

a Cromemco

Instruction Manual ‘
and User's Guide

Copyright @ 1978 by Cromemco Inc. All rights reserved.

inmec or pocr t e d
Tomorrow’'s Computers Today
2680 BERNARDO AVE. MOUNTAIN VIEW, CA 94043

Part No. 023-0049 .
addendum -001 April 1979

Acknowledgment

Any organization interested in reproducing the COBOL
report and specifications in whole or in part, using ideas
taken from this report as the basis for an instruction manual
or for any other purpose is free to do so. However, all such
organizations are requested to reproduce this section as part
of the intreoduction to the document. These using a short
passage, as in a book review, are regquested to mention,
'COBOL' in acknowledgment of the source, but need not quote
this entire section.

COBOL is an industry language and is not the property of
any company or group of companies, or of any organization or
group of organizations.

No warranty, expressed or implied, is made by any
contributor or by the COBOL Committee as to the accuracy and
functioning of the programming system and language.
Moreover, no responsibility is assumed by any contributor, or
by the committee, in connection therewith.

Procedures have been established for the maintenance of
COBOL. Inquiries concerning the procedures for proposing
changes should be directed to the Executive Committee of the
Conference on Data Systems Languages.

The authors and copyright holders of the copyrighted
material used herein

FLOW-MATIC (Trademark of Sperry Rand Corporation),
Programming for the UNIVAC (R) I and II, Data Automation
Systems copyrighted 1958, 1959, by Sperry Rand Corporation;
IBM Commercial Translator, Form No. F28-8013, copyrighted
1959 by IBM; FACT, DSI 27A5260-2760, copyrighted 1968 by
Minneapolis-Honeywell

have specifically authorized the use of this material in
whole or in part, in the COBCOL specification in programming
manuals or similar publications.

-=from the ANSI COBOL STANDARD
(X3.23-1974)

CONTENTS

CROMEMCO COBOL REFERENCE MANUAL

CHAPTER 1:

R TS Y

L] *

=

H W] U Wi

|

-

[e e e
.

=
L N

CHAPTER 2:

2,1
2.2

_ CHAPTER 3:

301

IR AN RY NI AT RERE R ERE R RN
»
H o o 000 =] O U1 W R

*

LR R]

Introduction

Fundamental Concepts of COBOL

Character Set
Punctuation
Word Formation
Format Notation . . .

Level Numbers and Data-

File-Names
Condition-Names . . .
Mnemonic-Names
Literals . . + + + + .
Figurative Constants .
Structure of a Program
Coding Rules . . . « .
Qualification of Names
COPY Statement

Identification Divisiocn

Environment Division .

- - »

Names

2.2.1 Configuration Section
2.2.2 Input-Output Section
2,2,2,1 File-Control

2.2.2.2 1I-0 Control Paragraph

Data Division

Data Ttems . .+ .« « + .
3.1.1 Group Items . .

3.1.2 Elementary Items

3.1.3 Numeric Items .
Data Description Entry
Formats for Elementary
USAGE Clause . . + .+ .
PICTURE Clause
VALUE Clause
REDEFINES Clause . . .
OCCURS Clause
SYNCHRONIZED Clause .
BLANK WHEN ZERO Clause
JUSTIFIED Clause . . .
SIGN Clause . +« + + oa

File Section, FD Entries

{(Sequential I-0 Only)
3.13,.1 LABEL Clause .

- - -

Identification and Environment Divisions

L] - -
- L] -
L] - -

Entry

PAGE

1¢
19
12
14
15
15
15
17
18
2]

22
23

23
24
24
25
26
27

28

28
28
28
29
349
31
33
34
40
41
42
44
44
44
45

46
46

3.14
3,15
3.16

CHAPTER 4:

W b P s
« v o+ s e
N s G0 b3

Pamm
R T T S S R

1SS T S N LT S SR e

M O 0~ Y

[CS RN S]

4.14
4.15
4,16
4,17
4,18
4,19
4,20
4,21
4,22
4,23

CHAPTER 5:

nenn
. s 0w
L by =~

4.5.1 BSIZE ERROR Option

3.13.2 VALUE OF Clause . .
3.13.3 DATA RECORDS Clause
3.13.4 BLOCK Clause
3.13.5 RECORD Clause . .
3.13.6 CODE-SET Clause
Working-Storage Section
Linkage Section
Level 88 Condition Names

L]
LI T]

» * L] L]
* s &

Procedure Division + + « « « +

Statements, Sentences, Procedures-Names
Organization of the Procedure Division

MOVE Statement . . « + « « +
INSPECT Statement . . .
Arithmetic Statements .

-

2 ROUNDED Option .
3 GIVING Option . .
4 ADD Statement . .
5 SUBTRACT Statement
© MULTIPLY Statement
7
8
O

L T T T
L T e S I T T T |

DIVIDE Statement .
COMPUTE Statement
Statement
STOP Statement . .
ACCEPT Statement .
DISPLAY Statement
PERFORM Statement
EXIT Statement . .
ALTER Statement .
IF Statement . . .
4,13,1 Conditions . . « + « .
OPEN Statement (Sequential I-0)
READ Statement (Sequential I-0)
WRITE Statement {(Sequential I-0)
CLOSE Statement (Sequential I-0)

L . I T]
L T T R]
L N A)
P T T T T T Y
L T T R T
* & 4 = 4+ =
P T T T

* * LR Ll

* L] L] L[]

L] * Ll * Ll » L] L] L] - Ll L[] L]

* L] Ll L] Ll *

REWRITE Statement (Sequential I-0)
General Note on I/0 Error Handling

ACCEPT DATE/DAY/TIME
STRING Statement
UNSTRING Statement . . . « . .
Dynamic Debugging Statements .

L] L] » L]

Inter—-Program Communication . .

USING List Appendage to Procedure Header

CALL Statement . « « + + « o« « &
EXIT PROGRAM Statement+ .

L] L] L] - * L] L] L[]

-

- L] - - * . 4 - -

4 = 4 4 4 & ® 3

-

- » - » - - L] - * - - - -

* * L] L] L]

L] L] * L] L] - * - L] L] L[] L] » L] » L] L[] L] - * L[] Ll L]

s ¥ 8 4 & a a

* * L] L] -

L » - » - . - L) - - L] - L - - - -

.

L] " L] L] Ll L]

46
47
47

.48

48
49
49

. 49

51

51
52
53
55
58
59
59
6@
6d
6l
62
62
63
65
65
66
66
67
68
69
69
70
73
74
75
77
77
78
79
8¢
81
83

85
85

86
86

CHAPTER 6:

S GG
ke L) B

CHAPTER 7

7.1
7.2

|
. .
%)

e R B |
00 =3 O AR b

CHAPTER 8

8.1
8.2

CHAPTER 9:

Appendix
Appendix
Appendix
Appendix
Appendix

Appendix

Table Handling by the Indexing Method . .

Index~-Names ahd Index Items .+ « o « s =+
SET Statement .+ o « o o « o « o 4 « o + »
Relative Indexing e s e e e 4w
SEARCH Statement - Format 1 e e e s v e
SEARCH Statement = Format 2 . . ¢ « « + &

: Indexed FileS .+ ¢ ¢ o o o o« o o s o o = =

Definition of Indexed File Organization .
Syntax Considerations . . + + +« « « « « &
7.2.1 RECORD KEY Clause . . « & o o o o =
7.2.2 File Status Reporting . . « + « «
Procedure Division Statements

for Indexed Files .+ &« o o o« o o o o + »
READ Statement « « + « & o o o « o o o s =
WRITE Statement e e & & 4 4 % s s e e e =
REWRITE Statement .« « « o o o o o « « o o
DELETE Statement . « o« o o « o o + « o s =«
START Statement . . ¢ ¢ o 4 o o o « « + =«

i Relative FileS - . - - - - -

Definition of Relative File Organization .
Syntax Considerations + +« .+ .+ .
8.2.]1 RELATIVE KEY Clause . . .« « « o + =
Procedure Division Statements :

for Relative Files . &« & v & 4 o o o &« o
READ Statement « .+ o o« o« o 4 o o o o « « =
WRITE Statement . .+ « ¢« ¢« « « s+ o s » o+ =
REWRITE Statement . .+ ¢ o ¢ o« ¢ & o o « =
DELETE Statement . . + « o « o + o o = =+
START Statement . + « 4 & « ¢ o =+ o « + =

I:

iI:

ITI:

IV:

VI:

DECLARATIVES and the USE Sentence

Evaluation Rules for Compound Conditions
Table of Permissible MOVE Operands . . .
Nesting of IF Statements . « « « + + « =
ASCII Character Set .+ . . 4 4 &+ « o «
Reserved Word List . « . . &+ « & « & + &

PERFORM with VARYING and AFTER Clauses .

87

87
87

89
90

%4

94
94
95
95

96
97
98
99
99
1649

ig1
121
191
162
182
142
143
124
164
185
196
168
111
112
114
115

119

CROMEMCO COBOL USER'S GUIDE

SECTION 1

1.1

SECTION 2

2.1
2,2

b3 B
. »
e Lat

2.5
SECTION 3

3
3
3

. o e
Wb

Compiling COBOL Programs . . « « .

Cromemco COBOL Command Scanner . .
1.1.1 Format of Commands
1.1.2
Output Listings and Error Messages
Files Used by Cromemco COBOL . . .

Linking and Loading COBOL Programs

Command Format . . « « + « « + =«
LINK Switches . . + +« « + + + + &
2.2 (Exit to CDOS) +« . + .« .
{(Go - start execution) .
{Map all symbols) . . .
(Reset Linker)
(Search file) . - . .

(S NI N
cCu=EOm

1
2
3
4
5
6
a

2.2,
2.2.
2.2,
2.2,
2.2,
Form
Link Error Messages .+ + + + » o s
2.,4,1 Fatal Errors . ¢« . « .« « .
2.4.2 Warnings « + + « ¢ + &+ «
Examples of Linking Modules . . .

Runtime Execution . . « ¢ o« « + .

Printer File Handling . . .« « . .
Disk File Handling . .
Runtime Errors . +« « « « o o o o &

NOTE

(list all Undefined globals)
t of Link-Compatible Object files

-

The last pages of this manual
contain errata and supplemental

hotes.

Cromemco COBOL Compilation Switches

121

121
121
124
124
126

127

127
128
128
129
129
129
129
134
139
132
132
133
133

137
137

137
138

P

CROMEMCO COBOL REFERENCE MANUAL

Introduction

Cromemco COBOL

Introduction

is based upon American National

Standard X3.23-1974, Elements of the COBOL language
are allocated to twelve different functional
processing "modules",

Each module of the COBOL Standard has two non-null

"levels"”

-—level 1 represents a subset of the full

set of capabilities and features contained in level

2.

In order for a given system to be called COBOL, it
must provide at least level 1 of the Nucleus, Table
Handling ‘and Seguential I-0 Modules,

The following

summary specifies the content of

Cromemco COBOL with respect to the Standard.

Module

Kucleus

Features Available

All of level 1}, plus these features of
level 2:

CONDITIONS:

Level 88 conditions with value series or
range

Use of logical AND/OR/NOT in conditions

Use of algebraic relational symbols for
equality or inequalities

Implied subject, or both subject and
relation, in relational conditions

Sign test

Nested IF statements; parentheses in
conditions

VERBS: .
ACCEPTance of data from DATE/DAY/TIME
STRING and UNSTRING statements
COMPUTE with multiple receiving fields
PERFORM —-= all formats from standard
level 2

IDENTIFIERS:
Mnemonic—-names for ACCEPT or DISPLAY
devices
Procedure-names consisting of digits
only

6

Sequential,
Relative and
Indexed I/0

Sequential I/0
Relative and
Indexed I/0
Library

Inter-Program
Communication

Table Handling

Debugging

CROMEMCO COBOL REFERENCE MANUAL
Introduction

Qualification of Names (Procedure
Bivision only)

All of level 1 plus these features of

level 2:

RESERVE clause

Multiple operands in OPEN and CLOSE, with
individual options per file

EXTEND mode for OPEN

DY¥NAMIC access mode (with READ NEXT)

START (with key relations EQUAL, GREATER, or

NOT LESS)

Level 1

Level 1

All of level 1, plus full level 2 formats
for SEARCH statement

Special extensions to ANS-74
standard providing convenient
trace-style debugging. Conditional
compilation: lines with "D 1in
column 7" are bypassed unless WITH
DEBUGGING MQDE is given in SOURCE-

COMPUTER paragraph.

L

CROMEMC(O COBCL REFERENCE MANUAL
Fundamental Concepts of COBOL

CHAPTER 1

Fundamental Concepts of COBOL

1.1 Character Set

The COBOL source language character set consists of
the following characters:

Letters A through Z
Blank or space
Digits @ through 9
Special characters:
+ Plus sign
Minus sign
Asterisk
Equal sign
Relational sign (greater than)
Relational sign {less than)
Dollar sign
Comma
Semicolon
Period or decimal point
Quotation mark
Left parenthesis
Right parenthesis
Apostrophe (alternate of quotation mark)
/ Slash

Te e AN I %)

-

Of the previous set, the following characters are
used for words:

@ through 9
A through Z
= (hyphen)

The following characters are used for punctuation:

Left parenthesis
Right parenthesis
Comma

Period

Semicolon

o W e

CROMEMCO COBOL REFERENCE MANUAL
Fundamental Concepts of COBQOL

The following relation characters are used in
simple conditions:

A wv

In the case o¢f non-numeric (guoted) 1literals,
comment entries, and comment lines, the COBOL
character set is expanded te include the computer's
entire character set.

1.2 Punctuation

The following general rules of punctuation apply in
writing source programs:

1. As punctuation, a period, semicolon, or comma
should not be preceded by a space, but must be
followed by a space.

2, At 1l1least one space mnust appear between two
successive words and/or literals. Two oY more
successive spaces are treated ‘as single space,
except in non-numeric literals.

3. Relation characters should always be preceded by
a space and followed by ancther space.

4, When the period, comma, plus, or minus
characters are used in the PICTURE clause, they
are governed solely by rules for report items.

5. A comma may be used as a separator between
successive operands of a statement, or between
two subscripts.

6. A semicolon or comma may be used to separate a
series of statements or clauses,

o

CROMEMCO COBOL REFERENCE MANUAL
Fundamental Concepts of COBOL

1.3

l.4

Word Formation

User=-defined and reserved words are composed of a
combination of not more than 34 characters, chosen
from the following set of 37 characters:

@ through 9 (digits)
A through 7 (letters)
= {hyphen)

A word must begin with a letter; it may not end with
a hyphen. A word is ended by a space or by proper
punctuation. A word may contain more than one
embedded hyphen; consecutive embedded hyphens are
also permitted. All words are elither reserved
words, which have preassigned meanings, or
programmer-supplied names. If a programmer-supplied
name is not unique, there must be a unique method of
reference - to it by use of name qualifiers, e.qg.,
TAX-RATE IN STATE-TABLE. Primarily, a non-reserved
word identifies a data item or field and is called a
data=-name,. Other cases of non-reserved words are
file-names, condition—-names, mnemonic-names, and
procedure=-names. (Procedure~names may begin with a
digit).

Format Notation

Throughout this publication, "general formats"™ are
prescribed for wvarious clauses and statements to
guide the programmer in writing statements. They
are presented in a uniform system of notation,
explained in the following paragraphs.

1. All words printed entirely in capital letters
are reserved words. These are words that have
preassigned meanings. In all formats, words in
capital letters represent actual occurrences of
those words.

2, All underlined reserved words are required
unless the portion of the format containing them
is itself optional. These are key words. If
any key word 1is missing or is 1incorrectly
spelled, it 1is considered an error in the
program. Reserved words not underlined may be
included or omitted at the option of the

19

CROMEMCO COBCL REFERENCE MANUAL
FPundamental Concepts of COBOL

programmet., These words are optional words;
they are used solely for 1improving readability
of the program.

The characters < > = (although not underlined)
are required when such formats are used,.

All punctuation and other special characters
represent actual occurrences of those
characters. Punctuation 1is essential where it
is shown. Additional punctuation ecan be
inserted, according to the rules for punctuation
specified in Section 1l.2. In general, terminal
periods are shown in formats 1in the manual
because they are required; semicolons and commas
are not usually shown because they are optional.
To be separators, all commas, semicolons and
periods must be fellowed by a space (or blank).

Words printed in lower-case letters in formats
represent generic terms (e.g., data-names) for
which the user must insert a valid entry in the
sSource program.

Any part of a statement or data description
entry that is enclosed in brackets is optional.
Parts between matching braces ({ }) represent a
choice of mutually exclusive options.

Certain entries in the formats consist of a
capitalized word{s) followed by the word
"Clause" or "Statement." These designate
clauses or statements that are described in
other formats, in appropriate sections of the
text.

In order to facilitate referehce to lower—-case
words in the explanatory text, some of them are
followed by a hyphen and a digit or letter.
This modification does not <change the
syntactical definition of the word.

Alternate options may be explained by separating

the mnutually exclusive choices by a vertical
stroke, e.g.:

AREA | AREAS is equivalent to [AREA]
AREAS

11

CROMEMCO COBOL REFERENCE MANUAL
Pundamental Concepts of COBOL

1. The ellipsis (...) indicates that the
immediately preceding unit may occur once, or
any number of times in succession. A unit means
either a single lower-case word, or a group of
lower—-case words and one or more reserved words
enclosed in brackets or braces. If a term is
enclosed in brackets or braces, the entire unit
of which it 1is part must be repeated when
repetition is specified.

11, Optional elements may be 1indicated by
parentheses instead of brackets, provided the
lack of formality represents no substantial bar
to clarity.

12. Comments, restrictions, and clarification on the

use and meaning of every format are contained in
the appropriate sections of this manual.

1.5 Level Numbers and Data=Names

For purposes of processing, the contents of a file
are divided into logical records, with level number
@1 initiating a logical record description.
Subordinate data items that constitute a 1logical
record are grouped in a heirarchy and identified
with level numbers @2 to 49, not necessarily
consecutive. Additionally, 1level number 77
identifies a "stand alcone" item in Working Storage
or Linkage Sections; that is, it does not have
subordinate elementary items as does level dl.
Level 88 1is used to define condition-names and
associated conditions. A 1level number less than 18
may be written as a single digit.

Levels allow specification of subdivisions of a
record necessary for referring to data. Once a
subdivision is specified, it may be further
subdivided to permit more detailed data reference.
This is illustrated by the following weekly timecard
record, which is divided into four major items:
name, employee—-number, date and hours, with more
specific information appearing for name and date.

12

CROMEMCO COBOL REFERENCE MANUAL
Fundamental Concepts of COBOL

_ LAST-NAME
NAME< FIRST-INIT
MIDDLE-INIT

EMPLOYEE-NUM
TIME=-CARD —

MONTH
WEEKS~END=-DATE < DAY-NUMBER
YEAR

__HOURS-WORKED

Subdivisions of a record that are not themselves
further subdivided are called elementary items,
Data items that contain subdivisions are known as
group Items. When a Procedure statement makes
reference to a group item, the reference applies to
the area reserved for the entire group. All
elementary items must be described with a PICTURE or
USAGE IS INDEX clause. Consecutive logical records
(1) subordinate to any given file represent
implicit redefinitions of the same area whereas in
the Working=Storage section, each record (@l) is the
definition of its own memory area.

Less inclusive groups are assigned numerically
higher level numbers. Level numbers of items within
groups need not be consecutive. A group whose level
is k includes all groups and elementary 1items
described under it until a level number less than or
equal to k is encountered.

Separate entries are written in the source program
for each level. To illustrate level numbers and
group items, the weekly timecard record in the
previous example may be described (in part) by Data
Division entries having the following level numbers,
data-names and PICTURE definitions.

g1 TIME-CARD,
g2 NAME.
@3 LAST-NAME PICTURE X (18}.
@3 FIRST-INIT PICTURE X.
@3 MIDDLE-INIT PICTURE X.
@2 EMPLOYEE-NUM PICTURE 99999,
@2 WEEKS-END-DATE.

45 MONTH PIC 99,
@5 DAY-NUMBER PIC 99.
45 YEAR PIC 99.

2 HOURS-WORKED PICTURE 99V9,

13

CROMEMCO COBOL REFERENCE MANUAL
Fundamental Concepts of COBOL

A data-name is a word assigned by the user to
identify a data item used in a program. A data-name
always refers to a region of data, not to a
particular value, The item referred to often
assumes a number of different wvalues during the
course of a program.

A data-name must begin with an alphabetic character.
A data-name or the key word FILLER must be the first
word following the level number in each Record
Description entry, as shown in the following general
format:

levellnumber data-name
FILLER

This data-name is the defining name of the entry and
is used to refer to the associated data area
(containing the value of a data item).

If some of the characters in a record are not used
in the processing steps of a program, then the data
description of these .characters need not include a
data-name. In this case, FILLER is written in lieu
of a data-name after the level number.

1.6 FPile Names

A file is a collection of data records, such as a
printed 1listing or a region of floppy disk,
containing individual records of a similar class or
application. A file-name is defined by an FD entry
in the Data Division's File 8Section. FD is a
reserved word which must be followed by a unique
programmer—-supplied word called the file—-name.
Rules for composition of the file-name word are
identical to those for data—-names (see Section 1.3).
References to a file-name appear 1in Procedure
statements OPEN, CLOSE and READ, as well as in the
Environment Division. CAUTION: File names are not
to be confused with file IDs as described in section
3.13.2.

14

CRCOMEMCO COBOL REFERENCE MANUAL
Fundamental Concepts of COBOL

1.7

1.8

1.9

Condition-Names

A condition-name 1is defined in level 88 entries
within the Data Division. It is a name assigned to
a specific value, set or range of values, within the
complete set of wvalues that a data item may assume.
Rules for formation o¢of name words are sgpecified in
Section 1.3. BExplanations of c¢ondition-name
declarations and procedural statements employing
them are given in the chapters devoted to Data and
Procedure Divisions.

Mnemonic—-Names

A mpnemonic-=name is assigned 1in. the Environment
Division for reference in ACCEPT or DISPLAY
statements. It assigns a user~defined word to an
implementor-chosen name, such as PRINTER. A
mnemonic=name is composed according to the rules in
Section 1.3. :

Literals

A literal is a constant that is not identified by a
data-name in a program, but is completely defined by
its own identity. A literal is either non-numeric
or numeric.

Non-Numeric Literals

A non-numeric literal must be bounded by matching
quotation marks or apostrophes and may consist of
any combination of characters in the ASCII set,
except quotation marks or apostrophe, respectively.
All spaces enclosed by the guotation marks are
included as part of the literal. A non-numeric
literal must not exceed 120 characters in length.

The following are examples of non-numeric literals:

"ILLEGAL CONTROL CARDY
'"CHARACTER=-STRING'
"DO's & DON'T'S"
Each character of & non-numeric literal (following

15

CROMEMCO COBOL REFERENCE MANUAL
Fundamental Concepts of COBOL

the introductory delimiter) may be any character
other than the delimiter. That is, if the literal
is bounded by apostrophes, then quotation (") marks
may be within the literal, and vice versa. Length
0of a non-numeric literal excludes the delimiters;
minimum length is one.

A succession of two "delimiters" within a literal is
interpreted as a single representation of the
delimiter within the literal.

Non-numeric literals may be "continued" from one
line to the next, When a non=numeric literal is of
a length such that it cannot be c¢ontained on one
line, the following rules apply to the next line of
coding {continuation line}:

i. A hyphen 1is placed in column 7 of the
continuation line.

2, A delimiter is placed in Area B preceding the
continuation of the literal.

3. All spaces at the end of the previcus line and
any spaces following the delimiter in the
continuation line and preceding the final
delimiter of the literal are considered to be
part of the literal.

4, On any continuwation 1line, Area A should be
blank.

NMumeric Literals

A numeric literal must contain at least one and not
more than 18 digits. A numeric literal may consist
of the characters # through 9 (optionally preceded
by a sign) and the decimal point. It may contain
only one sign character and only one decimal point.
The sign, if present, must appear as the leftmost
character in the numeric literal. If a numeric
literal is unsigned, it is assumed to be positive,

A decimal point may appear anywhere within the
numeric literal, except as the rightmost character.
If a numeric literal does not contain a decimal
point, it is congidered to be an integer.

The following are examples of numeric literals:

16

CROMEMCO COBOL REFERENCE MANUAL
Fundamental Concepts of COBOL

72 +1/11 3.14159 -6 -.333 3.5

By use of the Environment specification DECIMAL-
POINT IS COMMA, the functions of characters period
and comma are interchanged, putting the "European"
noctation into effect. In this case, the wvalue of
"pi" would be 3,1416 when written as a numeric
literal.

Figurative Constants

A figurative constant is a special type of literal.
It represents a value to which a standard data-name
has been assigned. A figurative constant is not
bounded by quotation marks.

ZERO may be used in many places in a program as a
numeric literal. Other figurative constants are
available to provide non-numeric data; the reserved
words representing various characters are as
follows:

SPACE the blank character represented

by "octal"™ 49

LOW-VALUE the character whose "octal"
representation is 44

HIGH-VALUE the character whose "octal™
representation is 177

QUOTE | the quotation mark, whose
"octal" representation is 42
{(7-8 in punched cards)

ALL literal one or more Iinstances of the
literal, which must be a one
character non-numeric or
figurative constant (other than
ALL literal), in which case ALL
iz redundant but serves for
readability.

The plural forms of these figurative constants are
acceptable to the compiler but are equivalent in
effect., A figurative constant represents as many
instances of the associated character as are

17

4

CROMEMCO COBOL REFERENCE MANUAL
Fundamental Cencepts of COBOL

required in the context of the statement.

A figurative constant may be used anywhere a literal
is called for in a "general format" except that
whenever the literal is restricted to being numeric,
the only figurative constant permitted is ZERO,

1.11 Structure of a Program

Every COBOL source program is divided into four
divisions. Each division must be placed in its
proper sequence, and each must begin with a division
header.

The four divisions, listed in sequence, and their
functions are:

IDENTIFICATION DIVISION, which names the
program.

ENVIRONMENT DIVISION, which-indicates the
computer equipment and features to be used
in the program.

DATA DIVISION, which defines the names and
characteristics of data to be processed.

PROCEDURE DIVISION, which consists of
statements that direct the processing of
data at execution time.

18

CROMEMCO COBOL REFERENCE MANUAL

Fundamental

The

Concepts of COBOL

following skeletal c¢oding defines

component structure and order.

IDENTIFICATION DIVISION.

PROGRAM-ID, program=name.

[AUTHOR. commeht—entry ...]

[INSTALLATION,. comment-entry ...]

[DATE~WRITTEN. comment—entry ...]

[DATE-COMPILED, comment=entry ...]

[SECURITY. comment—entry ...]

ENVIRONMENT DIVISION.

DATA

[CONFIGURATION SECTION.]

[SOURCE-COMPUTER. entry]

[OBJECT-COMPUTER. entry]

[SPECIAL-NAMES. entryl

[INPUT-QUTPUT SECTION.

FILE-CONTROL. entry ...

[I-0=~CONTROL. entry ...1]

DIVISION.

[FILE SECTION,

[file description entry
record descripticn entry +...]...]

[WORKING=-STORAGE SECTICON.

[data'item description entry ...]...1

[LINKAGE SECTION.

[data item description entry ...Jl...]

19

Program

CROMEMCO COBOL REFERENCE MANUAL

Fundamental Concepts of COBOL

PROCEDURE DIVISION [USING identifier-l ...}.

[DECLARATIVES.

{section~name SECTION., USE Sentence.

[paragraph=-name.

END DECLARATIVES.]

[sentencel.sveleveloee

{{section-name SECTION.]'

[paragraph-name.

[sentencel..e.e]eeeleen

20

CROMEMCO COBOL REFERENCE MANUAL
Fundamental Concepts of COBOL

1.12 Coding Rules

Since Cromemco COBOL is a subset of American
National Standards Institute (ANSI) COBOL, programs
may be written on standard COBOL coding sheets, and

the

l.

following rules are applicable.

Each line of code should have a six-digit
sequence number in columns 1-6." These numbers
should be in ascending order. Blanks are
permitted in columns 1-6,

Reserved words for division, section, and
paragraph headers must begin in Area A {columns
g8-11)., Procedure-~names must also appear in Area
A (at the point where they are defined). Level
numbers may appear in Area A. Level numbers @1,
77 and level indicator "FD" must begin in Area
A.

All other program elements should be confined to
columns 12-72, governed by the other rules of
statement punctuation.

Columhs 73-88 are ignored by the compiler.
These columns may be used to contain program
identification,

Explanatory comments may be inserted on any line
within a source program by placing an asterisk
in column 7 of the line. The line will be
proeduced on the source 1listing but serves no
other purpose. If a slash (/) appears in column
7, the associated line is treated as a comment
line and will be printed at the top of a new
page when the compiler lists the program.

Any program element may be "continued" on the
following 1line of & source program. The rules
for continuation of a non=numeric ("quoted")
literal are explained in Section 1.9. Any other
word or literal or other program element is
continued by placing a hyphen in the column 7
position of the continuation line. The effect
is concatenation of successive word parts,
exclusive of all trailing spaces of the last
predecessor word and all leading spaces of the
first successor word on the continuation 1line,
On a continuation line, Area A must be blank.

21

CROMEMCO COBOL REFERENCE MANUAL
Fundamental Concepts of COBOL

1,13

Qualification of Names

When a data=name, condition=name or paragraph name
is not unique, procedural reference thereto may be
accomplished uniquely by use of qualifier names.
For example, if there were two or more items named
YEAR, the qualified reference

YEAR OF HIRE-DATE

might differentiate between year fields in HIRE-DATE
and TERMINATION-DATE.

Qualifiers are preceded by the word OF or IN;
successive data-name or condition-name gqualifiers
must desighate lesser—level-numbered groups that
contain all preceding names in the composite
reference, i.e., HIRE-DATE must be a group item (or
file-name) containing an item called YEAR.
Paragraph-names may be qualified by a section-name.

The maximum hnhumber of qualifiers is one for a
paragraph-name, five for a data-name or condition-
name, File-names and mnemonic-names must be unique.

A gqualified name may only be written 1in the
Procedure Division, A reference to a multiply-
defined paragraph-name need not be qualified when
referred to from within the same section.

1.14 COPY Statement

The statement COPY text-name incorporates into a
source program a body of standard COBOL code
maintained in a "COPY Library" as a distinctly named
(text-name) entitvy. A COPY statement must be
terminated by a period. A COPY statement may appear
anywhere except within the copied entity itself.

The effect of copying is to augment the source
stream processed by the compiler by insertion of the

-copied entity in place of the COPY statement, and

then to resume processing of the primary source of
input at the end of the copied entity.

After the text—-name operand cof a COPY statement, the

remainder of the source card must be blank {(through
column 72}).

22

CROMEMCO COBCL REFERENCE MANUAL
Identification and Environment Divisions

2.1

CHAPTER 2

Identification and Environment Divisions

Identification Division

Every COBOL program begins with the header:
IDENTIFICATION DIVISION. This division is divided
into paragraphs having preassigned names:

PROGRAM=-ID. program—name.
AUTHOR. comments.
INSTALLATION. comments.
PATE-WRITTEN. comments.
DATE-COMPILED, comments.
SECURITY. comments.

Only the PROGRAM-ID paragraph is required, and it
must be the first paragraph. Program-name is any
alphanumeric string of characters, the first of
which must be alphabetic. Only the first 6
characters of program—name are retained by the
compiler. The program-name identifies the object
program and 1is contained in headings on compilation
listings.

The contents of any other paragraphs are of no
consequence, serving only as documentary remarks.

23

CROMEMCO COBOL REFERENCE MANUAL
Identification and Environment Divisions

2.2 Environment Division

The Environment Division specifies a standard method
of expressing those aspects of a COBOL program that
are dependent upon physical characteristics of a
specific computer. It is required in every program.

The general format of the Environment Division is:

ENVIRONMENT DIVISION.

CONFIGURATION SECTION,

SOURCE~COMPUTER. Computer—name [WITH DEBUGGING MODE].

OBJECT-COMPUTER. Computer—-name
[MEMORY SIZE integer WORDS | CHARACTERS | MODULES]}
{PROGRAM COLLATING SEQUENCE IS ASCII].

SPECIAL-NAMES, {PRINTER IS mnemonic-name] ASCII IS|{STANDARD-1
NATIVE

[CURRENCY SIGN IS literal]

[DECIMAL-POINT IS COMMA].

INPUT-QUTPFUT SECTION,

FILE-CONTRQL., {file~control-entrvyi...

I-0-CONTROL.

2.2.1 CONFIGURATION SECTIQON

The CONFIGURATION SECTION, which has three possible
paragraphs, 1is optional. The three paragraphs are
SOURCE-COMPUTER, OBJECT-COMPUTER, and SPECIAL-NAMES.
The contents of the first two paragraphs are treated
as commentary, except for the clause WITH DEBUGGING
MODE, if present (see GSection 4.23}. The third
paragraph, SPECIAL~NAMES, relates implementor names
to user-«defined names and changes default editing
characters. The PRINTER IS phrase allows definition
of a name to be used in the DISPLAY statement with
UPON.

In case the currency symbol is not supposed to be
the Dollar Sign, the user may specify a single

24

CROMEMCQ COBOL REFERENCE MANUAL
Identification and Environment Divisions

character non—-numeric literal in the CURRENCY SIGN
clause. However, the designated character may not
be a guote mark, nor any of the characters defined
for Picture representations, nor digits (0-9).

The "“European" convention of separating integer and

fraction positions of numbers with the comma
character is specified by employment of the clause
DECIMAL~POINT IS COMMA.

Note that the reserved word IS is reguired in
entries for currency sign definition and decimal-
point convention specification.

The entry ASCII IS NATIVE/STANDARD-l specifies that
data representation adheres to the American Standard
Code for Information Interchange. However, this
convention is assumed even if the ASCII=-entry is not
specifically present. In this compiler, NATIVE and
STANDARD-1 are identical, and refer to the character
set representation specified in Appendix IV.

2.2,2 INPUT-QUTPUT SECTION

The second section of the Environment Division 1is
mandatory unless the program has no data files; it
begins with the header:

INPUT=-CUTPUT SECTION,
This section has two paragraphs: FILE-CONTROL and
I-0-CONTROL. In this section, the programmer

defines the file assignment parameters, including
specification of buffering.

25

P

CROMEMCO COBOL REFERENCE MANUAL
Identification and Environment Divisions

2.2.2.ll FPILE=CONTROL ENTRY {(SELECT ENTRY)
For each file having records described in the Data
Division's File Section, a Sentence=Entry (beginning
with the reserved word SELECT) ig reguired in the
FILE-CONTROL paragraph. The format of a Select
Sentence-Entry for a sequential file is:
SELECT file-name ASSIGN TO DISK | PRINTER
[RESERVE integer AREAS | AREA]
[FILE STATUS IS data=name-1]

[ACCESS MODE IS SEQUENTIAL] [ORGANIZATION IS SEQUENTIAL].

All phrases after "SELECT filename" can be in any
order., Both the ACCESS and ORGANIZATION clauses are
optional for sequential input-output processing.
For Indexed or Relative files, alternate formats are
available for this section, and are explained in the
chapters on Indexed and Relative files.

If the RESERVE clause is not present, the compiler
assigns buffer areas. An integer number of buffers
specified by the Reserve clause may be from 1 to 7,
but any number over 2 is treated as 2.

In the FILE STATUS entry, data-name-=1 must refer to
a two=-character Working=-Storage or Linkage item of
category alphanumeric into which the run-time data
management facility places status information after
an I-0 statement. The left-hand character of data-
name=1 assumes the values:

'@' for successful completion
'1' for End—-of-File condition
'2' for Invalid Rey {only
for Indexed and Relative files)
'3' for a non-recoverable (I-0) error
'9' for implementor-related errors
(see User's Guide)

The right-hand character of data-name-1 is set to
'@' if no further status information exists for the
previous I-0 operation. The following combinations
of values are possible:

26

CROMEMCO COBOL REFERENCE MANUAL
Identification and Environment Divisions

File Status Left File Status Right Meaning

!t ' gt 0.K.
1 g EOF
3 'g* Permanent error
'3 40 Disk space full

For values of status-right when status-left has a
value of '2', see the chapters on Indexed or
Relative files.

2.2.2.2 I-0-CONTROL PARAGRAPH

The SAME AREA specification is optional. It permits
the programmer to enumerate files that are open only
at mutually exclusive times, in order that they may
share the same I-0 buffer areas and conserve the
utilization of memory space.

The format of the SAME AREA entry (which designates
files that all share a common I-0 area) is:

SAME AREA FOR file-name-2 file-=-name-3...

Files named in a given SAME AREA clause need not all
have the same organization or access., However, no
file may be listed in more than one SAME AREA
clause.

27

s

CROMEMCO COBOL REFERENCE MANUAL
Data Division

CHAPTER 3

Data Division

The Data Division, which is one of the required divisions
in a program, is subdivided into three sections: File
Section, Working-Storage Section and Linkage Section. Each
is discussed in Sections 3.13-3.15, but first, aspects of
data specification that apply in all sections will be
described.

3.1 Data Items

Several types of data items can be described in
COBOL programs. These data items are described in
the following paragraphs.

3.1.1 Group ltems

A group item is defined as one having further
subdivisions, so that it c¢ontains one or more
elementary items. In addition, a group item may
contain other groups. An item is a group item if,
and only if, its level number is less than the level
number of the immediately succeeding item. If an
item is not a group item, then it is an elementary
item. The maximum size of a group item is 4§95
characters.,

3.1.2 Elementary Items

An elementary item is a data item containing no
subordinate items.

Alphanumeric Item: An alphanumeric item consists of
any combination of characters, making a "“character
string" data field. If the associated picture
contains "editing" characters, it is an alphanumeric
edited item.

Report (Edited) Item: A report item iIs an edited
"numeric" item containing only digits and/or special
editing characters. It must not exceed 30
characters in length. A report item can be used
only as a receiving field for numeric data. It is

28

CROMEMCO COBOL REFERENCE MANUAL
Data Division

designed to receive a numeric item but cannot be
used as a numeric item itself.

3.1,3 Numeric Items

Numeric items are elementary items intended to
contain numeric data only.

External Decimal Item: An external data item is an
item in which one computer character (byte} 1is
employed to represent one digit. A maximum number
of 18 digits is permitted; the exact number of digit
positions is defined by writing a specific number of
9=-characters in the PICTURE description. For
example, PICTURE 999 defines a 3=-digit item. That
is, the maximum decimal wvalue of the item 1is nine
hundred ninety=nine,

If the PICTURE begins with the letter S, then the
item also has the capability of containing an
"operational sign." An operational sign does not
occupy a separate character (byte), unless the
"SEPARATE" form of SIGN clause is included in the
item's description. Regardless of the form of
representation of an operational sign, 1its purpose
is to provide a sign that functions in the normal
algebraic manner.

The USAGE of an external decimal item is DISPLAY
(see USAGE clause, Section 3.4).

Internal Decimal Item: An internal decimal item is
stored in packed decimal format., It is attained by
inclusion of the COMPUTATIONAL-3 USAGE clause.

A packed decimal item defined by n 9's in its
PICTURE occupies 1/2 of (n + 2) bytes in memory.
All bytes except the rightmost contain a pair of
digits, and each digit is represented by the binary
equivalent of a wvalid digit value from @ to 9. The
item's low order digit and the operational sign are
found in the rightmost byte of a packed item. For
this reason, the compiler considers a packed item to
have an arithmetic sign, even 1if the original
PICTURE lacked an S-character.

Binary Item: A binary item uses the base 2 system
to represent an integer in the range -32768 to
32767. 1t occupies one 16 bit word composed of two

29

o

CROMEMCO CQOBOL REFERENCE MANUAL
Data Pbivision

eight bit bytes, The leftmost bit of the reserved
area 1is the operational sign. A binary item is
specified by USAGE IS COMPUTATIONAL.

Index Data=Item: An index-data item has no PICTURE;
USAGE IS INDEX, (Refer to Chapter 6, Table Handling
by the Indexing Method.")

3.2 DATA DESCRIPTION ENTRY

A Data Description entry specifies the
characteristics of each field (item}) in a data
record. Each item must be described in a separate
entry in the same order in which the items appear in
the record. Each Data Description entry consists of
a level number, a data-name, and a series of
independent clauses followed by a period.

The general format of a Data Description entry is:

data-name]
level=number FILLER (REDEFINES-clause) (JUSTIFIED-clause)

(PICTURE-clause) (USAGE=-clause) (SYNCHRON IZED=-clause)

{OCCURS~-clause) ({BLANK-clause) (VALUE=clause) (5IGN—-clause}.

When this format is applied to specific items of
data, it is limited by the nature of the data being
described. The format allowed for the description
of each data type appears below. Clauses that are
not shown in a format are specifically forbidden in
that format. Clauses that are mandatory in the
description of certain data items are shown without
parentheses. The clauses may appear in any order
except that a REDEFINES-clause, if used, should come
first, '

30

CROMEMCO COBOL REFERENCE MANUAL
Pata Division

Group Item Format

data-name
level—-number FILLER (REDEFINES~clause) (USAGE=clause)

(OCCURS=clause) (SIGN=clause).

Example:

g1 GROUP=-NAME.
g2 FIELD-B PICTURE X.
@2 FIELD=C PICTURE X.

NOTE
The USAGE clause may be written
at a group level to aveoid

repetitious writing of it at
the subordinate element level.

3.3 FORMATS FOR ELEMENTARY ITEMS

ALPHANUMERIC ITEM (also called a character-string item)

data-name
level=number

FILLER ({REDEFINES—-clause) (OCCURS=-clause)
PICTURE IS an—form (USAGE IS DISPLAY) (JUSTIFIED-clause)

(VALUE IS non—~numeric-literal) (SYNCHRONIZED-clause).
Examples:

g2 MISC-1 PIC X(53). _
g2 MISC-2 PICTURE BXXXBXXB.

31

CROMEMCO COBOL REFERENCE MANUAL
Data Division

REPORT ITEM ({also called a numeric—edited item)

data-name :
level—-number FILLER (REDEFINES—-clause} (OCCURS-clause)

PICTURE IS report—form {(BLANK WHEN ZERO) (USAGE IS DISPLAY)

(VALUE IS non=numeric literal) (SYNCHRONIZED-~clause),

Example:

g2 XTOTAL PICTURE $999,999.99-,

DECIMAL ITEM

data—name}
level~-number FILLER (REDEFINES—-clause) (OCCURS-clause)
PICTURE IS numeric=form (SIGN-clause)

(USAGE-clause) (VALUE IS numeric-literal) (SYNCHRONIZED=-clause).

Examples:

@2 HOURS=-WORKED PICTURE 99V9, USAGE IS DISPLAY.
@2 HOURS-SCHEDULED PIC S$99V3, SIGN IS TRAILING.

11 TAX=-RATE PIC S99V999 VALUE 1.375, COMPUTATIONAL-3.

32

CROMEMCO COBOL REFERENCE MANUAL
Data Division

BINARY ITEM

{data-name
level=number FILLER (REDEFINES~clause) (OCCURS=-clause)
PICTURE IS8 numeric-form

USAGE IS COMPUTATIONAL |COMP|[INDEX

(VALUE IS numeric-literal) (SYNCHRONIZED-clause).
NOTE

A PICTURE or VALUE must not be
given for an INDEX Data Item.

Examples:

@2 SUBSCRIPT COMP, VALUE ZERO.
#2 YEAR-TO-DATE COMPUTATIONAL.,

3.4 USAGE CLAUSE

The USAGE clause specifies the form in which numeric
data is represented.

The USAGE clause may be written at any level, If
USAGE is not specified, the item is assumed to be in
DISPLAY" mode. The general format of the USAGE
clause is:

COMPUTATIONAL
USAGE IS INDEX

DISPLAY

COMPUTATIONAL-3

INDEX is explained in Chapter 6, Table Handling.
COMPUTATIONAL, which may be abbreviated COMP, usage
defines an integer binary field. COMPUTATIONAL-3,
which may be abbreviated COMP-3, defines a packed
(internal decimal) field.

If a USAGE clause is given at a group level, it
applies to each elementary item in the group. The
USAGE c¢lause for an elementary item must not
contradict the USAGE clause of a group to which the
item belongs.

33

CROMEMCO COBOL REFERENCE MANUAL
Data Pivision

3.5

PICTURE CLAUSE

The PICTURE clause specifies a detailed description
of an elementary level data item and may include
specification of special report editing. The
reserved word PICTURE may be appreviated PIC.

The general format of the PICTURE clause is:

an=form
PICTURE IS numeric-form
report=form

There are three possible types of pictures: An-
form, Numeric-form and Report-form.

An-Form Option: This option applies to alphanumeric
{character string} items. The PICTURE of an
alphanumeric item is a combination of data
description characters X, A or 9 and, optionally,
editing characters B, # and /. An X indicates that
the character position may contain any character
from the computer's ASCII character set, A Picture
that contains at least one of the combinations:

{(a) A and 92, or
(b) X and 9, or
(c) X and A

in any order 1is considered as if every 9, A or X
character were X. The characters B, # and / may be
used to insert blanks or zeros or slashes in the
item, This is then called an alphanumeric-edited
item.

If the string has only A's and B's, it is considered
alphabetic; if it has only 9's, it is numeric (see
be:I.OW) -

Numeric=Form Option: The PICTURE of a numeric item
may contain a wvalid combination of the following
characters:

9 The character 9 indicates that the actual
or conceptual digit position contains a
numeric character. The maximum number of
9's in a PICTURE is 18.

34

CROMEMCO COBOL REFERENCE MANUAL

Data Division

The optional character V indicates the
position of an assumed decimal point.
Since a numeric item cannot contain an
actual decimal point, an assumed decimal
point is used to provide the compiler with
information concerning the scaling
alignment of i1items involwved in
computations. Storage is never reserved
for the character V. Only one V is
permitted in any sinagle PICTURE, and is
redundant 1f it 1is the rightmost
character.

The optional character S indicates that the
item has an operational sign. It must be
the first character of the PICTURE. See
also, SIGN clause, Section 3.12,

The character P 1indicates an assumed
decimal scaling position. It is used to
specify the location of an assumed decimal
point when the point is not within the
nunber that appears in the data item. The
scaling position character P is not counted
in the size of the data item; that is,
memcry is not reserved for these positions.
However, scaling position characters are
counted in determining the maximum number
of digit positions (18) in numeric edited
items or in items that appear as operands
in arithmetic statements. The scaling
position character P may appear only to the
left or right of the other characters in
the string as a continuous string of P's
within a PICTURE description. The sign
character 8 and the assumed decimal point V
are the only characters which may appear to
the left of a leftmost string of P's.
Since the scaling position character P
implies an assumed decimal point (to the
left of the P's 1if the P's are leftmost
PICTURE characters and to the right of the
P's if the P's are rightmost PICTURE
characters), the assumed decimal point
symbol V is redundant as either the
leftmost or rightmost character within such
a PICTURE description.

Report—-Form Option: This option describes a data

item suitable as an "edited" receiving field for

35

CROMEMCQ COBOL REFERENCE MANUAL
Data Pivision

presentation of a numeric value,. The editing
characters that may be combined to describe a report
item are as follows:

9V . ZCRDB , $+ *B O -P /

The characters 9, P and V have the same meaning as
for a numeric item. The meanings of the other
allowable editing characters are described as
follows:

. The decimal point character specifies that
an actual decimal point is to be inserted
in the indicated position and the source
item is to be aligned accordingly. Numeric
character positions to the right of an
actual decimal point in a PICTURE must
consist of characters of one type. The
decimal point character must not be the
last character 1in the PICTURE character
string. Picture character 'P' may not be
used if '.' is used.

z - The characters Z and * are called replace=

* ment characters. Each one represents a
digit position. During execution, leading
zeros to be placed in positions defined by
Z or * are suppressed, becoming blank or *,
Zero suppression terminates upon
encountering the decimal point (. or V) or
a non-zero digit., All digit positions to
be modified must be the same (either Z or
*), and contiguous starting from the left.
Z or * may appear to the right of an actual
decimal point only if all digit positions
are the same.

CR CR and DB are called credit and debit

DB symbols and may appear only at the right
end of a PICTURE. These symbols occupy two
character positions and indicate that the
specified symbol is to appear in the
indicated positions 1if the wvalue of a
source item is negative. If the value is
positive or 2zero, spaces will appear
instead. CR and DB and + and - are
mutually exclusive.

The comma specifies insertion of a comma
between digits. Each insertion character

36

CROMEMCO COBOL REFERENCE MANUAL
Data Division

is counted in the size of the data item,
but does not represent a digit position.
The comma may also appear in conjunction
with a floating string, as described below.
It must not be the last character in the
PICTURE character string.

A floating string is defined as a leading,
continuous series of one of either $ or + or =, or a
string composed of one such character interrupted by
one or more insertion commas and/or decimal points.
For example:

$$,$85,85$
++++

r

+(8) .+
$$,585.88

A floating string containing N + 1 occurrences of $
or + or - defines N digit positions. When moving a
numeric value inte a report item, the appropriate
character floats from 1left to right, so that the
developed report item has exactly one actual § or +
or = immediately to the left of the most significant
nonzero digit, in one of the positions indicated by
$ or + or - in the PICTURE. Blanks are placed in
all character positions to the left of the single
developed $ or + or =-. If the mest significant
digit appears in a position to the right of
positions defined by the floating string, then the
developed item contains § or + or = in the rightmost
position of the floating string, and non-significant
zeros -may follow. The presence of an actual or
implied decimal point in a fleoating string is
treated as if all digit positions to the right of
the point were indicated by the PICTURE character 9.
In the following examples, b represents a blank in
the developed items.

PICTURE Numeric Value Peveloped Item
$55999 14 bb$#14
——,==—,999 =456 bbbbbb-456
FI998S 14 bbb$14

A floating string need not constitute the entire
PICTURE of a report item, as shown in the preceding

37

CROMEMCO COBOL REFERENCE MANUAL
Data Division

examples, Restrictions on characters that may
follow a floating string are given later 1in the
description.

When a comma appears to the right of a floating
string, the string character floats through the
comma in order to be as close to the leading digit
as possible.

+ The character + or — may appear in a

- PICTURE either singly or in a floating
string. As a fixed sign control character,
the + or = must appear as the last symbol
in the PICTURE. The plus sign indicates
that the sign of the item is indicated by
either a plus or minus placed in the
character position, depending on the
algebraic sign of the numeric value placed
in the report field. The minus sign
indicates that blank or minus is placed in
the character position, depending on
whether the algebraic sign of the numeric
value placed in the report field is
positive or negative, respectively.

B Each appearance of B in a Picture
represents a blank in the final edited
value.

/ Each slash in a Picture represents a slash

in the final edited wvalue.

@ Each appearance of 0 in a Picture
represents a position in the final edited
value where the digit zero will appear.

Other rules for a report {(edited) item PICTURE are:

1. The appearance of one type of floating string
precludes any other floating string.

2. There must be at least one digit position
character.

3. The appearance of a floating sign string or
fixed plus or minus insertion character
precludes the appearance of any other of the
sign control insertion character, namely, +, -,
CR, DB.

38

CROMEMCO COBOL REFERENCE MANUAL
Data Division

The characters to the right of a decimal point
up to the end of a PICTURE, excluding the fixed
insertion characters +, =, CR, DB (if present),
are subject to the following restrictions:

a. Only one type of digit position character
may appear. That is, Z * 9 and floating-
string digit position characters $ + - are
all 6, mutually exclusive.

b. If one of the numeric character positions to
the right of a decimal point is represented
by + or - or $ or Z, then all the numeric
character positions in the PICTURE mnust be
represented by the same character.

The PICTURE character 9 can never appear to the
left of a floating string, or replacement
character.

Additional notes on the PICTURE Clause:

l.

2.

A PICTURE clause must only be used at the
elementary level,

An integer enclosed in parentheses and following
X 9 §Z P * B - or + indicates the number of

- consecutive occurrences of the PICTURE

character.

Characters V and P are not counted in the space
allocation of a data item. CR and DB occupy two
character positions.

A maximum of 30 character positions is allowed
in a PICTURE character string. For example,
PICTURE X (89) consists of five PICTURE
characters. '

A PICTURE must consist of at least one of the
characters 2 Z *# X 9 or at least two consecutive
appearances of the + or - or $ characters.

The characters '.' S V CR and DB can appear only
once in a PICTURE.

When DECIMAL-POINT IS COMMA is specified, the

explanations for period and comma are understood
to apply to comma and period, respectively.

39

TN

CROMEMCO COBOL REFERENCE MANUAL

Data Division

3.6

The following examples illustrate the use of PICTURE
a movement of data
column headings.
scale factor
is given by the Picture.)

to edit data.
is implied,

(Data value shows contents in storage;
of this source data area

In each example,

as indicated by the

Source Area

PICTURE Data PICTURE Edited Data
Value
9(5) 12345 $55,$89.99 $12,345,.090
9(5) 2123 $85,859.99 $123.04@
9(5) . peaee $5%,859.99 50.00
9(4)V9 12345 $$8,8$9.99 $1,234.50
V9 (5} 12345 $55,$$9.99 50.12
59 (5) pa123 0 mmm——— .99 123.00
S9(5) -dPPPL @ mm———— .99 ~-1.0849
59 (5) @e123 +++++++,99 +123.08
S9(5) L .99 1.08
9(5) Fa123 +++++++,99 +123.08
9(5) Fegr2y —eeeea- .99 123,00
59(5) 12345 *kkkkkd OOCR *%12345.00
5999v99 #2345 2Z2ZVZ7Z 2345
85999v99 gopgp4d ZZZVZIZ g4

VALUE CLAUSE

The VALUE clause
working=storage

is:

VALUE IS literal

Receiving Area

specifies the
items,

initial wvalue of
The format of this clause

The VALUE c¢lause must not be written in a Data
Description entry that also has an OCCURS or
REDEFINES clause, or in an entry that is subordinate
to ‘an entry containing an OCCURS or REDEFINES
clause. Furthermore, it cannot be used in the File
or Linkage Sections, except in level 88 c¢ondition
descriptions.

The size of a literal given in a VALUE clause must
be less than or equal to the size of the item as
given in the PICTURE clause, The positioning of the
literal within a data area is the same as would
result from specifying a MOVE of the literal to the

449

CROMEMCCO COBOL REFERENCE MANUAL
Data Division

data area, except that editing characters in the
PICTURE have no effect on the initialization, nor do
BLANK WHEN ZERO or JUSTIFIED clauses., The type of
literal written in a VALUE clause depends on the
type of data item, as specified in the data item
formats earlier in this text. For edited items,
values must be specified as non-numeric literals,
and must be presented in edited form. A figurative
constant may be given as the liiteral.

When an initial wvalue is not specified, no
assumption should be made regarding the 1initial
contents of an item in Working-=Storage.

The VALUE clause may be specified at the group
level, in the form of a correctly sized non-numeric
literal, or a figurative constant. In these cases
the VALUE clause cannot be stated at the subordinate
levels with the group. However, the wvalue clause
should not be written for a group containing items
with descriptions including JUSTIFIED, SYNCHRONIZED
and USAGE (other than USAGE IS DISPLAY). (A form
used in level 88 items is explained in Section 3.16)

3.7 REDEFINES CLAUSE

The REDEFPINES clause specifies that the same area is
to contain different data items, or provides an
alternative grouping or description of the same
data. The format of the REDEFINES clause is:

'REDEFINES data-name=-2

When written, the REDEFINES c¢lause should be the
first clause following the data=-name that defines
the entry. The data description entry for data-
name=2 should not contain a REDEFINES clause, nor an
OCCURS clause.

When an atrea is redefined, all descriptions of the
area remain in effect, Thus, if B and C are two
separate items that share the same storage area due
to Redefinition, the procedure statements MOVE X TO
B or MOVE Y TO C could be executed at any point in
the program. In the first case, B would assume the
value of X and take the form specified by the
description of B. In the second case, the same
physical area would receive Y according to the
description of C.

41

CROMEMCO COBCL REFERENCE MANUAL
Data Division

For purposes of discussion of Redefinition, data-
name=1 is termed the subject, and data-name-2 is
called the object,. The levels of the subject and
object are denoted by s and t, respectively. The
following rules must be obeyed in order to establish
a proper redefinition.

1. s must equal t, but must not egual 88.

2., The object must be contained in the same record
(@1 group level item), unless s=t=@g1l.

3, Prior to definition of the subject and
subsequent to definition of the object there can
be no level numbers that are numerically less
than s.

The length of data-name=-1, multiplied by the number
of occurrences of data-name-1l, may not exceed the
length of data—-name-2, unless the level of data-
name=1 is @1 (permitted only outside the File
Section). Entries giving the new description must
not contain any value clauses, except in level 88,
In the File Section, multiple level @1 entries
subordinate to any given FD represent implicit
redefinitions of the same area.

3.8 OCCURS CLAUSE

The OCCURS clause is used in defining related sets
of repeated data, such as tables, lists and arrays.
It specifies the number of times that a data item
with the same format is repeated. Data Description
clauses associated with an item whose description
includes an OCCURS clause apply to each repetition
of the item being described. When the OCCURS clause
is used, the data name that is the defining name of
the entry must be subscripted or indexed whenever it
appears in the Procedure Division., If this data-
name 1is the name of a group item, then all data-
names belonging to the group must be subscripted or
indexed whenever they are used.

The OCCURS clause must hot be used in any Data
Description entry having a level number @1 or 77.
The OCCURS clause has the following format:

OCCURS integer TIMES [INDEXED BY index-name...]

42

CROMEMCO COBOL REFERENCE MANUAL
Data Division

Subscripting: Subscripting provides the facility
for referring to data items in a table or list that
have not been assigned individual data-names.
Subscripting is determined by the appearance of an
OCCURS clause in a data description. If an item has
an OCCURS clause or belongs to a group having an
OCCURS c¢lause, it must be subscripted or indexed
whenever it 1is wused. See the chapter on Table
Handling for explanations on Indexing and Index
Usage. {Exception: the table=name in a SEARCH
statement must be referenced without subscripts.)

A subscript is a positive nonzero integer whose
value determines an element to which a reference is
being made within a table or 1list. The subscript
may be represented either by a literal or a data-
name that has an integer wvalue. Whether the
subscript is represented by a literal or a data-
name, the subscript is enclosed in parentheses and
appears after the terminal space of the name of the
element. A subscript must be a decimal or binary
item. (The latter is strongly recommended, for the
sake of efficiency.)

At most, three OCCURS clauses may govern any data
item. Consequently, one, two or three subscripts
may be required. When more than one subscript is
required, they are written in the order of
successively less inclusive dimensions of the data
organization. Multiple subscripts are separated by
commas, viz., ITEM (I, J).

Exampleﬁ

@1 ARRAY.
@3 ELEMENT, OCCURS 3, PICTURE 9(4).

The above example would be allocated storage as
shown below. '

____________ —_
ELEMENT (1) |
ARRAY, consisting of twelve
ELEMENT (2) characters; each item has 4 I
digits. |
ELEMENT (3) N

43

CROMEMCO COBQL REFERENCE MANUAL
Data Division

3.9

3.19

A data-name may not be subscripted if it 1is being
used for:

l., a subscript
2., the defining name of a data description entry
3. data=-name-2 in a REDEFINES clause

4. a qualifier

SYNCHRONIZED CLAUSE

The SYNCHRONIZED clause was designed in order to
allocate space for data in an efficient manner, with
respect to the computer central "memory". However,
in this compiler, the SYNCHRONIZED specification is
treated as commentary only,

The format of this clause is:

SYNC | SYNCHRONIZED [LEFT | RIGHTI]

BLANK WHEN ZERO CLAUSE

The BLANK WHEN ZERO clause specifies that a report
(edited) field is to contain nothing except blanks
if the numeric wvalue moved to it has a wvalue of
Zero. When this clause is used with a numeric
picture, the field is considered a report field.

3.11 JUSTIFIED CLAUSE

The JUSTIFIED RIGHT clause is only applicable to
unedited alphanumeric (character string) items. It
signifies that values are stored in a right-to-left
fashion, resulting in space fill on the left when a
short field is moved to a longer Justified field, or
in truncation on the left when a long field is moved
to a shorter JUSTIFIED field. The JUSTIFIED clause
is effective only when the associated £field is
employed as the "receiving" field in a MOVE
statement.

The word JUST 1is a permissible abbreviation of
JUSTIFIED.

44

CROMEMCO COBOL REFERENCE MANUAL
Data Division

3.12 SIGN CLAUSE

For an external decimal 1item, there are four
possible manners of representing "an operational
sign; the choice 1is controlled by inclusion of a
particular form of the SIGN clause, whose general
form is:

[SIGN IS] TRAILING | LEADING [SEPARATE CHARACTER]

The following chart summarizes the effect of four
possible forms of this clause.

SIGN Clause Sign Representation

TRAILING Embedded in rightmost byte
LEADING Embedded in leftmost byte
TRAILING SEPARATE Stored in separate rightmost byte
LEADING SEPARATE Stored in separate leftmost byte

When the 'above forms are written, the PICTURE must
begin with S. If no S appears, the item is not
signed (and is capable of storing only absolute
values), and the SIGN clause is prohibited. When S
appears at the front of a PICTURE but no SIGN clause
is included in an item's description, the "default"
case SIGN IS TRAILING is assumed.

The SIGN clause may be written at a group level; in
this case the clause specifies the sign's format on
any signed subordinate external decimal item. The
SEPARATE CHARACTER phrase increases the size of the
data item by 1 character. The entries to which the
SIGN clause apply must be implicitly or explicitly
described as USAGE IS DISPLAY.

(Note: When the CODE=-SET clause is specified for a

file, all signed numeric data for that file must be
described with the SIGN IS5 SEPARATE clause.)

45

CROMEMCO COBOL REFERENCE MANUAL

Data D

3.13

ivision

FILE SECTION, FD ENTRIES (SEQUENTIAL I-O ONLY)

3.13.1

3.13.2

In the FPILE SECTION of the Data Division, an FD

entry (file definition) must appear for every

Selected file. This entry precedes the descriptions

of the file's record structure(s).

The general format of an FD entry is:

FD file name LABEL-clause [VALUE-OF-clause]

[DATA-RECORD (S)~clause] {[BLOCK-clause] [RECORD=-clause]
- [CODE-SET-clausel.

After "FD filename," the order of the clauses is

immaterial.

LABEL CLAUSE

The format of this reguired FD-entry clause is:

LABEL RECORD | RECORDS 'IS | ARE OMITTED | STANDARD

The OMITTED option specifies that no labels exist
for the file; this must be specified for files
assigned to PRINTER,

The STANDARD option specifies that labels exist for
the file and that the labels conform to system
specifications; this must be specified for files
assigned to DISK.

VALUE OF CLAUSE

The VALUE OF clause appears in any “FD entry for a
DISK-assigned file, and contains a file ID expressed
as a COBOL-type "quoted" literal. The general form
is:

VALUE OF FILE-ID IS "literal"

Example:
VALUE OF FILE-ID "A:MASTER.ASM"

A reminder: if a file is ASSIGNed to PRINTER, it is
unlabeled and the VALUE clause must not be included

46

CRCMEMCQ COBOL REFERENCE MANUAL
Data Division

3.13.3

3.13.4

in the associated FD. If a file is ASSIGNed to
DISK, it is necessary to include both LABEL RECORDS
STANDARD and VALUE clauses in the associated FD.

DATA RECORD (S5) CLAUSE

The optional DATA RECORDS clause identifies the
records in the file by name. This clause is
documentary only, in this and all COBOL systems.
Its general format is:

RECORD IS
DATA data=-name-1 [data-name-2...]

RECORDS ARE

The presence of more than one data—-name indicates
that the file contains more than one type of data
record. That is, two or more record descriptions
may apply to the same storage area. The order in
which the data—-name® are listed is not significant.

Data-name=-1l, data—-name-2, etc., are the names of
data records, and each must be preceded in its
record description entry by the level number 91, in
the appropriate file declaration (FD) in the File
Section. -

BLOCK CLAUSE

The BLOCK CONTAINS clause 1is used to specify
characteristics of physical records in relation to
the concept of logical records. The general format
is:

CHARACTERS
BLOCK CONTAINS integer-2

RECORDS

Files assigned to PRINTER must not have a BLOCK
clause in the associated FD entry. Furthermore, the
BLOCK clause has no effect on disk files in this
COBOL system, but it is examined for correct syntax.
It is normally applicable to tape files, which are
not supported by this COBOL.

When used, the size is usually stated in RECORDS,
except when the records are wvariable in size or

47

.'/"H\..

CROMEMCO COBOL REFERENCE MANUAL
Data Division

3.13.5

3.13.0

exceed the size of a physical block; ih these cases
the size should be expressed in CHARACTERS, If
multiple record sizes exist, and 1if blocking is
specified, then the physical block will contain
multiple logical records, each of which is
terminated by a carriage~return line=feed.

When the BLOCK CONTAINS clause is omitted, it is
assumed that records are not blocked. When neither
the CHARACTERS nor the RECORDS option is specified,
the CHARACTERS option is assumed. When the RECORDS
option is used, the compiler assumes that the block

size provides for integer-2 records of maximum size

and then provides additional space for any required
control characters.

RECORD CLAUSE

Since the size of each data record is defined fully
by the set of data description entries constituting
the record (level @1} declaration, this clause is
always optional and documentary. The format of this
clause is:

RECORD CONTAINS [integer-l TO] integer-2 CHARACTERS

Integer—-2 should be the size of the biggest record
in the file declaration. If the records are
variable in size, Integer-1 must be specified and
equal the size of the smallest record. The sizes
are given as character positions required to store
the logical records.

CODE-SET CLAUSE

The format of this clause is:
CODE-SET IS ASCIT

The CODE=-SET clause, which should be gpecified only
for non-mass-storage files, serves only the purposes
of documentation in this compiler, reflecting the
fact that both internal and external data are
represented in ASCII code,. However, any signed
numeric data description entries in the file's
record should include the SIGN IS SEPARATE clause
and all data in the file should have DISPLAY USAGE.

48

CROMEMC(Q COBOL REFERENCE MANUAL
Data Division

3.14

3.15

3.16

WORKING-STORAGE SECTION

The second section of the DATA DIVISION beginsg with
the header WORKING-STORAGE SECTION. This section
describes records and other data which are not part
of external data files but which are developed and
processed internally.

Data description entries in this section may employ
level numbers 01-49, as in the File section, as well
as 77. Value clausesg, prohibited in the File
section (except for 1level 88), are permitted
throughout the Working-storage section.

LINKAGE SECTION

The third section of the Data Division is defined by
the header LINKAGE SECTION. In this section, the
user describes data by name and attribute, but
storage space is not allocated. Instead, these
"dummy" descriptions are applied (through the
mechanism of the USING 1list on the Procedure
Division header) to data whose addresses are passed
into a subprogram by a call upon it from a
separately compiled program, Consequently, VALUE
clauses are prohibited in the Linkage Section,
except in level 88 condition-name entries, Refer to
Chapter 5, Inter-Program Communication, for further
information.

LEVEL_§§ CONDITION-NAMES

The level 88 condition—-name entry specifies a value,
list of values, or a range of values that an
elementary item may assume, in which case the named
condition is true, otherwise false. The format of a
level 88 item's value clause is

[VALUE is }{literal—l [11teral—2...]1

VALUES ARE)|literal-1l THRU literal-2

A level 88 entry must be preceded either by another
level 88 entry {(in the case of several consecutive
condition—-names pertaining to an elementary item) or
by an elementary item (which may be FILLER). INDEX
data items should not be followed by level 88 items.

49

CROMEMCC COBOL REFERENCE MANUAL
Data Division

Every condition-name pertains to an elementary item
in such a way that the condition-name may be
qualified by the name of the elementary item and the
elementary item's qualifiers. A condition-name is
used in the Procedure Division in place of a simple
relational condition. A condition-name may pertain
to an elementary item (a conditional wvariable)
requiring subscripts. In this case, the condition-
name, when written in the Procedure Division, must
be subscripted according to the same requirements as
the associated elementary item. The type of literal
in a condition~-name entry must be consistent with
the data type o¢f the conditional wvariable. In the
following example, PAYROLL-PERIQD is the conditional
variable. The picture associated with it limits the
value of the 88 condition-name to one digit.

g2 PAYROLL-PERIOD PICTURE IS 9.
88 WEEKLY VALUE IS 1.
88 SEMI-MONTHLY VALUE IS 2.
88 MONTHLY VALUE IS 3.

Using the above description, the following
procedural condition-name test may be written:

IF MONTHLY GO TO DO-MONTHLY
An equivalent statement is:

IF PAYROLL-PERIOD = 3 GO TO DO-MONTHLY.
For an edited elementary item, values in a
condition-name entry must be expressed in the form

of non-numeric literals.

A VALUE clause may not contain both a series of
literals and a range of literals.

50

CROMEMCO COBQL REFERENCE MANUAL
Procedure Division

CHAPTER 4

Procedure Division

In this chapter, the basic concepts of the Procedure
Division are explained. Advanced topics (such as Indexing
of tables, Indexed file accessing, interprogram
communication and Declaratives) are discussed in subsequent
chapters.

4.1 STATEMENTS, SENTENCES, PROCEDURE-NAMES

The Procedure portion of a source program specifies
those procedures needed to solve a given EDP
problem. These steps ({(computations, logical
decisions, etc.) are expressed in statements
similar to English, which employ the concept of
verbs to denote actions, and statements and
sentences to describe procedures. The Procedure
portion must begin with the words PROCEDURE
DIVISION,

A statement consists of a verb followed by
appropriate operands ({(data-names or literals) and
other words that are necessary for the completion of
the statement. The two types of statements are
imperative and conditional.

Imperative Statements

An imperative statement specifies an unconditional
action to be taken by the object program. An
imperative statement consists of a verb and its
operands, excluding the IF and SEARCH conditional
statements and any statement which contains an
INVALID KEY, AT END, SIZE ERROR, or OVERFLOW clause.

Conditional Statements

A c¢onditional statement stipulates a condition that
is tested to determine whether an alternate path of
pregram flow is to be taken. The IF and SEARCH
statements provide this capability. Any I/0
statement having an INVALID KEY or AT END clause is
alsoc considered to be conditional. When an
arithmetic statement possesses a SIZE ERROR suffix,
the statement is considered to be conditional rather

51

CROMEMCO COBQOL REFERENCE MANUAL
Procedure Division

than imperative. STRING or UNSTRING statements
having an OVERFLOW clause are also conditional.

Sentences

A sentence 1is a single statement or a series of
statements terminated by a period and followed by a
space. If desired, a semi-colon or comma may be
used between statements in a sentence.

Paragraphs

A paragraph is a logical entity consisting of =zero,.
one or more sentences. Each paragraph must begin
with a paragraph-name.

Paragraph~names and section-names are procedure-
names. Procedure=names follow the rules for name-
formation. In addition, a procedure—-name may
consist only of digits. An all-digit procedure=-name
may not consist of more than 18 digits; if it has
leading zeros, they are all significant.

Sections

A section 1is composed of ohe or more successive
paragraphs, and must begin with a section-header. A
section header consists of a section-name conforming
to the rules for procedure=-name formation, followed
by the word SECTION and a period. A section header
must appear on a line by itself. Each section-name
must be unique.

4,2 ORGANIZATION OF THE PROCEDURE DIVISION

The PROCEDURE part of a'program may be subdivided in
three possible ways:

1. The Procedure'Division consists only of
paragraphs,.

2. The Procedure Division consists of a number of
paragraphs followed by a number of sections
(each section subdivided 1inte one or more
paragraphs).

3. The Procedure Divisioen consists of a
DECLARATIVES portion and a series of sections
{each section subdivided into one or more

52

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

paragraphs).

The DECLARATIVES portion of the Procedure Division
is optional; it provides a means of designating a
procedure to be invoked in the event of an I/0
error., If Declaratives are utilized, only
possibility 3 may be used. Refer to Chapter 9 for a
complete discussion.

4.3 MOVE STATEMENT

The MOVE statement is used to¢ move data from one
area of main storage to another and to perform
conversions and/or editing on the data that is
moved. The MOVE statement has the following format:

MOVE ‘data—name-l} TO data-name-2 [data-name-3...)
literal

The data represented by data-name-1 or the specified
literal is moved to the area designated by data-
name-=2. Additional receiving fields may be
specified (data—-name-3 etc.). When a group item is
a receiving field, characters are moved without
regard to the level structure of the group involved
and without editing.

Subscripting or indexing associated with data-name=-2
is evaluated immediately before data is moved to the
receiving field. The same is true for other
receiving fields (data-name-3, etc., if any). But
for the source field, subscripting or indexing
(associated with data~name-1) is evaluated only
once, before any data is moved.

To illustrate, consider the statement
MOVE A (B) TC B, C (B},

which is equivalent to

MOVE A (B) TO temp

MOVE temp TO B

MOVE temp TO C (B)

where temp is an intermediate result field assigned
automatically by the compiler,

The following considerations pertain to moving

53

P

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

items:

1.

Numeric (external or internal decimal, binary,
numeric literal, or ZERO) or alphanumeric to
numeric or report:

a. The items are aligned by decimal points,
with generation of =2zeros or truncation on
either end, as required. If source is
alphanumeric, it is treated as an unsigned
integer and should net be 1longer than 31
characters.

b, When the types of the source field and
receiving field differ, conversion to the
type of the receiving field takes place.
Alphanumeric source items are treated as
unsigned integers with Usage Display.

¢. The items may have special editing per-
formed on them with suppression of zeros,
insertion of a dollar sign, etc., and
decimal point alignment, as specified by the
receiving area.

d. One should not move an item whose PICTURE
declares it to be alphabetic or alpha-
numetic edited to a numeric or report item,
nor is it possikle to move a numeric item of
any sort to an alphabetic item though
numeric integers and numeric report items
can be moved to alphanumeric items with or
without editing, but operational signs are
not moved in this case even if "SIGN IS
SEPARATE"™ has been specified.

Non~numeric source and destinations:

a. The characters are placed in the receiving
area from 1left to right, unless JUSTIFIED
RIGHT applies.

b. If the receiving field is not completely
filled by the data being moved, the re-
maining positions are filled with spaces.

¢c. If the source field is longer than the

receiving field, the move is terminated as
soon as the receiving field is filled.

54

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

When overlapping fields are involved, results
are not predictable,

Appendix II shows, in tabular form, all
permissible combinations of source and receiving
field types.

An item having USAGE IS INDEX cannct appear as
an operand of a MOVE ~statement. See SET in
Chapter 6, Table Handling.

Examples of Data Movement (b represents blank):

Source Field Receiving Field
PICTURE Value PICTURE Value before MOVE Value after MOVE
99V 99 1234 S599va9 9876- 1234+
99v99 1234 govy 287 123
SeV9 12- 99v999 98765 gl2op+
XXX AZB XXXXX YOX 8W A2Bbb
9v99 123 99,99 87.65 #1.23

4,4 INSPECT STATEMENT

The INSPECT statement enables the

programmer to

examine a character-string 1item. Options permit
various combinations of the following actions:

1.
2.

3.

counting appearances of a specified character
replacing a specified character with another

limiting the above actions by requiring the
appearance of other specific characters

55

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

The format of the INSPECT statement is:
INPECT data-name=1 [TALLYING-clause] [REPLACING=~clause]
where TALLYING-clause has the format

CHARACTERS
TALLYING data-~name-2 FOR|ALL | LEADING operand-3

[BEFORE | AFTER INITIAL operand-4]

and REPLACING-clause has the format

CHARACTERS
REPLACING { ALL | LEADING | FIRST operand-5|BY operand-6

[BEFORE | AFTER INITIAL operand-7]}

Because data=name=1 is to be treated as a string of
characters by INSPECT, it must not be described by
USAGE IS8 INDEX, COMP, or COMP=-3. Data-name=2 must
be a numeric data item.

In the above formats, operand~-n may be a quoted
literal of 1length one, a figurative constant
signifying a single character, cr a data-name of an
item whose length is one.

TALLYING=-clause and REPLACING-clause may not both be
omitted; if both are present, TALLYING-clause must
be first.

TALLYING-clause causes character-by-character
comparison, from left to right, of data-name-1,
incrementing data—~name=-2 by one each time a match is
found., When an AFTER INITIAL operand-4 subclause is
present, the counting process begins only after
detection of a character in data=-name-=1 matching
operand-4. If BEFORE INITIAL operand-4 1is
specified, the counting process terminates upon
encountering a character 1in data-name-1 which
matches -operand—-4. Alsc going from left to right,
REPLACING-clause causes replacement of characters
under conditions specified by the REPLACING=-clause.
If BEFORE INITIAL operand-7 is present, replacement
does not continue after detection of a character in
data-name-1 matching operand-7. If AFTER INITIAL
operand-=7 is present, replacement does not commence
until detection of a character in data-name=l
matching operand-7.

56

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

With bounds on data-name-l thus determined, TALLYING
and REPLACING is done on characters as specified by
the following:

1. "“GHARACTERS" implies that every character in the
bounded data~-name=-l1 is to be TALLYed or
REPLACEd.

2, "All operand®" means that all characters in the
bounded data=-name-1 which match the "operand"
character are to participate in
TALLYING/REPLACING.

3. "LEADING operand" specifies that only characters
matching "operand” from the leftmost portion of
the bounded data-name-1 which are contiguous
{such as leading 2zeros) are to participate in
TALLYING or REPLACING.

4. "“FIRST operand" specifies that only the first-
encountered character matching "operand" is to
participate in REPLACING. (This option 1is
unavailable in TALLYING.)

When both TALLYING and REPLACING c¢lauses are
present, the two c¢lauses behave as if two INSPECT
statements were written, the first containing only a
TALLYING~clause and the second containing only a
REPLACING=clause,

In developing a TALLYING value, the final result in
data-name-2 is equal to the tallied count plus the
initial value of data-name-2. 1In the first example
below, the item COUNTX is assumed to have been set
to zero initially elsewhere in the program.

INSPECT ITEM TALLYING COUNTX FOR ALL "L" REPLACING
LEADING "A"™ BY "E" AFTER INITIAL “"L"

Original (ITEM): SALAMI ALABAMA
Result (ITEM): SALEMI ALEBAMA
Final (COUNTX): 1 1

INSPECT WORK~AREA REPLACING ALL BELIMITER BY TRANSFORMATION

Original (WORK-AREA): NEW YORK N Y (length 16)
Original (DELIMITER}): {space)

Original (TRANSFORMATION): . (period) '
Result (WORK=-AREA): NEW.YORK..N.Y... k

57

CROMEMCO COBOL'REFERENCE MANUAL
Procedure Division

NOTE

If any data-name-1 or operand=n
is described as signed numeric,
it is treated as 1f it were
unsigned.

4.5 ARITHMETIC STATEMENTS

There are five arithmetic statements: ADD,
SUBTRACT, MULTIPLY, DIVIDE and COMPUTE. Any
arithmetic statement may be either impérative or
conditional. When an arithmetic statement includes
an ON SIZE ERROR specification, the entire statement
is termed conditional, because the size-error
condition is data-dependent.

An example of a conditional arithmetic statement is:

ADD 1 TO RECORD=-COUNT, ON SIZE ERROR MOVE ZERO TO
RECORD-COUNT, DISPLAY "LIMIT 99 EXCEEDED".

Note that if a size error occurs (in this case, it
is apparent that RECORD=-COUNT has Picture 99, and
cannot hold: a wvalue of 16#), both the MOVE and
DISPLAY statements are executed.

The three statement components that may appear in
arithmetic statements (GIVING option, ROUNDED
option, and SIZE ERROR option) are discussed in
detail later in this section.

Basic Rules for Arithmetic Statements

1, All data-names used in arithmetic statements
must be elementary numeric data items that are
defined in the Data Division of the program,
except that operands of the GIVING option may be
report (numeric edited) items. Index-names and
index-items are not permissible in these
arithmetic statements (see Chapter 6).

2. Decimal point alignment is supplied
automatically throughout the computations.

3. Intermediate result fields generated for the
evaluation of arithmetic expressions assure the
accuracy of the result field, except where high-

58

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

order truncation is necessary.

4,5,1 SIZE ERRCR OPTION

If, after decimal=-point alignment and any low-order
rounding, the value of a calculated result exceeds.
the largest value which the receiving field is
capable of holding, a size error condition exists.

The optional SIZE ERROR clause 1is written
immediately after any arithmetic statement, as an
extension of the statement, The format of the SIZE
ERROR option is:

ON SIZE ERROR imperative statement ...

If the SIZE ERRQR option is present, and a size
error condition arises, the wvalue of the resultant
data-name is unaltered and the series of imperative
statements specified for the condition is executed.

If the SIZE ERROR option has not been specified and
a size error condition arises, no assumption should
be made about the final result.

An arithmetic statement, if written with SIZE ERROR
option, is not an imperative statement. Rather, it
is a conditional statement and is prohibited in
contexts where only imperative statements are
allowed.

4.5.2 ROUNDED OPTION

If, after decimal=-point alignment, the number of
places in the fraction of the result is greater than
the number of places in the fractional part of the
data item that is to be set equal to the calculated
result, truncation occurs unless the ROUNDED option
has been specified.

When the ROUNDED option is specified, the least
significant digit of the resultant data-name has its
value increased by 1 whenever the most significant
digit of the excess is greater than or equal to 5.

Rounding of a computed negative result is performed
by rounding the absolute value of the computed
result and then making the final result negative.

59

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

The following chart illustrates the relationship
between a calculated result and the value stored in
an item that is to receive the calculated result,
with and without rounding.

Item to Recelive Calculated Result
Calculated PICTURE Value After Value After
Result Rounding Truncating
-12.36 S99vV9 =-12.4 =12,3
8.432 9vV9 8.4 8.4
35.6 99vV9 35.6 35.6
65.6 S99V 66 65
.A855 5V209 .06 .A@5

Iliustration of Rounding

When the low order integer pesitions in a resultant-
identifier are represented by the character 'p' in
its picture, rounding or truncation occurs relative
to the rightmost integer position for which storage
is allowed. '

4,5.3 GIVING OPTION

If the GIVING option is written, the wvalue of the
data-name that follows the word GIVING is made equal
to the calculated result of the arithmetic
operation. The data-name that follows GIVING is not
used in the computation and may be a report (numeric
edited) item.

4.5.,4 ADD STATEMENT

The ADD statement adds two o©or more numeric values
and stores the resulting sum.

The ADD statement general format is:

‘numeric-literal}

ADD data—-name-1

0
lﬁvms] data=-name=n [ROUNDED]

60

[SIZE-ERROR~clause]

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

When the TO option is used, the wvalues of all the
data-names {(including dJdata-name-=n) and literals in
the statements are added, and the resulting sum
replaces the value of data-name=n, At least two
data~names and/or numeric literals must follow the
word ADD when the GIVING option is written.

The following are examples of proper ADD statements:

ADD INTEREST, DEPOSIT TO BALANCE ROUNDED
ADD REGULAR-TIME OVERTIME GIVING GROSS-FAY,

The £first statement would result in the sum of
INTEREST, DEPOSIT, and BALANCE being placed at
BALANCE, while the second would result in the sum of

. REGULAR-TIME and OVERTIME earnings being placed in
item GROSS=-PAY. '

4.5.5 SUBTRACT STATEMENT

The SUBTRACT statement subtracts one or more numeric
data ittems from a specified item and stores the
difference.

The SUBTRACT statement general format is:

data-name-l
SUBTRACT numeric-literal-l)... FROM

|data-name-m [GIVING data-name-n] l
numeric literal-m GIVING data—-name-n

fROUNDED] [SIZE-ERROR=-clause]

The effect of the SUBTRACT statement is to sum the
values of all the operands that precede FROM and
subtract that sum from the wvalue of the item
following FROM.

The result {(difference) is stored in data-name-n, if

there is a GIVING option. Otherwise, the result is
stored in data-name-m.

61

CROMEMCO COBQL REFERENCE MANUAL
Procedure Division

4.5.6 MULTIPLY STATEMENT

The MULTIPLY statement multiplies two numeric data
items and stores the product.

. The general format of the MULTIPLY statement is:

MULTIPLY data-name-1
numeric-literal-1l

BY ‘data-name—2 [GIVING data-name=3]
numeric=1iteral=2 GIVING data-name=3

[ROUNDED] {SIZE-ERROR-clause]

When the GIVING option is omitted, the second
operand must be a data-name; the product replaces
the wvalue of data=name-2, For example, a new
BALANCE wvalue is computed by the statement MULTIPLY
1.3 BY BALANCE. {Since this order might seem
somewhat unnatural, it is recommended that GIVING
always be written.)

4,5,7 DIVIDE STATEMENT

The DIVIDE statement divides two numeric wvalues and
stores the guotient. The general format of the
DIVIDE statement is:

DIVIDE data-name-1] { BY } l data-name-2
numeric-literal-l INTO numeric=literal=2

[GIVING data=name=3] [ROUNDED] [SIZE-ERROR-clause]

The BY=-form signifies that the first operand (data-
name=1 or numeric-literal-l) is the dividend
{numerator), and the second operand (data=-name=2 or
numeric=literal=2) is the divisor (denominateor). 1If
GIVING is not written in this case, then the first
operand must be a data-name, in which the quotient
is stored.

The INTO-form signifies that the first operand is
the divisor and the second operand is the dividend.
If GIVING is not written in this case, then the
second operand must be a data-name, in which the
guotient is stored.

Division by 2zero always causes a size-error

62

CROMEMCC COBOQL REFERENCE MANUAL
Procedure Division

condition.

4,5.8 COMPUTE STATEMENT

The COMPUTE statement evaluates an arithmetic
~eXxpression and then stores the result in a
designated numeric or report (numeric edited) item.

The general format of the COMPUTE statement is:
COMPUTE data-name-1 [ROUNDED]...=

data-name=-2
numeric-literal {SIZE=-ERROR=clause]
arithmetic—expression

An example of such a statement is:
COMPUTE GROSS—-PAY ROUNDED = BASE-SALARY *
(1 + 1.5% (HOURS =4@) / 49).

An arithmetic expression is a proper combination of
numeric literals, data-names, arithmetic operators
and parentheses. In general, the data-names in an
arithmetic expression must designate numeric data.
Consecutive data-names (or literals) must be
separated by an arithmetic operator, and there must
be one or more blanks on either side of the

operator. The operators are: '

+ for addition

~for subtraction

* for multiplication

/ for division

*% for exponentiation to an integral power.
When more than one operation is to be executed using
a given variable or term, the order of precedence
is:

1. Unary {(involving one variable) plus and minus

2., Exponentiation
3. Multiplication and Division

4, Addition and Subtraction

63

:.)/".""\. .

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

Parentheses may be used when the normal order o.
operations is not desired. Expressions within
parentheses are evaluated first; parentheses may be
nested to any level. Consider the following
expression.

A+B/ (C-D *E)

Evaluation of the above expression is performed in
the following ordered sequence:

1., Compute the product D times E, considered as
intermediate result Rl.

2. Compute intermediate result R2 as the difference
C-Rlo

3. Divide B by R2, providing intermediate result
R3.

4, The final result is computed by addition of A to
R3.

Without parentheses, the expression
A+B/C=-D%*E

is evaluated as:

R1 =B / C
R2 = A + Rl
R3 =D * E

final result = R2 - R3

When parentheses are employed, the following
punctuation rules should be used:

1. A left parenthesis is preceded by one or more
spaces.

2. A right parenthesis is followed by one or more
spaces.

The expression A2 = B = C is evaluated as (A =~ B) -
C. Unary operators are permitted, e.g.:

COMPUTE A = 4C + —-4.6
COMPUTE X = -Y -
COMPUTE A, B(I) = =C - D(3)

64

CROMEMC(Q COBOL REFERENCE MANUAL
Procedure Division

4.6

4.7

GO TO STATEMENT

The GO TO statement transfers control from ohe
portion of a program to another. It has the
following general format:

GO TO procedure-name [...DEPENDING ON data-name]

The simple form GO TO procedure-name changes the
path of flow to a desighated paragraph or section.
If the GO statement 1is without a procedure-~name,
then that GO statement must be the only one in a
paragraph, and must be altered (see 4.12) prior to
its execution.

The more general form designates N procedure-names
as a choice of N paths to transfer to, if the value
of data—-name is 1 to N, respectively. Otherwise,
there is no transfer of control and execution
proceeds in the normal sequence. Data-name must be
a numeric elementary item and have no positions to
the right of the decimal point.

If a GO (non-DEPENDING) statement appears 1in a
sequence of imperative statements, it must be the
last statement in that sequence.

STOP STATEMENT

The STOP statement 1is used to terminate or delay
execution of the object program.

The format of this statement is:

RUN]
STOP literal

STOP RUN terminates execution of a program,
returning control to the operating system. If used
in a sequence of imperative statements, it must be
the last statement in that sequence.

The form STOP literal displays the specified literal
on the console and suspends execution.

Execution of the program is resumed only after
operator intervention. Presumably, the operator
performs a function suggested by the content of the
literal, prior to resuming program execution. For

65

CROMEMCQ COBOL REFERENCE MANUAL
Procedure Division

more information, see the COBOL User's Guide.

4.8 ACCEPT STATEMENT

The ACCEPT statement is used to enter data into the
computer on a low volume basis, from operator key=-in
at the computer console, The format of the ACCEPT
statement is:

ACCEPT data-name

One line 1is read, and as many characters as
necessary (depending on the size of the named data
field) are moved, without change, to the indicated
field. If the input is shorter than the receiving
field, the extra positions are filled with spaces.
{blanks}).

When input is to be accepted from the console,
execution is suspended. After the operator enters a
response, the program stores the acquired data in
the field designed by data-name, and normal
execution proceeds., A form of the ACCEPT statement
used to acquire the current date, day or time is
explained in Section 4.28.

4.9 DISPLAY STATEMENT

The DISPLAY statement provides a simple means of
outputting low-volume data without the complexities
of File Definition; the maximum number of characters
to be output per 1line is 132, The format of the
DISPLAY statement is:

DISPLAY Idata—namel [UPON mnemonic-name]
’ literal e :

When the UPON suffix is omitted, it is understood
that output is destined to be printed on the
console. Use of the suffix UPON mnemonic=name
directs that output to the printer. Mnemonic-name
must be assigned to PRINTER in the SPECIAL-NAMES
paragraph.

Values outpbot are either 1literals, figurative
constants {one character), or data fields. If a
data item operand is packed, it is displayed as a
series of digits followed by a separate trailing

66

CROMEMC(Q COBOL REFERENCE MANUAL
Procedure Division

4,18

sign.

PERFORM STATEMENT

The PERFORM statement permits the execution of a
separate body of program steps. Two formats of the
PERFORM statement are available:

Option 1

integer

PERFORM range [data-name} TIMES]

Option 2

index=~name

PERFORM range VARYING ‘data-name] EFROM

amount-1 BY amount-2 UNTIL condition.

(& more extensive version of option 2 is available
for varying 2 or 3 items concurrently, as explained
in Appendix VI.)

In the above syntactical presentation, the following
definitions are assumed:

l.

Range is a paragraph-name, a section-name, or
the construct procedure=-name-1 THRU procedure-
name-2. (THROUGH is synonymous with THRU.) If
only a paragraph-name is specified, the return
is after the paragraph's Jlast statement. If
only a section=-name is specified, the return is
after the 1last statement of the last paragraph
of the section. If a range 1is specified,
control is returned after the apprepriate last
sentence of a paragraph or section, These
return points are valid only when a PERFORM has
been executed to set them up; in other cases,
control will pass right through.

The generic operands amount-1 and amount-2 may
be a numeric literal, index-name, or data-—name.
In practice, these amount specifications are
frequently integers, or data—-names that contain
integers, and the specified data-name is used as
a subscript within the range.

67

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

In Option 1, the designated range is performed a
fixed number of times, as determined by an integer
or by the value of an integer data-item. If no
"TIMES" phrase is given, the range is performed
once. When any PERFORM has finished, execution
proceeds to the next statement following the
PERFORM.

In Option 2, the range 1is performed a wvariable
number of times, in a step-wise progression, varying
from an initial value of data-name = amount-1, with
increments of amount-2, until a specified condition
is met, at which time execution proceeds to the next
statement after the PERFORM.

The condition in an Option 2 PERFORM is evaluated
prior to each attempted execution of the range.
Consequently, it 1is possible to not PERFORM the
range, if the condition is met at the outset.
Similarly, in Option 1, if data-name <@, the range
is not performed at all. -

At run-time, it is 1illegal to have concurrently

active PERFORM ranges whose terminus points are the
same,

4.11 EXIT STATEMENT

The EXIT statement is used where it is necessary to
provide an endpoint for a procedure.

The format for the EXIT statement is:
paragraph=-name, EXIT.

EXIT must appear in the source program as a one-word
paragraph preceded by a paragraph-name. An exit
paragraph provides an end=-point to which preceding

statements may transfer control if it is decided to
bypass some part of a section.

68

CROMEMCO COBQIL REFERENCE MANUAL
Procedure Division

4.12

4.13

ALTER STATEMENT

The ALTER statement is used to modify a simple GO TO
statement elsewhere in the Procedure Division, thus
changing the sequence of execution of program
statements.

The ALTER statement general format is:
ALTER paragraph TO [PROCEED TO] procedure-name

Paragraph (the first operand) must be a COBOL
paragraph that consists of only a simple GO TO
statement; the ALTER statement in effect replaces
the former operand of that GO TO by procedure-name,.
Consider the ALTER statement in the context of the
following program segment.

GATE. GO TO MF-OPEN.
MF-~OPEN. OPEN INPUT MASTER-FILE.
ALTER GATE TO PROCEED TO NORMAL.
NORMAL. READ MASTER-FILE, AT END GO TO
EQF~-MASTER.

Examination of the above code reveals the technique
of "shutting a gate", providing a one-time
initializing program step.

IF STATEMENT

The IF statement permits the programmer to specify a
series of procedural statements to be executed in
the event a stated condition is true. Optionally,
an alternative series of statements may be specified
for execution 1f the condition is false. The
general format of the IF statement is:

IF condition [NEXT SENTENCE][ELSE statement{s)-Z]
statement (s)-1) | ELSE NEXT SENTENCE

The "ELSE NEXT SENTENCE" phrase may be omitted if it
immediately precedes the terminal periocd of the
sentence,

Examples of IF statements:

1. IF BALANCE = 0 GO TO NOT-FOUND,

2, IF T LESS THAN 5 NEXT SENTENCE ELSE GO TO T-1-4,

69

CROMEMC(O COBOL REFERENCE MANUAL
Procedure Division

4.,13.1

3. IF ACCOUNT=-FIELD = SPACES OR NAME = SPACES ADD 1
TO SKIP-COUNT ELSE GO TO BYPASS.

The first series of statements is executed only if
the designated condition is true. The second series
of statements (ELSE part) is executed only if the
designated condition is false. The second series
(ELSE part) 1is terminated by a sentence-ending
period unless it is "ELSE NEXT SENTENCE", in which
case more statements may be written before the
period. If there 1s no ELSE part to an IF
statement, then the first seriegs of statements must
be terminated by a sentence-ending period. Refer to
Appendix III for discussion of nested IF statements,

Regardless of whether the condition is true orv
false, the next sentence is executed after execution
of the appropriate series of statements, unless a GO
TO is contained 1in the Iimperatives that are
executed, or unless the nominal flow of program
steps is superseded because of an active PERFORM
statement. -

Conditions

A condition is either a simple condition or a
compound condition. The four simple conditions are
the relational, class, condition-name, and sign
condition tests. A simple relational condition has
the following structure:

operand-1 relation operand-=2

where "operand" 1is a data-name, literal, or
figurative-constant.

A compound condition may be formed by connecting two
conditions, of any sort, by the logical operator AND
or OR, €.9., A < B OR C = D, Refer to Appendix I
for further permissible forms inveolving
parenthesization, NOT, or "abbreviation".

The simplest "simple relations"™ have three basic
forms, expressed by the relational symbols equal to,
less than, or greater than (i.e., = or < or >).

Another form of simple relation that may be used
invelves the reserved word NOT, preceding any of the
three relational symbols. In summary, the six

79

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

simple relations in conditions are:

Relation Meaning
= equal to
< less than
> greater than
NOT = not equal teo
NOT < greater than or equal to
NOT > less than or egqual to

It is worthwhile to briefly discuss how relation
conditions can be compounded. The reserved words
AND or OR permit the specification of a series of
relational tests, as follows:

1. Individual relations connected-by AND specify a
compound condition that 1is met (true) only if
all the individual relationships are met.

2. Individual relations connected by OR specify a
compound condition that is met (true) if any
one of the individual relationships is met.

The following is an example of a compound relation

condition containing both AND and OR connectors.

Refer to Appendix I for formal specification of

evaluation rules.

IF X = Y AND FLAG = 'Z' OR SWITCH = @ GOTO PROCESSING.

In the above example, execution will be as follows,
depending on various data values.

Data Value Does Execution Go

X Y FLAG SWITCH to PROCESSING?
g | 18 'z 1 Yes
10 11 1z 1 No
18 11 'z @ Yes

19 19 'p! 1 No

6 3 'tpt @ Yes

6 6 'p! 1 No

71

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

Usages of reserved word phrasings EQUAL TO, LESS
THAN, and GREATER THAN are accepted equivalents of =
< > respectively. Any form of the relation may be

preceded by the word IS, optionally.

Before discussing class-test, sign-test, and
condition-name-test conditions, methods of
performing comparisons will be discussed.

Numeric Compariscons: The data operands are compared
after alignment of their decimal positions. The
results are as defined mathematically, with any
negative values being less than zero, which iIn turn
is less than any positive value. An index-name or
index item (see Chapter 6) may appear in a
comparison. Comparison of any two numeric operands
is permitted regardless of the. formats specified in
their respective USAGE clauses, and regardless of
length.

Character Comparisons: Non-equal-length comparisons
are permitted, with spaces being assumed to extend
the length of the shorter 1item, 1if necessary.
Relationships are defined in the ASCII code; in
particular, the letters A-Z are in an ascending
sequence, and digits are less than letters. Group
items are treated simply as characters when
compared. Refer to Appendix IV for all ASCII
character representations. If one operand is
numeric and the other is not, it must be an integer
and have an implicit or explicit USAGE IS DISPLAY.

Returning to our discussion of simple conditions,
there are three additieonal forms of a simple
condition, in addition to the relational form,
namely: class test, condition-name test (88), and
sign test.

A class test condition has the following syntactical
format:

[NUMERIC
data~name IS [NOT] ALPHABETIC

This condition specifies an examination of the data
item content to determine whether all characters are
proper digit representations regardless of any
operational sign (when the test is for NUMERIC})}, or
only alphabetic or blank space characters (when the
test is for ALPHABETIC). The NUMERIC test is wvalid

72

CROMEMCO COB(OL REFERENCE MANUAL
Procedure Division

only for a group, decimal, or character item (not
having an alphabetic PICTURE). The ALPHABETIC test
is valid only for a group or character item (Picture
an=-form) .

A sign test has the following syntactical format:

data-name IS [NQT] NEGATIVE | ZERQ | PQSITIVE

This test is equivalent to comparing data=-name to
zero in order to determine the truth of the stated
condition.

In a condition-name test, a conditional variable is
tested to determine whether its value is equal to
one of the values associated with the condition-
name. A condition-name test 1is expressed by the
following syntactical format:

condition-name
where condition-name is defined by a level 88 data

division entry.

4.14 OPEN STATEMENT (Sequential I-=0)

The OPEN statement must be executed prior to
commencing file processing. The general format of
an OPEN statement is:

INPUT
OPEN I-0 file-name... [...
' OUTPUT
EXTEND

For a sequential INPUT file, opening initiates
reading the f£file's first records into memory, so

~ that subsequent READ statements may be executed
without waiting.

For an OUTPUT file, opening makes available a record
area for development of one record, which will be
transmitted to the assigned output device upon the
execution of a WRITE statement. An existent file
which has the same name will be superceded by the
file created with OPEN OQUTPUT.

An I-0 opening 1is wvalid only for a DISK file; it
permits use of the REWRITE statement to modify

73

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

records which have been accessed by a READ
statement. The WRITE statement may not be used in
I-0 mode for files with sequential organization.
The file must exist on disk at OPEN time; it cannot
be created by OPEN I-0O.

When the EXTEND phrase is specified, the OPEN
statement positions the file, immediately following
the last 1logical record of that file. Subsequent
WRITE statements referencing the file will add
records to the end of the file. Thus, processing
proceeds as though the file had been opened with the
OUTPUT phrase and positioned at its end. EXTEND can
be used only for seguential files.

Failure to precede (in terms of time sequence) file
reading or writing by the execution of an OPEN
statement 1is an execution—-time error which will
cause abnormal termination of a program run. See
User's Guide. Furthermore, a file cannot be opened
if it has been CLOSEd "WITH LOCK."

Sequential files opened for INPUT or I~0 access must

have been written 1in the appropriate format
described in the User's Guide for such files,

4.15 READ STATEMENT (Sequential I-0)

The READ statement makes available the next logical
data record of the designated file from the assigned
device, and updates the wvalue of the FILE STATUS
data item, i1f one was specified. The general format
of a READ statement is:

READ file-name RECORD [INTC data-name] [AT END
imperative statement...]

Since at some time the end-of-file will be
encountered, the user should include the AT END
clause. The reserved word END is followed by any
number of imperative statements, all of which are
executed only if the end-of-file situation arises.
The last statement in the AT END series must be
followed by a period to indicate the end of the
sentence. If end~of-file occurs but there is no AT
END clause on the READ statement, an applicable
Declarative procedure is performed. If neither AT
END nor Declarative exists and no FILE STATUS item

74

CROMEMCQO COBOL REFERENCE MANUAL
Procedure Division

is specified for the file, a run-time I/0 error is
processed.

When a data record to be read exists, successful
execution of the READ statement is immediately
followed by execution of the next sentence.

When more than one fl=level item is subordinate to a
file definition, these records share the same
storage area. Therefore, the user must be able to
distinguish between the types of records that are
possible, in order to determine exactly which type
is currently available, This is accomplished with a
data c¢omparison, using an IF statement to test a
field which has a unigue value for each type of
record.

The INTO option permits the user to specify that a
copy ¢f the data record is to be placed into a
designated data field immediately after the READ
statement. The data-name must not be defined in the
file records description itself.

Also, the INTO phrase should not be used when the
file has records of various sizes as indicated by
their record descriptions. Any subscripting or
indexing of data—-name is evaluated after the data
has been read but before it is moved to data-name.
Afterward, the data is available in both the file
record and data-name.

In the case of a blocked input file (such as disk
files), not every READ statement performs a physical
transmission of data from an external storage
device; instead, READ may simply obtain the next
logical record from an input buffer.

4.16 WRITE STATEMENT (Sequential I-0)

The general format of a WRITE statement is:
WRITE record-name FROM data=-name-1

AFTER ADVANCING operand LINE (S)
BEFORE PAGE

Ignoring the ADVANCING option for the moment, we
proceed to explain the main functions of the WRITE
statement.

75

-

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

In COBOL, file output .is achieved by execution of
the WRITE statement. Depending on the device
assigned, "written" output may take the form of
printed matter or magnetic recording on a floppy
disk storage medium. The user is reminded also that
you READ file-name, but you WRITE record-name, The
associated file must be open in the OUTPUT mode at
time of execution of a WRITE statement.

Record-name must be one of the level @1 records
defined for an output file, and may be qualified by
the filename. The execution of the WRITE statement
releases the logical record to the file and updates
its FILE STATUS item, if one is specified.

If the data to be output has been developed in
Working-Storage or in another area (for example, in
an input file's record area), the FROM suffix
permits the user to stipulate that the designated
data (data-name-~l) is to be copied into the record-
name area and then output from there. Record-name
and data-name-1 must refer to separate storage
areas.

The ADVANCING option is restricted to line printer
output files, and permits the programmer to control
the line spacing on the paper in the printer,
Operand is either an unsigned integer 1literal or
data—-name; values from @ to 60 are permitted:

Integer Carriage Control Action
] No spacing
1 Normal single spacing
2 Double spacing
3 Triple spacing

Single spacing (i.e., "after advancing 1 1line") is
assumed if there is no BEFORE or APFTER option in the
WRITE statement.

Use of the key word AFTER implies that the carriage
control action precedes printing a line, whereas use
of BEFORE implies that writing precedes the carriage
control action., If PAGE is specified, the data is
printed BEFORE or APTER the device is repositioned

76

CROMEMC(O COBOL REFERENCE MANUAL
Procedure Division

to the next physical page.

When an attempt 1is made to write beyond the
externally defined boundaries of a sequential file,
a Declarative procedure will be executed (if
available) and the FILE STATUS (if available) will
indicate a boundary violation. If neither is
available, a runtime error occurs.

4,17 CLOSE STATEMENT (Sequential I-Q)

Upon completion of the processing of a file, a CLOSE
statement must be executed, causing the system to
make the proper disposition of the file. Whenever a
file is c¢losed, or has never been opened, READ,
REWRITE, or WRITE statements cannot be executed
properly; a runtime error would occur, aborting the
run.

The general format of the CLOSE statement is:

CLOSE {file=name [WITH LOCK]} ...
If the LOCK suffix is used, the file is not re-
openable during the current job, If LOCK is not
specified immediately after a file-name, then that
file may be re-—opened later in the program, if the
program logic dictates the necessity.
An attempt to execute a CLOSE statement for a file
that is not currently open is a runtime error, and
causes execution to be discentinued.
Examples of CLOSE statements:

CLOSE MASTER-FILE~IN WITH LOCK, WORK=FILE;
CLOSE PRINT~FILE, TAX=-RATE-FILE, JOB=-PARAMETERS WITH LOCK

4,18 REWRITE STATEMENT (Seguential I-0)

The REWRITE statement replaces a logical record on a
sequential DISK file. The general format is:

REWRITE record-name [FROM data=-nane]
Record-name is the name of a logical record in the
File Section of the Data Division and may be

qualified. Record=name and data-name must refer to

77

Vs

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

separate storage areas.

At the time of execution of this statement, the file
to which record-name belongs must be open in the I-0
mode (see OPEN, Section 4.14).

If a FROM part is included in this statement, the
effect is as if MOVE data-name TO record-name were
executed just prior to the REWRITE.

Execution of REWRITE replaces the record that was
accessed by the most- recent READ statement; said
prior READ must have been completed successfully,
otherwise a run-time error terminates execution.

4.19 GENERAL NOTE ON I/0 ERROR HANDLING

If an I/0 error occurs, the file's FILE STATUS item,
if one exists, is set to the appropriate two-
character code, otherwise it assumes the value "g@g".

If an I/0 error occurs and is of the type that is
pertinent to an AT END or INVALID KEY clause, then
the imperative statements in such a c¢lause, if
present on the statement that gave rise to the
error, are executed. But, if there 1is not an
appropriate clause (such clauses may not appear on
Open or Close, for example, and are optional for
other I/0 statements), then the 1logic of program
flow is as follows:

1. If there is an associated Declaratives ERROR
procedure (see Section 9), it 1is performed
automatically; user-written logic must determine
what -action is taken because of the existence of
the error. Upon return from the ERROR
procedure, normal program £flow to the next
sentence (following the I/0 statement) is
allowed. '

2., If no Declaratives ERROR procedure is applicable
but there is an associated FILE STATUS item, it
is presumed that the user may base actions upon
testing the STATUS item, so normal flow to the
next sentence is allowed.

78

CROMEMCO COBOL REFERENCE MANUAL
Procedure Pivision

Only if none of the above (INVALID KEY/AT END
clause, Declaratives ERROR procedure, or testable
FILE STATUS item) exists, then the run-time error
handler receives contrel; the location of the error
(source program line number) is noted, and the run
iz terminated “abnormally."

These remarks apply to processing of any file,
whether organization 1is Sequential, Indexed or
Relative.

4,20 ACCEPT DATE/DAY/TIME STATEMENT

The standard date, day or time value may be acqguired
at execution time by a special form of the ACCEPT
statement:

DATE
ACCEPT data-name FRCM DAY
TIME

The formats of standard values DATE, DAY and TIME
are:

DATE - a six digit value of the form YYMMDD
(year, month, day).
Example:""July 4, 1976 is 760704.

DAY - A five digit "Julian date" of the
form YYNNN where YY is the two low
order digits of year and NNN is
the day-in-year number between 1
and 366.

TIME - an eight digit value of the
form HHMMSSFF where HH is from 68
to 23, MM is from 0@ to 59, @0 is
from # to 52, and PF is from #9 to
99; HH is the hour, MM is the min-
utes, 88 is the seconds, and FF
represents hundredths of a second.

The PICTURE of data=-name should be 9(6), 9(5) or
9(8), respectively, for DATE, DAY ocr TIME
acquisition, i.e.,, all the source values are
integers. If not, the standard rules for a move
govern storage of the source value in the receiving
item (data-name).

79

VAt

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

4,21

STRING STATEMENT

The STRING statement allows concatenation of
multiple sending data item values into a single
receiving item. The general format of this
statement is:

operand-2
STRING operand-1l... DELIMITED BY
SIZE

INTO identifier-1 [WITH POINTER identifier-2]
[ON OVERFLOW imperative-statement])

In this format, the term operand means a non-numeric
literal, one-character figurative constant, or data-
name. "Tdentifier-1" is the receiving data-item
name, which must be alphanumeric without editing
symbols or the JUSTIFIED clause. "Identifier-2" is
a counter and must be an elementary numeric integer
data item of sufficient size (plus 1) to point to
positions within identifier-1.

If no POINTER phrase exists, the default value of
the logical pointer 1is one. The 1logical pointer
value designates the beginning position of the
receiving field into which data placement begins.
During movement to the receiving field, the criteria
for termination of an individual source are
controlled by the "DELIMITED BY" phrase:

DELIMITED BY SIZE: the entire source field is
moved (unless the receiving field becomes full)

DELIMITED BY operand-2: the character string
specified by operand-2 is a "Key" which, if
found to match a like-numbered succession of
sending characters, terminates the function for
the current sending operand {(and causes
automatic switching to the next sending
cperand, if any).

If at any point the logical pointer (which is
automatically incremented by one for each character
stored 1into identifier-1) is less than one or
greater than the size of identifier-~l, no further
data movement occurs, and the imperative statement
given in the OVERFLOW phrase (if any) is executed.
If there is no OVERFLOW phrase, control is

80

CROMEMCO COBQL REFERENCE MANUAL
Procedure Division

transferred to the next executable statement.

There is no automatic space fill into any position
of identifier-l. That is, unaccessed positions are
unchanged upon completion of the STRING statement.

Upon completion of the STRING statement, if there
was a POINTER phrase, the resultant value of
identifier-2 equals its original wvalue plus the
number of characters moved during execution of the
STRING statement.

4.22 UNSTRING STATEMENT

The UNSTRING statement causes data in a single
sending field to be separated into subfields that
are placed into multiple receiving fields. The
general format of the statement is:

UNSTRING identifier-1

[DELIMITED BY [ALL] operand-1 [OR [ALL] operand-2] ...]
INTO {identifier—-2 [DELIMITER IN identifier-3] l
[COUNT IN identifier-4]} ...

[WITH POINTER identifier-5]
[TALLYING IN identifier-6}
[ON OVERFLOW imperative-statement]

Criteria for separation of subfields may be given in
the "DELIMITED BY" phrase. Each time a succession
of characters matches one o©of the non-numeric
literals, one-character figurative constants, or
data-item values named by operand-i, the current
collection of sending characters is terminated and
moved to the next receiving field specified by the
INTO-clause. When the ALL phrase is specified, more
than one contiguous occurrence of operand-i in
identifier-1 is treated as one occurrence.

- When two or more delimiters exist, an 'OR' condition
exists. PBach delimiter is compared to the sending
field in the order specified in the UNSTRING
statement.

Identifier-1 must be a group or character string
(alphanumeric) item. When a data-item is emploved .
as any operand-i, that operand must alsoc be a group {

81

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

or character string item.

Receiving fields (identifier~2) may be any of the
following types of items:

1. an unedited alphabetic item
2. a character-string (alphanumeric) item
3. a group item

4, an external decimal item (numeric, usage
DISPLAY) whose PICTURE dces not contain any P
character.

When any examination encounters two contiguous
delimiters, the current receiving area is either
space or zero filled depending on its type. If
there is a "DELIMITED BY" phrase 1in the UNSTRING
statement, then there may be "DELIMITER IN" phrases
following any receiving item (identifier-2)
mentioned in the INTO clause. In this case, the
character(s) that delimit the data moved into
identifier-2 are themselves stored in identifier-3,
which should be an alphanumeric item., Furthermore,
if a "COUNT IN" phrase is present, the number of
characters that were moved into identifier-2 is
moved to identifier-4, which must be an elementary
numeric integer item.

If there 1is a "POINTER"™ phrase, then identifier-5
must be an integer numeric item, and its initial
value becomes the initial logical pointer wvalue
(otherwise, a logical pointer wvalue of one is
assumed). The examination of source characters
begins at the position in identifier-1 specified by
the logical pointer; upon completion of the UNSTRING
statement, the £final logical pointer value will be
copied back into identifier-5.

If at any time the value of the logical pointer is
less than one or exceeds the size of identifier-l,
then overflow is said to occur and control passes
over to the imperative statements given in the "ON
OVERFLOW" clause, if any.

Overflow also occurs when all receiving fields have
been filled prior to exhausting the source field.

During the course of source field scanning (looking

a2

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

for matching delimiter sequences), a variable length
character string is developed which, when completed
by recoghition of a delimiter or by acquiring as
many characters as the size of the current receiving
field can hold, is then moved to the current
receiving field in the standard MOVE fashion.

If there is a "TALLYING IN" phrase, identifier-6
must be an integer numeric item. The number of
receiving fields acted upon, plus the initial value
of identifier-6, will be produced in identifier-6
upon completion of the UNSTRING statement.

Any subscripting or indexing associated with
identifier-=1, 5, or 6 is evaluated only once at the
beginning of the UNSTRING statement. Any
subscripting associated with operands-i or
identifier-2, 3, 4 is evaluated immediately bhefore
access to the data-item.

4.23 DYNAMIC DEBUGGING STATEMENTS

The execution TRACE mode may be set or reset
dynamically. When set, procedure-names are printed
in the order in which they are executed.

Execution of the READY TRACE statements sets the
trace mode to cause printing of every section and
paragraph name each time it is entered. The RESET
TRACE statement inhibits such printing. A printed
list of procedure—-names in the order of their
execution is invaluable in detection of 2a program
malfunction; it aids in detection of the point at
which actual program flow departed from the expected
program flow.

Another debugging feature may be required in order
to reveal critical data values at specifically
designated points in the procedure. The EXHIBIT
statement provides this facility.

The statement form

‘literal }
EXHIBIT NAMED data=-namej...

produces a printout of values of the indicated
literal, or data items in the format data-name =
value.

83

CROMEMCO COBOL REFERENCE MANUAL
Procedure Division

Statements EXHIBIT, READY TRACE and RESET TRACE are
extensions to ANS=74 standard COBOL designed to
provide a convenient aid to program debugging.

Programming Note: It is often desirable to include
such statements on source lines that contain D in
column 7, so that they are ignored by the compiler
unless WITH DEBUGGING MODE is included 1in the
SOURCE=-COMPUTER paragraph.

84

CROMEMCO COBOL REFERENCE MANUAL
Inter-Program Communication

CHAPTER 5

Inter=-Program Communication

Separately compiled COBQOL program modules may be combined
into a single executable program. Inter—-program
communication is made possible through the use of the
LINKAGE Section o¢of the Data Division (which follows the
Working—-Storage Section) and by the CALL statement and the
USING list appendage to the Procedure Division header of a
subprogram module., The Linkage section describes data made
available in memory from another program module. Record
description entries in the LINKAGE section provide data-
names by which data—-areas reserved 1in memory by other
programs may be referenced. Entries in the LINKAGE section
do not reserve memory areas because the data is assumed to
be present elsewhere in memory, in a CALLing program.

Any Record Description clause may be used to describe items

in the LINKAGE Section as long as the VALUE clause is not
specified for other than level 88 items.

5.1 USING LIST APPENDAGE TO PROCEDURE HEADER

The Procedure Division header of a CALLable
subprogram is written as

PROCEDURE DIVISION [USING data=-name ...].

Each of the data-name operands is an entry in the
Linkage Secticon of the subprogram, having level 77
or Bl. Addresses are passed from an external CALL
in one-to-one correspondence to the operands in the
USING list of the Procedure header so that data in
the calling program may be manipulated in the
subprogram. MNo data-name may appear more than once
in the USING phrase.

85 .

L

CROMEMCO COBOL REFERENCE MANUAL
Inter-Program Communication

5.2

5.3

CALL STATEMENT

The CALL statement format is
CALL literal USING data=name ...

Literal is a subprogram name defined as the PROGRAM=-
ID of a separately compiled program, and is non-
numeric. Data names in the USING list are made
available to the called subprogram by passing
addresses to the subprogram; these addresses are
assigned to the Linkage Section items declared in
the USING 1list of that subprogram. Therefore the
number of data-names specified in matching CALL and
Procedure Division USING lists must be identical.

NOTE

Correspondence between caller
and callee 1lists 1s by
pesition, not by identical
spelling of names.

EXIT PROGRAM STATEMENT

The EXIT PROGRAM statement, appearing in a called
subprogram, causes control to be returned to the
next executable statement after CALL in the calling
program. This statement must be a paragraph by
itself,

86

CROMEMCO COBOL REFERENCE MANUAL
Table Handling by the Indexing Method

CHAPTER 6

Table Handling by the Indexing Method

In addition to the capabilities of subscripting described
in Chapter 3, COBOL provides the Indexing method of table
handling.

6.1 INDEX~NAMES AND INDEX ITEMS

An index-name is declared not by the usual method of
level number, name, and dJdata description clauses,
but implicitly by appearance in the "INDEXED BY
index-name” appendage to an OCCURS clause. Thus, an
index-name is equivalent to¢ an index data-item
(USAGE 1S INDEX), although defined differently. An
index—-name must be uniquely named.

An index data item may only be referred to by a SET
or SEARCH statement, a CALL statement's USING list
or a Procedure header USING 1list; or used in a
relation conditien or as the variation item in a
PERFORM VARYING statement. 1In all cases the process
is equivalent to dealing with a binary word integer
subscript. Index-name must be initialized to some
value before use via SET, SEARCH or PERFORM.

6.2 SET STATEMENT

The SET statement permits the manipulation of index-
names, index items, or binary subscripts for table-
handling purposes. There are two formats.

Format 1:
index-name-1 index~name=-2
SET index—item-1 ..o TO index—-item-2
data—-name-1 data-name=-2

integer~2
Format 2:

lUP BY } integer-4

SET index-name-3 ... DOWN BY data-name-4

87

CROMEMCO COBOL REFERENCE MANUAL
Table Handling by the Indexing Method

Format 1 is equivalent to moving the "TO" wvalue
(e.g., integer-2}) to multiple receiving fields
written immediately after the verb SET.

Format 2 is equivalent to reduction (DOWN) or
increase (UP) applied to each of the quantities
written immediately after the verb SET: the amount
of the reduction or increase is specified by a name
or value immediately following the word BY.

In any SET statement, data-names are restricted to
integer items.

6.3 RELATIVE INDEXING

A user reference to an item in a table controlled by
an OCCURS clause is expressed with a proper number
of subscripts (or indexes), sepatrated by commas,
The whole is enclosed in matching parentheses, for
example:

TAX-RATE (BRACKET, DEPENDENTS)
XCODE (I, 2)

where subscripts are ordinary integer decimal data-
names, or 1integer constants, or binary integer
(COMPUTATIONAL or INDEX) items, or index—-names.
Subscripts may be gualified, but not, themselves,
subscripted. A subscript may be signed, but if so,
it must be positive., The lowest acceptable value is
l, pointing to the first element of a table. The
highest permissible value is the maximum number -of
occurrences of the item as specified in its OCCURS
clause.

A further capability exists, called relative
indexing. In this case, a "subscript" is expressed
as

name + integer constant
where a space must be on either side of the plus or
minus, and "name" may be any proper index-name,
Example:

XCODE (I + 3, J - 1).

88

CROMEMCO COBOL REFERENCE MANUAL
Table Handling by the Indexing Method

6.4

SEARCH STATEMENT =--Format 1

A linear search of a table may be done using the
SEARCH statement. The general format is:

SEARCH table [VARYING identifier | index-name])

[AT END imperative-statement-=1]

WHEN Condition-1 lNE.'XT SENTENCE H
imperative~statement=2

"Table" is the name of a data-item having an OCCURS
clause that includes an INDEXED-BY list; "table"

.must be written without subscripts or indexes

because the nature of the SEARCH statement causes
automatic variation of an index—-name associated with
a particular table.

There are four possible "varying™ cases:

1. NO VARYING phrase == the first-listed index=-name
for the table is varied.

2. VARYING index=name=in—a=different~table == the
first-listed index=name in the table's
definition is varied, implicitly, and the index-
name listed in the VARYING phrase is wvaried in
like manner, simultaneously.

3. VARYING index=-name=-defined-for~table -—= this
specific index-name is the only one varied.

4, VARYING integer-data-item-name —-= both this
data-item and the first-listed index=name for
table are varied, simultanecusly.

The term variation has the feollowing interpretation:

1, The initial value 1is assumed to have been
established by an earlier statement such as SET.

2. If the initial wvalue exceeds the maximum
declared in the applicable OCCURS c¢lause, the
SEARCH operation terminates at once; and if an
AT END phrase exists, the associated imperative
statement-1 is executed.

89

./—“_

CROMEMCO COBQL REFERENCE MANUAL
Table Handling by the Indexing Method

3. If the wvalue of the index is within the range of
valid indexes (1,2,... up to and including the
maximum number of occurrences), then each WHEN=-
condition is evaluated until one is true or all
are found to be £false. If one is true, its
associated imperative statement is executed and
the SEARCH operation terminates. If none is
true, the index is incremented by one and step
(3) is repeated, Note that incrementation of
index applies to whatever item and/or index is
selected according to rules 1-4.

If the table 1is subordinate to another table, an
index-name must be associated with each dimension of
the entire table via INDEXED BY phrases in all the
QCCURS clauses. Only the index-name of the SEARCH
table is varied {(along with another "VARYING" index-
name or data-item). To search an entire two=or
three-dimensional table, a SEARCH must be executed
several times with the other index=-names set
appropriately each time, probably with a PERFORM,
VARYING statement.

The logic of a Format 1 SEARCH is depicted at the
end of this chapter.

6.5 SEARCH STATEMENT —--Format 2

Format 2 SEARCH statements deal with tables of
ordered data. The general format of such a SEARCH
ALL statement is:

SEARCH ALL table [AT END imperative-statement-1...]

WHEN condition | imperative-statement-2...
NEXT SENTENCE

Only one WHEN clause is permitted, and the following
rules apply to the condition:

l. Only simple relational conditions or condition-
names may be employed, and the subject must be
properly indexed by the first index-name
associated with table {(along with sufficient
other indexes if multiple OCCURS clauses apply).
Furthermore, each subject data-name {or the
data~name associated with condition—-name) in the
condition must be mentioned in the KEY clause of
the table. The KEY clause is an appendage to

9@

CROMEMCO COBOL REFERENCE MANUAL
Table Handling by the Indexing Method

the OCCURS clause having the following format:

ASCENDING | DESCENDING KEY IS data-name ...

where data-name is the name defined in this Data
Description entry (following level number) or
one of the subordinate data—-names. If more than
one data-name is given, then all of them must be
the names of entries subordinate to this group
item. The KEY phrase indicates that the
repeated data 'is arranged in ascending or
descending order according te the data=names
which are listed (in any given KEY phrase) in
decreasing order of significance. More than one
KEY phrase may be specified.

2, In a simple relational condition, only the
equality test (using relation = or IS EQUAL TO)
is permitted.

3. Any condition-name variable (Level 88 items)
must be defined as having only a single value.

4, The condition may be compounded by use of the
Logical connector AND, but not OR.

5. In a simple relational condition, the object (to
the right of the equal sign) may be a literal or
an identifier; the identifier must NOT be
referenced in the KEY clause of the table or be
indexed by the first index—-name associated with
the table. (The term identifier means data-
name, including any qualifiers and/or subscripts
or indexes.)

Failure to conform to these restrictions may yield
unpredictable results. Unpredictable results also
occur if the table data 1is not ordered 1in
conformance to the declared KEY clauses, or if the
keys referenced 1in the WHEN-condition are not
sufficient to identify a unigue table element,

In a Format 2 SEARCH, a nonserial type of search
operation may take place, relying upon the declared
ordering of data. The initial setting of the index-
name for table is ignored and its setting is varied
automatically during the searching, always within
the bounds of the maximum number of occurrences, 1If
the condition (WHEN)} cannot be satisfied for any
valid index value, control is passed to imperative-

91

CROMEMC(O COBOL REFERENCE MANUAL
Table Handling by the Indexing Method

statement=1, if the AT END clause is present, or to
the next executable sentence in the c¢ase of no AT
END clause.

If all the simple conditions in the single WHEN-
condition are satisfied, the resultant index value
indicates an cccurrence that allows those conditions
to ke satisfied, and control passes to imperative-
statement=-2. Otherwise the final setting is not
predictable.

92

CROMEMCO COBOL REFERENCE MANUAL
Table Handling by the Indexing Method

/ may be null /

execute
imperative
state-
ment({s)-1

index
maximum

o —

execute
imperative
state-
ment({s)=2

Next
— — P State-~
ment

WHEN-
Condition-1

execute
imperative
state-
ment(s)-3

WHEN-
Condition-2

!

Increment
index (es)

Logic Diagram for Format 1 SEARCH

93

P

o

CROMEMCO COBOL REFERENCE MANUAL
Indexed Files

CHAPTER 7

Indexed Files

7.1 ,DEFINITION OF INDEXED FILE ORGANIZATION

An indexed-file organization provides for recording
and accessing records of a "data base" by keeping a
directory (called the control index) of pointers
that enable direct location of records having
particular unique key values. An indexed file must
be assigned to DISK in its defining SELECT sentence.

A file whose organization is indexed can be accessed
either sequentially, dynamically or randomly.

Sequential access provides access to data records in
ascending order of RECORD KEY values.

In the random access mode, the order of access to
records is controlled by the programmer. Each
record desired is accessed by placing the value of
its key in a key data item prior to an access
statement.

In the dynamic access mode, the programmer's logic
may change from sequential access to random access,
and vice versa, at will.

7.2 SYNTAX CONSIDERATIONS

In the Environment Division, the SELECT entry nust
specify ORGANIZATION IS INDEXED, and the ACCESS
clause format is

ACCESS MODE IS SEQUENTIAL | RANDOM | DYNAMIC,

Assign, Reserve, and File Status clause formats are
identical to those specified in Section 2.2.1 of
this manual,

In the FD entry for an INDEXED file, both LABEL
RECORDS STANDARD and a VALUE OF FILE-ID clause must
appear. The formats of Section 3.13 apply, eXcept
that only the DISK-related forms are applicable,

94

CROMEMCO COBOL REFEREN

Indexed Files

7.2.] RECORD KEY CLAUSE

CE MANUAL

The general format of this c¢lause, which 1is

required, is:
RECORD KEY IS data—-name-l

where data-name-1 is an item defined within the
record descriptions of the associated file
description, and is a group item, an elementary
alphanumeric item or a decimal field. A decimal key
must have no P characters in its PICTURE, and it may
not have a SEPARATE sign. No record key may be
subscripted. The maximum XEY length is 640
characters.

If random access mode is specified, the wvalue of
data-name-1 designates the record to be accessed by
the next DELETE, READ, REWRITE or WRITE statement.
Each record must have a unique. record key wvalue,

7.2,2 FILE STATUS REPORTING

If a PILE STATUS clause appears in the Environment
Division for an Indexed organization file, the
designated two-character data item is set after
every I-0 statement. The following table summarizes
the possible settings.

Status Data Status Data Item RIGHT Character

Item LEFT No Further Sequence | Duplicate | No Record | Disk Space

Character Description Error Key Found Full
(@) (1) (2) (3} (4}

Successful

Completion () X

At End (1) X

Invalid

Key (2) X X X bt

Permanent

Error(3) X

95

CROMEMCO COBOL REFERENCE MANUAL
Indexed Files

Sequence error arises if access mode is sequential
when WRITEs do not occur in ascending sequence for
an Indexed file, or the key 1is altered prior to
REWRITE. The other settings are self-explanatory.
The left character may alsoc be '92' for implementor-
defined errors; see the User's Guide for an
explanation of these.

Note that "Disk Space Full® occurs with Invalid Key
(2) for Indexed and Relative file handling, whereas
it occurred with "Permanent Error" (3) for
sequential files.

If an error occurs at execution time and no AT END
or INVALID KEY statements are given and no
appropriate Declarative ERROR section is supplied
and no FILE STATUS is specified, the error will be
displayed on the Console and the program will
terminate. See Section 4,19. .

7.3 PROCEDURE DIVISION STATEMENTS FQR INDEXED FILES

The syntax of the OPEN statement (Section 4.14) also
applies to Indexed organized files, except EXTEND is
inapplicable.

The following table summarizes the available
statement types and their permissibility in terms of
ACCESS mode and OPEN option in effect. Where X
appears, the statement is permissible, otherwise it
is not wvalid under the associated ACCESS mode and
OPEN coption.

96

CROMEMCO COBOL REFERENCE MANUAL
Iindexed Files

ACCESS . _ Procedure | OPEN Option in Effect
MODE IS Statement Input Output I-0

READ X
WRITE X
SEQUENTIAL REWRITE
START X
DELETE
READ X
WRITE X
RANDOM REWRITE '
START

DELETE

READ X
WRITE X
DYNAMIC REWRITE
- START X
DELETE

=

P i b

Eadile i i] k)

In addition to the above statements, CLOSE is
permissible under all conditions; the same format
- shown in Section 4.17 is used. ;

7.4 READ STATEMENT
,) Format.l (Sequential Access):
READ file-name [NEXT] RECORD [INTO data-name-1]
[AT END imperative-statement ...]
Format 2 (Random or Dynamic Access):

READ file-name RECORD [INTO data-name-1][KEY IS data-name-2
[INVALID KEY imperative-statement...]

Format 1 must be used for all files having
sequential-access mode, Format 1 with the NEXT
option is used for sequential reads of a DYNAMIC
access mode file, The AT END clause 1is executed
when the logical end-of-file condition arises, If
this clause is not written in the source statement,
an appropriately assigned Declaratives ERROR section
is given control at end-of-file time, if available.

Format 2 is used for files in random—access mode or Q

97

CROMEMCO COBOL REFERENCE MANUAL
Indexed Files

for files in dynamic-~access mode when records are to
be retrieved randomly.

In format 2, the INVALID KEY clause specifies action
to be taken if the access key value does not refer
to an existent key in the file., 1If the clause is
not given, the appropriate Declaratives ERROR
section, if supplied, is given control.

The optional "KEY IS" clause must designate the
record key item declared in the file's SELECT entry.
For non-sequential access, 1f no "KEY IS" clause is
written in a READ statement, then the prime record
key is assumed to be the key of record. The user
must ensure that a wvalid key wvalue is in the
designated key field prior to execution of a random-
access READ.,

The rules for sequential files regarding the INTO
phrase apply here as well,

7.5 WRITE STATEMENT

The WRITE statement releases a logical record for an
output or input-output file; its general format is:

WRITE record=name [FROM data-name-~l]
[INVALID KEY imperative-statement...]

Just prior to executing the WRITE statement, a valid
{unique) wvalue must be in that portion of the
record-name (or data-name-l if FROM appears in the
statement) which serves as RECORD KEY.

In the event of an improper key wvalue, the
imperative statements are executed if the INVALID
KEY c¢lause appears in the statement; otherwise an
appropriate Declaratives ERROR section is invoked,
if applicable. The INVALID KEY condition arises if:

1. for sequential access, key values are not
ascending from one WRITE to the next WRITE;

2. the key value is not unique;

3. the allodated disk space is exceeded.

28

CROMEMCO COBOL REFERENCE MANUAL
Indexed Files

7.6 REWRITE STATEMENT

The REWRITE statement logically replaces an existing
record; the format of the statement is:

REWRITE record=name [FROM data—name]
[INVALID KEY imperative-statement...]

For a file in sequential-access mode, the last READ
statement must have been successful in order for a
REWRITE statement to be valid. If the value of the
record key in record-name (or corresponding part of
data-name, if FROM appears in the statement} does
not equal the key value of the immediately previous
read, or if that previous read was unsuccessful,
then the 1invalid key condition exists and the
imperative statements are executed, iIf present;
otherwise an applicable Declaratives ERROR section
is executed, if available.

For a file in a random or dynamic access mode, the
record to be replaced is specified by the record
key; no previous READ is necessary. The INVALID KEY
condition exists when the record key's value does
not equal that of any record stored in the file.

7.7 DELETE STATEMENT

The DELETE statement logically removes a record from
the Indexed file. The general format of the
statement is:

DELETE file-name RECORD [INVALID KEY imperative-statement...]

For a file in the sequential access mode, the last
input—-output statement executed for file-name would
have been a successful READ statement. The record
that was read is deleted. Consequently, no INVALID
KEY phrase should be specified for sequential-access
mode files. :

For a file having random or dynamic access mode, the
record deleted is the one associated with the record
key; 1if there is no such matching record, the
invalid key condition exists, and control passes to
the imperative statements in the INVALID KEY clause,
or to an applicable Declarative ERROR section if no
INVALID KEY clause exists,

99

CROMEMCO COBQOL REFERENCE MANUAL
Indexed Files

7.8 START STATEMENT

The START statement enables an Indexed organization
file to be positioned for reading at a specified key
value, This is permitted for files open in either
sequential or dynamic access modes, The format of
this statement is:

GREATER THAN
START file-name |KEY 1I5 NOT LESS THAN data=name
' EQUAL TO

{INVALID KEY imperative statement...]

Data-name must be the declared record key and the
value to be matched by a record in the file must be
pre-stored in the data-name. When executing this
statement, the file must be open in the input or I-0
mode, '

If the KEY phrase is not present, equality between a
record in the file and the record key value Iis
sought. If key relation GREATER or NOT LESS 1is
specified, the file is positioned for next access at
the first record greater than, or greater than or
equal to, the indicated key value,

If no matching record is found, the imperative
statements in the INVALID KEY clause are executed,
or an appropriate Declaratives ERROR section is
executed,

19@

CROMEMCO COBOL REFERENCE MANUAL
Relative Files

8.1

8.2

CHAPTER 8

Relative Files

DEFINITION OF RELATIVE FILE ORGANIZATION

Relative organization is restricted to disk-based
files. Records are differentiated on the basis of a
RELATIVE RECORD number which ranges from 1 to

32,767, or to a lesser maximum for a smaller file.
Unlike the case of an Indexed file, where the
identifying key field occupies a part of the data
record, relative record numbers are conceptual and
are not embedded in the data records.

A relative-organized file may be accessed either
sequentially, dynamically or randomly. In
sequential access mode, records are accessed in the
order of ascending record numbers.

In random access mode, the sequence of record access
is controlled by the program, by placing a number in
a relative key item, In dynamic access mode, the
program may inter-mix random and sequential access
verb forms at will.

SYNTAX CONSIDERATIONS

In the Environment Division, the SELECT entry must
specify ORGANIZATION IS RELATIVE, and the ACCESS
clause format is

ACCESS MODE IS SEQUENTIAL | RANDOM | DYNAMIC.

Assign, Reserve, and File Status clause formats are
identical to those used for sequentially- or
indexed-organized files. The values of STATUS Key 2
when STATUS Key 1 equals '2' are:

‘2! for attempt to WRITE a duplicate key
r3e for nonexistent record
4! for disk gpace full

181

CROMEMCO COBOL REFERENCE MANUAL
Relative Files

In the associated FD entry, STANDARD labels must be
declared and a VALUE OF FILE=-ID clause must be
included.

8.2.1 REIATIVE KEY CLAUSE

In addition to the usual clauses in the SELECT
entry, a clause of the form

RELATIVE KEY IS data—-name-1

is required for random or dynamic access mode. It
is also required for sequential—-access mede, iIf 3
START statement exists for such a file.

Data-name-=1 must be described as an unsigned binary
integer item not contained within any record
description of the file itself. Its value must be
positive and nonzero.

8.3 PROCEDURE DIVISION STATEMENT FOR RELATIVE FILES

Within the Procedure Division, the verbs OPEN,
CLOSE, READ, WRITE, REWRITE, DELETE and START are
available, ust as for files whose organization is
indexed. {(Therefore the charts in Sections 7.2.2
and 7.3 also apply to RELATIVE files.) The
statement formats for OPEN and CLOSE (see Sections
4,14 and 4.17) are applicable to Relative files,
except for the "EXTEND" phrase.

8.4 READ STATEMENT

- Format 1:
READ file—-name [NEXT] RECORD [INTO data-=name]

{[AT END imperative statement...]

Format 2:
READ file=name RECORD [INTO data-name]

[INVALID KEY imperative statement...]
Format 1 must be used for all files in sequential

1a2

CROMEMCO COBQOL REFERENCE MANUAL
Relative Files

access mode. The NEXT phrase must be present to
achieve sequential access if the file's declared
mode of access is Dynamic. The AT END clause, if
given, 1is executed when the 1logical end-of=file
-condition exists, or, if not given, the appropriate
Declaratives ERROR section 1is given control, if
available,

Format 2 is used to achieve random access with
declared mode of access either Random or Dynamic,

If a Relative Key is defined (in the file's SELECT
entry), successful execution of a format 1 READ
statement updates the contents of the RELATIVE KEY
item {"data-name=1") 80 as to contain the record
number of the record retrieved.

For a format 2 READ, the record that is retrieved is
the one whose relative record number is pre-stored
in the RELATIVE KEY item. If no such record exists,
however, the INVALID KEY condition arises, and is
handled by (a) the imperative statements given in
the INVALID KEY portion of the READ, or (b) an
associated Declaratives section.

The rules for sequential files regarding the INTO
phrase apply here as well.

8.5 WRITE STATEMENT

The format of the WRITE statement is the same for a
Relative file as for an Indexed file:

WRITE record-name [FROM data-name] {[INVALID
imperative statement...]

If access mode is sequential, then completion of a
WRITE statement causes the relative record number of
the record just output to be placed in the RELATIVE
KEY item.

If access mode 1is random or dynamic, then the user
must pre—set the value of the RELATIVE KEY item in
order to assign the record an ordinal (relative)
number., The INVALID KEY condition arises if there
already exists a record having the specified ordinal
number, or if the disk space is exceeded.

193

CROMEMCO COBOL REFERENCE MANUAL
Relative Files

8.6

8.7

REWRITE STATEMENT

The format of the REWRITE statement is the same for
a Relative file as for an Indexed file:

REWRITE record-name [FROM data-name]

[INVALID KEY imperative statement ...]

For a file in sequential access mode, the
immediately previous action would have been a
successful READ; the record thus previously made
available 1is replaced in the file by executing
REWRITE. 1If the previcus READ was unsuccessful, a
run—-time error will terminate execution. Therefore,
no INVALID KEY clause is allowed for sequential
access.

For a file with dynamic or random access mode
declared, the record that is replaced by executing
REWRITE is the one whose ordinal number is pre-set
in the RELATIVE KEY item. If no such item exists,
the INVALID KEY condition arises.

DELETE STATEMENT

The format of the DELETE statement is the same for a
Relative file as for an Indexed file:

DELETE file—-name RECORD [INVALID KEY
imperative statement...]

For a file in a sequential access mode, the
immediately previous action would have been a
successful READ statement; the record thus
previously made available is logically removed (or
made inaccessible). If the previous READ was
unsuccessful, a run-time error will terminate
execution. Therefore, an INVALID KEY clause may not
be specified for sequential-access mode files.

For a file with dynamic or random access mode
declared, the removal action pertains to whatever
record is designated by the wvalue in the RELATIVE
KEY item. If no such numbered record exists, the
INVALID KEY condition arises.

0

194

CROMEMCO COBOL REFERENCE MANUAL
Relative Files

8.8 START STATEMENT

The format of the START statement is the same for a
Relative file as for an Indexed file:

GREATER THAN
START file=-name | KEY IS NOT LESS THAN data-name=1
EQUAL TO

[INVALID KEY imperative statement...]

Execution of this statement specifies the beginning
position for reading operations; it is permissible
only for a file whose access mode is defined as
sequential or dynamic.

Data—-name may only be that of the previously
declared RELATIVE KEY item, and the number of the
relative record must be stored in it before START is
executed. When executing this statement, the
associated file must be currently open in INPUT or
I-0 mode.

If the KEY phrase is not present, equality between a
record in the file and the record key value is
sought. If key relation GREATER or NOT LESS is
specified, the file is positioned for next access at
the first record greater than, or greater than or
equal to, the indicated key value,

If no such relative record is found, the imperative
statements in the INVALID KEY clause are executed,
oY an appropriate Declaratives ERROR section is
executed. '

185

CROMEMCO COBOL REFERENCE MANUAL
Declaratives and the Use Sentence

CHAPTER 9

DECLARATIVES and the USE SENTENCE

The Declaratives region provides a method of including
procedures that are executed not as part of the sequential
coding written by the programmer, but rather when a
condition that cannot normally be tested by the programmer
occurs.

Although the system automatically handles checking and
creation of standard 1labels and executes error recovery
routines in the case of input/output errors, additional
procedures may be specified by the COBOL programmer,

‘8ince these procedures are executed only at the time an
error in reading or writing occurs, they cannot appear in
the regular sequence of procedural statements., They must
be written at the beginning of the Procedure Division in a
subdivision called DECLARATIVES. Related procedures are
preceded by a USE sentence that specifies their function.
A declarative section ends with the occurrence of another
section-name with a USE sentence or with the key words END
DECLARATIVES.

The key words DECLARATIVES and END DECLARATIVES must each
begin in Area A and be followed by a period. ©No other text
may appear on the Declaratives at the f£front of the
Procedure Division.

PROCEDURE DIVISION.

DECLARATIVES,

{section—-name SECTION. USE sentence.

{paragraph-name. {sentence}l...} ...} o..

END DECLARATIVES.

The USE sentence defines the applicability of the
associated section of coding.

A USE sentence, when present, must immediately follow a
section header in the Declarative portion of the Procedure
Division and must be followed by a period followed by a
space. The remainder of the section must consist of zero,
one or more procedural paragraphs that define the

136

CROMEMCO COBOL REFERENCE MANUAL
Declaratives and the Use Sentence

procedures to be used. The USE sentence itself is never
executed; rather, it defines the conditions for the
execution of the USE procedure. The general format of the
USE sentence is

USE AFTER STANDARD EXCEPTION | ERROR PROCEDURE

ON {file=name... | INPUT | OUTPUT | I-0 | EXTEND}.

The words EXCEPTION and ERROR may be used interchangeably.
The associated declarative section is executed (by the
PERFORM mechanism) after the standard I-0 recovery
procedures for the files designated, or after the INVALID
KEY or AT END condition arises on a statement lacking the
INVALID KEY or AT END clause. A given file-name may not be
associated with more than one declarative section.

Within a declarative section there must be no reference to
any nondeclarative procedure. Conversely, in the
nondeclarative portion there must be no reference to
. procedure-names that appear in the declaratives section,
except that PERFORM statements may refer to a USE statement
and its procedures; but in a range specification (see
PERFORM, Section 4.14) 1f one procedure-name is in a
Declarative Section, then the other must be in the same
Declarative Section,

An exit from a Declarative Section 1is inserted by the
compiler following the last statement in the section. All
logical program paths within the section must lead to the
exit point.

197

CROMEMCO COBOL REFERENCE MANUAL

Appendix I

APPENDIX 1

Advanced Forms of Conditions

Evaluation Rules for Compound Conditions

1. Evaluation of individual simple conditions
(relation, c¢lass, condition-name, and sign test)
is done first.

2. AND-connected simple conditions are evaluated
next as a single result.

3., OR and its adjacent conditions (or previously
evaluated results) are then evaluated.

EXAMPLES:

l, A<BOQOQRC=DOR E NOT > F
The evaluation is equivalent to (A<B) OR (C=D)
OR (E<¥) and 1is true if any of the three
individual parenthesized simple conditions is
true.

2., WEEKLY AND HOURS NOT = @

The evaluation is equivalent, after expanding
level 88 condition—-name WEEKLY, to

"{PAY=CODE = 'W') AND (HOURS # @)

and is true only if both the simple conditions
are true.

3. A=1AND B =2 AND G > =3

OR P NOT EQUAL TO "SPAIN"
is evaluated as
[{A = 1) AND (B = 2) AND (G > =3)]
OR (P # "SPAIN")
If P = "SPAIN", the compound condition can only

be true if all three of the following are true:

148

CROMEMCO COBOL REFERENCE MANUAL
Appendix I

{c.1) A =1
{c.2) B =2
(c.3) G > =3

However, if P is not equal to "SPAIN",
compound condition is true regardless of
values of A, B and G.

Parenthesized Conditions

Parentheses may be written within a compound

condition or parts thereof in order to
precedence in the evaluation order.

Example:

IF A=B AND (A=5 OR A = 1)
PERFORM PROCEDURE-44.

In this case, PROCEDURE~44 is executed if A = 5 OR A
= 1 while at the same time A = B. In this mahner,
compound conditions may be formed containing other

compound conditions, not just simple conditions,
the use of parentheses.

Abbreviated Conditions

For the sake of brevity, the user may omit the
"subject" when it is common to several successive

relational tests. For example, the condition A

OR A = 1 may be written A = 5 OR = 1, This may also
be written A = 5 OR 1, where both subject and

relation being implied are the same.
Another example:
IF A=B OR <CORY
is a shortened form of
IF A=B OR A <CCORACKY
The interpretation applied to the use of the
'NOT' in an abbreviated condition is:
1. If the item immediately following 'NOT'

199

CROMEMCO COBOL REFERENCE MANUAL
Appendix I

relational operator, then the 'NOT' participates
as part of the relational operator;

2. otherwise, the beginning of a new, completely
separate condition must follow 'NOT', not to be
considered part of the abbreviated condition.

Caution: Abbreviations in which the subject and
relation are implied are permissible only in
relation tests; the subject of a sign test or class
test cannot be omitted.

NOT, the Logical Negation Operator

In addition to its use as a part of a relation
(e.g., IF A IS NOT = B), "NOT" may precede a
condition. For example, the condition NOT (A = B OR
C) is true when (A =B OR A = C)} is false. The word
NOT may precede a level 88 condition name, also.

119

CROMEMCQ COBOL REFERENCE MANUAL

Appendix II

APPENDIX IT

Table of Permissible MOVE Operands

Receiving Operand in MOVE Statement

Source Numeric Numeric Numeric Alphanumeric Alphanumeric Group
Operand Integer Non=-integer Edited Edited
Numeric integer QK QK OK OK (A) CK (A) OK (B)
Numeric Non-integer OK OK OK 0K (B)
Numeric Edited OK OK OK (B)
Alphanumeric Edited OK OK QK (B)
Alphanumeric OK (C) 0K (C) OK (C) OK OK Q0K (B)
Group OK (B) OK (B) CK (B) OK (B) OK (B} OK (B)
KEY: (A) Source sign, if any, is ignored.
(B) If the source operand or the receiving operand is a
Group Item, the move is considered teo be a Group
Move. See Section 4.3 for a discussion cof the
effect of a Group Move. '
(C) Source 1is treated as an unsigned integer; source
length may not exceed 31,
NOTE: No distinction is made in the compiler between
alphabetic and alphanumeric; one should not move
humeric items to alphabetic items and vice versa.
111 o _—

CROMEMCO COBOL REFERENCE MANUAL
Appendix III -

APPENDIX III

Nesting of IF Statements

A "nested IF" exists when, in a single sentence,
more than one IF precedes the first ELSE.

Example:
IF X =Y IF A =B
MOVE "*" TO SWITCH

ELSE MOVE "A" TO SWITCH
ELSE MOVE SPACE TO SWITCH

The flow of the above sentence may be represented by
a tree structure:

F N

e ~a
Space —»Switch - A =B7
F///////- \\T
prad | |

A —»Switch * g Switch

Next
Sentence

112

CROMEMCQ COBOL REFERENCE MANUAL
Appendix III

Another useful'way of viewing nested IF structures
- is based on numbering IF and ELSE verbs to show
their priority.

IFl X =Y
I 1r2 A =B
true | true~action : MOVE "*" TO SWITCH
actionl: 1 ELSE2 false-action2 : MOVE "A" TO SWITCH

ELSE1l
false~actionl : MOVE SPACE TO SWITCH.

The above 1illiustration shows clearly the fact that
IF2 is wholly nested within the true-action side of
IF]—.

The number of ELSEs In a sentence need not be the
same as the number of IFs; there may be fewer ELSE
branches.
Examples:
IF M =1 IF K =4
GO TO M1KO ELSE GO TO MNOTI.
IF AMOUNT IS NUMERIC IF AMOQUNT
IS ZERO GO TO CLOSE-QUT,

In the latter case, IF2 could equally well have been
written as AND.

113

CROMEMCO COBOL REFERENCE MANUAL
Appendix IV

APPENDIX IV

ASCII Character Set
For ANS-74 COBOL

Character Octal Value Character Octal Value
A 141 %] 60
B 192 1 61
C 103 2 62
D 144 3 63
E 195 4 64
F 1o6 5 65
G 197 6 66
H 114 7 67
I 111 8 70
J 112 9 71
K 113 {SPACE) 4@
L 114 " 42
M 115 $ 44
N 116 ' (non=ANSI) 47
0 117 { 50
2] 124) 51
0 121 * 52
R 122 + 53
S 123 . 54
T 124 - 55
U 125 . 56
v 126 / 57
W 127 H 73
X 131 < 74
Y 131 = 75
A 132 > 76
Plus—-zero (zero with embedded positive sign); 173
Minus-zero (zero with embedded negative sign); 175

114

CROMEMCO COBOL REFERENCE MANUAL
Appendix V

APPENDIX V
Reserved Words

* words not used by COBOL-8@
** additional words required by COBOL-88

ACCEPT COPY
ACCESS *CORR (ESPONDING)
ADD COUNT
ADVANCING CURRENCY
AFTER DATA
ALL DATE
ALPHABETIC DATE-COMPILED
*ALSO DATE~WRITTEN
ALTER DAY
*ALTERNATE DEBUGGING
AND *DEBUG~CONTENTS
ARE *DEBUG=~ITEM
AREA (S) *DEBUG-LINE
ASCENDING *DEBUG=NAME
**ASCII *DEBUG=-SUB=-1
ASSIGN *DEBUG-SUB-2
AT *DEBUG-SUB-3
AUTHOR DECIMAL-POINT
DECLARATIVES
**BEEP DELETE
BEFORE DELIMITED
BLANK DELIMITER
BLOCK DEPENDING
*BOTTOM ' DESCENDING
BY *DESTINATION
*DE (TAIL)
CALL *DISABLE
*CANCEL **DISK
*CD DISPLAY
*CF DIVIDE
*CH DIVISION
CHARACTER (S) DOWN
*CLOCK~UNITS *DUPLICATES
CLOSE DYNAMIC
*CLOSE
*CODE *EGT
CODE=-SET ELSE
COLLATING *EMI
*COLUMN *ENABLE
COMMA END
*COMMUN ICATION *END~OF -PAGE
COMP *ENTER
COMPUTATIONAL ENVIRONMENT
**COMPUTATIONAL-3 *EOP
**COMP=3 EQUAL
COMPUTE ERROR
CONFIGURATION *ESI
**CONSOLE *EVERY
CONTAINS EXCEPTION
*CONTROL (8)

115

CRCMEMCO COBOL REFERENCE MANUAL
Appendix V

**EXHIBIT
EXIT
EXTEND

FD

FILE

FILE~CONTROL

**FILE-ID

FILLER
*FINAL

FIRST
*FOOTING

FOR

FROM

*GENERATE
GIVING
GO
GREATER

*GROUP

*HEADING
HIGH-VALUE (S)

IDENTIFICATION

IF

IN

INDEX

INDEXED

INITIAL
*INITIATE

INPUT

INPUT=0UTPUT

IRSPECT

INSTALLATION

INTO

INVALID

IS5

I-0

I-0=-CONTROL

JUST (IFIED)

KEY

LABEL
*LAST
LEADING
LEFT
*LENGTH
LESS

*LIMIT (S)
*LINAGE

*LINAGE~-COUNTER

LINE(S)
*LINE-COUNTER
LINKAGE

LOCK
LOW=-VALUE (S)

MEMORY
*MERGE
*MESSAGE

MODE

MODULES

MOVE
*MULTIPLE

MULTIPLY

**NAMED
NATIVE
NEGATIVE
NEXT

*NO
NOT
*NUMBER
NUMERIC

OBJECT-COMPUTER

OCCURS
oF
OFF
OMITTED
ON
OPEN
*QPTIONAL
OR
ORGANIZATION
OUTPUT
OVERFLOW

PAGE
*PAGE—-COUNTER
PERFORM
*PF
*PH
PIC (TURE)
*PLUS
POINTER
POSITION
POSITIVE

* *PRINTER
*PRINTING

116

CROMEMCO COBOL REFERENCE MANUAL

Appendix V

PROCEDURE (5)

PROCEED
PROGRAM

PROGRAM-ID
*#*PROMPT

*QUEUE
QUOTE (S)

RANDOM
*RD
READ

**READY

*RECEIVE
RECORD (5)
REDEFINES

*REEL

*REFERENCES

RELATIVE
*RELEASE
*REMAINDER
*REMOVAL
*RENAMES

REPLACING
*REPORT (S)
*REPORTING
*RERUN

RESERVE

RESET
*RETURN
*REVERSED
*REWIND

REWRITE
*RF
*RH

RIGHT

ROUNDED

RUN

SAME
*Sb
SEARCH
SECTION
SECURITY
*SEGMENT

*SEGMENT-LIMIT

SELECT
*SEND

SENTENCE

SEPARATE

SEQUENCE
SEQUENTIAL
SET
SIGN
SIZE

*SORT

*SORT~MERGE

*SOURCE
SOURCE-COMPUTER
SPACES (S)
SPECIAL=-NAMES
STANDARD
STANDARD-1
START
STATUS
STOP
STRING

*SUB-QUEVUE-1,2,3
SUBTRACT

*SUM

*SUPPRESS

*SYMBOLIC
SYNC (HRONIZED)

*TABLE
TALLYING

*TAPE

*TERMINAL

*TERMINATE

*TEXT
THAN
THROUGH
THRU
TIME
TIMES
TO

*TOP

**TRACE

TRAILING
*TYPE

*UNIT
UNSTRING
UNTIL
UPp
UPON
USAGE
USE
USING

———

CROMEMCO COBOL REFERENCE MANUAL

Appendix V

VALUE (8)
VARYING

WHEN

WITH

WORDS
WORKING~STORAGE
WRITE

ZERO((E)S)

AV B~ %1 +

118

CROMEMCO COBOL REFERENCE MANUAL
Appendix VI

APPENDIX VI

PERFORM with VARYING and AFTER Clauses

"PERFORM range

VARYING identifier-1 FROM amount-1 BY amount-2
UNTIL condition-=l1

AFTER identifier-2 FROM amount-3 BY amount-4
UNTIL condition-2

AFTER identifier-3 FROM amcunt=5 BY amount-G]
UNTIL condition=-3

Identifier here means a data=name or index-name.
Amount~-l, =3, and -5 may be a data-name, index-name,
or literal., Amount-2, -4, and -6 may be a data=-name
or literal only.

The operation of. this complex PERFORM statement is
equivalent to the following COBOL statements
(example varying three items):

START=-PERFORM.
MOVE amount—-1 TO identifier-1
MOVE amount-3 TO identifier-2
MOVE amount=5 TO identifier-3.

TEST-CONDITION-1.
IF condition~1 GO TQ END-PERFORM.

TEST=CONDITION=2,
IF condition-=2
MOVE amount=3 TO identifier-2
ADD amount-2 TO identifier-1
GO TO TEST-CONDITION-1.

TEST-CONDITION-3.
IF condition-3
MOVE amount-5 TO identifier-3
ADD amount—-4 TO identifier=2
GO TO TEST—-CONDITION-2Z.

PERFORM range
ADD amount—-6 TO identifier-3

119

CROMEMCOQ COBOL REFERENCE MANUAL
Appendix VI

GO TO TEST=-CONDITION-3.

END-PERFORM. Next statement.

NOTE

If any identifier above were an
index=-name, the associated MOVE
would instead be a SET (TO
form), and the associated ADD
would be a SET (UP form).

124

CROMEMCO COBOL USER'S GUIDE
Compiling COBOL Programs

1.1

SECTION 1

Compiling COBOL Programs

COBOL Command Scanher

To tell the COBOL compiler what to compile and with
which options, it is necessary to input a command
string, which is read by the COBOL command scanner.
Those familiar with Cromemco's PORTRAN will find the
command format is identical for COBOL. However,
different switchesgs {options) are used with COBOL.

It should be noted that COBOL consists of a main
segment and four overlays which are read in
consecutively during compilation. These overlays
are always read from the currently logged in disk.
Consequently one should always run COBOL from the
currently logged in disk.

1.1.1 Format of Commands

COBOL is 1invoked by typing COBOL followed by a
space, followed by an appropriate command string, as
described below. COBOL is read from the disk and
then examines the command string. If it is valid,
compilation commences. If not, COBOL responds with
"?COMMAND ERROR" followed by an asterisk so the user
can try again. When fininshed, COBOL always exits
to CDOS.

121

CROMEMCO COBOL USER'S GUIDE
Compiling COBOL Programs

The general format of a COBOL compiler command is:

objprog-dev:filename.ext, list-dev:filename.,ext=
source-dev:filename.ext

where the various terms mean:

objprog-dev: The device on which the object
program is to be written

list-dev: The device on which the program
listing is to be written’

source-~dev: The device from which the socurce
program input to COBOL is taken

NOTE

Whenever a device name 1is
omitted, it defaults to the
currently selected disk.

filename.ext

The £filename and filename extension of
the object program file must be supplied
if the device is a directory device.
Filename extensions may be omitted, in
which case default wvalues are supplied.
These values are REL for the object file
and LST for the listing file. The source
file must have an extension of COBR.

Either the object file or the 1listing file
specification or both may be omitted. If neither a
listing file nor an object file is desired, vlace
only a comma to the left of the equal sign. The
purpoese then 1is only to syntax check for errors
which are displayed on the console. If nothing is
typed to the left of the equal sign, the object file
is written on the same device with the same name as
the source file, but with the default extension REL.
If only a listing file specification is given, the
user may still write out the object file by typing
"/R" after the source name. This too writes the
object file on the same disk with the same name as
the source and the default extension. Similarly
"/L"™ may be used to place the listing file on the
same disk with same name as the source and the
default extension LST.

122

CROMEMCO COBOL USER'S GUIDE
Compiling COBOL Programs

Examples
=PAYROLL

f TTY : =PAYROLL

PAYOBJ=PAYROLL.COB

PAYROLL , PAYROLL=PAYROLL

s =PAYROLL

Compile the source from
PAYROLL.COB placing the
object into PAYROLL.REL.

Compile the scource from
PAYROLL.COB placing the
listing output on the
terminal. No object code
is generated.

Compile PAYROLL.COB
putting the object into
PAYROLL.REL.

Compile the PAYROLL.COB
putting the object into
PAYROLL.REL and listing
into PAYROLL.LST.

Compile PAYROLL but
produce no object or
listing file. Useful for
error checking.

123

CROMEMCO COBOL USER'S GUIDE
Compiling COBOL Programs

1.1.2 COBOL Compilation Switches

2 variety of switches may be used in the command
string that will affect compilation. Each switch
must be preceded by a slash (/).

Switch Action

R Force Generation of an object file as
described above.

L Force generation of a 1listing file as
described above.

P . Bach/P allocates an extra 108 bytes of
stack space for use during compilation.
Use /P 1if stack overflow errors occur
during compilation. Otherwise this switch
is not needed.

1.2 OQutput Listings and Error Messages

The listing file output by COBOL is a line-by-line
account of the source file with error messages, some
interspersed throughout the listing, some generated
only at the end. Each source 1line listed is
preceded by a consecutive 4-digit decimal number.
This is used by the error messages at the end to
refer back to lines in error, and also by the
Runtime System to indicate what statement has caused
a Runtime Error after it occurs.

. Two c¢lasses of diagnostic error messages may be
produced during compilation.

Low level flags are displayed directly bhelow source
lines on the listing when simple syntax violations
oceur. Remedial action is assumed in each case, as
documented in the following table, and compilation
continues.

124

CROMEMCO COBOL USER'S GUIDE
Compiling COBOL Programs

Flag
"OLIT"?

LENGTH?

CHRCTR?

PUNCT?

BADWORD

SEQ #

NAME?

PIC = X

COL.77?

AREA A?

Reason for Flag

Faulty quoted literal
1. Zero length

2. Improper continua-—
tion

3. Premature end-of-
file . (before ending
delimiter)

Quoted literal length
over 120 characters,

or numeric literal over
18 digits, or 'word’
(identifier, or name)
over 3@ characters,

Illegal character

Improper punctuation
(e.g. comma not fol-
lowed by a space).

Current word is malformed

such as ending in hyphen,

or multiple decimal points
in a numeric literal.

Improper seguence number
(includes case of out-of-
order sequence number).

Name does not begin with
a letter (A -2Z).

An improper Picture.

An improper character

appears in source line
character 'column' 7,

where only * -/ D are

permissible.

Area A, columns 8-12, is

not blank in a
continuation line.

125

Continuation Action

Ignore and continue.

Assume acceptable,

Assume program end.

Excess characters
are ignored.

Ignore and continue.

Assumes acceptable.

Ignore and continue.

Accept and cotinue.

Accept and continue.

PIC X is assumed.

Assumes a blank
in column 7.

Ignere contents of

Area A {(assumes
blank).

CROMEMCO COBOL USER'S GUIDE
Compiling COBOL Programs

High 1level diagnostic messages consist of two or
three parts:

1. The associated source 1ine number -- four
digits, followed by a colon (:).

2. An english explanation of the error detected by
the compiler, If this text begins with /W/,
then it is only a warning; if not, it is an
error sufficiently severe to inhibit assembly,
linkage, and execution of an object program.,

3. {Optional) The program element cited at the
point of error is listed.

Design of the high level diagnostic message text is
such that no list of 'messages and error codes' is
necessary. The messages are designed to be self-
explanatory.

Files Used by COBOL

In addition to the Source, Listing and Object files
used by COBOL, two other files should be noted.

First, there is a file called STEXT.INT which the

compiler always places on the primary disk. It is

used to hold intermediate symbolic text between pass
one and pass twoe of the compiler. It is created,
written, then closed, read, and then deleted before
the compiler exits. Consequently, it should be
transparent to the user unless the compilation is
aborted.

Another file of concern to the user is the file to
be copied due to a COPY verb in the COBOL program.
The user gives the name of the source file to bhe
read and compiled in place of the COPY statement.
Remember that copied files cannot have COPY
statements within them and the rest of the 1line
after a COPY statement is ignored.

126

CROMEMCO COBOL USER'S GUIDE
Linking and Loading COBOL programs

2.1

SECTION 2

Linking and Loading COBOL programs

Command Format

The CROMEMCO Linker/Loader is used to link assembled
program modules together, load them into memory, and
begin execution there if desired. The Linker is
supplied to the user on diskette (large or small)
under the directory entry "LINK.COM". The command
line to call LINK consists of a number of filenames
and switches according to the following format:

LINK <d:filenaml.ext/s,d:filenam2.ext/s,...>

where d stands for the disk drive letter (A through
D), s stands for one of the legal switches of the
Linker ({see list in this chapter), ‘and filename.ext
stands for a user filename plus its 3-letter
extension. The only argument required after the
word LINK is filenaml. LINK defaults to the current
drive if the disk drive letter is omitted, and it
defaults to the extension .REL if the 3-letter
extension is omitted. The switches are not
required. If used, they give LINK instructions
regarding the files. The Linker will accept
commands in the order received, but does not require
a single command line. The prompt for LINK is an
asterisk (*}. Any time the asterisk appears, a
command may be entered. Thus, the names of files to
be linked may be given one at a time rather than on
one command 1line. After each command line is
entered, LINK will load or search the named file(s).
When LINK finishes this process, it will 1list all
symbols that remain undefined followed by an
asterisk.

The switches LINK accepts give the user a variety of
ways to control the linking process. For example
the user may cause the Linker to search special
library files to satisfy undefined globals by
linking the filename to be searched followed by /S.
The /M switch can be used to map a 1list of all
defined and undefined symbhols. These switches are
described in the next section.

127

CROMEMCO COBOL USER'S GUIDE
Linking and Loading COBOL programs

2.2

LINK Switches

The Linker allows a number of switches which specify
actions affecting the loading process. Each switch
must be preceded by a slash (/). These switches and
a description of each follow.

2,2.1 E (Exit to CDOS)

Exit to CDOS upon completion of 1link and 1load.
Prior to exiting, LINK prints on the c¢onsole the
start and stop execution addresses along with the
number of 256-byte pages of memory the program
occupies (in decimal), according to the following
format:

[xxxx yyyy zz)

where xxxx is the address at which execution will
start, yyyy iIs one more than the highest location
used by the 1loaded object code, and zz is the
decimal number of pages required.

The file which has been 1linked and loaded into
memory may be saved after exiting to CDOS. This can
be done using the SAVE command, which is one of the
CDOS8 intrinsic commands (see the Cromemco CDOS
manual}., The user would type:

SAVE filename.eXt zz

where zz 1is the same number printed out by LINK
(following the issue of /E). The filename can be
any legal name. If the name used already resides on
the disk, the saved file will be written over this
existing file. The 3-letter extension COM is
frequently used; this will create a COMmand file,
Note that other CDOS INTRINSIC commands may be given
before the SAVE command; for example, DIR may be
typed to see how much directory space is available,
Executing any utility program (XFER, EDIT, etc.)
will change the contents of the user-area.

128

CROMEMCO COBOL USER'S GUIDE
Linking and Loading COBOL programs

2.2.2 G (Go — start execution)

Start execution of the program as scon as the
current command line has been interpreted. Prior to
execution, LINK prints on the console the start and
stop addresses and the number of 256-byte pages
occupied by the object code, according to the format
shown above (see /E). Fellowing this, the message
"[BEGIN EXECUTION]" is displayed on the console at
which point execution is started by LINK. The
Linker initializes the stack pointer at the highest
address cf the user-area.

2,2.3 M (Map all symbols)

List beth all the defined globals and their wvalues
and all undefined globals followed by an asterisk.
The map may be sent to the printer by typing
Control-P ("P) following the LINK command line.
This printed map of symbols is very useful for
debugging the user-program. Once the object code
has been loaded into memory by LINK, /E can be
issued and the correct portion of the user-area
saved in a file, Then the program DEBUG can be
called and used to load and debug the file just
created. The global map printed previously can be
used to reference addresses.

2.2.4 R (Reset Linker)

Put Loader back in its initial state. /R is used to
restart LINK if the wrong file was loaded by
mistake. /R will take effect as soon as it is
encountered in a command string.

2.2.5 5 (Search file)

Search the disk file having the filename immediately
preceding the /S to satisfy any undefined globals.
This is convenient for having the Linker search a
library file of much~used routines.

129

CROMEMCO COBOL USER'S GUIDE
Linking and Loading COBOL programs

2.2.6 U (list all Undefined globals}

List all undefined globals as soon as the current
command line has beesn interpreted and executed.
LINK defaults to this switch; therefore, it 1is
generally not needed unless it is desired to
reproduce this list more than once. For example say
that during 1link the list of undefined globals is
printed to the ceonsole., The user could then type
Control-P followed by "/U" to cause the undefined
globals to be listed a second time, this time to the
printer as well as the console.

2.3 Format of Link-Compatible Object Files

The following is a description of the format of .REL
files which are to be compatible with the CROMEMCO
Linker. This information is provided for the
interested programmer, but is not in any way
required reading for the person learning how to use
the Linker.

LINK compatible object files consist of a bit
stream. Individual fields within the bit stream are
not aligned on byte boundaries except as noted
below. The use of a bit stream for relocatable
object files keeps the size of the files to a
minimum, thereby decreasing the number of disk reads
and writes. The first bit of a field is either a
one or a zero, and this is followed either by an 8-
bit byte or a 2-bit field having the following
meanings:

Bit Meaning
@ load the following eight-bit byte as absolute code
1 read in the following two bit field:

11 Add sixteen-bit offset to common base
19 Add sixteen-bit offset to data base

#1 Add sixteen-bit offset to program base
@@ Special LINK item

Special LINK item fields begin with the bit stream
194 as Jjust explained. This is followed by a four-
bit control field, an optional A-field which
consists of a two-bit code specifying address type,

130

CROMEMCO COBOL USER'S GUIDE
Linking and Loading COBOL programs

and an optional B-field which consists of 3 bits
giving a symbel length. The 2-bit address type has
the same meanings as the 2-bit field above except @0
specifies absolute addressing. The 3-bit symbol
length is followed by eight bits for each character
of the symbol. We can represent this bit stream by
the following:

A-field B-field
1 90 xxxx <yy two-byte-value> <zzz characters-of-symbol-name>

where the spaces in the above show where the various
fields end, the angular brackets denote optional
gquantities, and where:

Xx%Xxx 1is the four-bit control field,
vy is the two-bit address type field, and
222 is the three-bit symbol length field.

The two-byte-value following yy will be either the
16-bit offset specified or the absolute address, and
the characters-of-symbol-name following zzz will be
in ASCII, each character occupying eight bits.

The four-bit control field will specify the
operation or function of the bit stream. It can
have the following wvalues, where the four-bit value
is given in the left-hand column in decimal:

(The following LINK items have a B-field only)

Entry Symbol (name for search).
Select COMmon Block.

Program Nane.

Reserved for Future Expansion.
Reserved for Future Expansion.

= L0 o

(The following LINK items have both an A-field and a B-field)

5 Define COMmon Size.

6 Chain External (A is head of address chain).
B is name of external symbol.

Define Entry Point.

Reserved for Future Expansion.

Reserved for Future Expansion.

WOo]

(The following LINK items have an A-field only)
10 Define Size of Program Data Area. Q

131

CROMEMCO COBQL USER'S GUIDE
Linking and Loading COBOL programs

11 Set Loading Location.

12 Chain Address.
A is head of chain; replace all entries in
current location counter. The last entry
has an address field of abscolute zero.

13 Define Program Size.

14 End Program (forces to byte boundary).

(The following LINK item has neither an A- nor a B-field)

15 End of File.

2.4 Link Error Messages

The Linker gives several error messages in case of
an illegal operation. These are listed below in the
summary along with an explanation of each one. Note
that there are two types of error messages: fatal
errors and warnings. Fatal error messages are
preceded by question marks (?) and warning messages
are preceded by percent signs (%). A program will
run in some cases when a warning has been issued;
however, it is better practice to correct the error
and link again.

2.4.1 Patal Errors

?No Start Address A /G switch is issued, but no
main program module has been
loaded. Remember when creating
and linking machine language
programs that the main module
must have an address or label
in its END statement. This
then becomes part of the .REL
file which informs LINK where
to begin execution (see the END
pseudo-op in the Cromemco
Agsembler Manual).

" ?Loading Error The last file given to be
linked and 1loaded is not a
properly formatted LINK cobject
file.

132

CROMEMCO COBOL USER'S GUIDE
Linking and Loading COBOL programs

?Fatal Table Collision There is not enough
memory to load the given
program(s) .

?Command Error An unrecognizable LINK command
has been given. Type the
correct command or re—link.

?File Net Found A file in the command string
does not exist as spelled or
specified, Check to see if the
file resides on the specified
drive, Often this message
results if the user forgets to
specify the drive letter, and
LINK searches the current
drive,

2.4.2 Warnings

$2nd COMMON Larger /XXXXXX/ The first
definition of COMmon block
XXXXXX 1is not the 1largest.
COMmons do not have to be the
same size provided the module
containing the larger COMmon
specification is 1linked first
so that LINK allocates an
appropriate numbher of bytes for
data storage. To prevent this
error re-order the module
loading sequence or change the
COMmon block. definitions.

$Mult. Def. Global YYYYYY More than one
definition for the global
(internal) symbol YYYYYY was
encountered during the loading
process.

2.5 Examples of Linking Modules

Following are several examples of the process of
linking, loading, saving, and executing files. The
asterisk (*) in the following command lines is NOT
user-typed; it is the prompt for LINK.

The following command will 1locad a 32-byte program
called MYPROG into memory and begin execution:

133

CROMEMC(O COBQL USER'S GUIDE
Linking and Loading COBOL programs

LINK MYPROG/G

If the 1load is successful (no errors), the Linker
will respond with the message:

(1060 1029 16]
[BEGIN EXECUTION]

This program will begin execution at 1080H. If
desired, the program can be saved prior to execution
by typing:

LINK MYPROG/E
to which the Linker would respond:
(1908 1820 16)

followed by a return to CDOS and the issue of the
CDOS prompt. This return to CDOS does not change
the user area. Therefor, the program could be saved
by issuing the command:

SAVE MYPROG.COM 16

Since the extension COM was chosen, the program can
be executed directly from CDOS by typing the command
"MYPROG" in response to the CDOS prompt.

Another example would be to 1ink several modules
together as they are loaded into memory. Suppose we
have the three relocatable modules GRAPHX, MAIN, and
SUBPLOT. The Linker is called first by issuing the
command :

LINK <CR>

to which LINK responds with the asterisk. We could
then type:

MATN

The Linker would look on the current drive for MAIN
and then return the still-undefined symbols (each
one followed by an asterisk}) and the address at
which they are referenced:

INITG* 122E
LINE* 164D
CURSR* 163E
STRIN* 131B

134

CROMEMC(Q COBOL USER'S GUIDE
Linking and Loading COBOL programs

SUBROT*147D
*

We then 1ink the next module:
GRAPHX

and LINK again responds with the undefined symbols
‘and the prompt:

_SUBROT* 147D
*

Finally, we LINK the last module:
SUBROT

to which LINK responds with the prompt. We can now
type /G or /E to run or exit from the program as we
did in the first example. However, let's first
generate a map of all the symbols using the /M LINK
switch:

* /M
to which the Linker will respond:

INITG 122K
LINE 164D
CURSR 163E
STRIN 131B
SUBROT 147D
PAGE 17DF
DOT 180E
ANIMT 1558

Note that this is similar to the map of undefined
symbols; however, in this case symbols which are not
used, but have been defined in one o¢f the linked
programs, are also listed. .

The above example could also have been 1linked
directly, and without producing the maps of
undefined symbols, by typing the command line:

LINK GRAPHX,SUBPLOT,MAIN/M

Note also that this command line links them in a
different order than the first case since all of the
modules are relocatable. Thus, the map printed to
the console this time would have a different address

135

CROMEMCO COBOL USER'S GUIDE
Linking and Loading COBOL programs

after each symbol.
The user may return to CDOS at any time while using

LINK (to abort the linking or loading process, for
example) by typing Control-C (°C).

136

CROMEMCOQ COBOL USER'S GUIDE
Runtime Execution

3.1

3.2

SECTION 3

Runtime Execution

Printer File Handling

Printer files should be viewed as a stream of
characters going to the printer, Records should be
defined as the fields to appear on the printer. No
extra characters are needed in the record for
carriage control characters., Carriage return, line
feed and form feed areg sent to the printer as needed
between lines. Note fthat blank characters (spaces)
on the end of a print line are truncated to make
printing faster.

No "VALUE OF" clause should be given for a PRINTER
file in the FD, but "“LABEL RECORD IS OMITTED" must
be specified. The BLOCK clause must not be used for
printer files.

Disk File Handling

Disk files must have "LABEL RECORD IS
STANDARD" declared and have a "VALUE OF" clause that
includes a File ID. Block clauses are checked for
syntax but have ne effect on any type file at this
time.

The format of sequential files is always that of
variable 1length strings delimited by a carriage
return/line feed. Records are packed together as
much as possible to make maximum use of floppy
disks.

The format of relative files is always that of fixed
length records of the size of the largest record
defined for the file. No delimiter is needed, and
therefore none 1is provided. Deleted records are
filled with hex value '82'. Also note that 6 bytes
are reserved at the begining of the file to contain
bookkeeping information for COBOL.

The format of indexed files is too complicated to
include in this document. It is a complex mixture
of keys, data, linear pointers, deletion pointers,
and scramble+function pointers. It is doubtful that

137

CROMEMCO COBOL USER'S GUIDE
Runtime Execution

the COBOL programmer would require access to such

information.

3.3 Runtime Errors

Runtime terminal

errors result in a four-line

synopsis, printed on the conscle.

** RUN-TIME ERR:
reason (see list below)

line number
program—-id

The possible reasons for'termination, with
additional explanation, are listed below.

REDUNDANT OPEN

DATA UNAVAILABLE

SUBSCRIPT FAULT

INPUT/OUTPUT

Attempt to open a file that is
already open.

A file's base register contains
a non-zero address if, and only
if, the file 1is open and
available record areas exist.
Reference to data in a record
of a non-open file, or one that
has already reached the "AT
END" condition, is invalid, and
is detected by recognizing zero
in the associated base
register,

A subscript has an illegal
value ({usually, less than 1).
This applies to an 1index
reference such as I + 2, the
value of which must not be less
than 1.

Unrecoverable I-0 error, with
no provision in the user's
COBOL program for acting upon
the situation by way of an AT
END clause, INVALID KEY clause,
DECLARATIVE procedure, etc.

138

CROMEMCO COBOQL USER'S GUIDE
Runtime Execution

NON-NUMERIC DATA

PERFORM OVERLAP

CALL PARAMETERS

ILLEGAL READ

ILLEGAL WRITE

ILLEGAL REWRITE

REWRITE; NO READ

REDUNDANT CLOSE

GO TO. (NOT SET)

Whenever the contents of a
numeric item does not conform
to the given PICTURE, this
condition may arise.
Corresponds to the hardware
'data exception' interrupt in
some computers. The user
should always check input data,
if it is subject to error
(because "input editing™ has
not yet been done) by use of
the NUMERIC test.

An illegal sequence of
PERFORM's as, for example, when
paragraph A is performed, and
prior to exiting from it
another PERFORM A is intiated.

There is a disparity between
the number of parameters in
calling program and called
subprogram.

Attempt to READ a file that is
not open in the input or I-0
mode.

Attempt to WRITE to a file that
is not open in the output mode
for sequential access files, or
in the output or I-0 mode for
random or dynamic access files.

Attempt to REWRITE a record in
a file not open in the I-O
mode,

Attempt to REWRITE a record of
sequential access file when the
last operation was not a
successful READ.

Attempt to close a file that is
net open.

Attempt to execute an
unintialized alterable
paragraph containing only a
null GO statement.

139

o

CROMEMCO COBQOL USER'S GUIDE
Runtime Execution

FILE LOCKED

READ BEYOND EOF

DELETE; NO READ

ILLEGAL DELETE

ILLEGAL START

Attempt to open after earlier
CLOSE WITH LOCK.

Attempt to read (next) after
already encountering end-of-
file.

Attempt to DELETE a record of a
sequential access file when the
last operation was not a
successful READ,

Relative file not opened for
I—O.

File not opened for input or
I_Oo

1449

CROMEMCO COBOL REFPERENCE MANUAL

Index

INDEHX

A

ACCEPT statement, 15,
ACCESS clause, 26, 94
ADD statement, 64
ADVANCING option, 76
ALL phrase, 81

Alphanumeric item,
Alphanumeric-edited item, 34

ALTER statement, 69

ANST
ANST

Arithmetic expressibn, 63
Arithmetic statements, 58

level 1, 6
level 2, 6

ASCII-ENTRY, 25
AT END clause, 51, 74,
AUTHOR, 23

B

Binary item, 29, 33

BLANK WHEN ZERO clause, 44

BLOCK clause, 47

C
CALL

Character comparisions, 72

statement, 86

Character set, 8
Class test conditien,
CLOSE statement, 77

CODE-

SET clause, 48

Comments, 21

Compound condition,
COMPUTATIONAL, 34, 33

COMPUTATIONAL-3, 29,

COMPUTE statement,

63

66'

L4

28, 31, 34

72

78

33

Conditions, 9, 11, 15,
CONFIGURATION SECTION,
Continuation line, 16,
Contreol index, 94

COPY

statement, 22

COUNT IN phrase, 82
CURRENCY SIGN, 24

D

Data
Data
Data
DATA

description entry, 30, 48

Division, 14, 18
Item, 13, 28
RECORDS clause,

47

CROMEMCO COBOL REFERENCE MANUAL
Index

Data-name, 1@, 12, 14, 38
DATE-COMPILED, 23
DATE-WRITTEN, 23
Debugging, 7, 24, 83
Decimal item, 32, 45
Decimal point, 36
DECIMAL-POINT IS COMMA, 17, 24
DECLARATIVES, 53, 186
DELETE statement, 99, 144
DELIMITED BY phrase, 86
DISPLAY statement, 15, 66
DIVIDE statement, 62

E

Elementary item, 12, 28, 31, 33
Ellipsis, 12

Enviroment Division, 15, 18, 24
EXHIBIT statement, 84

EXIT PROGRAM statement, 86

EXIT statement, 68

EXTEND phrase, 74

External decimal item, 29

F

FD entry, 14, 21, 46
Figurative constants, 17
File, 12

File name, 14

File Section, 14, 46

FILE STATUS clause, 26, 95
FILE STATUS data item, 74
FILE-CONTROL, 26
File-name, 10

FILLER, 30

Floating string, 37
Format notation, 1@

G

General Formats, 10

GIVING option, 60

GO TO statement, 65

Group, 33

Group item, 13, 28, 31, 43, 53

H
HIGH-VALUE, 17

I
1-0, 74

CROMEMCO COBOL REFERENCE MANUAL
Index

I-0 error handling, 78
I-0-CONTROL paragraph, 26, 27
Indentification bivision, 18, 23
IF statement, 69

Imperative statements, 51, 58
Index data-item, 38, 33, 87
Index—name, 87

Indexed I-0, 7

Indexed-file organization, 94
INPUT file, 73

INPUT~OUTPUT SECTION, 25

INSPECT statement, 55
INSTALLATION, 23

Inter-Program Communication, 7
Internal decimal item, 29

INTO option, 75

INVALID KEY clause, 51, 96, 98, 929, 100

J
JUSTIFIED RIGHT clause, 44

K
KEY clause, 94
KEY IS clause, 98

L

LABEL c¢lause, 46

Level 88, 49

Level number, 12, 21, 28, 38, 49
Library, 7

Linkage section, 49

Literals, 15

LOCK suffix, 77

LOW-VALUE, 17

M

Mnemonic~name, 149, 15
Modules, 6

MOVE statement, 53
MULTIPLY statement, 62

N

Non-numeric literals, 15
Nucleus, 6

Numeric Comparisons, 72
Numeric item, 28, 34
Numeric literals, 16

CROMEMCO COBOL REFERENCE MANUAL
Index

0

OBJECT-COMPUTER, 24
OCCURS clause, 42
OMITTED, 46

ON OVERFLOW clause, 82
OPEN statement, 73
ORGANIZATION clause, 26
QUTPUT file, 73 '
OVERFLOW, 51

p

Packed decimal, 29
Paragraphs, 52
Parentheses, 12

PERFORM statement, 67
PICTURE, 29

PICTURE clause, 34

POINTER phrase, 8#
PRINTER, 15, 46, 47
Procedure Division, 18, 51
Procedure-name, 16, 21, 52
PROGRAM-ID, 23
Punctuation, 8, 9, 14

Q
Qualification, 22

- QUOTE, 17

R

Range (PERFORM), 68

READ statement, 74, 97, 103
READY TRACE statement, 84
Records 12, 48, 95
REDEFINES clause, 41
Relative I-0, 7

Relative indexing, 88
RELATIVE KEY c¢lause, 182
RELATIVE KEY item, 103
Relative organization, 101
REPLACING clause, 56

Report item, 28, 32, 35
RESERVE clause, 26

Reserved words, 16, 21
RESET TRACE statement, 83
REWRITE statement, 77, 99, 144
ROUNDED option, 59

S :
SAME AREA, 27

CROMEMCO COBQL REPFPERENCE MANUAL
Index :

SEARCH ALL statement, 89
SEARCH statement, 920
Section-name, 52
Sections, 52

SECURITY, 23

SELECT entry, 26, 94, 161, 182
Sentences, 51, 52
Separator, ©

Sequence number, 21
Sequential 1-0, 7

SET statement, 87

SIGN clause, 29, 45

Sign test, 73

Simple condition, 78

SIZE ERROR option, 51, 59
SOURCE-COMPUTER, 24
SPACE, 17

SPECIAL-NAMES, 24
STANDARD, 46

START statement, 10d, 165
Statements, 51

STOP statement, 65

STRING statement, 80
Subscripts, 43, 58
SUBTRACT statement, 61
SYNCHRONIZED clause, 44

T

Table Handling, 7
TALLYING clause, 56
TRACE mode, 83

]

UNSTRING statement, 81
USAGE clause, 33

USE sentence, 106
USING list, 49, 85

v

VALUE IS clause, 48, 49
VALUE OF clause, 46
VARYING, 89

Verbs, 51

W

WHEN clause, 90

Word, 8, 14

Working-storage section, 49
WRITE statement, 75, 98, 143

P

CROMEMCO COBOL

Page
Incorrect

Correct

Page
Incorrect

Correct

Page
Incorrect

Correct

Page
Incorrect

Correct

MANUAL SUPPLEMENT

*"

-

as

LLJ

LL]

LL]

ERRATA

11, item %6", line 2
«e+sln brackets is,..

ee+in brackets ([}) is...

l6, item "2.", line 1
««.Area B preceding...

+.«sArea B (see 1,12, Coding
preceding...

19, under ENVIRONMENT DIVISION

[CONFIGURATION SECTION.]

[CONFIGURATION SECTION.

21, item "3.", line 2
...Columns 12“72...

.+ .Area B (Columns 12—72)000

Rules)

CROMEMCO COBOL MANUAL SUPPLEMENT

Page

Incorrect

Correct

Page

Add

Page

Incorrect

Correct

Page

Incorrect

Correct

LLd

-

e

L]

-

67, PERFORM, option 2

{index name}
PERFORM range VARYING {data name } FRQOM
amount-1 BY amount-2 UNTIL condition.

{index name}

PERFORM range [VARYING {data name }
FROM amount-1 BY amount-2] UNTIL
condition.

68, EXIT statement, add last paragraph

The paragraph containing the EXIT statement
must be the final paragraph in a PERFORM'ed
section in order to function as an end-
point from which control returns to the
statement following the PERFORM,.

73, OPEN STATEMENT

INPUT
I-Q
QUTPUT
EXTEND

{ OPEN file-name ... } ...

OPEN { { I-0O
OUTPUT

EXTEND

}
}
}
}
INPUT 1}
% file-name +ve } oo
}

P Y i L B sy pubery, ATy i,

75, WRITE STATEMENT

WRITE record—-name FROM data-name-1

{AFTER } ADVANCING { operand LINE (8} }
{BEFORE} { PAGE }

WRITE record-name { FROM data-name-1]

[{AFTER } ADVANCING { operand LINE (S} } 1}
[{BEFORE} { PAGE bl

CROMEMCO COBOL

Page

Add

Page
Incorrect

Correct

Page

Incorrect

Correct

Page

Incorrect

Correct

Page
Incorrect

Correct

MANUAL SUPPLEMENT

"

(1]

[T}

L]

"

(1]

83, first paragraph, add last sentence
Then the next receiving field (if any) in

the list becomes the current receiving
field and scanning continues.

86, CALL STATEMENT

CALL literal USING data-name ...

CALL literal [USING data-name ...]

95, RECORD KEY CLAUSE

.e.srequired, is...

«sorequired in the SELECT entry for the
file, is...

95, RECORD KEY CLAUSE

«s.group item, an elementary alphanumeric
item or a decimal field. A decimal
key...sign. No record key...

...group item or an elementary alphanumeric
item. No record key...

198, example 1
.«+0OR (E < F) and...

.« +OR (E <= F) and...

CROMEMCO COBOL MANUAL SUPPLEMENT

SUPPLEMENTAL INFORMATION - REFERENCE MANUAL

COPY STATEMENT

This statement must begin in column 8, and the name of

the file containing the source module is not enclosed in
either single or double quotes,

The file referenced in the COPY statement must contain a
single module of source statements. These statements
will be inserted without change in place of the COPY
statement,

There is no COPY library as such--each module of library
code must reside in a uniquely named file on disk.

Calling assembler and FORTRAN subprograms

An assembler or FORTRAN subprogram may be called from a
COBOL program by using its name in the CALL statement,
then 1linking the relocatable object code modules
together using LINK,

For exawmple, suppose the assembler routine SCAN is
called from the COBOL program FINDTEXT. The COBOL
program is compiled and the assembler routine 1is
assembled, then the resulting relocatable object code
modules are linked by LINK:

A. LINK FINDTEXT, SCAN, FINDTEXT/N/E

Parameters are always passed by reference (i.e., the
value passed is the two-byte address of the first byte
of the actual argument).

Three or fewer parameters are passed this way:

Parameter 1 address in HL

Parameter 2 address in DE
Parameter 3 address in BC

Four or more parameters are passed this way:

Parameter 1 address in HL

Parameter 2 address in DE

Parameter 3 - n addresses are 1in one block of
memory BC points to the first byte of
the block

CROMEMCO COBOL MANUAL SUPPLEMENT

To return from a FORTRAN subprogram to a calling COBOL
program, use the RETURN statement.

To return from an assembler subprogram to a calling
COBOL program, use the RET command.

Note that the only type of data that is stored in the
same format in COBOL and FORTRAN is alphanumeric data.
None of the numeric types of data are interchangeable,

CROMEMCO COBOL MANUAL SUPPLEMENT

SUPPLEMENTAL INFORMATION - USER'S GUIDE

Compiling COBOL Programs

COBOL Overlay File Usage

OVRLY1 These files are overlay files brought into
OVRLY2 memory by COBOL during the compilation. They
OVRLY3 must be on the currently logged-in disk.
OVRLY4

"Dictionary Full" compile time error message

This message indicates that the symbol table used by the
compiler is full and that the compiler cannot proceed
with the compile. Restart the compilation, using the /P
compiler switch to allocate more memory to the compiler

stack.
COBOL Memory Usage Approximation

8K CDOS (version 1.87)
31K COBOL compiler
7K minimum table space

20 bytes for each line of COBOL source code

The sum of these quantities is the approximate memory
required to compile a COBOL program.

P

P

CROMEMCO COBOL

Linking and Loa

MANUAL SUPPLEMENT

ding COBOL Programs

LINK Switches

N

P and D

Specifying <filename>/N will cause the linked
program to be saved on disk when a /E or a /G
is entered. <filename> will be the name
assigned to the program, with a default
extension of .COM when no extension is
specified. A jump to the start of the program
is inserted if the program's program area is
loaded starting at a location other than 100
hex.

/P and /D allow the program and data origins

to be set for the next program loaded. /P and
/D take effect when entered and they have no
effect on program modules already loaded. The
form is /P:<address> and /D:<address>, where
<address> is the desired origin in the current
typeout radix. (The default radix is hex. /O
sets the radix to octal; /H sets the radix to
hex.) LINK defaults to /P:<1link origin> + 3
(163 hex) to leave room for the jump to the
start of the program's program area.

Do not use /P or /D to load programs or data
into locations 16 hex to 12 hex, which is
where LINK inserts the jump to the start of
the program's program area, unless the start
of the program area is loaded there. LINK
will not generate and insert the jump
instruction if these locations are used.

If no /D is entered, data areas are loaded
before program areas for each module. If a /D
is entered, all data and Common areas are
loaded starting at the data origin and the
program area at the program origin,

Example:
*/P:20¢,EXAMPL
Data 204 360
*/R
*/P:200 /D:4060,EXAMPL
Data 499 480

Program 260 28¢

CROMEMCO COBOL MANUAL SUPPLEMENT

Format of LINK Compatible Object Files

Loader type 9 is now in use; it is external + offset.
Type 9 has only an A field, there is no B field. The
value for type 9 will be added to the two bytes starting
at the current location counter. This addition is done
after a /E or /G iIs entered, so unless undefined symbols
remain, the effect is external + offset.

This type can also be used to add program and data

relatives or almost any other combination of relocation
types. '

CROMEMCO COBOL MANUAL SUPPLEMENT

LINK Error Messages
?0ut of Memory has replaced ?Fatal Table Collision

?<file> Not Found has replaced ?File Not Found. The
name of the file not found is
printed.

%0verlaying [Program] Area
[Data |

A /D or /P will cause previously
loaded data or program to be
destroyed.

?Intersecting [Program] Area
[Data]

The program and data area intersect
and an address or external chain
entry is in this intersection. The
final value cannot be converted to a
current value since it is in the
area intersection.

?Start Symbol -<name> -Undefined

After a /E: or /G: 1is entered, the
symbol specified was not defined.

Origin f[Above] Loader Memory, Move Anyway (Y or N)?
[Below]

After a /E or /G was entered, either

the data or program area has an
origin or top which lies outside
loader memory (i.e., loader origin
to top of memory). If a ¥ <cr> is
entered, LINK will move the area and
continue, If anything else is
entered, LINK will exit. In either
case, 1if a /N had already been
entered, the program image will have
already been saved on disk.

?Can't Save Object File
Available disk was exhausted, or a

disk error occurred when LINK was
attempting to save the program.

CROMEMCO COBOL MANUAL SUPPLEMENT

Separating Data and Program Areas

By default, LINK loads the data area first in memory,
followed immediately by the program area. The user may
use switches /D and /P to set the beginning addresses of
the data and program areas, with the following
considerations.

When 1linking FORTRAN subprograms, one should be aware
that the disk driver module in the FORLIB relocatable
library file has declared an ENTRY global symbol called
SMEMRY in order to obtain from LINK a pointer to the
first available byte following a program's data area.
When LINK finds this symbol in the module being loaded,
it loads into it the address of the top of the data area
+ 1.

In the default case, where neither /D nor /P has been
used, the program area is considered part of the data
area, and LINK loads the two-part data area ({(data and
program), then sets $MEMRY to point to the top of the
two—part data area + 1,

When either /D or /P has been used to separate the two
areas, S$MEMRY will be set to point to the top of the
data area + 1. :

Thus, when /D is used to load the data area below the
program area, the user must be certain that there is
enough memory between the top of the data and the bottom
of the program area. Otherwise the program area will be
overwritten and the program destroyed at runtime.

The FORTRAN disk driver module uses $MEMRY to allocate
disk buffers (128 decimal bytes each) and FCB's (33
decimal bytes each), These follow the address pointed
to by SMEMRY (top of data area + 1), so the user must
have an idea of their total length in order to start the
program area above their ending address.

