MPX-1

TECHNICAL MANUAL

lEEE 696/ S5-100

MULTIPLEXER CHANNEL
4K or 16K RAM
6 MHz 8085 Processor

BULLDOG COMPUTER

IBM PC - XT - AT COMPUPRO
1334 Chapel Street

New Haven, CT 06511

(203) 777-1476 or 7763

L

®
ompuPro :

Scanned by Howard M. Harte, March 26, 2003. www.hartetec.com

TABLE OF CONTENTS

WARNIHNG + o o o ¢ + v o o = o « = s o o « o o + & 2 = + & s «
About MPX-1 ¢ 4 4 4 4 4 v i vt et e e e e e e e e e
Technical overview 4 4 4 o 4 6 v 6 4 4 o s o 0 o o
How to use the MPX=1 &+ 4+ & 4 4 4 o 4 v 4 v o o v & =
MPX~]1 block diagram . . . « + & « « 4 o & & + = + « « =
Local address map . . « « « o 4 « 4 o 4 4+ 4+ » » » »
Accessing memory on the bus 0.
Accessing I/O ports om the bus .« . + + + ¢ &« + « « « =« «
Getting the MPX-! attemtion . . . i,
Getting the main system CPU”s attention e r e e e e e
Interrupt acknowledge response on the bus
Hardware switch setting and jumper options
Switch settings . . + ¢ « v v & 4 & 4 4 4 4 e 0 0 e s e
Switch 1 - ATTN port address select .+ + + + = « « + + « =
Standard ATTN port address selection . + + +. v « v + v «
Switch 2 . 4 v v 4o v f v e e h e e e e e e e e e e e e e
Interrupt "CALL" jumpers . . . s s e e s s s
SBelecting and using 4K or 16K RANM chips e e e e e e s e e s
Using 2147 4K x 1 type RAM chips = « + « 4 + &
Using 2167 16K x 1 type RAM chips . . « ¢« ¢ « « « ¢ « & &
Configuring the MPX-1 for different size EPROMS
Using a 2716 or 2732 EPROM + © v v v o v + v o « =
Using a 2764 EPROM . & « & + ¢ 4 4 2 2 o o o o o s s 2 o
Standard software supplied with MPX-1 + « « « . .
Basic command structure and protocol « « + + + & .
Opcode byte .+ o & v &t 4 v ¢ 4 4 s 4 2o 4 o« s 4 8 o u s ..
Status indication™yte « « o v ¢ ¢« ¢ 4 4 4 e 0 e 0 ...
General purpose parameter bytes O through 8
Link address bytes « + & 4 o v v ¢ 4 v v o s ¢ 8 s o « o &
Result 1 and result 2 bytes . + ¢ ¢ « o ¢ ¢ v ¢ ¢ o » s s
General NOLES 4+ & v 4+ 4 4 4 4 4 e et t e e e e
Command descriptions .+ « ¢ v & v 4 4 o ¢ & & ¢ o o o ¢ o 2 &
NOP — no operation + + « v @ v 4 ¢ o « o « 2 o = o = & = &
RESET - reset the MPX-1 s s 4 e e e e e e
SET MASK - mask or unmask interrupt inputs to MPX~l ...
SENDDEOI - send end-of-interrupt command
to interrupt controller . . « » + « o o s & « «
READREG = read interrupt controller registers . « . . « «
SETRESPONSE - set interrupt response ByYre .« . « « « + o =«
SIZE - indicate whether 4K or 16K MPX-1 . . «
LOADRAM - load MPX local RAM from system RAM . + . . 4+ 4 .
EXRAM - execute a program in local RAM . ¢« « « & 4 & « &
BLEMOV - move block of RAM of system bus + + + o « « & o &
FASTMOV - move block of RAM on system bus - fast . « + + .
RESERVED “ 0pcode + v v « v & o o o ¢ ¢ % ¢ « o o « o « «

WD WD OO L 000 DN L n

&bouttheROMcode.-................-.-19
Initialization « « « ¢+ ¢ ¢ ¢ > 0 * T R L 19
ATTN response .+ + ¢ « ¢+ = = * * "7 P s
General purpose subroutines o ¢ » o+ s v o st T . 20
Writing your own custom commands o » s o+ o0 o0 et 700 . 20
Listing of standard software supplied with MPX-1 . - . 21-28
Theory of operation « « « « ¢ ¢ 7 T L 29-32
Appendix
1NTEL 82594 programmable interrupt comtroller .
Hardware
logic diagram « « ¢ ¢ ¢+ = = "7 R 54=57
Parts 1i8C « o« » s o o ¢ ¢ =+ 2 7 P 58
Component layout « e « « ¢ © * * ° A R R 59
Customer service / limited warranty informatiom . . - o ¢ © ¢ 60

13-53

*
-
L]

PISCLATMER
Godbout Electronics makes no representations or warranties with
respect to the contents herecf and specifically disclaims any
implied warranties of merchantablility or fitness for any
particular purpose. Further, Godbout Electronics reserves the
right to revise this publication and to makes any changes from
time to time in the content hereof without obligation of Godbout
Electronlce to notify any perscn of such revision or changes-

This document was proofread with the ald
of SpellCuard™ from 1SA, Menlo Park, CA.

FIRST - A WORD OR TWO OF WARNING!

This manual is intended to guide the sophisticated systems integrator or
OEM through the hardware features of the MPX~l. This manual 1s not intended for
novice or inexperienced users. If you are an end-user who has purchased an MPX-
1 all by itself, you should have a thorough knowledge of hardware and software
as CompuPro or your local dealer is not prepared to provide applications assis-
tance for this product, (beyond the contents of this manual}). If you are an
end-user who has purchased a system with an MPX-1 integrated into 1it, your
systems integrator should have done all the work for you. This meaans that they
should have provided the operating system software with the MPX-1 integrated
into it already. If this is the case, feel free to read this manual for your
information, but you should never have to worry about this manual’s contents.

If you don’t feel that you are sophisticated enough to handle programming
the MPX~1 {be honest with yourself now!), please return it to the place of
purchase for a full refund.

AROUT THE MPX-1

The MPX-1 from CompuPro is a very useful additien to any multi-user or
interrupt intemsive environment. Its extreme versatility and flexibility makes
it a very bewildering product on the surface - it can do so much, where do you
start? The basic function of the MPX-1 is that of an interrupt pre—processor.
It takes the interrupt servicing and handling load off of the main processor in
a system. Interrupts in the system are now processed in parallel with other
processing resulting in higher system throughput, which is a paramount consider-
ation in multi-user, multi-tasking situations.

The MPX-1 was designed for the IEEE 696/5-100 Bus because of that bus”
modularity and its unique ability to handle multiple temporary bus masters (of
which the MPX~1l is one). The IEEE 696/5-100 bus is the choice of professiomnals
for business, industrial amd scientific applications.

TECHNICAL OVERVIEW

The MPX-1 has its own on-board processor, an Intel 8085AH-1 running at 6
MHz. This processor is supported by either 4K or 16K of fast static RAM and up
to 8K of EPROM. 1In addition, a flexible 82594 interrupt controller monitors the
eight vectored interrupt lines on the $S-100 Bus. None of these local resources
take up any address space on the $-100 Bus.

When an interrupt request occurs on one of the vectored interrupt lines,
the interrupt response is handled by the on~board interrupt controller and CFU,
taking up no processing time on the bus.

When needed, the MPX-1 can access any system resource on the bus. This
means that it can talk to any 1/0 port or memory location on the bus. It does
this by requesting the bus from the permanent master on a cycle—by-cycle basis.
This request/grant procedure is fully arbitrated to 16 levels as provided for by
the IEEE 696/58-100 bus standard. This allows up to 16 such devices to exist in
a system at any_given time. Multiple MPX-1s could even be used.

The uses of the MPX-l are vast. Obvious uses would include terminal inter-
rupt handlers, print spoolers, task allocation and management, and resource
control. A unique feature of the MPX-1 allows it to load execution code from
the system memory so that the MPX~1"s function can be altered dynamically.

5

HOW TO USE THE MPX-1

A simplified block diagram of the MPX-1 appears in Figure 1. In the
following discussions, it may be useful to refer to the block diagram.

Here is a quick-and-dirty overview of how the MPX-1 works: When the on=
board B085 powers up, it begins executing code from its on-board EPROM. Usually
it will be sitting in & loop waiting for something to happen, &n external
interrupt for example. Suppose an interrupt occurs. The 808% will be inter-
rupted and vectored to & gservice routine by the 82539A interrupt controller. The
MPX-1 can access any 1/0 port on the §-100 Bus by simply doing an INFUT or
OUTPUT instruction. Since the “ports” on the MPX-1 are all memory mapped, no
conflicts occur and all 256 ports can be sccessed. The on-board logie takes
care of the DMA request, arbitration and the actual running of the bus cycle.
The 8085 will “stall” until the operation is completed allowing program execu=
tion to continue.

The MPX-1 can also access any memory location on the S-100 Bus. To do
this, the program first writes the upper 16 address bits (AB-23) to two regis—
ters. Then if a memory reference to addrees CO00 to FOOO is made, the lower 8
bits from the reference are used to make up the lower 8 bits of the desired
memory location on the bus. If the memory reference 1s a read operation, then
the bus access will also be a read operation. If the memory reference 1s a
write operation, then the bus access will be a write operation. This address
gspace from COCO0 to FOOO is known as the “external window". As in the case of
1/0 accesses, the on-board logic takes care of the DMA request, arbitration and
the sctual running of the bus cycle. The 8085 will "stall” until the operation
ig completed allowing program oparation to continue.

Sounds simple, doesn’t 1t? Well, it is. The following sections dlscuss
the above overview in greater detail., First is a local address wmap showing
where everything lives on the MPX~-1.

Figure 1. MPI-1 BLOCK DIAGRAM *

ADDRESS, STATUS
A CONTROL BUSES ~—=
8-100) LOCAL
‘BUS — - ROM
DATA BUSES ~s———p-] INTERFACE
AND 8085
A LO
OMA HANDSHAKE ~femmmsmie- OMA LOGK CPY
| oea
- RAM
§-100
BuS
VECTORED INTERAUPTS wemmmmp] NTERRUPT |
CONTA.
RST.
7.5 s0D
3
CONTROL INPUTS ——mme] ATTH
A PORT
L_ INTERRUPT OUTPUT

LOCAL ADDBESS MAP

FROM TO SI1ZE FUNCTION NOTAiS
0000 3FFF 4-16K RAM 1,4
4000 SFFF 28K EPROM 1,2,5
8000 8001 2 82594 Registers
8002 11 Set Interrupts Latch 2
8004 1 DMA Address Bits 8-13 3
8005 1 DMA Address Bits 16-23 3
8007 1 Interrupt Response Byte 3
€000 FFFF 16K External Window 6
All 1/0 Ports 256 External Window 6
Notes: 1. RAM and EPROM exchange locations for power-on-—jump.

2. Read Only.

3. Write Only.

4. 4K or 16K depending on chips used.

5. 2K for 2716, 4K for 2732, BK for 2764.

6. Lower 8 address bits (AO0~7) pass through.

ACCESSING MEMORY ON THE BUS

An access to memory that resides on the 5-100 Bus will be performed if the
CPYU makes an access to the range noted as the external window in the address map
above (addresses CO00 to F%FF). The low order 8 bits of the address (A0-7) will
be taken from the CPU’s address lines directly, while the high order 16 bits
(48-23) will come from the address that has been previously written to the DMA
address registers. So the procedure for accessing memory on the bus would be:

1. Write desired A8~15 bits to memory location B004.
2. Write desired Al16-2) bits to memory location 8005.

3. Perform a memory reference to COXX to FOXX, where XX
represents the low order 8 bits (A0~7) of the desired address.

If the memory reference to the external window is a read operation, then a
memory tead will occur on the bus. If the memory reference is write operation,
data will be written to the memory on the bus. Note that Ml cycles may also be
executed on the bus meaning that the MPX~-l may actually execute a small amount
of code (less than 256 bytes) directly from the bus.

Note that the high order byte of the external window is insipgnificant. Any
address in the range C000 to FFFF will be treated identically. For example,
C083, BD83, A983, and FF83 would all access the same external memory location -
XXXX83, where XXXX are the two bytes from the DMA address registers.

7

ACCESSING 1/0 PORTS ON THE BUS

All of the "1/0 Ports” local to the MPX-1 are "memory mapped”. This means
they are decoded in the memory address space rather than in the I1/0 space. This
leaves all 256 I/0 addresses free. Any input or output cycle performed by the
CPU will cause a corresponding cycle to be executed on the §-100 Bus. Since the
lower 8 bits of the DMA Address pass through from the actual lower 8 address
bits from the CPU, the port address specified in the I/0 imstruction will be the
one accessed on the bus.

The high order 8 bits of the 1/0 access will come from the DMA address
register as in a memory reference. This allows the port address to be
“pmirrored” in A8-15 as early 5-100 (8080) processors did, or this byte may be
loaded with different data to emulate z-80 1/0 modees (the 7z=80 passes the
accumulator contents on A8-15). This also allows the MPX-1 to emulate the
current generation of 16 bit processors such as the CPU 8085/88, CPU 86/87 and
the CPU 68K, which can put out 16 bit 1/0 addresses.

If an input instruction is executed, then an input cycle will be performed
on the $-100 Bus. If an output ingtruction is executed, then an output cycle
will be performed on the bus.

GETTING THE MPX-1"s ATTENTION

In any system it will be necessary for the main CPU in the syscem to get
the attention of the MPX=1. This can be for initial start—-up of the MPX-1, or
to "interrupt” its current task to be given another. This is done through a
mechaniem called the ATTN port. This port is om the $-100 Bus and its address
is selected by switch S81. When the system CPU executés an output to the ATTN
port, a RST 7.5 will be generated to the on-board 8085, Note that no data is
accepted by the MPX-l. M

GETTING THE MAIN SYSTEM CPU’S ATTENTION

The MPX-1 may need to get the attention of the system CFU to tell it that a
task is complete, a buffer is nearing full, or many other reasons. The MPX-1
may signal the main CPU by causing an interrupt on the bus. This interrupt may
occur on the INT*, NMI* or any of the vectored interrupt lines. A hardware
jumper is used to select which of the ten possible lines are used.

Two methods of causing this interrupt are available, again selected by a
jumper. The first type uses the Serial Output Data (S0D) line from the BO8> to
cause the interrupt. The state of this iine is set and reset by the Set Inter-
rupt Mask (SIM) instruction. The state of the interrupt request must be reset
in software.

The second method uses a one bit latch that is set by performing a read
from addreass 8002 (Set Interrupt Latch in the address map above). This latch is
automatically reset by the occurrence of an interrupt acknowledge cycle.

Note that if one of the vectored interrupt lines is selected tu cause the

system interrupt, the corresponding interrupt input to the 82593 should be
masked, unless you want the MPX-1l to interrupt itself.

8

INTERRUPT ACKROWLEDGE RESPONSE ON THE BUS

The MPX-1 may provide a single byte of data during bus interrupt acknow-
ledge cycles. This respouse must be enabled by a switch. The dats to be passed
during interrupt acknowledge cycles is written to the latch ac address 8007
(Interrupt Response Byte in the address map above).

Note that this single byte response may cause an 8080/Z-80 RFSTART instruc-—
tion, or is compatible with the vector information required by 8088/86 or 68000
CPUs. HNote that if the response is desired and the CPU is an 8088/86 or 68000,
the SOD interrupt call method (described above) should be used. This 1s because
the 8086 and 68000 run two interrupt acknowledge cycles (the first byte of data
is ignored) and the interrupt latch used in the second method would be reset
prematurely. This may cause a system problem.

HARDWARE SWITCH SETTINGS AND JUMPER OPTIONS
SWITCH SETTINGS
There are two dip-switches on the MPX-1. Switch S1 selects the address of
the ATTN port on the 5-100 bus. Switch §2 is used to select the various board

options and the DMA arbitration address of the MPX-1l.

§1 - ATTN PORT ADDRESS SELECT

PADDLE # ADDRESS BIT

T o o « o o + « « A7

2 e s e s e s . s AB

3 . 4 s s « n s » AS “QN" = "0"
L os s o v o n v+ Ab
SQOQIQID-AB

B v "% s o« o s s A2 “QFF" = "1"
7 v a o o o o« o Al

B v o o = s + o = A0

STANDARD ATTN PORT ADDRESS SELECTION

The CompuPro “standard” port address for MPX ATTIN calls is Fl hex. To set
the MPX-1 to respond to ATTN calls on port Fl hex, set Sl as follows: Paddles 1-
4 and paddle 8 should be OFF. Paddles 5~7 should ON.

82
PADDLE # FUNCTION
1 ..44.+ . "ON" enables EPROM walt state.
2 v 4 « .+ . . "ON" enables interrupt response byte.
3......DMA priority address 3
4 DMA priority address 2 “"ON = "0"
5 . . .+ +» . DMA priority address 1
6 . + .+ « « DMA priority address 0 "OFF" = "1"
7 .+ . + .+ » "ON" enables SLAVE CLR* to reset MPX-1.
8. ..+ + » not used

INTERBUPT “CALL" JUMPERS

The MPX-1 "ealls” the system CPU by causing an interrupt on the bus. There
are ten possible interrupt l1ines that the MPX-1l may assert. They are: INT*,
NMI* or any of the eight vectored interrupt lines (VIQ*~VI7%). There are also
two methods by which the MPX-1 can assert the interrupt request - the SOD line
or by setting a hardware latch (described above in the section entitled "Getting
the Main System CPU’s Attention™).

The interrupt line asserted and the method of asserting it are selected by
Jumpers J1-10. These jumpers are implemented with push-on shorting plugs and
pins soldered into the board. Each jumper has three pins labeled A, B and C.
The "A" pin of each jumper is connected to the SOD interrupt source. The "g
pin of each jumper {g connected to the interrupt response latch., The "B" pin of
each juamper is connected to an interrupt 1ine on the bus according to the chart
below:

JUMPER # LEGEND MARKING "B POSITION CONNECTION

1 7 vI7*
2 6 VI6*
3 5 VI5*
4 4 Vi4*
3 3 VI3*
6 2 Vi2*
7 1 VIl*
g 0 VIO*
9 NMI1 NMI#*
10 INT INT*

EXAMPLE: To connect the MPX-1 interrupt request output to the INT* lipe on the

bus with the interrupt source? from the SOD line, & shorting plug should be
{nstalled at J10 from the "A" to “g" position (left of center).

EXAMPLE: To commect the MPX-1 interrupt request output to the VI3*% line on the
bus with the interrupt source from the interrupt latch, a shorting plug should
be installed at J5 from the “B" to “C" position (right of centet)

NOTE: The software supplied with the MPX-1 assumes the use of the SOD interrupt
mode, so if you wish to use the MPX in an interrupt driven mode with the
standard software, use only the S0D interrupt source.

SELECTING AND USING 4K OR 16K RAM CHIPS

The MPX-1 can use either 2147 4Kx1 RAM chips, or 2167 16Kxl RAM chips. The
MPX~1 should have come from the factory already jumpered correctly for the type
of chip that was originally ordered with the board. Should it become necessary
to change these jumpers once the board 1is in the field, here is how different
RAMs are jumpered and inserted:

USING 2147 4Kx) TYPE RAM CHIPS
To use 2147 type RAM chips, Jumpers J11 through J17 should be installed and
J18 should be open. J11 through J17 are located in-between the R&M array (U10-

10

17), and J18 is located at the right-hand side of the RAM array.. The RAM chips
come in 18 pin packs, but the sockets are 20 pin to accomodate 2167 type RAMs.
When using 2147 type RAMs, plug them in so that the chips are in the bottom-most
part of the socket, that is pins 1 and 20 are blank.

USING 2167 16Kxl TYPE RAM CHIPS

To use 2167 type RAM chips, jumper J18 should be installed and jumpers J11-
17 should be open. Jumper J18 is located at the far right-hand side of the RAM
array and jumpers J11-17 are located in-between the RAM chips.

CONFPIGURING THE MPX-1 FOR DIFFERERT SIZE EPROMS

The MPX-1 has a JEDEC 28 pin socket for the EPROM (U27). With the use of
one jumper, this socket can accomodate a 2716, 2732 or a 2764 type EPROM. This
gives 2K, 4K or 8K of storage, rvespectively.

USING A 2716 or 2732 EPROM

To use a 2716 or 2732 type EPROM, jumper J19 should have a shorting plug
installed connecting pins "A" and "C" (left of center). J19 is located just
above U26. The 2716 or 2732 should be installed at location Y27 such that it
uses the bottom—most pins of the socket, that is pins 1,2,27 and 28 are left
blank.

USING A 2764 EPROM
To use a 2764 type EPROM, jumper J19 should have a shorting plug installed
connecting pins "C” and "B" (right of center). J19 is located just above U26.

The 2764 should be installed at location U27, and all the pins of the socket are
used.

11

STANDARD SOFTWARE SUPPLIED WITH MPX-1

The MPX-1 is supplied with an EPROM that contains some general purpose
utility routines. It contains code to initialize the interrupt controllers (to
a benign state), several useful subroutines and a general purpose command
interpreter that implements a "channel protocol”. Included are several built-in
commands to perform useful tasks such as loading and executing programs fronm
system wemory, changing the interrupt controller parameters and block memory
moves on system RAM. The command structure includes a sophisticated "1ink"
protocol that allows chaining of command sequences and tecursion.

Note that no representation is made that this 1s the most efficient way to
program or use an MPX board. Rather, it is intended as partly tutorial and
partly a useful way to get "up and running” with the MPX in a minimum amount of
time.

What follows is a discussion of the basic command structure and then
descriptions of the actual commands. Following that iz a discussion of the code
itself that explains how to add custom commands and describes several useful
subroutines. .

BASIC COMMAND STRUCTURE AND FROTCCOL

When the MPX-1 powers up, it masks all its interrupt inputs, does some
internal initialization and waits quietly for an ATTN on 1ts ATTN port. When it
receives an ATTN it will read in 16 bytes from the system memory starting at
address 50 hex. The meaning of the bytes follows:

Byte 0: Opcode Byte

Byte 1: Status Indication Byte

Byte 2: General Purpose:Parameter Byte O

Byte 10: General Purpose Parameter Byte 8

Byte 11: Link Address (least significant byte)
Byte 12: Link Address

Byte 13: Link Address (wost significant byte)
Byte l4: Result 1 byte

Byte 15: Result 2 byte

The following is a more detailed description of the bytes shown above:

OPCODE RBYTE

The opcode byte contains the information that tells the MPX what command to
execute, and also contains two bits that control the completion interrupt and
link structures. The actual bit coding of the opcode byte is shown below:

Bit 7 Rit O

| coNnT | INT | O | B7r 4 | BIT 3 | BIT 2 | BIT 1 | BIT O |

12

Bits O through 4 of the opcode contain the "command number” of which there
are a possible 31 (one command is reserved), The first 10 commands have already
been defined and the remaining 21 may be implemented by you.

Command "OF" is reserved, and if invoked will be translated internally to 2
NOP command.

The INT bit (bit 6) of the opcode byte is the INTERRUPT ENABLE bit. If
this bit is set to ome in the opcode, the MPX will cause an interrupt (S0D
interrupt) when it has completed the command. If this bit zero, an interrupt
will not be generated when the command has completed execution. Note that in
order for the interrupt to make it to the bus, it must be jumpered to an inter—
rupt line (see the hardware configuration section of this document for further
details).

The CONT bit (bit 7) of the opcode byte is the CONTINUE bit and is asso-
ciated with the link structure. If the CONT bit is set high, execution of the
next command {pointed to by the link address) will commence immediately after
execution of the current command is complete. If the CONT bit is zero, the MPX
will stop when execution of the current command is complete, and wait for
another ATTN before executing the next command.

There are two considerations when using the CONT bit. The firsi is that
the INT bit is ignored if the CONT bit is set. This means that an interrupt
will only occur if no command is to follow, which is the way one would normally
want things to happen when exXecutlng a sequence of commands.

Secondly, if the link address points to the beginning of this same instruc-
tion (pointing to itself) and the CONT bit is set, endless execution of the
instruction will occur. This could be useful. The way to stop execution would
be to change the opcode so that the CONT bit is zero. The opcode could be
changed to a NOP, or merely the same opcode with the CONT bit zeroed. Either
the system CPU or the MPX could change the opcode. DO NOT try to change the
link address on the fly! =

Bit 5 is unused and is really a "dont care” bit, but a good practice would
be to always set this bit to zero.

STATUS INDICATION RBYTE

This byte is used to “handshake” with the MPX when the use of a completion
interrupt is not desired, or they may be used in conjunction. This byte should
be set to zero before an ATTN is sent to the MPX. When the MPX is done
executing the command, it will set this byte to FF hex. In a non=interrupt
environment, this byte should be checked before another command is sent to the
MPX.

If the CONT bit 1s set in the command opcode, the status byte for that
particular command will NOT be set te FF hex. This means that in a sequence of
commands, only the status byte in the last command {(the one with CONT = 0) will
be set to FF hex.

13

GENERAL PURPOSE PARAMETER BYTES 0 through 8

These bytes are used to send parameters to the MPX along with the command.
The parameter{s) sent vary with the command. Only the block move commands use
all nine bytes, and they would contain the starting, ending and destination
addresses for the block move (3 bytes each). Sometimes only a few bytes are
used and sometimes none are used at all. The exact usage of these bytes is
detailed in each individual command description. :

LINK ADDRESS BYTES

These three bytes are a pointer to the place at which the next command line
is resident in the system memory. When not executing multiple commands {CONT
bit = 0), this address would normally point to the beginning of the same
command. When executing a sequence of commands, this address would point to the
address of the next command. '

The address is stored low byte first and is a full 24 bit address.

The initial link address is 50 hex, but the NOP instruction may be used to
change the link address to any other system address.

Note that the link address is read only once and at the start of each
command, not at the end. This means that the command itself may modify the link
address, but it will only affect the following command (mot the where the next
command will be fetched). The main system CPU should not modify the current
link address unless the MPX 1s not active.

RESULT 1 AND RESULT 2 BYTES
Sometimes it is desirable to have the MPX return parameters to the caller,
and that is the purpose of these two bytes. Only two of the built-in commands

return data to these locations, but user generated commands should use these
bytes for that purpose as well.

GENERAL NOTES

Commands are assumed to be resident on 16 byte boundaries ie: 50R, 60H,
180H, etc.

The only bytes in the command line that the MPX modifies are the status
indication and result bytes. All others are left intact.

14

COMMAND DESCRIPTIONS
NOP ~ No Operation
QPCODE BIT CODING:

Bit 7 . ~Bit O

lcom:llmlolololololol

PARAMETERS PASSED: Link Address.
PARAMETERS REURNED: None.

DESCRIPTION: This command seems useless on the surface, but in reality has many
uses. This command may be used to change the link address if address 50 hex is
not a good one for your system. It may also be used to reset the interrupt
output from the MPX Lf it was set by the completion of a previous command (of
course the INT bit should be zero). This command is also useful in debugging a
command sequence since it may be used to cause execution to skip the command
that is replaced with a NOP.

RESET - Reset the MPX-1
OPCODE BIT CODING:

Bit 7 h ' Bit O

| cost | ne | o | o | o {1 o | o | 1 |

PARAMETERS PASSED: None.
PARAMETERS RETURNED: HNone.

DESCRIPTION: This command resets the MPX-1 to its initial startimg state. The
internal command table will be cleared (so any custom commands you have loaded
into RAM will now be ignored). The address where the MPX picks up its first
command line will be set to S0H. All interrupts will be masked and the inter=
rupt controller will be re—initialized.

SET MASK — Mask or Unmask interrupt imputs to MPX-1

OPCODE BIT CODING:

Bit 7 Bit O

|coml1m:|o}o|o|o|1|o|

PARAMETERS PASSED: Mask Byte, Link Address.
PARAMETERS RETURNED: None.

DESCRIPTION: This command is used to mask or unmask interrupt imputs to the
MPX-1l. The byte passed in Parameter Byte 0 is written to the mask register of
the 82594 interrupt controller. If a bit in the mask byte 1s set Lo one, the
corresponding interrupt will be masked. Conversely, if a bit is zero, that

15

interrupt will be unmasked. Bit 0 of the mask byte corresponds to VIO* on the
bus, and Bit 7 corresponds to VvI7* on the bus. This is the same as sending OCW1
to the interrupt controller (see the 8259A application note in the appendix of
this document for more information).

SENDEO1 - SEND ERD-OF-INTERRUPT COMMAND T0 INTERRUPT CONTROLLER

OPCODE BIT CODING:

Bit 7 Bit O

|com"lmrlololololllll

PARAMETERS PASSED: EOI Command Byte, Link Address.
PARAMETERS RETURNED: None. :

DESCRIPTION: This command is used to gsend an End=of-Interrupt Command to the
82594 interrupt controller. It is also useful for rotating the interrupt prior=
ity levels. The byte to be sent to the 8259A is passed in Parameter Byte O.
Thies is equivalent to sending OCW2 to the 8259A. For more information on what
this byte does to the 82594, refer to the 82594 application note contained in
the appendix of this document.

READREG - READ INTERRUPT CONTROLLER REGISTERS
OPCODE BIT CODING:

Bit 7 Bit O

I_comlncrrlol'?oloi1lolol

PARAMETERS PASSED: Link Address.
PARAMETERS RETURNED: Contents of IS and IR registers in 8259%A.

DESCRIPTION: This command is used to read the contents of the Interrupt Request
(IR) and In Service (15) registers in the 82594, It returns the contents of the
IR register in the Result 1 Byte location and the contents of the I5 register in

the Result 2 Byte location. For more information on the meaning of the IS and
IR registers, see the 8259A application note fn the appendix of this document.

SETRESPONSE ~ SET INTERRUPT RESPONSE BYTE
OPCODE BIT CODING:

Bit 7 Bit O

1comi1m,|o|olo|1|oill

PARAMETERS PASSED: Response Byte, Link Address.
PARAMETERS RETURNED: None.

DESCRIPTION: The MPX-1 is capable of putting an 8 bit value on the system data

16

bus during system interrupt acknowledge cycles. The value is called the inter-
rupt response byte and may be set as desired with this command. Note that this
response will only appear on the bus if this feature in enabled by a hardware
switch. See the hardware section of this document for more information.

SIZE — INDICATE WHETHER 4K OR 16K MPX-1

OPCODE BIT CODING:

Bit 7 Bit O

| cont | T t o | o | o } v I 1 | o |

PARAMETERS PASSED: Link Address.
PARAMETERS RETURNED: Size indication.

DESCRIPTION: This command is used by the system to determine the aaount of
memory installed in this particular MPX-l. The Result 1 Byte i3 set to 00 hex
if this is a 4K MPX-1 and is set to FFH if this 15 a 16K MPX-1.

LOADRAM - LOAD MPX LOCAL RAM FROM SYSTEM RAM

QPCODE BIT CODING:

Bit 7 Bit O

| coov | o | o | o | o {1 1 { 1 | 1 |

PARAMETERS PASSED: Starting Address in System RAM (3 bytes)
Ending "Address in System RAM (3 bytes)
Destination Address in Local RAM (2 bytes)
Link Address

PARAMETERS RETURNED: None.

DESCRIPTION: This command is used to load the MPX local RAM from system RAM.
Three addresses are passed to the MPX: The starting addrese of the block to be
loaded, 1ts ending address, and the starting address of the place to put it in
local RAM. The starting and ending addresses are 3 bytes long and the destina-
tion address is only two bytes long. All addresses are stored low byte first
and the starting address is at Parameter Bytes 0-2, the ending address is at
Parameter Bytes 3=5, and the destination address is at bytes 6-7.

EXRAM - EXECUTE A PROGRAM IN LOCAL BRAM
OPCODE BIT CODING:

Bit 7 Bit O

l contr] =Nt | o | o | 1 | o | o | o |

17

PARAMETERS PASSED: Execution Address (2 bytes), Link Address.

PARAMETERS RETURNED: None.

DESCRIPTION: This command is used to cause a routine stored in local RaM on the
MPX-1 to be executed. A “call” is made to the routine, 8o when it has finished
executing a RETURN instruction will pass contTrol back to the interpreter
(assuming a clean stack). The starting address of the routine is two bytes long
and is stored low byte first at Parameter Bytes O and 1.

BLEMOV - MOVE A BLOCK OF RAM ONW THE SYSTEM BUS

OPCODE BIT CODING:

Bit 7 Bit O

Icomlmrlo!ol1lol011I

PARAMETERS PASSED: Starting Address in Systen RAM (3 bytes).
Ending Address in Systen RAM {3 bytes).
Destination Address in System RAM {3 bytes).
Link Address.

PARAMETERS RETURNED: None.

DESCRIPTION: This command ia used to move a block of RAM (of any size) on the
§-100 bus. Three addresses are passed: The starting address of the block to be
moved, its ending address and the destination address of where it"s beiny moved
to. Bach address is three byges long and is stored low byte first. The
starting address should be at Parameter Bytes 0=2, the ending address should be
at Parameter Bytes 3-5 and the destination address should be at Parameter Bytes
6~8. Note that this command is useful for putting code in extended pages that
normal 8 bit processors cannot talk to without a lot of effort.

FASTMOV — MOVE A BLOCK OF RAM ON THE SYSTEM BUS - FAST
OPCODE BIT CODING:

Bit 7 Bit ©

Icomllmlololllollloi

PARAMETERS PASSED: Starting Address in System RAM (3 bytes).
Ending Address in System RAM {3 bytes).
Destination Address in System RAM (3 bytes).
Tink Address.

PARAMETERS RETURNED: Hone.

DESCRIPTION: This command is almost the same as above, except that all blocks
must be a multiple of 256 bytes, and begin on 256 byte boundsries. This allows

18

the transfer to occur at a much higher rate. Three addresses are passed: The
starting address of the block to be moved, its ending address and the destina-
tion address of where it"s being moved to. Each address is three bytes long and
fs stored low byte first. The starting address should be at Parameter Bytes {-
2, the ending address should be at Parameter Bytes 3-5 and the destination
address should be at Parameter Bytes 6-8. Note that even though each aadress is
three bytes long, the low byte is assumed to be 00 hex.

RESERVED — DO ROT USE
OPCODE BIT CODING:

Bit 7 ~ Bit O

| cowr | T | o | o | » | 1 | v } 1 |

Note: This opcode is reserved and should not be used by custom command
routines. Attempts to call this opcode will be translated internally to NOP
opcodes (link address will still be valid, however). The reason this opcode is
reserved is because its jump table address is used by the ATIN routine.

ABOUT THE ROM CODE

This is a brief description of what goes on in the standard software
routine.

The first thing in the code is a jump to the actual beginning of the code.
The reason this is there is because of the way the MPX-1 does its "power-on-~
jump” sequence. The ROM appears at address 0000H for the first three cycles and
then appears at 4000H théreafter.

INITIALIZATION

The first thing that happens is to set up the interrupt comtroller with sli
interrupts masked, and the interrupt vector table at address 801 {4 byte
interval).

Starting at O000H in RAM are two tables: the command jump table and the
interrupt vector table. The first thing that happens is that all these jump
locations are initialized to point to a routine called DUMMY, which is nothing
more than a RET instruction. This is where all interrupts and all unused
commands go to, {until you change the table). The next thing that happens is to
patch the command jump table with the addresses of the ten command routines that
are supplied in the ROM. Next the stack pointer is initialized leaving about 77
bytes free for stack usage. That should be more than enough, the routines in
the ROM never get more than about 6 bytes deep.

Next the initial link address is set up to point address 50H and then the
ATTN interrupt (RST 7.5) is armed and the MPX sits quietly waiting for an ATTN.

19

ATTN RESPONSE

When an ATTN occurs, first the interrupt output 1is cleared, the ATIN inter-
rupt input is masked and the last link address is copied into CURRENT. Then 16
bytes are read from the system memory (pointed to by CURRENT) into a buffer
called CMNDBUF. The opcode byte is read from the buffer and decoded. A call is
then made to the address pointed to by the lower 5 bits of the opcode. The
opcode is first checked to see if it is the same as the ATTN jump address. 1f
it is, a NOP command is substituted instead. Control has now peen transfered to
the actual command routine. When the command is done executing, all it need do
is a RET instruction to get back to the main interpreter loop. '

When a command is finished, the program branches to CHECK. This routine
checks to see if the CONT bit was set in that opcode. If it was, a jump occurs
to the ATTN routine and the next command is executed. If the CONT bit is not
set, the INT bit is chacked. 1I1f it is set, the status byte is set to FFH and
the SOD interrupt output is set-and the MPX then waits for the next ATTN. If
the INT bit is not set, the status byte is set to FFH and the MPX waits for the
next ATTN. :

GENERAL PURPOSE SUBROUTINES

The ROM contains several useful subroutines that may be utilized by your
own custom commands. They include functions such as managing the address
pointers, storing them in appropriate reglsters for bus accesses, and reading
and writing bytes on the system bus. Their functions are pretty well documented
in the assembly listing that follows.

WRITING YOUR OWN CUSTOM COMMANDS -

Ten commands are used by the ¢tandard ROM and one 1is reserved, so that
leaves a total of 21 command opcodes that are available for your custom usSage.
Less than 1/4th of the 2K bytes in the ROM are used by the standard routines, SO
custom commands could be added to the ROM if you have access to an EPROM burner.
1f not, commsands can be assepbled to run from the ample free RAM espace and
loaded using the LDRAM command. The command jump table is kept in RAM (from
O000H to OOTFH) so it may also be changed with the LDRAM command. Control may
be passed to the new commands by use of the opcode protocol or by the EXRAM
command .

Some considerations about writing inte the internal RAM: Be careful mot to
overwrite the buffer, stack or ATIN jump locations (the ATTN jump resides at 3C
- 3FH). The program does not use RAM above 200H at any time, 80 all RAM above
thie address is free for your use. It is a good idea to issue a SIZE command to
determine the amount of RAM available (4K or 16K) before issuing a LDRAM
command. This is because the RAM in a 4K MPX-1 "wraps around” and appears in
eack 4K block in the 16K RAM space.

20

8000
8001
8004
8005
8007
00Co
0000
0080
0040
0042
00AS
00A8
Q0AB
00AE
00AF
00BO
OOFF
0100
0030

4000

4000
4003
400C

4031
4033
4036
4038
403B
4038
4040

4043
4046
4049
404C

LISTING OF STANDARD SOFTWARE SUPPLLED WITH THE MPX-1

[N NN 2N NN N DO DN DO DR DNN DN NN D BN DN BN BN BN |

€33140
564552532E
434F 505952

3E9E
320080
3E00
320180
320180
3EFF
320180

:MPX PROM VERSION 1.0

sWRITTEN 1-7-82 BY WARK GARETZ

;COPYRIGHT 1982 BY GODBOUT ELECTRONiCS

sVERSEON 1.1

sEQUATES

INTCLA
INTCLB
DHALO
DMAHI
INTRSP
WIRDOW
CMNDTBL
INTTBL
CMNDBUF
STRTAD
ENDAD
DESTAD
LINKAD
RESULTL
RESULT2
CURRENT
STACK
BUFFER
5IM

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

Multiple command linking bug fixed-llo

8000H ;Interrupt Controller

8001H H "

8004H sDMA Addr. Bits A8-15

8005H ;DMA Addr. Bits Alé-23

8007H ;Interrupt Response Byte Reg.
OCoH ;External Window

000CH ;Command Jump Table

0080H ;Interrupt Response Jump Table
QOACH ;Temporary Command Buffer
CHNDBUF+2 ;Starting Address, 3 bytes
STRTAD+3 ;Ending Address, 3 bytes
ENDAD+3 ;Destination Address, 3 bytes
DESTADH] :Link Address, 3 bytes
LINKAD+3 ;Result byte 1

RESULT1+1 ;Result byte 2

00BOH sCurrent Command Address, 3 bytes
O0FFH ;5tack Space

0100H ;Fast Block Move Buffer

301 ;5IM INSTRUCTION

;Beginning of Code

START:

;The following code initializes
;Interrupt Jump Table.

ORG

JMP
DB
DB

MV1
STA
MVI
STA
STA
MV1
5TA

4000H

START :3 Init Bytes

“VERS. 1.0”

“COPYRIGHT 1982 BY GODBOUT ELECTRONICS”
A,9EH s ICW1

INTCLA

A,0 s ICW2

INTCLE

INTCLB ;ICWI too

A,OFFH 3OCW1 Mask all interrupts
IRTCLB ;Done with interrupt controllers

the Command Jump Table and
Unused entries jump to DUMMY

;Note: all entries are first initialized to DUMMY, then
;patched for commands and ATTN.

210000
117842
0100C3
7D

LOOP1:

LXI
LXI
LXI
MOV

H, CHMNDTBL

D, DUMMY ;D gets DUMMY addr.
B,0C300H ;JUMP and a NOP
AL

21

404D
404F
4052
4053
4054
4035
4056
4057
4058
4059
405A
405D
4060

4063
4066
4069
406C
406F
4072
4075
4078
4078
407E
4081
4084
4087
40BA
408D
4090
4093
4096
4099
409C
409F
4042

4045
40A8
40AB
&40AD
40AE
40AF
4080
4081

40B2
40B4
40B5
40B6

FEAD
CASD40
70

23

73

23

72

23

71

23
C34940
21E040
223D00

21CE41
220100
213140
220500
21CF4l
220900
21D641
220D00
21pD4l
221100
21F841
221500
21FF4l
2215900
213342
221D00

214B42

222100
214F42
222500
216542
222900

31FFO00
21ABQO
3650
23

AF

77

23

77

3E1B

FB
76

CP1 -

JZ
MOV
INX
KOV
INX
MOV
INX
MOV
INX
JHE
MORE: LX1
: SHLD

LOOPL
H,ATTN
003DH

scheck for end
sthe JUMP
;the DUMMY addr.

;the NOP

;addr. of ATTN routine

;This part of the code writes the addresses of the command
sroutines into the conmand table.

LXI
~ SHLD
LXT
SELD
LXi
SHLD
LXI1
SHLD
LXI
SHLD
LXI
SHLD
LX1
SHLD
LX1
SHLD
LXI
SHLD
LX1
SHLD
LXI
SHLD

LXI
LXI
MV1
INX
XRA
MOV

+: INX -

MOV

11, NOPR
CMNDTBL+1

‘H,START

CMNDTBL+5
K, SETMSK
CMNDTBL+9
H,SETEOL
CMNDTBL+13
H,READRC
CMNDTBLA4L17
H,SETRSP
CMNDTBL+21
H,SIZE
CMNDTBLA425

«yH,LDRAM

CMNDTBL+29
H,EXRAM
CMNDTBL+33
H,BLEMOV
CMNDTBL+37
H,FSTMOV
CMNDTBL+41

SP,STACK

jaddress 6f NOP routine
;RESET Jump |

;set mask routine

$EQI routine

;INT regester read routine
;set response byte routine
jreturn size routine

:load RAM routine

;execute RAM routine
;block move routine

;fast block move routine

;low order initial link addr.

;This routine arms the attention interrupt and waite.

REARM: MVI
DB
El
HLT

A,1BE
SIM

22

40B7
40BA
40EC
40BF
40C2
40C4
40C7
40CA
4QCE
40CD
40CF
40D0
40D3
40D6
40D7
40D%

40DC
40DF
40EQ
40E2
4CE3
40ED
40E9
40EC
4QEF¥
40F2
40F5
40FB
40FB
40FD
4100
4101
4104
4105
4106
4108
410B
410D
410E
410F

3AA000
E680
C2DC40
3AAD00
E640
CAD340
CD1041
23
A6FF
3JECB
30
C3B240
CD1041
23
36FF
C3B240

21B740
E5
3E5TF
30
3AARB00
328000
3JAACOO
328100
344D00
32B200
CD4941
3AA000
E6lF
110F41
D5
210000
07

o7
FE3C
C20D41
3EQ0
6F

E9

ce

:This routine checks the CONT and INT bits of the opcode
sand acts accordingly.

CHECK: LDA
ANL
JHZ
LbA
AN
JZ
CALL
INX
MVI
MV1
DB
JMP

DONE: CALL
INX
nvi
JMP

:This is the main command interpreter routine.

CMNDBUF
80K
ATTNO
CMNDBUF
40H
DONE
PUTCMD
H

M, OFFH
A,OCBH
SIn
REARM
PUTCHD
H

i, OFFH
REARM

;Check the CONT bit

;1f set then a successive command
;get 1t again

;Check the INT bit

;1f not set

sput current addr into regs

;for status byte addr.

;set status byte in memory

;set SOD high

It first copies

sthe LINK addr. into CURRENT and then reads in the command

;bytes.

Then an indirect call is executed to the address of

sthe command. It also unsets the interrupt output {(SOD).

ATTNO: LXI
PUSH
ATTN: MVI
DB
LDA
STA
LDA
STaAy
LDA
STA
CALL
LDA
AN
LXI
PUSH
LX1
RLC
RLC
CPl
JNZ
MV1
ATTN1: MOV
PCHL
BACK: RET

H,CHECK
H

A,SFH

SIM
LINKAD
CURRENT
LINKAD+1
CURRENT+1
LINKAD+2
CURRENT+2
GETCHD
CMNDBUF
1FH
D,BACK

D

R, CMNDTBL

3cH
ATTNL
A,0
L,A

sADDRESS TO RETURN TO
sPUT ON STACK
;reset SOD and mask 7.5

;copy LINKAD into CURRENT

;get the command line from memory
;get the opcode byte

;mask the INT and CONT bits

;put return addr. in D

;and put in on the stack

;HL gets addr. of command table

sshift the opcode for pointer
;check for reserved op-code
;skip next if OK

sotherwise, do a nop command
;L gets low byte

s;and go there

;were done

jGeneral Purpose Subroutines Follow:

:This subroutine puts: CURRENT+2 into DMAHI, CURRENT+1
;into DMALO, CURRENT into L reg and WINDOW into H

23

4110 34B200 PUTCMD: LDA CURRENT+2

4113 320580 STA DMAHT
4116 3AB100 LDA CURRENT+1
4119 320480 STA DMALO
411C 3AB0OO . 1DA CURRENT
411F 6F MOV L,A

4120 26C0 MVI H, WINDOW
4122 €9 RET

:This subroutine puts: STRTAD+2 into DHAHI, STRTAD+Y
'into DMALO, STRTAD into L reg and WINDOW into R

4123 3AA400 PUTST: LDA STRTADH2
4126 320580 STA DMAHI
4129 3AA300 LDA STRTAD+1
412C 320480 STA DMALO
412F 3AA200 LDA STRTAD
4132 6F HOV L,A
4133 26C0 MV1 H,WIKDOUW
4135 C9 RET

;This subroutine pute: DESTAD+2 into DMAHI, DESTAD+1
sinto DMALOQ, DESTAD into L reg and WINDOW into H

4136 3AAAOO PUTDST: LDA DESTAD+2

4139 320580 STA . DMAHI
413C 3AA%00 LDA DESTAD+1
413F 320480 STA DMALO
4142 3AA800 LDA DESTAD
4145 6F MOV . L,A

4146 26C0 MVI H’HINDOW
4148 C9 RET

;This subroutine gets 16 bytes from system memory pointed to
;by CURRENT and puts them into CMNDBUF.

4149 CD1041 GETCMD: CALL PUTCMD ;get up the registers
414C 114000 LXI D, CMNDBUF

§14F 0610 MVI B,16

4151 7E GET1: MOV AM ;get bus byte

4152 12 STAX D ;put in buffer

6153 23 INX H.

4154 13 INX 3]

4155 05 DCR B

4156 C25141 JNZ GET1

4159 C9 RET

;This subroutine increments STRTAD (3 bytes) and DESTAD
,(3 bytes). Entry at BUMP2 bumps only the upper two bytes.

4154 34A200 BUMP: LDA STRTAD
415D 3C INR A
415E 324200 STA - STRTAD
4161 3AAB00 LpA DESTAD
4164 3C INR A

24

4165
4168
4169
416C
416D
4170
4173
4174
4177
4178
4178
417¢C
417F
4182
4183
4186

4187
418a
418B
418E
418F
4190
4193
4194
4197
4198
4199
419C
419D
41A0
41A1

41A2
41A5
41A6

4147
4148
41AB
41AC
414D

324800
co
3AA300
ac
324300
3AA900
3C
324900
co
34A400
3C
324400
3AAA00
ic
324A00
c9

3AA200
47
3AA500
B8
Co

3AA300

57
3AA600
BB
co
3A4400

344700
B8
c9

CD2341
7E
c9

F5
CD3641
Fl
77
c9

STA DESTAD
RNZ

BUMP2: LDA STRTAD+1
1NR A
STA STRTAD+1
LDA DESTAD+1
INR A
STA DESTAD+1
BRNZ
LDA STRTAD+2
INR A

STA STRTAD+Z
LDA DESTAD+2

INR A
STa DESTAD+2
RET

;This subroutine has two entry points: CHPAR3 checks all three
ibytes of both STRTAD and ENDAD for equality. CMPAR2 checks
;only the upper two bytes. Returns with Z flag set if equal.

CMPAR3: LDA STRTAD
MOV B,A
LDA ENDAD
CMP B
RNZ

CMPARZ: LDA STRTAD+1
MOV B,A
1DA ENDAD+1
CMP B
RNZ
1DA STRTAD+2
MOV 8,A
LDA ENDADH2
CuP B
RET

;This subroutine reads a byte from external memory pointed to
:by STRTAD. The byte read returns in A.

RDEXT: CALL PUTST
MOV AM
RET

;This subroutine writes a byte to exteral memory pointed to by
:DESTAD. The byte to be written should be in A.

WREXT: FUSH PSW
CALL PUTDST

POP PSW
MOV M,A
. RET

;This subroutine reads 256 bytes from external memory pointed
;to by STRTAD and puts them into BUFFER.

25

41AE
41B1
41B3
41B6
41B7
41B8
41B9
41BA
41BD

41BE
41C1
41C3
41Cé
41¢7
41CB
41C9
A41CA
41CD

41CE

41CF
41D2
4105

41D6
4119
41DC

41DD
41E0
41E1
41E3
41E4
41E6
41E9
41EC
41ED
41EF
41F2
41F5

CD2341
2E00
110001
7E

12

1<

2C
C2B641
c9

CD3641
2E00
110001
14

17

1C

C2C641
9

c9

344200
320180
c9

3AA200
320080
c9

CD1041
Ei Y
C60E
6F
3EQA
320080
340080

3EOB
320080
3A0080
2C

RD256: CALL PUTST

MV1 %,0 szero L reg.

LXL D,BUFFER ;DE gets BUFFER address
RD2: MOV A, ;get byte

STAX D ;store it in buffer

INR E

INR L

JNZ RD2

RET

:This subroutine writes 256 bytes fxom BUFFER to external °
3 MEeROTY pointed to by DESTAD.

WR256: CALL PUTDST

MVI L,0

LXI D,BUFFER
WR2: LDAX D ;A gets byte from buffer

MOV M,A
INB . B
R . L
JNZ WR2
RET

;The actual commands start below:
1 Command does nothing, but is useful anyway.

NOPR: RET

:Command to set ocwl (Mask Byte)

SETMSK: LDA .§TRIAD ;Get the mask byte
STA INTCLB .
RET

;Command to gend EQL to 1ntérrupt controller (0CW2)

SETEOL: LDA STRTAD : ;get the EOI byte
STA INICLA
RET :

;Command to read the IR and IS reglsters in the Interrupt
;Controller. Puts IR in RESULTL and 1S in RESULT2.

READRG: CALL PUTCMD

MOV A,L
ADI OER joffset of RESULT1
MOV L,A
MVL &,0AH jread IR command

. STA INTCLA
LDA INTCLA sread it
MOV M,A sStore it external
MVL A,OBH sread IS command
STA INTICLA
LDA INTCLA sread it
iNR L ;offset of RESULT2

26

41F6 77 MOV M,A . 3Store it extermal
41F7 C9 RET

:Command to set the interrupt response byte

41F8 3AA200 SETR5P: LDA STRTAD
41FB 320780 STA INTRSP
41FE €9 RET

;Command to return size of MPX1 (4K or 16K). If 4K MPX1,
ssets RESULTL to 0, if 16K MPX1, sets RESULTI to FFH

41FF 3AFYFOF SIZE: LDA OFFFH stop of 4K RAM
4202 F5 PUSH PSW ;save it on the stack
4203 3AFF3F LDA 3¥FFH stop of 16K RAM
5206 F5 PUSH PSW. ;save it as well
4207 3EAA MVI A, OAAH

4209 32FFOF STA OFFFH

420C 3ES5 MVY A,55H

4208 32FF3F STA 3FFFH

4211 3AFFOF LDA OFFFH

4214 FESS CP1 S$5H sis it 4K?

4216 CALE&42 JZ IS4K

4219 3EFF MV1 A,OFFH

421B C32042 JHP SIZE2

§£21E 3E00 IS4K: MVL A,0

4220 F5 SIZE2: PUSH PSW

4221 CD1041 ~ CALL PUTCMD

4224 7D MoV AL

4225 C60E ADI OER

4227 6F MOV L,A

4228 Fl POP PSuW

4229 77 uév M,A

4225 Fl POP PSW

4228 32FF3F STA 3FFFH

422E Fl POFP PSW

422F 32FFOF STA OFFFH

4232 C9 RET

:Command to load local RAM from external memory.

4233 CDA241 LDRAM: CALL RDEXT ;jread the byte

4236 24A800 LELD DESTAD

4239 77 MOV M,A

4234 CD5A41 CALL BUMP sBump the pointers

423D CD3741 CALL CMPAR3 ;are they equal?

4240 €23342 JNZ LDRAM

4243 CDA24Y CALL EDEXT jonce mote for last byte
4246 2AAB00 LHLD DESTAD

4249 77 MOV M, 4

424A C9 . RET

;Command to execute progran im local RAM. A “eall” is made
sto the execution address, 80 all the program has to do is a
;RET to get back to the main loop.

27

4248 244200 EXRAM: LHLD STRTAD saddress in HL
424E E9 PCHL ;go there

;Command to move a block of RAM on the external bus
s (5low version).

424F CDAZ41 BLKMOV: CALL RDEXT

4252 CDAT4L CALL WREXT
4255 CD34A41 CALL BUMP
4258 CD8741 © CALL CMPAR3
4258 C24F42 JNz - BLKMOV
425E CDA241 CALL RDEXY
4261 CDA741 CALL WREXT
4264 C9 ' RET

:Command to move a block of RAM om the external bus
; (fast version).

4265 CDAE41 FSTMOV: CALL RD256

4268 CDBE41 CaALL WR256

4268 CD6941 CaLL BUMP2

426E CD904L CALL CMPAR2
4271 C26542 JNZ FSTMOV
4274 CDAE4L CALL RD256

4277 CDBE4L CALL WR256

4274 C9 RET

;Dummy routine that does nothing but return.

4278 €9 DUMMY: RET

28

MPX - THEORY QF OPERATION

The MPX is designed around the Intel 8085 microproecessor. In this applica-
tion, the B085 may access resources which are local to the MPX without use of
the 5-100 bus. Resources external to the MPX may be accessed through a temporary
master interface as defined in the IEEE 696/5-100 specification.

The 8085 is a single chip microprocessor which requires very few external
support chips. The processor includes a built in oscillator. An external erystal
is provided for oscillation at 12.000 Mhz which results in a 166 nsec "T" state.
Use of this oscillator rather tham the $~100 bus clock makes MPX internal
operations asynchronous with activities on the S-100 bus, but allows the MPX to
operate at 6 Mhz independent of the external bus speed. (i.e. the MPX may
execute local code at 6 Mhz even though the external bus is 2 Mhz). An L5373
{(U28) 1is used to latch the low order address byte from the multiplexed Address-
/Data bus. This IC is controlled by the Addregs Latch Enable (ALE) signal
provided by the 8085 for that purpose. A buffer (U29) is provided for a group of
loads which are inputs only.

The MPX local environment Includes both RAM and ROM wmemory. The processor
Read and Write strobes are "OR"ed and qualified with MEMOCRY status (by U3l) to
produce a MEMORY STROBE signal. This signal is used to enable a one of four
decoder (U32) which decodes the two high order address lines Al4 and Al5. The
resulting outputs are RAM STB which is decoded for addresses in the range of
0000 through 3FFF, ROM STB which is decoded for addresses of 4000 through 7FFF
and INT STB (INT for Internal) which is decoded for BOOO through BFFF.

The RAM consists of either eight 2147 or 2167 type ICs (Ul0-Ul7) which are
each either 4K or 16K by 1 bit. The high order address inputs A8-All come
directly from the 8085 while the lower eight lines come from the address latch
described above. The data input and data output lines of each IC are tied
together to provide a bidirectional connection to the intermnal data bus. The
remaining inputs are Chip Enable (CE) which is driven by the RAM STB as de-
scribed above and Write Enable {(WE) which is controlled by 8085 S1 line. If WE
is false, CE will cause the contents of the addressed location to be driven onto
the data bus. If WE is true, the memory outputs are forced te their high 2

state. CE will cause the data on the bus to be written at the addressed
location.

ROM storage is provided by a 2716, 2732 or 2764 EPROM. The ROM STB de-
scribed above is used to drive the Output Enable (OE). A ROM ENA signal is
derived from address and status information {(without strobes) by a decoder
{U32). This "look shead” signal is used to drive Chip Enable CE of the ROH and
to generate a walt state.

The 8085 samples its RDY input at the rising edge of the clock to determine
if a wait state 1s required. Because of set~up and hold time requirements, the
RDY line is held low for a full "T" state from the falling edge of the clock
preceding the ROM STB. This function is controlled by a pair of "D” flip-flops
(U20) and enabled by S52-1.

The B0BS will feich the first instruction following a Reset from location
0000, The interrupt flexibility of the MPX requires RAM memory at the interrupt
vector locatioms. This apparent dilemma is resolved by having the ROM and RAM
exchange locations during initializatlon. S-100 bus signals RESET* or SLAVE CLR*

29

¢clear a counter (US) which in turn generates INIT. INIT 4is "OR"ed with address
1ine Al4 (U21) so that memory accesses in the range of 0000 to 3FFF will actual-
ly access 4000 to 7FFF when INIT is active. The initial instruction fetch by the
8085 will actually come from location 4000 which is the start of the ROM. The
ROM coatains a jump to 4003 {or the actual start of the code) at this location.
When the 8085 goes to fetch the next instruction, the initialization counter
which has been counting ALEs counts to & Temoving INIT and hanging the counter.
The 8085 address will be used directly to fetch the next address in the ROM.

The remaining features of the MPX hardware make up its interface to the
external bus. :

The primary function of the MPX is to assist the bus CPUl in the servicing
of interrupts. To facllitate the capability, the MPX data bus includes an 82594
interrupt controller (U26). The eight active low S=100 bus vectored interrupt
lines (VIO* = VI7#*) are tied through inverters (U36) to the eight active high
interrupt request lines (IR0 - IR7) of the 8259A. (See the B825%9A application
note in the appendix of this document for a complete description of the £8259A.)
The resulting INT line from the 82594 is tied directly to the INTR input of the
8085 and the B0O8S Interrupt Acknowledge line (INTA) is tied back to the 8259A
INTA input. Thus, bus interrupts that are not masked will interrupt the 8085
directly and 8083 interrupt acknowledge cycles will accept data from the B8239A.
Programming the 825%A requires two eight bit ports.

The LS138 one of eight decoder (U48) decodes the three low order address
lines (AD — A2) qualified by Internal Strobe (INT STB) described above to obtain
Interrupt Controller Enable (INT CTL ENA), Set Interrupt (SET INT), Interrupt
Acknowledge Strobe (INTA STB), A8~15 STB and A16-23 STB making all of these
facilities memory mapped within the 8000 to BFFF range. The INT CTL ENA is
generated for a pair of addresses ap required for programming the 82594 as
described above.

4

An 8-100 bus I1/0 port with a switch selectable address is decoded by the
LS2521 (U41). No data 1s accepted by this port, however writing to the port will
generate an attention signal (ATTN) to the 8085 by causing RST7.3 to be
asserted.

Two methods are provided for the MEX to call the bus CPU. The SET INT
signal described above may set a latch (U24). The output of the latch is buf-
fered (U25). It may be jumpered to any of the $-100 interrupt lines, including
NMI and INT. The latch is cleared by an interrupt acknowledge cycle on the 5-100
pus which is decoded by (U7). The other CPU call option uses the 8085 Serial
Output Data line (SOD). The puffered SOD output (U25), may also be jumpered to
any of the 5~100 bus interrupt lines.

For environments where the MPX is the only interrupt controller in the
system, the MPX may provide a single byte responmse to the CPU interrupt acknow-
ledge cycle which results from a call by the MPX to the bus CPU. (This responsé
would normally be a RST instruction for 8080 type CPUs, or vector information
for 8086/88 or 68Q00 type processors). Another of the addresses decoded by the
L5138 is INTERRUPT RESPONSE. The resulting strobe loads an eight bit latch with
the contents of the data bus. The buffered latch will enable its outputs onto
the $5-100 DI bus during a bus interrupt acknowledge cycle if the interrupt
response enable switch is on.

30

The MPX may also communicate with the 5-100 bus as a temporary master. As
the name implies, the bus CPU or permanent master will give up the bus for a
short time sllowing a temporary master to take control. The protocol for trans-
fer of the bus as defined in the IEEE 696/5-100 specification must be carefully
adhered to if proper operation is to be obtained. Once the bus is obtained, the
temporary master will generate all of the bus signals usually provided by the
CPU (with the exception of INTA cycles or releasing the bus to other temporary
masters).

The MPX will perform a DMA cycle if either a memory address in the range of
CO000 - FFFF is accessed or an I/0 port is accessed. Since there are no port
addresses used on the MPX, all port accesses must be external. The signal
External Enable (EXT ENA) is generated on EXT MEM which was decoded from the
high order address lines or on I/0 status and not interrupt acknowledge. EXT ENA
will assert a false level on the 8085 RDY line making the 8085 hang in a wait.
If EXT ENA (which was decoded entirely from status signals) has remained until
the leading edge of the 8085 strobe, the flip-flop I_WANT will be set. When the
bus is available as determined by the signals HOLD* and Hold Acknowledge (pHLDA)
both being inactive, I_WANT will set Assert Priority {APRIO). APRIO will assert
HOLD* and enable the priority arbitration iogic.

Priority arbitration is handled by the three ICs U33,34 and 35. The 8-100
bus DMA address bus coneists of four open collector lines which are active low.
To understand this process, consider the arbitration of the most significant bit
DMA3%, If a device has set APRIO and the most significant bit of its priority is
a "1", it will assert DMA3* by pulling the line low. If a different device also
has APRIO set, but the most significant bit of its priority is a "0", its open
collector output will be unable to pull DMA3* high. Based on consideration of
this single bit, the second device will see that some device on the bus has a
priority bit of "1” where he has a "0” and will know that he is not the hiyhest
priority device on the bus at this time. The first device on the other hand will
see his own address bit assegted and know that he is the highest priority device
(based on consideration of this single bit only).

If a device has asserted a given bit of his priority and there are no other
devices asserting a higher priority in that bit, it may enable the next most
significant bit. The operation of the bits is cascaded. In a finite amount of
time, the address of the highest priority device will have stabilized on the DMA
address lines. The device asserting the least significant bit and not finding a
higher priority bit on the least significant address line will generate the
signal IMHI.

The time required for the arbitration to settle is provided by the bus CPU
sensing the HOLD* line omne "T" state before acknowledging the bus. This scheme
would not work if additional devices could enter the arbitration just prior to
the CPU asserting pHLDA, but this may not happen because a device asserts HOLD*
once it sets APRIO. HOLD* will lockout other devices by preventing them froam
setting APRIC. Arbitration really omly occurs when two devices set APRIO almost
simul taneously.

On receipt of pHLDA, a device will clear APRIO 1f IMHI is false. If, on the
other hand, the device had the highest priority, APRIO will remain set and the
control of the bus will be received. This operation procedes as follows:

At the falling edge of the bus clock following pHLDA, the transfer £lip-

31

flop XFER will set. XFER will enable the Tri-State buffer (U39) which drives the
5-100 bus *p" or processor control lines. At this time, the bus CPU is alsc
driving the same 1ines. It is very {mportant that both devices drive the lines
in exactly the sane directions as described by the 5-100 bus specificationa. The
same IC will also assert the disable lines ADSB*, SDSB* and DODSB* which disable
the CPU address, status and data output drivers respectively.

At the next rising edge of the bus clock, the signal Bus Cycle (BC) will
set. BC enables the MPX drivers for the address, gtatus and data output busses
It also causes Command Disable (CDSB*) to be asserted, turning off the CPU bus
drivers for the processor control l1ines. This overlap in drive on the control
pus 1s necessary to prevent spikes on the active high strobe signals.

The signal BC brackets the MPX cycle on the extermal pus. The gignal pSYNC
will go high for the first "T° state with pSTVAL* going lovw for the second half
of pSYNC. The &status which is asserted is determined by the 8085 ecycle which is
still held in a walt. An appropriate §=100 status is decoded for 1/0 or memory
cycles (including M1 cycles) and asserted for the entire cycle. The twenty-four
pit extended address is made up of two sections. The high order gixteen bits are
driven from registers which are writable at memory locations decoded by the
Ls138 (U48). The least gignificant eight bits are taken directly taken from the
8085 address jatch. For memoTy operations, the two address latches define 2 256
byte wgindow” which may pe accessed by the 3085, For 1/0 operations, the port
address is asserted directly from the address 1atch. Since the high orderl ad-
dress byte may pe software controlled by writing to the latch, the B0O85 may
gimulate 280 or 16 bit CPU 1/0 {nstructions. The address i8 also asserted for
the durationm of BC.

At the end of the girst "T" state which is signalled by the next rising
edge of the bus clock, STB ENA will set inhibiting pSYNC and enabling the bus
strobe. EitheTr pDBIN oT pWR* wiil be decoded, again depending on the state of
the waiting 8085. At this saue edge of the clock, the bus signals RDY and XRDY
are sampled. 1f either gignal is false, an additional strobe (wait) state will
follow.

At the end of 2 strobe state which began with the ready lines high, STB INH
will be set. This terminates the gtrobes providing one "T" state of hold time.

At the next clock, the presence of STB INH will clear BC. BC low with STB
ENA still active will generate RELEASE. RELEASE clears I_FBNT which then clears
APR10. The absence of BC marks the start of the bus transfer pack to the CPU.
All of the MPX bus drivers except for the control bus are disabled and the CPU
control bus drivers are enabled providing the overlap period.

At the next falling edge of the clock, APRIO being lo¥ will cause XFER to
clear, inhibiting the control bus driver. This conpletes the DMA cycle as seen
from the bus however it is not until the following rising edge of the clock that
BC being low clears STB ENA. The falling edge of STB ENA sets END WALT which
will release the 8085, If the 8085 had been in a memoYy °F 1/0 write cycle, its
data has already been transferred. 1f a memory oI 1/0 read had been performed,
the data received from the bus has been latched by the end of the bus strobe and
i{s available to be accepted by the 3085 from the MPX internal data bus-

One more clock is required with STB ENA low to clear STB INH. This con”™
pletes the DMA cycle returning all of the DMA hardware to ite initial state.

32

APPENDIX

33

INTRODUCTION

The intel B259A I8 8 Programmable Intecrupt Controdler
(PIC} designed for use in real-lime interrupt griven
microcompuier systems. The 82504 manages eight
levels of interrupts and has built-in features tor gxpan-
sion up 1o 64 1evels with additional B259A’s. 1S versatite
design allows it 10 be used within MCS-80, MCS-85,
MCS-86, and MCS-BB microcompuier systems. Being
tylly programmable, {he 82594 provides a wide variety of
modes and commands 10 tailof B259A interrupt process:
ing for the gpecilic needs of the user. These modes and
commands conirol a numbet of interrupt oriented func-
tions such as interrupt priority selection and masking of
interrupts. The §2504 programiming may be dynamically
changed by the sottware at any time, thus allowing com-
plete interrupt control throughout program execution.

The 82594 is an gnhanced, fully compatible revision ot
its predecessor, the B258. This means the 8259A can use
ail hardware and software originally designed tor the
8259 without any changes. Eurthermore, it provides ad-
ditional modes that increase its flexibility in MCS-B0
and MCS-85 systems and allow it 1o work in MCS-86 and
MCS-B8 systems. These modes are:

« MCS-86/88 Mode

« Automatic Eng of Interrupl Mode
« Level Triggered Mode

» Special Fully Nested Mode

» Buftered Mode

Each of these are covered in depth furlher in this appli-
cation note.

This application nate was written 1o explain completely
how to use the 8259A within MCS-B0, MCS-85, MCS-86.
and MCS-88 microcompuier systems. it is divided im0
five sactions. The firat section, “Goncepts” ..gxplains
ihe concepis of interrupts and presents an ove iew ol
how the B259A works with sach microcomputer system
mentioned above. The second section, “Functional
Block Diagram™, describes the inlernal funclions of the
B259A in block diagram form and provides a detailed
tunctional description of each device pin. ~Qperation of
the 8258A"°, the third section, explains in gepth the
cperation and use of aach of the B259A modes and ¢om-
mands. For clarity of explanation, this section doesn't
make referance to the actual programming of the B259A.
Instead, all programming is covered in ihe fourth sec-
tion, “Programming the 8258A". This section axplains
how to program ihe B259A with the moges and com-
mands mentioned in the previcus seclion.

The reader shouid note that some of the terminology
used throughout this application note may differ
slightiy from existing data sheets. This is done to belter
clarily and explain the operation and programming of
the B259A.

1. CONCEPTS

\n microcomputer systems there is usually a need tor
the processer 1o communicale with variocus Input/OQut-
put (D) devices such as keyboards. displays. 5ensofs.
and olhar peripherals. From the sysiem vigwpoint, the
processos should spend as hitie ime as possibie sefvic
ing the peripherals s1nce \he tme required for these o
chores directly affects the amount of ime available ot

34

other lasks. in other words. the sysiem ghould be
designed so that 1O servicing has bitle O no etlect on
the total system {hroughput. There are iwo basic
methaods of handling the /O chores in a system' status
poliing and interrupt servicing.

The status poll method of 11O serviting essantially in-
volves having the processor ~ask™ each petiphera! if 1
needs servicing by jesting the paripheral's status line. if
1he petipheral requires service, the processor pranches
10 the approptiate sarvice routine. if not. the processer
continues with the main program. Clearly, there are
several problems in implementing such an approach.
First, how often a peripheral is polled is an important
constraint. Some idea of 1he "heQu&nCy-oi«serwce"
required by aach peripherat must be known and any goft-
ware written for the system musl accommodate s
time gependence by ~gcheduling’ when a device is
potled. Second, there will obviously be times when a
device is polied {hat is not ready for service. wasling 1he
processor time that it took to do the poll. And other
times, a ready device would have to wait uniii the proc-
essol 'makes ils rounds” before it could be serviced.
slowing down the peripheral.

Other problems arise when certain peripherals are more
important ihan olhers. The only way 10 imptement the
priority” of devices is to poll the high priority gevices
more frequently than lower priority ones. 1t may even De
necessary 1o poli the high priority devices whileina low
priority device service rouline. it is easy 10 see that the
polled approach can be ineficient both time-wise and
goftware-wise. Overall, the polled method ot 110 serwic:
ingcanhavea detrimental eftecton system throughputl.
thus limiting the tasks that can be performed by the
processor.

A more desirable approach in mosi systems would allow
the processor to bé executing its main program and only
stop to service the 11O when told to do so by the fla]
itsetl. This is called the inferrupt service method. In
aftect, the device Wou Id asynchronously signal the proc-
gssor when il required service. The processof would
finish ils cument jnstruction and then vectos 1o the
service routine for the device requesling service Qnce
the service routing is complete, the processor would
resume axactly where it left off. Using the interrupl sef-
vice method, NG Processor {ime is spent 1esling devices.
scheduling is nol needed, and pnofity schemes are
readily implemented. It is easy to see thal, using ihe in-
terrupt service approach. system throughput would 0
crease, allowing moré tasks 1o be handled by the
Processos.

However, 1o implement the interrupt service method
petween processor and peripherals, additignal hargware
18 usually required. This is because. ater imterrupling
the processor. the device must supply wntormation lor
vectoring program exacution Depending on ithe proc-
essor used. 1his can Le accomplished by the gewvice tak-
ing conlrol of the data bys and ~jamming an insthic
tionis) onle it. The instructionisp 1hen vectors the pro-
gram to the proper service routine. This ot course re-
quires adgitional control logic for egach nierrupt fe-
questing device. Yei the implementation s0 tar s only in
the most basic form. what f certan peripherals are 1¢

be of higher priority than others? What if certain inter-
rupts must be disabled whilg others are 10 be enabled?
The possible variations go On, but they all adgd up ioone
thame; to provide greater flexibility using the interrupt
sarvice method, hardware requirements incraase.

So. we're caught in the middie. The status poil method
is & less desirable way of servicing WO In terms ot
throughput, but its hardware requirements are minimat.
On the other hand, the interrupt service meihod is most

desirable in terms of flexibility and throughput, but:

additional hardware I$ required.

The perfect situation would be 10 have the flexibitity and
ihroughput of the interrupt method in an implementa-
tion with minimal hardware requirements. The 8259A
Programmable Interrupt Coniroller (PIC) makes this all
possible.

The 82504 Programmable intereupl Controlter (PIC) was
designed to funclion as an overall manager of an inter-
rupt driven sysiem. No additignal hardware is required.
The B259A alone can handle eight ptiotitized interrupt
levals, controlling the complete interface beiween pe-
ripherals and processor. Additional 8250A's can be
reagcaded” to increass the number of interrupt levels
processed. A wide variety of modes and commands for
programming the 8258A give it enough flexibility tfor
almost any interrupt controlled structure. Thus, the
B2594A is the feasible answer 1D handling WO servicing in
microcomputer 8ysiems.

Now, before explaining exactly how to use the B269A,
jet's go over interrupt structures of the MCS-80, MCS-85,
MCS-86, and MCS-B8 sysiems, and how ihey interact
with the 8259A. Figure 1 shows a block diagram of the
82594 interfacing with a standard system bus. This may
prove uselul as reference throughout the rest of the
“Concepts” section.

-y
' ADORE5S BUS :)
0 CONTAOL BUS 3
ok |ifow [Nt [INTA
Y DATA BUS 3
b, b JLB- % Ny
p— c‘so ‘. L] NTa
CASCADE
LINES] CAS 1 025
w—elcasz mo 1RO mQ RO RO AQ IR WO
GeEN 1 b & . oe

T LT

PROGIENABLE INTE llwwt
BUFFEN AEOUESTS

Figure 1. B258A Interiace 10 Siandurd Systom Bus

1.1 MCS80"™=8250A OVERVIEW

th an MCS-80—B8259A interrup! configuration, as in
Figure 2, a device may cause an interrupt by pulling oné
af the 8250A’s interrupt request pins (IRO-I1AT) high. 1
{he 82504 accepts the interrupt request (this depends
on its programmed condition), the §259A's INT (inter-
rupt) pin will go high, driving the 8080A's INT pin high.

The BOSOA can receive an interrupt request any time,
since its INT input is asynchronous. The 8080A, how-
ever, doesn’t always have 1o acknowledge an interrupt
request immediately. It can accepl or disregarg fre-
quests under software control using the El{Enabie Inter-
rupt} or DI (Disable interrupt) instructions. These in-
structions aither set or resel an intarnal interrupl enable
flip-tiop. The output of this flip-iop contro!ls the state ot
the INTE (Intarrupt Enabled) pin. Upcn reset, the 8080A
interrupts are disabled, making INTE low.

Al the end of sach instruction cycle, the BOBOA exam-
ines the state of its INT pin. i an interrupt request is
present and interrupts are enabled, the BOBOA enters an
interrupt machine cycle. During the interrupt machine
cycle the B0BOA res#ts the internal interrupt enable flip-
flop, disabling further interrupts until an Ei instruction
is executed. Unlike normal maching cycles, the interrupt
machine cycle doesn't increment the program counter.
This ensures that the BOBOA can return to the pre-
interrupt program location after the inmpt is com-
plated. The BDBOA then issues an INTA (interrupt
Acknowledge) pulse via the 8228 System Controller Bus
Driver. This TNTA pulse signals the 82594 that the BOBOA
is honoring the request and is ready to process the inter-
rupl.

The B259A can now vector program gxecution to the cor-
responding service routine. This is done during a se-
quence of the three TNTA pulses trom the 80B0A via the
8228, Upon receiving the first TNTA pulse tha 8258A
places the cpcode for a GALL instruction on the data
pus. This causes the contents of the program counter to
pe pushed onto the stack. In addition, the CALL instruc
tion causes two more INTA pulses lo be issued, allow-
ing the 825GA 10 place onto the data bus the starting
adaress of the corresponding service routine. This
address is called the interrupt-vector agdress. The lower
8 bits (LSB) of the intarrupt-vecio! address are released
during the second INTA pulse and the upper 8 bits
(MSB) during the third INTA puise. Once this sequence
is completed, program execution then vectors 1o the
service routine at the interrupi-vector address.

if the same registers are used by poth the main program
and the interrupt service routine, their conients should
pe saved when entering the service routing. This in-
cludes the Program Status Word {PSW) which consists
of the accumulator and tlags. The best way to do this is
to “PUSH" each register used onto the siack. The ser-
vice Toutine can then "POP™ sach register olt the stack
in ihe reverse order when it is completed. This prevents
any ambiguous pperation when returning 1o the main

program,

Once the sefvice routine IS completed, the main
program may be re.antered by using a normal RET
{Return} instruction. This will “POP" the original con-

tents of the program counter back off the stack 1o
fesume program execution where it lefi oft. Note, that
because interrupts are disabled during the interrupt
acknowledge seguence, the El instruction must be
axecutad either during the service roytine or the main
program before further interrupts can be processed.

Fot additional information on 1he BOBOA interrypt struc-
ture and operation, refer to the MCS-80 User's Manual.

1.3 MCS-80/88™—8259A OVERVIEW

Operation of an MCS-86/88—8258A configuration has
basic similarities of the MCS-B0/B5-~8259A configura-
{ions. That is, a device can Cause an interrupt by pulling
one of the 8259A°s interrupt request pins {{RO-IR7) high.
if the 82594 honors the reguest, its INT pin will go high.
driving the B086/8088's INTR pin high. Like the BOBOA
and B0BSA. the INTR pin of the 8086/8088 is asynchro-
nous. thus il can receive an interrupt any time. The
BOBE/BOBB can also accept Of disregard requests on
INTR under software control using the ST (Set interrupt)
or CLI (Ciear Interrupt} instructions. These instructions
set or ciear the interrupt-enabled flag F. Upon
8086/6088 reset the IF flag is cleared, disabling externat
interrupte on INTR. Beside the INTR pin. the B086/8088
provides an NMi {Non-Maskabl2 interrupt) pin. The NMI
functions similar to the B085A's TRAP: it can't be dis-
abled or masked. NM1 has higher priority than INTR.

Although there are some basic similarities, the actual
processing of interrupts with an 80B6/8088 is different
than an 8080A or 80B5A. When an interrupl request is
present and interrupts arg enabled, the 8086/B088 enlers
its interrupt acknowledge machine cycle. The interrupl

acknowledge machine cycle pushes the tiag registers .

onto the stack (a8 in a PUSHF instruction). It then clears
the IF Hlag which disables interrupts. The conttnis of
both the code segment and the instruction pointer are
then also pushed onto the stack. Thus, the siack relains
{he pre-interrupt flag status and pre-interrupl program
location which are used to return from the service
routine. The BOBS/BOBE then issues the first of two INTA
pulses which signal the B259A that the B086/8088 has
honored its interrupt request. If the B0B6/68088 is used in
its “MIN Mode™ the TNTA signal is available from the
8086/8088 on its TNTA pin. i the RADBE/BOBE 15 used in the
“MAX Mode” the TNTA signal is available via the 8268
Bus Controller INTA pin. Additionally. in the <"MAX
Mode" the B0B6/B0BE LOCK pin goes tow during the in-
terrupt acknowledge sequence. The LOCK signal can be
used to indicate to other system bus masters nol 1o gain
control of the system bus during the interrupt acknowl-
edge sequence. A “HOLD" request won't be honored
while LOCK is low.

The 82594 is now ready to vector program execution to
the corresponding service routine. This is done during
the sequence of the two TNTA pulses issued by the 8086/
BOER. Uniike operation with thé 8080A or BO85SA, the
8259A doesn't place a CALL ingituction and the starting
address of the service routing on 1he data bus. Instead.
the firsi TNTA pulse is used only 1o signal the 8259A of
the honored request. The second TNTA puise causes the
82594 to place a single inierrupt-vector byte onio the

36

data bus. Not used as a direct address, this interrupt-
vector byle pertains to one of 256 interrupt “types’ Sup:
ported by the B0BE/B0BB memory. Program execution 18
vectored to the corresponding service rouling by the
contents of a specified interrupt type.

All 256 interrupt types are kocated in absotute memory
lacations 0 through 3FFH which make up the BO8S/
8088's interrupt-vector table. Each type in the interrupt-
vector table requires 4 bytes of memory and stores a
code segment address and an instruction pointer agd-
dress. Figure 5 shows a block diagram of the interrupt-
vector table. Locations O through 3FFH should be
reserved for the interrupt.vecior table along. Further.
mere, memory locations 00 through 7FH {types 0-31)are
reserved for use by Intet Corporation for Intel hardware
and software producis. To mainiain compatibilily with
present and future intel products, these localions
should not be used.

1 .I IFEH
P
INTERRUPT TYPE 255 SFCH
IFEH
INTERRURT TYPE 254
IFMH
L
E-3 -
L
BH
INTERRUPT TYPE 2
BH
. ™
WIERRUPT TYPE Y
aH
™
INTERRYPT TYPE D
- oM

Figure 5. 80868088 interrup) Vactor Tatle

When the BOB6/BOBS recewves an interruptvector byie
from the 82594, it multiplies 1ts value by four 10 acquire
ihe address of the inleupt type For example. i the
jnterrupt-vector byte specifies type 128 {B0H) the vec:
tored adoress in B086/8088 memary 15 4 x BOH. which
squals 200H. Program execution s than vectored fo the
sarvice routine whose address is specified by the code
sepment and instruction pointer values wHnin type 128
located at 200H. To show how this (s done. jet's assume
interrupt type 128 is lo vector data 10 8086/8088 Mmemory
iocalion 2FFSFH. Figure 6 shows twp possible ways 10
set values of the code segment and instruchion pointes
for veclonng to location 2FFSFH, Address generaton
by the code segment and instruction pointer is ac-
complished by an oftset (they overlap), Of the tolal
20-bit agdress capabilily, the code segment can desig-
nate the upper 16 bits, the instryction pointe! can
gesignale the lower 16 bis,

5 M58} o 1EFH
C505, FOH 1FEN
* MSE ooH 1epw | TYPEN
PILESH v 1rem
=L F 3
ﬁ= -
covem 201 e
CSAsw o) 1FEH
PR Fen iepe | TYPENA
LY %1 1) L] 1#CH
[E

Figure 6. Two Examplas of S088/8084 Interrupt Typa 128 Yectoring
1o Location 2FF5FH

When entaring an interrupt service routine, those regis-
ters that are mutually used between the main program
and service routine should be saved. The besi way to do
this is to “PUSH" each register used onto the stack im-
mediately. The service routine can then “POP” each
register off the stack in the same order when it is com-
pletsd.

Once the service routing is completed the main program
may be re-entered by using a IRET (Interrupt Return) in-
struction. The IRET instruction will pop the pre-interrupl
instruction poinler. code segment and flags off the
glack. Thus the main program will resume where it was
interrupted with the same flag status regardless of

changes in the service routine. Note especially that this
includes the slate of the IF flag, thus interrupts are re-
enabled automatically when returning from the service
routine. -

Begide external interrupt generation from the INTR pin,
the BOBE/BOAE is also able to invoke imerrupis by soft.
ware. Three intefrupt instructions are provided: INT. INT
(Type 3), and INTO.INTis a twe byte insiruction. the sec-
ond byle selects the interrupt type. INT {Type 315 a one
byte instruction which selects interrupt Type 3. INTQ 15
a conditional one byte interrupt instruction which
selects interrupt Type 4 if the QF flag {trap on overflow)
is set, All the software interrupts vector program execu-
tion as the hardware interrupts do.

For turther information on 80B6/B0S8 interrupt operation
and internal inferrupt structure refer to the MCS-86
User's Manuat and the B0SS System Dasign application
note.

2. 82650A FUNCTIONAL BLOCK DIAGRAM

A block diagram of the 8259A is shown in Figure 7. As
can be seen from ihis figure, the 8259A consists of eight
major blocks: ihe Interrupt Request Register (IRR), the
In-Service Regiater {ISR), the interrupt Mask Regisier
(IMR), the Priosity Aesolver (PR), the cascade bufter
comparator, the data bus butfer, and logic blocks for
contrel and readiwrite. We'l first go over the blocks
directly relatsd to interrupt handling, the IRRA, 1SA, IMA,
PR, and the control logic. The remaining funclional
biocks are then discussed.

PIN CONFIGURATION
A4

BLOCK DIAGRAM

a 1 - 3\"“ . CLrY INT
w2 20, k4]
&> »pWTA ™ !
o) 2wy
Qs uplins 0.0 oara | AN CONINOL LOGIEC
Qe npims re O:rt:‘(n —v
0,7 P ws [
7 gosea 2P 1
o,e nwma
o,» 21w 5
o,Qw wm
o, 18 fYmo T ﬁ
easo] 12 1wy ﬁﬁ_ TR
cast] 13 1611 SPEN 3 EAD! . __::;
WRITE el (L] NTERRUPFT
onp [14 15 [Icas? LOGIE SEAVICE <:> PRIDAITY REQUEST [=— 17
oy — 1 114 b SOV E Y REG e YA
(1311 LA 1] e RS
PIN NAMES _ j‘ o 186
D, By DATA BUS (BFDIRECTIONALY e n "
AC AEAD NPUT 1 1 !
KL WRAITE #NPUT .
o COMMAND SELECT ADDRESS CA$ D w—nr Q INTERRUPT MASK REG
— CA: IR
= CHIP SELECT cast] Ghscatt | . e
CAS1-CASC CASCADE LINES [cOMPARATOR 1
IFER SLAVE PROGRAM/ENABLE BUFFER CAS 2 w0y
INT INTERAUPT OLITRUT _j_ I
INTA INTERAUPT ACKNOWL EDGE INPUT SHER b
0. 1R INTERAURT REOUEST AWPUTS L] INHEANLL BUS

Figure 1. 82504 Block Disg

and Pin C

37

2.9 INTERRUPT REGISTERS AND CONTROL LOGIC

Basically, interrupt requests are handied by three "'cas-
caded” registers: the Interrupt Request Register {IRR}) s
use o store ail the interrupt levels requesting service;
the In-Service Register (1SR) stores all the levels which
are being serviced; and the Interrupt Mask Register
{IMR) stores the Dits of the interrupt lines 10 be masked.
The Priority Resolver (PR) looks al the IRA, ISR and IMRA,
and determines whether an INT should be issued by the
the control logic to the processor.

Figure 8 shows conceptually how the interrupl Raquest
(IR} input handles an interrupt request and how the
various interrupt registers interact. The figure repre-
sents one of eight ~daisy-chained” priority cells. one {or
gach IR input. '

The best way to explain the operation of the priofity cell
is 10 go through the sequence of internal events that
happen when an interrupt request occurs. However.
first, notice that the input circuitry of the priority cell
allows for both leve! sensitive and edge sensitive IR in-
puts, Daciding which method 1o use is dependent onihe
particular application and will be discussed in mose
detail later.

when the IRinputisinan inactive stale (LOW), the edge
sense latch is sei. If edge sengitive triggering is
gelected, the “Q" output of the edge sense latch will
arm the input gate to the request tatch. This input gate
will be disarmed after the 1R input goes aclive (HIGH)
and the interrup! request has been acknowledged. This
disables the input rom generating any further inter-
rupls until it has returned low to re-arm the adge sense
taich. It leve! sensitive triggering is selected, the "Q"
outpul of the edge sense latch is rendered useless. This
means the level of the IR input is in complete conirot ol
interrupl generation; the input won't be disarmed once
acknowledged. . '

When an interrupt oCcurs on the IR input, it propagates
through the request latch and to the PR (assuming the
input isn't masked). The PR looks at the incoming re-
quests and the currently in-gefvice interrupls 1o ascer
tain whether an interrupt shauld be issued to the proc-
essof. Let's assume that the request is the only one in-
coming and no requests are presenlly in service. The PR
then causes ihe control logic to pull the INT line to the
processor high.

LT BT

YO DTMER FAIOAITY CELLS

bl
Cih g 1shen
oot
LATCH _/- | SETISR PRIOAITY
(4 4 SERVICE RESOLVER
LATCH
CONTROL
LOGIC
REQUEST
LATCH
o wON
4 WAEK | masxeD
LATCH AEQ
—C @ L] -]
€ e __J‘
L~ INTERNAL
DATA BUS
11 H 5 LS
®Ta ¥ s 3 ¢35
- i w v
w
ncsn £ v &
WODE 4

FREezt

NOTES

+ WARTER CLEAN ACTWVE OMLY OURING 1C W1
2 FREEZE! 15 ACTWE DURING INTA AND POLL SEQUENCES OMLY
31 TRUTH TABLE FOM BLATCH

¢ b] OPERATION
+ [-] [] FOLLOW
L} i1 ni P

anet 1

Figure §. Priority Call

When the processor honors the INT pulse, it sends a se-
quence of INTA pulses to the 82594 (three for BOBOA/
BOB5A, two for 8086/60BS). During this sequence the
staie of the request tatch is frozen (note the INTA-freeze
request timing diagram), Friority is again rescived by the
PR to determine the appropfiate interrupl vecioring
which s conveyed to the processor via the data bus.

38

immedialaly after the interrupt acknowiedge sequence,
the PR sets the corresponding bit in the 1SR which
simultaneously clears the egge sense tatch. if edge sen-
gitive triggering is used, clearing the edge sense lalch
also disarms the request latch. This nhibis ihe
possibiiny of a still active 'R input trorn propagating
through the priority cell. The IR wnput Must return 1o an

inactive state, setting the edge sense latch, before
another interfupt request can be recognized. If level gen-
sitive triggering is used, however, clearing the edge
sense {atch has no affect on the request lateh. The state
of the requast latch is entirely depandent upon the IR in-
put level. Another interrupi will be generated immedi
ately if the IR level is tefl active after its ISR bit has been
reset. AniSK bit gets reset with an End-of-Interrupt (EOI)
command issued in the service routine. End-of-
interrupts will be covered in more detail later.

2.2 OTHER FUNCTIONAL BLOCKS

Dala Bus Bufier

This three-state, bidirectionat 8-bit buffer is used 1o in-
terface the 8259A 10 the processor system dala bus {via
DBO-D8?. Control words, status inftormation, and
interrupt-vector data are transferred through the data
bus buffer.

Read/Write Control Logic

The tunction of this block is to control the programming
of the B259A by accepting OUTput commands from the
processor. It also conlrols the releasing of status onto
the data bus by accepting INput commands from the
processor. The initialization and operation command
word registers which store the various control formats
are focated in this block. The RD, WH, AD, and C5
pins arg used to control access 10 this block by the
processor.

Cascade ButisriComparaior

As mentioned earlier, multiple 8259A's can be combined
1o expand the number of interrupt levels. A master-slave
relabionship of cascaded B259A's is used for the expan.
sion. The SP/EN and the CAS0-2 pinsyare used for oper-
ation of this block. The cascading of 8259A°s is covered
in depth in the “Operation of the 82594 section ot this
application note,

2.3 PIN FUNCTIONS

Name Pin# WO Function

Vee 28 1 +5Vsupply

GND 14 | Ground

cs t 1 Chip Select: A low on this pin en.
ables RD and WR communication be-
tween the CPU and the B259A. INTA
functions are independent of 55,

WH 2 | Write: A low on this pin when TS is
low enables the 8250A to accept
command words from the CPU.

D 3 | Rea#: A low on this pin when TG it
low enables the 8259A 1o release
siatus onto the data bus for the CPU,

D?-D0 4-11 1O Bidirectional Data Bus: Control,

status and interrypt-vector informa.
tion is transterred via this bus.

39

CASD- 1213, #O Cascads Lines: The CAS lines form a

CasS2 15 private 82534 bus 10 control a multi-
ple B259A sttucture, These pins are
outputs for a master 82594 and in-
puts for a slave 82584,

IO Siave ProgramiEnable Buffer: This is
a dual function pin. When in the but-
tered mode it can be used as an out-
put to controt buifer transceivers
(EN). When not in the buffered mode
it is used as an input to designate a
master (5P = 1) or slave (8P = 0),

frterrupt: This pin goes high when-
ever a valid inlerrupt request is as-
serted. it is used to interrupt the
CPU, thus it is connecled to the
CPU's interrupt pin.

interrupt Requests: Asynchronous in-
puts. An interrupt request can be
generated by raising an IR input {low
to high} and holding it high unti it is
acknowledged {(edge triggered mode).
or just by a high level on an (R input
(level triggered mode).

interrupt Acknowledge: This pin is
used to enable 8259A interrupt-vector
dala onto the dala bus. This is done
by a sequence of interrupt acknowl-
edge pulses issued by the CPU.

AQ Address Line: This pin acts in con-
junction with the CS, WR, and RD
pins. It is used by the 8259A 1o de-
cipher between various command
words the CPL writes and status the
CPU wishes to read. It is typically
connected to the CPU AQ address
line (A1 for BOBE/B0DRE).

SPEN 16

INT 17 ©

IRQ-
iR7

18-25 |

WNTA 26 |

A0 27 1

3. OPERATION OF THE 82594

interrupt operation of the B259A falls under five main
categories; vectoring, priorities, triggering, status, and
cascading. Each of these categories use various modes
and commands. This section will explain the operation
of these modes and commands. Far clarity of explana-
tion, however, the actual programming of the 82504 isn't
covered in this section but in “Programming the 82594
Appendix A is provided as a ¢ross reference between
thase two sections.

3.1 INTERRUPT VECTORING

Each IR input of the 82594 has an individual interrupt.
veclor addréss in memory associated with it. Designa-
tion of each address depends upon the initial program.
ming ol the 8250A. As staled earlier, the interrupt
sequence and addressing of an MCS-80 and MCS-85
sysiem differs from that of an MCS-B6 and MCS-BB
system. Thus, the 82594 must be initially programmed
in either a MCS-80/85 or MCS-B6/BS mode of operation to
insure the correct interrupt vectoring.

mcs-soes™ Mode

When programmed in the MCS-80/85 mode, the 8259A
should only be used within an 8080A or an 80854,
system. in this mode the BOBOA/BOBSA will handle inter-
rupts in the format described in the “MCS-80—B259A or
MC5-85—8259A Overviews."

Upon interrupt request in the MCS.-80/85 mode, the
£2594 will output to the data bus the opcode for a CALL
instruction and the address of the desired routine. This
is in response to a sequence of three TNTA pulses
issued by the BOBOA/BOBSA. after the 82594 has raised
INT high.

Tne first INTA puise to the 8250A enables the CALL
opcode "CD,," onto 1he data bus. It also resolves IR pri-
orities and eifects operation in the cascade mode,
which will be covered later. Contenis of the first
interrupt-vector byte are shown in Figure 9A.

During the second and third TRTA pulses, the B258A
conveys a 16-bit interrupt-vector address 10 the 80B0A!
80854, The interrupt-vector addresses for ali eight lavels
are selecied when initially programming the B8259A.
However, only ong address is needed for programming.
jnterrupt-vector agdresses of \RO-IRT are automatically
set at equally spaced intervals based on the one pro-
grammed address. Address intervals are User definable
10 4 or 8 bytes apart. if the service routine for a device is
short it may be possible to fit the entire routine within
an 8-byte interval. Usually, though, the service routines
require more than 8 bytes. So, a 4-byle interval is used 10
store a Jump (JMP} instruction which directs the 80B0AS
B085A to the appropriate routine. The 8-byte interval
maintains compatibility with current BOBOAIBOBSA
Restart (RST} instruction software, while the 4-byte in-
terval is best for a compact jump table, If the dpyte in-
terval Is selected, then the 82594 will automatically
ingert bits AD-Ad. This teaves AS5-A15 to be pro-
grammed by the user. if the B-byte interval is seiected.
ihe B259A will automatically insert bits AO-AS. This
1paves only AG-A15 o be programmed by the user.

The LS® of the interrupt-vector address is placed on the
data bus during the second INTA pulse. Figure 9B
shows the contents of the second interrupt-vector byte
{or both 4 and B-byle intervals.

The MSB of the inerrupt-vector agdress is placed an the
data bus during the third INTA pulse. Contents of the
third interrupt-vector byte is shown in Figure 9C

A FIRST INTERAUPT VECTOR BYTE, MCBA0ME MODE

K

pr o8 D8 D4 py o2 O

CALL CODE L] L] b 0 * 1]

. SECOND INTERAUPT VECTOR BYTE. MCSH0MS MODE

n nlervl =
o7 08 D& D4 O3 D2 o Do

7 AT AS AS 1 1 1 0 0

[AT AR AS 1 1 [[0

s AT MG AS) [1 [0

4 AT A6 AS ' [[[0

3 AT M A 0 1 1 [0

2 AY A5 AS [1 [0 o

1 AT AR AS [} [Y 0 0

0 AT M AS [o [o o

[] ntereal = B j

o7 o8 Dy D4 03 02 ot H

? AT A6 1 1] 0 0 4]
e | a7 A0 e o o0 o
8 AT M8 1 0 1 [[o |
4 A7 B 1 0 0 0 0 0
3 AT M8 [1 ' 0 0 [} 1
2 Al M [1 o 0 o [
1 AT AD 0 0 1 [[o \
[A A 0 0 0 ['
. TWIRD WNTERRUPT YECTOR BYTE, MCSBNs MODE

o7 o b5 DA (1] 02 D1 oo
[Tars | ane [Ta | a2 [Tanr | a0 [as T s |

Figurs 8. #A-C. interrupt-Vecior Rytes lot 22594, MCS SO/AS Mods

MCS-86/88™ Mode

When programmed in {he MCS-86/88 mode, the B259A
should only be used within an MCS-86 or MCS-B8
system. In this mode, the B086/8088 will handie intefr-
rupts in the formal described aarlier in the “8269A—
8086/8088 Overview™.

Upon interrupt in the MCS-86/68 mode, the R2594 will
output a single interrupt-vacjor_byte to ihe data bus.
This is in rasponse to Only two INTA pulses issued by
the BOBE/BOBSE after the B258A has raised INT high.

The tirst INTA pulse is used only for sel-up pUrposes in-
ternal to the B259A. As inthe MCS-80/85 mode, this set-
up includes priority resolution and cascade mode oper:
ations which will be covered later. Unlike the MC5-80/85
mode, no CALL opcode is placed on the data bus.

40

The second INTA pulse is used 10 enabie the singie
interrupt-vector byle onto the data bus. The 8086/8088
uses this interrupt-vector byte 10 select one of 256 inter-
rupt “types’ in ROB6/BOBE MmemoTy. Interrupt type selec-
tion tor al eight IA leveis is made when initially pro-
gramming the 8259A. However, reference 10 only one in-
terrupt type is needed for programming. The upper 5bits
of the interrupt vector byte are user definable. The lower
3 pits are automatically inseried by the 8259A depend-
ing upon the IR level,

Contents of the interrupt-vector byte 1of BOBEBOBE ype

selection is put on the data bus during the second INT
pulse and is shown in Figure 10.

>

DT | D& (DS { Dsa | D3 | D2 | D1 | DO
[H | T | TS | T4 | T2 1 1 1
RE 7 T6 T35 T4 T3 1 1 o
RS T7 TE T5 T4 T3 1 0 1
[T} T TS T5 T4 T3] 0 0
[L] T7 TE T5 T4 T3 o 1 1
R2 T7 | T8 | T5 | T4 | T3 G 1 0
L2 h] 7 A] Ts T4 T3 o Q 1
RO ™" ™ TS T4 T3 o o Q

Figus 10, inderrupt Vacier Byte, MCS 38™ Mode

3.2 INTERRUPT PRIORITIES

A variety of modes and commands are available for con-
trolling interrupt priorities of the B253A. All of them are
programmable, that is, thay may be changed dynamic-
ally under software control. With these modes and com-
mands, many possibilities are conceivable, giving the
user anough versatility for almost any interrupt con-
trolled application.

Fully Nested Mode

The fully nesied mode of operation is a general purpose
priority mode. This mode suppons a muttilevel-interrupt
siructure in which priority order of all eight iR inputs are
arranged from highest 10 lowest.

Unless otherwise programmed, the fully nested mode is
entered by delault upon initialization. At this time, RO i
assigned the highest priority through IRT the lowest.
The fully nested mode, however, is not contined to this
IR structure alone. Once past initialization, other IR in-
puts can be assigned highest priorily also, keeping ihe
multilevel-intarrupt struciure of the fully nested mode.
Figure 11A-C shows soma variations of the priority
structures in the fully nested mode.

IR LEVELS [IR7 IR8 (A5 R4 1KY IA2 INY IRD
PRIORITY | 7 & & 4 T 0

IR LEVELS [TRT I
PRIORITY

W LEVELS
PRIOMITY

Figure 11. A-C. Some Variations of Priatity Structure In the
Fully Nesied Mode

Further explanation of the fully nesied mode, in this
seclion, is linked with information of general 8259A in-
terrupt operations. This is done to ease sxplanation to
the user in both areas. .

in general, when an interrypt is acknowledged, the
highest priority request is determined from the IRR (In-
terrupt Request Register). The interrupt vector is than
placed on the data bus. In addition, the corresponding
bit in the ISR (In-Sarvice Register) is set to designate the

41

routine in service. This ISA bit remains set uniil an EQI
(End-Ot-Interrupt) command is issued to the B259A
EOFs will be explained in greater detail shortly.

In the fully nested mode, while an ISR bit is set, all fur-
ther requests of the same or lower priority are inhibited
from generating an interrupt to the microprocessor. A
higher priority request, though, can generate an inter-
Tupt, thus vectoring program execution to ils service
routing. Interrupis are only acknowledged, however, if
the microprocessor has previously executed an "Enable
Interrupts” instruction. This is because the interrupt
request pin on the microprocessor gets disabled auto.
matically after acknowiadgement of any interrupt. The
assembly language instructions used to enable inler-
rupts are “E!" for BOBOAIBOBSA and “STI" for B086/8088,
Interrupts can be disabled by using the instruction “DI"
for 80BOA/ B085A and ~CLI" for B0B5/8085. when a
routine is completed a ‘'return” instruction is executed,
“RET" for BOSOA/BOBSA and “IRET" tor BOBE/8088.

Figure 12 illustrates the correct usage of interrupt
related instructions and the interaction of interrupt
levels in the fully nested mode,

Assuming the IR priority agsignment for the example in
Figure 12 is 1RO the highest through IR7 the lowest. the
sequence is as follows. During the main program, 1R3
makes a request. Since interrupts are enabled, the
microprocessor is vectored to the IRJ service routine.
During the IR3 routine, IR1 asserts a request. Since IR
has higher priority than IR3, an interrupt is generated.
Howaver, it is not acknowledged because the micro-
processor disabled interrupts in response to the IR3 in-
terrupt. The IR1 interrupt is not acknowledged until the
‘Enable intetrupts” instruction is executed. Thus the
iR3 routine has a “protected” section of code over
which no interrupts {(except non-maskabie} are allowed.
Tha IR1 routing has no such “protected” section since
an “Enable Interrupts” instruction is the first one in its
sarvice routing, NOte that in this axample the IR re-
quest must stay high until it i8 acknowledged. This is
coverad in more depth in the “Interrupt Triggering”
saction.

[
[] { J
I3]
L1 o
AT 0N T Ol R T

Figure 12 Fully Meated Mode Example (MCS 3085 ™ o MCS seme”

™

What is happening lo the ISR ragisier? While in the main
program, no ISR bits are set since there aren't any inter-
tupts in service, When the IR3 interrypt is acknowl-
edged, the ISR3 Dit is set. When the iRY interrupt is
acknowledged, both the ISR1 and the ISA3 bits are sel,
indicating that neither routine is complete. At this time,
only 1RO could generate an interrupt since it is the only
input with a higher priority than those previously in ser-
vice. To terminate the IR1 routine, the routine must
inform the 8259A that it is complete by resetting its ISR
bii. i does this by executing an EOQl command. A
“paturn” instruction then transfers execution back to
the IR3 routine. This allows IR0-1R2 to interrupt the IR3
routine again, since ISR3 is the highest ISR bil set. NO
further inlerrupts occur in the example so the EOI com-
mand resets ISR3 and the “return” insiruction causes
the main program 10 resume at its pre-interrupt location,
ending the example.

A single 62504 is essentiatly always in the fully nested
mode unless cartain programming conditions disturb it.
The following programming conditions can cause the
82594 to go cut of the high to low priority structure of
the fully nested mode.

« The automatic EOl mode
+ The special mask mode

« A slave with a master not in the spacial fully nested
mode

These modes witt be covered in more detail later,
howevar, they are mentioned now sO the user can be
aware of them. As long as these program conditions
aren't inacted, the fully nested mode remains undis-
turbed.

End of Interrupt -

Upon completion of an interrupt service ?rouline the
82594 needs to be notified so its ISR can be updated.
This is done 10 keap track of which interrupt levels are in
the process of being serviced and their relative priori-
ties. Three different End-Of-interrupt (EQI) formats are
available for the uger. These are: the non-gpecitic EQI
command, the specitic EOl command, and the auto-
matic EO1 Mode. Selection of which EOI to use is depen-
dent upon the interrupt operations the user wishes to
perform,

Non-Specific EQJ Command

A non-spacitic EO1 command sent from the microproc:
essor lets the B259A know when a service routine has
been completed, withoul specification of its exactinter.
rupt jevel, The B259A automatically determines the inter-
rupt level and resets the cofrect bit in the ISA.

To take advantage of the non-specific ECI the B259A
must be in a mode of operation in which it can predeter-
mine in-service routine levgls, For this reason the non-
specific EOl command should only be used when the
most recent level acknowtedged and serviced is always
the highest priority level. When the 82594 receives a
non-specific EQI commandg, it simply resets the highest
priority ISR bit, thus confirming to the B259A that the
nighest priority routing of the routings in service is
finished.

42

The main advantage of using the non-specific EO1 com-
mand is that IR level specification isn't necessary as In
the "Specitic EOQl Command”, covered shortly,
However, special consideration should be taken when
deciding to use the non.specihc EOI. Here are 1wo pIo-
gram conditions in which it is best not used:

* iUsing the set griority command within an interrupt
sarvice routine.

s Using a speciai mask mode.

These conditions are covered in more detail in Lhewr own
sections. but are listed here for the users reference

Spacitic EOf Command

A specific EQl command sent from the microprocessor
lets the 82534 know when a service routine ot a particu-
far interrupt level is completed. Unlike a non-specific
EOI command, which automatically resets the highest
priority ISR bit, a specific EQI command specifies an
exact ISR bit to be reset. One of the eight IR levels of the
8259A can be specified in the command.

The reason ihe specific EO1 command is needed, is to
reset the ISR bit of a completed service routine when-
ever the 8258A isn't able 10 automatically determine it,
An example of this type of situation might be if the
priorities of the interrupt levels were changed during an
interrupt routine (“Specific Rofation). In"ihis case, il
any other routines were in service at the same lime, a
non-specific EOI might reset the wrong ISR bit. Thus the
specific EQ! command is the best bet in this case, or for
that matter, any time in which confusion of interrupt
priorities may exisi. The specific EOl command can be
used in all conditions of 8259A operation, including
those that prohibit non-specitic EOI command usage.

Automatic EO! Mode

When programmed in the automatic EOI mode, the
microprocesser ho longer needs to issue a command t¢
notlfy the 82594 it has complated an interrupt rouline.
The B259A accomplishes this by performing a non-
%ific EOI autormatically at the trailing edge of the last
INTA puise {third putse in MCS-80/85, second in
MCS-86).

The obvious advaniage of the automatic EOl mode over
the oiher EQl command is no command has to be
jssued. In general, this simplifies programming and
lowers code requirements within interrupt routines.

However, special consideration should be taken when
deciding to use the automatic EOI mode because it
disturbs the fully nested mode. In the automatic EQI
mode the ISR bit of a routine in service is reset right
after it's acknowledged, ihus leaving no designation in
the ISR that g sevice foutine is being executed. If any in-
terrupt requeast occurs during this time {and interrupts
are enablad) it will gel serviced regardiess of its priofily,
low or high. The problem of “over nesting” may alsc
happen in this situation. “Over nesting’’ is when an A
input keeps intarrupting its own routine, resulting in un-
necessary stack pushes which could kil the stack in a
worst case condition. This is not usuaily a desired torm
of operation!

S0 what gond is the automatic EOl mode with problems
like those just covered? Well, again, like the other EQIs,
selection is dependeni upon the application.) inter-
rupts are controlled at a pradetermined rate, so as not to
cause the problems mentioned above, the automatic
EO! mode works perfect just the way il is. However, if in-
terrupts happen sporadically at an indeterminate rate,
tha automatic EQl mode should only be used undoar the
follewing guideline:

* When using the automatic EOl mode with an inde-
terminate interrupt rate, tha microprocessor should
keep its interrupt request input disabled during
axecution ot asrvice routines.

By doing this, higher priority interrupt isvels will be sar-
viced only after the completion of a routine in service,
This guideline restores the fully nestad structure in
regards to the IRR; however, a routine in-service can't be
interrupted.

Automatic Rotation — Equal Priority

Automatic rotation of priorities serves in applications
where the interrupting devices are of equal priority,
such as communications channals. The concept is that
once a peripheral is serviced, all oiher aqual priority
peripherals should be given a chance to be serviced
before the original peripheral is serviced again. This is
accomplished by automatically assigning a peripheral
the lowest priority after being serviced Thus, in worst
case, the device would have to wait until all other
devices are serviced before being serviced again.

There are two methods of accomplishing automatic
rolation. One is used in conjunction with the non-
specitic €01, "“rotate on non-specific EQl command”.
The other ts used with the automatic EOI mode, “rotate
in automatic EQI mode™.

Rotate on Non-Specitic EOI Command

When the rotate on non-specific EQI command is
issued, the highest \SR bit is resel as in a normal non-
specific EOl command. After it's reset though, the cor-
responding IR teve! is assigned lowest priority. Other IR
priorilias rotate to conform to the fully nested mode
based on the newly assigned low prigrity

Figures 13A and B show how the rotate on non-speacitic
EQI command effects the interrupt priorities. Let's
assume the IR priorities were assigned with IR0 the
highest and tR7 tha lowest, as in 13A. IRG and IR4 are
already in service but neither is completed. Being the
higher priority routine, IR4 is necessarily the routine
being executed. During the JR4 routine a rotats on non-
specitic EQl command is execuled. When this happens,
bit 4 in the ISR is reset. iR4 then becomes the lowest
priority and IRS becomes the highest as in 138.

43

IS7 158 135 1S4 183 (52 15150
. BEFORE
1 COMMAND
4
i |
LOWEST BRIORITY HIGHEST PRIONITY

A [BRSTaTuS
PRIQAITY | 7 & S 4 5
4

WY IS8 1S5 1S4 15D 182 181 no
. BARSTATUS 0 1 8 06 6 0 0 0 AFTER
MUORMTY | 2 1 07 B L 4 3 COMMAND
1t
I |
HIGHEST PRIODNITY LOWEST PRIGRITY

Figure 13. A~D. Rotsts on Non-specliic EO) Command Example

Rotete in Automatic EQ! Mode

The rotate in automatic EQI mode works much like the
rotate on non-spacific EQI command. The main ditter-
ance is that priority rotation is done automatically after
the tast INTA pulse of an interrupt request. To enter or
axit this mode & rotate-in-automatic-EQl set command
and rotate-in-automatic-EQI clear commana is provided.
After that, no commands are needed as with ithe normal
automatic EOl mode. However, it must be ramemberad,
when using any form of the automatic EQl mode, spe-
cial consideration should be taken. Thus, the guideline
for the automatic EQl mode also stands for the rotate in
autornatic EQI mode,

Speciiic Rotation — Specific Priority

Specilic rotation gives the user versatile capabilities in
interrupt controlled operations. It serves in those ap-
plications in which a specific devica's interrupt priority
must bes alterad. As opposed to automatic rotation
which automatically sets priorities, specific rotation is
completely user controlted. That is, the user sslects
which interrupt level is to recsive lowest or highest
priority. This can be done during the main program or
within interrupt routines. Two specific rotation com-
mands are available to the user, the “set priority com-
mand™ and 1he “‘rotate on specific EQl command.”

Set Priority Command

The set priority command allows the programmer to
assign an IR level the lowest priority. All other interrupt
levals will conform to the fuily nested mode based on
tha newly assigned low priority.

An axample of how the set priority command works is
shown in Figures 14A and 148, These figures show the
status of the ISR and the relative priorities of the inter-
rupt levels before and after the set priority command.
Two interrupt routines are shown (0 be in service in
Figure 14A. Since IR2 is the highest priority, it is
necessarily the routine being exscuted. During the IR2
routine, priorities are altered so that IRS is the highest.
This is done simply by issuing the set priority command
1o the B2594, In this case, the command specifies IR4 as
being the lowest priorily. The result of this set priority
command is shown in Figure 14B. Even though IR7 now

has higher priority than IR2, il won't be acknowledged
until the IR2 routine is tinished {via EQI). This is because
pricrities are only resolved upon an interrupt request or
an interrupt acknowledge sequence. f a higher priority
request occurs during the IR2 routine, then priorities are
resclved and the highest will be acknowledged.

L57 IS8 158 154 1S3)52 151 l?_o
‘rsnsn'rus-luﬁﬁ PR :
PRIORAITY 7 b & 4 3 2 1

3

LOWEST PRICAITY HIGHEST PRIDAITY

157 158 155 (54 153 152 151150

SRSTATUS [O 0 B D Vv Tt}
PRIONITY 7 Y O 7 & & 4 ¥ 1K
L B |

AFTER

1
HIGHEST PRIOAITY LOWEST PRIOMITY

Figure 14, A-B. Set Priority Command Example

When completing a service routing in which 1he set
priority command is used, the correct ECI must be
issued. The non-specific EOl command shouldn’t be
used in the same routing as a set priority command.
This is because the non-specific EQl command resets
the highest ISR bit, which, when using the set priority
command, is not always the most recent routine in ser-
vice. The automatic EOl mode, on the other hand, can be
used with the set priority command. This is bacause il
automatically performs a non-specific EQl before the
set priority command can be issued. The specific EQI
command is the best bel in most cases when using the
set priority command within a routine. By resetting the
specitic ISR bit of a routine being completed, confusion
is sliminated.

Rotate on Specitic EO! Command

The rotaie on specific EOl command is fiterally a com-
bination of the sat priority command and the specific
EO! commang. Like the set priorily command, a speci-
fied IR level is assigned lowest priority. Like the specific
EQI command, a specified level will be reset in the ISR
Thus the rolate on specilic EOl command accomplishes
both tasks in only one command.

It it is nol necessary to change IR prioriiies prior to the
&ng of an interrupt routine, then this command is advan-
tageous. For an EQI command must be exacuted any-
way (unless in the automatic EQI mode), $0 why not do
boih at the same time?

44

interrupi Masking

Disabling of enabling interrupls can be done by other
means than just controlling 1he microprocessor's inler-
rupt request pin. The B259A has an IMR (Interrupt Mask
Register) which enhances interrupt control capabilities.
Rather than all interrupts being disabled or enabled at
the same time, the IMR allows individuatl IR maskng.
The IMR is an 8-bit register, bits 0-7 directly correspond
to {RO-IR7. Any IR input can be masked by writing 1o the
IMR and selting the appropriate bit. Likewise, any IR in-
put can be enabled by clearing the correct IMR bit.

There are varicus uses for masking off individual IR in-
puts. One example is when a portion of a main routine
wishes only to be interrupted by specific interrupts.
Another might be disabling higher priority interrupts for
a portion of a lower priority service routine. The possi-
bilities are many.

When an interrupt occurs while its IMR bit is sel, it isn’t
necessarily forgotten. For, as staled earlier, the IMR
acts only on the sutput ol the IRA. Even with an IR input
masked it is stili possible to set the {RR. Thus, when
resetting an IMR, if its IRR bit is set it will then generate
an interrupt. This is providing, of course, that other
priority tactors ara taken into consideration and the IR
request remains active. [l the IR request is removed
before the IMR is reset, no interrupt will be acknowl-
adged.

Specisl Mask Mode

In various cases, it may be desirable to enable interrupts
of a lower priority than the routine in service. Or, in other
words, allow lower priofity devices to generate inter.
rupts. Howaver, in the fully nested mode. all IR fevels of
priority below the routing in service are inhibited 50
what can be dong to enable them?

Well, one method could be using an EO! command
before the actual completion of a routing in service. Bu
beware, doing this may cause an “over nesting” prob-
lem, similar 1o in the aulomatic E01 mode. In aadition,
resstting an ISR bit is irrgversible by software conlrol,
£0 Iower prigrity (R levels could only be Jater disabled by
setting the IMRA.

A much better solution is the special mask mode. Work-
ing in conjunction with the IMR, the special mask mode
enables interrupts 1rom all jevels except the leved in ser-
vice. This is done by masking the levei that is in service
ang ihen issuing the special mask mode command.
Once the special mask mode is set, it remains in effect
until reset.

Figure 16 shows how to enable lower priority inferrupts
by using the Special Mask Mode (EMM). Assume thal
IRQ has highest priority when the main program 15 inter-
rupted by JR4. In the 1A4 service routine an enable inter-
rupt ingtruction is executed. This oniy allows higher
priorily inlerrupt réquests to interrupt IR4 in the normai
fully nested mode. Further in the IR4 routine. bit 4 of the
{MR is masked and the special mask mode is entered.
Priority operalion is no longer in the fully nested mode.
AH interrupt levels are enabled except fof IR4. To leave
{he special mask mode, the sequence is executed in
reverse.

WAIN PAQGRAM

E1 08 571

A SERVICE
ROUTINE

0 08
.

s —

1R{-3 ENABLED
-7 DISABLED

—

—

:
M?Q—
2

R0-3 5-F ENABLED
R4 DISADLED

RESET Stm

1AD- 3 ENABLED
1R4-7 DISABLED

T

RET CR IRET

Figurs 15. Spaclal Mask Mode Exampie MCS 805 ™ or MCS s88a™)

Precautions fmust be laken when exiting an interrupt
service rouline which has useg the special mask mode,
A non-specific EOl command can't be used when in the
special mask mode. This is because a non-specilic
won't clear an ISR bit of an interrupt which is masked
when in the special mask mode. In tact, the bit will ap-
pear invisible. If the special mask mode is cleared
before an EQI command is issued a non-specific EQI
command can be used. This could be the case in the ex-
ampte shown in Figure 15. but, to avoid any conlusion
it's best to use the specilic EQI whenever using the
special mask mode.

It must be remembered 1hat the special mask mode ap-
plies to all masked levels when set. Take, tor instance,
IR1 intefrupting IR4 in the previous example_ [f thig hap-
paned while in the special mask mode, and the 1R1
routing masked itsglt. all interrupts would be enabled
except IR1 and IR4 which are masked.

3.3 INTERRUPT TRIGGERING

There are two classical ways of sensing an active inter
rupl request: a level sensitive input or an sdge sensitive
input. The B259A gives the user the capability for gither
method with the edge triggered mode and the level irig-
gered mode. Selection of one of these interrupt trigger.
ing methods is done during the programmed initializa-
tion of the B259A.

45

Level Triggered Mode

Whaen in the level triggered mode the 8259A wili recog-
nize any active (high) level on an IR inpul as an interrupt
request. If the IR input remains active after an EQI com-
mand has been issued (resetting ils ISR bit), another in-
terrupt will be generated. This is providing of course, the
processor INT pin is enabled. Unless repetitious inter-
rupt generation is desired, the IR input must be brought
to an inactive state belore an EQOl command is issued in
its service rouline. However, it must not go inaclive so
soon that it disobeys the necessary timing require-
ments shown in Figure 16. Note thal the reguest on the
IR input Mmust remain until after the falling edge of the
first INTA pulse. It on any IR input, the request goes
inactive before the first INTA pulse, the 8259A will
respond as i IR? was aclive. In any design in which
there's a possibility of this happening, the IR7 defaull
feature can be used as a safeguard. This can be accom-
plished by using the IR7 routine as a "c¢lean-up rouline”
which might recheck the 8259A status or merely return
program execution to its pre-interrupt iocation.

Depending upon the particular design and application,
the leve! triggered mode has a number of uses. For one,
it provides for repetitious interrupt generation. This is
useful in cases when a service routine needs 10 be con-
tinually executed until the interrupt request goes inac-
tive. Another possible advantage of ihe level triggered
mode i it allows for “wire-OR'ed” interrupt requests.
That is, @ number of interrup! requests using the same
IR input. This can't be done in the edge triggered mode.
for if a device makes an interrupt request while the iR in.
put is high (from another request), its transition will be
“shadowed'. Thus the 8259A won't recognize further in-
terrupt requests because its IR input is already high.
Note that when a “wire-OR'ed” scheme is used, the ac-
tual requesting device has to be determined by the soh-
ware in the service routine.

Caution should be taken when using the automatic EQ
mode and the level triggered mode together, Since in
the automatic E0! mode an EQi is automatically pers-
tormed at the end of the interrupt acknowledge se-
quence, if the processor anables interrupts while an IR
input is still high, an interrupt will occur immadiately. To
avoid this situation interrupts should be kept disabled
until the end of the service routine or until the iR input
returns low,

Edge Triggered Mode

When in the edge triggered mode, the 8259A will only
recognize interrupts if generated by an inactive {low) to
active {high} transition on an IR input. The edge trig-
gered mode incorporates an edge lockout method of
operation. This means that after the rigsing edge of an
interrupt request and the acknowledgement of the re-
quest, the positive level of the IR input won’'t generate
further interrupts on this level. The user needn't worry
about quickly removing the request after acknowledge-
ment in fear of generating further interrupts as might be
the case in the level triggered mode. Before another in-
1errupl can be gengrated the IR inpul must return to the
inaclive state.

\

_/

i —

SOMNOM BOR(A0AS

LATCH®
ARMED

EAMLIEET 1R
CAN BE REMOVED

NN
\aVav

Ve

LATCH®

*EDGE TRIGGERED MODE DMLY ARMED

Figute 16, iR Triggering Timing Requirsmanis

Referring back to Figure 16, the timing requirements for
interrupt triggering is shown, Like the level triggered
mode, in the edge triggered mode the request on the IR
input must remain active until after the falling edge of
the first INTA pulse for that particular interrupt. Unlike
the level triggered mode, though, atier the interrupt
request is acknowledged i1s 1RR latch is disarmed. Only
afier the IR input goes inactive will the IRR latch again
become armed, rmaking it ready to receive another inter-
rupt request (in the level triggered mode, the IRR latch is
always armed). Because of the way the edge triggered
mode functions, it is best 10 use a posilive lovel with &
negative pulse 10 trigger the IR requests, With this type
of input, the trailing edge of the pulse causes the inter.
rupt and the maintained positive lavel meets the neces-
gary timing requirements (remaining high until after the
interrupt acknowledge occurs). Note that the IR? default
feature mentioned in the “level triggered mo3e" section
also works for the edge triggered mode.

Depending upon the particular design and application,
the edge iriggerad mode has various uses. Because of
its edge lockout operation, it is besi used in those
applications where repelitious interrupt generalion isn't
desired. it is als0 very useful in systems where the inter
rupt request is a pulse (this shoutd be in the formof a
negative pulse to the 8250A). Another possible advan-
tage is that it can be used with the automatic EQ1 mode
without the cautions in the levei triggered mode. Over-
al, in most cases, the edge triggered mode simplifies
operation for the user, since the duration of tha interrupt
request at a positive level is not usually a factor,

3.4 INTERRUPT STATUS

By means of software control, the user can intarrogate
the status of the 8258A. This allows the reading of the
jnternal interrupt registers, which may prove useful for
interrupt control during service routines. It aiso pro-
vides for a modified status poll method of device moni-
toring, by using the poll command. This makes the
status of the inlernal IR inputis available to the user via
software control, The poll command offers an alterna-
tive to the interrupt vector method, especially for those
cases when more than 64 interrupts are needed.

46

Reading Interrupt Regislers

The contents of sach 8-bit interrupt register, IRR, ISR,
and IMR, can be read 1o update the user's program on
the present status of the 8250A. This can be a versatile
tool in the decision making process of a service rouling,
giving the usér more control over interrupt operations.
Before delving into the actual process of reading the
registers, let's briefly review their general descriphions:

IRR {Interrupi Specitias all interrupl levels re:
Request Register) questing service.

ISR (In-Service Specities all interrupt levels

Register) which are being serviced.
iIMR {Interfupt Specifies all interrupt levels that
Mask Registen) are masked.

To read the contents of the IRR or ISR, the user must
first issue the appropriate read register command {read
|RA or read ISR) to the 8259A. Then by applying a AD
pulse to the 8259A (an INpul instruction). the contents
of the desired register can be acquired. There is no need
1o issue a read register command every hme the IRR or
ISR is o be read. Once a read register command iS5
received by the B2504, i “remembers” which register
hias bean selected. Thus, all that is necessary to read
ihe contents of the same register more than once is the
TD pulse and the correct addressing (A0 =0, explained
in “Programming the B258A"). Upon initialization, the
asléction of registers defaults to the IRR. Some caution
should be taken when using the read register command
in 8 system that supports sevaral tevels of interrupts It
the higher priority routine causes an interrypl between
the read register command and the actual input of the
register contents, there's no guarantee ihat the same
ragistar will be selected when it returns. Thus it is pest
in such cases 10 disable interrupts during the operation.

Reading the contents of the IMR is different than read-
ing the IAA or ISR. A read register command 15 not
necessary when reading the IMR. This is because the
IMR can be addressed directly for both reading and
writing. Thus ail that the 82504 requires for reading the
IMA is a FID pulse and the correct addressing (AG=1,
explained in "Programming the B258A7).

Poll Command

As mentioned towards the beginning of this applicalion
note, thare are two methods of servicing peripherals:
status polling and interrupt servicing. For most applica-
tions the interrupt service method is best. This is
because it requires the ieast amount of CPU time, thus
increasing system throughput. However, for certain ap-
plications, the status poll method may be desirable,

For this reason, the 82594 supports polling operations
with the poll command. As opposed to the conventional
method of poliing, the poll command offers improved
device servicing and ingreased throughput. Rather than
having the processor poll sach peripheral in order to
tind the actual device requiring service, the processor
polls the B259A. This allows the use of ali the previously
mentioned priority modes and commands. Additionaily,
both polled and interrupt methods can be used within
the same program,

To use the poll command the processor must first have
is interrupt request pin disabled. Once the polt com-
mand is issued, the 8259A will treat the next (CS quali-
fied) RD puise issued to il (an INput instruction) as an in-
terrupt acknowiedge. It will then set the appropriate bit
in the {SA, if there was an interrupt reques{, and enable a
special word ont¢ the data bus. This word shows
whether an interrupt request has occurred and the
highest priority ievel requesting service. Figure 17
shows the contents of the "poil word™” which is read by
the processor. Bils WO-W2 convey the binary code of
the highest priority level requesting service. 8it | desig-
nates whether or not an interrupt request is present. If
an interrupt request is present, bit | wili equal 1. i there
isn’t an interrupl request at all, bil | will equal ¢ and bits
WO-W2 will be set to ones. Sarvice to the reguesting
device is achieved by software decoding the poll word
and branching to the appropriate senvice routing, Each
time the B259A is 10 be polled, the poll command must
be written belfore reading the poll word.

The poll command is usefut in vanious situations. For in-
stance, 1t's a good aHernative when memory is very
limited, because an inlerrupt-vector table 15n't negded.
Anoiher use far the poll command is when more than 64
interrupt lavels are needed (64 is the limit when cascad-
ing 8259°s). The only limit of interrupls using the poll
command is the number of B259°s that can be addressed
in a particular system. Still another application of the
poll command might be when the INT or INTA signals
are not avalable. This might be the case in a large
system whefe a processor on one card needs to use an
82594 on a different card. In this instance, the poll com.
mand $ the only way to moenitor the interrupl devices
and slill take advantage of the 8259A's prioritizing
features. For those cases when the 82594 is using the
potl command only and aot the inlerrupt melhod, each
B259A must receive an imitialization sequence {interrupt
vecior). This must be done even though the interrupt
vector features of the B259A are not used. In this case,
the interrupt vector specified in the initialization
sequence could be a “fake”.

47

Ll ool fwelwiiwl

WOWZ = BINARY CODE OF HIGHEST
PRIORITY LEVEL REQUESTING SERVICE

1=t IF AN INTEARUPT DCCURRED

Figute 7. Poll Word

3.5 INTERRUPT CASCADING

As mentionad earlier, more than one 8259A can be used
to expand the priority interrupt scheme (0 up to 64 levels
without additional hardware. This method for expanded
interrupt capability is called “cascading™. The 8259A
supporls cascading operations with the cascade mode.
Additionatly, the special fully nested mode and the but-
fared mode are available for increased flexibility when
cascading 8253A’s in certain applications.

Cascade Mode

When programmed in the cascade mode, basic opera-
tion consists of one B259A acting as a master to the
cthers which are serving as slaves. Figure 18 shows a
system containing a master and two slaves, providing a
total of 22 interrupt levels.

A specific hardware setyp is required to establish
operation in the cascade mode. With Figure 18 as a rel-
erence, note that the master is designated by a high on
the SP/EN pin, while the SP/EN pins af the siaves are
grounded (this can also be done by software, see bul-
fered mode). Additionally, the INT outpul pin of each
slave is connected to an IR input pin of the master. The
CAS0-2 pins for alt B258A’s are paralleled. These pins
act as outputs when the 8259A is a master and as inputs
for the slaves. Serving as a private 82594 bus, they con-
trol which slave has controf of the system bus for inter-
rupl vectoring operation with the processor, All pther
pins are connected as in normal opecation {sach 8259A
receives an INTA pulse).

Besides hardware sel-up réquirements, ail 82594°s must
be software programmed to work in the cascade mode.
Programming the cascade mode is done during the in-
itialization of each 8259A. The 8259A thal is selected as
master must receive specification during its initializa-
tion as to which of its IR inputs are connected to a
slave’s INT pin. Each stave B259A, on the other hand,
must be designated during its initialization with an 1D (0
through 7) corresponding to which of the master's IR in-
puts its INT pin is connected to, This is all necessary so
the CAS0-2 pins of the masters will be able to address
each individual slave. Note that as in normal operation,
sach 8253A must also be initialized to give its IR inputs
a unique interrupt vector. More detail on the necessary
programming of the cascade mode is explained in "Pro-
gramming the 82594,

Now, wilh background information on both hardware
and soitware for the cascade mode, let's go over the

AODAE§S BUS 18 5

D

l
|

| l
CONTROL BUS
LI I
DT BUS — 3
L3 S
T T \ |
l | |
ct a, DO? WA [; :s L DO7 INTA INT
CASD| —t - CaS O
Sn?:! Cas1 l' cas? ::;;?:H
casz? 1 a2 4
PR 6 & 4 3 2 1 0 ! EReil MG M5 M M3 M2 A1 W0 3
; +
i ST
7 & % 4 3 2 1 € 5 « 122 v @
]

T
INTERALPT REQUESTS

Figure 0. Cescaded 8259A'S 22 Intetrupt Levals

sequence of evens that ocour during & valid interrupt
request from a slave. Suppose a slave IR input has
received an interru pl request. Assuming this request is
higher priority than other requests and in-service levels
on the slave, the siave’s INT pin is driven high, This
signals the master of the request by causing an inter-
rupt requestona designated IR pin of the master. Again,
assuming that this request to the master is highet priori-
ity than other master requests and in-gervice levels
(possibly from other slaves), the master's INT pin is
pulled high, interrupling the processor.

The interrupt acknowledge sequénce appears to the '

processor the same as ihe non-cascagding interrupt
acknowledge sequence;, however, i's different among
the 8259A's. The first INTA pulse is used by all the
a2504's for internal set-up purposes and, if in the
AOS0/B0BS mode, 1he master will place the CALL opcode
on the data bus. The first THTA pulse also signais the
master 10 place the requesting slave's ID code on the
CAS lines. This s controt over 10 the slave for the
rest of the interrupt acknowledge sequence, placing the
appropriate pte-prograrnmed interrupl vector on the
data bus, completing the interrupt request.

During the interrupt acknowledge sequence, the cof-
responding ISR bit of poth the master and the slave get
set. This means two EOI commands must be issved iif
not in the automatic EO1 mode), one for the master and
one tor the slave.

Special consideration should be taken when mixed
interrupt requests are assigned loa masier 82584, that
is, when some of the master's IR inputs are used for
slave interrupt requests and some are used tor individ-
val interrupt requests. ln this type of structure, the
master's IR0 must not be used for a slave. This is
because when an IR input that isn’t initialized as a slave
raceives an interrupt requast, the CASO-2 lines won't be
activated, thus staying in the default condition address-
ing for IR0 (slave IROC). i a siave is connected to the
masiers 1RO when a non-slave interrypt oCCufrs on
ancther master IR input, efroneous conditions may

48

result. Thus IRQ should be the last choice when assign:
ing slaves to 1R inpuls.

Special Fully Nested Mode

Depending on the application, changes in 1he nesied
struciure of the cascade mode may be desired. This is
pecause the nested structure of a slave 82594 gillers
from that of the normal fully nested mode. in the cas
cade mode, W a slave receives a higher priority inteffupt
request than one which is in service {through the same
slave), it won't be recognized Dy tha master. This is
pecause the master's 'SR bit is set, ignoring all requests
of equal of lower priority. Thys. in this case, the higher
priority slave interrupt won't be serviced until after the
master's ISR bil is reset by an EOI command. This i$
most likely alter the completion of the lower prioriy
routine.

If the user wishes to have 8 truly fully nested struciure
within a slave B259A, the special tully nested mode
should pe used. The special fully nested mode 1§ pro-
grammed in the master only. This 1s done duning the
master's snitialization. In this mode the masier will
ignore only ihose interrupt requests of lower priofity
than the set ISR bit and wilt respond to all requesis ot
equa! or higher priofity. Thus if a slave recevesa nighert
priority requesl than one in servige, 1 will be recognized.
To insure proper interrupl aperation when using the
special tully nested mode. the software must determine
it any other siave interrupts are stith in service before
issuing an EOY command 10 the master. This is done by
reseiting the appropriate slave 1SA bt with an EOI and
{hen reading its ISA. 1t ihe ISR contains all 2eros, there
aren't any other interrupts from the slave n service and
an EOI command can be sent 1o the master. It the ISA
isn't all zeros, an EO! command shouldn't be sen! to the
master. Clearing the masiers ISR bt with an ECH com:
mangd while there are still slave interrupls 1n service
would allow [gwer priority interrypts to be recognized al
the master. An example of this process I1s Shown o \he
second application in the "Applications Examples’ sec-
tion.

4, PROGRAMMING THE 8259A

Programming the 8259A is accomplished Dy using two
types of command words: Initialization Command
Words (ICWs) and Operational Command Words
(OCWs). All the modes and commands explained in the
previcus section, “Operation of the 8259A", are pro-
grammable using the ICWs and OCWs (see Appendix A
for cross referance). The ICWSs are issued from the proc:
ess0r in a sequential format and are used 10 sel-up the
82594 in an initial state of operation, The OCWs are
issued as needed 1o vary and control B259A operation.

Both ICWs and OCWs are sent by the processor to the
82594 via the data bus (8259A C5=0, WR=0). The
82504 distinguishes between the difterent ICWs and
OCWs by the state of its A pin (controlied by processor
agdressing), the sequence they're issued in (ICWs only),
and some dedicated bits among the ICWs and OCWs,
Those bits which are dedicated are indicated so by fixed
values {0 or 1) in the corresponding ICW or OCW pro-
gramming formats which are covered shortly. Note,
when issuing either ICWs or DCWs, the interrupt
request pin of the processer should be disabled.

4.1 INITIALIZATION COMMAND WORDS {ICWs)

Before normal opaeration can begin, each 8259A in a
system must be initialized by a sequence of iwo to four
programming bytes called ICWs (Initialization Com-
mand Words). The ICWs are used 10 set-up the neces.
sary conditions and modes tor proper 8250A operation.
Figure 20 shows the initialization flow of the B259A.
Both ICW1 and ICW2 must be issued for any form of
82594 operation. However, ICW3 and 1CW4 are used
only if designated so in ICW1. Determining the neces.
sity and use of each ICW is covered shortly in individual
groupings. Note that, once intialized, if any program-
ming changes within the ICWs are to be made, the entire
ICW sequence must be reprograrnrned ndt just an indi-
vidual ICW.

Certain internal set-up conditions occur automatically
within the 8259A after the first ICW has been issued.

These are:

A. Sequencer logic is sel to accept the remain ng ICWs
as designated in ICW1,

B. ThelSRin-Service Regisien and IMR {Interrupt Mask
Register) are both cleared.

C. The special mask mode is reset.
D. The rotate in automatic EQI mode flip-tlop is cleared.

E. The IRR dnterrupt Request Registen is selected tor
the read register command.

F. tf the IC4 bit equals Q in ICW1, all functions in 1{CW4
are cleared, 8080/8085 mode is selected by default.

G. The fully nested mode is entered with an initial prior-
ity assignment of IRD highest through 1R7 lowest.

H. The edge sense laich of each IR priority cell is
cleared, thus requiring a low to high transition to
generate an interrupt (edge triggered mode effected
only).

49

The ICW programming format, Figure 21, shows bit
designation and a short definition of each ICW. With the
ICW format as relerence, the functions of each ICW will
now be explained individually.

NO (SNGLw 1}

YES(SNGL = 0}

I 1CW3 I

15 ICW4
NEEDED

NO {IG4 = 0}

YES ACa=1)

| cwa 1

READY TO ACCEPT
INTERRUPT REQUESTS

Figurs 20. inHialization Flow

Initiatization Command Word Format

10w
4 G 8, 6 B & 0, 0, 0

1 S NEEDED
0O MO vl WEECHE T

[Tl ETeFl]
Ll

1 EMGLE
o« CASCADE WOOE

CALL INTERAYAL
1 INTEAVAL OF 4
0 IWTERVAL OF B

LEvEL TRIGGERED NPT
0 EDGE TMIGGENED INeUT

Sy kg (F I ARR | VECTOR
ADEALSE -MC 500 s MODE

e

LT
[T L1

o |., [..J
N s

Nyt R R AL RHUE ek
WL . WA

1wy RS TER DA vICL

CELLLLT LT
I [T L] framses.

wrd i k] DEVICLS
a0, B B B D & O G

CT LT LTl

H
TR
olr]z]s]+j5le]"
CIRRERRE LR [In}
alol |]elo]r r
glalofapr|r |l
rve
P UL S CC R E I L
I v [4 LENR B MR AlIe ml
. ' —t A R
. AN H ML
1 TR]
O WEHHRA BTH
L3 L]
o'l = Mishy Hbk £ B AR L R
vt T murprReaRIn s avd
ool A T A AN T
' T WBEa i Prns WsEE
L Wl
PRI PR T N S e AL L
erin
NOTE 1

SLAVE 10 15 EQUAL TO THE CORRESPONDING MASTER IR INPUT

SOME OF THE TERMINGCLOGT USED MaY WFFER ﬂ.tﬂl;‘l’l" FROM EXISTING S2504 i
DATA SHEETS. THIS IS DONE TO BETTER CLARIFY AND EXPLAN THE FROOGRAM: |
WNG OF THE 62504, THE OPERATIGHAL AESULTE REMAIN THE SAME. i

Figure 21. Indiislization Command Words (ICWS) Programming Formet

ICW1 and ICW2 B

issuing ICW1 and ICW2 is the minimurmn amount of pro-
gramming needed for any type of 8250A operation. The
majority of Dits within these two ICWs are used to desig-
nate the interrupt vecior starting address. The remain-
ing bits serve various purposes. Description of the JCW1
and ICW2 bits is as follows:

IC4:; The IC4 bit i3 used to designate to the 825684
whether or not 1ICW4 will be issued. If any ot
the 1CW4 operations are to be used, 1CW4
must equal 1. If they aren’i used, then ICwW4
needn't be issued and 1C4 ¢an equal 0. Note
that if 1C4 = 0, the 82594 will assume opaeration
in the MCS-80/85 mode.

SNGL: The SNGL bit is used to designate whether or
not the 82594 is to be used alone or in the cas-
cade mode. |f the cascade mode is desired,
SNGL must equat 0. In doing this, the B259A,
will accept FCW3 for turther cascade mode pro-
gramming. If the 8259A is to be used as the
single 8259A within a system, the SNGL bit
must equal 1; ICW3 won't be accepted.

ADE The ADI bit is used 10 specify the address in-
terval for the MCS-80/85 mode. it 3 4-byte ad-
dress Interval is to be used, ADA must equal 1.
For an B-byte address interval, ADI must equal
0. The state of ADI is ignored when the 8259A
is in the MCS-86/88 mode.

LTM: The LTIM bitis usedto select between the iwo
iR input triggering modes. ¥ LTIM = 1, the level
triggered mode is selected. Il LTIM =0, the
edge triggered mode s selected.

A5-A15: The AS-A15 bits are used Lo select the inter-
rupt vector address when in the MCS-B0/BS
mode. There are two programming formats
that can be used to dp this. Which one is im-
plemented depends upon the selected address
intarval (D). If ADI is set for the 4-byte inter-
val, then the B259A will automatically insert
AD-A4 (AD, A1=0 and A2, A3, Ad4 =IR0-T}.
Thus AS5-A15 must be user selecied by pro-
gramming the AS-A15 bits with the desired ad-
dress. If AD) is sel for the B-byte interval, then
AD-A5 are automatically inserted (AD, A1,
A2=0 and A3, A4, AS=IR0-7). This feaves
AB-h15 10 be selected Dy programrning the
AB-A15 Dits with the desired address. The
state of bit 5 is ignored in the latter format.

13-T7: The T3-T7 bits are used 10 select the inlerrupt
type when the MCS-86/88 mode is used. The
programming of T3-T7 selects the upper 5
bits. The lower 3 bits are automatically in-
seried, corresponding to the 1R level causing
the interrupt. The state of bits AS-A10 will be
ignored when in the MCS-86/88 mode. Estab-
lishing the actual memory address of the inter-
rupt is shown in Figure 22.

OF B
nmmnm - u‘::t(:.zn'?‘ PEusE :o::oannnli o
1
1
1}

o WEOUESTING WA LEVEL
" AUIDMATICALLY (NEERTED BY $A
1}

1
mmﬂmmﬂm — COMPLETE B0k S48 nTLRAURT TYRE
1 d

[

'-—_J

Telo o] oin-lululmlnlniw'l S]] — “edon soneLss Of W

Figwe 22, Eslablishing Memory Address of 30885088 Interrupl Type

CW3

The B259A will only accept ICW3 if programmed in the
cascade mode (ICW1, SNGL=0). ICW3 is used for
specific programming within the cascade mode. Bit
definition of ICW3 differs depending on whether the
B259A is a master of a slave. Definition of the ICW3 bits
is as follows:

80.7 M the 8250A is a master (either when the

{Master) SP/EN pin is tied high or in the butfered
mode when MIS = 1 in ICW4), ICW3 bit deli-
nition is S0-7. corresponding to “slave 0-7",
These bits are used {0 establish which IR in.
puts have slaves connected to them. A 1
designates a slave, a 0 no slave. For exam-
ple, it a slave was connected to IR3, the 53
bit should be set to a 1. (S0) should be last
choice for slave designation.

IDO-1D2 ¥ the B259A is a slave (either when the SP/EN

{Slave): pin is low or in the buffered moda when
MIS = 0 in ICW4), ICW3 bit definition is used
to establish its individual identity. The 1D
code ol a particular slave musi correspond
to the number of the masters (R input it is
connecled to. For example, if a stave was
connected to IR6 of the master, the slaves
1D0-2 bits should be set to 1ID0=0, 1ID1=1,
and ID2=1.

w4

The 8259A will only accept ICW4 if it was seiected in
ICW1 [bit IC4=1). Various modes are offered by using
ICW4. Bit definition of ICW4 is a5 follows:

uPM: The uPM bit allows lor selection of either the
MCS-B80/85 or MUS-86/88 mode. If set as a1 the
MCS-36/88 mode is seleciad, if a 0, the
MCS-BO/85 mode is selected.

AEOQl: The AEOL bit is used to select the automatic
end of interrupt mode. If AEQI=1, the
automaltic engd of interrupt mode is selected. If
AEQI=0, it isn't selected; thus an EQI com-
mand must be used during a service routine.

M/S: The MIS bit is used in conjunction with the buf-
fered mode. U in the buffered mode, M/S
defines whether the B259A is a master or a
slave. When M/S is set to a 1, the B259A
operates as the master; when MIS is @, it
operates as a slave. If not programmed in the
butfered mode, the state of the MIS bit is
ignored,

BUF: The BUF bit is used 10 designale operation in
the buffered mode, thus ¢controlling the use o!
the SP/EN pin. N BUF 1s set to a 1. the buftered
mode s programmed and SF/EN is used as a
transceiver enable output. If BUF 15 {. the buf-
fered mode isn't programmed and SP/EN is
used tor master/slave selection. Note if ICW4
isn’t programmed, SP/EN. is used for masters
slave selechon,

51

SFNM: The SFNM bit designates selection of the
special fully nested mode which is used in
conjunction with the cascade mode. Only the
master should be programmed in the speciai
fully nested mode to assure a truly fully nested
structure among ihe slave IR inputs. If SFNM
is set to a 1, the special fully nested mecde is
selected; f SFNM is 0, it is not selecied.

4.2 OPERATIONAL COMMAND WORD {OCWs)

Once initiafized by the ICWs, the B259A will most {ikely
be operating in the fully nested mode, At this point,
operation can be further controlied or modified by the
use of OCWs (Operation Command Words). Three
QOCWs are available for programming various modes and
commands. Unlike the ICWS, the OCWs needn't be in
any type of sequential order. Rather, they are issued by
the processor as needed within a program.

Figure 23, the OCW programming format, shows the bit
designation and shor! definition of each OCW, With the
OCW format as reference, the functions of each OCW
will be explained individually,

ocw1

OCW1 is used solely for 8259A masking operations. It
provides a direct link to the IMR (Interrupt Mask Regis-
ter). The processor can write 10 or read from the IMR via
OCW1. The DCW1 bit detinition is as follows:

MO-M7: The MO-M? bits are used to control the mask-
ing of IR inputs, If an M bit is set to a 1, it wilt
mask the corresponding IR input. A O clears
the mask, thus enabling the IR input, These
bits convey the same meaning when being
read by the processor for status update.

ocw2

OCW?2 is used for end of interrupt, automatic rotation,
and specific rotation operations. Associated commands
and modes of these operations (with the exception of
AEQIl initialization}, are selected using the bits of OCW?2
in a combined fashion. Selection of a command or
mode should be made with the corresponding table for
OCW2 in the OCW programming format (Figure 20),
rather than on a bit by bit basis. However, for com.
pleteness of axpianation, bit definition of OCW?2 is as
tollows:

L0-L2: The LO-L2 bits are used to designate an inter-
rupt level {0-7) to be acted upon for the opera:
tion selected by the EOI, SL, and R bits of
OCW2. The ievel designated will eithesr be
used to reset a specific ISR bit or to set a
specific priority. The LO-L2 bits are enabled or
disabled by the SL bit.

EOI The EOQI bit is used for all end of interrupt com-
mands (not avtomatic end of interrupt mode).
If set to a1, a form of an end of interrupt com.
mand will be executed depending on the state
of the SL and R bits. If EQ1 i5 @, an end of inter-
rupt command won't be executed.

oewi
s, &, 0 P g, b, 0 Gy

NpEaans

TTTTT Il e

L s |
[%12[:1:1:.\'-|.-.-'i-"-..:‘=J

T L
e

1] mom specdic EQICommand

ST - spente E01 Commang } EMG: OF INTERFLPY
T1 Fassse On Mar Spacdic EDH Cpmmand
T Marnte n dpinasrs €0 bhge (SET)

B Roimhe w pioment £O1 Moo IGLE LR
“matare S Gpacdie RO Commpag

- %irt Proonity Gomaning

e OpFrEIBh

| AQTOMANE ROTANCH

] SPECHIC AGTATION

< -I-1= -1 - [20e

TLE L2 w bl

PR T L .
||‘1 |tmlwlninla1=-1-q
1 READ MEGIS TER CONMANE
e
Al — .
f
Ll
Ry
wul
o
= Wl PR COMMARG
WAL L WA ST
¥ ' ® .
a L] * "
gt | W
TR0 sty | BiCa
e | mida
SOME OF THE TERMINOLOGY USED MAY DIFFER SLIGHTLY FROM E

WUING OF

B350A
DATA SHEETS. THIS IS DONE TO BETTER CLARIFY AND EXPLMN THE PROGRAN:

THE AT53A, THE DPERATIONAL RESULYS REMAIN THE SAME.

Figurs 23. Operstionsl Command Words {OCWs) Progeamming Formatl

sL:

The SL bit is used to selecta specific level for
a given operation. if SLis settoa 1, the LO-12
bits are enabled. The operation selected by the
EOl and R bits will be execuled on the
specified interrupt Jevel. If SLis 0, the LO-L2
bits are disabled.

The R bif is used 10 control all 8255A rotation
operations. If the R bit is setto a 1, a lorm ot
priority rotation will be executed depending on
the state of SL and £0I bits. If A is 0, rotation
won'l be executed.

52

OCwW3

DCW3 is uged to issue various modes and commands to
the B258A. There are two main categories of operation
associated with OCW3; interrupt status and interrupt
masking. Bit definition ol OCW3 is as tollows:

The RIS bit is used to select the ISR or IRR tor
the read register command. If RIS is set101,
ISR is setected. (RIS is 0, \RR is selected. The
state of the RIS is only honored if the RR bitis
al.

The RA bit is used o execute e read register
command, i AR is setloa 1, the read regisier
command is issued and the state of RIS deter-
mines the regisier to be read. If RR is 0, the
read register command isn't issued.

P The P bit is used o issue the poll command. If
P is set10 & 1, the poll command is issued. if it
is 0, the poll command isnt issued. The pol!
command will override a read register com-
mand if set simuitaneously.

The SMM bit is used t0 set the special mask
mode. 1f SMM is set 10 3 1, the special mask
mode is selected. It it is 0, it is not selected.
The state of the SMM bit is only honored it itis
enabied by ihe ESMM bit.

The ESMM bit is used o enable or disable the
aftect of the SMM pit. If ESMM is setto a 1,
SMM is enabled. It ESMM is 0, SMM is di%
abled. This bit is usefu! 1o prevent interference
of mode and command selections in OCW3,

RIS:

RR:

SMM:

ESMM:

SUMMARY OF 82594 INSTAUCTION SET

Sdle edge 1aggerer
5INgle leves tngoerec
nol single 2age (ngoered
Aol single 1evel thgrered
singre gdge 1nggeted
single leve trggered
ol ningle. adge mggered
oL Bingie. leval Ifiggered

single. ecge tnggered
whgle Jevel Ingoered
Nt single. edge triggered

Nt single. level tirggered
nngle. edge trigoersd

ningle. leval 1ngpered
noL 3ihgie. pdge triggered
nat single. iwvel Inggered

inst_ 0 Mnemonic A0 D D4 D5 O4 DI D2 DY DO Opeiation Dascription

1 ICWh A O AT A8 A5 1 0 1 1 1] Farmai= 4

H w1 B D A7 As A 1 1 1 0 Formatz 4

3 Cwy ¢ 0 AT AR AS [+ 1 o ¢ Byle 1 Imhalizaen Format = &

] ICwr D 0 AT AE A5 3% 1 1 [/}] Format = 4

5 Kws E 0 AT M O 1 ¢ o0 1 0 Mo ICW4 Bagquired Formal- B

] IcwY F 0 A7 M O 1 1 0 1 L] Formal = 3

7 iCwr G 0 AT A8 O 1 o 0 0 0 Format = §.

] ICW1 H 0 A a6 0 1 1] 0 0 Format =8

L] w1 D AT A6 AS o 1 1 1 Formal= 4,

10 cwi) O AT AE AR 1 1 1 1 1 Formai= &,

11 KWl K 0 A7 AB AS 1 [1 o 1 Byls 1 Innalizaien Format = 4,

12 w1 L 0O AT Af A5 1 1 1 0 1 Formal e 4

12 EW1 M 0 A7 A O ¥ o 0 1 1 ICW4 Reguired Formaim A

L1} ICW1 N 0 AT A8 O 1 1 44 1 1 Format = B.

135 w1 O 0 A7 A6 O 1 Q 4] 0 1 Formpl = B,

1% Wy P 0 AF A 0O 1 1 0 0 1 Formal = 8,

17 0we 1 S At4 AR M2 A1 AY) AS AR Byte 2 imtializatian

18 ICw3l M 1 &7 S8 5% 54 853 S2 5 S0 Byle 3 wntinhzation — master
W W3 § 1T 0 0 ¢ ¢ S2 51 50 Byte 3 imtiglizanon — slave
20 1CWa A] ¢ o0 o o & 0 © 0 Mo aclion, redundant
n 1ICwa 8 1 ¢ 0 0 0 [+ o 0 1 MNon-buttersd made. no AEQI. BOBES : 6088
] ICwie 1 c o ¢ 0 ¢ © 1] Mon-puffered mode. AECH, MCS-B0 -85
Fal 1ICwe D 1 Q Q Q 0 0 1 1 1 Non-buffered moda. AEQ, BOBS BOBS
o] itws E 1 6 o 0o 0 0© 1 |- I No aclion, redundant
=] iCwd F 1 ¢ o 0 0 L1} 1 Q 1 Non-bufferad mode, no AEQI, @086 - 8088
F.] cwe G] ¢ o ¢ 0 ¢ 1 1 ¢ Non-bufterad mode. AEQI, MCS-B0. BS
b ICwid .] ¢ & 0 0 0 1 1 1 Mon-bufierad mode, AEOI, BOBSE s BOSE
F.) 1Cwe 1 o o o o0] e o o Buffored mode. siave, no AEQI MCS-B0/B5
fol cwid) 1 LI R 1 [- B] ' Buitered mode. siave. no AECH, BOBE 8088
k1] WL K 18 6 0o O v o v 0 Butfered made, slave, AEQI. MCS-BOD- 85
»n wCwd L 1 i} o o 0 1 13 1 1 Buffered made. slave, AEQI 8086 /8068
b V-4 WS W 1 o ¢ o o]] 6 0 Buffersd mode, master. no AECH, MCS-80 85
2 CwiL N 1 9 4 o 0] T 90 t Buttered mods, master, no AEQH, 8086 ' ROES
34 WCwe Q 1 O ¢ ° 0 1]] 0 Buffered mode. masier, AEQI, MC5-80 85
» Wi P LI B S 1 ,9* t 1 L] 1 Buliered mode. master AEQI, BOBS, B0BE
» HoWae NA 1 a 0 b ¢c 0 0 0 Fully nested made, MCS-80. nan bulfered, no AEO!
¥ iCwi B o 9 ¢ 1 0 0 0 1 ICW4 W through ICW4 ND are dentical 16
k] ICw4 NC 1 0o 0o o ¢ o0 1 0 ICW4 B thraugh 1ICW4 D with the addion ol
» ICW4 ND T8 9 9 1 e 0 v Fully Nested Mode
o« ICWa NE 1 o 0 a 1 o 1 o 0 Fully Nesied Mode, MCS-80/BS non buttered no AEO!
n WA NF 1 8 o 0o 1 0 1 ©6 1
L F ICwd NG 1 a a i} 1 1] 1 1 1]
a3 WWe NA 1T 8 0 0 1 0] 1
4 ICWa NI 1] a 0 1 1 o 1]]
a% ICWa NI 1 0 0 1] 1 ¥ 0 o 1
«& ICW4 NK T 6 6 ©® %Y+ 0 s B ICW4 NF 1hrough ICWe NP gca 10entical to
AT ICWe NI 1 D o6 B 1 1 0 1 'Fi‘:": ::;;c:’uah oﬁm £ with 1he addition of
L] IS HM 1 L o o 1 1 o 0
a9 ICW4 NN LI TR SR | 1 LI I |
L] ICWe WO A 1] 0 1] 1 1 1 1 [
3] ICWd NP t b0 0 1] 1 1 1
57 G YOMT WS M M M3 M2 M1 MO Load mawk register. resd mask reQistar
L] OCwi E I I | o o 0 ¢ 0 Mon-spactic EO
54 OCwy? SE I | 1 0 0 L oW Specihe EQN, LO-1.2 cods of IS FF to be resst
5t OCwi RE] Ll b 1 6 ¢ o 0 B Rolale on Non-Specific £O1
56 OCwi RSE 0 1 t 1 0 0 L2 LY w Rotate on Specific EQI LO-LZ code ot hne
5° oCwz R B *y o 0 O O 0 0 O Rotate i Auta EOI {seh)
k1] OCwe Ch i} o 1] 0 0 0 0 0] Rotate in duto EQI {claar)
) OCwW?2 RS -] 1 1 4] 0 0 W oUW Seot Prigrity Command
k10 OCwa # g ¢ o 0 0 1 1 [I Foll mode
LN OCw) s g 0 o ¢ 0 v © 1 Raad IS regisiec

53

uis uie
LT ToRla—— 1o >—-3{>0-6—> M/10 0107 —H " uze
¥1 = 085 2PI33 >Sp g 8 — D106 ___ﬂ L5373
S1FE— §1 51 D105 —3
Zlyz RD 3%-)'#{“0)-—13 1; 5 RD ol —
FETET Y= RESET 1N WR DL)ﬁj SOk p103 —3
- Ok >}—)CLK 0102 3
5 T f=— > NC L
510 >—=34S1D 50D e SOD BIOP —A_5
oy =2 roy A15 Y 15
A14 > A4
aL3[E—> AL
AL2 > Al2
a11je—d Al
Mp[5—2A1B
pafei—y a9
asltl o ps
ALE R ALE
ATTHR)——;- RST 7.5 AD7 113 0107
H{RsT 6.5 AD6|s— D106
RST 5.5 ADS pe— DID5
TRAP AD4 13— DI04
= 03 {2 5103
A2 13— D102
AD] P2——1101 o
. ADD hT.n@ SET INT
INTR 33 INTR INTAJDSa—) INTA
HOLD HLDA=S=dHC
toR T >—B
MPX MULTIPLEXER CHANNEL
K3
166¢C ©1e81 D107 45 TRP|
DIos —= IR1
DIOS — IR?
pios —1 Y28 1a3
D103 ‘i 1R4
D102 —5 IR5]
plol — 1R6
DI == 1R7]
g | Beson
TR oChINTA INT|=
i))-%-o RSPl
WR)-E,'CI WR cAsl ic
Ap YS—dpp CASZ —1—6-NC
TNT CLT ENA »—CS SP/EN
10K RS
6
D
i c ac P& > 1
B
E1
.4 us 5
7 gy . o\ Lsieo "
s DN
RESET [T5>> 20 Lo
yCC T P
w[]

COMPUPRO division GODBOUT ELECTRONICS

54

» INIT

PAGE 1 OF 4

1y 17
> AS
ERE Y
> A4
%..-)As
—; A2

2l
1125 np

=]

BS
STB ENA

ra jan

STB TNH)——1

EXTEN A
§T8 iy Y3

— 5?1
RELEASE

2 1
HOLD 3= 19 5 E@E_&
HLDA Y2 4] v? o2 B3
1 WANT ==t

> 12D11 N
LKu3e

BS

1

2

4

5
APRIO
ué

9

-
COMPURRO divielon GODBOUT ELECTRONICS

O 29
uase 1AL #Duso-——-g >R
woa [TE>— > 3 HLDAY—H P2 ==
T8 1T 3 B2
aPRI0 >3
HLDA Dot — .
§>—-—1-D02->§ q--B—)xER Pi 51
vee ue — 13 71—t -
TNIT
518 2
—_— slua-s —— PR
5 TR Ym0} E—— ENDWALT 75522
]
sT8
5
B 2 1L 13
575 TR >t V22 T 512 RELEASE
XFER 2 1 : 15
3 = T B
ST INH : bl 5%
psy—2lp2 a2 —%) STB ENA
LB ENOY 8 19 ,| Y23 @y siE e
STE INH 13 @- 03 LS175 Q3 L= STB_INW
READY -1k 03 pd—=> 378 TV
& 7 3
w0t [E>— vz4)b > q':oﬁ—;;imv
ROY @_____a ' K t:Lq

? 3 9’ 1
25> @

=
—

1

gl z|
LL

S > R

HOLD)._QOQ———

> P3
> P?
1!
> Pe

|
w
™2
[a3] (5,0 B2 LV

ia.l
~
=
1=

g

I
F| =l

PAGE & OF 4

pSYNC
pSTYAL

MPX MULTIPLEXER CHANNEL

©1981

|

o|la
=i=

SMEMR
$M1
sW0
sOUT
s[NP
sINTA
SHLTA
sXTRO

a7 [83 ;
A6 1@ e12
11

2© S 7

78 :

ug i
25152521

EXTENA >—-—-f-| 3
RD]

MPX MULTIPLEXER CHANNEL

166C

12
POBIN 1 P
SINTA [BE 13 BD—)CLR INT)

*

COMPUPRO division GODBOUT ELECTRONIGS

S1981

PAGE 3 OF 4

D7 >

DO6 Y

bos>—}
D(Nl)—3
D03 i
e
Dm)_—IT
DO Dt

u4s
L5373

L

DI?
D16
oI5

DIa

Dl3
Br2

$2-2
o

R4 :
INTA sm)—-l—ll Tl

56

DI1
Dl@

14

Tt bl
J15 216 J17

PAGE ¢ OF 4

M
Tm

o ™ ™
Tw TIQ TlB

19

uiz
RAM

vi3
RAM

uie
RAM

uir4 uis

12| IB 12| |8

D106 D105

L3139

us o st >—f

3
WIU)-?US'

ZLTJB

DI04

RAM = 2147/2167
PROM = 2716/32/64

> MEW STB

s1u3) oS):s
INA =] EXT TER S U3 D EXT ENA
ROM ERA
AL >—a 21 > A3 -
INTA Y2 Y !
TLK
.. a8
A2 T bl
ALD B 6> INTA 575
12 5 Y5 D%iLbnls ~23°5T8
oluar A upRE - oI55
AR D = - -7
g - ﬁ v3 D%—) SET INT
5 Gl Y2 DFNC
—Qenn viPH—> N or A
INT STB ¥ —28cn vapluc
15138
COMPUPRO - divialon GODBOUT ELECTRONICS

12| IS 12| |8

nlo2

D103 piol

12| IB

ROM ENA

EXT ENA S—L4 WALT

END WATT y—2] U®

MPX MULTIPLEXER CHANNEL

166C

@1981

57

PARTS LIST FOR MPX-1

QTY DESCRIPTION
SEMICORDUCTORS
4 74L800 Quad two input NAND (U7,24,31,47)
3 74L502 Quad two input NOR {v8,21,22)
2 74L504 Hex Inverter (U6,1%)
2 74L508 Quad two input AND (U9,34)
z 74L832 Quad two input OR (U33,38)
2 741838 Quad two input NAKD 0.C. (U25,35)
3 T4LS74 Dual D Flip-Flop (U3,4,20)
2 7415138 One of eight decoder (U46,48)
1 7418139 Dual one of four decoder (032)
1 7415160 4 bit counter (U3)
1 7418175 Quad D Latch {U23)
1 7415240 Octal Inverting Bus Driver (U43)
3 74L5244 Octal Bus Driver (U39,40,43)
2 7418373 Octal Transparent Latch (U28,30)
3 7418374 Octal D Latch (U37,42,44)
1 811L595/97 Octal Buffer (029)
1 811.896/98 Octal Inverting Buffer (U36)
1 25182521 Octal Comparator (U41)
1 8085AH-1 6 MHz CPU (U18)
1 82594 Interrupt Controller (U26)
1 2716 Type EPROM w/MPX software (27
2 7805 5 Volt Positive Voltage Regulators (U1,2)
8 2147 Type RAM chips (U10-17) 4K version
or
8 2167 Type RAM chips (U10-17) 16K versiom

OTHER M1SC. ELECTRICAL COMPONENTS

SIP Resistor Packs (R1,2)
4.7K ohm resistor (R3,4)
10K ohm resistor (R3)
10V tantalum capacitors (Cl-4)
1 Bypass Capacitors (all unmarked)
Crystal 12 MHz (X1)
8 position DIP switch (51,2)

PO o o

58

59

it

7) USE PN
[
COMPONENT LAYQUT

1

{F YOU NEED
YOUR €

ASSISTAN

OMPUPRO DEALER FIRST

GE ALWAYS CONTACT

CompuPro product. i

Our paramount concern is that you b

CUSTOMER SERVICE INFORMATION

f this product fails

feel free to write us at:
CA 946 14-0355

e satisfied with any Godbout
{o operate properly, it may be
returned to us for gervice,; see warranty information below. .

If you need further information

Box 2355, Oakland Airport,

LIMITED

replacement.

improperly during the

from Godbout Electron
errors on the part

tended for purposes

modifications, use of

Return to purchaser
specifications in effect
plete fulfilment of al

Electronics and
with said products.
quential damages.

Prices and specificat

BU

Copyright o
encourage quo
credited.

COMPUPRO division AODBOVT EL

Godbout Electronics

charge. Purchaser will be notified if this charge
We are not responsible for damage

failure to follow printed instructions,

We are not responsi

o the volatile nature and

_ IBM_PC - XT - AT COMPUPRO

WARRANTY INFORMATION
will repair or replace.

1 year warranty period, we

ics. if improper operation i

of the purchasef, there may be a

caused by the use

! theft, fire, or accidents.
of a fully

at our option, any parts
found to be defective in either materials or workmanship fora period of 1
year from date of invoice. Defective parts MUST be returned for
If a defective part causes a Godbout Electronics product to operate
will service it free
(original owner only) if delivered and shipped at owner’s expense 10 and
s due to an error or

repair

xceeds $50.00.

of solder in-
other than electronic equipment construction,
misuse or abuse, unauthorized
our products in applications other than those in-
tended by Godbout Electronics,
functioning unit meeting all advertised

as of date of purchase is considered to be com-

| warranty obligations assu

ions are subject to ch

..;-_:_.—._.-.--_—,3_7—5_7_4._'m-_v:—_.-__‘......,. -

LLDOG COMPUTER

-}, pages A137
-poration.

1 t‘PE}‘S‘C" "!:.!"l."'p:.'ou wet

1 rights reserved.
review if source is

med by Godbout
Electronics. This warranty covers only products marketed by Godbout
does not cover other equipment used in conjunction
ble for incidental or conse-

ange without notice, owing
pricing structure of the electronics industry.

He

Printed in U.S.A.

ECTRONICS - BOX 2355 OAKLAND AIRPORT,

CcA 94614

