4.5 AMOS

SOFTWARE UPDATE
DOCUMENTATION

DSS~-10000-05

aipha
micro

~

J

~

AMOS 4.5 SOFTWARE UPDATE DOCUMENTATION PACKET

"Alpha Micro', 'AMOS', 'AlphaBASIC', 'AM-100',
'*AlphaPASCAL", "AlphalISP', and "AlphaSERV'

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA 92714

These documents reflect AMOS Versions 4.5 and later

© 1981 - ALPHA MICROSYSTEMS

- ALPHA MICROSYSTEMS -
~17881 Sky Park North
Irvine, CA 92714

April 1981
AMOS Release 4.5

: MASTER TABLE OF CONTENTS S
FOR THE AMOS SOFTWARE UPDATE DOCUMENTATION PACKET

Status.
Versijon 4.5 Release Notes Revised
Pisks Available from Alpha Micro . Revised
A Guide to the Alpha Micro Software . Revised
bocumentation Library . '
User's Information Section:
New Command File and DO File Features Revised
The DUMP Command Unchanged
Important Notice for LISP Users Unchanged
ECIT: A Character-oriented Text Editor Unchanged
Program Design Language Formatting System Unchanged
System Operator's Information Section:
The System Initialization Command File Revised
Setting Up the Line Printer Spooler Revised
Memory Management Option Revised
Defining Switchable System Memory Revised
Confiquring Floppy Disk Drivers Unchanged
AMOS version 4.4 Method of Handling Unchanged
Bad Disk Blocks
Software Installation Instructions for New
the AM-120
Software Installation Instructions for New
the AM~710 Memory Board
Software Notice for AM=41D Users Revised
Disk Labeling Procedures Unchanged
Disk Maintenance Procedures for the Revised
System QOperator
Defining Non-~system Disk Devices Revised
Disk Drivers and Formats Unchanged
Generating System Monitors Unchanged
Using the Magnetic Tape Utility Programs Unchanged
The Magnetic Tape File Backup Programs New
Building a Terminal Driver New
(The NEWTRM Program)
System Programmer's Information Section:
I1/0 Programming for the Alpha Micro Computer Unchanged
Terminal Service System Unchanged

BASIC Programmer's Tnformation Section:

BASCRT - BASIC Subrout1ne for Sort1ng Random and . Revised
Sequent1al Files ']

COMMON - BASIC Subroutine to Provide Common Unchanged
Variable Storage

FLOCK = BASIC Subroutine to Coordinate Multi-user Revised

_ File Access ; _

SPOOL - BASIC Subroutine for Spool1ng F1Les to the . Revised

o L1ne -Printer _ ‘ ,

'XLOCK - BASIC Subroutine for MuLt1-user Locks .. ‘Revised

XMOUNT - BASIC Subroutine to Mount a Disk’ Unchanged

(For a complete List of Alpha Micro software-dotumentafion, see
A Guide to the Alpha Micro Software Documentation Library.)

April 1981

¥

AMOS VERSION 4.5 RELEASE NOTES

This document describes the changes and additions that have been made for
Version 4.5 of the Alpha Micro system software. It describes only those
changes and additions made since the Llast release (4.4B); you may find
general system documentation in the appropriate manuals. (The document A
Guide to the Alpha Micro Software Documentation Ltibrary in this
documentation packet Lists all software documentation available ‘from Alpha
Micro.)

This release contains a number of major new programs. Besides the new Alpha
Micro Electronic Mail System, AlphaMAIL, this release also includes a
terminal driver building proaram, many enhancements to the assembly language
programming system (including the addition of an object file Library
generator), and new features in the AlphaBASIC programming system (including
two new file modes). See Section 3.0, below, for information on the changes
for this release.

Please read the documentation supplied with this release before converting
to AMOS Version 4.5. (NOTE: If you are currently running under AMOS Version
4.3 or earlier and are using a disk that runs under control of the AM-410,
it 1is very important that you read AMOS Version 4.4 Method of Handling Bad
Disk Blocks 1in the “System Operator's Information" section of this
documentation packet before running any of the 4.5 software. AM-410 users
must be aware of the fact that some softuare contained on pre—4.4 Releases
of AMOS dis not compatible with AMOS Version 4.5 because of the changes in
the ‘bad block handling.)

1.0 THE RELEASE MECHANISM

Because of the Llarge amount of software now available from Alpha Micro, we
cannot distribute it all on one floppy disk. We are now providing all the
software we supply on one 5-megabyte or one 15-megabyte hard disk which is
automatically updated for each release. For floppy disk users, things are a
bit more involved. With each of the releases you will receive a new System
Disk. This will contain all of the standard system softwara. To receive
the additiomal software, you must specifically order one of the additional
diskettes. These diskettes are divided up as follows: a LISP/PASCAL
diskette containing the LISP and PASCAL programs and their associated files;
a Driver Source Diskette containing sources to device, terminal, and
interface drivers; and a Miscellaneous Program Diskette containing various
BASIC and MACRO programs. You may order these disks through your dealer.
See the separate document dealing with disks, Disks Available from Alpha
Micre in this packet.

~ AMOS VERSION 4.5 RELEASE NOTES " Page 2_

2.0 DOCUMENTATION INCLUDED WITH THE 4.5 RELEASE

Included with this release is the standard AMOS Software Update
pocumentation Packet.

The following new manuals and documents have been issued since Release 4.4:

AlphaMAIL User's Manual, (DSS-10000-06): This book describgs the
use and installation of AlphaMAIL, the Alpha Micro Electronic Mail
System. . -

AlphaVUE/TXTFMT Training Guide, (DSS-10000-03): This book
introduces the new AMOS user to AlphaVUE, the screen—oriented text
editor, and TXTFMT, the text formatting program.

Change Page Packet #2 for the '"AlphaBASIC \User's Manual',
(pSS~10000-07): These change pages .update the BASIC manual for
Release 4.5. '

Change Page Packet 41 for the "AlphaPASCAL User's Manual”,
(pSS-10000=10): These change pages contain additional information
about AlphaPASCAL Version 2.0.

Change Page Packet #2 for the "AMOS System Commands Reference
Manual'™, (DSS-10000-09): These change pages update the system
command reference sheets for Release 4.5.

In addition, the following manuals have been revised for AMOS Release 4.5:

AlphaFIX User's Manual, (DWM-00100-6%, Revision A01).

AMOS Assembly Language Programmer's Manual, (DWM-00100-43, Revision BOO).

AMOS Monitor Calls Manual, (bWM-(Q0100-42, Revision BOO).

ISAM System User's Guide, (DWM-CG0100-D6, Revision AQ2)

TXTFMT User's Manual, (DWM-00100-07, Revision B00).

We provide a complete list of the documentation applicable to this release
in A Guide to +the Alpha Micro Software Documentation Library, in this
packet. NOTE: You may corder a four-binder set of Alpha Micro documentation
that includes three volumes of software documentation and the one-volume
Alpha Micre Integrated Systems User's Guide, by ordering part number
PDB-00001-00 from the Alpha Micro Sales Order Department. (This set includes
all Alpha Micro software documentation except the AlphalISP User's
Manual.) You may also order individual manuals by their own part numbers.

Also, notice the Master Table of Contents that lists all documents 1in the
AMOS Software ‘Update Documentation Packet; this is the first document in
this packet. R ‘

AMOS VERSION 4.5 RELEASE NOTES : - .-page 3

3.0 NEW SOFTWARE FOR RELEASE 4.5 .
AMOS Release 4.5 features several major new_prdgrams: '

AlphaMAIL - AlphaMAIL, the Alpha Micro Electronic Mail System allows users
on an Alpha Micro computer system to exchange mail in the form of AMOS
files. Messages sent can take the form of memos, letters, reports, random
data files, or files containing binary data. The AlphaMAIL Operator can
send one message to multiple users, and can specify how many days the system
will hold the message. For more information, see. the AlphaMAIL User's

Manual, (DSS-10000-06).

NEWTRM =~ To help our users build their own terminal drivers for terminals
that are not currently supported by Alpha Micro, we have developed NEWTRM.
This dnteractive program asks questions about the characteristics of the
terminal you need a terminal driver program for, and then produces the
assembly Llanguage source (.MAC) file for the appropriate driver. (NCTE TO
FLOPPY DISK USERS: NEWTRM is a PASCAL program~- you must have AlphaPASCAL
Version 2.0 on your system in order to use it.) For more information, see
the document Building a New Terminal Driver (The NEWTRM Program) in the
"System Operator's Information'" section of the AMOS Software Update
Documentation Packet.

LIB - As one part of the general enhancements made to the AMOS assembly
Language programming system {(discussed in Section 4.0, below), this release
features the object file Library generator, LIB. LIB allows you to define
Libraries of object file routines which all assembly Language programmers on
your system can make wuse of. LIB allows you to modify as well as create
Library files. For information on using LIB, refer to Revision 800 of the
AMOS Assembly Language Programmer's Manual, (DWM-00100-43).

Magnetic Tape File Backup - The magnetic tape file backup system consists
of the programs FILTAP, TAPFIL, and TAPDIR. These programs .allow you to
perform disk file-oriented backup on a magnetic tape unit connected to an
AM=-600C Magnetic Tape Formatter Interface. You may back up and restore
random files, sequential files, and multiple disk surfaces on a single tape.
For information, see the document The Magnetic Tape File Backup Programs
in the "System Operator's Information" section of the AMOS Software Update
Documentation Packet.

For the first time on a general release, we are releasing the AM-120
Auxiliary I/0 Controller support software-- CAL120, TIME, DATE, and the
AM=12T1 driver, AM120.DVR. The AM=120 board contains several features
including a clock/calendar with battery backup, power fail detection and
handling, two serfal ports, and three eight-bit parallel output ports and
three eight-bit parallel input ports.

for information, see the Software Installation Instructions for the AM-120
tn the "System Operator's Information"” section of the AMOS Software Update
Documentation Packet.

AMOS ‘VERSION 4.5 RELEASE NOTES P “5‘P§9€”4

This release also contains software support for the Alpha Micro AM~710 128K

byte memory board which detects and reports parity errors. The PAR;TY
program enables parity error detection for this memory .board. For
information on PARITY, see Software 1Installation Instructions for the

AM-710 Mewmory Board in the "System Operator's Information" section of ‘the
AMOS Software Update Documentation Papket. ' S

4.0 ENHANCEMENTS TO EXISTING PROGRAMS FOR RELEASE 4.5

In ‘addition to the new programs discussed above, this release also contains
many enhancements to existing software:

4.1 The Monitor

The monitor now provides a new output control command, Control-R. When you
type a Control-R, the monitor repeats back the current contents of the input
buffer. This is extremely useful when you type several Llines of characters
ahead while your terminal is displaying program output and then want to
remember exactly what vyou entered. (Or, if wvyou are using a printing
terminal, you will find this command useful when repeated rubouts have
obscured the text.)

Another change in the 4.5 monitor allows command files to accept Lower case
characters as well as upper case.

Finally, several new monitor calls have been added:

AMOS Executes AMOS commands without exiting current program.

FMARKR Read in reverse to find file mark on specified magnetic
tape unit.

JWAITC Sets your job into the wait state.

LCS Converts one character in R1 to lower case.

OPENA = Opens a logical dataset for appending.

PCALL Invokes program as subroutine.

RLSE Releases control of a semaphore and allows waiting job to
access source.

RAST Requests control of a semaphore to access source or to
wait in wait chain. '

ucs Converts one character in R1 to wpper case.

WAKE Wakes a job out of sleep state.

See Revision BOD of the AMOS Monitor Calls manudal, (DWM-00100-42) for more
information.
\E

AMOS VERSION 4.5 RELEASE NOTES - ' - : Page 5

4.2 The AlphaBASIC Programming System

This release dncludes two versions of the AlphaBASIC run—time package:
RUN.PRG and RUNSML.PRG. RUNSML.PRG is much smaller than RUN, but is
jdentical to it except that it does not support the trigonometric functions
or the EXP, LOG, LOG10, FACT, or exponentiation (7) operations. Since many
business packages do not make use of those mathematical functions, many
users will be able to save a considerable amount of memory (over 1000 bytes)
by using the smaller RUNSML rather than the standard RUN program to. - execute
BASIC programs.

The only time you will see a difference between using RUN or RUNSML is if
your program makes use of the functions not supported by RUNSML. If you are
using RUN.PRG, such functions will execute normally; 1if you are using
RUNSML.PRG, .you will see the error message: : :

?Unsupported function

For compatibility with existing command files, users who do not need the
extra mathematical functions may want to rename RUNSML.PRG to RUN.PRG.
Before doing so, however, you will probably first want to rename RUN.PRG to
a new name (e.g., RUNOLD.PRG) to save it 1in case you need it in the future.

Two new file modes have been added to COMPIL and BASIC: FORCED'RANDOM and
APPEND. FORCED'RANDOM mode was added to aid those of you who are writing
applications that wuse file locking to permit users to concurrently update
the same files. If you open a random file in FORCED'RANDOM mode, every time
your proaram READs a file record, BASIC will force a disk access even if
that record is already in memory, and every time your program WRITEs a
logical record, BASIC will force a disk write operation even if the buffer
is not full. FORCED'RANDOM mode ensures that a record retrieved by your
program contains the latest updates to that record.

APPEND mode has been added to make the wuse of sequential files more
convenient. If you open an existing seguential file in - APPEND mode, BASIC
will position the file pointer to the end of that file and allow you to
write information to the end of that file. :

This release of BASIC contains 2 new error trapping procedure for a program
interrupt caused by a Control-C. If a Control-C has been trapped by an error
handling routine, the routine RESUME statement will cause the program to
resume to the Line following the one that was interrupted by the Control-C.

Other new features for COMPIL include:

If an error occurs during program compilation, COMPIL will not produce a
-RUN file. '

COMPIL now supports the use of Include Files. That is, COMPIL can fetch
source code from a specified file while you compile another program file,
and insert it into your compiled program file.

AMOS VERSION 4.5 RELEASE NOTES Co ~ Page 6

COMPIL optionally reports a messaée if it encounters any unmapped-variables
in your program file. {This allows you to make sure that aLt variables were
defwned via MAP statements.) .

And, finaLLy, considerable work has been done to enhance AlphaBASIC's error
detection and reporting. For example, instead of stacking and discarding
some errors, COMPIL now reports errors as soon as they are encountered. A
variety of syntax errors that earlier were unreported are now detected and
- reported. e ‘ S

4.3 The Alpha Micro Assembly Language Programming System:

The assembly language programming system has been considerably enhanced and
changed for this release. See Section 1.1 of the AMOS Assembly Language
Programmer's Manual, (DWM-00100-42) for more dinformation on the features
added to the AMOS assembly Language programming system for Release 4.5.
{This manual has been completely rewritten for this release.)

4.3.1 MACRO

MACRO provides an optional symbol cross reference listing as part of the
standard assembly Llisting. :

MACRO supports the use of local symbols.

New psuedo opcodes allow you to: cause undefined symbols to be automatically
EXTERNed; modify the name of MACRO output disk files; enable and disable
output to the Llisting file; enable and disable symbol output to the cross
reference Llisting; and end macro expansion.

Additionally, MACRO now supports a parameterized assembly option that allows
you to specify a value on the MACRO command Lline that can be examined during
the assembly process {using the new pseudo opcode MVALU). This is especially
useful when used with the conditional assembly directive pseudo opcodes.

4.3.2 LINK and SYMBOL

LINK and SYMBOL have been rewritten for Release 4.5. Thedir output display
has been changed to provide more 1nformat1on, and their functions have been
considerably expanded.

Both LINK and SYMBOL accept a lLarge number of option requests that allow you
to do such things as: generate a locad map file that indicates how the Linked
files will be Lloaded into memory; include equated symbols in the symbol
table file; and, specify a Library file, an optional file, or a reguired
file. : '

i

AMOS VERSION 4.5 RELEASE NOTES oo LPage? .-

4.3.3 bbT and FIX B - EE I R

With this reLeaée, PPT and FIX both support Loca[-symboLs.

4.4 TXTFMT

To increase the flexibility of TXTFMT so that it suits your barticular
" documentation needs, we have added four new commands to TXTFMT: /HEADER. :NO
EMBED, /HEADER EMBED, /NUMBER HEADER, and /NO NUMBER -HEADER. : '

When TXTFMT encounters -section titles that are level three or deeper, it
brings the next Line of text up to the same Line as the section header,
separating the header from the text by a hyphen. (That is, it embeds the
header in the surrounding text.) The /HEADPER NO EMBED (/HNE) command
disables this default format, and tells TXTFMT not to embed these headers.
The /HEADER EMBED (/HE) command re-enables header embedding. (NOTE: Section
titles are specified via the /HEADER LEVEL n command.)

The /MUMBER HEADER (/NMH) command tells TXTFMT to number paQes with section
oriented numbers. For example, if the text at the top of the page is in
Section 4.0, and the page is the 25th page in that section, the page number
for that page is: 4=-25. The /MO NUMBER HEADER (/NNMH) command disables
section-oriented page numbering.

Other enhancements include: the /FQOTER command accepts leading spaces and
change bars work with unformatted text, underscores, and Lists. See the
TXTFMT User's Guide, (DWM-00100-~07) for more information. (This manual has
been completely rewritten for this release.)

4.5 Miscellaneous:

The generalized terminal driver program, TRM.DVR, no longer has to be Lloaded
into system memory. (In previous releases, your system initialization
command file had to include a SYSTEM TRM.DVRI1,6] command Line to include
the TRM driver 1in system memory.) NOTE: However, If your BASIC programs
access the TRM driver, the driver must be loaded into system memory since
BASIC performs its own memory allocations in user memory.

Because of changes to AlphaBASIC, SYSTAT now displays the name of the BASIC
program a user is running, rather than just "RUN".

HASHER now accepts input in the same format as the DSKCPY command. See the
HASHER reference sheet 1in the AMOS System Commands Reference Manual,
(DWM-00100~49) for more information.

The APPEND command extension defaults have been changed to make the command
easier to use. (The ‘input file extension default is now the output file
extension.)

LOAD has been changed to use the appropriate extension as the default if you
specify a file in an ersatz device. (For example, 4if you say '"LOAD

AMOS VERSION 4.5 RELEASE NOTES IR Pagr '8

BAS:NEW", LOAD will Lload into memof} NEW.BAS, since you have specified BAS:,
the BASIC Library account.)

PDLFMT now accepts apostrOphes within LabeL names (thus mak1ng PDLFMT more
useful for designing BASIC oprograms, since AlphaBASIC also _aLLows
apostrophes within variable names). T :

FORCE now checks to see if a job is guarded before forcing input to that
job; if the job is guarded, the forcing job receives an ., error -message . and
the operation aborts. . (NOTE: A job '"guards" 'itself by using the. SET GUARD
command.)

IR

5.0 PROGRAMS INCLUDED WITH VERSION 4.5

The following describes all of the standard system software as of AMOS
Version 4.5, FLOPPY DISK USERS NOTE: Not all of the programs described
below are included on the standard 4.5 System Diskette. Due to sgpace
Limitations, some of the programs have been placed on separate diskettes.
Any such programs are noted in the descriptions below. See Disks Available

from Alpha Micro for information on the separate diskettes. The AM=500
System Disk (a S5-megabyte pack) and the AM-410 System bDisk (a 15-megabyte
pack) contain all of the software described below, plus additional software
described in the Disks Available writeup.

Programs in Account [1,4]:

AMSORT.SYS Generalized sort module used by SORT.PRG and BASORT.SBR.
This module must not be run directly.

APPEND ,PRG Program to append sequential data files.

ASCDMP,PRG pumps physical disk blocks 1in ASCII onto the wuser's
terminal. '

ATTACH.PRG Attaches terminals to jobs.

BADBLK.PRG Lists the contents of BADBLK.SYS, which c¢ontains disk
certification data. :

BASIC.PRG The dinteractive AlphaBASIC compiler.

BAUD .PRG Sets interface baud rate. Used with AM-3N0 and AM-=310
only. o

BITMAP.PRG Defines disk—~type device bitmap size during system startup.

BMVR.PRG Programs 2708 EPROMs using a CROMEMCO Bytesaver board.

CbC210.PRG Bootstrap program for the AM-210/CDC combination.

CLKFRQ.PRG pefines the Line clock frequency during system startup.

CPMCPY .PRG Copies files between CP/M floppy diskettes and the AMOS
: . system.

CPMDIR.PRG Allows you to see the directory of a C/PM floppy d1skette.

COMPIL.PRG The disk-based ALphaBASIC compiler.

COPY .PRG Copies files bhetween devices.

.. CREATE.PRG Creates .a contiguous file.
CRT410.PRG Certifies disks running on the AM 410 Hard D1sk ControLLer.
DATE.PRG Sets or displays the system date. (Used by

AlphaAccounting, the Line printer spooler, and the AM-120
-Auxiliary I/0 Controller.))

AMOS VERSION 4.5 RELEASE NOTES T ipage

DDT.PRG
DEL.PRG
DEVTBL.PRG

DIAGZ.PRG
DIAG3.PRG

DIAG4.PRG
DING.PRG

DIR.PRG
DIRSEQ.PRG
DOC.PRG

DSKAMNA.PRG

DSKCPY.PRG
DSKDDT.PRG
DSKDMP.PRG

DSKFIL.PRG

DSKPAK.PRG
DUMP.PRG
DYSTAT.PRG
EDIT.PRG
EMC.PRG

EPO.PRG

ERASE.PRG
EXIT.PRG
FILCOM.PRG
FILDMP.PRG
FILTAP.PRG

FIXDVR.PRG

FIXMTM.PRG
FIX.PRG

FLTCNV.PRG

FMT200.PRG
FMT210.PRG
FMT4D0.PRG
FMT500.PRG
FORCE.PRG

" GLOBAL.PRG

GOTO.PRG
HASHER.PRG

' Symbolic debuager for assembly language programming.

Peletes memory modules. _
During system startup, defines the devices connected to the
system. buring normal operation, Llists the connected
devices.

Floppy disk drive and controller diagnostic.

Memory djagnostic (allows start and end address to be user
specified).

Memory diagnostic.

Program to sound the terminal bell. <{(Used in command
files.)

Lists directory of files on a device.
Alphabetizes a directory by filename.
Parameterized command file processor.
files.) _ :

Disk analyzer program. Checks the directory structure on a
device for errors. : '
Copies a Literal disk image from one drive to another.
Octal debugger for physical disk blocks. '
Dumps the contents of a physical disk block on the user's
terminal. :

Lists the physical disk blocks occupied by a sequential
file. '

Packs the contiguous files on a disk.

Bumps memory, bitmaps, directories, etc., in octal or hex.
bynamic system status display for use with a VDM-1 board.
Character-oriented text edjtor.

Support program for the AlphaMAIL system. Should not be
run directly.

Support program for the AlphaMAIL system. Should not be
run directly.

Erases disk files.

Exits a command file prematurely.

Binary file comparison program.

bumps a disk file in octal on the user's terminal.

Copies disk files to a magnetic tape unit running under
control of the AM-400 Magnetic Tape Formatter Interface.
Configures a floppy disk driver for the proper controller,
density, and device.

Configures the MTM printer driver.

Screen-oriented, symbolic debugger for assembly language
programs.

Floating-point conversion module used by various AlphaBASIC
XCALL subroutines. This module must not be run directly.
Formats disks on the AM-20C floppy disk subSystem.

Formats disks on the AM=-210 floppy disk subsystem.

Formats disks on the AM-400 disk subsystem.

Formats disks on the AM-500 disk subsystem.

Forces commands into a terminal input buffer.

Produces a cross-reference listing of global symbols used
within assembly Language programs.

Performs branching within command or DO files.

Generates a disk hash total.

(Processes DO

LI bk

AMCS VERSION 4.5 RELEASE NOTES

HEDLOD . PRG

.HELP .PRG

'HWKLOD .PRG

IBMCPY.PRG
IBMDIR.PRG

ICMLOD.PRG
ISAM,PRG

ISMBLD.PRG
ISMCOM.PRG
ISMDMP.PRG
ISMFIX.PRG

JOBMEM. PRG
JOBPRI.PRG
JOBS . PRG

KILL.PRG
LABEL .PRG
LIB.PRG

LINK.PRG
LISP.PRG

LOAD.PRG
LOG.PRG

LOGOFF.PRG
LOOKUP.PRG

LPTINI.PRG
LPTSPL.PRG

MACRO.PRG
MACC. QVR
MAC1.0VR
MAC2.0VR
MAC3.0VR
MAC4.OVR
MAC5,0VR
MAKE .PRG

MAP,PRG
MDO.PRG

MEMDEF .PRG

. befines . the

by AlphaBASIC and others. This’

Page 10

head load time for floppy d1sks dur1ng system
startup.

Displays br1ef 1nstruct1ons concern1ng various programs.
Bootstrap program for the AM-500. .
Program to read IBM~3740 format diskette.
Program to List the d1rectory of an
diskette. _

Bootstrap program for the ICOM floppy board.

The Indexed Sequential Access Method control module. Used
module must not be run

I8M-3740 .format

directly.
Builds ISAM files.
Compresses the top level of ISAM files.

“ pumps the data from an ISAM file.

Converts Version 4.2 ISAM files to AMOS Versions 4.3 and
Later format. _

Defines a job's memory partition during system startup on a
system that uses bank switching for memory management.

Sets a job's scheduling priority.

During system startup, defines the jobs to be available on
the system. During normal operation, lists the user's job
name. -

Aborts a specified job.

Changes or displays disk Labels.
Object file Library generator for
programs.

The Linking loader for assembly Llanguage object files.

The AlphalISP programming Language. (Available on the
AlphalLISP/ALphaPASCAL diskette.)

Loads files into memory.

AlLlows the user to gain access to the system, and to move
between disk accounts.

Allows the user to leave the system.

Performs test for valid file specification within command
files.

assembly Language

Should be run 6nly

Sets up the line nprinter spooler.

during system startup. _

The Lline' printer spooler program. Should not be run
directly. '

The macro assembler.

Overlay used by the macro assembler.

Qverlay used by the macro assembler.

Quverlay used by the macroc assembler.

Overlay used by the macro assembler.

Overlay used by the macro assembler.

Overlay used by the macro assembler.

{reate an empty sequential file in preparation for use with
EDIT.PRG.

Lists the contents of the user's memory partition.
Parameterized command file processor used by the
system. This module must not bhe run directly.
During system startup, defines the memory management banks
for a system that bank switches memory. buring normal

operating

AMOS VERSION 4.5 RELEASE NOTES

. MEMERR . PRG

MEMORY.PRG

MODFLG.SYS
MODIAG.PRG
MONGEN.PRG

MONTST.PRG

MOUNT .PRG
MTSTAT.SYS
PARITY.PRG
PASS.PRG

PAUSE.PRG

POLFMT.PRG

PERLOD .PRG
PPN.PRG

PRINT.PRG
PRINTR.INI
PULSE.PRG

ADT.PRG
QUEUE.PRG

RAZA.PRG

REDALL.PRG
RENAME .PRG
REVIVE.PRG

REWIND .PRG
RNDRED.PRG
RUN.PRG

RUNSML.PRG

SAVE.PRG
SCNWLD.SYS
SEND .PRG
SET.PRG
SIZE.PRG
SKIP.PRG
SLEEP.PRG

SMDLOD.PRG

‘Used to allocate memory partitions on a

‘Support module for AlphaMAIL.

operat1on, pr1nts the memory conf1gurat1on of the system on
the user’s terminal.

Initializes memory error detect1on on the Piiceon SuperMem
memory board. Also initializes the AM-710 memory board.
system that does
not wuse memory management. - Also ‘displays the user's
current memory allocation. :
Cannot be run directly.
Support program for AlphaMAIL. Should not be run directly.
Links device drivers into the system monitor to generate a
new system monitor. '
Boots a specified system moniter with a
initialization file. Used for system testing.
Mounts a device, making it available for use.
Used by the mag tape software to store tape drive status.
Enables parity error detection for AM=710 memory boards.

Al lows the user to change his own password.

Temporarily pauses within a command file. The command file
may be continued by use of the CONT program.
Program Design Language, a utility used to

specifed

help des%gn

" projects.

Bootstrap program for the AM-200, PERSCI combination.

Lists PPNs defined on a disk.

Sends a print request to the Line pr1nter spooler.

Sample parameter file for the LPTINI nrogram.

Support program used by AlphaMalL. Should not be run
directly.

Octal debugger which works with absolute memory locations.
During system startup, defines the number of additional
monitor aqueue blocks to be allocated. During normal
operation, displays the number of free queue blocks
available.

Random read-write test for the AM-S500.

Test program which reads all blecks on a device.

Utility to rename files. .
Program to wake up a job which has been suspended. (See
SUSPND .PRG.)

Rewinds mag tapes.

Test program which does random seeks and reads on a device.
The AlphaBASIC Runtime package.
Version of the AlphaBASIC Runtime
contain several mathematical
RUN.PRG.

Saves & memory module on the disk.
Wildcard support module for various system utilities.
Allows the user to send a3 message to another terminal.
Utility to set various parameters.

Displays & file's size on the user's terminal.

Skips files on mag tapes.

Puts the user's job to sleep for the
seconds. ,
Bootstrap loader for the AM=-410 disk subsystem.

package that does not
functions: smaller than

specified number of

Page11 T

AMOS VERSION 4.5 RELEASE NOTES

SORRF.SYS

- SORSVA.SYS

SORT.PRG.

SRCCOM.PRG

SUSPMND.PRG
SYMBOL .PRG
SYSACT.PRG

SYSLPT.INI

SYSMEM.PRG
SYSTAT.PRG
SYSTEM.INI

SfSTEM.MON
SYSTEM.PRG
TAPDIR.PRG
TAPE.PRG
TAPFIL.PRG
TIME.PRG
TLGRAM.PDL
TODCNV.PRG
TRACE.PRG
TRIDDT.PRG

TRIINI.PRG

TRILOD.PRG
TRISET.PRG

TRMDEF.PRG

TXTFMT.PRG
TYPE.PRG

TBOINI.PRG
TROLOD.PRG
U.PRG
VUE.PRG
WAIT.PRG
WMG210.PRG
WNGLOD .PRG

Page 12

Module used by the sort utilities to sort random files.

This program must never be run directly.

Module used by the sort utilities to sort sequential files.
This program must never be run directly.

Stand=alone sort utility.

Source Llevel file comparison utility.

Suspends a job's activity. (see REVIVE.PRG) -

Creates a symbol file for use with the symbolic debugger.
Allows maintenance of a disk's accounting structure.
Creates and deletes PFNs.

Sample 1initialization file showing how to set up the Lline
printer spooler. The system is capable of bootina wusing
this initialization file.

pefines bank switchable system memory.

Displays the current system status.

A command file containing the instructions to the operating
system for configuring the system during system startup.
The system monitor.

puring system startup, defines the programs to be made
sharable via Lloading them into system memory. buring
normal operation, displays the contents of system memory.
Allows you to Llook at the directory of a magnetic tape
whose contents were created using FILTAP.

Reads and writes magtapes using the AM-A00 Magnetic Tape
Formatter Interface.

Copies files from magnetic tape to disk. See FILTAP and
TAPDIR.

Sets and displays the current time of day. Used by the
AM-120 Auxiliary I/0 Controller..

Example program for the Program Design Language Formatter
(PDLFMT). :

Time of day conversion module used by TIME.PRG and others.
This module must not be run directly.

Manipulates the trace (:T) flag within command f1les.
Debugger used to display TRIDENT formatter status.
Initializes the AM-400 interface board and the TRIDENT
formatter. _

Bootstrap. program for use with the AM-400.

Used to canfigure the AM=400 when running a mix of
different sjze TRIDENT disk drives.

buring system startup, this program defines the terminal
configuration connected to the system. puring normal
operation, it Lists that terminal configuration.

Text formatter program.

Utility to dump a sequential file on the user's term1naL in
ASCII.

version of the TRIINI program for T-80 drives.

Bootstrap program for the AM=400, TRIDENT T~80 combination.
Accepts and stores a single command Lline.

A scireen-oriented text editor.

Program to stall until the specified job is idle.

Bootstrap program for the AM-210/WANMGLO combination.
Bootstrap program for the AM~200/WANGCO combination.

I ,
e

AMOS VERSION 4.5 RELEASE NOTES

XY .PRG

200DVR.DVR
210DVR.DVR
ACTIV.TDV
ADDS.TDV
ADM1.TDV
ADMZ2.TDV
ADM3.TDV
ADM31.TDV
ADM41.TDV
AM100T. 1DV
AM120.1DV
AM300.1DV
AM310.1DV
CEN.DVR
DIABLO.DVR
DMEDIA.TDV
ECHO .MAC
HAZEL.TDV
HWKS00.DVR
IMSIO.IDV
1Q140.TDV
LPR.DVR
MEM.DVR

MTM.DVR
MTU.DVR

M40.TDV
PS3.1DV
QUM.DVR
RES.DVR
SIL700.TbV
SMD410.DVR
SOROC.TDV
TABDEF.MAC
TbY1.MAC
TbVZ2.MAC
TELTYP.TDV
TELVID.TBV
TRITZ5.DVR
TRITS50.DVR
TRIT80.DVR
TRI300.DVR
TRM.DVR

VARDEF .MAC

cursor positioning and other extended termwnat”
Used primarily within command files.

Performs
functions.

 Programs in account [1,61:

Device driver for the AM-200 floppy disk subsystem.
bevice driver for the AM-210 floppy disk subsystem.
Terminal driver for the ACT-IV terminal.

Terminal driver for the ADDS terminal.

Terminal driver for the Lear Siegler ADM-1 terminal.
Terminal driver for the Lear Siealer ADM-2 terminal.
Terminal driver for the Lear Siealer ADM-3 terminal.
Terminal driver for the Lear Siegler ADM-31 terminal.
Terminal driver for the Lear Siegler ABM-41 terminal.
Interface driver for the AM-100/T on-board serial ports.
Interface driver for the AM-120 on-board serial ports.
Interface driver for the AM-300 serial interface board.
Interface driver for the AM-310 communications board.
bevice driver for the Centronics printer.

bevice driver for the Diablo Hytype II printer.

Terminal driver for the bDatamedia 1520 terminal.

Source files used by NEWTRM.PCF; do not modify.

Terminal dirver for the Hazeltine 1500 series terminals.
Device driver for the AM-500.

Interface driver for the IMSAI SIO serial bocard.
Terminal driver for the Soroc T1Q-140 terminal. .
Device driver for the AM-320 High-~Speed Printer Interface.

Device driver to allow manipulation of the wuser's memory
partition.

bevice driver for the Multiterm printer.

bevice driver for the Formatter

AM—600 Magnetic Tape
Interface. :
Terminal driver for the Teletype Model=40 printer.
Interface driver for the Processor Tech 3P+§ serial board.
bpevice driver for the Qume Sprint 3 printer.

‘bevice driver for accessing system memory.

Terminal driver for the TI Silent-700 terminal.
pevice driver for the AM-410 disk subsystem.
Terminal driver for the SOROC 1Q-120 terminal.
Source file used by NEWTRM.PCF. Do not modify.
Source file used by NEWTRM.PCF. Do not modify.
Source file used by NEWTRM.PCF. Do not modify.
Terminal driver for standard Teletype Llike device.
Terminal driver for the Televideo terminal.

Device driver for the TRIDENT T-25 disk drive.
Device driver for the TRIPENT T-50 disk drive.
bevice driver for the TRIDENT T-8D disk drive.
Device driver -for the TRIDENT T-300 disk drive.
bevice driver to allow access to the termanaLs connected to
the system as devices.

Source file used by NEWTRM.PCF. Do not modify.

AMOS VERSION 4.5 RELEASE NOTES s e cPage 14,

Programs 1n Account E2 21

BATCH.CMD'

COM.DO

CONT.DO

CPY410.CMD
CPY500.CMD
EMAIL.CMD

NEWTRM.CMD

RES.CHMD

SYSCPY.CMD
UMAIL.CMD

J::Loads those'bﬁograﬁé‘édmmbnly“”used” within command files

into the user's memory partition. . - - .. o
Compiles a program, automatically calling the correct
compiler program, based on.the program extension. :

‘Continues execution of _a command file after . the PAUSE

command has been used.

Copies System Disks on AM- 410 based systems.

Copies System Disks on AM-500 based systems.

Runs the AlphaMAIL general interface program, EMAIL.

Runs the terminal building program, NEWTRM. (You must Log
inte DSKO:71,61 to run NEWTRM.)

Loads commonly wused programs into the user's memory
partition.

" Duplicates a System Disk on floppy disk based systems.

Support command file for EMAIL.

Programs in Account [7,01:

DDB.FXO
DIR.FXO
EA.FX0
HELP.FX0
JCB.FXO

LABELS.FXO
MAP.FX0

MENU . VUE
NEW.FX0
RAD50.FX0
RPN.FXO0
TRMDEF . FX0

TYPE.FXO

Overlay file for FIX, used to display data in DDB format.
Overlay file for FIX, used to display directories.

Overlay file for FIX, used to display effective addresses.
Overlay file for FIX, used to display help message.

Overlay file for FIX, wused to display job control block
contents.

Overlay file for FIX, used to display symbol table.

Overlay file for FIX, used to display the wuser's memory
map.

Function menu for the VUE editor.

Overlay file for FIX, used to clear the user's memory map.
Overlay file for FIX, used to display data in RADSO
notation. _ '
Overlay file for FIX, used to perform calculation in
reverse-polish notetion.

Overlay file for FIX, used to display data in a term1nal
definition block.

Overlay file for FIX, used to type ASCII text files.

Programs in Account [7,21:

ACT.RUN
CHK.RUN
DTB.RUN
OPR.CMD
OPR.RUN

REC.RUN
STA.RUN
UPD . RUN

Used by the OPR program. Should not be run directly.

Used by the OPR program. Should not be run directly.

Used by the OPR program. Should not be run directly.
Invokes the OPR program. -

The main AlphaMAIL System maintenance program. Only for
use by the AlphaMAIL Operator. :

Used by the OPR program. Should not be run directly.

Used by the OPR program. Should not be run directly.

Used by the OPR program. Should not be run directly.

AMOS VERSION 4.5 RELEASE NOTES Page 15

Programs in [7,41 (Available on the AlphaLISP/AlphaPASCAL Diskette.)

DIFF.LSP
DOCTOR.LSP
ILISP.LSP
LISP.LSP
METEOR.LSP

Sample LISP program.
Sample LISP program.
Sample LISP program,
The LISP Library.

Sample LISP program.

Programs in [7,53 (Avaijtable on the AlphaLISP/AlphaPASCAL Diskette.)

CMPLIR.PCF
DEMO.PAS
DEMO.PCF

NEWTRM.PCF
PLINK.PCF

The AlphaPASCAL compiler.

AlphaPASCAL demonstration program (source fite).
AlphaPASCAL demonstration program f(compiled and Linked
version of DEMO.PAS).

Terminal driver building program.

The AlphaPASCAL Linker.

Programs in Account C7,63:

BASORT.SBR
COMMON. SBR
EMAIL.RUN
FLOCK.SBR

IDIN.SBR
PRIV.SER
REABIN.SBR
SPOOL . SBR

UMAIL.RUN
WRTBIN.SBR
XLOCK.SBR

XMOUNT . SBR

AlLphaBASIC subroutine to sort disk files.

AlphaBASIC subroutine to store variables in common storage.
AlphaMAIL interface program for the general user.
AlphaBASIC subroutine to perform interprocess file Llocking
functions.

Support subroutine for AlphaMAIL.

Support subroutine for AlphaMAIL.

Support subroutine for AlphaMAIL.

AlphaBASIC subroutine to send print requests to the Lline
printer spooler.

Support program for AlphaMAIL. Should not be run directly.
Support subroutine for AlphaMAIL.

AlLphaBASIC subroutine to perform simple interprocess
locking.

AlphaBASIC subroutine to mount disks.

Programs in Account [7,7]:

ISUSYM.MAC
SYS.MAC

Definition file used when Llinking to ISAM.
Defines items wused for communicating with the operating
system. :

'ApriL 1981
Revision AQS

DISKS AVAILABLE FROM ALPHA MIC

1.0 DISKS AVAILABLE

The disks currently available from Alpha Micro are Llisted below. Listed

disks' descriptions are their part numbers
disks, please contact your Alpha Micro Dea

after the
for these

(STD format)
(AMS format)
(STD format)
(AMS format)

Diskette
Piskette
Piskette
Diskette

WANGCO
WANGCO
PERSCI
PERSCI

AM~-200 System
AM-200 System
AM~-200 System
AM-200 System

CDC AM-210 System Diskette (Double Density, AMS)

AM~500 System Disk (5-Mbyte disk pack)
AM-410 System Disk (15-Mbyte disk pack)

Miscellaneous Program Diskette
Driver Source Diskette
AlphalLISP/ALphaPASCAL Diskette

Because of
js no Llonger possible to fit all of the Sys
single~density floppy diskette. Thus, floppy diske
System Diskette are available for some of the standsg
Wangco and Persci). These additional diskettes conta
not included in the single-density System. Diskettes.

The AM-410 and AM-500) System Disks and the CO
contain all of the single-density System Diskette sd
software c¢ontained on the three other non-Syst

non=-System Diskettes are supplied in STD (128 byte/s
Trident users wishing to upndate their systems from 4
choose the System Diskette for their type of fl|
format is most convenier t. ‘

The following sections discuss the overall organizat

software by disk account, and discuss what types of
available on the various single-density floppy diske

{Changed 30 April 1981)

. To obtain the
Ler.

prices

PDB-00104-06
PDB-00104-07
PDB~00104-02
POB~00104~03
PDB-00104-11
PDR-00104-12
PDB-00104-13

PpB-00104-19
PDB-00104-20
PDB-00104-21

the lLarge amount of software now availgble from Alpha Micro, it

tem programs onto one
ttes other than just the
rd floppy devices (e.qg.,
in software and sources

¢ AM-210 System Diskette
ftware, plus all of the
em Diskettes. The three
ector) format only.

System Diskette should
oppy drive, in whichever

jon of the Alpha Micro
software and sources are
ttes.

DISKS AVAILABLE FROM ALPHA MICRO

2.0 SOFTWARE ORGANIZATICN :

The general system release software is organized. into thirteen different
categories. Each category of software resides in a separate disk account:

1,21 This 1is the System Operator's account, OPR:. It s the
account from which the System Operator runs wvarious system
management and maintenance programs. Only the AM-410 System

" Disk has a file in this account: BADBLK.SYS (which contains .-
disk certification data for that disk).

1,41 This is the System Program Library account, SYS:. It 1is the
account that contains all of the system software. You execute
a program in this account hy typing its name at AMOS command
level.

£1,61 . This is the Device Driver Library account, DVR:. It contains
- all terminal, interface, and general device drivers.

£z2,21 This dis the Command File Library account, CMD:. It contains a
number of useful command and DO files. ’

£7,0l This is the Library account, LIB:. It contains auxiliary files
for system software {(such as the AlphaFIX overlay files),

£7,11 This is the Help File Library account, HLP:. It contains the o
HELP files. Any text file with a .HLP extension that resides :
in this account can be accessed via the "HELP command from
anywhere on the system.

[7,2] This 1is the AlphaMAIL account, BOX:. The AlphaMAIL Operator
uses this account in maintaining and managing the AlphaMAIL
system.

7,41 This s the AlphalISP Library account, LSP:. It contains

AlphalISP programs.

7,51 This is the AlphaPASCAL Library account, PAS:. It contains
AlphaPASCAL programs, as well. as the ALphaPASCAL compiler,
Linker, and standard Llibrary.

[7,56] This is the AlphaBASIC Library account, BAS:. It contains
various assembly Llanguage subroutines callable by your BASIC
programs, and contains compiled BASIC programs. Any ..RUN or
-.SBR file dn -this account can be accessed by BASIC from
anywhere on the system.

7,71 This is the MACRO Library account, MAC:. It contains various

assembly Llanguage files that can be accessed by your assembly
Language programs.

{Changed 30 April 1981)

DISKS AVAILABLE FROM ALPHA MICRO o - Page 3

£10,11 This account contains source files ‘to various miscellaneous
programs.
10,21 This account contains source files for a number of terminal

and device drivers.

Each one of the accounts above is included in the AM-500 and AM-410 System
Disks and the double-~density floppy System Diskettes.

3.0 SINGLE-DENSITY FLOPPY DISKETTES

These paragraphs discuss what accounts listed above are included on which
single-density floppy diskettes:

3.1 The Single-Density System Diskette

The System Diskatte is actually two diskettes that contain all of the system
software, drivers, and command files distributed with the current release.
(That is, these two diskettes contain accounts (1,41, 01,61, (2,21, (7,01,
and [7,71.)

We have taken care to make sure that the diskette Labeled "Part 1 of 2"
containg the software necessary to boot vour system under the minimal system
initfalization command file contained on the diskette. There is also enough
room on the first diskette to allow vou to copy files and to edit your
SYSTEM.INI file.

The four different System Diskettes differ only in the device driver the
monitor has been generated with. Each System Diskette contains a SYSTEM.MON
file that has been generated to access a particular System Device.

2.2 The Single-Density Non-System Diskettes

The other three single-density floppy diskettes contain the rest of the
accounts Listed din Section 2.0 above that are not included in the
single-density System Diskette. :

The MisceLLaheous Programs Diskette — This floppy diskette contains all of
the files 1in accounts (7,11, 7,21, and [10,11].

The Driver Sources Diskette - This floppy diskette contains all of the
files in account C10,2].

The AlphalISP/AtphaPASCAL Diskette — This ftoppy diskette contains all of
the files 1in (7,41 and [7,5]1. It also contains the system software and
command files necessary to use AlphalLISP and AlphaPASCAL.

(Changed 30 April 1981)

April 1981
Revision AD4

¥

A GUIDE TO THE ALPHA MICRO SOFTWARE DOCUMENTATION LIBRARY

Alpha Micro software documentation 1is grouped into two categories: 1.,
individual manuals that you can purchase separately; and 2., documents - that
are packaged together 1in the AMOS Software Update bocumentation Packet.
(NOTE: The AMOS Software Update Documentation Packet was previously known as
the "AM-100 documentation packet.')

A number 1in parentheses after a document title (e.g., DWM-00100-20)
indicates that the document is a manual that can be purchased separately;
the number is the part number by which you may order that document.

Refer to Section 3.0 for an alphabetic list of all Alpha Micro software
documentation. (In that List we indicate those documents that are part of
the AMOS Software Update Documentation Packet by following their titles with
the code "AMOS PKT." You may only order those documents by ordering the
entire AMOS Software Update Documentation Packet, part number DSS-10000-05.)

1.0 THE ALPHA MICRO SOFTWARE MANUALS

This section Llists those documents not includéd in the AMOS Software Update
Pocumentation Packet or as documentation for the AlphaAccounting system.

NOTE: We are in the process of writing an AMOS System Operator's Guide,
which contains dJnformation necessary to the person in charge of system
management {e.g., system software dnstallation, modifying the system
initialization command file, formatting disks, memory management, performing
diagnostic tests on disks and memory, creating user accounts, etc.).

(Changed 30 April 1981

" A GUIDE TO THE ALPHA MICRO SOFTWARE DOCUMENTATION LIBRARY

Page 2

TITLE: AlphaBASIC User's Mariual
(DWM-00100-01, Revision BOO)

READER: Aimed at all BASIC users. Assumes that you have had some
prior experience with BASIC and with programming.

.- 'TOPICS: - Discusses the -operation of AlphaBASIC in ' both interactive

: and compiler modes. Lists all AlphaBASIC commands and *
functions, and discusses the various data formats supported
by AlphaBASIC. Also discusses the use of MAP statements
for mapping data structures {qnto memory. Talks about
advanced BASIC programming techniques (e.g., the AlphaBASIC
file I/0 system, calling external assembly Language
routines, chaining to other programs, print using, error
trapping and using the ISAM system). Contains many program
examples. .

TITLE: AlphaFIX User's Manual
(DWM-00100-69, Revision ADD)

READER: Advanced assembly language programmer, who already fully
understands the use of MACRO, LINK, and DDT.

TOPICS: Explains the wuse of FIX, the Alpha Micro screen-oriented
debugger program for machine Language programs. Lists all
the FIX commands and modes.

TITLE: AlphalISP User's Manual
(DWM-(0100-05)

READER: This manual - is written for the LISP programmer who is
already gquite familiar with the LISP language.-

TOPICS: Discusses the functions available in AlphalLISP, along with

a description of the data types recognized. Instructions
are included on operating the Llanguage processer, aleng
with a group of sample programs written in AlphalISP.

(Changed 30 April 1981

£

e
é@

Sy

.

A GUIDE TO THE ALPHA MICRO SOFTWARE DOCUMENTATION LIBRARY " page 3

TITLE: AlphaMAIL User's Manual
(pSS-10000-06)
READER: Aimed at all users of the system who are authorized users

of AlphaMAIL. Assumes no prior experience with electronic
mail systems but some familiarity with the Alpha Micro

system dis required. Further ~ dJnstructions for an
experienced user acting as the AlphaMAIL Operator are also
provided. '

TOPICS: Gives full operating instructions for AlphaMAIL, along with

a summary of all AlphaMAIL commands. Discusses the general
user features of sending, receiving, orinting and
forwarding messages. Further discusses the maintenance
system available to the Operator controlling AlphaMAIL.

TITLE: AlphaPASCAL User's Manual

(DWM~-00100-N8, Revision BOOD

READER: This manual is aimed at the PASCAL programmer who 15
already familiar with standard PASCAL (i.e., Wirth and
Jensen PASCAL).

TOPICS: bescribes the AlphaPASCAL Version 2.0 compiler and Linker.
This implementation of PASCAL is fully compatible with the
AMOS file system and the AlphaVUE text editor. The manual
containg an introduction to AlphaPASCAL, information on
compatibility with previous versions of AlphaPASCAL, and
complete operating instructions for the AlphaPASCAL
compiler, linker, and run—-time package. The book also
contains a complete summary of AlphaPASCAL, including
information on all functions, procedures, data types,
file~handling techniques, assembly Language subroutines,
and information on writing and modifying an external
library.

(Changed 30 April 1981

A GUIDE TO THE ALPHA MICRO SOFTWARE DOCUMENTATION LIBRARY - .+ Page’

TITLE: AlphaVUE/TXTFMT Training Guide

(pS$-10000-03)

READER: Written for all users who are new to AlphaVUE and TXTFMT, -
o " the Alpha Micro text processors. -Assumes no prior
experience with computers or text editors.

TOPICS: A tutorial containing exercises and demonstrations that
teach the new user how to use AlphaVUE .and TXTFMT. The
emphasis of the book is on creating documents in a business

. environment. For complete information on AlphaVUE .and
TXTFMT, turn to the reference manuals: AlphaVUE User's
Manual and TXTFMT User's Manual. .

TITLE: AlphaVUE User's Manual

(bWM~-00100-15, Revision BOD)

READER: Aimed at all users of the system who want to create text
files. Assumes no oprior experience with text editor
programs.

TOPICS: Gives full operating instructions for VUE, along with a -
summary of all VUE commands. Discusses the creation of the (

VUE dinitializaton file, VUE.INI, and describes those
display features of your CRT terminal that are required by
VUE.

TITLE: AMOS Assembly Language Programmer's Reference Manual

(pbWM-00100-43, Revision BOO)

READER: ‘Written for the experienced assembly Llanguage programmer
who wants to become famitiar with the AM-=100 assembly
language programming system. Does NOT teach assembly
Language. For information on the instruction set used by
the AM-100 processor, refer to the WD16 Microcomputer
Reference Manual, (DWM-00100-04).

(Changed 30 April 1981

r.

A GUIDE TO THE ALPHA MICRO SOFTWARE DOCUMENTATION LIBRARY " page s

TOPICS:

TITLE:

READER:

TOPICS:

TITLE:

READER:

TOPICS:

TITLE:

READER:

Diééﬁsseé a%sembly Lanéuage progrémming on,the AMOS s?éfem.
Describes operation of the AMOS macro-assembler, MACRO, the
linkage editor, LIMNK, and the symbol-table file program,

SYMBOL. . Discusses use of the . gbject file Library

generator, LIB and the global _cross.ﬁeference program,
GLOBAL. Discusses types of expressions, data and
statements recognized by the assembler, and gives
information on pseudo-operations, macros and writing
relocatable code. Also .gives detailed operating
instructions for the symbolic ‘debugger program, DDT.

AMOS Monitor Calls Manual
(DWM-00100-42, Revision BOD)

Aimed at the advanced systems proérammef, whoe wants to
interface assembly Llanguage programs to the monitor via
those monitor calls available to user programs.

Describes in detail the 70+ monitor routines resident in
the operating system that are available to user programs.
The manual also discusses the file service system, the
terminal service system, the structure of a memory
partition, and the format of various data structures used
by the system (e.g., Job Control Blocks, Dataset Driver

Block, Master File Directory, etc.).

AMOS System Commands Reference Manual

(PWM-00100-49, Revision AD1)

Written for the experienced user of the AMOS system who
wants a quick reference guide te all commands on the
system. We assume that the reader is already very familiar
with the AMOS system software.

Contains two— or three-page summaries of all AMOS commands.
Also contains a chart of the ASCII character set.

AMOS User's Guide

(PWM-N0100-35, Revision A1)

This manual is written for the beginning user of the system
who has had some prior experience with computers, but who
is new to the AMOS system.

(Changed 30 April 1981)

A GUIDE TO THE ALPHA MICRO SOFTWARE DOCUMENTATION LIBRARY.;; _ _ ‘Pagg é

TOPICS: Written in two partd: Part I deals with turning the system
- ~: onand off, typing - commands, logding in ‘and specifying
files. = Part” "Il covers the major system commands, and

discusses command files and DO files, special wildcard
“commands and file backup procedures. Command descriptions _
are ordered by type and function. o g

TITLE: -~ Introduction to AMOS

(DWM-00100-65)

READER: This manual was written for the person who wants some
background information on the AMOS system in particular and
computers in general. Assumes Little computer experience.

TOPICS: NOT an operations or demonstration manual. Written in
- three parts: Part I deals with elementary computer
concepts, defining terms such as "files," "hexadecimal,"
"CPU," and "program." Part II talks about some of the
programs available on the AMOS system, such as AlphaBASIC,
VUE, TXTFMT, and ISAM. Part III gives an overview of the
Alpha Micrce operating system, giving a very general
introduction to the Terminal Service System, Job Scheduler, :
Command Processor, and other major portions of AMOS. o

TITLE: ISAM System User's Guide

(DWM-00100~06, Revision AQ2)

READER: This manual is aimed at the assembly Language programmer
who wants to use the ISAM (Indexed Sequential-files Access,
Method) package from within an assembly language program.
Assumes thorough knowledge of assembly Llanguage, and prior
experience with ISAM. NOTE: For complete information on
using ISAM from within BASIC programs, refer to the
AlphaBASIC User's Manual.

TOPICS: Describes the ISAM calls available to the assembly lLanguage
“programmer for modifying and using ISAM files, as well as
the various ISAM programs that the user can run from the
monitor Level for building and dumping ISAM files. Also
discusses the process of building and dumping ISAM files.
Contains brief discussion of using ISAM from within a BASIC
program,

(Changed 30 April 1981)

A GUIDE TO THE ALPHA MICRO SOFTWARE DOCUMENTATION LIBRARY ~ Page 7

 TITLE: TXTFMT User's Manual

n (DWM-D0100-07, Revision BOO)
READER: ‘Written for all users of the system who want +to create
formatted documents. Assumes experience with one of the

text editing_programs, AlphaVUE or EDIT.

TOPICS: Lists all of the text formatting commands recognized by
: TXTFMT. Also discusses TXTFMT operation and error
messages. ')
TITLE: "WD16 Microcomputer Reference Manual

(DWM-00100-04)

READER: This manual is aimed at the experienced assembly Language
programmer who wants to become familiar with the
instruction set used by the AM-100 processor.

TOPICS: The manual does MOT contain information on assembly
Language programming, or on using the AMOS assembler. It
does List all of the instructions and addressing modes used
by the WD16 microprocessor. For information on assembly
Language programming on the AMOS system, refer to the AMOS
Assembly Language Programmer's Reference Manual.

2.0 THE AMOS SOFTWARE UPDATE DOCUMENTATION PACKET

The ‘documents in the AMOS Software Update Documentation Packet
I (bS5-10000-05) are organized into four major groups: ‘

1. User's Information
2. System Operator's Information
3. System Programmer's Information
4. BASIC Programmer's Information
For a Llist of the documents included in the AMOS Software Update

Documentation Packet, refer to the Master Table of Contents; this document
1s the first document in the AMOS Software Update Documentation Packet.

(Changed 20 April 1981

A GUIDE TO THE ALPHA MICRO SOFTWARE DOCUMENTATION LIBRARY ., -Page 8

3.0 AN ALPHABETIC LIST OF ALL ALPHA MICRO SOFTNARE DOCUMENTATION r
NOTE: The code AMOS PKT following a title 1nd1cates.that the document is
part of the AMOS Software Update Documentat1on Packet.

ALphaAccount1ng Release Notes = Version 1.3 (DWM- 00100 61), available

only to users Llicensed for the AlphaAccounting software package.

AlphaBASIC User's Manual (DWM-00100-01, Revision B800Y ©

AlphaFIX ﬂser's Manual (wa-OD100-69, Revision AO1)

AlphalLISP User's Manual (DWM-00100-05)

AlphaMAIL User's Manual (DSS-10000-06)

AlphaPASCAL User's Manual (DWM-00100-08, Revision ROO)

The AlphaVUE/TXTFMT Treining'Guide (bS5-10000-03)

AlphaVUE User's Manual (DWM-00100-15, Revision BOQ)

AMOS Assembly Language Programmer's Reference ManuaL (DWM- 0p100- 43,
Revision BOO)

AMOS Monitor Calls Manual (DWM-00100-42, Revision BOO)

AMOS Releése Motes - Version 4.5 (AMOS PKT)

AMOS Software Update Documentation Packet (PSS-12007-05)

AMOS System Commands Reference Manual (DWM-00100-4%9, Revision AD1)
AMOS User's Guide (CWM-0N100-35, Revision AO01)

AMOS Version 4.4 Method of Handling Bad Disk Blocks (AMOS PKT)

BASORT - BASIC Subroutine for Sort1nq Random and Sequent1aL Files
(AMOS PKT, Revision AD1)

Building a Terminal Driver (The NEWTRM Program) (AMOS PKT)

Change Page Packet #1 for AlphaBASIC User's Manual (DSS?1DOOO—D4)

Change Page Packet #2 for AlphaBASIC User's Manual (DS$-10000-07)

Change Page Packet #1 for AlphaPASCAL User's Manual (DSS-TCDOOF1D)

Change Page Packet #2 for AMOS System Commands Reference Manual
(pSS-10000-09)

(Changed 30 Abril 1981)

P

A GUIDE TO THE ALPHA MICRO SOFTWARE DOCUMENTATION LIBRARY . ~ Page 9 - "
._COMMON - BASIC Subrout1ne to Prov1de Common Var1abLe Storage (AMOq
PKT)

Configuring Floppy Disk Drivers (AMOS PKT, Revision AO1)

Defining Neon- system D1sk Devices (AMOS PKT, Rev151on AO1)

Defining Switchable System Memory (AMOS PKT, Rev1s1on A02)

Disk Drivers and Formats (AMOS PKT Revision AOS) k
Disk Labeling Procedures (AMOS PKT)

Disk Maintenance Procedures for the System Operator (AMOS PKT

Revision A03) ‘ . o ’ - Mo

Disks Available from Alpha Micro (AMOS PKT, Revision AQS)
The DUMP Command (AMOS PKT, Revision B800)
EDIT: A Character—oriented Text Editor (AMOS PKT, Revision AQ1)

FLOCK — BASIC Subroutine to Coordinate Multiuser File Access (AMOS
PKT, Revision AD1)

Generating System Monitors (AMOS PKT, Revision AD1)

A Guide to the Alpha Micro Software Documentation Library (AMOS PKT,
Revision AD4)

Important Notice for LISP Users (AMOS PKT)

Introduction to AMOS (DWM-00100-65)

I/0 Programming for the Alpha Micro Computer (AM0OS PKT, Revision A01)"
ISAM System User's Guide (DWM-00100-06, Revision AQ2)

The Magnetic Tape File Backup Programs (AMOS PKT)

Memory Management Optien (AMOS PKT, Revision AD1)

New Command File and DO File Features (AMOS PKT, Revision AO1)

Program Design Language Formatting System (AMOS PKT)

Setting Up the Line Printer Spooler (AMOS PKT, Revision AQ2)

Software Installation Instructions for the AM=120 (AMOS PKT)

Software Installation Instructions for the AM-170 Memory Board (AMOS
PKT)

(Changed 30 April 1981)

A GUIDE TO THE ALPHA MICRO SOFTWARE DOCUMENTATION LIBRARY ~ "Page 10 .

Software N0t1ce for At 410 Users (AMOS PKT, Rev1s1on ADE) o _un.-f'" o {..e

SPOOL - BASIC Subrout1ne for Spooling Files to the L1ne Printer (AMOS
PKT, Revision AO02)

The System In1t1aL1zet1on Command F1Le (AMOS PKT, Rev1s1on AD4)
Term1naL Serv1ce System (AHOS PKT) | |

TXTFMT User's ManuaL (DWM- 00100 O? Rev151on BUD)

Using the Magnetic Tape Utility Programs (AMOS PKT)

Hp16 M1crocomputer Reference MenuaL (bWM-00100- 04)

XLOCK -~ BASIC Subrout1ne for Mult1user Locks (AMOS PKT, Revision AD1)

XMOUNT =~ BASIC Subroutine to Mount a Disk (AMOS PKT, Revision AQ01)

(Changed 30 April 1981)

AMOS Software Update Documentation
AMOS Release 4.5
April 1981

USER'S INFORMATION

This section contains the following documents:

New Command File and DO File Features, Revision AQO1
The DUMP Command, Revision BOD
Important Notice for LISP Users
EDIT: A Character-oriented Text Editor, Revision AD1

Program Pesign Language Formatting System

AMOS 4.5 SOFTWARE UPDATE DOCUMENTATION PACKET

H

'Alpha Micro', *AMOS', 'AlphaBASIC', 'AM-100°,
'"AlphaPASCAL', 'AlphaLISP', and 'AlphaSERV'

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA 92714

These documents réflect AMOS Versions 4.5 and later

©1981 - ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North ‘
Irvine, CA 92714 S

April 1981 U
Revision AQO1

e

NEW COMMAND FILE AND PO FILE FEATURES

Command and DO files play an important part in extending the power and range
of the AMOS command language. This document describes several new features
and programs that greatly increase the flexibility of your command files,
Among other things, these new command file features allow you to: change the
command file trace flag as many times as you wish within-a command file;
conditionally transfer control to various portions of a command file based
on whether a specific file exists; and, exit a command file, perform various
AMOS commands, and then resume execution of that command file. We also
describe several new AMOS Level commands that are particularly wuseful as
command file elements. ' : '

For detailed information on the concepts of command files and D0 files,
refer to Chapter &, "Command Files and DO Files,” 'in ‘the AMOS User's
Guide, (bwmM-00100-35). In brief, a command file is a special kind of text
file which can contain a series of AMOS commands, specifications of other
command files, test data, etc. To execute all of the commands and data in a
po0 file or a command file, just enter the name of the file at AMOS command
level. Command files are extremely useful for performing entire sequences
of commands that you use freguently (e.g., commands that do disk backup or
that compile a series of BASIC programs).

PO files are a type of command file that allow you to specify arguments when
you invoke the DO file that are substituted into that DO file where special
parameter symbols appear. This allows you to use one DO file with a wide
range of files or programs. Since DO files are just one type of command
file, when we mention "command files" in the rest of this document, we will
be talking about both standard command files and DQ files.

Special symbols may appear in command files that allow you to ask the user
of the file for input, and to display messages to that user. In addition,
you may use the :T, :S and :R symbols to choose whether or not users of the
command file see program output that result from the actions of your command
file. Except for these special symbols, when AMOS processes a command file,
it treats most of the elements of the file as if you were entering each
command file Lline from a terminal, Lime by Lline.

For more information on any command discussed below, refer to the reference
sheet for that command 3in the AMOS System Commands Reference Manual,
(DWM=-00100-49, Revision AC1 and Later).

(Changed 30 April 1981

NEW COMMAND FILE AND DO FILE FEATURES _ _ Page 2

1.0 THE COMMAND FILE TRACE FLAG (T AND TRACE)

Command files have always allowed you to choose whether or not the user of
your command file sees the contents of the file while it is being processed
by AMOS. AMOS checks the status of the command file "trace flag" to
determine whether or not to display the contents of the command file. Until
the advent of the TRACE command, the only way to affect the trace flag was
by including the :T symbol at the place in the command file where you wanted
users to see command file contents. The main disadvantage to this was that
you could only use the :T symbol once to turn the trace flag on in a
command file, and then could not turn it off again. (0f course, 1if vyou
wanted the trace flag off, you could simply cmit the :T from the command
file.)

NOTE: When the trace flag is off, you can still allow users to see program
output and messages by use of the special :S, :R, and :<> symbols; however,
they will not see comments or command Lines in the command - file. For
example, if the Line:

-ERASE *.BAK

appears in the command file when the trace flag is off, if no IR precedes
the command Line, the user of the file does not see the command line OR the
information output by the ERASE program. If a :R precedes the command Line
and the trace flag is off, the user does not see the command line, but does
see the output produced by ERASE. NOTE: Remember to always include a :R in
your command file if the trace flag is off but you want the user of the
command file to see any output generated by the commands in the command
file.

1.1 The TRACE Command

The TRACE command allows you to turn the trace flag on or off at any point
within the command file as many times as you wish. You may also use TRACE
to switch the current state of the trace flag, regardless of whether it is
on or off. You may only use TRACE in a command file.

To wuse TRACE, enter it in your command file in one of the following three
formats:

TRACE ON Turns the command file trace flag ON. Users see all of
the contents of your command file, including comments and
all program command Llines. :S and :R are ignored when
TRACE ON is in effect.

TRACE OFF Turns the command file trace flag OFF. Users see only
messages enclosed with the :<> symbols. If you include
the :R symbol, users also see program output. (The :5§
symbol turns off the :R symbol.) (NOTE: :S and :R work
with TRACE OFF as if no TRACE or no :T were 4in the
command file.) :

(Changed 30 April 1981)

NEW 'COMMAND FILE AND DO FILE FEATURES ~~ ° 7 ~ 70 77 nf =0 oi%ipage 31

' TRACE SWITCH Switches the current status 6f the command File trace *"
~ flag. If the flag is OFF, this command turns it. ON “and
“vice versa. ' ' o

If you do not include an argument on the TRACE command Lline, AMOS ignores
the command. : AR

As an example of the use of the TRACE command, let's create a command file
that does disk backup:

; Command file to backup HAWK System Disk onto another disk.

LOG DSK0:1,2

:< Make sure nobody else. is running on DSKO: or your backup disk>
ERASE =, BAK[L] K)

DIRSEQ

r

TRACE ON

DSKCPY

DSKO:

DSK1:

1<

AlLL done. Remove cartridge and label it. Log back into your
account.>

Not having a :T or TRACE OFF makes sure that the user of the command file
won't see the output of the cleanup functions we perform. (The user still
sees those messages bracketed by the :<> symbols.) The TRACE ON ensures that
the user will see that we are running the DSKCPY program.

2.0 LOOKING UP FILES FROM WITHIN A COMMAND FILE (LOOKUP)

There are many occasions when a command Lline in a command file causes AMOS
to search for a file. If AMOS fails to find the specified file, execution
of the command file does not abort, but continues even though the necessary
file was not found. Sometimes this can be a severe inconvenience if several
subseguent command Lines assume that the nonexistent file exists.

2.1 The LOOKUP Command

The LOOKUP command allows you to search for a file from within a command
file, and then to perform several actions based on the results of that
search. If a file is not found, you may resume execution of the command
file at the command Lline following the Lookup, or you may cause the command
file to terminate execution. You may also choose whether to display your
own error message or a standard AMOS error message if the file is not found.

(Changed 30 April 1981) :

'NEW..COMMAND FILE AND DO FILE FEATURES . -Page 4

By .using : LOOKUP in combination with the GOTO command, you can choose, which
portions of the command file to execute based on the results of the file
Lookup. This allows you to perform conditional branching within a command
f1le. - S

You may only use the LOOKUP command within a command file. To use LOOKUP,
enter it into your command file in one of the following formats: '

LOOKUP Fspec where Fspec specifies the file you want to search
for. If the file 14s found, LOOKUP continues
execution of the command file; if it is not found,
LOOKUP displays the appropriate AMOS error message
(e.g., ?Cannot OPEN STDMOD.BAD - file not found),
and returns the user of the command file to AMOS
command Level. '

LOOKUP Fspec Msg where Fspec specifies the file you want to search
‘ : for, and Msg is a message supplied by you. If the
file 1is found, LOOKUP just continues execution of
the command file. 1If the file is not found, . LOOKUP
displays vyour message (instead of the appropriate
AMOS error message) and returns the vuser of the
command file to AMOS command Level,

LOOKUP Fspec/ where Fspec specifies the file you want to search
for, and the "/" symbol tells LOOKUFP not to abort
command file execution if the file is not found. If
the file s found, LOOKUP skips over the next Line
in the command file and resumes execution at the
line past it. If the file is not found, LOOKUP
continues execution at the next Line after the
LOOKUP command, and displays the appropriate AMOS
error message.

LOOKUP Fspec/Msg where Fspec specifies the file you want to search
for, "/" tells LOOKUP not to abort command file
execution if the file 1is not found (see the
paragraph above), and Msg is 2 message supplied by
you. If the file is found, LOOKUP skips over the
next Line in the command file and resumes execution
at the Lline past it. If the file 4s not found,
LOOKUP resumes execution at the next Line in the
command file, and displays the specified message.
(If you include both the "/" symbol and a message,
the message must follow the slash on the LOOKUP
command Line.)

If you pmit portions of the file specification, LOOKUP assumes the device
and account the user of the command file is Logged inte and a .PRG
extension. : ’

The LOOKUP "/" option becomes especially useful when you use the GOTO and
EXIT statements to select certain portions of the command file to be

(Changed 30 April 1981)

RS

NEW COMMAND FILE AND DO FILE FEATURES | Page 5

executed as a result of the LOOKUP operation. - (See Section 4.0,
“"Transferring Control Within a Command File (GOTO, EXIT)," for an example of
conditional branching within a command file.)

As an example of the use of the LOOKUP command, let's create a DO file that
installs a BASIC program into an account. (The user of the DO file provides
the name of the program to install as an argument when he or she invokes the
DO file. This argument gets substituted into the DO file for the 30 symbol,
which is a special DO file parameter symbol.)

Command file to install $0.BAS from project Llibrary account
into the account user is logged into.

LI TE T

:R
LOOKUP $0.BASC300,0] ?That BASIC program doesn't exist. Try again.
COPY =[300,01$0.BAS

’;

TRACE ON
COMPIL $0.BAS
RUN $0.RUN

If the wuser of the D¢ file doesn't specify an argument, or gives an
incorrect file specification, the LOOKUP command above catches it and ends
command file execution.

NOTE: The command file above provides a good example of why you often need
to check to see if a proper file specification has been given. If the
example above did not use the LOOKUP command, and if the user of the command
file supplied no argument at all (thus causing a space to be substituted for
the $0 symbol), the COPY command would copy ALL .BAS files from (300,0]
over to the account the user is Llogged into.

3.0 TEMPORARILY INTERRUPTING COMMAND FILE EXECUTION (PAUSE, CONT)

It would often be convenient to temporarily exit a command file, perform
various cleanup or housekeeping functieons, and then resume use of the file.
The PAUSE and CONT commands allow you to do so.

The PAUSE command causes the temporary interruption in the execution of the
command file in which it appears. You may then execute AMOS commands,
invoke other command files, use a text editor, etc. To resume execution of
the command file, use the CONT command.

(Changed 30 April 1981)

NEW COMMAND FILE AND DO FILE FEATURES . R . Page 6

3.1 The PAUSE Command . _ “

You may only use PAUSE within a command file. Enter the PAUSE command in
your command file where you want to temporarily interrupt execution of the
file. You may optionally include a message on the PAUSE command Line which
is displayed when the c¢ommand file pauses. For example:

PAUSE Type:é K; COPY old .BAS files to £40,11; type CONT_tQ resume backup

This is what happens when a PAUSE statement is prodessed in a command file
you are using:

1. If = hessage has been included on the PAUSE command Line,
" PAUSE displays that message to you.

2. Whether or not it has displayed a message, PAUSE now stops
and waits for you to type a character. If you type a RETURN,
PAUSE resumes execution of the command file. If you type
anything but a RETURN, PAUSE returns you to AMOS command
Level.

3. Once PAUSE returns you to AMOS command Level, you €an now run
- any programs or command files you want. To resume execution
of the command file (at the point after the PAUSE command),
just type CONT at AMOS command level. (The CONT command may
also appear within a command file.)

When PAUSE interrupts execution of a command file, it saves the elements of
the command file past the PAUSE command Line in a special disk file named
CNT.CMP. (This file appears in the device and account the user of the
command file is logged into.) When you use the CONT command, it Lloads into
your memory partition the CNT.CMD file that is in your account and resumes
executing that command file. (This means, of course, that to resume
execution of a PAUSEd command file, the user of the file must be Logged into
the device and account where the command file was originally interrupted.)
The CNT.CMD file always contains the most current command file that has been
PAUSEd 1in that account. For example, if you use a command file that is
interrupted because of a PAUSE command, the rest of that file is .stored as
CNT.CMD in your account, ‘

If, after performing various commands, you do not use a CONT command before
invoking another command file that also uses PAUSE to interrupt execution,
the contents of CNT.CMD (the first command file) are replaced by the
contents of the second command file. If you use the CONT command now, you
resume execution of the second command file, not the first. When a second
PAUSE causes the current contents of CNT.CMD to be written over (because a
CONT has not been used to resume execution of the previous command file),
you see the following message:

%“Supersedes existing file

(Changed %0 April 1981)

NEW COMMAND FILE AND DO FILE FEATURES ' " Page 7 ..

No harm is done if you do not resume command file execution by using“a’ CONT ~
command before another PAUSE command occurs, but you do lese the prev1ous_"
contents of CNT.CMD when the new command file replaces them. o

As an example of the use of PAUSE, let's create a command file that perfdrms
"housekeeping" functions on a disk: '

: This command file cleans up the disk and performs a backup.

”,
i< _

I1f disk Labeled BACKUPA is in drive, type a RETURN; otherwise,
type anything else, go put pack in drive, and then type CONT
when you are ready to resume backup.>

Is
PAUSE
; Proper backup pack (PSKS:) is now in drive.

MOUNT DSK5:

<

If you want to save everything on the disk, type. a RETURN.
If there are any scratch files you don't want to save, type
anything but a RETURN. Then erase your old, working files

from all accounts on the disk. To resume backup, type CONT,

>
PAUSE Enter a character:

Disk is ready to back up. Chain to another command file
that does actual backup. :

BACKUP

:< .

ALL done. You may remove BACKUPA from drive.>

e e wa

3.2 The CONT Command

If a command file has been temporarily interrupted as the result of a PAUSE
command (that 1is, if a CNT.CMD file appears in the account you are Logged
into), you may resume execution of that command file by wusing the CONT
command. For example: ' ' '

. CONT
If there is a CNT.CMD file, CONT tells AMOS to process it. When the entire
command file has been processed, COMT erases the CNT.CMD file from the disk.
If no CNT.CMD file exists in the account, COMT displays the message:

?Can't continue

and you are returned to AMOS command Llevel.

(Changed 30 April 1981)

NEW. COMMAND FILE AND DO FILE FEATURES EI e ~.-Page B8

4.0 . TRANSFERRING CONTROL WITHIN A *COMMAND FILE (6GOTO, EXIT)

Since the LOOKUP command allows you to choose which Line of a command. file
to execute, it now becomes possible to use a transfer command, GOTO, to
select which portion of .a command file to execute based on the results of a
file Lookup. Used 1in combination with one another, the GOTO, EXIT, and
LOOKUP commands allow your command files to perform conditional branching.

4.1 The GOTO Command

You may only use the GOTO command within a command file. The GOTO command
allows you to transfer control from one portion of your command file to
another., The GOTO command Lline must contain both the GOTO command and an
argument which is the name of the Llabel to branch to. .. .For example:

R
Command file to compile BASIC programs.

& Sa aa

LOOKUP. TAXTBL.BAS/?Couldn't . find file. Are you in. right account?
; If file not found, go to. NOFILE. o _
GOTO NOFILE

TRACE ON _

COMPIL TAXTBL .BAS

RUN TAXTBL.RUM

’ . . :
EXIT *That's all...Returning you to AMOS command levelx

r

sNOFILE

1< _ .

We're going to enter VUE so you can create TAXTBL.BAS. Type
an X if you don't want to create the file; otherwise,>

PAUSE Hit RETURN when ready:

F
VUE TAXTBL.BAS
Y

In the example above, the GOTO command Line contains the. argument NOFILE,
NOFILE is the label of the portion of the command file to which the GOTQ
command transfers control.

There are some conventions you must follow in setting up a GOTO, its
argument, and the label that designates the portion of the command file to
which you want to transfer. o

1. GOTOs must pfecede the Llabels fhey branch to;' That is, GOTO
statements may only transfer forward in the file.. :

(Changed 30 April 1981)

1

T

ag

NEW COMMAND FILE AND DO FILE FEATURES " Page’ 9

2. An argument may not contain trailing spaces. That is, the ‘end of .. g
an argument must be either a RETURN or a semicolon (which
identifies the start of a comment). That means that if you include -

a comment on the GOTO command Line, it must begin directly after
the argument.

3. The command file label may either be a comment (that'is, begin with
a semicolon) or a valid, executable command file element.

a. If a label is a comment, thé argument in the GOTO command Lline
that refers to the label wmust not begin with a semicolon.
(See the sample command file above.)

b. If a Llabel is not a comment, it must be a valid command file
element (e.g., a program name, a command file specification,
etc.).

If the GOTC statement directs you to a label that is not a comment
or a valid command file element, the command file resumes execution
after the Label.

4., You may begin a label with spaces, a semicolon, or spaces followed
by a semicolon. (There may be no spaces between a semicolon and
the rest of the Llabel.) These are ignored when GOTO compares an
argument to the Llabel it selects.

5. Labels may be of any length (as long as they fit on one Line), and
must be the only thing on the Line.

If GOTO cannot find the specified label, the user of the command file sees:

?Label not found

and is returned to AMCS command level.

4.2 The EXIT Command

Whenever you create conditional branches within a command file, you face the
problem of separating portions of the command file so that users not
deliberately transferred to a Llabeled portion do not "fall into" that
section of the command file as they proceed through the file. The EXIT
statement allows you to create one or more points in the file which cause
the user to gracefully be returned to AMOS command level. You may only use
EXIT within a command file. The sample command file above demonstrates the
use of the EXIT statement. As another example, consider the DO file below,
which does different things with a file, based on the extension of that
file:

(Changed 30 April 1981)

NEW COMMAND FILE AND DO FILE FEATURESPage 0

; Command file that handles’ text files.
o7 If file .TXT file, format it.
R . . . :
LOOKUP $0.TXT/?not .TXT file
GOTO NOTTXT o
TRACE ON
TXTFMT $0.TXT
- TRACE OFF

I 4 .

sNOTTXT

LOOKUP $0.LST/?not .LST file

GOTO NOTLST ' '

PRINT $0.LST

EXIT *Your file is formatted and the .LST version is printed.*

;NOTLST
EXIT ?Couldn't find a .TXT or .LST file of that name.

5.0 ADDITIONAL USEFUL COMMANDS (BATCH, COM)

In addition to the commands we discussed above, two other new commands exist
that are particularly helpful when used within command files. You may also
use these commands at AMOS command Llevel.

5.1 The BATCH Command

A command file executes faster 1f the programs it accesses are already
loaded into memory when that command file needs them. The BATCH command
leads dinto your memory partition programs that are frequently uysed when
making use of the new command file features (GOTO, LOOKUP, EXIT, TRACE,
PAUSE, and LOAD). (NOTE: GOTO, LOOKUP, EXIT, TRACE, and PAUSE are
re—entrant, and may be placed into system memory by the System Operator.) If
you use BATCH from within a command file rather than at AMOS command Level,
you will want to put BATCH at the front of the command file. BATCH takes up
about 1K of your memory partition. To use BATCH, enter the command followed
by a RETURN:

.BATCH

5.2 The COM Command

The COM command processes a file based on its extension. To use the
command, enter COM followed by the name of the file you want to affect. You
may not include the extension of the file. In addition, the file must
appear within the account you are Llogged into, but you may specify a
different device. For example:

{Changed 30 April 1981)

NEW COMMAND FILE AND DO FILE FEATURES - _ Page 117+ =

-COM STD1:MNMENU

COM begins Llooking for the disk file in this order:

1. .MAC fiLe? Then assemble with MACRO.

2. .BAS file? Then compile with BASIC,

3. .PAS file? Then compile with PRUN CMPILR.

4. .TXT file? Then format with TXTEMT.
If you omit portions of the file épecification, COM assumes the account and
device you are Llogged into. (Of course, if COM is used within a command
file, COM uses the account and device of the user of the command file as the

defaults.)

If COM can't find the file you have specified, or if the file does not have
one of the extensions listed above, you see:

?Filename is not a compilable file

where Filename is the file you specified on the COM command Line.

(Changed 30 April 1981)

May 1980
Revision BQOO

THE DUMP COMMAND

1.0 INTRODUCTION

This document describes the DUMP utility proaram. (Also, see the reference’

sheet on pumMp in the AMOS System Commands. Reference Manual ,
(DWM-001C0-4%9), for a brief summary of DUMP command format.) AR

DUMP gives you a simple method for examining data, either in memory or on
the disk. You can use DUMP to take a look at the contents of memory, the
contents of a block on the disk, a disk Master File.Directory, a disk User
File Directory, cr a disk bitmap. You can use DUMP to Look at the contents
of both random and sequential files. DUMP is re-entrant, and may be loaded
into system memory by the System Cperator.

Some uses of DUMP require that you give it one or more numeric arguments.
These arguments must be 1in the number base the system is using for your
numeric displays (usually octal). (You can use the SET command to change
this number base from octal to hexadecimal, and vice versa. See the SET
reference sheet in the AMOS System Commands Reference Manual

(PWM-00100-49), for more information on SET.) Some uses of DUMP require that
you supply keywords which select the DUMP function you want to use. You may
abbreviate these keywords by giving just as many characters as will uniquely
identify that keyword. (For example, you may enter DI instead of
DIRECTORY.)

NOTE: Previous versions of this document used the term "disk records." .The
use of the word "record”™ can cause some confusion since it is sometimes used
in other documentation to mean different things. In the interests of
clarity, therefore, we have adopted the convention that the 512-byte groups
of data dinto which AMOS organizes the disk are called “"disk blocks," not
"disk records.” We have changed this document and the .DUMP program
accordingly. (We have retained the earlier DUMP format "DUMP RECORD"; it
performs exactly the same function as the new "DUMP BLOCK" command.)

2.0 DUMP FUNCTIONS

DUMP allows you to select six different display functions. The DUMP format
you use selects the specific function you want to perform:

(Changed 1 May 1980)

THE DUMP COMMAND ' Page 2

2.1 ©Displaying Memory
FORMAT :
+DUMP Address1 Address?2

To display memory, give DUMP two memory addresses in the number base the
system 1is using for your numeric displays. (If your system s a
bank-switched system, remember that you may only display memory addresses
that are in the memory bank within which your job resides.) For example:

.DUMP 110000 120002

DUMP displays the contents of memory from the first address to the second
address, Jjnclusive. If vyou do not supply 3 second memory address, DUMP
displays only the first 16 bytes of data. NOTE: DUMP rounds the starting
address down to the nearest multiple of 16.

A DUMP memory display Looks something like this:

110000:006562 020056 052040 062550 066400 071557 020164 067543 rm. The most co
110020:066555 067157 072040 070171 020145 063157 062040 071551 mmon type of dis
110040:066160 074541 072040 065541 071545 072040 062550 063040 play takes the

Let's take a look at the first line of this display:

g,
T,

N

1. The first number on the left (ending with a colon) is the memory
address that contains the first byte of data on the line. In this
example, -memory addresses 110000 and 110001 contain the two bytes
of data 006562.

Hidrr

2. Each group of six digits after the memory address represents two
bytes (16 bits) of data in octal form. (If the system is using
hexadecimal for your numeric displays, DUMP displays the data in
groups of eight bits~- gne byte.)

3. On the far right of the disnlay is a field that gives the ASCII
form of the data. It disnlays the same data as the numhers in the
center of the display, but translated idinto their character

representation. Nen—printing ASCII characters (such as
Control-characters) appear as dots.

2.2 Displaying a Disk File
FORMAT :

.DUMP Filespec

(Changed 1 May 1980)

THE DUMP COMMAND AT Mipage™3

To display a random or - sequeﬁtial disk file, type_DUﬁPﬂfpltbﬁed‘bx“iﬁé
specification of the file you want to see. Then type " a‘ RETURN. " Faor
example:

~DUMP DSK1:PROJCT.OBJ[12,45]

If you omit portions of the file specification, DUMP assumes the device and
account you are logged into and a .PRG extension. DUMP displays the entire
file in the same form as the memory display (see above).

PUMP precedes the display with a message that tells you the number of the
block you are seeing. For example:

Block number 12033 of DSKO:DATA.DATL35,4]

If you are dumping a sequential file, DUMP also displays the next block
link. For example:

Block number 784 of DSK1:PROJCT.OBJ [12,451, next block Link is 11027.

2.3 Displaying a bisk Block
FORMAT:

=DUMP BLOCK Block-number1 {Block=number2} {Devn:}
To display the data in a disk block, type DUMP BLOCK. (You may also use the
format DUMP RECORD.) Now enter the number of the block you want to see and
the specification of the logical unit that holds that block.

If you want to see the contents of several blocks, enter a second block
numbear . Type a RETURN. DUMP now displays the data from the first to the
second block, inclusive. For example: :

<DUMP BLOCK 1355 1360 HWK2:
If you do not specifiy a device, DUMP assumes the device you- are'-Logged
into. The DUMP display Llooks much Like the memory disolay above., The

addresses on the left side of the display give the relative position of “‘the
data in each block.

2.4 Disblayiné a Bitmap -
FORMAT:
+DUMP BITMAP {Devn:}

To display a disk bitmap,.enter DUMP BITMAP. Now enter the specification of
the Llogical unit whose bitmap you want to see. (If you omit the device

(Changed 1 May 1980)

 THE DUMP COMMAND | | S .. . Page

spec1f1cat1on, bUMP a55umes the device you are Loqged into.) Now type a

RETURN. For example:
~DUMP BITMAP DSK35:

You now see a d1splay of ones and zeros that represents the bitmap of the
disk. (A bitmap is a disk allocation map that marks which disk blocks are
in use and which are available.) Every block on the d1sk is represented in
the bitmap by a one (if in use) or a zero (if emoty) . Each Line of the
display begins with a number which ends in a colon; this octal or hex number
is the number of the disk block represented by the first one or zero on that
Line.

At the end of the display, DUMP prints the total number of free blocks (in
decimal) on the disk. (An STD-format diskette has a total of 512 blocks; a

Hawk hard disk has 9696 blocks, and a Phoenix hard disk has about 29088

blocks.) For example:
-DUMP BITMAP HWK1:

Bitmap bump of HWK1:

000000: 1111111111111110111101111111110111111111611111111111111111111111
000100: 11111111111011119111101111111111111111111001111111 1110011111111
000200: 117101710001100C07100100001011011111111000100011111111111111111
000300: 11111111111111111111111011111111111101111111111111001 11111111111

022500+ 00000000000001000OODOOOGDGTT100000010101111110000000000110000000
02260C: 000CN0000000D000050001000060000000000000000000001110000000000000
022700: 000G000000B00000N0000000000000

4850 free blocks

2.5 7Displaying a bisk Master File Directory
FORMAT:
;DUMP MFD {Devn:} (FEeD)

Every disk contains a Master File Pirectory in Block 1 that contains a list
of all accounts on the disk and the starting block number of all individual
account directories (the User File Directories, or UFDs). To see the MFD of
a disk, type DUMP MFD. Now enter the specification of the Llogical unit
whose MFD you want to see. (If you omit the device specification, DUMP
assumes the device you are Llogged into.) Finally, type a RETURN. For
example: :

(Changed 1 May 1980)

Rty

THE DUMP COMMAND

CTT L DUMP MFD HWK3: @EED : 7"“? rffﬁ:{:';jlf J ,,H,,ij | ’ gé
The display YQP_SE?,l°5k$ so@éthfng Liké tﬁi;;r. o - %2
Maséér‘h}yéfﬁ{ééﬁtoﬁy"bump"of Hgkﬁ! -) g;
000000 [1,23 002110 SR gf

0No010 £11,53 002105
000020 [50,17 000024

N00170 [5,01 000000
D00200 T0.07 000000

Each ' Line represents one User File Directory. The number on the left gives
the relative address of the MFD entry 4in the disk block. The characters in
the center give the account PPN. The number on the right gives the disk
block at which the UFD for that account begins. o : -
Monexistent accounts appear as:

ro,ol

This is a mormal part of the MFD display.

2.6 Displaying a Disk User File Directory

FORMAT :

.DUMP DIRECTORY Block=number {Devn:}

or:
-DUMP DIRECTORY [p,pnl {Devn:}

To display the directory for an individual account (i.e., the User File
Directory, or UFD), type DUMP DIRECTORY followed by the number of the block
at which the UFD starts. Or, you may simply enter the PPN associated with
that account, using the standard AMOS PPN format of Cp,enl. (If you use
[p,onl format, and DUMP is not able to find the account you specified, vyou

see:; ?Illegal user code.)

Now enter the specification of the logical unit that contains the UFD you
want to see., Type a RETURN. For example:

-DUMP DIRECTORY 002105 SMD4:
cr:

-DUMP DIRECTORY {110,217 SMD4:

{Changed 1 May 1980)

THE DUMP COMMAND oo S Paged

_If-you omit the devace speC1f1cat1on, DUMP zssumes the. dev1ce you are: logged
; 1nto. The d13pLay may 1look someth1ng like this:

D1rectory dump of block 2105, next bLock L1nk is 2564

Addr filename ' Sjze Active Link
000002 SYSIND TXT 74 000166 002306
0000186 :8DRLD TXT 21 000034 002421
000032 PHONX LST 34 000053 - 002446
000046 :80ST MAC 27 000227 002650 -
000062 DOCMAN BAS 21 000413 002854
0n007s6 0 000000 000000
000112 0 000000 000000

The first line of the display tells you the number of the block you are
looking at. The next Line tells you what disk block contains the next
section of the directory. (A "next block Link” of 0O indicates that the
bleck . you are d1splay1ng is the last block in the d1rectory) The rest. of
the d1spLay gives information about the directory entr1es. S

You see this 1nformat1on for each d1rectory entry:

Addr The position (in bytes) of the diréctory' entry
relative to the start of the block. :

Filename The name and extension of the file.

Size The number of disk blocks in the file.

Active The number of active data bytes in the last block of
the file.

Link The address of the first disk block of the file.

NOTE: Directory entries in which the filename begins with the characters
":80" represent files that have been deleted from the directory. These are
normal elements of the DUMP DIRECTORY display. The next time the system
writes a new entry into the directory, it overwrites the first deleted
entry.

(Changed 1 May 1%80)

e,

|
|

May 1980

IMPORTANT NOTICE FOR LISP USERS

Several new functions and enhancements have been added to LISP in AMOS
Release 4.4. These features include improved error reporting and the
addition of functions to the Extended Library to handle breakpoints.

1.0 ERROR HANDLING

When LISP reports an error, it now displays the User function in which the
error occurred. For example:

*(DE DOUBLE (X) (PLUS XX))

DOUBLE

*(DOUBLE 2)

UNBOUND VARIABLE - EVAL IN DOUBLE

I*Ix
>

2.0 NEW FUNCTIONS

Three new functions have been added to LISP: RETFROM, BREAK, and UNBREAK.
In addition, we have added the variable BREAKFNS (which is maintained by
BREAK and UNBREAK). '

2.1 RETFROM

The call (RETFROM fn val) causes the most recent call of function fn to
return with wvalue wval. If the specified function is not active, LISP
generates an error message. For example:

*(DE F1 (X) (PROGN (F2) X))
F1

*(DE F2 () (RETFROM @aF1 5))
Fe

*{F1 7

2

NOTE: The call (RETFROM PROG val) behaves exactly the same as (RETURN val).

ML b g b P

IMPORTANYT NOTICE FOR LISP USERS

2.2 BREAK (added to the Extended Cibrary)

The call (BREAK fn1 fn2 ...) causes execution of a progfam to be interrupted'

if an attempt is made to call any of the specified functions. You may then
single-step execution of the interrupted function by typing a Lline-feed, or

resume execution by typing (RESUME). NOTE: fn1, fn2, ... are not

evaluated. -

2.3 UNBREAK (added toc the Extended Library)

The call (UNBREAK fn1 fn2 ...) restores the specified functions so that they
no longer interrupt program execution when called. (That is, this function
clears breakpoints set via the BREAK function.) NOTE: fnl1, fn2, ... are not
evaluated.

2.4 BREAKFNS (added to the Extended Library)

BREAKFNS is a wvariable which contains a List of all functions which will
interrupt program execution when called. BREAKFNS is maintained by BREAK
and UNBREAK; therefore, you should not directly modify this variable. (See
BREAK and UNBREAK, above.)

CJuly 1979 ;
Revision ADY

EDIT - A CHARACTER-ORIENTED TEXT EDITOR

1.0 INTRODUCTION

There are two text editing programs available on the AMOS system: VUE (a
screen-oriented text editor) and EDIT (a character-oriented editor). For
information on VUE, see the manual AlphaVUE User's Guide (DWM~-00100-15).
Unfortunately, a manual for EDIT does not yet exist. This document gives
onty a brief summary of the EDIT commands.

Character-oriented text editors were originally designed to be used on
non~CRT terminals. Because these kinds of editors were designed to be used
on hard copy terminals that do not permit fast display, the emphasis of such
an editor is not on display, but on speed and power.

When vyou edit a text file, a text editor brings a copy of the file into
memory and allows you to make your editing changes to the copy in memory;
then the editor writes your changed file back out to the disk. EDIT
maintains a pointer (called DOT) that points to your current position in the
copy of the text file that is in memory. Most commands that you give to
EDIT reference this pointer to see what text to affect.

You do not see any of the text in memory unless you explicitly ask EDIT to
display one or more Llines of text. You advance throughout the text in
memory by using the various EDIT commands to move DOT. EDIT commands are
one or two characters long, and some reguire arguments (e.g., you follow the
search command with a string of text for which to searchl.

2.0 EDITING A NEW FILE

Before you can begin to enter text into an empty file, you must create the
file by using the MAKE program. Type MAKE and the specification you want 10
assign to the new file., For example:

=MAKE DSK1 tNEWFIL.TXTL100,2]

You may only create a file in your own account or in an account within your
own project. '

After you have used the MAKE command, you can now use EDIT to enter text
into the file (see below).

{Changed 1 July 1979)

UV S

EDPIT ~ A CHARACTER-ORIENTED TEXT EDITOR) ~ Page 2

3.0 EDITING AN EXISTING TEXT FILE

You may use EDIT on any seqﬁential file that contains ASCII characters. To
edit an existing file, - type: - : .

«EDIT Filespec

where Filespec is the name of the file you want to edit. The default EDIT
extension s .MAC. After you hit RETURN, you see the EDIT prompt* *, You
are now ready to..enter EDIT commands. DOT dnitially points to the first
character in your file. When you exit EDIT, the editor renames your
or1g1nal disk file to a .BAK extension {(for BAFKUP) “and saves your edited
coby under the original file's name and extension.

4.0 SPECIAL CHARACTERS

When entering text and commands to EDIT, you may use the RUB key (also
Labeled RUBOUT, DEL, DELETE, etc.) to erase single characters, and a
Control-U to erase an entire Line of input. EDIT itself has a group of
commands that you must use to delete those characters and lines already part
of the file you are editing.

EDIT uses the Escape key (labeled on your keybcard as ESC, ALT MODE, etc.)
rather than a RETURN as a command delimiter; this allows you to enter
carriage returns as ovart of your text. When you type an Escape to EDIT, you
see the character displayed on your terminal as a dollar sign, %. Whenever
you see a 3% in this document, the symbol indicates an Escape.

5.0 THE COMMAMNDS

You may enter EDIT commands either in upper or lower case. You may enter
the commands one at a time, ending your input with two Escapes. For
example:

*C$$
*

After the EDIT prompt symbol, *, we entered the Character-advance command,
€, which moved DOT ahead in the file by one character-position. To tell
EDIT that the command Lline was complete, we entered two Escapes. EDIT
responds with another prompt to let us know that it 4s ready for another
command .

You may alsc enter commands as 2 group. For example:

*LKTSS

{Changed 1 July 1979

o A D S

EDIT =~ A CHARACTER-ORIENTED TEXT EDITOR - . Page3 .

The example above tells EDIT toﬁhove'DOT to the beginning‘bf the next line.
(L), kill C(that is, delete) from DOT to the end of the current Lline, and
type (that is, display) the characters from DOT to the end of the current
line.

A Line consists of all of the characters between two
carriage-return/linefeed character pairs. :

Some commands take numeric arguments (e.g., "3D" says delete the three
characters after DOT); numeric arguments are decimal numbers, and always
nrecede the command to which they apply. If a command takes a text argument
(e.g., "Stext" says search for the word "text"), you must end the text
argument with one or two Escapes. (One Escape tells EDIT that the Llast
command 1is complete, but that it may not yet take action upon the current
jnput Lline. Two Escapes tell EDIT to go ahead and act wupon the current
command line.) For example:

*IThe "I'" command tells EDIT to insert text$310T%3

The command ~ Line begins with an Insert command, I. EDIT will insert into
your text file (at the current DOT position) all text (including carriage
returns) following the I command up to a single or a double Escape. The
single Escape above terminates the text entry string; next 1is a display
command, 10T, that tells EDIT to display the 10 Lines of characters that
occur after the current position of DOT. The double Escapes tell EDIT to go
ahead and act upon the entire string of commands. You may enter as many
lines of commands and text as you wish; EPIT will not take action upon the
input until you hit two Escapes.

If you want to cancel a string of input, you can do so by typing a Control-C
(as long as you type the Control-C before entering the double Escapes).

5.1 A SUMMARY OF THE EDIT COMMANDS

Below is an alphabetical Llist of the EDIT commands. (Remember, DOT is the
pointer that marks your position in the file.)

A APPEND - Appends one or more records of the input file to the
data buffer if there are at lLeast 2000 free bytes of memory
left, and DOT has not reached the end of the file.

C CHARACTER ADVANCE - Moves DOT forward one character (e.g., (33).

ne CHARACTER ADVANCE - Moves DOT forward by "n" characters (e.g.,
3CcHE). '

-nC CHARACTER ADVAMCE - Moves DOT backward by "n" characters (e.g.,
-5¢%%).

oc CHARACTER ADVANCE - Moves DOT backward to the beginning of the

current Line.

(Changed 1 July 1979)

EDIT *~ A CHARACTER-ORIENTED TEXT EDITOR .. - Page 4

nb

-nbD
op -

HD:

EG

E@

Gx

Itexts

~+DELETE

peletes the first character after DOT.

DELETE ~- Deletes the next "n" characters after DOT (e.g., 3D$$).

DELETE - Deletes the character just behind DOT (e.g., -D$$).

DELETE - Deletes the the previous "n'" characters behind DOT

(e.q., —-2003%%).

DELETE - Deletes ctharacters from the beginning of the Lline up to

" DpOT.

DELETE = Deletes entire buffer; that is, deletes as much of the
file as is in memory.. .

'EXiT - Exit to monitor. Outputs data. buffer, and rest of input

file. Renames new file tg original file's name and extension,
and renames original file to a .BAK extension.

EXIT AND GO - Exits to monitor and, if it is a .BAS or a .MAC
file, processes the text file as s appropriate for its
filetype. An EG$%$ command used on a .BAS file tells the monitor
to Lload in BASIC and compile the file; the EG command used on a
-MAC file tells the monitor to load in MACRO and assemble the
file. : :

EXIT AND QUIT -~ Exits to monitor, but doesn't make the editing
changes you entered; the original file is left as is, untouched,
and is not renamed to .BAK.

FREE . MEMORY =~ Prints decimal number of free bytes left in your
memory partition.

GET AUXILIARY - Gets auxiliary buffer "x'" where the symbol x may
be the letters A-Z. Inserts the buffer inte the file at .the
current position of DOT. DOT is moved forward the number of
characters inserted. :

INSERT - Inserts specified text into the file at the current
position of DOT. You may insert carriage returns and other
special symbols except for those Control-characters discarded by
AMOS on input (See Special Insert, below). Remember that the
text is not actually inserted until you type two Escapes. Ffor
example: :

. *IThis is all one
input; all of the
characters, even the
carriage returns, can
be entered with one
insert command$$

(Changed 1 July 1979)

atebb,

EDIT - A CHARACTER-ORIENTED TEXT EDITOR R U Pages

nIf

0J

nJ

zZJ

nL

oL
-L

-nL

Linefeed

Ntext$

SPECIAL INSERT - You may insert special Control-characters not
usually accepted by EDIT, by preced1ng the I command with the
decimal ASCII code of the character you want to insert (e.g.,
1213% inserts an ASCII character 12-- a form-feed).

JUMP - Jumps DOT back to the beginning of the data buffer (1 e.,
back to the beginning of the port1on of your file that is in
memoryJ,

JUMP ~ Jumps DOT to immediately in front of the "nth" character
in the data buffer. :

JUMP - Jumps DOT to the end of the buffer.

KILL =~ Kills the characters from DOT to the end of the current
Line. ' ' :

KILL - Kills the next "n" Llines of text past DOT.

KILL - Kills from the beginning of the current Lline to DOT.
KILL - Kills from the beginning of the previous line to DOT.

KILL - Kills from the start of the "nth" Line behind DOT up to
DOT itself.

KILL - Kills the entire data buffer.
LINE ADVANCE - Advances DOT to the beginning of the next line.

LINE ADVANCE - Advances DOT forward '"n" Lines. DOT s
positioned at the start of the Line.

LINE ADVAMCE - Moves DOT back to the start of the current Lline.
LINE ADVANCE - Moves DOT back to the start of the previous Line.

LINE ADVANCE - Moves DOT backward '"n" Llines from the current
position of DOT, and positions DOT to the start of the Line.

LTNE ADVAMCE AND TYPE - Typing a Linefeed (Control-J) performs
same function as LT$$; that is, advances to the front of the
next Line, and displays that Line. A backspace (Control-H)
performs the same function as the ~-LT%$ command; that is, moves
DOT back to the start of the previous line, and displays that
Line.

WHOLE FILE SEARCH - Searches the current data buffer, beginning
at 0OT, for the first occurrence of "text". If the search
within the current data buffer is not successful, EDIT writes
that data buffer out to the disk, and brings in more text; DOT
is reset to the beginning of that buffer, and the search begins
again. This process continues until "text" is found, or until

(Changed 1 July 1979)

EDIT - A CHARACTER-ORIENTED TEXT EDITOR o o L RS Page;é._.'

the end of the file has been reached. 1f "text" is' found, DOT

is positioned just after dt; 1if "text" .is not found, EDIT

displays an error message: [SEARCH FAILEP], and any commands
occurring . in the dinput string after the search command are
aborted.

WHOLE FILE SEARCH.- Same as above,.except that search stops at

nNtext$
the "nth" occurrence of "text" (e.g., TONsilicon$).

NS . WHOLE FILE SEARCH —~ Same as Ntext$, except that it uses the last
text string that you entered to a search command.

nN$ WHOLE FILE SEARCH = Same as nNtext$ except that the last searc
string entered is used. - '

R REVERSE - Same as -C command.

nR REVERSE -~ Same as -nC command.

Or REVERSE - Same as 0OC command.

-R REVERSE - Same as € command.

-nR REVERSE - Same as nC command.

Stext$ SEARCH - Searches the data buffer beginning with DOT for the
first occurrence of "text". Positions DOT just after "text" if
it finds it; otherwise it displays the message: LSEARCH FAILED],
DOT is positioned to the front of the buffer, and the rest of
the commands in the input string are aborted.

nStext$ SEARCH - Same as Stext$, but £DIT searches for the '"nth"
occurrence of the search string "text".

S3$ SEARCH =~ Same as Stext$ above, but EDIT uses fhe Last search
string entered.

ns$ SEARCH - Same as nStext$, ' but wuses the Llast search string
entered. :

FSoldtext$newtextss
SEARCH~AND~REPLACE -~ Searches for "oldtext' and reblaces it with
"newtext™. The command FNoldtext$newtext$$ performs the same
function, but on the entire file, rather than on just the
current data buffer. -

T TYPE - Displays the characters from DOT to the end of the Lline.

nT TYPE ~ Displays "n" Llines of characters starting from DOT,

0T TYPE - pisplays the characters.frbm the beginnin§ of the current

Line up to bOT.

{Changed 1 July 1979)

EDIT - A CHARACTER-ORIENTED TEXT EDITOR

~T

Vx

Xx

nXx

OXx

=nXx

stexts

TABtext$

SPACEtext3

N<o..>

TYPE =~ Displays the characters from the start of the'brevioﬁ$“_ "

line up to DOT.
TYPE ~ Displays from the "nth" Line behind DOT up to DOT.

VERIFY -~ Verifies auxiliary buffer contents, where the symbol
"x" dis a character from A-Z. Lists the contents of the

auxiliary buffer,

SAVE - Saves, in auxiliary buffer "x“, the characters from DOT
to the end of the current line. (X is a character A-Z.) The
previous contents of the auxiliary buffer are Llost.

SAVE ~ Saves "n" Lines past DOT in aukiliary buffer "x". ("x"

is a character A-Z.)

SAVE - Saves' from the beginning of the current Lline to DOT in
auxiliary buffer "x'".

SAVE - Saves, in auxiliary buffer "x", from the start of the
"nth" Lline previous to the Line DOT is in up to DOT.

SEMICOLON INSERT -~ Performs same function as the Itext$ command,
except that a semicolon is placed at the start of the inserted
text.

TAB INSERT - Performs same function as the Itext$ command,
except that a TAB character 1is placed at the start of the
inserted text.

SPACE INSERT - Performs same function as the Itext$ command,
except that a space is placed at the start of the inserted text.

REPEATS - ALL of the commands within the angle brackets are
repeated '"n" times (e.g., 10<FSprimptSprint$>$$ tells EDIT to
search for the word "primpt" and replace it with "print" ten
times). ALL EDIT commands can be executed in a repeat,
including other repeats. The maximum nesting level for repeats
is eight. An error message and an abort occurs {if you exceed
the nesting Limit; search failures also abort repeats.

If you omit '"'n" the group of commands repeat endlessly until an
error occurs, or until a Control-C 4is typed. Often wused to
replace ALL occurrences of an item (e.g.,
<FSregistrar$register$>%%).

(Changed 1 July 1979)

-Page 7: ,}

January 1979 .

PROGRAM DESIGN LANGUAGE FORMATTING SYSTEM

1.0 INTRODUCTION

The Program Design Language Formatting System is a tool that helps you to
produce a program-design document.

The first step in creating a program~design document is to use one of the
Alpha Micro text editors <(EDIT or VUE) to write a document. Write the
document in the form set by the Program Design Language-- PDL (see Section
2.0, "Program Design Language').

When you exit the text editor, and are again at the AMOS command level, you
may use the Program Design Language Formatting System (PDLFMT) to transform
your text file into a finished program-design document.
PDLFMT produces a document which contains the following:
1. Table of Contents.
2. Formatted Design Listing - Each procedure in the program is listed
on a separate, numbered page, with the page numbers that refer to
other procedures in the margin. Each page indents the text to show

control-structure nesting.

3. Reference Trees - Indented Listing shows how procedure references
are nested.

4. Cross Reference -~ Alphabetical listing of all sections and

procedures. An index of where the sections and procedures appear,
and where references to them aopear (page and Lline numbers).

2.0 PROGRAM DESIGN LANGUAGE

A program design written in PDL has this form:

PROGRAM DESIGN LANGUAGE FORMATTING SYSTEM Page 2

NOTE:

2.1

1.

/T Design Title
/5 Sect1on Name
Text describing the SeCtioN.uanaans
/P Procedure Name
Text giving the procedure design...
/P Procedure Name

‘ awsesasue Text '."."""."-"","-
/5 Section Name
aesnumsas TEXL cuiacensnacessassaa
/R -
Procedure name
Procedure name

I R R R LR R NN SN NN SR AR R]

the slash (/) must be the first character on the Lline.

/T Design Title - Specifies the name of the program design. This

title appears on every page of the finished document. (/T is
called the title command.) The title command must always be the
first command in the design, and must always be present.

/S Section Name - Specifies the start of a new section of procedure

designs. The section name specified will appear on the pages of
the finished design document as subtitles. After the section
command s free—form text that describes the section. (This text
may be any length or form that you want, but no Line of it may
begin with a /.)

/P Procedure Name - Specifies the start of a procedure design, and
assigns Procedure Name as the name of that design. Any time the
Procedure Mame occurs as a statement within a procedure design,
POLFMT considers that occurrence as a reference to the procedure
design.

/R Reference Tree = Specifies the start of a List of procedure
names on successive Lines. Each procedure name iJis a root of a
reference tree Listing. The Reference Tree command is optional,

but if you do include it in your document, it must be the Llast
~command in the design.

Procedure Design

A procedure design consists of a sequence of statements. You may Label each
statement. (Labels are an alphanumeric identifier followed immediately by a

colon.

)

POLFMT will indent Llabels by =2 in the final document.

-

PROGRAM DESIGN LANGUAGE FORMATTING SYSTEM ~ = Page 3. - oo

You may also precede each statement by one of'theukeyﬁofds:'IF,“ELSEif;l

ELSE, ENDIF, DO, ENDO, or ENDDO. PDLFMT uses these keywords when it formats -

your design document. The rest of the Line after anm IF or ELSEIF 1is
considered a condition; PDLFMT will not consider it a potential procedure
reference. :

Statements are sequences of text that end with carriage returns. They may
contain embedded comments enclosed dn parentheses. If the text of a
statement {ignoring the comments) matches the name of a procedure or
section, PDLFMT considers it a reference to that procedure or section.

You may continue statements on one or more lines by placing an amoersand (&)
at the beginning of succeeding Llines.

2.2 Control Structures

YOU can use the keywords IF, ELSEIF, ELSE, ENDIF, DO, and ENDDO (or ENDO) to
indicate a variety of control structures. The paragraphs that follow give
some idea of the possibilities.

2.2.1 The IF Construct — The IF construct provides the means for
indicating condition execution. It corresponds to the c¢lassic
IF...THEM...ELSE construct found in Algol-60 apnd PL/I, augmented by the
ELSEIF of Llanguages such as Algol-68. The ELSEIF s used to prevent
excessive indentation of levels when cascaded tests are used.

The general form of the construct is:

If condition

one or more statements
ELSEIF condition

one or more statements
ELSEIF condition

one or more statements

ELSE
one or more statements

ENDIF

NOTE: You are allowed any pumber (includiﬁg zero) of ELSEIfs, and vyou are
allowed one ELSE at the most.

PROGRAM DESIGN LANGUAGE FORMATTING SYSTEM s s Page 4

2.2.2 The DO. Construct - Use the DO .construct to indicate repeated

execution, and for case selection. Indicate the.iterative DO by:

DO iteration criteria
one or more statements

ENBDO

You can choose the iteration criteria to suit the problem. Typical criteria
begin with the words WHILE, UNTIL, or FOR. . WHILE denotes a :continuation
¢criteria which 1is checked before each iteration. UNTIL denotes a
termination criteria that is checked after each iteration. FOR .denotes a
range of items over which the one or more statements are to be appLiedf
Examples:

DO WHILE THERE ARE INPUT RECORDS
PO UNTIL "ENDP' STATEMENT HAS BEEN PROCESSED
bO FOR EACH ITEM IN THE LIST EXCEPT THE LAST ONE

Provision for premature exit from a loop and premature repetition of a Lloop
are frequently useful. To accomplish this, you can take. the statement UNDO
to mean that control is to pass to the point following the ENDDO of the
Loop. Likewise, CYCLE can be taken to mean that control is to pass to the
iteration criteria test. If you want to apply UNPO or CYCLE to an outer
loop 1in a nest of loops, you may label any DO and place the label after the
UNDO or CYCLE.

You can indicate case selection by:
DO CASE selection criteria

In general, labels are used in the body of the DO to indicate where control
passes for each case:

DO CASE OF TRANSACTION TYPE
ADD:
CREATE INITIAL RECORD
DELETE:
IF DELETION IS AUTHORIZED
CREATE DELETION RECORD
ELSE
ISSUE ERROR MESSAGE
ENDIF
CHANGE :
INCREMENT CHANGE COUNT
CREATE DELETIOM RECORD
“OTHER":
ISSUE ERROR MESSAGE
ENDO

PROGRAM DESIGN LANGUAGE FORMATTING SYSTEM

3.0 OPERATING INSTRUCIONS A
Call PDLFMT from the AMOS command level by typing:
«PDLFMT Filespec(@ED
where Filespec specifies a desiagn file prepared with a text editor. If you
omit a filename extension, PDLFMT assumes a .PDL extension. The formatted

design document is placed in the file Filespec.LST.

A demonstration file, TLGRAM.PDL, is included with PDLFMT.PRG on the dealer
distribution disk. For a demonstratiocn of PDLFMT, type:

-PRINT TLGRAM.PDL (RED

<PDLFMT TLGRAM (D
~PRINT TLGRAM

4.0 ERROR MESSAGES

X IS AN ILLEGAL COMMAND - BYPASSING LINE

PDLFMT found a command /X in the design document, but X is not a Legal
command. Use /T, /S, /P, or /R.

REPEATED DEFINITION: xxxxXXX, REFERENCES WILL BE TO LAST OCCURRENCE

XXxxx 15 a section or oprocedure name that occurred in a section or
procedure command more than once.

5.0 ACKNOWLEDGMENTS

PDLFMT is based on PDL and its processor, as described in "PbL - A Tool for
Software Design," by Stephen H. Caine and E. Kent Gordon of Caine, Farber,
and Gordon,_ Inc,

AMOS Software Update Documentation
: AMOS Release 4.5
T April 1981

SYSTEM OPERATOR'S INFORMATION

This section contains the following documents:

The System Initializaton Command File, Revision AO4

Setting Uo the Line Printer Spooler, Revision AD2

Memory Management Option, Revision AOT

Defining Switchable sttem Memory, Revision AD?2

Configuring Floppy Disk Drivers, Revision AD1

AMOS Version 4.4 Method of Handling Bad Disk Blocks

Software Installation Instructions for the AM-120

Software Installation Instructions for the AM—?10 Memory Board
Software Notice for AM=410 Users, Revision AO3

Disk Labeling Procedures

Disk Maintenance Procedures for the System Qperator, Revision AﬁS _
Defining Non-system Disk Devices, Revision AC1

Disk Drivers and Formats, Revision AD3

Generating System Moﬁitors, Revision AQ1

Using the Magnetic Tape Utility Programs

The Magnetic Tape File Rackup Programs

Building a Terminal Driver (The NEWTRM Program}

AMOS 4.5 SOFTWARE UPDATE DOCUMENTATION PACKET

"Alpha Micro', 'AMOS', 'AlphaBASIC', 'AM-100',
'AlphaPASCAL’, 'AlphaLISP', and 'AlphaSERV'

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA Q2714

These documents reflect AMOS Versions 4.5 and later

©1981 - ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North
Irvine, CA 92714

THE SYSTEM INITIALIZATION COMMAND FILE

April 1981
Revision AQ4

This document reflects AMOS versions 4.5 and Llater

THE SYSTEM INITIALIZATON COMMAND FILE | | Page ii

*AlLpha Micro', 'AMOS', 'AlphaBASIC', 'AM-100°,
'ALphaPASCAL', 'AlphaLISP', and '"AlphaSERV'

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA 92714

©1981 -~ ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 sky Park North
Irvine, CA 92714

o

ey

 THE SYSTEM INITIALIZATON COMMAND FILE " S Page iii. ..

Table of Contents

1.0 INTRODUCTION .. ocececccecnccenaacasaasenamnnnsn Cenmmmaan 1 &
1.1 Modifying the SYSTEM,INI .ucvvuneeounnnnna wananes 1 .
1.2 System Start-uUp ..eceeeccncanans tamamanan aesmenss 2
2.0 A SAMPLE SYSTEM INITIALIZATION COMMAND FILE .uvecuceow- 4
3.0 THE TRACE FUNCTION (:2T) cuiuccceuccucacunecanancannoss 5
4.0 ALLOCATING JOBS (THE JOBS COMMAND) . . uvcueceecencacnnces &
5.0 DEFINING TERMINALS C(TRMDEF) e ceocoecmncceconcaconcnas &
5aT NGME s uiiinceuccassanceeananansanaanesascensmennns 7
542 INterface tueieneieuucucnsanamssmesasnncccasnnnnns 7
Tt L 7
52202 IMSIO uuciicuuucemssnacceransnnsccnnannanns 8
R S 1 i 1 T 8
5.2.4 AM30D . .iccrirernrnnanonannnrsannnnannnans 8
5.2.5 AM310 L. ii i iusnsceacsscceaanaan. G
5.2.6 AX310 L. i e ieemsamariccancaaneananen 10
T Y] 10
5.2.8 PSEUDO ..oeunnceo-- meemassmenEsaEssaEEaE-. .- 10
5.3 Terminal ..oiciicicneeasescmamncacacaaacaaaannnnes 11
5.3.1 ADME i iiiiiiesmcmccacesasmsraccenenanan 11
5.3.2 SOROC tiiiccecmccecacccscsnannnasennnsrnncn-s 11
T T T - . 4 1 11
5.3.4 ACTIV couuuccsceanasesanancaasscccssssassns 12
3:.3.5 DMEDIA tniecimecucccccasnesnnannenennronnns 12
53.3.6 ADDS i iiireiresemacemaaraascaaaerac . 12
537 TELTYP it iicesvrecccsaccamcarannaannnnns 12
5.3.8 SIL700 . uuciicccnncnccccccnnananccnannennas-s 12
5.3.9 PSEUDO tiiiciinccananmsssanccacecacacnansns 12
523,10 NULL sereinsucaceanananancnnnssnnnennnnsas 12
5.3.11 Other Terminal Drivers ..ceeeececescncance 13
5.3.11.1 Building Your Own Terminal
Driver (NEWTRM)ciueccannnns 13
B T € ' 1 4 4 13
B I B (R T i - 13
5.6 OUt-=bUffer muueoiiveecerenancccancaacncaoacconeana 13
5307 HOG 4iieecuaceceeonnacsesaananceeanaccenacoonnenns 14
6.0 MEMORY MANAGEMENT (MEMDEF) o v e eecomoceecoonacnaonns 14
7.0 SWITCHABLE SYSTEM MEMORY (SYSMEM) o crvrccuvescencnnns 15

(Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND FILE s weraL e a0 coPage v

8.0 MEMORY ERROR DETECTION (MEMERR) wauesueseuececnsananns 15 R
8.1 Piiceon 32K Word Memory Boards ..cceeeccencasacas 16 | |
8.2 AM-710 128K Byte Memory Board ...ccisvecssesaanan 16

9.0 PARITY ERROR DETECTION (PARITY) euccensuviveniniwinnas 17

:10.0 THE DEVICE TABLE (DEVTBL) weawuumsuananaasansasainnas 17

11.0 THE DISK BITMAP (BITMAP) 18
1.1 Switchable System Memory 0pt1on (/%) .;;...;....P19

12.0 THE MONITOR QUEUE (QUEUE) oeuuceunn.. e weea 19

13.0 THE CLOCK FREQUENCY (CLKFRQ) wsuveaneans eeeaeeaeaa 19

14.0° RESETTING THE SYSTEM DATE AND TIME FROM THE AM=120
' (DATE AND TIME) .ucicucnavanmas “revanana smaaaavsanann 20

15.0 INCORPORATING PROGRAMS IN SYSTEM MEMORY (SYSTEM) 21

16.0 SYSTEM INITIALIZATON CLEANUP ..vcciiescaamnaaananannna 22
16.1 Setting Options (SET) .vueeveennnen sasssssuaa wen 23 N
16.2 Attaching Jobs (ATTACH) +.iiceecuececccconencans 23 (
16.3 Allocating Memory C(JOBMEM) .vveueeveecnnnnncenna 24 -

16.3.1 Allocating Memory in Bank Zero (MEMORY) . 24

16.4 Killing Jobs (KILL) .cuueeeusascnnnne semssaasmans 25

16.5 Forcing Input to a Job (FORCE) nueeevecoecoanne - 25

16.6 Mounting Disks (MOUNT) .ecvvenecuueenencanns eena 26

16.7 Setting Head Load Time (HEDLOD) woveeveocevanans 26

16.8 DYSTAT ticuucevuaamnnnennccnncrannnes ceswsasanaaa 26

16.9 Setting Up the L1ne Printer Spcolera.- cana 27

INDEX vevueeua . esmsasasaraas emana Seassammna tessassuana 29

(Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND FILE | - Page 1

1.0 INTRODUCTION

The Alpha Micro Operating System has been designed so that you can
“"customize" it for your particular hardware set-up (that is, adapt it to run
with your terminals, your disks, etc.) In fact, you MUST do that initial
system software installation 1if your system software has not already been
set up so that it conforms to your machine's “hardware configuration.
Because a wuser's hardware and system needs can keep changing as a system
grows, Alpha Micro has created a simple mechanism for adapting the operating
system to reflect those changes' the system initialization command file (the
SYSTEM.INI),

The SYSTEM.INI is a special kind of command file. (A command file is a text
file that contains system commands; the system reads and obeys the
instructions it reads from the file.) Whenever the system is powered up or
reset, it consults the SYSTEM.INI to find out what devices you wuse on the
system and what special programs and functions you want to add to the
operating system area of memory.

The rest of this document discusses the elements of the SYSTEM.INI and the
changes that you can make to the file to reflect changes in your system
configuration. (NOTE: While you read this document, keep in mind that the
terms "operating system," "monitor," and "system" are roughly
interchangeable in the pages that follow.)

1.1 Modifying the SYSTEM.INI

CAUTION: Let's assume that you have a SYSTEM.INI file that gets vyour
system up and running, and you want to change it to reflect some hardware
additions or changes. Before you edit the file, it's a good idea to make a
backup copy of your System Disk so that you can bring the system up again,
even if something goes wrong with your modified SYSTEM.INI.

If you change the file that works (and somehow your new SYSTEM.INI doesn't
work), you won't be able to get the system up and running off of that disk.
Before you can again use the disabled disk as a System Disk, you'll have to
bring the system up off of another System Disk, and transfer over a copy of
& good SYSTEM.INI. The system will not come up unless you have a valid
SYSTEM.INI file on your System Disk.

1f you are running the system off physical drive zero (i.e., the
fixed-platter in a CpC Hawk hard-disk system, the first fixed disk in the
CDC Phoenix hard-disk system, or Drive Zero in a floppy-disk system) you can
make a copy of the good SYSTEM.INI under a different name, edit THAT version
of the file, and then use the MONTST command to test the new copy. This

(Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND FILE wiion oy ooty o0 Pages®

procedure leaves you with a valid SYSTEM.INI under 1its original name, so
that if you have to reset the computer, the system will be able to come up
under the control of the original, valid SYSTEM.INI.

To use the MONTST command, type MONTST, SYSTEM.MON, a comma and the name of
the modified command file:

+MONTST SYSTEM.MON,NEWSYS.INI (RED

It you are not tUnhihhjoff physical dr1ve zero, you “Will not be able to use
the MONTST_Qdmﬁahd,fand:w1LL have to modi fy the SYSTEM.INI file 1tseLf an
that case;‘ make sure that you have a valid System Disk that you can br1ng
the system up on before you change your SYSTEM.INI file.

To = Chahge. the _SYSTEM iNI to 'heflect your oﬂnt needs . and hafdwéré
configuration, edit "it with one of the text editors on the system (EDIT .or
VUE). The SYSTEM.INI resides in area [1,4]1 of the System Disk. After vyou

change the file, reboot the system by pressing the reset button or by using

the MONTST command (see abovel),

1.2 System Start-up

The monitor performs a certain set of procedures while it is coming up. If
one of these steps fails, the system will not come up. These steps are:

1. When you press the reset button, the Alpha Micro CPU starts
executing instructions at the address set up in its header. (If
the CPU dis an AM-100, this address is the address of the PROM on
the disk controller board; if the CPU is an AM=100/T, the address
is the address of a PROM on the CPU board itself.)

2. The nprogram 4in the PROM transfers itself down into RAM between
31K-32K. (If your memory in these locations is bad or nonexistent,
the system start-up will not proceed beyond this step.) If the
phantom memory option is installed on the disk controller board,
the phantom memory now becomes active.

3. The PROM program (the bootstrap loader) is now in RAM and it béginé

to execute. It reads in the operating system skeleton monitor,
which dJs a file called SYSTEM.MON in the [1,4] System Disk program
area. The Lloader reads SYSTEM.MON 4into memory beginning at
location zeroc and extendTng as .far as necessary.

4. When SYSTEM.MON is 4in memory, it executes the initialization
routine (INITIA) within the monitor itself. The purpose of INITIA
is to scan memory to determine how much is available, and then to
set up a user memory partition in the last 8K of memory. (This
‘user partition is temporary, and is just used to execute the system
start-up functions under control of the SYSTEM.INI.)

(Changed 30 Aprit 1981)

ep TR HE

THE SYSTEM INITIALIZATON COMMAND FILE ‘Pagé 3

5. Once INITIA is through setting up the user partition, ‘the monitor

‘ reads in the system initialization command file, SYSTEM.INI. Each
line 1in the SYSTEM.INI represents one system function or parameter
which determines the characteristics of the runn1ng mon1tor.

6. The monitor executes the commands in the SYSTEM.INI just as it
would the commands in any other command file. Because this command
file 4s the system dnitialization file, however, the monitor
performs some of the commands in the SYSTEM.INI differently than it
would the same commands after the system is completely -up. The
execution of certain system commands (e.g., JOBS, TRMDEF, DEVTBL,
etc.) performs the actual system generation.) o

During system start-up, certain programs cause the. monitor to create new
areas at the end of itself; these areas include terminal definition blocks,
terminal drivers, job control blocks, device tables, memory bank tables,
system queues, and disk bitmaps. Your SYSTEM.INI may optionally specify a
List of programs to be added to the resident monitor area of memory during
System start-up.

The size of the monitoer s not fixed, but 1is expanded.during system
start-up. This is why INITIA allocates the jnitial user partition in the
top 8K portion of memory. This gives the monitor room as it expands so that
it won't overlap the user partition. (The monitor executes the SYSTEM.INI
in that user partition.)

NOTE FOR BANK-SWITCHED SYSTEMS: If your system uses memory management (i.e.,
it bank switches memory), the system uses the top 8K of Bank Zero to process
the SYSTEM.INI. You can go ahead and allocate that portion of bank zero to
a job as & user memory partition (via the JOBMEM command), but DO NOT try
to use that job to run anything until after the SYSTEM.INI is fully
processed and the system is up and running. (That is, do not use a FQRCE
command within the SYSTEM.INI +to force dinput to the job.) NQTE: For
information on wmemory management via bank switching, see the Alpha Micro
Integrated Systems User's Guide, (DWM-00101-00).

(Changed 30 April 1981)

THE SYSTEM INITIALYZATON COMMAND FILE o o S Page'4.:;

2.0 A SAMPLE SYSTEM INITIALIZATION COMMAND FILE

This page and the next contain a typical SYSTEM.INI file for a system that
uses memory management. The sections that follow base their discussions on
this samplte SYSTEM.INI. '

:T . .

40BS JOB1,J0B2,J0B3,J0B4,SPOOL

H ' : o

TRMDEF TRM1,AM300=1,ADM3,100,100,200

TRMDEF TRM2,AM300=2:6,51L.700,100,80,30

TRMDEF TRM3,AM300=3:16,50R0C,100,100,100

TRMDEF TRM4,AM300=5:16,S0R0C,100,100,100

TRMDEF PRNTR,AM300=6:10,50R0C,100,100,20 ; Define printer

TRMDEF NULL,PSEUDO,NULL,25,25,2 . "~ ; pefine |

: : - pseudo-terminal.

; - _

MEMDEF 100,0,14 ; 32K switchable (Bank 0)

MEMDEF 101,14,0 ; 2K switchable (Bank 1)

MEMDEF 102,14,0 ;> 32X switchable (Bank 2)

MEMDEF 101,3,0 .; 32K switchable (Bank 3)

MEMDEF 102,3,D ; 32k switchable (Bank 4)

; _ L s

SYSMEM 4:100000-160000 _ ; Define 24K as switchable

; system memory. '

MEMERR 250 _ ' ; Initialize memory {‘LE

; boards to detect o

; . : double-bit errors.

DEVTBL DSK1,DSK2,DSK3,DSK4,DSKS, HWKO, HWK1

DEVTBL AMSO,AMS1,TRM,RES,MEM,/MTM , ; befine devices.

BITMAP HWK,606,0,1

BITMAP AMS,39,0,1

BITMAP DSK,1818,0/5 _ ; Put DSK bitmaps in

BITMAP DSK,1818,1/8 ; switchable system memory.

BITMAP DSK,1818,2/5

BITMAP DSK,1818,3/5

BITMAP DSK,1818,4/5

BITMAP DSK,1818,5/S

QUEUE 20 ; Add 20 more queue blocks.

CLKFRG &0 ;s Set clock frequency

SYSTEM HWK.DVRL1,4]

SYSTEM VUE.PRGL1,4]

SYSTEM

SET DSKERR ; Enable full disk error reporting

SET GUARD ;s for this job.
{
-

(Changed 30 April 1981)

THE "SYSTEM INITIALIZATON COMMAND FILE SRR AR

ATTACH TRMZ,J0B2

JOBMEM J0B2 1:100000-177376
'KILL JOB2 ,)
" FORCE JOB2 LOG DSK2:22,2

FORCE J0B2 SET DSKERR

Give JOB2Z 32K of memory
Initialize JoOB2

Log JOB2 into the system. -
Enable full disk error reporting *

we wms s ws

ATTACH TRM3,J0B3
JOBMEM JOB3 2:100000- 177376
KILL J083

Give JOB? 32K of memory
Initialize JOB3

s W

ATTACH TRM4 , JOR4 ‘
JOBMEM JOR4 3: 100000 177376
KILL JOB4

‘Give JOB4 32K of memory
Inftialize JOB4

e W

e

Attach Line printer spooler
job to pseudo-terminal. "
Initialize 'spooler job.

ATTACH NULL ,SPOOL

KILL SPooOL

..

FORCE SPOOL
MEMORY 4K

LOG 1,2

LPTINI PRNTR.INI

Force input to spooler job. '
Give spooler 4K sharable memory.
Log job intoc system.

Set up line printer spooler.

e wa w3 W

Wait for SPOOL teo finish before
proceeding.
Mount the six Phoenix

AT

WAIT SPOOL

r
MOUNT DSK1:

r

MOUNT DSKZ2: ; Logical units.

MOUNT DSK3:

MOUNT DSK4:

MOUNT DSK5:

MEMORY O ;> Give JOB1 rest of sharable
; memory not used by monitor.

The following sections discuss the elements of the SYSTEM.INI file and their
functions.

3.0 THE TRACE FUNCTION (:T)
The first line in a SYSTEM.INI is:
:T

This turns on the trace function of the command file processor. That s,
the ":T" tells the monitor to display the command file on a terminal while
it is processing the SYSTEM.INI. When the monitor first finds the
SYSTEM.INI, the process of reading and processing the file is initially
under control of the first job (to which no terminal has yet been attached.)
As soon as a terminal is defined (by the first TRMDEF command), the monitor
displays the remainder of the SYSTEM.INI on that terminal screen as it
executes the file.

(Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND FILEPage 6

If you don't want the system to display the SYSTEM. INI as it processes it, '

omit the :T from the f1Le.

NOTE: The sem1colons in the example above indicate comment Lines. The
system does not process comment lines, but does d1splay them as it processes
the SYSTEM.INI if a =T appears in. your f1Le. :

4.0 ALLOCATING JOBS (THE JOBS COMMAND)

The first command in the SYSTEM.INI (JOBS) tells the monitor what jobs to
allocate 1in the system, and gives a name (1 to & characters) to each job.
Each job named in the JOBS Line causes one JCB (Job Control Block) arez to
be allocated in system memory. (Each job's JCB maintains information about
that job for the system.) :

If you wish to allocate more jobs than will fit on one liné; you may have as
many JOBS commands as you wish as long as they are before the first - TRMDEF
command in the file. :

Each job allocated takes up about 150 words of system memory. Note that the
JOBS command does not automatically associate a terminal with a-job; this 1is
done using the TRMDEF command to define a terminal, and the ATTACH command
to associate that terminal to a specific job. You must explicitly attach
terminals to jobs in this way. In the sample SYSTEM.INI in Section 2.0, the
JOBS command Lline Looks Like this:

Joss Joe1,J0B2,J0B3,J0B4, SPOOL

This Lline tells the system to allocate JCBs for five jobs.,

5.0 DEFINING TERMINALS (TRMDEF)

After the JOBS command(s) must come one TRMDEF command for each terminal you
want connected to your'_system. Every terminal has a name by which. it is
referenced by the monitor (1 to 6 characters), a specific hardware interface
to which it is comnected, and a terminal driver (a program that does any
necessary character conversions). The TRMDEF command also specifies the
size of the various buffers thet are used in the data transfers between .the
terminal and the computer. The TRMDEF command takes this form: h

TRMDEF Name,Interface,TerminaL,In-width,In—buffef,Out—buffer{,HOG}

When the monitor processes a TRMDEF command Line, it builds a terminal
definition unit in system memory which includes all of the elements above.
The. system then. loads in the correct terminal driver and interface driver
and Llinks them to the definition unit; then it executes the interface dr1ver
which performs any. necessary 1nterface initialization.

NOTE: The buffer size values that you specify in your TRMDEF command Lines
affect the total size of the monitor. . :

{(Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND FILE o a Page 7

After the monitor has finished processing the SYSTEM.INI, the TRMDEF command

performs a different function. After the system is up and running, TRMDEF
becomes a user command. At this time, TRMDEF displays on the screen the
current terminal configuration of the system 1in a form similar to the
original TRMDEF command Llines 'in the SYSTEM.INI. The octal number that
follows each terminal name is the absolute address in the monitor of the
terminal definition unit for that ‘terminal. (That information is ‘sometimes
useful when debugging the terminal service system; the general user can
ignore it.)

In the sample SYSTEM.INI in Section 2.0, the first TRMDEF c¢ommand Line Looks
Like this:

TRMDEF TRM1,AM3C0=1,ADM3,100,100,200

Now we'll discuss the different elements of the TRMDEF command Lline:

5.1 Name

The terminal name consists of one to six alphanumeric characters chosen by
YOU. Every terminal on the system must have a different name, although you

‘may choose to use a terminal name that duplicates a job name or a program

name. The system uses the terminal name to identify the terminal that you
want to attach to a job or that you want to access wusing the TRM device
driver.

5.2 Interface

The interface is the hardware board that connects the terminal to the system
bus. The interface statement gives the name of the terminal interface and
its I/0 port address on the system. (The I/0 port address follows the name
of the terminal dinterface, and is separated from it by an equals sign--
e.g., P§S3=1.) As the system processes each TRMDEF command Line, it Loads
the proper interface driver into system memory from area [1,6] of the System
Disk. (If the driver s already in memory because of a previous TRMDEF
command Lline, the system does not load it in again.) Interface drivers are
the programs that actually transfer data between the terminal and the
terminal interface boards; these programs have the extension .IDV and must
reside in account [1,61 of the System Disk. The interface drivers have the
same name as the interface boards they work with. The currently defined
interface drivers available with the system are:

5.2.17 Ps3

Noninterrupt driver for the Processor Technology 3P+S serial interface
board. The interface statement must dinclude the octal address of the
control status port for the serial side of the beard (e.g., PS3=0, PS3=20(,
etc.)

(Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND FILE S _ S Page 8

5.2.2 IMSIO

Nohinterruﬁt driver for EHéH'IMSAI SI10-2 serial interface board. = The

interface statement must include the octal address of the control status
port for the selected side (A or B). The address of side A is.3 greater
than the board I/0 port address, while the address of side B is 5 greater
than the 1/0 port address. Examples: IMSIO=3, IMSIO=5, IMSIO=23, - IMSI0=25,
etc. ‘

5.2.3 AM100T

Interrupt-driven driver for the two serial ports contained on the AM-100/T
CPU. The command format is identical to that for the AM310 driver, except
that the I/0 port must be either 0 or 1.

5.2.4 AM300

Full dinterrupt driver for the six—port Alpha Micro serial interface board.
If you are using an AM-300 board, you may optionally dnclude a code that
selects the terminal baud rate. (We give these codes below.) The interface
statement includes an I/0 port address (1-6) and the optional baud rate code
(separated from the I/0 port address by a colon). The baud rate code is an
octal number (0-17). 1If you omit the code, the AM-300 driver assumes a rate
of 19200 baud. An AM300 interface statement takes the form:

AM300=I1/0 port address{:baud rate code}

Some examples of AM-300 interface statements:

AM300=1 {port 1 at 19200 baud)
AM300=2 {port 2 at 19200 baud)
AM300=3:64 (port 3 at 300 baud)
AM300=5:12 - (port 5 at 2400 baud)

(Changed 30 April 1981)

T
N . 3,

THE SYSTEM INITIALIZATON COMMAND FILE : Pagé 9

The baud rate codes that you can specify in an interface statement are:

:0 50 baud
21 75 baud
12 110 baud
:3 134.5 baud
th 150 baud
) 200 baud
) 200 baud
Hrg 600 b aud
10 1200 baud
11 1800 baud
12 2400 baud
13 3600 baud
H 4300 baud
:15 7200 b aud
116 9600 baud
117 19200 baud

5.2.5 AM310

Fully interrupt=-driven driver for the four-port Alpha Micro communications
controller. If you are using the AM-310, you may optionally include a code
that selects the terminal baud rate. The interface statement dncludes an
I/0 port address (0-3) and an optional baud rate code (separated from the
I/0 port address by a colon). The baud rate code s actually a two-byte
command. The Llow byte is sent to Mode Register 1 (MR1) of the Programmable
Communications Interface on the AM-310 board. The high byte is sent to Mode
Register 2 (MR2). (For more information, see the AM-310 Technical
Manual.) If you omit the baud rate code, the AM-=310 driver assumes a rate

of 19200 baud. The interface statement for the AM-310 board takes this
form:

AM310=1/0 port address{:baud rate code}
Some examples of AM-310 jinterface statements:

AMZ10
AM310

0 (the first port at 19200 baud)
2137316 (the fourth port at 9600 baud)

o

(Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND FILE /- © @& @i Siififi i Wipage g

The baud rate codes that you can spgcify-are:'*

30316 50 baud
130716 75 baud

131316 110 baud

131716 134.5 baud

:32316 150 baud

132716 300 baud T
233316 600 baud S

133716 1200 baud
134316 1800 baud L
134716 2000 baud s S
:35216 2400 baud o e
:35716 3600 baud
136316 4800 baud
+36716 7200 baud
137316 9600 baud
137716 19200 baud

5.2.6 AX310

Fully interrupt-driven driver. Allows you “to run with multiple AM~310
interface boards in your system. The command format is identical to that of
the AM310 driver, and the baud rate codes you may specify are the same.

5.2.7 AM120

The AM120 driver allows you to use the two serial 1/0 ports on the AM-120
Auxiliary I/0 Controller for terminals or printers. You must also use this
driver if you want to use the AM-120 parallel ports 49n interrupt driven
mode. For more information on the AM-120 beard, see the document Software
Installation Instructions for the AM-120 in the "System Operator's
Information” section of the AMOS Software Update Documentation Packet.

The interface statement portion of the TRMDEF for this interface board is
identical to that of the AM-210 board, and uses the same optional baud rate
codes as the AM-310 (see Section 5.2.5, above). For example:

TRMDEF TERM1,AM120=1:37316,S0R0C,100,100,100

5.2.8 PSEUDO

You normally use the PSEUDO driver with either the PSEUDO or NULL terminal
specifications in a TRMDEF command line. This sets up a software interface
driver that communicates with a pseudo terminal for those occasions when you
have a job that dcesn't need a real, hardware-controlled terminal for
processing (e.g., a print spoocler job). The PSEUDO interface driver is
built into the monitor, and does not reside in area [1,6]1 of the System
Disk.

(Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND FILE T " Page 11

5.3 Terminal

The terminal statement tells the system what kind of terminal 1is connected
to the interface board, and thus what kind of terminal driver to load into
system memory from area [1,61 of the System Disk. Different terminals
process characters differently. A terminal driver is the program that does
the necessary code conversion and character processing required by the
particular terminal that it supports. It is the terminal driver, then, that
takes care of the special functions (e.g., cursor control, Control-U,
rubout, null characters after RETURNs, etc.) that differ between terminal
types.

Terminal drivers have the extension .TDV and are sharable; that is, a given
driver is loaded only once into system memory, no matter how many terminals
of the same type are defined. Some of the terminal drivers currently
available on the system are:

5.3.1 ADM3

The driver for the Lear $Siegler ADM3 dumb terminal. When this driver
receives a rubout, it tells the terminal to backspace and erase the
character in that position. It processes a Control-U by backspacing and
erasing the entire line. It also reverses the case condition of the RUB key
so that you do not need to shift rubouts, but you do need to shift
underscores. Most people prefer this convenience, but you can disable this
feature by setting the BIT & switch on your terminal to position "1."

5.3.2 SOROC

Similar to the ADM3 driver, but contains the codes for the SOROC
CRT-terminal.

5.32.3 HAZEL
Codes for the HAZELTINE 1500, 1510, and 1520 CRT-terminals.

NOTE: If you used earlier versions of the HAZEL driver, you were not able to
use the standard VUE commands because the terminal driver had to make some
special character translations to allow you to use the cursor control keys
of the 1510 and 1520 models. (For example, an end-of-line command was a
Control-G instead of the standard Control-N.) For the sake of convenience,
the current HAZEL driver allows you to use the standard VUE control
commands; however, you may not use the cursor control keys. (To move the
cursor, use the Control-H, Control-J, Control-K, and Control-L commands.)
The sources for the HAZEL driver are available on the "Driver Sources
Diskette'" and on the Phoenix and Hawk System Disk packs.

(Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND FILE Paget2

5.3.4 ACTIV '

Codes for the ACT-iv CRT-terminal. _ _ ‘ L a

5.3.5 DMEDIA.

Codes for the Data Media ELITE 1520 CRT-terminal.

5.3.6 ADDS
Codes for the ADDS REGENT 100 terminal.

5.3.7 TELTYP

Priver for standard KSR and ASR Teletypes. Rubouts echo by typing the
rubbed out characters between backslashes. A Control-U echoes as '""U"
followed by a carriage return/line feed, which takes the printing mechanism
to- the next Lline. The Line that was ended with a Control=U is ignored by
the computer. This driver does no other code conversions, and no null
characters are appended after a Line feed.

5.3.8 SIL700

Driver for the Texas Instruments Silent-700 terminal. This driver is
identical to the TELTYP driver above, except that it adds 8 null-characters
at the end of every Lline-feed to prevent character overrun.

5.3.9 PSEUPO

Priver for the software-controlled pseudo terminals. This driver merely
stops echoing of input characters and allows buffering of input to and from
the controlled job. Use it only with the PSEUDO interface statement. The
PSEUDO terminal driver is built into the monitor, and is not 1in . the [1,6]
area of the System Disk. '

5.3.10 NULL

Driver ddentical to the PSEUDPO driver above, except that it discards the
terminal output from the job, instead of buffering it to wait for some other
job to pick it up. Use this terminal driver when you want to control a job
whose terminal output is of no importance (e.g., the print spooler). When
using this driver for a job Like the Line printer spooler, you will usually
use the FORCE command to send commands and data to that job; make sure that
the buffer sizes you define in the pseudec-terminal's TRMDEF statement (see
below for information on buffers) are large enocugh to accept the Lines of
data that you are going to FORCE to the job.

(Changed 30 April 1981)

4

e
£
* :.:1'.‘;.

THE ‘SYSTEM INITIALIZATON COMMAND FILE =~~~ = = - = Page 13

5.32.11 Other Terminal Drivers

Other terminal driver programs exist that support a variety of terminals and
printers. Refer to the current AMOS Release Notes for a list of the

terminal drivers in account DSKO:(1,61.

5.%3.11.1 Building Your Own Terminal Driver (NEWTRM)

With Release 4.5, Alpha Micro offers a new program, NEWTRM, that you use
outside of the SYSTEM.INI to build your own terminal driver for a particular
terminal. See Building a New Terminal Oriver (The NEWTRM Program} in the
"System Operator's Iinformation” section of the AMQS Software Update

pocumentation Packet for more-information.

5.4 In—-width

The in-width statement specifies the maximum terminal Lline-width allowed
before the system begins to discard input characters. Allowing a Llarge
width, such as 100, gives an added margin of safety when typing long Lines.

5.5 In-buffer

There are times when the system cannot immediatrely process characters that
you type from the keyboard. Instead, it stores the characters in an input
buffer until it can get around to them. The in-buffer statement specifies
the size of this buffer. The number that you specify, then, is also the
number of charscters that you caen type ahead of the system before it starts
to discard characters., When you've reached the end of the type-ahead
buffer, the system echoes any additional characters as bell codes and
discards them. If you want to be able to type ahead a full line, make this
parameter at least as large as the in-width value.

5.6 Out-huffer

The out-buffer statement specifies the size of the terminal output buffer.
This 1is the buffer that holds the characters that the system sends to the
terminal. The terminal empties this buffer at its own speed. The system
allocates two output buffers of the size specified 1in the out-buffer
statement. The system allows a job to stay active until it fills these
buffers; then the job 1is put into the terminal output wait state. In
general, specify larger output buffers for faster terminals, and specify
smaller output buffers (perhaps only 10 characters or so)} for slower
terminals.

For more details on these input and output buffers, see the document,
Terminal Service System. Remember: Large buffers result in a larger
resident monitor size.

(Changed 30 April 1981

B L i SN PP

THE -SYSTEM INITIALIZATON COMMAND FILE . . . - - .~ .v . .- - .Page 14

5.7 HO0G *

The last element of .the TRMDEF statement is an option that you may. wish to
include for . terminalts that run noninterrupt hardware, such as the 3IP+S or
IMSAI SIO boards. The system limits the output of these boards to, 60
characters per second whenever any job is demanding CPU time.

The HOG statement tells the system to use any time remaining in the job's
scheduled quantum to output characters to the terminal at maximum §peed,
instead of giving that time .over to another job for its task. Th1s,_of
course, reduces the total system throughput, since the time spent waiting
for the terminal interface to become ready is tost for any other tasks.

Interrupt-driven interface boards ({such as the AM-300) ignore the HOG
statement; they always run at maximum speed regardless of CPU demands.

There is a bug in H0G. If the output buffer is less than 512 and you fill
the out-buffers up, printing will stop until you type a character. Because
of this problem, don’t use an out-buffer of less than 513 when vyou .include
the HOG statement in a TRMDEF command Lline.

6.0 MEMORY MANAGEMENT (MEMDEF)

The sample SYSTEM.INI in Section 2.0 makes use of the memory management
option. For detailed information on memory management and the use of the
MEMDEF statement, see the Alpha Micro Integrated Systems User's Guide,
(DWM-00101-00) and the document Memory Management Option (in the 'System
Operator's Information" section of the AMOS Software Update Documentation
Packet). Briefly, however—-- memory management enables you to expand the
amount of memory the system as a whole can access by allowing you to address
more than 64K of memory. In one method of memory management (called "bank
switching'), each user is still Limited to a maximum of 64K, but the system

can select bhetween several different sets of memory banks {i.e., it can
bank switch memory).

To tell the system that you are bank switching memory, use the MEMDEF

command in the SYSTEM.INI to define switchable memory banks. The example in
our SYSTEM.INI: :

MEMDEF 100,0,14
MEMDEF 101,140
MEMDEF 102,14,0
MEMDEF 1017,3,D
MEMDEF 102,3,0

32K switchable (Bank O)
32K switchable (Bank 1)
32K switchable (Bank 2)
32K switchable (Bank 3)
32K switchable (Bank 4)

ATIE TR T T IR 1)

defines five switchable memory banks of 32K each, and 3 sharable,

non-switchable area of 32K which contains the monitor and programs that all
USers can sccess.

(The numbers that follow the MEMDEF statements depend on the fype of memory

boards you are using, and on the particutar memory configuration you are
setting up. For the example above, we used three Pijceon 64K memory boards.

(Changed 30 April 1981)

T,

THE SYSTEM INITIALIZATON COMMAND FILE . ~ . Page 15

Refer to the memory management documentation mentioned above for

instructions.)

I1f you are not bank switching memory (for example, if'you do nof have more
than 64K of memory on your system), do not include the MEMDEF command in
your SYSTEM.INI.

7.0 SWITCHABLE SYSTEM MEMORY (SYSMEM)

As the variety of devices that you can add to your system grows, it becomes
more Likely that you will have a greater number of DEVTBL»entries and BITMAP
commands in your SYSTEM.INI. _Each new type of device that you add to the
system increases the size of your monitor, because the software and control
tables for that device must be incorporated intoc the monitor area of memory.
Beginning with AMOS version 4.3, if your system uses memory management, you
may now set aside an area of switchable memory for the use of the monitor.
Currently, the only use you may make of this 'switchable system memory" is
to place bitmaps in it. (See Section 11.0, "The Disk Bitmap (BITMAP),"” for
information on placing bitmaps in switchable system memory.) In the future,
you may be able to allocate other sections of the monitor to switchable
memory.

SYSMEM tells the system what area of switchable memory you want to set aside
for system use. SYSMEM takes this form:

SYSMEM Bank#:StartAddress—-EndAddress

where Bank# indicates the memory bank you want to allocate to system memory,
and StartAddress and EndAddress give the beginning and ending memory
addresses within that bank of the block you want to set aside. Be sure and
allocate as much memory as you need for the bitmaps you want to place into
switchable system memory. Place the SYSMEM command after the MEMDEF
commands and before the BITMAP commands. '

After the system is up and running, SYSMEM becomes a user command. SYSMEM
followed by a RETURN tells you what switchable area of memory is set aside
for the system.

There are some important restrictions on the use of SYSMEM; for more
information, refer to Defining Switchable System Memory in the "System

Operator's Information" section of the AMOS Software Update Documentation
Packet.

8.0 MEMORY ERROR DETECTION (MEMERR)

The MEMERR command enables double=bit error detection for a Piiceon 32K-word
memory board. It also initializes the Alpha Micro AM=-710 128K byte memory
board.

{Changed 30 aApril 1981)

THE SYSTEM INITIALIZATON COMMAND FILE 7 L . . Page 16

8.1 Piiceon 32K Word Memory Boards®

MEMERR initializes the Piiceon board by instructing it to abort when a
double-bit memory error occurs. Make sure that the Pijceon memory board is
properly jumpered for the I/0 error port you specify in the MEMERR command
line. The error interrupt-enable jumper (jumper 54) must be installed on
the memory board. '

NOTE: MEMERR was designed to be used with the AM-100/T CPU. If you are
using the 32K-word Piiceon memory boards as 64K-byte memory boards (that is,
if you are using the AM-100 CPU), you can still use MEMERR if you wuse an
unused error interrupt-enable jumper other than jumper 54 and enable the new
Line on the AM-100 board. (Jumper 54 is an AM-100/T interrupt Line.)

You may assign the same I/0 port number to more than one memory board
because the system only issues write-status commands to the memory boards.

If you don't use MEMERR, the Piiceon 32K-word memory board automatically
corrects single-bit errors, but ignores double-bit errors; if you use
MEMERR, the memory board still corrects single-bit errors, but causes the
system to halt on a double=bit error.

If the system halts, Look at the error Light on the Piiceon memory board (a
red LED). If the Light is on, the system halt occurred because of a
double-bit memory error.

Put MEMERR after the TRMDEF commands in your SYSTEM.INI. Include the number
of the 1I/0 error port you have assigned to the memory board(s). (This I/0
port is usually 250, octal or A8, hex.) For example:

MEMERR 250
If double~bit errors are frequent on your system, you may want to replace
the memory board on which the errors occur.
8.2 AM-710 128K Byte Memory Board
The AM-?10 memory board also requires the use of MEMERR. If your systen
contains AM-710 and Piiceon 32K word memory boards, include on the MEMERR
command Line the 1I/0 error port assigned to the Piiceon boards (as in the
example above). If your system contains only AM-710 memory boards, you must
not supply any argument to the MEMERR command. For example:

MEMERR ; No Piiceon boards, only AM-710Q boards.

Note that the AM-710 board alsc requires the use of the PARITY command
(discussed below).

(Changed 30 April 1981)

e

i
‘2,.

THE SYSTEM INITIALIZATON COMMAND FILE Page 17

9.0 PARITY ERROR DETECTION (PARITY)

The AM=710 memory board requires the presence of the PARITY command in your
SYSTEM.INI in order to enable parity error detection and reporting. Place
the PARITY command after the MEMERR command (also required). PARITY takes

this form:
PARITY I/0-port{,1/0-port2,...I1/0-portN}

where I/0-port identifies the 1/0 port address of the one or more AM-71Q0
boards in your system. (One I/0 port address must appear for each aM=710
board.) For information on parity error handling, see the document Software
Installation Instructions for the AM=710 Memory Board 1in the "System
Operator's Information' section . of the AMOS Software Update Documentation
Packet.

10.0 THE DEVICE TABLE (DEVTBL)

Following the TRMDEF command tines is the DEVTBL command. It defines the
devices that your System can access. If you have more than one disk drive
on your system, specify them in the DEVTBL command line. {The system
already knows that the System Disk, DSKD:, is present, so don't put pSKO: in
the DEVTBL command Line.) List atl sharable devices before a slash; all
private, unsharable devices after it. (A sharable device is one that all
users can access, such as a disk drive; a non-sharable device 1is one that
orily one user at a time can access, such as a magnetic tape unit.)

If your system has more devices than witb fit on one DEVTBL command Lline,
you can have as many DEVTBL command lines as you want, as long as they are
not separated by intervening commands.

As the system processes the DEVTBL command line, it builds a device table in
system memory. The file system consutts the device tabte for device
assignments. (If your devices rum under the control of the AM-410, DEVTBL
also builds a table in memory that keeps track of any alternate tracks
assigned for those devices.)

Hare are some sample device names that the System recognizes:

(Changed 30 Aprilt 1981)

THE SYSTEM INITIALIZATON COMMAND FILE o Page 18

AMSO (Floppy disk drive that uses Alpha Micro AMOS format.) .

STp1 (Floppy disk drive that uses IBM-standard format.)

pbal (Floppy disk drive that uses double-density, double-sided AMS
format.)

pSKOD (Logical unit zero of the System Device.)

HWK 1 (Logical unit 1 of a hard disk drive that runs under control
of the AM-500 controller.)

SMoS (Logical unit 5 of a hard disk drive that runs under control
of the AM-410 controller.)

MTUO (Magnetic tape unit that runs under control of the AM-5600.)

TRM (The generalized terminal service driver. Allows input and
output to any termipal connected to the System.) -

RES (briver that allows you to use sSystem memory as a device:
€.9., .DIR RES:L0G.PRG.)

MEM (briver that allows you to use user memory partition as a

device: e.g.,.COPY MEM: =WRKFIL.PRG.)

NOTE: Several commands on the system recquire that you have hoth MEM and RES
defined in your DEVTBL as system devices.

After the system is fully up and running, the DEVTBL command becomes a user
command that tells you what devices are in the device table in system
memory; it also tells you which devices are sharable among users.

11.0 THE DISK BITMAP (BITMAP)

To randomly access information on a disk, the AMOS file structure needs a
disk altocation map (a bitmap). The BITMAP command sets up these bitmaps.
If you have more than one type of disk controller on the sytem, each kind of
controller must have its own device name and separate bitmap areas. (Floppy
disk drives, which may use disks in several different formats, must have a
different device defined for each type of farmat.)

The BITMAP command specifies the device name, the number (in decimal) of
words that the bitmap huffer needs, and the (ist of drive numbers that are
to share this particular bitmap area. The Hawk hard disk drive requires 606
words per logical device; the Phoenix hard disk drive requires 1818 words
per surface, (For information on the number of words needed for the bitmap
of & particular floppy disk device, see Configuring Floppy Disk Drivers in
the "System Operator's Information" section of the AMOS Software Update
Pocumentation Packet.) You may have as many BITMAP commands as you want; as
many as one for each disk drive. Each BITMAP command c¢reates a separate
bitmap area.

In the sample SYSTEM.INI in Section 2.0, one BITMAP command Lline looks Llike
this:

BITMAP HWK,606,0,1

We could replace it with two BITMAP command Lines to create two separate
bitmap areas for drives 0 and 1:

{Changed 320 April 1981>

P

fHE SYSTEM INITIALIZATON COMMAND FILE

BITMAP HWK,406,0
BITMAP HWK,606,1

The monitor builds one sharable bitmap area 1in memory for each BITMAP
command Line it encounters. The BITMAP command specifies the disks to be
accessed by SYSTAT when SYSTAT prints the number of free blocks Left on the
devices on the system.

11.1 Switchable Sysfem'Mgmbry_pptibh (/)

Beginning with AMOS version 4.3, you may use the SYSMEM command to set aside
part of switchable memory for use by the monitor, thus reducing monitor
size. (See Section 7.0, "Switchable System Memory (SYSMEM)," for more
information.)

For the present, bitmaps are the only monitor elements that can be placed in
switchable system memory. Designate a specific bitmap as one which is to be
placed in switchable system memory by ending the BITMAP command Lline with a
/S. For example:

BITMAP DSK,181%8,0,1,2,3,4,5/S

Make sure you have enough room in the switchable system memory you have
allocated.

12.0 THE MONITOR QUEUE (QUEUE)

The monitor has a general purpose gueue system that several commands use,
and which 145 alsoc available to user programs. The queue contains a fixed
number of eight-word blocks which are assigned and then returned during the
course of processing. The number of queue blocks that you need depends upon
the size of your monitor, and the tasks that it performs.

The menitor dinitially contains 20 blocks; you may add more by using the
QUEUE command in the SYSTEM.INI. Place the GUEUE command before any SYSTEM
commands. The QUEUE command allocates additional queue blocks. So, the
example in the sample SYSTEM.INI file, QUEUE 20, adds 20 blocks to the basic
queue size of 20 to give a total queue size of 40 blocks.

For information on how your assembly Llanguage programs can access the
monitor queue, refer to AMOS Monitor Calls Manual, (DWM-00100-42).

13.0 THE CLOCK FREQUENCY (CLKFRQ)

The AM-100 CPU board contains a real-time clock that several programs (e.g.,
the AlphaBASIC compiler and DYSTAT) refer to when they calculate time
intervals; the system also uses this c¢lock to perform job scheduling and
timekeeping functions. The CPU board contains an external input for the
Line clock frequency that is connected to an AC Line of approximately 10
volts., '

(Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND FILE Page 20

The system has to know what frequency is being applied to the clock input’’
Line on the CPU board so that the programs that refer to the clock can know _ -
how to convert the clock tick count into actual time in seconds. This

frequency is usually 60 Hz (the standard Line frequency in the United
States). Since many systems are shipped overseas, however, where the
standard line frequency is 50 Hz, you must specify which frequency you are
using.

The CLKFRQ command specifies the frequency (in Hz) that is being applied to
the external clock input. The system stores this wvalue so that programs
that need to convert clock ticks to real time will be able to find out what
frequency the clock is operating at. . The CLKFR@ has nothing to do with the
actual frequency at which the computer runs, and changing the CLKFRQ value

does not affect the speed of the system. The CLKFRQ@ command in the sample’

SYSTEM.INI in Section 2.0 was:
CLKFRG 60

If you do not include the CLKFR@ command in the SYSTEM.INI, the system
stores a zero in the monitor Llocation reserved for the clock frequency. In
this <case, proarams trying to convert clock ticks into actual time aren't
able to do so.

You may place the CLKFRG@ command anywhere in the SYSTEM.INI. (NOTE: If vyou
are going to reset the system date and time from the AM-120 board
clock/calendar, you must place the CLKFRA command before the DATE and TIME
commands in your SYSTEM.INI. See the next section.)

14.0 RESETTING THE SYSTEM DATE AND TIME FROM THE AM-120 (DATE AND TIME)

The AM-120 Auxiliary I/0 Controller contains as one of its features a
clock/calendar with battery backup. If your system contains an AM-120, vyou
may include the DATE and TIME commands in your SYSTEM.IMI to reset the
- system date and time from the AM-120 clock/calendar. If you do so, you must
place the DATE and TIME commands before the final SYSTEM command in the
SYSTEM.INI. You must also place the CLKFRQ command before the DATE and TIME
commands. For example: :

CLKFRAG 40

DATE

TIME

SYSTEM HWK.DVR
SYSTEM

For information on DATE and TIME, see the DATE and TIME reference sheets in
the AMOS System Commands Reference Manual, (bWM-00100-49) . For
information on the AM-120, see Software Installation Instructions for the
AM-120 in the '"System Operator's Information” section of the AMOS Software
Update Documentation Packet. '

(Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND FILE " Ppage 21

15.0 INCORPORATING PROGRAMS IN SYSTEM MEMORY (SYSTEM)

You may incorporate programs into the system monitor by using the SYSTEM
command in the SYSTEM.INI file. These programs may be system programs or
your own programs. When the system reads the SYSTEM.INI, it Loads into
system memory the programs you've specified in the SYSTEM commands. These
programs actually become part of the monitor, and so dynamically increase
jts size as they are loaded into memory. (NOTE: Before Release 4.5, vyou
were required to place the generalized terminal driver,’ TRM pVRC1, 6] in
system memory. This is no longer necessary.)

CAUTION-— ‘the programs to be included in the monitor must be re-entrant
(that is, sharable by more than one user). If they are not re—entrant,
there is a poss1b1L1ty of system fa1lure when two users attempt to access
the same program. Many of the AMOS programs are re~entrant. Check with the
AMOS System Commands Reference Manual, (DWM-00100- 49), to see if a
particular command program is re-entrant.

The most common use of the SYSTEM command in the SYSTEM.INI is to 1include
the AlphaBasic runtime package (RUN.PRG) in the monitor so that each user
does not need to Load RUM into his own memory partition. You may also
include the interactive compiler (BASIC.PRG) itself if you expect heavy
development work by more than one user. If users on your system will be
making extensive wuse of the screen-orjented text editor, VUE, you may want

to load it into sharable memory via SYSTEM. ’

You might also want to use the SYSTEM command to dinclude any realtime
routines in the monitor that must be in memory at all times sc that they can
process asynchronous events (such as data collection from interrupting
devices). For example, the DYSTAT program runs a continuously changing
system display on a video monitor, and must be in memory at all times once
it has begun execution so that it can update the display.

Another reason to wuse the SYSTEM command 1is 1if you want to include
freguently-called wuser subroutines 1im the moniter. (You can locate such
subroutines by name via the SRCH and FETCH monitor calls from assembly
Language programs.) Again, if these programs are to be shared by several
users, they MUST be re-entrant. '

To include programs in the system monitor, use one SYSTEM command for each
program, Follow each SYSTEM command with the file specification of the
program you want to include. Example:

SYSTEM VUE.PRGL1,6]
SYSTEM RUN.PRG

Mote that you may include programs outside of the [1,4] account (the account
that the system is initially brought up under). If you do not specify an
extension, the system assumes a default extension of .PRG. You must place
any SYSTEM commands after all other commands in the SYSTEM.INI that expand
the monitor size.

(Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND FILE B Page 22

The SYSTEM command has another use beside the inclusion of programs in the SRR

system monitor. A SYSTEM command alone on a Line in a SYSTEM.INI (that s,
not followed by a file specification), tells the system that monjtor
expansion is finished. The system then flags the monitor as up and running.
The system also sets a flag in the system communication area that dindicates
that the system initialization .is done except for final cleanup. Various
commands (including SYSTEM) test this flag to see which mode they may
operate 1in. For example, before the system is up and running, the JOBS
command allocates new jobs on the system; after system initialization, the
JOBS command displays the jobname of the user that typed the JOBS command.

Whether or not you include any programs in the monitor, your SYSTEM.INI must
have a SYSTEM command without a file specification to tell the operating
system that the system has been initialized. This SYSTEM command must be
after any other commands that expand the monitor size (and that includes any
other SYSTEM commands that are followed by a file specification).

After the system is up and running, the SYSTEM command performs a new
function as a user command. After system initialization, the SYSTEM command
tells you what programs are in system memory (that is, what programs are a
part of the monitor), and the total size (in decimal words) of the monitor.
For more information on the programs in system memory, you can use the MAP
command. (For information on MAP, refer to Chapter 11, "Memory Commands,"
in the AMOS User's Guide, (DWM-D0100-35).)

16.0 SYSTEM INITIALIZATON CLEANUP

After the monitor processes the SYSTEM commands 1in the SYSTEM.INI, the
system 4is technically up and running. There are a couple of things still
left to do, however, before the initialization procedure is complete. You
may now include any commands in the SYSTEM.INI that you want the monitor to
perform automatically at the time of system start-up. These commands are
all commands that you can enter from the keyboard for yourself, but it's
sometimes convenient to have the monitor perform them automatically every
time you power up or reset the system. For example, you can have 'the
monitor mount the disks that you are going to wuse, connect terminals to
jobs, etc. You can also use the FORCE command to force input to a
particular job. (You can use this feature to login a user, run a business
program, etc., all without direct operator intervention.) We discuss some
of these commands below.

After you've included the functions you want performed automatically, there
is one Llast thing to do before system jinitialization is complete-- put a
MEMORY O command into the SYSTEM.INI to deallocate the temporary user
partition in the top &K of memory that we have been using to process the
SYSTEM.INI. The MEMORY 0 command must be the Last command 1in the file.
(Include the MEMORY O command even if your system bank switches memory.)

Now we'll discuss some of the commands you may want the system to perform
automatically for you at system start-up. Remember that unlike some of the
commands discussed in earlier sections, all of these commands are lLegal user
commands, and may be used outside of the SYSTEM.INI.

(Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND FILE Page 23 . .

T

16.1 Setting Options (SET)

The SET command can perform a variety of system functions. For example, the =~ == =

SET BPI command sets the bits-per-inch data density value used by the -
magnetic tape transport driver. The examples in our sample SYSTEM.INI;

SET DSKERR
- SET GUARD

tell the'system to report any soft disk errors that occur (SET DSKERR) and
to guard the terminal of the job processing the SYSTEM.INI from any messages
sent by other terminals (SET GUARD).

Note that the SET command only affects the job that used it. For example,
the SET DSKERR command above only affects the job the system comes up under.
(For information on forcing commands to other jobs, see Section 16.5,
"Eorcing Input to a Job (FORCE).")

See the SET reference sheet in the AMOS System Commands Reference Manual,
(DWM-00100-49), for more information on SET.

16.2 Attaching Jobs (ATTACH)

When the system first begins to process the SYSTEM.INI, it automatically
attaches the first job listed in the JOBS command and the terminal defined
by the first TRMDEF command. Except for this special case, however, the
system does not automatically Link jobs with terminals. (When a job is
linked to a terminal, the job and terminal are "attached." When a job is
not Linked to a terminal, the job is "detached.”") A detached job must have
a terminal attached to it before it can do terminal input or output. A
detached terminal, on the other hand, can be accessed through terminal
service calls or the general TRM driver. You cannot attach a job to a
detached terminal from that terminal itself; you must do it from another
terminal.

To attach jobs and terminals, you must use the ATTACH command. Once a job
is attached to a terminal, it uses that terminal for input and output.

You can use the ATTACH command in several different ways:

ATTACH Terminal,Job
This command attaches the terminal and job named. If the terminal or job
are already attached to other units, the ATTACH command detaches them before
it attaches them to each other.

ATTACH Job

This ATTACH command attaches the user's own terminal to the job named (and
detaches it from the current job).

ATTACH

(Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND FILE Page 24

- This use of the ATTACH command Lists the terminals that are currently
attached, and the jobs to which they are attached. For more information on
ATTACH, see the ATTACH reference sheet in the AMOS System . Commands
Reference Manual, (DWM-C0100-49). ' S -

"16.3 Allocating Memory (JOBMEM)

Systems that bank switch memory reguire that you use the JOBMEM command to
allocate memory to a user memory partition. Do not use JOBMEM to allocate
memory to the job the system is coming up under. (For complete information
on JOBMEM, refer to the JOBMEM reference sheet in. the AMOS System Commands
Reference Manual, (DWM-0D100-49), and the document Memory Management
Option 1in the "System Operator's Information” section of the AMOS Software
Update bocumentation Packet.) ‘ :

The JOBMEM command in the SYSTEM.INI takes the form:
JOBMEM Jobname Bank—#:StartAddress-EndAddress

where Jobname specifies the job you ‘are alleocating memory to. Bank~#:
selects the memcry bank the user partition will reside in, and StartAddress
and EndAddress select the beginning and ending addresses of the memory block
in that bhank you want to allocate.

After the system is Up‘and running, JOBMEM becomes a user command. You can
use JOBMEM to tell you what areas of memory are allocated to your own job
and to other jobs on the system.

There are some important restrictions on the use of JOBMEM; refer to the
JOBMEM documentation mentioned above for complete instructions on its use.
Also see the Alpha Micro Integrated Systems User's Guide, (DWM-00101-00),
for information on bank switching.

16.3.1 Allocating Memory in Bank Zerc (MEMORY)

NOTE: If your system does not bank switch memory, do not use the JOBMEM
command. If you are going to allocate memory within the SYSTEM.INI, use the
FORCE and MEMORY commands. For example:

FORCE JOB2 MEMORY 32K.

Note that even if your system bank switches memory, the Llast command in the
SYSTEM.INI is always MEMORY 0; this restores all sharable memory not used by
the monitor to the job the system is coming up under. For example, if your
MEMDEF commands have set up a sharable area of 32K and switchable banks of
32K, if the monitor actually only takes up 29K, you can add the -remaining 3K
(32K~29K) in the sharable portion to the job that has the first block of
memory in Bank Zero. _ V Coe

In a bank~switched system, use the MEMORY command for all jobs whose “memofy
is located in Bank Zero or sharable memory. When we talk about setting up

(Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND FILE R | " page 25

the line printer spooler, you wiLf see that we use'a'MEMORY' 4K commg%d %féi:,fﬂ'hw'
allocate memory to the job running the spooler. That's because our sample. i

SYSTEM.INI is setting up the spooler to run in sharable memory.

16.4 Killing Jobs (KILL)

To properly initialize the jobs on the system, you should KILL the jobs that
you have defined. A KILL command sends a Control-C to the specified job;
this puts the job at the monitor level, ready to receive and send data. The
KILL commands must appear after any ATTACH commands, but before any FORCE
commands are used to send commands or data to the job. Do not kill the job
that the system is coming up under (i.e., the first job in the JOBS command
line). :)

Use one KILL comménd for each job on the system except for the job the
system is coming up under:

KILL JoBgZ
KILL JOB&4

16.5 Forcing Input to a Job (FORCE)

The FORCE command gives you a way of sending input to another job. To send
one Line of input to another job, use the FORCE command followed by the
jobname and the input. For example, our sample SYSTEM.INI contains this
Lines

FORCE JOB2 LOG DSK2:2,2

The line above logs JOBZ into the system under account DSK2:2,21. You can
also send several Llines of input to a job by typing a carriage return after
the jobname. Example:

FORCE J0BZ

After that point, all lines of text that follow {(up to a blank Line) will be
sent to the specified job. (A blank line is a carriage return alone on a
line.) Example:

FORCE JOB2

LOG DSK2:2,2
ORDER.PRG

{Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND FILE

16.6 Mounting Disks_(MOUNT) S

The system automat1caLLy mounts the System Disk (DSKD) for you at.the t1me
of system start-up. If you wish it to mount other disks ‘as wéll, " include

one MOUNT command for each disk drive you want to mount. Example:

MOUNT DSK1:
MOUNT STDO

You MUST mount a disk before you ‘cah read or write- data to’ 1t 1REﬂEHBER:
Never mount a d1sk wh1Le another user is access1ng 1t c e '

16.7 Setting Head Load Time (HEDLOD)

The HEDLOD command sets the head Load time for a Persci fLoppy . disk that
runs under control of the AM=200 or AM=210 floppy disk controLLer boards.

The number that follows the HEDLOD command selects the number of real-time
clock ticks that the AM-200 board must keep the disk drive 'heads Loaded
after a data transfer. The example in the SYSTEM.INI file in ‘Section 2.0
is: ’

HEDLOD 1800

This tells the floppy disk controller to keep the heads Loaded for 1800
clock ticks (30 seconds when the real-time clock is operating at 460 Hz)
after any data transfer. The HEDLOD command does not affect disk drives
that do not allow software control of head load timing. You may omit this
Line if you are not rumning with a Persci floppy disk. ;

16.8 DYSTAT

DYSTAT is a system program that reports on the dynamic status of the
operating system by way of a continuous display on a video monitor. DYSTAT
requires that your system contain a memory-mapped wvideo board. Omit the
DYSTAT command if you do not want to run this display.

NOTE: DYSTAT runs asynchronously without regard ‘to user job. TIf you are
~going to use DYSTAT, you must include it in the monitor (by using a SYSTEM
command in the SYSTEM.INI) so that it is in system memory at all times. If
you try to execute the DYSTAT command and it is not in system "“memory, the
system fails the first time the job scheduler calls on DYSTAT for an update
because it sees that DYSTAT is no longer in memory. (Remember that the
system executes system commands in the partition of the wuser that requested
the command; after it is finished, it usually deletes the program from the
partition.)

The DYSTAT program also requires that the TODCNV routine is in system memory
s¢ that it can display the current time in the header Line of the DYSTAT
display. Load TODCNV into system memory by using a SYSTEM command in the
SYSTEM.INI, just as you loaded DYSTAT.

(Changed 30 April 1981)

ank
ank-

THE SYSTEM INITIALIZATON COMMAND FILE Page 27

For more information on DYSTAT, see the DYSTAT reference sheet in AMOS
System Commands Reference Manual, (DWM-00100-49).

16.9 Setting Up the Line Printer Spooler

You can set up the Line printer spooler from AMOS command Level (and doing
so is a good technique for debugging the spooler if you have problems
bringing it up). However, usually you will want to bring up the spocler at
the time of system start-up by placing the proper instructions in the
SYSTEM.INI.

The sample SYSTEM.INI in Section 2.0 shows the following 6 Lines:

FORCE SPOOL
MEMORY 4K

LoGg 1,2

LPTINI PRINTR.INI

WAIT SpOOL

These six Llines set up the system line printer spooler. (A spooler is a
program that sets up a queue (or waiting line) for a particular program.
When a line printer spooler is in control, requests for use of the printer
are placed dinto a queue. As the printer becomes available, the spooler
Looks at the request at the top of the List, finds the file, and sends it to
the printer. The spooler then removes that request from the gueue. The
printer prints files in the order of their reguests in the queue.)

Setting up a Line printer spooler is a good example of the kinds of things
you can ask the SYSTEM.INI file to do at the time of system start up. For a
detailed explanation of how to set up the Line printer spooler, see the
document Setting Up the Line Printer Spooler in the "System Operator's
Information™ section of the AMOS Software Update Documentation Packet.

(Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND.FILE - INDEX Page 30

1
Interface board v v v o v o« & o &
Interface driver . . .« v o « . .
Interface statement . « .« « o o .

00 =~~~ A

JOBMEM . & & a4 v 4 o & a a = o
JOBS

1
.
.
.
.
.
.
.
2
[o R ¥

KILL . & 4 4 e v e f h s 4w w w . 25
Line printer spooler 27

MEM -« & & & & 4 4 4 4 ¢ 4w e w - . 18

MEMDEF . . . v 4 & v v e m « -« 14

MEMERR = « + & « o « o = = = « « 15

MEMORY . & & 4@ v & v v 'w = =« u . 24

MEMORY 0 & o0 22

Memory allocation 24

Memory banks« 14

Memory boards : ' '
128K byte . . . & . v v o o . . 18
32K word L. L0 16
64K byte L.6

MEmOry errors . . « = v 2 v = - » 16

Memory management 3, 14

Modifying SYSTEM.IN c e e e e w1 ‘ - : o
Editing . &« & v & 4 4 o o . .. 2 _ Q
MONTST & s w o = « 1
Warning v & & & . 1

Monitor

MONTST ¢ v 4w w o o - 1

MOUNT & . & i s v s s a2 a v o« - 26

MOUNT command . . o . & . & o . . 26

NEWTRM & . .« . . . 13
Mon-sharable device 17
Non-switchable MEMOrY o w « - - . 14

Operating system

PARITY v i s v i w e 17

Phoenix hard disk 1

Physical drive zero 1

Piiceon memory boards 14 to 15
PROM & i e e e .. 2

Pseudo terminmals 10, 12

QUEUE & . . - . L. ... 19

Real~-time clock . ; S
RES & =& & 4 4 & e e 2 2 a » » = « 18

(Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND FILE - INDEX

Semple SYSTEMLINI &
SET &4 4 4t a4 e & e as e s .. 2%
2
DSKERR . . & & & v & v v o o o 23
GUARD . . . & & v v 4w v o . . 23
Sharable device 17
Single-bit errors 16
SRCH monitor call 21
Switchable system memory 15
SYSMEM 4 o . . = .« 15
SYSTEM 21
System startup 2
SYSTEM.INI .
SYSTEM.MON - s . 2

Terminal baud rate 8
Terminal drivers 11

Terminal name . . . & & & . & v . T
TIME . . . & & v 4 & = o o . -« 20

TRM.DVR Restrictions 21

TRMDEF . . & & & v v v o e w o . b
Type—ahead buffer 13

(Changed 30 April 1981)

SETTING UP THE LINE PRINTER SPOOLER

April 1981
Revision AQZ

This document ref'_Lect's AMOS versions 4.5 and later

SETTING UP THE LINE PRINTER SPOOLER ' a ~ Page ii"ﬂf”

¥

'Alpha Micro', 'AMOS', 'AlphaBRASIC', 'AM-100",
'AlphaPASCAL', 'AlphalISP', and 'AlphaSERV'

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA 92714

©1981 - ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North
Irvine, CA 92714 i

SETTING UP THE LINE PRINTER SPOOLER Page iii

Table of Contents

1.0 INTRODUCTION wuveuwcocuconecannns e rebeetcasecnnenneannn 1
2.0 MODIFYING THE SYSTEM.INI TO SET UP THE SPOOLER ..vvo..o- 2
2.1 Setting Up the Spooler Job wasmamEsamamn .. 3
2.2 Defining a Pseudo—terminal ..ouoeeececcvescocenncns 3
2.2 Allocating Additional Queue BLOCKS oo vecevneennns 3
2.4 Attaching a Terminal to the Spooler Job .oveveen. 4
2.5 "KilLing" the Spooler Job vuveencecocuoconnnnenn. 4
2.6 Using the FORCE command to Set Up the Line
Printer SPOOLler tiweieecrecencnccoceconaencnnns wne &
2.6.1 "FORCE sPOOL"™ N eEsemeesamEE S e b
2.6.2 "MEMORY 4K" _.... SmsmmEEAmsEtmAmEmEEe .. 5
2.6.3 "LOG OPR:" Cemmssmmsmsmssmssmrsssns 5
2.6.4 MLPTINI PRINTR.INI"™ o neieucmeennes 6
2.6.5 "BLANK LINE" L u.iceicierccocscmoooonnceconns &
2.6.6 MWAIT SPOOL" wuiiverencccccasnonoonnncnnen b
3.0 SETTIMNG UP MULTIPLE SPOOLERS REmmeEmtEmsAEE R e s 6
4.0 THE SPOOLER PARAMETER FILE muvcoososecocononn. ., 7
4.1 DEVICE COMMANGD nuvecccoecemnaceccomonnsnmnn. demamn. 8
4.2 NAME Command ..ceeoceccs.. s nemmaenann eemmamane 8
4.3 DEFAULT COMMANG wueeeicuceocccecenaseaoccasomnn.o, 9
4.4 OPERATOR Command ..ceececen. Weemmmaeeemmsaannnnna 9
4.5 FORMFEED Command weeeweceowo.. CmEsmmEesmamEemEme—na 9
4.6 FORMS CommMandcuoeececncoerenoooooeoooee ey 10
4.7 BANNER Command ..veeevesecocccccnnonns WmesEemmana 10
4.8 HEADER COMMAN & crcremencconsscemnacesoacneeonnnn 10
4.9 LPP Command ..v.wscoeccennnns feeaeanaennn emsmmann 11
4.10 WIDTH Command P eme i dEbEsamememeaeemnmennnn 11
5.0 SPECIFYING FORMS S esEmEmsssEseanmnn SmemmemEen 11
6.0 TROUBLESHOOTING THE SPOOLER PROGRAM amsann .- 12
INDEX o ontiiiennn.. e msmEEEsEssamsmEnnn. MsEsEnEEes e 15

(Changed 30 April 1981)

SETTING UP THE LINE PRINTER SPOOLER ‘ e T page 1

1.0 INTRODUCTION

The Lline printer spooler takes care of handling requests to use the printer
by "spooling” a printer request into a queue. (As the printer becomes
available, it prints the file specified by the next request in the queue.)
This allows your job to print files at the same time as other jobs on the
system without tying up .your job until the printer is free. You simply enter
your printer request (using the PRINT command) and then go on to other
things. ' ’

The spooler program has a number of special features. For example, it can:
print multiple file copies, print ‘a banner page that identifies the listing,
delete a file after it is printed, recognize wildcard file specifications,
remember what type of form should be mounted on a printer, identify a
printer by name, etc. 1In addition, the spooler (LPTSPL.PRG) is re~entrant,
which means that you may load it into system memory.

(NOTE: However, loading LPTSPL.PRG into system memory is not usually a good
idea. In setting wup a Lline printer spooler, you do not run LPTSPL.PRG
directly; instead, you run the LPTINI program which calls LPTSPL. Since
LPTINI must be run in each memory area in which you are setting up a
spooler, and since it loads LPTSPL.PRG into memory over itself, placing
LPTSPL.PRG in system memory does not save you any memory space in the
individual area in which you are setting up the spooler and just increases
the size of your menitor area.)

You may either set up the spooler in system memory or (if your system bank
switches memory) you may place it im a bank-switched memory partition (thus
reducing the size of the monitor in system memory). You may also install
more than one line printer spooler (which you may want to do if you have
more than one printer). Installing multiple printer spoolers gives you
multiple printer queues; one for each printer that is handled by a spooler.

For more information on the features and operation of the Line printer
spooler, see the documentation on the PRINT command in the AMOS System
Commands Reference Manual, (DWM-00100-49) and the section titled "Printing
Files (PRINT),™ in the AMOS User's Guide, (DWM-00100-35).

The purpose of this document is to help you set up the Lline printer spooler
on your own system. To that end we have included on your System Disk two
text files: SYSLPT.INI and PRINTR.INI. SYSLPT.INI is a sample system
initialization command file much Like the regular SYSTEM.INI file with which
you are already familiar, except that it includes those command Lines
necessary for bringing up the spooler program. (See Section 2.0, below, for
a discussion of changing the SYSTEM.INI.) The PRINTR.INI is a sample spooler
parameter file that contains Jinformation necessary for customizing the
spooler program for your own use.

(Changed 30 April 1981)

SETTING UP THE LINE PRINTER SPOOLER o U . Page?2

You may install multiple spoolers by setting up multiple spooler jobs. Each
job can ‘have a different spooler parameter file; this enables you to spool
to several different printers on the system at the same time.

Before attempting to set up the Line printer spooler, read this entire
document carefully. Then modify the PRINTR.INI file that we have supplied
to reflect your own needs or create your own spocler parameter -file. At
that peint you can either use the SYSLPT.INI file to boot the system up with
the new Lline printer spooler, or you can change your existing SYSTEM.INI
file as outlined below. 1If you do not want the Line printer spocler to - be
set up automatically when the system comes up under the control of the
"~ SYSTEM.INI or the SYSLPT.INI, you may set up the spooler yourself from the
keyboard by following the instructions in Section 6.0, "Troubleshooting the
Spooler.” S

2.0 MODIFYING THE SYSTEM.INI TO SET UP THE SPQOLER

The discussions below assume that you are familiar with the document titled
The System Initialization Command File which appears in the 'System
Operator's Information™ section of the AMOS Software Update documentation
packet; that document contains information on the JOBS, TRMDEF, DEVTBL,
ATTACH QUEUE, MEMORY, and FORCE commands, and discusses how to modify a
SYSTEM.INI.

Take a Look at the sample system initialization command file we provide
(SYSLPT.INI):

:T

JOBS JOB1,SPOOL

TRMDEF TERM1,AM300=1,S0R0(,100,100,80
TRMDEF TERM6,AM300=6:14,TELTYP,100,100,100
TRMDEF DUMMY,PSEUDQ,NULL,30,30,2

DEVTBL DSK1,TRM,MEM,RES

BITMAP DSK,606,0,1

QUEUE 15

SYSTEM

CLKFRG &0

’

ATTACH DUMMY,SPOOL
KILL SPOOL

FORCE SPOOL

MEMORY 4K

LOG 1,2 _
LPTINI PRINTR.INI

WAIT SPOOL

;
MOUNT DSK1:
MEMORY 0O

(Changed 30 April 1981)

(

N

e -

SETTING UP THE LINE PRINTER SPOOLER T Page 3

This sytem initialization command file assumes that you do not want to bank
switch memory. The following sections discuss this initialization command
file, ‘and we go through each step of installing a Line printer spooler.

2.1 Setting Up the Spooler Job

The first step in setting up the Line printer spooler is to define the job
in which it is to run. The SYSLPT.INI file above creates job SPOOL in which
to run the spooler program by including SPOOL in the job definition command
(JOBS). You May use any unused job to control the spooler program.

2.2 Dbefining a Pseudo=terminal

S0 that we do not tie Up a terminal when entering the commands to SPOOL that
will set up the line printer spooler, we define a pseudo-terminal with which
to run the job. A pseudo-terminal requires no actual hardware 1/0 device.
The terminal definition (TRMDEF) command: '

TRMDEF DUMMY,PSEUDO,NULL,30,3D,2

defines the pseudo~terminal named DUMMY. Be careful that the buffer sizes
yYou specify (in this case, 30,320,2) are large enough to contain the commands
that you are going to be forcing to the job via the FORCE command. (See the
document The System Initialization Command File for information on the
PSEUDO interface driver, the NULL terminal driver, and the TRMDEF command.)

2.3 Allocating Additional Queue Blocks

The Lline printer spooler uses the system queue blocks to store reguests for
printing. When the system is initially brought up, 20 of these gueue blocks
are allocated by the system. Two of the blocks are used for every printer
defined on the system, and three for every file request. Because queue
blocks are required by other portions of the operating system, the spooler
will not allow the number of free gueue blocks to go below six. Therefore,
with the standard allocation of 20 queue blocks, you may queue a total of
four printer requests at any one time. If you want to be able to queue a
larger number of requests, use the QUEUE command in the system
initialization command file to allocate additional blocks. In the example
above, we have used the QUEUE command to allocate an additional 15 blocks
for a total of 35. '

NOTE: If you are setting up more than one tine printer spocler, make sure to
allocate enough extra queue blocks, For example, if you are setting up two
Line printer spoolers, you will need twice as many queue blocks as if you
were setting up one spooler.

(Changed 20 April 1981)

_SETTING UP THE LINE PRINTER SPOOLER . Pages

_2,4;:Attachjng a Terminal to the Spooler Job

No jobs and terminals are automatically assigned to one another except for
the job under whose control the system comes up (the first job on the JOBS
line) and the terminal defined by the first TRMDEF command. We must

explicitly attach any other jobs and terminals by using the ATTACH command.

So, we attach the spooler job and the pseudo-terminal:

ATTACH DUMMY , SPOOL

2.5 *“Kitling" the Spooler Job

To properly initialize a job, you must aLways'uée the KILL command on that
job after attaching a terminal to it but before forcing any-commands to it:

KILL SPOOL

2.6 Using the FORCE command to Set Up the Line Printer Spoocler

Once the spooler job has been allocated, you have attached a terminal or a
pseudo-terminal to the job, and you have used -the KILL command on the job,
you can start the spooler program itself. ALL commands issued to the
spooler job during the spooler jnitialization go through the FORCE command.

Now that we have attached the pseudo-terminal DUMMY to the job SPOOL, we can
send the commands to the job that will get the Line printer spooler program
up and running. FORCE the following seguence to the job:

FORCE SPOOL
MEMORY 4K

LoG 1,2

LPTINI PRINTR.INI

The following sections discuss each element of this FORCE seguence:

2.6.1 “FORCE SPOOL" - The first Line of this sequence tells the system
that we are starting a set of commands that we want to send to jcb SPOOL.
(Because a carriage return appears at the end of the job name, AMOS knous
that more than one LlLine of input follows; a blank Line signals the end of
the group of commands and data that we are forcing to the job.)

(Changed 30 April 1931)

SETTING UP THE LINE PRINTER SPOOLER . Pagé 5

2.6.2 "MEMORY 4K" ~ The first thing to do is to allocate the spooler job
some memory so that it will be able to bring up the Lline printer spooler
program. This spooler program requires at least 4K bytes of memory in which
to work. On a bank-switched system, you must use the JOBMEM command (NOT
the MEMORY command) before the FORCE command if you want to allocate the
spooler memory in a bank-switched partition. For example: ~ '

”

ATTACH NULL,SPOOL _
JOBMEM SPOOL 3:111530-123030
KILL SPOOL

* FORCE SPOOL
LOG OPR:

LPTINI PRINTR

WAIT SPOOL:

NOTE: We have determined that, on the average, 4K of memory 1is the wusual
amount of memory required to bring up the spooler program. This amount may
vary depending on the particular device driver or terminal driver you are
using to run the printer. (See Section 6.0, "Troubleshooting the Spooler
Program,'" for instructions on determining the exact amount of memory
required by your particular use of the Line printer spcoler program.) For
information on the JOBMEM command, see The System JInitialization Command
File and Memory Management Option in the "System Operator's Information”
section of the AMOS Software Update Documentation Packet.

2.6.3 "L.OG OPR:" - The spooler job is no different from any other job on
the system=— 1t has to be logged in to a disk account and must have memory
if it is to run a program. Here we log the spooler job dnto the System
Operator's account, OPR: (DSK0:1,2).

NOTE: If you do not Log the spooler job into an account, it will not be able
to run the spooler program. In that event, you will not see an error
message; the system will simply not be able to bring up the spooler.

We Llog the spooler into account [1,2] because it must reside in the System
Operator's account in order to override the normal AMOS account protection.
This is necessary if a user wishes the PRINT command to delete files in an
account outside of his or her own project.

IMPORTANT NOTE: Although we show the system initialization command file
Logging the spooler job into account (1,21, you may not wish to do so. (If
your System Operator account is password protected, you would have to
include the password in the SYSTEM.INI file, which would then make that
password accessible to ingenious but unauthorized users.) To avoid placing
the password to account [1,2] in the SYSTEM.INI file, you may Llog the
spooler into any disk account (most commonly [1,41); however, note that the
LPTINI program will always transfer the spocler job to account [1,2]1 once
the program is running.

(Changed 30 April 1981)

SETTING UP THE LINE PRINTER SPOOLER - Pages

2.6.4 "LPTINI PRINTR.INI" - Now:we bring in the LPTINI program.. LPTINI

reads the specified parameter file (in this case, PRINTR.INI}, and brings -in -
the actual Lline printer spooler program, LPTSPL. The parameter jfiLe,
PRINTR.INI tells LPTINI how to customize the spooler program for your . own
-needs. (See below for information on PRIMTR.INI). The file specification
that you provide to LPTINI may that of any text file that you have created
as long as it is a valid spooler parameter file. The file specification
default extension is .INI, and the default account is £1,41.

2.6.5 U“BLANK LINE" - The blank Lline (a carriage return alone on a Line)
signals the end of the forced input to SPOOL. :

2.6.6 "WAIT SPOOL" - The next line:

WAIT SPOOL

tells the system to wait until SPOOL is finished executing LPTINI pefore it
proceeds with bringing up the system; this allows the spooler program to
finish any tricky allocations and initializations.

3.0 SETTING UP MULTIPLE SPOOLERS

To set up another spooler, you may basically follow the same dnstructions
you followed when setting up the first spooler. Just makz sure that you
define a new job for the new spooler and that you assign it its own area of
memory. (You may use the same pseudo terminal for the second spoaler as you
did for the first.) The following portion of a SYSTEM.INI shows settina up
two spoolers on a bank switched system. Notice that each spocler job uses a
different .INI file--— SPOOL uses PRIMTR.INI, and SPOOL2 uses PRNTR2.INI.
Each spooler parameter file specifies a different system printer.

(Changed 30 April 1981)

SETTING UP THE LINE PRINTER SPOOLER o I : Page 7

ATTACH NULL,SPOOL

JOBMEM SPOOL 3:111530-123030
KILL SPOOL

FORCE SPOOL

LOG OPR:

LPTINI PRINTR

WATT SPOOL

ATTACH NULL,SPOOLZ

JOBMEM SPOOL2 3:123032-134340
KILL sPOOL2 -
FORCE SPOOL2

LOG OPR:

LPTINI PRNTRZ

WAIT SPOOL2

CLKFRG 60
MEMORY (

4.0 THE SPOOLER PARAMETER FILE

The commands that appear in the spooler parameter file set the default
information used by the spooler program when dealing with the specific job
to which the parameter applies. You can set up several printers on the
system, all maintaining a separate printer queue, by setting aside a job for
each printer (as we did in the example above), and creating a different
parameter file for each job. By merely changing the name of the printer to
be used and the printer specification, you may initialize as many separate
printer queues as you would Ulike.

We have provided z sample parameter file for you, PRINTR.INI:

DEVICE=TRM:TERM6
NAME=LPTOQ
DEFAULT=TRUE
OPERATOR=J0B1
FORMFEED=TRUE
FORMS=NORMAL
BANNER=TRUE
HEADER=FALSE
LPP=56

WIDTH=132

You can create your own file (named with any valid filename) using the
system text editors, VUE or EDIT. The format used by the elements of the
file 1is:

command=argument

(Changed 30 April 1981)

SETTIMNG UP THE LINE PRINTER SPOOLER Page 8

where argument is a value or attribute to be assigned to the command. Only
one command may appear on each Line of the file. Some commands take 2
boolean argument (a true or false value). LPTINI understands the following
boolean arguments:

TRUE FALSE
T F

oN OFF
YES . NO

Y N

1 0

Here is a list of the parameter file commands:

4.1 DEVICE Command
The format of the command is:

DEVICE=devspec
where devspec is the specification of the device that is going to be used as
the printer. 1If you are using a terminal as a pr1nter, your command Lline
might look something Like this:

DEVICE=TRM:TERMA
which uses the generalized terminal driver, TRM.DVR. The terminal must have
been defined 1in a TRMDEF command Lline in the system initialization command

file, and must have a .TDV program in account DSKD: £1,61.

If you are using a Centronics device driver, the command Line might Look
like this:

DEVICE=CEN:
‘which selects a device defined in the PDEVTEL command of your system
initialization command file. Whatever device specification you use for this

second format, the device specified must be in your DEVTBL command Lline 1n
the SYSTEM.INI, and must have a .DVR program in account DSKO:[1,61.

4.2 NAME Command

The format of this command is:

NAME=string

{Changed 30 April 1981

SETTING UP THE LINE PRINTER SPOOLER Page'g

where string is a one-~ to six-character name that you want to ass1gn to theﬁ i @
dévice spe01f1ed by the DEVICE command. Since more than one Lline pr1nter o

spooler can be set up on a system, each handL1ng a different printer, g1v1ng
a name allows you to specify a particular printer to the PRINT command.

4.3 DEFAULT Command
This command takes the format:
DEFAULT=boolean

If 'the argument for this command evaluates to TRUE, the spooler program
def1nes the printer defined by the DEVICE command as the default printer. to
be wused when no pr1nter is spec1f1ed to the PRINT .command. .This command is
an optional one; use it only when more than one printer is be1ng defined on
the . system. If you omit DEFAULT from all spooler parameter files on the
system or if all DEFAULT commands are set to false, the default printer is
that printer with the least number of blocks waiting to be printed.

To specify a non-default printer when you use the PRINT command, enter the
name of the printer (as specified in the NAME command above) followed by an
equal sign. Then enter the specification selecting the files you want to
print. For example:

-PRINT DIABLO=*.LST

4.4 OPERATOR Command
The format of this command is:
OPERATOR=jobname
where jobname specifies the job to which the Spooler will send error
messages and requests for forms changing. If you omit the OPERATOR command,

the spooler will use the first job on the JOBS Line of the SYSTEM.INI as the
operator job.

4.5 FORMFEED Command
This command takes the form:
FORMFEED=boclean
The command sets the form feed switch default to /FF if the argumenf
evaluates to TRUE or sets it to /NOFF if the argument evaluates to FALSE.

(See above for a list of legal boolean arguments.) The /FF switch tells the
spooler to perform special form feed handling; this ensures that the printer

(Changed 30 April 1981)

SETTING UP THE LINE PRINTER SPOOLER o Page 10

is always at top-of-form when the spooler begins to print a new listing.
For some zpplications (such as check printing), it is not desirable to have
a final form feed output at the end of each Listing; the /NOFF switch
disables this final form feed. If you omit the FORMFEED command, the
spooler program sets the default to /FF.

4.6 FORMS Command
The format of this command is:
FORMS=formname

where formname 13 one to six characters that you choose to identify a type
of form (e.g., CHECKS, 2PART, etc.). If you omit the FORMS command, the
spooler uses .the default formname of NORMAL.

- The purpose of this command. is to zllow you specify the kind of forms that
should be mounted on the particular printer defined by this parameter file.
The PRINT command then checks printer requests against this to see if the
forms should be changed; if the printer request specifies a different form
than the one mounted on the printer, an error message occurs informing the
user that he must change the forms.

4.7 RBANNER Command
The format of this command is:
BANNER=bhoo Lran

This command sets /BANNER as the default switch 3f the command argument
evaluates to TRUE or sets it to /NOBANNER if the argument evaluates .to
FALSE. (See the table above for legal boolean arguments.) If BANNER is set
to true, a banner pade will be printed at the front of each Listing. The
banner identifies the file printed, the printer on which the listing was
made, the date the Llisting was printed, etc. If you omit the BANNER
command, the spooler sets the default switch to /SANNER.

4.3 HEADER Command
This command takes the forms
HEADER=boolean
The HEADER command sets /HEADER as the default switch if the command
argument evaluates to TRUE or sets it to /NOHEADER if the argument evaluates

to FALSE. The /HEADER switch tells the spooler program to print page
headers. Page headers are titles printed at the top of every page which

(Changed 32 april 1981)

AEFp
(\

i

SETTING UP THE LINE PRINTER SPOOLER D . Page 11

give the name of the file, the date on wh1ch it was pr1nted, and the current
page number, The /NOHEADER switch disables the pr1nt1ng of page headers
If you omit the HEADER command, the default switch is /NOHEADER. ' 2

419 LPP Command
This command takes the form:
LPP=number

where number spec1f1es the default number of L1nes per paqe. The spooler
program ‘uses this value in determ1n1ng where to print page headers If you
omit the LPP command, the spooler uses the vaLue of 56. You may override
the value set by the LPP command by u51ng the "/LPP switch when you ‘use the
monitor PRINT command.

4.10 WIDTH Command
This command takes the form:
WIDTH=number

where number specifies the default width (in characters) of the printed
Line. The spocler program uses this value in determining the width of page
headers. If you omit the WIDTH command, the spooler uses the value of 132,

You may override the wvalue set by the WIDTH command by using the /WIDTH
switch when you use the monitor PRINT command.

NOTE: The values you give to WIDTH must range between 80 and 132. If vyou

specify a number Lless than 80, the spooler uses 80; if the number is greater
than 132, the spooler uses 132.

5.0 SPECIFYING FORMS

You can Spec1fy the type of form to be used on the printer by including the
FORMS command in the spooler parameter file at the time of spooler
initialization. The PRINT command compares the forms spec1f1ed in print
requests against this default form to make sure that they match.

After the spooler program is up, you can change that forms default by using
the SET command:

«SET FORMS printername formname EED)

where printername specifies the Spec1f1c printer on which the form must be
mounted, and formname gives the form type. For example:

{Changed 30 April 1981)

SETTING UP THE LINE PRINTER SPOOLER _ N Page 12

+SET FORMS TI810 2PART (FED

Once a form has been set using the SET commahd, the PRINT command checks all
print requests sent to that printer to make sure that the proper type of
forms is being specified.

If the form you specify in the PRINT command is not mounted on the printer
when the file is selected for printing, the spooler sends this message to
the terminal attached to the operator job: ' :

;LPTSPL - Please mount form formname on printername

This message repeats .once a minute until the spooler is notified that the
form has been mounted (via the SET command). Since both LPTINI and PRINT
use the default formname NORMAL, vyou can emit the FORMS command in the
parameter file if you only use one kind of paper in your printers.

6.0 TROUBLESHOOTING THE SPOOLER PROGRAM

In the event that you have been unable to get the spooler up and running
properly, you may find this section helpful.

Once the system has been booted, run the SYSTAT program to see what the
spooaler job is doing; if all has gone well you should see that the spooler
job is running LPTSPL in an EW state. If the job is not rumning LPTSPL, or
if it is in a "C state, something has gone wrong.

You can run the LPTINI program on your own terminal to “see what is
happening. Be warned that this procedure will lock up your terminal; but it
should give vyou some idea of what went wrona. You will have to reboot the
system to gain control of your terminal after you are finished.

To see why the spooler did not initialize properly, leg into [1,21 and
allocate yourself the same amount of memory as the spooler job. Now run the
LPTINI program, specifying the same parameter file that you used earlier in
attempting to bring up the spooler. If you see nothing on the terminal
after about 20 seconds or so, everything is probably allright. If you have
another terminal connected to the system, run SYSTAT to see if the spooler
job is now in EW state. If it is, something is wrong with the way you set
up the spocler in the SYSTEM.INI. Check over your SYSTEM.INI file for some
error in setting up the job, defining the pseudo-terminal, allocating
memory, or defining the output device. If you still see no rezason why the
initialization process should have failed, try attaching the speoler to a
real terminal (not the pseudo~terminal). By doing this, you will be able to
see any error messages generated during the initialization process. TIf vyou
are using a serial output device, and a TRMDEF command exists for your
printer device (that is, it is defined as a terminal), you may attach the
spooler job directly to the printer.

(Changad 30 April 1981

e

SETTING UP THE LINE PRINTER SPOOLER Page 13

Chances are, you won't get that® far. Most errors are caught by the LPTINI
program which displays an appropriate error message. These are the messages
displayed by LPTINI:

MEMORY ALLOCATION FAILED
You did not allocate enough memory to the job. LPTINI wasn't even
able to load itself and its impure areas. Allocate more memory.

?Invalid command X

You specified command or argument "X" in your spooler parameter file
which LPTINI was not able to recognize. Check the spelling in the file
for errors. Make sure that your parameter command arguments are in the
proper form (e.g., numeric or boolean).

?Bad DEVICE specification

The device you specified as the printer in your DEVICE command is
not a valid device specification. Make sure that -the 'device you
specified is 1in the device table (the DEVTBL Line of the SYSTEM.INI),
and the the device has a driver program in DSKO:[1,67.

?Nonexistent job name specified for OPERATOR

The job you specified in your OPERATOR command does not exist.
Check your spelling, and examine a SYSTAT display to see a List of the
valid jobs on the system.

?Insufficient memory to run spooler, expand memory by n bytes

You did not specify enough memory to run the Line printer spooler
program. Increase your memory allocation by the amount specified. The
amount of memory required by the spooler program depends on the
particular device to which you are printing, and so may exceed the
recommended amount of 4K.

(Changed 20 April 1981)

SET?ING UP THE LINE PRINTER SPOOLER

Index

Adding a job
Additional queue blocks
Allocating memory
Bank switching system
Non—-memory management system
ATTACH command
Attaching terminals

Bank switched memory
BANNER command

DEFAULT command . . . o o« « o .
DEVICE command . . . « v =« . .

Ending the FORCE sequence . . .

FORCE command « . . .
Forcing job dnput
FORMFEED command
FORMS command . . & & & &« . . .

HEADER command . . -« o » 4 «

JOBMEM command
JOBS command

KILL command . . v & o o &« o

Line printer spooler
LOG command . . & & ¢ & v o o o
LPP command v 2o o o o &
LPTINI.PRG . . & o o o o = =

Error messages . .« v o o - .
LPTSPL.PRG & & & 4 & 4 v v &

MEMORY command
Multiple line printer spoolers
Additional queue blocks . . .
Bank switched systems
Multiple printer queues

NAME command
NULL terminal driver

(Changed 30 April 1981)

L BT R Y,]

- % 3 31 s
— :

w W

—

oo 0

[s 8

0 to 11

~ NS
o~

SO N

N 0o

CBage s

ekt e ey b i

SETTING UP THE LINE PRINTER SPOOLER

OPERATOR command
OPR: " m 4 e e m om o= oe == s s s

'
]
.
'
w1 N0

PRINT - - - e .
Printer queue
PRINTR.INI s s o= om
PSEUDO interface driver
Pseudo terminal

LU I N [Sy WY
-
o~

Queve
Queue blocks
GUEUE command

N =

SET FORMS e N
Setting up the spooler 4
Specifying forms 11
Spooler job 3
Spooler memory requirements . . . §
Spooler parameter file 6 to 7
BANNER ~ - 10
DEFAULT o 9
DEVICE - . 8
FORMFEED e . 9
FORMS 10
HEADER - - . < 10
LPP . . = = & a2 & = 2 om e = & = 11 ?
NAME 8 S
OPERATOR © . .
WIDTH 11
Spooling 1
SYSLPT.INI , s = s - 1T to?2
SYSTAT command 1
System initialization 1
System memory 1
System Operator's account §
SYSTEMJINI - -1

TRMDEF command 3
Troubleshooting the spooler . . . 12
WAIT command T
HIDTH command 11

(Changed 20 April 19817)

bk reoman o it

April 1981
Revision AD1

¥

MEMORY MANAGEMENT OPTION

This document describes how to set -up and use more than 64K of memory in
your Alpha Micro computer system by bank switching memory. It will not tell
you how to address your memory boards; in order to implement memory
management you will have to refer to documentation supplied by the board
manufacturer(s). For more information, refer to the Alpha Micro Integrated
Systems User's Guide, (PWM=-00100-00).

Become familiar with this documentation before trying to implement memory
management on your system. Also, try to hecome familiar with the addressing
of the various memory boards you will be using in your system. If you have
problems implementing memory management, refer to Section 3.0 to see if the
problem is explained there.

For 2 full explanation of memory management, see Section V, "Memory
Management," of the Integrated Systems User's Guide, (DWM-00101-00).

1.0 SETTING UP A MEMORY BANK

Unless the system initialization command file (SYSTEM.INI) contains MEMDEF
commands, the operating system (AMOS) will not recognize any memory beyond
the first 64Kk (1K = 1024; 64K = 65536). There is one MEMDEF command for
each bank of memory to be defined. The MEMDEF commands must be before the
final SYSTEM command in the SYSTEM.INI.

Due to the way AMOS works, there must be a totally sharable portion of
memory -starting at location 0N0000. This sharable portion must be Large
enough to hold AMOS, which requires a minimum of 11K (this size increases as
more jobs, terminals, devices, and system programs are defined). You may
alsc place the Line printer spooler 4n sharable memory, which requires
between 4 and 5k. Typically, the sharable portion will be 16K with no
system programs, 32K if RUN.PRG is in system memory, or 48K 1f BASIC.PRG and
RUN.PRG are in system memory. If sharable memory takes up some amount xK,
then the largest bank-switched portion of memory can take up (64 - x)K of
memory. Bank-switched memory refers to that portion of memory past sharable
memory. There may be multiple banks of various sizes, as long as the
largest bank is no larger than (64 - X)X, and there is no sharable memory
past xK.

Bank-switched memory must be physically addressed to the memory address that
it will occupy when that bank of memory is active. (Refer to the
manufacturer's specifications for the appropriate switch or jumper
settings.) For dnstance, assuming that sharable memory is from OK to 31K and
bank-switched memory starts at 322K, no bank~-switched portion of memory can
be addressed to a physical address below 32K. In this situation, assuming
16K memory boards, there would be one sharable memory board addressed for

(Changed 30 April 1981)

MEMORY MANAGEMENT OPTION Page 2

OK=15K, one sharable memory board addressed for 16K-31K, and then the
bank-switched memory boards. Two banks of 32K would have two boards in one
bank addressed for 32K-47K and for 48K-63K respectively, and in the second
bank a board addressed for 32K-47K and a board for 48K-63K.

In addition to the physical memory address, all bank-switched memory boards
have an 1/0 port address associated with them. . This I/0 port is what is
used to turn the various memory boards on and off. There may be more than
one I/0 port possible per board, depending on the manufacturer of the memory
board. '

This scheme allows memory boards to be turned on or off by sending a value
to the I/0 port of the memory board. More than one bank may wuse the same
I1/0 port, as long as the value for turning on a particular bank is different
‘than the value for turning on a different bank.

1.1 Defining a Memory Bank (MEMDEF)

There dis one MEMDEF command for each memory bank. Memory bank numbering
starts at 0 and is incremented by one for each MEMDEF statement. Therefore,
three MEMDEF instructions in the initialization file define Banks 0, 1, and

The form of the MEMDEF command is as follows:

MEMDEF boardD—adr,on-cnst,off—cnst/board1.../boardN~adr,on—cnst,off“cnst

1. ALL operands are 9n octal, wunless the SET HEX command has been
executed.

2. "boardX-adr" iz the I/0 port address that the board is set up on.

3. "on-cnst" is the on constant=- the value that is used to turn the
piece of memory at this I/0 port on.

4. "off-cnst" is the off constant-- the value that is used to turn the
piece of memory at this I/0 port off. This will usually turn off
the entire board except for any memory that is sharable or set up
for a different 1/0 port.

5. The slash (/) allows multiple memory addresses to share the same
bank of memory. This is especially convenient when using a Large
memory board (32K - 64K) that resides all at one I/0 port but has
different "on" and "off" values for smaller pieces of memory (8K to
16K) .

Assuming a 14K sharable portion residing at the front of a /4K memory board,
the remaining 48K of memory is switchable, and so are two other 64K memory
boards with only 48K active on them; the first hoard is set up at I/0 port
100, the second board is set up at 101, the third board is set up at 102;
the '"on" constant for memory on all boards in Rank Zero is 1, for memory in

(Changed 30 April 1981)

MEMORY MANAGEMENT OPTION ' " Page 3

Bank 1 is 2, for memory in Bank 2 is 4; the "OFF" constant for all memory is
; the MEMDEF commands would then be as follows: T e

MEMDEF 100,1,0/101,1,0/102,1,0 ; Bank Zero
MEMDEF 100,2,0/101,2,0/102,2,0 ; Bank 1
MEMDEF 100,4,0/101,4,0/102,4,0 ; Bank 2

Note that memory from 0K to 15K is not set up to be switchable. Also note
that a piece of all memory boards is in all banks. The boards would be set
up in the following manner:

Board 1: I/0 port 100 16K-31K On constant = 1 0ff constant = O
’ 32K-47K On constant = 2 (all boards)
: : 48K-63K ©On constant = 4
Board 2: I/0 port 101 16K-31K On constant = 2
‘32K-47¢ On constant = 4
' : 48K-63K On constant = 1
Board 3: 1/0 port 102 16K-31K On constant = 4
I2K-47K On constant = 1
43K-63K On constant = 2
Board 1 Board 2 Board 3
tommm—— Fmm + o m——— +
0-15¢ |shared| ' unused| lunused|
tmm + fomem i + b
16-31K |Bank O |Bank 1] |Bank 2|
tmm——— + e R - +
32-47K |Bank 1} |Bank 2| |Bank 0]
o + e m— + e +
48-63K |Bank 2 |Bank O] [Bank 1|
e + A — + t——— +

Note that this is but one possible memory configuration and is set up in a
strange way for demonstration purposes. A more efficient use of 64K memory
boards is possible if different portions of the board are set up at
different 1/0 addresses or (if the entire board is at one I/0 address) if
different portions have different "on" constants, :

This scheme allows the use of different manufacturer's boards 1in the same
system, as long as they can be set up at various 1/0 addresses and the
largest piece turned on by a particular constant is small enough so that it
does not overflow into sharable memory.

After the system is booted, the MEMDEF command takes on a new function. The
MEMDEF command now allows you to see how memory is configured. The MEMDEF
command will display a map of all active banks as a string of characters,
with each character representing 1K of memory. Assuming a 13K monitor and
the above example memory definition, here is what MEMDEF would display after
¥You have booted the system:

(Changed 30 april 1981)

MEMORY MANAGEMENT OPTION ©ooo .- n Page.4

MEMDEF GED)

0K oK 16K 24K 32K 40K . 48K .- S6K 64K
[l i [| | N i

BANK 0 MMMMMMMMMMMMMSSSBB
BANK MMMMMMMMMMMMMSSSBB
BANK 2 MMMV Ic S eanmoe e e — — o - o U BEBEBEEB6 85 BBBBBBBBBBBBRER

. BANK 2 ,MMMMMMMMMMMMMSSSBB'd

"M" stands for "monitor" memory (memory used by the monitor), "S" stands for

"sharable" memory (memory-that .18 not . monitor memory and s not bank
switched), and "B" stands for "bank-switched" memory. Since monitor. and
sharable memory can be accesszed by all banks, this area of memory is treated
as a part of all banks. It is always active. The area of memory used by
the monitor and sharable programs is also called "system memory."

Programs can be loaded into system memory using the SYSTEM command in the
SYSTEM.INI file. The spooler. can reside in system memory or in
bank-switched memory. Any remaining sharable memory after the system is
booted up that is not used by the monitor or programs in system memory is
added to the beginning of Bank zero and is available to the job the system
comes up under. (The Last command in the SYSTEM.INI file, MEMORY 0,
allocates all available memory inm.Bank Zero to the job the system comes up
under.)

There 1is a good reason why there is no memory appearing at "64K." As you
can see, the counting of memory starts at 0K, not 1K. If there were memory
at "64K," it would really be "65K," which is 66560 bytes of memory, since 1K
= 1024, '

The MEMDEF display is also a handy way to verify that you have jumpered the
boards properly. Memory which the system cannot find will be missing from
the display. Bad memory boards can sometimes be located in this fashien,
too. Of course, if the bad board is in sharable memory or Bank Zero, the
System may not come up at all.

2.0 ALLOCATING MEMORY TO JOBS

With this memory management system, the MEMORY command becomes ohsolete
except for allocating memory in Bank Zero. Do not use the MEMORY command to
allocate memory for any job other than the first job in Bank Zero, the job
the system comes up under. Instead, use the JOBMEM command to allocate
bank-switched memory.

(However, remember to use the MEMORY command if you are allocating the Line
printer spooler in system memory. See Setting Up the Line Printer Spooler
in the “System Operator's Information” section of the AMOS Software Update
documentation packet for information on allocating the spooler 4n either
system or bank-switched memory.)

(Changed 30 april 1981)

MEMORY MANAGEMENT OPTION : : Page 5

Use the JOBMEM command as follows:
JOBMEM jobnam Bank-number:StartAddress—EndAddress

1. "jobnam" is the name of the job for which memory is to be
allocated. The user's current job is used if "jobnam" is not
specified.

2. "Bank-number" s the number of the memory bank that the job is to
reside in. L

3. "StartAddress' is the starting memory Location for the job.
4. "EndAddress" is the ending memory location for the job.

If you specify no arguments, JOBMEM tells you how much memory s allocated
to your job. If you specify a job name with no memory argument, JOBMEM
tells you how much memory is allocated to the specified job. .

Here are some sample JOBMEM statements:

~JOBMEM J0OB2 1:40000-177376 EED

~JOBMEM J083 2:40000-77776 (RED)

-JOBMEM JoB4 2:100000-137776

-JOBMEM JOB5 2:140000-177376 GED

. JOBMEM JOBS5 (RED)

CURRENT MEMORY ALLOCATION IS 2:140000-177376
=J OBMEM (RET)

CURRENT MEMORY ALLOCATION IS 0:32370-177376

The first example gives the job called JOB2 all of the memory in Bank 1.
The second through the fourth examples allocate the 48K of memory in Bank 2
in 16K partitions to three different jobs. The fourth job (JOB5) really
gets 16K minus 256 bytes of memory (16128 bytes total) due to the fact that
the top 256 bytes of memory are not accessible. {(The top 256 bytes of
memory are reserved for the I/0 ports.) The fifth example Lists the memory
allocation for the job called JOB5. The final example Lists the memory
allocation for the current job.

2.1 JOBMEM Error Messages

?Memory allocation format error
JOBMEM is confused by the format of the information you've given it; it
may be that you've made a spelling error. .

?Non-existent bank number
If you've specified a bank number greater than the number of MEMDEF
commands in the SYSTEM.INI, you'll see this message.

(Changed 3D April 1981)

MEMORY MANAGEMENT OPTION e L R PagéQ6

¥

?Non-existent job

You've specified a job that does not exist. Check the JoBS EomméhE'

Line in your SYSTEM.INI 20r .run_ SYSTAT to see a list of the jobs on the
system. ' T

?Allocation overlaps monitor or system memory . .

Monitor and system memory is sharable between users; that _méans that
you must not allocate any part of it to an individual user. Reduce your
user allocations, or remove some of the programs . that you've -previously
added to system memory by deleting the appropriate SYSTEM commands in your
SYSTEM. INT. :

?Illegal memory range (end is below base)

You probably entered your ending memory address before you entered the
starting address. The starting address of the memory block you want to
allocate must be Lless than the ending address. . : .

?Allocation is not within requested bank's defined memory) .
You've asked for memory in a valid bank, but the memory addresses that
the bank is set for do not include the addresses that you've tried to

allocate. Check your MEMBEF commands, and the addressing of your memory
boards. :

?Requested allocation would overlap job Jobname
You've tried to allocate. memcory to one job that belongs to another.
The job you've overlapped is named Jobname. (e.g9., ?Requested allocation

would overlap job JOBA.)

3.0 HINTS, RESTRICTIONS, AND WARNINGS

The next few paragraphs discuss some of the things that you should avoid
doing when setting Up your system for bank-switched memory. We zalso discuss
some of the miscellaneous pieces of information that you should know to set
up your system in this way.

When power is initially supplied to the system, or whenever the reset button
is pressed, Bank ‘Zero must turn itself on and all other banks must turn
themselves off. Any other configuration may cause system failure either
immediately after AMOS starts executing the SYSTEM.INI file, or when the
MEMDEF statements in the SYSTEM.INI file are executed.

ALL memory in a particular bank must be contiguous. That ds, you cannot
have a piece of switchable memory starting at one location and ending at
another, a "hole'" where there is no memory, and then another piece of
switchable memory. This is also true of sharable memory, and all memory in
3 system that does not use hank switching. You can, howaver, have sharable
memory up to some point, a "hole," and then bank~switched memory. This is
not the case with Bank Zero, which must always be contiguous with sharable
memory. '

(Changed 30 April 1981)

MEMORY MANAGEMENT OPTION Page 7

If you are allocating a Lline printer spooler and there is not enough

sharable memory for the spooler, your spooler will not work. Make sure that .

the spooler's "end adr'" is lower than the top of sharable memory if you are
placing the spooler in system memory.

If too many modules are loaded into the monitor with the SYSTEM command,
monitor memory will extend into the bank-switched area, and the system will
not work properly. You can use the MEMDEF command after you boot the system
to check this out.

The MEMDEF commands must come before the final SYSTEM command in the
SYSTEM.INI. It is recommended that the MEMDEF commands be placed right after
the TRMDEF commands.

MEMDEF does not check to see if an I1/0 address with the same oan/off
constants was previously allocated. It is up to the System Operator toc make
sure that SYSTEM.INI is set up properly and that a single piece of memory ds
not allocated to two different banks.

When the MEMDEF display shows the Last column of bank-switched memory at
"62K" (instead of at "63K" where it belongs), you may have a problem with
your disk controller board(s). The 8131 driver IC for the bootstrap PROM
must be removed from any board controlling a disk device that is not the
system device. PHANTOM must be removed from these boards also. Only the
board which controls the system device can have the bootstrap PROM and
PHANTOM enabled.

ALL memory addresses must be on word boundaries. In octal, memory addresses
on word boundaries end with O, 2, 4, or 6. In hex, they end with 0, 2, 4,
6, 8, A, C, or E.

With this memory management system, there is no way for a user to have a
portion of memory in one bank, and another portion in another bank, unless
he is running a specially written assembly language program and uses the
BNKSWP monitor call. The user must be in sharable memory when he issues
this call. (There is more information on the BNKSWP call in the AMOS
Menitor Calls Manual, (bwM-00100-42).)

A bank of memory may be composed of part or all of several different boards,
everr +f the boards are made by different manufacturers.

(Changed 30 april 1981

-

April 1981 .
Revision ADZ2

DEFINING SWITCHABLE SYSTEM MEMORY

The — Alpha Micro Operating System (AMOS) allows you to change the
configuration of your system by changing the system initialization c¢ommand
file (SYSTEM.INI) that controls the system start-up process. When you add a
new disk device or terminal, you add information about that device to the
SYSTEM.INI. .

As more device controllers and drivers become available, you will probably
have a greater variety of devices on your system. Each time you add a new
kind of device, however, your monitor becomes larger because the SYSTEM.INI
instructs the monitor to incorporate within itself the software necessary to
handle the new device. The Larger your monitor becomes, the less memory 1is
available to user memory partitions. The area of memory used by the monitor
is called system memory.

If your system does not use memory management (that is, if you do not bank
switch memory), there is nothing you can do about reducing the size of your
monitor except remove programs that have been loaded into system memory via
the SYSTEM command in the SYSTEM.INI or change the configuration of your
system.

Beginning with AMOS Version 4.3, if your system uses memory management, you
may now reduce the size of your monitor by placing bitmaps into
bank-switched memory. To do this, you must first set aside an area of
switchable memory as system memory. . (For information on bank-switched
systems, refer to Memory Management Option, 1in the "System Operator's
Information" section of the AMOS Software Update documentation packet and
see the Alpha Micro Integrated Systems User's Guide, (DWM-00101-00).) At
this time, bitmaps are the ONLY portions of the monitor that you can place
in switchable system memory.

1.0 THE SYSMEM COMMAND

The first step in defining switchable system memory is to make sure that
your SYSTEM.INI contaims wvalid MEMDEF commands., MEMDEF commands set up
switchable memory bhanks that zllow the system to access more than 64K of
MEMOTrY. (Individual wusers are still restricted to a maximum memory
partition of 64K.) The switchable portions of these banks are usually
allocated to user jobs, but you will be setting aside part of this area for
your switchable system memory.

Now that your system is bank switching memory, you can use the SYSMEM

command in the SYSTEM.INI to tell the system which part of a memory bank
outside of the sharable monitor area you want to assign to the system

(Changed 30 April 1981)

DEFINING SWITCHABLE SYSTEM MEMORY Page 2 -

bitmaps. (NOTE: When you use ‘SYSMEM in the SYSTEM.INT, you maj 55t9”ﬁ§é :

it to define switchable system memory.)
The SYSMEM command takes this form:
SYSMEM Bank#:StartAddress-EndAddress

where Bank# identifies the specific memory bank in which you want to
allocate - switchable system memory, StartAddress and EndAddress select the
beginning and ending addresses of the block of memory you want to allocate
to switchable system memary. ' :

Switchable system memory may not overlap sharable memory. That is, you
cannot allocate to switchable system memory any memory Llocations in the
non-switched area of memory. (The non-switched area of memory is used by
the monitor.) '

You may not allocate to switchable system memory the last 256 bytes of the

64K address space, (These bytes are reserved for the I/0 ports.) The
highest memory address you can allocate, then, is 177376.

Once the system is up and running, you can use SYSMEM at AMOS command Level
to find out what area of memory is set aside as switchable system memory.
For example: '

«SYSMEM
System memory allocations are:
3:100000-166774

2.0 DEFINING SWITCHABLE SYSTEM MEMORY

To define switchable System memory, edit the SYSTEM.INI and make these

changes: - - :

1. First, you must define the area of switchable memory you want to
set aside for system memory. Enter the SYSMEM command. for this
purpose, SYSMEM commands must appear after any MEMDEF commands,
but before any BITMAP commands.

NOTE: You céh use more than one SYSMEM command in your SYSTEM.INI

if you want +to. allocate more than one area of switchable system
memory . : '

SYSMEM uses the same format as the JOBMEM command. For example:

SYSMEM 2:100000~116150

{(Changed 30 April 1981)

:

DEFINING SWITCHABLE SYSTEM MEMORY : o : ‘Page 3_:

The command above allccates 7272 bytes to Bank Two (the “third
memory bank on the system) for bitmaps. (When you use SYSMEM,
remember that the BITMAP commands refer to the number of decimal
words you need to reserve for bitmaps, NOT the number of bytes.
One word is two bytes, so double the bitmap size to find the number
of bytes you need to allocate with the SYSMEM command.)

2. Next, identify those bitmaps you want to place in switchable system
memory by including a /S at the end of the appropriate BITMAP
command Llines in your SYSTEM.INI. For example:

BITMAP DsK,1818,0,1,2,3,4,5/s
BITMAP AMS,39,0,1
BITMAP HWK,806,0,1/S

The BITMAP commands above tell AMOS to reserve 39 words in the
monitor area in Memory Bank zero for the bitmaps for devices AMSO:
and AMST:, The other two BITMAP commands select the switchable
option by including a /S at the end of the command Line. AMOS
therefore knows that the bitmaps for bsSKO:, DSK1:, DSK2:, DSK3:,
DSK&4:, DSK5:, HWKO:, and HWKT: are to be placed in switchable
system memory.

3. At the time of system start-up, AMOS automatically places the
bitmaps you have previously designated (via the /S option on the
BITMAP command L(ine) 4nto the switchable system area you have
defined.

3.0 ERROR MESSAGES

If you make an error in defining switchable system memory, you see the
following error messages:

?System memory not allocated - monitor memory will be ysed

You triad to place a bitmap in switchable system memory (via the /§
option in the BITMAP command (ine), but AMOS couldn't find any
switchable system memory. (You can also see this message if you did
not allocate enough switchable system memory to hold the designated
bitmaps.) AMOS therefore places the bitmap in the area of sharable
memory used by the monitor. Check to see that SYSMEM commands gagre
present in your SYSTEM.INI.

?Memory allocation format error
SYSMEM didn't understand the format of your SYSMEM command Line.
For example, did you leave out the colon after the bank number?

?Nonexistent bank number

You've given SYSMEM a bank number Llarger than the total number of
MEMDEF commands in your SYSTEM.INI. (That is, you've referred to a
bank number that does not exist.)

(Changed 30 April 1981)

st e

DEFINING SWITCHABLE SYSTEM MEMORY : SR ~-Page 4

- ?AlLocation overlaps monitor memary

You must not allocate to switchable system memory any of the
sharable wmemory area. . <(Sharable memory is memory that contains the
monitor and that all users can access.) Type MEMDEF. followed by a
RETURN to see the .memory bank configuraton for your. system. This
display tells you which areas of memory you can allocate to ‘switchable
system memory.

°ILLegaL memory range (pnd is below base)
Ending address . of the hlock .of memory you aLLocate to sw1tchabLe

system memory must be greater than the starting address,

?Allocation is not within requested bank's defined memory

You've specified a valid bank number to'the SYSMEM command, but that
bank is not addressed for the memory locations you've requested. Check
the addressing of your memory boards and check the MEMDEF statements in
the SYSTEM TNI.

?ALLocat1on overlaps memory previously allocated to a job
You've already tried to allocate to switchable system memory an area
that has already been allocated (via the JOBMEM command) to a user job.

Check your bank number and memory addresses in the SYSMEM command. If

they're all right, check the memecry allocations for the jobs on your
system. '

(Changed 30 April 1981)

May 1980
Revision AD1

CONFIGURING FLOPPY DISK DRIVERS

1.0 INTRODUCTION

The AMOS system supports several different kinds of disk devices. Because
each type of device has its own characteristics and requirements, a separate
device driver program must exist for each kind of disk device you use on
your system.)

The disk driver program Links AMOS's generalized disk service -routines with
the physical disk device. oOne disk driver exists for each kind of hard disk
that you can run under control of the AM-500, AM-400, and AM-410 hard disk
controllers.

In the past, several different floppy disk drivers existed: oné for each
combination of drive type and disk format. A much Larger number of floppy
disk formats are now available. - For this reason, rather than providing a
separate disk driver for each possible combination of device type and disk
format, we have given you the ability to configure your own floppy disk
drivers. ' ' C - T

1.1 New ALpha'Micro Disk Formats

Before Release 4.2, only three floppy disk formats were ““avaflable:
IBM-compatible (STD), Alpha Micro .format .(AMS), and Image format (IMG).
With the introduction of a new floopy disk cbntroLLeﬁ'(thejAm€21OJ,that _can
handle disks in double~sided, doubLEfdensity'forMats,fa,ngw{range of floppy
disk formats is now possible. The FIXDVR program allows you to configure
your own floppy disk drivers based on the particular disk type, floppy disk
controller, and disk format you want to use. You -must wuse FIXDVR to
configure a driver for each different combination of device, controller, and

format that occurs on your system.

2.0 USING FIXDVR

Toe run the FIXDVR program, log dinto the Device Driver Library account,
DSKO:L1,61. Then type FIXDVR fol Llowed by a RETURN:

.LOG pSKO:[1,6] =D
. FIXDVR (REY) ‘

(Changed 1 May 1980)

CONFIGURING FLOPPY DISK DRIVERS - ~ . Page 2

FIXDVR now begins toc ask you & series of quastions, so that it can detebming
how to configure fleppy disk driver that matches your nparticular
combination of disk tyoe, disk contrclier, and disk format:

1. Controller Type (A) AM-200, (B) AM-210 or (¢) Icom:

Enter the letter A, B, or C to select the type of floppy disk
controller you are using for your floppy disk drive. If you select
the Icom controller, FIXDVR skips down to question #4 (see below).

2. Drive type (A) Persci, (B) Wangco, or () CDC:

Enter the letter that selects the type of disk drive you are
using.

3. Double-density?

FIXDVR asks this question only if you have already specified
the AM-210 as your disk controller. Enter a Y for Yes, or an N for
Mo, depending on whether you ‘plan to wuse the driver on
double-density disks.

4. Format (A) STD, (B) AMS, or (C) IMG:

Enter the letter that selects the disk format you want the
driver to use. You may not specify the AMS format if the driver is
to use single-density format on a drive running under control of
the AM-210 disk controller. 1If you have previously selected the
Icem controlier, FIXDVR now skips down to question #6. (If you are
using the Icom controller, you may not specify the AMS format.)

54 Dowble-sided?

-FIXDYR asks this question -only if you have already specified
the AM=210 as your disk controller. Enter 2 Y for Yes, or an N for
No, depending on whether you plan to use the driver on double-sided
disks,

6. Enter new driver name:

Enter the name that You want to give to the driver program.
The standard names that you might want to use are listed below in
Section 4.0, '

FIXDVR now displays this message:

New driver is now in memory, bitmap size is nn

The driver that you created is now in memory. Use the SAVE command to save
it on the disk. For example:

~SAVE DDS.DVR @D

(Changed 1 May 1980)

'CONFIGURING FLOPPY DISK DRIVERS et e . Page3

The command above ‘saves the driver onto the disk (in the -account you are
Llogged into, DSKD:[1,6]) as the file DDS.DVR. If you do not .specify an
extension, the SAVE command saves the file under the extension .DVR . (which
indicates a device driver program). ' S

2.1 FIXDVR Error Messages
You may see the following error messages when using FIXDVR:

T. 2Could not find xxxxxx.DVR

FIXDVR could not find the necessary file. .If you are
configuring a driver for the AM=-200, - FIXDVR requires that
200DVR.DVR be in DSKO:[1,61; a driver for the AM~210 requires
210DVR.DVR in DSKO:[1,6]. A driver for the Icom controller
requires that ICMDVR.DVR be in DSKD:[1,67.

2. Please enter Y or N

Several of the questions that FIXDVR asks require that you
answer with a Y or N for Yes or No.

3. 2Invalid reponse

Several of the questions that FIXDVR asks require that you
enter a letter to select an option (e.g., an A to select STD
format),

4. 2Invalid device

You have a bad version of 200DVR.DVR, 210DVR.DVR, or
ICMDVR.DVR in DSKO:[1,6].

5. ?Icom does not ‘support AMS format

) You tried to format an Icom floppy diskette in AMS format.
(Icom floppy drives only support STD and IMG format.)

6. 2AM-210 does not support single-density AMS format

_ You may not use single-density AMS format on a device that
runs under the control of the AM-210 floppy disk controller.

7. 7AM-200 does not support CDC floppy disks

You may only run CDC floppy disks under the control of the
AM-210 floppy disk controller.

{(Changed 1 May 1980)

" CONFIGURING FLOPPY DISK DRIVERS . SR L)

3.0 ﬂmqpiﬁleG'THE“s?STEM IMITTAszhTIQN“COHMAND FILE
You tust ‘modify the system ‘initialization command “file (SYSTEM.INI) to:

1. Add the device for which you have just defined a device driver to
the DEVTBL command line. NOTE: If yYou have too many devices on the
DEVTBL command line to fit all on one Line, you may wuse several
DEVTBL command lines. For example: I ‘ -

DEVTEL 55K1,AMsD,AMS1;AMS2,AMS3,DDSo;DDS1
DEVTBL TRM,MEM,RES,/MTM

2. Add BITMAP commands to the SYSTEM.INI to define bitmaps for the new

' devices you are adding to the system. Use the bitmap size given in
the final FIXDVR message. - "For example, if you are defining a
driver for.a two-drive device, and the format reguires a hitmap of
39, you might have seen this message: :

New driver is now in memory, bitmap size is 39

Now you must add the appropriate BITMAP command to the SYSTEM.INI,
For example: :

BITMAP AMS,29,0,1

4.0 STANDARD DISK DRIVER - NAMES

Below is a List of some of the standard names you can assign to the device
driver defined by FIXDVR: -

Driver Name Characteristics
STD Single-density, Single-sided, STD format
5DS Single-density, Double~sided, STD format
DSS Double-density, Single-sided, STD format
DDS Double=-density, Double~sided, STD format
AMS Single~density, Single-sided, AMS format
SDA Single-density, Double-sided, AMS format
DSA Double-density, Single-sided, AMS format
DDA ‘ . Double-density, Double~sided, AMS format
SS5I Single-density, Single-sided, IMG format
SDI Single-density, Double-sided, IMG format
DS1I Double-density, Single-sided, IMG format
DDI Double-density, Double-sided, IMG format

(Changed 1 mMay 1980)

CONFIGURING FLOPPY DISK DRIVERS '~ Page §

SfO FORMATTING DISKS

When you format a disk, you will use either the FMT200 or the FMT210
formatting programs (depending on whether You are running the device
containing that disk under control of the AM-200 or the AM-210 Floppy Disk
Controller).

NOTE: If you are using an AM-200 controller, make sure that the AM-200
format-enable switch is turned ON before you format a disk. The Icom
controller is not capable of formatting diskettes; if you are using an Icom
controller, you must buy preformatted disks.

The device specification you give to the formatting program will identify
the driver (and thus the format) used for that device. For example, if you
want to format a disk in Drive One of a device that uses the DSS driver
(double-density, single-sided, STD format), enter:

=FMT210 0sS1: @)
FMT210 then formats the disk in the proper format, and you see:

BEGIN FORMATTING
EXIT

(Changed 1 May 1980)

May 1980

AMOS VERSION 4.4 METHOD CF HANDLING BAD DISK BLOCKS

1.0 INTRODUCTION

AMOS Version 4.4 supports a new method of handling bad areas on devices such
as the Phoenix disk drive. This class of high-performance disk drives,
because of the high density of data on such devices, may contain flaws which
prevent contiguous allocation of the disk area. As disk drives
incorporating the newer technologies become available, the need for error
tolerance becomes increasingly important. The Phoenix disk drive is the
first disk supported on the Alpha Micro system where the media is not
guaranteed to be 100% good.

AMOS Version 4.3 supported an interim solution to this problem by simply
marking all bad blocks as "in-use,'" thereby preventing their use within a
file. Although this method solved most of the problems posed by the media
flaws, it introduced others, such as the possible fragmentation of storage
on a surface, preventing the use of that surface as a single random file.
Because of the actual distribution of bad blocks on the Phoenix drive, this
did not turn out to be a major problem. However, recognizing that this was
not the optimal solution, we reserved fifteen spare or "alternate' tracks on
each Pheoenix drive for use as alternate storage. To better support future
disk drives, and to eliminate the possibility of surface storage
fragmentation, we have 1implemented a new method of handling media flaws
which uses these spare tracks. '

2.0 THE NEW METHOD OF HANDLING BAD BLOCKS

The new technigue of handling bad blocks is to flag bad tracks and
translate these tracks to the spare tracks at the time of disk access. This
method results in several advantages: :

1. The entire disk surface is available for use. That is, no "bad"
blocks can exist in the middle of a surface, preventing complete
use of the surface as a random file.: S '

2. DSKCPY-type utilities can be wused on the surface, speeding up
backup time. '

3. Disk maintenance utilities, such as DSKANA and DSPAK, do not need
to treat the disk as a special case; it can be accessed the same
way as any other device.

4. The actual choice of bad tracks versus bad blocks is device
dependent, making the new method easily expandable for future
devices. :

AMOS VERSION 4.4 METHCD OF HANDLING BAD DISK BLOCKS Page 2

The technique used is as follows;

1. The certification program for the disk creates the file BADBLK.SYS
which contains a Llist of bad tracks or blocks, depending on the
particular device. Currently, the Phoenix uses bad tracks.

2. The DEVTBL command reserves space for an Alternate Track Table in
system memory. DEVTBL does this automatically, with no change in
the command format. The size of +the Alternate Track Table s
device dependent; currently, the Phoenix causes 30 bytes to be

allocated for each surface.

3. The MOUNT command reads the BADBLK.SYS file into the Alternate
Track Table whenever a disk is mounted.

4. Whenever a disk access 1is requested, ths disk driver scans the

Alternate Track Table to see if the requested block is in a track
which fs marked as bad. If so, a translation is performed to
access the requested block within the alternate track assigned to

"that bad track.

The actual allocation of alternate tracks is device dependent;
currently, the Phoenix allocates tracks &08-822 as alternate
tracks. The first bad track on a Phoenix is assigned to track 808;
the second is assigned to track 209, and so on.

5. When the system is being booted, the bootstrap routine must read {in
BADBLK.SYS to handle the case where SYSTEM.MON is allocated on an
alternate track.

At the current time, the Phoenix is the only device that uses the BADBLK.SYS
technique of checking for bad areas.

3.0 CONVERTING TO THE NEW METHOD

Because of the advantages of the new method of handling media flaws, most
Phoenix users will want to convert their disks to use the new format. The
old format is still usable under AMOS Version 4.4; however, the old format
may not be supported in future releases.

YOU MUST CONVERT ALL DISKS TO THE NEW FORMAT!

(0f course, if you are a first-time Phoenix user as of AMOS Release 4.4,
your disks are already using the proper system.)

To convert a disk surface to ~the new format, follow this four-step
procedure: ‘

1. First, be certain that you are running under Version 4.4 of AMOS.
(Use the SYSTAT command to see which version of AMOS you are

AMOS VERSION 4.4 METHOD OF HANDLING BAD DISK BLOCKS ' Page 3

using.? The foLLowing‘ procedures will have no effect if you are
running under AMOS Version 4.3 or earlier. _ o :

2. Create a backup copy of the surface to be converted on a certified,"

but otherwise blank cartridge. (In the case of converting a
cartridge disk, you will need to clear off a fixed surface so that
you can place your backup there.) :

3. Certify the surface to be converted, using the CRT410 program.

4. Copy the files from the backup disk to the newly certified disk via
COPY. '

Before AMOS Version 4.4, Phoenix users were restricted to using COPY when
backing up a Phoenix surface. Now, after you have converted a disk, you
may use DSKCPY from that time on to copy that converted disk to a certified,
but blank, cartridge or surface when you want to do a backup, as long as the
backup disk has also been certified via the 4.4 or Later CRT410.

(Remember that DSKCPY makes a literal image; any data on the backup disk
will be destroyed during the copy.)

April 1981

SOFTWARE INSTALLATION INSTRUCTIONS FOR THE AM-120

1.0 INTRODUCTION

This document describes the software that accompanies the AM-120 Auxiliary
1/0 Controller board and gives instructions for installing that software.
some of the programs described below are new and some are programs from
previous software releases that we have modified to take advantage -of the
features of the AM=120 board.

The AM=120 Auxiliary 1/0 Controller board provides the following features:

1. Two full RS-232 serial I/0 ports (one of which contains a remote
reset Line). Connecting a terminal to the port with the remote

reset line allows you to reboot the system from that terminal.

3¢
.

Three 8-bit parallel output ports and two 8-bit parallel input
ports.

3. An interval timer. The length of the timer's interval is software
selectable.

4, Power failure detection and handling.

5, A clock/calendar with battery backup. This clock/calendar
maintains both the time and the date (including day of the week)
even when your system is not on.

6. Memory erraor interrupt.

For more information on the AM=120, and for information on physically
installing the board in your system, see the document Installation

Instructions AM-120, (PDI-00120-XX).

2.0 THE SOFTWARE INCLUDED WITH THE AM-120

Below is a list of the software we supply with the AM=-120 board:

CAL120.PRG Calibration program for time-of-day clock oscillator
on the AM-~120.

DATE .PRG Reads and sets system date from the AM=120.

TIME.PRG Reads and sets system time from the AM=120.

AM120.IDV Interface driver for the AM-120.

CAM120.MAC The source code for the AMI120.IbV interface driver.

SOFTWARE INSTALLATION IMSTRUCTIONS FOR THE AM~120 Page 2 ..

Note the command reference sheets attached to this document for the CAL120,

DATE, and TIME programs. The .PRG files Llisted above must appear in acc0untf7__
[1,4] of your System Disk, and the .IDV file must appear in account [1,61 of

your System Disk.

3.0 THE AM120.IbYV INTERFACE DRIVER

The AM120.IDYV interface driver allows you to use the two serial ports on the
AM-120 for terminals or printers. You must also use the driver if you want
to wuse the parallel ports 4in idinterrupt driven mode, the memory error
interrupt, or the interval timer. (The AM120.IDV interface driver handles
all of these interrupts.)

We have designed the AM120.1IbV driver so that installing an AM-120 board in
a system that uses an AM-100 CPU allows you to use the AM-120 parallel
ports, memory error interrupt and interface timer in exactly the same way as
you would use those features on the AM=-100/T CPU board. This means ycu may
use software originally written for the AM-100/T on the AM-120 with no
modification, NOTE: To use the parallel ports in interrupt driven mode, or
the dinterval timer on a second AM=-120 board in your AM-100 based system, you
must modify the AM120.IDV program by inserting your own code that handles
the function you want to perform. We have provided the scurce code for the
interface driver to allow you. to do so.

If your system uses an AM-100 CPU, the AMI12C.IDV driver allows up to two
AM-12Q0 boards in the same system. If your system uses an AM=-100/T CPU, the
interface driver allows one AM-120 board in your system; that board must be
physically addressed to the "alternate second board address," and you must
reference the serial ports on it as ports 2 and 3%, (In this . case, the
AM~-100/T acts as the first auxiliary I/0 controller board in the system.)
(See the document Installatijon Instructions AM-120 for dinformation on
installing the AM-120 board.)

4.0 USING THE AM~-120 SERTIAL I/0 PORTS

To +tell the system that you want to use a terminal or printer that is
connected to one of the serial ports on the AM-120, you must include an
appropriate TRMDEF statement in your system initialization command file that
references the AM-12C 1interface driver. (For information on the TRMDEF
statement and on modifying the SYSTEM.INI file, see the document The System
Initialization Command File in the "System Operator's Information" section
of the AMOS Software Update documentation Packst.) The TRMDEF statement for
the AM120.1IbY is very similar in form to the TRMDEF statement for the AM-310
interface board. The interface statement portion of the TRMDEF statement
takes this form: ' S ' -

AM120=1/0-port-address{:baud-rate-codel}

SOFTWARE INSTALLATION INSTRUCTIONS FOR THE AM-120., 0. - Jf{hW;ﬂﬂlfjf ffPége 3

where you may optionally supply a baud rate code ~for the “terminal. - The
1/0-port-address 1is a number from 0-3 and selects the serial port you want
to use. (If you are using one AM-120 board with an AM=-100, you have -serial
ports 0 and 1 available; if you are using two AM-120 boards, you have serial
ports 0-3 available.) As an example, a TRMDEF statement for a terminal
connected to the AM-120 on a system using an AM-100 CPU might Llook - like
this:

TRMDEF TERM1,AM120=1:37316,S0R0C,100,100,100

The optional baud rate codes that you can specify are:

130316 50 baud
130716 75 baud
:31316 110 baud
31716 134.5 baud
122316 150 baud
132716 300 baud
133316 600 baud
133716 1200 baud
124316 1800 baud
134716 2000 baud
135316 2400 baud
135716 3600 baud
136316 4800 baud
136716 7200 baud
137316 94600 baud
137716 19200 baud

5.0 SUPPORTING UTILITY PROGRAMS

We have modified the DATE and TIME programs so that you can set the system
date and time from the AM-120 clock/calendar, and you can reset the date. and
time maintained by the 'AM-120. :

On a system with an AM=-120, DATE also maintains the day of the week as part
of the date. The DATE program now supports European date format as well as
American format. (A date in European format looks Llike this: 26 January
1982; a date in American format looks like this: January 26, 1982.) You may
optionally request that DATE automatically reset the date at midnight.

A new program, CAL120, allows you to wuse a high-frequency counter to
calibrate the AM-120 oscillator.

For information on DATE, TIME, and CAL120, see the command reference sheets
for DATE, TIME, and CAL120 in the AMOS System Commands Reference Manual
(DWM-10010-49).

SOFTHARE INSTALLATION INSTRUCTIONS .FOR THE AM-120 Page -4

6.0} INTERMAL FORMATS -FOR DATE ANB WIME .

The formats that AMOS uses for stor1ng the system date and t1me are the same
whether or not your system conta1ns an AM-120 board.

AMOS stores the tqme of day in two words in system memory.as the - number of
system clock ticks since midnight. (The 'system clock' is not the AM-120
clock/calendar or interval timer, but dis the clock on the CPU board derived
from the AC Lline frequency.) For infaormation on these two words in system

memory (TIME and TIME+Z2), see the AMOS Monitor Calls Manual, (DWM-00100-42).

AMOS stores the system date in two words in system memory. These two words
contain the month, the day, the year, and some flag bits. The byte at the
word DATE contains the month, the byte at the word DATE+1 contains the day,
and the byte at DATE+Z2 contains the last twe digits of the year. The byte
at DATE+3 contains scme flag bits, only two of which are currently used.
Within the flag byte, bits 0-6 are currently unused; a one in bit 7 means
that an AM-120 is present in the system; and, a one in bit 6 means that DATE
1s using the Eurcpean date format.

NGTE: Some programmers have in the past assumed that DATE+3 will always
contain zero. This is not true; programs that depend on this assumption may
experience problems when used on a system that uses the AM-120 software.

T

ke

April 1981

SOFTWARE INSTALLATION INSTRUCTIONS FOR THE AM-710 MEMORY BOARD.

The AM-710 memory board is a 128K byte memory board produced by Alpha Micro.
Oone of the features of this board is its ability to detect parity erraors.
This document discusses the changes you must make to your system
initialization command file when dinstalling the AM-710 memory board. We
also discuss what happens when a parity error occurs.

Fof technical information on the AM-710 board, see the Alpha Micro
Integrated Systems User's Guide, (DWM-00101-00). That manual will also
tell you how to set the AM-710 I/0 port address and how to address the
boards. }

NOTE FOR BANK SWITCHING SYSTEMS: If your system bank switches memory, you
Wwill also want to consult the Alpha Micro Integrated Systems User's Guide
for information on what on- and off-constants to specify in the MEMDEF
commands that define the memory banks made up of your AM-710 memory boards.

1.0 ENABLING PARITY ERROR DETECTION FOR THE AM-710

To enable the AM~710 memory board's parity error detection feature, you must
use the PARITY command. Although you may use this command at AMOS command
Level, you will almost always want to use it within your system
initialization command file, SYSTEM.INI. (For information on changing your
system initialization command file, see The System Initialization Command
File, in the "System Operator's Information' section of the AMOS Software
Update Documentation Packet.)

Place the PARITY command in your system initialization command file after
the MEMERR command. Type PARITY followed by the 1/0 port addresses of the

AM-710 boards in your system (separating the addresses by commas). For
example: .

PARITY 100,101,102

‘This 1/0 port address is three digits for octal numbers and two digits for
hexadecimal numbers. (NOTE: Do not enter hex numbers unless you have used
the SET HEX command for your job.) If you have more I/0 port addresses than

will fit on one command Line, you may enter multiple PARITY command Lines.
For example: ‘

PARITY 101,102,103,104,105
PARITY 106,107,110,111,112

SOFTWARE INSTALLATION INSTRUCTIONS FfOR THE AM-710 MEMORY BOARD "l Page 2°

.

2.0 THE MEMERR COMMAND

The AM-710 memory board requires the presence of the MEMERR command in the
system initialization command file as well as the use of the PARITY command.
If your system uses only AM=-710 boards, do not specify -an address after the
MEMERR command. For example: '

' MEMERR |
PARITY 100,101,102

If your system contains Piiceon 32K word boards as well as one or more

AM-710s, specify the MEMERR port address required by the Piiceon memory
boards. For example: ‘ E ‘

MEMERR 250
PARITY 100,101,102

(If your system uses Piiceon 32K word memory boards, refer to the Alpha

Micro Integrated System User's Guide for dnformation - on the error I/0

address to supply to the MEMERR command.)

3.0 PARITY COMMAND ERROR MESSAGES

Section 4.0 below discusses the error messages you can see when a parity
error actually occurs. In addition, there are several other messages Yyou
can see that result from the improper use of the PARITY command itself:

?There is no AM-710 at port address xxx

Where xxx is an I/0 port address you snecified on your PARITY
command line. This address did not match the jumpered 1/0 port address
of any. of the AM~710 boards in your system. Check the PARITY command
line to make sure that you entered the port address correctly; then
check the memory boards to make sure that their port addresses are
jumpered correctly. '

?2Command format error
You did not supply any I/0 port addresses, or in some other way used
an improper format.

4.0 WHAT HAPPENS WHEN A PARITY ERROR OCCURS?

Your system can respond in a variety of ways when a parity error occurs
depending on your system's particular configuration:

AM=100 CPU and AM-710 memory boards - Memory error detection is not
supported. .

If your system contains an AM-100/T CPU (Pre-Revision k) and one or more
AM=710 memory boards:

A

SOFTWARE INSTALLATION INSTRUCTIONS FOR THE AM=710 MEMORY BOARD Page 3

If a parity error is detectéd, the monitor sends a "S" to the stafus
display port and halts the CPU. : '

If your system contains an AM-100/T CPU (Revision F or later) (or an AmM-100
CPU and an AM-120 Auxiliary I1/0 Controller) and one or more AM-710 memory

boards:

If a parity error occurs, the moniter will send a 9" to the status
display board, and will display the message:

?AM~710 parity error for job xxxxxX

on the Operator's terminal. (The Operator's terminal is the terminal
attached to the job the system came up under.) If the job 1in whose

memory parition the parity error occurred is attached to a real
terminal (as opposed to 3 pseudo terminal), that user sees the

message:

?Parity error

The monitor then halts that job.

When a parity error is reported, the System Operator should inform all users
still running that a memory error has occurred, and ask them to finish up
what they were doing and logoff. Then the System Operator should open the
computer and inspect each AM-710 memory board.

When a parity error occurs, you can only identify which memory board
encountered the error by looking at each AM-710 memory board to see if its
LED indicators are lit. Make note of the memory board on which the parity
error occurred.

At this point you must decide whether to continue operating with the memory
board that generated the parity error or whether to swap the board out for
another one. Parity errors can reflect a transient problem that surfaces
once and then is never seen again. You may therefore wish to cont inue
running the system as is until a parity error cccurs again. If the parity
error occurs on the same memory board more than once or twice in a great
while, you probably will want to remove the questionable memory board and
return it to your dealer for inspection and/or repair.

To reset an AM~710 memory board's parity error indicator, you must perform a
hardware reset on your system,

4.1 Other Memory Errors

Note that if your system uses Piiceon 32K word memory boards as well as
AM=710 boards, in addition to parity errors reported by AM-710 boards, vyou
may also encounter other types of memory errors reported by the Piiceon
boards. If a Piiceon 32K word memory board (only for use with the AM-100/T
or AM=-100/AM-120) detects an uncorrectable memory error, the monitor sends a

SOFTWARE INSTALLATION INSTRUCTIONS FOR ‘THE AM=710 MEMORY BOARD . Page h -

ng to the status display port and halts the system. You may see which .- _'
Piiceon board encountered the error by tooking at the boards' LED indicators -
as discussed in the section above. R

kT e ottt

SOFTWARE NOTICE FOR AM-410 USERS

April 1981
Revision AD3

This document reflects AMQS versions 4.4 and Llater

SOFTWARE NOTICE FOR AM-410 USERS

'Alpha Micro', 'AMOS', 'AM-1007,
"AlphaBASIC', "AlphaPASCAL', and 'AlphalISP’

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA Q2714

©1981 — ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17887 Sky Park North
Irvine, CA Q2714

Page ii

SOFTWARE NOTICE FOR AM-410 USERS

1.0

2.0

3.0

4.0

5.0

INDEX

Table of Contents

INTRODUCTION

Ta1 IMportant NOteS cumeerescoececeneesoeanenn cmruans
THE PHOENIX DISK CONFIGURATION eovcvow. R R
2.1 Using the Phoenix as a Non-System Device
2.2 Using the Phoenix as the System Device .ouow......
THE CERTIFICATION PROGRAM, CRTAI0D ..o ceneciccecannn.
3.1 Hints and ReStrictions e.ueeceeveeoocecenocsonneon
3.2 Sample Use Of CRTAT10 ¢iueeeeeecocnaccoacccaacnnns
3.3 Using CRTATD L iu.iiieiercencearacanacaccacoacanns
3.4 How CRT410 Certifies @ DiSK ovvvecuceceanecoscan,
3.5 CRTA10 Error MesSSO0eS eueesecececsoooscerooenanas
THE BADBLK PROGRAM .. iuecieeeccncessacensnanecaseenn,
4.1 Using BADBLK ..u.cciuceenncanmeceeronconnasonnonn,
4.2 BADBLK Error MeSS2806S weeccccceeeceonceoomnnonen,
THE DSKANA PROGRAM & nceemoc e canenecancm e e,

Page iii

b g 1 A et -9 M et PR A e ko

SOFTWARE NOTICE FOR AM~410 USERS B S T T .

1.0 INTRODUCTION

Disks that run under the control of the AM-410 Hard bisk Controller differ
somewhat from the other hard disks supported by Alpha Micre. They therefore
require different techniques for data backup, disk formatting, and disk
initialization. (As of this release, the only disk that runs under control
of the AM=410 is the 90-megabyte CDC Phoenix hard disk.) The purpose of this
document is to acquaint you with these devices.

The technology that gives the Phoenix disk a much ~higher density of data
than more conventional drives (e.g., the CDC Hawk), also makes media flaws
(i.e., bad disk blocks) a much more likely possibility. Therefore it is
necessary to use the CRT410 command to certify a Phoenix logical unit before
you wuse it. This certification process identifies any bad tracks on the
disk, formats the disk, and initializes it.

IMPORTANT NOTE:

As of AMOS version 4.4, the system handles devices that contain media
flaws differently than earlier versions of the operating system.
(That is, AMOS now uses a "bad track" instead of a "bad block" method
of keeping track of media flaws.) For more information, refer to AMOS
Version 4.4 Method of Handling Bad Disk Blocks, in the "System
Operatoer's Information section of the AMOS Software Update
documentation packet.

The information in this document reflects AMOS 4.4; it assumes that if
you have Phoenix devices that were certified with a pre-=4.4 version of
CRT410, vyou have converted your Phoenix disk surfaces via the
instructions given in AMOS Version 4.4 Method of Handling Bad Disk’
Blocks. If you have not done this conversion, refer to the
previous wversion of this document in your 4.3 AMOS Software Update
documentation packet, Software Notice for AM=-410 Users, for
instructions on backing up and amalyzing your Phoenix surfaces.

CRT410 certifies the Phoenix media by checking each disk track. It creates
the file BADBLK.SYS[1,2] and lists any bad tracks on the media in that file.
AMOS assigns spare Phoenix tracks (called alternate tracks) to the bad
tracks, to be wused 1in their place whenever the system tries to access a
block on the bad tracks. The BADBLK command displays the contents of
BADBLK.SYS[1,2].

(Changed 30 April 1981)

SOFTWARE MOTICE FOR AM-410 USERS . . Page2

1.1 Important Notes

There are several things you must keep in mind before you begin to use the
Phoenix disk:

1. You must not format or initialize a disk that runs under control of
the AM-410. That means that you must not use the SYSACT initialize
command. (After you use CRT410 to certify the disk, however, you
may use SYSACT to add user accounts to the disk.)

2. As of AMOS Version 4.4, you 'may wuse the AMOS disk diagnostic
tests REDALL, RAZA, and RNDRED on the Phoenix.

3. As of AMOS version 4.4, you Mmay use DSKCPY or COPY to 'back up a
Phoenix surface. Both DSKCPY and COPY have been changed sc that
they will not write over the BADBLK.SYSL1,21 file on the backup
disk, and will not write into bad disk tracks.

4. We have increased the thoroughness and reliability with which
CRT410 searches for bad disk areas. This means that certifying a
disk now takes longer than under AMOS Version 4.3. certification.

2.0 THE PHOENIX DISK CONFIGURATION

The CDC Phoenix disk contains 5 fixed platters of 15 megabytes each and a
removable 15-megabyte cartridge. Each of these platters dis a separate
logical unit and must be accessed as such. The cartridge always bears the
hiighest unit number for that physical device. (For example, if you have a
single Phoenix you are using as a non-System Device, then SMDO: - SMD4: are
fixed disks; the cartridge is SMD5:.) The one exception to this rule is the
Phoenix physical device being used as the System Device. If the system is
running off the cartridge, the System Disk cartridge is DSKD: and the fixed
disks are logical wunits DSK1:-DSK5:. - (A second Phoenix on this system
follows the general rule above; the cartridge is DSK15: and the fixed disks
are DSK10:-DSK14:.)

Each Phoenix logical unit contains 808 (#0-807) tracks, with .36 sectors per
track, to give a total of 29088 (decimal) sectors (or disk blocks} on each
unit. The Phoenix also contains 15 spare (or "alternate") tracks, #808-822.
Each disk block contains 512 bytes. The Phoenix requires a bitmap size of
1818 words. '

Note that AMOS allows you to place bitmaps 1in switchable system memory.
(See the document Defining Switchable System Memory, in the “System
Operator's Information” section of the AMOS Software Update documentation
packet, for information on using this technique to reduce the monitor size.)

The device driver program for the Phoenix disk is SMD410.DVREL1,61 on the
System Disk. The bootstrap loader program is SMDLOD.PRG in account [1,4] on
the System Disk.

(Changed 30 April 1981)

SOFTWARE NOTICE FOR AM-410 USERS e e w -,PRgR3

The paragraphs below discuss adding the Phoenix to your system either as the
System Device or as a non-System Device. (Hardware settings on the disk
controllers on your system define the device that the system attempts to
beot from.) ' '

If you have several Phoenix disks, note that the first physical device
contains Logical wunits zeroc through five <(e.g., DSKD:-DSK5:)>, a second
Phoenix device contains Llogical units ten through fifteen (e.g.,
DSK10:~DSK15:), a third Phoenix contains Llogical wunits twenty through
twenty-five, and so on.

2.1 Using the Phoenix as a Non-System Device

If you are not using the Phoenix disk as the System Device (that is, if you
boot the system off some other type of device), you will need to follow some
simple steps before you can access the Phoenix disk:

1. Rename the Phoenix driver program from DSKO:SMD410.DVRLIT,6] to
DSKO:SMD.DVRLT,61.

2. Now you need to define the Phoenix disk as a system device. To do
this, edit your system initialization command file, SYSTEM.INI, and
add the devices SMDD, SMD1, SMDP2, SMDP3, SMD4, and SMD5 to the
DEVTBL command Lline. This adds the Phoenix to your system device
table. (For 1information on using the DEVTBL command to define
devices and on using the BITMAP command to define disk bitmaps, see
The System Initialization Command File, (bWM-00100-09, Rev AD3),
in the "System Operator's Infermation™ section of the AMOS Software
Update documentation packet.)

3. Add BITMAP commands to the SYSTEM.INI to define bitmap areas for
the Phoenix. (The Phoenix reguires a bitmap size of 1818 decimal
words.) Remember that you can set up your system so that part of
system memory resides in a switchable area of a memory bank. You
can thus place vyour bitmaps 9n switchable system memory and so
reduce the size of the moniter. Now reboot the system with vyour
new SYSTEM.INI. You can now access the Phoenix.

If you want more information on adding new disk devices to your system,
refer to the document Defining Non-System Disk Devices 1in the "System
Operator's Information" section of the AMOS Software Update documentation
packet. Section 4.0 of that document, "Building a System on a New Device,”
explains how to convert the Phoenix to the System Device after you have
added it to your system as a non—-System Device.

The configuration of your Phoenix non-System Device is as follows: The five
fixed platters are SMPD:, SMD1:, SMD2, SMD3:, and SMD4:. The removable
cartridge is SMD5:.

{Changed 30 April 1981)

SOFTWARE NOTICE FOR “AM=-410 USERS : B Page %4

2.2 'Using the Phoenix as the System Device

If the Phoenix is your System bevice, you will want to copy all of the

system
disks:

1.

software from the System Disk cartridge down to one of the fixed

Turn on the computer, holding down the reset button. CPU power
must be on whenever the Phoenix disk is cycled up. Therefore,
always turn the computer on before cycling up the Phoenix; always
cycle down the Phoenix before turning off your CPU. If you do not
follow this procedure, it is quite possible that the data on vyour
Phoenix disk will be damaged. NOTE: We recommend that you always
leave your Phoenix drive powered up when you are not using it.
This allows the filter system to continually guard the disk
surfaces. (Of course, if you are not using your system, you will
probably want to write-protect the drive, cycle it down, and turn
off your CPU even though you leave the drive powered up.)

Insert the Phoenix System Disk Update cartridge according to the
instructions accompanying the drive. Cycle it to READY status.

The Llogical unit the system boots off of is ALWAYS known as DSKO:.
The System Disk Update cartridge contains the - programs
SYSTEM.MONE1 , 43 and SYSTEM.INI[1,47; therefore the system
recognizes it as a System Disk and tries to boot the system off the
cartridge. Because you are running off the cartridge, the fixed
platters are units DSK1:~DSK5: and the cartridge is DSKO:. (NOTE:
Even after you install the system software onto a fixed platter, if
you reset the computer with the System Disk Update cartridge
mounted, the system tries to boot off the cartridge.)

To install the system software on the first fixed platter, use the
CPY410 command. This command certifies DSK1: and copies the
contents of the cartridge down onto that fixed disk.

You can now remove the cartridge and insert a data pack. The next
time you reset or turn on the system, the system boots off the
fixed disk on which you have installed the system software.

NOTE: If you do not want to remove the cartridge from the drive,
but do not want the system to boot off the cartridge, erase file
SYSTEM.MONC1,41] from the cartridge. Now the system cannot
recognize the cartridge as a System Disk and therefore will not
attempt to boot off it.

However, it is most important that you always keep an intact System

Disk cartridge (i.e., it contains recent system software and

SYSTEM.MON and SYSTEM.INI) around so that you can re-install the
system should the fixed disk become damaged.

The fixed platters are now Llogical wunits DSKO:~DSK4: and the
non=System Disk cartridge is DSK3:.

(Changed 30 April 1981)

g

SOFTWARE NOTICE FOR AM-410 USERS ' o . Page 5

3.0 THE CERTIFICATION PROGRAM, CRT410

The CRT410 program certifies a Phoenix logical unit by reading, writing, and
verifying every block of the disk. ¥t also formats and initializes the

disk.

3.1 Hints and Restrictions

There are several things you should keep 4in mind before using the
certification program:

1. Only the System Operator may run CRT410. Log 1into the System
Operator's account, [1,2], before using the program.

2. You may ONLY use CRT410 on disks that run under control of the
AM-410 Controller. _

3. Run CRT410 on every logical unit of a Phoenix disk befere the first
use of that device. Make sure that the Legical wunit 1is not
write-protected.

4, A Llogical unit does not have to be mounted before you certify it;
CRT410 mounts the disk for you.

5. CRT410 writes data in every byte of the Logical wunit you are
certifying. If there is data on that unit, make sure that you back
it up onto another device before using CRT410.

6. CRT410 communicates directly with the AM-410 Controller without
going through the Phoenix driver program. Therefore, you MUST NOT
run CRT410 at the same time as any other pregram that accesses
devices that run under control of the AM-410.

3.2 Sample Use of CRT410

Below is sample output of a typical disk certification. The next section
discusses the questions that CRT410 asks and the messages that it displays.

(Changed 30 April 1981)

SOFTWARE NOTICE FOR AM-410 USERS

-CRT410 SMDO: (RED
CAUTION: This program writes to all blocks

Enter maximum acceptable number of bad trackS' 40 ll'
?15 bad tracks is maximum

Enter maximum acceptable number of bad tracks: 10
Display current track? (Y or N):Y (RET)

Current track is: 0

Enter serial number (10 char. max): PAYROLL1(RED

Begin certification of SMDO:
Current track is: 1
Current track 1s: 2

?Track 7 did not wverify
?Track 8 did not verify

Current track is: 14
Current track dis: 15

-

Current track is: 807

?2 bad tracks detected
Certification complete

3.3 Using CRT410

To wuse CRT410, enter CRT410 followed by the specification of
unft you want to certify. For example:

.CRT410 SMD5:
You now see the following message:

CAUTION: This program writes to all blocks.

(If you do not want tc continue the certification, you may enter
at this point.)

CRT410 now asks you several questions:

{Changed 30 April 1981)

the Llogical

a Control-C

' SOFTWARE NOTICE FOR AM-410 USERS : e - Page 7

1. Enter maximum acceptable number of bad tracks: :

Give CRT410 the maximum number of bad tracks that you will
accept on the disk you are certifying. If the number of bad tracks
that CRT410 finds exceeds this value, CRT410 tells you so and then
aborts the certification, returning you to AMOS command level:

?Device has exceeded maximum number of errors

2. Display current track? (Y or N):
If you want CRT410 to tell you as it verifies each track,
enter a Y; otherwise, enter an N. If you answer Y, CRT410 now
displays this message: -

Current track is: 0

NOTE: Asking CRT410 to display the number of the track it is
currently verifying greatly increases the length of time it takes
to certify a disk surface.

3. Enter serial number (10 char. max):
You may optionally give CRT410 a ten-character alphanumeric
I1.D. for the logical unit you are certifying. CRT410 writes this
identifier into the BADBLK.SYS file for that logical unit.

After answering the guestions above, CRT410 begins to certify the disk. You
see this message:

Begin certification of Devn:

where Devn: is the device specification you supplied on the CRT410 command
Line.

If you asked CRT410 to tell you its track position as it certifies, you now
see a List of messages that can Look something Like this:

Current track jis: 1
Current track js: 2
Current track is: 3

and so on. When CRT410 encounters a track that does not verify, it tells
You so. For example:

(Changed 30 April 1981)

SOFTWARE NOTICE FOR AM~410 USERS . Page38

?Track 15 did not verify
?Track 16 did not verify

When finished certifying the disk, CRT410 tells you how many bad tracks it

found.

For example:

74 bad tracks detected
Certification complete

3.4 How CRT410 Certifies a Disk

CRT410 follows these procedures when it certifies a disk:

1.

CRT410 creates a file named BADBLK.SYS in account £1,2] on the disk
you are certifying. This file will contain a list of all of the
bad tracks on the disk. 1If you have specified a serial number,
CRT410 writes that information to this file.

CRT410 writes one data pattern in every byte on the first track of
the disk. Then it reads each byte on that track and verifies the
data. (CRT410 checks for CRC errors as well as data verification
errors.)

1f any data does not verify, CRT410 places the number of the track
in the BADBLK.SYS file and tells you that the track is bad. For
example:

?Track 35 did not verify

CRT410 writes a total of four data patterns, following the
procedure above for each data pattern.

CRT410 now moves on to the next disk track and performs these
operations again, reporting any bad tracks that it finds (and
entering their numbers into the BADBLK.SYS file). CRT410 verifies
every track. When it finishes, CRT410 tells you that it is done
and how many tracks are bad. For example:

?3 bad tracks detected
Certification complete

Now CRT410 computes a hash total for the BADBLK.SYS file and stores
it in the file. This value provides a validity check that other
programs (e.g., BADBLK) can use to make sure that the BADBLK.SYS
file is complete and healthy. When AMOS accesses a disk block, it
checks to see if that block occurs on a bad track; if so, AMOS uses
the alternate track assigned to that bad track instead.

(Changed 30 April 1981)

.

SOFTWARE NOTICE FOR AM-410 USERS T S A T LR U - T

If you interrupt the CRT410 program by typing a Control-C, you see:

?2Certification incomplete
- -

and CRT410 intentionally writes a bad hash total to the BADBLK.SYS
file. (A bad hash total tells other programs that may Llater Llook
at the file that the data in the file is not complete and is not to
be trusted.)

3.5 CRT410 Error Messages
Below are the error messages you can encounter when using CRT410.

?You must be logged into PPN [1,23 to run CRT410

Because it writes data into every byte on the disk, CRT410 is a
dangerous program to run. You must be logged in as the System Operator
to certify a disk. Log into the System Operator's account, [1,23,
before trying to use CRT410.

?15 bad tracks is maximum

You specified a number greater than 15 as the maximum number of
bad disk tracks you would accept on the certified disk. However, the
BADBLK.SYS file cannot handle more than 15 bad disk tracks; so, enter a
number Lless than 15.

?Track 0 did not verify. (First track must verify.)

The first track of the disk did not verify. CRT410 cannot
continue the certification if the first disk track does not verify, so
it now stops the certification and returns you to AMOS command Llevel.

?Track n did not verify.
CRT410 marked track n in the BADBLK.SYS file as a bad track.

?Device has exceeded maximum number of errors

CRT410 found more had tracks than the value you specified as the
maximum number of bad tracks that you would accept. CRT410 now aborts
and returns you to AMOS command Llevel.

7?8100 data transfer error

An error occurred with the AM-410 controller board. CRT410 aborts
and returns you to AMOS command Llevel. If you receive this error
several times, you may have hardware problems.

?Nonexistent devicge

Your device specification on the CRT410 command Lline s invalid;
the system believes that the device does not exist. Check your
spelling and try again.

{Changed 30 April 1981)

SOFTWARE NOTICE FOR AM-210 USERS B R . Page 10

‘?Certification incomplete '

You typed a Control-C to interrupt the disk certification. CRT410
now intentionally writes a bad hash total to the BADBLK.SYS file to Llet
other programs know that the data in the file is incomplete and not to
be trusted.

4.0 THE BADBLK PROGRAM

The BADBLK program allows you to see the contents of the BADBLK.SYS file
created by the certification program, CRT410. BADBLK also verifies the
BADBLK.SYS hash total. In future releases, BADBLK will allow you to modify
BADBLK.SYS to rebuild a damaged disk.

BADBLK checks the specified disk to see if it was certified by a pre-4.4
version of CRT410; 1if it was, BADBLK displays the number of bad blocks on

the disk., If the disk was certified by a 4.4 version of CRT410, B8ADBLK

displays the number of bad tracks. (The messages you see will tell you if
BADBLK is displaying the number of bad blocks or tracks.)

NOTE: Although AMOS version 4.4 handles disks that have been certified via
the "bad block” or the "bad track'" method, future releases may not support
the old bad block system. Therefore, you must convert all Phoenix surfaces
certified by pre-4.4 CRT410 over to the new system by certifying those
surfaces with CRT410 versions 4.4 or later.

4.1 Using BADBLK

To use BADBLK, type BADBLK followed by the specification of the device whose
BADBLK.SYS file you want to see. Then type a RETURN. For example:

-BADBLK SMD1:
If BADBLK found the BADBLK.SYS file, it tells you so:

SMD1: BADBLK.SYSL1,21

BADBLK now tells you the serial number associated with that device and the
number of tracks or blocks marked as bad on that disk. For example:

Serial number: INVENTORYZ2
Number of bad blocks: O

If there are any blocks or tracks listed in the BADBLK.SYS file, BADBLK
Lists them for you. For example:

(Changed 30 April 1981)

P

%f :

SOFTWARE NOTICE FOR AM-410 USERS ' Page 11 =~ -

Number of bad tracks: 3

35 36 37

BADBLK exits and returns you to AMOS command level:

EXIT

NOTE: Track numbers are decimal; block numbers are octal.

4.2 BADBLK Error Messages
You can see the following BADBLK error messages:

?File not found: Devn:BADBLK.SYS .
BADBLK was not able to find the BADBLK.SYS file for the disk you

specified. Make sure that the device you specified is a Phoenix disk
and that the disk has been certified (i.e., you've run CRT410 on that
device).

CAUTION: HASH TOTAL DID NOT VERIFY

The BADBLK.SYS file contained a bad hash total. This indicates
that the data in that file is not to be trusted. Use COPY to copy all
files off +the Llogical wunit containing that BADBLK.SYS file, being

careful not to overwrite the BADBLK.SYS file on the new disk. Then
re~certify the disk.

You may also see several system error messages if your device specification
is invalid. For example:

?Cannot INIT Devn: — device does not exist .
The system did not recognize the device specification you gave.
Check your spelling and try again.

?Cannot READ Filespec - disk not mounted

The system 1is wunable to read the device you specified on the
BADBLK command Lline because it is not mounted. Use the MOUNRT command
to mount the disk and try again.

5.0 THE DSKANA PROGRAM

For the most part, the new method of handling disk flaws 1is transparent.
For that reason, DSKANA 1is able to treat any disk that was certified with a
4.4 or Llater version of CRT410 in the same way that it does a device that
does not contain a BADBLK.SYSC1,2]1 file.

(Changed 30 April 1981)

SOFTWARE NOTICE FOR AM-410 USERS = INDEX Page Index-1 0

Index

Alternate track . o o« « o o « =
AM-410 controller o . &« & & - - &

[V, Y

o

BADBLK program . o v « = 2 o o .
8ADBLK.SYS[1,21 . . . a = = a =
BADBLK.SYS[1,2] hash total - s .
BADBLK.SYSLC1,2] verification . .
Bitmap Size v v + 4 4 2 a a a » =

0o —

- N

N OO =

Certification procedure

CPY410 . & 4 4 & 4 & 4 o & » o
CRT410 . & & v 4 4w o o a & a a

CRT410 questions . . &« & - &« . .

~
un

Device table . . « o & o o« « &
Disk certification . . « & &« . .
Disk configuration . . & « . . .
Disk diagnostic tests
Disk identifier . « .« &« « . « o .
Disk serial number . . « o e a
Displaying BADBLK.SYSL1, 2] s s

SN NN RS =S N O =00
A3
~
[e) wn
[v]

oo

Error messages

BADBLEK . & & v & 4@ 4 2 v = « « N

CRTA410 . & & & e i s e s e = a 9
Maximem number of bad tracks . . 9
Media flaws » v @ v & o « o 2 o « 1
Multiple Phoenix disks - 3

Non-System Device . . v o o« « = « 3
Phoenix disk & &+ « « o o = « « « 1 to 2
Restrictions . v o « ¢ « « = = = 2

Sample disk certification
SMDAT0.DVRET,61 &© & v v v o o & .
SMDLOD.PRGLT1,4] v . v 4 & « « o «
Switchable system memory
System Disk v 4 4 & v o o o « o =
SYSTEM.MONL1,43 & « . .

BN NNV

(Changed 30 April 1981)

May 1980 _ S

DISK LABELING PROCEDURES

Although removable disk cartridges provide an extremely convenient and
portable method of backing up and exchanging data, problems sometimes occur
in didentifying just what information is on a cartridge if that disk pack
does not contain a label on the outside of the pack, or if it is improperly
Llabe led. ‘

To solve this problem, Alpha Micro has developed a set of software which
allows you to establish and verify a permanent, identifying Llabel on each
disk. The LABEL program writes data to a disk that serves as identification
for that disk. Other programs (e.g., MOUNT, XMOUNT.SBR, or your own
assembly language programs) read the disk tdentification information on the
disk and tell you which disk is currently mounted.

Being able to permanently label a disk results in several advantages:

1. You may easily determine what disk is mounted, even if
you are using the system from a remote site.

2. Your programs can verify that the correct disk is mounted
before they begin to change data on that disk.

At the current time, the disk Llabeling system consists of these new and
modified programs:

LABEL Labels a disk by writing identifying data onto Block
Zero of that disk. Also displays a disk's label.

MOUNT Displays the name of the disk that was just mounted or a
List of all mounted disks.

XMOUNT A BASIC subroutine that your BASIC programs can use. It
returns the contents of the disk identification field so
that your BASIC programs can verify that the correct
disk is mounted.

In future releases, additional programs will make use of the disk Label.
This document contains information on the LABEL and MOUNT commands. Also,

see the MOUNT and LABEL reference sheets {in the AMOS System Commands
Reference Manual, (DWM-00100-49). For information on XMOUNT, refer to

XMOUNT - Basic Subroutine to Mount a Pisk, in the "BASIC Programmer's

Information” section of the AMOS Software Update documentation packet.

The Llast section of this document describes the exact format of the disk
label, so that your assembly language programs can access the Label
information.

~®ISK LABELING PROCEDWRES | - Page 2

1.0 LABEL

The LABEL program gives you a way to Llabel a disk with descriptive
information and to display that information. Disk Labels are stored in
Block 0 of the disk, and are used to allow both you and your programs to
verify that the correct disk has been mounted. : : h

There are three situations in which you will want to use LABEL:

1. A disk has never been Llabeled and you want to give it a
Label. : . . .

2. A disk has a label and you want to display that
information.

3. -A diskrhas a label and you want to change it.

1.1 Labeling a Disk

To give a disk a label, enter LABEL followed by the specification of the
logical device that holds the disk; then type a RETURN. For example, if you
want to label the disk in logical device DSKS:, enter:

~LABEL DSKS:
Now LABEL asks you for the following information:

Volume Name:

Enter wup to 40 characters that describe the disk. The MOUNT
program displays this field when it gives the List of the mounted
disks on the system. The purpose of this information is primarily to
give you a way to identify the contents of the mounted disk. :

Volume ID:

Enter up to ten characters as the Volume ID. This field is used
by programs to determine if the proper disk has been mounted. The
XMOUNT subroutine (an assembly language routine callable by your BASIC
programs) returns this field. The MOUNT program displays this field
(as well as the Volume Name) when it (ists the disks mounted on the
system.

Installation:

Enter the name of your installation or company. This field,
which may contain up to 20 characters, identifies the site where the
disk was created. This information will be particularly useful if you
exchange disks among different installations.

- DISK LABELING PROCEDURES | L . Page 3 -

*

System:
Enter the name of the computer system this disk was created ONa

This field may be wup to 30 characters in length, and is especially
useful when an installation has more than. one computer system. -

Creator:
The name of the person who created the disk. This field may

contain up to 30 characters.

When you finish entering the requested information, LABEL returns you to
AMOS command level. The disk 3is now Labeled with the information you
specified. The Label also contains the date on which you Labeled the disk.

1.2 Displaying a bisk Label

Once a disk contains a label, you may use the LABEL command to display that
Label. Just enter LABEL followed by the specification of the disk whose
Label you want to see. Now type a RETURN. For example:

«LABEL' DSK3:
Currently labeled as:

Documentation Archives (ARCHIVED1)
Created on 1-Jan-80 at Alpha Microsystems on System B by Jack Smith
Last access: S5-Apr-80

Volume Name: “¢

The creation date is the date the disk was Llabeled; the date of Last access
is the date the disk was last mounted.

After LABEL displays the (abel information, type a Control=C to return your
terminal to AMOS command Level. :

1.2 thanging a Disk Label

Te change a disk Label, enter LABEL followed by the specification of the
disk whose Llabel you want to change. Now type a RETURN. For example:

LLABEL HWK1 - :
Currently labeled as:

Test pata (TESTDATAQT)
Created on 17-Apr-80 at Computer Products, Inc. on System 1 by Anne B.
Last access: Z2T1-Apr-80

Volume Name:

DISK LABELING PROCEDURES ' Page 4 .

Now, LABEL asks you for the new Lébeling information. Answer each question ..
with the new information you want to place in the label. (See Section T.1,

"Labeling a Disk," for information on these fields.) When you enter the Llast
guestion, LABEL returns your terminal to AMOS command level, and the disk
Label contains the new information.

1.4 LABEL Error Messages
If you specify a nonexistent device, you see:

?Cannot INIT Devn: - device does not exist

where Devn: is the disk specification you gave. Check your spelling and try
again. If you still see this message, use the DEVTBL command to see a lList
of the valid devices on the system. :

If the LABEL command line is not 1in proper format (for example, if you type
LABEL followed by a RETURNY, you see:

?File specification error

Check the format of your command Line and enter it again. Make sure that
you include the colon after the device specification.

2.0 MOUNTING A LABELED DISK

Whenever you change a floppy disk or a hard disk cartridge (whether Llabeled
or not), you must always use the MOUNT command to inform AMOS that the
bitmap in memory for that device is no longer valid. If you do not mount a
disk when you change it, AMOS has no way of knowing that it may be using the
wrong bitmap when it writes data to that device; severe damage to the data
on the disk could result. NOTE: Never mount or unmount a disk when other
users are accessing that disk; you will damage the file structure on the
disk by doing so. '

You may use MOUNT to mount a disk, unmount a disk, or to display a Llist of
all mounted disks on the System. NOTE: As of AMOS Release 4.4, yOu may use
the /W switch to tell MOUNT to wait until the specified device 1is ready
before mounting the disk. For more information on using MOUNT to mount or
unmount a disk, see the MOUNT reference sheet in the AMOS System Commands

Reference Manual, (DWM~00100-49).

When MOUNT sucessfully mounts a disk, if that disk has a disk label stored
in Block 0, vou see:

x (¥) mounted

DISK LABELING PROCEDURES _ LPage 5 . ..

where '"x" 1is the Volume Name, andi”y” is the Volume ID specified .when - the -

disk was Llabeled. (For more information on these two fields of the d1sk :
Label, see Section 1.1, "Labeling a Disk," above.) el '
For example:

-MOUNT DSK1:
System Disk (5YS001) mounted

If you want to see a List of all disks that are mounted on the system, type
MOUNT followed by a RETURN. For example:

. MOUNT
Disks mounted:

DSKD: System Disk (SYSQ01)
DSK1: Payroll Data (PRDOD1)
DSK2: Payroll bata (PRDOD2)
DEK3: Development Disk (DEV(CD1)
DSK4:

DSK5: Backup Disk #3 (BCKDO3)
AMS0: Transfer Disk (TRNDO1)

Each Line of the display gives the following dnformation: device
specification, Volume Name, and Volume ID. (For example, the Volume Name of
the disk in device DSKD: is "System Disk'; its Volume ID is "(SYSDO1)".)

3.0 CONTENTS OF THE DISK LABEL

Systems programmers may be interested in the exact format of the disk Llabel.
Note that not all of the defined fields are presently used by the disk
identification software; these unused fields will be used by future releases
of Alpha Ricro software.

Field Size Contents
Header 2 words 125252 = DB52525
Volume Name 40 bytes ASCII text
Volume ID 10 bytes ASCII text
Creatar 30 bytes ASCII text
Installation 30 bytes ASCII text
System Name 30 bytes ASCII text
Creation bate 4 bytes System date format
Access Date 4 bytes System date format
Backup Date #1 4 bytes System date format
Backup Vol. ID #1 10 bytes ASCII text
Backup Date #2 4 bytes System date format

Backup vel ID #2 10 bytes ASCII text

DISK LABELING PROCEDURES - Page 6 .. .

The fields are used as follows:

Header Used to flag that this disk. is Labeled. If the
flag words are not correct, certain programs
will ignore the Label.

Volume Name An ASCII string that describes the disk. This
: field 1is designed to be a description of the
contents of the disk (e.g., Archives bDisk -~

Jan/March 1980). R

Volume ID A short ASCII string that describes the disk.
This field is used by programs. checking for the
proper disk being mounted (e.g., ARCHV1).

Creator An ASCII string that describes who created this
disk (e.g., John Hoolihan).

Installation An ASCII string that names the site where the
disk was created (e.g., Acme Computers, Inc.).
This is useful when installations interchange
disks.

System Name An ASCII string that gives the name of the
particular computer system, within an y
installation, on which the disk was made (e.g., 5
Purchasingj.

Creation Date The original date on which the disk was
Labeled.
Access Date . The date the disk was last MOUNTed.
Backup Date #1 The date of the Llast backup {(the~ "father"
: backup). This field gives the date of the most
recent backup. We do not use this field at

this time, but it 1is reserved for future use.

Backup Volume ID #1 The volume ID field of the disk on which the
most recent backup (the "father" backup)
exists. This field is not used at this time,
but it is reserved for future use.

Backup Date #2 The date of the ‘'backup before Last" or
"grandfather' backup. This field is not wused
at this time, but is reserved for future use.

Backup Volume ID #2 The wvolume 1ID field of the disk on which the
"arandfather" backup exists. This field 1is not
used at this time, but it s reserved for
future use.

T

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR

" April 1981
Revision ADQ3

This document reflects AMOS versions 4.5 and Llater

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR

e

'Alpha Micro', 'AMOS', 'AlphaBASIC', 'AM-100',
*AlphaPASCAL', 'AlphalLISP', and 'AlphaSERV'

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA 92714

© 1981 - ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North
Irvine, CA 92714

Page ii

Lo

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR _Page iii

Table of Contents

1.0 NOTE TO THE SYSTEM OPERATOR mucueevmroncnsanennns S 1
1.1 Important Note to. Phoenix Hard D1sk :
Drive Users seveueiissvennna aeaaaan semasamnaaanna 2
1.2 Maintaining a Disk Sassasenanaanacun anmaaaa 2
2.0 FORMATTING DISKS wevuneveuenonnoann. eeraaan. s 3
2.7 Disk Certification weveeeesemesscscececesasannes « 3
2.2 Disk FOrMAtS wuceunomncancuneannenanaananenna ammat b ;
2.3 The Disk Formatting Programs ...eeeecececesceasaes 4 i
3.0 LABELING AND IDENTIFYING A DISK teeuwcacamacaasnanmens 5
3.1 Labeling the Disk wovecucaes Fesmamas whaaaanas casa 2
3.2 Identifying a Disk wewwcevoasas amsasasinmnanvenn 7
4.0 USING THE SYSACT COMMAND auuvuvuvoceccacancecanann heaa 8
4.1 INitializing @ DiSK euveesenucancnmemencvcnnonnnes 8
4.2 Building the Disk Account SErUCLUPre cueveceavs caaa 9
4.2.1 Allocating User Accounts crasmamacann 10
4.2.2 Changing and Deleting User AccountS 11
5.0 DISK DIAGNOSTIC TESTS wevueenevanne R sasabmissananmea 12
5.1 REDALL and RNDRED suvcueveuocennn i eeaeanssemeanaana 13
5.2 DIABZ ,suu-nasensscsaanasennanaans M msasmameasaaasn 14
523 DSKANA tuieiiecececcanananenssannncasmcanannannns 15
5.3.1 Displaying the DSKANA Option Summary 15
5.3.2 The DSKANA Default MOe wueevwemcesscansos 16
5.3.3 Using the DSKANA LiSt Option .uueeu.. cnasa 18
5.3.4 Using the DSKANA Errors Only Option vauea. 19
5.3.5 Specifying an OUtput FIle .suueecnecoeacacns 20
6.0 RECOVERING FROM DISK ERRORS s uouvvevevosccesoceoonaanes 20
6.1 Handling Hard and Soft Disk Errors .eeceeeeeeseoon. 20
6.1.1 Cleaning Up the DiSk suueeen. eamanasenmana 20
6.1.2 Getting Rid of Bad Disk Blocks 21
6.2 DSKANA File Errors Pmasrenmiaaseanenann tameaa 23
6.2.1 DSKANA File Error Messages eacana 25
7.0 PACKING THE DISK e e, 26
7.7 When £0 PaCk @ DiSK weuenanaccenoncacoeanacecacas 26
7.1.1 Displaying the Bitmap suecveecesseasccassas 27
Ta2 DSKPAK tieeceuuounmensmeaasasacaoasannoanancoanncs 27
7.3 COPY (the /PACK Option) .u.veecececnceasansmasacan 28

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR

2.0 DISK BACKUP s mtAAsddmdtaucdmdsansEERananuynEna
8.1 The COPY Command ..sa-cuacecnacanas wuasasnaas “nune
8.2 The DSKCPY COMMANT wucvannusncancaannamncanmnnuns

8.2.1 Important Note for Hawk Hard Disk
Drive USErsS weicieeensssanascasansansanns
8.2.2 The Hard Disk Multiple~Unit Device .eva-na
8.2.3 The Hard Disk Two—unit System Device
8.2.3.1 Backing Up the System Disk
8.2.%2.2 Backing Up the Data Disk saeennna
8.2.3.3 Restoring the System Disk sveanuns
8.2.4 The Floppy Disk Multiple-Unit System
8.2.5 The Floppy Disk Two-unit System Device ...

INDEX

(Changed 30 April 1981)

Page iv

28
30

31
32
33
33
34
35
35
36

(‘vv.\}
e

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR : R WPage=1 ;_m-;'

1.0 NOTE TO THE SYSTEM OPERATOR

This document discusses some of the maintenance procedures that you, as the
System Operator, must perform on the disks used on the system. We've aimed
this discussion at the System Operator (the person in charge of the details
of system administration and maintenance) because we assume that most
general wusers of your system will not be concerned with disk maintenance,
and because many of the commands we talk about below c¢an be fatal to your
data if used carelessly or without full understanding of command operation.

The next few pages tell you how to: 1. format disks; 2. initialize disks; 3.
Llabel and identify disks; 4. allocate and change user accounts on a disk; 5.
pack a disk; 6. perform disk diagnostic tests; 7. recover from disk errors;
and, 8. perform disk backup.

The System Operator should establish a regular schedule for disk backup and
disk djagnostic tests. For example, an hour every Tuesday and Friday
morning might be set aside for disk diagnostic tests and disk backup. If
you are changing or creating a Lot of data or if you are particularly
concerned about the security of your cdata, you might want to back up your
disks once or twice every day.

Because many of these procedures must be done when only the System
Operator's job is accessing the disks, it is wise to schedule them during a
time when other wusers are off the system (for example, early morning or
weekends).

NCTE:

Previous versions of this document used the term "file record.” However,
the wuse of the word "record” <can cause some confusion because it is
sometimes used in other documents to mean several different things. To help
make our terminology more consistent, we have adopted the following
conventions:

A physicael record 1is the sector on the disk. This is the actual,
physical grouping of data on the disk. The hard disk devices currently
supported by Alpha Micro use a physical record size of 512 bytes.
Physical record sizes for floppy disk devices vary depending on the
device, and may range from 128 bytes to 512 bytes.

A disk block is the Logical grouping of data on the disk that AMOS
uses when reading from and writing to the disk. AMOS always transfers
data one disk block at a time. A disk block may be made up of one or
more physical records. €ach disk block has a number associated with it
that AMOS wuses to reference that block. Disk blocks ({except in the
special case of devices that use the IMG device driver) are always 512
bytes long.

{Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 2

A logical record 4is the Logical grouping of data on the disk as
structured by your programs, and has Little to do with the physical
records or disk blocks on the disk, except that a logical record may not
be larger than a disk block. (For example, a BASIC program might set up
a data file 4in which every Llogical record is just large enough to
contain customer addresses and names=-- 60 bytes, for instance.)

1.1 Important Note to Phoenix Hard Disk Drive Users

As of AMOS Version 4.4, bad block handling has changed for devices that run
under control of the AM-410 (e.g., the Phoenix hard disk drive). Make sure

that you read the document AMOS Version 4.4 Method of Handling Bad Blocks

in the '"System Operator's Information" section of the AMOS Software Update
Documentation Packet before you use DSKCPY, CRT410, or DSKANA on a Phoenix
disk, if that disk was certified by a pre-4.4 version of CRT410.

1.2 Maintaining a Disk
There are four stages in the Llife of a disk:

1. When it is brand new, you set a disk up for initial use. First you
format the disk; then you initialize it. IMPORTANT NOTE: Do not
format or initialize disks that run under contrel of the AM-410
Hard Disk Contreoller. Instead, use the CRT410 command to certify
the disk. See Software Notice for AM-410 Users in the '"System
Operator's Information" section of +the AMOS Software Update
Documentation Packet.

Next you may decide to use the LABEL program to write an
identifying Llabel to the disk. (0f course, even if you don't use
LABEL, you will always put a physical label on the outside of a
hard disk cartridge or a floppy diskette to identify that disk.)

Finally, you will need to establish the account structure on the
disk by allocating user accounts.

2. After you have set the disk up, you use it. That is, you transfer
files to the disk as well as create new files on it. During this
time you may allocate additional user accounts and change existing
ones. You may also use LABEL to re-label the disk as the need
arises.

3. You maintain and protect the data on the disk by performing
frequent disk backups and by running diagnostic tests that look for
device and media problems. If diagnostic tests indicate problenms,
you may have to reconstruct the data on a damaged disk.

4. After a disk has heen in use for some time, you may want to recycle
the disk by initializing it (or re-certifying it in the case of

(Changed 30 April 1981)

s

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR o ..Page_3

disks that run under cdntrol of the AM-410); this clears all data
from the disk. Before re-using a disk, however, run some disk

diagnostic tests on it to be sure that the disk media is healthy.

After initializing or re-certifying the disk, the old account
. structure is gone, so allocate new user accounts.

2.0 FORMATTING DISKS

A new floppy or hard disk must be formatted and initialized (or certified)
before you can write data to that disk. Formatting a disk sets the disk up
so that it is organized into a specific pattern; it is then ready to receive
data written 1in that same pattern. Whenever the system performs an action
on a file, it knows the format it must use to read or write that file
because of the device specification you include in the specification of the
file. For example:

=COPY DSK1:=AMSO:NEWFIL.TXT

tells the system to read the file NEWFIL.TXT in AMS format (since you
specified device AMSO:), and copy it to Drive One of the System Device (in
whatever format is used by DSK1:). Disks to be used in device AMSO: must be
formatted in AMS format; disks to be used in device DSK1: must be formatted
in whatever format is used by the System Device.

You only need to format disks that have never been formatted before or whose
format you wish to change (e.g., to change a floppy disk from STD to AMS
format). New floppy disks usually come preformatted in STD format. You
should NOT format these disks if you plan to use them in STD format. (When
you format a disk in a disk drive, that disk may take on certain
characteristics of that drive. So, when you buy a disk already formatted,
you should refrain from formatting the disk if you can; this helps to ensure
that you can read that disk on different disk drives.)

ICOM floppy disk users may not format disks because the ICOM disk controller
does not support disk formatting. ICOM floppy disk users must therefore buy
their disks preformatted.

NOTE: Formatting a disk destroys all data on that disk.

2.1 Disk Certification

Before we continue with our discussion of disk formatting, it s dimportant
to mention again this important warning: if a disk runs under control of the
AM-410 (e.g., @& Phoenix disk), you must not format or initialize that
disk. Instead, you must certify it via the CRT410 command. CRT410 also
formats and initializes the disk. See Software Notice for AM-410 Users in
the "System Operator's Information" section of the AMOS Software Update

DPocumentation Packet.

(Changed 30 April 1981)

DISK MAINTENANCE PROCEPURES FOR THE SYSTEM OPERATOR Page 4

2.2 Disk Formats

Alpha Micro'sQﬂﬁorts several different disk formats. For information on the
disk formats = available, and for information on converting floppy System
Devices from one format to another, refer to the documents titled Disk

Drivers and Formats, Configuring Floppy-Disk bDrivers, and Defining

Non-System Disk Devices, in the "System Operator's Information” section of
the AMOS Software Update Documentation Packet.

2.3 The Disk Formatting Programs

After you have decided on the format you want your disks to use, you must
use the proper formatting program to formet those disks. The major disk
formatting programs used by Alpha Micro are:

FMT500 The formatting program for disk devices used under the
control of the AM-500 Hard Disk Controller (e. g., the
CDC Hawk hard disk).

FMT200 The formatting program for disk devices used under the
control of the AM-200 Floppy Disk Controller (e.qg.,
Persci and Wangco floppy disks). Formats sinale
sided, single density floppy disks.

FMT210 The formatting program for disk devices used under the
control of the AM-210 Double Density Floppy Disk
Controller (e.g., Wangco disks). Formats single- and
double=-sided, and-single- and double-density floppy
diskettes.

FMT400 The formatting pregram for disk devices used under the
control of the AM-400 Hard Disk Interface (e.g.,
Century Data Trident disks). Formats each Logical
unit as a separate device.

To use one of the formatting programs Listed above, enter the name of the
appropriate formatting program followed by the specification of the device
holding the disk you want to format. Your device specification tells the
formatting program which disk driver program you are geoing to be using on
the disks in that device, and therefore which disk format to use. (For
information on configuring a floppy disk driver for your particular

combination of disk controller, disk drive and disk format, see Configuring

Floppy Disk Drivers in the "System Operator's Information" section of the

~AMOS Software Update Documentation Packet.) Suppose that you are using a
Persci drive to read and write AMS-format floppy d1sks. To format a disk in
Drive Zero in AMS format, enter:

-FMT200 AMSO:

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR T page s

The formatting program now says:

BEGIN FORMATTING

When the program has finished, you see:

EXIT

R

The formatting programs FMT200, FMT210, FMT400, and FMTS00 all work in the
same way as our example above. FMTS500 requires that you mount the disk
before you format it (use the MOUNT command); the other formatting programs
do not require that the disk be mounted.

IMPORTANT NOTE: No other job may run on the System while you format a disk,
SO0 make sure all users are off the system before you use one of the
formatting programs listed above.

3.0 LABELING AND IDENTIFYING A DISK

0f course you will always place a physical Llabel on the outside of a disk
pack or floppy diskette to identify that disk. You may also write a label
to the disk itselft. The LABEL program allows you both to establish and
display a disk label.

The disk Label helps you to identify the disk. Another method of checking
the contents of the disk is to create a hash total for that disk. (A hash
total dis a number that uniquely identifies a group of data.) The HASHER
program allows you to generate a hash total for a specific disk. The hash
totals for two disks will only be the same if the contents of those disks
are identical.

3.1 Labeling the Disk

Labeling a disk results in two advantages: you can determine what disk s
mounted, even if you are at a remote site, and your programs can check to be
sure that the proper disk is mounted before changing data on that disk.

To Llabel 3 disk, enter LABEL followed by the specification of the device
that contains the disk you want to label. For example:

~LABEL DSK3:

Now LABEL asks you for the following information:

(Changed 30 April 1981)

e Ty

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR - _ o Page 6

Volume Name: . ' g

Enter up to 40 characters. This field describes the disk (e.g.,
Payroll Data from Jan-March 1980). The MOUNT program displays this
information when it mounts the Llabeled disk. B

Volume ID:

Enter up to ten characters as the Volume I.D. This field 1is used
by nprograms to determine if the proper disk has been mounted. (MOUNT
displays this field, too, when it mounts the disk.)

Installation: o _
Enter the name of your installation or company. This field may
contain up to 30 characters, and identifies the site where the disk

was created (e.g., CompuWord, Inc.).

System: .) .
Enter the name of the computer system this disk was created on.
This field may be up to 30 characters in length.

Creator:
Enter the name of the person who created the disk. This field may
contain up to 30 characters. :

when you finish entering the required information, LABEL returns you to AMOS
command level.

Once a disk contains a label, you can use LABEL to display that information.
Type LABEL followed by the specification of the device that contains the disk
whose label you want to see; then type a RETURN. For example:

LLABEL HWK1:

Since the disk already has a label, LABEL displays that information for you.
For example:

Currently labeled as:

Documentation Archives (ARCHIVEQ1)
Created on 12-APR-80 at BeachTogs, Inc. on System C by J.K.Milne
Last access: 8-JUN-80

Vaolume Name:
-C

Notice that LABEL incorporates into the disk Label the date the disk was
labeled (creation date) and the date the disk was last mounted ('last access™).
Now LABEL begins to ask you for the various label fields. If you do not want
to change any of the information in the label, type a Control-C. Otherwise,
you may answer the questions as in the paragraphs above.

For more dinformation on LABEL, refer to Disk Labeling Procedures in the
“System Operator's Information" section of the AMOS Software Update
Documentation Packet.

(Changed 30 April 1981

-y

o e ST

e 45t

e b A SR e 3o e

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR e s i Page il

3.2 Identifying a Disk

The HASHER program allows you to generate a hash total for 3 specified disk.
This gives you a number that you can compare against the hash total of another
disk to see if the disks contain identical data. You will probably find HASHER
to be particularly helpful when you are making multiple copies of a disk via
DSKCPY. If the hash total of the master disk does not match the hash totals of
the disks copied to, the copies are not perfect. '

To use HASHER, enter HASHER fol lowed by a RETURM:

a

-HASHER

When the system asks for the input drive, enter the name of the disk for which
you want hash totals:

Input drive: DsSK2:
Now vou see:

CHashing nnnn blocksl

where nnnn is the number of blocks on the specified disk.
When HASHER is finished, vou see;

Hash is: nnn

where nnn is the hash total for the specified disk.

NOTE TO HAWK HARD DISK USERS: When vyou use DSKCPY on a Hawk disk, DSKCPY
allows you to use the special fast copy mode or the slower /0 mode. (If vyou
use the DSKCPY fast copy mode for Hawk devices, no other user may run on the
system while the copy is taking place; the /0 mode, while slower, allows wusers
to continue running on the system.) DSKCPY optionally generates a hash total
for a disk, but it generates the hash total differently depending on whether
you are wusing the fast copy mode or the /0 mode. That means that the hash
total differs for the same disk, depending on the mode in which the disk copy
was made,

To allow you to use HASHER to generate a disk hash total that is compatible
with one generated by DSKCPY, HASHER also has a Hawk fast copy and a /0 mode.
Just as with DSKCPY, HASHER does not allow you to run other users on the system
if you use the default Hawk fast cepy mode. You see:

ZALL other users will be suspended while. HAWK hash is running.
Hit return to continue or control-C to abort:

If no other users are on the system, you may type a RETURN. If you want HASHER
to generate a hash total in the same way that DSKCPY does when it uses the /0
mode, use the HASHER /0 switch. For example:

~HASHER /0

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR - Page 8

You may use HASHER with the /0 switch while other users - are running . on the
system. For more information on HASHER, see the HASHER reference sheet in the
AMOS System Commands Reference Manual, (DWM-00100-49).

4.0 USING THE SYSACT COMMAND

The SYSACT command allows you to perform several disk maintenance functions.
You may use SYSACT to: 1. initialize (that is, clear) a disk; 2. allocate user
accounts on a disk; 3. change account passwords; 4. delete user accounts; and,
5. display a List of accounts (and passwords) on a disk.

4.1 Initializing a Disk

After you have formatted a disk, you must initiélize it if you are going to
build an account structure on that disk. If you are simply going to transfer a
Literal image of another disk onto the newly formatted disk (via DSKCPY) you do

not need to initialize it. (Remember that if you are using a disk that runs
under control of the AM-410, you must not format or initialize it.)

Initializing a disk writes zeros in the Master File Directory and the bitmap.
If you wish to clear the data on a disk, you do not need to reformat it (unless
you want to change the format that it uses); just re-initialize it.

NOTE: Once you have initialized a disk, there is no way to access the data on
that disk-- you have, in effect, erased the disk.

To initialize a disk:

1. If the disk drive you are using allows it, write-protect all devices
that you are not going to initialize.

2. Log into the System Operator's account:
=L0G [1,2]

3. Mount the disk you want to initialize. Type MOUNT followed by the
specification of the device holding the disk. Type a RETURN. For
example:

<MOUNT AMS1: GED

4. Type SYSACT foLLowed'by the specification of the device that holds the
disk you want to initialize:

-SYSACT AMS1:

You now see the SYSACT prompt, *.

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 9

5. Be very sure that you have specified the correct device. To make sure
that the disk is empty, use the SYSACT L command; type an L followed
by a RETURN:

*| (RED

If the disk has already been initialized and is in use, you see a List
of PPNs and passwords. '

If the device you specified does not hold the disk you want to
initialize, type an E and a RETURN to exit SYSACT and return to AMOS
command Level.

6. If you have specified the correct device, type an I followed by a
RETURN: Co '

*1 @D
7. SYSACT now tells you:

Initializing the disk clears all files - enter Y to confirm:

SYSACT initializes the disk only if you enter a Y followed by a
RETURN. When it has finished, SYSACT displays its prompt symbol.

B. To exit SYSACT and return to AMOS command level, type an E followed by
A RETURN:

*E @D

4.2 Building the Disk Account Structure

After you have initialized a disk, that disk is now ready to receive data. You
can now begin to build accounts and files on the disk. Use SYSACT tc allocate
user accounts.

ALL files on a disk are associated with an account on that disk. Usually, you
may not write any files to the disk until a user account exists to hold those
files. (However, you can copy files onto an initialized disk that has no
account structure if you copy from the System Operator's account, [1,21. 1In
this case, the COPY command allocates the proper accounts for you on the new
disk as it copies over the files.)

(Changed 20 April 1981)

e e

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR : Page 10

You can only access a file if you: 1. Log into the account which contains the
file; or, 2. specify the account the file belongs to within that file's
specification. :

Each account on the disk has a directory associated with it (called a User File
Directory or UFD) that Lists the files in that account. Every disk has one
Master File Directory (called the MFD) that maintains a List of all UFDs on
that disk. When you first initialize a disk, SYSACT creates the MFD on the
disk, but no UFDs exist. As you use SYSACT to allocate user accounts, SYSACT
creates the UFDs for those accounts.

4.2.1 Allocating User Accounts

1. LOG into the Systeh Operator's account:
«L06 1,22

2. Mount the disk you want to use the SYSACT command on.
-MOUNT DpSK1:

3. Type SYSACT followed by the specification of the device holding the
disk you want to allocate user accounts on. Then type a RETURN.

=SYSACT DSK1:
You now see the SYSACT prompt,’*.

4. To see a List of the SYSACT commands you can use, type an H followed
by a RETURN:

*H
5. To allocate an account, type an A followed by a space and the project

number and programmer number of the account you want to allocate.
(Separate the numbers with a comm2.) These numbers must be octal, and
must not be greater than 377. For example, suppose you want to
allocate the user account DSK1:0100,1]:

*A 100,1
Now SYSACT asks you if you want to assign a password to that account:

PASSWORD:

You may enter a password of six characters or Less. 1If you enter just
@ RETURN, SYSACT assigns no password to the account.

(Changed 30 April 1981)

oo
L %

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR : - Page 11

¥

6. If you want to allocate another account, use the A command again.
Follow the procedure above until you have added all accounts that you
wish to allocate.

7. To exit from SYSACT and return to the monitor, enter an E after the
prompt; then type a RETURN:

*E GED)

You may not create more than 63 user accounts on a single disk; that is the
maximum number of entries in the Master Fjile Directory.

4.2.2 Changing and beleting User Accounts

Once you have created user accounts on a disk, you can begin to create and
transfer files on that disk. At any time you may change or delete user

accounts by using the SYSACT command.

NOTE: Always erase any files in an account before deletinag it. SYSACT _won't
let you delete an account if there are files in that account.

1. Log into the System Operator's account:
LL0G [1,2]

2. Mount the disk on which you want to use SYSACT:
<MOUNT AMS1:

3. Type SYSACT followed by the specification of the device that contains
the disk whose accounts you want to change or delete. Type a RETURN:

LSYSACT AMS1: GED)

Now you see the SYSACT prompt, *.

4. If you want to see a list of all accounts already allocated on that
disk, type an L followed by a RETURN.

5. To change the password of an account:
a. Enter a C followed by a space and the project-programmer number of
the account uwhose password you want to change. For example, to
change the password of account £110,61:

*C 110,6 GeD) _
PASSWORD: MILO

The new password for account E11G,6] s now MILO.

{(Changed 30 April 1981)

PISK MAINTENMANCE PROCEDURES FOR THE SYSTEM OPERATOR ' Page 12

b. To remove a password entiEELy from the account, enter just a _—
RETURN: - o

*C 110,6
PASSWORD:

6. To delete a uyser account, enter a D followed by a space and the
project-programmer number of the account you want to delete:

*D 110,6 GED
7. To exit from SYSACT, type an E followed by a RETURN:

)

5.0 DISK DIAGMOSTIC TESTS

There are a number of diagnostic tests you can run to check your disk media,
the disk controller and the physical device itself. (NOTE: As of AMOS Version
4.4, you may use any of the disk diagnostic programs below on a disk that
runs under control of the AM-410.)

N

Before running any of the tests that we discuss below, it is a good idea to use
the SET DSKERR command:

e

-SET DSKERR

If you do not use SET DSKERR, the system reports only hard errors. oOnce you
have SET DSKERR, the system reports any soft errors that occur, and tells vyou
at what disk Location the error occurred. (NOTE: The system makes an exception
for hard disks used with the AM-500 Hard Disk Controller. Even if you use SET
DSKERR, the system reports only hard errors for such devices. However, using
SET DSKERR does tell the system to report the disk Location at which the hard
error occurred.)

REMEMBER : SET DSKERR only affects error reporting for the job that used the
SET command.

A soft error is a read-error. When a soft error occurs, the system has to
retry reading the data in a specific disk Llocation. The system does not report

soft errors wunless you use SET DSKERR. When a set number of soft errors have
occurred at the same disk location (usually eight), the system reports a hard
error. An occasional soft error is not in itself an indication of serious
problems, but fregquent soft errors may indicate maladjustments in the physical
device or disk controller, or problems with the disk media itself. The
particular message the system uses to report a soft error depends upon the type

of device; check with Appendix A of the AMOS: User's Guide, (DWM-00100-35),

for a Llist of soft error messages. For example, if the system had to retry :
reading a disk block on a floppy disk drive five times, you might see something g
Like this:

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR S s g Pagé"13

CRC Error — AMS1: Block 145
CRC Error - AMS1: Block 145
CRC Error = AMST1: Block T45
CRC Error — AMS1: Block 145
CRC Error - AMS1: Block 145

A hard error occurs when the system has repeatedly tried to read the same disk

location, but has failed to do so. A hard error is a serious matter, since it

indicates that the system has given up trying to read the disk block affected.

If any of the disk diagnostic tests are not able to complete an analysis
because of a hard error, they tell you so:

?Cannot READ Filespec = device error

If you have used the SET DSKERR command, the system tells you where on the disk
the hard error occurred. For example:

AM500 ERRCR CODE 4 FOR DRIVE 1 BLOCK 12 (CYLIMDER 0O HEAD 0O SECTOR 12)

To see what the error codes for a specific disk drive mean, consult the
hardware documentation that accompanied that drive. (For example, the error
message above occurred on a CDC Hawk hard disk running under control of the
AM-500 Hard Disk Controller. For that specific disk drive, an error 4 is a CRC
Error-- a Cyclic Redundancy Check error.)

For information on recovering from disk errors reported by the diagnostic
tests, refer to Section 6.0, "Recovering From Disk Errors."

5.1 REDALL and RNDRED

Both REDALL and RNDRED perform read tests on a specified hard or floppy disk.
REDALL reads all disk blocks (or the number you specify) beginning with the

first block on the disk. RNDRED performs random-read tests.

Neither REDALL neor RMDRED alter the data on your disk; they merely read the
data and report any read errors that occur.

To use REDALL:

1. Enter REDALL followed by the specification of the device you want to
read. Type a RETURN. :

-REDALL DSK1:

The command above tells REDALL to read aLL decks on the specified
disk. ;

2. If you don't want REDALL to read all blocks on the disk, follow the
disk specification with the number of blocks you want read:

-REDALL DSK2:100

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR o _ Page 14

(Do not put a space between the device specification and the number of
blocks.) The command above tells REDALL to read the first 100 blocks
on DSK2:.

2 REDALL now tells you the number of blocks it is reading:

.REDALL DSK3:
Reading 9696 blocks
EXIT

4. REDALL exits when it finishes reading the blocks. I1f any errors
occurred, REDALL tells. you so by displaying the appropriate error

message on the screen.

To use RNDRED:

1. Enter RNDRED followed by the specification of the device you want to
test. Type a RETURN:

«RNDRED AMS1:

RNDRED now randomly selects a disk track and performs a seek and read
operation on a random block of that track. RNDRED continues on,
selecting and reading disk Locations at random. You see nothing on
the screen unless RNDRED finds an error.

2. When you wish to exit RNDRED, type a Control-C; otherwise, RNDRED
continues until you reset the system.

RNDRED and REDALL can display the usual system error messages that result from
an invalid device specification. For example:

. RNDRED DSK2:
?Cannot READ DSK2: - device not mounted

.REDALL ASM2:200
?Cannot READ ASM2: - device does not exist

5.2 DIAG2

DIAG2 tests floppy disks by performing read/write tests. It does not verify
Wwrite operations and does not destroy the data on your diskette.

To use DIAGZ:

1. Enter DIAGZ followed by the specification of the device you want to
test. Type a RETURN: ‘

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR : -Page 15

.DIAG2 STDO:
2. DIAG2 waits until you are ready. Then it proceeds with the test:

Hit return when ready:

Test 1 - track 0 read/write

Test 2 - track 76 read/write

Test 3 = random seek=verify 500 times

Test 4 - speed seek tracks 0 and 76 10 times
EXIT

If any errors occur, DIAG2 d;gblays the appropriate error messages. If you
give DIAG2 an invalid device specification, you can also see standard system
error messages (e.g., - device does not exist).

5.3 DSKANA

Use of the DSKANA command is a very important part of your disk maintenance
“routine. DSKANA analyzes the data on a specified disk and rewrites the
bitmap. DSKANA also reports lost and mislinked disk blocks, inconsistent
block counts, and other file errors. Use DSKAMNA freguently on every disk on
the system. (You might make it a practice to use DSKANA on every disk just
before you back it up.)

NOTE:

NEVER wuse DSKANA while other users are accessing the specified disk;
to do so may damage the bitmap and the files on the disk. Make sure
that the disk you are analyzing is write-enabled; DSKANA must be ahle
to rewrite the bitmap out to the disk. Before you use DSKANA, you
must log into account [1,21.

5.3.1 Displaying the DSKAMA Option Summary

DSKANA operates 1in several different modes. For example, the default mode
tells DSKANA to display a Llist of PPNs as DSKANA analyzes the disk accounts
and then to give the final disk analysis messages that report the results of
the analysis. If you would Like more information (such as a display of all
disk blocks and files on the disk, including the blocks and files in which
file errors (if any) occurred), use the List (/L) option. If you want just
a Llist of the disk blocks and files in which file errors (if any) occurred,
use the Errors only (/E) option. If you .want to send the DSKANA display to
a file, specify an output file.

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR ' C ' Pagé 16

If you become confused about the DSKANA options, enter DSKANA followed by a
RETURN:

+DSKANA

DSKANA displays a summary of the modes and options available to you.

5.3.2 The DSKANA Default Mode

Locg dinto [1,2]. Now, enter DSKANA followed by the specification of the
device that contains the disk you want to analyze. Then type a RETURN. For
example: s -

-DSKANA DSK1:

You now see:

[Begin analysis of Devn]

where Devn is the device you specified. If you are not using DSKANA on a
device that runs under the control of the AM-410 hard disk controller, you
see nothing more for some minutes, except for a List of PPNs as DSKANA
proceeds through the accounts on the disk. Then you see some messages that
tell you the results of the analysis. For example:

«DSKANA HWK1:
TBegin analysis of HWK13

m,

1,21

.41
10,63

M
=

110,11

(300,207

[(The following blocks were marked in use but not in a filel
1767 1772 2562 3456 6265 10270 11555 11567
1715661 12272 12303 '

[The following blocks were in a file but not marked in usel

[(Rewriting BITMAP]

no file errors

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR co- 7 Page 17

%

Below we discuss the messages that you see at the end of the disk analysis:

1.

[The following blocks were marked in use but not in a filel

It is quite Likely that numbers will appear beneath this
message; if they do, it is nothing to worry about. These are the

- addresses of disk blocks that the system has previously marked as

being 1in wuse during intermediate operations. In fact, one reason
to run DSKANA frequently is that it reclaims these temporarily
allocated blocks so that they can be used by files.

[The following blocks were in a file but not marked in usel

A List of numbers under this message is an indication of
problems in the disk file structure. Somehow the block Linking
structure of the disk has gone astray. If you are using a disk
that runs under control of the AM-410 and that was certified via a
pre-4.4 wversion of CRT410, this message can also indicate that a
block marked as bad in the BADBLK.SYS file was not marked in use in
the bitmap. (The pre-4.4 version of CRT410 marks all bad bhlocks in
use in the bitmap.) You must take immediate steps to restore the
integrity of the data on your disk. (See Section 6.0, "Recovering
From Disk Errors.")

[Rewriting BITMAP]

After performing its disk analysis, DSKANA always rewrites the
bitmap so that it reflects the true block allocation on the disk.
Before it reconstructs the bitmap, DSKANA compares the bitmap hash
total with the total stored in the bhitmap itself. If the two do
not agree, DKSANA tells you so:

[BITMAP on disk had a bad hash totall

(A hash total is a computed value used to check the integrity of a
group of data.> This message can be an indication of read/write
errors, but is not necessarily anything to worry about. It would
be a good idea to use the SET DSKERR command so that you will be
made aware of any soft disk errors that occur in the future. If
this message occurs more than once in a great while as you use
DSKANA, you may have a hardware problem.

no file errors

If you see the message above, you know that DSKANA has
completed the disk analysis, and that the file structure on the
disk 1s intact.

If the message instead says something like:

5 file errors

You have a serious problem. The file structure on the disk is in
error, and you are going to have problems in recovering the data on
the disk. For information on coping with this problem, see Secticn

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR ' Page 18 - e ?'7'
6.2, '"DSKANA File Errors." - The first thing you will have to do is o
to run DSKANA again with the /L or /E switch, so that you can see
where on the disk the file errors occurred. You must use the /L or
/E options if you are to see the file error messages that indicate
exactly what is wrong with the file structure on the disk.

NOTE TO PHOENIX DRIVE USERS:

If you are using a device that runs under the control of the AM-410,
before DSKANA begins its analysis, it looks for the file BADBLK.SYS[{1,21]
on the disk. This file contains a List of any bad blocks or tracks on
that disk. If the disk was certifed by an AMOS 4.4 or later version of
CRT410, DSKANA ignores the -BADBLK.SYS file and analyzes the disk in the
same way that it analyzes any other disk.

If the disk was certified by a pre-4.4 version of CRT410, DSKANA must
take 1into account the-information in BADBLK.SYS. First, CRT410 checks
the hash total of BADBLK.SYS. 1If the hash total is bad, you see:

[BADBLK.SYS contains a bad hash codel

You then know that the original certification was not allowed to finish
or that the file was damaged in some way. If you want to see if

- anything else is wrong with the disk, let the disk analysis continue.
Or, you may exit DSKANA by typing a Control-C. 1In either case, you
should use COPY to copy all files off the disk, since DSKANA s wusing
information in BADBLK.SYS that s of doubtful ‘integrity. Then
re-certify the disk.

Ly

If the BADBLK.SYS hash total was 0X, and if you are using the /L switch
(see below), DSKAMA now prints the numbers of any bad blocks. For
example:

[bad disk blocks]
334 335 2035

Now DSKANA continues on with the disk analysis, displaying a Llist of
PPNs as it analyzes the disk accounts.

5.3.3 Using the DSKANA List Option

If you want to see more information on how DSKANA is proceeding with its
analysis of the disk besides just the PPNs of the accounts it is analyzing,
select the List option by including the /L switch at the end of the command
Line. For example:

-DSKANA AMST:/L

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR - oo Page 19

The analysis proceeds as in the example above, but now you also see: 1.- the

disk address of the account, and 2. a list of all files in the account aLong_”* o

with the disk addresses used by the blocks in those files.

For example, you m1ght see the following information for a small account:

[200,11
Directory 6627

INDEX HLP 11430
GLOSRY TXT 3444 3445 3446 3447 3450 3451 3452

3607 3610 3611 3614 3615
HEADER TXT 4130 4632

The account [200,11 has three files: INDEX.HLP, GLOSRY.TXT, and HEADER.TXT.
The directory for the account appears at disk address 6627 and takes up only
one disk block. INDEX.HLP takes up one disk block (11430). GLOSRY.TXT

takes wup twelve disk blocks. HEADER.TXT takes up two disk blocks (4130 and
46327 .

If a file error is on the disk, you see a file error message in the
appropriate spot in the DSKANA display. For example:

[(Begin analysis of DSK3:]

[1,4]
Directory 143 354 712 1126 4010
ME BAS 144 145 146 147 150

Block 0 - block reserved for system use only in DSK3:ME.BAS[1,41

(For a Llist of the file error message, see Section 6.2.1, "DSKANA File Error
Messages.')

5.3.4 Using the DSKANA Errors Only Option

If you want to see a list of only the disk blocks and files in which errors
occurred, use the /E option. For example:

+DSKANA HuWK1:/E @ED
The display you see Llooks just Like the one you would see if you were using

no switches at aLL, except that if DSKANA finds a file error, you see the
disk block and file in which the error occurred. For example:

.DSKAMA DSK3:/E
[Begin analysis of DSK3]

[20,11

£30,4]

Block 731 - Block used in previous file in DSK3:GLIDX.RUNL30,4]
£30,51]

(Changed 30 April 1981

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR =~ '~ ‘ Ppagé 20

5.3.5 Specifying an Qutput File

You may tell DSKANA to send its display to a disk file by specifying an
output file on the DSKANA command Line. For example:

.DSKANA DSKO:ERRORS.LST=DSK1:/L
If the specified file already exists, DSKANA deletes it before béginning the
analysis. When DSKANA is finished, you may use the TYPE command to lock at

the file or you may use the PRINT command tc print it. DSKANA always writes
the current date into the file as the first Line of that file. For example:

Disk analysis List file .on 7/12/80

6.0 RECOVERING FROM DISK ERRORS

Disk errors can come to your attention in one of two ways: 1. A program on
the system (e.g., one of the disk diagnostic programs) can repert a soft or
hard error on the disk; or 2. DSKANA can report file errors {(indicating that
the blocks on the disk are incorrectly Linked).

In either case, you must immediately do what you can to restore the
integrity of the data on the disk. Remember: the procedures below are aimed
at effecting a partial recovery of your data. Once the lLinking structure of
your disk or the disk media itself goes wrong, retrieving the data on that
disk is difficult. The most effective measure is a preventive one: that is,
run DSKANA regularly, so that if trouble does occur, you catch it before it
has done major damage to your data. Make frequent backups so that you can
easily restore damaged data. '

6.1 Handling Hard and Soft Disk Errors.

If the system has trouble reading a disk location (a soft error), it retries
that read operation eight times before it gives up and declares that disk
block to be unreadable. If you do not have the SET DSKERR option in effect,
the system does not report these retries; instead, after eight soft errors
occur, the system reports a hard error.

If you begin to see soft errors when reading a particular disk, it is a good

idea to follow the disk cleanup procedures below before the soft errors can
develop into hard errors.

6.1.1 C(Cleaning Up the Disk

If you have made no changes to the files on the disk since your last backup
was made, all you have to do at this point is clear the disk by formatting
it (using the appropriate formatting program—-- see Section 2.3, "The Disk
Formatting Programs”) and initializing it (see Section 4.1, "Initializing a
Disk"). Then use the REDALL program to read the freshly initialized disk to
make sure that the disk is 0K. If the disk media seems to be healthy, you

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES .FOR THE .SYSTEM OPERATOR - - =Page 21

can copy your backup onto the empty disk. Remember, however, that ..in . the
case of disks which run under the control of the AM-410, you may NOT format
or initialize the disk. Instead, you must re- certify the disk with CRT410

If you have changed some f1Les_s1nce your last backup, you must attempt to
save the data on the damaged disk. If the system can still read the disk
blocks (that is, if you have soft rather than hard errors), wuse the COPY
command to copy all files over to a good disk. (Use the REDALL program to
make sure that the output disk is good before copying over to it.)

If you are dealing with a hard error, the system is not able to read at
least one of the disk blocks. Use the SET DSKERR command. Then run REDALL

-to try to read the disk. REDALL then tells you which disk blocks are

unreadable. Write those bad Block numbers down.

Now there are a couple of things you can try. You may be able to fix the
hard error by simply recomputing the block CRC (Cyclic Redundancy Check).
Use the DSKDDT program to do so:

1. Enter DSKDDT followed by the specification of the guestionable
logical device. Then type the number of the disk block you want to
check. Hit RETURN. For example, to check block #20 on DSK1:,
enter:

.DSKDDT DSK1:20

2. DSKDDT Lloads the specified block into memory. Now type an E
followed by a RETURN (the DSKDDT Exit command):

E RED

DSKDDT now writes the block back out to the disk, recomputing the
CRC in the process.

3. Do this for all bad disk blocks on the disk.

4. Now, wuse REDALL on the disk again. With any luck, the disk is now
healthy again. NOTE: This procedure does not ensure that your data
is intact. (Fixing the CRC error may actually cause some data 1in
the block to be Llost; however, correcting the CRC does allow the
system to read the block.) You may want to dump the restored block
with the DUMP BLOCK command to see if you need to modify the data
in it.

6.1.2 Getting Rid of Bad Disk Blocks

If using DSKDDT did not fix the hard errors on the disk, you must take more
stringent measures and get rid of the bad blocks. To find out what files
the bad blocks belong to, use DSKANA with the /L or /E options. DSKANA
exits when it finds the first bad block, but at least it tells you which
file contains that first bad block. For example, if block 12 is bad in the

(Changed 30 April 1981)

DISK ‘MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR " ‘Page’ 22

file VARSET.BAS, the DSKANA display for that file might Look something Like
this: - : : S

VARSET BAS 5 6 7 10 12 AM500 ERROQR CODE 4
FOR DRIVE 1 BLOCK 12 (CYLINDER O HEAD O SECTOR 12)

Keep track of the filés in which the bad blocks appear. You can use the
DSKFIL command to check an individual file for a hard error.

Using DSKCPY to copy the damaged disk to another disk won't so(ve the
probLem-- DSKCPY exits and returns you to AMOS command Llevel when it
encounters a hard error.

Simply erasing the bad files ;ill not help either.. If you erase a file that
contains a bad block and then run DSKANA again, DSKANA frees up the bad
block so that the system can allocate it to another file.

The only solution is to erase the bad files and then to use the COPY command
to copy the good files over to another disk.

1. Make sure that the disk you are copying to has no hard errors,
: (Use the REDALL program or the DSKANA program.)

2. Erase the bad files by using the ERASE command. (Be very careful
not to run DSKANA again on the bad disk after this point, or the
bad blocks will be freed again.)

3. Log into the System Operator's account and copy the good files on
the disk over to the backup disk:

+L0G [1,2]
+COPY AMS2:=AMS1:(]

The COPY command above copies all accounts on AMS1: over to AMS2:.
If two files exist on AMS1: and AMSZ2: with the same name,
extension, and account number, the command above deletes the file
on AMS2: and replaces it with a copy of the corresponding AMS1:
file. If you don't want COPY to replace duplicate files, use the
/NODELETE switch. (For example: .COPY AMS2:=AMS1:[JI/NODELETE)
Because you are logged into the System Operator's account, the
command above copies all files in all accounts on AMS1: over to the
corresponding accounts on AMS2:. If the corresponding account does
not exist on AMS2:, the COPY command creates it, transferring to it
any password associated with the source account.

4. Now 1is the time to restore the files that you erased. Copy them
over to the good disk from your most recent backup disk.

5. Back up the good disk.

(Changed 30 April 1981)

{

" e

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR e egp oo .rPage 23

4

»

6. Now that you have copied all of the gooed files over'.to 4fhe new
disk, get rid of the bad blocks on the original disk by formatting
the disk. For example: o

LFMT500 DSK1:
BEGIN FORMATTING
EXIT

-

7. After you have formatted the disk, use the REDALL program to see if
the original hard errors resulted from actual physical damage to
the disk. If everything is 0K, you can initialize the disk and
begin to use it again.

If hard and soft errors are frequent occurrences on your system, you ought
to take a Llook at the disks themselves. (For example, if you are using
floppy disks, are you storing them correctly? Are they scratched or dusty?)
You might also check your disk controller board and the physical device
itself for maladjustments.

6.2 DSKANA File Errors

For the purposes of this discussion, we assume that you have already handled
any soft or hard errors on the disk, and that the only problem with the disk
at this point is in the Llinking of the disk blocks.

If DSKANA reports file errors (e.g., 5 file errors) or lists disk blocks
under the message: [The following blocks were in a file but not marked in
usel, the block T[inking structure of the disk 3s 3in error. You must take
immediate steps to recover the data on your disk.

Run DSKANA again, but this time use the /L switch so that you can see what
disk blocks were assigned to each file or use the /€ switch if you just want
a list of the blocks and files where the errors occurred.

Look for the file error messages in the display (see Section 6.2.1, "DSKANA
File Error Messages”). Their location in the display indicates which disk
blocks are incorrectly Linked, and this tells you which files are bad. For
example, if part of the DSKANA display looks something Like:

(Changed 30 April 1$81)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR : Page éﬁ

-DSKANA DSK3:/E
[Begin analysis of pSk3)]

[20,11

[30,41]

Bleck 731 = Block used in previous file in DSK3:COPYR.LSTL30,41
(30,57

then you know that a disk block used by the file COPYR.LST was also used by
another file. Two files cannot share the same disk block.

If you are fortunate enough to have a very recent backup disk, and the files
you have changed since that backup are ckay, you can simply copy those
changed files from the dzmaged disk over to the backup disk, which now
becomes your original. (0Of course, this assumes that the backup disk is all
right. You might make it a practice always to run DSKANA before backing up
a disk, so that you know that your backup disk is always good.) Now
initialize the damaged disk; this clears the disk.

If you are not so Lucky as to have a recent backup disk, you must do what
You can to salvage the data on your original disk: :

1. Make a disk backup so that you have a copy with which to work.

2. Now that you have found out what files are bad, use the ERASE
command to erase those files from the disk.. If you do not do so,
the errors in the Llinking structure will propagate, and you will
Lose even more data.

3. After clearing the bad files from the disk, run DSKANA again to
make sure that all problems have been cleaned up.

4. Once no more fijle errors show up, you must set about restoring the
files you have erased. If you have old backup disks that contain
good copies of the files that you have just erased, restore those
files on your disk by copying them aver from the backup disks.

Make a final backup copy of your newly restored disk.

The discussion above assumes that damage has been done only to your files;
if the linking structure of the disk directories themselves is bad, you may
have to copy off of the disk whatever files you are able to, and then
initialize the disk and start over with a new account structure.,

A systems expert may be able to reconstruct disk directories by using DSKDDT
to actually change the binary data on the disk. (Directory entries are not
stored in straight ASCII, but in a special packed format called RAD50; you
will have to make the conversion yourself.) Using DS$SKPDT to reconstruct
directories is very dangerous; do not try it except as a last resort, and be
sure to make a backup first!

(Changed 30 April 1981)

!. -
T

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR . is- VI L Page’ 25

6.2.17 DSKANA File Error Messages'

Below s a List of the file error messages that DSKANA can display when you
use the List (/L) or Errors only (/E) options. The location of the messages
in the display tells you the disk location of the bad block Link.

1. Block used in previous file

The last disk block Listed in the file where this message
appears also exists in another file. Since two files cannct share
a disk block, this message means that the system made an error in
allocating disk space to the two files.

2. Block marked as bad

A block marked as bad in the BADBLK.SYS file has been mistakenly
allocated to a file.

3. This file has a bum block count

The actual disk block count for the file where this message
appears does not match the block count assumed by the file itself.
The system made an error in allocating blocks to this file.

4. Illegal block Link

A Llink in the file where this message appears points te an
invalid disk address (e.g., to a disk block that does not exist).

5. Block reserved for system use only

A Link in the file where this message appears points to & disk
block that is reserved for System use. The system has mistakenly
allocated a disk block that should not be allocated to a file.

6. Block creates endless Loop in file

The Llinking structure of this file is such that eventually the
disk blocks point back to themselves. That is, block-A points to
block-B which points back to block-A.

7. Device error on Devn:

This block contains a hard error that the system could not
recover from.

8. C[unable to locate BITMAP for rewritel

DSKANA couldn't find the bitmap area in memory for the device
being analyzed. This means that the bitmap in memory may be
invalid.

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR - " Page 26

9. BITMAP rewrite error code’ XXXXX

The bitmap could not be . written back out to the disk. The
number you see is the error code that indicates what the problem
Was. For a List of these error codes, see Chapter 6, "The File
Service System," in the AMOS Monitor Calls Manual, (DWM-00100-42).

7.0 PACKING THE DISK

Besides explaining the concept of "packing the disk," this section explains
why packing a disk is necessary, and gives information on the two commands
yYOuU can use to pack a disk: DSKPAK and COPY (with the /PACK option).

NOTE: Before packing a disk, make sure the Linking structure of the disk is
intact. We recommend that you use DSKANA before you pack a disk.

The next few pages refer frequently to sequential and random files. Tf you
are not familiar with these terms, see Chapter 5, "Introduction to Files,"
in Introduction to AMOS, (DWM-00100-65).

7.1 When to Pack a Disk

When AMOS writes file blocks out to the disk, it follows this allocation
scheme:

1. If a block belongs to a sequential file, AMOS searches for the
first free disk block on the disk beginning with the front of the
disk, and writes the block there. Sequential file blocks thus tend
to be located toward the front of the disk.

2. If AMOS is trying to write out a random file, it searches for the
LAST area on the disk in which the file will fit, and writes .the
file there. Random files thus tend to be Located toward the end of
the disk.

This scheme |eaves an area in the middle of the disk for new file blocks.
When you delete a file from the disk, the disk blocks that made up that file
are now free for use by other files. "Packing" the disk consolidates these
free areas on the disk by sliding the random files down toward the end of
the disk and sliding the sequential file blocks up toward the front of the
disk. This allows ‘the system to make efficient use of the free space on
that disk.

You especially need to reduce fragmentation of free space on the disk if you
make use of a number of random files. If you only use sequential files, you
will not need to pack the disk very often because the system, as it
allocates disk blocks far sequential files, fills in any "holes" Left by
deleted sequential files.

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR - Page 27

On the other hand, if you use large random files, you will probably want to
pack the disk quite often, perhaps before every disk backup. It's
particularly important to consolidate free space if you wuse random files
because when it comes time to allocate space for a random file, the total
number of free blocks on a disk doesn't matter-= it's the number of free
blocks that appear in a contiguous group that counts. Ffor example, it is
quite possible to get a device full error when allocating a random file of
50 blocks, even though you have 200 blocks free on that disk-— the system
has to find 50 contiguous disk blocks. '

7.1.1 Displaying the Bitmap

If you want to have some idea of how much in need of packing your disk is,
you can take a look at the bitmap of that disk. A bitmap is a map of your
disk. That is, it tells the system what blocks on the disk are available
and which are in use by a file. If you look at the bitmap, you see a matrix
of 1s and Os which represents the free and used blocks on that disk. Each
block on the disk is represented by a one if that block is in use and a ZEero
if it is free,

If all of the 1s are clustered together in large groups at the beginning and
end of the disk, with only occasional Os scattered among the groups, the
data on the disk is efficiently allocated. If, however, the 1s and Os seem
to be randomly mixed on the disk, you should pack the disk. To see a
display of your bitmap, enter DUMP BITMAP followed by the specification of
the device whose bitmap you want to see. For example:

~DUMP BITMAP DSKO:

You now see on the screen the bitmap of the disk in device DSKO:. To freeze
the display, type 3 Control-5; to resume the display, type a Control-Q. To
interrupt the display, type a Control-C. At the end of the display, the
DUMP command tells you how many blocks are available on the disk:

3411 free blocks

7.2 DSKPAK

DSKPAK packs all random files on the disk. That is, 4t moves all random
files toward the end of the disk, consolidating the free area in the middle
of the disk for new random files. It does this by sliding random files down
to occupy the area Left by deleted files. If there are no sequential file
blocks 1in the random file area, DSKPAK causes all of the random files to
form one contiguous area at the end of the disk.

Do NOT run DSKPAK while other users are accessing the specified disk. To
run DSKPAK, enter DSKPAK and the specification of the device you want to
pack:

.DSKPAK DSK1:

(Changed 30 aApril 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR ' Page 28
When DSKPAK is finished, you see the AMOS prompt.

7.3 COPY (the /PACK Option)

You can use the COPY command to pack the data on your disk if you use the
/PACK option. ' ' :

NOTE: It is VERY important that no other job be allowed to access the disk
while you are packing it. 1If fact, it is good practice never to pack a disk
while other jobs are running on the system. :

To pack all files on the disk,. log into the System Operator's account,
C1,21. Then type: COPY/PACK, the specification of the device you want to
pack, an equal sign, the specification of the same device, and a RETURN.
For example:

-L06 £1,2]
=COPY/PACK DSK1:=pSK1:[]

The command above copies every file on DSK1: over to itself. This causes
the system to reallocate blocks for all files on the disk, writing over
areas left by deleted files. (This command does NOT pack the User File
Directories or the Master file Directory of the disk.) To completely pack
the disk, you might have to perform this command several times.

MOTE: To achieve maximum packing of the disk, use the COPY command from the
System Operator's account to copy all files from one disk to another freshly
initialized disk. (In this case, you don't need the /PACK option since you
are not copying files over to themselves.)

8.0 DISK BACKUP

The most important procedure in your disk maintenance routine is disk
backup. You will have noticed that the discussions of the disk diagnostic
tests assume that you have recent backups of all of your disks. Backups are
your only assurance that you can at least partially recover from disaster.

Make disk backup a regular procedure on your system. You should encourage
all users to back up the files in their own accounts to either their own

data disk or to a communal data disk. You should do regular backups of the
System Disk and any important data disks.

8.1 The COPY Command

Before using COPY to back up files, you will probably want to use the SET
command to set DSKERR:

-SET DSKERR

(Changed 20 April 1981)

O

.

{fm-«y .
R

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR = """ ‘paga’ 79 '

Setting this option tells the system to report any soft disk errors to your
job.

Individual users may back up the files in their own accounts by using the
COPY command. For example, to transfer copies of all files in account
DSKO:L300,11 to the same account on DSK1:, enter:

-L0G DSKQ:[300,1]
~COPY DSK1:=

Individual users may also back up accounts that are within the same project.
For example, to back up all accounts in Project 100 from DSKO: to DSK1:, Llog
into an account in Project 100 and specifiy wildcard PPNs in the COPY
command:

-L0G DSKO:[100,01
=COPY DSK1:01=[100,*]

To back wup all accounts from cne device to another (for example, DSKO: to
DSK1:), Log into the System Operator's account:

.LoG 1,21
=COPY DSK1:=[]

Because you are logged into the System Operator's account, the command above
acts very differently than the usual COPY command:

1. The command above cooies all files in all accounts on DSKO: over to
DSK1: regardless of whether those accounts are in Project 1.)

2. Even though there is no wildcard PPN symbol on the left side of the
equal sign, the command above copies all files in all accounts on
DSKO: over to their corresponding accounts on DSK1: (not into the
single account you are logged into, [1,21).

3. If the destination account does not exist on DSK1:, the command
above creates it. The command above transfers over to a new
account any password associated with the corresponding source
account files are being copied from.

To back up specific accounts, enter the correct account specifications. For
example:

.L06 [1,2]
~COPY DSK1:=[200,%1,L100,%]

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR o "~ -« Page 30

8,2 The DSKCPY Command

IMPORTANT NOTE: As of AMOS Version 4.4, you may use DSKCPY on devices that
run under control of the AM-~410 hard disk contro Ler, but only if the disk
you are copying from and the disk you are copying tc have both been
certified with an AMOS 4.4 or later version of CRT410. If either disk has
been certified with a pre-4.4 version of CRT410, you must use COPY to back
up the disk.

Use DSKCPY to make a Lliteral image of one disk onto another. You may use
DSKCPY on any type of disk; however, you may not copy between disks of
different types. (We say that two devices are of the same type if they use
the same device driver program. ALl devices that use the same device driver
appear in the DEVTBL line of the system initialization command file with the
same three-character device code. For example, DSK1, DSK2, and DSK3 use the
same device driver; AMSO, AMS1, AMS2, and AMS3 use the same device driver.)
S0, you can use DSKCPY to copy between any two devices that share the same
device code (e.g., from AMS1: to AMS2; STD3: to STD1:, DSK3: to DSKZ2:, etc.)

Besides copying and verifying data from one disk to another, DPSKCPY also
optionally generates a hash total for the disk copied to. To generate g
hash total, use the /H switch. (For example: . «DSKCPY/H.) (For full
information on DSKCPY, see the DSKCPY reference sheet Jn the AMOS System

Commands Reference Manual, (DWM-00100-49).

IMPORTANT NOTES:

1. Never run DSKCPY while other jobs are accessing the disks you are
copying between.

2. A common mistake in using bSKCPY is to accidentally reverse the
input and output device specifications, This has the effect of
copying your empty disk onto your original disk. To avoid this
situation, if your disk device allows it, always write-protect the
disk from which you are planning to copy.

3. Before you copy to a disk, make sure that the disk is empty or that
it does not contain any data that you need. Make sure that the
disk 1is in the proper format. If the disk already contains data
(that is, it is ‘not brand new), you do not need " to reformat it.

(However, remember that using DSKCPY writes over any data already .

on a disk.)

4. If you use DSKCPY to copy a disk that has soft errors, DSKCPY will
display the proper error message when it encounters the soft error,
and then will attempt to copy the bad block over to the output
disk, recomputing the CRC in the process. Since it had trouble
reading the bad block, the copy that DSKCPY makes of the block may
contain garbled data.

If you use DSKCPY to copy a disk that has one or more hard errors,

DSKCPY aborts the copy when it encounters the first hard error, and
returns you to AMOS command level.

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR . : -~ - Page 31

If you suspect that your disk has hard or soft errors, follow the
procedures ocutlined in Section 6.1, "Handling Hard and Soft bpisk
Errors."

5. You can use DSKCPY to copy both System Disks and data disks. (A
System Disk is a disk the system can boot from=- that is, it
contains elements of the operating system necessary for system
operation. A data disk is any disk that is not a System Disk.)

We have divided the information below into instructions for backing up hard
disk devices and floppy disk devices.

We have additionally divided those instructions into information on using
DSKCPY on: 1. Multiple-unit devices; and 2. Two-unit System Devices.

If you are using DSKCPY on a device that has more than two Logical wunits
(for example, besides DSKO: and DSK1:, your system also has DSK?: and
DSK3:), backup procedures are the same regardless of whether that device is
a System Device as Long as you aveid copying to the drive containing the
System Disk.

However, if you are using DSKCPY on a System Device that contains only two
Logical wunits (pSKO: and DSKT:), wusing DSKCPY becomes more complicated
because you MUST use DSKO: (the drive reserved for the System Disk) during
the backup procedure. This can be tricky because intermediate steps in the
backup may require that you write over the System Disk or replace that disk
with a backup disk.

8.2.1 Important Note for Hawk Hard Disk Drive Users

DSKCPY uses a special fast copy mode for Hawk devices only. This mode gives
a disk copy in approximately one=third the time of the traditional Hawk disk
copy (about 6 minutes versus 18 minutes.) However, it does require that no
other user be using the AM-500 controller while the disk copy is taking
place. When you use DSKCPY on a Hawk device, you see:

ZALL other yusers will be suspended while HAWK copy is running
Hit return to continue or a control-C to abort:

If no other users are accessing disks that run under the AM-500, you may
type a RETURN to continue; otherwise, type a Control-C to exit DSKCPY.

If it is not convenient fer all users to stop running on the system, you may
use the /0 switch to tell DSKCPY to use the slower copy mode for the Hawk
device. If you use the /0 switch, you do not see the message above; other
users may run on the system, but the disk copy will take about 13 minutes.

If you use the /H switch to generate a hash total for the copied to Hawk
disk, the hash total will differ for the same disk, depending on whether you
used the Hawk fast copy mode or the /0 mode. The /0 switch has no effect
when DSKCPY is being used on a non-Hawk device.

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM COPERATOR - Page 32

As you read the instructions in the sections below, remember that if you are
using BPSKCPY on a Hawk device, you must decide whether to use the fast copy
mode or the /0 mode.

8.2.2 The Hard Disk Multiple-Unit bevice

The instructions below assume that you are working with a disk in which at
least one Llogical unit is an unremovable, permanently fixed disk. We assume
that you are copying between disk cartridges or from the fixed disk to a
cartridge. The dnstructions below also apply to using DSKCPY on a device
that contains only two Logical units (e.g., HWKO: and HWK1:) if that device
is not a System Device, since you do not have to worry about writing over

the System Disk.

If you are using a hard disk device that contains more than twe Logical
units within one physical device (e.g., the Century bata Trident which can
contain DSKO: through BSK18:), you will treat that single device as a
multiple-unit system. That dis, you can back up each logical unit separately
by copying one logical unit to ancther. (If you have two of these kinds of
devices you will probably want to back up by copying from one drive to
another. Be advised, however, that backing up several hundred megabytes of
data is a very slow process!)

To copy either System bisks or data disks:

1. Write-protect the disk you are copying. (For example, if you are
going to make a backup copy of the disk in device DSK2:,
write-protect bSK2:.) If possible (that is, if you can arrange to
perform the DSKCPY when no other users are going to be accessing
the disks), write-protect ALL disks except the one you are copying
to.

2. If you need to change disk cartridges, do so. This may require
cycling-down the disk drive, but you do NOT need to turn off the
drives or the computer. :

3. Enter:
.DSKCPY

4. DSKCPY now asks you which devices to copy between:

- Input Drive:
Qutput brive:

For input drive, enter the specification of the device you are
copying from. For output drive, enter the specification of the
device you are copying to. For example, if you are copying from
AMS1: to AMS3:, enter:

Input Drive: AMS1: (RET)

Output Drive: AMS3: (RED)

TCopying 616 blocks]

[buplication and verification completed)

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR - = ST page 33

DSKCPY tells you how man} disk blocks it is copying, and gives you
progress reports on the status of the disk copy. When you see the
AMOS prompt, DSKCPY is done.

8.2.3 The Hard Disk Two-unit System Device

If you are using DSKCPY on a System Device, and that device has only two
logical wunits (DSKO: and DSK1:), using DSKCPY becomes a Little more
complicated because you cannot avoid using DSKO:. (If you are copying from
a fixed disk to a disk cartridge, follow the procedures above for
multiple-drive systems.) i

To copy a data disk, you must first back up the System Disk (the fixed
disk), copy the data disk down from a cartridge onto the System Disk, and
then copy that back up to another cartridge. Then you must restore the
System Disk from the backup. This procedure requires that you change
cartridges several times, so to make sure that no mix-ups occur, carefully
Label all cartridges so that you can be sure which cartridge is the System
Disk backup, which is the original data disk, and which 4is the data disk
backup.

8.2.3.1 Backing Up the System Disk

1. Write-protect DSKO: and DSK1:.

2. Insert a backup disk cartridge to which you will copy the System
Disk. (This may require cycling~down the disk drive, but do not
turn it or the system off.)

3. Write-enable DSK1:.

4. Use the DSKCPY command to copy from the System Disk (DSKO:) to the
cartridge: '

DSKCPY

Input Drive: DSKO:

Qutput Drive: DSK1: (REV)

[Copying 9696 blocks]

[Duplication and verification completed]

5. Remove the cartridge. Label and date it (e.g., SYSTEM DISK SACKUP
1/23/80). :

(Changed 30 april 1981)

DISK}MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR o o .+ .Page .34

8.2.3.2 Backing Up the Data Disk

A. PART 1I:

1. Write-protect DSK1: and DSKQ:.

2. Place the data disk you want to copy into DSK1:.

3. Load DSKCPY into memory:

.LOAD DSKO:DSKCPYE1,4]

4. Before proceeding, make sure that you have backed up your
System Disk. The next step writes over everything on DSKO:,
and without a valid system backup you will not be able to get
your system up and running again.

5. Write-enable DSKD:.

6. Copy the data disk onto DSKO:"

.DSKCPY

Input Drive: DSK1: i
Qutput Drive: DSKQ: § '
[Copying 96956 blocks] i
Lbuplication and verification completed]
7. DO NOT TURN.OFF THE SYSTEM OR THE DISK DRIVES.
B. PART 1I1I:
1. Write-protect DSKQ: and DSK1:.
2. Place the data disk backup cartridge into DSK1:, but do NOT
TURN OFF THE SYSTEM OR THE DRIVES. (Remember, the System Disk
on DSKQ: is temporarily gone.)
3. Write-enable DSK1:.
4. Copy DSKD: to DSK1:.
.DSKCPY (EED
Input Drive: DSKO:
Qutput Drive: bSK1:
CCopying 9496 blocks]
[Duplication and verification completed]
5. Remove the backup cartridge. Date and Llabel it (e.g., DATA i@ﬁ

BACKUP 4/20/81>. DO NOT TURN OFF THE DRIVES OR THE SYSTEM.

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR . Ppage.35

8.2.3.3 Restoring the System Di<k

After copying a data disk, you MUST restore the data originally on DSKO:.
1. Write-protect dSKO: and DSK1:.

2. Place the System bDisk backup cartridge into DSK1:. (Do NOT turn
off the drive or the system.)

3. Write-enable DSKO:.
4. Copy DSK1: to DSKD:.

=DSKCPY EED -

Input Drive: DSK1:

Qutput Drive: DSKQ:

CCopying 9656 blocks?

[buplication and verification completed]

5. Remove the System Disk backup disk and store it in a safe place.
The system is now up and ready for normal use.

6. Delete the DSKCPY program from memory:

DEL DSKCPY

8.2.4 The Floppy Disk Multiple-Unit System

These instructions apply to all situations where you can avoid writing to
DSKO: of the System Device--that is, you are using: 1. a floppy disk device
that contain more than two logical units (e.g., you have AMS2: and AMS3: as
well as AMSD: and AMS1:); 2. a floppy disk device that has only two Logical
units, but that device is not a System Device (since you don't have to worry
about writing over the System Disk); and 3. a two~unit System Device to copy
System Disks.

To copy either System Disks or data disks:

T. Do not turn off the computer or the disk drives. Do not remove the
System Disk.

2. Write-protect the drives you will not be copying to.

3. Insert the original and backup disks in the drives. (The original
disk is the disk you want to copy; the backup disk is the empty
disk you will be writing to.)

4. Type DSKCPY fotlowed by a RETURN.

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR ' " "Page 36 -

5. DSKCPY now asks which disks you want to copy between:

Input Drive:
Output Drive:

For input drive, enter the specification of the device you are
copying from. For output drive, enter the specification of the
device you are copying to. For example, if you are copying from
AMS1: to AMS2:, enter:

Input Drive: AMS1:

Output Drive: AMSO:

[Copying 616 blocksl]

[Cbuplication and verification completed]

6. DSKCPY is now done. Write-enable the disks.

8.2.5 The Floppy Disk Two-unit System Device

The instructions below apply to a situation where you MUST use DSKO: of a
two-unit System Device. (That is, you must copy a non-System Disk and you
only have two drives with which to do it.)

To copy a System Disk, follow the dinstructions above for multiple-unit
systems; lLeave the System Disk in DSKO:, and copy it to DSK1:.

To copy a data disk:

1. Do not +turn off the system or the disk drives. teave the System
Disk in DSK0:.

2. Write-protect DSK1:.
3. Insert the input disk into DSK1:.
4, Use the LOAD command to Load the DSKCPY program:

«LOAD DSKO:DSKCPYL1,4]

5. Remove the System Disk. Insert the backup disk into DSKO:.
4. Enter DSKCPY followed by a RETURN:
.DSKCPY
7. For dinput drive, enter the specification of the device you are

copying from. For output drive, enter the specification of the
device you are copying to. For example:

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR A

Input Drive: DSK1: _
Output Drive: DSKO:
CCopying 616 blocksl : : o o
[Duplication and verification completedl

8. When DSKCPY has finished, remove the backup disk and reinsert the
System Disk. Mount the System Disk.

9. Delete DSKCPY from your memory partition:

.DEL DSKCPY

(Changed 30 April 1981)

e

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR = &

Allocating user accounts

AM-200
A 4
AM-400 . L, L L ..
AM-410 . . L L L L.
AM=500 . . L L. ..

Assigning account passwords

Backup
copy L.
DSKCPY

BADBLK.SYS

CDC Hawk hard disk .
Changing disk formats
CoPY
corY/P
CRC error
CRT410

Data disk
DIAGZ “« a9«
Diagnostic tests . .
DIAG2 . . ,
DSKANA
REDALL
RNDRED . , . . .
Disk Certification
Disk formats . , .
Disk formatting . . .
Double-density format
Double-sided format -
DSKANA
Analysis report , .
Default mode . . .
Errors only option
File error messages
List option
Option summary . .
DSKCPY
DSKCPY /0 mode . . .
DSKCPY and Hawk disks
DSKCPY fast copy mode

(Changed 30 April 1981)

Index

2, 9 to 10
4

4
4
2
4, 12 to 13
10
1, 28, 30
28

30
18

4, 13
3

3, 22, 26, 28 to 29
28

13

3, 18

28, 31
14

1, 12
14

15

13

14

3

4

4

4

4

15

19
16

15

25
15, 18
15
30

7, 31
7, 31
7, 31

B Page Index-1)

AN A Ri i b oA o 2 e e

DISK MAINTENANCE PROCEDURES

DSKCPY hash total
DSKPAK . . & & & . 4 o o

FMT200
FMT210 . & . . & 4 4 4 v .
FMT400
FMT500 . . . & 4 v 4 . . .
Formatting a disk
Formatting programs

Hard error
Hash total
‘HASHER . . & & &4 & 2 2 o &
HASHER /0 mode
HASHER and Hawk disks . . .
HASHER fast copy mode . . .

Identifying a disk
Initializing & disk

LABEL & o & & & ¢ 4 & o o .
Labeling a disk

Maintenance
o
MOUNT . . . & & & & o .
MOUNTing a labeled disk . .

Packing a disk
COPY/P & v et v 4 v e
DSKPAK . . & v & & & o .

Persci floppy disk

Phoenix Hard Disk
Backup . & v 4 = < u . .
certification
formatting
initialization

Re-certifying disks
Re-using disks
Recomputing the CRC
Recycling disks
REDALL & . & & . .
Restoring disk directories
RNDRED & & o v .

SET DSKERR . . .,
Single-density format . .
Single~sided format .
Soft error
SYSACT & & & o 4 o &

Allocate

Change . . & & & v v &

(Changed 30 April 1981)

FOR

THE SYSTEM OPERATOR ' Page Index-2

30

26 to 27

to 3

N N N

18, 30

e B BN Y

N~

12, 28

12, 29

10 .
11

DISK MAINTENANCE PROCEDURES

Pelete
Exit . & . . . 4 0 . ..
Help . . . & & @ v o o .
Initialize
System Disk v v v & & & « «
System Operator
COPY . & 4 i i 4 4 v o
System Operator's account .

Trident . &« v v« & & o o« o .

UFD & 4 i i s h h h e h e
User accounts

Volume ID v v v & & & o o &
Volume name . « . . o o o «

Wangco floppy disk

(Changed 30 April 1981)

FOR

THE SYSTEM OPERATOR

.y 12
T

. 10
.9

. 28, 31
. 1, 29
. 29

. 29

. 32

. 10

. 9

. 6

. 6

L] 4

April 1981 g
Revision AN

DEFINING NON-SYSTEM DISK DEVICES

There are many times when you need to configure your system to access a disk
device other than the System Disk. Examples of this would be adding an
AM-500 and Hawk disk drive to an AM-400 Trident based system, or adding an
AMS-format floppy to an 3Tb-format system. 1In both of these cases, the
procedure is essentially the same. In addition to defining the device on
your system, it is often necessary to transfer data from one type of device
to another, or to convert a System Disk from one device or format to
ancther, This document will cover both the definition of new disk devices
and the transfer of data.

1.0 DEFINING NEW DISK DEVICES

To add a new disk device to your system, follow the procedure outlined
below. It is a good idea to create a copy of your SYSTEM.INI file and
modify that copy, rather than to modify the SYSTEM.INI file itself. The
modified copy can be tested using the MONTST program, without risking
creating a version of your SYSTEM.INI file which will not properly boot the
system. Then, when you are sure that your new system initialization command
file works, rename it to SYSTEM.INI. Regardless of these precautions, you
should have a backup copy of your System Disk, just in case your changes
don't work.

1. Add the device driver program to those in the [1,6] area on DSKO:.
fach device to be used on the system must have 3 device driver
program in this area. The device driver program must have a unique
three-character name and an extension of .DVR. After locating the
driver program for the device you wish to use, it should be renamed
to a three-character name. For instance, the driver for the AM-500
is distributed as HWKS00.DVR on standard System Disks; before use
it should be renamed to a three~character name such as HWK.DVR. If
you are defining a flopbpy disk, you must use the FIXDVR program to
create a new driver for your particular configuration of drive,
format and controller. See the document titled Configuring F Loppy
bDisk Drivers in the "System Operator's Information” section of the
AMOS Software Update documentation packet for more information.

Using one of the system text editors, VUE or EDIT, make these
changes to your SYSTEM.INI file:

[AV]
.

@. Add the new device name to your device table; that is, add the
three-character device name defined in step #1 to the DEVTBL
command Lline. This defines the new device name, and allows I/0
to take place through the new device driver. Disk devices are

(Changed 30 April 1981)

DEFINING NON-SYSTEM DISK DEVICES Page“é.?w

e

always sharable devices, and should therefore be defined before S
the / in the DEVTBL command Line. If you cannot fit the new .

device names all on one Line, you may use more than one DEVTBL
command.

You must dnclude both the device name and all valid unit
numbers in the DEVTBL command Line. Thus, if you are adding an
AMS-format floppy driver to your system and wish to be able to
reference both drives 0 and 1, you must add the device codes
AMSO and AMS1 to the DEVTBL command Line.

'To allow the system to write information on the new device, you

must define a bitmap for the new deyice. A bitmap s the
method by which the system allocates space on the device. To
a8dd a new bitmap, place a BITMAP command for the new device
immediately after any other RBITMAP commands. The BITMAP
command reguires that you specify the device code, the bitmap
size, and the units (drives) to which this bitmap will be
applied.

The device code is the three-[etfer code you defined in 'step
",

The bitmap size is dependent on the particular device you are
defining. If you are working with a floppy disk drive, the
FIXDVR program will tell you the bitmap size. For other
devices, see the documentation accompanying the particular
device,

Each BITMAP command actually defines a buffer in system memory
which is used for reading and writing the bitmap to and from
the device. This bitmap buffer may be shared by multiple units
of the same device, resulting in a saving of system memory. In
exchange for this saving, however, 1/0 must be done more
frequently to the deviice to update the buffer than 3if the
bitmap buffers were not shared.

For example, to define an AMS device (which has a bitmap size
of 39 words) and to share the buffer between units 0 and 1, add
the command: 5

BITMAP AMS,29,0,1

If you do not wish to share the bitmap buffer, but wish to have
separate buffers for gach unit, add two Lines which read:

BITMAP AMS,39,0
BITMAP AMS,39.1

You may wish to includle the driver program in your system
memory area for faster response while working with the new
device. To do this, insert the command:

(Changed 30 April 1981)

'DEFINING NON-SYSTEM DISK DEVICES Ch i page 3

SYSTEM xxx.DVRL1,61

into the SYSTEM.INI ile just above the final SYSTEM commaﬁd o

Line, In almost all cases, this is not really necessary, ‘as

the system will fetch the driver from the disk each time it is.

needed if it is not already in memory, and will Lload it into
the memory partition of the user who is requesting access to
that device. However, including it in system memory will speed
up the response time of the system. NOTE: Never include the
driver for your System Device in system memory-- since that
driver was MONGENed into your monitor, it is always in system
memory anyway, and adding it via the SYSTEM command just takes
Up uneccessary space. '

IMPORTANT NOTE: There are several situations where you must'put
a non=System Device driver into system memory:

i. If vyou are using the /S option of the BITMAP command to
place bitmaps for non-System Devices in switchable memory,
you must place the drivers for those devices in system
memory.

i1. Some programs (notably BASIC, RUN, COMPIL, and AlphaVUE),
do not follow standard memory module conventions, and
therefore require that the device driver of any non-System
Device be in system or user memory if you are geoing to
access that device while using those programs. (You may
place the driver into system memory using the SYSTEM
command, or the individual user may Load it dnto his own
memory partition via the LOAD command before invoking one
of the programs Listed shove.)

After performing the preceding steps, boot up the system using the
MONTST command:

+MONTST SYSTEM,TEST.INI

(Remember that to use the MONTST command your System Disk (DSKO:)
must be on the fixed disk of the System Device, and your job must
be operating in the first memory partition on the system (Bank Zero
for bank switching systems).)

You should now be able to access the new devices for both reading and

writing.

Once you are satisfied with the operation of the device and your

changes to your SYSTEM.INI file, rename yur temporary dinitialization command
file to SYSTEM.INI and reset the system, You are now up and running.

(Changed 30 April 1981)

Rt s e s i s oo

'DEFINING NON~SYSTEM DISK DEVICES : ‘ | Page 4

2.0 TRANSFERRING DATA TO AND FROM}THE DEVICE

Once a device has been defined on the system using the procedures described
above, any of the standard system utilities may access it. If you are
starting with a new device with no data on it, use the correct formatting
pregram to write formatting information onto the device. "You may then use
the SYSACT program to initialize the device and to create accounts on that
device. You may then use the COPY command to to copy data onto the new
device, '

If you wish to read existing data off of the new device, merely mount the
device and use COPY to transfer the data.

3.0 BUILDING A SYSTEM ON A NEW DEVICE

Once you have defined the new device on your system, you may wish to create
2 System Disk for the device so that you can boot your system from the new
device. To create a new System Disk, follow the procedure outlined below:

1. Format and initialize the device on which you want to build a
system.

2. Copy your current System Disk over to the new device.

3. Log into the new device on account [1,43 and create a new monitor.
Use the MONGEN program to do this. (See Generating System

Monitors in the "System Operator's Information" section of the
AMOS Software Update documentation packet.)

When MONGEN asks you for the driver name, specify the driver for
the device for which you are building the System Disk. After you
run MONGEN, save the new monitor onto the new device, but don't
reboot the system at this point. :

4. Edit the SYSTEM.INI command file on the new System Disk and change
the BITMAP commands for all DSK devices to match the bitmap size
and configuration of the new device. Remove the old specifications
for the device from the DEVTBL command. 1If you wish, you may add
the current system device as a peripheral to the new System Disk by
using a method similar to the one you used to create vyour current
System Disk.

5. You may now use the MONTST program to test your new System Disk.
If it successfully boots, you may wish to change vyour hardware
configuration to boot off the new device; you may find information
regarding this in the installation instructions accompanying the
device.

(Changed 30 April 1981)

w

el

May 1980
Revision AQ3

DISK DRIVERS AND FORMATS

1.0 INTRODUCTION

This document discusses the disk drivers and formats supported by Alpha
Micro software and how to use them. One mark of the AMOS system's
flexibility is that it allows you to customize your system software for your
particular hardware configuration by selecting the disk driver programs and
disk formats that you want to use,

2.0 DISK FORMATS.

The format of a disk refers to the way that the data on a disk is
structured. This discussion concerns dtself with two main areas: the
physical and the logical disk format.

The physical format means the number of bytes in each sector on the disk
(which in turn dictates the number of sectors on each track). The logical
format refers to the way in which AMOS reads the physical format, including
blocking factor and file structuring.

We call the sector a physical record, because it reflects the physical
organization of data on the disk. AMOS imposes a logical organization on
the disk (regardless of the physical attributes of the devicel); we call
these logical units of data disk blocks. Except 1in the special case of
devices that use the IMG device driver, disk blocks are always 512 bytes
long. For hard disk devices currently supported by Alpha Micro, the size of
the disk block is the same as the physical record size (512 bytes); floppy
disk devices sometimes use a physical record that is smaller than a disk
block. '

The following paragraphs discuss the disk formats that Alpha Micro currently
supports: ’

1. Standard (STD) Floppy Disk Format =~ This format comes in both
single- and double-density, and single~ and double~sided versions.
ALL are designed to use IBM-compatible diskette formatting.
Single-density diskettes are formatted with 128 bytes per sector
and 26 sectors per track. Double-density diskettes are formatted
with 256 bytes per sector and 26 sectors per track. Double-sided
diskettes for both densities merely have twice the number of tracks
per diskette (154 instead of 77). The format for both densities is
512 bytes per block, with single-density blocked at 4 sectors per
disk block, and double~density blocked at 2. Both densities have

(Changed 1 May 1980)

DISK DRIVERS AND FORMATS ' Page 2

)

Sectors mapped out to read every 5th sector to improve rotational
latency time, thereby allowing one 512-byte disk block to be read
within one revolution of the disk. The AMOS file system dis fully
Supported on this format. Single-density, single-sided diskettes
are supported on both the AM-200 and AM=-210 f Loppy disk
controllers; double~density and double-sided diskettes are
supported on the AM-210 only.

AMS Floppy Disk Format -- This format also comes in both single~

and double-density, and single- and double-sided versions. ALl are
formatted 4in 512-byte sectors. Single-density has 8 sectors per
track; double~density has 16. The physical records are interleaved
on a 3-to~1 basis to. improve latency for sequential accesses.
Double~sided diskettes merely have twice the number of tracks per
diskette (154 instead of 77). The logical format is the same as
the physical format, with each disk block being one 512-byte

‘physical record. The AMOS file system is fully supported on this

format, Single~density, single-sided AMS format diskettes gare
supported on the AM=-200 controller; only double=-density diskettes
(both single- and double-sided) are supported on the AM-210.

Image (IMG) Floppy Disk Format —- The physical format is the same

as standard format, with 128~ or 256~byte sectors and 26 sectors
per track. The logical format is the same as the physical format.
Image format is supplied to allow the programmer to read a non~AMOS
diskette (such as one created on an IBM computer) by physical
record number, and to retrieve the data under the programmer's own
file structure. The AMOS file system will operate under this
format, but is extremely inefficient due to the small disk block
size (128 bytes) and the fact that one full revolution must occur
between sequential reads. Image format for single-density,
single-sided diskettes is supported by the AM~200 controller; both
single- and double-density, single- and double-sided diskettes are
SUpported by the AM-210.

Trident Hard Disk Format —- The Century Data Trident drives have

their own special format. ALL drives use a 512-byte physical
record which is also their disk block size. The T-25, T-50, and
T-200 drives all have 22 sectors per track; the T-80 and T-300 have
32. The T-25 has 408 tracks per surface; all other Trident hard
disks have 815,

Hawk Hard Disk Format =-- The CDC Hawk drive has its own special

format which gives a physical record size of 512 bytes, 812 tracks,
and 12 records per track. '

Phoenix Hard Dpigk Format -~ The (DC Phoenix drive has its own

special format which gives a physical record size of 512 bytes.
Each surface has 808 tracks, with 36 records per track. (Actually,
each surface has 822 tracks; fifteen of those tracks are spare or
"alternate” tracks that are used in case bad tracks are detected on
the surface.)

(Changed 1 May 1980)

'DISK DRIVERS AND FORMATS : : Page 3

3.0 HARDWARE DISK DEVICES

The AMOS system supports several different disk devices. Each device has
its own peculiar traits, and must be understood for proper system
configuration. The following paragraphs describe the various hardware
devices currently supported:

1. Persci Floppy Disk == Runs under the control of the AM-200 f Loppy
disk controller. The Persci supports all single-sided,
single~density floppy disk formats described above. The Persci is
capable of formatting diskettes.

2. Wangco Floppy Disk -- Runs under -the control of the AM-200 or
AM=210 floppy disk~ controller. With the AM-200, the Wangco
supports all single-sided, single-density floppy formats described
above. With the AM-210, it supports all single-sided, single- and
double-density formats, except for single-density AMS format. The
Wangco is capable of formatting diskettes.

3. CDC_ Floppy Disk == Runs under the control of the AM-210 f Loppy
disk controller. It supperts all single~= and double~sided, single-
and double~density formats, except for single-density AMS format.
The ¢cDC is capable of formatting diskettes.

4. Icom Floppy Disk -- This is the original system offered with the
AM-100 computer, but it is no longer in extensive use because of
the Llimitations it imposes. The Icom disk runs under control of
its own controller board, and does not have the capability of
formatting diskettes. The 1Icom supports only single~density,
single-sided STD and IMG formats.

5. Trident Hard Disk Subsystem =-- The Century Data Trident is a
special, Llarge disk-pack subsystem that runs under control of the
AM-400 interface board and the Century Data 1150-A formatter unit.
The only format supported on this device is the Trident format.
The unit will reformat disk packs (one surface at a time). The
T-25, T-50, and T-80 Tridents have 5 surfaces; the T-200 and T-300
have 19 surfaces each. (The T-200 and T-300 are formatted as
nineteen individual disks; the T-25, T=50, and T~80 are formatted
as five individual disks.)

6. Hawk Hard Disk Subsystem —- The CDC Hawk is a special disk-pack
Subsystem that runs wunder control of the AM-500 Hard disk
Controller board. The only format suppeorted is Hawk format. The
AM~500 1is capable of formatting disks.

7. Phoenix Hard Disk Subsystem —=- The CDC Phoenix is a special disk
subsystem that runs under control of the AM-410 Hard disk
Controller poard. The only format supported is Phoenix format.
The AM-410 is capable of formatting disks.

(Changed 1 May 1980)

DISK DRIVERS AND FORMATS R T HPagE g T

3.1 DISK DRIVER PROGRAMS *

A driver.is a program that Llinks the generalized disk service routines ' of

. the monitor with the physical disk device. - You can generate ‘your own -

version of the monitor (via the MONGEN program) that incorporates a specific
disk driver into the monitor for use as the System Device (device DSK:).
The disk drivers reside in account bDSKO:[1,61, and can be called in as
needed if you have more than one type of device on your system, . or if you
wish to operate with several different types of formats on one device. In
other words, your System Device may be a Persci in single-density standard
format, but you may use a separate driver (called AMS, for instance), to
read an AMS-format diskette. In this 1instance you would generate a
single~density standard format driver to use with MONGEN when You create the
monitor, The AMS driver exists in account £1,63 of the system disk, and is
available for use when YOou want to read AMS-format diskettes.,

Drivers are supplied to yvou on your System Disk in the (1,61 account; they
have a six-character name that represents the device type they handle,
Below are Llisted the disk drivers that are currently available, along with
the devices they support: ‘

200DVR - AM-200 with Persei or Wangco
210DVR - AM-210 with Wangco or CbDC
ICMDVR - Icom floppy disk

TRIT25 - AM-400 with Trident T-25
TRIT50 - AM~400 with Trident T-50
TRITBO - AM-400 with Trident T-80
TRIZO0 - AM-400 with Trident T-300
HWK300 - AM-500 with CDC Hawk

SMD410 - AM-410 with ¢DC Phoenix

The drivers above all have the .DVR extension. Since all devices must be
identified hy a three-character deyice name, you will have to rename or copy
over the particular drivers to some chosen three-character device code; this
code will also have to be added to your SYSTEM.INI file in both the DEVTBL
and BITMAP command Llines. -You may call these drivers any three-character
name you choose, except for the System Disk defined when you use MONGEN to
generate a new moniter, which will always have the device code of DSK.

The flopoy drivers must be configured by the FIXDVR program prior to use.
See the document Configuring Floppy Disk Drivers in the "System OQperator's
Information' section of the AMOS Software Update documentation packet for
information on configuring floppy drivers.,

3.2 FORMATTING PROGRAMS

Formatting programs are provided for those devices that support formatting.
The following is a List of the programs provided:

(Changed 1 May 1980)

.

DISK DRIVERS AND FORMATS ' I 57'Page'5:

FMTZ200 ALL formats supported by the AM-200
FMT210 - ALL formats supported by the AM=210
FMT400 - ALL formats supported by the AM~-400
FMT500 -~ Hawk format for CDC Hawk disks

(NOTE: Use the CRT410 program to format and initialize disks that run under
contrel of the AM-410.)

3.3 MONGEN

The MONGEN program is used to generate a new system monitor by overlaying
the disk driver area in an existing monitor with a different disk driver
from the List above. (See Generating System Monitors in the AMOS Software
Update documentation packet.) You do not need to rename the .disk driver
used in the MONGEN procedure to a three-character device code; you may
reference it directly by its six-character name (e.g. TRIT80 for a Trident
T-80>. The MONGEN procedure automatically renames this device so that it
can be referenced as DSK in the new system. Note that you must configure
floppy drivers with FIXDVR prior to the MONGEN procedure, however.

(Changed 1 May 19380)

July 1979 TEMET R 1 e
Revision A01

GENERATING SYSTEM MONITORS

1.0 INTRODUCTION

The MONGEN program allows you to generate system monitors for any disk
hardware by inserting the necessary disk driver into an existing monitor.,

To build a new monitor, you need an existing monitor (AMOS wversion 3.1 or
later), and the disk driver for the specific device that you are going to
use as the System Disk. The monitor that you will normally use s the file
SYSTEM.MON Llocated in account (1,41 of the System Disk. The disk driver to
be used will be one of the drivers in DSKO:[1,6]1. MONGEN wilLL insert the
driver idinto the monitor (overlaying the old driver), and leave the new
monitor in mémory. You may then test the new monitor directly from memory
(via the MONTST command), or you may save it onto a disk (via the SAVE
command).

2.0 USING THE MONGEN PROGRAM

Type MONGEN followed by a RETURN:
<MONGEN EED

The MONGEN program responds with:

INPUT MONITOR NAME:

enter the file specification of the monitor program you are going to use as
the foundation of your new monitor. You may specify the default system
monitor DSKO:SYSTEM.MONC1 ,4] by entering just a carriage return. If vyou
enter a file specification, the default device and account is DSKO:[1,43; if
You want to wuse a monitor not in that account, include device and account
specifications,

MONGEN Llocates the specified monitor and Lloads it into your memory
partition. Be sure that you have enough room to accomodate the monitor and
disk drivers, as well as the MONGEN program itself, and also enough room for
a couple of disk buffers. Typically this requires about 16K bytes of wuser
memory.

Now MONGEN asks for the specification of the disk driver you want to insert
into the monitor:

NEW DISK DRIVER NAME:

(Changed 1 July 1979)

GENERATING SYSTEM MONITORS i Page 2 il

Enter the file specification of the gisk driver program you want to Qse;
You may NOT enter just a.carrjage return. The default device is DSKO:, the

default account is £1,6], and the default extension is .DVR.

MONGEN locates the disk driver program and loads it into memory above the
previously Lloaded monitor. MONGEN now inserts the driver into the proper
area of the moniter (thus overlaying the original disk driver). The new
monitor is now complete in your memory partition. : :
Now MONGEN asks for a name to be given to the new monitor:

NEW MONITOR NAME:

Enter a one- to six-character name (the default extension is MONY; this is
now the name of the new monitor in memory. MONGEN now exits, Lleaving the
new monitor as a module in your memory partition. You can tast the new
monitor by using the MONTST program, ar you can save the monitor as a disk
file by using the SAVE command.

~NOTE: MONGEN does not affect the currently running monitor either in memory
or on the System Disk. MNor does MONGEN test the new monitor; it merely
builds a new monitor as a module in your memory partition.

3.0 DISK DRIVER PROGRAMS

The hard disk drivers currently available are listed below. These programs
are on your System Disk in account 1,61,

SMD410 - CDC Phoenix 90-megabyte hard disk (512-byte sectors).
HWK500 - CDC Hawk 10-megabyte hard-disk (512-byte sectors).

TRIT25 ~ Calcomp Trident 25-megabyte hard-disk (512-byte sectors).
TRITSO - Calcomp Trident 50~megabyte hard-disk (512-byte sectors).
TRIT80 - Calcomp Trident 80~megabyte hard-disk (512-byte sectors).
TRIZ0OO - Calcomp Trident 300-megabyte hard-disk (512~-byte sectors).

In addition, the system supports a number of floppy disk drivers. With the
advent of the AM-210 Floppy bisk Controller, the system now supports
double~sided and double~density diskettes,. Because the possible
combinations of device type, floppy disk controller type, and disk format
have greatly increased the number of possible floppy disk drivers, we now
provide a program, FIXDVR, that you can use tc configure the floppy disk
drivers you peed. See Configuring Floppy Disk Drivers in the "System
Operator's Information' section of the ANMDS Software Update documentation
for information on using FIXDVR, and for a list of the possible floppy disk
drivers you can create. (For information on the physical disk formats used
by the various floppy disk drivers, see Section 2.0, "Disk Formats," in the
document titled bisk Drivers and Formats Jin the "System Operator's
Information' section of the AMOS Software Update documentation packet.)

(Changed 1 July 1979)

i
i

USING THE MAGNETIC TAPE UTILITY PROGRAMS

October 1979

This document reflects AMOS versions 4.3 and Later

USING THE MAGNETIC TAPE UTILITY PROGRAMS

'AMOS', 'AlphaBASIC', and 'AM-100'

are trademarks of products
and software of

ALPHA MICROSYSTEMS
Irvine, CA 92714

©1979 - ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North
Irvine, CA Q02714

USING THE MAGNETIC TAPE UTILITY PROGRAMS

Table of Contents

1.0 INTRODUCTION

2.0 SETTING YOUR SYSTEM UP TO USE MAGNETIC TAPE UNITS 1
2.7 Using System Commands to Access

the Magnetic Tape Unit Hessesmemssmaancasanrnnas D

2.2 Concepts TM MMM Meabasuuraserans it anneannes 2

3.0 SETTING TAPE DENSITY-................................. 3

3.1 SET BPI Error MESSA0ES warevennnruncannnnnnnnnns 4

4.0 REWINDING A TAPE P 4

4.7 REWIND Error Messages CresrduMmaresavssaadnmanans D

5.0 TRANSFERRING DATA BETWEEN DISK FILES AND TAPE emanmune T
5.1 How TAPE Writes Data to a TaPe iniiiuiieennnsenne 5
5.1.1 Organization of pata on the TAPe winsuwoass 6
5.1.2 Reblocking Data Fectaautsassassannnsanncns O
5.2 Transferring Data from a Djsk File to Tape .ucou. 7

5.3 Transferring bata from Tape to Disk Files 10

5.4 TAPE Error Messages Eemesmsanssrssnssvaansnnsanas 13

~

6.0 THE SKIP COMMAND T |
6.1 SKIP Error Messages .i.iiuiiiii ittt 15

INDEX

USING THE MAGNETIC TAPE UTILITY PROGRAMS I -;Pageqil.f'f' o

1.0 INTRODUCTION :

Alpha Micro has developed several magtape utility programs that support the
AM=-600 Magnetic Tape Transport Formatter Interface. These programs-~'.TAPE;
REWIND, SET, and SKIP-- are all programs that 'you can invoke at AMOS command
level by entering the proper command. For infermation on accessing the
magnetic tape driver (MTU.DVR) directly from within vyour own assembly
language programs, see the AMOS Monitor Calls Manual, (DWM-00100-42). For
brief summaries of the tape utility programs, refer to the AMOS Systenm
Commands Reference Manual, (DWM-00100-49). S

You will be most Likely to use your magnetic tape transport to transfer

files to the AMOS system from other computer systems, Magnetic tape also-
provides inexpensive backup.. media. The TAPE program works only with

sequential disk files that contain fixed-Llength records. It does not

support any random-access file format on the tape. TAPE can convert your

data from ASCII to EBCDIC form and vice versa. See Section 5.0,

"Transferring Data Between Disk Files and Tape,'" below, for more information

on the kind of data you can transfer.

2.0 SETTING YOUR SYSTEM UP TO USE MAGNETIC TAPE UNITS

Make sure that you have defined the magnetic tape units as system devices in
the DEVTBL command Line of the system dinitialization command file,
SYSTEM.INI. Magnetic tape units are not sharable, so place them after 3
slash on the DEVTBL command line. For example:

DEVTBL DSK1,STDO,STD1,MEM,RES,/MTUD,MTU1,MTU2, MTUS, PTP

In the example above, the devices MTUO, MTU1, MTU2, and MTU3 are the
magnetic tape units. (The example above includes a paper tape punch, PTP,
which also is not sharable.) The AM-400 supports up to efight tape units,
numbered O through 7.

The program MTSTAT.SYS must be in system memory. (You must place it in
system memory by entering a SYSTEM MTSTAT.SYS command Line in the
SYSTEM.INI.) The magnetic tape driver program uses MTSTAT.SYS to determine
tape density and tape speed. If MTSTAT.SYS is not in system memory, when
you try to perform a magnetic tape unit cperation, you see:

MTSTAT.SYS NOT FOUND

Make sure that the magnetic tape driver, MTU.DVR, is in account BSK0:01,6].
Once you have modified your SYSTEM.INI to include information on the
magnetic tape units, you are ready to use the magnetic tape utility
programs. Reboot the system with your new SYSTEM.INI.

USING THE MAGNETIC TAPE UTILITY PROGRAMS ' Ppage 2

2.1 Using System Commands to Access the Magnetic Tape Unit

Besides the magnetic tape ufilify programs discussed in this document;
MTU.DVR allows you to use several AMOS commands to access the magnetic tape
units. To Look at files on magnetic tape, use the ASCDMF command. Enter:

«ASCDMP Devn:

where Devn: selects the magnetic tape unit you want to access. ASCDMP
displays (in ASCII form) the tape block currently in position at the tape
transport read heads. To display the next block, use ASCDMP again. NOTE:
"If you try to read past the end of the file, ASCDMP blows up; type a
Control-C to exit ASCDMP. '

You may use the TYPE command to display a magnetic tape file. Enter:

~TYPE Devn:

where Devn: selects the magnetic tape wunit you .want to access. TYPE
displays the file currently 1n position at the transport read heads. To
display the next file, use TYPE again.

You may use COPY to copy from a disk file to the magnetic tape. Enter:
+COPY Devn:=Fjlespec

where Devn: selects the magnetic tape unit you want to access and Filespec
selects the disk file yYou want to copy to the tape. Make sure that Filespec
is a valid AMOS file specification. You may not use COPY to copy data
from the magnetic tape to a disk file. T

2.2 Concepts

Before we describe the tape utility programs, it might be a good iddea to
define a few of the terms that appear in the following discussion:

1. Magnetijc Tape Transport - A transport is the hardware that reads
and writes data on a magnetic tape (also known as a tape unit).
(The mechanisms within the transport that actually read and write
the data are called heads.)

2. Magnetic Tape - The magnetic tape s the media on which the
transport acts. Tapes are either 7-track or 9-track; the tape
utility programs work correctly on either type. The utility
programs assume that your tape is capable of recording at least 800
bits per dnch. The standard magnetic tape length is 2,400 feet,
but the tape utility programs function on any Llength of tape
supported by your tape transport.

3. BPI - The BPI (bits-per—~inch) value specifies the density of the
data on the magnetic tape (either 1600 or 800 bits per dinch). When

{

USING THE MAGNETIC TAPE UTILITY PROGRAMS : R - F-7. -2

the system starts up, the magnetic tepe driver assumes that the BPI

you will be using is 1600. If this value is incorrect, you must

use the SET BPI command to enter the correct BPI. You may record
at either 800 or 1600 BPI, but when you read a tape you must read
it at the BPI it was recorded at.

4. Density - When we talk about tape density, we.are talking about
the BPI a tape was recorded at. This figure gives the density of
the data on the disk.

5. Load Point - When the magnetic tape is positioned so that the
metallic film at the start of the tape is at the transport read
heads, that tape is said to be at load point. Until the tape is at
load point, you cannot read or write data on the tape.

6. Mounted - The magnetic tape is mounted when it is correctly
threaded on the tape drive. See the documentation accompanying
your tape transport for dinformation on meunting tapes. (NOTE:
Mounting a tape is not the same as mounting a disk. When you mount
a disk, you must actually use the MOUNT command to mount it. If
you use MOUNT on a magnetic tape unit, it does no harm, but
accomplishes no purpose, either.)

3.0 SETTING TAPE DENSITY

When you use the tape utility programs to read or write data on a magnetic
tape, the system must know the density of the data you want to read or
write. When the system starts up, the default data density is 1600 BPI. If
you use the TAPE command to transfer data from the tape to disk files, make
sure that the current BPI value is the same as the density value under which
the data was originally recorded. If you use the TAPE command to write data
from the disk to the magnetic tape, make sure that the current BPI value is
set to the density you want to have the data recorded at.

To set the tape density value, use the SET BPI command. At AMOS command
Level, enter:

+SET BPI Devn:NNNN (EED

where Devn: selects the magnetic tape unit you want to affect. NNNN is the
BPI value you want to use. For example:

=SET BPI MTUO:800 GED

(SET BPI sets a flag in the magnetic tape module, MTSTAT.SYS. The tape
density does not get changed to the specified value until you actually read
from or write to the magnetic tape unit. At that time, MTU.DVR reads the
BPI value from MTSTAT.SYS and sends it to the transport,)

USING THE MAGNETIC TAPE UTILITY PROGRAMS = - .~ . ..¢ .. " page 4

3.1 SET.BPI Error Messages

If you give an invalid devﬁce specification or-incorrect BPI value to the
SET BPI command, you see: :
The format for the command is: SET BPI MTU*:XXXX

Where * = 3 tape drive in the range 0 thru 7 and
XXXX is either 800 or 1600. i :

Check your device specification. (You can see a2 list of the wvalid system
devices, including the magnetic tape units, by typing DEVTBL followed by a
RETURN.) The AM-600 supports up to eight tape drives (unit numbers 0-7),
‘Make sure that you have specified a BPI value of either 800 or 1600.

4.0 REWINDING A TAPE

To rewind a2 magnetic tape, use the REWIND command. Enter:
~=REWIND Devn:

where Devn: selects a magnetic tape unit. Make sure that no other user is
accessing the specified tape unit.

This program returns a tape to load point. 1If the tape is already rewound,
using REWIND does no harm.

Make sure that the tape you want to rewind is correctly mounted. Type
REWIND followed by the specification of the unit whose tape you want to
rewind. Type a RETURN. For example:

=REWIND MTU1:
You now see one of the following messages:

1. Tape is rewinding now :
This message is the most common and indicates that the tape 1is

in the process of rewinding. The rewind Wwill be finished in a

moment,

2. Tape is already rewinding
Someone else has already begun to rewind the tape. The rewind

will be finished in a moment.

3. Tape cannot be rewound - it is at load point.
The tape has already been rewound (or has never Left Load
point). Check to see that you are specifying the correct tape
unit. .

REWIND returns you to AMOS command level while the tape is still rewinding.

e

4.1 REWIND Error Messages

USING THE MAGNETIC TAPE UTILITY PROGRAMS - } ...Page 5

If you use REWIND incbrrectly, you see one of the fellowing error meséageé:-

?File specification error
The system didn't understand the format of your command (ine. For

example, you typed REWIND followed by a RETURN, without a device number . .

specified. Re-type the-line.

?Cannot OPEN Devn: - device does not exist

The system didn't recognize your specification of the magnetic
tape wunit. Check your spelling. Type DEVTBL followed by a RETURN for
a list of the devices (including magnetic tape units) defined on the
system. o

Tape cannot be rewound - it is at Lload point
REWIND cannot rewind the tape; it is already at load point. Check
to see that you have specified the correct device.

5.0 TRANSFERRING DATA BETWEEN DISK FILES AND TAPE

The TAPE utility program copies data from disk files to magnetic tape and
vice versa. '

If you are reading from a magnetic tape created on another system, chances
are that the data s incompatible with the AMOS system. For example,
AlphaBASIC requires that all data records it handles end with a carriage
return/line-feed pair; if these are not present, BASIC may not be able to
read the tape data you have written into a file. The screen—oriented text
editor, VUE, requires that each Line end with a carriage return/line-feed
pair, and that the line be less than 510 characters. TAPE can convert your
data from ASCII to EBCDIC and vice versa; beyond that, any data conversion
and manipulation required to make your data compatible with the AMOS system
is left up to you.

5.1 How TAPE Writes Data to a Tape

Before we discuss the actual operation of the TAPE program, it is important
to understand how TAPE actually copies data to the tape from a disk file and
vice versa. Records on tape are organized sequentially; that is, records
are written one after the other and are read back the same way. (TAPE does
not support a random-access file format.) .Records are grouped on the tape
into blocks. (The exact number of records per tape block is set by you when
you originally write the data to the tape; this is called the blocking

factor.)

USING THE MAGNETIC TAPE UTILITY PROGRAMS T page b

5.1.1 Organization of Data on the Tape - When it writes data to a tape,
MTU.DVR magnetizes a short amount of tape at the end of every tape block.
This magnetized interval is called an Inter-record Gap (IRG), and when the
tape drive reads the data back again, the tape drive automatically
recognizes an IRG as marking the end of a tape block. The ‘hardware itself
begins reading after the IRG and stops when it reaches the next one.

Because an IRG takes up room on the tape that might otherwise be used to
store data, it is a good idea to make the tape blocks relatively Llorg in
comparision to the IRG. 1In this way, you can make more efficient use of the
tape by minimizing the amount of wasted space on it. | :

When TAPE finishes copying -~-the data from your disk file to the magnetic
tape, it writes a special symbol to the tape called an EOF, or end-of-file
marker. This marker designates the end of the file so that when you use
TAPE to copy the data back to a disk file, TAPE knows when the end of the

file has been reached.

The tape transport detects the end of the tape. When you use TAPE to write
data to the tape, TAPE rewinds the tape one block when it reaches the end of
the tape; then it writes an EOF to indicate the end of the file.

5.1.2 Reblocking Data - When you write data to a tape from disk, several
of the disk file records form one tape block. The number of records per
block is called the blocking factor. For example, if you write 25 records
per tape block, the blocking factor is 25. Of course, the actual amount of
data per tape block also depends upon the number of characters in each disk
file record.

When you write data to a tape, the TAPE program asks you if you want to do
reblocking. What this means is that you can choose the number of data
records to write to a tape block. (This number does not have to be the
number of data records per disk block that appear in the disk file.) TAPE
is able to calculate the number of characters per tape block after it asks
you the length of your data records and the blocking factor you want to use.

The ability to change the blocking factor of the data records when
transferring data from disk to tape: is an important facter in making

efficient use of the magnetic tape.

If you do not want to do reblocking, TAPE assumes that your data records are
512 bytes long, and that you want to write one record per tape block. When
You write data to a tape, make sure that you make note of the Length of your
data records and the blocking factor you use. Also remember to write down
the number of tape blocks you are transferring. When you transfer the data
back to a data file you will have to know all of this information.

USING THE MAGNETIC TAPE UTILITY PROGRAMS Hs 5 page'?

5.2 Transferring Data from a Disk File to Tape

When you write data from a disk file to a tape, you may translate the data
from ASCII to EBCDIC or vice versa. TAPE requires that the file be a
sequential file with fixed-length records. Make sure that the current
system BPI value for the unit you are using is the data density you want to
use to record the data on the tape.

To write data to a tape from a disk file, enter:
= TAPE

Now TAPE begins to ask you a series of questions. You can exit TAPE and
return to AMOS command Llevel at any time by typing a Control-C in response
to any of the questions below.

1. The screen clears and you see:
This is the magnetic tape program.

It can copy files from disk to tape or it can copy files
from tape to disk.
*

*| #|

Which do you want to do?
1- Copy a file from disk to tape.
2- Copy a file from tape to disk.

Type the number of the option you wish.
Answer?

Enter a 1, followed by a RETURN. (If you enter anything but a 1 or
a 2, TAPE asks the question "Which do you want to do?" and then
displays the example above again.) :

(If you change your mind about wanting to write to tape, type a
Control-C to interrupt TAPE and return you to AMOS command Llevel,)

2. Now the screen clears and TAPE displays the message:

Tape can do character code conversion.

What type of conversion do you want to do?

1 - None,

2 = Convert the ASCII file to an EBCDIC file.
3 - Convert the EBCDIC file to an ASCII file.

Type the number of the option you wish.
Answer?

TAPE is able to translate your date from ASCII to EBCDIC form, and
vice versa. Because you are transferring data from a disk file to

USING THE MAGNETIC TAPE UTILITY PROGRAMS 7 - Page 8

the tape, this guestion is asking if you want to translate the data
in the file before you write it to tape.

'Ehtef the number that selects the conversion (if any) that you want

to perform. You must enter a1, 2, or 3 (or a Control-C to exit to

AMOS command Level); any other answer causes TAPE to re-display the
example above. :

The screen clears and You see:

Type in the name of the disk file you want copied to tape.
Answer?

Enter a wvalid AMOS file specification. You may only enter the
specification of a seguential file.

Now the screen clears and TAPE displays this message:
Which tape drive are you using?

(For example - MTUD: MTUT: MTUZ2: etc.)
Answer?

Give the specification of the magnetic tape unit you want to use
(e.9., MTUS:). 1If you decide at this point that you do not want to
continue with the TAPE operation, type a Control-C to exit to AMOS
command Llevel,

The screen clears and you see:
Tape can do reblocking of the disk file.

This means you can specify the Llength of the record
and the number of records in a tape block. '

Do you want to do reblocking?
Answer yes or ng -

Answer YES or NO, depending on whether or not you want to do
reblocking. (See Section 4.1., "Reblocking,” for a discussion on
reblocking.) If you want to do reblocking, the screen clears and
TAPE displays this message:

What is the size of the record?
(For example: 10, 20, 512 or any size You want)
Answer?

* ||

What is the number of records in a block?
Answer?

TAPE assumes that the sequential file you want to copy to tape has
fixed-Length records. gjye the length of the record (in bytes,

' USING THE MAGNETIC TAPE UTILITY PROGRAMS

including any record delimiters such as carriage returns and & v L 7

Line-feeds.)

If you enter just a RETURN, TAPE assumes a record Length of 512,

Now give the number of these records you want to fit into one tape
block. This is called the blocking factor.

TAPE now clears the screen and tells you how many characters you
are writing in a tape block. For example:

You are writing 2500 characters in a.fape block.

If this number does not reflect what you really want to do, you may

type a Control-C to exit from TAPE to AMOS command level. For -

example:

You are writing 0 characters in a tape block.

The message above indicates that you entered invalid data to the
reblocking gquestions. Exit TAPE via a Control~C, and try again.

Next you see:

*| %] %

Ts the tape loaded?
Type return if it is

When you are sure that the tape is physically mounted on the tape
drive, and that the tape is at Lload point, type a RETURN. (If you
do not want to start writing at the beginning of the tape, the tape
does not have to be at Lload point.)

Now TAPE asks:

Is the tape drive on~line?
Type return if it 1is

‘Make sure that the tape drive is on-Line. (Check with the

documentation that accompanied your tape transport to see what
button or switch to push to put the drive on-Line.)

Now the TAPE program begins its data transfer. When the copy is
finished, TAPE clears the screen and you see a message that tells
You how many tape blocks were written and how many errors occurred.
For example:

There were 100 tape blocks written or read.
There were O errors.

ki it b

USING THE MAGNETIC TAPE UTILITY PROGRAMS | " pageio ¢

¥

Your tape drive detects any parity or CRC errors and reports them -

back to the AM-500 control ler,

9. Remember to make note of the size of the data records, the number
of data records per tape block, and the total number of tape blocks
YOou wrote. Also remember the BPI value you recorded the tape at.
When you transfer the data back to a disk file, you will need this
information.

10. If you do not rewind the tape, you can write another file beginning
at the next position on the tape. (You can keep using TAPE without
rewinding the tape until the tape is full.)

5.3 Transferring Data from Tape to Disk Files
When vyou copy data from tape to a disk file, TAPE requires that the file be
a sequential file with fixed-length records. Make sure that the current BPI
value for the drive you are using is the value originally used to record the
data.
To write data to a disk file from a magnetic tape, enter:
~TAPE
Now TAPE begins to ask you a series of questions:
1. The screen clears and you see:
This is the magnetic tape program.

It can copy files from disk to tape or it can copy files
from tape to disk.
*

*| %)

Which do you want to do?
1- Copy a file from disk to tape.,
c= Copy a file from tape to disk.

Type the number of the option you wish.
Answer?

Enter a 2. (If you enter anything but a 1 or a 2, TAPE asks the
question "Which do you want to do?" and then displays the example
above again.)

(1f you chénge your mind about wanting to write to a disk file,
type a Control-C to interrupt TAPE and return to AMOS command
level.) :

USING THE MAGNETIC TAPE UTILITY PROGRAMS ~ “page 11 .-

2.

Now the screen clears and TAPE displays the message:

Tape can do character code conversion.

What type of conversion do you want to do?

1 = None.

2 - Convert the ASCII file to an EBCDIC file.
3 - Convert the EBCDIC file to an ASCII file,

Type the number of the option you wish.
Answer?

TAPE is able to convert your tape data from EBCDIC to ASCII form,
and vice versa. Because you are transferring data from tape to a
disk file, this guestion is asking if you want to translate the
data on the tape before you write it to disk. Enter the number
that selects the conversion (if any) that you want to perform.
(You must enter a 1, 2, or 3; any other answer causes TAPE to
re-display the example above.) To interrupt. TAPE and return to
AMOS command Llevel, type a Control-C. ‘

The screen clears and you see:
Type in the name of the disk file the tape is to be

copied into.
Answer?

Enter a standard AMOS file specification (e.g.,
DSKO:MAIL.DATC110,21). (The default extension is .DAT. TAPE
assumes the account and device you are currently logged into.)

The screen clears and you see:
Which tape drive are you using?

(For example = MTUD: MTU1: MTUZ: etc.)
Answer?

Give the specification of the magnetic tape unit you want to use
(e.g., MTUS:). If you decide at this point that you do not want to
continue with the TAPE operation, type a Control-C to exit to AMOS
command Llevel,

TAPE now displays this message:
You must supply blocking information on the tape file.

This means you must say how many characters are in a
record and how many records are in a tape block.

What is the size of the record?
(For example: 0, 20, 512, or any size you want)
Answer?

USING THE MAGNETIC TAPE UTILITY PROGRAMS _ Page 12

Give the number of bytes in each data record. Include any record
delimiter bytes, such as carriage returns and line~feeds.

NOTE: When writing data from a disk file to tape, blocking
information is optional. However, when you write data from tape to
a disk file, you MUST supply blocking information. TAPE has no
way of knowing the blocking factor and record length you supplied
when you originally wrote the data onto the tape. You must now
supply that information to successfully retrieve your data from the
tape.

After you answer the duestion above, TAPE asks:

%] %] %

What is the number of records in a block?
Answer? '

Give the blocking factor you used when you originally wrote the
data to the tape. (Ffor example, if you wroteé 100 data records per
tape block, enter the number 100.) .

You MUST enter an answer for the questions - above on blocking
information. If you enter just a RETURN, TAPE re-displays the
questions.

Now you see a message that tells You how many characters TAPE has
calculated to be in a tape block. For example:

You are reading 10000 characters in a tape block,

If this number 4is not correct (for example, it is 0), there was
something wrong with your answers to the questions on blocking
above. Type a Control-C to exit to AMOS command level and. try
again. After this message, TAPE asks you for the number of blocks
you want to read from the tape. For example:

You are reading 2500 characters in a_tape block.

*®] %] %

How many tape blocks do You want to read?
Answer?

Enter the number of tape blocks you want to transfer to a disk
file. TAPE will read no more than the number of blocks you
specify, but under certain circumstances will read less. For
example, if the end of the tape is reached before TAPE has read the

‘specified number of blocks, it will stop. If an end-of-file marker

is reached, TAPE stops reading.

USING THE MAGNETIC TAPE UTILITY PROGRAMS Page 13

10.

NOTE: Some tapes contain’a special header block at the front of the
tape as the first file. This header file may be only one block
long. If you use TAPE on such a tape, it reads this file first and
stops, reporting that it read only one block. Use TAPE again
without rewinding the tape, and you will read the first of your
files on the tape.

(NOTE: See Section 6.0., "The SKIP Command,” for information on
using SKIP to skip over files and header files.)

Now TAPE asks:

*| %] %

Ts the tape loaded?
Type return if it is

Type a return when you are sure that the tape is physically mounted
on the tape drive reel. Make sure that it is at or past Load
point. Type a RETURN. (If you do not want to start reading at the
front of the tape, it does not have to be at load point.)

Now you see:

Is the drive on=~lLine?
Type return if it Js

Type a RETURMN when you asre sure that the tape drive is on-Line.

TAPE now transfers over the data from the tape to the disk file.
It clears the screen and tells you how many tape blocks it read
from the tape and how many errors occurred. For example:

There were 200 tape blocks written or read.
There were 0 errors

Your tape drive detects any parity or CRC errors and reports them
back to the AM-600 controller.

If you do not rewind the tape, you can use TAPE again to copy the
next file on the tape. 1In this way, Yyou can read a tape that
contains many files, even if those files consist of records of
different sizes grouped with different blocking factors.

USING THE MAGNETIC TAPE UTILITY PROGRAMS : Page 14

5.4 TAPE Error Messages

If you give TAPE invalid device specifications you see the standard system
eérror messages. For example:

2Cannot READ Devn: - device does not exist

You gave an invalid specification to TAPE's question: Which tape

drive ‘are you using?. Make sure that the magnetic tape units are
defined as devices in the system device ‘table.

?Memory allocation failed s

When you specified the number of characters per tape block, vyou
gave too large a number. (For example, you specified a record size of
100,000.) cCheck the validity of the blocking informaticn you gave to
TAPE. :

You are writing 0 characters in a tape hlock.

This message indicates that You made an error when answering
TAPE's questions on data blocking. Type a Control-C to exit to AMOS
command level and try using TAPE again.

?Cannot OPEN Filespec - file already exists

You tried to write data from the tape to a file, but a file with
the same specification already exists. TAPE returns you to AMOS
command (evel. Check your file specification to make sure that you
entered the correct device and account specifications. Try using TAPE
again, but enter a different filespec.

?Cannot READ Filespec - file not found

You tried to write data from a disk file to the tape, but the
system cannot find the specified file. TAPE returns vyou to AMOS
command (evel. Check your file specification to make sure that you
entered the correct account and device specifications. Try using TAPE
again, but enter a different filespec.

?Cannot READ Devn: - file not found
You are trying to write data from the magnetic tape to a disk

file, but TAPE cannot read the tape. You usually see this message when
you try to read from a blank tape or when the tape is not positioned at
the start of a file.

?Cannot WRITE Devn: - device not ready
The tape drive is not on-Line. Push the on-line switch or button

on the tape transport.

?Cannot READ Devn: ~ device error

You see this message 1if the system BPI value is different than
that at which the tape was recorded. (Use the SET BPI command 1f you
need to change the system BPI value.) You can also see this message if
there is a bad spot on the tape.

USING THE MAGNETIC TAPE UTILITY PROGRAMS Page 15

6.0 THE SKIP COMMAND "'

The SKIP command tells MTU.DVR to skip to the next end-of-file marker on the
tape. Use SKIP to skip over initial header files at the front of the tape
and to skip over files on the tape you don't want to read. ‘

IMPORTANT NOTE: Make sure that no other user is accessing the tape drive
YOu are using when you use SKIP.

To skip to the beginning of the next file, enter:

=SKIP Devn:
where Devn: selects the magnetic tape unit you want to use. For example:

< SKIP MTU4:
If the tape is currently positioned at the front of a file, the SKIP command
causes the tape drive to skip over the entire file to the beginning of the
next one. If the tape is currently positioned in the middle of a file, the
SKIP command causes the tape drive to move to the beginning of the next

file.

When SKIP finishes, it returns you to AMOS command Llevel.

6.1 SKIP Error Messages
If you supply an invalid device specification, you see:

?File specification error

Make sure that the magnetic tape wunit vyou specified i a wvalid system
device. (Type DEVTBL followed by a RETURN to see a list of all system
devices, including the magnetic tape units.)

USING THE MAGNETIC TAPE UTILITY PROGRAMS — INDEX ' 40 “ ‘Page Indek=1

Index

7=track o o o w v 4 4 . . . c s e e . 2

9=track L L. 2

AM-600 L 1,10, 13
ASCOMP s e -
ASCIT v 4 v i h e w e 4 e e e e

Blocking data
Blocking factor

2]

+
o]
o

“
-
-

Changing blocking factors
COPY

NSO N O

Data blocking
Data conversion
Data incompatibility
Data restrictions
Default blocking factor
befault BPI
Default record length
Density 4 4 4w
Detecting errors
DEVTBL . . . & . 4 4 4 s e e e w ..

v
~
oe

.
»
= =2 N O Oy =2
=]
-
-
W

EBCDIC . . . & v 4 4o v 4 v w o . « 1
EOF (end-of=file) . v o o P
Error messages
REWIND 5
SET BPI & 4 4 4 4 v e s w e e w e 4
SKIP & & i i i e e h e h e e e . 15
TAPE & & &t i i i e e e e e e e . 13

IRG (Inter-record Gap)l . 4 4 v . . . b

Load point 3, 13
Marking end-of-tape . v o u o » . . .
Mount

MTSTAT.SYS & . & . . o o . . « 2 « =
MTU.DVRET,6] . . . L v s w e ww ..

- = N ON

USING THE MAGNETIC TAPE UTILITY PROGRAMS — INDEX =~ . .. " Page ‘Index=2

: - ;;\
Non-sharable devices 1 o {Tﬁf

On-Lline “ s s e e s .

9
Reblocking data -« 6,8
Record delimiters a4 = s o« 8
REWIND e« a2 a s s o 4
SETBPI " a2 a 2 2 a2 « « - 3
Setting tape density - - 3
Setting up for mag tape 1
Sharable devices « 1
SKIP P
System initialization tommand file . 1
SYSTEM.INI |

TAPE & s e h e e ... - s e T

Tape organization 6 _
Transferring data « . 2,5,7,10
Transport & v o 4 v o .. 2

TYPE . & & . s e h e e e e . « s s 2

v

THE MAGNETIC TAPE FILE BACKUP PROGRAMS

1.0 INTRODUCTION

The Alpha Micro magnetic tape backup system consists of three programs:
FILTAP, the program to transfer files from disk to tape; TAPFIL, the program
to restore files to disk from tape; and TAPDIR, the program to Llist the
contents of a magnetic tape. These three programs when used with the AM-400
Magnetic Tape subsystem allow you to easily and rapidly back up and restore
both sequential and random files. The programs have full wildcarding
capability and allow you to back up multiple disk surfaces on a single tape.
The software also allows you to split a single backup across multiple reels
of tape.

NOTE: To use these programs, you must use Version 4.5 or Llater of the
magnetic tape driver, MTU.DVRE1,6], supplied on the disk with the programs.

These programs store and read data on the magnetic tape in a special
variable-length record format developed by Alpha Micro. This format was
optimized for the characteristics of the Alpha Micro computer and its
magnetic tape subsystem; it was not intended that this format be used for
data idinterchange with other, non-Alpha Micro computers. If you wish to
transfer data to other computers using the magnetic tape subsystem, you
should use the TAPE program; see Using the Magnetic Tape Utility Programs
in the AMOS Software Update Documentation Packet for more details on that
program.

IMPORTANT NOTE: It is important to remember that this set of programs was
designed as a mechanism for backing up disk files. That means that FILTAP
writes files to the tape along with their full device and account
specifications. (It also writes the date and time of backup.) Therefore,
when using TAPFIL to read a tape, if you want to access a specific file you
MUST specify the disk and account from which the file was backed up, as well
as the magnetic tape drive containing the tape you want to access. For
instance, 1if you stored a file on tape from DSK2:, you must specify the
device specification "DSK2:" when you restore the file from the tape. We
give specific examples in the sections below.

1.1 Wildcarding Features

ALL three programs have been designed to function as much as possible Llike
their disk-oriented counterparts (COPY and DIR) to make the magnetic tape
software as easy to use as possible.

FILTAP, TAPFIL, and DIRTAP use wildcard symbols and specification defaults
in the same way that COPY and DIR do. This is because, like COPY and DIR,
FILTAP, TAPFIL, and DIRTAP are "wildcard commands."

THE MAGNETIC TAPE FILE BACKUP PROGRAMS ' Page 2

Wildcard commands differ from other AMOS commands in that besides accepting
the standard AMOS file specification: ' ' ' ‘

Devn:filename.extensionlp,pnl{/switches}

they also accept a variety of wildcard specifications. A wildcard file
specification allows you to select multiple files with only one file
specification. These file specifications can contain the special wildcard
symbols *, %, [], and ALL:. For example, to specify all files.in all
accounts of DSKO: that have a .BAS extension, wildcard commands permit the

file specification:
DSKO:*.BAS[] -

(In the example above, the symbol * stands for all possible filenames.) In
addition, the wildcard commands allow you to set account, device, and switch
specification defaults. For example, the wildcard command Lline:

=FILTAP [100,2]%.BAS,*.TXT[117,6],%.LST @ED

sets the default account specification to [100,21. The command Line thus
selects all .BAS and .LST files in account £100,21, and all .TXT files in
account [117,6]1. (Notice that the account specification setting the default
occurs before the filename and extension rather than after it, as s the
case with a standard AMOS file specification.)

1.1.1 Switches and Wildcard Commands — "Switches" are option requests.
Each switch must begin with a slash, /. Remember that wildcard commands
recognize two types of switches: "file" switches and "operation" switches.
An operation switch applies to all of the file specifications on an entire
command line no matter where it appears on that command Line.

A file switch may apply to only specific file specifications, depending on
where it appears on the command Lline. If a file switch appears at the end
of a file specification, 4t applies only to the files selected by that
specification. For example:

=FILTAP * ,BAS,*.TXT/QUERY,*.LST

in the command Lline above, the /QUERY switch (a file switch) applies only to
those files selected by the *.TXT file specification. If a file switch
appears before a file specification, it becomes the default switch, and
applies to all of the files selected by the following file specifications
unless it is overridden for a particular file specification by another
switch, or until a new default is set. For example:

~FILTAP *.BAS,/QUERY*,TXT,*.LST,*.MAC/NOQUERY,*.PRG

the fQUERY switch affects all files selected by the specifications *_TXT,
*.LST, and *.PRG, but not the files selected by the specification *_MAC.

THE MAGNETIC TAPE FILE BACKUP PROGRAMS | " Page 3

Because wildcard file specifications are extremely powerful, they can have
very widely ranging effects. If you are not familiar with the way in which
wildcard commands work, be sure to read Chapter 9 of the AMOS User's .

Guide, (DWM-D0100-35) before attempting to use wildcard specifications.

2.0 WRITING DISK FILES TO TAPE — THE FILTAP PROGRAM

The FILTAP program writes disk files to the magnetic tape. This program
accepts a standard wildcard file specification which specifies the files to
back up.

The FILTAP program operates in two modes: /APPEND and /NOAPPEND mode. In
/APPEND mode, FILTAP searches for the Llast file on the tape and starts
writing the new files immediately after any data already on the tape. In
/NOAPPEND mode, FILTAP does not look to see if any data is already on the
tape, but just starts writing files at the beginning of the tape. The
default mode of operation {s /APPEND. Of course, if the tape is blank
(i.e., a new tape), you should specify the /NOAPPEND mode.

Call the FILTAP program by giving a wildcard specification for the files you
wish to back up:

SFILTAP{/switches} Filespect{/switches}{, Filespec2{/switches}...>

The Filespec default is *.* and the account and device you are logged into.
The default switches are /NOQUERY/APPEND. .

The FILTAP program now asks you for the device code and unit number of the
magnetic tape drive you want to write to:

Enter tape unit number:

(FILTAP assumes a device code of MTU.)

FILTAP now writes the files to tape, listing each file as it transfers it.

(NOTE: Because FILTAP also writes the date and time of the backup to the
tape, vyou should use the system commands DATE and TIME to set the system
date and time before you use FILTAP.)

2.1 Example

For example, to back up all files from disk device DSKD: to the magnetic
tape drive MTUO: (starting at the beginning of the tape), use the following
command :

THE MAGNETIC TAPE FILE BACKUP PROGRAMS . . s Page 4

.FILTAP DSKO:[1/NOAPPEND GED)
Enter tape unit number: 0RED
AMSORT.SYSC1,41 to MTUD:AMSORT.SYSL1,43

Total of 1282 files transferred

2.2 Writing to Multiple Tapes

If aL[of the files you specified will not fit on one tape, FILTAP displays
the following message:

%Tape is full, please mount another tape then type RETURN to
% continue, or type control-C to abort copy

If you wish tc continue backing up files on another reel of tape, wait for
the current tape to finish rewinding, mount a new reel of tape, then type
RETURN on your terminal. The backup will continue on the new reel. If you
wish to abort the backup, type a Control=-C.

2.3 FILTAP Switches
FILTAP provides the switches below:

/QUERY or /Q Ask user for confirmation before copying files (file
switch).

/NOQUERY or /NO®@ Don't ask for confirmation (default, file switch).

/ APPEND or /A write files to tape at the end of existing files
(default, operation switch).

/NOAPPEND or /NOA Write files at beginning of tape (operation switch).

2.4 Error Messages
You may see the following error messages when using the FILTAP program:

?Cannot find DSKO:SCNWLD.SYSLC1,4] or MEM:SCNWLD.SYS
The FILTAP program needs- this file to be able to process wildcard
symbols 4n your file specification. This message can indicate
that SCNWLD.SYS does not exist, or that you do not have enough
memory to load the file into your partition.

P

£
'

—

THE MAGNETIC TAPE FILE BACKUP PROGRAMS - - -+ . :Page 5

7Cannot READ Devn - device does not exist

?Cannot READ Devn - device is not mounted
You tried to copy to or from a device that is not listed in the
DEVTBL command in your SYSTEM.INI, does not have a driver in area
£1,61 of the System Disk, is not file-structured, or 1is not
mounted. ('Devn:" is the device you specified,)

%“No file-oriented device' corresponding to Devn: is mounted :
You specified a device, but left off the wunit number. FILTAP
cannot find a logical unit that matches your specification. Try

mounting the device,

ZTape is full, please mount another tape then type RETURN to

% continue, or type control-C to abort copy
There is no more room on the current reel of tape. Mount another
reel and type RETURN to continue the backup process, or type a
control-C to abort the backup procedure.

3.0 RESTORING DISK FILES FROM TAPE = THE TAPFIL PROGRAM

Use the TAPFIL program to transfer files back to the disk from tape. The
files must have been written to the tape via FILTAP., TAPFIL provides full
wildcarding, allowing easy selection of the files to be restored, as well as
automatic renaming facilities.

To use TAPFIL, enter the TAPFIL command followed by an output specification,
an input specification, and any optional switches:

=TAPFIL{/switches} outspec = {inspecl{/switches}{,inspec2{/switches}...}}@ED
The output specification defaults to the dinput specification. The input
specification defaults to #*.* and the device and account you are Logged
inte. The default switches are /NOQUERY/DELETE.

TAPFIL now asks you for the device code and unit number specifying the tape
drive you wish to read from:

Enter tape unit number:

TAPFIL assumes a device code of MTU.

TAPFIL then rewinds the tape and starts searching for the specified files.
As TAPFIL finds them on the tape, it transfers the files to the disk and
accounts you have specified.

The output specification you supply to TAPFIL is the specification of the
file(s) you wish to create. TAPFIL provides full wildcarding. Just as with
the COPY command, you may not copy files from one account to another unless:
1) the account you are copying from is in the same Project as the account to
which you are copying; or, 2) you are logged into the disk account dnto
which you are copying the files; or, 3) you are logged into the System

THE MAGNETIC TAPE FILE BACKUP PROGRAMS S pagd 6

Operator's account, [1,2]1. (As with the COPY command, logging into account
[1,2]1 gives you certain privileges. The default account specification of the
Outfilespec when you are logged into £1,2] is the wildcard account, [J.
Also, if you are Logged into [1,2]1, TAPFIL will create the account you are
copying to if it does not exist.)

The input specification s a Llist of the files you wish to copy from the
tape. The input specification must give the exact specification of the file
you wish to copy, including device and account of the file as it is stored

on the tape.

3.1 Example

For example, assume you are logged into DSK0:0140,11 and you wish to copy a
file from tape that was backed up from your own account (DSKO:[140,11).
Enter:

-TAPFIL = FILE.DAT (RET)

Enter tape unit number: 0 @ED
MTUO:FILE.DAT to FILE.DAT
Total of 1 file transferred

Note that in the ekampLe above, the output specification defaulted to the
input specification, and the input device and account defaulted to the
device and account you are currently Llogged into.

If you want to copy a file from tape that was backed up from another device
and account (DSK2:[1,4] for example), you would enter the following command:

~TAPFIL = DSK2:TEST.BAS[1,4]
Enter tape unit number: 0 RED

ﬁTUU:DSK?:TEST.BASE1,Z] to TEST.BAS

Total of 1 file transferred

If you want to restore all the files stored on a tape to their original
device and account, you would log dinto [1,2] and enter the following
command: :

<TAPFIL = ALL:[]

If you want to return all the files étored on a tape back to their accounts
of origin in Project 110 of DSKO:, you would Log into an account in Project
110 and enter the following:

~TAPFIL DSKO:[J=DSK3:[110,+]

If you include a filename and/or extension in your outpUt specification, you
can rename the copies of the files you are writing to disk. For example:

=TAPFIL DSK3:[1*.0LD = DSK1:[300,171%.MAC GED

e

THE MAGNETIC TAPE FILE BACKUP PROGRAMS | EEEREE R SV

copies all .MAC fites from the tébe backed up from .accounts ESOO;T?j on.

DSK1: to the same accounts on DSK3:, and renames the file extéhsions from
-MAC to .OLD. ' '

3.2 Restoring from Multiple Tapes

If you are restoring files from multiple tapes created by the FILTAP
program, you must enter separate TAPFIL commands for each tape.

3.3 TAPFIL Switches
TAPFIL provides the following switches:

/QUERY or /@ Ask user for confirmation before copying files (file
switch).

/NOGQUERY or /NO® Don't ask for confirmation (default, file switchl.

/DELETE or /b Copy over to an existing file, thereby deleting it
(default, file switch).

/NODELETE or /NOD Don't copy over to any existing files (file switch).

3.4 Error Messages
You may see the following error messages when using the TAPFIL program:

?Cannot find DSKD:SCMWLD.SYS[1,41 or MEM:SCNWLD.SYS
The TAPFIL program needs this fite to be abte to process wildcard
symbols 1in your file specification. This message can indicate
that SCNWLD.SYS does not exist, or that you do not have enough
memory to load the file into your partition.

?Cannot READ Devn - device does not exist

?Cannot READ Devn - device is not mounted
You tried to copy to or from a device that is not listed in the
DEVTBL command in your SYSTEM.INI, does not have a driver in area
{1,6] of the System bDisk, is not file-structured, or is not
mounted. ("Devn:" 1is the device you specified.)

#No file-oriented device corresponding to Devn: is mounted
You specified & device, but left off the unit number. TAPFIL
cannot find a logical unit that matches your specification. Try
mounting the device.

THE MAGNETIC TAPE FILE BACKUP PROGRAMS L .~ Page 8

?Tape is not file structured ‘
The tape you are trying tc read was not written by -the FILTAP
program. The TAPFIL program can only read tapes written by
FILTAP. Check to make sure you have mounted the correct reel of
tape.

?Missing output specification
You omitted the equal sign in your TAPFIL command line; TAPFIL
couldn't tell which information was your input specification and
which was your output specification.

?More than one output specification
You may not supply more than one output specification.

7Files may not be transferred to RES:
You may only add programs to system memory by using the SYSTEM
~ command wWithin your system initialization command file,
SYSTEM.INI.

%Not copied - Destination file already exists
You tried to copy to an existing file while the /NODELETE option
was in effect.

?You are not logged in under £1,21, can't create Ep,pnl
You cannot copy from an account to a nonexistent account unless
you are Logged in under [1,21. If you copy to a nonexistent
account while Logged under £1,21, TAPFIL will create the account.

20utput MFD s full '
The Master File Directory only has room for 64 entries. The
transfer in progress would have created a new account, but there
is no room in the MFD.

%Bypassing BADBLK.SYS[1,2]

% BADBLK.SYS exists to prevent bad blocks
% on a device from being allocated, and
4 should never be directly accessed.

You cannot copy the BADBLK.SYS file, since this would Llead to
corruption of the file system.

?Device full
There is no more reoem on the disk.

?Cannot OPEN Devn: - protection violation
TAPFIL could not transfer the files. You are not allowed to write
into an account you are not -logged dinto unless the project
number of that account is the same as the project number of the
account you are copying from. You must either log into the System
Operator's account, [1,2], or the account you are copying into to
accomplish the transfer.

THE MAGNETIC TAPE FILE BACKUP PROGRAMS _ . ¢ Page 9

4.0 LISTING THE CONTENTS OF A TAPE - THE TAPDIR PROGRAM

The TAPDIR program displays a lList of the files that have been stored on a
tape. (NOTE: You may only use TAPDIR on a tape that was written via
FILTAP.) The TAPDIR program has been designed to be as similar to the DIR
program as possible,

To create a List of the files on a tape, enter the following command:

~TAPDIR{/switchX{Listfi Lespec=}{inspec1{/switch}{,inspec2{/switch}>...} _ -

Where the optional Listfilespec specifies where the output Listing is to be
placed. If you specify no Listfile or equal sign, the display goes to your
terminal. By specifying a Listfile, you can send the display to a disk file
or printer.

The optional inspec allows you to select the files you wish to include in
the directory Listing. The default is the device and account you are logged
into, and a file specification of *._%.

TAPDIR now asks for the device code and unit number of the drive containing
the tape that you want to get a directory Listing of:

Enter tape unit number.:

Now TAPDIR creates the output Listing, showing the relative position of each
file on the tape, the full file specification, the size of the file, whether
the file 4s a Linked (L) or contiguous (C) file (that is, whether it is a
sequential or a random file), and the date and time that the file was
written to the tape. At the end of the listing, TAPDIR gives the total
number of files and blocks that it has found.

4.1 Example

For example, to list all the files on a tape on your terminal, enter the
following command:

<TAPDIR ALL:[]
Enter tape unit number: 0 (D

1 DSKO: SYs MAC 140,1 16 L 14-May-80 14:52:23
2 DSKO: NBSORT MAC 140,1 4 L 14-May-80 14:52:25
3 DSKO: FILTAP MAC 140 ,1 23 L 14-May-80 14:52:25
4 DSKD: JANE DAT 140,1 99 C 14-May-80 14:52:27

Total of 4 files in 142 blocks

To create a file (DIRECT.LST) in the account and device you are logged into
that contains a list of all data (.DAT) files on the tape, enter the
following command:

-TAPDIR = ALL:%.DATL?

THE MAGNETIC TAPE FILE BACKUP PROGRAMS " “Page 10

4.2 DIRTAP Switch
DIRTAP provides the following switch:

- /RILL or /K- Delete and replace existing Listfile if it has thé

same specification as your Listfilespec. {(Operation

switch.)

4.3 Error Messages
You may see the following error messages when using the TAPDIR program:

?Cannot find DSKO:SCNWLD.SYSL1,4]1 or MEM:SCMWLD.SYS
The TAPDIR program needs this file to be able to process wildcard
symbols in your file specification. This message can indicate
that SCNWLD.SYS does not exist, or that vyou do not have enough
memory to load the file into your partition.

?Cannot READ Devn - device does not exist

?Cannot READ Devn = device 15 not mounted
You tried to copy to or from a device that is not Listed in the
PEVTBL command in your SYSTEM.INI, does not have a driver in area
£1,61 of the System Disk, 1is not file=structured, or is not o
mounted. (“bevn:" is the device you specified.)

i,

.

%ZNo file-orjented device corresponding to Devn: is mounted
You specified a device, but left off the unit number. TAPDIR
cannct find a logical unit that matches your specification. Try
mounting the device.

?Tape is not file structured
The tape you are trying to read was not written by the FILTAP
program. The TAPDIR proaram can only read tapes written by
FILTAP. Check to be sure you've mounted the correct reel of tape.

?More than one output specification
You may not supply more than one output specification.

?Device fyll
There is no more room on the disk.

%No such files ,
TAPDIR was wunable to find any files matching your input
specification.

April 1981

ir

BUILDING A TERMINAL DRIVER (THE NENfRM PROGRAM)

Because of the device independent nature of the Alpha Micro system, adding a
new kind of terminal is a simple matter-- you need only modify your system
initialization command file to contain a terminal definition statement for
the terminal, and add a terminal driver program for the new terminal to your
System Disk. The terminal driver program defines the terminal to the
system, giving information about the particular characteristics of the
device. Because terminals differ so widely, certain functions may be useful
only for certain types of ‘terminals. The two main types of terminals are
hard copy terminals, which output data to a permanent display via a

printing mechanism, and CRT terminals (also called video display

terminals, or VDT), which output data to a video screen. The terminal

drivers for CRT terminals are the most difficult to write, since the
programmer must worry about cursor positioning and other screen-oriented
functions.

Alpha Micro supports a wide range of terminals by providing a large number
of terminal driver programs (in both source and assembled form). In the
past, if you wanted to use a terminal for which Alpha Micro does not supply
a terminal driver, you had to try to medify an existing terminal driver to
perform the functions of the new terminal, or had to laboriocusly write your
own driver program. Either case required that you understand quite a bit
about AMOS assembly language and terminal drivers.

Beginning with Release 4.5, Alpha Micro is providing a tool to help our
users develop their own terminal driver programs for any kind of terminal
they would Llike to add to the system. The tool is a terminal driver
building program called NEWTRM. This pregram provides you a skeleton
terminal driver, and allows you to customize the skeleton terminal driver
according to the needs of your particular terminal. You customize the
terminal driver by answering a number of questions with yes or no, values,
or parameters which describe your terminal.

1.0 THE NEWTRM PROGRAM

Using NEWTRM to build a new terminal driver will take you about half an hour
and will require that you are familiar with the characteristics of the
terminal you need the driver for. It is a good idea to have the user's
manual that accompanied your terminal at hand while you use NEWTRM so that
you can look up the information that NEWTRM requests.

NEWTRM uses the following files. Do not erase or modify them.

BUILDING A TERMINAL DRIVER (THE NEWTRM PROGRAM) ' . . Page 2

DSKO:TABDEF.MACL1,4] ' VARDEF.MAC[1,6]
DSKC:TDV1.MACL1, 6] _ DSKQ:TDV2.MACL1,6]
DSKO:ECHO.MACFE1,61 DSKO:NEWTRM.PCFL7,5]

To use NEWTRM, Log into the Driver Library account, DSKO:[1,6]:
-LOG DVR:
Now, run the terminal driver building program NEWTRM by entering:
-NEWTRM
NEWTRM now gives a set bf instructions:
Terminate all input Lines with carriage returns.
ALL numeric jnput is in decimal.

Separate numeric answers on the same line with spaces.

ALL NUMERIC answers default to 0). .
If you have any problems, refer to the NEWTRM documentation.

Next, NEWTRM asks a Llong series of questions. Your answers to these
questions will tell NEWTRM how to customize the skeleton driver to form a
terminal driver for your particular terminal. The result will be a .MAC
file that you can assemble to produce an assembled terminal driver program.

You may enter your answers in either uppercase or lowercase letters, or a
combination of both. Also, any response of yes or no you enter may be
abbreviated to the first letter of the word. For example, to a yes-no
question you wish to answer in the affirmative, you may enter any of the
following: '

YES

Yes
Y

b4

We discuss each of the questions asked by NEWTRM below:

1.1 What is the name of the driver?

NEWTRM first asks for the name of the new terminal driver. Choose a one- to
six-character name for the driver. You should use a name that readily
identifies the type of terminal supported by the driver (for example,
"HAZEL" for a Hazeltine terminal). Do not supply a2 file name extension
(that 4is, if you want to use the name SOROC, enter just "SOROC", not
"SOROC.TDV"™). For example:

What is the name of the driver? $OROC GED)

You will later add this terminal driver name to the system initialization
command file TRMDEF statement that will define vyour terminal. (For
infaormation on modifying the system initialization command file to add a new
terminal to your system, see The System Initialization Command File 4n the

4

BUILDING A TERMINAL DRIVER (THE NEWTRM PROGRAM) - - Page 3

"System Operator's Information" section of the AMOS Software Update
documentation packet.) ' N

1.2 Enter the number of nulls required after a Line feed:

Some terminals require that one or more null characters be sent to them
following a Linefeed. These null characters serve as. a delay so that the
terminal does not print the first few characters following the linefeed on
that same Line, before actually performing the Linefeed. Usually only hard
copy terminals require this delay. For example, your terminal might require
that 6 nulls be sent after. a linefeed to ensure that the beginning of the
next line actually follows the Linefeed. Enter 0 if no delay is required.

1.3 Enter the number of nulls required after a form feed:

Some terminals, again usually just hard copy terminals, require that one or
more null characters be sent to them following a form feed. These null
characters serve as a delay so that the terminal does not print the first
few characters following a form feed on the bottom of that same page, before
actually performing the form feed. Your terminal, for instance, might
require that 4 nulls be sent to it after 2 form feed in order to process the
form feed before printing further characters. Enter 0 if no delay is
reguired.

1.4 Dpoes your terminal have a keyboard?

Some terminals are output-only devices, and have no keyboard. Enter yes or

no. If your answer s no, NEWTRM will ask you no further guestions.
Instead, it will say "Please wait...", then finish building the terminal
driver. For information on what to do next, once you are returned to AMOS

command level, see Section 2, "Finishing uUp."

1.5 1Is RUBOUT a shift~-underline?

Answer yes if the RUBOUT key (sometimes Labeled RUB, DEL, or DELETE) is sent
by pressing the Shift and Underscore keys simultaneously. This is the only
Wway that a shifted rubout is generated. Otherwise, you must have a separate
key for RUBOUT that you don't have to shift for; in this case, answer no.

1.6 1Is your terminal a CRT?

Answer yes if your terminal has a video display screen. (CRT means
cathode-ray tube, a common reference to t he actual device which
electronically displays characters on the screen. Often known as a VpT, or
Video Display terminal.) Answer no 3$f your terminal 3is a "hard copy"

s

BUILDING A TERMINAL DRIVER (THE NEWTRM ‘PROGRAM) R L i

terminal; that is, if it prints a permanent copy of its interaction with you
and the system on paper. If you answer no, NEWTRM will ask you no further
questions. 1Instead, it will say "Please wait...'", then finish building the
terminal driver. For information on what to do next, once you are returned
to AMOS command level, see Section 2, "Finishing Up." '

1.7 Enter the number of rows on the screen:

Enter the number of horizontal rows that may be displayed on the terminal at
one time. This number is usually 16, 24 or 25 rows.

1.8 Now enter the number of columns:

Enter the number of vertical columns that may be displayed at one time.
This number is usually 32, 40, 64, 72, 80 or 132 columns.

1.9 For the cursor positioning command, is the row sent first?

Following the cursor positioning command from the terminal driver, if your
termimal must receive the ROW byte from the terminal driver before it
receives the COLUMN byte, answer yes. If it must receive the COLUMN byte
first, then the ROW byte, answer no.

1.10 Enter the positional offset from 1,1:

NEWTRM assumes that the home position on the video dsplay terminal is 1,1
(row 1, column 1.) However, many terminals make the home position 0,0, and
some use 32,32, so NEWTRM accepts an offset value relative to 1,1. This
offset wvalue s added to 1,1. If the home position on your terminal is
0,0, enter =1. If the homs position on your terminal is 32,32, enter 31.

1.11 Enter the decimal ASCII value of the function Lleadin code:

Some terminals use function codes, while others use control codes, to
perform operations such as clear screen or position cursor. If your
terminal accepts function codes, it requires a function leadin code to tell
it to recognize the following input as a function code. NEWTRM requires
from you the decimal equivalent of the ASCII value for the leadin code. A
typical Lleadin code, for example, is an ESCAPE. You would enter the ASCII
value for an ESCAPE, which s 27 (base 10). If your terminal uses only
control codes (e.g., Control-K ("K) for cursor up), enter a 0.

BUILDING A TERMINAL DRIVER (THE NEWTRM PROGRAM) - ' Pééé* ‘

1.12 Enter the delay (in- clock ticks) required after functions:

Some terminals, whether using function codes or control codes, require a
time delay to complete execution after receiving commands to CLEAR (clear
screen), EOS (erase to end of screen), EOL (erase to end of line), or even
to position the cursor. Some terminals may also require a time delay after
any insertion or deletion of Lines or characters. If your terminal requires
a time delay after any of these operations, enter the number of clock ticks
required to delay until the command taking the Longest to execute is
complete. You can calculate this number of clock ticks by:

1. Knowing the current baud rate setting of your system. (Say 19,200
baud.) -

2. Counting the number of characters the terminal needs to denerate to
complete that longest operation. (Say it takes 1920 characters to
do the longest operation on your terminal.)

3. Dividing the number of characters that need to be sent by the baud
rate to obtain the decimal part of a second. (1920719200 = 0.1
seconds.)

4. Knowing the cycles per second (Hertz, or Hz) of A.C. power used by
your system as a reference freguency. In North America and a few
other areas, &0 Hz is used, but most of the rest of the world uses
50 Hz. (Say 60 Hz.)

5. Finding the time of one cycle (one clock tick), in seconds. For 60
Hz, one cycle is approximately 0.01667 seconds. For 50 Hz, it is
0.02 seconds. (Say 0.01667 seconds per clock tick.)

6. Dividing the decimal part of a second, previously obtained, by the
length of one clock tick to find the number of clock ticks
required. (0.1/0.01667 = 6 clock ticks.)

The result, rounded up to the nearest whole clock tick (in our case, still 4
clock ticks), is the number of clock ticks required to delay before sending
further information to the terminal while the terminal is performing a
time-consuming function. NEWTRM causes the terminal driver to accomplish
this delay by using the SLEEP monitor call and simply doing nothing for the
duration of that operation.

If your terminal does not reguire a delay after receiving any command, enter
a 0.

1.13 Does the terminal have insert and delete line functions?

Your terminal will have both or neither, but not 3just one or the other.
Enter yes if it has both, or no if it has neither.

BUILDING A TERMINAL DRIVER (THE NEWTRM PROGRAM) | © . _.Page 6 - .

1.14 Does the terminal have erase ‘to end of screen?

Enter yes if the terminal has the ERASE to END OF SCREEN (EOS)_feature,nor
no if it does not. : i

1.15 Does the terminal have erase to end of Line?

Enter yes if your terminal has the ERASE to END OF LINE (EOL) feature, or no
if it does not.

1.16 Do you want function keys translated?

Some terminals have special = keys called function keys. They might be
labeled F1, F2, F3 and so on. When pressed, they send unique codes to the
terminal driver to request the performance of equally wunique functions.
Those codes transmitted by these function keys can be "translated" to their
equivalent codes in the Alpha Micro text editor, AlphaVUE. By answering yes
to this question, you cause NEWTRM to set certain flags in the terminal
driver so that VUE responds directly to the various function keys. If you
do not have function keys, or do not want them translated, answer no. The
next guestion will not be askad.

1.17 Enter the decimal ASCII value of the function key Leadin code:

You are asked this question only if you answer yes to the previous one. To
recognize the unique code sent from the terminal which indicates that the
key pressed is a function key, the terminal driver must first receive the
function leadin code. This function leadin code is typically an ESCAPE,
having a decimal ASCII value of 27. If your terminal has function keys,
enter the decimal ASCII value of the function leadin code it transmits to
the driver. If your terminal does not have any function keys, but rather
incorporates terminal functions into control codes, enter a 0.

1.18 Enter the delay required between function key characters:

When you press 3 function key, the terminal returns to the terminal driver a
Sequence of characters, one at a time, to accomplish the specified function,
Each separate character is sent at the repeat rate of the terminal {the rate
at which characters are repeated when, on the various terminals, you either
hold down a key or hold down both a key and the REPEAT key). The terminal
driver determines whether or not the character sequence s that of 2
function key by first testing for the function key leadin code character,
If it finds that character, it then performs a counting Loop internally,
then Llooks at 3 buffer, . Function key characters alone are found in the
buffer at the end of that Lloop; if the terminal driver finds a character in
the buffer, it knows a function key is being transmitted. 1I1f the Length of
the loop time is too short, the terminal driver won't find the character in

BUILDING A TERMINAL DRIVER (THE NEWTRM PROGRAM) S page?

the bgffer whether or not it is*a function key character. Much too Long -a o
loop time simply delays the system. The length of time the terminal driver

does its timing Lloop is determined by your answer to this question. j?

Petermine the delay count required by:

1. Finding which is Lower: 1) the "effective repeat baud rate" (the
maximum repeat rate (in characters per second) the terminal can
accomplish, multiplied by 10); or 2) the actual baud rate the
terminal will be operating at. (Say the “effective repeat baud
rate” is 600 (for 60 characters per second). Say the actual baud
rate of the terminal is 19,200. The Llower value is 600.)

2. Dividing 1 by that lower value. (1/600 or 0.001666....)

3. Dividing the result by a constant value depending on which
processor your system uses. For the AM-100, that constant s
-0000075, and for the AM-100/T, that constant is .000004335....
(Say it 1is - an AM-100. 0.00M666...7/0.0000075 = 222.222

(approximately).)

4. Taking the final result and rounding it up to the nearest integer.
(223.) :

Enter that value (in our example, 223) in response to the question.

NOTE: Sometimes, if the value as determined above is slightly too low (due
to overhead or other factors), and when the function key is pressed several
times rapidly in succession (or the REPEAT key is also used), the function
key translation routine cannot translate the function key properly.
Changing the value determined above to a slightly higher value should solve
the problem.

1.19 Are there terminating characters sent by function keys?

If you answered yes to the question, "Do vyou want function keys
translated?”, NEWTRM asks you this question (and the following question if
you answer ves to this one).

Some terminal function keys send an "end-of-key" code that tells the system
the function key transmission is over. This code may be a single character,
or a combination of two or more characters. Typically, the code is <EOT>,
<ETX>, <CR>, <CR><LF>, or something similar., The terminal driver needs to
know if this terminating code is sent (but doesn't care what characters the
code consists of); if the code 4s sent, the driver discards all of its
characters. Answer yes to this question if the <function keys send a
terminating code of one or more characters. Answer no if no terminating
code characters are sent.

NOTE: Some terminals allow you to set the character or characters of the
terminating code with a manual switch built into the terminal itself. You
may set this switch into any position available; in any case, the terminal
driver discards it. However, we recommend that you do not select the <EOT>
(i.e., the <End of Transmission>, or Control-D) switch position if vyour

BUILDING A TERMINAL DRIVER (THE NEWTRM PROGRAM) L ' “Page's

terminal operates over a teLephOﬁe Line. This is because <EOT> will c¢cause
SOme modems, which are between the terminal and the system running _the

terminal driver program, to disconnect the phone Line.

1.20 Enter the number of terminating characterss:

If you answered no to the question, "Are there terminating characters sent
by function keys?", this question will not appear. If you answered Yes, now
enter the number of characters in the function key terminating code. For
example, if the terminating code is <ETX>, enter a 1; if the terminating
code is <CR><LF>, enter a 2. The terminal driver will danore that many
characters following the character unique to the function key. The terminal
driver does not care what those characters are, but must know exactly how
many of them are in the terminating code.

1.21 Are there values sent by function keys that should be discarded?

Some terminal function keys send more than the function leadin code and the
character unique to the given key. Any characters coming before these two
should be discarded. For example, the BEEHIVE DMxx serijes returns four
characters, <ETX><ESC><ASCII character><ETX>. For that terminal, <ESC> 4s
the Leadin character, the ASCII character is unique to a given key, and
<STX> must be discarded. <ETX> is the function key terminator, also to be
discarded, but which is handled in a different way, based on your answers to
the previous two questions. Answer yes to the current guestion if your
terminal transmits characters (including the terminating character) other
than the Lleadin character and the wunique character. If you answer no,
NEWTRM skips to the second question below.

1.22 Enter the decimal ASCII value of the character to discard:

If you answer y€s to the question "Are there values sent by function keys
that should be discarded?"”, NEWTRM asks You this question. Answer by
entering the decimal equivalent of the ASCII value of the character to be
discarded, then type a RETURN. Do not enter the value of any terminating
characters. NEWTRM will frepeat the question until you identify all the
characters (other than terminating characters) to be discarded. After vyou
have finished, type just a RETURN when the question is asked again; NEWTRM
will go on to the next question.

ko)
Fa
%

BUILDING A TERMINAL DRIVER (THE NEWTRM PROGRAM) Page 9

1,23 Is the XXX command impLemen}ed on the terminal?

Where XXX is a command name. NEWTRM begins a four question Loop which it
repeats for each of 27 commands your terminal may implement (that is,
electronically support based on its construction). For example, you first
see:

Is the clear screen command implemented on the terminal?

If you answer yes, NEWTRM then asks:

Does the clear screen command require a delay?

Whether you answer yes of no to this question, but dependent upon
information asked of you earlier, NEWTRM may ask you:

Does the clear screen command use the standard leadin code?

And finally, NEWTRM requests the command code or codes your terminal
transmits for the clear screen command:

Enter the decimal ASCII value(s) of the command code(s) -

Then NEWTRM repeats the sequence for the second command:

Is the cursor home command implemented on the terminal?

If you answer no this time, NEWTRM skips the three questions dependent on a
yes and inauires about the next command. And goes on in this manner to ask
you about each of the 27 commands Listed below, basing the secondary
questions upon your response to Is the XXX command implemented on the
terminal?. Here are the commands NEWTRM asks you about:

BUILDING A TERMINAL DRIVER (THE NEWTRM PROGRAM) o - © .Page 10

Command Name) : TCRT Function .- S (~1!
clear screen 1]

cursor home . 1

cursor return (is not asked; it is an ASCII standard) 2

cursor up 3

cursor down 4

cursor Left 5

cursor right 6

lock keyboard I4

unlock keyboard 8

erase to end of Line 9

erase to end of screen 10

protect field (reduced intensity) 11

protect field (normal intensity) 12

enable protection of fields 13

disable protection of fields 14

delete line 15

insert Lline 16

delete character 17

insert character 18

read cursor address 19

read character at é¢urrent cursor - address 20

start blinking field 21

end blinking field 22 oy
start line drawing or alternate character set 23 {
end Line drawing or alternate character set 24 e
set horizontal position 25

set vertical position 26

set terminal attributes 27

curser positioning none

The commands in the above List are the only ones that NEWTRM asks you about
(except for cursor return, which is standard for all ASCII terminals, and
which therefore is automatically provided by NEWTRM). They are the TCRT
commands supported by Alpha Micro. The numbers to the right of the commands
in the List above are the TCRT functions for each command. (NOTE: Cursor
positioning, the Llast on the list, has no TCRT function.) If you wish to
implement additional terminal commands, the source file which NEWTRM creates
for you must be modified “by hand" to contain those additional commands.

NOTE: Some terminals (such as the ADM-31) implement the end blinking field
and/or the end Line drawing field as an end attribute command. T1f this is
the case for your terminal, enter the single end attribute command sequence
when either the end blinking field or the end line drawing field sequences
are requested by NEWTRM.

1.23.1 Does the xxx command require a delay? - Answer the first
additional question with & Yes or no. The delay referred to is the delay ‘
you entered in response to the question, "Enter the delay (in clock ticks) L
required after functions:"

SUILDING A TERMINAL DRIVER (THE NEWTRM PROGRAM) | ¢ Pagett

1.23.2 Does the XXX command ‘use the standard leadin code? - This second
questjon is not asked unless you have indicated, in response to an earlier
Question NEWTRM asked you, that there is g3 Lleadin code. Answer yes if the
command in question is implemented as a multiple character sequence.- Answer
no if the command is implemented as a control character,

1.23.3 Enter the decimal ASCII value(s) of the command code(s): - Enter
the decimal equivalent of the ASCII value(s) of the command code(s), Do
not enter the Leadin code. NEWTRM automatically places it if the command
requires a Lleadin code. Enter the values by separating them with a space,
then type a RETURN. You can enter a maximum of 10 values per command.

This is the last of the secondary questions. Now MNEWTRM asks you about the
next command in the List, until it has inquired about all 27. Then it goes
on to the question below.

1.24 Does the cursor positioning command require a leadin code?

Answer yes if your terminal requires the same leadin code for the cursor
positioning command sequence as it does for the 27 commmands above. Answer
no if ejther no leadin is used or if a different leadin is required.

1.25 Enter the cursor positioning command sequence:

Do not enter the Leadin code. If you answered yes to the question above,
saying the same Leadin code is required, NEWTRM automatically places it.
Enter the decimal value of each byte, separated by spaces, until a max imum
of 10 bytes are entered. Type a RETURN after you enter all the bytes of the
sequence. »

1.26 Enter a code returned by a function key:

This question and the next one are only asked if you have indicated earlier
that your terminal has one or more function keys that are to be translated
into AlphaVUE commands. These two questions alternately repeat until you
enter just a RETURN in response to this question.

Enter the ASCII value (in decimal) returned by a specific function key that
uniquely identifies that key. Then type RETURN. For example, assume that
the leadin code for your terminal's function keys is <ESC>, Say that one of
the terminal's cursor positioning keys sends <ESC><A> when pressed. In
response to this question you would enter 65, the decimal ASCII value for A.
(See Section 5.0 for a complete decimal equivalent ASCII chart.)

BUILDING A TERMINAL DRIVER (THE NEWTRM PROGRAM) T Page 12

1.27 Now type a VUE command that c&hresponds to the function key:

This -question follows the previous question for each of the function keys.
It correlates the terminal's function keys " to specific operations within
VUE. In response to this question, press the actual key (plus the
Control=-key) that VUE uses for the specific operation you want to correlate
to the function key. Do NOT type a RETURN. (NEWTRM expects you to type a
VUE command, and is waiting for it. If you type a RETURN, NEWTRM does not
process the RETURN wuntil it again asks you, "Enter a code returned by a
function key:", at which time NEWTRM thinks you are telling it there are no
more function codes to enter.) For example, an IBM terminal sends <ESC><A>
from a function key to indicate MOVE CURSOR UP. To make VUE correspond to
that function key of your IBM terminal, enter a Control~K in response to
this question, because "K is the VUE command for MOVE CURSOR UP.

2.0 FINISHING UP
NEWTRM has asked its last guestion. You will see "Please wait...", then:

The driver is complete. You may assemble and test it now.

NEWTRM has created the source file for your terminal driver. Now vyou must
assemble the program by using the MACRC command. Enter:

+MACRO SOROC
where '"SOROC" is the name you used in telling NEWTRM what terminal driver to
build. When MACRO finishes and returns you to AMOS command level, rename
the .PRG file it produced to the terminal driver extension, .TDV:

=RENAME/D *.TDV=SOROC.PRG FED)

You now have a finished terminal driver program, customized for vyour
terminal.

3.0 ERROR MESSAGES

NEWTRM has one error message. You may also see standard AlphaPASCAL error
messages. Typing a Control-=C (°C) closes the partially completed output
file and aborts NEWTRM.

?Bad answer = try again
You typed an answer that did not start with a Y, v, N or n.
NEWTRM. repeats the question. :

BUILDING A TERMINAL DRIVER (THE NEWTRM PROGRAM) - Page 13

4.0 WORKSHEET FOR YOUR TERMINAL '

Use this section as a worksheet for your specific terminal. You will: find
the information you need in your terminal user's manual. If NEWTRM asks
about a feature your user's manual doesn't mention, the terminal probably
does not implement that feature. You may find commands using different
terminology in the user's manual. Comparing this document's text to the
manual's, you will be able to find the information NEWTRM is asking for.-

NEWTRM WORKSHEET FOR THE ' TERMINAL

NEWTRM uses the deLowing files: Do not erase or modify them.

DSKO:NEWTRM.PCFL7,5] DSKO:TDV1.MACL1,61
DSKO:ECHO.MACL1,6] DSKO: TDVZ.MACL1,6]
DSKO:TABDEF.MACL1,6] DSKO:VARDEF.MACC1,6]

Log into the Driver Library account, DSKO:[1,61:. Run NEWTRM by entering:
=NEWTRM
Remember, these are the rules:

Terminate all input Llines with carriage returns.

ALL numeric input is in decimal.

Separate numeric answers on the same Line with spaces.

ALL NUMERIC answers default to O.

If you have any problems, refer to the NEWTRM documentation.

Also, remember that you may use any of these combinations for yes or no
responses: YES, Yes, ves, Y, y or NO, No, no, N or n.

What is the name of the driver (& char. or less; no extension)?
Enter the number of nulls required after a Line feed:
Enter the number of nulls required after a form feed:

Does your terminal have a keyboard?

Is RUBOUT a shift-underline?

Is your terminal a CRT?

Enter the number of rows on the screen:

Mow enter the number of columns:

For the cursor positioning command, is the row sent first?
Enter the positional offset from 1,1z

Enter the decimal ASCII value of the function Lleadin code:
Enter the delay (in clock ticks) required after functions:
Does the terminal have insert and delete L(ine functions?
Does the terminal have erase to end of screen?

Does the terminal have erase to end of Line?

Do you want function keys translated?

Enter the decimal ASCII value of the function key leadin code:
Enter delay required between function key characters:

Are there terminating characters sent by function keys?
Enter the number of terminating characters:

Are values sent by function keys that should be discarded?
Enter the decimal ASCII value of the character to discard:

<I I -~ < < <| I I <| I - < <I I
=Z==

' -~

BUILDING A TERMINAL DRIVER (THE NEWTRM PROGRAM)

“Pagé?TA?ﬂj}_l

PLEASE ENTER -UP
TO 10 COMMAND
CODES IN DECIMAL
ASCII VALUES
(SPACED APART):

lock keyboard

 Now summarize your terminal's |IS THE | DOES THE| USE THE |
commands by placing checkmarks | COMMAND | COMMAND | STANDARD
and codes in the appropriate |IMPLE- | REQUIRE | LEADIN
columns for each command below. MENTED?| A DELAY?| CODE?

Y : N Y : N Y : N

clear screen :
cursor home _:_ 1z - _
cursor up __ | T -~
cursor down R _ _
cursor Lleft | _:_ | - _
cursor right : |

unlock keyboard

erase to end of Line

erase to end of screen

protect field (red. intensity)

protect field (norm. intensity)

enable protection of fields

disable protection of fields

delete Line

insert Lline

delete character

insert character

read cursor address

read char. at cursor address |

start blinking field

end blinking field

start Lline draw or alt.char.set |

end line draw or alt.char.set |

set horizontal position I
|
!
I

set vertical position
set terminal attributes
cursor positioning

. wa

- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
» -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
N -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -

A8 FR B2 S mm ay a0 A & R as aE am as s mm as an

!
! I
| |
l [
I I
I |
l l

Does the cursor positioning command

Enter cursor positioning sequence (to 10 spaced ASCII values):

Enter a code returned by a function

Now press a VUE command that corresponds to

Enter a code returned by a function

Now press a VUE command that corresponds to

Enter a code returned by a function

Now press a VUE command that corresponds to

Enter a code returned by a function

Now press a VUE command that corresponds to
Continue to repeat for more function keys to

Assemble and test the driver now:

-<MACRO drivername

require a Leadin code?

10 ASCII values):
the function key:
10 ASCII values):
the function key:
10 ASCII values):
the function key:
10 ASCII values):
the function key:
correspond.

key (to
key (to
key (to

key (to

Rename the .PRG file produced to the terminal driver extension, .TDV: L

-RENAME/D *.TDV=drivername.PRG

BUILDING A TERMINAL DRIVER (THE NEWTRM PROGRAM) - Page 15

5.0 DECIMAL EQUIVALENT ASCII CHART

VALUE CHARACTER VALUE CHARACTER VALUE CHARACTER
0 NULL 48 0 96
1 SOH- 49 1 97 a
2 STX 50 2 98 b
3 ETX 51 3 99 c
4 ECT 52 4 100 d
5 ENG 53 5 m e
4 ACK 54 é 102 f
7 BEL 55 7 103 g
8 BS 56 8 104 h
9 HT .57 9 105 i
10 LF 58 : 106 j
11 vT 59 ; 107 k
12 FF _ 60 < 108 L
13 CR 61 = 109 m
14 so 62 > 110 n
15 SI 63 ? 111 o
16 DLE b4 a 112 P
17 DC1 65 A 113 o]
18 pce 66 B 114 r
19 DC3 &7 C 115 s
20 Dc4 468 D 116 t
21 NAK 69 E 117 u
22 SYN 70 F 118 v
23 ETB 71 G 11¢ W
24 CAN 72 H 120 X
25 EM ‘ 73 I 121 y
26 SS 74 J 122 z
27 ESC 75 K 123 {
28 F§ I{: L 124 |
29 GS 77 M 125 h
30 RS 78 N 126 -
3 us 79 0 127 DEL
32 SP &0 P
33 ! a1 Q
34 " 32 R
‘25 # 83 S
34 $ 84 T
37 % 85 u
28 4 86 v
39 ! 37 W
40 (88 X
41) 89 Y
47 * 90 z
43 + 91 r
Lt , 92 A
45 - 93]
46 - 94 -
47 / 95

AMOS Software Update Documentation
¥ . AMOS Release 4.5
7T April 1981

SYSTEM PROGRAMMER'S INFORMATION

This section contains the following documents:

1/0 Programming on the Alpha Micro Computer, Revision AD1

Terminal Service System

AMOS 4.5 SOFTWARE UPDATE DOCUMENTATION PACKET

'Alpha Micro', 'AMOS', 'AlphaBASIC', 'AM-100',
‘AlphaPASCAL', 'AlphaLISP', and 'AlphaSERV!'

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA Q2714

These documents reflect AMOS Versions 4.5 and later

©1981 - ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North
Irvine, CA 92714

May 1980
Revision AQ1

I/0 PROGRAMMING ON THE ALPHA MICRO COMPUTER

Whenever a program must communicate with an I/0 device, whether within an
interface driver, a device driver, or a hard-coded program, it is said to be
using I/0 programming. The Alpha Micro central processors (the AM-100 and
the AM-100/T) both use a memory-mapped 1/0 technique. Except for a few
minor differences, these two processors are completely compatible; those
minor differences occur din 1I/0 programming. This document outlines the
various methods and techniques used in I/0 programming, and explains the
differences between the two Alpha Micro processors.

The Alpha Micro processors both contain 256 separate 1/0 locations, each
eight bits wide. These I/0 lLocations are mapped into memory locations FFGO
(hex) through FFFF (hex). These locations may be accessed as bytes (AM-100
and AM-100/T) or as words (AM=100/T only). When byte operations are
performed on the I/0 locations, the two processors behave identically; it is
only when word operations are performed that differences appear.

For word operations, the AM-100 uses only the Low-order half of the word
during a write operation. During a read, the I/0 byte is replicated in both
halves of the resulting word.

The AM-100/T, on the other hand, will properly read and write words to the
I1/0 Llocations, providing that the 1/0 controller handles word operations.
Currently, no Alpha Micro interface bhoards handle 16-bit transfers.
However, to Leave this feature available for future use, a slight change in
the way that I/0 word operations are performed was necessary. On the
AM-100/T processor, a read-word operation to a controller handling
byte-reads only, returns the resultant byte in only the upper half of the
word. This differs from the AM-10CG, which returns the byte in both halves
on 2 read-word coperation. Likewise, word-mode I/0 writes use only the data
in the upper byte when using byte-oriented controllers.

Therefore, when programming byte-oriented devices (all currently available
devices are byte-oriented), you should avoid word-mode instructions whenever
possible to avoid any confusion. If word-mode instructions must be used,
then only the high-order byte should be used. If word-mode I/0 to
byte-oriented controllers is restricted to the high-order byte, the AM-100
and AM-100/T are completely compatible.

(Changed 1 May 1981)

I/0 PROGRAMMING ON THE ALPHA MICRO COMPUTER _ Page_?

Instructions that generate a read-modify-write seguence {(format 7 and 10 op
codes using destination modes 1 through 7) jgnore the read portion of the
sequence and do only the write. This was engineered into the design of the
processors to avoid confusion with - I/0 devices which use the same I/0
Location for two different functions based on whether a read or a write
operation is being performed. Therefore, if you wish to read the contents
of ‘an I/0 Llocation with a format 10 op code, it may only be done in the
source field of the instruction. When writing to an I/0 Llocation, any
format 7 op code or format 10 op code with destination modes 1-7 may be used
if such an instruction makes sense without the read operation.

Examples:

1. CLRB @#"HOFF04 "7 Clears 1/0 Location 4.

2. CLR 2# "HOFFO4 AM-100: ‘Clears I1/0 Lecation 4.
AM=-100/T: ClLears I/0 Llocation 4 on
a byte-oriented controller. Clears
locations 4 and 5 on word-oriented
controllers.

3. TSTB @# HOFFOS Won't work without read-- writes junk
to I/0 lLocation 5.

4, BIT #2,a# HOFFD6 Won't work without read-- writes junk
to I/0 Location 6.

5. BIT a#"HOFFQ6 ,#2 AM=100: Will work fine. AM-100/T:
Will not work-- contents of I1/0
Location 6 are read into upper byte
only.

T 6. BIT a#"HOFFO6,#2_8. Will work fine on all processors.
The AM-100 brings data into both
halves; the AM-100/T into the upper
half.

7. cMP a# "HOFFQ7 RO Will not work wunless controller is
word-oriented and the controller 4s
on the AM-100/T.)

8. CMPB @#"HOFF08,R0O Will work fine on both processors.
9. BISB #2,d# HOFFO9 Will not work. Requires a read-
- modify-write seguence for proper
operation. Writes junk dnto I/0

Location 9.

Example #6, above, is the only change Likely to be required in converting an
existing driver to run on the AM=-100/T. (The underscore, _, used in example
#6 is a MACRO expression operator which tells MACRO to shift the expression
(2) the specified number of bits. Hence, a shift of eight (decimal) bits
puts the 2 into the upper half of the word.)

(Changed 1 May 1981)

April 1979

TERMINAL SERVICE SYSTEM

1.0 INTRODUCTION

The terminal service system incorporated in the AMOS monitor is a flexible
and efficient set of routines and drivers for interfacing a variety of
different terminals with different interface bocards. You may write your own
drivers for terminals and dinterfaces not supported by Alpha Micro. This
document describes the general structure and function of the terminal
service system, but does not 9o into details on how to write user-defined
drivers. We have made available the sources to TRMSER, FILSER and several
terminal drivers for those individuals who want to write their own terminal
driver programs. Details on the monitor calls wused within terminal and
interface drivers are in the AMOS Montitor Calls Manual, (DWM-00100-42).
For a general overview of the Alpha Micro Operating System, see Part 111 of
Introduction to AMOS, (DWM-00100-65). :

2.0 GENERAL STRUCTURE

The monitor contains a general terminal processing routine called TRMSER
whose function is to Link user programs and monitor processes to the outside
world of interactive terminals; this is done purely on a data basis, without
regard te terminal or dinterface hardware. TRMSER processes data on a
character-by-character basis. Monitor calls are available to your programs
for passing characters and full buffers of data between the terminals and
the system. Think of TRMSER as a telephone operator who switches calls back
and forth between sources and destinations without regard to the type of
telephone in use or the name of the person using that telephone. TRMSER
also provides the synchronous Link to the asynchronous world of the terminal
hardware.

TRMSER is a monitor routine that dis embedded 1in the operating system
skeleton monitor, SYSTEM.MON. In addition to the general TRMSER routine in
the monitor, there must exist one or more routines called drivers that take
the data from TRMSER and translate it as necessary into the specific codes
required by the hardware and then route it to the terminal through the
interface board. These drivers reside in account [1,6]1 of the System Disk,
and are automatically loaded into system memory in response to the terminal
definition (TRMDEF) command Llines in the systm initialization command file
(SYSTEM.INI file) at the time of system startup. Driver programs MUST be
reentrant; only one copy of a driver is loaded into memory regardless of the
number of terminals or interface boards of that type defined on the system.

The terminal service system uses two general types of drivers: interface
drivers and +terminal drivers. Interface drivers contain the routines
necessary to get data characters to and from the interface boards that plug
into the S-100 bus. Terminal drivers contain routines that process each

TERMINAL SERVICE SYSTEM : Page 2

character that goes to or from the terminal. Terminal drivers handle code L

character conversions, echoing functions, Line-=feed null characters, cursor
control, and special functions as required by the type of terminal in use.

3.0 INTERFACE DRIVERS

Interface drivers Link the TRMSER routines and the actual hardware
responsible for getting characters to and from the terminal device. The
interface drivers are assembly Language programs with an .IDV extension.
The filename of the interface driver appears in the TRMDEF command Line of
the SYSTEM.INI file, and tells the system what kind of 4nterface is being
used by the terminal defined By that command Line. Typical drivers are for
the AM-300 board, the Processor Technology 3P+5 board and the IMSAI SI0-2
board. The interface driver handles all initialization sequences for the
board if required, and also sets up interrupt processes if the board
supports it. Those boards which are not dinterrupt driven get put into the
" clock scanner queue for asynchronous access every clock tick. A special
interface driver exists on the system called the PSEUDO interface driver; it
controls no hardware at all, but instead represents a software-controllable
interface for inter~job communication and control.

4.0 TERMINAL DRIVERS

Terminal drivers customize the handlLing of character input and output based
on the type of terminal being used. They are assembly Language programs
that have the .TDV extension. The filename of the driver 1is the name by
which the terminal type 1is referenced in the TRMDEF statements in the
SYSTEM.INI file. Typical terminal drivers are for the ADM3, the Soroc, the
Teletype, the Multiterm and the S$ilent 700.

The terminal driver processes all input and outout chracters, and determines
if these characters need special handling because of the type of terminal
being used. The terminal driver handles echo control and different methods
of character deletion. For example, most CRT terminals have the ability to
back up and erase the character being deleted, while hard copy terminals
(such as the Teletype) must explicitly echo the character, usually in a
format that distinguishes the characters from those accepted as input.

Terminal drivers may also be written for software-controlled ports, and two
such drivers are built dinto the monitor already. The PSEUDO and NULL
terminal drivers are used in conjunction with the PSEUDO interface driver,
and provide a means for passing characters straight through to the
controlling job or discarding output characters that are unimportant.
Terminal drivers are usually unconcerned with the type of interface used to
physically tie the terminal to the computer.

e

TERMINAL SERVICE SYSTEM Page 3

5.0 INTERSYSTEM DRIVER LINKS

The relationship between the different elements of the terminal service
system can seem confusing at first; nevertheless, efficient systems—level
programming requires a thorough understanding of the Links that exist
between these items. The following units are referenced in further
discussions:

1. JOB - A job is the unit that controls the operation of one task or
a series of tasks running on the system. A job is independent of
any other jobs running on the system unless it is tied to them by
special user software. Every job on the system has a unigque name
one to six characters Llong.

2. TERMINAL - A terminal is the hardware device wused to physically
transfer data into the system, and get data from the system to the
user on a character-by-character basis. Terminals do not
themselves have names. Typical terminals might be a Teletype,
ADM3, Soroc, etc.

3. TERMINAL DEFINITION - A terminal definition wunit is a block of
memory in the system area set up by a TRMDEF statement. It is the
basic unit by which a terminal in the system is referenced when
attaching that terminal to a specific job, or when using the
terminal as an I/0 device under control of the TRM device driver.
The terminal definition unit has a unigue name one to six
characters Llong.

4., INTERFACE DRIVER = An interface driver is the program that
transfers characters back and forth between the terminal and the
hardware interface board to which the terminal s physically
connected. The interface driver has a name one to six characters
long that 1is referenced by the TRMDEF statements in the SYSTEM.INI
file. Interface drivers reside in account DSK0:[1,61, and have the
extension .IDV. .

S. TERMINAL ©DRIVER = A terminal driver is the program that performs
the character code conversions required by the terminal in wuse.
The program has a name (one to six characters long) that is
referenced only 1in the TRMDEF statement of the SYSTEM.INI.
Terminal drivers reside in account DSKO:[1,61 and have an extension
of .TDV.

6. DEVICE DRIVER - A device driver is a program that allows the system
to communicate with any 1/0 device comnected to the system. Device
drivers are written for disks, tape units, printers and terminals.
The handling of terminals as devices for use by the generalized
file service system is done through the TRM device driver, and not
through the terminat drivers themselves. Device drivers have a one
to three character name that is referenced 1in the device table
statement (DEVTBL) in the SYSTEM.INI, and in user file
specifications (e.g., AMS1:FILNAM.TXT). Device drivers reside in
account DSKO:[1,6] and have the extension of .DVR.

TERMINAL SERVICE SYSTEM) . L Page 4 .

The terminal definition wunit contains the Links to the defined interface
driver and to the defined terminal driver; it thus 1is the basic unit by
which terminals are referenced on the system. When a terminal is attached
to a job, the JCB (Job Control Block) and the terminal definition wunit
become Llinked to each other. A job is considered to be detached if it .is
not Linked up to a terminal definition unit, and a terminal is considered to
be detached if it is not Llinked to a JCB. A job may only be Linked to one
controlling terminal, and vice versa.

A job performs I/0 operations through the particular device driver
referenced by the device specified in the file specification. A job
performs terminal operations through the Linked terminal definition unit for
the ‘terminal that is controlling that job. A detached job is placed into
terminal wait state if it attemptsS to perform a terminal input or output
operation. Since I/0 operations differ in structure and usage from terminal
operations, performing I/0 operations to a terminal must be done through
some mechanism other than directly into the terminal definition unit. From
a system standpoint, the terminal definition unit performs differently than
a device driver. To allow this, a general device driver has been written
called TRM which allows terminals to be accessed as devices, as ooposed to
being accessed only as job controlling terminals. This operation will be
described Llater.

5.1 Terminal Input Characters

Terminal input characters are processed through a complex chain of events.
When a terminal keyboard character 4s struck by the operator, it is
transferred to the hardware interface which then passes it to the interface
driver routine. The interface driver routine reads in the c¢haracter and
then passes it to the TRMSER processor. TRMSER puts the character into the
input buffer to wait for pickup by the program or monitor. As an
asynchronous event, if echoing is not suppressed or 1s Local to the
terminal, TRMSER passes the character back to the terminal driver (when .it
is about to be echoed) to again allow the terminal routine to perform
special functions. An example of this is the special echoing of Control=U
characters for Lline deletion or rubouts for character deletion. The
terminal routine then passes the character (or the converted character) back
to TRMSER to be sent to the output processor.

5.2 Terminal Output Characters

Terminal output characters can come from two main sources: 1. characters to
be echoed from the input processor; and, 2. characters to be output
(generated by the monitor or user program) as messages or data to the user.
Both are handled differently from a buffering standpoint, but eventually are
presented to a common output routine in TRMSER to be sent to the terminal.
Each character for output goes from TRMSER to the terminal driver for
possible output code conversion or character translation. An example of
this would be the null sequence 'sent after every Lline-feed for timing

TERMINAL SERVICE SYSTEM : R 3'__aPage,5

purposes to the Silent 700 terminal driver. The terminal driver processes
the character and then sends it back to TRMSER for position processing.
TRMSER then passes the output character {(or converted character) from the
terminal driver to the interface driver where it is physically output to the

terminal.

6.0 USING TERMINALS AS 1/0 DEVICES

Most proarams (including the print spcoler) perform dinput and output
operations to I/0 devices rather than to the controlling terminal. In some
instances it is desirable to perform these operations on a terminal rather
than a specific I/0 device defined by its own device driver. One example
would be the printing of data on a Multiterm or Teletype, or the use of
these terminals as the output device of the printer spooler. Any terminal
may be accessed as a device through the general device driver called TRM.
The TRM device driver acts as a software link between the format required by
the FILSER file service system and the TRMSER terminal service system. Any
terminal can be considered a device by using the device code TRM and using
the name given the terminal definition unit as the filename (the extension
and PPN are ignored in the file specification).

For example, suppose you have a Teletype connected to an AM-300 board on
port number two. Your TRMDEF command in the SYSTEM.INI file might Llook Like
this:

TRMDEF TELLY,AM~300=2:2,TELTYP,80,100,20

This Teletype may then be accessed as an output device by the file
specification for any 1/0 operations requiring a specific device:

TRM:TELLY

To output directly to this device from BASIC, you would first open . the
device:

OPEN #file,” TRM:TELLY",OUTPUT

and then display data as follows:

PRINT #file,variable-Llist

The wvariable List may contain text and variables that you want to print as
well as PRINT USING masks.

TERMINAL SERVICE SYSTEM . | © e iipage 6

If you are planning on using terminals as 1/0 devices or to spooL to :them,
it might save some space to include the TRM.DVR program in systEm memory
during system startup. ‘You would use the command

SYSTEM TRM.DVRL1,61
before the lLast SYSTEM command in the SYSTEM.INI file. It is not necessary

to do this, however, since FILSER automatically Loads the TRM driver into
your memory partition when it is needed if it. is not in system memory.

AMOS Software Update Documentation

AMOS Release 4.5
April 1981 -

BASIC PROGRAMMER'S INFORMATION

This section contains the foLLowing documents:

BASORT ~

COMMON ~

FLOCK -

SPOOL -

XLOCK -~

XMOUNT -

BASIC Subroutine for Sorting Random and Sequential Files,
Revision AQ02

BASIC Subroutine to Provide Common Variable Storage

BASIC Subroutine to Coordinate Multi-user File Access,

Revision AD1

BASIC Subroutine for Spooling Files to the Line Printer,
Revision AQZ

BASIC Subroutine for Multi-user Locks, Revision AD1

BASIC Subroutine to Mount a Disk, Revision AQ1

AMOS 4,5 SOFTWARE UPDATE DOCUMENTATION PACKET

"Alpha Micro', 'AMOS', 'AlphaBASIC', 'AM-100',
'AlphaPASCALY', 'AlphaLISP', and 'AlphaSERV'

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA Q2714

These documents reflect AMOS Versions 4.5 and lLater

©1981 —- ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North
Irvine, CA 92714

?
i

April 1981 _ _ _— L e aiwsmd
Revision AQ? ' '

BASORT - BASIC SUBROUTINE FOR SORTING RANDOM AND SEQUENTIAL FILES

BASORT is an external assembly Llanguage subroutine, callable from
AlphaBASIC, which can sort both random and sequential files. (A random file
is one in which the records are physically grouped together in one area of
the disk. A sequential file's records are not necessarily contiguous on the
disk.) If your memory partition is large enough (that is, if the entire file
will fit dnto wuser memory at one time), BASORT will perform an internal
memory-based heap sort. If there is not enough room in user memory for the
entire file, BASORT does a disk-based polyphase merge-sort. The combination
of these two modes results in a respectably fast sort utility.

The PBASORT package consists of three modules--BASORT.SBR, AMSORT.SYS, and

FLTCNV.PRG=-all of which must be 1n memory before BASORT is used.
BASORT.SBR 1is automatically loaded into user memory upon direction from the
BASIC program, but AMSORT.SYS and FLTCNV.PRG must be loaded by the user into
system or user memory. Once AMSORT.SYS and FLTCNV.PRG are loaded, they are
re-~entrant; BASORT.SBR is not. <(For more information on loading programs
into system memory, see The System Initialization Command File document in
the "System Operator's Information'" section of the AMOS Software Update
Documentation Packet.)

1.0 SORTING RANDOM FILES

When you use BASORT to sort random files, BASORT sorts the file onto ditself
(that 1is, it reptaces the original, unsorted file with a file containing the
sorted data). Therefore, if you wish to retain a backup copy of the
unsorted file, you must create a separate copy to be sorted.

BASORT for random files is called via:

XCALL BASORT,CHANEL,RECCNT,RECSIZ,K1S1Z,K1P0OS,K10RD,K251Z,
K2POS ,K20RD ,K351Z,K3P0OS ,K30RD,K1TYPE,K2TYPE ,K3TYPE

Where:
CHANEL File channel on which file to be sorted 1is open for
random processing.
RECCNT Number of records in the file you are sorting.
RECSIZ Size of the records in the }iLe you are sorting.
K1512 The size, in bytes, of sort key #1.
K1POS The first character position occupied by key #1.

(Changed 30 April 1981)

BASORT - BASIC SUBROUTINE FOR SORTING RANDOM AND SEQUENTIAL FILES ' :Page 2

K10RD Sort order of kef #1: 0 for ascending sequence;'1 for

descending segeuence.
K2s1z The size, in bytes, of sort kéy H2.
K2POS The first character position occupied by key #2.
K20RD Sort order of key #2. (See K10RD, above.)
K2s1z The size, in bytes, of sort key #3.
K3POS The first character position occupied by key #3.
K30RD sort order of key #3. (See K10RD, above.)

K1TYPE The data type of key #1. Key types are:

0 = String
1 = Floating Point
2 = Binary

K2TYPE The data type of key #2. (See K1TYPE, above.)

K3TYPE The data type of key #3. (See K1TYPE, above.)
Keys are the elements of the data records you wish to base your sort on
(i.e., customer name, order number, etc.). If you want to use less than

three keys, all entries in the XCALL command Line for the unused keys must
be zero. If the key types are omitted, BASORT assumes string data type.

ALL arguments din the XCALL command line are numeric, but may be passed as
either floating point or string values. For example, "99" is a valid entry.

The first character in a record is considered to be position 1.

2.0 SORTING SEQUENTIAL FILES

When you sort a sequential files, you must specify both an input and an
output file. If you wish to sort & file back onto itself, you may specify
the same file for both input and output. Before BASORT is called, the file
must be opened for input. BASORT lLeaves the file open for output.

(Changed 30 April 1981)

BASORT ~ BASIC SUBROUTINE FOR SORTING RANDOM AND SEQUENTIAL FILES =~ Page'3 '

Call BASORT for sequential files'via:

XCALL BASORT,CHAN1, CHAN2,RECSIZ,K1S1Z,K1P0S,K10RD,K2S17,K2P0S,
K20RD,K351Z,K3P0S,K30RD

Where:
CHAN1 The file channeL on which the input file is open.
CHAN?Z2 The file channel on which the ocutput file is open,
RECSIZ . The size, 1in bytes, of the.Largest record in the

file, including the terminating carriage
return/linefeed characters.

K1S1z-K30RD The same as for random files.
If you are in doubt about the size of the largest record to be sorted, make
RECSIZ lLarger than necessary; too small a value results in truncation of
data records.
NOTE: Sequential files contain only ASCII data. For that reason, when you

sort sequential files you do not have to specify the data type of the sort
keys; BASORT knows that all keys in a sequential file are strings.

3.0 BASORT ERROR MESSAGES

?AMSORT.S8YS not found in memory

The sort wutility routine, AMSORT.SYS, must be Loaded into user or
system memory before calling BASORT.SBR.

?Bad channel number in XCALL BASORT

The channel number you passed to BASORT was invalid. This error can
occur if the file is not open, or if the value given as channel 1is not
an integer.

?File improperly open in XCALL BASORT

When you call BASORT, the file you wish to sort must be open for INPUT
or RANDOM processing.

?FLTCNV.PRG not found in memory

The floating-point conversion module, FLTCNV.PRG, must be Lloaded into
user or system memory before calling BASORT.SBR.

{Changed 30 April 1981)

' BASORT - BASIC SUBRO!J.UNE,,; FOR . SORTING RANDOM AND SEQUENTIAL FILES - .Page 4

?2Illegal value in XCALL BASORT N

One of the arguments to .the BASORT call was invalid. .. Check the key
sizes and positions to make sure they fit into the record size which
you specified. Also make sure that you have given valid key types.

?Read file error in XCALL BASORT

An error occurred during a read operation while sorting your file.

2Write file error in XCALL BASORT

An error occurred during a write operation while sorting your file.

?Wrong record size in XCALL BASCRT

The record size you shecified when caLLing BASORT does not match the
record size you specified when you OPENed the file. '

t

{Changed 30 April 1931

January 1979

COMMON ~ BASIC SUBROUTINE TO PROVIDE COMMON VARIABLE_érbaﬂée'f“

1.0 INTRODUCTION

COMMON s an assembly Llanguage routine that allows you to place data into a

common storage area in memory. This is wuseful for passing data between
chained programs, passing messages between jobs, or. any other function that
requires a data area accessible to more than one program or person. By
assigning a name to each packet of information within the common area, you
can have several of these packets in common storage ready to be retrieved by
other users or programs at various times.

1.1 THE COMMON SUBROUTINE

You can call COMMON to send data to the common area via:
XCALL COMMON,SEND _, MSGNAM, VAR

You can call COMMON to retrieve data from the common area via:
XCALL COMMON,RECV,MSGNAM,VAR

Where:

SEND A one-byte binary variable that contains zero. You wusually
define SEND as follows:

MAP1 SEND,B,1,0

RECV A two-byte binary variable, where the first byte must be set
to one, and the second byte functions as a flag that
indicates whether or not COMMON found the requested packet of
information. If COMMON did not find that packet, it returns
a zero in this byte; otherwise it is non~zero. You wusually
define RECV as:

MAP1 RECV
MAP2 F'RCV,B,1,1
MAP2 RCVFLG,B,1,0

MSGNAM A six-character string that specifies the name of the packet
to be sent or received.

VAR A variable to hold the data to be sent or received. The
variable must represent data that 1is less than 151 bytes
Long.

COMMON ~ BASIC SUBROUTINE TO PROVIDE COMMON VARIABLE STORAGE " Page 2

You may load COMMON i_nto__,e'i_t_her,sysftem or user memory. -If you :.load COMMON
into a user's memory partition, only that user can access the data stored by
COMMON. If you load COMMON into system memory (making the data accessible
to all users), be sure that MSGNAM is unique for each packet.

.
i
3

FLOCK - BASIC SUBROUTINE TO COORDINATE MULTI-USER FILE ACCESS Page 15 '

At this point, programs 1 and 2 have both been delayed. Since no “other &

programs are present, the reasons for their delays will remain unchanged.
DEADLOCK has occurred. '

But DEADLOCK will not occur if program 2 requests permission to open files
1001 and 1002 for exclusive use in the same order as pregram 1. For
DEADLOCK to occur, program 1 must be granted permission to open file 1001
for exclusive use, but be delayed permission to open file 1002 for exclusive
use. However, 1if oprogram 1 is granted permission to open file 1001 for
exclusive use, the corrected program 2 (see program 1) will not be allowed
to execute Llines 21-990; thus it will be unable to obtain permission to open
file 1002 for exclusive use. DEADLOCK cannot occur.

5.3 BIBLIOGRAPHY

SHAW, A.C. (1974). The Logical Design of Operating Systems,
Prentice~Hall, Inc., Englewood CLiffs, N.J.

(Changed 30 April 1981)

"FLOCK = BASIC SUBROUTINE TO COORDINATE MULTI-USER FILE ACCESS

4.0 PREVENTING DEADLOCK ' SR e

ing a resource.

 NOTE: For the purposes of the following discussion, permission to ‘open a

file or use a record will be referred tQ as possess

The possession of a resource by some job XYZ can directly or ‘indirectly
cause the execution of other jobs to be delayed: "It is ‘then possible for
bne of these delayed jobs to possess a resource needed “by “job XYZ, thus
causing execution of job XYZ to be delayed -also.* This is known as a
DEADLOCK. None of the jobs involved can proceed since i each “requires a
resource owned by one of the other jobs dnvolved. - The situation is
permanent because none of the jobs involved can proceed -until one of the
other jobs proceeds and relinquishes a needed resource. ' :

DEADLOCK can only occur if a job requests more than one resource
simultaneously. There is a simple method of preventing DEADLOCK which 1in
most -cases s feasible to implement: that is, ALWAYS request resources in
the same order.

Here is a simple illustration of the principle. First we consider what can
happen if resources are requested in differing order in two programs:

10 !'PROGRAM 1

20 XCALL FLOCK,0,2,RET,1001

21 XCALL FLOCK,0,2,RET,1002

100 REMARK ** BODY OF PROGRAM **
990 XCALL FLOCK,1,0,RET,1002

991 XCALL FLOCK,1,0,RET,1001

992 END

10 !PROGRAM 2

20 XCALL FLOCK,D,2,RET,1002

21 XCALL FLOCK,0,2,RET,1001

100 REMARK ** BODY OF PROGRAM *%
990 XCALL FLOCK,Q,2,RET,1001

991 XCALL FLOCK,0,2,RET,1002

992 END

Consider the following sequence of execution:

1. Program 1 executes Llines 10 and 20, obtaining exclusive permission
to open file 1001.

2. Program 2 executes Llines 10 and 20, obtaining exclusive permission
to open file 1002. It then executes line 21, and must be delayed
because Program 1 already has exclusive permission to open file
1001. '

3. Program 1 executes Line 21, and must be delayed because Program 2
already has exclusive permission to open file 1002.

(Changed 30 April 1981)

< T
; .

10
20
21
22
23
30
31
40
41
42
50
51
52
53
54
55

57
60
70
80
90
91
92
100
200
299
300
399

{Changed

BASIC SUBROUTINE TO COORDINATE MULTI-USER FILE ACCESS .. Page.13

'REORGANIZATION PROGRAM
XCALL FLOCK,0,0,RET,1001
XCALL FLOCK,0,0,RET,1002
OPEN #1001,"INDEX",RANDOM,512,KEY1
OPEN #1002,"DATA",RANDOM,512,KEY2
XCALL FLOCK,4,2,RET,1001
XCALL FLOCK,4,2,RET,1002
CALL REORGANIZE ! REORGANIZE INDEXED DATA FIL
XCALL FLOCK,6,0,RET,1002
XCALL FLOCK,6,0,RET,1001
CLOSE #1001 : cLOSE #1002
XCALL FLOCK,1,0,RET,1001
XCALL FLOCK,1,0,RET,1002
END -
REORGANIZE:
REMARK *%* SUBROUTINE GOES HERE %%
RETURN

IINQUIRY PROGRAM
XCALL FLOCK,0,0,RET,10M
XCALL FLOCK,0,0,RET,1002
OPEN #1001," INDEX",RANDOM,512,KEY1
OPEN #1002,"DATA",RANDOM,512,KEY2
INPUT "EMPLOYEE #",EMPS
IF EMP$="" THEN LEAVE
CALL LOOKUP !LOCATE EMP$ IN INDEX FILE, RETURN EMPLOYEE REC # IN KEY2
IXCALL FLOCK,0,0,RET,KEY1 IS IN EFFECT WHEN LOOKUP RETURNS
IFf KEY2=0 THEN ?"EMPLOYEE NOT ON FILE" : GOTO X0
XCALL FLOCK,3,4,RET,1002,KEY2
IF RET <> 1 THEN 55
INPUT "DO YOU WISH TO WAIT? '",ANSWERS
IF ANSWERS <> "Y' AND ANSWERS <> "YES" THEN 30
XCALL FLOCK,3,0,RET,1002,KEY2
READ #1000,EMPLOYEE'RECORD
XCALL FLOCK,5,0,RET,1002,KEY2
XCALL FLOCK,5,0,RET,1001,KEY1
CALL DISPLAY ! DISPLAY EMPLOYEE'RECORD
GOTO 30
LEAVE
CLOSE #1001 : CLOSE #1002
XCALL FLOCK,1,0,RET,1001
XCALL FLOCK,1,0,RET,1002
END
LOOKUP: REMARK **SUBROUTINE GOES HERE**
RETURN
DISPLAY: REMARK **SUBROUTINE GOES HERE**
RETURN

30 Aprit 1981

FLOCK - BASIC SUBROUTINE TO COORDINATE MULTI-USER FILE ACCESS . Page 12 1. i

10 ON ERROR GOTO ABORT

20 XCALL FLOCK,0,0,RET,1000 .
21 OPEN #1000,"FILE",RANDOM,6,KEY
30 XCALL FLOCK,3,0,RET,1000,1
31 XCALL FLOCK,3,0,RET,1000,2
32 KEY = 1 : READ #1000,X

33 KEY = 2 : READ #1000,Y

34 XCALL FLOCK,S,0,RET,1000,2
35 XCALL FLOCK,5,0,RET,1000,1
40 PRINT X-Y

50 CLOSE #1000

51 XCALL FLOCK,1,0,RET,1000
60 END

70 ABORT: -

71 XCALL FLOCK,2,0,KEY

72 ON ERROR GOTO O

3.3 Improved File Interlocks

In Section 3.2 we said that file-open interlocks can incur long delays upon
any users trying to access a file after one user has opened it and therefore
locked them out. Nevertheless, it is sometimes necessary to Lock an entire
file for exclusive use. For example, if file XYZ is becoming full, you might
wish to copy the file XYZ into a new, larger file TEMP, and then delete XYZ
and rename TEMP to XYZ. Or, as another example, you might wish to
reorganize an index and data file. Obviously, during these maneuvers, you
want assurance that no other user can access the file.

Action 4 obtains exclusive access to a file by cbtaining exclusive access to
all the records of that file. gxclusive access is relinguished by using
Action 6. Action 3, Mode O or 4, is necessary before reading a sequence of
records in order to avoid the interconsistency problem. If Action 4 fs
used, it is necessary to wuse Action 3, Mode 0O or 4, before reading
1nd1v1duaL records which won't be used for updating. This is because a user
who has exclusive use of a file can re-create it, which requires that all
other wusers with the file open must then reopen it. Action 3 performs the
necessary reopenings.

3.3.1 Example -~ Here are two partial programs which illustrate the use of
improved file interlocks:

(Changed 30 April 1981)

“FLOCK - BASIC SUBROUTINE TO COORDINATE MULTI-USER FILE ACCESS .: v ~Page 11

S ON ERROR GOTO ABORT

10 XCALL FLOCK,0,0,RET,1000

20 OPEN #1000,"FILE",RANDOM,6,KEY
30 KEY = 1

40 XCALL FLOCK,3,2,RET,1000,KEY
S0 READ #1000,X

60 X=X+1

70 WRITE #1000,X

80 XCALL FLOCK,5,0,RET,1000,KEY
$0 CLOSE #1000

100 XCALL FLOCK,1,0,RET,1000

110 END

120 ABORT:

130 XCALL FLOCK,2;0,RET

140 ON ERROR GOTO O

3.2.2 The Interconsistehcy Problem - Here is how the programs of Section
1.3 could be rewritten to incorporate Record-Update interlocks:

10 ON ERROR GOTO ABORT

20 XCALL FLOCK,0,0,RET,1000

21 OPEN #1000,"FILE",RANDOM,6,KEY

30 KEY = 1

31 XCALL FLOCK,3,2,RET,1000,KEY

32 READ #1000,X : X=X+1 : WRITE #1000,
33 XCALL FLOCK,S,0,RET,1000,KEY

40 KEY = 2

41 XCALL FLOCK,3,2,RET,1000,KEY

42 READ #1000,X : X=X+1 : WRITE #1000,X
43 XCALL FLOCK,S,0,RET,1000,KEY

S0 CLOSE #1000

51 XCALL FLOCK,1,0,RET,1000

60 END

70 ABORT:

71 XCALL FLOCK,2,0,KEY

72 ' ON ERROR GOTO O

(Changed 30 April 1981)

FLOCK - BASIC SUBROUTINE TO COORDINATE MULTI-USER FILE ACCESS Page 10

Since the second program does not update 'FILE', it requests permission to
open it using Mode 0 with Action 0. This enables other programs which read
but do not update 'FILE' to open and process 'FILE' simultaneously.

3.2 Record—-Update Interlocks

Most programs open files when the programs. begin, and close those files when
they end. The programs may not actually need the files to be open
throughout execution, but by not repeatedly opening and cleosing the files,
~ the programs avoid many undesirable delays.

Fite-open interlocks that are seét lock out the entire file; if a file is
open throughout the run of a program, and thus unavailable to programs run
by other users, serious or annoying delays can result.

Although file-open 1interlocks do prevent concurrency problems, they
generally reduce concurrency far more than dis necessary. Typically,
file-open interlocks Lock out the entire file to prevent access to the
single record. Locking out an entire file to prevent access to a single
record is like using a sledge hammer to drive a push-pin. ALL that 1is
actually necessary is to delay any other user attempting to modify the
record until the user originally accessing the record is done.

Consider an example of application in which you and several other users are
interactively updating an employee record file. Assume files are kept open
only where required. Once you display an employee's record, it is necessary
that all the other users wait for you to finish making changes te¢ that
record before they can, in turn, access it; otherwise two users might
concurrently attempt to update the same employee record. This results in
the multiple update problem described in Section 1.2. In other words, all
other users must wait for one user to enter changes to the employee'’s record
before any other user can access and modify that record. This is called a
record-update interlock, and {is a far less severe restriction to all the
users accessing a file than a file-open interlock is.

Actions 3 and 5 of FLOCK permit concurrent access to individual records to
be controlled. Action 3, Mode O or 4, is used before reading a sequence of
records which will not be wused for updating, din order to prevent
interconsistency errors (see Sectien 1.3). Action 5 is used after the
sequence of reads. Action 3, Mode 2 or 6, is used before reading records
which witl be used for updating. Action 5 is used again after rewriting the
records.

3.
1

2.1 The Multiple Update Problem — Here 1is how the program of Section
2 C

ould be rewritten to incorporate Record-Update interlocks:

(Changed 30 April 1981)

FLOCK - BASTC SUBROUTINE TO COORDINATE MULTI-USER FILE ACCESS

5 ON ERROR GOTO ABORT

10 XCALL FLOCK,0,2,RET,1000 |
20 OPEN #1000,''FILE',RANDOM,6,KEY .
30 KEY = 1

40 READ #1000,%

S0 X=X+1

60 WRITE #1000,X

70 CLOSE #1000

80 XCALL FLOCK,1,0,RET,1000

90 END

100 ABORT:

110 XCALL FLOCK,2,0,RET

120 ON ERROR GOTO O

3.1.2 The Interconsistency Problem - Here is how the programs of. Section
1.3 could be rewritten to incorporate file-open interlocks:

10 ON ERROR GOTO ABORT
20 XCALL FLOCK,D,2,RET,1000
30 OPEN #1000,"FILE",RANDOM,6,KEY
40 KEY = 1 : READ #1000, X
50 X = x+1 : WRITE #1000, X
60 KEY = 2 : READ #1000,X
70 X = X+1 : WRITE #1000,X
80 CLOSE #1000

90 XCALL FLOCK,1,0,RET,1000
100 END

110 ABORT:

120 XCALL FLOCK,2,0,RET

130 ON ERROR GOTO O

10 ON ERROR GOTO ABORT

20 XCALL FLOCK,0,0,RET,1000
30 OPEN #1000,"FILE",RANDOM,6,KEY
40 KEY = 1 : READ #1000,x
50 KEY = 2 : READ #1000,y
60 PRINT X-Y

70 CLOSE #1000

80 XCALL FLOCK,1,0,RET,1000
90 END

100 ABORT:

110 XCALL FLOCK,2,0,RET

120 ON ERROR GOTO O

The above programs will now function correctly in a concurrent environment.
While the first program is updating 'FILE', no other programs can have
'FILE' open. This prevents the second program from reading 'FILE' when it
is in a partially updated state. :

(Changed 30 April 1981)

FLOCK - BASIC SUBROUTINE TO COORDINATE MULTI-USER FILE ACCESS . Page 8 T v

The problems outlined in Sections 1.2 and 1.3 can be solved by using FLOCK

to any of the above levels of complexity. . In your design you are free to

trade off complexity for performance, so long as you use a single level of.

complexity consistently for any given data file.

3.1 File-Open Interlocks

Using just Actions O through 2, it is possible to implement a very simple
file access coordination scheme which solves the problems of Sections 1.2
and 1.3. Action 0, Mode 0 or 4, is used before opening a file for input
only (that s, opening a file for RANDOM processing, upon which only READs
will be performed). Action 0, Mode 2 or 6, is used before opening a file
for output (i.e., a file open for RANDOM processing, upon which READs or
WRITEs will be performed, or a file which may be re-created). Finally,
Action 1 1is wused after closing any file, and Action 2 is used before any
abnormal termination points in the program.

3.
1

1.1 The Multiple Update Problem - Here is how the. program of Section
.2 C

ould be rewritten to incorporate file-open interlocks:

10 XCALL FLOCK,0,2,RET,1000
20 OPEN #1000,"FILE",RANDOM,6,KEY

30 KEY = 1
40 READ #1000,X
50 X=x+1

60 WRITE #1000,X

70 CLOSE #1000

80 XCALL FLOCK,1,0,RET,1000
90 END

The program now will function correctly in a concurrent environment. If any
other programs have 'FILE' open when Line 10 is executed (and have correctly
informed FLOCK of the fact with Action 0), FLOCK will make the above program
wait until the other orogram closes 'FILE'. Furthermore, no more programs
will be allowed to open 'FILE' until the above program reaches Line 80.

The above program has no provisions for the user typing "C, or for other

errors occurring which will abort execution. This can be corrected by
further rewriting the program, as follows:

{Changed 30 April 1981)

e 1

FLOCK - BASIC SUBROUTINE TO COORDINATE MULTI-USER FILE ACCESS -.. - Page 7

A Return-Code greater than 1 Yis an indication of some programming error.
For calls to FLOCK which do not use modes 4 or 6, the statement: :

IF Return~Code>1 THEN -PRINT "FLOCK Error" : STOP

should be used while debugging. For calls which use modes 4 or. 6,
Return—Code = 1 should be checked to determine if FLOCK was able to
immediately satisfy the request. Modes 4 and 6 are generally used in this
way to allow the user to cancel a request which may involve a lengthy delay.

2.2 Queue Block Requirements
The FLOCK subroutine builds its dynamic tables out of monitor queue blocks.
It is very important, BEFORE running any BASIC program using FLOCK, to
ensure that the monitor is configured to make an adequate number of these
queue blocks available. A good rule of thumb is to assume that each request
for which permission has been granted requires three queue blocks wuntil
permission is relinquished.

NOTE: The monitor s dnitially generated with 20 free blocks in the
available queue. At any time in the SYSTEM.INI file prior to the final
SYSTEM command, you may execute the 'QUEUE nnn' command which will allocate
'nnn’ more queue blocks for general use.

Once the system is up and running, no more queue blocks can be added to the
monitor. You must give your best guess at your total requirements before
running the program. The QUEUE command takes on a new Life once the system
is running. If you type the QUEUE command the system will respond by typing
back the current number of free queue blocks in the available queue List.
It is by this method that you may keep tabs on the operation of your system
as far as queue block usage.

3.0 USING FLOCK

There are three Llevels of increasing complexity with which FLOCK subroutine
calls may be incorporated into a program system:

1. Use Actions O through 2 to implement file~open interlocks (see
Section 3.1).

2. Use Actions O through 2 to implement file-open interlocks and use
Actions 3 and 5 to implement 4individual record-update interlocks
(see Section 3.2).

3. Use Actions 0 through 2, 4, and 6 to implement complete file

interlocks and wuse Actions 3 and 5 to implement individual
record-processing interlocks (see Section 3.3).

(Changed 30 April 1981)

FLOCK - ‘BASIC SUBROUTINE TO COORDINATE MULTI-USER FILE ACCESS Page 6

Action 5, Mode 0: Informs FLOCK that processing of 'Record' of 'File', for
which permission was granted by Action 3, has been
completed. If data has been buffered for output, it is
written to disk.

Action 6, Mode 0: Informs Flock ‘that exclusive processing of 'File', for
which permission was .granted by Action 4, has been
completed. Any succeeding programs which are granted
use of 'File' by Actions 3 or 4 will automatically
reopen 'File'. This is done in case exlusive processing
of 'File' has caused it to be re-created. If data has
been buffered for output, it is written to disk.

2.1.2 File = File specifies a file-channel number. File is ignored by
Action 2 and may be omitted if 'Record' is also omitted. The file specified
may be either RANDOM or SEQUENTIAL for Actions O and 1, but must be a RANDOM
file for all other actions.

In order for FLOCK to function properly, file-channel numbers should denote
specific and unique files. This means you must systematically assign
file-channel numbers to your files when designing applications programs,
being careful to assign the same numbers to the same files and different
numbers to different files.

File-channel numbers 1 through 999 have been reserved for use by Alpha Micro
software. Although there is nothing to prevent your programs from using
these numbers, you are advised against doing so in conjunction with FLOCK so
that no conflict can arise between your application programs and any present
or future Alpha Micro software on your system.

2.1.3 Record - Record specifies a Llogical record nﬁmber. Record -is
ignored and may be omitted for Actions 0 through 2, 4, and 6.

2.1.4 Return—-Code - Return-Code denotes a variable in which FLOCK olaces
a number that indicates the success or failure of an action:

Code 0: Successful (ALL actionsg)

Code 1: Resource unavailable (Actions 0, 3, &)

Code 2: Open request has already been granted (Action Q)

Code 3: Permission to open must first be granted (Actions 1, 3-6)

Code 4: Duplicate request for use of some record in file (Actions 3, 4)
Code 6: Permission to use some record in file must first be granted

(Actions 5, 6)
Code 100: Unimplemented Action
Code 101: File-channel number must be open in AlphaBASIC for RANDOM i
processing (Actions 3-6)

(Changed 30 April 1981)

FLOCK = BASIC SUBROUTINE TO COORDINATE MULTI-USER FILE ACCESS Page 5

Action 0, Mode 6:

Action

Action

Action

Action

Action

“Action

Action

Action

1,

3,

3,

Mode

Mode

Mode

Mode

Mode

Mode

Mode

Mode

0:

2:

Requests permission to open 'File' for exclusive use.
If the request cannot be immediately granted,
Return—Code 1. 1is returned.

Informs FLOCK that 'File' has been closed. Implicitly
informs FLOCK that any processing of records in 'File!'
has been completed (i.e., Actions 5 or 6 are performed
automatically as necessary).

Informs FLOCK that abnormal program termination dis about
to occur. Performs Action 1 as necessary.

Requests permission to read 'Record® of 'File' for
non—-exclusive wuse (j.e., record will not be used to
update file). Permission to open 'File' must already be
granted. The request is placed in a
first-come-first~-served queue and the program is delayed
until the request can be granted.

Requests permission toc read 'Record' of 'File' for
exclusive use (i.e., record will be used to update
file). Permission to open 'File' must already be
granted. The request is placed in a
first-come-first-served queue and the program is delayed
until the request can be granted.

Requests permission to read 'Record' of 'File' for
non-exclusive use (i.e., record will not be wused to
update file). Permission to open 'File' must already be
granted. If the request cannot be immediately granted,
Return—-Code 1 is returned.

Requests permission to read 'Record' of 'File' for
exclusive wuse (i.e., record will be used to update
file). Permission to open ‘'File' must already be
granted. If the request cannct be immediately granted,
Return-Code 1 is returned.

Requests permission to read/write all records of 'File’!
for exclusive use (i.e., processing will update and
possibly re-create file). Permission to open 'File'
must already be granted. The request is placed in a
first-come-first-served queue and the program is delayed
until the request can be granted.

Requests permission to read/write all records of 'File'
for exclusive use (i.e., processing will update and
possibly re~create file). Permission to open 'File®
must already be granted. If the request cannot be
immediately granted, Return-Code 1 is returned.

(Changed 30 April 1981)

 FLOCK - BASIC SUBROUTINE TO COORDINATE MULTI-USER FILE ACCESS ' Page 4

The READ-~WRITE-READ-WRITE sequence in the first: program can be considered as
steps in a s1ngle update operation. To prevent the situation outlined above
from occurring, we need a mechanism for prevent1ng access to a collection of
‘data during such an update operation. 0therw1se, we may retrieve a

collection of data which has only been -part1aLLy ‘updated. In actual
applications, . this can Llead to accessing nonexistent records through an
index file, incorrect totals on reports, inconsistent reports, etc.

2.0 THE FLOCK SUBROUTINE
Use FLOCK to prevent the kinds of problems we d1scussed in the paragraphs

above. FLOCK provides a way to-synchronize attempts at accessing files and
devices so that you can avoid partially updating or scrambling data.

2.1 Flock Calling Sequence
The calling sequence for FLOCK in BASIC is:

XCALL FLOCK,. Action, Mode, Return—Code, File, Record
Where:

1. Action, Mode, File, and Record are all either floating point
expressions which evaluate to positive integer values, or string
expressions which represent positive integer values.

2. Return-Code is a 6-byte floating point variable.

2.1.1 Action & Mode -~ Action, modified by mode, spebifies the action to
_be performed by FLOCK:

Action 0, Mode O: Requests permission to open 'File' for non-exclusive
use. The request is placed in a first-come-first-served
queue and the program is delayed until the request can
be granted.

Action 0, Mode 2: Requests permission to open 'File' for exclusive use.
The request is placed in a first—come-first-served queue
and the program is delayed until the request can be
granted.

Action 0, Mode 4: Requests permission to open 'File' for non-exclusive

use. If the request cannot be immediately granted,
Return-Code 1 is returned.

(Changed 30 April 1981)

FLOCK - BASIC SUBROUTINE TO COORDINATE MULTI-USER FILE-ACCESS: .y -Pa

~10 OPEN #1,"FILE",RANDOM,6,KEY S

20 KEY = 1 : READ #1,X
25 X = X+1 : WRITE #1,X
30 KEY = 2 : READ #1,X

35 X = X+1 : WRITE #1,X
40 CLOSE #1 : END

10 OPEN #1,"FILE",RANDOM,6 ,KEY
20 KEY = 1 : READ #1,X%

30 KEY = 2 : READ H2,y

40 PRINT X~y

50 CLOSE #1 : END

If the values 1in records—one and two of 'FILE' are identical, then they
should continue to be identical if the first program (which increments the
values 1in both records by one) is executed. Hence, if the values in records
one and two are identical, and we execute both of the above programs
concurrently, we would Like the second program to print zero, thus:

X USER #1 REC #1 #2 USER #2 X ¥
- OPEN #1,"FILE",RANDOM,4,KEY 5 5
5 KEY = 1 : READ #1,X 5 5
6 X = X+1 : WRITE #1,X 6 5
5 KEY = 2 : READ #1,X 6 5
6 X = X+1 : WRITE #1,X 6 6
6 CLOSE #1 : END 6 6
- 6 6 OPEN #1,"FILE",RANDOM,6,KEY - -
- 6 6 KEY = 1 : READ #1,X 6 -
- 6 6 KEY = 2 : READ #1,Y 6 6
- 6 6 PRINT X-Y 6 6
0
- 6 6 CLOSE #1 : END 6 6

-.--——-u_—._....—_-—..—_-_-u__——-.—-———q- S e e T it S S e S ik . e P

However, under some circumstances it is possible for the second program to
print 1, rather than 0O:

X - USER #1 REC #1 #2 USER #2 X v
- OPEN #1,"FILE",RANDOM,6,KEY 5 5
5 KEY = 1 : READ #1,X 5 5
6 X = X+1 : WRITE #1,X 6 5
6 6 S OPEN #1,"FILE",RANDOM,6,KEY -~ -
6 6 5 KEY = 1 READ #1,X 6 -
6 6 5 KEY = 2 : READ #1,Y 6 5
) & S5 PRINT X-v 6 5
1
6 6 5 CLOSE #1 : END 6 5
5 KEY = 2 : READ #1,X 6 5
6 X = X+1 : WRITE #1,X 6 6
6 CLOSE #1 : END 6 6

--_...-u-——-_-.____—..._._——_-—_—__—__-—_—-....—_.———..--—__..._.......-_..._-_-_—_.._.._-——__.—..—__—..h—....._—-—

(Changed 30 April 1981)

FLOCK - BASIC SUBROUTINE TO COORDINATE MULTI-USER FILE ACCESS

X USER #1 REC #1 USER #2
- OPEN #1,"FILE",RANDOM,6,KEY

- KEY = 1

5 READ #1,X

6 X=X+1

6 WRITE #1,X

6 CLOSE #1

6 END

KEY = 1
READ #1,X
X=X+1
WRITE #1,X
CLOSE #1
END

5
5
5
5
6
6
e
6 OPEN #1,"FILE",RANDOM,6,KEY
6 o
6
o]
7
7
7

i S 2 s < . . o . S i B A ek S e S A ek A S S L el N AL S S R o S O A R i s i SR8 S

NOTE: 1In this example, the value in record 1 is initially 5.

However, under some circumstances it js possible for record 1
incremented by 1, instead of 2, after being accessed by two users:

X USER #1 REC #1 USER #2
- OPEN #1,"FILE",RANDOM,6,KEY 5
- KEY = 1 >
5 READ #1,X 5
5 5 OPEN #1,"FILE",RANDOM,6,KEY
5 5 KEY = 1
5 5 READ #1,X
5 5 X=X+1
5 6 WRITE #1,X
5 6 CLOSE #1
5 6 END
6 X=X+1 6
6 WRITE #1,X 6
6 CLOSE #1 4
& END 6

o e PP 7o P e i A Y i, R R N o o s ek . Ak o P N MR gt A SN N i Aot A e M S e P S Al A S e ek S TR S

To prevent this situation from occurring, we need a method of
overlap in READ-modify-WRITE sequences on shared data.

1.3 The Interconsistency Problem

Consider the following two programs:

{Changed 30 April 1981)

'_Page 2

L ket
X
6
7
7
7
7
to only be
X
5
6
6
o)
6

preventing

April 1981
Revision AD1

FLOCK - BASIC SUBROUTINE TO COORDINATE MULTI~USER FILE ACCESS

1.0 INTRODUCTION

Some special file protection 1s required when your system has two or more
users, and those users can Fun a program or programs which access the same
files. FLOCK is 3 BASIC suhroutine which protects files from this potential
concurrent access, and protects one user from accessing information that
another user is updating at the same time. The remainder of Section 1 in
this document describes in detail the potential problems of multi-user file
access. Section 2 details how You can wuse the FLOCK ("File Locking'™)
subroutine from 3 BASIC oprogram to coordinate shared file access and
processing. Section 3 gives you some schemes to implement FLOCK in your
programs. Section 4 discusses the hazard of "Deadlock," and how to avoid
it. Section 5 is a bibliography.

1.1 FLOCK Program Requirements

The FLOCK.SBR program is an external assembly Language subroutine which 1s
callable from BASIC. FLOCK only functions properly if it is Loaded into
system memory (via the SYSTEM command in the system initialization command
file, DSKO:SYSTEM.INIE1,4J). FLOCK also requires that you have FLTCNV.PRG
in system memory.

1.2 The Multiple update Problem
Consider the following program:

10 OPEN #1,"FILE",RANDOM,é ,KEY
20 KEY = 1
30 READ #1,X

40 X=X+1

50 WRITE #1,X

60 CLOSE #1

70 END

The purpose of this program is to increment record 1 of 'FILE' by one. If
two users execute this Program concurrently, we wish the value in record one
to be incrementeqd by two, thus:

(Changed 30 April 1981)

i DR Am e e n e

Page iii -

FLOCK - BASIC SUBROUTINE TG COORDINATE MULTI-USER FILE ACCESS

Table of Contents

7.0 INTRODUCTION ..nvecencnn “NsasEssesscasaccasmsasensasans 1
1.1 FLOCK Program Requirementseeeeecescscecconns 1
1.2 The Multiple Update Problemceeesencuenna. een 1
1.3 The Interconsistency Problem eeeececevaceeenceaa. 2
2.0 THE FLOCK SUBROUTINE «..vuvevoeea.. pmeacaas “assassnsas 4
2.1 Flock Calling Sequente ...eeeevecaascs Eeasmsamasan 4
2.1.1 ACtion B MOJE euveuwcevscconascsacosancanca 4
2.1.2 File ciuiiininnecaccecnonannaes cenaamssnna é
2.T.3 ReCOrd tiiiiincnoeencsanacaccaccansenanns an B
2.1.4 Return=Code .uueceeeseacoccecnaccacanannes b
2.2 Queue Block Requirementsceveececescecncenas 7
3.0 USING FLOCK R LT TR TR PP . 7
3.1 File-Open INterlockS .ouienereecracancecanaconnes &
2.1.17 The Multiple Update ProblemMm ..coececcacaas 8
3.1.2 The Interconsistency Problem ..o eaean g
3.2 Record-Update INterlocks ...eeeeeecccceceacaccaca 10
3.2.1 The Multiple Update Problem .o.eueevnecoons 10
3.2.2 The Interconsistency Problem ..oceeecaceces 11
3.3 Improved File INterlocks weecsuoeccocceeanes I
3.3.1 ExampLe Seadasssmangunna [R RN N NN Ry TN 12)

4-0 PREVENTING DEADLOCK .—.-.-;.--‘-.......-.--.---...-...t 1'-4

5.0 BIBLIOGRAPHY --ll‘..-.‘.'.l.II.‘I-..'..l'l...b.......... 15 :

{Changed 30 April 1981) .

" Page i

'Alpha Micro®, TAMOS', 'AlphaBAsIc', 'AM-100"',
*AlphaPASCAL?, '"AlphalISP', and "AlphaSERV'

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA 92714

 ©1981 - ALPHA MICROSYSTEMS

ALPHA_MICROSYSTEMS
17881 Sky Park North L
Irvine, CA 92714

FLOCK ~ BASIC SUBROUTINE TO
COORDINATE MULTI-USER FILE ACCESS

April 1981
Revision AO1

This document reflects AMOS Versions 4.5 and Llater

April 1981
Revision AD2

SPOOL - BASIC SUBROUTINE FOR SPOOLING FILES TO THE LINE PRINTER

1.0 INTRODUCTION

SPOOL is an assembly Language routine that you can call from BASIC to spool
a disk file to the Line printer. (To "spool” a file is to dnsert it into
the printer queue, after _which you can continue to do other things while
your file waits in the queue for its turn to be printed.) You can specify
te SPOOL which printer you want the file to be printed on, the number of
copies to print, the form to print it on, the Lines per page and the width
(measured in characters) per line. Also you can specify any combination of
switches to turn on or off the banner option, the delete option (which
deletes the file from the printer queue after printing), the header option,
the formfeed option, or the wait option.

The current version of SPOOL (AMOS versions 4.2 and Later) is fully
compatible with earlier versions of SPOOL. In other words, the only
information that you must supply to SPOOL is the specification of the file
you want to print; all other parameters are optional.

2.0 THE SPOOL SUBROUTINE

Call SPOOL via:
XCALL SPOOL,FILE$,PRINTER$,SNITCHES,COPIES,FORM$,LPP,HIDTH

where:

FILES$ A string variable or expression that gives the
specification of the file you want to print. If vyou
specify a file which does not exist, SPOOL doesn't tell
you that it can't find the file (but, of course, doesn't
print anything). '

PRINTERS$ A string variable or expression that gives the name of
the printer to which you want to send the file. If
PRINTERS is a null string, SPOOL uses the default
printer.

SWITCHES A floating point variable or expression that specifies
various control switches and flags that affect the
printing of the fjle. You must Lload FLTCNV.PRG into
system or user memory if you are going to use the
SWITCHES argument.

(Changed 30 April 1981)

ALY Y e L, BT ¢ Dol e s e v

SPOOL - BASIC.SUBROUTINE FOR SPOOLING FILES TO THE LINE PRINTER Page 2 .

COPIES

FORMS

LPP

WIDTH

The control %switches that SPOOL uses are exactly the

same as the switches used by the monitor PRINT command.
(See the AMOS System Commands Reference Manual

(DWM-00100-49), for information on PRINT.)

Each switch you can use has a numeric code associated
with it (see below). For example, the BANNER switch
code is 1; the DELETE switch code is 4. Set control
switches by putting the sum of the appropriate switch
codes into the SWITCHES variable. For example, if vyou
want to use the BANNER and DELETE switches (to tell the
Line printer spooler program to print a banner page and
delete the file after printing it), Load SWITCHES with 5
(BANNER code” + DELETE code). If you omit SWITCHES,
SPOOL wuses the default switches for the selected
printer.

Switch codes:

BANNER 1
NOBANNER 2
DELETE 4.
NODELETE 8
HEADER 16
NOHEADER 32
FF 64
NOFF 128
WAIT 256

A floating point variable or expression that specifies
the number of copies to be printed. If you omit COPIES
or it is zero, the Lline printer spooler program prints
one copy.

A string variable or expression that specifies the form
on which the file is to be printed. If you omit FORM$
or it is a null string, the Line printer spooler uses
the NORMAL form.

A floating point variable or expression that specifies
the number of Lines per page. SPOOL only wuses this
value if you have specified the HEADER switch in the
SWITCHES variable, If you omit LPP, the spooler program
uses the default value for the specified printer.

A floating point variable or expression that specifies
the width (in characters) of the print Line. If you
omit WIDTH, the spooler program uses the default wvalue
for the specified printer.

(Changed 30 April 1981)

SPoQL. ~ BASIC.SUBROUTINE FOR SPOOLING FILES TO THE LINE PRINTER

2.1 Error Messages ;

The SPOOL subroutine returns no error messages except:

?No spooler allocated

If you see the message above, it means that no line printer spooler program
is currently running on the system.

(Changed 30 April 1981)

April 1981
Revision AQ1

XLOCK - BASIC SUBROUTINE FOR MULTI-USER LOCKS

XLOCK s an assembly language routine that your BASIC program can call to
set and test "locks.” Include the XLOCK.SBR in system memory by using the
SYSTEM command within the SYSTEM.INI file. NOTE: You MUST include XLOCK in
system memory.

A Lock is a tool to help you synchronize attempts to access devices and
files. You can imagine the problems that result when you have two users
trying to update the same record of the same file at the same time. A Lock
is an entity created by a program to help it keep track of whether a certain
device, file, etc., is in use at the specific time that the program wants to
access it. The general way that the locking system works is this:

1. when you want to prevent access to something (a file, a device,
etc.) while your program accesses it, you create (that is, "set"™) a
system lock on that resource.

2. Whenever you want to access a device or file, your program tries to
set the lock associated with that item; if it is already set, vyou
know that another user's program is using the device or file.

3. When you ére finished accessing a device or file, you destroy (that
is, "clear") the Llock so that other programs can now access the
resource.

Note that a system lock is NOT a security device-- jt's a convenience. If
a program wants to allow its users to write to a file without checking to
see if another yser is there first, it can do so (and run the risk of create
chaos). A system Llock simply provides a convenient way to help a program
keep its users from conflicting in their attempts to use system resources.,
The only job that can clear a Lock is the job that originally set the Llock.
BASIC does not automatically clear Llocks when a program exits, so be careful
that your program clears any locks it has set before it exits. (For more
background information on why Locks are necessary, see the document FLOCK:
BASIC Subroutine to Coordinate Multi~user File Access, in the "BASIC
Programmer's Information” section of the AMOS Software Update documentation
packet.)

1.0 THE XLOCK SUBROUTINE
Call XLOCK from BASIC via:

XCALL XLOCK, MODE, LOCKT, LOCK2

(Changed 30 April 1981)

XLOCK - BASIC SUBROUTINE FOR MULTI-USER LOCKS . . page2.

Hhere:
MODE The function you want to perform. These modes are:
Mode O: Set lock and return.
Mode 1: Set Llock. (Wait if already locked; then set).
Mode 2: "Clear lock (if set by your job). - o
Mode 3: Return List of all system Locks and‘the_jobs:;hgt

set them.
(See below for a discussion of each mode.)
LOCK1 The first digit of the lock code. (See below.)
LOCKZ2 The second digit of the lock code. (See below.)

Use MAP statements at the front of your program to define MODE, LOCK1, and
LOCK2 as two-byte binary wvariables. {(They may not be floating point or
string variables.) For example:

MAP1 MODE, B, 2
MAP1 LOCK1, B, 2
MAP1 LoCK2, B, 2

Before you call XLOCK, your BASIC program must first set up the correct
values for MODE, LOCK1, and LOCKZ.

2.0 THE LOCKS

A system Llock is a two-level numeric Lock; the number representing either
Level may be from 1 to 65535. (A value of zero in either position acts as a
wildcard. That is, any number will match in that position when it comes to
clearing or setting that lock.) Some typical Llocks are:

The numbers you choose are up to you. You may choose to assign some meaning
to the numbers <(for example, the first number might be the file-channel
number of the file you want to lock, and the second number might be the
number of the record within that file that you want to Llock.)

Since both numbers in the Llock may range from 1 to 65535, the actual
possible number of unique locks is 65535 % &5535. But, every +time vyou
create a lock, the system sets aside a block in the monitor gqueue in system
memory for that Llock. S$ince there are initially only 20 queue blocks
available, 4t's a good idea to keep the number of Llocks to a minimum. A
good rule is that a program should not have more than two or three locks
‘active at any one time. As you clear a lock, that queue black becomes

(Changed 30 April 1981)

4

XLOCK = BASIC SUBROUTINE FOR MULTI-USER LOCKS | - " Page3 -

available again. (So, in essence, every time you set a lock you dreate 'it;
and every time you clear a lock, you destroy it.) ’

3.0 THE MODES

The MODE argument in the XLOCK call Line can contain ocne of four values
(0-3) which selects one of the four possible Llocking modes:

3.1 MODE 0 (Lock and Return)

This mode tells XLOCK to create a lock with the value LOCK1,L0CK?Z. If the
lock already exists (i.e., some other job is accessing the file or device
YOU wWant to use), XLOCK returns with MODE equal to the number of the job
that set the lock. (A job number is assigned to each job in the order that
the jobs were defined in the JOBS command in the system initialization
command file. For example, the first job defined in the JOBS command Line
is Job #1. The SYSTAT command Lists the jobs in this order.) If the Llock
does not already exist, XLOCK creates it and returns with a zerc in MODE.
You've now set the Llock.

3.2 MODE 1 (Lock and Wait)

This XLOCK mode s identical to MODE O, except that if the Llock already
exists, XLOCK tells the system to put your job to sleep until the lock is
cleared. That means that your job will be in an inactive state (except for
waking at every clock tick to test the status of the Llock) until the job
that originally set the Llock clears it. If you use this mode, take dinto
consideration the fact that another user may be waiting for the same Lock;
it's possible that the lock might be cleared and then grabbed up either by
the same or another job before your job wakes up.

3.3 MODE 2 (Clear Lock)

XLOCK clears the Llock specified by LOCK1 and LOCK? and returns to your
program. A zero returned in MODE indicates that the Llock you tried to clear
wasn't set by your job; a one returned indicates that you sucessfully
cleared one lock; a number greater than one indicates that you cleared more
than one lock (which means that LOCKT or LOCKZ were originally set to zero--
the wildcard value). You may never use XLOCK to clear a lock that was not
set by your job. (NOTE: If you attach your terminal to another job, XLOCK
considers you a new job.)

(Changed 30 April 1981)

XLOCK - BASIC SUBROUTINE FOR MULTI-USER LOCKS

3.4

MODE 3 returns a complete List of all the locks set on the system and the -
numbers
répresent a mapped array Large enough to hold the expected data. When XLOCK
returns from a MODE 3 call, MODE contains the number of locks that are set
on the system, LOCK1 contains your job number, LOCK2 contains one three-word
for each lock that is set on the system. '(You must set up this entry
as three binary words in a MAP statement.) The first two bytes hold the job

.entry

MODE 3 (List Locks)

" Page 4

of the jobs that set them. When you use MODE 3, LOCK2 must

number; the second and third words hold the actual LOCK1 and LOCK2 values of

the

specified Lock. The following is an example of how to set up the MAP

statement for a MODE 3 call:

10 MAP1 MODE, B, 2 ... -
20 MAPT MYJOB, B, 2

30 MAP1 LISTARRAY

40 MAP2 LOCKENTRY(25)

50 MAP3 JOBNUMBER, B, 2

60 MAP3 LoOCK1, B, 2

70 MAP3 LoOCK2, B, 2

80 ! Start of Program goes here
100 MODE = 3 .

110 XCALL XLOCK, MODE, MYJOB, LISTARRAY
120 ! Rest of program goes here

—

4.0 WILBCARDS

A system Llock consists of two numbers, the values of LOCK? and LOCK2. If

either

of these two numbers is a zero, that number is a wildcard and any

number between 1 and 65535 will match it. (A wildcard is a symbol that is
matched by any other symbol.)

You

use wildcards for various reasons. For example, suppose that you

decide that the LOCK1 value is going to represent a particular file and that
the LOCK2 value will represent a particular record in that fijle. If you
want to stop all references to that fjle while your program is accessing it,
you would set the lock with a zero in LOCK2 and the number representing your
file in LOCK1. Anyone who tries to set a lock that has the same LOCK1 value
as your Llock won't be able to do so; the system will tell him that that Lock

already

exists (since your wildcard in LOCK? will match any number he may

try in that position). No one (including yourself) will be able to set a

Lock

with the same LOCK1 value until you clear the Lock. Note that setting

a lock with both numbers zero will prevent anyone from setting a lock, since
the system will say that all possible locks are already set.

P,

(Changed 30 April 1981)

XLOCK = BASIC SUBROUTINE FOR MULTI-USER LOCKS

5.0 PROGRAMMING EXAMPLES

The following is a small sample demonstration program that YOou may want to
use to experiment with XLOCK, and to get a feeling for how it works. It
asks you for the values of MODE, LOCK1, and LOCK2, and then reports back on
the results of the locking operation you asked for. Remember: MODE = 0 sets
a Llock, MODE = 1 sets the lock after waiting for it to be cleared; MODE = 2
clears the lock, and MODE = 3 displays the Llocks set.

10 ! Sample Program to Illustrate File Locking
15 MAP1 COUNTER, F

20 MAP1 MODE, B, 2

25 MAP1 LOCK1, B, 2

30 MAP1 LOCK2, B, 2

35 MAP1 LOCKARRAY

40 MAP2 LOCKENTRY(25)

45 MAP3 Jo0B, B, 2

50 MAP3 L1, B, 2

55 MAP3 L2, B, 2

60 START:

65 INPUT 'MODE, LOCK1, LOCKZ: ",MODE,LOCK1,LOCK2

70 FLAG = MODE

75 IF MODE = 3 GOTO DISPLAY

80 XCALL XLOCK, MODE, LOCK1, LOCK?2

a5 PRINT "Mode = ";MODE :

90 IF FLAG = 0 AMD MODE <> 0 PRINT "Lock already set."

95 IF FLAG = 2 AND MODE = 0 PRINT "You didn't set that lock."
100 IF FLAG = 2 AND MODE = 1 PRINT “You cleared the Lock."
105 IF FLAG = 2 AND MODE > 1 PRINT "You cleared more than one Llock."
110 GOTO START

115 DISPLAY:

120 XCALL XLOCK, MODE, LOCK1, LOCKARRAY

125 PRINT "Your job number is: *;LOCK1

130 PRINT "Current locks in use = ";MODE

135 IF MODE = O GOTO LOOP

140 FOR COUNTER = 1 TO MODE

145 PRINT SPACE(5);

150 PRINT STR(L1(COUNTER))+","+STR(LZ(COUNTER));

155 PRINT SPACEC(4) + PRINT "(Job";JOB(COUNTER);")"

160 NEXT '

165 LOOP:;

170 PRINT : GOTG START

XLOCK is often used to lock individual records within a file so that more
than one user can update that file at the same time. LOCK1 might contain a
number that represents the particular file you want to open for mulit-user
updating (perhaps by containing the file's file-channel number). LOCK2
might hold a number that represents the specific record within the file that
You want to update.

(Changed 30 April 1981)

XLOCK ~ BASIC SUBROUTINE FOR MULTI-USER LOCKS Pag:é 6 _: o

5.1 Calculating Record Numbers

We assume that you will usually be wusing XLOCK to control multi-user
updating of random files. (For information on random files, see Chapter 15
of the AlphaBASIC User's Manual, (pWM-00100-01).) If you are going to be
locking a specific file record, you npeed to understand the relationship
between disk blocks and file records. A record (sometimes called a "Logical
record") is a grouping of data that you define; you also define the Length
of that record. Just as an example, Llet's define a file record that
contains 6 bytes for a customer ID number, 24 bytes for a customer name, 10
bytes for the name of the customer's sales contact, and 10 bytes for the
customer phone number. This file record would then contain 50 bytes. A
disk block is a physical grouping of data on the disk that is always 512
bytes long. AMOS always transfers disk information in this 512-byte block.
BASIC unblocks a disk block into smaller groups=-= your logical records. For
example, one disk block (512 bytes) would contain 100 of the Logical records
we defined above (50 * 100 .= S00) with 12 bytes left over. No logical
record is ever larger than a disk block. NOTE: You specify the size of your
logical record in the OPEN statement for the file.

The reason for our explanation above is this: if you want the LOCK2 value to
contain the number of the record you are updating, it must contain the
relative number of the disk block being used, and not the logical record
number. When BASIC unblocks a disk block into logical records, it brings
the entire disk block into your memory partition. Even if you are only
updating one legical record in that disk block, the entire disk block
remains in your memory area until you either close the file or read a
logical record that is in a different disk block. What this means 4is that
more than one user could try to write out the same disk block at the same
time even though they are updating different Llogical records. Se, you must
prevent access, not only to the logical record that you are updating, but to
the entire disk block that contains it.

You must calculate the relative disk block number yourself by dividing the
legical record number by the blocking factor. (The blocking factor s the
number of logical records that can fit in one disk block.) 1In the example
above where we had logical records 50 bytes long, the blocking factor is 10.
Remember that each disk block is 512 bytes Llong and will be blocked to
contain as many logical records as will fit.

If one of your lock digits is the disk block number, you can prevent access
to the entire disk block; no one can access any of the logical records in
the disk block until you clear the Lock.

REMEMBER: The Llock wildcard symbol is a zero, so calculate your disk blocks
beginning with one instead of zero. Before you unlock the lock on a disk
block, force the system to write that record by reading a logical record
that falls outside of that disk bleck. (NOTE: You may also use the
RANDOM'FORCED mode in your OPEN statement to force BASIC to perform a disk
read or a disk write every time you access the file. See Chapter 15 of the
AlphaBASIC User's Manual for more information.) The sample program below
may help to clarify the Llast few paragraphs. .

(Changed 30 April 1981)

RN

XLOCK - BASIC SUBROUTINE FOR MULTI-USER LOCKS

5.2 Sample Program to Illustrate File Record Locking

10 ! Sample Program to Illustrate File Record Locking
15 ! Remember to load XLOCK.SBR before running!
20 MAP1 MODE, B, 2 ! pefine locking variables

25 MAP1 LOCK1, B, 2

30 MAP1 LOCK2, B, 2

35 MAP1 LOGICAL'RECORD

40 MAP2 CUST'ID,F,6

45 MAP2 CUSTOMER,S,24
50 MAP2 CONTACT,S,10

55 MAP2 PHONE,S,10

60 MAP1 RECORD'SIZE,F,,50 .
65 ! Scratch variables: _
70 MAP1 RECORDNUM,F ! Logical record number
75 MAP1 FLAG,F

80 MAP1 QUERY,S,1

befine logical record
contents== 50 bytes

of customer info.
Customer ID is actually
logical record number.

85 ! Begin program:

100 START:

105 LOOKUP "CUSTID.DAT",FLAG ! If file doesn't exist,
110 IF FLAG = 0 THEN GOTO FILE'ERR ! report error and exit.
115 OPEN #100, "CUSTID.DAT",RANDOM,RECORD'SIZE,RECORDNUM

120 LOCK1 = 100 ! 100" represents CUSTID file
125 PRINT "Welcome to the Customer Maintenance Program."

130 LOOK:

135 INPUT "Please enter customer identification number: ", RECORDNUM
140 ! Note: Customer ID is just number of that logical record.
145 ! Calculate relative disk block number (assumes logical

150 ! records begin with zero):

155 LOCKZ = (RECORDNUM/1Q)+1

160 ! Lock the disk block used by the record.

165 XCALL XLOCK,MODE,LOCK1,LOCK2

170 READ #100, LOGICAL'RECORD

175 PRINT "Customer information:"

180 PRINT TAB(5);"Customer ID#: ";CUST'ID

185 PRINT TAB(5);"Customer name: ";CUSTOMER

190 PRINT TAB(5);"Sales contact: ";CONTACT

195 PRINT TAB(5);"Phone #: ";PHONE

200 UPDATE:

205 INPUT "Do you wish to change any info? ";QUERY

210 IF UCSCRUERY) = "N" THEN GOTO LOOP

215 PRINT "Customer ID: ",CUST'ID

220 INPUT "Enter customer name: ";CUSTOMER

225 INPUT "Enter sales contact: ";CONTACT

230 INPUT "Enter phone number: '':PHONE

235 WRITE #100, LOGICAL'RECORD

240 ! Force BASIC to bring different disk block into memory.

245 !' (If we are in first disk block, since blocking factor is
250 ! 10, record number >= 10 will force in next disk block)

255 IF LOCK2 = 1 THEN RECORDNUM = 10 ELSE RECORDNUM = 0

260 ! Now bring in different disk block:

265 READ #100, LOGICAL'RECORD

(Changed 30 April 1981)

- XLock - BASIC SUBROUTINE FOR

270 ! Release the Lo
275 MODE = 2
280 XCALL XLOCK, MODE,
285 LOoP: p & .
290 INPUT "Do you wish
295 IF UCSC(QUERY) = myn
300 EXIT: '
305 PRINT "Returning yo
310 CLOSE #100
315 END _
320 FILE'ERR: ! Qops. Fil
325 PRINT "File error.
330 © . END

(Changed 30 April 1981)

MULTI-USER LOCKS *

ckaw
LOCK1, Lock?2

to see info on another customer? "
THEN GOTO LOOK

u to AMOS..."

e didn't exist.
Please see System Operator.”

+QUERY

May 1980
Revision AQ1

XMOUNT - BASIC SUBROUTINE TO MOUNT A DISK

1.0 IMTRODUCTION

XMOUNT is an assembly language routine that allows you to mount a disk from
within a BASIC program without leaving BASIC. You should call it whenever
you change a disk and your BASIC program is going to sort files or create
new files on the newly changed disk. (You must always mount a disk after
you've changed it and before you write to it; otherwise the system will
think that the old disk is still in the drive. When it comes time to write
information out to the new disk, the disk's bitmap will be wrong, and the
system will try to write to the new disk as if it had the same areas free as
the old one.) Besides bringing into memory the proper bitmap, XMOUNT also
loads in the alternate track table, if any, for the specified device.

IMPORTANT NOTE: NEVER mount or unmount a disk while someone is accessing
that disk. .

The XMOUNT program is fully re-entrant, so you may Lead it into system
memory via the SYSTEM command in your SYSTEM.INI, (See The System
Initialization Command File in the "System Operator's Information" section

of the AMOS Software Update documentation packet for information on the
SYSTEM.INI.)

1.1 THE XMOUNT SUBROUTINE
You can call XMOUNT to mount a disk via:
XCALL XMOUNT ,DEV,VOLIDS

Where:

DEV String variable that represents a device specification
{e.g., "DSK1:"). You may optionally follow the device
specification with "/U"” to unmount the device (e.g-,
"DSKO: /UMY,

VOLIDS String wvariable in which the volume ID of the mounted
device will be returned. This variable must be 10 bytes
long. If it is not specified the labels block will not
be read. This variable is ignored if the /U option is
used.

If you specify the unmount option, the '"U" must be uppercase. When vyou

unmount a disk, vyou prevent BASIC and most system programs from accessing
that device.

{Changed 1 May 1980)

SOFTWARE PUBLICATIONS FILE REFERENCE NUMBER: AMOS 4.5 Software Update Documentation Packe

SOFTWARE DOCUMENTATION READER’S COMMENTS

e appreciate your help in evaluating aur documentation efforts. Pleasﬁe feel free to attach additional comments. If you require a written response, check here: [

NOTE: This form is for comments on saftware documentation only. To submit reports on software problems, use Software
Performance Reports (SPRs), available fram Alpha Micro. :

Please comment on the usefuiness, organization, and clarity of this manual:

Did you find errors in this manual? If so, please specify the error and the nurbar of the page on which it occurred.

" What kinds of manuals would you like to see in the future?

Please indicate the type of reader that you represent (check all that apply):

O Alpha Micro Dealer or OEM

O Non-programmer, using Alpha Micro computer for:
O Business applications
O Education applications
L) Scientific applications
O Other (please specify):

d Programmer:
[0 Assembly language
[0 Higher-level language

Experienced programmer
Little programming ex perience
Student

Other (please specify}:

ooog

DATE:

NAME:

TITLE: PHONE NUMBER:

ORGANIZATION:

ADDRESS:
STATE: ZIP OR COUNTRY:

CITY:

alpha
micro

17881 Sky Park North
irvine, California
92714

ATTN: SOFTWARE DEPARTMENT

l...l..l.l"......l.....II...’4......II.......lI.I........I...l-.l........

-OLD

PLACE
STAMP
HERE

FOLD

1

3

-‘h——-——-———---—————-—-—-—‘-——-—————-—-——--——-—--—--—--——-—-

CUT ALONG LINE

oy

