Part No, 023~-4052

Cromemco’
Modifying
A Cromix’Driver

CROMEMCO, Inc.
280 Bernardo Avenue
Mountain View, CA. 94043

Awenty Lollars

February 1983

Cromemco’
Modifying
A Cromix’Driver

CROMEMCO, Inc.
280 Bernardo Avenue
Mountain View, CA, 94043

Part No. 023-4052

Copyright© 1983
CROMEMCO, Inc.
All Rights Reserved

February 1983

This manual was produced using a Cromemco
System Three computer with a Cromemco HDD=22
Hard Disk Storage System running under the
Cromemco Cromix® Operating System. The text
was edited with the Cromemco Cromix Screen
Editor. The edited text was proofread by the
Cromemco SpellMaster™ Program and format-
ted by the Cromemco Word Processing System
Formatter 1II, Camera-ready copy was printed
on a Cromemco 3355B printer.

TABLE O NTE

Chapter 1: ADDING A NEW CHARACTER DEVICE DRIVER

What is a Device Driver?

When are the Primary Driver Subroutines Called?

How do the Primary Driver Subroutines Work?

How do the Primary Device Subroutines Use the
Z80 Registers?

Utilities for Adding and Removing Interrupt
Vectors

Character Transfer Utilities

Character Buffering Utilities

Utilities for Sleeping and Waking Up

Utilities for Drivers that Use the Tuart
Interface

Chapter 2: ADDING A NEW IOP CHARACTER DEVICE DRIVER

Adding the Interface Driver to Cromix

Adding the C-Bus Driver to the IOP Driver File

Utilities for Adding and Removing Interrupt
Vectors

Character Buffering Utilities

Host-Answering Subroutines

Other Host Subroutines

C-Bus Process Control Subroutines

Quadart Utilities

CSP Utilities

[FER LI 6]

14
14
15
16

17

25

26

34
35
36
395
41
42
43

Modifying a Cromix Driver
1. Adding a New Character Device Driver

Chapter 1

ADDING A NEW CHARACTER DEVICE DRIVER

To establish a Cromix system that includes a new driver
that does not reside in the I0P, follow these
instructions.

1. Write the new device driver. See the following
pages for hints, It may be helpful to use the
modules in the /cro/driv/tty, /cro/driv/lpt, and
/ero/driv/slpt directories as models. As an
example for this description, it has been assumed
that a new driver is contained in two modules named
xyza.z80 and zyzb.z80, and that the first of these
modules contains an entry point named xyz.

2. Assemble .£he modules of the new driver,

asmb zyza
¥ asmb xyzb

3. Save the o0ld copy o¢f cromix.sys. Use the Crogen
utility to create a copy of cromix.sys that
includes the new driver,

¥ move /cromix.sys /cromixold.sys
crogen —u /cromix

First the Crogen utility asks, one by one, which of the
standard Cromix drivers should be included. After these
questions have been answered, it will ask dguestions
about the new driver. Major device numbers for
user-supplied drivers range from 20 up. These guestions
and answers are illustrated for the driver XYZ with
device number 21.

Modifying a Cromix Driver
1. Adding a New Character Device Driver

User supplied character drivers (Y=Yes, N=No) <N> y

Enter driver entry point {blank=none, E=End)

20 -
21 - xyz
22 - e

Enter names of rel files which contain drivers (E=End)

? Xyza
? Xxyzb
?2 e

Run the Makdev utility to define the devices that
will use the driver. The Makdev utility does this
by assigning the device names to the corresponding
device numbers, For example, three devices could
be defined by the following commands, assuming that
the major device number is 21.

makdev /dev/xyzl c 21 0
makdev /dev/xyz2 ¢ 21 1
makdev /dev/xyz3 c 21 2

Boot the new operating system.

boot

WHAT IS A DEVICE DRIVER?

A character device driver is a list of the addresses of
seven subroutines, called the primary driver
subroutines. A driver can also have other subroutines.
The list of primary subroutines for the =xyz device
driver takes the following form:

Modifying a Cromix Driver
1. Adding a Mew Character Device Driver

entry XYZ

XyzZ: dw init ; initialize device
dw open ; open device
dw close : close device
dw read ; read device
dw write : write to device
dw getmode ; get device mode
dw setmode ;s set device mode

The primary driver subroutines must satisfy only a few
requirements. Many drivers in effect omit primary
subroutines by providing dummy subroutines that do
nothing but return.

WHEN ARE THE PRIMARY DRIVER SUBROUTINES CALLED?

The first subroutine, the Initialize subroutine, 1is
called once, when the Cromix QOperating System is booted.

The Open subroutine is called whenever the device is
opened by the .open system call.

The Close subroutine is called whenever the device is
closed by the .close system call.

The Read subroutine is called whenever the device is
read by the .rdseq, .rdline, or .rdbyte system calls.

The Write subroutine is called whenever anything is
written to the device by the .wrseq, .wrline, or
.Wwrbyte system calls.

The Getmode subroutine is called whenever the mode of
the device is examined by the .getmode system call.

The Setmode subroutine is called whenever the mode of
the device is set by the .setmode system call.

HOW DO THE PRIMARY DRIVER SUBROUTINES WORK?

Following is a brief description of the primary
subroutines for drivers that use interrupts. Driver
interrupt subroutines are also described., Reference is
made to various utility subroutines that are
subsequently described in detail.

Primary driver subroutines must not make Cromix system
calls.

Modifying a Cromix Driver
1. Adding a New Character Device Driver

Initialize Subroutine

When the Cromix Operating System is booted, the
Initialize subroutine for each device driver is called.
Interrupts must remain disabled during this time. In
some drivers, this subroutine initializes the interface
board. Drivers for devices that use the Tuart interface
can use the Tuinit utility for this purpose. Drivers
that use the Quadart can use the Qdinit utility.

Open Subroutine

This subroutine is called when a .open system call is
made. Many drivers use this subroutine to initialize a
data structure for the device and set up the device's
interrupts the first time the device is opened. The
Cromix Operating System maintains a set of data
structures for devices that use the Tuart interface.
The Tussetup utility finds a data structure for a serial
Tuart device, 1initializes it, and sets up its
interrupts, The Cromix Operating System also maintains
a set of data structures in the IOP for devices that use
the IOP and Quadart interface. The CGdsetup utility sets
up these devices.

Cleose Subroutine

This subroutine is called when a .close system call is
made, It is used by many drivers to relinguish the data
structure and mask the interrupts when the device is
finally closed. The Tusshut and Qdshut utilities
perform these functions for serial Tuart devices and
IOP-Quadart devices, respectively.

Read Subroutine

This subroutine is called when a .rdseqg, .rdline, or
.rdbyte system call is made. If there are not enough
characters in the device input gueue, the Read
subroutine should call the Waitid utility to obtain a
wait identification number and then call the Wait
utility., The wait identification number specifies the
reason for the wait. If the device has a character
available, the Read subroutine should retrieve it from
the input gueue by calling the Getq utility and then
deliver it to the system by calling the Ioputc utility.
If Toputc returns with the carry flag reset, this entire
procedure should be repeated. Otherwise, the system
call has been satisfied and the Read subroutine should
return with the carry flag reset,

4

Modifying a Cromix Driver
1. Adding a New Character Device Driver

Input Interrupt Subroutine

Assuming that the Open subroutine (above) has set up
interrupts using either the Tussetup, Qdsetup, or Addint
utility, the interrupt handler will branch to this
subroutine when the device hardware causes an input
interrupt. This subroutine should read a character or
characters from the device and place them in the input
queue by calling the Putg utility. If the driver's read
subroutine has put the process to sleep by calling Wait,
then the interrupt subroutine should wake the process up
by calling the Waitid and Wakeup utilities after the
input gueue has been appropriately filled. When the
gueue is appropriately filled will depend how the device
1s to be used, Terminal drivers, for example, usually
do not wake the read process up until the gueue contains
a full line,

Write Subroutine

This subroutine is called when a .wrseq, .wrline, or
.Wwrbyte system call is made,. If the number of
characters already in the output gueue exceeds a
specified number, the Write subroutine should call the
Waitid utility to obtain a wait identification number
and then call the Wait utility. The wait identification
number specifies the reason for the wait. Otherwise,
the Write subroutine should call the Togetc utility to
get a character from the system. If Iogetc returns with
the carry flag reset, the Write subroutine should
deliver the character to the output gueure by calling the
Putg utility and then repeat this entire procedure. If
the carry flag is set, the system has no more characters
to deliver and the Write subroutine should return with
the carry flag reset,

Output Interrupt Subroutine

Assuming that the Open subroutine (above) has set up
interrupts using either the Tussetup, Qdsetup, or Addint
utility, the interrupt handler will branch to this
subroutine when the device hardware causes an input
interrupt. This subroutine should get a character from
the output queue by calling the Getqg utility and then
write it to the device, If the Write subroutine has put
the process to sleep by calling Wait, then the interrupt
subroutine should wake the process up by calling the
Waitid and Wakeup utilities after the number of
characters in the output gqueue has fallen to a specified
number.

Modifying a Cromix Driver
1. Adding a New Character Device Driver

Getmode Subroutine

This subroutine is called when a .getmode system call is
made, Its function is left up to the driver.

Setmode Subroutine

This subroutine is called when a .setmode system call is
made. 1Its function is left up to the driver.

HOW DO THE PRIMARY DEVICE SUBROUTINES USE THE Z80
REGISTERS?

When the Cromix Operating System calls any o¢f the
primary device subroutines, the de register contains the
device number. (The major device number ig in the d
register and the minor number is in the e register.)
The major device number is assigned to the driver by the
Crogen utility, The minor number is used at the
discretion of the driver. Many drivers use it to
correspond to device port addresses.

A primary device subroutine should return to the Cromix
Operating System with the carry flag set to indicate an
error condition. Otherwise, the carry flag should be
reset. If the carry flag is set the a register should
contain a number indicating the nature of the error,
This number should be chosen from one of the standard
error numbers defined in the Jsysequ.z80 file. For
example, if the open routine is c¢alled with an
inappropriate device number, the routine should return
with the carry flag set and with the a registerx
containing the constant 2devopen,

The subroutines for getting and setting the mode are
called with the ¢ register containing the contents of
the ¢ register when the .getmode or .setmode system call
was made. The hl register contains the contents of the
de register when the system call was made. When one of
these subroutines returns, the contents of the hl
register will appear in the de register when the system
call returns. This provides a means of passing
parameters to these subroutines and returning values
from them.

With these exceptions, no registers have significance
upon return from any of the primary driver subroutines.

Modifying a Cromix Driver
1. Adding a New Character Device Driver

The Initialize subroutine is called with interrupts
disabled. It must not enable interrupts. The other six
subroutines are called with interrupts enabled., These
subroutines may disable interrupts during critical
sections, but otherwise interrupts should be left
enabled,

Some examples of drivers follow. These drivers make use
of various Cromix driver utilities, such as Ioputc and
Iogetc, When one of these utilities is used, 1its
function is hinted at in the comments. Detailed
descriptions are provided following the listings,

Modifying a Cromix Driver

1. Adding a New Character Device Driver

Example
data equ
stat equ

1l
entry
ext tuinit
ext ioputc,
21h
dataport - 1

ttyni

iogetc

; data port number
; status port number

ttyni: ; An elementary non-interrupting terminal driver

1 which uses the serial

dw
dw
dw
dw
dw
Adw
dw

dummy: xor
ret

niread:

rdQ: in
bit
jr
in
call

ir
: No.
and
ret

niwrite:
wrQ: call

jr
wr2: in
bit
ir
out
jr

wrexits: ; Done.

and
ret

tuinit
dummy
dummy
niread
niwrite
dummy
dummy

a,a

a, (stat)
6,a
Z,£d0

a, (data)
ioputc

nc,rdo

Tuart port at address 21H
Initialize

Open

Close

Read

Write

Get mode

Wet mode

]

ap W e WA we w4

Clear the carry flag

-4

Wait until the serial input
port is ready

-y W

and then inrut the byte
Deliver the byte to process
which made the ,RDSEQ, .RD-
LINE, or .RDBYTE system call
Are more bytes wanted?

. W mg W

The system call has been satisfied

a,4a

iogetc

Cc,wWwrexit
b, (stat)
7.b
Z,Wr2
{(data) ,a
wro0

a,a

¢ Clear carry flag

Get a byte from the process

which made the ,RDSEQ, ,RD-

LINE, or .RDBYTE system call

Was a byte available?

Yes, Wait until the serial
output port is ready

WA MR e W My e

Output the byte
Loop until no more bytes
are available from the system

-k e N

The system call has been satisfied

7 Clear carry flag

Modifying a Cromix Driver
1. Adding a New Character Device Driver

Example 2

entry

ext
ext
ext

eslpt

ioputc, icogetc, putqg, getq

waitid, wait, wakeup

tuinit, tussetup, tusfind, tusshut, tuspeed

*include jsysequ.z80
*include modeequ.z80
*include waitdef,z80

esipt: ; An elementary interrupting serial printer driver
; which uses the serial Tuart port whose address
; is determined by the minor device number
dw tuinit ; Initialize
aw eopen ;: Open
dw eclose ; Close
dw dummy ; Read
dw ewrite ; Write
dw dummy ; Get mode
dw dummy : Set mode

—— e et e ey My et iy W WL et et e W e R G e St W i e frm e ey S S Wt e e ey e e e oy S A e ey S e e e AL i e o

:+ Definition of the data structure for this driver

struct €
devno: ds 2 ; Device number
dataprt: ds 1 ; Data port number
openct: as 1 ; Open count
stat: ds 1 :+ Status
outqg: ; Header for the output gqueue
ds 1 : Output queue byte count
ds 2 ;1 Space for two gueue pointers
ds 2
mend

: STAT bits

WRWAIT equ 0 ¢+ Waiting for output gueue to drain
INT_DUE equ 1 ; An output interrupt is expected
T e e
; Constants

OUTHIGH equ 60 :+ High-water mark for output queue
OUTLOW equ 30 ; Low-water mark for output queue

R i S o e e e . e e e farn e S b s e S e e e e e T b e T e A . i e Y —

H
; Dummy subroutine

dummy: Xor a,a : Clear the carry flag
ret

Modifying a Cromix Driver
1. Adding a MNew Character Device Driver

; Open subroutine

Called by Cromix with DE = device number

eopen:
di
;+ Set up the serial Tuart for this device,
: This includes setting up interrupts by informing
; Cromix of the addresses of the input and the output
: interrupt routines for this driver.
1d bc, dummy ; Input interrupt routine
1d hl,outint ; Output interrupt routine
call tussetup
jr C,opx2 : EBrror?
: No. TUSSETUP returns with both DE and IY containing
: the address of the data structure for this device
; (determined by the minor device number), It also
; sets up the interrupt handler to load DE with the
; address of the data structure when the interrupt
: routines are called.
jr nz,oplo0 ¢+ Is this the first open?
14 (iy+openct) ,1 ; Yes, Open count =1
14 a,s_1200 s Code for 1200 baud
call tuspeed : Set the Tuart baudrate
opxl: and a,a ¢ Clear carry flag
opx2: ei
ret
oplo: ; The device has been opened before
ine {iy+openct) ; Update the open count
jr nz,opxl : Too many opens?
dec (iy+openct) ; Yes
1ld a,?devopen : Error
scf
jr opx2 ; Exit

10

Modifying a Cromix Driver
1. Adding a New Character Device Driver

e — — —— T i — —————————— o S T ———————— -} i Y — —— ——— — = T S ——————

r
: Close subicutine

eclose: ; Called by Cromix with DE = device number

1ld Cc,e ; Save minor device number
;: Find the serial Tuart data structure for this device
call tusfind ; DE & IY = addr of structure
di
dec (iy+openct) ; Update the open count
jr nz,clx ; Last open?
call ogflush ; Yes, Flush the output queue
14d e,c ; E = minor device number
call tusshut : Shut down the device
clx: and a,a : Reset carry flag
ei
ret

oqflush:; Discard anything remaining in the output dueue

: Call with: DE = address of device structure
push hl
1d hl,outq : Displacement of output queue
add hl,de : BL = addr of output gqueue
fl2: call getq
jr nc,£12
pop k1l
ret

11

Modifying a Cromix Driver
1. Adding a New Character Device Driver

wr2:

wrg:

wrexit:

—————— — i T — ———————— i S0 e} TS T T ——— iy A ——— - ————

subroutine

; Called by Cromix with DE = device number

; Find the serial Tuart data structure for this device
call tusfind : DE & IY = addr of structure
;s Get a byte from the process which made the .RDSEQ,

L

: RDLINE, or .RDBYTE system call

call iogetc

jr c,wrexit : Was a byte available?

14 h,a ; Yes. Save it

: Get count of number of bytes already in output queue
14 a, (iy+outq)

cp a,0UTHIGH ; Too many?

jr C,wr8

; Yes, Wait until outp. queue has drained sufficiently
set WRWAIT, (iy+stat)

14 a, HnIWRWAIT : Code for the reason for wait
14 1, (iy+devno) ; Minor device number

14 h, (iy+devno+l) ; Major device number

call waitid ;+ Calculate the wait ID number
call wait ; Wait until awaken

ir wr2 : When awakened, check again

: Put the byte into the output queue

1d hl,outqg ; Displacement of output queue
add hl,de : HL = address of output queue

call putg

; If no output interrupt is due, call the output

: interrupt routine in order to output a byte.

bit INT_DUE, {iy+stat); Is an interrupt expected?
call z,outint2

; Loop until no more bytes are available from system
ir wrQ

; Done, The system call has been satisfied

and a,a : Clear carry flag

ret

12

Modifying a Cromix Driver
1. Adding a MNew Character Device Driver

. ————————— P} . ———————— ot o} A PP S —— ————— e - VA8 T o —— e o $ T ELS - ——

f
; Output interrupt subroutine

»

outint: ; Output interrupt subroutine
: Called with DE = addreses of the device structure

push de

pop iy : DE and IY = addr of dev struc
outint2:1d hl,outqg ; Displacement of output gueue

add hl,de ; HL = address of output gueue

call getyg ; Get a byte from it

ir c,oull ; Got one?

1d c,{(iy+dataprt) ; Yes., Get addr of data port

out (c) a : and output the byte

; Since an output has jUSt been made, we can expect

r

; another interrupt

set INT_DUE, (iy+stat)
; Awaken the waiting Cromix process, if appropriate
call wrwake?
ret ;3 Done

oulQ: ; Nothing was output from the gueue, so no further
; interrupts will be forthcoming
res INT_DUE, (iyt+stat)
ret

wrwake?:; Awaken Cromix process if appropriate
bit WRWAIT, (iy+stat); Is it asleep (i.e., waiting)?
ret z : If not, done
:+ Yes. Get count of number of bytes in output queue
1ld a,{iy+outq)
cp a,0uUTLOW + Is it at the low-water mark?
jr Z WW2
and a,a : No, Is it empty?
ret nz

ww2 3 ;+ Ready for more output, so awaken the Cromix process
res WRWAIT, (iy+stat)
1d a, HmWRWAIT :+ Code for the reason for wait
1d 1, (iy+devno) : Minor device number
1d h, (iy+devno+l) ; Major device number
call waitid ; Calculate the wait ID number
call wakeup ; Wake process up
ret

13

Modifying a Cromix Driver
1. Adding a New Character Device Driver

UTILITIES FOR ADDING AND REMOVING INTERROUOPT VECTORS

Most character drivers use interrupts. The following
subroutines provide drivers a means of adding interrupt
vectors to, or removing them from, the system.

The Tussetup and Qdsetup utilities can also be used to
set interrupts up. They call 2Addint in order to do
this.

Addint

Call Addint with the Z80 Mode—-2 interrupt vector in the
a register, the address of the interrupt subroutine in
the bec register, and data which will be loaded into the
de register whenever the interrupt occurs in the de
register.

2Addint returns with the carry flag set if that interrupt
vector has already been used. Otherwise, it returns
with the carry flag reset.

Addint preserves all registers except the af register.

Subint

Call Subint with the 280 Mode-2 interrupt vector in the
a register.

Subint preserves all registers except the af register,

CHARACTER TRANSFER UTILITIES

The Cromix Operating System provides system calls for
reading and writing one or more characters from or to a
device., A driver can deliver the characters requested
by a read system call by repeatedly calling the
subroutine Ioputc until it returns with the carry flag
set. Similarly, a driver can get the characters being
sent by a write system call by repeatedly calling the
subroutine Iogetc until it returns with the carry flag
set,

Modifying a Cromix Driver
1. Adding a New Character Device Driver

Ioputc

Call Ioputc with the character to be sent to the system
in the a register.

Toputc returns with the carry flag reset if the system
will accept at least one more character. Otherwise, it
returns with the carry flag set,

Topute preserves all registers except the af register.

Iogetce

If there is a character available from the system,
Iogetc returns with it in the a register and with the
carry flag reset, Otherwise, it returns with the carry
flag set.

Iogetc preserves all registers except the af register.

CHARACTER BUFFERING UTILITIES

A character driver that uses interrupts must buffer the
characters it processes unless the device is fast enough
to handle the characters at the rate the system can send
them. A driver can use the Putg and Getq utilities to
buffer characters in a FIFO system character gueue. The
space to store the characters is provided by the
operating system. The driver needs to provide five
bytes of storage called the queue header which Putg and
Getg use to keep track of the queue. The queue header
consists of a byte count and two pointers. The driver
must initialize the byte count to zero, After this,
Putq and Getq handle the byte count and the queue
pointers.

An example of a header for a queue named Outg follows,

outq: ds 1l ; byte count
ds 2 ! pointer
ds 2 : pointer
Putqg

Call Putq with the address of the queue header in the
hl register and the character to be put into the queue
in the a register.

15

Modifying a Cromix Driver
1, Adding a New Character Device Driver

Putq returns with the carry flag set if there was no
space to store the character. Otherwise, it returns
with the carry flag reset.

Putg preserves all registers (including the af
register).

Getgq

Call Getg with the address of the queue header in the
hl register.

Getqg returns with the carry flag set if the gueue is
empty. Otherwise, it returns with the carry flag reset
and the character in the a register.

Getq preserves all registers except the af register.

UTILITIES FOR SLEEPING AND WAKING UOP

When a process calls a driver to ask for a resource
which the driver does not currently have, it should
suspend the process by calling the Wait utility. When
the resource becomes available the Wakeup utility should
be called so that the process can continue execution.
Wakeup is usually called by an interrupt subroutine.
For example, a read system call from a driver which has
no characters in its input queue should result in a call
to wait. Wakeup should be called by the input interrupt
subroutine whenever the specified number of characters
have been placed into the input queue,.

Wait

Call Wwait with an identification number in the hl
register. This number serves to identify the reason for
the wait,

Wait returns when the process has been woken up by a
call to Wakeup with the same identification number.

Wakeup
Call Wakeup with the same identification number in the

hl register which was used when the call to Wait was
made.

16

Modifying a Cromix Driver
1, Adding a WNew Character Device Driver

Wait and Wakeup preserve all registers except the af
register,

A standardized wait identification number can be
obtained by a call to Waitid.

Waitid

Call waitid with the device number in the hl register
and a constant in the a register which specifies the
reason for the wait. The following constants are
defined in waitdef.z80.

HmRDWAIT wait until input is ready
HmWRWAIT wait until the output gueue is sufficiently empty
HmSCWALT wait for a start character (X-ON or CNTRL-Q)

Waitid returns with the wait identification number in
the hl register.

UTILITIES FOR DRIVERS THAT USE THE TUART INTERFACE

Tuinit

This utility initializes all the Tuart interface boards.
It should be specified as the Initialize subroutine for
all drivers that use the Tuart interface board.

Call Tuinit with interrupts disabled.

Tuinit alters the af register.

Tussetup

This utility sets up a serial Tuart device driver. It
obtains a data area for the device data structure,
initializes it, and adds the input and output interrupt
vectors to the 780 interrupt page.

Call Tussetup with interrupts disabled, the device
number in the de register, the address of the input
interrupt routine in the bec register, and the address of
the output interrupt routine in the hl register.

17

Modifying a Cromix Priver
1. Adding a New Character Device Driver

If no error, this utility £finds the address of the
device data structure (determined by the minor device
number), initializes it, sets up the interrupt handler
so that it will load the de register with the address of
the data structure when the interrupt routines are
called, and returns with the carry flag resget and with
the address of the device data structure in both the de
and the iy registers. The zero flag is set if this is
the first time the device was opened.

If the device number is illegal or if there is no data
area available for the device data structure, Tussetup
returns with the carry flag set and an error number in
the a register.

Tussetup alters the af, be, de, hl, and iy registers.

The Tussetup utility calls the following utilities:
Tuscheck, Tusfind, Tustruct, Tuioints, Tudport, and
Tuunmask.

Tusshut

This utility shuts down a serial Tuart device driver.
It removes the interrupts from the Z80 interrupt page
and relinquishes the data area.

Call Tusshut with the minor device number in the E
register.

Tusshut alters the af, bec, de, hl, and iy registers.

The Tusshut utility calls the following utilities:
Tusfind, Tuioxints, and Tumask.

Tupshut

This utility shuts down a parallel Tuart device driver,
It removes the interrupts from the Z80 interrupt page
and relinquishes the data area.

Call Tupshut with the minor device number in the e
register.

Tupshut alters the af, be, de, hl, and iy registers,

The Tupshut utility calls the following utilities:
Tupfind, Tupxint, and Tumask.

1&g

Modifying a Cromix Driver
1. Adding a New Character Device Driver

Tuscheck

This utility checks whether the minor device number for
a serial Tuart device is legal.

Call Tuscheck with the minor device number in the a
register.

Tuscheck returns with the carry £flag set and the
constant ?nodevice in the a register if the minor device
number is illegal. Otherwise, the carry flag is reset.

Tuscheck alters the af and hl registers.

Tupcheck

This utility checks whether the minor device number for
a parallel Tuart device is legal,

Call Tupcheck with the minor device number in the a
register.

Tupcheck returns with the carry flag set and the
constant ?nodevice in the a register if the minor device
number is illegal. Otherwise, the carry flag is reset.

Tupcheck alters the af and hl registers,

Tustruct

This utility finds space in the Cromix reserved data
area for the data structure for a Tuart device,

Tustruct returns with the carry flag set if no space is
available, Otherwise, the carry flag is reset and both
the de and the iy registers contain the address of the
data structure.

Tustruct alters the af, id, and iy registers.

Tusfind

This utility finds the address of the data structure
assigned a serial Tuart device.

Call Tusfind with the device number in the de register.
Tusfind returns with the address of the device data

structure in both the de and the iy registers.

i9

Modifying a Cromix Driver
1. Adding a New Character Device Driver

Tusfind alters the af, de, hl, and the iy registers.

Tupfind

This utility finds the address of the data structure
assigned a parallel Tuart device,

Call Tupfind with the device number in the de register.

Tupfind returns with the address of the device data
structure in both the de and the iy registers.

Tupfind alters the af, de, hl, and the iy registers.

Tusdport

This utility gets the data port address of a serial
Tuart device.

Call Tusdport with the minor device number in the a
register.

Tusdport returns with the data port address in the a
register.

Tusdport alters the af register.

Tuioints

This utility sets up the input and output interrupts for
a serial Tuart device,

Call Tuiocints with interrupts disabled, the input
interrupt routine address in the bc register, the output
interrupt routine address in the hl register, the
address of the device's data structure in the de
- register, and the minor device number in the a register.

Tuioints returns with the address of the device data
structure in both the de and the iy registers.

Tuioints alters the af register,

The Tuioints utility calls the Addint utility to do its
work.

20

Modifying a Cromix Driver
1. Adding a Mew Character Device Driver

Tupint

This utility sets up the output interrupt for a parallel
Tuart device,

Call Tupint with interrupts disabled, the output
interrupt routine address in the bc register, the
address of the device's data structure in the de
register, and the minor device number in the a register.

Tupint returns with the address of the device data
structure in both the de and the iy registers.

Tupint alters the af register.

The Tupint utility calls the Addint utility to do its
work.

Tuioxint

This utility removes the input and output interrupts of
a serial Tuart device from the Z80 interrupt page.

Call Tuioxint with interrupts disabled and the minor
device number in the a register,

Tuioxint alters the af register.

The Tuioxint utility calls the Subint utility to do its
work.

Tupxint

This utility removes the output interrupt of a parallel
Tuart device from the Z80 interrupt page.

Call Tupxint with interrupts disabled and the minor
device number in the a register.

Tupxint alters the af register.

The Tupxint utility calls the Subint utility to do its
work.

Tuunmask

This utility unmasks Tuart interrupt(s).

Call Tuunmask with interrupts disabled, the Tuart datsa
port address in the ¢ register, and the b register

21

Modifying a Cromix Driver
l. Adding a Mew Character Device Driver

containing ones in the bits corresponding to Tuart
interrupts which are to be unmasked. (If a bit in the
b register is 2zero, the corresponding Tuart interrupt
will not be changed.) -

Tuunmask alters the af register.

Tumask

This utility masks Tuart interrupt(s).

Call Tumask with interrupts disabled, the Tuart data
port address in the ¢ register, and the b register
containing ones in the bits corresponding to Tuart
interrupts which are to be masked. (If a bit in the b
register is zero, the corresponding Tuart interrupt will
not be changed.)}

Tumask alters the af register.

Tuunmtbe

This utility unmasks Tuart serial output interrupt
(TBE) .

Call Tuunmtbe with interrupts disabled and the Tuart
data port address in the ¢ register.

Tuunmtbe alters the af register,

Tumsktbe
This utility masks Tuart serial output interrupt (TBE).

Call Tumsktbe with interrupts disabled and the Tuart
data port address in the ¢ register.

»
Tumsktbe alters the af register.

Tuspeed
This utility sets the baudrate of a serial Tuart device,

Call Tuspeed with the address of the device data
structure in the iy register, the data port number in
the ¢ register, and the desired speed code in the b
register. (The speed codes are defined in the file
modeequ.z80,)

22

Modifying a Cromix Driver
1, Adding a New Character Device Driver

Tuspeed returns with the carry flag set if the speed
code is illegal. Otherwise, returns with the carry flag
reset,

Tuspeed alters the af register,

Tuconnect

This utility unmasks the serial input interrupt (RDA} if
a terminal is connected to a serial Tuart device.

Call Tuconnect with the data port number in the ¢
register,

Tuconnect returns with the carry flag reset and the
input interrupt (RDA) unmasked if a terminal is
connected. Otherwise, returns with the carry flag set.

Tuconnect alters the af register,

23

Modifving a Cromix Driver

24

Modifying a Cromix Driver
2. Adding a New IOP Character Device Driver

Chapter 2

ADDING A NEW IOP CHARACTER DEVICE DRIVER

The IOP contains a sizable memory on the C-bus which is
independent of the main memory on the 8-100 bus, This
memory can be used to store Cromix drivers for devices
that use C-bus interface boards such as the Quadart or
CsP.

Putting a driver on the C-bus releases Cromix buffer
space in the main S~100 bus memory. Another benefit
stems from the fact that the IOP contains a small
auxiliary operating system which works in tandem with
the main Cromix Operating System on the S-100 bus., This
I0P operating system only disables interrupts for a very
short period of time. Therefore, IOP driver interrupts,
such as keyboard interrupts in a terminal driver, are
never lost.

Cromix drivers for devices on the I0P C-bus are usually
composed of (1) a small interface driver in the Cromix
Operating System on the host machine, and (2) the device
driver proper that resides in the IOP on the C-bus.

Most C-bus Cromix drivers can be written so that they
reside almost entirely in the IOP memory. They require
only a small interface driver on the §-100 bus that is
used to interface to the main driver in the IOP. Most
C-bus drivers will work either with an 8~100 interface
driver called iodev or one called icdevb, For example,
device number 2 and device number 9 both use iodev. Yet
device number 2 is the C-bus terminal driver, gqtty or
mtty, and device number § is the C-bus serial printer
driver, qslpt. The tape driver tp uses interface driver
iodevb. The characteristics of iodev and iodevb are
desc¢ribed later.

Configuring the Cromix Operating System to include a new
I0P driver requires the use of the Crogen utility to add
the Cromix-to~-IOP interface driver to cromix.sys. The
Crogen utility is located in the /gen directory. It
also reguires the Iorgen utility to add the C~bus driver
to an IOP driver file in the /dev/iop directory. The
Iopgen utility 1is located in the /cro/driv/iop/gen
directory.

25

Modifying a Cromix Driver
2, Adding a New IOP Character Device Driver

One example of an IOP driver file is cromix.iop, which
contains the drivers for gtty, mtty, gslpt, and iomem
devices. Another example is tape.iop, which contains
the drivers for tp tape devices and for iomemn, I0P
driver files are loaded into the IOP by the command file
/etc/iostartup.cmd when the Cromix Operating System is
booted.

ADDING THE INTERFACE DRIVER TO CROMIX

Drivers that reside in the IOP on the C-bus require a
Cromix-to-IOP interface driver that resides in
cromix.sys in S-100 bus memory. Most of these drivers
can use either iodev or iodevb. To incorporate such a
driver, skip to step 3 below and use the name iodev or
iodevb in place of xyzintf., If it is necessary to write
a new interface driver, perform all four of the
following steps.

1. Write the Cromix-to-IOP interface driver, (Use the
modules in the directory /iop/host as models.) For
illustration, assume that the interface for a new
I10P driver is contained in two modules named
xyzintfa.z80 and =xyzintfb.z80, and that the first
of these modules contains an entry point named
xyzintf.

2. Agsemble the modules of the new interface driver.

asmb xyzintfa
asmb xyzintfb

3. If there is room on the disk, save the o0ld copy of
cromix.sys. Use the Crogen utility to create a
copy of cromix.sys that includes the new interface
driver. ¥

move /cromix.sys /cromixold.sys
crogen -u /cromix

First the Crogen utility asks, one by one, which of the
standard Cromix drivers should be included. After these
questions have been answered, it will ask questions
about the new driver. Major device numbers for
user-supplied drivers range from 20 up. These questions
and answers are illustrated for the interface driver
XYZINF with device number 22.

26

Modifying a Cromix Driver
2, Adding a New IOP Character Device Driver

User supplied character drivers (Y=Yes, N=No} <N> ¥y

Enter driver entry point (blank=none, E=End)

20 -

21 -

22 - xyzint
23 - e

Enter names of rel files which contain drivers (E=End)

? xyzinta
? Ryzintb
? e

ADDING THE C-BUS DRIVER TO THE IOP DRIVER FILE

1. Write the driver that will reside in the IOP. (Use
the modules in the subdirectories of
/cro/driv/iop/qd and /cro/driv/iop/csp as models.)
For illustration, assume that the new driver is
contained in two modules named xyza.z80 and
Xyzb.z80, and that the first of these modules
contains an entry point named =zxyz. Also assume
that the driver is to be added to an IOP driver
file called iopdriv.iop in the directory /dev/iop.

2. Agsemble the modules of the driver.

asmb xyza
asmb xyzb

3. Combine the driver modules into a library. Name
the library after the driver entry point, xyz.

1ib xyz=xyza,xyzb/e

4, If there is room on the disk, save the old copy of
iopdriv.iop. Use the Iopgen utility that is
located in the directory /ecro/driv/iop/gen in order
to create a new copy of the iopdriv.iop that
includes the xyz driver.

27

Modifying a Cromix Driver
2, Adding a Mew IOP Character Device Driver

% move /dev/iop/iopdriv.iop /aev/iop/iopdrivold.iop
% /cro/driv/iop/gen/iopgen

The Iopgen utility asks whether a new driver is to be
added. Answer yes to this question, It then asks for
the name of the IOP driver file, The proper answer in
the current example is iopdriv.iop. The Iopgen utility
will ask whether the interface card to be used with the
I0r is a Quadart or CSP, and it will prompt for the
major device number and the name of the new device
driver, Its major device number can be any unused
number greater than 19. The name of the new driver is
name of the driver entry point, xyz. If there are no
more new drivers to be added, answer no the next time
the Iopgen utility asks whether another driver is to be
added.

Using the New Driver

1. Run makdev to define the devices that will use the
driver by assigning the device names to the
corresponding device numbers. If the major device
number is 22, three devices c¢ould be defined as
follows.

#+ makdev /dev/xyzl c 22 0
makdev /dev/xyz2 ¢ 22 1
makdev /dev/xyz3 c 22 2

2. Make sure that /etc/iostartup.cmd includes a
command to load the I0OP driver file into the IOP.
The following command loads the IOP driver file
iopdriv.iop into IOP2.

/dev/iop/ioprun /dev/iop/iopdriv iop2
3. Boot the new operating system.

boot

28

Modifying a Cromix Driver
2. Adding a Mew IOP Character Device Driver

The Cromix-to-IOP Interface Driver

An IOP interface driver is a list of the addresses of
seven subroutines, called the primary subroutines,
These subroutines function like those of any other
Cromix driver that resides on the 8-100 bus. The list
of primary subroutines for the xyzintf interface driver
takes the following form,

entry xyzintf

xyzintf:dw init ;+ initialize device
dw open ; open device
dw close : close device
dw read ; read device
dw write s write to device
dw getmode ; get device mode
dw setmode : set device mode

Each driver is designed to work with a specific device,
The device an IOP interface driver works with is the
I0P, while it 1s running certain scoftware. This
software is a small operating system, the ICP 0S, whose
function is to run drivers on the C-bus. The Iopgen
utility linkeg the IOP 0S8 into every IOP driver file.

When a system call is made to read the xyz device, the
Cromix Operating System branches to the read subroutine
of xyzintf. This subroutine sends a read command to the
IOP 0S. The xyz driver has a list of seven subroutines
on the C-bus that correspond to those of the interface
driver on the 85-100 bus. The IOP 08 calls the read
command in this list that returns the requested data to
I0P 0S that in turn delivers it to the read subroutine
of xyzintf. From there it is returned to the Cromix
Operating System in the same way any Cromix S-100 driver
does,

Most drivers can use either iodev or iodevb as its
Cromix—-to-IOP interface. The read subroutine in iodev
issues a read command to the IOP 0S for each byte wanted
from the IOP driver. The read subroutine in iodevb
receives a block of bytes from the IOP driver in
response to one read command to the IOP 0S, The write
subroutines function in a similar manner. The iodev
interface is used with terminal and printer drivers that
process I/0 bytes extensively ({(expanding tabs and
formfeeds, checking for newlines and CONTROL-C signals,
processing X-OFF and X-CN characters, etc.), because
iodev increases the parallel processing of host
precesscor and IOP. The iodevb interface is used for

29

Modifying a Cromix Driver
2. Adding a MNew IOP Character Device Driver

drivers such as the tape driver that do not process I/0
bytes much, because overhead is reduced by sending fewer
commands to the IOP OS.

The choice of the interface {iodev or iodevb) affects
how the corresponding C-bus driver must be written, as
will be seen shortly.

The source for the interface drivers is contained in the
directory /cro/driv/iop/host. The modules of iodev are
iodev.z80, iop.z80, and iopparm.z80, The iodevb
interface uses those modules plus iodevb.z80 and
iopb.280. The same directory also contains the source
for iomem, the interface to the IOP memory driver, which
uses the iomem.z80, iop.z80, and iopparm.z80 mcdules,

1. The C-bus Driver

A C-~bus driver is also a list of the addresses of
seven primary driver subroutines, as is an S$-100
bus driver, There are a few differences in the
operation of C-bus subroutines. These differences
result from the fact that they interact with the
IOP OS rather than with the Cromix Operating System
directly. A description of the operation of C-bus
primary driver subroutines follows.

2. Initialize Subroutine

The first subroutine, the initialize subroutine, is
called only once, when the IOP drivers are loaded
into the IOP. The IOP Qdinit utility serves as the
initialization subroutine for drivers that use the
Quadart, and the Cspinit utility serves those that
use the C8P,

3. Host-Answering Subroutines

Each of the remaining six primary driver
subroutines is called by the I0OP 08 whenever the
corresponding subroutine in the interface driver is
called by the Cromix Operating System. After one
of these six subroutines is called it must respond
by calling one o¢f the host-answering subroutines
provided by the IOP 0S unless an error occurs, If
an error occurs, the subroutine should not call any
host-answering subroutine, Instead it should set
the carry flag and return to the IOP 0S with the a
register containing the error number, obtained from
the file /equ/jsysequ.z80, The IOP 0S will return
this error number to the host.

30

Modifying a Cromix Driver
2., Adding a New IOP Character Device Driver

The function of the host-answering subroutines is
to return dJdata and other information to the
interface driver in the host. Refer to the section
on Host-Answering subroutines,

All of the following six primary subroutines should
indicate error by returning the carry flag set and
with the a register containing the appropriate
error number selected from the file
/equ/jsysequ.z80. In this case they must not have
called any host-answering subroutine. If a
subroutine has called any host-~answering
subroutine, it must itself return with the carry
flag reset,

Open Subroutine

This subroutine is called by the IOP 0S8 with the de
register containing the device number. It should call
the Qdsetup IOP utility if it uses the Quadart, and
Cspsetup if it uses the CSP. Either of these utilities
finds a data structure and an IOP channel for the
device., The Qdsetup utility also sets up the interrupts
for Quadart I/0, giving the interrupt handler the
addresses of the driver's interrupt routines, {(The
Cspsetup utility does not set up interrupts because the
devices that currently use the CSP do not use
interrupts.,) Unless an error occurs, the open
subroutine must return the IOP channel number to the
host by calling the Haputce utility and then return with
the carry flag reset. The channel number is stored and
used by the interface driver in all further
communication with the IOP concerning this device,

Close Subroutine

This subroutine is called by the IOP 0S with both the
de register and the iy register containing the device's
data structure address. If the open subroutine keeps a
count of the number of times the device has been opened,
the close subroutine should decrement this count each
time it is closed. After the open decrement reaches
zero, the close subroutine of a driver that uses
Quadarts can call the Qdshut utility to relinguish its
data area and to mask its interrupts. Unless an error
occurs, it should call the Hacontinue utility in order
to let the host proceed, and then return with the carry
flag reset,

31

Modifying a Cromix Driver
2., Adding a New IQP Character Device Driver

Read Subroutine for Drivers whose Input is Obtained
under Control of the Driver

This subroutine is called by the IOP 0S with both the
de register and the iy register containing the device's
data structure address. If the device input queue has
not been appropriately filled, the driver should read
the device to £ill it. If the corresponding interface
driver in the host is iodevb, the driver should use the
Haputbuf utility to send data to the host a bufferful at
a time, If the interface driver is iodev, the driver
should use the Haputc utility to deliver one byte. 1In
either case it should return with the carry flag reset.

Read Subroutine for Drivers whose Input is Delivered
under External Control

This subroutine is called by the IOP 0S8 with both the
de register and the iy register containing the device's
data structure address. If the device input queue has
not been appropriately filled by the input interrupt
subroutine, the read subroutine should call the Bawait
utility with the a register containing the constant
HmRDWAIT and then return with the carry flag reset,.
This constant, defined in the waitdef.z80 file,
specifies the reason for the wait., If the device has a
character available, the read subroutine should retrieve
it from the input gueue by calling the Getq utility ang
then deliver it to the host by calling the Haputc
utility. It should then return with the carry flag
reset.

Input Interrupt Subroutine

Assuming that the open subroutine (see above) has set up
interrupts using either the Qdsetup or Addint utility,
the interrupt handler will branch to this subroutine
when the device hardware causes an input interrupt.
This subroutine should read a character or characters
from the device and place them into the input queue by
calling the Putg utility. If the driver's read
subroutine has put the process to sleep by calling the
Hawait using the constant HmRDWAIT, then the interrupt
subroutine should wake up the process by calling the
Hwakeup utility using the same constant after the input
queue has been appropriately filled. What constitutes
being appropriately filled depends on how the device is
to be used. Terminal drivers, for example, usually do
not wake up the read process until the gueue contains a
full line.

32

Modifying a Cromix Driver
2, Adding a New IOP Character Device Driver

Write Subroutine for Drivers whose Output is Transmitted
under Control of the Driver

This subroutine is called by the IOP OS5 with both the
de register and the iy register containing the device's
data structure address. If the driver buffer has been
filled from earlier calls to the write subroutine, the
buffer should now be written to the device. Otherwise,
data should be read from the host and placed into the
buffer. If the corresponding interface driver in the
host is iodevb, the write subroutine should use the
Hgetbuf utility to get data from the host a bufferful at
a time. It the interface driver is iodev, the write
subroutine should use the Hgetc utility to get one byte.
After this is done, it should call the Bacontinue
utility to permit the host to proceed and then return
with the carry flag reset.

Write Subroutine for Drivers whose Output is Transmitted
under External Control

This subroutine is called by the IOP 0S with both the
de register and the iy register containing the device's
data structure address. It should first call Hgetc to
get the byte the host is delivering. If the number of
characters already in the output gqueue exceeds a certain
number, say 60, the write subroutine should call the
Hawait utility with the a register containing the
constant HmMWRWAIT, and then return with the carry flag
reset, Otherwise the write subroutine should call
Racontinue to allow the host to proceed, process the
character if appropriate (expand tabs, etc.), place the
processed byte or bytes into the output queue by calling
the Putqg utility, and then return with the carry flag
reset.

Output Interrupt Subroutine

Assuming that the open subroutine has set interrupts up
using either the Qdsetup or Addint utility, the
interrupt handler will branch te this subroutine when
the device hardware causes an input interrupt. This
subroutine should get a character from the output dueue
by calling the Getg utility and then write it to the
device, 1f the driver's write subroutine has put the
process to sleep by calling the Hawait utility using the
constant HmWRWAIT, then the interrupt subroutine should
awaken the process by calling the Hwakeup utility with
the same constant after the number of characters in the
output queue has fallen to a certain number, say 30.

33

Modifying a Cromix Driver
2. Adding a New ICP Character Device Driver

Getmode Subroutine

This subroutine is called by the IOP 0S with both the
de register and the iy register containing the device's
data structure address, If the corresponding interface
driver in the host is either iodev or iodevb, this
getmode subroutine should call the Hgetc utility to get
the contents of the user ¢ register (the value of the ¢
register when the .getmode system call was made in the
host) . To return one byte of data to the user d
register (the value will be placed in the d register
when the return from the .getmode system call is made in
the host), the Haputlast utility should be called. To
return a pair of bytes to be placed in the user de
register, the Haputpair utility should be called. In
either case, the getmode subroutine should return with
the carry flag reset. ©On the other hand, if the driver
does not use modes, the getmode subroutine should load
the a register with an appropriate error number
(selected from the file /equ/jsysequ.z80) and return
with the carry flag set.

Setmode Subroutine

This subroutine is called by the I0QP 0S with both the
de register and the iy register containing the device's
data structure address. If the corresponding interface
driver in the host is either iodev or 1iodevb, this
setmode subroutine should call the EBgetc utility to get
the contents of the user ¢ register. It should then
call the Hacontinue utility to tell the host to proceed.
The host will next send the contents of the user de

register, so the setmode subroutine should call Hgetpair
to get it. To return one byte of data to the user d
register, the Haputlast utility should be called. To
return a pair of bytes to be placed in the user de
register, the Haputpair utility should be called. In
either case, the setmode subroutine should return with
the carry flag reset, On the other hand, if the driver
does not use modes, the setmode subroutine should call
Hcontinue, call Hgetpair, and then locad the a register
with an appropriate error number (selected from the file
/equ/jsysequ.z80) and return with the carry flag set.

UTILITIES FOR ADDING AND REMOVING INTERRUPT VECTORS
Most character drivers use interrupts. The following

subroutines provide drivers a means of adding interrupt
vectors to the system, and of removing them from it.

34

Modifying a Cromix Driver
2, Adding a New ICP Character Device Driver

Note that the Qdsetup utility can also be used to set up
interrupts. It uses the Addint utility to do this,

Addint

Call Addint with the 280 Mode 2 interrupt vector in the
a register, the address of the interrupt subroutine in
the bc register, and data which will be loaded into the
de register whenever the interrupt occurs in the de
register.

Addint returns with the carry flag set if that interrqgt
vector has already been used. Otherwise, returns with
the carry flag reset,

Addint preserves all registers except the af register.

Subint

Call Subint with the Z80 Mode~2 interrupt vector in the
a register,

Subint preserves all registers except the af register.

CHARACTER BUFFERING UTILITIES

A character driver that uses interrupts must buffer the
characters it processes unless the device is fast enough
to handle the characters at the rate the system can send
them, A driver can use the Putg and Getqg utilities to
buffer characters in a system character gueue (first-in,
first-out). The space where the characters are stored
is provided by the Cromix Operating System. The driver
needs to provide five bytes of storage called the queue
header which the Putg and Getqg utilities will use to
keep track of the gueue. The queue header consists of a
byte count and two pointers. The driver must initialize
the byte count to zero. After this, the Putg and Getg
utilities handle the byte count and the queue pointers.

An example of a header for a gueue named outg follows,

outq: as 1 ; byte count
ds 2 : pointer
ds 2 : pointer

35

Modifying a Cromix Driver
2., Adding a MNew IOP Character Device Driver

Putg

Call Putg with the address of the queue header in the
hl register and the character to be put into the queue
in the a register.

Putg returns with the carry flag set if there was no
space to store the character, Otherwise, returns with

the carry flag reset.

Putg preserves all registers (including the af
register).

Getq

Call Getg with the address of the gueue header in the
hl register,

Getg returns with the carry flag set if the queue was
empty. Otherwise, returns with the carry flag reset and
the character in the a register,

Getqg preserves all registers except the af register.

HOST-ANSWERING SUBROUTINES

The function of the host-answering subroutines is to
return data and other information to the interface
driver in the host, Among other functions, the
host-answering subroutines inform the host that it may
proceed to do other things because the command will be
executed without further attention from the host. The
Hacontinue subroutine, for example, only provides this
information. The Haputc subroutine provides this
information and also returns a byte of requested data to
the interface driver. The host-answering subroutines
are Haabort, Hacontinue, Hawait, Baiowait, Haputc,
Haputbuf, Haputlast, Haputnot, and Haputpair - the name
of each of them begins with the letters Ha. A C-bus
subroutine should be written so that it calls the
appropriate host-answering subroutine as soon as
possible, in order to increase the parallel processing
of host processor and IOQP,

36

Modifying a Cromix Driver
2. Adding a New IOP Character Device Driver

Haabort

This utility is used to answer the host after the host
has commanded a sleeping C-bus process to abort. The
effect of calling this utility is that the host process
will abort itself. See the Haiowait utility below.

Haabort uses no registers for input data and preserves
all registers except the af register.

Hacontinue

The Hacontinue utility is used when there is no data to
return to the host in order to tell the host that its
last command has been accepted and will be executed when
there is no data to return to the host,

Hacontinue uses no registers for input data and
preserves all registers except the af register,

Haputc

This utility delivers a byte of data to the host. If
the interface driver iodevb is being used in the host,
the Haputbuf utility should be used to deliver bytes to
the host in the C-bus read subroutine rather than this
utility.

Call Haputc with the byte in the a register.

Haputc preserves all registers except the af register.

Haputlast

This utility delivers a byte of data in C-bus read
subroutines, telling the host that there are no more.
If the interface driver iodevb is being used in the
host, the Haputbuf utility should be used to deliver
bytes to the host in the C-bus read subroutine rather
than this utility. It is also used in Getmode and
Setmede utilities to return a single byte rather than
two. (Some drivers have both one and two byte mode
parameters,)

Call Haputlast with the byte in the a register.

Haputlast preserves all registers except the af
register,.

37

Modifying a Cromix Driver
2., Adding a New IOP Character Device Driver

Haputpair

This utility is used in the Getmode and Setmode
utilities of C-~bus drivers to return two bytes of data
to the host,

Call Haputpair with the pair of bytes in the hl
register.

Haputpair preserves all registers except the af
register.

Haputnot

This utility is called by a read subroutine to report to
the host that an end-of-file character has been input.
The effect on the host interface driver is to cause it
to return without asking for further bytes from the IOP.

Haputnot uses no registers for input data ancé preserves
all registers except the af register,

Haputbuf

This utility is called by C-bus read subroutines of
drivers which use the iodevb interface driver in the
host. It sends the contents of a buffer to the host.

Call Haputbuf with the address of the buffer in the hl
register and the buffer byte count in the de register.

Haputbuf alters the af, de, and hl registers.

Hawait

When a process calls a driver to ask for a resource that
the driver does not currently have, it should suspend
the process by calling the Hawait utility. When the
resource becomes available the Hwakeup utility should be
called so that the process can continue execution. The
Hwakeup utility is usuwally called by an interrupt
subroutine. For example, a read system call from a
driver which bhas no characters in its input gueue should
result in a call to the Hawait utility. The Hwakeup
utility should be called by the input interrupt
subroutine whenever sufficient characters have been
placed into the input queue.

38

Modifying a Cromix Driver
2. Adding a New ICP Character Device Driver

Call Hawait with the address of the device data
structure in the iy register and a constant in the a
register which specifies the reason for the wait. The
following such constants are defined in the file
waitdef.z80.

EmRDWAIT Wait until input is ready

HMWRWAIT Wait until the output queue is sufficiently empty
HmSCWAILT Wait for a start character (X-ON or CCNTROL-Q)
HmWAKIOP Wait until woken up by the IOF

Hawait returns when the process has been awaken by a
¢all to the Hwakeup utility with the same identification
constant.

The Hawait utility preserves all registers except the
af register,

Haiowait

This utility tells the host process to sleep by calling
the Hawait utility with the HmWAKIOP identification
constant in the a register. It then calls the Iowait
utility to put the C-bus driver process to sleep until
awaken by the host, When this utility is used, it is
expected that an interrupt will wake up the host process
by c¢alling the Hwakeup utility with the constant
HmMWAKIOP., The host will then wake up the C-bus process.

The Hailowait utility uses no registers for input data.
It returns with the carry flag set if the sleeping C-bus
process was commanded to abort by the host. If this
happens the awaken C-bus process must answer the host by
calling the Haabort utility and then return with the
carry flag set.

Haiowait preserves all registers except the af register.
L

OTHER HOST SUBROUTINES

HGETC

This subroutine returns a byte of data from the host.
Drivers which use the iodevb interface driver in the
host should use the Hgetbuf utility in their write
subroutines rather than this utility.

Hgetc preserves all registers except the a register.

39

Modifying a Cromix Pbriver
2, Adding a New IOP Character Device Driver

Hgetbuf

This utility gets data from the host to fill a buffer.
It is called by the C-bus write subroutines of drivers
which use the iodevb interface driver in the host,

Call Hgetbuf with the hl register containing the address
of the buffer and the de register containing the buffer
size in bytes.

Hgetbuf returns with the de register containing the
number of bytes in the buffer remaining unfilled,
Hgetpair

This utility gets a pair of bytes from the host,

Hgetpair returns with the pair in the bec register.

Hgetpair alters the af and the bc registers.

Bwakeup

Call Bwakeup with the same identification constant in
the a register which was used when the call to the
Hawait utility was made,

The Hwakeup preserves all registers except the af
register. _

Httysig

Calling this utility causes the host to be interrupted
by the I0P and informed what kind of signal to perform.

Call Httysig with interrupts disabled, the device number
in the hl register, and the signal type in the ¢
register.

Httysig alters the af register.

40

Modifying a Cromix Driver
2. Adding a New IQP Character Device Driver

C-BUS PROCESS CONTROL SUBROUTINES

Towait

This uvtility suspends the current IOP process. This
utility is used after the host process has been
suspended by a call to Hawait with the identificatioen
constant HmMWAKIOP, After the host process is awakened
(typically by an interrupt), the host will then wake the
suspended IOP process,

Call Iowait with interrupts disabled.

Iowait returns with the carry flag set if the process is
aborted.

Iowait alters the af register.

Tofork

This utility forks a new C-bus process in order to
execute a subroutine,

Call Icfork with interrupts disabled and the address of
the subroutine stored at the IOP memory address,

Ioforkadr, Passes to the subroutine the contents of all
registers except the f register, the flags.

Iofork alters the af register.

Iotime

This utility suspends the current IOP process for a
time,

Call Totime with interrupts disabled and the a register
containing the number of tenths of seconds to suspend.

Iotime alters the af register.

41

Modifying a Cromix Driver
2. Adding a New ICP Character Device Driver

QUADART UTILITIES

Qdinit

This utility initializes all 16 Quadart serial channels
for asynchronous operation by setting the $I0, PIO, and
CTC ports. This utility should be specified as the
initialization subroutine for all drivers which use the
Quadart interface card.

Call Qdinit with interrupts disabled.

Qdinit alters the af, bc, de, and hl registers.

Qdssetup

This utility sets up a serial Quadart device driver.
Obtain a data area for the device data structure,
initialize it, and add the input and output interrupt
vectors to the 280 interrupt page in the IOP.

Call Qdssetup with interrupts disabled, the device
number in the de register, the address of the input
interrupt routine in the bc register, and the address of
the output interrupt routine in the hl register, the
address of the external/status interrupt routine (for
modems) in the ix register, and the address of the C-bus
driver (the seven primary subroutines) in the iy
register.

If no error, finds address of the device data structure
(determined by the minor device number), initializes it,
sets up the interrupt handler so that it will load the
de register with the address of the data structure when
the interrupt routines are called, and returns with the
carry flag reset and with the address of the device data
structure in both the de and the iy registers. If this
is the first time the device was opened, the zero-flag
is set and the IOP channel number is returned in the b
register,

If the device number is illegal or if there is no data
area available for the device data structure, returns
with the carry flag set and an error number in the a
register,

Qdssetup alters the af, bc, de, hl, ix, and iy
registers.

42

Modifying a Cromix Driver
2. Adding a New IOP Character Device Driver

Odsshut

This utility shuts down a serial Quadart device driver.
Remove its interrupts from the 280 interrupt page and
relinquish its data area,.

Call Qdsshut with interrupts disabled, the address of
the device's data structure in both the de and the iy
registers, and the IOP channel number in the a register.

Qdsshut alters the af register.
CSP UTILITIES

Cspinit

This utility initializes all CSP serial channels. This
utility should be specified as the initialization
subroutine for all drivers which use the CSP interface
card.

Call Cspinit with interrupts disabled.

Cspinit alters the af, bc, de, hl, and ix registers.

Cspsetup

This utility sets up a serial CSP device driver. Obtain
a data area for the device data structure and initialize
it.

Call Cspsetup with interrupts disabled, the device
number in the de register, and the address of the C-bus
driver (the seven primary subroutines) in the iy
register,

If no error, finds address of the device data structure
(determined by the minor device number) and initializes
it, and returns with the carry flag reset and with the
address of the device data structure in both the de and
the iy registers, If this is the first time the device
was opened, the zero-flag 1s set and the IOP channel
number is returned in the b register.

If the device number is illegal or if there is no data
area available for the device data structure, returns
with the carry flag set and an error number in the a
register.

Cspsetup alters the af, be, de, hl, and iy registers.

43

