 0 in a Picture
represents a posi tion in the final edi ted
value where the digit zero will appear.

Other rules for a report (edited) item PICTURE are:

1. The appearance of one type of floating str ing
precludes any other floating string.

2. There must be at least one digit position
character.

3. The appearance of a floating sign string or
fixed plus or minus insertion character
precludes the appearance of any other of the
sign control insertion character, namely, +, ­
CR, DB.

38

CROMEMCO COBOL REFERENCE MANUAL
Data Division

4. The characters to the right of a decimal point
up to the end of a PICTURE, exc 1 ud i ng the fixed
insertion characters +, -, CR, DB (if present),
are subject to the following restrictions:

a. Only one type of digit position
may appear. That is, Z * 9 and
string digit position characters
all 6, mutually exclusive.

character
floating­

$ + - are

b. If one of the numeric character positions to
the right of a decimal point is represented
by + or - or $ or Z, then all the numeric
character posi tions in the PICTURE must be
represented by the same character.

5. The PICTURE character 9 can never appear to the
left of a floating string, or replacement
character.

Additional notes on the PICTURE Clause:

1. A PICTURE clause must only be used at the
elementary level.

2. An integer enclosed in parentheses and following
X 9 $ z P * B - or + indicates the number of
consecutive occurrences of the PICTURE
character.

3. Characters V and P are not counted in the space
allocation of a data item. CR and DB occupy two
character positions.

4. A maximum of 30 character positions is allowed
in a PICTURE character string. For example,
PICTURE X (89) consists of five PICTURE
characters.

5. A PICTURE must consi st of at least one of the
characters A Z * X 9 or at least two consecutive
appearances of the + or - or $ characters.

6. The characters ' , S V CR and DB can appear only
once in a PICTURE.

7. When DECIMAL-POINT IS COMMA is specified, the
explanations for period and comma are understood
to apply to comma and period, respectively.

39

CROMEMCO COBOL REFERENCE MANUAL
Data Division

The following examples illustrate the use of PICTURE
to edi t da ta. In each example, a movement of data
is implied, as indicated by the column headings.
(Data value shows contents in storage; scale factor
of this source data area is given by the Picture.)

Source Area Receiving Area

PICTURE Data PICTURE Edited Data
Value

9 (5) 12345 $$$,$$9.99 $12,345.00
9 (5) 00123 $$$,$$9.99 $123.00
9 (5) 00000 $$$,$$9.99 $0.00
9(4)V9 12345 $$$,$$9.99 $1,234.50
V9(5) 12345 $$$,$$9.99 $0.12
S9 (5) 00123 -------.99 123.00
S 9 (5) -00001 -------.99 -1.00
S9 (5) 00123 +++++++.99 +123.00
S 9 (5) 00001 -------.99 1. 00
9 (5) 00123 +++++++.99 +123.00
9 (5) 00123 -------.99 123.00
S9(5) 12345 *******.99CR **12345.00
S999V99 02345 ZZZVZZ 2345
S999V99 00004 ZZZVZZ 04

3.6 VALUE CLAUSE

The VALUE clause specifies the initial value of
working-storage items. The format of this clause
is:

VALUE IS literal

The VALUE clause must not be written in a Data
Description entry that also has an OCCURS or
REDEFINES clause, or in an entry that is subordinate
to an entry containing an OCCURS or REDEFINES
clause. Furthermore, it cannot be used in the File
or Linkage Sections, except in level 88 condi tion
descriptions.

The size of a literal given in a VALUE clause must
be less than or equal to the si ze of the i tern as
given in the PICTURE clause~ The positioning of the
literal within a data area is the same as would
result from specifying a MOVE of the literal to the

40

CROMEMCO COBOL REFERENCE MANUAL
Data Division

data area, except that editing characters in the
PICTURE have no effect on the initialization, nor do
BLANK WHEN ZERO or JUSTIFIED clauses. The type of
literal written in a VALUE clause depends on the
type of data item, as specified in the data item
formats earlier in this text. For edited items,
values must be specified as non-numeric literals,
and must be presented in edited form. A figurative
constant may be given as the literal.

When an initial value is not specified, no
assumption should be made regarding the initial
contents of an item in Working-Storage.

The VALUE clause may be specified at the group
level, in the form of a correctly sized non-numeric
literal, or a figurative constant. In these cases
the VALUE clause cannot be stated at the subordinate
levels wi th the group. However, the value clause
should not be written for a group containing items
wi th descriptions including JUSTIFIED, SYNCHRONIZED
and USAGE (other than USAGE IS DISPLAY). (A fo rm
used in level 88 items is explained in Section 3.16)

3.7 REDEFINES CLAUSE

The REDEFINES clause specifies that the same area is
to contain different data items, or provides an
alternative grouping or description of the same
data. The format of the REDEFINES clause is:

REDEFINES data-name-2

When written, the REDEFINES clause should be the
first clause following the data-name that defines
the entry. The data description entry for data­
name-2 should not contain a REDEFINES clause, nor an
OCCURS clause.

When an area is redefined, all descriptions of the
area r ema in in ef fect. Thus, if Band C are two
separate items that share the same storage area due
to Redefinition, the procedure statements MOVE X TO
B or MOVE Y TO C could be executed at any point in
the program. In the first case, B would ass ume the
value of X and take the form specified by the
description of B. In the second case, the same
physical area would receive Y according to the
description of C.

41

CROMEMCO COBOL REFERENCE MANUAL
Data Division

For purposes of discussion of Redefinition, data­
name-l is te rmed the s ubj ect, and da ta-name-2 is
called the object. The levels of the subject and
object are denoted by sand t, respectively. The
following rules must be obeyed in order to establish
a proper redefinition.

1. s must equal t, but must not equal 88.

2. The object must be contained in the same record
(01 group level item), unless s=t=01.

3. Prior to definition of the subject and
subsequent to definition of the object there can
be no level numbers that are numerically less
than s.

The length of data-name-l, multiplied by the number
of occurrences of data-name-l, may not exceed the
length of data-name-2, unless the level of data­
name-l is 01 (permitted only outside the File
Section). Entries giving the new description must
not contain any value clauses, except in leve\l 88.
In the File Section, multiple level 01 en'tries
subordinate to any given FD represent implicit
redefinitions of the same area.

3.8 OCCURS CLAUSE

The OCCURS clause. is used in defining rel~ted sets
of repeated data, such as tables, lists and arrays.
It specifies the number of times that a data item
with the same format is repeated. Data Description
clauses associated with an item whose description
includes an OCCURS clause apply to each repeti tion
of the item being described. When the OCCURS clause
is used, the data name that is the defining name of
the entry must be subscripted or indexed whenever it
appea rs in the Proced ure Di vi s ion. If thi s da ta­
name is the name of a group item, then all da ta­
names belonging to the group must be subscripted or
indexed whenever they are used.

The OCCURS cIa use must not be used in any Data
Description entry having a level number 01 or 77.
The OCCURS clause has the following format:

OCCURS integer TIMES [INDEXED BY index-name •••]

42

CROMEMCO COBOL REFERENCE MANUAL
Data Division

Subscripting: Subscripting provides the facility
for referring to data items in a table or list that
have not been assigned individual data-names.
Subscripting is determined by the appearance of an
OCCURS clause in a data description. If an item has
an OCCURS clause or belongs to a group having an
OCCURS clause, it must be subscripted or indexed
whenever it is used. See the chapter on Table
Handling for explanations on Indexing and Index
Usage. (Exception: the table.... name in a SEARCH
statement must be referenced without subscripts.)

A subscript is a positive nonzero integer whose
value determines an element to which a reference is
being made within a table or list. The subscript
may be represented ei ther by a Ii teral or a data­
name that has an integer value. Whether the
subscript is represented by a literal or a data­
name, the subscript is enclosed in parentheses and
appears after the terminal space of the name of the
element. A subscript must be a decimal or binary
item. (The latter is strongly recommended, for the
sake of efficiency.)

At most, three OCCURS clauses may govern any data
item. Consequen tly, one, two or three s ubscr i pts
may be required. When more than one subscript is
required, they are written in the order of
successively less inclusive dimensions of the data
organization. Multiple subscripts are separated by
commas, viz. ITEM (I, J).

Example:

01 ARRAY.
03 ELEMENT, OCCURS 3, PICTURE 9 (4) •

ARRAY, consisting of twelve
characters; each item has 4
digits.

I
I
I

____________ -.J

ELEMENT (1)

ELEMENT (2)

ELEMENT (3)

The above example would be allocated storage as
shown below. \

-------------,

43

CROMEMCO COBOL REFERENCE MANUAL
Data Division

A data-name may not be subscripted if it is being
used for:

1. a subscript

2. the defining name of a data description entry

3. data-name-2 in a REDEFINES clause

4. a qua 1 i fie r

3.9 SYNCHRONIZED CLAUSE

The SYNCHRONIZED clause was designed in order to
allocate space for data in an efficient manner, with
respect to the computer central "memory". However,
In this compiler~ the SYNCHRONIZED specification is
treated as commentary only.

The format of this clause is:

SYNC I SYNCHRONIZED [LEFT I RIGHT]

3.10 BLANK WHEN ZERO CLAUSE

The BLANK WHEN ZERO clause specifies that a report
(edi ted) field ISto conta in nothi ng except blanks
if the numeric value moved to it has a value of
zero. When this clause is used with a numeric
picture, the field is considered a report field.

3.11 JUSTIFIED CLAUSE

The JUSTIFIED RIGHT clause is only appl icable to
unedited alphanumeric (character string) items. It
signifies that values are stored in a right-to-left
fashion, resulting in space fill on the left when a
short field is moved to a longer Justified field, or
in truncation on the left when a long field is moved
to a shorter JUSTIFIED field. The JUSTIFIED clause
is effective only when the associated field is
employed as the "receiving" field in a MOVE
statement.

The word JUST is a permissible abbreviation of
JUSTIFIED.

44

CROMEMCO COBOL REFERENCE MANUAL
Data Division

3.12 SIGN CLAUSE

external decimal item, there are four
manners of representing an operational
choice is controlled by inclusion of a
fo rm of the SIGN clause, whose general

Fo r an
possible
sign; the
particular
fo rm is:

[SIGN IS] TRAILING I LEADING [SEPARATE CHARACTER]

The following chart summarizes the effect of four
possible forms of this clause.

SIGN Clause Sign Representation

TRAILING Embedded in rightmost byte
LEADING Embedded in leftmost byte
TRAILING SEPARATE Stored in separate rightmost byte
LEADING SEPARATE Stored in separate leftmost byte

When the 'above forms are written, the PICTURE must
begin with S. If no S appears, the item is not
signed (and is capable of storing only absolute
values), and the SIGN clause is prohibited. When S
appears at the ~ront of a PICTURE but no SIGN clause
is included in an item's description, the "default"
case SIGN IS TRAILING is assumed.

The SIGN clause may be written at a group level; in
this case the clause specifies the sign's format on
any signed subord inate external dec imal item. The
SEPARATE CHARACTER phrase increases the size of the
data i tern by 1 character. The entr ies to which the
SIGN clause apply must be impl ici tly or expl ici tly
described as USAGE IS DISPLAY.

(Note: When the CODE-SET clause is specified for a
file, all signed numeric data for that file must be
described with the SIGN IS SEPARATE clause.)

45

CROMEMCO COBOL REFERENCE MANUAL
Data Division

3.13 FILE SECTION, FD ENTRIES (SEQUENTIAL I-a ONLY)

In the FILE SECTION of the Data Division, an FD
entry (file definition) must appear for every
Selected file. This entry precedes the descriptions
of the file's record structure(s).

The general format of an FD entry is:

FD file name LABEL-clause [VALUE-OF-clause]

[DATA-RECORD (S) -clause] [BLOCK-clause] [RECORD-clause]

[CODE-SET-clause] •

After "FD filename," the order of the clauses is
immaterial.

3.13.1 LABEL CLAUSE

The format of this required FD-entry clause is:

LABEL RECORD I RECORDS IS I ARE OMITTED I STANDARD

The OMITTED option specifies that no labels exist
for the file; this must be specified for files
assigned to PRINTER.

The STANDARD option specifies that labels exist for
the file and that the labels conform to system
specifications; this must be specified for files
assigned to DISK.

3.13.2 VALUE OF CLAUSE

The VALUE OF clause appears in any"FD entry for a
DISK-assigned file, and contains a fil~ ID expressed
as a COBOL-type "quoted" literal. The general form
is:

VALUE OF FILE-ID IS "literal"

Example:

VALUE OF FILE-ID "A:MASTER.ASM"

A reminder: if a file is ASSIGNed to PRINTER, it is
unlabeled and the VALUE clause must not be included

46

CROMEMCO COBOL REFERENCE MANUAL
Data Division

in the associated FD. If a file is ASSIGNed to
DISK, it is necessary to include both LABEL RECORDS
STANDARD and VALUE clauses in the associated FD.

3.13.3 DATA RECORD(S) CLAUSE

The optional DATA RECORDS clause identifies the
records in the file by name. This clause is
documen ta ry onl y, in thi s and all COBOL sys terns.
Its general format is:

IRECORD IS }
DATA
---- RECORDS ARE

da ta-name-l [da ta-name-2 •••]

The pr esence of mo re than one da ta-name ind ica tes
tha t the file con ta ins more than one type of da ta
record. That is, two or more record descriptions
may apply to the same s tor age area. The 0 rder in
which the data-name~ are listed is not significant.

Da ta- name-I, data-name-2, etc., are the names of
data records, and each must be preceded in its
record description entry by the level number 01, in
the appropriate file declaration (FD) in the File
Section.

3.13.4 BLOCK CLAUSE

The BLOCK CONTAINS clause is used to specify
characteristics of physical records in relation to
the concept of log ical records. The gener al fo rma t
is:

BLOCK CONTAINS integer-2
{

CHARACTERS}

RECORDS

F i 1 e s ass igned to PRINTER must not have a BLOCK
clause in the associated FD entry. Furthermore, the
BLOCK cIa use has no effect on disk files in thi s
COBOL system, but it is examined for correct syntax.
It is normally applicable to tape files, which are
not supported by this COBOL.

When used, the size is usually stated
except when the records are variable

47

in RECORDS,
in size or

CROMEMCO COBOL REFERENCE MANUAL
Data Division

exceed the size of a physical block; ih these cases
the si ze should be expressed in CHARACTERS. If
multiple record sizes exist, and if blocking is
specified, then the physical block will contain
multiple logical records, each of which is
terminated by a carriage-return line-feed.

When the BLOCK CONTAINS clause is omi tted, it is
assumed that records are not blocked. When neither
the CHARACTERS nor the RECORDS option is specified,
the CHARACTERS option is assumed. When the RECORDS
option is used, the compiler assumes that the block
si ze prov id es fo r in teg er-2 records of max imum si ze
and then provides additional space for any required
control characters.

3.13.5 RECORD CLAUSE

Since the size of each data record is defined fully
by the set of data description entries constituting
the record (level 01) declaration, this clause is
always optional and documentary. The format of this
clause is:

RECORD CONTAINS [integer-l TO] integer-2 CHARACTERS

Integer-2 should be the size of the biggest record
in the file declaration. If the records are
variable in size, Integer-l must be specified and
equal the size of the smallest record. The sizes
are given as cha racter po si ti ons requi red to sto re
the logical records.

3.13.6 CODE-SET CLAUSE

The format of this clause is:

CODE-SET IS ASCII

The CODE-SET clause, which should be specified only
for non-mass-storage files, serves only the purposes
of documentation in this compiler, reflecting the
fact that both internal and external data are
represented in ASCII code. However, any signed
numeric data description entries in the file's
record should include the SIGN IS SEPARATE clause
and all data in the file should have DISPLAY USAGE.

48

CROMEMCO COBOL REFERENCE MANUAL
Data Division

3.14 WORKING-STORAGE SECTION

The second section of the DATA DIVISION begins with
the header WORKING-STORAGE SECTION. This section
describes records and other data which are not part
of external data files but which are developed and
processed internally.

Data description entries in this section may employ
level numbers 01-49, as in the File section, as well
as 77. Value clauses, prohibited in the File
section (except for level 88), are permitted
throughout the Working-storage section.

3.15 LINKAGE SECTION

The third section of the Data Division is defined by
the heade r LINKAGE SECTION. In thi s sect ion, the
user describes data by name and attribute, but
storage space is not allocated. Instead, these
"dummy" descriptions are applied (through the
mechanism of the USING list on the Procedure
Division header) to data whose addresses are passed
into a subprogram by a call upon it from a
separately compiled program. Consequently, VALUE
clauses are prohibited in the Linkage Section,
except in level 88 condition-name entries. Refer to
Chapter 5, Inter-Program Communication, for further
information.

3.16 LEVEL 88 CONDITION-NAMES

The level 88 condition-name entry specifies a value,
list of values, or a range of values that an'
elementary item may assume, in which case the named
condition is true, otherwise false. The format of a
level 88 item's value clause i~

{

VALUE IS }{literal-l [literal.-2 ••• J }

VALUES ARE literal-1 THRU literal-2

A level 88 entry must be preceded either by another
level 88 entry (in the case of several consecutive
condition-names pertaining to an elementary item) or
by an elementary item (which may be FILLER). INDEX
data items should not be followed by level 88 items.

49

CROMEMCO COBOL REFERENCE MANUAL
Data Division

Every condition-name pertains to an elementary item
in such a way that the condition-name may be
qualified by the name of the elementary item and the
el emen ta ry item's qual if i ers. A condi t ion-name is
used in the Procedure Division in place of a simple
relational condition. A condition-name may pertain
to an elementary item (a conditional variable)
requiring subscripts. In this case, the condition­
name, when written in the Procedure Division, must
be subscripted according to the same requirements as
the associated elementary item. The type of literal
in a condition-name entry must be consistent with
the data type of the conditional variable. In the
following example, PAYROLL-PERIOD is the conditional
variable. The picture associated with it limits the
value of the 88 condition-name to one digit.

02 PAYROLL-PERIOD PICTURE IS 9.
88 WEEKLY VALUE IS 1.
88 SEMI-MONTHLY VALUE IS 2.
88 MONTHLY VALUE IS 3.

Using the above description, the following
procedural condition-name test may be written:

IF MONTHLY GO TO DO~MONTHLY

An equivalent statement is:

IF PAYROLL-PERIOD = 3 GO TO DO-MONTHLY.

For an edited elementary item, values in a
condi tion-name entry must be expressed in the form
of non-numeric literals.

A VALUE clause may not contain both a series of
literals and a range of literals.

50

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

CHAPTER 4

Procedure Division

In this chapter, the basic concepts of the Procedure
Division are explained. Advanced topics (such as Indexing
of tables, Indexed file accessing, interprogram
communication and Declaratives) are discussed in subsequent
chapters.

4.1 STATEMENTS, SENTENCES, PROCEDURE-NAMES

The Procedure portion of a source program specifies
those procedures needed to solve a given EDP
problem. These steps (computations, logical
decisions, etc.) are expressed in statements
similar to English, which employ the concept of
verbs to denote actions, and statements and
sentences to describe procedures. The Procedure
portion must begin with the words PROCEDURE
DIVISION.

A statement consists of a verb followed by
appropriate operands (data-names or literals) and
other words that are necessary for the completion of
the s ta t emen t. The two types of s ta tements are
imperative and conditional.

Imperative Statements

An imperative statement specifies an uncondi tional
action to be taken by the object program. An
imperative statement consists of a verb and its
oper ands, excl ud i ng the IF and SEARCH condi t ional
statements and any statement which contains an
INVALID KEY, AT END, SIZE ERROR, or OVERFLOW clause.

Conditional Statements

A conditional statement stipulates a condition that
is tested to determine whether an alternate path of
program flow is to be taken. The IF and SEARCH
statements provide this capability. Any I/O
statement having an INVALID KEY or AT END clause is
a 1 soc 0 n sid ere d to be con d i t ion a 1 • Wh en an
arithmetic statement possesses a SIZE ERROR suffix,
the statement is considered to be conditional rather

51

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

than imperative. STRING or UNSTRING statements
having an OVERFLOW clause are also conditional.

Sentences

A sentence is a single statement or a series of
statements terminated by a period and followed by a
space. If desi red, a semi-colon or comma may be
used between statements in a sentence.

Paragraphs

A paragraph is a logical entity consisting of zero,
one or more sentences. Each paragraph must begin
with a paragraph-name~

Pa rag raph-names and sec tion-names are procedure­
names. Procedure-names follow the rules for name­
formation. In addition, a procedure-name may
consist only of digits. An all-digit procedure-name
may not consist of more than 18 digits; if it has
leading zeros, they are all significant.

Sections

A section is composed of one or more successive
paragraphs, and must begin with a section-header. A
section header con~ists of a section-name conforming
to the rules for procedure-name formation, followed
by the word SECTION and a period. A section header
must appear on a line by itself. Each section-name
must be unique.

4.2 ORGANIZATION OF THE PROCEDURE DIVISION

The PROCEDURE part of a program may be subdivided in
three possible ways:

1 • The Pro c e d u r e Di vis ion con sis t son I y 0 f
paragraphs.

2. The Procedure Division consists of a number of
paragraphs followed by a number of sections
(each section subdivided into one or more
paragraphs) •

3. The Procedure Division consists of a
DECLARATIVES portion and a ser ies of sections
(each section subdivided into one or more

52

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

paragraphs) •

The DECLARATIVES portion of the Procedure Division
is optional; it provides a means of designating a
procedure to be invoked in the event of an I/O
err 0 r • If Dec I a rat i ve s are u t il i zed , only
possibility 3 may be used. Refer to Chapter 9 for a
complete discussion.

4.3 MOVE STATEMENT

The MOVE statement is used to move data from one
area of main storage to another and to perform
conversions and/or editing on the data that is
moved. The MOVE statement has the following format:

MOVE
{ dat. a-name-l}
literal

TO data-name-2 [data-name-3 •••]

The data represented by data-name-l or the specified
literal is moved to the area designated by data­
name-2. Additional receiving fields may be
specified (data-name-3 etc.). When a group item is
a receiving field, characters are moved without
regard to the level structure of the group involved
and without editing.

Subscripting or indexing associated with data-name-2
is evaluated immediately before data is moved to the
receiving field. The same is true for other
receiving fields (data-name-3, etc., if any). But
for the source field, subscripting or indexing
(associated with data-name-l) is evaluated only
once, before any data is moved.

To illustrate, consider the statement

MOVE A (B) TO B, C (B),

which is equivalent to

MOVE A (B) TO temp
MOVE temp TO B
MOVE temp TO C (B)

where temp is an intermediate result field assigned
automatically by the compiler.

The following considerations pertain to moving

53

CRQMEMCO COBOL REFERENCE MANUAL
Procedure Division

items:

1. Numeric (external
numeric literal,
numeric or report:

or
or

internal
ZERO) or

dec imal, binary,
alphanumeric to

a • The i tern s are ali g ned by dec i mal po in t s ,
wi th generation of zeros or truncation on
either end, as required. If source is
alphanumer ic, it is trea ted as an uns igned
integer and should not be longer than 31
characters.

b. When the types of the source field and
rece i ving field differ, conversion to the
type of the receiving field takes place.
Alphanumeric source items are treated as
unsigned integers with Usage Display.

c. The items may have special editing per­
formed on them with suppression of zeros,
insertion of a dollar sign, etc., and
decimal point alignment, as specified by the
receiving area.

d. One should not move an i tern whose PICTURE
declares it to be alphabetic or alpha­
numeric edited to a numeric or report item,
nor is it possible to move a numeric item of
any sort to an alphabetic item though
numer ic integers and numer ic report items
can be moved to alphanumeric items with or
wi thout ed i ti ng, but opera t ional signs are
not moved in this case even if "SIGN IS
SEPARATE" has been specified.

2. Non-numeric source and destinations:

a. The characters are
area from left to
RIGHT applies.

placed
right,

in the
unless

receiving
JUSTIFIED

b. If the receiving field is not completely
filled by the data being moved, the re­
maining positions are filled with spaces.

c. If the source field is longer than the
receiving field, the move is terminated as
soon as the receiving field is filled.

54

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

3. Wh en over 1 appi ng fi elds are involved, resul ts
are not predictable.

4. Appendix II shows, in tabular form, all
permissible combinations of source and receiving
field types.

5. An item having USAGE IS INDEX cannot appear as
an operand of a MOVE statement. See SET in
Chapter 6, Table Handling.

Examples of Data Movement (b represents blank):

Source Field Receiving Field

PICTURE Value PICTURE Value before MOVE Value after MOVE

99V99 1234 S99V99 9876- 1234+
99V99 1234 99V9 987 123
S9V9 12- 99V999 98765 '112'1'1+
XXX A2B XXXXX Y9X8W A2Bbb
9V99 123 99.99 87.65 '11.23

4.4 INSPECT STATEMENT

The INSPECT statement enables the programmer to
examine a character-string item. Options permit
various combinations of the following actions:

1. counting appearances of a specified character

2. replacing a specified character with another

3. limiting the above actions by requiring the
appear~nce of other specific characters

55

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

The format of the INSPECT statement is:

INPECT data-name-l [TALLYING-clause] [REPLACING-clause]

where TALLYING-clause has the format

{
CHARACTERS }

TALLYING data-name-2 FOR ALL I LEADING operand-3

[BEFORE I AFTER INITIAL operand-4]

and REPLACING-clause has the format

{
CHARACTERS }

REPLACING ALL I LEADING I FIRST operand-5 BY operand-6

[BEFORE AFTER INITIAL operand-7]

Because data-name-l is to be treated as a string of
characters by INSPECT, it must not be described by
USAGE IS INDEX, COMP, or COMP-3. Data-name-2 must
be a numeric data item.

In the above formats, operand-n may be a quoted
literal of length one, a figurative constant
signifying a single character, or a data-name of an
item whose length is one.

TALLYING-clause and REPLACING-clause may not both be
omi t ted; if both are present, TALLYING-cIa use must
be first.

TALLYING-clause causes character-by-character
comparison, from left to right, of data-name-l,
incrementing data-name-2 by one each time a match is
found. When an AFTER INITIAL operand-4 subclause is
present, the counting process begins only after
detection of a character in data-name-l matching
oper'and-4. If BEFORE INITIAL operand-4 is
specified, the counting process terminates upon
encountering a character in data-name-l which
rna tches . operand-4. Al so go i ng from Ie ft to right,
REPLACING-clause causes replacement of characters
under conditions specified by the REPLACING-clause.
If BEFORE INITIAL operand-7 is present, replacement
does not continue after detection of a character in
data-name-l matching operand-7. If AFTER INITIAL
operand-7 is present, replacement does not commence
until detection of a character in data-name-l
matching operand-7.

56

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

With bounds on data-name-l thus determined, TALLYING
and REPLACING is done on characters as specified by
the following:

1. "GHARACTERS" implies that ev~ry character in the
bounded data-name-l is to be TALLYed or
REPLACEd.

2. "All operand" means
bo und ed da ta-name-l
character are

TALLYING/REPLACING.

that all characters in the
which match the "operand"
to participate in

3. "LEADING operand" specifies that only characters
matching "operand" from the leftmost portion of
the bounded data-name-l which are contiguous
(such as leading zeros) are to participate in
TALLYING or REPLACING.

4. "FIRST operand" specifies that only the first­
encountered character matching "operand" is to
participate in REPLACING. (This option is
unavailable in TALLYING.)

When both TALLYING and REPLACING clauses are
present, the two clauses behave as if two INSPECT
statements were written, the first containing only a
TALLYING-clause and the second containing only a
REPLACING-clause.

In developing a TALLYING value, the final result in
da ta-name-2 is equal to the tall i ed count pI us the
in i ti al val ue of data-name-2. In the fi rst exampl e
below, the item COUNTX is assumed to have been set
to zero initially elsewhere in the program.

INSPECT ITEM TALLYING COUNTX FOR ALL "L" REPLACING
L~ADING "A" BY ffE" AFTER INITIAL "L"

Or iginal (ITEM):
Resul t (ITEM):
Final (COUNTX):

SALAMI
SALEMI

1

ALABAMA
ALEBAMA

1

INSPECT WORK-AREA REPLACING ALL DELIMITER BY TRANSFORMATION

Original (WORK-AREA):
Original (DELIMITER):
Original (TRANSFORMATION):
Result (WORK-AREA):

57

NEW YORK N Y (length 16)
(space)

• (per iod)
NEW.YORK •• N.Y •••

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

NOTE

If any data-name-l or operand-n
is described as signed numeric,
it is treated as if it were
unsigned.

4.5 ARITHMETIC STATEMENTS

T.h ere are f i ve a r it hm e tic s tat e men t s : ADD,
SUBTRACT, MULTIPLY, DIVIDE and COMPUTE. Any
ari thmeti c statement may be ei ther imperative or
conditional. When an arithmetic statement includes
an ON SIZE ERROR specification, the entire statement
i s t e. r me d con d i t ion a I, bee a use the s i z e - err 0 r
condition is data-dependent.

An example of a conditional arithmetic statement is:

ADD 1 TO RECORD-COUNT, ON SIZE ERROR MOVE ZERO TO
RECORD~COUNT, DISPLAY "LIMIT 99 EXCEEDED".

Note that if a size error occurs (in this case, it
is apparent that RECORD-COUNT has Picture 99, and
cannot hold a value of 100), both the MOVE and
DISPLAY statements are executed.

The three statement components that may appear in
arithmetic statements (GIVING option, ROUNDED
option, and SIZE ERROR option) are discussed in
detail later in this section.

Basic Rules for Arithmetic Statements

1. All data-names used in arithmetic statements
must be elementary numeric data items that are
defined in the Da ta Di vi si on of the prog ram,
except that operands of the GIVING option may be
report (numeric edited) items. Index-names and
index-items are not permissible in these
arithmetic statements (see Chapter 6).

2. Decimal point alignment is supplied
automatically throughout the computations.

3. Intermediate result fields generated for the
evaluation of arithmetic expressions assure the
accuracy of the result field, except where high-

58

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

order truncation is necessary.

4.5.1 SIZE ERROR OPTION

If, after decimal-point alignment and any low-order
rounding, the value of a calculated result exceeds
the largest value which the receiving field is
capable of holding, a size error condition exists.

The optional SIZE ERROR clause is written
immediately after any arithmetic statement, as an
extension of the statement. The format of the SIZE
ERROR option is:

ON SIZE ERROR imperative statement •••

If the SIZE ERROR opt ion is presen t, and a size
error condition arises, the value of the resultant
data-name is unaltered and the series of imperative
statements specified for the condition is executed.

If the SIZE ERROR option has not been specified and
a size error condition arises, no assumption should
be made about the final result.

An arithmetic statement, if written with SIZE ERROR
option, is not an imperative statement. Rather, it
is a conditional statement and is prohibited in
contexts where only imperative statements are
allowed.

4.5.2 ROUNDED OPTION

If, after decimal-point alignment, the number of
places in the fraction of the result is greater than
the number of places in the fractional part of the
data item that is to be set equal to the calculated
result, truncation occurs unless the ROUNDED option
has been specified.

When the ROUNDED option is specified, the least
significant digit of the resultant data-name has its
val ue inc rea sed by 1 whenever the most signi f ican t
digit of the excess is greater than or equal to 5.

Rounding of a computed negative result is performed
by rounding the absolute value of the computed
result and then making the final result negative.

59

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

The following chart illustrates the relationship
between a calculated result and the value stored in
an item that is to receive the calculated result,
with and without rounding.

Item to Receive Calculated Result

Calculated PICTURE Value After Value After
Result Rounding Truncating

-12.36 S99V9 -12.4 -12.3
8.432 9V9 8.4 8.4
35.6 99V9 35.6 35.6
65.6 S99V 66 65
.0055 SV999 .006 .005

Illustration of Rounding

When the low order integer positions in a resultant­
identifier are represented by the character 'pi in
its picture, rounding or truncation occurs relative
to the rightmost integer posi tion for which storage
is allowed.

4.5.3 GIVING OPTION

I f the GIVING opt i on is wr i tten, the val ue of the
data-name that follows the word GIVING is made equal
to the calculated result of the' arithmetic
operation. The data-name that follows GIVING is not
used in the computation and may be a report (numeric
edi ted) item.

4.5.4 ADD STATEMENT

The ADD statement adds two or more numeric values
and stores the resulting sum.

The ADD statement general format is:

ADD {
nUmeric-literal}
data-name-l

{~VING} data-name-n

60

[ROUNDED] [S IZE-ERROR-cla use]

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

When the TO option is used, the val ues of all the
data-names (including data-name-n) and Ii terals in
the statements are added, and the resulting sum
replaces the value of data-name-n. At least two
data-names and/or numeric literals must follow the
word ADD when the GIVING option is written.

The following are examples of proper ADD statements:

ADD INTEREST, DEPOSIT TO BALANCE ROUNDED
ADD REGULAR-TIME OVERTIME GIVING GROSS-PAY.

The first statement would result in the sum of
INTEREST, DEPOSIT, and BALANCE being placed at
BALANCE, while the second would result in the sum of
REGULAR-TIME and OVERTIME earnings being placed in
item GROSS-PAY.

4.5.5 SUBTRACT STATEMENT

The SUBTRACT statement subtracts one or more numeric
data items from a specified item and stores the
difference.

The SUBTRACT statement general format is:

SUBTRACT {
data-name-l }
~umeric-literal-l ••• FROM

{
data-name-m [GIVING data-name-n] }
numeric literal-m GIVING data-name-n

The effect of
va1 ue s 0 fall
subtract that
following FROM.

[ROUNDED] [SIZE-ERROR-clause]

the SUBTRACT statement is to sum the
the operands tha t precede FROM and

sum from the val ue of the item

The result (difference) is stored in data-name-n, if
there is a GIVING option. Otherwise, the result is
stored in data-name-m.

61

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

4.5.6 MULTIPLY STATEMENT

The MULTIPLY statement multiplies two numeric data
items and stores the product.

The general format of the MULTIPLY statement is:

MULTIPLY
{
data-name-l }
numeric-literal-l

BY
{
data-name-2 [GIVING data-name-3] }
numeric-literal-2 GIVING data-name-3

[ROUNDED] [S IZ E-ERROR-cl ause]

When the GIVING option is omitted, the second
operand must be a data-name; the product replaces
the value of data-name-2. For example, a new
BALANCE value is computed by the statement MULTIPLY
1.03 BY BALANCE. (Since this order might seem
somewhat unnatural, it is recommended that GIVING
always be written.)

4.5.7 DIVIDE STATEMENT

The DIVIDE statement divides two numeric values and
stores the quotient. The general format of the
DIVIDE statement is:

DIVIDE
{

data-name-l }
numeric-literal-l {

BY } {data-name-2 }
INTO numeric-literal-2

[GIVING data-name-3] [ROUNDED] [SIZE-ERROR-clause]

The BY-form signifies that the first operand (data­
name-lor numeric-literal-l) is the dividend
(numerator), and the second operand (data-name-2 or
numeric-literal-2) is the divisor (denominator). If
GIVING is not written in this case, then the first
operand must be a data-name, in which the quotient
is stored.

The INTO-form signifies that the first operand is
the divisor and the second operand is the dividend.
If GIVING is no t wr i t ten in thi sease, then the
second operand must be a data-name, in which the
quotient is stored.

Division by zero always causes a size-error

62

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

condition.

4.5.8 COMPUTE STATEMENT

The COMPUTE statement evaluates an arithmetic
'expression and then stores the result in a
designated numeric or report (numeric edited) item.

The general format of the COMPUTE statement is:

COMPUTE data-name-l

ldata-name-2 }
numeric-literal
arithmetic-expression

[ROUNDED] ••• =

[SIZE-ERROR-clause]

An example of such a statement is:

COMPUTE GROSS-PAY ROUNDED = BASE-SALARY *

(1 + 1. 5 * (HOURS -40) / 40).

An arithmetic expression is a proper combination of
numeric literals, data-names, arithmetic operators
and parentheses. In general, the data-names in an
arithmetic expression must designate numeric data.
Consecutive data-names (or literals) must be
separated by an arithmetic operator, and there must
be one or more blanks on either side of the
operator. The operators are:

+ for addition
-for subtraction
* for multiplication
/ for division
** for exponentiation to an integral power.

When more than one operation is to be executed using
a given variable or term, the order of precedence
is:

1. Unary (involving one variable) plus and minus

2. Exponentiation

3. Multiplication and Division

4. Addition and Subtraction

63

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

Parentheses
operations
parentheses
nested to
expression.

may be used when the normal order OL

is not desired. Expressions within
are evaluated first; parentheses may be
any level. Consider the following

A + B / (C - D * E)

Eval ua ti on of the above express i on is pe r fo rmed in
the following ordered sequence:

1. Compute the product D times E, considered as
intermediate result RI.

2. Compute intermediate result R2 as the difference
C - R1.

3. Divide B by R2, providing intermediate result
R3.

4. The final result is computed by addition of A to
R3.

Without parentheses, the expression

A + B / C - D * E

is evaluated as:

RI = B / C
R2 = A + RI
R3 = D * E
final result = R2 - R3

When parentheses are employed, the following
punctuation rules should be used:

1. A left parenthesis is preceded by one or more
spaces.

2. A right parenthesis is followed by one or more
spaces.

The expression A - B - C is evaluated as (A - B) ­
C. Unary operators are permitted, e.g.:

COMPUTE A = +C + -4.6
COMPUTE X = -y
COMPUTE A, B(1) = -C - D(3)

64

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

4.6 GO TO STATEMENT

The GO TO statement transfers control
portion of a program to another. It
following general format:

from
has

one
the

GO TO procedure-name [••• DEPENDING ON data-name]

The simple form GO TO procedure-name changes the
path of flow to a designated paragraph or section.
If the GO statement is without a procedure-name,
then that GO statement must be the only one in a
paragraph, and must be altered (see 4.12) prior to
its execution.

The more general form designates N procedure-names
as a choice of N paths to transfer to, if the value
of data-name is 1 to N, respectively. Otherwise,
there is no transfer of control and execution
proceeds in the normal sequence. Data-name must be
a numeric elementary item and have no positions to
the right of the decimal point.

I f a GO (no n-DE PENDING) s ta t emen t appears in a
sequence of imperative statements, it must be the
last statement in that sequence.

4.7 STOP STATEMENT

The STOP statement is used to terminate or delay
execution of the object program.

The format of this statement is:

STOP {
RUN }
literal

STOP RUN terminates execution of a program,
returning control to the operating system. If used
in a sequence of imperative statements, it must be
the last statement in that sequence.

The form STOP literal displays the specified literal
on the console and suspends execution.

of the program is resumed only after
intervention. Presumably, the operator

a function suggested by the content of the
prior to resuming program execution. For

Execution
operator
performs
literal,

65

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

more information, see the COBOL User.'s Guide.

4.8 ACCEPT STATEMENT

The ACCEPT statement is used to enter data into the
computer on a low volume basis, from operator key-in
at the computer console. The .fo rmat of the ACCEPT
statement is:

ACCEPT data-name

One line is read, and as many characters as
necessary (depending on the si ze of the named data
field) are moved, wi thout change, to the indicated
field. If the input is shorter than the receiving
field, the extra posi tions are filled wi th spaces
(blanks) •

When input is to be accepted from the console,
execution is suspended. After the operator enters a
response, the prog ram sto res the acqui red da ta in
the field designed by data-name, and normal
execution proceeds. A form of the ACCEPT statement
used to acquire the current date, day or time is
explained in Section 4.20.

4.9 DISPLAY STATEMENT

The DISPLAY statement provides a simple means of
outputting low-volume data without the complexities
of File Definition; the maximum number of characters
to be output per line is 132. The format of the
DISPLAY statement is:

DISPLAY
{
data-name} [UPON mnemonic-name]
literal ...

When the UPON suffix is omitted, it is understood
that output is destined to be printed on the
conso 1 e. Use of the suf fix UPON mnemonic-name
directs tha t output to the pr in ter. Mnemon i c-name
must be assigned to PRINTER in the SPECIAL-NAMES
paragraph.

Val u e sout putar e e i the r 1 i t era 1 s , fig u rat i v e
constants (one character), or data fields. If a
data item operand is packed, it is displayed as a
series of digits followed by a separate trailing

66

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

sign.

4.10 PERFORM STATEMENT

The PERFORM statement permits
separate body of program steps.
PERFORM stat~ment are available:

Option 1

the execution of a
Two formats of the

PERFORM range

Option 2

[{
integer }
data-name TIMES]

PERFORM range VARYING {
indeX-name}
data-name FROM

amount-l BY amount-2 UNTIL condition.

(A more extensive version of option 2 is available
for varying 2 or 3 items concurrently, as explained
in Appendix VI.)

In the above syntactical presentation, the following
definitions are assumed:

1. Range is a paragraph-name, a section-name, or
the construct procedure-name-l THRU procedure­
name-2. (THROUGH is synonymous wi th THRU.) If
only a paragraph-name is specified, the return
is after the paragraph's last statement. If
only a section-name is specified, the return is
after the last statement of the last paragraph
of the section. If a range is specified,
control is returned after the appropr ia te last
sentence of a paragraph or section. These
return points are valid only when a PERFORM has
been executed to set them up; in other cases,
control will pass right through.

2. The gener ic operands amoun t-l and amoun t-2 may
be a numeric literal, index-name, or data-name.
In practice, these amount specifications are
frequently integers, or data-names that contain
integers, and the specified data-name is used as
a subscript within the range.

67

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

In Option 1, the designated range is performed a
fixed number of times, as determined by an integer
or by the value of an integer data-item. If no
"TIMES" phrase is given, the range is performed
once. When any PERFORM has finished, execution
proceeds to the next statement following the
PERFORM.

In Option 2, the range is performed a variable
number of times, in a step-wise progression, varying
from an initial value of data-name = amount-l, with
increments of amount-2, until a specified condition
is met, at which time execution proceeds to the next
statement after the PERFORM.

The condition in an Option 2 PERFORM is evaluated
prior to each attempted execution of the range.
Consequen tl y, it is possible to not PERFORM the
range, if the condition is met at the outset.
Similarly, in Option 1, if data-name ~0, the range
is not performed at all.

At run-time, it is illegal to have concurrently
act i ve PERFORM ranges whose te rmi nus po ints are the
same.

4.11 EXIT STATEMENT

The EXIT statement is used where it is necessary to
provide an endpoint for a procedure.

The format for the EXIT statement is:

paragraph-name. EXIT.

EXIT must appear in the source program as a one-word
pa r ag r a ph prec eded by a par ag raph-name. An exi t
paragraph provides an end-point to which preceding
statements may transfer control if it is decided to
bypass some part of a section.

68

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

4.12 ALTER STATEMENT

The ALTER statement is used to modify a simple GO TO
statement elsewhere in the Procedure Division, thus
changing the sequence of execution of program
statements.

The ALTER statement general format is:

ALTER paragraph TO [PROCEED TO] procedure-name

Paragraph (the first operand) must be a COBOL
paragraph that consists of only a simple GO TO
statement; the .ALTER statement in effect replaces
the former operand of that GO TO by procedure-name.
Consider the ALTER statement in the context of the
following program segment.

GATE.
MF-OPEN.

NORMAL.

GO TO MF~OPEN.

OPEN INPUT MASTER-FILE.
ALTER GATE TO PROCEED TO NORMAL.
READ MASTER-FILE, AT END GO TO
EOF-MASTER.

Examination of the above code reveals the technique
of "shutting a gate", providing a one-time
initializing program step.

4.13 IF STATEMENT

The IF statement permits the programmer
series of procedural statements to be
the event a stated condition is true.
an alternative series of statements may
for execution if the condition is
general format of the IF statement is:

to specify a
executed in
Optionally,

be specified
fal se. The

IF condition
{

NEXT SENTENCE }[ELSE statement(S)-2]
statement(s)-l ELSE NEXT SENTENCE

The "ELSE NEXT SENTENCE" phrase may be omitted if it
immediately precedes the terminal period of the
sentence.

Examples of IF statements:

1. IF BALANCE = 0 GO TO NOT-FOUND.

2. IF T LESS THAN 5 NEXT SENTENCE ELSE GO TO T-1-4.

69

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

3. IF ACCOUNT-FIELD = SPACES OR NAME = SPACES ADD 1
TO SKIP-COUNT ELSE GO TO BYPASS.

The first series of statements is executed only if
the designated condition is true. The second series
of statements (ELSE part) is executed only if the
designated condition is false. The second series
(ELSE part) is terminated by a sentence-ending
period unless it is "ELSE NEXT SENTENCE", in which
case more statements may be written before the
period. If there is no ELSE part to an IF
statement, then the first series of statements must
be terminated by a sentence-ending period. Refer to
Appendix III for discussion of nested IF statements.

Regardless of whether the condition is true or
false, the next sentence is executed after execution
of the appropriate series of statements, unless a GO
TO is contained in the imperatives that are
executed, or unless the nominal flow of program
steps is superseded because of an acti ve PERFORM
statement.

4.13.1 Conditions

A condition is either a simple condition or a
compound condition. The four simple conditions are
the relational, class, condition-name, and sign
condition tests. A simple relational condition has
the following structure:

operand-l relation operand-2

where "operand" is a data-name, literal, or
figurative-constant.

A compound condition may be formed by connecting two
conditions, of any sort, by the logical operator AND
or OR, e.g., A < B OR C = D. Refer to Appendix I
for further permissible forms involving
parenthesization, NOT, or "abbreviation".

The s impl est "s imple rela tions" have three bas ic
forms, expressed by the relational symbols equal to,
less than, or greater than (i.e., = or < or ».

Another form of simple relation that may be used
involves the reserved word NOT, preceding any of the
three relational symbols. In summary, the six

70

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

simple relations in conditions are:

Relation

=
<
>
NOT =
NOT <
NOT >

Meaning

equal to
less than
greater than
not equal to
greater than or equal to
less than or equal to

It is worthwhile to briefly discuss how relation
conditions can be compounded. The reserved words
AND or OR permit the specification of a series of
relational tests, as follows:

1. Ind i v id ual rela t ions connected by AND spec i fy a
compound condition that is met (true) only if
all the individual relationships are met.

2. Individual relations connected by OR specify a
compound condition that is met (true) if any
one of the individual relationships is met. ---

The following is an example of a compound relation
condition containing both AND and OR connectors.
Refer to Appendix I for formal specification of
evaluation rules.

IF X = Y AND FLAG = 'z' OR SWITCH = 0 GOTO PROCESSING.

In the above example, execution will be as follows,
depending on various data values.

Data Value Does Execution Go
X Y FLAG SWITCH to PROCESSING?

10 10 'z' 1 Yes
10 11 'z' 1 No
10 11 'Z' 0 Yes
10 10 'P' 1 No

6 3 'pi 0 Yes
6 6 'P' 1 No

71

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

Usages of reserved word phrasings EQUAL TO, LESS
THAN, and GREATER THAN are accepted equivalents of =
< > respectively. Any form of the relation may be
preceded by the word IS, optionally.

Before discussing class-test, sign-test, and
condition-name-test conditions, methods of
performing comparisons will be discussed.

Numeric Comparisons: The data operands are compared
after alignment of their decimal positions. The
results are as defined mathematically, with any
negative values being less than zero, which in turn
is I ess than any po si ti ve val ue. An index-name or
index item (see Chapter 6) may appear in a
comparison. Comparison of any two numeric operands
is permitted regardless of the formats specified in
their respective USAGE clauses, and regardless of
length.

Character Comparisons: Non-equal-Iength comparisons
are pe rmi t ted, wi th spaces be i ng ass umed to extend
the length of the shorter item, if necessary.
Relationships are defined in the ASCII code; in
particular, the letters A-Z are in an ascending
sequence, and dig i ts are less than letters. Group
items are treated simply as characters when
compared. Refer to Appendix IV for all ASCII
character representations. If one operand is
numeric and the other is not, it must be an integer
and have an implicit or explicit USAGE IS DISPLAY.

Returning to our discussion of simple conditions,
there are three additional forms of a simple
cond i t ion, inad d i t ion tother e I a t ion a I £0 rm ,
namely: class test, condi tion-name test (88), and
sign test.

A class test condition has the following syntactical
fo rmat:

data-name IS [NOT] {
NUMERIC }
ALPHABETIC

This condition specifies an examination of the data
item content to determine whether all characters are
proper digit representations regardless of any
operational sign (when the test is for NUMERIC), or
only alphabetic or blank space characters (when the
test is for ALPHABETIC). The NUMERIC test is val id

72

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

only for a group, decimal, or character item (not
having an alphabetic PICTURE). The ALPHABETIC test
is valid only for a group or character item (Picture
an- fo rm) •

A sign test has the following syntactical format:

data-name IS [NOT] NEGATIVE I ZERO I POSITIVE

This test is equivalent to comparing data-name to
zero in order to determine the truth of the stated
condition.

In a condition-name test, a conditional variable is
tested to dete rmine whether its val ue is equal to
one of the values associated wi th the condi tion­
name. A condi tion-name test is expressed by the
following syntactical format:

condition-name

where condi tion-name is defined by a level 88 data
division entry.

4.14 OPEN STATEMENT (Sequential I-O)

The OPEN statement must
commencing file processing.
an OPEN statement is:

be executed
The general

pr io r to
fo rmat of

{

OPEN { ~~~UT }f i 1 e-name ••• } •••
OUTPUT
EXTEND

For a sequential INPUT file, opening initiates
reading the file's first records into memory, so
tha t subsequen t READ statements may be executed
without waiting.

For an OUTPUT file, opening makes available a record
area for development of one record, which will be
transmi tted to the assigned output device upon the
execution of a WRITE statement. An existent file
which has the same name will be superceded by the
file created with OPEN OUTPUT.

An I-O opening is valid only for a DISK file; it
permits use of the REWRITE statement to modify

73

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

records which have been accessed by a READ
statement. The WRITE statement may not be used in
1-0 mode for files with sequential organization.
The file must exist on disk at OPEN time; it cannot
be created by OPEN 1-0.

When the EXTEND phrase is specified, the OPEN
sta temen t pos it ions the f ile\ immed ia tely followi ng
the last log ical reco rd of tha t fi 1 e. Subsequent
WRITE statements referencing the file will add
records to the end of the file. Thus, processing
proceeds as though the file had been opened with the
OUTPUT phrase and positioned at its end. EXTEND can
be used only for sequential files.

Failure to precede (in terms of time sequence) file
reading or writing by the execution of an OPEN
statement is an execution-time error which will
cause abnormal termination of a program run. See
User's Guide. Furthermore, a file cannot be opened
if it has been CLOSEd "WITH LOCK."

Sequential files opened for INPUT or 1-0 access must
have been written in the appropriate format
described in the User's Guide for such files.

4.15 READ STATEMENT (Sequential 1-0)

The READ statement makes available the next logical
data record of the designated file from the assigned
device, and updates the value of the FILE STATUS
data item, if one was specified. The general format
of a READ statement is:

READ file-name RECORD [INTO data-name] [AT END
imperative statement •••]

Since at some time the end-of-file will be
encountered, the user should include the AT END
clause. The reserved word END is followed by any
number of imperative statements, all of which are
executed only if the end-of-file situation arises.
The last statement in the AT END series must be
followed by a period to indicate the end of the
sentence. If end-of-file occurs but there is no AT
END clause on the READ statement, an applicable
Declarative procedure is performed. If neither AT
END nor Declarative exists and no FILE STATUS item

74

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

is specified for the file, a run-time I/O error is
processed.

When a data reco rd to be read ex i sts, successful
execution of the READ statement is immediately
followed by execution of the next sentence.

When more than one 01-level item is subordinate to a
file definition, these records share the same
storage area. Therefore, the user must be able to
distinguish between the types of records that are
possible, in order to determine exactly which type
is currently available. This is accomplished with a
data comparison, using an IF statement to test a
field which has a unique value for each type of
reco rd.

The INTO option permits the user to specify that a
copy of the data record is to be placed into a
designated data field immediately after the READ
statement. The data-name must not be defined in the
file records description itself.

Also, the INTO phrase should not be used when the
file has records of various sizes as indicated by
their record descriptions. Any subscripting or
indexing of data-name is evaluated after the data
has been read but before it is moved to data-name.
Afterward, the data is available in both the file
record and data-name.

In the case of a blocked input fi 1 e (such as di sk
files), not every READ statement performs a physical
transmission of data from an external storage
dev ice; instead, READ may simply obta in the next
logical record from an input buffer.

4.16 WRITE STATEMENT (Sequential 1-0)

The general format of a WRITE statement is:

WRITE record-name FROM data-name-l

{
AFTER }
BEFORE

ADVANCING
{

operand LINE(S)}
PAGE

Ignoring the ADVANCING option for the moment, we
proceed to explain the main functions of the WRITE
sta tement.

75

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

In COBOL, file output is achieved by execution of
the WRITE statement. Depending on the device
ass i g ned, " wr itt en" 0 u t put rna y t a ke the form 0 f
printed matter or magnetic recording on a floppy
disk storage medium. The user is reminded also that
you READ file-name, but you WRITE record-name. The
associated file must be open in the OUTPUT mode at
time of execution of a WRITE statement.

Record-name must be one of the level 01 records
defined for an output file, and may be qualified by
the filename. The execution of the WRITE statement
releases the logical record to the file and updates
its FILE STATUS item, if one is specified.

If the data to be output has been developed in
Working-Storage or in another area (for example, in
an input file's record area), the FROM suffix
permi ts the user to stipulate that the designated
da ta (da ta-name-l) is to be copi ed into the reco rd­
name area and then output from there. Record-name
and data-name-l must refer to separate storage
areas.

The ADVANCING option is restricted to line printer
output files, and permits the programmer to control
the line spacing on the paper in the printer.
Operand is either an unsigned integer literal or
data-name; values from 0 to 60 are permitted:

In teger

o
1
2
3

Carriage Control Action

No spacing
Normal single spacing
Double spacing
Triple spacing

Single spacing (Le., "after advancing 1 line") is
assumed if there is no BEFORE or AFTER option in the
WRITE statement.

Use of the key word AFTER implies that the carriage
control action precedes printing a line, whereas use
of BEFORE implies that writing precedes the carriage
control action. If PAGE is specified, the data is
printed BEFORE or AFTER the device is repositioned

76

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

to the next physical page.

When an attempt is made to write beyond the
externally defined boundaries of a sequential file,
a Declarative procedure will be executed (if
available) and the FILE STATUS (if available) will
indicate a boundary violation. If neither is
available, a runtime error occurs.

4.17 CLOSE STATEMENT (Sequential 1-0)

Upon completion of the processing of a file, a CLOSE
statement must be executed, causing the system to
make the proper disposition of the file. Whenever a
file is closed, or has never been opened, READ,
REWRITE, or WRITE statements cannot be executed
properly; a runtime error would occur, aborting the
run.

The general format of the CLOSE statement is:

CLOSE {file-name WITH LOCK]}

If the LOCK suffix is used, the file is not re­
openable during the current job. If LOCK is not
specified immediately after a file-name, then that
fi 1 e may be re-opened later in the prog ram, if the
program logic dictates the necessity.

An attempt to execute a CLOSE statement for a file
that is not currently open is a runtime error, and
causes execution to be discontinued.

Examples of CLOSE statements:

CLOSE MASTER-FILE-IN WITH LOCK, WORK-FILE;
CLOSE PRINT-FILE, TAX-RATE-FILE, JOB-PARAMETERS WITH LOCK

4.18 REWRITE STATEMENT (Sequential 1-0)

The REWRITE statement replaces a logical record on a
sequential DISK file. The general format is:

REWRITE record-name [FROM data-name]

Record-name is the name of a logical record in the
File Section of the Data Division and may be
qualified. Record-name and data-name must refer to

77

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

separate storage areas.

At the time of execution of this statement, the file
to which record-name belongs must be open in the 1-0
mode (see OPEN, Section 4.14).

If a FROM part is included in this statement, the
effect is as if MOVE data-name TO record-name were
executed just prior to the REWRITE.

Execution of REWRITE replaces the record that was
accessed by the most recent READ statement; said
pr io r READ must have been compl eted suc cessfully,
otherwise a run-time error terminates execution.

4.19 GENERAL NOTE ON I/O ERROR HANDLING

If an I/O error occurs, the file's FILE STATUS item,
if one exists, is set to the appropriate two­
character code, otherwise it assumes the value "00".

If an I/O error occurs and is of the type that is
pertinent to an AT END or INVALID KEY clause, then
the imperative statements in such a clause, if
present on the statement that gave rise to the
error, are executed. But, if there is not an
appropriate clause (such clauses may not appear on
Open or Close, for example, and are optional for
other I/O statements), then the logic of program
flow is as follows:

L If there is an associated Declaratives ERROR
procedure (see Section 9), it is performed
automatically; user-written logic must determine
what action is taken because of the existence of
the error. Upon return from the ERROR
procedure, normal program flow to the next
sentence (following the I/O statement) is
allowed.

2. If no Declaratives ERROR procedure is applicable
but there is an associated FILE STATUS item, it
is presumed that the user may base actions upon
testing the STATUS item, so normal flow to the
next sentence is allowed.

78

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

Only if none of the above (INVALID KEY/AT END
clause, Declaratives ERROR procedure, or testable
FILE STATUS i tern) exists, then the run-time error
handler receives control; the location of the error
(source program line number) is noted, and the run
is terminated "abnormally."

These remarks apply
whether organization
Relative.

to
is

processing of any file,
Sequential, Indexed or

4.20 ACCEPT DATE/DAY/TIME STATEMENT

The standard date, day or time value may be acquired
at execution time by a special form of the ACCEPT
statement:

ACCEPT data-name FROM {
DATE)
DAY
TIME

The formats of standard values DATE, DAY and TIME
are:

DATE - a six digit value of the form YYMMDD
(year, month, day).
Example:AAJuly 4, 1976 is 760704.

DAY - A five digit "Julian date" of the
form YYNNN where YY is the two low
order digits of year and NNN is
the day-in-year number between 1
and 366.

TIME - an eight digit value of the
form HHMMSSFF where HH is from 00
to 23, MM is from 00 to 59, 00 is
from 0 to 59, and FF is from 00 to
99; HH is the hour, MM is the min­
utes, SS is the seconds, and FF
represents hundredths of a second.

The PICTURE of da ta-name should be 9 (6), 9 (5) 0 r
9 (8), respectively, for DATE, DAY or TIME
acquisition, i.e., all the source values are
integers. If not, the standard rules for a move
govern storage of the source value in the receiving
item (data-name).

79

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

4.21 STRING STATEMENT

The STRING statement
multiple sending data
receiving item. The
statement is:

allows concatenation of
i tern values into a single
general format of this

STRING {operand-I ••. DELIMITED BY {
operand-2}}

SIZE

INTO identifier-l [WITH POINTER identifier-2]

[ON OVERFLOW imperative-statement]

In this format, the term operand means a non-numeric
literal, one-character figurative constant, or data­
name. "Identifier-I" is the receiving data-item
name, which must be alphanumeric without editing
symbols or the JUSTIFIED clause. "Identifier-2" is
a counter and must be an elementary numeric integer
data item of sufficient size (plus 1) to point to
positions within identifier-I.

If no POINTER phrase exists, the default value of
the log i cal po inter is one. The log i cal po in ter
value designates the beginning position of the
receiving field into which data placement begins.
During movement to the receiving field, the criteria
for term ina ti on of an i n d i v i d u a 1 source are
controlled by the "DELIMITED BY" phrase:

DELIMITED BY SIZE: the entire source field is
moved (unless the receiving field becomes full)

DELIMITED BY operand-2: the character string
specified by operand-2 is a "Key" which, if
found to rna tch ali ke-numbered suc cessi on of
sending characters, terminates the function for
the current sending operand (and causes
automatic switching to the next sending
operand, if any).

If at any point the logical pointer (which is
automatically incremented by one for each character
stored into identifier-I) is less than one or
greater than the size of identifier-I, no further
data movement occurs, and the imperative statement
given in the OVERFLOW phrase (if any) is executed.
If there is no OVERFLOW phrase, control is

80

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

transferred to the next executable statement.

There is no automatic space fill into any position
of identifier-I. That is, unaccessed positions are
unchanged upon completion of the STRING statement.

Upon compl et i on of the STRING s taternen t, if there
was a POINTER phrase, the resultant value of
identifier-2 equals its original value plus the
number of characters moved during execution of the
STRING statement.

4.22 UNSTRING STATEMENT

The UNSTRING statement causes data in a single
sending field to be separated into subfields that
are placed into multiple receiving fields. The
general format of the statement is:

UNSTRING identifier-l

[DELIMITED BY [ALL] operand-l [OR [ALL] operand-2] •••]

INTO {identifier-2 [DELIMITER IN identifier-3]
[COUNT IN identifier-4]}

[WITH POINTER identifier-5]
[TALLYING IN identifier-6]
[ON OVERFLOW imperative-statement]

Criteria for separation of subfields may be given in
the "DELIMITED BY" phrase. Each time a succession
of characters matches one of the non-numeric
literals, one-character figurative constants, or
data-i tern values named by operand-i, the current
collect i on of sendi ng characte rs is te rmi na ted and
moved to the next rece i vi ng field spec-i f i ed by the
INTO-clause. When the ALL phrase is specified, more
than one contiguous occurrence of operand-i in
identifier-l is treated as one occurrence.

When two or more delimiters exist, an 'OR' condition
exists. Each delimi ter is compared to the sending
field in the order specified in the UNSTRING
statement.

Identifier-I must be a group or character string
(alphanumeric) item. When a data-item is employed
as any operand-i, that operand must also be a group

81

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

or character string item.

Receiving fields (identifier-2) may be any of the
following types of items:

1. an unedited alphabetic item

2. a character-string (alphanumeric) item

3. a group item

4. an external decimal
DISPLAY) whose PICTURE
character.

i tern (n urn e ric. ,
does not contain

usaqe
any P

When any examination encounters two contiguous
del imi ters, the current rece iving area is ei ther
space or zero filled depending on its type. If
there is a "DELIMITED BY" phrase in the UNSTRING
statement, then there may be "DELIMITER IN" phiases
following any receiving item (identifier-2)
mentioned in the INTO clause. In this case, the
character(s) that delimit the data moved into
identifier-2 are themselves stored in identifier-3,
wh ich sho uld be an alphanumer ic item. Furthe rmore,
if a "COUNT IN" phrase is present, the number of
characters that were moved into identifier-2 is
moved to identifier-4, which must be an elementary
numeric integer item.

If there is a "POINTER" phrase, then identifier-5
must be an integer numeric item, and its initial
value becomes the initial logical pointer value
(otherwise, a logical pointer value of one is
assumed) • The examination of source characters
begins at the position in identifier-l specified by
the logical pointer; upon completion of the UNSTRING
statement, the final logical pointer value will be
copied back into identifier-5.

If at any time the value of the logical pointer is
less than one or exceeds the size of identifier-l,
then overflow is said to occur and control passes
over to the imperative statements given in the "ON
OVERFLOW" clause, if any.

Overflow also occurs when all receivinq fields have
been filled prior to exhausting the source field.

During the course of source field scanning (looking

82

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

for matching delimiter sequences), a variable length
character string is developed which, when completed
by recogn i t i on of a del imi ter 0 r by acqui ring as
many characters as the size of the current receiving
field can hold, is then moved to the current
receiving field in the standard MOVE fashion.

If there is a "TALLYING IN" phrase, identifier-6
must be an integer numeric i tern. The number of
receiving fields acted upon, plus the initial value
of identifier-6, will be produced in identifier-6
upon completion of the UNSTRING statement.

Any subscripting or indexing associated with
identifier-I, 5, or 6 is evaluated only once at the
beginning of the UNSTRING statement. Any
subscripting associated with operands-i or
identifier-2, 3, 4 is evaluated immediately before
access to the data-item.

4.23 DYNAMIC DEBUGGING STATEMENTS

The execution TRACE mode may be set or reset
dynamically. When set, procedure-names are printed
in the order in which they are executed.

Execution of the READY TRACE statements sets the
trace mode to cause printing of every section and
paragraph name each time it is entered. The RESET
TRACE sta temen t inh ibi ts such pr in ti ng. A pr in ted
list of procedure-names in the order of their
execution is invaluable in detection of a program
malfunction; it aids in detection of the point at
which actual program flow departed from the expected
program flow.

Another debugging feature may be requi red in order
to reveal critical data values at s'pecifically
designated points in the procedure. The EXHIBIT
statement provides this facility.

The statement form

EXHIBIT NAMED {
literal }
data-name •••

produces
literal,
value.

a
or

printout of
da ta i terns in

83

values of the indicated
the fo rma t da ta-name =

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

Statements EXHIBIT, READY TRACE and RESET TRACE are
extensions to ANS-74 standard COBOL designed to
provide a convenient aid to program debugging.

Programming Note: It is often desirable to include
such statements on source lines that contain D in
column 7, so that they are ignored by the compiler
unless WITH DEBUGGING MODE is included in the
SOURCE-COMPUTER paragraph.

84

CROMEMCO COBOL REFERENCE MANUAL
Inter-Program Communication

CHAPTER 5

Inter-Program Communication

Sepa ratel y compi 1 ed COBOL prog ram mod ul es may be combined
into a single executable program. Inter-program
communication is made possible through the use of the
LINKAGE Section of the Data Division (which follows the
Working-Storage Section) and by the CALL statement and the
USING list appendage to the Procedure Division header of a
subprogram module. The Linkage secticrn describes data made
available in memory from another program module. Record
description entries in the LINKAGE section provide data­
names by which data-areas reserved in memory by other
programs may be referenced. Entries in the LINKAGE section
do not reserve memory areas because the data is assumed to
be present elsewhere in memory, in a CALLing program.

Any Record Description clause may be used to describe items
in the LINKAGE Section as long as the VALUE clause is not
specified for other than level 88 items.

5.1 USING LIST APPENDAGE TO PROCEDURE HEADER

The Procedure Division header of a CALLable
subprogram is written as

PROCEDURE DIVISION [USING data-name ••• J.

Each of the data-name operands is an entry in the
Linkage Section of the subprogram, having level 77
or 01. Addresses are passed from an external CALL
in one-to-one correspondence to the operands in the
USING list of the Procedure header so that data in
the calling program may be manipulated in the
subprogram. No data-name may appear more than once
in the USING phrase.

85

CROMEMCO COBOL REFERENCE MANUAL
Inter-Program Communication

5.2 CALL STATEMENT

The CALL statement format is

CALL literal USING data-name

Literal is a subprogram name defined as the PROGRAM­
ID of a separately compiled program, and is non­
numer ic. Data names in the USING list are made
available to the called subprogram by passing
add res se s to the s ubprog r ami these addresses are
assigned to the Linkage Section i terns declared in
the USING list of that subprogram. Therefore the
number of data-names specified in matching CALL and
Procedure Division USING lists must be identical.

NOTE

Correspondence between caller
and calleeli s t sis by
position, not by identical
spelling of names.

5.3 EXIT PROGRAM STATEMENT

The EXIT PROGRAM statement, appear ing in a called
subprogram, causes control to be returned to the
next executable statement after CALL in the calling
program. This statement must be a paragraph by
itself.

86

CROMEMCO COBOL REFERENCE MANUAL
Table Handling by the Indexing Method

CHAPTER 6

Table Handling by the Indexing Method

In addition to the capabilities of subscripting described
in Chapter 3, COBOL provides the Indexing method of table
handling.

6.1 INDEX-NAMES AND INDEX ITEMS

An index-name is declared not by the usual method of
1 evel number, name, and da ta desc r i pt ion clauses,
but implicitly by appearance in the "INDEXED BY
index-name" appendage to an OCCURS clause. Thus, an
index-name is equivalent to an index data-item
(USAGE IS INDEX), although defined differently. An
index-name must be uniquely named.

An index data item may only be referred to by a SET
or SEARCHstatement, a CALL statement's USING list
or a Procedure header USING list; or used in a
relation condition or as the variation item in a
PERFORM VARYING statement. In all cases the process
is equivalent to dealing with a binary word integer
subscript. Index-name must be initialized to some
value before use via SET, SEARCH or PERFORM.

6.2 SET STATEMENT

The SET statement permits the manipulation of index­
names, index items, or binary subscripts for table­
handling purposes. There are two formats.

Format 1:

\

SET {
index-name-l}
index-i tem-l
data-name-l

TO
{

index-name-2}
index-item-2
data-name-2
integer-2

Format 2:

SET index-name-3

87

{
UP BY }
DOWN BY {

integer-4 }
data-name-4

CROMEMCO COBOL REFERENCE MANUAL
Table Handling by the Indexing Method

Format 1 is equivalent to moving the "TO"
(e.g., integer-2) to multiple receiving
written immediately after the verb SET.

value
fields

Format 2 is equivalent to reduction (DOWN) or
increase (UP) applied to each of the quantities
written immediately after the verb SET: the amount
of the reduction or increase is specified by a name
or value immediately following the word BY.

In any SET statement, data-names are restricted to
integer items.

6.3 RELATIVE INDEXING

A user reference to an item in a table controlled by
an OCCURS clause is expressed wi th a proper number
of subscripts (or indexes), separated by commas.
The whole is enclosed in matching parentheses, for
example:

TAX-RATE (BRACKET, DEPENDENTS)
XCODE (I, 2)

where subscripts are ordinary integer decimal data­
names, or integer constants, or binary integer
(COMPUTAT I aNAL 0 r INDEX) items, or index-names.
Subscripts may be qualified, but not, themselves,
subscripted. A subscript may be signed, but if so,
it must be positive. The lowest acceptable value is
1, pointing to the first element of a table. The
highest permissible value is the maximum number ·of
occurrences of the item as specified in its OCCURS
clause.

A further capability
indexing. In this case,
as

exists, called relative
a "subscript" is expressed

name ~ integer constant

where a space must be on either side of the plus or
minus, and "name" may be any proper index-name.
Example:

XCODE (I + 3, J - 1).

88

CROMEMCO COBOL REFERENCE MANUAL
Table Handling by the Indexing Method

6.4 SEARCH STATEMENT --Format 1

A 1 inear search of a tabl e may be done us i ng the
SEARCH statement. The general format is:

SEARCH table [VARYING identifier I index-name]

[AT END imperative-statement-l]

{ WHEN Condition-l
{

NEXT SENTENCE } }
imperative-statement-2

"Table" is the name of a data-i tern having an OCCURS
clause that includes an INDEXED-BY list; "table"
must be written without subscripts or indexes
because the nature of the SEARCH statement causes
automatic variation of an index-name associated with
a particular table.

There are four possible "varying" cases:

1. NO VARYING phrase -- the first-listed index-name
for the table is varied.

2. VARYING index-name-in-a-different-table -- the
first-listed index-name in the table's
definition is varied, implicitly, and the index­
name listed in the VARYING phrase is varied in
like manner, simultaneously.

3. VARYING index-name-defined-for-table this
specific index-name is the only one varied.

4. VARYING integer-data-item-name
da ta-i tern and the first-listed
table are varied, simultaneously.

-- both this
index-name fo r

The term variation has the following interpretation:

1. The initial value is assumed to have been
established by an earlier statement such as SET.

2. If the initial value exceeds the maximum
declared in the appl icable OCCURS clause, the
SEARCH operation terminates at once; and if an
AT END phrase exists, the associated imperative
statement-l is executed.

89

CROMEMCO COBOL REFERENCE MANUAL
Table Handling by the Indexing Method

3. If the value of the index is within the range of
valid indexes (1,2,... up to and including the
maximum number of occurrences), then each WHEN­
condition is evaluated until one is true or all
are found to be false. If one is true, its
assoc ia ted impe ra ti ve sta tementis executed and
the SEARCH operation terminates. If none is
true, the index is incremented by one and step
(3) is repeated. Note that incrementation of
index applies to whatever item and/or index is
selected according to rules 1-4.

If the table is subordinate to another table, an
index-name must be associated with each dimension of
the entire table via INDEXED BY phrases in all the
OCCURS clauses. Only the index-name of the SEARCH
table is varied (along with another "VARYING" index­
name or data-item). To search an entire two-or
three-dimensional table, a SEARCH must be executed
several times with the other index-names set
appropr i a tel y each time, probabl y wi th a PERFORM,
VARYING statement.

The log ic of a Format 1 SEARCH is depicted at the
end of this chapter.

6.5 SEARCH STATEMENT --Format 2

Format 2 SEARCH statements deal with tables of
ordered data. The general format of such a SEARCH
ALL statement is:

SEARCH ALL table [AT END imperative-statement-l •••]

WHEN condition {imperative-statement-2 ••• }
NEXT SENTENCE

Only one WHEN clause is permitted, and the following
rules apply to the condition:

1. Only simple relational conditions or condition­
names may be employed, and the subj ect must be
properly indexed by the first index-name
associated with table (along with sufficient
other indexes if multiple OCCURS clauses apply).
Furthermore, each subject data-name (or the
data-name associated with condition-name) in the
condition must be mentioned in the KEY clause of
the table. The KEY clause is an appendage to

90

CROMEMCO COBOL REFERENCE MANUAL
Table Handling by the Indexing Method

the OCCURS clause having the following fo rmat:

ASCENDING I DESCENDING KEY IS data-name •••

where data-name is the name defined in this Data
Description entry (following level number) or
one of the subordinate data-names. If more than
one data-name is given, then all of them must be
the names of entries subordinate to this group
item. The KEY phrase indicates that the
repeated data' is arranged in ascending or
descending order according to the data-names
which are listed (in any given KEY phrase) in
decreasing order of significance. More than one
KEY phrase may be specified.

2. In a simple
equal i ty test
is permi tted.

relational condition, only the
(using relation = or IS EQUAL TO)

3. Any condition-name variable (Level 88 items)
must be defined as having only a single value.

4. The cond i ti on may be compo unded by use of the
Logical connector AND, but not OR.

5. In a simple relational condition, the object (to
the right of the equal sign) may be a literal or
an identifier; the identifier must NOT be
referenced in the KEY clause of the table-or be
indexed by the first index-name associated with
the table. (The term identifier means data­
name, including any qualifiers and/or subscripts
or indexes.)

Fa il ure to confo rm to these restr ic ti ons may yi eld
unpredictable results. Unpredictable results also
o c cur i f the tab 1 e data i s no tor d ere d in
conformance to the declared KEY clauses, or if the
keys ref e renced in the WHEN-cond i t i on are no t
sufficient to identify a unique table element.

In a Format 2 SEARCH, a nonserial type of search
operation may take place, relying upon the declared
ordering of data. The initial setting of the index­
name for table is ignored and its setting is varied
automatically during the searching, always within
the bounds of the maximum number of occurrences. If
the condi tion (WHEN) cannot be satisfied for any
valid index value, control is passed to imperative-

91

CROMEMCO COBOL REFERENCE MANUAL
Table Handling by the Indexing Method

statement-I, if the AT END clause is present, or to
the next executable sentence in the case of no AT
END clause.

If all the simple condi tions in the single WHEN­
condition are satisfied, the resultant index value
indicates an occurrence that allows those conditions
to be satisfied, and control passes to imperative­
statement-2. Otherwise the final setting is not
predictable.

92

CROMEMCO COBOL REFERENCE MANUAL
Table Handling by the Indexing Method

Increment
index(es)

>

True

r------7
/ may be null /

execute
imperative
state­
ment(s)-l

execute
imperative
state­
ment(s)-2

execute
imperative
state­
ment(s)-3

Logic Diagram for Format 1 SEARCH

93

CROMEMCO COBOL REFERENCE MANUAL
Indexed Files

CHAPTER 7

Indexed Files

7.1 DEFINITION OF INDEXED FILE ORGANIZATION

An indexed-file organization provides for recording
and accessing records of a "data base" by keeping a
directory (called the control index) of pointers
that enable direct location of records having
particular unique key values. An indexed file must
be assigned to DISK in its defining SELECT sentence.

A file whose organization is indexed can be "accesse"d
either sequentially, dynamically or ran~omly.

Sequential access provides access to data records in
ascending order of RECORD KEY values.

In the random access mode, the order of access to
records is controlled by the programmer. Each
reco rd des i red is accessed by pI ac ing the val ue of
its key in a key da ta item pr ior to an access
statement.

In the dynamic access mode, the prog rammer I slog ic
may change from sequential access to random access,
and vice versa, at will.

7.2 SYNTAX CONSIDERATIONS

In the Environment Division, the SELECT entry must
specify ORGANIZATION IS INDEXED, and the ACCESS
clause fo rmat is

ACCESS MODE IS SEQUENTIAL I RANDOM I DYNAMIC.

Assign, Reserve, and File Status clause formats are
identical to those specified in Section 2.2.1 of
this manual.

In the FD entry for an INDEXED file, both LABEL
RECORDS STANDARD and a VALUE OF FILE-ID clause must
appear. The formats of Section 3.13 apply, except
that only the DISK-related forms are applicable.

94

CROMEMCO COBOL REFERENCE MANUAL
Indexed Files

7.2.1 RECORD KEY CLAUSE

The general format of this clause, which is
required, is:

RECORD KEY IS data-name-l

where data-name-l is an item defined within the
record descriptions of the associated file
description, and is a group item, an elementary
alphanumeric item or a decimal field. A decimal key
must have no P characters in its PICTURE, and it may
not have a SEPARATE sign. No record key may be
subscripted. The maximum KEY length is 60
characters.

If random access mode is specified, the value of
data-name-l designates the record to be accessed by
the next DELETE, READ, REWRITE or WRITE statement.
Each record must have a unique. record key value.

7.2.2 FILE STATUS REPORTING

If a FILE STATUS clause appears in the Environment
Division for an Indexed organization file, the
des i g natedtw0 - c h a r act e r d a t a item isseta f t e r
every 1-0 statement. The following table summarizes
the possible settings.

Status Data Status Data Item RIGHT Character
Item LEFT No Further Sequence Duplicate No Record Disk Space
Character Description Error Key Found Full

(0) (1) (2) (3) (4)

Successful
Completion (0) X

At End (1) X

Invalid
Key (2) X X X v

f,

Permanent
Error(3) X

95

CROMEMCO COBOL REFERENCE MANUAL
Indexed Files

Sequence error arises if access mode is sequential
when WRITEs do not occur in ascending sequence for
an Indexed file, or the key· is altered prior to
REWRITE. The other settings are self-explanatory.
The left character may also be '9' for implementor­
defined errors; see the User's Guide for an
explanation of these.

Note that "Disk Space Full" occurs with Invalid Key
(2) for Indexed and Relative file handling, whereas
it occurred with "Permanent Error" (3) for
sequential files.

If an error occurs at execution time and no AT END
or INVALID KEY statements are given and no
appropriate Declarative ERROR section is supplied
and no FILE STATUS is specified, the error will be
displayed on the Console and the program will
terminate. See Section 4.19.

7.3 PROCEDURE DIVISION STATEMENTS FOR INDEXED FILES

The syntax of the OPEN statement (Section 4.14) also
applies to Indexed organized files, except EXTEND is
inapplicable.

The foIl ow i n g tab 1 e s urn rna r i zesth e a va i lab 1 e
statement types and their permissibility in terms of
ACCESS mode and OPEN option in effect. Where X
appears, the statement is permissible, otherwise it
is not valid under the associated ACCESS mode and
OPEN option.

96

CROMEMCO COBOL REFERENCE MANUAL
Indexed Files

ACCESS Procedure OPEN Option in Effect
MODE IS Statement Input Output I-O

READ X X
WRITE X

SEQUENTIAL REWRITE X
START X X
DELETE X
READ X X
WRITE X X

RANDOM REWRITE X
START
DELETE X
READ X X
WRITE X X

DYNAMIC REWRITE X
START X X
DELETE X

In addition to the above statements, CLOSE is
permissible under all conditions; the same format
shown in Section 4.17 is used.

7.4 READ STATEMENT

Format 1 (Sequential Access):

READ file-name [NEXT] RECORD [INTO data-name-l]

[AT END imperative-statement •••]

Format 2 (Random or Dynamic Access):

READ f i 1 e-name RECORD rINTO data-name-l] [KEY IS da ta-name-2

[INVALID KEY imperative-statement •••]

Format 1 must be used for all files having
sequential-access mode. Format 1 with the NEXT
option is used for sequential reads of a DYNAMIC
access mode fi 1 e. The AT END cl a use is executed
when the logical end-of-file condition arises. If
this clause is not written in the source statement,
an appropriately assigned Declaratives ERROR section
is given control at end-of-file time, if available.

Format 2 is used for files in random-access mode or

97

CROMEMCO COBOL REFERENCE MANUAL
Indexed Files

for files in dynamic-access mode when records are to
be retrieved randomly.

In format 2, the INVALID KEY clause specifies action
to be ta ken if the access key val ue does not re fe r
to an existent key in the file. If the clause is
not given, the appropriate Declaratives ERROR
section, if supplied, is given control.

The optional "KEY IS" clause must designate the
record key item declared in the file's SELECT entry.
For non-sequential access, if no "KEY IS" clause is
written in a READ statement, then the prime. record
key is ass umed to be the key of reco rd. The use r
must ensure that a valid key value is in the
designated key field prior to execution of a random­
access READ.

The rul es fo r sequen ti al fi 1es reg ard ing the INTO
phrase apply here as well.

7.5 WRITE STATEMENT

The WRITE statement releases a logical record for an
output or input-output file; its general format is:

WRITE record-name [FROM data-name-l]

[INVALID KEY imperative-statement •••]

Just prior to executing the WRITE statement, a valid
(unique) value must be in that portion of the
record-name (or data-name-l if FROM appears in the
statement) which serves as RECORD KEY.

In the event of an improper key value, the
imperative statements are executed if the INVALID
KEY clause appears in the statement; otherwise an
appropriate Declaratives ERROR section is invoked,
if applicable. The INVALID KEY condi tion arises if:

1. for sequential access, key values are not
ascending from one WRITE to the next WRITE;

2. the key value is not unique;

3. the allocated disk space is exceeded.

98

CROMEMCO COBOL REFERENCE MANUAL
Indexed Files

7.6 REWRITE STATEMENT

The REWRITE statement logically replaces an existing
record; the format of the statement is:

REWRITE record-name [FROM data-name]
[INVALID KEY imperative-statement •••]

For a file in sequential-access mode, the last READ
statement must have been successful in order for a
REWRITE statement to be valid. If the value of the
record key in record-name (or corresponding part of
data-name, if FROM appears in the statement) does
not equal the key value of the immediately previous
read, or if that previous read was unsuccessful,
then the invalid key condition exists and the
imperative statements are executed, if present;
otherwise an applicable Declaratives ERROR section
is executed, if available.

For a file in a random or dynamic access mode, the
record to be replaced IS specified by the record
key; no previous READ is necessary. The INVALID KEY
condi tion exi sts when the record key's val ue does
not equal that of any record stored in the file.

7.7 DELETE STATEMENT

The DELETE statement logically removes a record from
the Indexed file. The general format of the
statement is:

DELETE file-name RECORD [INVALID KEY imperative-statement •••]

Fo r a fi 1 e in the sequen ti al access mode, the last
input-output statement executed for file-name would
have been a successful READ sta tement. The record
that was read is deleted. Consequently, no INVALID
KEY phrase should be specified for sequential-access
mode files.

For a file having random or dynamic access mode, the
record deleted is the one associated with the record
key; if there is no such matching record, the
invalid key condition exists, and control passes to
the imperative statements in the INVALID KEY clause,
or to an applicable Declarative ERROR section if no
INVALID KEY clause exists.

99

CROMEMCO COBOL REFERENCE MANUAL
Indexed Files

7.8 START STATEMENT

The START statement enables an Indexed organization
file to be positioned for reading at a specified key
value. This is permitted for files open in either
sequential or dynamic access modes. The format of
this statement is:

START file-name [KEY IS
{

GREATER THAN }
NOT LESS THAN
EQUAL TO

data-name]

[INVALID KEY imperative statement •••]

Data-name must be the declared record key and the
value to be matched by a record in the file must be
pre-stored in the data-name. When executing this
statement, the file must be open in the input or I-a
mode.

If the KEY phrase is not present, equality between a
record in the file and the record key value is
sought. If key relation GREATER or NOT LESS is
specified, the file is positioned for next access at
the first record greater than, or greater than or
equal to, the indicated key value.

If no matching record is found, the imperative
statements in the INVALID KEY clause are executed,
or an appropriate Declaratives ERROR section is
executed.

100

CROMEMCO COBOL REFERENCE MANUAL
Relative Files

CHAPTER 8

Relative Files

8.1 DEFINITION OF RELATIVE FILE ORGANIZATION

Relative organization is restricted to disk-based
files. Records are differentiated on the basis of a
RELATIVE RECORD number which ranges from 1 to
32~~--or~o-a-lesser maximum for a smaller file.
Un 1 ike the cas e 0 fan In de xed f i 1 e , wh ere the
identifying key field occupies a part of the data
record, relative record numbers are conceptual and
are not embedded in the data records.

A relative-organized file may be
sequentially, dynamically or
sequential access mode, records are
order of ascending record numbers.

accessed ei ther
randomly. In
accessed in the

In random access mode, the sequence of record access
is controlled by the program, by placing a number in
a relative key item. In dynamic access mode, the
program may inter-mix random and sequential access
verb forms at will.

8.2 SYNTAX CONSIDERATIONS

In the Envi ronmen t Di v i si on, the SELECT en try must
specify ORGANIZATION IS RELATIVE, and the ACCESS
clause format is

ACCESS MODE IS SEQUENTIAL I RANDOM I DYNAMIC.

Assign, Reserve, and File Status clause formats are
identical to those used for sequentially- or
indexed-organized files. The values of STATUS Key 2
when STATUS Key 1 equals '2' are:

'2' for attempt to WRITE a duplicate key

'3' for nonexistent record

'4' for disk space full

101

CROMEMCO COBOL REFERENCE MANUAL
Relative Files

In the associated FD entry, STANDARD labels must be
declared and a VALUE OF FILE-ID clause must be
included.

8.2.1 RE LATIVE KEY CLAUSE

In addition to the usual clauses in the SELECT
entry, a clause of the form

RELATIVE KEY IS data-name-l

is required for random or dynamic access mode. It
is also required for sequential-access mode, if a
START statement exists for such a file.

Data-name-l must be described as
integer item not contained
description of the file itself.
positive and nonzero.

an unsigned binary
within any record

Its value must be

8.3 PROCEDURE DIVISION STATEMENT FOR RELATIVE FILES

Within the Procedure Division, the verbs OPEN,
CLOSE, READ, WRITE, REWRITE, DELETE and START are
a va i 1 a b 1 e , us t as for f i 1 e s wh 0 s e 0 r g ani z a t ion i s
indexed. (Therefore the charts in Sections 7.2.2
and 7.3 also apply to RELATIVE files.) The
sta tement fo rmats for OPEN and CLOSE (see Sections
4.14 and 4.17) are applicable to Relative files,
except for the "EXTEND" phrase.

8.4 READ STATEMENT

Format 1:
READ file-name [NEXT] RECORD [INTO data-name]

[AT END imperative statement •••]

Fo rma t 2:
READ file-name RECORD [INTO data-name]

[INVALID KEY imperative statement •••]

Format 1 must be used for all files in sequential

102

CROMEMCO COBOL REFERENCE MANUAL
Relative Files

access mode. The NEXT phrase must be present to
achieve sequential access if the file's declared
mode of access is Dynamic. The AT END clause, if
given, is executed when the logical end-of-file
~condition exists, or, if not given, the appropriate
Declaratives ERROR section is given control, if
available.

Format 2 is used to achieve random access with
declared mode of access either Random or Dynamic.

If a Relative Key is defined (in the file's SELECT
entry), successful execution of a format 1 READ
statement updates the contents of the RELATIVE KEY
item ("data-name-l") so as to contain the record
number of the record retrieved.

For a format 2 READ, the record that is retrieved is
the one whose relative record number is pre-stored
in the RELATIVE KEY item. If no such record exists,
however, the INVALID KEY condition arises, and is
handled by (a) the imperative statements given in
the INVALID KEY portion of the READ, or (b) an
associated Declaratives section.

The rul es fo r sequen ti al fi 1 es reg ard ing the INTO
phrase apply here as well.

8.5 WRITE STATEMENT

The format of the WRITE statement is the same for a
Relative file as for an Indexed file:

WRITE record-name [FROM data-name] [INVALID

imperative statement •••]

If access mode is sequential, then completion of a
WRITE statement causes the relative record number of
the record just output to be placed in the RELATIVE
KEY item.

If access mode is random or dynamic, then the user
must pre-set the value of the RELATIVE KEY i tern in
order to assign the record an ordinal (relative)
number. The INVALID KEY cond it ion ar i ses if there
already exists a record having the specified ordinal
number, or if the disk space is exceeded.

103

CROMEMCO COBOL REFERENCE MANUAL
Relative Files

8.6 REWRITE STATEMENT

The format of the REWRITE statement is the same for
a Relative file as for an Indexed file:

REWRITE record-name [FROM data-name]

[INVALID KEY imperative statement •••]

For a file in sequential access mode, the
immediately previous action would have been a
successful READ; the record thus previously made
available is replaced in the file by executing
REWRITE. If the previous READ was unsuccessful, a
run-time error will terminate execution. Therefore,
no INVALID KEY clause is allowed for sequential
access.

For a file with dynamic or random access mode
declared, the reco rd tha tis replaced by execut i ng
REWRITE is the one whose ordinal number is pre-set
in the RELATIVE KEY item. If no such item exists,
the INVALID KEY condition arises.

8.7 DELETE STATEMENT

The format of the DELETE statement is the same for a
Relative file as for an Indexed file:

DELETE file-name RECORD [INVALID KEY

imperative statement •••]

For a file in a sequential access mode, the
immediately previous action would have been a
successful READ statement; the record thus
previously made available is logically removed (or
made inaccessible). If the previous READ was
unsuccessful, a run-time error will terminate
execution. Therefore, an INVALID KEY clause may not
be specified for sequential-access mode files.

For a file with dynamic or random access mode
declared, the removal action pertains to whatever
record is designated by the value in the RELATIVE
KEY item. If no such numbered record exists, the
INVALID KEY condition arises.

104

CROMEMCO COBOL REFERENCE MANUAL
Relative Files

8.8 START STATEMENT

The format of the START statement is the same for a
Relative file as for an Indexed file:

START file-name [KEY IS {

GREATER THAN }
NOT LESS THAN-- ---
EQUAL TO

data-name-I]

[INVALID KEY imperative statement •••]

Execution of this statement specifies the beginning
position for reading operations; it is permissible
only for a file whose access mode is defined as
sequential or dynamic.

Data-name may only be that of the previously
declared RELATIVE KEY item, and the number of the
relative record must be stored in it before START is
executed. When executing this statement, the
associated file must be currently open in INPUT or
I-a mode.

If the KEY phrase is not present, equality between a
record in the file and the record key value is
sought. If key relation GREATER or NOT LESS is
specified, the file is positioned for next access at
the first record greater than, or greater than or
equal to, the indicated key value.

If no such relative record is found, the imperative
sta tements in the INVALID KEY clause are executed,
or an appropriate Declaratives ERROR section is
executed.

105

CROMEMCO COBOL REFERENCE MANUAL
Declaratives and the Use Sentence

CHAPTER 9

DECLARATIVES and the USE SENTENCE

The Declaratives region provides a method of including
procedures that are executed not as part of the sequential
coding written by the programmer, but rather when a
condition that cannot normally be tested by the programmer
occurs.

Although the system automatically handles checking and
creation of standard labels and executes error recovery
rout ines in the case of input/output er ro rs, add i ti onal
procedures may be specified by the COBOL programmer.

Since these procedures are executed only at the time an
error in reading or wri ting occurs, they cannot appear in
the reg ular sequence of procedural sta tements. They must
be written at the beginning of the Procedure Division in a
subdivision called DECLARATIVES. Related procedures are
preceded by a USE sentence that specifies their function.
A declarative section ends wi th the occurrence of another
section-name with a USE sentence or with the key words END
DECLARATIVES.

The key words DECLARATIVES and END DECLARATIVES must each
begin in Area A and be followed by a period. No other text
may appear on the Declaratives at the front of the
Procedure Division.

PROCEDURE DIVISION.

DECLARATIVES.

{section-name SECTION. USE sentence.

{parag raph-name.

END DECLARATIVES.

{sentence} ••• } ••• }

The USE sentence defines the applicability of the
associated section of coding.

A USE sentence, when present, must immediately follow a
section header in the Declarative portion of the Procedure
Division and must be followed by a period followed by a
space. The remainder of the s~ction must consist of zero,
one 0 r m0 reproc e d u r alpa rag r a ph s t hat de fin e the

106

CROMEMCO COBOL REFERENCE MANUAL
Declaratives and the Use Sentence

procedures to be used. The USE sentence itself is never
executed; rather, it defines the conditions for the
execution of the USE procedure. The general format of the
USE sentence is

USE AFTER STANDARD EXCEPTION I ERROR PROCEDURE

ON {file-name ••• INPUT I OUTPUT I 1-0 I EXTEND}.

The words EXCEPTION and ERROR may be used interchangeably.
The associated declarative section is executed (by the
PERFORM mechanism) after the standard 1-0 recovery
procedures for the files designated, or after the INVALID
KEY or AT END condition arises on a statement lacking the
INVALID KEY or AT END clause. A given file-name may not be
associated with more than one declarative section.

Within a declarative section there must be no reference to
any nondeclarative procedure. Conversely, in the
nondeclarative portion there must be no reference to
procedure-names that appear in the declaratives section,
except that PERFORM statements may refer to a USE statement
and its procedures; but in a range specification (see
PERFORM, Section 4.10) if one procedure-name is in a
Declarative Section, then the other must be in the same
Declarative Section.

An exit from a Declarative Section is inserted by the
compiler following the last sta,tement in the section. All
log ical prog ram pa ths wi thin the section must lead to the
exi t point.

107

CROMEMCO COBOL REFERENCE MANUAL
Appendix I

APPENDIX I

Advanced Forms of Conditions

Evaluation Rules for Compound Conditions

1. Evaluation of individual simple conditions
(relation, class, condition-name, and sign test)
is done first.

2. AND-connected simple conditions are evaluated
next as a single result.

3. OR and its adjacent conditions (or previously
evaluated results) are then evaluated.

EXAMPLES:

1. A < B OR C = D OR E NOT> F

The evaluation is equivalent to
OR (E<F) and is true if any
individual parenthesized simple
true.

2. WEEKLY AND HOURS NOT = 0

(A<B) OR (C=D)
of the three
condi tions is

The evaluation is equivalent, after expanding
level 88 condition-name WEEKLY, to

(PAY-CODE = 'WI) AND (HOURS # 0)

and is true only if both the simple condi tions
are true.

3. A = 1 AND B = Z AND G > -3

OR P NOT EQUAL TO "SPAIN"

is evaluated as

[(A = 1) AND (B = 2) AND (G > -3)]

OR (P # "SPAIN")

If P = "SPAIN", the compound condition can only
be true if all three of the following are true:

108

CROMEMCO COBOL REFERENCE MANUAL
Appendix I

(c. 1)
(c.2)
(c. 3)

A = 1
B = 2
G > -3

However, if P is not
compound condition is
values of A, Band G.

Parenthesized Conditions

equal to "SPAIN",
true regardless of

the
the

Parentheses may be written within a
condition or parts thereof in order
precedence in the evaluation order.

Example:

IF A = B AND (A = 5 OR A = 1)
PERFORM PROCEDURE-44.

compound
to take

In this case, PROCEDURE-44 is executed if A = 5 OR A
= 1 while at the same time A = B. In this manner,
compound conditions may be formed containing other
compound conditions, not just simple conditions, via
the use of parentheses.

Abbreviated Conditions

Fo r the sake of brevi ty, the user may omi t the
"subject" when it is common to several successive
relational tests. For example, the condition A = 5
OR A = 1 may be written A = 5 OR = 1. This may also
be written A = 5 OR 1, where both subject and
relation being implied are the same.

Another example:

IF A = B OR < C OR Y

is a shortened form of

IF A = B OR A < C OR A < Y

The interpretation applied to the use of the word
'NOT' in an abbreviated condition is:

1. If the i tern immediately following 'NOT' is a

109

CROMEMCO COBOL REFERENCE MANUAL
Appendix I

relational operator, then the 'NOT' participates
as part of the relational operator;

2. otherwise, the beginning of a new, completely
separate condition must follow 'NOT', not to be
considered part of the abbreviated condition.

Caution: Abbreviations in which the subject and
relation are implied are permissible only in
relation tests; the subject of a sign test or class
test cannot be omitted.

NOT, the Logical Negation Operator

In addition to its use as a part of a relation
(e.g., IF A IS NOT = B), "NOT" may precede a
condition. For example, the condition NOT (A = B OR
C) is true when (A = B OR A = C) is false. The word
NOT may precede a level 88 condition name, also.

110

CROMEMCO COBOL REFERENCE MANUAL
Appendix II

APPENDIX IJ;

Table of Permissible MOVE Operands

Receiving Operand in MOVE Statement

Source Numeric Numeric Numeric Alphanumeric Alphanumeric Group
Operand Integer Non-integer Edited Edited

Numeric Integer OK OK OK OK (A) OK (A) OK (B)

Numeric Non-integer OK OK OK OK (B)

Numeric Edited OK OK OK (B)

Alphanumeric Edited OK OK OK (B)

Alphanumeric OK (C) OK (C) OK (C) OK OK OK (B)

Group OK (B) OK (B) OK (B) OK (B) OK (B) OK (B)

KEY: (A) Source sign, if any, is ignored.

NOTE:

(B) If the source operand or the receiving operand is a
Group Item, the move is considered to be a Group
Move. See Section 4.3 for a discussion of the
effect of a Group Move.

(C) Source is treated as an unsigned integer; source
length may not exceed 31.

No distinction is made in the compiler between
alphabetic and alphanumer ic; one should not move
numeric items to alphabetic items and vice versa.

III

CROMEMCO COBOL REFERENCE MANUAL
Appendix III

APPENDIX III

Nesting of IF Statements

A "nested IF" exists when, in a single sentence,
more than one IF precedes the first ELSE.

Example:

IF X = Y IF A = B
MOVE "*" TO SWITCH
ELSE MOVE "A" TO SWITCH
ELSE MOVE SPACE TO SWITCH

ThB flow of the above sentence may be represented by
a tree structure:

Space --.Swi tch

A--.Swi tch

Next
Sentence

112

T

CROMEMCO COBOL REFERENCE MANUAL
Appendix III

Another useful way of vi ewi ng nested IF structures
is based on numbering IF and ELSE verbs to show
their priority.

IFI x = y

true
actionl:

IF2 A = B
true-action : MOVE "*" TO SWITCH

ELSE2 false-action2 : MOVE "A" TO SWITCH

ELSEI
false-actionl MOVE SPACE TO SWITCH.

The above illustration shows clearly the fact that
IF2 is wholly nested within the true-action side of
IFl.

The number of ELSEs in a sentence need not be the
same as the number of IFs; there may be fewer ELSE
branches.

Examples:

IF M = 1 IF K = 0
GO TO MIKO ELSE GO TO MNOTI.

IF AMOUNT IS NUMERIC IF AMOUNT
IS ZERO GO TO CLOSE-OUT.

In the latter case, IF2 could equally well have been
written as AND.

113

CROMEMCO COBOL REFERENCE MANUAL
Appendix IV

APPENDIX IV

ASCII Character Set
For ANS-74 COBOL

Character Octal Value Character Octal Value

A 101 0 60
B 102 1 61
C 103 2 62
D 104 3 63
E 105 4 64
F 106 5 65
G 107 6 66
H 110 7 67
I III 8 70
J 112 9 71
K 113 (SPACE) 40
L 114 " 42
M 115 $ 44
N 116 I (non-ANSI) 47
a 117 (50
P 120) 51
Q 121 * 52
R 122 + 53
S 123 54
T 124 55
U 125 56
V 126 / 57
W 127 73
X 130 < 74
y 131 = 75
Z 132 > 76

Plus-zero (zero with embedded positive sign); 173
Minus-zero (zero with embedded negative sign); 175

114

CROMEMCO COBOL REFERENCE MANUAL
Appendix V

APPENDIX V

Reserved Words

* words not used by COBOL-80
** additional words required by COBOL-80

ACCEPT
ACCESS
ADD
ADVANCING
AFTER
ALL
ALPHABETIC

*ALSO
ALTER

*ALTERNATE
AND
ARE
AREA(S)
ASCENDING

**ASCII
ASSIGN
AT
AUTHOR

**BEEP
BEFORE
BLANK
BLOCK

*BOTTOM
BY

CALL
*CANCEL
*CD
*CF
*CH

CHARACTER(S)
*CLOCK-UNITS

CLOSE
*CLOSE
*CODE

CODE-SET
COLLATING

*COLUMN
COMMA

*COMMUNICATION
COMP
COMPUTATIONAL

**COMPUTATIONAL-3
**COMP-3

COMPUTE
CONFIGURATION

**CONSOLE
CONTAINS

*CONTROL(S)

COpy
*CORR(ESPONDING)

COUNT
CURRENCY
DATA
DATE
DATE-COMPILED
DATE-WRITTEN
DAY
DEBUGGING

*DEBUG-CONTENTS
*DEBUG-ITEM
*DEBUG-LINE
*DEBUG-NAME
*DEBUG-SUB-l
*DEBUG-SUB-2
*DEBUG-SUB-3

DECIMAL-POINT
DECLARATIVES
DELETE
DELIMITED
DELIMITER
DEPENDING
DESCENDING

*DESTINATION
*DE(TAIL)
*DISABLE

**DISK
DISPLAY
DIVIDE
DIVISION
DOWN

*DUPLICATES
DYNAMIC

*EGI
ELSE

*EMI
*ENABLE

END
*END-OF-PAGE
*ENTER

ENVIRONMENT
*EOP

EQUAL
ERROR

*ESI
*EVERY

EXCEPTION

115

CROMEMCO COBOL REFERENCE MANUAL
Appendix V

**EXHIBIT *LIMIT(S)
EXIT *LINAGE
EXTEND *LINAGE-COUNTER

LINE(S)
FD *LINE-COUNTER
FILE LINKAGE
FILE-CONTROL LOCK

**FILE-ID LOW-VALUE(S)
FILLER

*FINAL MEMORY
FIRST *MERGE

*FOOTING *MESSAGE
FOR MODE
FROM MODULES

MOVE
*GENERATE *MULTIPLE

GIVING MULTIPLY
GO
GREATER **NAMED

*GROUP NATIVE
NEGATIVE

*HEADING NEXT
HIGH-VALUE(S) *NO

NOT
IDENTIFICATION *NUMBER
IF NUMERIC
IN
INDEX OBJECT-COMPUTER
INDEXED OCCURS
INITIAL OF

*INITIATE OFF
INPUT OMITTED
INPUT-OUTPUT ON
INSPECT OPEN
INSTALLATION *OPTIONAL
INTO OR
INVALID ORGANIZATION
IS OUTPUT
I-O OVERFLOW
I-O-CONTROL

PAGE
JUST (IFIED) *PAGE-COUNTER

PERFORM
KEY *PF

*PH
PIC(TURE)

LABEL *PLUS
*LAST POINTER

LEADING POSITION
LEFT POSITIVE

*LENGTH **PRINTER
LESS *PRINTING

116

CROMEMCO COBOL REFERENCE MANUAL
Appendix V

PROCEDURE(S)
PROCEED
PROGRAM
PROGRAM-ID

**PROMPT

*QUEUE
QUOTE(S)

RANDOM
*RD

READ
**READY

*RECEIVE
RECORD(S)
REDEFINES

*REEL
*REFERENCES

RELATIVE
*RELEASE
*REMAINDER
*REMOVAL
*RENAMES

REPLACING
*REPORT(S)
*REPORTING
*RERUN

RESERVE
RESET

*RETURN
*REVERSED
*REWIND

REWRITE
*RF
*RH

RIGHT
ROUNDED
RUN

SAME
*SD

SEARCH
SECTION
SECURITY

*SEGMENT
*SEGMENT-LIMIT

SELECT
*SEND

SENTENCE
SEPARATE

SEQUENCE
SEQUENTIAL
SET
SIGN
SIZE

*SORT
*SORT-MERGE
*SOURCE

SOURCE-COMPUTER
SPACES(S)
SPECIAL-NAMES
STANDARD
STANDARD-l
START
STATUS
STOP
STRING

*SUB-QUEUE-l,2,3
SUBTRACT

*SUM
*SUPPRESS
*SYMBOLIC

SYNC (HRONIZED)

*TABLE
TALLYING

*TAPE
*TERMINAL
*TERMINATE
*TEXT

THAN
THROUGH
THRU
TIME
TIMES
TO

*TOP
**TRACE

TRAILING
*TYPE

*UNIT
UNSTRING
UNTIL
UP
UPON
USAGE
USE
USING

117

CROMEMCO COBOL REFERENCE MANUAL
Appendix V

VALUE(S)
VARYING
WHEN
WITH
WORDS
WORKING-STORAGE
WRITE

ZERO«E)S)

+

*
/
**
>
<
=

118

CROMEMCO COBOL REFERENCE MANUAL
Appendix VI

APPENDIX VI

PERFORM with VARYING and AFTER Clauses

PERFORM range

VARYING identifier-l FROM amount-l BY amount-2
UNTIL condition-l

[

AFTER identifier-2 FROM
UNTIL condition-2

[
AFTER identifier-3 FROM

UNTIL condition-3

amount-3 BY

amount-5 BY

amount-4]

amount-6]

Identifier here means a data-name or
Amount-I, -3, and -5 may be a data-name,
or literal. Amount-2, -4, and -6 may be
or literal only.

index-name.
index-name,
a data-name

The operation of. this complex PERFORM statement is
equivalent to the following COBOL statements
(example varying three items):

START-PERFORM.
MOVE amount-l TO identifier-l
MOVE amount-3 TO identifier-2
MOVE amount-5 TO identifier-3.

TEST-CONDITION-l.
IF condition-l GO TO END-PERFORM.

TEST-CONDITION-2.
IF condition-2

MOVE amount-3 TO identifier-2
ADD amount-2 TO identifier-l
GO TO TEST-CONDITION-l.

TEST-CONDITION-3.
IF condition-3

MOVE amount-5 TO identifier-3
ADD amount-4 TO identifier-2
GO TO TEST-CONDITION-2.

PERFORM range
ADD amount-6 TO identifier-3

119

CROMEMCO COBOL REFERENCE MANUAL
Appendix VI

GO TO TEST-CONDITION-3.

END-PERFORM. Next statement.

NOTE

If any identifier above were an
index-name, the associated MOVE
would instead be a SET (TO
form), and the associated ADD
would be a SET (UP form).

120

CROMEMCO COBOL USER'S GUIDE
Compiling COBOL Programs

SECTION 1

Compiling COBOL Programs

1.1 COBOL Command Scanner

To tell the COBOL compiler what to compile and with
which options, it is necessary to input a command
string, which is read by the COBOL command scanner.
Those familiar with Cromemco's FORTRAN will find the
command format is identical for COBOL. However,
different switches (options) are used with COBOL.

It shoul d be noted tha t COBOL consi sts of a rna in
s e g men tand i~~.!:. 0 v e rIa y s wh i c h are readin
consecutively during compilation. These overlays
are always read from the currently logged in disk.
Consequen tly one should always run COBOL from the
currently logged in disk.

1.1.1 Format of Commands

COBOL is invoked by typing COBOL followed by a
space, followed by an appropriate command string, as
described below. COBOL is read from the disk and
then exam ines the command s tr i ng. If it is val id ,
compilation commences. If not, COBOL responds with
"?COMMAND ERROR" followed by an asterisk so the user
can try aga in. When fininshed, COBOL always exi ts
to CDOS.

121

CROMEMCO COBOL USER'S GUIDE
Compiling COBOL Programs

The general format of a COBOL compiler command is:

objprog-dev:filename.ext, list-dev:filename.ext=
source-dev:filename.ext

where the various terms mean:

objprog-dev: The device on which the object
program is to be written

list-dev: The device on which the program
listing is to be written·

source-dev: The device from which the source
program input to COBOL is taken

NOTE

Whenever a device name is
omitted, it defaults to the
currently selected disk.

filename.ext

The filename and filename extension of
the object program file must be supplied
if the device is a directory device.
Filename extensions may be omitted, in
which case defaul t values are suppl ied.
These values are REL for the object file
and LST for the listing file. The source
file must have an extension of COB.

Either the object file or the listing file
specification or both may be omitted. If neither a
listing file nor an object file is desired, place
only a comma to the left of the equal sign. The
purpose then is only to syntax check for errors
which are displayed or. the console. If nothing is
typed to the left of the equal sign, the object file
is written on the same device with the same name as
the source file, but with the default extension REL.
If only a listing file specification is given, the
user may still write out the object file by typing
"/R" after the source name. This too writes the
obj ec t f i I e on the same disk wi th the same name as
the source and the default extension. Similarly
"/L" may be used to place the listing file on the
same disk with same name as the source and the
default extension LST.

122

CROMEMCO COBOL USER'S GUIDE
Compiling COBOL Programs

Examples

=PAYROLL Compile the source from
PAYROLL.COB placing the
object into PAYROLL.REL.

,TTY:=PAYROLL Compile the source
PAYROLL.COB placing
listing output on
terminal. No obj ect
is generated.

from
the
the

code

PAYOBJ=PAYROLL.COB

PAYROLL,PAYROLL=PAYROLL

,=PAYROLL

Compile PAYROLL.COB
putting the· object into
PAYROLL.REL.

Compile the PAYROLL.COB
putting the object into
PAYROLL.REL and listing
into PAYROLL.LST.

Compile PAYROLL but
produce no object or
listing file. Useful for
error checking.

123

CROMEMCO COBOL USER'S GUIDE
Compiling COBOL Programs

1.1.2 COBOL Compilation Switches

A var i ety of swi tches may be used in
string that will affect compilation.
must be preceded by a slash (/).

the command
Each swi tch

Switch Action

R Force Generation of an object file as
described above.

L Force generation of a listing file as
described above.

P Each/P allocates an extra 11010 bytes of
stack space for use during compilation.
Use /p if stack overflow errors occur
during compilation. Otherwise this switch
is not needed.

1.2 Output Listings and Error Messages

The listing file output by COBOL is a line-by-line
account of the source file with error messages, some
interspersed throughout the listing, some generated
only at the end. Each source line listed is
preceded by a consecutive 4-d ig it dec imal number.
This is used by the error messages at the end to
refer back to lines in error, and also by the
Runtime System to indicate what statement has caused
a Runtime Error after it occurs.

Two classes of diagnostic error messages may be
produced during compilation.

Low level flags are displayed directly below source
lines on the listing when simple syntax violations
occur. Remedial action is assumed in each case, as
documented in the following table, and compilation
continues.

124

CROMEMCO COBOL USER'S GUIDE
Compiling COBOL Programs

"QLIT"?

LENGTH?

CHRCTR?

PUNCT?

BADWORD

SEQ #

NAME?

PIC = X

COL. 7?

AREA A?

Reason for Flag

Faulty quoted literal

1. Zero length

2. Improper continua­
tion

3. Premature end-of­
file (before ending
delimiter)

Quoted literal length
over 120 characters,
or numeric literal over
18 digits, or 'word'
(identifier, or name)
over 30 characters.

Illegal ~haracter

Improper punctuation
(e.g. comma not fol­
lowed by a space).

Current word is malformed
such as ending in hyphen,
or multiple decimal points
in a numeric literal.

Improper sequence number
(includes case of out-of­
order sequence number).

Name does not begin with
a letter (A -Z).

An improper Picture.

An improper character
appears in source line
character 'column' 7,
where only * -j Dare
permissible.

Area A, columns 8-12, is
not blank in a
continuation line.

125

Continuation Action

Ignore and continue.

Assume acceptable.

Assume program end.

Excess characters
are ignored.

Ignore and continue.

Assumes acceptable.

Ignore and continue.

Accept and cotinue.

Accept and continue.

PIC X is assumed.

Assumes a blank
in column 7.

Ignore contents of
Area A (assumes
blank) •

CROMEMCO COBOL USER'S GUIDE
Compiling COBOL Programs

High level diagnostic messages consist of two or
three parts:

1. The ass 0 cia ted sou r c eli n e n urn b e r - - f 0 u r
digits, followed by a colon (:).

2. An english explanation of the error detected by
the compiler. If this text begins with /W/,
then it is only a warning; if not, it is an
error sufficiently severe to inhibit assembly,
linkage, and execution of an object program.

3. (Optional) The program element cited at the
point of error is listed.

the high level diagnostic me$sage text is
no list of 'messages and error codes' is

The messages are des igned to be sel f-

Design of
such that
necessary.
explanatory.

1.3 Files Used EY COBOL

In addition to the Source, Listing and Object files
used by COBOL, two other files should be noted.

First, there is a file called STEXT.INT which the
compiler always places on the primary disk. It is
used to hold intermediate symbolic text between pass
one and pass two of the compi 1 er. It is crea ted,
written, then closed, read, and then deleted before
the compiler exits. Consequently, it should be
transparent to the user unless the compilation is
aborted.

Another file of concern to the user is the file to
be copied due to a COpy verb in the COBOL program.
The user gives the name of the source fi 1 e to be
read and compiled in place of the COpy statement.
Remember that copied files cannot have COpy
s ta temen ts wi thin them and the rest of the 1 ine
after a COPY statement is ignored.

126

CROMEMCO COBOL USER'S GUIDE
Linking and Loading COBOL programs

SECTION 2

Linking and Loading COBOL programs

2.1 Command Format

The CROMEMCO Linker/Loader is used to link assembled
program modules together, load them into memory, and
begin execution there if desired. The Linker is
supplied to the user on diskette (large or small)
under the directory entry "LINK.COM". The command
line to call LINK consists of a number of filenames
and switches according to the following format:

LINK <d:filenaml.ext/s,d:filenam2.ext/s, ••• >

where d stands for the disk drive letter (A through
D), s stands for one of the legal swi tches of the
Linker (see list in this chapter), and filename.ext
stands for a user filename plus its 3-letter
extension. The only argument required after the
word LINK is filenaml. LINK defaults to the current
drive if the disk drive letter is omitted, and it
defaults to the extension .REL if the 3-letter
extension is omitted. The switches are not
required. If used, they give LINK instructions
regarding the files. The Linker will accept
commands in the order received, but does not require
a sing Ie command 1 ine. The prompt fo r LINK is an
asterisk (*). Any time the asterisk appears, a
command may be entered. Thus, the names of files to
be linked may be given one at a time rather than on
one command line. After each command line is
entered, LINK will load or search the named file(s).
When LINK fin i she s t his pro c e s s , i t wi 11 1 i s tall
symbols that remain undefined followed by an
asterisk.

The switches LINK accepts give the user a variety of
ways to control the linking process. For example
the user may cause the Linker to search special
library files to satisfy undefined globals by
linking the filename to be searched followed by IS.
The /M swi tch can be used to map ali st of all
defined and undefined symbol s. These swi tches are
described in the next section.

127

CROMEMCO COBOL USER'S GUIDE
Linking and Loading COBOL programs

2.2 LINK Switches

The Linker allows a number of switches which specify
actions affecting the loading process. Each switch
must be preceded by a slash (I). These switches and
a description of each follow.

2.2.1 ! (Exit to CDOS)

Exit to CDOS upon completion of link and load.
Prior to exiting, LINK prints on the console the
start and stop execution addresses along wi th the
number of 256-byte pages of memory the program
occupies (in decimal), according to the following
format:

[xxxx yyyy zz]

where xxxx is the address at which execution will
start, yyyy is one more than the highest location
used by the loaded object code, and zz is the
decimal number of pages required.

The file which has been linked and loaded into
memory may be saved after exiting to CDOS. This can
be done using the SAVE command, which is one of the
CDOS intrinsic commands (see the Cromemco CDOS
manual). The user would type:

SAVE filename.ext zz

where zz is the same number pr inted out by LINK
(following the issue of IE). The filename can be
any legal name. If the name used already resides on
the disk, the saved file will be written over this
existing file. The 3-letter extension COM is
frequently used; this will create a COMmand file.
Note that other CDOS INTRINSIC commands may be given
before the SAVE command; for exarr.ple, DIR may be
typed to see how much directory space is available.
Executing any utility program (XFER, EDIT, etc.)
will change the contents of the user-area.

128

CROMEMCO COBOL USER'S GUIDE
Linking and Loading COBOL programs

2.2.2 ~ (Go =start execution)

Start execution of the program as soon as the
current command line has been interpreted. Prior to
execution, LINK prints on the console the start and
stop add resses and the number of 256-byte pages
occupied by the object code, according to the format
shown above (see /E). Following this, the message
II [BEGIN EXECUTION] II is displayed on the console at
which point execution is started by LINK. The
Linker initializes the stack pointer at the highest
address of the user-area.

2.2.3 ~ (Map all symbols)

List both all the defined globals and their values
and all undefined globals £ollowed by an asterisk.
The map may be sent to the printer by typing
Con t r 0 1 - P ("P) f 0 11 0 wing t he LINK comm and 1 ine •
This printed map of symbols is very useful for
debugg i ng the use r-prog ram. Once the obj ect code
has been loaded into memory by LINK, /E can be
issued and the correct portion of the user-area
saved in a fi 1 e. Then the prog ram DEBUG can be
called and used to load and debug the file just
crea ted. The global map pr in ted prev i ousl y can be
used to referer.ce addresses.

2.2.4 ~ (Reset Linker)

Put Loader back
restart LINK
mistake. /R
encountered in

2.2.5 ~ (Search file)

in its initial state. /R is used to
if the wrong file was loaded by
will take effect as soon as it is
a command string.

Search the disk file having the filename immediately
preceding the /S to satisfy any undefined globals.
This is convenient for having the Linker search a
libr2ry file of much-used routines.

129

CROMEMCO COBOL USER'S GUIDE
Linking and Loading COBOL programs

2.2.6 ~ (list all Undefined globals)

List all undefined globals as soon as the current
command line has been interpreted and executed.
LINK defaults to this switch; therefore, it is
generally not needed unless it is desired to
reproduce this list more than once. For example say
that during link the list of undefined globals is
printed to the console. The user could then type
Control-P followed by "/U" to cause the undefined
globals to be listed a second time, this time to the
printer as well as the console.

2.3 Format of Link-Compatible Object Files

The following is a description of the format of .REL
files which are to be compatible with the CROMEMCO
Linker. This information is provided for the
interested programmer, but is not in any way
required reading for the person learning how to use
the Linker.

LINK compatible object files consist of a bit
stream. Individual fields within the bit stream are
not aligned on byte boundaries except as noted
below. The use of a bi t strei;lm for relocatable
object files keeps the size of the files to a
minimum, thereby decreasing the number of disk reads
and writes. The first bit of a field is either a
one or a zero, and this is followed either by an 8­
bit byte or a 2-bit field having the following
meanings:

Bit Meaning

o load the following eight-bit byte as absolute code

1 read in the following two bit field:

11 Add sixteen-bit offset to common base
10 Add sixteen-bit offset to data base
01 Add sixteen-bit offset to program base
00 Special LINK item

Spec ial LINK i tern fields beg in wi th the bi t stream
100 as just explained. This is followed by a four­
bit control field, an optional A-field which
consists of a two-bit code specifying address type,

130

CROMEMCO COBOL USER'S GUIDE
Linking and Loading COBOL programs

and an optional B-field which consists of 3 bi ts
giving a symbol length. The 2-bit address type has
the same meanings as the 2-bit field above except 00
specifies absolute addressing. The 3-bit symbol
length is followed by eight bits for each character
of the symbol. We can represent this bit stream by
the following:

A-field B-field
1 00 xxx x <yy two-byte-value> <zzz characters-of-symbol-name>

where the spaces in the above show where the various
fie Idsend, the angul a r brackets denote opt ional
quantities, and where:

xxxx is the four-bit control field,
yy is the two-bit address type field, and
zzz is the three-bit symbol length field.

The two-byte-value following yy wi 11 be ei ther the
16-bit offset specified or the absolute address, and
the characters-of-symbol-name following zzz will be
in ASCII, each character occupying eight bits.

The four-bit control field will specify the
operation or function of the bit stream. It can
have the following values, where the four-bit value
is given in the left-hand column in decimal:

(The following LINK items have a B-field only)

o
1
2
3
4

Entry Symbol (name for search).
Select COMmon Block.
Program Name.
Reserved for Future Expansion.
Reserved for Future Expansion.

(The following LINK items have both an A-field and a B-field)

5
6

7
8
9

Define COMmon Size.
Chain External (A is head of address chain).

B is name of external symbol.
Define Entry Point.
Reserved for Future Expansion.
Reserved for Future Expansion.

(The following LINK items have an A-field only)

10 Define Size of Proqram Data Area.

131

CROMEMCO COBOL USER'S GUIDE
Linking and Loading COBOL programs

11
12

13
14

Set Loading Location.
Chain Address.

A is head of chain; replace all entries in
current location counter. The last entry
has an address field of absolute zero.

Define Program Size.
End Program (forces to byte boundary).

(The following LINK item has neither an A- nor a B-field)

15

2.4 Link Error Messages

End of File.

The Linker gives several error messages in case of
an illegal operation. These are listed below in the
summary along with an explanation of each one. Note
that there are two types of error messages: fatal
errors and warnings. Fatal error messages are
preceded by question marks (?) and warning messages
are preceded by percent signs (%). A program will
run in some cases when a warning has been issued;
however, it is better practice to correct the error
and link again.

2.4.1 Fatal Errors

?No Start Address A /G swi tch is issued, but no
main program module has been
loaded. Remember when creating
and linking machine language
programs that the main module
must have an address or label
in its END statement. This
then becomes part of the .REL
file which informs LINK where
to begin execution (see the END
pseudo-op in the Cromemco
Assembler Manual).

?Loading Error The last file given
1 inked and loaded is
properly formatted LINK
file.

132

to be
not a
object

CROMEMCO COBOL USER'S GUIDE
Linking and Loading COBOL programs

?Fatal Table Collision There is
memory to load
program(s) •

not
the

enough
given

?Command Error

?File Not Found

2.4.2 Warnings

An unrecognizable LINK command
has been given. Type the
correct command or re-link.

A f i 1 e in the command str ing
does not exist as spelled or
specified. Check to see if the
file resides on the specified
drive. Often this message
results if the user forgets to
specify the drive letter, and
LINK searches the current
drive.

%2nd COMMON Larger /XXXXXX/ The first
definition of COMmon block
XXXXXX is not the largest.
COMmons do not have to be the
same size provided the module
con ta in i ng the 1 a rger COMmon
specification is linked first
so that LINK allocates an
appropriate number of bytes for
data storage. To prevent this
error re-order the module
loading sequence or change the
COMmon block· definitions.

%Mult. Def. Global YYYYYY More than one
definition for the global
(internal) symbol YYYYYY was
encoun te red dur ing the load ing
process.

2.5 Examples of Linking Modules

Following are several examples of the process of
linking, loading, saving, and executing files. The
aster i sk (*) in the foll owi ng command 1 ines is NOT
user-typed; it is the prompt for LINK.

The following command will load a 32-byte program
called MYPROG into memory and begin execution:

133

CROMEMCO COBOL USER'S GUIDE
Linking and Loading COBOL programs

LINK MYPROG/G

If the load is successful (no err-ors), the Linker
will respond with the message:

[1000 1020 16]
[BEGIN EXECUTION]

This program will begin execution at 1000H. If
desired, the program can be saved prior to execution
by typing:

LINK MYPROG/E

to which the Linker would respond:

[1000 1020 16]

followed by a
CDOS prompt.
the user area.
by issuing the

return to CDOS and the issue of the
This return to CDOS does not change

Therefor, the program could be saved
command:

SAVE MYPROG.COM 16

Since the extension COM was chosen, the program can
be executed directly from CDOS by typing the command
"MYPROG" in response to the CDOS prompt.

Another
together
have the
SUBPLOT.
command:

example would be to link several modules
as they are loaded into memory. Suppose we
three relocatable modules GRAPHX, MAIN, and

The Linker is called first by issuing the

LINK <CR>

to which LINK responds with the asterisk. We could
then type:

MAIN

The Linker would look on the current drive for MAIN
and then return the still-undefined symbols (each
one followed by an asterisk) and the address at
which they are referenced:

INITG*
LINE*
CURSR*
STRIN*

122E
164D
163E
131B

134

CROMEMCO COBOL USER'S GUIDE
Linking and Loading COBOL programs

SUBROT*147D

*
We then link the next module:

GRAPHX

and LINK again responds wi th the undefined symbo.ls
and the prompt:

SUBROT* 147D

*
Finally, we LINK the last module:

SUBROT

to which LINK responds with the prompt. We can now
type /G or /E to run or exit from the program as we
did in the first example. However, let's first
generate a map of all the symbols using the /M LINK
switch:

*/M

to which the Linker will respond:

INITG
LINE
CURSR
STRIN
SUBROT
PAGE
DOT
ANIMT

122E
164D
163E
131B
147D
17DF
180E
1558

Note that this is similar to the map of undefined
symbols; however, in this case symbols which are not
used, but have been def ined in one 0 f the 1 inked
programs, are also listed.

The above example could also have been linked
directly, and without producing the maps of
undefined symbols, by typing the command line:

LINK GRAPHX,SUBPLOT,MAIN/M

Note also that this command line links them in a
different order than the first case since all of the
modules are relocatable. Thus, the II1ap printed to
the console this time would have a different address

135

CROMEMCO COBOL USER'S GUIDE
Linking and Loading COBOL programs

after each symbol.

The user may return to CDOS at any time while using
LINK (to abort the linking or loading process, for
example) by typing Control-C (AC).

136

CROMEMCO COBOL USER'S GUIDE
Runtime Execution

SECTION 3

Runtime Execution

3.1 Printer File Handling

P r i n t e r f i 1 e s s h 0 u 1 d be vie wed a s a s t ream 0 f
characters going to the printer. Records should be
defined as the fields to appear on the printer. No
extra characters are needed in the record for
carriage control chardcters. Carriage return, line
feed and form feed ar~ sent to the printer as needed
between lines. Note ~hat blank characters (spaces)
on the end 0 f a pr Ln t 1 ine are trunca ted to make
printing faster.

No "VALUE OF" clause should be given for a PRINTER
file in the FD, but "LABEL RECORD IS OMITTED" must
be specified. The BLOCK clause must not be used for
printer files.

3.2 Disk File Handling

Disk files must have "LABEL RECORD IS
STANDARD" declared and have a "VALUE OF" clause that
includes a File ID. Block clauses are checked for
synt~x but have no effect on any type file at this
time.

The format of sequential files is always that of
variable length strings delimited by a carriage
return/line feed. Records are packed together as
much as possible to make maximum use of floppy
disks.

The format of relative files is always that of fixed
length records of the size of the largest record
defined for the file. No delimiter is needed, and
therefore none is provided. Deleted records are
filled with hex value '00'. Also note that 6 bytes
are reserved at the begining of the file to contain
bookkeeping information for COBOL.

The format of indexed files is too complicated to
include in this document. It is a complex mixture
of keys, datia, linear pointers, deletion pointers,
and scramble~function pointers. It is doubtful that

137

CROMEMCO COBOL USER'S GUIDE
Runtime Execution

the COBOL prog rammer would requi re access to such
information.

3.3 Runtime Errors

Runtime terminal e~rors result in a four-line
synopsis, printed on the console.

** RUN-TIME ERR:
reason (see list below)
line number
program-id

The possible reasons for termination, with
additional explanation, are listed below.

REDUNDANT OPEN

DATA UNAVAILABLE

SUBSCRIPT FAULT

INPUT/OUTPUT

Attempt to open a file that is
already open.

A file's base register contains
a non-zero address if, and only
if, the file is open and
ava i lable record areas exist.
Reference to data in a record
of a non-open file, or one that
has already reached the "AT
END" condition, is invalid, and
is detected by recognizing zero
in the associated base
register.

A subscript has an illegal
value (usually, less than 1).
This applies to an index
reference such as I + 2, the
value of which must not be less
than 1.

Unrecoverable I-O error, with
no provision in the user's
COBOL program for acting upon
the situation by way of an AT
END clause, INVALID KEY clause,
DECLARATIVE procedure, etc.

138

CROMEMCO COBOL USER'S GUIDE
Runtime Execution

NON-NUMERIC DATA

PERFORM OVERLAP

CALL PARAMETERS

ILLEGAL READ

ILLEGAL WRITE

ILLEGAL REWRITE

REWRITE; NO READ

REDUNDANT CLOSE

Whenever the contents of a
numer ic i tern does not conform
to the given PICTURE, this
condition may arise.
Corresponds to the hardware
'data exception' interrupt in
some computers. The user
should always check input data,
if it is subject to error
(because "input editing" has
not yet been done) by use of
the NUMERIC test.

An illegal sequence of
PERFORM's as, for example, when
paragraph A is performed, and
prior to exiting from it
another PERFORM A is in~iated.

There is a disparity between
the number of parameters in
calling program and called
subprogram.

Attempt to READ a file that is
not open in the input or I-O
mode.

Attempt to WRITE to a file that
is not open in the output mode
for sequential access files, or
in the output or I-O mode for
random or dynamic access files.

Attempt to REWRITE a record in
a file not open in the I-O
mode.

Attempt to REWRITE a record of
sequential access file when the
last operation was not a
successful READ.

Attempt to close a file that is
not open.

GO TO. (NOT SET) Attempt to execute an
un i nit i ali zed a 1 t era b 1 e
paragraph containing only a
null GO statement.

139

CROMEMCO COBOL USER'S GUIDE
Runtime Execution

FILE LOCKED Attempt to open after earlier
CLOSE WITH LOCK.

READ BEYOND EOF Attempt
already
file.

to read (next) after
encountering end-of-

DELETE; NO READ

ILLEGAL DELETE

ILLEGAL START

Attempt to DELETE a record of a
sequential access file when the
last operation was not a
successful READ.

Relative file not opened for
I-a.

Fi Ie not opened for input or
I-a.

140

CROMEMCO COBOL REFERENCE MANUAL
Index

I N D E X

A
ACCEPT statement, 15, 66, 79
ACCESS clause, 26, 94, 101
ADD statement, 60
ADVANCING option, 76
ALL phrase, 81
Alphanumeric i~-m, 28r--ll, 34
Alphanumeric-edited item, 34
ALTER statement, 69
ANSI levell, 6
ANSI level 2, 6
Arithmetic expression, 63
Arithmetic statements, 58
ASCII-ENTRY, 25
AT END clause, 51, 74, 96, 97
AUTHOR, 23

B
Binary item, 29, 33
BLANK WHEN ZERO clause, 44
BLOCK clause, 47

C
CALL statement, 86
Character comparisions, 72
Character set, 8
Class test condition, 72
CLOSE statement, 77
CODE-SET clause, 48
Comments, 21
Compound condition, 70
COMPUTATIONAL, 30, 33
C0MPUTATIONAL-3, 29, 33
COMPUTE statement, 63
Conditions, 9, 11, 15, 49, 51, 55, 70, 73
CONFIGURATION SECTION, 24
Continuation line, 16, 21
Control index, 94
COpy statement, 22
COUNT IN phrase, 82
CURRENCY SIGN, 24

D
Data description entry, 30, 48
Data Division, 14, 18
Data Item, 13, 28
DATA RECORDS clause, 47

CROMEMCO COBOL REFERENCE MANUAL .
Index

Data-name, 10, 12, 14, 30
DATE-COMPILED, 23
DATE-WRITTEN, 23
Debugging, 7, 24, 83
Decimal item, 32, 45
Decimal point, 36
DECIMAL-POINT IS COMMA, 17, 24
DECLARATIVES, 53, 106
DELETE statement, 99, 104
DELIMITED BY phrase, 80
DISPLAY statement, 15, 66
DIVIDE statement, 62

E
Elementary item, 12, 28, 31, 33
Ellipsis, 12
Enviroment Division, 15, 18, 24
EXHIBIT statement, 84
EXIT PROGRAM statement, 86
EXIT statement, 68
EXTEND phrase, 74
External decimal item, 29

F
FD entry, 14, 21, 46
Figurative constants, 17
File, 12
File name, 14
File Section, 14, 46
FILE STATUS clause, 26, 95
FILE STATUS data item, 74
FILE-CONTROL, 26
File-name, 10
FILLER, 30
Floating string, 37
Format notation, 10

G
General Formats, 10
GIVING option, 60
GO TO statement, 65
Group, 33
Group item, 13, 28, 31, 43, 53

H
HIGH-VALUE, 17

I
I-a, 74

CROMEMCO COBOL REFERENCE MANUAL
Index

1-0 error handling, 78
I-O-CONTROL paragraph, 26, 27
Indentification Division, 18, 23
IF statement, 69
Imperative statements, 51, 58
Index data-item, 30, 33, 87
Index-name, 87
Indexed 1-0, 7
Indexed-file organization, 94
INPUT file, 73
INPUT-OUTPUT SECTION, 25
INSPECT statement, 55
INSTALLATION, 23
Inter-Program Communication, 7
Internal decimal item, 29
INTO option, 75
INVALID KEY clause, 51, 96, 98, 99, 100

J
JUSTIFIED RIGHT clause, 44

K
KEY clause, 90
KEY IS clause, 98

L
LABEL clause, 46
Level 88, 49
Level number, 12, 21, 28, 30, 49
Library, 7
Linkage section, 49
Literals, 15
LOCK suffix, 77
LOW-VALUE, 17

M
Mnemonic-name, 10, 15
Modules, 6
MOVE statement, 53
MULTIPLY statement, 62

N
Non-numeric literals, 15
Nucleus, 6
Numeric Comparisons, 72
Numeric item, 28, 34
Numeric literals, 16

CROMEMCO COBOL R~FERENCE MANUAL
Index

o
OBJECT-COMPUTER, 24
OCCURS clause, 42
OMITTED, 46
ON OVERFLOW clause, 82
OPEN statement, 73
ORGANIZATION clause, 26
OUTPUT file, 73
OVERFLOW, 51

P
Packed decimal, 29
Paragraphs, 52
Parentheses, 12
PERFORM statement, 67
PICTURE, 29
PICTURE clause, 34
POINTER phrase, 80
PRINTER, 15, 46, 47
Procedure Division, 18, 51
Procedure-name, 10, 21, 52
PROGRAM-ID, 23
Punctuation, 8, 9, 10

Q
Qualification, 22
QUOTE, 17

R
Range (PERFORM), 68
READ statement, 74, 97, 103
READY TRACE statement, 84
Records 12, 48, 95
REDEFINES clause, 41
Relative I-O, 7
Relative indexing, 88
RELATIVE KEY clause, 102
RELATIVE KEY item, 103
Relative organization, 101
REPLACING clause, 56
Report item, 28, 32, 35
RESERVE clause, 26
Reserved words, 10, 21
RESET TRACE statement, 83
REWRITE statement, 77, 99, 104
ROUNDED option, 59

S
SAME AREA, 27

CROMEMCO COBOL REFERENCE MANUAL
Index

SEARCH ALL statement, 89
SEARCH statement, 90
Section-name, 52
Sections, 52
SECURITY, 23
SELECT entry, 26, 94, 101, 102
Sentences, 51, 52
Separator, 9
Sequence number, 21
Sequential I-O, 7
SET statement, 87
SIGN clause, 29, 45
Sign test, 73
Simple condition, 70
SIZE ERROR option, 51, 59
SOURCE-COMPUTER, 24
SPACE, 1 7
SPECIAL-NAMES, 24
STANDARD, 46
START statement, 100, 105
Statements, 51
STOP statement, 65
STRING statement, 80
Subscripts, 43, 50
SUBTRACT statement, 61
SYNCHRONIZED clause, 44

T
Table Handling, 7
TALLYING clause, 56
TRACE mode, 83

U
UNSTRING statement, 81
USAGE clause, 33
USE sentence, 106
USING list, 49, 85

V
VALUE IS clause, 40, 49
VALUE OF clause, 46
VARYING, 89
Verbs, 51

W
WHEN clause, 90
Word, 8, 10
Working-storage section, 49
WRITE statement, 75, 98, 103

CROMEMCO COBOL MANUAL SUPPLEMENT

ERRATA

Page

Incorrect

Correct

Page

Incorrect

Correct

Page

Incorrect

Correct

Page

Incorrect

Correct

11, item "6", line 2

••• in brackets is •••

••• in brackets ([]) is •••

16, item "2.", line 1

••• Area B preceding •••

••• Area B (see 1.12, Coding Rules)
preceding •••

19, under ENVIRONMENT DIVISION

[CONFIGURATION SECTION.]

[CONFIGURATION SECTION.

21, item "3.", line 2

••• columns 12-72•••

••• Ar e a B (column s 1 2- 7 2) •••

CROMEMCO COBOL MANUAL SUPPLEMENT

Page

Incorrect

Correct

Page

Add

67, PERFORM, option 2

{index name}
PERFORM range VARYING {data name} .fB.ill:1
amount-l BY amount-2 UNTIL condition.

{index name}
PERFORM range [VARYING {data name }
FRO M am 0 u n t - I ~Yam 0 u n t - 2] UN.1l. L
eonaTtion.

68, EXIT statement, add last paragraph

The paragraph containing the EXIT statement
must be the final paragraph in a PERFORM'ed
section in order to function as an end­
po int from which control returns to the
statement following the PERFORM.

Page 73, OPEN STATEMENT

{ INPUT }
Incorrect { OPEN { I-O } file-name ... } ...

{ OUTPUT }
{ EXTEND }

{ INPUT }
Correct OPEN { { I-O } file-name ... } ...

{ OUTPUT }
{ EXTEND }

Page

Incorrect

Correct

75, WRITE STATEMENT

WRITE record-name FROM data-name-l

{AFTER} ADVANCING { operand LINE (S) }
{BEFORE} {PAGE }

WRITE record-name [FROM data-name-l

{AFTER} ADVANCING { operand LINE (S) }]
{BEFORE} {PAGE }]

CROMEMCO COBOL MANUAL SUPPLEMENT

Page

Add

Page

Incorrect

Correct

Page

Incorrect

Correct

Page

83, first paragraph, add last sentence

Then the next receiving field (if any) in
the list becomes the current receiving
field and scanning continues.

86, CALL STATEMENT

CALL literal USING data-name •••

CALL literal [USING data-name •••

95, RECORD KEY CLAUSE

••• required, is •••

••• required in the SELECT entry for the
file, is •••

95, RECORD KEY CLAUSE

Incorrect •••group item, an elementary
item or a decimal field.
key ••• sign. No record key •••

alphanumeric
A dec imal

Correct

Page

Incorrect

Correct

•• •group item or an elementary alphanumeric
item. No record key •••

lel8, example 1

••• OR (E < F) and •••

••• OR (E <= F) and •••

CROMEMCO COBOL MANUAL SUPPLEMENT

SUPPLEMENTAL INFORMATION

COpy STATEMENT

REFERENCE MANUAL

This statement must begin in column 8, and the name of
the file containing the source module is not enclosed in
either single or double quotes.

The file referenced in the COpy statement must contain a
single module of source statements. These statements
will be inserted without change in place of the COpy
statement.

There is no COpy library as such--each module of library
code must reside in a uniquely named file on disk.

Calling assembler and FORTRAN subprograms

An assembler or FORTRAN subprogram may be called from a
COBOL program by using its name in the CALL statement,
then 1 i nk i ng the relocatable object code modules
together using LINK.

For example, suppose the assembler routine SCAN is
called from the COBOL program FINDTEXT. The COBOL
program is compiled and the assembler routine is
assembled, then the resulting relocatable object code
modules are linked by LINK:

A. LINK FINDTEXT, SCAN, FINDTEXT/N/E

Parameters are always passed by reference (Le., the
value passed is the two-byte address of the first byte
of the actual argument).

Three or fewer parameters are passed this way:

Parameter 1 address in HL
Parameter 2 address in DE
Parameter 3 address in BC

Four or more parameters are passed this way:

Parameter 1 address in HL
Parameter 2 address in DE
Parameter 3 - n addresses are

memory BC points to
the block

in one block of
the fi rst byte of

CROMEMCO COBOL MANUAL SUPPLEMENT

To return from a FORTRAN subprogram to a calling COBOL
program, use the RETURN statement.

To return from an assembler subprogram to a calling
COBOL program, use the RET command.

Note that the only type of data that is stored in the
same format in COBOL and FORTRAN is alphanumeric data.
None of the numeric types of data are interchangeable.

CROMEMCO COBOL MANUAL SUPPLEMENT

SUPPLEMENTAL INFORMATION - USER'S GUIDE

Compiling COBOL Programs

COBOL Overlay File Usage

OVRLYI
OVRLY2
OVRLY3
OVRLY4

These files are overlay files brought into
memory by COBOL during the compilation. They
must be on the currently logged-in disk.

"Dictionary Full" compile time error message

This message indicates that the symbol table used by the
compiler is full and that the compiler cannot proceed
with the compile. Restart the compilation, using the /P
compiler switch to allocate more memory to the compiler
stack.

COBOL Memory Usage Approximation

8K
31K

7K

CDOS (version 1.07)
COBOL compiler
minimum table space (.

20 bytes for each line of COBOL source code

The sum of these quantities is the approximate memory
required to compile a COBOL program.

CROMEMCO COBOL MANUAL SUPPLEMENT

Linking and Loading COBOL Programs

LINK Switches

N

P and D

Specifying <filename>/N will cause the linked
program to be saved on disk when a /E or a /G
is entered. <filename> will be the name
assigned to the program, with a default
extension of .COM when no extension is
specified. A jump to the start of the program
is inserted if the program's program area is
loaded starting at a location other than 100
hex.

/P and /D allow the program and data origins
to be set for the next program loaded. /P and
/D take effect when entered and they have no
effect on program modules already loaded. The
form is /P:<address> and /D:<address>, where
<address> is the desired origin in the current
typeout radix. (The default radix is hex. /0
sets the radix to octal; /H sets the radix to
hex.) LINK defaults to /P:<link origin> + 3
(103 hex) to leave room for the jump to the
start of the program's program area.

Do not use /p or /D to load programs or data
into locations 100 hex to 102 hex, which is
where LINK inserts the jump to the start of
the program's program area, unless the start
of the program area is loaded there. LINK
will not generate and insert the jump
instruction if these locations are used.

If no /D is entered, data areas are loaded
before program areas for each module. If a /D
is entered, all data and Common areas are
loaded starting at the data origin and the
program area at the program origin.

Example:

/D:400,EXAMPL
400 480
200 280

*/P:200,EXAMPL
Data 200
*/R
*/P:200
Data
Program

300

CROMEMCO COBOL MANUAL SUPPLEMENT

Format of LINK Compatible Object Files

Loader type 9 is now in use; it is external + offset.
Type 9 has only an A field, there is no B field. The
value for type 9 will be added to the two bytes starting
at the current location counter. This addition is done
after a /E or /G is entered, so unless undefined symbols
remain, the effect is external + offset.

This type can also be used to add program and data
relatives or almost any other combination of relocation
types.

CROMEMCO COBOL MANUAL SUPPLEMENT

LINK Error Messages

?Out of Memory has replaced ?Fatal Table Collision

?<file> Not Found has replaced ?Fi Ie Not Found.
name of the file not found
printed.

The
is

%Overlaying [Program] Area
[Da ta]

A /D or /P will
loaded data or
destroyed.

?Intersecting [Program] Area
[Data]

cause previously
prog r am to be

The program and data area intersect
and an address or external chain
entry is in this intersection. The
final value cannot be converted to a
current value since it is in the
area intersection.

?Start Symbol -<name> -Undefined

After a /E: or /G: is entered, the
symbol specified was not defined.

Origin [Above] Loader Memory, Move Anyway (Y or N)?
[Below]

After a /E or /G was entered, either
the data or program area has an
origin or top which lies outside
loader memory (i.e., loader origin
to top of memory). If a Y <cr> is
entered, LINK will move the area and
continue. If anything else is
entered, LINK will exit. In either
case, if a /N had already been
entered, the program image will have
already been saved on disk.

?Can't Save Object File

Available disk was exhausted, or a
disk error occurred when LINK was
attempting to save the program.

CROMEMCO COBOL MANUAL SUPPLEMENT

Separating Data and Program Areas

By default, LINK loads the data area first in memory,
followed immediately by the program area. The user may
use switches ID and IP to set the beginning addresses of
the data and program areas, with the following
considerations.

When linking FORTRAN subprograms, one should be aware
tha t the di sk d rive r module in the FORL IB relocatable
library file has declared an ENTRY global symbol called
$MEMRY in order to obtain from LINK a pointer to the
first ava i lab Ie byte fo llowi ng a prog ram's da ta a rea.
When LINK finds this symbol in the module being loaded,
it loads into it the address of the top of the data area
+ 1.

In the default case, where neither ID nor IP has been
used, the program area is considered part of the data
area, and LINK loads the two-part data area (data and
program), then sets $MEMRY to point to the top of the
two-part data area + 1.

When either ID or IP has been used to separate the two
areas, $MEMRY will be set to point to the top of the
data area + L

Thus, when ID is used to load the data area below the
program area, the user must be certain that there is
enough memory between the top of the data and the bottom
of the program area. Otherwise the program area will be
overwritten and the program destroyed at runtime.

The FORTRAN disk driver module uses $MEMRY to allocate
disk buffers (128 decimal bytes each) and FCB's (33
decimal bytes each). These follow the address pointed
to by $MEMRY (top of data area + 1), so the user must
have an idea of their total length in order to start the
program area above their ending address.

