+INTERFACER4+ TECHNICAL MANUAL IEEE 696 / S-100 3 CHANNEL SERIAL I/O BOARD with CENTRONICS and Universal Parallel Ports A GODBOUT COMPANY # TABLE OF CONTENTS | How to Get Your Interfacer 4 Board Up and | |---| | Running in a CompuPro System in Five Minutes | | or Less Without Reading the Manual | | <u>-</u> | | HARDWARE SECTION | | About Interfacer 4 | | Technical Overview | | Port Map | | Port Addressing | | User/Board Selection | | User Select Register | | Data Bus Select Switch S3 | | Relative User 0 - 2 Swap Option | | Wait State Selection | | Cables | | Using Interrupts | | Interrupt Control Registers | | Interrupt Status Registers | | incerrupt status kegisters | | SERIAL INFORMATION SECTION | | USART Initialization | | | | USART Initialization Sequence | | Data Registers | | Status Registers | | Mode Registers | | Command Register | | Serial Mode Jumpers | | Programming Jumpers | | RS-232C Control Lines | | USART Handshaking Lines | | Synchronous Mode Clock Driver/Receivers 20 | | Relative User 2 Synchronous Mode Jumpers 2 | | Relative User 3 Synchronous Mode Jumpers 2 | | Selecting Rate of On-Board Baud Rate Generator 21 | | | | UNIVERSAL PARALLEL CHANNEL | | Technical Overview | | I/O Address Assignment | | Status-P Register Bit Assignment | | Port Control Lines | | Input Strobe Line | | Input Examples | | Output Enable Line | | Attention Line | | Output Examples | | CENTRONICS STYLE PARALLEL CHANNEL | |--| | Technical Overview | | Status-C Register Bit Assignment 25 | | Control-C Register Bit Assignment | | Transmit Interrupt | | Interface Signal Designations | | Signal Differences between EPSON and CENTRONICS 26 | | Control-C Line Jumpering | | Jumper Description | | Light Emitting Diode | | Sense Dip Switch | | | | THEORY OF OPERATION | | S-100 Bus Drivers | | I/O Port Decode Logic | | Strobe Generation Logic | | Wait State Logic | | Interrupt Control/Status Logic | | USARTS | | RS-232/Current Loop Level Conversion Logic | | CENTRONICS Parallel Logic | | Universal Parallel Logic | | Universal rarallel Logic | | COUTLIABLE CECTION 32 | | SOFTWARE SECTION | | Sample Program Using Interfacer 4 as the CP/M Console 33 | | CENTRONICS Test Routine | | Interfacer 4 Serial Test Routine | | TNC2651 Processors 1 - Comment and John Tables 6 | | INS2651 Programmable Communications Interface 41-47 | | HADDIADE DECONTON | | HARDWARE DESCRIPTION | | Parts List | | Component Layout | | Logic Diagram | | Jumper and Switch Index | | CHOTOMER CERUICE / LINITER MARRANGO TARRANGO TARRANGO TARRANGO | | CUSTOMER SERVICE / LIMITED WARRANTY INFORMATION BACK PAGE | | Document #11877 | | bocomene #11077 | | DISCLAIMER | | <u> </u> | | Godbout Electronics makes no representations or warranties with | | respect to the contents hereof and specifically disclaims any | | implied warranties of merchantability or fitness for any | | particular purpose. Further, Godbout Electronics reserves the | | right to revise this publication and to make any changes from | | time to time in the content hereof without obligation of Godbout | | Electronics to notify any person of such revision of changes. | | | This document was proofread with the aid of SpellGuard $^{\intercal\,M}$ from SORCIM, Santa Clara, CA. # How to Get Your INTERFACER 4 Board Up and Running in a CompuPro System in Five Minutes or Less Without Reading the Manual This section allows the user to configure an INTERFACER 4 in a standard CompuPro system running CP/M-80 or CP/M-86 so that the INTERFACER 4 DRIVES the console, list and ULl devices. If, after reading and following the directions in this section, your board appears not to function, or if you are planning to use this board in other than a standard CompuPro system, DON'T CALL!!! READ THE MANUAL FIRST!!! #### SWITCHES #### DIP SWITCH S1 This switch is not used by either the CP/M-80 or the CP/M-86 BIOS, so we recommend that you turn all positions "OFF". # DIP SWITCH S2 This switch controls the port addressing and board selection number for the board. It should be set as described in the table below. These settings will put the INTERFACER 4 at ports 10-17H as users 4-7. | POSITION | LABELED | HOW TO SET IT | |----------|---------|---------------| | 1 | вѕо | ON | | 2 | BS1 | ON | | 3 | H/L | OFF | | 4 | DIS | OFF | | 5 | A7 | ON | | 6 | A6 | ON | | 7 | A5 | ON | | 8 | A4 | OFF | | 9 | A3 | ON | | 10 | - | ON (NOT USED) | # DIP SWITCH S3 This switch should be set with positions 1-4 "ON", and positions 5-8 "OFF". # JUMPER SOCKETS The jumper sockets should have either an 8 position shunt or an 8 position DIP header as indicated below. # JUMPER SOCKET | JS1 |
SHUNT | INSTALLED | | | | |-----|------------|-----------|------|----|-------| | JS2 |
SHUNT | INSTALLED | | | | | JS3 |
SHUNT | INSTALLED | | | | | JS4 |
HEADER | INSTALLED | WITH | NO | WIRES | | JS5 |
HEADER | INSTALLED | WITH | NO | WIRES | | JS6 |
HEADER | INSTALLED | WITH | NO | WIRES | # **JUMPERS** The pin shunt jumpers should be installed or removed as indicated. | JUMPER | CONDITION | |---------|--| | J1 | NO PINS NEED TO BE INSTALLED | | J2 | BOTTOM INSTALLED WITH EPSON / NO SHUNT OTHERWISE | | J3 | TOP INSTALLED WITH EPSON / NO SHUNT OTHERWISE | | J4 | BOTTOM INTSALLED WITH BOTH EPSON AND CENTRONICS | | J5 | REMOVED | | J6 | INSTALLED FOR 1 WAIT STATE / REMOVED OTHERWISE | | J7 | INSTALLED FOR 2 WAIT STATES / REMOVED OTHERWISE | | J8 | INSTALLED FOR 3 WAIT STATES / REMOVED OTHERWISE | | J9 | NO JUMPER | | J10-J25 | REMOVED | | J26 | JUMPER A-B and C-D for the CENTRONICS CHANNEL | | | as USER 4. | | | JUMPER A-C and B-D for the CENTRONICS CHANNEL | | | as USER 6. | # DIAGRAM - JUMPER AND JUMPER SOCKET LAYOUT NOTE: Under MP/M 8-16 or an interrupt driven mode, J26 MUST be jumpered A-B and C-D. # HARDWARE SECTION # **ABOUT INTERFACER 4** Congratulations on your decision to purchase the INTERFACER 4 multi-purpose I/O board. INTERFACER 4 has been designed to be the most flexible and highest performance I/O interface available that fully complies with the IEEE 696/S-100 bus standard. Due to its provision for ready expansion and modification as the state of the computing art improves, the S-100 bus is the professional level choice for commercial, industrial, and scientific applications. We believe that this board, along with the rest of the S-100 portion of the CompuPro family, is one of the best boards available for that bus. The INTERFACER 4 boasts several innovative features not found on currently available I/O boards. The primary innovation stems from its full software compatibility with the INTERFACER 3 as well as the ability to intermix INTERFACER 3 and 4 boards at the same port addresses. Additional features include 3 fully programmable asynchronous serial channels, 2 of which are capable of high speed synchronous transmission and one capable of current loop operation, five RS-232 handshaking lines per channel plus bi-directional clock drivers on both the synchronous channels, a pin compatible CENTRONICS parallel interface port with the full complement of handshaking lines, a universal parallel port with 16 data and 3 handshaking lines, expandability to 32 users with eight boards using only 8 port addresses, a flexible interrupt structure with full maskability and pending status on both transmit and receive interrupts, and conservative design for operation with most CPUs operating to beyond 10 MHz. Other features standard to all CompuPro boards include thorough bypassing of all supply lines to suppress transients, on-board regulators, and low power Schottky TTL and MOS technology integrated circuits for reliable, cool operation. All this and sockets for all IC's go onto a double sided, solder masked printed circuit board with a complete component legend. # TECHNICAL OVERVIEW The INTERFACER 4 was designed for efficient operation in interrupt driven/multi-user microcomputer systems as well as polled mode single user systems. Eight distinct interrupts are generated on-board by the three USARTs and two parallel ports, and these are brought out for jumpering by the user to the eight vectored interrupt lines on the S-100 bus. Since these interrupt lines are open collector, they may be configured to interrupt on any or all of the vectored interrupt lines. In addition, a transmit and receive interrupt mask port is provided for inhibiting unwanted interrupts. The INTERFACER 4 provides multi-user operation with a minimum number of I/O ports by incorporating a user select register to activate the required I/O channel. This five bit register is used to select a particular channel, which allows up to 32 users (up to eight boards) on the same 8 port addresses. When a particular user is selected, the four USART registers associated with that specific serial channel or the parallel registers are made available for examination and alteration by the host processor or other temporary bus master. In addition, whenever a particular channel is selected, the interrupt registers on that particular board as well as the registers on another board in the same group of eight users are available for examination and alteration. The typical sequence of operation would require all channels on the INTER-FACER 4 to be mode initialized and the interrupt mask registers set for operation. All parameters of the USART or parallel ports may be altered by selecting that particular channel and writing a new set of mode and command words to the proper registers. If running in a non-interrupt environment, the interrupt status registers may be polled and checked in roughly the same manner as a standard single channel serial board. All three of the serial channels on the INTERFACER 4 are designed for direct connection to DATA TERMINAL EQUIPMENT (DTE) or DATA COMMUNICATION EQUIPMENT (DCE) in asynchronous mode without
alteration of the cables. This allows direct connection to all types of RS-232 equipment including modems. In addition, two channels are capable of high speed synchronous operation using internal or external clocks and one channel may be connected to current loop devices. The CENTRONICS parallel channel was designed for direct connection to printers using standard ribbon cable connectors. In addition, all handshaking lines have been implemented for maximum flexibility and ease of interfacing. #### PORT MAP The INTERFACER 4 interface uses a block of eight port addresses for communication between it and the host processor. The address of the first port is switch selectable to any address which is a multiple of eight. The ports will be referred to as RELATIVE PORTS 0-7. | RELATIVE PORT | FUNCTION | |---------------|---| | 0 | USART / CENTRONICS / DIPSWITCH DATA-C Register (R/W) | | 1 | USART / CENTRONICS STATUS-C Register (R) SYN1/SYN2/DLE Register / CENTRONICS CONTROL-C Reg. (W) | | 2 | USART Mode Register / Parallel DATA-P Register (R/W) | | 3 | USART Command Register / Parallel STATUS-P Register (R/W) | | 4 | Transmit Interrupt Status Register (R) Transmit Interrupt Mask Register (W) | | 5 | Receive Interrupt Status Register (R) Receive Interrupt Mask Register (W) | | 6 | Not used | | 7 | User Select Register (write only) | # PORT ADDRESSING DIP switch S2, positions 4 thru 9 are used to select the base address of the eight port block in a binary fashion as shown in the following table: # SWITCH POSITION ADDRESS BIT | 4 | • | • | | | P | R' | r 1 | DI | SABLE | WHEN "ON" | |---|---|---|---|---|---|----|-----|----|-------|-------------| | 5 | ٠ | | | | • | ٠ | | | A7 | | | 6 | | | • | • | • | • | | • | A6 | "ON" = "0" | | 7 | | | | | | | | | A5 | "OFF" = "1" | | 8 | ٠ | | | | • | ٠ | • | | A4 | | | 9 | | | | | | | | | A3 | | **EXAMPLE:** To address this board at addresses 10H thru 17H for the CompuPro CP/M-80 or CP/M-86 operating system or the Phase 1 OASIS operating system, position 4 and 8 would be "OFF" and positions 5 thru 7 and positions 9 would be "ON". # USER/BOARD SELECTION To select a particular channel and to select which board that channel will be on (when running more than 4 users), requires the use of the User Select Port and three board select switches. The five bit User Select Register determines which of 32 possible users will be selected at a particular time. The two board select switches (S2-1 and S2-2) determine whether a board will respond to users 0 thru 7, 8 thru 15, 16 thru 23, and 24 thru 31 and the HIGH/LOW select switch (S2-3) determines whether the board is the high or low 4 users in a particular block of eight. A particular user (0-31) is selected by outputting the five bit number that represents that user. The diagram shown below describes the relation between the board select switches and the User Select Register. # USER SELECT REGISTER | DATA BIT | NAME | FUNCTION | |----------|------|----------------------| | DO | USO | USER SELECT 0 (LSB) | | D1 | US1 | USER SELECT 1 | | D2 | H/LS | HIGH/LOW SELECT | | D3 | BS0 | BOARD SELECT O (LSB) | | D4 | BS1 | BOARD SELECT 1 (MSB) | | D5 | | NOT USED | | D6 | | NOT USED | | D7 | | NOT USED | Since each INTERFACER 4 will support 4 users, we will refer to these 4 as RELATIVE USERS 0-3. These 4 ports are physically configured with RELATIVE USER 0 as the CENTRONICS and Universal Parallel ports, RELATIVE USER 1 as the far right serial channel with current loop capabilities (CONN 3 C), RELATIVE USER 2 is the middle channel (CONN 3 C), and RELATIVE USER 3 as the far left channel (CONN 3 A). To determine the EXACT USER number, the RELATIVE USER number must be added to the USER OFFSET number. The RELATIVE USER number corresponds to the 2 bits above called USER SELECT 0-1, and the USER OFFSET number corresponds to the 3 bits above called BOARD SELECT 0 and 1, and HIGH/LOW SELECT. These 5 bits determine the exact user number. | US 1 | US0 | RELATI
USER NU | | STANDA | ARD CO | NFIGURATION | |---------------|----------------|-------------------|---------------|---------------|-------------|----------------| | 0 | 0 | USER | . 0 | CENTRO | ONICS | / PARALLEL | | 0 | 1 | USER | . 1 | RIGHT | SERIA | L CHANNEL | | 1 | 0 | USER | 2 | MIDDLE | E SERI | AL CHANNEL | | 1 | 1 | USER | . 3 | LEFT : | SERIAL | CHANNEL | | BOARD
S2-3 | SELECT
S2-2 | SWITCHES
S2-1 | BOARD
H/LS | SELECT
BS1 | BITS
BSO | USER
OFFSET | | ON | ON | ои | 0 | 0 | 0 | 0 | | OFF | ON | ON | 1 | 0 | 0 | 4 | | ON | ON | OFF | 0 | 0 | 1 | 8 | | OFF | ON | OFF | 1 | 0 | 1 | 12 | | ON | OFF | ON | 0 | 1 | 0 | 16 | | OFF | OFF | ON | 1 | 1 | 0 | 20 | | ON | OFF | OFF | 0 | 1 | 1 | 24 | | OFF | OFF | OFF | 1 | 1 | 1 | 28 | # DATA BUS SELECT SWITCH S3 Switch S3 is used to steer either the high (D4-D7) or the low (D0-D3) nibble of status/control information to and from the interrupt logic on the INTERFACER 4. This switch was designed in to provide software compatibility with the INTERFACER 3 board. When the INTERFACER 4 is addressed as EXACT USERS 0-3 + N, (where N is 0, 8, 16, or 24) we would like the low nibble (D0-D3) of status and control information to be used. This would require switch S3 to have positions 1-4 "OFF" and positions 5-8 "ON". When the INTERFACER 4 is addressed as EXACT USERS 4-7+N, (where N is 0, 8, 16, or 24) we would like the high nibble (D4-D7) of status and control information to be used. This would require switch S3 to have positions 1-4 "ON" and positions 5-8 "OFF". NOTE!: SETTING SWITCH S3 DIFFERENTLY THAN DESCRIBED ABOVE WILL CAUSE IMPROPER BOARD OPERATION AND POSSIBLE BOARD DAMAGE! **EXAMPLE:** To address the INTERFACER 4 to respond to EXACT USERS 4 thru 7 (the CompuPro standard), switches S2-1 and S2-2 would be "ON", and S2-3 would be "OFF". To select a particular user in the group from 4 to 7, BS1 (D4) and BS0 (D3) of the User Select Register must be "O", and H/LS (D2) must be "1" for the board to respond. Switch S3 must have positions 1-4 "ON" and 5-8 "OFF". To select EXACT USER 5, a O5H must be sent to the USER SELECT REGISTER. **EXAMPLE:** To address the INTERFACER 4 to respond to users 16 thru 19, switch S2-1 and S2-3 would be "ON", and switch S2-2 would be "OFF". Switch S3 must have positions 1-4 "OFF" and 5-8 "ON". To select a particular user in the group from 16 to 19, BS1 must be a "1", BSO must be "O", and H/LS must be a "O" for the board to respond. To select EXACT USER 18, a 12H must be sent to the USER SELECT REGISTER. # RELATIVE USER 0 - 2 SWAP OPTION The INTERFACER 4 may be configured so that RELATIVE USERS 0 and 2 may be swapped by re-jumpering J26. This will configure the CENTRONICS and UNIVERSAL Parallel channels as RELATIVE USER 2 instead of 0, and the middle serial channel as RELATIVE USER 0 instead of 2. This option allows EXACT USER 6 to be either a serial channel or the CENTRONICS channel for compatibility with the standard CompuPro CP/M BIOS. (This allows the LPT LIST device to be either serial or parallel without changing the BIOS.) The standard configuration has "A" connected to "B", and "C" connected to "D" on J26. This provides the CENTRONICS as RELATIVE USER "O". To swap this, jumper "A" to "C", and "B" to "D" on J26, and the CENTRONICS channel will be RELATIVE USER 2 and the middle serial channel will be RELATIVE USER 0. # WAIT STATE SELECTION The INTERFACER 4 was designed to run in very fast microcomputer systems by allowing up to three wait states to be added when accessing the USART/PARALLEL registers. Since the user select and interrupt control registers are capable of higher speed operation than the USART registers, no wait states are inserted even when they are enabled on the board. The 3 sets of vertical pins (J6, J7, and J8) control the enabling of one, two, or three wait states. With the black pin shunt on J6, one wait state will be inserted. With the pin shunt on J7, two wait states will be inserted. With the pin shunt on J8, three wait states will be inserted. If the pin shunt is left removed, no wait states will be inserted. NOTE: If multiple INTERFACER 4 boards are inserted, they should be set to the same number of wait states. # CABLES The INTERFACER 4 is designed to use 3 different cable assemblies. The serial channels use a custom 50 conductor cable that splits into three DB-25S connectors. The Universal Parallel channel uses a standard 26 conductor cable identical to those used on the INTERFACER 1 and INTERFACER 2, and the CENTRONICS Parallel channel uses a custom 40 pin cable that mates to a 36 pin "D" Shell connector for interfacing to the printer. The serial channels (CONN 3, 50 pin connector on the far right) use a custom 3 user cable (see photo A page 12). This cable consists of a female 50 pin insulation displacement connector that splits into thirds and connects to three female DB-25 connectors. The actual cable has positions 1-16 (pin 1 on the far left side of the connector) on the first DB-25, positions 17-32 on the second DB-25, and positions 33-50 on the third DB-25. NOTE: The pin numbers on the circuit diagram show the pin numbers on the DB-25 connector and not the 50 pin connector. The Universal Parallel channel (CONN 1, 26 pin connector on the far left) uses the CompuPro standard RS-232 I/O cables (see photo B page 12). This cable consists of a female 26 pin insulation displacement connector that mates to a female DB-25 (the 26th conductor is not used). **NOTE:** The pin numbers on the circuit diagram show the pin numbers on the DB-25 connector and not the 26 pin connector. The CENTRONICS Parallel channel (CONN 2, 40 pin connector in the middle of the board) uses another custom cable (see photo C page 12). This cable consists of a 40 pin female transition connector that mates with a 36 pin female "D" shell connector identical to those on the back of CENTRONICS interface printers. NOTE: The
pin numbers on the circuit diagram show the pin numbers on the D-36 connector and not the 40 pin connector, and that pin 1 of the 40 pin connector does not correspond to pin 1 of the D-36 connector. If the user wishes to make this cable, the 36 conductors from the D-36 connector should be centered in the 40 pin connector, with 2 unused pins on each edge. #### USING INTERRUPTS The INTERFACER 4 has a simple but elegant interrupt structure that allows considerable flexibility. Each USART generates both a transmit and receive interrupt. The CENTRONICS Channel generates an interrupt upon receiving an ACKNOWLEDGE from the printer, and the Universal Parallel channel generates an interrupt after being STROBED by an external device for a total of 8 distinct interrupts for the board. A transmit interrupt indicates that the USART or the CENTRONICS transmit register is empty and it is ready to accept a character. A receive interrupt indicates that data is available from the receiver data register on either the USART or the Universal Parallel channel. Each of these interrupts may be masked "OFF" or "ON" by altering the INTERRUPT CONTROL REGISTERS as described below. Each of these interrupts are open collector, and may be individually tied to any of the 8 vectored interrupt lines (VIO-VI7). The status of each interrupt line may be sampled by reading the INTERRUPT STATUS REGISTERS as described below. Since each of the 8 interrupts generated on the INTERFACER 4 may be tied to any of the 8 vectored lines, almost any type of priority scheme may implemented. All transmit interrupts are brought out twice on one side of jumper socket JS5, and all receive interrupts are brought out twice on one side of jumper socket JS6. On the opposite side of each socket, each of the 8 vectored interrupt lines are brought out. By using the provided headers, any USART interrupt may be connected to any VI line. The pin-out of JS5 and JS6 are shown below. | INTERRUPT | JS5 | VI LINE | JS6 | INTERRUPT | |---|---|-------------------------|---|---| | TxINT 0 TxINT 1 TxINT 2 TxINT 3 TxINT 0 TxINT 1 | 9 8
10 7
11 6
12 5
13 4
14 3 | VIO VII VI2 VI3 VI4 VI5 | 8 9
7 10
6 11
5 12
4 13
3 14 | RXINT 0 RXINT 1 RXINT 2 RXINT 3 RXINT 0 RXINT 1 | | TxINT 2
TxINT 3 | 15 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | VI6
VI7 | 2 15
1 16 | RxINT 2
RxINT 3 | | | | | | | **EXAMPLE:** If we wish to generate an interrupt on vectored interrupt line VI3 when data becomes available from RELATIVE USER 3, a wire should be soldered between pins 5 and 12 of JS6. **EXAMPLE:** If we wish to generate an interrupt on vectored interrupt line VI6 when data becomes available from RELATIVE USERS 0, 1, 2, and 3, a wire should be soldered to connect pins 1, 13,14,15, and 16 of JS6. **EXAMPLE:** If we wish to generate an interrupt on vectored interrupt line VIO when RELATIVE USER 2 is ready to accept a character, a wire should be soldered to connect pins 8 and 11 of JS5. All serial channels are capable of generating a third interrupt called TxEMT/DSCHG*. This interrupt occurs when the transmitter has completed serialization of the last character loaded or a change has occurred in the state of the DSR or DCD RS-232 status lines. Additional information on this line may be found in the 2651 data sheet in this manual. The TxEMT/DSCHG* output from the 2651 may be jumpered to generate either a transmit or receive interrupt. Due to the wire-OR capability of the interrupt outputs from the 2651, when jumpered, the transmit interrupt will become TxRDY OR TxEMT/DSCHG* or the receive interrupt will become RxRDY OR TxRDY/DSCHG*. Therefore, when jumpered, the user must check the status register to determine what condition caused the interrupt. The following table will demonstrate where to install the shorting plug to generate the appropriate interrupt. | CHANNEL
NUMBER | TO CAUSE A TXEMT/DSCHG TXRDY LINE | INTERRUPT ON THE: RxRDY LINE | |-------------------|-----------------------------------|------------------------------| | 1 | INSTALL J10T | INSTALL J10R | | 2 | INSTALL J11T | INSTALL J11R | | 3 | INSTALL J12T | INSTALL J12R | # INTERRUPT CONTROL REGISTERS Two registers are provided for individually masking the transmit and receive interrupts from the bus. On power-up or reset, all interrupts are disabled on the INTERFACER 4. Alteration of the interrupt registers may be accomplished in groups of eight users for compatibility with the INTERFACER 4. To gain access to these registers, a user channel must be enabled in the particular group of 8 users. (You cannot alter any interrupt register on a pair of boards set for users 0 thru 7 unless you have selected one of those 8 users) If an INTERFACER 4 is installed in a system where it is selected as EXACT USERS 0-3 + "N", where "N" is 0, 8, 16, or 24 (i.e. users 0-3, 8-11, etc.), a Transmit or Receive interrupt may be enabled by outputting a "1" to the proper bit of the appropriate register. The registers are configured so that Data Bit 0 will mask RELATIVE USER 0, D1 will mask RELATIVE USER 1, D2 will mask RELATIVE USER 2, and D3 will mask RELATIVE USER 3. If an INTERFACER 4 is installed in a system where it is selected as EXACT USERS 4-7 + "N", where "N" is 0, 8, 16, or 24 (i.e. users 4-7, 12-15, etc.), a Transmit or Receive interrupt may be enabled by outputting a "l" to the proper bit of the appropriate register. The registers are configured so that Data Bit 4 will mask RELATIVE USER 4, D5 will mask RELATIVE USER 5, D6 will mask RELATIVE USER 6, and D7 will mask RELATIVE USER 7. This is true for both the Transmit Interrupt Control Register (relative port 4) and the Receive Interrupt Control Register (relative port 5). **EXAMPLE:** To enable all Transmit Interrupts on a particular INTERFACER 4, you should send to relative port 4 either a OFH if the board is selected as a 0-3 group or send a OFOH if the board is selected as a 4-7 group. **EXAMPLE:** To enable the Transmit Interrupt on relative users 1, 4 and 6 in a pair of INTERFACER 4 boards configured as a group of eight users, you should send a 52H to relative port 4. **EXAMPLE:** To disable all Receive Interrupts on a particular INTERFACER 4 selected as a 4-7 group, you should send a OFH to relative port 5. **EXAMPLE:** To enable the Receive Interrupt on relative users 2, 3 and 7 in a pair of INTERFACER 4 boards, you should send a 8CH to relative port 5. # INTERRUPT STATUS REGISTERS Two registers are provided for checking the status of pending transmit and receive interrupts. To gain access to these registers, a user channel must be enabled on the particular board or pair of boards in a group of eight users to be altered. The INTERFACER 4 board has the intelligence to allow you to read the interrupt status from a pair of boards simultaneously. (You cannot read any interrupt register on a pair of boards set for users 0 thru 7 unless you have selected one of those 8 users). If a Transmit or Receive interrupt is pending, a "1" will be present in the proper bit of the status register. The registers are configured so that Data Bit O contains the status of EXACT USER O+N, Dl contains the status of EXACT USER 1+N, and so on with D7 containing the status of EXACT USER 7+N, where N is O, 8, 16, or 24. This is true for both the Transmit Interrupt Status Register (relative port 4) and the Receive Interrupt Status Register (relative port 5). Remember, these status registers are read only! Writing into these registers will alter the Interrupt Control Mask. In addition, the status of a channel's interrupts are available even if those interrupts are masked "OFF". The Interrupt Control Register does not affect the reading of the status from a register. **EXAMPLE:** If all Transmit Interrupts on a particular pair of INTERFACER 4 boards are asserted, you will read a OFFH at relative port 4. **EXAMPLE:** If Transmit Interrupts are pending on EXACT USERS 1, 4 and 6 (+N), you will read a 52H from relative port 4. **EXAMPLE:** If there are no Receive Interrupts pending on a single INTERFACER 4 in a system, (no data available), you will read either a OFOH from relative port 5 if the board is set for EXACT USERS 0-3 (+N), or you will read a OFH if the board is set for EXACT USERS 4-7 (+N). The reason for the nibble of value "F" is the processor will read binary "1"s from non-driven lines. **EXAMPLE:** If Receive Interrupts are pending on EXACT USERS 2 and 3 (+N) with a single INTERFACER 4 in the system, you will read a OFCH from relative port 5. # SERIAL INFORMATION SECTION # USART INITIALIZATION The serial channels on the INTERFACER 4 are implemented with a 2651 type USART from either National Semiconductor or Signetics. Several of the USART parameters and channel control functions are programmed by writing into or reading from certain registers in the 2651. They are: - 1. The baud rate. - 2. The word length. - 3. Whether or not a parity bit is generated. - 4. Whether the parity is even or odd (if generated). - 5. The number of stop bits. - 6. Enabling and disabling the transmitter and receiver. - 7. Setting and testing the RS-232 handshake lines. - 8. Synchronous or asynchronous operation. In addition, the normal status indication and data transfer functions are also handled through the USART's registers. A table of the various registers and where they appear in the I/O port map is shown in a previous section and in the following tables. # "READ" or "INPUT" Ports | Relative Port Address | UART Register Function | |-----------------------|---| | 00 hex | Data Port, read received data. | | 01 hex | Status Port, read UART status info. | | 02 hex | Mode Registers, read current UART mode. | | 03 hex | Command Register, read current command. | # "WRITE" or "OUTPUT" Ports |
Relative Port Address | UART Register Function | |-----------------------|---| | 00 hex | Data port, write transmit data. | | 01 hex | SYN1/SYN2/DLE register, write sync bytes. | | 02 hex | Mode registers, write mode bytes. | | 03 hex | Command register, write command byte. | # USART INITIALIZATION SEQUENCE When bringing up the USART in asynchronous mode, the following sequence of events must occur: - 1. Set Mode Register 1 - 2. Set Mode Register 2 - 3. Set Command Register - 4. Begin normal USART operation When bringing up the USART in transparent synchronous mode, all of the following sequence of events must occur. If bringing up the USART in non-transparent synchronous mode, step 5 may be omitted. - 1. Set Mode Register 1 - 2. Set Mode Register 2 - 3. Set SYN1 Register - 4. Set SYN2 Register - 5. Set DLE Register - 6. Set Command Register - 7. Begin normal USART operation #### DATA REGISTERS The USART data registers are straight-forward in their operation. You write a byte to the data register when you want to transmit that byte to an external serial device and you read the byte in the data register to receive a byte from an external serial device. The USART will automatically add the proper start and stop bits when transmitting and will remove them when receiving. # STATUS REGISTER The status register is used to determine the current state of the USART. Each bit of the status register has a different meaning depending on whether it is high or low. (High means a logic one or high level and low means a logic zero or low level.) The following table describes the meaning of the status bits: # STATUS REGISTER FORMAT TABLE #### STATUS REGISTER FORMAT | | | | | UMBERS | | | | |--|---|---|-------|--|---|-------|--| | SA-7 | \$R-6 | \$8-5 | \$8-4 | \$9-3 | SR-Z | \$A-1 | SR-# | | OATA SET
MEADY
9 · OSR IMPUT
IS HIGH
1 · OSR IMPUT
IS LOW | DATA CARRIER
DETECT
0 - OCD IMPUT
IS HIGH
1 - OCD IMPUT
IS LOW | FE/SYN DETECT ASYN: • NORMAL I - FRAMING ERROR SYNC: • NORMAL I - SYN CHARACTER DETECTED | | PE/DLE DÉTECT ASYNC: 0 - MORMAL 1 - PARITY ERROR SYNC: 0 - NORMAL 1 - PARITY ERROR OR DLE CHARACTER RECEIVED | T KEMT/DSCHG 0 * NORMAL 1 * CHANGE IN DSR OR DED OR TRANSMIT SHIFT REGISTER IS EMPTY | | TARDY O TRANSMIT HOLDING REGISTER BUSY TRANSMIT HOLDING REGISTER EMPTY | NOTE I. BAUD RATE FACTOR IN ASYMCHRONOUS MODE APPLIES ONLY IF EXTERNAL CLOCK IS SELECTED. FACTOR IS IS IN INTERNAL CLOCK IS SELECTED. # MODE REGISTERS When bringing up the USART, its two mode registers must be set with various bit patterns that will determine the operating modes. Although there are two registers, they occupy only one I/O port address. This is accomplished with internal sequencing logic that allows you to write the first register (Mode Register 1) and then the second register (Mode Register 2). It is important to write to Mode Register 1 first. The meanings of the various bits in the mode registers are described in the following tables: # MODE REGISTER 1 AND 2 FORMAT TABLES # MODE REGISTER 1 FORMAT | | | | 8IT NU | MBERS | | | <u> </u> | |------------------------------------|--------|------------------------------------|---|----------------------|---|---|----------| | MR1-7 | MA 1-5 | MR1-5 | MR1-4 | MR1-3 | MR1-2 | MR1-1 | MR1-0 | | 00 = 101V
81 = 1 S1
10 = 1%; | | PARITY TYPE
0 - GOD
1 - EVEN | PARITY CONTROL 0 - DISABLED 1 - EMABLED | 86 -
01 -
18 - | }
ER LENGTHO
5 OBTS
6 BBTS
7 OBTS
a OBTS | 00 = SYNCHRON
01 = ASYNCHRO
10 = ASYNCHRO | | #### MODE REGISTER 2 FORMAT | | | | BIT NO | MBERS | | | | |-------|--------|----------------------|-------------------|---|------------------|------------|---------| | MR2-7 | MR1-\$ | MP2-6 MP2-4 | | MR2-6 MR2-4 MR2-7 MR2-2 | | MR2-1 | MR2-0 | | NOT | USE B | TRANSMITTER
CLOCK | RECEIVER
CLOCK | | BAUD RATI | SELECTION | | | | | O . EXTERNAL | Q · EXTERNAL | 9008 • 59 BAUD | 9118 - 400 BAUD | 1100 - 480 | Ø BAUD | | | | I . INTERNAL | 1 - INTERNAL | 9901 - 75 BAUD 8111 - 1200 BAUD 1101 - 7200 (| | M SAUD | | | | | | | 0010 = 410 BAUO | 1000 - 1000 BAUD | 1110 - 960 | # EAUD | | | | | | 0011 + 134.5 BAUD | 1901 - 2000 GAUD | 1111 - 192 | OUAB DE | | | | | | 9109 - 150 BAUD | 1910 - 2400 9AUD | | | | | | | | 0101 - 300 BAUÐ | 1911 - 3660 GAUD | | | That completes the description of the Mode Registers. Remember that you must always write both mode registers, with Mode Register 1 first. # COMMAND REGISTER The Command Register is used to set the operating mode (sync or async), enable or disable the receiver and/or transmitter, force a "break" condition, reset the error flags and control the state of the RTS and DTR outputs. # COMMAND REGISTER TABLE # COMMAND REGISTER FORMAT | | | | | M8ERS | | | | |--|--|------|---|--|---|---|--| | CR-7 | C#-6 | CR-5 | CR-4 | CA-3 | CR-2 | CA-I | CR-0 | | 00 - NORMA 01 - ASYNC ECHO N SYNC S DLE ST | OPERATING MODE 00 - NORMAL OPERATION 11 - ASYNC: AUTOMATIC ECHO MODE SYNC SYN AND/OR DLE STRIPPING MODE 15 - LOCAL LOOP BACK 11 - REMOTE LOOP BACK | | RESET ERROR
Q - NORMA1
1 - RESET ERROR
P LAG IN STATUS
REGISTER (FE,
DE, PE/DLE
DETECT) | ASYNC. FORCE BREAK U = NORMAL I = FORCE BREAK SYNC: SEND OLE B = NORMAL I = SEND OLE | RECEIVE
CONTROL
(R.EM)
D · DISABLE
1 · ENABLE | DATA TERMINAL
READY
8 - FORCES ÖTR
OUTPUT MIGH
1 - FORCES ÖTR
OUTPUT LOW | TRANSMIT
CONTROL
G - DISABLE
I - EMABLE | # SERIAL MODE JUMPERS The INTERFACER 4 board with its serial programming jumpers allows the user to adapt all three channels to all standard RS-232 pin configurations and Relative User 1 to standard current loop configurations. In RS-232 mode, these jumpers may be set so that this board operates in a "master" mode where it behaves as the Data Terminal Equipment (DTE), or it may be set so that the board operates in a "slave" mode where it behaves as the Data Communication Equipment (DCE). With almost all CRT terminals and serial interface printers, the INTERFACER 4 serial mode jumpers (JS1-JS3) must be set in the "slave" or DCE mode. When connected to a Modem, the serial mode jumpers (JS1-JS3) of the INTERFACER 4 should be set in the "master" mode as shown on the following table. In current loop mode on Relative User 1, JS3 should be removed and JS4 and J25 installed. The proper configuration of JS4 depends on whether the on-board or an off-board 20mA current source is used. The wiring of the mating DB-25 connector should have pins 14 and 15 as the + and - inputs, and 16 and 17 as the + and - outputs. For special applications, pins 18 and 19 of the DB-25 are TTL IN and OUT if pin 7 and 10, and 8 and 9 of JS4 are shorted. # PROGRAMMING JUMPERS SLAVE MODE, JS1-JS3: for connections to CRT terminals, printers, etc. CURRENT LOOP - on board current source, JS4: Example TTY. MASTER MODE, JS1-JS3: for connection to MODEMS. CURRENT LOOP - external current source, JS4. # RS-232C CONTROL LINES The RS-232 control and data lines are defined as shown below. The EIA RS-232 standard defines a signal line at greater than +3V (+12V typical) to be "SPACING" and a signal line at less than -3V (-12V typical) to be "MARKING". | PIN# | CIRCUIT | DIR. | NAME | DESCRIPTION | |------|---------|------------|-------------------|-------------------------| | 1 | AA | | | PROTECTIVE GROUND | | 2 | BA | TO DCE | TxD | TRANSMITTED DATA | | 3 | BB | TO DTE | $R_{\mathbf{X}}D$ | RECEIVED DATA | | 4 | CA | TO DCE | RTS | REQUEST TO SEND | | 5 | CB | TO DTE | CTS | CLEAR TO SEND | | 6 | CC | TO DTE | DSR | DATA SET READY | | 7 | AB | | | SIGNAL GROUND | | 8 | CF | TO DTE | DCD | REC'D LINE SIGNAL DET. | | 15 | DB | DCE SOURCE | TSET | TRANS. SIG. ELE. TIMING | | 17 | DD | DCE SOURCE | RSET | REC'D SIG. ELE. TIMING | | 20 | CD | TO DCE | DTR | DATA TERMINAL READY | Five RS-232 handshaking signals are provided for interfacing to equipment needing these lines as shown below. Output lines may be set either "MARKING" or "SPACING" and their state may be altered by software commands as described in the USART INITIALIZATION Section under Command Register. #### USART HANDSHAKING LINES | OUTPUT LINES |
NAME
DTR
RTS | RS-232 LINE
CD
CA | DB25 PIN CONNECTION 20 OR 6 * 4 OR 5 * | |--------------|------------------------|-------------------------|--| | INPUT LINES |
NAME | RS-232 LINE | DB25 PIN CONNECTION | | | DSR
CTS | CC
CB | 6 OR 20 *
5 OR 4 * | | | DCD | CF | 8 | ^{*} NOTE: Pin numbers with no asterisk indicate the DB25 pin number when the Serial Mode Jumpers are set for "master" mode. Pin numbers with an asterisk indicate the DB25 pin number
when the Serial Mode Jumpers are set for "slave" mode. # SYNCHRONOUS MODE CLOCK DRIVER/RECEIVERS RELATIVE CHANNELS 2 and 3 can either transmit or receive the synchronous timing element signals. The typical configuration requires that the DATA COMMUNICATION EQUIPMENT (DCE) be the source of the of the synchronous transmit and receive clocks. The INTERFACER 4 is capable of independently transmitting or receiving the sync clocks in either DCE or DTE modes. For using either channel in a synchronous mode, there are two major options. The first option is whether or not you will be using the USART internal baud rate generator or the on-board high speed baud rate generators. The second option is whether you will be transmitting the sync clocks to the external device or receiving them from the external device. The following table will describe how each pin shunt should be set. # RELATIVE USER 2 SYNCHRONOUS MODE JUMPERS TRANSMITTING SYNC CLOCKS INSTALL J17, J18 , J20 | INTERNAL BAUD R | ATE USE - LOW | SPEED OPERATION | |--|---------------|-----------------------| | TRANSMITTING SYNC CLOCKS | l | RECEIVING SYNC CLOCKS | | INSTALL J13, J16 | l | INSTALL J15, J21 | | EXTERNAL BAUD RA | TE USE - HIGH | SPEED OPERATION | | TRANSMITTING SYNC CLOCKS | l | RECEIVING SYNC CLOCKS | | INSTALL J13, J14 , J16
INSTALL J23 FOR DESIRED RATE | I | INSTALL J15, J21 | | RELATIVE USER 3 SYNCHRONOUS MODE | JUMPERS | | | INTERNAL BAUD RA | ATE USE - LOW | SPEED OPERATION | | TRANSMITTING SYNC CLOCKS | | RECEIVING SYNC CLOCKS | | INSTALL J17, J20 | | INSTALL J19, J22 | EXTERNAL BAUD RATE USE - HIGH SPEED OPERATION - 1 - 1 RECEIVING SYNC CLOCKS INSTALL J19, J22 # INSTALL J24 FOR DESIRED RATE SELECTING THE RATE OF THE ON-BOARD BAUD RATE GENERATOR Either or both of the synchronous channels may use the on-board high speed baud rate generator for communication at rates greater than that available from the USART. The rates available on-board include 31.25K, 62.50K, 125K, 250K, and 500K baud, however, it is unlikely that 500K baud will be usable in most applications due to the slew rate limitations of the RS-232 drivers and receivers. The table below describes the jumper block that allows selection of these rates. | | | | - | J2: | _ | | | | J24 | • | | | | |--------|---|---|---|-----|---|---|---|---|-----|---|---|---|--------| | J21 | | 1 | * | ١ | * | 1 | Ī | * | I | * | ١ | | J22 | | 500K | 5 | • | * | | | | • | * | • | | ١ | 5 | 500K | | 250K | 2 | 1 | * | ١ | * | 1 | 1 | * | I | * | ١ | 2 | 250K | | 125K | 1 | _ | * | ļ | * | 1 | 1 | * | I | * | 1 | 1 | 125K | | 62.5K | 6 | • | * | 1 | | 1 | 1 | * | I | * | 1 | 6 | 62.5K | | 31.25K | 3 | | * | i | | 1 | | × | ١ | | ł | 3 | 31.25K | For relative user 2, jumper the proper rate across on J23. For relative user 3, jumper the proper rate across on J24. # UNIVERSAL PARALLEL CHANNEL # TECHNICAL OVERVIEW The UNIVERSAL PARALLEL section of the INTERFACER 4 consists of a full duplex latched parallel port for I/O data and one port for status. The use of TTL latches rather than a MOS parallel interface chip eliminates the need for mode selection and initialization, and allows the port to have strobe, attention and enable bits, an input interrupt, and 16 true data lines. # I/O ADDRESS ASSIGNMENT The UNIVERSAL PARALLEL channel on the INTERFACER 4 board is addressed as the MODE and CONTROL registers of RELATIVE USER 0. The DATA-P register of the channel is addressed at the PORT BASE + 2 (USART equivalent is the MODE register), and the STATUS-P register is addressed at PORT BASE + 3 (USART equivalent is the CONTROL register). In the STATUS-P register only data bits 0 and 1 are significant. # STATUS-P REGISTER BIT ASSIGNMENT Inputs to the processor from the STATUS-P register are defined as follows: | DATA BIT | NAME | SIGNAL | |-------------------|--------------------------|---| | DO
D1
D2-D7 | DAVO
TKNO
NOT USED | DATA AVAILABLE CHANNEL DATA TAKEN CHANNEL | # PORT CONTROL LINES - INPUT STROBE LINE The STROBE line on the input Channel is used to latch the data into the input register when a 74LS374 or 74LS373 latch is used. This line also sets the status flag so that the processor can tell if data has been entered. If a 74LS374 is used as the input register, a transition on the strobe line latches the data and sets the status flag. The strobe polarity select switch should be set as described below so that your data is valid during the transition. With the select switch (S1-2) ON, a low to high transition on strobe will latch the data. With the select switch OFF, a high to low transition on strobe will latch the data. If a 74LS373 is used as the input register, the strobe line can assume two different modes. The first mode is similar to the latched mode of the 74LS374 described above except that during the strobe pulse the data is transparent through the latch to the processor. At the end of the strobe pulse, the data will be latched and stable for the processor to access. With the strobe select switch (S1-2) "ON", a positive going strobe pulse will latch the data at the end of the pulse. With the select switch "OFF", a negative going strobe pulse will latch the data at the end of the pulse. The second mode is the fully transparent mode where the data is never latched but is available for inputting at any time by the processor. This mode is useful whenever the data has no strobe bit associated with it. This mode is entered when the strobe line is left open with the strobe select switch "ON". See the table below for strobing data. # INPUT EXAMPLES Some examples of typical applications might include connecting a ASCII keyboard or a set of sense switches to the input Channel of the INTERFACER 4. A keyboard usually has a strobe line to indicate that it has current valid data on its lines. Therefore, using one of the 74LS374 latches would be best. The keyboard data lines would be connected accordingly to input data lines, and the strobe line would be connected, and the strobe select switch would be "ON" for a positive keyboard strobe, and "OFF" for a negative keyboard strobe. If connecting some sense switches to the input lines, a 74LS373 would be the best choice because there are usually no strobe lines associated with switches. The switches should be connected to the input lines so that they ground the inputs (no pullup resistors are needed since they are supplied on the board) and the STROBE LINE should be left floating with the strobe select switch "ON". This allows the processor to input the data from the switches at any time. # - OUTPUT ENABLE LINE The OUTPUT ENABLE LINE on the Channel serves two functions depending on the user's configuration. In handshaking operations, it is used to enable the output of the DATA-P register which is normally tri-stated. This line also resets the ATTENTION bit and informs the processor, through the status port, that the data has been taken from the latch. In strobed operations, the OUTPUT ENABLE LINE is used to enable the output of the register at all times. When the select switch (S1-1) is "ON", the OUTPUT ENABLE LINE must be low to enable the outputs. With the select switch "OFF", the OUTPUT ENABLE LINE must be high to enable the output. # - ATTENTION LINE The ATTENTION LINE is used to inform an external device that new data is now available for it. This line may be jumpered (J1) to provide any one of four different outputs. With the Common (top row of four pins) jumpered to either Q or Q*, and the OUTPUT ENABLE LINE set so that the output of the register is Tri-Stated, then the ATTENTION LINE will go high (Q) or low (Q*) when data is strobed into the output register. When the OUTPUT ENABLE LINE level is changed to enable the data, then the ATTENTION LINE will return to its original level. In this mode, the OUTPUT ENABLE LINE is used to transfer the data out of the register and reset the attention flag. Since the level of the ATTENTION LINE may be sampled by the processor through the status port, a high speed handshaking data transfer can occur. With the Common tied to either the "P" or the "P*", the ATTENTION LINE becomes a positive (P) or negative (P*) going strobe pulse with a width of the system pWR* strobe (between 150 and 1000ns). In this mode, the state of the OUTPUT ENABLE LINE should be set so that the data is enabled at all times. This mode is best used when the external device needs the data strobed into it. See the diagrams below for the output data timing using either a 74LS373 or a 74LS374 as an output register. # **OUTPUT DATA TIMING** #### - OUTPUT EXAMPLES Some examples of typical applications might include connecting an A to D converter or some LED's to the output lines. An A to D converter will probably require 8 data lines be connected in addition to a strobe line. In many cases, the strobe (P or P*) connected to the ATTENTION LINE will be sufficiently long for the converter and can be connected directly with the proper polarity for correct operation. If only 7 data lines are required for the converter, then the eighth data line may be used. # CENTRONICS STYLE PARALLEL CHANNEL # TECHNICAL OVERVIEW The CENTRONICS PARALLEL section of the INTERFACER 4 consists of an 8 bit latched output port for data and a full complement of status and control lines. The output STROBE line timing conforms with the timing specifications of all known CENTRONICS interface printers, and power-up programming of the control lines allows flexible initialization procedures. # I/O ADDRESS ASSIGNMENT The CENTRONICS PARALLEL channel on the INTERFACER 4 board is addressed as the DATA and STATUS registers of RELATIVE USER 0. The DATA-C register of the channel is addressed at the PORT BASE + 0 and the STATUS-C / CONTROL-C register is addressed at PORT BASE + 1. # STATUS-C REGISTER BIT ASSIGNMENT Inputs to the processor from the STATUS-C register are defined as follows: | IT NAME |
SIGNAL | |----------|--| | | | | PBMT | PRINTER BUFFER EMPTY - READY FOR CHARACTER WHEN HIGH | | NOT USED | ALWAYS LOGIC "O" | | ACKNLG | TRANSFER ACKNOWLEDGE - 10uS LOW PULSE | | PE | PAPER ERROR - PRINTER OUT OF PAPER WHEN HIGH | | ERRÓR | PRINTER ERROR WHEN HIGH | | ERROR | PRINTER ERROR WHEN HIGH | | SLCT | PRINTER SELECTED "ON" WHEN HIGH | | BUSY* | PRINTER BUSY WHEN LOW | | | PBMT
NOT USED
ACKNLG
PE
ERROR
ERROR
SLCT | The status register bit assignment was designed to minimize the amount of software alteration required to use a parallel printer. As configured, the status word should be compatible with most currently available BIOS routines. With this channel selected as EXACT USER 6, it is 100% compatible with standard CompuPro software. # CONTROL-C REGISTER BIT ASSIGNMENTS Outputs to the CONTROL-C register from the processor are defined as follows: | DATA BIT | NAME | SIGNAL | |----------|--------|--| | DO | AFX | AUTO FEED EXTERNAL - AUTO LINE FEED AFTER RETURN | | D1 | INIT | INITIALIZE - INITIALIZE PRINTER | | D2 | SLCTIN | SELECT INPUT - PRINTER SELECT INPUT | | D3 | LED | LIGHT EMITTING DIODE - HIGH = ON | | D4-D7 | NC | NOT USED | # CENTRONICS TRANSMIT INTERRUPT The INTERFACER 4 comes configured to generate an interrupt upon receiving an ACKNOWLEDGE pulse from the printer indicating that it is ready to accept another byte of data. Provisions have been made to generate an interrupt upon the printer's change from BUSY to NOT BUSY. This may be accomplished by cutting the shorting trace at jumper J5 TOP, and installing a shorting plug on J5 BOTTOM. # CENTRONICS INTERFACE SIGNAL DESIGNATIONS The following table describes the CENTRONICS cable pinout designations as defined by EPSON. There exist several minor differences between the CENTRONICS signal designations and those of EPSON. The EPSON designations are shown here because they are somewhat more complete. All differences will be marked with a "*" and explained below. | SIGNAL | GROUND | SIGNAL | SIGNAL | | |--------|-------------|-------------|-------------------------------------|---| | PIN # | PIN # | NAME | DESCRIPTION | | | 1 | 19 | STROBE* | ACTIVE LOW DATA STROBE PULSE | | | 2 | 20 | DATA 1 | DATA BIT 1 | | | 3 | 21 | DATA 2 | DATA BIT 2 | | | 4 | 22 | DATA 3 | DATA BIT 3 | | | 5 | 23 | DATA 4 | DATA BIT 4 | | | 6 | 24 | DATA 5 | DATA BIT 5 | | | 7 | 25 | DATA 6 | DATA BIT 6 | | | 8 | 26 | DATA 7 | DATA BIT 7 | | | 9 | 27 | DATA 8 | DATA BIT 8 | | | 10 | 28 | ACKNLG* | ACKNOWLEDGE PULSE ACTIVE LOW | | | 11 | 29 | BUSY | PRINTER BUSY ACTIVE HIGH | | | 12 | 30 | PE | PAPER ERROR ACTIVE HIGH | | | 13 | | SLCT | PRINTER "ON" WHEN HIGH | | | 14 | | AUTO FEED 2 | KT* AUTO LINE FEED WHEN LOW | * | | 15 | | NC | NOT USED | * | | 16 | | ov | LOGIC GROUND LEVEL | | | 17 | | CHASGND | PRINTER CHASSIS GROUND | | | 18 | | NC | NOT USED | * | | 19-30 | | GND | GROUND RETURN LINES | | | 31 | | INIT* | PRINTER INITIALIZE WHEN LOW > 50 us | | | 32 | | ERROR* | PRINTER ERROR WHEN LOW | | | 33 | | GND | GROUND | | | 34 | | NC | NOT USED | * | | 35 | | NC | NOT USED | * | | 36 | | SLCT IN* | PRINTER SELECT INPUT WHEN LOW | * | # SIGNAL DIFFERENCES BETWEEN EPSON AND CENTRONICS - LINE 14 This line is defined as OV or signal ground by CENTRONICS. J2 should be removed when used with a CENTRONICS Printer. - LINE 15 This line is designated as OSCXT by CENTRONICS. This is not a conflict. - LINE 18 This line is designated as +5V by CENTRONICS. This is not a conflict. - LINE 34 This line is designated LINE COUNT PULSE by CENTRONICS. This is not a conflict. - LINE 35 This line is designated as a ground return by CENTRONICS. This is not a conflict. - LINE 36 This line is not used by CENTRONICS, however, J3 should be removed when used with a CENTRONICS Printer. NOTE: The user should always refer to the interface specifications of his printer before connecting it to the INTERFACER 4. # CENTRONICS CONTROL-C LINE JUMPERING The printer control lines handled by the CONTROL-C register may be set to power-up either high or low by the proper setting of jumpers J2-J4. This allows the user to select the power-up condition of the printer independent of the initialization procedure used. Jumper J5 is not a CONTROL-C jumper, but controls whether the interrupt is generated on ACKNLG* or BUSY. It is included in this section because it is located in the same block of jumpers. The following section describes the position of the jumpers and their effects. Jumpers J2-J5 are located in between U13 and U14, and above LED1, and are arranged in the following format. | | | | | | | _ | |----|--------|---|---|---|---|---| | J2 | TOP | | * | I | * | 1 | | J2 | воттом | Ī | * | l | * | | | J3 | TOP | Ī | * | 1 | * | 1 | | J3 | BOTTOM | Ī | * | l | * | l | | J4 | TOP | 1 | * | 1 | * | 1 | | J4 | BOTTOM | Ī | * | 1 | * | 1 | | J5 | TOP | Ī | * | Ī | * | Ī | | J5 | BOTTOM | Ī | * | I | * | I | | | | | | _ | | | # JUMPER DESCRIPTION J2 AUTO FEED XT* This signal controls whether the printer does an automatic line feed after receiving a "return". J2 TOP Low on power-up when jumpered. J2 BOTTOM High on power-up when jumpered. | Ј3 | SLCT IN* | This signal enables the printer to receive data when Low. Printer disabled when High. | |----|---------------------|---| | | J3 TOP
J3 BOTTOM | Low on power-up when jumpered. High on power-up when jumpered. | | Ј4 | INIT* | This signal initializes the printer controller when low for more than 50 uS. High normally. | | | J4 TOP
J4 BOTTOM | Low on power-up when jumpered.
High on power-up when jumpered. | | J5 | INTERRUPT | This jumper determines whether the CENTRONICS interrupt is generated from ACKNLG* or BUSY. | | | J5 TOP
J5 BOTTOM | Interrupt on ACKNLG* - shorted as shipped on board. Interrupt on BUSY - MUST CUT TOP SHORT! | # LIGHT EMITTING DIODE LIGHT EMITTING DIODE LED1 is controlled by the CONTROL-C register bit D3, and may be turned "ON" or "OFF" when outputting to this port. The LED will always be "OFF" upon power-up or RESET, and may be turned "ON" by outputting a logic "1" to D3. # SENSE DIP SWITCH By reading the DATA-C register, the state of DIP switch S1, positions 3-10 may be determined under program control. When read, an "ON" position will read as a "O", and an "OFF" position will be read as a "l". Positions 3 thru 10 correspond to DATA bits 7 thru 0 when read. **EXAMPLE:** If a OFh is read, positions 3-6 are "ON", and positions 7-10 are "OFF". NOTE: Maximum allowable length for the Centronics cable from enclosure to printer is six feet. # THEORY OF OPERATION The INTERFACER 4 can be roughly divided into 9 subsections for describing its operation. These sections include: The S-100 Bus Drivers, the I/O Port Decode Logic, the Strobe Generation Logic, the Wait State Logic, the Interrupt Control/Status Logic, the USART, the RS-232/CURRENT LOOP Level Conversion Logic, The CENTRONICS Parallel Logic, and the Universal Parallel Logic. #### S-100 BUS DRIVERS The separate data input and output data buses of the S-100 bus are converted to a bi-directional data bus by octal drivers U45 and U46. Data from the S-100 bus is driven onto the internal data bus by U45 only when sOUT goes high, indicating an output operation. The internal data bus is driven onto the S-100 bus either as a high or low nibble, or as a full byte. When DOEN* goes low, indicating that valid board select (SEL) and pDBIN are high (NAND-U40), and A2 is low, both DOENL* and DOENH* go low and enable a full byte onto the bus. When A2 is high, either the high or low nibble is gated out onto the bus depending on the state of HSEL (U5, U24). This allows the interrupt status to be read from 2 boards at the same time, each suppling the proper nibble of data. All S-100 bus signals are buffered onto the board if the line would otherwise have more than 1 LSTTL load. Address lines AO, A1, A2, and pDBIN are buffered onto the board by 2/3 of hex buffer U43, and the lines sOUT, sINP, pWR*, O, and pSTVAL* are inverted using portions of U42 # I/O PORT DECODE LOGIC The eight port block that the INTERFACER 4 occupies is decoded by 6 open collector X-OR gates (U22 and U41). 5 of these gates decode address lines A3-A7 by comparing against positions 5-9 of switch S2, and the last section compares sout and sINP* to determine if an I/O operation is occurring. When all compare conditions are satisfied, ASEL goes high. Closing position 4 of S2 will ground ASEL and disable the board completely. A valid board select (SEL*) is generated (by 1/3 of U23), when ASEL goes high along with USEL (indicating that this boards select number is active) and A1 and A2 are not both high (indicating the USER SELECT PORT is not selected). SEL* is disabled by 1/3 of U23 when the USER SELECT PORT is enabled so that conflicts between up to eight boards do not occur. A USER SELECT write occurs when ASEL, A1, A2, sOUT, and STROBE go high. This generates OUT7* (U23) which clocks the least significant 5 bits on the bus (D0-D4) into hex latch U18. The 2 low order bits of U18 are decoded into 4 chip enables (CEO* - CE3*) by U25 when SEL is high, A2 and ESTROBE* are low, and SH/L* is low. Bit D2 (H/L*), is either buffered or inverted by X-OR U5 and S2-3. This signal is low if the board is selected and also indicates that a high or low nibble is to be read. The 2 high order bits of U18 are compared to switch positions 1 and 2 of S2 by 1/2 of U22 (X-NOR) to decode a current user board select signal USEL. Access to registers on the board requires that USEL be high before access is gained. The four interrupt read and write strobes are generated by decoder U44 when A2 is high and SEL* and STROBE* are low. A0, A1, and sINP* determine which output becomes active at the proper time. # STROBE GENERATION LOGIC In order to gain
additional access time in an I/O cycle for the 2651 USARTs, the INTERFACER 4 generates early strobes based on valid status. S-100 bus strobes pDBIN and pWR* are gated together (U19) and inverted to generate STROBE and STROBE*. These signals indicate that a bus strobe is occurring. The interrupt registers and user select port have their data gated by STROBE because they are TTL and capable of very high speed operation. Since the 2651 type USART is a MOS device and has an access time of approximately 250 nS, an early strobe is generated so that wait states are avoided whenever possible. A status valid signal, ESTATVAL*, is generated whenever pSYNC is high and pSTVAL* is low. ESTATVAL* clears "D" flop U16a to generate ESTROBE*, which becomes one term of the USART chip enable decoder U25. The termination of STROBE* causes a "1" to be clocked into U16a and terminate ESTROBE*. # WAIT STATE LOGIC To allow operation with high speed processors, a wait state generator allows the addition of 1, 2, or 3 wait cycles. U20a and U21 forms a 3 bit shift register clocked by \$\psi^*\$. A wait state is left pending after STROBE goes low, and when STALL1*, STALL2* or STALL3* and A2 are low (U19), and SEL is high (U40), WAIT* is generated. STALL1* is clocked out on the next rising edge of \$\psi^*\$ after STROBE goes high, STALL2* is clocked out the following cycle and STALL3* is clocked out on the 3rd cycle. The pRDY* line is pulled low by U43 when WAIT* goes low. When neither J6, J7, OR J8 is connected, no wait states will be generated. # INTERRUPT CONTROL/STATUS LOGIC The interrupt logic consists of two 4 bit latches for enabling interrupts onto the bus, two 4 bit buffers for reading current interrupt status, and eight 2 input open collector NAND buffers for driving the interrupts on the bus. Two 4 bit latches (U48, U52) are used for generating the interrupt enable mask. The Q outputs become the RxINTENx and TxINTENx interrupt enables for selectively masking "OFF" individual interrupts. Upon power-up or reset, these latches are cleared by CLR* so that all interrupts are disabled. The TxRDY and RxRDY interrupt outputs from the 2651 USARTs are inverted to form active high interrupt signals. The CENTRONICS Parallel and Universal Parallel channels generate active high interrupts automatically. These interrupt signals are fed to one input of the open collector NAND buffer (U47, U51), with the corresponding interrupt enable fed to the other input. The resulting interrupt outputs (TxINTx and RxINTx) are capable of driving the VIO-7 lines directly, and are brought out to JS5 and JS6 for jumpering to the appropriate line. Two 4 bit buffers are formed from two quad tri-state buffers (U49, U53) for f gating the current USART and parallel interrupts (TxRDYx and RxRDYx) onto the bus as status information. Since the buffers use Tx and Rx RDY instead of Tx and Rx INT lines, the status of disabled as well as enabled interrupts are displayed. Relative channels 1, 2, and 3 allow jumpering the TxEMT/DSCHG interrupt from the USART to either the TxRDY or RxRDY interrupt outputs. This is possible since the outputs from the 2651 are open drain and may be wire-ORed. # **USARTS** The 2651 type USART is quite sophisticated in that it can run in both asynchronous as well as synchronous modes. In addition, the part has an internal band rate generator, RS-232 status and control bits, up to 3 interrupt outputs, and the capability of transmitting as well as receiving band clocks. The chip enable (CE) and read/write (R*/W) lines are operated by initially determining whether a read or a write will occur (sINP* to R*/W) and then strobing the part with CE*. Address lines AO and Al determine which of four registers will be selected and CLR resets the USART. The baud rate clock BAUDCLK is generated by a 5.0688 MHz crystal oscillator formed from 3 inverters (U54) and crystal X1. # RS-232/CURRENT LOOP LEVEL CONVERSION LOGIC Each USART has a full complement of RS-232 handshaking lines for devices that require them. Industry standard 1488 and 1489 receivers and transmitters are used throughout for highest performance. In addition to the data lines TxD and RxD, each channel has a RTS and DTR output and a CTS, DSR, and DCD input. All three RS-232 status lines have pullup resistors to +12V so that floating inputs are pulled high. Relative Users 2 and 3 are capable of sending and receiving both the transmit and receive baud clocks for running in synchronous mode. An RS-232 driver and a receiver are provided for RxC and TxC, and either one may be jumpered in. In addition, a dual 4 bit counter (U55) is used to divide the 2 MHz bus clock down to 31.25 KHz to 500 KHz for running the USARTs faster than their internal baud rate generators provide. Flexible jumpering allows either or both channels to run at the higher rates. Relative user 1 may be set to run in current loop mode by appropriately jumpering JS4. Optical isolators U29 and U30 are used if isolation is required. R4 provides the current source for U29, whose output is inverted (U54), and then converted to RS-232 by the free section of U33. This output may be jumpered to pin 2 of JS3 by J25. Transmit data (TxD) is inverted (U54), isolated (U30), and buffered by Q1 for which R8 is the current source. # CENTRONICS Parallel Logic The CENTRONICS Parallel logic consists of an octal data latch, a quad control latch, an octal status buffer, an octal status buffer with a DIP switch, a strobe one-shot, and a control strobe decoder. Decoder (U15) generates eight separate control strobes for both the CENTRONICS parallel logic and the Universal parallel logic. Depending on AO, Al, and sINP*, the 8 strobes are generated when STROBE* and CPE* are low. The output data register (Ull) is clocked by inverted DWR* and latches 8 data bits off the internal data bus. The data strobe is provided by dual one-shot U10, which when strobed by DWR*, generates a 1 uS delay and then a 1 uS data strobe to accommodate all known data set-up and strobe length times. Printer status is gated onto the internal data bus by octal buffer Ul2 when SRD* strobes low. The status word is arranged similarly to the status register of the 2651 USART to facilitate software compatibility. Quad control register U13 latches the 4 low order data bits off the internal data bus when SWR* strobes low, and is cleared on reset for a known power-up state. Jumpers J2, J3, and J4 allow either Q or Q* to control the printers AUTO FEED XT*, INIT*, and SLCT IN* lines for any power-up state that can be altered under software control. The LED is controlled by bit D3 and Q* so that it is off after reset. Sense DIP switch Sl positions 3-10 are buffered (U14) onto the internal data bus when DRD* is strobed low. The CENTRONICS interrupt TxIO is generated at the end of an ACKNLG* pulse from the printer, and is cleared when new data is written to the data register (DWR*). Jumper J5 allows the interrupt to be generated by BUSY if required. # Universal Parallel Logic The Universal Parallel logic consists of 2 octal data registers, 2 "D" type flip flops, 3 X-OR gates and 2 status buffers. Output data is latched from the internal data bus by U7 when MWR* strobes low. MWR* also sets flop U8b which with J1 provides the attention level or pulse, and the DNTKN status bit 1 flag. When the data register is brought active by ENABLE through U5, the attention level and DNTKN flag are cleared. Input data is latched into U6 when STROBE is pulsed through U5. This also clocks a "1" into U8b, which generates the RxIO interrupt, and sets the DAV status bit 0 flag. Input data is gated onto the internal data bus when MRD* strobes low, and the interrupt and DAV status is cleared. # SOFTWARE SECTION # SAMPLE PROGRAM FOR USING THE INTERFACER 4 AS THE CP/M CONSOLE ``` CompuPro INTERFACER 4 support routines EQU GBI3: 10h :INTERFACER 4 Base address GBI3D: EQU GBI3+0 ; Uart data location GBI3S: EQU GBI3+1 ; Uart status GBI3M: GBI3+2 EQU ; Uart mode register GBI3C: EQU GBI3+3 ; Uart command register GBI3U: EQU GBI3+7 ; Uart select register GBI3DV: EQU 00000010Ъ ; INTERFACER 4 Data Available GBI3MT: EQU 00000001Ь ;INTERFACER 4 Transmit Buffer Empty GBI3DS: EQU 10000000ь ; INTERFACER 4 Data Set Ready EQU CON: 7 ;INTERFACER 4 Console Select PRN: EQU ;INTERFACER 4 Printer Select 6 ULS: EQU 5 ;INTERFACER 4 ULl Select CONSOLE INITIALIZATION This routine performs the initialization required by the INTERFACER 4. I3INIT: IVM A, CON ;Console select OUT GBI3U ;Select Uart 7 MVI А,11101110Ь ;Async, 16x, 8 bits, no parity, even, 2 stops OUT GBI3M ;Set up mode register 1 MVI ;9600 baud A,01111110b OUT ;Set up mode register 2 GBI3M MVI A,00100111b ;Trans. on, dtr low, rec. on, no break, no reset, rts low OUT ;Set up command port GBI3C MVI A, PRN :Printer Select OUT GBI3U ;Select Uart 0 MVI А,11101110Ь ;Async, 16x, 8 bits, no parity, even, 2 stops OUT GBI3M ;Set up mode register 1 MVI A,01111110b :9600 baud OUT GBI3M ;Set up mode register 2 MVI ;Trans. on, dtr low, rec. on, no break, A,00100111b no reset, rts low OUT GBI3C ;Set up command port MVI A, ULS ;User list 1 Select OUT GBI3U :Select Uart 0 MVI A,11101110b ;Async, 16x, 8 bits, no parity, even, 2 stops OUT GBI3M ;Set up mode register 1 MVI A,01111110b ;9600 baud OUT GBI3M ;Set up mode register 2 ;Trans. on, dtr low, rec. on, no break, MVI А,00100111Ь no reset, rts low ``` ``` OUT GBI3C ;Set up command port RET CONSOLE STATUS ; This routine samples the Console status and returns the following values in the A register. EXIT A = 0 (zero), means no character currently ready to read. A = FFh (255), means character currently ready to read. I3CONST: MVI A, CON OUT GBI3U GBI3S IN ;Input from port ANI GBI3DV ;Mask data available RZ ;If data not available ORI OFFH RET CONSOLE INPUT ; Read the next character into the A register, clearing the high order bit. If no character currently ready to read then wait for a character to arrive before returning. EXIT A = character read from
terminal. 13CONIN: MVI A, CON OUT GBI3U IN GB13S :Get status from uart ANI GBI3DV I3CONIN JZ IN GBI3D ANI 7Fh RET ; CONSOLE OUTPUT Send a character to the console. If the console is not ready to ; receive a character wait until the console is ready. ENTRY C = ASCII character to output to console. I3CONOUT: A, CON MVI TUO GBI3U IN GBI3S ;Get uart status ANI GBI3MT ;Test if buffer empty ``` ``` JΖ I3CONOUT VOM A,C GBI3D OUT RET List Output. Send a character to the list device. If the list device is not ready to receive a character wait until the device is ready. C = ASCII character to be output. I3LIST: LDA IOBYTE ;Get IOBYTE status OCOH ANI ;Check for UL1: SUI ОСОН MVI A, ULS JZ I3UL1 MVI A, PRN I3UL1: OUT GBI3U I3LST1: IN GBI3S ANI GBI3MT+GBI3DS SUI GBI3MT+GBI3DS JNZ I3LST1 MOV A,C OUT GBI3D RET List Status. Return the ready status for the list device. EXIT A = 0 (zero), list device is not ready to accept another character. A = FFh (255), list device is ready to accept a character. I3LST: LDA IOBYTE ANI ОСОН ;Check for ULl: SUI OCOH MVI A, ULS JZ I3LS1 MVI A, PRN I3LS1: OUT GBI3U IN GBI3S ANI GBI3MT+GBI3DS SUI GBI3MT+GBI3DS MVI A, OFFH RZ XRA Α RET ``` # CENTRONICS TEST PROGRAM : 3/25/82 ``` CENTRONICS TEST PROGRAM ;* ;* This program will output all standard ASCII characters to the printer along with the EPSON graphics characters controlled by bit 8. The ;* program will stop when any key is hit on the console. The printer ;* is required to be USER 4 at ports 10-17. J2, J3, and J4 should be on ;* the top pair of pins with an EPSON. J2 and J3 should be removed entirely with a CENTRONICS printer. ;* 10h base equ udata BASE+Oh ; data port in and out equ ustat equ BASE+1h ; status register port BASE+2h ; mode register port mode equ BASE+3h ; command register port commr equ BASE+4h ;tx int register txreg egu BASE+5h ;rx int register rxreg equ user equ BASE+7h ;port to select user ;CP/M reentry point exit equ tbmt 01h ;transmitter buffer empty equ 02h dav ;data available equ 0dh :carr. return cr equ 0ah 1f equ ;line feed * 100h org startl call setup ;setup message area start2 call start ;init user linel 1xi h,msgl ;point to message ;print message call. print 1xi h,msg3 ;point call. print ;print 1xi h,msg4 ;point cal1 print ;print lxi h,msg5 ;point graphics ;print graphics call print ;check mvi c,0bh ; console call. 0005h 00h cpi status start2 :for entry jz jmp ;exit Start mvi a,04H :init CENTRONICS ;select uart out user mvi a,Offh ;interrupts enable ;transmit int enabled out txreg out rxreg ;receive enabled mví a,0bh ;init centronics ustat out ;out ret ``` ``` h,msg3 ;point to buffer setup lxi a,20h mvi ;init sloop mov m,a ;put byte inr а ;next up ;next loc inx h 40h ; beyond last char cpi donel jz jmp sloop ;again donel mvi a,cr ;carrage return mov m,a inx h mvi a,lf ;line feed mov m,a inx h mví a,0 ;null mov m,a ;place ;point to buffer setupl lxi h,msg4 a,40h mvi ;init sloop1 mov m,a ; put byte inr а ;next up inx h ;next loc 7eh ;beyond last char cpi done2 jΖ jmp sloopl ;again done2 mvi a,cr ; carrage return mov m,a inx h a,lf ;line feed mvi mov m,a inx h a,0 mvi ;null mov m,a ;place h,msg5 setup2 1xi ;point to buffer mví a,OAOh ;init sloop2 BOV m,a ; put byte inr ;next up а inx h ;next loc cpi 0E0h ; beyond last char jz done3 jmp sloop2 ;again done3 mvi a,cr ; carrage return mov m,a inx h mvi a,lf ;line feed mov m,a inx h ;null mvi a,0 mov m,a ;place ret print cal1 start ;select user call instat ; check status mov a,m ;get byte 0 ;is it a null? cpi rz ;done out udata ;output data ``` ``` inx h ;next byte jmp ;again print instat in ;get status ustat cpi 0c5h ;check all ok? jnz instat ;loop not ready ret msgl dЬ cr,1f,1f This is a test of the INTERFACER 4 CENTRONICS port dЬ db cr,lf,lf dЬ cr,1f,1f msg2 đЪ 0 db msg3 đз 100h 100h msg4 ds 100h msg5 ds end ``` #### INTERFACER 4 SERIAL TEST PROGRÂM ``` INTERFACER 4 SERIAL TEST PROGRAM ;* ; * This program will initialize 2651s for asynchronous operation at ;* 9600 baud with 8 data bits, one stop bit, no parity. If the sense switch position 10 is "ON", RELATIVE USER 1 will run at 110 baud for current loop testing. This program will echo all characters ;* ;* ;* received on any user channel (from 0 to 31 except the CENTRONICS ;* PORT) and if any user sends a ^C, the program will terminate and ;* return back to CP/M. ;* 10h base equ udata equ BASE+Oh ;data port in and out ustat equ BASE+lh ; status register port BASE+2h ; mode register port mode equ BASE+3h ; command register port commr equ BASE+4h ;tx int register txreg equ BASE+5h ; rx int register rxreg equ user equ BASE+7h ;port to select user exit ;CP/M reentry point equ 01h ;transmitter buffer empty tbmt equ dav equ 02h ;data available × org 100h a,0 fs mvi ;first board out user ;select mvi a,Offh ;interrupts on out txreg ; enable transmit int out rxreg ;enable receive int a,Offh :init user Start mvi ;next user Loop inr ; check for final uart cpi 20H jz echo :start echo routine user ;select uart usel out mov b,a ; save user in b ani 3 ;mask for centronics CZ ;sense I-loop cinit ;init the uart call init mov a,b :restore user jmp loop :next Cinit in udata ;get sense switch ;bit 0 ani 1 ;110 baud jz 1100p mvi e,7Eh :9600 baud nu mov a,b resore user inr :next user mov ; save user b,a out user ;select next user ret ;init usart 9600 e,72h ;110 baud iloop mvi ``` ``` jmр ;next user Init a,0CEh mvi ;set up the 2651 out mode ;send to mode register 1 ;get baud value mov a,e out mode ; SEND BYTE TO M.R. 2 a,27h ; could be 07h (no 1420) mvi commr out e,7eh mvi ;reset 9600 ret Echo a,OFFh mvi ;mask value txreg ;set tx int reg out ;set rx int reg out rxreg Loopl inr ;next user а out user ;select uart mov b,a ; save user in b cal1 cstat ;check for data cpi 0AAh ;data if aa ;do echo loop CZ ok mov a,b ;restore user jmp loopl :next 0k call inloop ;get data call oloop ;output data ret Cstat in ustat ;look for key entry ; check status aní dav ;no data jz nodat mvi a,QAAh ;data char ret Nodat mvi a,0 ;no data char ret Inloop in ;look for key entry ustat ; check the status dav ani jz inloop ;wait for key entry ;get key entry in udata ani 7Fh ;mask parity off 03h ;has a ^c been hit? cpi done ;return to CP/M jz mov e,a ; save input in E reg. ret 0100p ín ustat ; check ready for output tbmt ; check status ani ;wait for ready jz oloop a,e ;get data mov out udata ;output character ret Done exit ;return to cp/m jap end ``` **INS2651 PROGRAMMABLE COMMUNICATIONS INTERFACE** # Semiconductor # INS2651 Programmable Communications Interface # General Description Asynchronous Receiver/Transmitter (USART) chip conteined in a standard 28-pin dual-in-line package. The The INS2651 is a programmable Universal Synchronous/ which is fabricated using N-channel silicon gate MOS technology, functions as a serial data input/output interface in a fous structured system. The functional configuration of tNS2651 is programmed by the system software for maximum flexibility, thereby allowing the system to receive and transmit virtually any serial data communications signal presently in use. characters received from an input/output device or a MODEM, and paraflel-to-serial conversion on data characters received from the CPU. The CPU can read the includes the type and the condition of the transfer operations being performed by the INS2651, as well as either synchronous or asynchronous serial data. The IN\$2651 performs serial to-parallel conversion on data complete status of the INS2651 at any time during the functional operation. Status information reported The IN\$2651 can be programmed to receive and transmit error conditions (parity, overrun, or framing). ### Features Synchronous and Asynchronous Full Duplex or Half **Duplex Operations** **INS2651 General System Configuration** Synchronous Mode Capabilities - Selectable 1 or 2 SYNC Characters - Selectable 5: to 8:Bit Characters - Transparent or Non-Transparent Mode - Automatic SYNC or DLE-SYNC Insertion - SYNC or DLE Stripping Asynchronous Mode Capabilities - Selectable 5- to 8-Bit Characters - 3 Selectable Clock Rates (1x, 16x, or 64x the Baud Rate) Line Break Detection and Generation 1., 1%, or 2.Stop Bit Detection and Generation - False Start Bit Detection Baud Rates - DC to 0.8 M Baud (1x, Asynchronous) - DC to 0.8 M Baud (Synchronous) - DC to 12.5k Baud (64x, Asynchronous) - DC to 50 k Baud (16x, Asynchronous) - 16 Internal Rates (50 to 19,200 Baud) Internal or External Baud Rate Clock Double Buffering of Data TTL Compatible Direct Plug-In Replacement for Signetics 2651 No System Clock Required TA = +25°C: VCC = GND = 0 V | Symbol | Parameter | Min | Тур | Max | Unit | Test Conditions | |--------|--------------------|-----|-----|-----|------|-----------------| | CIN | Input Capacitance | | | 20 | ρf | f. = 1 MHz | | COUT | Output Capacitance | | | 20 | PF | Unmeasured pins | | CI/O | I/O Capacitance | | | 50 | PF | to ground | # Absolute Maximum Ratings Operating Ambient Temperature Storage Temperature All Voltages with Respect to Ground Note: Maximum ratings indicate limits beyond which permanent demage may occur. Continuous operation at these limits is not intended and should be limited to those conditions specified under ~0.5 V to +6.0 V 0°C to +70°C -65°C to +150°C # DC Electrical Characteristics DC Electrical Characteristics. TA = 0°C to +70°C; VCC = +5.0 V ± 5%, GND = 0 V | ymbol | Perameter | Min | Тур | Max | Unit | Test Conditions | |-------|----------------------------|-----|------|------|------|---------------------------------| | Vic | Input Low Voltage | | | 8.0 | > | | | H > | Input High Voltage | 2.0 | | | > | | | 20 | Output Low Voltage | | 0.25 | 0.45 | > | 10L = 1.6mA | | YOH. | Output High Voltage | 2.4 | 2.8 | | > | IOH * -100 #A | | | Input Load Current | | | 2 | Α¤ | V ₁ N = 0 V to 5.5 V | | ٥ | Data Bus Leakage Current | | | 10 | ΕÞ | VOUT = 4.0 V | | 07 | Open Drain Leakage Current | | | 10 | μĄ | VOUT = 4.0 V | | 3 | Power Supply Current | | 99 | 150 | mA | | ### Capacitance | Symbol |
Parameter | Min | Тур | Max | Unit | Test Conditions | |--------|--------------------|-----|-----|-----|------|-----------------| | | Input Capacitance | | | 20 | pf | f. = 1 MHz | | COUT | Output Capacitance | | | 20 | Ā | Unmeasured pins | | CI/O | I/O Capacitance | | | 20 | PF | to ground | RECEIVER SECTION BAUD RATE GENERATOR CDMYNOL OPERATION CONTROL DATA SYN/OLE CONTROL DATA BUSTEN ADDRESS BUS CONTROL SYSTEM PROCESSOR INS2651 PERIPHERAL INTERFACE **BUS FLOATING** + 10F 1 <u>+</u> <u>5</u> Ē T READ AND WRITE TIMING 1 BIT TIME (1, 15, 6 % 54 CLOCK PERIODS) RESET TIMING CLOCK TIMING DATA VALID 18 ÿ - IBATA 170 MOT VALID + 0XL + - IRES (MEAD) BUS FLOATING Timing Waveforms j Ž ñ A1, A0 Tx0 SIR (TUNIS) R/W 02-09 Menitéi E AESET Test Conditions CL = 100pF CL = 100pF CL = 100pF CL = 100pF ā Ž MHZ 2 2 2 2 \$ 5 ŝ US S \$ 5 SC \$ C C ŝ Unit 5.073 0.769 250 6 6 6 Max Typ 5.0688 0 ¥. 1000 70 70 70 650 650 8 8 TA = 0°C to +70°C; V_{CC} = +5.0 V ± 5%, GND = 0 V TxD Delay from Falling Edge of TxC TXC or RXC Input Clock Frequency Skew Between TxD Changing and Falling Edge of $\overline{\mathsf{TxC}}$ Output Baud Rate Generator Input Clock Data Bus Floating Time for Read AC Electrical Characteristics TXC or RXC Clock High State TxC or RxC Clock Low State Baud Rate Clock High State Band Rate Clock Low State Data Setup Time for Write Data Delay Time for Read Data Hold Time for Write Chip Enable Pulse Width R/W Control Setup Time R/W Control Hold Time Address Setup Time Parameter Rx Data Setup Time Address Hold Time RESET Pulse Width Ax Data Hold Time Frequency **BUS PARAMETERS** OTHER TIMINGS Į, tAS ¥ S 108 Ę 90 ţō **1**0H thes fBAG 1R/TH f_R,T ter. IR/TL 11.0 tT¢\$ tRx\$ 1 ± ± - tex# Rat (130 Pr0 RECEIVE TIMING TRANSMIT TIMING (OUTPUT) # Timing Waveforms (cont'd.) TAMEN, INTEREST TRANSCORNANG FOR SAFE CHARACTERS, DR PARITY, 2,5TOP ATTS OR STRUCKHOUSDING DROOTS INTEREST TRANSCORN FAR SAIL CHARACTERS, DR PARITY, 2,5TOP ATTS OR ASTRICKHOMBOUGH HOTTE I. - ESTATIN FILE SAIP PRIT, C. - ESTOP BRT 2. 6 - TO MANUMES COMPITION. # INS2651 Block Diagram # **NS2651 Functional Pin Definitions** The following describes the function of all the INS2651 input/output pins. Some of these descriptions reference internal circuits. ### INPUT SIGNALS Reset (RESET), Fin 21: When high, performs a master reset on the INS2661. This signal asynchronously terminates any device activity and clears the Mode, Command, and Status Registers. The device assumes the idle state and remains in this mode until initialized with the appropriate control words. Address Lines (A1-A0), Pins 10, 12: Address lines used to select internal Mode and Command registers. ReadWirte (F/W), Pln 13: Controls the direction of data bus transfers. A high input allows data from the CPU to be loaded into the addressed register. A low input causes the contents of the addressed register to be passent on the data bus. Chip Enable (CE), Pin 11: When low, indicates that control and data lines to the device are valid and that the specified operation should be performed. When high, places the device in the TRI-STATE® condition. Baud Rate Genarator Clock (BRCLK), Pin 20: 5.0888 MMz clock input to the internal Baud Rate Generator. Not required if external receiver and transmittar (TXZ and RXZ) clocks are used. Receiver Data (AxD), Pin 3: Serial data input to the Data Set Ready (DŠR), Pin Z2: General-purpose input which, when tow, indicates either the Data Set Ready or Ring condition. It a complement is stored as Status Register bit 7. A change in state of this input causes a low output on TXEMIYDSCHG. Data Cerrier Detect (DCD), Pin 16: When low, enables the receiver to operate. The complement of this input is stored as Status Register bit 6, and an input change in state causes a low output on TXEMT/DSCHG. Clear to Sand (CTS), Pin 17: When low, enables the transmitter to operate. When high, holds the $T \times D$ output in MARK condition. VCC, Pin 26: +5-volt supply. Ground, Pin 4: 0-volt reference. ### **DUTPUT SIGNALS** Transmitter Ready (TXRDY), Pin 15: A low on this output, which is open-drain, indicates that Transmit Holding Registar (THR) is ready to accept a date other ester from the CPU. This output, which is the complement of Starus Register bit 0, goes high when the data character is loaded and is valid only when the transmitter is enabled. The TXRDY output can be used as an inter-upt to the system. Receiver Resety (RXRDY), Pin 14: A low on this output, which is open-drain, indicates that the Receive Holding Register (RMR) has a character ready (or input to the CPU. This output, which is the complement of Status Register bit 1, goes high either when the Receiver Holding Register is read by the CPU or when the receiver is disabled. The RXRDY output can be used as an interrupt to the eystem. Transmitter Empty or Data Set Change (TXEMT/DSCHG), Pin 18: A low on this output, which is open-drain, indicates that either the transmitter has completed acrealization of the last character loaded by the CPU or that a change of state of the DSR or DCD inputs has occurred. If the TXEMT condition does not exist, this output goes high when the Status Register is read by the CPU. Otherwise, the Transmit Holding Register must be loaded by the CPU for this line to go high. The TXEMT/DSCHG output can be used as an interrupt to the system. SHIS output is the complement of Status Register bit SR2. Transmitter Data (TxD), Pin 19: Composite serial data output to a MODEM or input/output device. The TxD output is held in the marking state (logic 1) when the transmitter is disabled. Data Terminal Ready (DTR), Fin 24: General-purpose output normally used to indicate Data Terminal Ready. The DTR output is the complement of Command Register bit 1. Request to Send (RTS), Pin 23: General-purpose output normally used to indicate Request to Send. The RTS output is the complement of Command Register bit 5. ## NPUT/OUTPUT SIGNALS Data (D7-D0) Bus, Pins 29, 27, 8, 7, 6, 5, 2, 1: This bus comprises eight TRI-STA/TE input/output lines. The bus provides bidirectional communications between the INVSG61 and the CPU. Data, control words, and status information are transferred vie the Data Bus. Receiver Clock (FXC), Pin 25: If external receiver clock is programmed, this input controls the rate at which a data character is received. The frequency of the FXC input is a multiple (1x, 16x, or 64x) of the Baud Rate. Data is sampled on the rising edge of the clock. If internal receiver clock is programmed, this pin becomes an output at 1x the programmed Baud Rate. Transmitter Clock (TXC), Pln 9: If external transmitter clock is programmed, this injust controls the rate at which a data character is transmitted. The frequency of the TXC input is a multiple (1x, 16x, or 64x) of the Baud Rate. Transmitter Data is clocked out of the INS2861 on the falling edge of the TXC input. If internal transmitter clock is programmed, this pin becomes an output at 1x the programmed 6aud fatte. # NS2651 Programming The system software determines the operative conditions findle selection. Clock selection, data format, and so forth) of the INS2651 via internal Mode Register. 1 and 2, and the Command Register. Prior to initiating data communications, the INS2651 operational mode must be programmed by performing write operations to these 8-bit registers via the Data Bus. The device can be reprogrammed at any time during program execution. However, the receiver and transmitter should be disabled if the change has an effect on the reception or transmission of a chaecter. The internal registers of the INS2651 are accessed by applying signals to the $\overline{\sf OE}$, $\overline{\sf R/W}$, A1, and A0 inputs as specified in table 1. ### Table 1. Guess My Name | Function | TRI-STATE Data Bus | Read Receive Holding Register | Write Transmit Holding Register | Read Status Register | Write SYN1/SYN2/DLE Registers | Read Mode Registers 1 and 2 | Write Mode Registers 1 and 2 | Read Command Register | Write Command Register | |----------|--------------------|-------------------------------|---------------------------------|----------------------|-------------------------------|-----------------------------|------------------------------|-----------------------|------------------------| | A0 R/W | × | 0 | - | 0 | - | 0 | - | 0 | - | | ΑO | × | 0 | 0 | - | - | 0 | 0 | - | - | | A1 | × | 0 | 0 | 0 | 0 | - | ~ | - | - | | 뱅 | - | 0 | ٥ | 0 | 0 | ٥ | 0 | 0 | ۰ | In the case of multiple registers (SYN1/SYN2/DLE Registers and Mode Registers 1 and 2), successive read of write operations will access the next higher register. For example, if A1 equals 0, A2 equals 1, and FAV equals 1, the first write operation loads SYN1 Register. The next write operation loads SYN2 Register, and the third loads the DLE Register. Read and write operation are performed on the Mode Registers in a similar manner. If more than the required number of accesses is made, the internal register pointer returns to the first register. The pointers are reset to the first registers either by a RESET input or by performing a "Read Command Register" operation, but are unaffected by any other read or write operation. Figure 1. Initialization Flowchart Pin Configuration MODE REGISTER 1 FORMAT | MR3 4 | POG AND BAILD FACTOR ⁴ OR STACHOROUGE IN ANT II ACTURENCE IN ANT II | |------------------
--| | 6891-1 | MEDIS, AMB PARON BALTE FACTE
BO - STATICHEROROUST IN ARTE
CI - ASTACCHEROROUST IN ARTE
II - ASTACCHAROROUST SE PART
II - ASTACCHAROROUST SE PART | | MA1-2 | MARACTER (1967)
MO + 6 813
MO + 6 813
MO + 1 813
MO + 1 8115 | | ERN-3 | EMARKET
80 ×
80 ×
11 ×
11 × | | #W1-4 | PANIY CONTROL • PERMED 1 • EMAGLED | | \$-1.0 00 | PANITY TYPE
0 - 040
1 - EVER | | \$-1M8 | 5770C
16 | | 2:-(laste | SVINC:
1 - SINCIE SVIN
1 - SINCIE SVIN
1 - SINCIE SVIN
6 - DEACHT SVIN
6 - NEATH
1 - SINCIE
1 | MODE REGISTER 2 FORMAT | M.R.2B | 1100 - 4688 SAUD
1116 - 1250 BAUD
1117 - 12500 BAUD | |---------------|--| | JM42-1 | MAUD RATE SELECTION 18 BAUD 110 - 84 110 - 16 111 - 18 111 - 18 111 - 18 111 - 18 | | MM2-3 | BAUD RATE
8119 - 486 BAUD
8111 - 1200 BAUD
1000 - 1809 BAUD
1001 - 2809 BAUD
1016 - 248 BAUD
1016 - 348 BAUD | | E-SUM | 0000 - 58 KAUD
8001 - 75 6AUD
8010 - 136 6AUD
8130 - 136 5 6AUD
8180 - 188 KAUD
8181 - 790 BAUD | | FF67.4 | RECEIVER
ELOCK
0 - EXTENDAL
1 - INTERNAL | | 5-2 UPF | FRANCISCO
CLOCK
O. EXTERNAL
1- MTGANAL | | 9-14 M | 9124 | | 1 THUS - 3 | 109 | COMMAND REGISTER FORMAT | | 7 85 | Transing
Control
B - Disable
I - Emarle | |--------------|-------------|--| | | ¢8-1 | ORIA TERMINAL
READY
= FORECE OTH
OUTPUT MEN
1 - FORES OTH
DUTPUT LOW | | | C#-3 | RECEIVE
CONTHOL
(CONTHOL
(ALEN)
6 - DISABLE
7 - EMARLE | | HERS - | £#3 | ASTRIC-
FORCE BRIEAK
B - NOTABAAL
11 - FORCE ONEAK
SYNC:
SYNC:
SEND OLE
9 - NOTABAA
1 - SEND OLE | | - MT MUMBERS | ž | MEET FIRMON AG
0 MOGRIMAL
1. REST EMBON B-
FLAG IN STATUS
DE PEDIE
STATUS
DE PEDIE
STATUS
DE PEDIE
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
ST | | | \$ B | BEDBEST TO
SEMB
8 - FORCES RTS
BUTHUT WELL
1 - FORCES RTS
OUT PUT LOW | | | 410 | DEFAUTHER MODE 80 - NOAMAL AFEATURE 60 - NOAMAL AFEATURE 60 - NOAMAL AFEATURE 60 - NOAMAL AFEATURE 61 - STIMPHIC MODE 62 - STIMPHIC MODE 63 - STIMPHIC MODE 64 - STIMPHIC MODE 65 - STIMPHIC MODE 66 - STIMPHIC MODE 66 - STIMPHIC MODE 67 - STIMPHIC MODE 68 - STIMPHIC MODE 68 - STIMPHIC MODE 69 - STIMPHIC MODE 69 - STIMPHIC MODE 60 MOD 60 - STIMPHIC MODE 60 - STIMPHIC MODE 60 - STIMPHIC MODE 60 | | | F-163 | 1) • KENDLE TORL BY
0 • VOLWELT GLE AT JOHN JOHN JOHN JOHN JOHN JOHN JOHN JOHN | | | | | STATUS REGISTER FORMAT | | · · · · · · · · · · · · · · · · · · · | |-------------
--| | 8H-B | T - PARAMENT P - T - PARAMENT P - T - PARAMENT P PARAME | | <u>.</u> | RANDY O REEVE REGISTER REGIST TO MCCON REGISTER REGIS | | 245
24.2 | T = EMT/ABC/ME
• NOFMAN.
• EMANGE IN
TRANSPORTED ON PARAMETER IS
PRESTY R IS
FEMTY | | G. | PEDLE DETECT ASTORE: B = NORMAL 1 = PARITY ERHOR SYNC: 6 = NORMAL 1 = PARITY ERMORAL 1 = PARITY ERMORAL OR BLE FREENING FREENING FREENING FREENING | | 7 | OVERNUM • NORMAN • NORMAN • OVERNUM • OVERNUM | | 7 85 | FEATW DETECT ASTW: 1 - FRAMING FMOR 1 - FRAMING FMOR 7 - GOTHMAL 1 - SYNC: 6 - GOTHMAL 1 - SYN CHARNATER | | 145 | DATA CARMER
BETEGT
6 DED HEUT
65 MGH
1 * 6CE HEUT
5 LOW | | 75 | BATA SET
MEADY
6 - RET MANUT
1 - EST MANUT
1 - EST MANUT
1 - EST MANUT
15 LOW | NOTE 1: DAUP AATE FACTOR OF ATTOCHOOMIS BROOK APPLES DRAY IF External Clock is relected. Factor of the 1F witchial Clock is relected. Table 2. Baud Rate Generator Characteristics (Crystal Frequency = 5.0688 MHz) | 6336 | 4224 | 2880 | 2355 | 2112 | 1056 | 528 | 564 | 176 | 158 | 132 | 88 | 99 | 44 | 33 | 16 | |-------|-----------|-----------------|---|---|--|--|--|---|---|--|---|--|---|---|---| | 20/20 | 20/20 | 60/50 | 20/20 | 99/20 | 20/20 | 09/09 | 20/20 | 20/20 | 20/20 | 50/50 | 80/50 | 99/09 | 60/50 | 48/52 | 50/50 | | | 1 | ı | 0.016 | ı | 1 | ı | ı | ı | 0.253 | 1 | ı | 1 | ı |) | 3.125 | | 0.0 | 1.2 | 1.76 | 2.1523 | 2.4 | 8.4 | 9.6 | 19.2 | 28.8 | 32.081 | 38.4 | 57.6 | 76.8 | 115.2 | 153.6 | 316.8 | | 0.8 | 1.2 | 1.76 | 2.152 | 2.4 | 4.8 | 9.6 | 19.2 | 28.8 | 32.0 | 38.4 | 57.6 | 76.8 | 115.2 | 153.6 | 307.2 | | 50 | 75 | 110 | 134.5 | 150 | 300 | 009 | 1200 | 1800 | 2000 | 2400 | 3600 | 4800 | 7200 | 0096 | 19200 | | | 0.8 0 8.0 | 0.8 0.8 – 50/50 | 0.8 0.8 – 50/50
1.2 1.2 – 50/50
1.76 1.76 – 50/50 | 0.8 0.8 - \$60'50 1.2 1.2 - \$00'50 1.76 1.76 - \$0/50 2.152 2.1523 0.016 \$00'50 | 0.8 0.8 - \$60/50 1.2 - \$60/50 1.76 1.76 - \$60/50 2.152 2.1523 0.016 \$60/50 2.4 2.4 - \$60/50 | 0.8 0.8 - 50/50 1.2 1.2 - 50/50 1.76 1.76 - 50/50 2.152 2.1523 0.016 50/50 2.4 2.4 - 50/50 4.8 4.8 - 50/50 | 0.8 - 50/50 1.2 - 50/50 1.76 1.76 - 50/50 5 2.152 2.1523 0.016 50/50 2.4 - 50/50 4.8 4.8 - 50/50 9.6 - 50/50 | 0.8 0.8 - 50/50 1.7 1.76 1.76 - 50/50 5 2.152 2.1523 0.016 50/50 2.4 - 50/50 4.8 - 50/50 9.6 9.6 - 50/50 19.2 - 50/50 | 0.8 0.8 — 50/50 1.76 1.76 1.76 - 50/50 5 2.152 2.1523 0.016 50/50 2.4 2.4 - 50/50 4.8 4.8 - 50/50 9.6 9.6 - 50/50 28.8 28.8 - 50/50 | 0.8 0.8 - 50/50 1.2 1.2 - 50/50 1.76 1.76 - 50/50 2.152 2.1523 0.016 50/50 2.4 - 50/50 4.8 4.8 - 50/50 9.6 9.6 - 50/50 19.2 19.2 - 50/50 28.8 28.8 - 50/50 32.0 32.081 0.253 50/50 | 0.8 - 50/50 1.2 1.2 - 50/50 1.76 1.76 1.76 - 50/50 .5 2.152 2.1523 0.016 50/50 2.4 - 50/50 4.8 - 50/50 9.6 9.6 - 50/50 19.2 19.2 - 50/50 28.8 28.8 - 50/50 32.0 32.081 0.263 50/50 38.4 - 50/50 | 1.2 1.2 — 50/50 1.76 1.76 — 50/50 1.76 1.76 — 50/50 2.4 2.4 — 50/50 4.8 4.8 — 60/50 9.6 9.6 — 50/50 19.2 19.2 — 50/50 28.8 — 50/50 32.0 32.081 0.253 50/50 57.6 57.6 — 50/50 | 0.8 0.8 — 50/50 1.76 1.76 1.76 - 50/50 1.76 1.76 - 50/50 2.4 2.4 — 50/50 4.8 4.8 — 50/50 9.6 9.6 — 50/50 19.2 19.2 — 50/50 28.8 28.8 — 50/50 32.0 32.081 0.253 50/50 57.6 57.6 — 50/50 76.8 — 50/50 | 0.8 0.8 — 50/50 1.76 1.76 - 50/50 2.152 2.1523 0.016 50/50 2.4 2.4 — 50/50 4.8 4.8 — 50/50 9.6 9.6 — 50/50 19.2 19.2 — 50/50 28.8 28.8 — 50/50 32.0 32.081 0.263 50/50 57.6 57.6 - 50/50 76.8 — 50/50 115.2 — 50/50 115.2 — 50/50 | 0.8 0.8 — 50/50 1.76 1.76 - 50/50 5 2.152 2.1523 0.016 50/50 2.4 2.4 - 50/50 4.8 4.8 - 50/50 9.6 9.6 - 50/50 19.2 19.2 - 50/50 28.8 28.8 - 50/50 32.0 32.081 0.253 50/50 57.6 57.6 - 50/50 76.8 76.8 - 50/50 115.2 115.2 - 50/50 15.6 57.6 - 50/50 115.2 115.2 - 50/50 115.3 - 50/50 115.4 - 50/50
115.5 115.2 - 50/50 115.3 - 50/50 - 115.2 - 50/50 - 115.3 - -< | Mees: 18x clock is used in seynchronous mode. In synchronous mode, clock multiplier is 1x and duty cycle is \$0%/50% for any baud rate. # NS2651 Operation #### NERAL The transmitter section of the INS2851 performs parallel-to-serial conversion of data supplied to it from the system data bus. The receiver section of the INS2661 performs serial-toparellel conversion of dara received from the MODEM or inpur/output device. Both the transmitter and receiver are double buffered, allowing a full character time in which to service Transmit Ready (TXRDY) and Receive Ready (FXRDY) interrupts. The character size (5, 6, 7, or 8 bits) is program selectable. Parity check/generation and the baud rate may also be defined by the program. Note that the character size is exclusive of the start/stop and parity bits. ### SYNCHRONOUS MODE The transmitter starts transmitting a continuous bit steam one the transmitter is enabled and the Clear to Send (CTS) input is low. If the system is late in supplying a character to the transmitter, then the transmitter will send the SYNC models as an idle fill in the Non-Transparent mode, or the DLE-SYNI character pair as an idle fill in the Transparent mode. If this condition occurs, the TxEMT/DSCHG output goes low. The receiver enters a character synchronization mode as soon as the receiver is enabled and the Data Carrier Detect (DCD) input goes low. Either one or two consecutions SYN characters must be received by the receiver. The number of SYN characters is program selectable, and data is sent to the processor only after synchronization. The SYN character(s) in the Transparent mode (or DLE-SYN) characters in the Non-Transparent mode) are stripped off the data stream after synchronization. This feature is program selectable. An overrun error will occur if the processor is late in servicing the received character. When this condition occurs, the character in the receiver buffer is written over by the character causing the overrun, and the overrun status bit is set. ## **ASYNCHRONOUS MODE** Once transmission is initiated, the transmitter supplies the start bit, odd, even, or no parity bit, and the proper number of stop bits as specified by the program. It is entremediately after transmission of the stop bit of the present character. Otherwise the Mark Hogic high-condition is sent. The transmitter can be programmed to send a Space (logic low) condition instead of the Mark condition. Once the receiver is enabled, reception of a character is initiated by recognition of the start bit. The Start/Stop and Parity bits are stripped off while assembling the serial input into a parallel character. If a break condition is detected then the receiver sends a character of all zero bits and a Framing Error status bit to the processor. Succeeding all-zero or break characters are not assembled and presented to the system. The Receive Data (Rx.D) input must return to a marking condition before character assembly is resumed. The overrun condition is checked in the same manner as in the Synchronous # Physical Dimensions 28-Lead Plattic Dust-In-Line Package (N) Order Number INS2651N | HR Electroscies Phy. Ltd. Bayersales, Vectoral 3155, Andersales, Vectoral 3155, V | |---| | NAS Electronistic po British
Ancid Especiments and units
11 Anges Companity 1104
Landon Paparition
San Paulo British
Tayloog Caddine San Paul
172 (1008 | | Former Semiconnical
Freesy Semigl 1.64
28. Filesy Diving Electronic Blog
A rivid Tro Street
Freesy Long
Town 1.640
Town 2.41124 B
Town 2.41124 B | | International lost, Japan
Impair Districts Simples of 60
Force, Laboratoria
Force (100) 55-37:1
Force (20) 252-37:1
Force (20) 252-37:1 | | Feature Section (1994) Section (1994) Section (1994) Section (1994) Section (1994) Section (1994) | | Company Symptometry Company Symposium Symposiu | Numerical costs the abbuttor any impressionally his upo of any chicurus described. To carbuit patient inglesso are emphale, and Mahomas reserves the right. In the form, to change seed costumly. #### HARDWARE DESCRIPTION #### **PARTS LIST** | INTEGRATE | ED CIRCUITS | INTERGRAT | TED CIRCUITS | |-----------|-------------|--------------|-----------------| | U1 | 7912 | U46 | 74LS244 | | U2 | 7812 | U47 | 74LS38 | | U3-U4 | 7805 | U48 | 74LS175 | | U5 | 74LS386 | บ49 | 74LS125 | | U6 | 74LS373/374 | U 5 0 | 74LS04 | | U7 | 74LS373/374 | U51 | 74LS38 | | U8 | 74LS74 | U52 | 74LS175 | | U9 | 74LS125 | U53 | 74LS125 | | U10 | 74LS221 | บ54 | 74LS04 | | U11 | 74LS374 | U55 | 74LS393 | | U12 | 81LS95/97 | | 20073 | | U13 | 74LS175 | RESISTORS | s | | U14 | 81LS95/97 | | | | U15 | 74LS138 | R1-R2 | 10K OHM | | U16 | 74LS74 | R3 | 330 OHM | | ช17 | 74LS04 | R4 | 560 OHM | | U18 | 74LS174 | R5R7 | 5.1K OHM | | U19 | 74LS02 | R8 | 560 OHM | | U20-U21 | 74LS74 | R9-R11 | 5.1K OHM | | U22 | 74LS266 | R12 | 2.7K OHM | | U23 | 74LS10 | R13 | 4.7K OHM | | U24 | 74LS00 | R14 | 470 OHM | | U25 | 74LS138 | R15 | 5.1K OHM | | U26-U28 | 1489 | R16-R17 | | | U29-U30 | 4N28 | SR1-SR6 | 4.7K OHM | | U31-U33 | 1488 | | | | U34-U36 | 2651 | CAPACITO | RS | | U37 | 1488 | | | | บ38 | 1489 | C1-C8 | DIPPED TANT 20V | | บ39 | 74LS04 | C9-C10 | 220PF MICA | | U40 | 74LS00 | C11 | .Oluf CERAMIC | | U41 | 74LS266 | (25) | BYPASS CAPS | | U42 | 74LS04 | | | | U43 | 74LS367 | CRYSTAL | | | U44 | 74LS138 | | | | U45 | 81LS95/97 | X1 | 5.0688 MHz | | | İ | | | | | li li | l | | | TRANSISTO | R | |----------------------------|---| | Q1 | 2N3904 | | DIODES | | | D1
LED1 | SIGNAL DIODE
RED LED | | SWITCHES | | | S1
S2
S3 | 10 POSITION
10 POSITION
8 POSITION | | SHUNTS | | | JS1-JS3
JS4-JS6
(10) | 8 POS. SHUNT
8 POS. HEADER
PIN SHUNTS | #### JUMPER AND SWITCH INDEX | JUMPER | SECTION | FUNCTION | PAGE # | |----------------|---------------------|-------------------|--------| | Jl | UNIVERSAL PARALLEL | ATTENTION LINE | 23-24 | | J2-J5 | CENTRONICS PARALLEL | CONTROL-C LINES | 27-28 | | J6 - J8 | HARDWARE | WAIT STATE SELECT | 11 | | J9 | NOT USED | | | | J10-J12 | SERIAL | INTERRUPTS | 14 | | J13-J16 | SERIAL | SYNC CLOCKS REL 2 | 20-21 | | J17-J20 | SERIAL | SYNC CLOCKS REL 3 | 20-21 | | J21-J22 | SERIAL | SYNC CLOCKS | 20-21 | | J23-J24 | SERIAL | SYNC BAUD SELECT | 21 | | J25 | SERIAL | CURRENT LOOP | 19 | | J26 | HARDWARE | SWAP OPTION | 11 | | JS1 | SERIAL | MODE: REL. 3 | 19 | | JS2 | SERIAL | MODE: REL. 2 | 19 | | JS3 | SERIAL | MODE: REL. 1 | 19 | | JS4 | SERIAL | MODE: REL. 1 | 19 | | JS5 | HARDWARE | Tx INTERRUPTS | 13-14 | | J\$6 | HARDWARE | Rx INTERRUPTS | 13-14 | | \$1/1-2 | UNIVERSAL PARALLEL | STROBE POLARITY | 22-23 | | \$1/3-10 | CENTRONICS PARALLEL | SENSE SWITCH | 28 | | S2/1-10 | HARDWARE | ADDRESSING | 8-9 | | S3/1-8 | HARDWARE | BUS SELECT | 10 | #### IF YOU NEED ASSISTANCE ALWAYS CONTACT YOUR COMPUPRO DEALER FIRST #### **CUSTOMER SERVICE INFORMATION** Our paramount concern is that you be satisfied with any Godbout CompuPro product. If this product fails to operate properly, it may be returned to us for service; see warranty information below. If you need further information feel free to write us at: Box 2355, Oakland Airport, CA 94614-0355 #### LIMITED WARRANTY INFORMATION Godbout Electronics will repair or replace, at our option, any parts found to be defective in either materials or workmanship for a period of 1 year from date of invoice. Defective parts *MUST* be returned for replacement. If a defective part causes a Godbout Electronics product to operate improperly during the 1 year warranty period, we will service it free (original owner only) if delivered and shipped at owner's expense to and from Godbout
Electronics. If improper operation is due to an error or errors on the part of the purchaser, there may be a repair charge. Purchaser will be notified if this charge exceeds \$50.00. We are not responsible for damage caused by the use of solder intended for purposes other than electronic equipment construction, failure to follow printed instructions, misuse or abuse, unauthorized modifications, use of our products in applications other than those intended by Godbout Electronics, theft, fire, or accidents. Return to purchaser of a fully functioning unit meeting all advertised specifications in effect as of date of purchase is considered to be complete fulfillment of all warranty obligations assumed by Godbout Electronics. This warranty covers only products marketed by Godbout Electronics and does not cover other equipment used in conjunction with said products. We are not responsible for incidental or consequential damages. Prices and specifications are subject to change without notice, owing to the volatile nature and pricing structure of the electronics industry. Copyright ©1982 by Godbout Electronics. All rights reserved. We encourage quotation for the purposes of product review if source is credited. Printed in U.S.A. [&]quot;INTERFACER 4" is a trademark of W.J. Godbout. [&]quot;INS2651 PROGRAMMABLE COMMUNICATIONS INTERFACE", copyright 1980, National Semiconductor Corporation. Reprinted by permission of National Semiconductor Corporation. #### Interfacer II #### 1 Uses 8 Io ports selected by \$2: #### 2) Funtion and Board select Register - Base +7 (output only) #### @ Interropts Four Xmil & Four Rec 3 53 - Set 1-4 Off, 5-8 on, low nibble of Status & Call info. 15 used | | End o | Furet 1 | Eret 2 | First 3 | |----------|--|----------------|--------|----------| | Base + 0 | Centre Data/Dipswikh
Centre States/Centre Cny | Data
Status | Same | Sana as. | | + 2 | Par. Data | Mode | 45) | 1 | #### Interfacer IV Config Notes (See man pg 6 also) #### Beng Jumper Shorts | | | - 1 | as a large way | |----------|--|--------------------|---| | JI | $\overline{Q}, \overline{Q}, \overline{P}, \overline{P}$ | Parallel port | handshahing. | | | | Setting does r | not matter to MP/M | | | | | | | J2 | Auto Line feed | | | | J3 | Printer Select | | / Centronics port control | | 74 | Printer Init | | Does not matter to | | J5 | Interrupt Source (| (Ach or Bsy) - | Centronies port control Does not matter to MP/M | | J6 | Wait Stale contl | | USE JG (Top), | | 37 | J6=1, J7=2 , J8=3 | | I wait stake | | J8 | no shunt = 0 | | | | 79 | not used | | | | 710 |) | | | | JII | Allow uses of | TXEMP/DSCAG | To generate an int. on | | J12 | I amy of the | three serial ch | to generate an int. on connels. Not used. | | J13- J24 | Control Internal u | is external clocks | and BAUD RATES BEIC. Wot Installed | | | for sync Usi | c of Chan | BEC. Not Installed | | J25 | used for cum | ent loop on Port | A. Not installed | | 726 | Used to Swa | p Centronias | d one serial port. (B) | | | Install both | jumpers horizon | ally, | DIP Short. JSI, JSZ, JS3 - Straight across on all pins (Slave or DCE mode). JSY - only used for Current loop. Onit JS5 - Interript Jumpers for Transmit Interrupts. Not used JSG - Int. Jumpers for Received DATA Int. Connect as follows: DIP Switches. SI - 1 3 control Polarity of Parallel port Strobe (not used) -2 Thu 7 - Sense switch, used as input side of Centronics Parallel port, (Not used) S2- 1 thru 3- Board Select bits 4 Disables entire board 5-9 Port Select 10 not used 83 - select upper or lower 4 bits for int. cott.