D993, MARCH 1971 - REVISED AUGUST 1983

7 OUT

6 NC 5 NC

- Low Offset Characteristics
- High Differential Voltage Amplification
- Fast Response Times
- **Output Compatible with Most TTL Circuits**

description

The TL810 is an improved version of the TL710 highspeed voltage comparator with an extra stage added to increase voltage amplification and accuracy. Typical amplification is 33,000. Component matching, inherent in monolithic integrated circuit fabrication techniques, produces a comparator with low-drift and low-offset characteristics. These circuits are particularly useful for applications requiring an amplitude discriminator, memory sense amplifier, or a high-speed limit detector.

The TL810M is characterized for operation over the full military temperature range of -55 °C to 125 °C; the TL810C is characterized for operation from 0°C to 70°C.

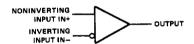
(TOP VIEW) 10 NC

TL810M . . . U PACKAGE

TLB10M . . . JG PACKAGE

TL810C . . . JG OR P PACKAGE

(TOP VIEW) GND TO B VCC+


IN -

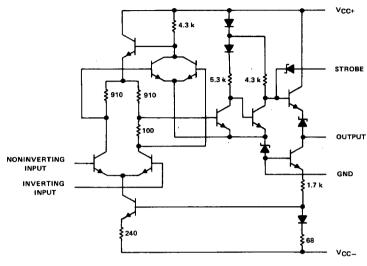
Vcc-

GND □1 IN + 2 IN - 3 э∏ ис 8 Vcc + NC 4 7 STRB вП оит Vcc -

NC -- No internal connection

symbol

Voltage Comparators


Copyright © 1983 by Texas Instruments Incorporated

883

NSTRUMENTS

POST OFFICE BOX 225012 . DALLAS, TEXAS 75266

4-67

Resistor values shown are nominal in ohms.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage V _{CC+} (see Note 1)
Supply voltage V _{CC} (see Note 1)
Differential input voltage (see Note 2)
Input voltage (either input, see Note 1)
Peak output current (t _W ≤ 1 s)
Continuous total power dissipation at (or below) 70 °C free-air temperature (see Note 3) 300 mW
Operating free-air temperature range: TL810M Circuits
TL810C Circuits 0 °C to 70 °C
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG or U package
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: P package

- NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.
 - 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
 - 3. For operation of the TL810M above 70°C free-air temperature, refer to dissipation Derating Curves, Section 2. In the JG package, TL810M chips are alloy-mounted; TL810C chips are glass-mounted.

883

electrical characteristics at specified free-air temperature, $V_{CC+} = 12 \text{ V}$, $V_{CC-} = -6 \text{ V}$ (unless otherwise noted)

		TEST CONDITIONS†		TL810M			TL810C			UNIT
	PARAMETER	TEST CON	DITIONS	MIN	TYP	MAX	MIN	TYP	MAX	1 UNIT
		R _S ≤ 200 Ω,	25°C		0.6	2		1.6	3.5	mV
VIO	Input offset voltage	See Note 4	Full range			3			4.5]
	Average temperature	$R_S = 50 \Omega$,	MIN to 25°C		3	10		3	20	μV/°C
αVIO	coefficient of input offset voltage	See Note 4	25°C to MAX		3	10		3	20	μν, σ
	Input offset current	See Note 4	25 °C		0.75	3		1.8	5	
lio			MIN	Ī	1.8	7			7.5	μΑ
10			MAX		0.25	3			7.5	
	Average temperature	See Note 4	MIN to 25°C		15	75		24	100	nA/°C
αIIO	coefficient of input offset current		25°C to MAX		5	25	<u> </u>	15	50	
	Input bies current	See Note 4	25 °C		7	15		7	20	μΑ
lВ			MIN		12	25	I	9	30	μ^
VICR	Common-mode input voltage range	V _{CC} - = -7 V	Full range	± 5			± 5			V
	Large-signal differential	No load,	25°C	12.5	33	_	10	33		V/mV
AVD	voltage amplification	$V_{O} = 0 \text{ to } 2.5 \text{ V}$	/ Full range	10			8			7 7/111
	High-level output voltage	V _{ID} = 5 mV, I _{OH} = 0	Full range		4 §	5		45	5	
Vон		V _{ID} = 5 mV, I _{OH} = -5 mA	Full range	2.5	3.6§		2.5	3.6§]
VOL	Low-level output voltage	$V_{ID} = -5 \text{ mV},$ $I_{OL} = 0$	Full range	- 1	-0.5§	0‡	-1	-0.5§	o‡	٧
	Low-level output current	$V_{ID} = -5 \text{ mV},$ $V_{O} = 0$	25°C	2	2.4		1.6	2.4		
loL			MIN	1	2.3		0.5	2.4		mA
-			MAX	0.5	2.3		0.5	2.4		
ro	Output resistance	$V_0 = 1.4 \text{ V}$	25 °C	<u> </u>	200		ļ	200		Ω
CMRR	Common-mode rejection ratio	R _S ≤ 200Ω	Full range	80	100 §		70	100 §		dB
¹cc+	Supply current from VCC+	V _{ID} = -5 mV,	Full range		5.5§	9		5.59	9	mA
Icc -	Supply current from VCC-		Full range		-3.5\$	- 7		-3.5§	-7	mA
PD	Total power dissipation	No load	Full range		90 §	150	l	90§	150	mW

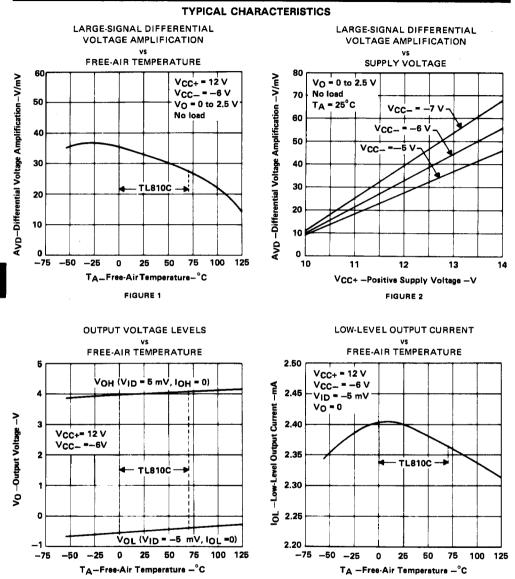
[‡]Full range (MIN to MAX) for TL810M is -55°C to 125°C and for the TL810C is 0°C to 70°C.

883

NOTE 4: These characteristics are verified by measurements at the following temperatures and output voltage levels: for TL810M, V_O = 1.8 V at T_A = -0.55°C, V_O = 1.4 V at T_A = 2.5°C, and V_O = 1.9 V at T_A = 1.25°C; for TL810C, V_O = 1.5 V at T_A = 0°C, V_O = 1.4 V at 25°C, and V_O = 1.2 V at T_A = 70°C. These output voltage levels were selected to approximate the logic threshold voltages of the types of digital logic circuits these comparators are intended to drive.

switching characteristics, $V_{CC+} = 12 \text{ V}, V_{CC-} = -6 \text{ V}, T_A = 25 ^{\circ}\text{C}$

PARAMETER TES					
Response time $R_L = \infty$,	$C_L = 5 pF$,	See Note 5	 30	80	ns


NOTE 5: The response time specified is for a 100-mV input step with 5-mV overdrive and is the interval between the input step function and the instant when the output crosses 1.4 V.

Texas Instruments

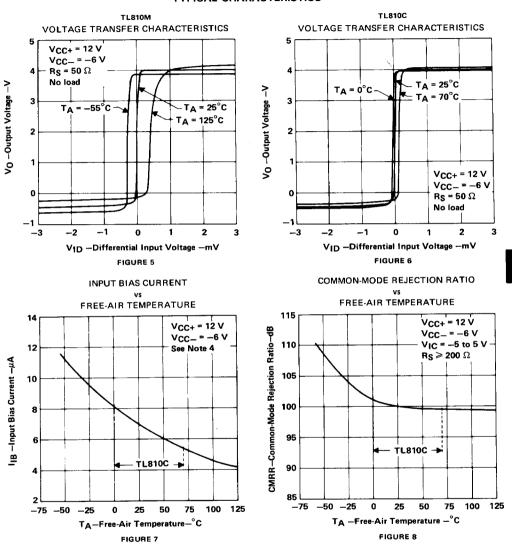
4-69

[‡]The algebraic convention, where the most-positive (least-negative) limit is designated as maximum, is used in this data sheet for logic levels only, e.g., when 0 V is the maximum, the minimum limit is a more-negative voltage.

[§]These typical values are at $T_A = 25$ °C.

4-70

TEXAS INSTRUMENTS
POST OFFICE BOX 225012 • DALLAS, TEXAS 75265


11. -

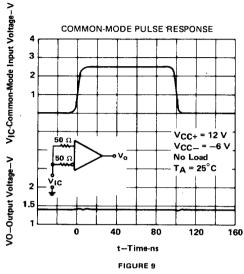
883

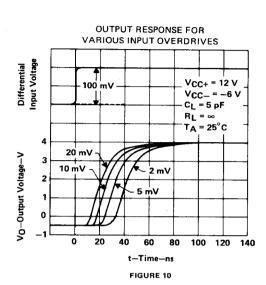
FIGURE 4

FIGURE 3

TYPICAL CHARACTERISTICS

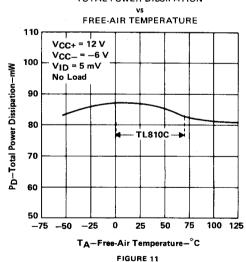
NOTE 4: These characteristics are verified by measurements at the following temperatures and output voltage levels: for TL810M, V_O = 1.8 V at T_A = -55°C, V_O = 1.4 V at T_A = 25°C, and V_O = 1 V at T_A = 125°C, for TL810C, V_O = 1.5 V at T_A = 0°C, V_O = 1.4 V at 25°C, and V_O = 1.2 V at T_A = 70°C. These output voltage levels were selected to approximate the logic threshold voltages of the types of digital logic circuits these comparators are intended to drive.


Texas Instruments


4-71

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

883



4

Voltage Comparators

TOTAL POWER DISSIPATION

4-72

Texas Instruments

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

11...

883