
4.5 AMOS
SOFTWARE UPDATE

DOCUMENTATION

OSS—i0000—DE

alphamicro

AMOS 4 5 SOFTWARE UPDATE DOCIJMENTPTION PACKET

C:

'At.pha Micro', 'AMOS', 'AIphaBASIC', 'AM—laO',
'AIphaPASCAL', 'AIphaLISP', and 'AIphaSERV'

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA 92714

These documents reflect AMOS Versions 4.5 and later

© 1981 — ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North
Irvine, CA 92714

C—2rm—4/nl

April 1981
AMOS Release 4.5

MASTER TABLE OF CONTENTS
FOR THE AMOS SOFTWARE UPDATE DOCUMENTATION PACKET

Status

Version 4.5 Release Notes Revised
Disks Available from Alpha Micro Revised
A Guide to the Alpha Micro Software Revised

Documentation Library H

User's Information Section:

New Command File and DO File Features H Revised
The DUMP Command Unchanged
Important Notice for LISP Users Unchanged
EDIT: A Character—oriented Text Editor Unchanged
Program Design Language Formatting System Unchanged

System Operator's Information Section:

The System Initialization Command File Revised
Setting Up the Line Printer Spooler Revised
Memory Management Option Revised
Defining Switchable System Memory Revised
Configuring FLoppy Disk Drivers Unchanqed
AMOS Version 4.4 Method of HandLing Unchanged

Bad Disk Blocks
Software Installation Instructions for New

the AM—i 20
Software Installation Instructions for New

the AM—710 Memory Board
Software Notice for AM—410 Users Revised
Disk Labeling Procedures Unchanged
Disk Maintenance Procedures for the Revised

System Operator
Defining Non—system Disk Devices Revised
Disk Drivers and Formats Unchanged
Generating System Monitors Unchanged
Using the Magnetic Tape Utility Programs Unchanged
The Magnetic Tape Fl le Backup Programs New
Building a Terminal Driver New

(The NEWTRM Program)

System Programmer's Information Section:

I/O Programming for the Alpha Micro Computer Unchanged.
Terminal Service System Unchanged

BASORT — BASIC Subroutine for Sorting Random and
Sequentia:L Files

COMMON — BASIC Subroutine to Provide Common
Variable Storage

FLOCKS— BASIC Subroutine to Coordinate Multi—user
File Access -

spooL — BASIC Subroutine for SpooLing Files to the
Line Printer

XLOCK— BASIC Subroutine for MuLti—user Locks
XMOUNT — BASIC Subroutine to Mount a Disk

Page 2

9ASIC Programmer's Information Section: 0
Unchanged

Revised

Revised

Revised
tin changed

(For a complete
A Guide to the

list of Alpha Micro software documentation, see
Alpha Micro Software Documentation Library.)

April 1981

AMOS VERSION 4.5 RELEASE NOTES

This document describes the changes and additions that have been made for
Version 4.5 of the Alpha Micro system software. It describes only those
changes and additions made since the last release (4.4B); you may find
general system documentation in the appropriate manuals. (The document A

Guide to the Alpha Micro Software Documentation Library in this
documentation packet lists all software documentation available from Alpha
Micro.)

This release contains a number of major new programs. Besides the new Alpha
Micro Electronic Mail System, AlphaMAIL, this release also includes a
terminal driver building program, many enhancements to the assembly language
programming system (including the addition of an object file library
generator), and new features in the AIphaBASIC programming system (including
two new file modes). See Section 3.0, beLow, for information on the changes
for this release.

Please read the documentation supplied with this release before converting
to AMOS Version 4.5. (NOTE: If you are currently running under AMOS Version
4.3 or earlier and are using a disk that runs under control of the AM—410,
it is very important that you read AMOS Version 4.4 Method of Handling Bad
Disk Blocks in the "System Operator's Information" section of this
documentation packet before running any of the 4.5 software. AM—410 users
must be aware of the fact that some software contained on ore—4.4 Releases
of AMOS is not compatible with AMOS Version 4.5 because of the changes in
the bad block handling.)

1.0 THE RELEASE MECHANISM

Because of the large amount of software now available from Alpha Micro, we
cannot distribute it all on one floppy disk. 4e are now providing atl the
software we supply on one 5—megabyte or one 15—megabyte hard disk which is
automatically updated for each release. For floppy disk users, things are a
bit more involved. With each of the releases you will receive a new System
Disk. This will contain all of the standard system software. To receive
the additional software, you must specifically order one of the additional
diskettes. These diskettes are divided up as follows: a LISP/PASCAL
diskette containing the LISP and PASCAL programs and their associated files;
a Driver Source Diskette containing sources to device, terminal, and
interface drivers; and a Miscellaneous Program Diskette containing various
BASIC and MACRO programs. You may order these disks through your dealer.
See the separate document dealing with disks, Disks Available from Alpha
Micro in this packet.

AMOS VERSION 4.5 RELEASE NOTES Page 2

2.0 DOCUMENTATION INCLUDED WITH THE 4.5 RELEASE

Included with this release is the standard AMOS Software Update
Documentation Packet.

The following new manuals and documents have been issued since Release 4.4:

AlphaMAIL User's Manual, (DSS—10000—06): This book describes the
use and installation of AIphaMAIL, the Alpha Micro Electronic Mail
System.

AlphaVUE/TXTFMT Training Guide, (DSS—10000O3): This book
introduces the new AMOS user to ALphaVUE, the screen—oriented text
editor, and TXTFMT, the text formatting program.

Change Page Packet #2 for the "AIphaBASIC User's Manual",
(DSS—10000—O7): These change pages update the BASIC manual for
Release 4.5.

Change Page Packet #1 for the "AIphaPASCAL User's Manual",
(DSS—l0000—1O): These change pages contain additional information
about AIphaPASCAL Version 2.0.

Change Page Packet #2 for the "AMOS System Commands Reference
Manual", (DSS—10000—09): These change pages update the system
command reference sheets for Release 4.5.

In addition, the following manuals have been revised for AMOS Release 4.5:

AlphaFIX User's Manual, (DWM—OO100—69, Revision AOl).

AMOS Assembly Language Programmer's Manual, (DWM—0010043, Revision BOO).

AMOS Monitor Calls Manual, (DWM—OO100—42, Revision BOO).

ISAM System User's Guide, (DWM—OOlOO—O6, Revision AO2)

TXTFMT User's Manual, (bWM—00100—O7, Revision BOO).

We provide a complete list of the documentation applicable to this release
in A Guide to the Alpha Micro Software Documentation Library, in this
packet. NOTE: You may order a four—binder set of Alpha Micro documentation
that includes three volumes of software documentation and the one—volume
Alpha Micro Integrated Systems User's Guide, by ordering part number
PDB—00001—OO from the Alpha Micro Sales Order Department. (This set includes
all Alpha Micro software documentation except the AlphaLISP User's
Manual.) You may also order individual manuals by their own part numbers.

Also, notice the Master Table of Contents that lists all documents in the
AMOS Software Update Documentation Packet; this is the first document in
this packet.

AMOS VERSION 4 5 RELEASE NOTES Page 3

3.0 NEW SOFTWARE FOR RELEASE 4.5

AMOS Release 4.5 features several major new programs:

AIphaMAIL — AIphaMAIL, the Alpha Micro Electronic Mail System alLows users
on an ALpha Micro computer system to exchange mail in the form of AMOS
files. Messages sent can take the form of memos, Letters, reports, random
data files, or fiLes containing binary data. The ALphaMAIL Operator can
send one message to multiple users, and can specify how many days the system
will hold the message. For more information, see the AIphaMAIL User's
Manual, (DSS—10000—06).

NEWTRM — To help our users build their own terminal drivers for terminaLs
that are not currently supported by Alpha Micro, we have developed NEWTRM.
This interactive program asks questions about the characteristics of the
terminaL you need a terminal driver program for, and then produces the
assembly language source (.MAC) file for the appropriate driver. (NOTE TO
FLOPPY DISK USERS: NEWTRM is a PASCAL program—— you must have AIphaPASCAL
Version 2.0 on your system in order to use it.) For more information, see
the document Building a New TerminaL Driver (The NEWTRM Program) in the
"System Operator's Information" section of the AMOS Software Update
Documentation Packet.

LIB — As one part of the general enhancements made to the AMOS assembly
language programming system (discussed in Section 4.0, below), this release
features the object -fiLe library generator, LIB. LIB allows you to define
libraries of object file routines which all assembly Language programmers on
your system can make use of. LIB allows you to modify as well as create
library files. For information on using LIB, refer to Revision BOO of the
AMOS Assembly Language Programmer's Manual, (DWM—OO100—43).

Magnetic Tape File Backup — The magnetic tape file backup system consists
of the programs FILTAP, TAPFIL, and TAPOIR. These programs alLow you to
perform disk file—oriented backup on a magnetic tape unit connected to an
AM—ÔOO Magnetic Tape Formatter Interface. You may back up and restore
random files, sequential files, and multiple disk surfaces on a single tape.
For information, see the document The Magnetic Tape File Backup Programs
in the "System Operator's Information" section of the AMOS Software Update
Documentation Packet.

For the first time on a general release, we are releasing the AM—120
Auxiliary I/O Controller support software—— CAL12O, TIME, DATE, and the
AM—120 driver, AM12O.DVR. The AM—120 board contains several features
including a clock/caLendar with battery backup, power fail detection and
handling, two serial ports, and three eight—bit parallel output ports and
three eight—bit paralLel input ports.

For information, see the Software Installation Instructions for the AM—120
in the "System Operator's Information" section of the AMOS Software Update
Documentation Packet.

AMOS VERSION 4.5 RELEASE NOTES Page 4

This release aLso contains software support for the Alpha ricro AM—710 128K

byte memory board which detects and reports parity errors. The PARITY
program enables parity error detection for this memory board. For
information on PARITY, see Software Installation Instructions for the
AM—710 Memory Board in the "System Operator's Information" section of the
AMOS Software Update Documentation Packet.

4.0 ENHANCEMENTS TO EXISTING PROGRAMS FOR RELEASE 4.5

In addition to the new programs discussed above, this release also contains
many enhancements to existing software:

4.1 The Monitor

The monitor now provides a new output control command, Control—R. When you
type a ControL—R, the monitor repeats back the current contents of the input
buffer. This is extremely useful when you type several lines of characters
ahead while your terminaL is dispLaying program output and then want to
remember exactly what you entered. (Or, if you are using a printing
terminaL, you will find this command useful when repeated rubouts have
obscured the text.)

Another change in the 4.5 monitor allows command files to accept lower case
characters as well as upper case.

Finally, several new monitor calls have been added:

AMOS Executes AMOS commands without exiting current orogram.
FMARKR Read in reverse to find file mark on specified magnetic

tape unit.
JWAITC Sets your job into the wait state.
LCS Converts one character in Ri to lower case.
OPENA Opens a logical dataset for appending.
PCALL Invokes program as subroutine.
RLSE Releases control of a semaphore and allows waiting job to

access source.
RQST Requests control of a semaphore to access source or to

wait in wait chain.
tICS Converts one character in Ri to \upper case.
WAKE Wakes a job out of sleep state.

See Revision BOO of the AMOS Monitor Calls mant\al, (DWM—OO100—42) for more
information.

1

/3

AMOS VERSION 4.5 RELEASE NOTES Page 5

-

.

4.2 The AIphaBASIC Programming System

This release includes two versions of •the AIphaBASIC ruh—time-package:
RUN.PRG and RUNSML.PRG. RUNSML.PRG is much smaLler than RUN, but is
identicaL to it except that it does not support the trigonometric functions
or the EXP, LOG, LOG1O, FACT, or exponentiation C) operations. Since many
business packages do not make use of those mathematical functions, many
users will be able to save a considerable amount of memory (over 1000 bytes)
by using the smaller RUNSML rather than the standard RUN program to execiAe
BASIC programs.

The only time you will see a difference between using RUN or RUNSML is if
your program makes use of the functions not supported by RUNSML. If you are
using RUN.PRG, such functions will execute normally; if you are using
RUNSML.PRG, you will see the error message:

?Unsupported function

For compatibility with existing
extra mathematical functions
Before doing so, however, you
a new name (e.g., RUNOLD.PRG)

command ti
may want

will probab
to save it

Les, users who do not need the
to rename RUNSML.PRG to RUN.PRG.

ly first want to rename RUN.PRG to
in case you need it in the future.

Two new file modes have been added to COMPIL and BASIC: FORCED'RANDOM and
APPEND. FORCED'RANDOM mode was added to aid those of you who are writing
applications that use fiLe locking to permit users to concurrently update
the same files. If you open a random file in FORCED'RANDOM mode, every time
your program READs a file record, BASIC will force a disk access even if
that record is already in memory, and every time your program WRITEs a

logical record, BASIC will force a disk write operation even if the buffer
is not fuLl. FORCED'RANDOM mode ensures that a record retrieved by your
program contains the latest updates to that record.

APPEND mode has been added to make the
convenient. If you open an existing sequential
will position the file pointer to the end
write information to the end of that file.

This release of BASIC contains a
interrupt caused by a Control—C.
handling routine, the routine
resume to the line following the

Other new features for COMPIL include:

of sequential fiLes more
in APPEND mode, BASIC

hat file and allow you to

If an error occurs during program compilation, COMPIL will not produce a

.RUN file.

COMPIL now supports the use of Include Files.
source code from a specified file while you compile
and insert it into your compiled program fiLe.

That is, COMPIL can fetch
another program fiLe,

use
file
of t

new error trapping procedure for a program
If a Control—C has been trapped by an error
RESUME statement wilt cause the program to

one that was interrupted by the Control—C.

AMOS VERSION 4.5 RELEASE NOTES Page 6

COMPIL optionally reports a messa4e if it encounters any unmapped variables
in your program file. (This allows you to make sure that all variables were
defined via MAP statements.)

And, finally, considerable work has been done to enhance AIphaBASIC's error
detection and reporting. For example, instead of stacking and discarding
some errors, COMPIL now reports errors as soon as they are encountered. A

variety of syntax errors that earlier were unreported are now detected and
reported.

4.3 The Alpha Micro Assembly Language Programming System:

The assembly language programming system has been considerably enhanced and
changed for this release. See Section 1.1 of the AMOS Assembly Language
Programmer's Manual, (DWM—OO100—43) for more information on the features
added to the AMOS assembly language programming system for Release 4.5.
(This manual has been completely rewritten for this release.)

4.3.1 MACRO

MACRO provides an optional symbol cross reference listing as part of the
standard assembly listing.

MACRO supports the use of local symbols.

New psuedo opcodes allow you to: cause undefined symbols to be automatically
EXTERNed; modify the name of MACRO output disk files; enable and disable
output to the listing file; enable and disable symbol output to the cross
reference listing; and end macro expansion.

Additionally, MACRO now supports a parameterized assembly option that allows
you to specify a value on the MACRO command line that can be examined during
the assembly process (using the new pseudo opcode NVALU). This is especially
useful when used with the conditional assembly directive pseudo opcodes.

4.3.2 LINK and SYMBOL

LINK and SYMBOL have been rewritten for Release 4.5. Their output display
has been changed to provide more information, and their functions have been
considerably expanded.

Both LIMK and SYMBOL accept a large number of option requests that allow you
to do such things as: generate a load map file that indicates how the linked
files will he loaded into memory; include equated symbols in the symbol
table file; and, specify a library file, an optional file, or a requiredfile.

AMOS VERSION 4 5 RELEASE NOTES Page 7

4.3.3 DOT and FIX

With this release, DOT and FIX both support local symbols.

4.4 TXTFMT

To increase the flexibility of TXTFMT so that it suits your particular
documentation needs, we have added four new commands to TXTFMT: /I4EADER NO

EMBED, /HEADER EMBED, /NUMBER HEADER, and /NO NUMBER HEADER.

4hen TXTFMT encounters section titLes that are level three or deeper, it
brings the next line of text up to the same line as the section header,
separating the header from the text by a hyphen. (Thatis, it embeds the
header in the surrounding text.) The /HEADER NO EMBED (/HNE) command
disables this default format, and teLls TXTFMT not to embed these headers.
The /HEADER EMBED (/HE) command re—enables header embedding. (NOTE: Section
titles are specified via the /HEADER LEVEL n command.)

The /NUMBER HEADER (/NMH) command tells TXTFMT to number pages with section
oriented numbers. For example, if the text at the top of the page is in
Section 4.0, and the page is the 25th page in that section, the page number
for that page is: 4—25. The /NO NUMBER HEADER (/NNMH) command disables
section—oriented page numbering.

Other enhancements include: the /FOOTER command accepts leading spaces and
change bars work with unformatted text, underscores, and lists. See the
TXTFMT User's Guide, (DWM—OO100—07) for more information. (This manual has
been completely rewritten for this release.)

4.5 Miscellaneous:

The generalized terminal driver program, TRM.DVR, no longer has to be loaded
into system memory. (In previous releases, your system initialization
command file had to include a SYSTEM TRM.DVR[1,6] command line to include
the TRM driver in system memory.) NOTE: However, If your BASIC programs
access the TRM driver, the driver must be loaded into system memory since
BASIC performs its own memory allocations in user memory.

Because of changes to AIphaBASIC, SYSTAT now displays the name of the BASIC
program a user is running, rather than just "RUN".

HASHER now accepts input in the same format as the DSKCPY command. See the
HASHER reference sheet in the AMOS System Commands Reference Manual,
(DWM—OO100—49) for more information.

The APPEND command extension defaults have been changed to make the command
easier to use. (The input tile extension default is now the output file
extension.)

LOAD has been changed to use the appropriate extension as the default if you
specify a file in an ersatz device. (For example, if you say "LOAD

AMOS VERSION 4.5 RELEASE NOTES Page 8

BAS:NEW", LOAD will load into memory NEW.BAS, since you have specified GAS:,
the BASIC Library account.)

PDLFMT now accepts apostrophes within LabeL names (thus making PDLFMT more
useful for designing BASIC programs, since AIphaBASIC aLso allows
apostrophes within variable names).

FORCE now checks to see if a job is guarded before forcing input to that
job; if the job is guarded, the forcing job receives an error message and
the operation aborts. (NOTE:A job "guards" itself by using the SET GUARD
command.)

5.0 PROGRAMS INCLUDED WITH VERSION 4.5

The tol1owing describes at.t of the standard system software as of AMOS

Version 4.5. FLOPPY DISK USERS NOTE: Not all of the programs described
below are included on the standard 4.5 System Diskette. Due to space
limitations, some of the programs have been placed on separate diskettes.
Any such programs are noted in the descriptions below. See Disks Available
from Alpha Micro for information on the separate diskettes. The AM—SOD

System Disk (a 5—megabyte pack) and the AM—41O System Disk (a 15—megabyte
pack) contain all of the software described below, plus additional software
described in the Disks Available writeup.

Programs in Account C1,4J:

AMSORT..SYS Generalized sort module used by SORT.PRG and BASORT.SBR.
This module must not be run directly.

APPEND.PRG Program to append sequential data files.
ASCDMP.PRG Dumos physical disk blocks in ASCII onto the user's

terminal.
ATTACH.PRG Attaches terminals to jobs.
BADBLK.PRG Lists the contents of BADF.LK.SYS, which contains disk

certification data.
BASIC.PRG The interactive AIphaBASIC compiler.
BALID.PRG Sets interface baud rate. Used with 4M—300 and AM—310

only.
BIIMAP.PRG Defines disk—type device bitmap size during system startup.
BMVR.PRG Programs 2708 EPROMs using a CROMEMCO Bytesaver board.
CDC21O.PRG Bootstrap program for the AM—21O/CDC combination.
CLKFRQ.PRG Defines the line clock frequency during system startup.
CP?4CPV.PRG Copies files between CP/M floppy diskettes and the AMOS

system.
CPMDIR.PRG Allows you to see the directory of a C/PM floppy diskette.
COMPIL.PRG The disk—based AIphaBASIC compiler.
COP'Y.PRG Copies files between devices.
CREATE.PRG Creates a contiguous file.
CRT41O.PRG Certifies disks running on the At'1—41O Hard Disk Controller.
DATE.PRG Sets or displays the system date. (Used by

AlphaAccounting, the line printer spooler, and the AM—120

Auxiliary I/O Controller.)

AMOS VERSION 4.5 RELEASE NOTES Pae 9

DDT.PRG Symbolic debUgger for assembly language programming.
DEL.PRG Deletes memory modules.
DEVTBL.PRG During system startup, defines the devices connected to the

system. During normal operation, lists the connected
devices.

DIAG2.PRG Floppy disk drive and controller diagnostic.
DIAG3.PRG Memory diagnostic (allows start and end address to be user

specified).
DIAG4.PRG Memory diagnostic.
DING.PRG Program to sound the terminal bell. (Used in command

files.)
DIR.PRG Lists directory of files on a device.
DIRSEQ.PRG Alphabetizes a directory by filename.
DO.PRG Parameterized command file processor. (Processes DO

files.)
DSKANA.PRG Disk analyzer program. Checks the directory structure on a

device for errors.
DSKCPY.PRG Copies a literal disk image from one drive to another.
DSKDDT.PRG Octal debugger for physical disk blocks.
DSKDMP.PRG Dumps the contents of a physical disk block on the user's

term i na I.
DSKFIL.PRG Lists the physical disk blocks occupied by a sequential

file.
DSKPAK.PRG Packs the contiguous files on a disk.
DUMP.PRG Dumps memory, bitmaps, directories, etc., in octal or hex.
DYSTAT.PRG Dynamic system status display for use with a VDM—1 board.
EDIT.PRG Character—oriented text editor.
EMC.PRG Support program for the AlphaMAIL system. Should not be

run directLy.
EPO.PRG Support program for the AlphaMAIL system. Should not be

run directly.
ERASE.PRG Erases disk files.
EXIT.PRG Exits a command file prematurely.
FILCOM.PRG Binary file comparison program.
FILDMP.PRG Dumps a disk file in octal on the user's terminal.
FILTAP.PRG Copies disk files to a magnetic tape unit running under

control of the AM—ÔOO Magnetic Tape Formatter Interface.
FIXDVR.PRG Configures a floppy disk driver for the proper controller,

density, and device.
FIXMTM.PRG Configures the MTM printer driver.
FIX.PRG Screen—oriented, symbolic debugger for assembly language

programs.
FLTCNV.PRG Floating—point conversion module used by various AIphaBASIC

XCALL subroutines. This module must not be run directly.
FMT200.PRG Formats disks on the AM—200 floppy disk subsystem.
FMT21O.PRG Formats disks on the AM—?1O floppy disk subsystem.
FMT400.PRG Formats disks on the AM—400 disk subsystem.
FMTSOO.PRG Formats disks on the AM—SOD disk subsystem.
FORCE.PRG Forces commands into a terminal input buffer.
GLOBAL.PRG Produces a cross—reference listing of global symbols used

within assembly language programs.
GOTO.PRG Performs branching within command or DO files.
HASHER.PRG Generates a disk hash total.

Mv ' CkS* \. I

AMOS VERSION 4.5 RELEASE NOTES Page 10

.

HEDLOD..PRG . . Defines the head load time for floppy disks during system
startup. . .

Displays brief instructions concerning various prorams.
Bootstrap program for the AM—500.
Program to read IBM—3740 format diskette.
Program to list the directory of an 18r13740 format
diskette. . . . -

Bootstrap program for the ICOMfioppy board.
The Indexed Sequential Access Method control module. Used
by AIphaBASIC and others. This module must not be run
directly.
Builds ISAM files.
Compresses the top Level of ISAM tiles.
Dumps the data from an ISAM file.
Converts Version 4.2 ISAM files to AMOS Versions 4.3 and
later format.
Defines a job's memory partition during system startup on a
system that uses bank switching for memory management.
Sets a job's scheduling priority.
During system startup, defines the jobs to be available on
the system. During normal operation, lists the user's job
name.

KILL.PRG
LABEL. PRG
LIB.PRG

LTNK.PRG
LISP. PRG

LOAD.PRG
LOG.PRG

LOGOFF. PRG
LOOKtJP.PRG

Aborts a specified job.
Changes or displays disk Labels.
Object file library generator for assembly language
programs.
The linking loader for assembly Language object files.
The AlphaLISP programming languaqe (Available on the
AIphaLISP/A1phaPASCAL diskette.)
Loads tiles into memory.
Allows the user to gain access to the system, and to move
between disk accounts.
Allows the user to leave the system.
Performs test for valid file specification within command
files.
Sets up the Line orinter spooler.
during system startup.
The line printer spooler program.
directly.
The macro assembler.
Overlay used by
Overlay used by
Overlay used by
Overlay used by
Overlay used by
Overlay used by
Create an empty
EDIT.PRG.
Lists the contents of the user's memory partition.
Parameterized command file processor used by the operating
system. This module must not be run directly.
During system startup, defines the memory management banks
for a system that bank switches memory. During normal

HELP.PRG
HWKLOD.PRG
IBMCPY.PRG
IBMDIR.PRG

ICMLOD .PRG
ISAM.PRG

ISMBLD.PRG
ISMCOM.PRG
ISMDMP.PRG
TSMFIX. PRG

JOBMEM.PRG

JOBPRI.PRG
JOBS.PRG

LPTINI .PRG

LPTSPL.PRG

MA C RU . PRG

MACU. OVR
MACi .OVR
MAC2.OVR
MAC3.OVR
MAC4.OVR
MACS. OVR

MAKE .PRG

MAP. PRG
MDO.PRG

MEMDEF . PRG

Should be run only

Should not be run

the macro assembler.
the macro assembler.
the macro assembler.
the macro assembler.
the macro assembler.
the macro assembler.
sequential file in preparation for use ith

L

AMOS VERSION 4 5 RELEASE NOTES Page 11

operation, prints the memory configuration of the system on
the user's terminal.

MEF'lERR.PRG Initializes memory error detection on the Piiceon SuperMen
memory board. Also initializes the AM—hO memory board.

MEMORY.PRG Used to allocate memory partitions on a system that does
not use memory management. Also displays the user's
current memory allocation. -

MODFLG.SYS Support module for AIphaMAIL. Cannot be run directly.
MODIAG.PRG Support program for AlphaMAIL. Should not be run directly.
ON6EN.PRG Links device drivers into the system monitor to generate a

new system monitor.
MONTST.PRG Boots a specified system monitor with a specifed

initialization file. Used for system testing.
MOUNT.PRG Mounts a device, making it available for use.
MTSTAT.SYS Used by the mag tape software to store tape drive status.
PARITY.PRG Enables parity error detection for AM—lb memory boards.
PASS.PRG Allows the user to change his own password.
PAUSE.PRG Temporarily pauses within a command file. The command file

may be continued by use of the CONT program.
PDLFMT.PRG Program Design Language, a utility used to help design

projects.
PERLOD.PRG Bootstrap program for the AM—200, PERSCI combination.
PPN.PRG Lists PPNs defined on a disk.
PRINT.PRG Sends a print request to the line printer spooler.
PRINTR.INI Sample parameter file for the LPTINI program.
PULSE.PRG Support program used by AIphaMAIL. Should not be run

directly.
QDT.PRG Octal debugger which works with absolute memory locations.
QLIEUE.PRG During system startup, defines the number of additional

monitor Queue blocks to be allocated. During normal
ooeration, displays the number of free queue blocks
available.

RAZA.PRG Random read—write test for the AM—500.
REDALL.PRG Test program which reads all blocks on a device.
RENME.PRG Utility to rename files.
REVIVE.PRG Program to wake up a job which has been suspended. (See

SUSPND.PRG.)
REWIND.PRG Rewinds mag tapes.
RNDRED.PRG Test program which does random seeks and reads on a device.
RLIN.PRG The AlphaBASIC Runtime package.
RUNSML.PRG Version of the AIphaBASIC Runtime package that does not

contain several mathematical functions: smaller than
RUN.PPG.

SAVE.PRG Saves a memory module on the disk.
SCNWLD.SYS Wildcard support module for various system utilities.
SEND.PRG llows the user to send a message to another terminal.
SET.PRG Utility to set various parameters.
SIZE.PRG Displays a file's size on the user's terminal.
SKJP.PRG Skips files on mag tapes.
SLEEP.PRG Puts the user's job to sleep for the specified number of

seconds.
srlDLoD.PRG Bootstrap loader for the AM—410 disk subsystem.

AMOS VERSION 4.5 RELEASE NOTES Page 12

SORRF.SYS Module used by the sort utilities tO sort random files.
This program must never be run directly.

SORSVA.SY$ Modul.e used by the sort utilities to sort sequential files.
This program must never be run directly.

SORT.PRG Stand—alone sort utility.
SRCCOM.PRG Source level file comparison utility.
SUSPND.PRG Suspends a job's activity. (see RE\JIVE.PRG)
SYMBOL.PRG Creates a symbol file for use with the symbolic debugger.
SYSACT.PRG Allows maintenance of a disk's accounting structure.

Creates and deletes PPNs.
SYSLPT.INI Sample initialization file showing how to set up the line

printer spooler. The system is capable of booting using
this initialization fiLe.

SYSMEM.PRG Defines bank switchable system memory.
SYSTAT.PRG Displays the current system status.
SYSTEM.INI A command tile containing the instructions to the operating

system for configuring the system during system startup.
SVSTEM.MON The system monitor.
SYSTEM.PRG During system startup, defines the programs to be made

sharable via loading them into system memory. During
normal operation, displays the contents of system memory.

TAPDIR.PRG Allows you to look at the directory of a magnetic tape
whose contents were created using FILTAP.

TAPE.PRG Reads and writes magtapes using the AM—600 Magnetic Tape
Formatter Interface.

TAPFIL.PRG Copies files from magnetic tape to disk. See FILTAP and
TAPDIR.

TIME.PRG Sets and displays the current time of day. Used by the
AM—120 AuxiLiary I/O Controller.

TLGRAM.PDL Example program for the Program Design Language Formatter
(PDLFMT).

TODCNV.PRG Time of day conversion module used by TIME.PRG and others.
This module must not be run directly.

TRACE.PRG Manipulates the trace (:T) flag within command files.
TRIDDT.PRG Debugger used to display TRIDENT formatter status.
TRIINI.PRG Initializes the AM—400 interface board and the TRIDENT

formatter.
TRILOD.PRG Bootstrap program for use with the AM—400.
TRISET.PRG Used to configure the AM—400 when running a mix of

different size TRIDENT disk drives.
TRMDEF.PRG During system startup, this program defines the terminaL

configuration connected to the system. During normal
operation, it lists that terminal configuration.

TXTFMT.PRG Text formatter program.
TYPE.PRG Utility to dump a sequential file on the user's terminal in

ASCII.
ISOINI.PRG Version of the TRIINI program for T—8O drives.
TBDLOD.PRG Bootstrap program for the AM—400, TRIDENT T—8O combination.
U.PRG Accepts and stores a single comm9nd line.
VUE.PRG A screen—oriented text editor.
WAIT.PRG Program to stall until the specified job is idle.
\4NG210.PRG Bootstrap program for the AM—210/WPd9GCO combination.
WNGLOD.PRG Bootstrap program for the AM—200/WANGCO combination.

AMOS VERSION 4 5 RELEASE NOTES Page 13

Performs cursor positioning and other extended terminal
functions. Used primarily within command files

Programs in account [1,6]:

Device driver for the AM—200 floppy disk subsystem.
Device driver for the AM—210 floppy disk subsystem.
Terminal driver for the ACT—IV terminal.
Terminal driver for the ADDS terminal.
Terminal driver for the Lear Siegler ADM—1 terminal.
TerminaL driver for the Lear Siegler ADM—2 terminal.
Terminal driver for the Lear Siegler ADM—3 terminaL.
Terminal driver for the Lear Siegler ADM—31 terminal.
Terminal driver for the Lear Siegler ADM—41 terminal.
Interface driver for the AM—bOlT on—board serial ports.
Interface driver for the AM—120 on—board serial ports.
Interface driver •for the AM—300 serial interface board.
Interface driver for the AM—310 communications board.
Device driver for the Centronics printer.
Device driver for the DiabLo Hytype II printer.
Terminal driver for the Datamedia 1520 terminal.
Source files used by NEWTRM.PCF; do not modify.
Terminal dirver for the Hazeltine 1500 series terminals.
Device driver for the AM—500.
Interface driver for the IMSAI Sb serial board.
TerminaL driver for the Soroc tQ—140 terminal.
Device driver for the AM—320 High—Speed Printer Interface.
Device driver to allow manipulation of the user's memory
partition.
Device driver for the Multiterm printer.
Device driver for the AM—600 Magnetic Tape Formatter
Interface.
Terminal driver for the Teletype Model—40 printer.
Interface driver for the Processor Tech 3P+S serial board.
Device driver for theQume Sprint 3 printer.
Device driver for accessing system memory.
Terminal driver for the Ti Silerit—700 terminal.
Device driver for the AM—410 disk subsystem.
Terminal driver for the SOROC IQ—120 terminal.

file used by NEWTRM.PCF. Do not modify.
file used by NEWTRM.PCF. Do not modify.
file used by NEWTRM.PCF. Do not modify.
I driver for standard Teletype like device.
I driver for •the Televideo terminal.

the system as devices.
Source file used by NEWTRM.PCF. Do not modify.

XY.PRG

2000VR . DVR
21ODVR.DVR
ACTIV.TDV
ADDS .TDV
ADrI1 .TDV
A DM2 . TO V

A DM3 . To V
ADM31 .TDV
ADM41 .TDV
AM100T.IDV
AM12O.IDV
AM300. IDV
AM31O. 11W
C EN .0 VP

DIABLO.DVR
DMEDIA.TDV
ECHO .NIAC

HAZ EL . ID V
HWKSOO. DVR
IMSIO.IDV
1Q140.TDV
LPR . DVR
MEM.DVR

MTM. DVR
MTU.DVR

M40. TO V
PS3. IDV
QUM.DVR
RES . DVR
SIL700.TDV
SMD41O.DVR
SOROC . TDV
TABDEF.MAC
TDV1 .MAC
Toy? .MAC
TELTYP.TDV
TELVJD.TDV
TRIT2S.DVR
TRITSO. DVR
TRITSO.DVR
TRI300. DVR
TRM.DVR

VARDEF .MAC

Source
Source
Source
Term i na
Termina
Device
Device
Device
Device
Device

driver for the TRIDENT
driver for the TRIDENT
driver for the TRIDENT
driver for the TRIDENT
driver to allow access

T—25 disk drive.
T—SO disk drive.
T—80 disk drive.
T—300 disk drive.
to the terminals connected to

AMOS VERSION 4.5 RELEASE NOTES

BATCH. CMD

COM.DO

CONT.DO

CPY41O.CMD
CPYSOO.CMD
EMAIL. CMD
NEWTRM.CMD

RE S.C MD

SYSCPY.CMD
UMAIL.CMD

.Page14.,

Loads those prograths commonLy used within command files
into the userts memory partition.
Compiles a program, automatically calling the correct
compiler program, based on the program extension.
Continues execution of a command file after the PAUSE

command has been used.
Copies System Disks on AM—410 based systems.
Copies System Disks on AM—500based systems.
Runs the ALphaMAIL general interface program, EMAIL.
Runs the terminal building program, NEWTRt1. (You must log
into DSKO:C1,6) to run NEWTRM.)
Loads commonLy used programs into the user's memory
part i t ion.
Duplicates a System Disk on floppy disk based systems.
Support command file for EMAIL.

Programs in Account [7,OJ:

0DB. FXO
DIR. FXO
EA.FXO
HELP.FXO
JCB.FXO

LABELS. FXO
MAP. FXO

MENU.VUE
NEW. FXO
RADSO. FXO

RPN. FXO

TRMDEF. FXO

TYPE. FXO

Over lay
Over Lay
Over Lay
Over lay
Overlay

notation.
Overlay file for
reverse—polish
Overlay file
definition bLock.

memory

s memory map.
data in RADSO

Programs in Account [7,2J:

A CT . RUN

CHIC RUN

DTB.RUN
OPR.CMD
OPR.RUN

REC . RUN
STA. RUN
UPD . RUN

run directly.
run directly.
run directly.

program.

run directly.
run directly.
run directly.

Programs in Account [2,21: a

file for FIX, used to display data in 0DB format.
file for FIX, used to display directories.
file for FIX, used to display effective addresses.
file for FIX, used to display help message.
file for FIX, used to display job control block

contents.
Overlay file for FIX, used to display symbol table.
Overlay file for FIX, used to display the user's
map.
Function menu for the VUE editor.
Overlay file for FIX, used to clear the user'
Overlay file for FIX, used to display

FIX, used to perform calculation in
notation.
for FIX, used to display data in a terminal

Overlay file for FIX, used to type ASCII text files.

Used by the OPR program. Should not be
Used by the OPR program. Should not be
Used by the OPR program. Should not be
Invokes the OPR program.
The main AIphaMAIL System maintenance
use by the AIphaMAIL Operator.
Used by the OPR program. Should not be
Used by the OPR program. Should not be
Used by the OPR program. Should not be

Only for

AMOS VERSION 4 5 RELEASE NOTES Page 15

Programs in [7,4] (Available on the AIphaLISP/AIphaPASCAL Diskette.)

DIFF.LSP Sample LISP program.
DOCTOR.LSP Sample LISP program.
ILISP.LSP Sample LISP program.
LISP.LSP The LISP Library.
METEOR.LSP Sample LISP program.

Programs in [7,5] (AvaiLable on the AIphaLISP/ALphaPASCAL Diskette.)

CMPLIR.PCE The AIphaPASCAL compiler.
DEMO.PAS AIphaPASCAL demonstration program (source fiLe).
DEMO.PCF AIphaPASCAL demonstration program (compiled and linked

version of DEMO.PAS).
NEWTRM.PCF Terminal driver building program.
PLINK.PCF The ALphaPASCAL linker.

Programs in Account [7,6]:

BASORT.SBR AIphaBASIC subroutine to sort disk files.
COMMON.SBR AIphaBASIC subroutine to store variables in common storage.
EMAIL.RUN AlphaMAIL interface program for the general user.
FLOCK.SBR ALphaBASIC subroutine to perform interprocess tile Locking

functions.
IDIN.SBR Support subroutine for AIphaMAIL.
PRIV.SBR Support subroutine for AIphaMAIL.
REABIN.SBR Support subroutine for AIphaMAIL.
SPOOL.SBR AIphaBASIC subroutine to send print requests to the line

printer spooler.
UMAIL.RUN Support program for AIphaMAIL. ShouLd not be run directly.
WRTBIN.SBR Support subroutine for AlphaMAIL.
XLOCK.SBR AlphaBASIC subroutine to perform simple interprocess

locking.
XMOUNT..SBR AIphaBASIC subroutine to mount disks.

Programs in Account [7,7]:

ISUSYM.MAC Definition tile used when linking to ISAM.
SYS.MAC Defines items used for communicating with the operating

system.

April. 1981
Revision AUS

DISKS AVAILABLE FROM ALPHA MICRO

1.0 DISKS AVAILABLE

The disks currently available from Alpha Micro a
after the disks' descriptions are their part numbers
for these disks, please contact your Alpha Micro Dealer.

of the large amount of software now avail ble from ALpha Micro, it
longer possible to fit all of the Sy tem programs onto one

single—density floppy diskette. Thus, fLoppy diske
System Diskette are available for some of the standa
Wangco and Persci). These additional diskettes conta
not included in the single—density System Diskettes.

System Diskette should
oppy drive, in whichever

re listed below.
To obtain the

Li sted
prices

WANGCO AM—200 System Diskette (STD format)
WANGCO AM—200 System Diskette CAMS format)
PERSCI AM—200 System Diskette (STO format)
PERSCI AM—200 System Diskette (AMS format)
CDC AM—210 System Diskette (Double Density,
AM—SOD System Disk CS—Mbyte disk pack)
AM—410 System Disk (15—Mbyte disk pack)

Miscellaneous Program Diskette
Driver Source Diskette
AlphaLISP/AIphaPASCAL Diskette

APIS)

PDB—00104—06
PDB—00104—07
PDB—O01 04—02
PDB—O01 04—03
PDB—00104—11
PDB—001 04—12
PDB—OO1 04—13

PDB—00104—19
PDE3—OO1 04—20

PDB—OO1 04—21

Because
is no

The AM—410 and AM—500 System Disks and the CD
contain all of the single—density System Diskette sc
software contained on the three other non—Syst
non—System Diskettes are supplied in STD (128 byte/s

Trident
choose
format

ttes other than just the
rd floppy devices (e.g.,
in software and sources

C AM—210 System Diskette
ftware, plus all of the
em Diskettes. The three
ector) format only.

users wishing to update their systems from a
the System Diskette for their type of ft

is most convenie' t.

ion of the Alpha Micro
software and sources are
ttes.

The following sections discuss the overall organizat
software by disk account, and discuss what types of
available on the various single—density floppy diske

(Changed 30 April 1981)

• i • •
- •

C

The general system release software jsorganized into thirteen different
categories. Each category of software resides in a separate disk account:

OPR:. It
runs various
the AM—410

[1,4] This is the System Program Library account, SYS:.
account that contains all of the system software.
a orogram in this account by typing its name at
level.

[1,6] This is the Device Driver Library account, DVR:. It contains
alL terminal, interface, and general device drivers.

[2,2J This is the Command File Library account, CMD:. It contains a
number of usefuL command and DO files.

[7,0] This is the Library account, LIB:. It contains auxiliary fiLes
for system software (such as the AIphaFIX overlay files).

[7,1] This is the Help File Library account, HLP:. It
HELP files. Any text file with a .HLP extension
in this account can be accessed via the HELP
anywhere on the system.

[7,2] This is the AIphaMAIL account, BOX:. The AIphaMAIL Operator
uses this account in maintaining and managing the AIphaMAIL
system.

[7,4] This is the AIphaLISP Library account, LSP:. It contains
AIphaLISP programs.

This is the ALphaPASCAL
ALphaPASCAL programs,
linker, and standard library.

This is the AIphaBASIC Library account, GAS:.
various assembly language subroutines callable
programs, and contains compiled BASIC programs.
.SBR file in this account can be accessed
anywhere on the system.

[7,7] This is the MACRO Library account, MAC:. It contains various
assembly language files that can be accessed by your assembly
language programs.

(Changed 30 April 1981)

DISKS AVAILABLE FROM ALPHA MICRO

2.0 SOFTWARE ORGANIZATION

[1,2]

Page 2

I
This is the System Operator's account,
account from which the System Operator
management and maintenance programs. Only
Disk has a file in this account: BADBLK.
disk certification data for that disk).

is the
system
System

SYS (which contains

It
You

AMOS

is the
execute
command

contains
that res

command

the
ides
from

[7,5]

[7,6]

Library account, PAS:. It contains
as well as the AIphaPASCAL compiler,

It contains
by your BASIC
Any .RUN or
by BASIC from

DISKS AVAILABLE FROM ALPHA MICRO Page 3

[10,13 This account contains source files to various miscelLaneous
programs.

[10,2] This account contains source fiLes for a number of terminal
and device drivers.

Each one of the accounts above is included in the AM—500 and AM—410 System
Disks and the double—density floppy System Diskettes.

3.0 SINGLE—DENSITY FLOPPY DISKETTES

These paragraphs discuss what accounts Listed above are included on which
single—density floppy diskettes:

3.1 The Single—Density System Diskette

TheSystem Diskette is actually two diskettes that contain aLl of the system
software, drivers, and command files distributed with the current release.
(That is, these two diskettes contain accounts [1,4], [1,6], [2,2], [7,0],
and [7,71.)

We have taken care to make sure that the diskette Labeled "Part 1 of 2"
contains the software necessary to boat your system under the minimal system
initialization command fiLe contained on the diskette. There is also enough
room on the first diskette to allow you to copy files and to edit your
SYSTEM.INI file.

The four different System Diskettes differ only in the device driver the
monitor has been generated with. Each System Diskette contains a SYSTEM.MON
file that has been generated to access a particular System Device.

3.2 The Single—Density Non—System Diskettes

The other three single—density floppy diskettes contain the rest of the
accounts listed in Section 2.0 above that are not included in the
single—density System Diskette.

The ftiscellaneous Programs Diskette — This floppy diskette contains all of
the files in accounts [7,1], 17,2], and [10,1].

The Driver Sources Diskette — This floppy diskette contains all of the
files in account [10,2].

The AIphaLISPIAIphaPASCAL Diskette — This floppy diskette contains all of
the files in [7,4] and [7,5]. It also contains the system software and
command files necessary to use AIphaLISP and AIphaPASCAL.

(Changed 30 April 1981)

April 1981
Revision A04

A GUIDE TO THE ALPHA MICRO SOFTWARE DOCUMENTATION LIBRARY

Alpha Micro software documentation is grouped into two categories: 1.,
individual manuals that you can purchase separateLy; and 2., documents that
are packaged together in the AMOS Software Update Documentation Packet.
(NOTE: The AMOS Software Update Documentation Packet was previously known as
the "AM—lOO documentation packet.")

A number in parentheses after a document title (e.g., DWM—O010020)

indicates that the document is a manual that can be purchased separately;
the number is the part number by which you may order that document.

Refer to Section 3.0 for an alphabetic list of all Alpha Micro software
documentation. (In that list we indicate those documents that are part of
the AMOS Software Update Documentation Packet by following their titles with
the code "AMOS PKT." You may only order those documents by ordering the
entire AMOS Software Update Documentation Packet, part number DSS—10000—O5.)

1.0 THE ALPHA MICRO SOFTWARE MANUALS

This section lists those documents not included in the AMOS Software Update
Documentation Packet or as documentation for the AlphaAccounting system.

NOTE: We are in the process of writing an AMOS System Operator's Guide,
which contains information necessary to the person in charge of system
management (e.g., system software installation, modifying the system
initialization command file, formatting disks, memory management, performing
diagnostic tests on disks and memory, creating user accounts, etc.).

(Changed 30 ApriL 1981)

I

A GUIDE TO THE ALPHA MICRO SOFTWARE DOCUMENTATION LIBRARY Page 2

TITLE: AIphaRASIC User's Manual

TITLE:

(DWM—OO100—O1, Revision BOO)

Discusses the operation of AIphaBASIC in both interactive
and compiler modes. Lists alt AIphaBASIC commands and
functions, and discusses the various data formats supported
by AIphaBASIC. Also discusses the use of MAP statements
for mapping data structures into memory. Talks about
advanced BASIC programming techniques (e.g., the ALphaBASIC
file I/O system, calling external assembly Language
routines, chaining to other programs, print using, •error
trapping and using the ISAM system). Contains many program
examples.

AIphaFIX User's Manual

(DWM—OO100—69, Revision Aol)

READER: Advanced assembLy language programmer, who
understands the use of MACRO, LINK, and DDT.

already fully

TOPICS: Explains the use of FIX, the ALpha Micro screen—oriented
debugger program for machine language programs. Lists all
the FIX commands and modes.

TITLE: AIphaLISP User's Manual

(DWM—OO100—05)

READER: This manual is written for the LISP programmer who is
already quite familiar with the LISP language.

TOPICS: Discusses the f
a description
are included on
with a group of

(Changed 30 April 1981)

unctions available in AIphaLISP, along with
of the data types recognized. Instructions
operating the language processor, along
sample programs written in ALphaLISP.

TOPICS:

READER: Aimed at all BASIC users. Assumes
prior experience with BASIC and with

that you have had some
programming.

A GUIDE TO THE ALPHA MIcRO SOFTWARE DOCUMENTATION LIBRARY Page 3

TITLE AIphaMAIL User's Manual

(DSS—10000—06)

READER Aimed at all users of the system who are authorized users
of AIphaMAIL Assumes no prior experience with electronic
mail systems but some familiarity with the Alpha Micro
system is required Further instructions for an
experienced user acting as the AIphaMAIL Operator are also
provided.

TOPICS: Gives full operating instructions for AIphaMAIL, along with
a summary of all AIphaMAIL commands. Discusses the general
user features of sending, receiving, printing and
forwarding messages. Further discusses the maintenance
system available to the Operator controlling AlphaMflL.

TITLE: AIphaPASCAL User's Manual

(DWM—OO100—O8, Revision BOO)

READER: This manual is aimed at the PASCAL programmer who is
aLready familiar with standard PASCAL (i.e., Wirth and
Jensen PASCAL).

TOPICS: Describes the ALphaPASCAL Version 2.0 compiler and linker.
This implementation of PASCAL is fully compatible with the
AMOS file system and the AIphaVUE text editor. The manual
contains an introduction to AIphaPASCAL, information on
compatibility with previous versions of AIphaPASCAL, and
complete operating instructions for the AIphaPASCAL
compiler, linker, and run—time package. The book also
contains a complete summary of AIphaPASCAL, including
information on all functions, procedures, data types,
file—handling techniques, assembly language subroutines,
and information on writing and modifying an external
library.

(Changed 30 April 1981)

A GUIDE TO THE ALPHA MICRO SOFTWARE DOCUMENTATION LIBRARY Page 4

TITLE ALphaVUE/TXTFMT Training Guide

(DSS—10000—O3)

READER Written for alt, users who are new to ALphaVUE and TXTFMT,
the Alpha Micro text processors. Assumes no prior
experience with coriputers or text editors.

TOPJCS A tutorial containing exercises and demonstrations that
teach the new user how to use AIphaVUE and TXTFMT. The
emphasis of the book is on creating documents in a business
environment. For complete information on AlphaVUE and
TXTFMT, turn to the reference manuals: AIphaVUE User's
Manual and TXTFPIT User's Manual.

TITLE: AlphaVUE User's Manual

(DWMOO100H5, Revision BOO)

READER: Aimed at all users of the system who want to create text
files. Assumes no prior experience with text editor
programs.

TOPICS: Gives full operating instructions for VUE, along with a
summary of all VIlE commands. Discusses the creation of the (
VUE initializaton file, VUE.INI, and describes those
display features of your CR1 terminal that are required by
VIlE.

TITLE: AMOS Assembly Language Programmer's Reference Manual

(DWMO010043, Revision BOO)

READER: Written for the experienced assembly language programmer
who wants to become familiar with the All—lOU assembly
language programming system. Does NOT teach assembly
language. For information on the instruction set used by
the AM—lOU orocessor, refer to the WD16 Microcomputer
Reference Manual, (DWM—OU100—04).

(Changed 30 April 1981)

A GUIDE TO THE ALPHA MICRO SOFTWARE DOCUMENTATION LIBRARY Page 5

assembly language programming on the AMOS system
operation of, the AMOS macro—assembler, MACRO, the
ditor, LINK, and the symbol—table tile program,
Discusses use of the object •fiLe library

LIB and the global cross reference program,
Discusses types of expressions, data and

recognized by the assembler, and gives
on pseudo—operations, macros and writing

code. Also gives, detailed operating
for the symbolic 'debuger program, DDT.

TITLE: AMOS Monitor Calls Manual

U (DWM—00100—42, Revision BOO)

READER: Aimed at the advanced systems programmer, who wants to
interface assembly language programs to the monitor via
those monitor calls avaiLable to user programs.

TOPICS: Describes in detail the 70+ monitor routines resident in
the operating system that are available to user programs.
The manual also discusses the file service system, the
terminal service system, the structure of a memory
partition, and the format of various data structures used
by the system (e.g., Job Control Blocks, Dataset Driver
Block, Master File Directory, etc.).

TITLE: AMOS System Commands Reference Manual

• (DWM—OO100—49, Revision AOl)

READER: Written for the experienced user of the
wants a quick reference guide
system. We assume that the reader
with the AMOS system software.

TOPICS: Contains two— or three—page summaries of all AMOS commands.
Also contains a chart of the ASCII character set.

TITLE: AMOS User's Guide

(DWM—00100—35, Revision AOl)

READER: This manual is written for the beginning user of the system
who has had some prior experience with computers, but who
is new to the AMOS system.

(Changed 30 April 1981)

TOPICS: Discusses
Describes
linkage e

SYMBOL.
generator,
GLOBAL.
statements
information
relocatable
instructions

AMOS system who
to all commands on the
is already very familiar

A GUIDE TO THE ALPHA MICRO SOFTWARE DOCUMENTATION LIBRARY Page

Written in two part: Part I deals with turning the system
on and oft, typing commands, logging in and specifying
files. Part II covers the major system commands, and
discusses command files and DO tiles, special wildcard
commands and file backup procedures. Command descriptions
are ordered by type and function.

READER: This manual was written for
background information on the
computers in general. Assumes

the person who wants some
AMOS system in particular and

little computer experience.

TOPICS: NOT an operations or demonstration manuaL Written in
three parts: Part I deals with elementary computer
concepts, defining terms such as "files," "hexadecimal,"
'CPU,' and "program." Part II talks about some of the

programs available on the AMOS system, such as ALphaBASIC,
VUE, TXTFMT, and rSAM. Part III gives an overview of the
Alpha Micro operating system, giving a very generaL
introduction to the Terminal Service System, Job Scheduler,
Command Processor, and other major portions of AMOS.

TITLE: ISAM System User's Guide

(DWM—OO100—O6, Revision A02)

READER: This manual is aimed at the
who wants to use the ISAM
Method) package from within
Assumes thorough knowledge
experience with ISAM. NOTE
using ISAM from within
AIPhaBASIC User's Manual.

assembly language programmer
Indexed Sequential—files Access.
an assembly language program.
of assembly language, and prior

For complete information on
BASIC programs, refer to the

TOPICS: Describes the ISAM calls available to the assembly language
programmer for modifying and using ISAM files, as well as
the various ISAM programs that the user can run from the
monitor level for building and dumping ISAM files. Also
discusses the process of building and dumping ISAM files.
Contains brief discussion of using ISAM from within a BASIC
program.

(Changed 30 April 1981)

TOPICS:

TITLE: Introduction to AMOS

n

(DWM—OO100—65)

A GUIDE TO THE ALPHA MICRO SOFTWARE DOCUMENTATION LIBRARY Page 7

A
TITLE: TXTFMT User's Manual

• (DWM—DO100—07, Revision BOO)

READER: Written for all users of the system who want to create
formatted documents. Assymes experience with one of the
text editing programs, AIphaVUE or EDIT.

TOPICS: Lists all of the text formatting commands recognized by
TXTFMT. Also discusses TXTFF-IT operation and error
messages.

TITLE: WD16 Microcomputer Reference Manual

(DWM—OO100—04)

READER: This manual is aimed at the experienced assembly language
programmer who wants to become familiar with the
instruction set used by the AM—100 processor.

TOPICS: The manual does NOT contain information on assembly
language programming, or on using the AMOS assembler. It
does list all of the instructions and addressing modes used
by the WD16 microprocessor. For information on assembly
language orogramming on the AMOS system, refer to the AMOS
Assembly Language Programmer's Reference Manual.

2.0 THE AMOS SOFTWARE UPDATE DOCUMENTATION PACKET /

The
documents in the AMOS Software Update Documentation Packet

(DSS—10000—C15) are organized into four major groups:

1. User's Information

2. System Operator's Information

3. System Programmerts Information

4. BASIC Programmer's Information

For a list of the documents included in the AMOS Software Update
Documentation Packet, refer to the Master Table of Contents; this document
is the first document in the AMOS Software Update Documentation Packet.

(Changed 30 April 1981)

A GUIDE TO THE ALPHA MICRO SOFTWARE DOCUMENTATION LIBRARY Page 3

3 0 AN ALPHABETIC LIST OF ALL ALPHA MICRO SOFTWARE DOCUMENTATION

NOTE The code AMOS P1<1 following a title indicates that the document is
part of the AMOS Software Update Documentation Packet.

AlphaAccounting Release Notes — Version 1 3 (DWM—0O100—61), available
only to users licensed for the AlphaAccounting software package.

AIohaBASIC User's Manual (DWM—OO100—O1, Revision BOO)

AIphaFIX User's Manual (DWM—OO100—69, Revision AOl)

AlphaLISp User's Manual (DWM—OO100—05)

AlphaMAIL User's ManuaL (DSS—l0000—06)

AIphaPASCAL User's Manual (DWM—OO100—08, Revision BOO)

The AlphaVUE/TXTFMT TrainingGuide (DSS—10000—03)

ALphaVUE User's Manual (DWM—OO100—15, Revision BOO)

AMOS Assembly Lanquaae Programmer's Reference Manual (DWM—OO100—43,
Revision BOO)

AMOS Monitor Calls Manual (DWM—OO100—42, Revision BOO)

AMOS Release Notes — Version 4.5 (AMOS P1(T)

AMOS Software Update Documentation Packet (DSS—10000—05)

AMOS System Commands Reference Manual (DWM—OO100—49, Revision Aol)

AMOS User's Guide (DWM—OP100—35, Revision AOl)

AMOS Version 4.4 Method of Handling Bad Disk Blocks (AMOS PKT)

BASORT — BASIC Subroutine for Sorting Random and Sequential Files
(AMOS PKT, Revision AOl)

Building a Terminal Driver (The NEWTRM Program) (AMOS PKT)

Change Page Packet #1 for AIphaBASIC User's Manual (DSS—10000—O4)

Change Page Packet #2 for AIphaBASIC User's Manual (DSt—10000—O7)

Change Page Packet #1 for AIphaPASCAL User's Manual (DSS—10000—lO)

Change Page Packet #2 for AMOS System Commands Reference Manual
(DSS—10000—09)

C
(Changed 30 April 1981)

A GUIDE TO THE ALPHA MICRO SOFTWARE DOCUMENTATION LIBRARY Page 9

COMMON — BASIC Subroutine to Provide Common Variable Storage (AMOS
PKT)

Configuring floppy Disk Drivers (AMOS PKT, Revision AOl) p
Defining Non—system Disk Devices (AMOS P1(1, Revision AOl)

Defining Switchable System Memory (AMOS PKT, Revision A02)

Disk Drivers and Formats (AMOS PKT, Revision AO3)

Disk Labeling Procedures (AMOS PKT)

Disk Maintenance Procedures for the System Operator (AMOS PKT,
Revision A03)

Disks Available from Alpha Micro (AMOS PKT, Revision A05)

The DUMP Command (AMOS PKI, Revision BOO)

EDIT: A Character—oriented Text Editor (AMOS PIG, Revision AOl)

FLOCK — BASIC Subroutine to Coordinate Multiuser File Access (AMOS
PKT, Revision AOl)

Generating System Monitors (AMOS PKI, Revision AOl)

A Guide to the Alpha Micro Software Documentation Library (AMOS PKT,
Revision A04)

Important Notice for LISP Users (AMOS PKT)

Introduction to AMOS (DWM—OO100--65)

I/O Programming for the Alpha Micro Computer (AMOS PKT, Revision AOl)

ISAM System User's Guide (DWM—OO100—O6, Revision AO2)

The Magnetic Tape File Backup Programs (AMOS P1(T)

Memory Management Option (AMOS PKT, Revision AOl)

New Command File and DO File Features (AMOS PKT, Revision AOl)

Program Design Language Formatting System (AMOS P1(T)

Setting Up the Line Printer Spooler (AMOS PKT, Revision A02)

Software Installation Instructions for the AM—120 (AMOS PKT)

Software Installation Instructions for the AM—170 Memory Board (AMOS
PKT)

(Changed 30 April 1981)

,,

., A
A GUIDE TO THE ALPHA MICRO SOFTWARE DOCUMENTATION LIBRARY Page 'tO

Software

Notice for AM—410 Users (AMOS PKT, Revision A03)

SPOOL — BASIC Subroutine for Spooling Files to the Line Printer (AMOS
PKT, Revision A02)

The System Initialization Command File (AMOS PKT, Revision A04)

Terminal Service System (AMOS P1(T)

• TXTFMT User's Manual (DWM—O0100—07, Revision BOO)

Using the Magnetic Tape Utility Programs (AMOS P1(T)

WD16 Microcomputer Reference Manual (DWM—OO100—04)

I XLOCK — BASIC Subroutine for riultiuser Locks (AMOS P1(1, Revision AOl)

XMOIJNT — BASIC Subroutine to Mount a Disk (AMOS PC, Revision AOl)

(Changed 30 April 1981)

AMOS Software Update Documentation
AMOS Release 4.5
ApriL 1981

USER'S INFORMATION

This section contains the following documents:

New Command File and DO File Features, Revision AOl

The DUMP Command, Revision BOO

Important Notice for LISP Users

EDIT: A Character—oriented Text Editor, Revision AOl

Program Design Language Formatting System

'-'• I' Ic.'—

AMOS 4.5 SOFTWARE UPDATE DOCUMENTATION PACKET

'Alpha Micro', 'AMOS', 'AIphaBASIC', 'AM—lOO',
'AIphaPASCAL', 'AlphaLISP', and 'AIphaSERV'

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA 92714

These documents reflect AMOS Versions 4.5 and later

©1981 — ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North
Irvine, CA 92714

April 1981
Revision AOl

NEW COMMAND FILE AND DO FILE FEATURES

Command and DO files play an important part in extending the power and range
of the AMOS command language. This document describes several new features
and programs that greatly increase the flexibility of your command files.
Among other things, these new command file features allow you to: change the
command file trace flag as many times as you wish within a command file;
conditionally transfer control to various portions of a command fiLe based
on whether a specific file exists; and, exit a command file, perform various
AMOS commands, and then resume execution of that command file. We also
describe several new AMOS level commands that are particularly useful as
command file elements. -

For detailed information on the concepts of command files and DO files,
refer to Chapter 8, "Command Files and DO Fi les," in the AMOS User's
Guide, (DWM—OO100—35). In brief, a command file is a special kind of text
file which can contain a series of AMOS commands, specifications of other
command files, test data, etc. To execute all of the commands and data in a
DO file or a command file, just enter the name of the file at AMOS command
level. Command files are extremely useful for performing entire sequences
of commands that you use frequently (e.g., commands that do disk backup or
that compile a series of BASIC programs).

DO

files are a type of command file that allow you to specify arguments when
you invoke the DO file that are substituted into that DO file where special
parameter symbols appear. This allows you to use one DO file with a wide
range of fiLes or programs. Since DO files are just one type of command
file, when we mention "command files" in the rest of this document, we will
be talkinci about both standard command files and DO files.

Special symbols may appear in command files that allow you to ask the user
of the file for input, and to display messages to that user. In addition,
you may use the :1, :S and :R symbols to choose whether or not users of the
command file see program output that result from the actions of your command
file. Except fob these special symbols, when AMOS processes a command file,
it treats most of the eLements of the file as if you were entering each
command file line from a terminal, line by line.

For

more information on any command discussed below, refer to the reference
sheet for that command in the AMOS System Commands Reference Manual,
(DWM—OO100—49, Revision Aol and later).

(Changed 30 April 1981)

NEW COMMAND FILE AND DO FILE FEATURES Page 2

1.0 THE COMMAND FILE TRACE FLAG (T AND TRACE)

Command files have always allowed you to choose whether or not the user of
your command file sees the contents of the file while it is being processed
by AMOS. AMOS checks the status of the command file "trace flag" to
determine whether or not to display the contents of the command file. Until
the advent of the TRACE command, the only way to affect the trace flag was
by including the :T symbol at the place in the command file where you wanted
users to see command file contents. The main disadvantage to this was that
you could only use the :T symbol once to turn the trace flag on in a
command file, and then could not turn it off again. (Of course, if you
wanted the trace flag off, you could simply omit the :T from the commandfile.)
NOTE: When the trace flag is off, you can still
output and messages by use of the special :S,
they will not see comments or command lines
example, if the line:

appears in the command file when the trace flag is off, if no :R precedes
the command line, the user of the file does not see the command line OR the
information output by the ERASE program. If a :R precedes the command line
and the trace flag is off, the user does not see the command line, but does
see the output produced by ERASE. NOTE: Remember to always include a :R in
your command file if the trace flag is off but you want the user of the
command file to see any output generated by the commands in the commandfile.

1.1 The TRACE Command

The TRACE command allows you to turn the trace
within the command file as many times as you
to switch the current state of the trace flag,
on or off. You may only use TRACE in a command file.

To use TRACE,
formats:

TRACE ON Turns the command file trace
the contents of your command
all program command lines.
TRACE ON is in effect.

flag ON. Users
file, including

:5 and :R are

see all of
comments and
ignored when

TRACE OFF Turns the command file trace flag OFF.
messages enclosed with the :<> symbol
the :R symbol, users also see program
symbol turns off the :R symbol.) (NO
with TRACE OFF as if no TRACE or no
command file.)

Users see only
s. If you include
output. (The :S
TE: :5 and :R work

:T were in the

(Changed 30 April 1981)

.ERASE *.BAK

allow users to see program
:R, and :<> symbols; however,
in the command file. For

(a

flag on or off at any
wish. You may also use
regardless of whether

point
TRACE

it is

enter it in your command file in one of the following three

-. 'I -

NEW COMMAND FILE AND DO FILE FEATURES

TRACE SWITCH Switches the current
flag. If the tiag is
vice versa.

; Command tile to backup HAWK System Di
LOG DSKO:1,2
:< Make sure nobody else. is running on
ERASE *.BAKCJ
DIRSEQ
F

TRACE ON
o SK C P Y•

OSKO:
DSK1

ALL
done. Remove cartridge and Label it. Log back into

account.>

Not having a :T or TRACE OFF makes sure that the user
won't see the output of the cleanup functions we perform.
sees those messages bracketed by the ;<> symbols.) The TRA
the user will see that we are running the DSKCPY program.

There are many occasions when a command Line in a command tile causes AMOS
to search for a file. If AMOS tails to find the specified file, execution
of the command file does not abort, but continues even though the necessary
tile was not found. Sometimes this can be a severe inconvenience if several
subsequent command Lines assume that the nonexistent file exists.

2.1 The LOOKUP Command

The LOOKUP command allows you to search for a file from
file, and then to perform several actions based on t
search. If a file is not found, you may resume execution
file at the command line following the lookup, or you may
file to terminate execution. You may also choose whether
own error message or a standard AMOS error message if the

(Changed 30 April 1981)

within a command
he results of that

of the command
cause the command
to display your

file is not found.

Page 3

status of the command file rce
OFF, this command turns it ON and

If you do not include an argument on the TRACE command line, AMOS ignores
the command.

As an example of the use of the TRACE command, let's create a command file
that does disk backup:

sk ontp another disk.

DSKO: or your backup disk>

your

command file
user still

ensures that

of the
(The

CE ON

2.0 LOOKING UP FILES FROM WITHIN A COMMAND FILE (LOOKUP)

NEW.COMMAND FILE AND DO FILE FEATURES Page 4

By using LOQKUPr.in combination wi-th the. GOTO command, you. can choose, which .
(T\

portions of the command file to execute based on the results of the file
Lookup. This allows you to perform conditional branching within a commandfile.

LOOKUP Fspec where Fspec specifies the file you want to search
for. If the file is found, LOOKUP continues
execution of the command file; if it is not found,
LOCKUP displays the appropriate AMOS error message
(e.g., ?Cannot OPEN STDMOD.BAD — file not found),
and returns the user of the command fiLe to AMOS
command level.

LOCKUP Fspec Msg where Fspec specifies the file you
for, and Msg is a message supplied by
file is found, LOOKUP just continue
the command file. If the file is not
displays your message (instead of t
AMOS error message) and returns the
command file to AMOS command level.

want to search
you. If the
s execution of
found, LOCKUP
he appropriate
user of the

LOOKUP Fspec/ where Fspec specifies the file you want to search
for, and the "I" symbol tells LOOKUP not to abort
command file execution if the file is not found. If
the file is found, LOCKUP skips over the next line
in the command file and resumes execution at the
line past it. If the file is not found, LOOKUP
continues execution at the next line after the
LOOKUP command, and displays the appropriate AMOS
error message.

paragraph above), and Msg is a message supplied by
you. If the file is found, LOOKUP skips over the
next line in the command file and resumes execution
at the line past it. If the file is not found,
LOCKUP resumes execution at the next line in the
command file, and displays the specified message.
(If you include both the "I" symbol and a message,
the message must follow the slash on the LOOKUP
command line.)

If you omit portions of the file specification, LOCKUP assumes the device
and.account the user of the command fiLe is logged into and a .PRG
extension.

The LOOKUP "I" option becomes especially useful when you use the GOTO and
EXIT statements to select certain portions of the command file to be

(Changed 30 April 1981)

You may only use the LOCKUP command within a command file. To use LOCKUP,
enter it into your command file in one of the following formats:

LOCKUP Fspec/Msg where Fspec specifies the
for, "I" tells LOCKUP
execution if the file

file you want to search
not to abort command file
is not found (see the

NEW COMMAND FILE AND DO FILE FEATURES Page 5

I

As an exampLe of the use of the LOCKUP command, Let's create a DO file that
instaLls a BASIC program into an account. (The user of the DO file provides
the name of the program to install as an argument when he or she invokes the
DO fiLe. This argument gets substituted into the DO file for the $0 symbol,
which is a special DO fiLe parameter symbol.)

; Command file to install $O.BAS from project library account
; into the account user is logged into.
F

LOOKUP $O.BAS[300,0] ?That BASIC program doesn't exist. Try again.
COPY =[300,OJ$O.BAS
F

TRACE ON
COMPIL $O.BAS
RUN $0. RUN

argument, or gives an
catches it and ends

ovides a good exampLe of why you often need
specification has been given. If the

KUP command, and if the user of the command
all (thus causing a space to be substituted for
command would copy ALL .BAS files from C300,OJ

is logged into.

NOTE: The command tiLe above pr
to check to see if a proper file
example above did not use the LOO
file supplied no argument at
the $0 symbol), the COPY

over to the account the user

3.0 TEMPORARILY INTERRUPTING COMMAND FILE EXECUTION (PAUSE, CONT)

It wouLd often be convenient to temporarily exit a

various cleanup or housekeeping functions, and then
The PAUSE and CONT commands allow you to do so.

command file, perform
resume use of the file.

The PAUSE command causes the temporary
command file in which it appears.
invoke other command files, use a text
the command file, use the CONT command.

interruption in the executi
You may then execute AMOS

editor, etc. To resume exec

on of the
commands,
ution of

(Changed 30 April 1981

executed as a result of
"Transferring Control Within
conditional branching within

the LOOKUP operation. (See
a Command File (GOTO, EXIT)," for
a command file.)

Section 4.0,
an exampLe of

If the user of the DO file doesn't specify an
incorrect file specification, the LOOKUP command above
command file execution.

NEW COMMAND FILE AND DO FILE FEATURES Page 6

3.1 The PAUSE Command

You may only use PAUSE within a command file. Enter the PAUSE command in
your command file where you want to temporarily interrupt execution of thefile. You may optionally include a message on the PAUSE command line which
is displayed when the command file pauses. For example:

PAUSE Type a K, COPY old BAS files to £40/fl, type CONT to resume backup

This is what happens when a PAUSE statement is processed in a command file
you are using:

2. Whether or not
and waits for
PAUSE resumes
anythinci but a

it has displayed a message,
you to type a character. If

execution of the command
RETURN, PAUSE returns you

PAUSE now stops
you type a RETURN,
file. If y9u type
to AMOS command

3. Once PAUSE returns you to AMOS command level, you can now run
any programs or command files you want. To resume execution
of the command file (at the point after the PAUSE command),
just type CONT at AMOS command level. (The CONT command may
also appear within a command file.)

the command file past the PA
CNT.CMD. (This file appears in
command file is logged into.)
your memory partition the CNT.CM
executing that command file.
execution of a PAUSEd command fi
the device and account where the
The CNT.CMD file always contains
PAUSEd in that account. Fo
interrupted becau
CNT.CMD in your account

it saves the elements
USE command line in a special disk file named
the device and account the user of the
When you use the CONT command, it loads into
D file that is in your account and resumes

(This means, of course, that to resume
le, the user of the file must be logged into
command file was originally interrupted.)
the most current command file that has been

r example, if you use a command file that is
as

(Changed 30 ApriL 1981)

you do not use a CONT command before
uses PAUSE to interrupt execution,

command file) are replaced by the
you use the CONT command now, you

1. If a message has been included on the PAUSE command line,
PAUSE displays that message to you.

level.

When PAUSE interrupts execution of a command file, of

se of a PAUSE command, the rest of that file is stored

If, after performing various commands,
invoking another command file that also
the contents of CNT.CMD (the first
contents of the second command fiLe. If
resume execution of the second command fiLe, not the first. When a second
PAUSE causes the current contents of CNT.CMD to be written over (because a
CONT has not been used to resume execution of the previous command file),
you see the following message:

ZSupersedes existing fiLe

NEW COMMAND FILE AND DO FILE FEATURES Page 7

No harm is done i-f you do not resu'me command file execution by usinda! CONT
command before another PAUSE command occurs, but you do lose the previous
contents of CNT.CMD when the new command file replaces them.

As an example of the use of PAUSE, let's create a command file that performs
"housekeeping" functions on a disk:

; This command file cleans up the disk and performs a backup.

If disk labeled BACKUPA is in drive, type a RETURN; otherwise,
type anything eLse, go put pack in drive, and then type CONT
when you are ready to resume backup.>

PAUSE

; Proper backup pack (DSK5:) is now in drive.
MOUNT DSK5:
:<
If you want to save everything on the disk, type a RETURN.
If there are any scratch files you don't want to save, type
anything but a RETURN. Then erase your old, working files
from all accounts on the disk. To resume backup, type CONT.

>

PAUSE Enter a character:

; Disk is ready to back up. Chain to another command file
; that does actual backup.
BACKUP

All done. You may remove BACKUPA from drive.>

3.2 The CONT Command

If a command file has been temporarily interrupted as the result of a PAUSE

command (that is, if a CNT.CMD file appears -in the account you are logged
into), you may resume execution of that command fiLe by using the CONT

command. For example:

.CONT

If there is a CNT.CMD file, CONT tells AMOS to process it. When the entire
command file has been processed, CONT erases the CNT.CMD file from the disk.
If no CNT.CMD file exists in the account, CONT displays the message:

?Can't continue

and you are returned to AMOS command level.

(Changed 30 April 1981)

'y.

NEW..COMMAND FILE AND DO FILE FEATURES

4.0 TRANSFERRING CONTROL WITHIN A 'COMMAND FILE (GOTO, EXIT)

Since the LOOKUP command allows you to choose which line of a command file
to execute, it now becomes possible to use a transfer command, GOTO, to
seLect which portion of a command file to execute based on the results of afile Lookup. Used in combination with one another, the GOTO, EXIT, and
LOOKUP commands allow your command files to perform conditional branching.

only use the GOTO
you to transfer

The GOTO command
which is the name

; Command fiLe to compile BASIC programs.

command
file to
and an

LOOKUP TAXTBL BAS/vCouldnIt find fiLe. Are you in right account
; If file not found, go to. NOFILE.
GOTO NOFILE
TRACE ON
COMPIL TAXTBL.BAS
RUN TAXTBL.RUN

EXIT *That's all.. .Returning you to AMOS command leveL*
I
;NOFILE

We're going to enter VUE so you can create TAXTBL.BAS.
an X if you don't want to create the file; otherwise,>
PAUSE Hit RETURN when ready:
F

VUE TAXTBL.BAS
V

Type

In the example above, the GOTO command line contains the argument NOFILE.
NOFILE is the label of the portion of the command file to which the GOTO
command transfers control.

branch to. That is, GOTO
the file.

I

4.1 The GOTO Command

You may
a I lows
another.
a rgument

command within a command file The GOTO
control from one portion of your command
line must contain both the GOTO command
of the label to branch to. .. For example:

There are some
argument, and the
which you want to

convent ions
label that
transfer.

you must follow in setting up a GOTO, its
designates the portion of the command file to

1. GObs must precede the labels they
statements may only transfer forward in

(Changed 30 April 1981)

NEW COMMAND FILE AND DO FILE FEATURES Page 9

2 An argument may not contain trailing spaces That is, the end of
an argument must be either a RETURN or a semicolon (which
identifies the start of a comment). That means that if you include
a comment on the GOTO command Line, it must begin directly after
the argument.

3. The command file label may either be a comment (that is, begin with
a semicolon) or a vaLid, executable command file element.

a. If a label is a comment, the argument in the GOTO command Line
that refers to the label must not begin with a semicolon.
(See the sample command file above.)

b. If a label is not a comment, it must be a valid command file
element (e.g., a program name, a command file specification,
etc.).

If the GOTO statement directs you to a label that is not a comment
or a valid command file element, the command file resumes execution
after the label.

4., You may begin a label with spaces, a semicolon, or spaces followed
by a semicolon. (There may be no spaces between a semicolon and
the rest of the label.) These are ignored when GOb compares an
argument to the labeL it selects.

5. LabeLs may be of any length (as long as they fit on one line), and
must be the only thing on the line.

If GOTO cannot find the specified label, the user of the command file sees:

?Label not found

and is returned to AMOS command level.

4.2 The EXIT Command

Whenever you create conditional branches within a command file, you face the
problem of separating portions of the command file so that users not
deliberately transferred to a labeled portion do not "fall into" that
section of the command file as they proceed through the file. The EXIT
statement allows you to create one or more points in the file which cause
the user to gracefully be returned to AMOS command level. You may only use
EXIT within a command file. The sample command file above demonstrates the
use of the EXIT statement. As another example, consider the DO file below,
which does different things with a file, based on the extension of thatfile:

(Changed 30 April 1981)

NEW COMMAND FILE AND DO FILE FEATURES Page 10

; Command file that handles text fiLes.
If file TXT tile, format it

LOOKUP $0.TXT/?not .TXT fiLe
GOTO NOTTXT
TRACE ON
TXTFMT $O.TXT
TRACE OFF

; NOTI X T
LOOKUP $O.LST/?not .LST file
GOTO NOTLST
PRINT $O.LST
EXIT *Your file is formatted and the .LST version is printed.*

N OIL ST

EXIT ?Couldn't find a .TXT or .LST file of that name.

5.0 ADDITIONAL USEFUL COMMANDS (BATCH, COM)

In addition to the commands we discussed above, two other new commands exist
that are particularly helpful when used within command files. You may also
use these commands at AMOS command level.

5.1 The BATCH Command

A command file executes faster if the programs it accesses are already
loaded into memory when that command file needs them. The BATCH command
Loads into your memory partition programs that are frequently used when
making use of the new command file features (GOTO, LOOKUP, EXIT, TRACE,
PAUSE, and LOAD). (NOTE: GOTO, LOOKUP, EXIT, TRACE, and PAUSE are
re—entrant, and may be placed into system memory by the System Operator.) If
you use BATCH from within a command fiLe rather than at AMOS command Level,
you will want to put BATCH at the front of the command file. BATCH takes up
about 1K of your memory partition. To use BATCH, enter the command followed
by a RETURN:

.BATCH fED

5.2 The COM Command

The COM command processes a file based on its extension. To use the
command, enter COM followed by the name of the file you want to affect. You
may not include the extension of the file. In addition, the file must
appear within the account you are logged into, but you may specify a
different device. For example:

(Changed 30 April 1981)

I
I I •• I', I. .

NEW COMMAND FILE AND DO FILE FEATURES Page 11

.COM STD1:MNMENU

COM begins looking for the disk file in this order:

1. .MAC file? Then assemble with MACRO.

2. .BAS tile? Then compile with BASIC.

3. .PAS file? Then compile with PRUN CMPILR.

4. .TXT file? Then format with TXTFMT.

It you omit portions of the fiLe specification, COM assumes the account and
device you are logged into. (Of course, if COM is used within a command
file, COM uses the account and device of the user of the command file as the
defau Its.)

If

COM can't find the file you have specified, or if the file does not have
one of the extensions listed above, you see:

?Filename is not a compilable file

where Filename is the file you specified on the COM command line.

(Changed 30 April 1981)

C)

May 1980
Revision 600

THE DUMP COMMAND

1.0 INTRODUCTION

This document describes the DUMP utility program. (Also, see the referencesheet on DUMP in the AMOS System Commands. Reference ManuaL,
(DWM—O0100—49), for a brief summary of DUMP command format.)

. .

DUMP gives you a simple method for examining data, either in memory or onthe disk. You can use DUMP to take a look at the contents of memory, thecontents of a block on the disk, a disk Master FiLe.Directory, a disk User

File

Directory, or a disk bitmap. You can use DUMP to look at the contentsof both random and sequential files. DUMP is re—entrant, and may be loaded
into system memory by the System Operator.

Some uses of DUMP require that you give it one or more numeric arguments.These arguments must be in the number base the system is using for yournumeric displays (usually octal). (You can use the SET command to changethis number base from octal to hexadecimal, and vice versa. See the SETreference sheet in the AMOS System Commands Reference Manual
(DWM—OO100—49), for more information on SET.) Some uses of DUMP require that
you supply keywords which select the DUMP function you want to use. You mayabbreviate these keywords by giving just as many characters as will uniquelyidentify that keyword. (For example, you may enter DI instead ofDIRECTORY.)

NOTE: Previous versions of this document used the term "disk records." . Theuse of the word "record" can cause some confusion since it is sometimes usedin other documentation to mean different things. In the interests ofclarity, therefore, we have adopted the convention that the 512—byte groupsof data into which AMOS organizes the disk are called "disk blocks," not"disk records." We have changed this document and the DUMP programaccordingly. (We have retained the earlier DUMP format "DUMP RECORD"; itperforms exactly the same function as the new "DUMP BLOCK" command.)

2.0 DUMP FUNCTIONS

DUMP allows you to select six different display functions. The DUMP formatyou use selects the specific function you want to perform:

(Changed 1 May 1980)

THE DUMP COMMAND Page 2

2.1 Displaying Memory

FORMAT:

.DIJMP Addressl Address2 RET

To display memory, give DUMP two memory addresses in the number base the
system is using for your numeric displays. (If your system is a

bank—switched system, remember that you may only display memory addresses
that are in the memory bank within which your job resides.) For example:

.DUMP 110000 120002 RET

DUMP displays the contents of memory from the first address to the second
address, incLusive. If you do not supply a second memory address, DUMP

displays
only the first 16 bytes of data. NOTE: DUMP rounds the starting

address down to the nearest multiple of 16.

A DUMP memory display looks something like this:

110000:006562 020056 052040 062550 066400 071557 020164 067543 rm. The most co
110020:066555 067157 072040 070171 020145 063157 062040 071551 mmon type of dis
110040:066160 074541 072040 065541 071545 072040 062550 063040 pLay takes the f

Let's take a look at the first line of this display:

1. The first number on the left (ending with a colon) is the memory
address that contains the first byte of data on the line. In this
example, memory addresses 110000 and 110001 contain the two bytes
of data 006562.

2. Each group of six digits after the memory address represents two
bytes (16 bits) of data in octal form. (if the system is using
hexadecimal for your numeric displays, DUMP displays the data in
groups of eight bits—— one byte.)

3. On the far riaht of the disolay is a field that gives the SCIt
form of the data. It displays the same data as the numbers in the
center of the display, but transLated into their character
representation. Non—printing ASCII characters (such as
Control—characters) appear as dots.

2.2 Displaying a Disk File

FORMAT:

.DUMP Filespec j

C
(Changed 1 May 1980)

THE DUMP COMMAND Pageb3

To

display a random or sequential disk file, type DUMP followed by the
specification of the file you want to see. Then type RETURN; F6'
example:

-

.DUMP DSK1:PROJCT.OBJ[12,45J ED

If you omit portions of the file specification, DUMP assumes the device and
account you are logged into and a .PRG extension. DUMP displays the entire
fiLe in the same form as the memory display (see above).

DUMP precedes the display with a message that tells you the number of the
block you are seeing. For example:

Block number 12033 of DSKO:DATA.DAT[35,4J

If you are dumping a sequential file, DUMP also displays the next block
link. For example:

Block number 784 of DSK1:PROJCT.OBJ 112,45], next block link is 11027.

2.3 Displaying a Disk Block

FORMAT:

.DUMP BLOCK Block—numberl (Block—nurnber2} {Devn:) ED

To display the data in a disk block, type DUMP BLOCK. (You may also use the
format DUMP RECORD.) Now enter the number of the block you want to see and
the specification of the logical unit that holds that block.

If you want to see the contents of several blocks, enter a second block
number. Type a RETURN. DUMP now disolays the data from the first to the
second block, inclusive. For example:

.DUMP BLOCK 1355 1360 HWK2:

If you do not specifiy a device, DUrIP assumes the device you are logged
into. The DUMP display looks much like the memory display above. The
addresses on the Left side of the display give the relative position of the
data in each block.

2 4 Disolaying a Bitmap

FORMAT:

.DUMP BITMAP {Devn:}

To display a disk bitmap, enter DUMP BITMAP. Now enter the specification of
the logical unit whose bitmap you want to see. (If you omit the device

(Changed 1 May 1980)

THE DUMP COMMAND Page.4

specification, DUMP assumes.the device you are logged into.) Now type a
RETURN. For example:

.DUMP BITMAP DSK5: RET

You now see a display of ones and zeros that represents the bitmap of the
disk. (A bitmap is a disk alLocation map that marks which disk blocks are
in use and which are available.) Every block on the disk is represented in
the bitmap by a one (if in use) or a zero (it empty). Each line of the
display begins with a number which ends in a colon; this octal or hex number
is the number of the disk block represented by the first one or zero on that
line.

At the end of the di
decimal) on the disk.
Hawk
blocks.) For exampLe:

splay, DUMP prints the total
(An STD—format diskette has

number of free blocks (in
a total of 512 blocks; a

hard disk has about 29088

000000: lllllllllllllllQllllolljllllllolllllljllolllliiiliiiiiiijiiiiiii
000100: 11111111111011111111101111111111111111111001111111111o0ii1i1iiii
000200:
000300: 1111111111111111111111101111111111110iii1ijiii1 11100111111111111

022500: 00000000000001000000000000111000000101o111111000oooooooiiooooooo
022600: 000111 0000000000000
022700: 000000000000000000000000000000

4850 free blocks

2.5 Displaying a Disk Master File Directory

FORMAT:

.DUMP MID {tevn:}QjJ

Every disk contains a Master File Directory in Block 1 that contains a lAstof all accounts on the disk and the starting b'ock number of all individual
account directories (the User File Directories, or UFD5). To see the MFD of
a disk, type DUMP MFD. Now enter the specification of the logical unit
whose MFD you want to see. (If you omit the device specification, DUMP
assumes the device you are logged into.) Finally, type a RETURN. For
example:

(Changed 1 May 1980)

C

n

hard disk has 9696 blocks, and a Phoenix

.DUMP BITMAP HWK1:

Bitmap Dump of HWK1:

THE! DUMP COMMAND U'k1!!

I

DUMP MPD HWk3)
'-'a'-

Each line represents one User File Directory. The number on the left gives
the relative address of the MED entry in the disk block. The characters in
the center give the account PPN. The number on the right gives the disk
block at which the UFD for that accOUnt begins.
Nonexistent accounts appear as:

[0,0]

This is a normal part of the MFD display.

2.6 Displaying a Disk User File Directory

FORMAT:

or:

.DUMP DIRECTORY Block—number {Devn:)

..DUMP DIRECTORY [o,pnJ (Devn:)

To display the directory for an individual account (i.e., the User FileDirectory, or UFD), type DUMP DIRECTORY followed by the number of the block
at which the UFD starts. Or, you may simply enter the PPN associated withthat account, using the standard AMOS PPN format of [p,pn]. (If you use
[p,pn] format, and DUMP is not able to find the account you specified, yousee: ?Illegal user code.)

Now enter the specification of the logical unit that contains the UFD you
want

or:

to see. Type a RETURN. For example:

.DUMP DIRECTORY 002105 5MM:

.DUMP DIRECTORY [110,2] SMD4:

(Changed 1 May 1980)

display you see looks something like this:

Master File Directory Dump of HWK3

000000 [1,2] 002110
000010 E11,5J 002105
000020 [50,1] 000024

000170 [0,0] 000000
090200 [0,0] 000000

NOTE:
":80"
normal
writes
entry.

represent fiLes
elements of the

a new entry

that
DUMP

into

(Changed 1 May 1980)

THE. DUMP COMMAND

If you omit the device specification, DUMP assumes
into. The display may took something like this:

Directory dump of block 2105. next block

Pa9e i5

the device you are togged

lAnk is 2564
Addr Filenamj Size Active Link

002306000002 SYSINO lxi 74 000166
000016 :SORLD iXT 21 000034 002421 •

000032 PHONX LST 34 000053 002446
000046 :8051 MAC 27 000227 002650
000062 DOCMAN GAS 21 000413 002654
bdöb7o 000000 ö!öooo
000112 000000 Udooo

0

0

The first line of the display tells you the number of the block you are
Looking at. ihe next line tells you what disk block contains the next
section of the directory. (A "next block link" of 0 indicates that the
block you are displaying is the last block in the directory.) ihe rest of
the dispLay gives information about the directory entries.

You see this information for each directory entry:

Addr The position (in bytes) of the directory entry
relative to the start of the bLock.

Filename ihe name and extension of the file.

Size ihe number of disk blocks in the file.

Active The number of active data bytes in the last block ofthe file.
Link The address of the first disk block of the file.
Directory entries in which the filename begins with the characters

have been deleted from the directory. These are
DIRECTORY display. The next time the system
the directory, it overwrites the first deleted

May1980

IMPORTANT NOTICE FOR LISP USERS

Several new functions and enhancements have been added to LISP in AMOS
Release 4.4. These features include improved error reporting and the
addition of functions to the Extended Library to handle breakpoints.

1.0 ERROR HANDLING

When LISP reports an error, it now displays the Oser function in which the
error occurred. For example:

*(DE DOUBLE CX) (PLUS XX))
DOtJB L E

*(DOUBLE 2)
UNBOUND VARIABLE — EVAL INDOLJBLE

XX
*

2.0 NEW FUNCTIONS

Three new functions have been added to LISP: RETFROM, BREAK, and UNBREAK.
In addition, we have added the variabLe BREAKFNS (which is maintained by
BREAK and UNBREAK).

2.1 RETFROM

The call (RETFROM In val) causes the most recent call of function fri toreturn with value val. If the specified function is not active, LISP
generates an error message. For example:

*(DE Fl (X) (PROGN (F2) X))
Fl
*(DE F2 C) (RETFROM 3F1 5))
F2
*(F1 7)
5

NOTE: The call (RETFROM PROG val) behaves exactly the same as (RETURN val).

IMPORTANT NOTICE FOR LISP USERS Page 2

2 2 BREAK (added to the Extended Library)

The call (BREAK fnl fn2 - .3 causes execution of a program to be interrupted
if an attempt is made to call any of the specified functions. You may then
single—step execution of the interrupted function by typing a line—feed, or
resume execution by typing (RESUME). NOTE: mi, fn2, .. are not
evaluated.

-

2.3 UNBREAK (added to the Extended Library)

The call CUNBREAK fnl fn2 - ..) restores the specified functions so that they
no longer interrupt program execution when called. (That is, this function
clears breakpoints set via the BREAK function.) NOTE: fnl, fn2, ... are not
evaluated.

2.4 BREAKFNS (added to the Extended Library)

BREAKFNS is a variable which contains a list of all functions which will
interrupt program execution when called. BREAKFNS is maintained by BREAK
and UNBREAK; therefore, you should not directly modify this variable. (See
BREAK and UNBREAK, above.)

July 1979
Revision AOl

EDIT — A CHARACTER—ORIENTED TEXT EDITOR

1.0 INTRODUCTION

There are two text editing programs available on the AMOS system: VUE (a
screen—oriented text editor) and EDIT (a character—oriented editor). For
information on VUE, see the manual AlphavtiE User's Guide (DWM—OO100—15).

Unfortunately,
a manual for EDIT does not yet exist. This document gives

only a brief summary of the EDIT commands.

Character—oriented text editors were originally designed to be used on
non—Cr terminals. Because these kinds of editors were designed to be used
on hard copy terminals that do not permit fast display, the emphasis of such
an editor is not on display, but on speed and power.

When you edit a text tile, a text editor brings a copy of the file into
memory and allows you to make your editing changes to the copy in memory;
then the editor writes your changed file back out to the disk. EDIT
maintains a pointer (called DOT) that points to your current position in the
copy of the text tile that is in memory. Most commands that you give to
EDIT reference this pointer to see what text to affect.

You do not see any of the text in memory unless you explicitly ask EDIT to
dispLay one or more tines ot text. You advance throughout the text in
memory by using the various EDIT commands to move DOT. EDIT commands are
one or two characters long, and some require arguments (e.g., you follow the
search command with a string of text for which to search).

2.0 EDITING A NEW FILE

Before you can begin to enter text into an empty tile, you must create the
file by using the MAKE program. Type MAKE and the specification you want to
assign to the new file. For example:

.MAKE DSK1:NEWFIL.TXTE1OO,2J

You may only create a file in your own account or in an account within your
own project.

After you have used the MAKE command, you can now use EDIT to enter text
into the file (see below).

(changed 1 July 1979)

EDIT — A CHARACTER—ORIENTED TEXT EDITOR Page 2

3.0 EDITING PN EXISTING TEXT FILE
4

You may use EDIT on any sequential tile that contains ASCII characters. To

edit an existing fiLe,type: '.

.EDIT Filespec

where Filespec is the name of the file you want to edit. The . defauLt EDIT
extension is .MAC. After you hit RETURN, you see the EDIT prompt: *. You
are now ready to:'.enter EDIT commands. DOT initiaLly points to the. first
character in your file. When you exit EDIT, the editor renames your
originaL disk file to a .BAK extension (for BAcKUP), and saves your edited
copy under the original fiLe's name and extension.

4.0 SPECIAL CHARACTERS

When entering text and commands to EDIT, you may use the RUB key (also
labeled RUBOUT, DEL, DELETE, etc..) to erase single characters, and a

Control—u to erase an entire Line of input. EDIT itself has a group of
commands that you must use to delete those characters and Lines already part
of the file you are editing.

EDIT uses the Escape key (labeled on your keyboard as ESC, ALT MODE, etc.)
rather than a RETURN as a command delimiter; this allows you to enter
carriage returns as part of your text. When you type an Escape to EDIT, you
see the character displayed on your terminal as a dollar sign, $. Whenever
you see a S in this document, the symbol indicates an Escape.

5.0 THE COMMANDS

You may enter EDIT commands either in upper or lower case. You may enter
the commands one at a time, ending your input with, two Escapes. For
example:

*

After the EDIT prompt symboL, *, we entered the Character—advance command,
C, which moved DOT ahead in the file by one character—position. To tell.
EDIT that the command Line was complete, we entered two Escapes. EDIT
responds with another prompt to let us know that it is ready for another
command.

You may also enter commands as a group. For example:

(Changed 1 JuLy 1979)

EDIT — A CHARACTER—ORIENTED TEXT EDITOR Page 3

The exampLe above tells EDIT to move DOT to the beginning of the next line
CL), kilt (that is, delete) from DOT to the end of the current line, and
type (that is, display) the characters from DOT to the end of the current
line.

A

line consists of all of the characters between two
carriage—return/linefeed character pairs.

Some commands take numeric arguments (e.g., "3D" says delete the three
characters after DOT); numeric arguments are decimal numbers, and always
precede the command to which they apply. If a command takes a text argument
(e.g., "Stext" says search for the word "text"), you must end the text
argument with one or two Escapes. (One Escape tells EDIT that the last
command is complete, but that it may not yet take action upon the current
input line. Two Escapes tell EDIT to go ahead and act upon the current
command line.) For example:

*IThe "I" command tells EDIT to insert text$1OT$$

The command line begins with an Insert command, I. EDIT will insert into
your text file (at the current DOT position) all text (including carriage
returns) following the I command up to a single or a double Escape. The
single Escape above terminates the text entry string; next is a display
command, 101, that tells EDIT to display the 10 lines of characters that
occur after the current position of DOT. The double Escapes tell EDIT to go
ahead and act upon the entire string of commands. You may enter as many
lines of commands and text as you wish; EDIT wiLl not take action upon the
input until you hit two Escapes.

If you want to cancel •a string of input, you can do so by typing a Control—C
(as Long as you type the ControL—C before entering the double Escapes).

5.1 A SUMMARY OF THE EDIT COMMANDS

Below is an alphabetical list of the EDIT commands. (Remember, DOT is the
pointer that marks your position in the file.)

A APPEND — Appends one or more records of the input file to the
data buffer if there are at least 2000 free bytes of memor.y
Left, and DOT has not reached the end of the file.

C CHARACTER ADVANCE — Moves DOT forward one character (e.g., C$$).

nC CHARACTER ADVANCE — Moves DOT forward by "n" characters (e.g.,
3C$$).

—nC CHARACTER ADVANCE — Moves DOT backward by "n" characters (e.g.,
—5C$$).

OC CHARACTER ADVANCE — Moves DOT backward to the beginning of the
current line.

(Changed 1 July 1979)

EDIT — A CHARACTER—ORIENTED TEXT EDITOR Page ft

D DELETE — Deletes the first character after DOT

nD DELETE — Deletes the next 'n" characters after DOT (e.g., 3D$$).

—D DELETE — Deletes the character just behind DOT (e.g., D$$).

—nD DELETE — Deletes the the previous "n" characters behind DOT

(e.g., —20D$$L.

DELETE — Deletes characters from the beginning of the line up to
DOT.

ND DELETE — Deletes entire buffer; that is, deletes as much of the
file as is in memory.

E EXIT — Exit to monitor. Outputs data. buffer, and rest of input
file. Renames new file to original file's name and extension,
and renames original file to a .BAK extension.

EXIT AND GO — Exits to monitor and, if it is a .BAS or a .MAC
file, processes the text file as is appropriate for its
filetype. An EG$$ command used on a .BAS file tells the monitor
to load in BASIC and compile the file; the EG command used on a

.MAC file tells the monitor to load in MACRO and assemble the
file.

EQ EXIT AND QUIT — Exits to monitor, but doesn't make the editing
changes you entered; the original file is left as is, untouched,
and is not renamed to .BAK.

F FREE. MEMORY — Prints decimal number of free bytes left in your
memory partition.

Gx GET AUXILIARY — Gets auxiliary buffer "x' where the symbol x may
be the letters A—Z. Inserts the buffer into the file at the
current position of DOT. DOT is moved forward the number of
characters inserted.

Itext$ INSERT — Inserts specified text into the file at the current
position of DOT. You may insert carriage returns and other
special symbols except for those Control—characters discarded by
AMOS on input (See Special Insert, below). Remember that the
text is not actually inserted until you type two Escapes. For
example:

*IThjs is alt one
input; alt of the
characters, even the
carriage returns, can
be entered with one
insert cornmand$$

(Changed 1 July 1979)

OD

EG

e
ye

nI SPECIAL INSERT —
usually accepted
decimal ASCII cod
121$S inserts an

You alay insert special Càntrot—characters not
by EDIT, by preceding the I command with the

e of the character you want to insert (e.g.,
ASCII character 12—— a form—feed).

OJ JUMP — Jumps DOT back to the beginning of the data buffer (i.e.,
back to the beginning of the portion of your file that is in
memory).

JUMP — Jumps DOT to immediately in
in the data buffer.

front of the "nth" character

ZJ JUMP — Jumps DOT to the end of the buffer.

K KILL — Kit
line.

Is the characters from DOT to the end of the current

nK

OK

—K

KILL — Kills the next "n" lines of text past DOT.

KILL — KilLs from the beginning of the current line to DOT.

KILL — Kills from the beginning of the previous line to DOT.

—nK KILL — Kills
DOT itself.

from the start of the "nth" line behind DOT up to

HK KILL — KiLls the entire data buffer.

L LINE ADVANCE — Advances DOT to the beginning of the next line.

LINE ADVANCE — Advances DOT forward "n" lines.
positioned at the start of the line.

OL LINE ADVANCE — Moves DOT back to the start of the current line.

—L LINE ADVANCE — Moves DOT back to the start of the previous line.

—nL LINE ADVANCE — Moves DOT backward "n" lines from the current
position of DOT, and positions DOT to the start of the line.

yping a linefeed (Control—J) performs
is, advances to the front of the
that Line. A backspace (Control—H)

as the —LT$$ command; that is, moves
DOT back to the start of the previous line, and dispLays that
line.

WHOLE FILE SEARCH — Searches the current data buffer, beginning
at DOT, for the first occurrence of "text". If the search
within the current data buffer is not successful, EDIT writes
that data buffer out to the disk, and brings in more text; DOT
is reset to the beginning of that buffer, and the search begins
again. This process continues until "text" is found, or until

EDIT — A CHARACTER—ORIENTED TEXT EDITOR Page 5

nL DOT is

Linefeed LINE ADVANCE AND TYPE — T
same function as LT$$; that
next line, and displays
performs the same function

Ntext$

(Changed 1 July 1979)

EDIT — A CHARACTER—ORIENTED TEXT EDITOR Page 6

the end of the file has been reached If "text" is found, DOT

is positioned just after it, if "text" is not found, EDIT
disptays an error message: [SEARCH FAILED], and any commands
occurring in the input string after the search command are
aborted.

nNtext$ WHOLE FILE SEARCH — Same as above, except that search stops at
the "nth" occurrence of "text" (e.g., lONsilicon$).

MS WHOLE FILE SEARCH — Same as Ntext$, except that it uses the last
text string that you entered to a search command.

nNS WHOLE FILE SEARCH — Same as nNtext$ except that the last search
string entered is used.

R REVERSE — Same as —C command.

nR REVERSE — Same as —nC command.

OR REVERSE — Same as OC command.

—R REVERSE — Same as C command.

—nR REVERSE — Same as nC command.

Stext$ SEARCH — Searches the data buffer beginning with DOT for the
first occurrence of "text". Positions DOT just after "text" if
it finds it; otherwise it displays the message: [SEARCH FAILED],
DOT is positioned to the front of the buffer, and the rest of
the commands in the input string are aborted.

nStext$ SEARCH — Same as Stextt, but EDIT searches for the "nth"
occurrence of the search string "text".

SEARCH — Same as Stext$ above, but EDIT uses the last search
string entered.

nS$ SEARCH — Same as nStext$, but uses the last search string
entered.

FSotdtext$newtext$$

SEARCH—AND—REPLACE — Searches for "oldtext" and replaces it with
"newtext". The command FNoldtext$newtext$$ performs the same
function, but on the entire file, rather than on just the
current data buffer. -

T TYPE — Displays the characters from DOT to the end of the tine.

nT TYPE — Displays "n" tines of characters starting from DOT.

OT TYPE — Displays the characters from the beginning of the current
line up to DOT.

(Changed 1 Juty 1979)

.

EDIT — A CHARACTER—ORIENTED TEXT EDITOR Page 7

—T TYPE — DispLays the characters from the start of the previous
Line up to DOT.

—nT TYPE — Displays from the "nth" line behind DOT up to DOT.

Vx VERIFY — Verifies auxiLiary buffer contents, where the symbol
"x" is a character from A—Z. Lists the contents of the
auxiLiary buffer.

Xx SAVE — Saves, in auxiLiary butter "x", the characters from DOT
to the end of the current line. CX is a character A—fl) The
previous contents of the auxiliary butter are lost.

nXx SAVE — Saves "n" lines past DOT in auxi liary buffer "x".. ("x"
is a character A—fl)

Dxx SAVE — Saves from the beginning of the current Line to DOT in
auxiliary buffer "x".

—nXx SAVE — Saves, in auxiLiary buffer "x", from the start of the
"nth" tine previous to the tine DOT is in up to DOT.

;text$ SEMICOLON INSERT — Performs same function as the Itext$ command,
except that a semicolon is placed at the start of the insertedtext.

TABtext$ TAB INSERT — Performs same function as the Itext$ command,
except that a TAB character is placed at the start of the
inserted text.

SPACEtext$ SPACE INSERT — Performs same function as the ItextS command,
except that a space is placed at the start of the inserted text.
REPEATS — ALL of the commands within the angle brackets are
repeated "n" times (e.g, lO<FSprimpt$print$>$$ tells EDIT to
search for the word "primpt" and replace it with "print' ten

• times). All EDIT commands can be executed in a repeat,
including other repeats. The maximum nesting level for repeatsis eight. An error message and an abort occurs if you exceed
the nesting limit; search failures also abort repeats.

If you omit "n" the group of commands repeat endlessly until an
error occurs, or until a Control—C is typed. Often used to
replace ALL occurrences of an item (e.g.,
<FSregistrar$register$>$$).

(Changed 1 July 1979)

January 1979

PROGRAM DESIGN LANGUAGE FORMATTING SYSTEM

1.0 INTRODUCTION

The Program Design Language Formatting System is a tool that helps you to
produce a program—design document.

The first step in creating a program—design document is to use one of the
Alpha Micro text editors (EDIT or VUE) to write a document. Write the
document in the form set by the Program Design Language—— PDL (see Section
2.0, "Program Design Language").

When you exit the text editor, and are again at the AMOS command level, you
may use the Program Design Language Formatting System (PDLFMT) to transform
your text file into a finished program—design document.

PDLFMT produces a document which contains the following:

1. Table of Contents.

2. Formatted Design Listing — Each procedure in the program is listed
on a separate, numbered page, with the page numbers that refer to
other procedures in the margin. Each page indents the text to show
control—structure nesting.

3. Reference Trees — Indented listing shows how procedure references
are nested.

4. Cross Reference — Alphabetical listing of all sections and
procedures. An index of where the sections and procedures appear,
and where references to them aopear (page and line numbers) .

2.0 PROGRAM DESIGN LANGUAGE

A program design written in PDL has this form:

PROGRAM DESIGN LANGUAGE FORMATTING SYSTEM Page 2

IT Design Title
IS Section Name
Text describing the section

IP Procedure Name
Text giving the procedure design...

IP Procedure Name

/5 Section Name

/R
Procedure name
Procedure name

NOTE: the slash (/) must be the first character on the line.

1. /T Design Title — Specifies the name of the program design. This
title appears on every page of the finished document. (IT is
called the titLe command.) The title command must always be the
first command in the design, and must always be present.

2. /5 Section Name — Specifies the start of a new section
designs. The section name specified will appear on
the finished design document as subtitles. After
command is free—form text that describes the section.
may be any length or form that you want, but no line
begin with a I.)

3. /P Procedure Name — Specifies the start of a procedure design, and
assigns Procedure Name as the name of that design. Any time the
Procedure Name occurs as a statement within a procedure design,
PDLFMT considers that occurrence as a reference to the procedure
design.

4. /R Reference Tree — Specifies the start of a list of procedure
names on successive lines. Each procedure name is a root of a

reference tree Listing. The Reference Tree command is optional,
but if you do include it in your document, it must be the last
command in the design.

2.1 Procedure Design

A procedure design consists of a sequence of statements. You may label each
statement. (Labels are an alphanumeric identifier followed immediately by a
colon.) PDLEMT will indent labels by —2 in the finaL document.

of procedure
the pages of
the section

(This text
of it may

(c

V"4 f'ft4.

PROGRAM DESIGN LM4GUAGE FORMATTING SYSTEM Page 3

You may also precede each steternent by one of the keywords IF, ELSEIF,
ELSE, ENDIF, DO, ENDO, or ENDDO. PDLFMT uses these keywords when it formats
your design document. The rest of the line after an IF or ELSEIF is
considered a condition; PDLFMT wiLl not consider it a potential procedure
reference.

Statements are sequences of text that end with carriage returns. They may
contain embedded comments enclosed in parentheses. If the text of a
statement (ignoring the comments) matches the name of a procedure or
section, PDLFMT considers it a reference to that procedure or section.

You may continue statements on one or more Lines by pLacinq an amoersand (8,)
at the beginning of succeeding lines.

2.2 Control Structures

You can use the keywords IF, ELSEIF, ELSE, ENDIF, DO, and ENDDO (or ENDO) to
indicate a variety of control structures. The paragraphs that foLlow give
some idea of the possibilities.

2.2.1 The IF Construct — The IF construct provides the means for
indicating condition execution. It corresponds to the classic
IF.. .THEN. - .ELSE construct found in Algol—6O and PL/I, augmented by the
ELSEIF of languanes such as Algol—68. The ELSEIF is used to prevent
excessive indentation of leveLs when cascaded tests are used.

The general form of the construct is:

IF condition
one or more statements

ELSEIF condition
one or more statements

ELSEIF condition
one or more statements

ELSE
one or more statements

ENDI F

NOTE: You are allowed any number (including zero) of ELSEIFs, and you are
allowed one ELSE at the most.

PROGRAM DESIGN LANGUAGE FORMATTING SYSTEM :page 4

2.2.2 The DO CQnstruct — Use the DO .constryct to indicate repeated
execution, and for case selection. Indicate thea iterative DO by:

DO iteration criteria
one àr more statements

END DO

You can choose the iteration criteria to suit the problem
begin with the words WHILE, UNTIL, or FOR. WHILE denotes
criteria which is checked before each iteration.
termination criteria that is checked after each iteration.
range of items over which the one or more statements
Examples:

DO WHILE THERE ARE INPUT RECORDS
DO UNTIL "END" STATEMENT HAS BEEN PROCESSED
DO FOR EACH ITEM IN THE LIST EXCEPT THE LAST ONE

You can indicate case selection by:

DO CASE selection criteria

In general, labels are used in the body of the DO to indicate where control
passes for each case:

DO CASE OF TRANSACTION TYPE
ADD:

DELETE:

CHANGE:

"OTHER"

CREATE INITIAL RECORD

IF DELETION IS AUTHORIZED
CREATE DELETION RECORD

ELSE
ISSUE ERROR MESSAGE

ENDIF

INCREMENT CHANGE COUNT
CREATE DELETION RECORD

ISSUE ERROR MESSAGE
ENDO

CT)

Typical criteria
a continuation

UNTIL denotes a

FOR denotes a

are to be applied.

Provision for premature exit from a loop and premature repetition of a loop
are frequently useful. To accomplish this, you can take the statement UNDO
to mean that control is to pass to the point following the ENDDO of the
loop. Likewise, CYCLE can be taken to mean that control is to pass to the
iteration criteria test. If you want to apply UNDO or CYCLE to an outer
loop in a nest of loops, you may label any DO and place the label after the
UNDO or CYCLE.

•
•3?tcft..$CØ$.

PROGRAM DEStGN LANGUAGE FORMATTING SYSTEM Page 5

3.0 OPERATING INSTRUCIONS

Call PDLFMT from the AMOS command level by typing:

.PDLFMT Filespec

where Fitespec specifies a design file prepared with a text editor. If you
omit a filename extension, PDLFMT assumes a .PDL extension. The formatted
design document is placed in the file Filespec.LST.

A demonstration file, TLGRAM.PDL, is included with PDLFMT.PRG on the dealer
distribution disk. For a demonstration of PDLFMT, type:

.PRINT TLGRAM.PDL

.PDLFMT TLGRAMØ

.PRINT TLGRAM

4.0 ERROR MESSAGES

X IS AN ILLEGAL COMMAND — BYPASSING LINE

PDLFMT found a command Ix in the design document, but X is not a legal
command. Use IT, IS, /P, or IR.

REPEATED DEFINITION: xxxxxxx, REFERENCES WILL BE TO LAST OCCURRENCE

xxxxx is a section or procedure name that occurred in a section or
procedure command more than once.

5.0 ACKNOWLEDGMENTS

PDtFMT is based on PDL and its processor, as described in "PDL — A Tool for
Software Design,' by Stephen H. Caine and E. Kent Gordon of Caine, Farber,
and Gordon,Inc.

C

'v :

AMOS Software Update Documentation
AMOS Release 4.5
April 1981

SYSTEM OPERATflR'S IP'FORMATJON

This section contains the foLlowing documents:

The System Initiatizaton Command File, Revision A04

Setting Uo the Line Printer Spooler, Revision A02

Memory Management Option, Revision AOl

Defining Switchable System Memory, Revision A02

Configuring Floppy Disk Drivers, Revision Aol

AMOS Version 4.4 Method of Handling Bad Disk Blocks

Software Installation Instructions for the AM—120

Software Installation Instructions for the AM—710 Memory Board

Software Notice for AM—410 Users, Revision A03

Disk Labeling Procedures

Disk Maintenance Procedures for the System Operator, Revision A03

Defining Non—system Disk Devices, Revision Aol

Disk Drivers and Formats, Revision A03

Generating System Monitors, Revision AOl

Using the Magnetic Tape Utility Programs

The Magnetic Tape File Backup Programs

Building a Terminal Driver (The NEWTRM Program)

AMOS 4.5 SOFTWARE UPDATE DOCUMENTATION PACKET

t

'Alpha Micro', 'AMOS', 'AIphaBASIC', 'AM—lOO',
'.AIphaPASCAL', 'AlphaLISP', and 'AIphaSERV'

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA 92714

These documents reflect AMOS Versions 4.5 and later

©1981 — ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North
Irvine, CA 92714

r t'.'r''. ,C.%I.,4$$(

THE SYSTEM INITIALIZATION COMMAND FILE

April 1981
Revision A04

This document reflects AMOS versions 4.5 and later

, /' "

THE SYSTEM INITIALIZATON COMMAND FILE Page ii

0

(I

'ALpha Micro', 'AMOS', 'ALphaBASIC', 'AM—lOO',
'ALphaPASCAL', 'AIphaLISP', and 'AIphaSERV'

are trademarks of

ALPHA MXCROSYSTEMS
Irvine, CA 92714

©1981 — ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North
Irvine, CA 92714

'I I

THE SYSTEM INITIALIZATON COMMAND FILE Page iii

Table of Contents

hO INTRODUCTION 1

2.0 A SAMPLE SYSTEM INITIALIZATION COMMAND FILE 4

3.0 THE TRACE FUNCTION (:T) 5

4.0 ALLOCATING JOBS (THE JOBS COMMAND) 6

5.0 DEFINING TERMINALS (TRMDEF)

5.4
5.5
5.6
5.7

5.3.1 ADM3
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7
5.3.8
5.3.9
5.3.10

7

7
7
8

8

8

9

10
10
10
11
11
11

11
12
12
12
12
12
12
1?

13
13
14

6.0 MEMORY MANAGEMENT (MEMDEF) 14

7.0 SWITCHABLE SYSTEM MEMORY (SYSMEM) 15

(Changed 30 April 1981)

1.1 Modifying the SYSTEM,INI
1.2 System Start—up

1

2

6

5.1 Name
5.2 Interface

5.2.1 PS3
5.2.2 IMSIO
5.2.3 AM100T
5.2.4 AM300
5.2.5 AM31O
5.2.6 AX310
5.2.7 AM120
5.2.8 PSEUDO

5.3 Terminal

SOROC

HAZEL
ACTIV
DMEDIA
ADDS
TELTYP
S1L700
PSEUDO

NULL

13
5.3.11.1 Building Your Own Terminal

Driver (NEWTRM) 13
In—width 13
In—buffer ...
Out—buffer ..
HOG

THE SYSTEM INITIALIZATON COMMAND FILE

8.0 MEMORY ERROR DETECTION (MEMERR)

8.1 Piiceon 32K Word Memory Boards
8.2 AM—710 128K Byte Memory Board

9.0 PARITY ERROR DETECTION (PARITY)

10.0 THE DEVICE TABLE (DEVTBL)

lt.0 THE DISK BITMAP (BITMAP)

11.1 Switchable System Memory Option (IS)

12.0 TAE MONITOR QUEUE (QUEUE)

13 0 THE CLOCK FREQUENCY (CLKFRQ)

Pageiv
15

17

17

18

19

19

19

14.0 RESETTING THE SYSTEM DATE AND TIME FROM THE AM—120
(DATE AND TIME)

15.0 INCORPORATING PROGRAMS IN SYSTEM MEMORY (SYSTEM)

16.0 SYSTEM INITIALIZATON CLEANUP

16.1
16.2
16.3

16.4
16.5
16.6
16.7
16.8
16.9

20

21

22

23
23
24
24
25
25
26
26
26
27

INDEX 29

(Changed 30 April 1981)

16
16

Setting Options (SET)
Attaching Jobs (ATTACH)
Allocating Memory (JOBMEM)
16.3.1 AL locating Memory in Bank Zero
Killing Jobs (KILL)
Forcing Input to a Job (FORCE)
Mounting Disks (MOUNT)
Setting Head Load Time (HEDLOD)
DYSTAT
Setting Up the Line Printer Spooler

C
(MEMORY)

THE SYSTEM INIITIALIZATON COMMAND FILE Page 1

1.0 INTRODUCTION

The Alpha Micro Operating System has been designed so that you can
"customize' it for your particular hardware set—up (that is, adapt it to run
with your terminals, your disks, etc.) In fact, you MUST do that initial
system software installation if your system software has not already been
set up so that it conforms to your machine's hardware configuration.
Because a user's hardware and system needs can keep changing as a system
grows, Alpha Micro has created a simple mechanism for adapting the operating
system to reflect those changes: the system initiaLization command file (the
SYSTEM. INI)

The SYSTEM.INI is a special kind of command file. (A command file is a text
file that contains system commands; the system reads and obeys the
instructions it reads from the file.) Whenever the system is powered up or
reset, it consults the SYSTEM.INI to find out what devices you use on the
system and what special programs and functions you want to add to the
operating system area of memory.

The rest of this document discusses the elements of the SYSTEM.INI and the
changes that you can make to the file to reflect changes in your system
configuration. (NOTE: While you read this document, keep in mind that the
terms "operating system," "monitor," and "system" are roughly
interchangeable in the pages that follow.)

1.1 Modifying the SYSTEM.INI

CAUTION: Let's assume that you have a SYSTEM.INI tile that gets your
system up and running, and you want to change it to reflect some hardware
additions or changes. Before you edit the file, it's a good idea to make a
backup copy of your System Disk so that you can bring the system up again,
even if something goes wrong with your modified SYSTEM.INI.

If you change the tile that works (and somehow your new SYSTEM.INI doesn't
work), you won't be able to get the system up and running off of that disk.
Before you can again use the disabled disk as a System Disk, you'll have to
bring the system up off of another System Disk, and transfer over a copy of
a good SYSTEM.INI. The system will not come up unless you have a valid
SYSTEM.INI file on your System Disk.

If you are running the system off physical drive zero (i.e., the
fixed—platter in a CDC Hawk hard—disk system, the first fixed disk in the
CDC Phoenix hard—disk system, or Drive Zero in a floppy—disk system) you can
make a copy of the good SYSTEM.INI under a different name, edit THAT version
of the file, and then use the MOFJTST command to test the new copy. This

(Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND FILE

procedure leaves you with a valid SXSTEM.INI under its originaL name, so (TT.
that if you have to reset the computer, the system will be able to come up
under the control of the original, valid SYSTEM.INI.

To use the MONTST command, type MONTST, SYSTEM.MON, a comma and the name of
the modified command file:

.MONTST SYSTEM.MON,NEWSYS.INI IFE

If you are not running off physical drive zero, you wiLl not be able to use
the MONTST command, and will have to modify the SYSTEM INI fiLe itself, in
that case, make sure that you have a valid System Disk that you can bring
the system up on before you change your SYSTEM.INI file.

To change the SYSTEM INI to reflect your own needs and hardware
configuration, edit it with one of the text editors on the system (EDIT or
VUE). The SYSTEM.INI resides in area E1,4J of the System Disk. After you
change the file, reboot the system by pressing the reset button or by using
the MONTST command (see above).

1.2 System Start—up

The monitor performs a certain set of procedures while it is coming up. If
one of these steps fails, the system will not come up. These steps are:

1. When you press the reset button, the Alpha Micro CPU starts
executing instructions at the address set up in its header. (If
the CPU is an AM—100, this address is the address of the PROM on
the disk controller board; if the CPU is an AM—1OC)/T, the address
is the address of a PROM on the CPU board itself.)

2. The program in the PROM transfers itself down into RAM between
31K—32K. (If your memory in these Locations is bad or nonexistent,
the system start—up will not proceed beyond this step.) It the
phantom memory option is installed on the disk controller board,
the phantom memory now becomes active.

3. The PROM program (the bootstrap loader) is now in RAM and it begins
to execute. It reads in the operating system skeleton monitor,
which is a file called SYSTEM.MON in the [1,4J System Disk program
area. The loader reads SYSTEM.MON into memory beginning at
location zero and extending as far as necessary.

4. When SYSTEM.MON is in memory, it executes the initialization
routine (INITIA) within the monitor itself. The purpose of INITIAis to scan memory to determine how much is available, and then to
set up a user memory partition in the last BK of memory. (This
user partition is temporary, and is just used to execute the system
start—up functions under control of the SYSTEM.INI.)

(Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND FILE Page 3

5 Once INTTIA is through etting up the user partition, the monitor
reads in the system initialization command file, SYSTEM INI Each
line in the SYSTEM.INI represents one system function or parameter
which determines the characteristicsof the running monitor.

6. The monitor executes the commands in the SYSTEM.INI just as it
would the commands in any other command fiLe. Because this command
fiLe is the system initialization file, however, the monitor
performs some of the commands in the SYSTEM.INI differently than it
would the same commands after the system is completely up. The
execution of certain system commands (e.g., JOBS, TRMD&, DEVTBL,
etc.) performs the actual system generation.

During system start—up, certain programs cause the monitor to create new

areas at the end of itself; these areas include terminal definition blocks,
terminal drivers, job control blocks, device tables, memory bank tables,
system queues, and disk bitmaps. Your SYSTEM.INI may optionally specify a
list of programs to be added to the resident monitor area of memory during
system start—up.

The size of the monitor is not fixed, but is expanded during system
start—up. This is why INITIA alLocates the initial user partition in the
top BK portion of memory. This gives the monitor room as it expands so that
it won't overlap the user partition. (The monitor executes the SYSTEM.INI
in that user partition.)

NOTE FOR BANK—SWITCHED SYSTEMS: If your system uses memory management (i.e.,
it bank switches memory), the system uses the top 8K of Bank Zero to process
the SYSTEM.INI. You can go ahead and allocate that portion of bank zero to
a job as a user memory partition (via the JOBMEM command), but DO NOT try
to use that job to run anything until after the SYSTEM.INI is fully
processed and the system is up and running. (That is, do not use a FORCE

command

within the SYSTEM.INI to force input to the job.) NOTE: For
information on memory management via bank switching, see the Alpha Micro
Integrated Systems User's Guide, (DWM—OO1O1—OO).

(Changed 30 April 1981)

• ' I 1

THE SYSTEM INITIALIZATON COMMAND FILE Page 4

2.0 A SAMPLE SYSTEM INITIALIZATION COMMAND FILE ç

This page and the next contain a typical SYSTEM.INI file for a system that
uses memory management The sections that follow base their discussions on
this sample SYSTEM.INI.

JOBS JOB1,JOB2,J083,J0B4,SPOOL

TRMDEF TRM1,AM3001,ADM3,100,100,200
TRMDEF TRM2,AM300=2:6,SIL700,100,8O,30
TRMDEF TRM3,AM3003:16,SOROC,100,100,100
TRMDEF TRM4,AM3005:16,SOROC,100,100,100
TRMDEF PRNTR,AM3006:10,SOROç,100,100,20 ; Define printer
TRMDEF NLJLL,PSEUDO,NIJLL,25,2S,2 ; Define

pseudo—terminal.

PIEMDEF 100,0,14 ; 32K switchable (Bank 0)
MEMDEF 101,14,0 ; 12K switchable (Rank 1)
MEMDEF 102,14,0 ; 32K switchable (Bank 2)
MEMDEF 101,3,0 ; 32K switchable (Bank 3)
MEMDEF 102,3,0 ; 32K switchabLe (Bank 4)

SYSMEM 4:100000—160000 ; Define 24K as switchable
; system memory.

MEMERR 250 ; Initialize memory
boards to detect
double—bit errors.

DEVTBL DSK1,DSK2,DSK3,DSK4,DSKS,HWKO,HWK1
DEVTBL AMSO,AMS1,TRM,RES,MEM,/MTM ; Define devices.

BITMAP HWK,606,0,1
BITMAP AMS,39,0,1
BITMAP DSK,1818,0/S ; Put DSK bitmaps in
BITMAP DSK,1818,1/S ; switchable system memory.
BITMAP DSK,1818,2/S
BITMAP DSK,1818,3/S
BITMAP DSK,1818,4/S
BITMAP DSK,1818,5/S
F

QUEUE 20 ; Add 20 more queue bLocks.
CLKFRQ 60 ; Set clock frequency
I
SYSTEM HWK.DVR[1,6]
SYSTEM VUE.PRGI1,4J
SYSTEM

SET DSKERR ; Enable fulL disk error reporting
SET GUARD ; for this job.

L

(Changed 30 April 1981)

— I •• •.4 I

MEMORY 0

Pagé5

; Give J082 32K of memory
; Initialize J032
; Log J082 into the system.
; EnabLe full disk error reporting

; Give JOBi 32K of memory
; Initialize J063

; Give J034 32K of memory
; InitiaLize J084

; Attach tine printer spooler
job to pseudo—terminal. H

; Initialize pooler job.

; Force input to spooler job.
; Give spooler 4K sharable memory.
; Log job into system.
; Set up line printer spooler.

; Wait for SPOOL to finish before
proceeding.

; Mount the six Phoenix
; logical units.

; Give JOB1 rest of sharable
; memory not used by monitor.

The
functions.

foLlowing sections discuss the elements of the SYSTEM.INI file and their

3.0 THE TRACI FUNCTION (:T)

The first line in a SYSTEM.INI is:

the file.

(Changed 30 April. 1981)

wh

THE: SYSTEM INITIALIZATON COMMAND FILE

ATTACH TRM2,JOB2
JOBMEM JOB2 1:100000—177376
KILL JOB2
FORCE J062 LOG DSK2:22,2
FORCE JOB2 SET DSKERR

ATTACH TRM3,J0B3
JOBMEM J063 2:100000—177376
KILL JOB3

ATTACH TRM4,30e4
JOBMEM JOB4 3:100000—177376
KILL J084

ATTACH NULL,SPOOL

KILL SPOOL
F

FORCE SPOOL
MEMORY 4K
LOG 1,2
LPTINI PRNTR.INI

WAIT SPOOL

F

MOUNT
MOUNT

MOUNT

MOUNT
MOUNT

DSK1
DSK2:
DSK3:
DSK4:
05K5:

This turns on the trace function of the command file processor. That is,
the ":T" tells the monitor to display the command file on a terminal ile
it is processing the SYSTEM.INI. When the monitor first finds the
SYSTEr1.INI, the process of reading and processing the file is initially
under control of the first job (to which no terminal has yet been attached.)
As soon as a terminal is defined (by the first TRMDEF command), the monitor
displays the remainder of the SYSTEMIINI on that terminal screen as it
executes

THE SYSTEM INITIALIZATON COMMAND FILE ., .. Page 6

if you don't want the system to diptay the SYSTEM.INI as it process!s it,
omit the :1 from the fiLe. ,.. .

NOTE: The semicolons in the exampLe above indicate comment tines. The
system does not process comment lines, but does display them as it processes
the SYSTEM.INI if a :T appears in your fiLe.

4.0 ALLOCATING JOBS (THE JOBS COMMAND)

The first command in the SYSTEM.INI (JOBS) tells the monitor what jobs to
allocate in the system, and gives a name (1 to 6 characters) to each job.
Each job named in the JOBS line causes one JCB (Job Control Block) area to
be allocated in system memory. (Each job's JCB maintains information about
that job for the system.)

I.f you wish to allocate more jobs than wilt fit on one tine, you may have as
many JOBS commands as you wish as tong as they are before the first TRMDEE
command in the file.

Each job allocated takes up about 150 words of system memory. Note that the
JOBS command does not automatically associate a terminal with ajob; this is
done using the TRMDEF command to define a terminal, and the ATTACH command
to associate that terminal to a specific job. You must explicitly attach
terminals to jobs in this way. In the sample SYSTEM.INI in Section 2.0, the
JOBS command line looks like this:

JOBS J0B1,JOB2,JOB3,JOB4,SpOOL

This line tells the system to allocate JCBs for five jobs.

5.0 DEFINING TERMINALS (TRMDEF)

After the JOBS command(s) must come one TRMDEF command for each terminal you
want connected to your system. Every terminaL has a name by which it is
referenced by the monitor (1 to 6 characters), a specific hardware interface
to which it is connected, and a terminal driver (a program that does any
necessary character conversions). The TRMDEF command also specifies the
size of the various buffers that are used in the data transfers between the
terminal and the computer. The TRMDEF command takes this form:

TRMDEF

When the monitor processes a TRMDEF command line, it builds a terminal
definition unit in system memory which includes all of the elements above.
The, system then Loads in the correct terminal driver .and interface driver
and links them to the definition unit; then it executes the interface driver
which performs any necessary interface initialization.
NOTE The buffer size values that you specify in your TRMDEF command linesaffect the totaL size of the monitor.,

(Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND FILE Page 7

After the monitor has finished prdcessing the SYSTEM.INI, the TRMDEF command
performs a different function. After the system is up and running, TRMDEF
becomes a user command. At this time, TRMDEF displays on the screen the
current terminal configuration of the system in a form similar to the
original TRMDEF command lines in the SYSTEM.INI. The octal number that
follows each terminal name is the absolute address in the monitor of the
terminal definition unit for that terminal. (That information is •sometimes
useful when debugging the terminal service system; the general user can
ignore it.)

In the sample SYSTEM.INI in Section 2.0, the first TRMDEF command line Looks
like this:

TRMDEF TRM1,AM300=1,ADM3,100,100,200

Now we'll discuss the different elements of the TRMDEF command line:

5.1 Name

The terminal name consists of one to six alphanumeric characters chosen by
you. Every terminal on the system must have a different name, although you
may choose to use a terminal name that duplicates a job name or a program
name. The system uses the terminal name to identify the terminal that you
want to attach to a job or that you want to access using the TRM device
driver.

5.2 Interface

The interface is the hardware board that connects the terminal to the system
bus. The interface statement gives the name of the terminal interface and
its I/O port address on the system. (The I/O port address foLlows the name
of the terminal interface, and is separated from it by an equals sign——
e.g., P53=1.) As the system processes each TRMDEF command Line, it loads
the proper interface driver into system memory from area [1,6] of the System
Disk. (If the driver is already in memory because of a previous TRMDEF
command line, the system does not load it in again.) Interface drivers are
the programs that actually transfer data between the terminal and the
terminal inter-face boards; these programs have the extension .IDV and must
reside in account [1,6] of the System Disk. The interface drivers have the
same name as the interface boards they work with. The currently defined
interface drivers available with the system are:

5.2.1 P53

Noninterrupt driver for the Processor Technology 3P+S serial interface
board. The interface statement must include the octal address of the
control status port for the serial side of the board (e.g., PS30, PS320,
etc.)

(Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND FILE Page 8

5.2.2 IMSIO.

Noninterrupt driver for the IMSAI 510—2 serial interface board. The
interface statement must include the octal address of the controL status
port for the selected side (A or B). The address of side A is 3 greater
than the board I/O port address, while the address of side B is 5 greater
than the I/O port address. Examples: IMSIO=3, IMSIO5, 1MS1O23, 1MS1025,
etc.

5.2.3 AM100T

Interrupt—driven driver for the two serial ports contained on the AM—100/T
CPU. The command format is identical to that for the AM31O driver, except
that the I/O port must be either 0 or 1.

5.2.4 AM300

Full interrupt driver for the six—port Alpha Micro serial interface board.
If you are using an AM—300 board, you may optionally include a code that
selects the terminal baud rate. (We give these codes below.) The interface
statement includes an I/O port address (1—6) and the optional baud rate code
(separated from the I/O port address by a colon). The baud rate code is an
octal number (0—17). If you omit the code, the AM—300 driver assumes a rate
of 19200 baud. An AM300 interface statement takes the form:

AM3001/O port address{:baud rate code)

Some examples of AM—300 interface statements:

AM300=1 (port 1 at 19200 baud)
AM3002 (port 2 at 19200 baud)
AM3003:6 (port 3 at 300 baud)
AM300S:12 (port 5 at 2400 baud)

(Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND FILE Page 9

The baud rate codes that you can specify in an interface statement are:

:0 50 baud
:1 75 baud
:2 110 baud
:3 134.5 baud
:4 150 baud
:5 200 baud
:6 300 baud
:7 600 baud

:10 1200 baud
:11 1800 baud
:12 2400 baud
:13 3600 baud
:14 4800 baud
:15 7200 baud
:16 9600 baud
:17 19200 baud

5.2.5 AM31O

FulLy interrupt—driven driver for the four—port Alpha Micro communications
controller. If you are using the AM—310, you may optionally incLude a code
that selects the terminal baud rate. The interface statement includes an
I/O port address (0—3) and an optional baud rate code (separated from the
I/O port address by a colon). The baud rate code is actuaLly a two—byte
command. The low byte is sent to Mode Register 1 (MR1) of the ProgrammabLe
Communications Interface on the AM—310 board. The high byte is sent to Mode
Register 2 (MR2). (For more information, see the AM—310 Technical
Manual.) If you omit the baud rate code, the AM—310 driver assumes a rate
of 19200 baud. The interface statement for the AM—310 board takes this
form:

AM31O=I/0 port address{:baud rate code)

Some examples of AM—310 interface statements:

AM31O=0 (the first port at 19200 baud)
AM3103:37316 (the fourth port at 9600 baud)

(Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND FILE Q

The baud rate codes that you can specify are

:30316 50 baud
:30716 75 baud
:31316 110 baud
:31716 134.5 baud
:32316 150 baud
:32716 300 baud
:33316 600 baud
:33716 1200 baud
:34316 .1800 baud
:34716 2000 baud
:35316 2400 baud .

:35716 3600 baud
:36316 4800 baud
:36716 7200 baud
:37316 9600 baud
:37716 19200 baud

5.2.6 AX31O

Fully interrupt—driven driver. Allows you to run with multiple AM—310
interface boards in your system. The command format is identical to that of
the AM31O driver, and the baud rate codes you may specify are the same.

5.2.7 AM12O

The AM12O driver aLlows you to use the two serial I/O ports on the AM—120
Auxiliary I/O Controller for terminals or printers. You must also use this
driver if you want to use the AM—120 parallel ports in interrupt driven
mode. For more information on the AM—120 board, see the document Software
Installation Instructions for the AM—120 in the "System Operator's
Information" section of the AMOS Software Update Documentation Packet.

The interface statement portion of the TRMDEF for this interface board is
identical to that of the AM—310 board, and uses the same optional baud rate
codes as the AM—31O (see Section 5.2.5, above). For example:

TRMDEF TERM1,AM1201:37316,SOROC,100,100,100

5.2.8 PSEUDO

You normally use the PSEUDO driver with either the PSEUDO or NULL terminal
specifications in a TRMDEF command Line. This sets up a software interface
driver that communicates with a pseudo terminal for those occasions when you
have a job that doesn't need a real, hardware—controlled terminal for
processing (e.g., a print spooler job). The PSEUDO interface driver is
built into the monitor, and does not reside in area [1,6] of the System
Disk.

(Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND FILE Page 11

5.3 TerminaL

The terminal statement tells the system what kind of terminal is connected
to the interface board, and thus what kind of terminal driver to load into
system memory from area [1,6] of the System Disk. Different terminals
process characters differently. A terminal driver is the program that does
the necessary code conversion and character processing required by the
particular terminal that it supports. It is the terminal driver, then, that
takes care of the speciaL functions (e.g., cursor control, Control—U,
rubout, null characters after RETURNs, etc.) that differ between terminal
types.

Terminal drivers have the extension .TDV and are sharable; that is, a given
driver is loaded only once info system memory, no matter how many terminals
of the same type are defined. Some of the terminal drivers currently
available on the system are:

5.3.1 ADM3

The driver for the Lear Siegler ADM3 dumb terminal. When this driver
receives a rubout, it tells the terminaL to backspace and erase the
character in that position. It processes a Control—U by backspacing and
erasing the entire line, It also reverses the case condition of the RUB key
so that you do not need to shift rubouts, but you do need to shift
underscores. Most people prefer this convenience, but you can disable this
feature by setting the BIT 8 switch on your terminaL to position "1."

5.3.2 SOROC

Similar to the ADM3 driver, but contains the codes for the SOROC

C RT—t e rm inc I.

5.3.3 HAZEL

Codes for the HAZELTINE 1500, 1510, and 1520 CRT—terminaLs.

NOTE: If you used earlier versions of the HAZEL driver, you were not able to
use the standard VUE commands because the terminal driver had to make some
special character translations to allow you to use the cursor control keys
of the 1510 and 1520 models. (For example, an end—of—line command was a

Control—G instead of the standard Control—N.) For the sake of convenience,
the current HAZEL driver allows you to use the standard VUE control
commands; however, you may not use the cursor control keys. (To move the
cursor, use the Control—H, Control—J, Control—K, and Control—L commands.)
The sources for the HAZEL driver are available on the "Driver Sources
Diskette" and on the Phoenix and Hawk System Disk packs.

(Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND FILE Page 12

5.3.4 ACTIV

Codes for the ACT—iv CR1—terminal

5.3 5 DMEDIA

Codes for the bata Media ELItE 1520 CR1—terminal.

5.3.6 ADDS

Codes for the ADDS REGENT 100 terminal.

5.3.7 TELTYP

Driver for standard KSR and ASR Teletypes. Rubouts echo by typing the
rubbed out characters between backslashes. A Control—U echoes as
followed by a carriage return/tine feed, which takes the printing mechanism
to the next tine. The line that was ended with a Control—U is ignored by
the computer. This driver does no other code conversions, and no null
characters are appended after a line feed.

5.3.8 SIL700
.

Driver for the Texas Instruments Silent—700 terminal. This driver is
identical to the TELTYP driver above, except that it adds 8 null—characters
at the end of every line—feed to prevent character overrun.

5.3.9 PSEUDO

Driver for the software—controlled pseudo terminals. This driver merely
stops echoing of input characters and allows buffering of input to and from
the controlled job. Use it only with the PSEUDO interface statement. The
PSEUDO terminal driver is built into the monitor, and is not in . the E1,6J
area of the System Disk.

5.3.10 NULL

Driver identical to the PSEUDO driver above, except that it discards the
terminal output from the job, instead of buffering it to wait for some other
job to pick it up. Use this terminal driver when you want to control a job
whose terminal output is of no importance (e.g., the print spooler). When
using this driver for a job like the line printer spooler, you will usually
use the FORCE command to send commands and data to that job; make sure that
the buffer sizes you define in the pseudo—terminal's TRMDEF statement (see
below for information on buffers) are large enough to accept the lines of
data that you are going to FORCE to the job.

(Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND FILE Page 13

5.3.11 Other Terminal Drivers

Other terminal driver programs exist that support a variety of teminals and
printers. Refer to the current AMOS Release Notes for a list of the
terminal drivers in account DSKO:E1,6J.

5.3.11.1 Building Your Own Terminal Driver (NEWtRM)

With Release 4.5, Alpha Micro offers a new program, NEWIRM, that you use
outside of the SYS7EM.INI to build your own terminal driver for a particular
terminal. See Building a New Terminal Driver (The NEWIRM Program) in the
"System Operator's Information" section of the AMOS Software Update
Documentation Packet for more intormation.

5.4 In—width

The in—width statement specifies the maximum terminal line—width allowed
before the system begins to discard input characters. Allowing a large
width, such as 100, gives an added margin of safety when typing long lines.

5.5 In—buffer

There are times when the system cannot immediately process characters that
you type from the keyboard. Instead, it stores the characters in an input
buffer until it can get around to them. The in—buffer statement specifies
the size of this buffer. The number that you spetify, then, is also the
number of characters that you can type ahead of the system before it starts
to discard characters. When you've reached the end of the type—ahead
buffer, the system echoes any additional characters as bell, codes and

discards them. If you want to be able to type ahead a full tine, make this
parameter at least as 1arge as the in—width value.

5.6 Out—buffer

The out—buffer statement specifies the size of the terminal output buffer.
This is the buffer that holds the characters that the system sends to the
terminal. The terminal empties this buffer at its own speed. The system
allocates two output buffers of the size specified in the out—buffer
statement. The system allows a job to stay active until it fills these
buffers; then the job is put into the terminal output wait state. In
general, specify larger output buffers for faster terminals, and specify
smaller output buffers (perhaps only 10 characters or so) for slower
terminals.

For more details on these input and output buffers, see the document,
Terminal Service System. Remember: large buffers result in a larger
resident monitor size.

(changed 30 ApriL 1981)

THE SYSTEM XNITIALLZATON COMMAND FILE Page 14

5.7 HOG (
The last element of the TRMDEF statement is an option that you may wish to
include for terminals that run noninterrupt hardware, such as the 3P+S or
IMSAI 810 boards. The system limits the output of these boards to 60
characters ner second whenever any job is demanding CPU time. N

The HOG statement tells the system to use any time remaining in the job's
scheduled quantum to output characters to the terminal at maximum speed,
instead of giving that time over to another job for its task This, of
course, reduces the totaL system throughput, since the time spent waiting
for the terminal interface to become ready is lost for any other tasks

Interrupt—driven interface boards (such as the Arl—300) ignore the HOG
statement; they always run at maximum speed regardless of CPU demands.

There is a bug in I-lOG. If the output buffer is Less than 512 and. you fill
the out—buffers up, printing wilt stop until you type a character. Because
of this problem, don't use an out—buffer of less than 513 when you include
the HOG statement in a IRMOEF command line.

6.0 MEMORy MANAGEMENT (MEMDEF)

The sample SYSTEM.ZNI in Section 2.0 makes use of the memory management
option. For detailed information on memory management and the use of the
MEMDEF statement, see the ALpha Micro Integrated Systems User's Guide,
(OWM—0O1O1—00) and the document Memory Management Option (in the "System fOperator's Information" section of the AMOS Software Update Documentation
Packet). Briefly, however—— memory management enables you to expand the
amount of memory the system as a whole can access by allowing you to address
more than 64K of memory. In one method of memory management (called "bank
switching"), each user is still limited to a maximum of 64K, but the system
can select between several different sets of memory banks (i.e., it can
bank switch memory).

To tell the system that you are bank switching memory, use the MEMOEF
command in the SYSTEM.IPJI to define switchabte memory banks. The example in
our SYSTEM.INI:

MEMOEF 100,0,14 ; 32K switchabte (Bank O)
MEMDEF 101,14,0 ; 32K switchabte (Bank 1)
MEMDEF 102,14,0 ; 32K switchabLe (Rank 2)
MEMDEF 1O,3,O ; 32K switchable (Bank 3)
MEMOEF 102,3,0 ; 32K switchable (Bank 4)

defines five switchable memory banks of 32K each, and a sharable,
non—switchable area of 32K which contains the monitor and programs that allusers can access.

(The numbers that foLlow the MEMDEF statements depend on the type of memory
boards you are using, and on the particular memory configuration you aresetting up. For the example above, we used three Piiceon 64K memory boards.

(Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND FILE Page 15

9'
Refer to the memory management documentation mentioned above for
instructions.)

If youare not bank switching memory (for example, if you do not have more

than 64K of memory on your system), do not include the MEMDEF command in
your SYSTEM.INI.

7.0 SWITCHABLE SYSTEM MEMORY (SYSMEM)

As the variety of devices that you can add to your system grows, it becomes
more likely that you will have a greater number of DEVTBL entries and BITMAP
commands in your SYSTEM.INI. -Each new type of device that you add to the
system increases the size of your monitor, because the software and control
tables for that device must be incorporated into the monitor area of memory.
Beginning with AMOS version 4.3, if your system uses memory management, you
may now set aside an area of switchable memory for the use of the monitor.
Currently, the only use you may make of this "switchable system memory" is
to place bitmaps in it. (See Section 11.0, "The Disk Bitmap (BITMAP)," for
information on placing bitmaps in switchable system memory.) In the future,
you may be able to allocate other sections of the monitor to switchable
memory.

SYSMEM tells the system what area of switchable memory you want to set aside
for system use. SYSMEM takes this form:

SYSMEM Sank#:StartAddress—EndAddress

where Bank# indicates the memory bank you want to allocate to system memory,
and StartAddress and EndAddress give the beginning and ending memory
addresses within that bank of the block you want to set aside. Be sure and
allocate as much memory as you need for the bitmaps you want to place into
switchable system memory. Place the SYSMEM command after the MEMDEF

commands and before the BITMAP commands.

After the system is up and running, SYSMEM becomes a user command. SYSMEM

followed by a RETURN tells you what switchable area of memory is set aside
for the system.

There are some important restrictions on the use of SYSMEM; for more
information, refer to Defining SwitchabLe System Memory in the "System
Operator's Information" section of the AMOS Software Update Documentation
Packet.

8.0 MEMORY ERROR DETECTION (MEMERR)

The MEMERR command enables double—bit error detection for a Piiceon 32K—word
memory board. It also initializes the Alpha Micro AM—710 128K byte memory
board.

(Changed 30 April 1981)

8.1 Piiceon 32K Word Memory Boards

MEMERR initializes the Piiceon board
double—bit memory error occurs. Make sure
properLy jumpered for the I/O error port
Line. The error interrupt—enable jumper
the memory board.

by instructing it to abort when a
that the Piiceon memory board is
you specify in the MEMERR command

jumper 54) must be installed on

NOTE: MEMERR was designed to be used with the AM—bOlT CPU. If you
using the 32K—word Pliceon memory boards as 64K—byte memory boards (that
if you are using the AM—lOU CPU), you can stiLl use MEMERR if you use
unused error interrupt—enable jumper other than jumper 54 and enable the
line on the AM—lOU board. (Jumper 54 is an AM—bOlT interrupt line.)

You may assign the same I/O port number to more than one memory board
because the system only issues write—status commands to the memory boards.

If you don't use MEMERR, the P1
corrects single—bit errors,
PIEMERR, the memory board still
system to halt on a double—bit error.

If the system halts, look at the error light on the Pilceon memory board
red LED). If the light is on, the system halt occurred because of
double—bit memory error.

(a
a

TRMDEF commands in your SYSTEM.INI. Include the number
rt you have assigned to the memory board(s). (This I/O
octal or A8, hex.) For example:

If double—bit errors are frequent on your system, you may want to replace
the memory board on which the errors occur.

8.2 Ar.1—71O 128K Byte Memory Board

The AM—710 memory board also requires the use of MEMERR. If your system
contains AM—71O and Piiceon 32K word memory boards, include on the IIEMERR

command Line the I/O error port assigned to the Piiceon boards (as in the
example above). If your system contains only AM—710 memory boards, you must
not supply any argument to the MEMERR command. For example:

MEMERR ; No Piiceon boards, only AM—710 boards.

Note that the AM—710 board also requires the use of the PARITY command
(discussed below).

(changed 30 ApriL 1981)

THE SYSTEM INITIALIZATON COMMAND FILE Page 16

are
is,
an

new

C

:1

iceon 32K—word memory board automatically
but ignores double—bit errors; if you use
corrects single—bit errors, but causes the

Put MEMERR after the
of the I/O error po
port is usually 250,

MEMERR 250

THE SYSTEM INITIALIZATOW COMMAND FILE

9.0 PARITY ERROR DETECTION (PAkITY)

Page 17

The AM—flU memory board requires the presence of the PARITY command in your
SYSTEM.INI in order to enable parity error detection and reporting. Place
the PARITY command after the MEMERR command (also required). PARITY takes
this form:

PARITY I/O—ort{,I/O—port2,...t/O—portN)

where I/O—port identifies the I/O port address of the
boards in your system. (One I/O port address must
board.) For information on parity error handling, see
Installation Instructions for the AM—710 Memory
Operator's Information" section of the AMOS Software
Packet.

one or more AM—710

appear for each AM—710
the document Software
Board in the "System
Update Documentation

10.0 THE DEVICE TABLE (DEVTBL)

Following the TRMDEF command lines is the DEVTBL command. It defines the
devices that your system can access. If you have more than one disk drive
on your system, specify them in the DEVTBL coSnand line. (The system
already knows that the System Disk, OSKO:, is present, so don't put OSKO: in
the DEVTBL command line.) List all sharabte devices before a slash; all
private, unsharable devices after it. (A sharable device is one that all
users can access, such as a disk drive; a non—sharable device is one that
only one user at a time can access, such as a magnetic tape unit.)

If your system has more devices than will fit on one DEVTBL command tine,
you can have as many DEVTBL command lines as you want, as long as they are
not separated by intervening commands.

As the system processes
system memory. The
assignments. (If your
also builds a table
assigned for those devices.)

builds a device table in
device table for device
of the AM—410, DEVTBL
of any alternate tracks

Here are some sample device names that the system recognizes:

(Changed 30 April 1981)

the DEVTBL command line, it
file system consults the

devices run under the control
in memory that keeps track

THE SYSTEM INITIALIZATON COMMAND FILE Page 18

AMSO (floppy disk drive that uses A'pha Micro AMOS format.) ()
SIDI (Floppy disk drive that uses IB?hstandard format.)

DM1 (Floppy disk drive that uses double—density, double—sided AMS
format.)

DSKO (Logical unit zero of the System Device.)
HWK1 (Logical unit 1 of a hard disk drive that runs under control

of the AM—500 controller.)
SMD5 (Logical unit 5 of a hard disk drive that runs under control

of the AM—410 controLler.)
MTUO (Magnetic tape unit that runs under control of the AM-600.)

(The generalized terminal service driver. tllows input and
output to any terminal connected to the system.)

RES (Driver that allows you to use system memory as a device:
e.g., .DIR RES:LOG.PRG.)

MEM thriver that allows you to use user memory partition as a

device: e.g.,.COPY MEM: WRKFIL.PRG.)

NOTE: Severat commands on the system require that you have both MEM and RES
defined in your DEVTBL as system devices.

After the system is fulLy up and running, the DEVTBL command becomes a user
command that tells you what devices are in the device table in system
memory; it also tells you which devices are sharable among users.

11.0 THE DISK BITMAP (BITMAP)

To randomly access information on a disk, the AMOS file structure needs a

disk allocation map (a bitmap). The BITMAP command sets up these bitmaps.
If you have more than one type of disk controller on the sytem1 each kind of
controller must have its own device name and separate bitmap areas. (Floppy
disk drives, which may use disks in several different formats, must have a

different device defined for each type of format.)

The BITMAP command specifies the device name, the number (in decimal) of
words that the bitmap buffer needs, and the list o-f drive numbers that are
to share this particular bitmap area. The Hawk hard disk drive requires 606
words per logical device; the Phoenix hard disk drive requires 1818 words
per surface. (For information on the number of words needed for the bitmaD
of a particular floppy disk device, see Configurin9 Floppy Disk Drivers in
the "System Operator's Information" section of the AMOS Software Update
Documentation Packet.) You may have as many BITMAP commands as you want; as
many as one for each disk drive Each BITMAP command creates a separate
bitmap area.

In the sample SYSTEM.INI in Section 2.0, one StTMAP command line looks like
this:

BITMAP HWK,606,O,1

We could replace it with two BITMAP command lines to create two separate
bitmap areas for drives 0 and 1:

(Changed 30 ApriL 1981)

THE SYSTEM INITIALIZATON COMMAND FILE Page 19

The monitor
command line
accessed by
devices on the system.

11_i SwitchabLe System Memory Option (IS)

Beginning with AMOS version 4.3, you may use the SYSMEM
part of switchable memory for use by the monitor, thu
ize. (See Section 7.0, "Switchable System Memory
information.)

For the present, bitmaps are the only monitor elements that can be placed
switchable system memory. Designate a specific bitmap as one which is to
placed in switchable system memory by ending the BITMAP command line with
IS. For example:

Make
allocated.

sure you have enough room in the switchable system memory you have

12.0 THE MONITOR QUEUE (QUEUE)

The monitor has a general purpose
and which is also available to
number of eight—word blocks which
course of processing. The number
the size of your monitor, and the

The monitor initially contains
QUEUE command in the SYSTEM.INI.
commands. The QUEUE command
example in the sample SYSTEM.INI
queue size of 20 to give a totaL

queue system that several commands
user programs. The queue contains a
are assigned and then returned during
of queue blocks that you need depends
tasks that it performs.

20 blocks; you may add more by using the
Place the QUEUE command before any SYSTEM

allocates additional queue blocks. So, the
file, QUEUE 20, adds 20 blocks to the basic
queue size of 40 blocks.

For information on how your assembly language programs can access the
monitor queue, refer to AMOS Monitor Calls Manual, (DWM—0010042).

13.0 THE CLOCK FREQUENCY (CLKFRQ)

The AM—iDO CPU board contains a real—time clock that several programs (e.g.,
the AIphaBASIC compiler and DYSTAT) refer to when they calculate time
intervals; the system also uses this clock to perform job scheduling and
timekeeping functions. The CPU board contains an external input for the
line clock frequency that is connected to an AC line of approximately 10
volts.

(Changed 30 April 1981)

BITMAP HWK,6O6,O
BITMAP HWK,6O6,1

builds one sharable bitmap area in memory for each
it encounters. The BITMAP command specifies the disks
SYSTAT when SYSTAT prints the number of free blocks left

BITMAP
to be
on the

command to set aside
s reducing monitor

(SYSMEM)," for more

BITMAP DSK,1818,O,1,2,3,4,51S

in
be

a

use,
fixed

the
upon

THE SYSTEM INITIALIZATON COMMAND FILE Page 20

The system has to know what frequency is being appLied to the clock input (Th
line on the Cpu. board so that the programs that refer to the clock can know

how to convert the clock tick count into actual time in seconds. This
frequency is usually 60 Hz (the standard line frequency in the United
States). Since many systems are shipped overseas, however, where the
standard line frequency is 50 Hz, you must specify which frequency you are
using.

The CLKFRQ command specifies the frequency (in Hz) that is being appLied to
the external clock input. The system stores this value so that programs
that need to convert clock ticks to reaL time will be able to find out what
frequency the cLock is operating at. The CLKFRQ has nothing to do with the
actuaL frequency at which the computer runs, and changing the CLKFRQ value
does not affect the speed of the system. The CLKFRQ command in the sample
SYSTEM.INI in Section 2.0 was:

CLKFRQ 60

If you do not include the CLKFRQ command in the SYSTEM.INI, the system
stores a zero in the monitor location reserved for the clock frequency. In
this case, programs trying to convert clock ticks into actual time aren't
able to do so.

You may place the CLKFRQ command anywhere in the SYSTEM.INI. (NOTE: If you
are going to reset the system date and time from the AM—120 board
clock/calendar, you must place the CLKFRQ command before the DATE and TIME
commands in your SYSTEM.INI. See the next section.)

14.0 RESETTING THE SYSTEM DATE AND TIME FROM THE AM—12O (DATE AND TIME)

The AM—120 Auxiliary I/O Controller contains as one of its features a
clock/calendar with battery backup. If your system contains an AM—120, you
may include the DATE and TIME commands in your SYSTEM.INI to reset the
system date and time from the AM—120 clock/calendar. If you do so, you must
place the DATE and TIME commands before the final SYSTEM command in the
SYSTEM.INI. You must also olace the CLKFRQ command before the DATE and TIME
commands. For example:

CLKFRQ 60
DATE

TIME
SYSTEM HWK.DVR
SYSTEM

For information on DATE and TIME, see the DATE and TIME reference sheets in
the AMOS System Commands Reference Manual, (DWM—OO100—49). For
information on the AM—120, see Software Installation Instructions for the
AM—120 in the "System Operator's Information" section ot the AMOS Software
Update Documentation Packet.

(Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND FILE

15.0 INCORPORATING PROGRAMS IN SYSTEM MEMORY (SYStEM)

You may incorporate programs into the system monitor by using the SYSTEM
command in the SYSTEM.INI file. These programs may be system programs or
your own programs. When the system reads the SYSTEM.INI, it loads into
system memory the programs youtve specified in the SYSTEM commands. These

programs

actually become part of the monitor, and so dynamically increase
its size as they are loaded into memory. (NOTE: Before Release 4.5, you
were required to place the generalized terminal driver, TRM DVR[1,6J, in
system memory. This is no longer necessary.)

CAUTION—— the programs to be included in the monitor must
(that is, sharable by more than one user). If they are
there is a possibility of system failure when two users att
the same program. Many of the PMOS programs are re—entrant.
AMOS System Commands Reference Manual, (DWM—OO100—49),
particular command program is re—entrant.

You might also want to use the SYSTEM command to include any realtime
routines in the monitor that must be in memory at all times so that they can
process asynchronous events (such as data collection from interrupting
devices). For example, the DYSTAT program runs a continuousLy changing
system display on a video monitor, and must be in memory at all times once
it has begun execution so that it can update the display.

Another reason to use the SYSTEM command
freauently—called user subrouti
subroutines by name via the SRCH
language programs.) Again, if
users, they MUST be re—entrant.

in the system monitor, use one SYSTEM command for each
each SYSTEM command with the file specification of the
include. Example:

SYSTEM VUE.PRG[1,6]
SYSTEM RUN.PRG

that you may include programs outside of the [1,4] account
the system is initially brought up under). If you do not

nsion, the system assumes a default extension of .PRG. Yo
SYSTEM commands after all other commands in the SYSTEM.INI
monitor size.

(Changed 30 April 1981)

Page 21

The most common use of the SYSTEM command in the SYSTEM.INI
the Alphasasic runtime package (RUN.PRG) in the monitor
does not need to load RUN into his own memory partition.
include the interactive compiler (BASIC.PRG) itself if
development work by more than one user. If users on your
making extensive use of the screen—oriented text editor,
to load it into sharable memory via SYSTEM.

be re—entrant
not re—entrant,

empt to access
Check with the
to see if a

is to include
so that each user

You may also
you expect heavy
system will be

VUE, you may want

is
nes in the mon

and FETCH mon
these programs

To include programs
program. Follow
program you want to

if you want to include
itor. (You can locate such
itor calls from assembly
are to be shared by several

Not e
that
exte
any
the

(the account
specify an

u must place
that expand

THE SYSTEM INITIALIZATON COMMAND FILE Page 22

The SYSTEM command has another use beside the inclusion of programs in the
system monitor A SYSTEM command aLone on a line in a SYSTEM INI (that is,
not foLlowed by a fiLe specification), tells the system that monitor
expansion is finished. The system then fLags the monitor as up and running.
The system also sets a flag in the system communication area that indicates
that the system initialization is done except for final cLeanup. Various
commands (including SYSTEM) test this flag to see which mode they may

operate in. For example, before the system is up and running, the JOBS
command allocates new jobs on the system; after system initiaLization, the
JOBS command dispLays the jobname of the user that typed the JOBS command.

Whether or not you include any programs in the monitor, your SYSTEM.INI must
have a SYSTEM command without a file specification to tell the operating
system that the system has been initialized. This SYSTEM command must be
after any other commands that expand the monitor size (and that incLudes any
other SYSTEM commands that are followed by a file specification).

After the system is up and running, the SYSTEM command performs a new
function as a user command. After system initialization, the SYSTEM command
telLs you what programs are in system memory (that is, what programs are a

part of the monitor), and the totaL size (in decimal, words) of the monitor.
For more information on the programs in system memory, you can use the MAP

command. (For information on MAP, refer to chapter 11, "Memory Commands,"
in the AMOS User's Guide, (DWM—OO100—35).)

16.0 SYSTEM INITIALIZATON CLEANUP

After the monitor processes the SYSTEM commands in the SYSTEM.INI, the
system is technically up and running. There are a couple of things still
Left to do, however, before the initialization procedure is complete. You
may now include any commands in the SYSTEM.INI that you want the monitor to
perform automatically at the time of system start—up. These commands are
all commands that you can enter from the keyboard for yourself, but it's
sometimes convenient to have the monitor perform them automatically every
time you power up or reset the system. For example, you can have the
monitor mount the disks that you are going to use, connect terminals to
jobs, etc. You can aLso use the FORCE command to force input to a
particular job. (You can use this feature to login a user, run a business
program, etc., all without direct operator intervention.) We discuss some
of these commands below.

After you've included the functions you want performed automatically, there
is one last thing to do before system initialization is complete—— put a

MEMORY 0 command into the SYSTEM.XNI to deallocate the temporary user
partition in the top BK of memory that we have been using to process the
SYSTEM.INI. The MEMORY 0 command must be the last command in the file.
(Include the MEMORY 0 command even if your system bank switches memory.)

Now we'll discuss some of the commands you may want the system to perform
automatically for you at system start—up. Remember that unlike some of the
commands discussed in earlier sections, all of these commands are Legal user
commands, and may be used outside of the SYSTEM.INI.

(Changed 30 April 1981)

THE SYSTEM INITIALIZATOFJ COMMAND FILE Page 23

16 1 Setting Options (SET)

The SET command can perform a variety of system functions. For example, the
SET BPI command sets the bits—per—inch data density value used by the
magnetic tape transport driver. The examples in our sample SYSTEM.INI:

SET DSKERR
SET GUARD

tell the system to report any soft disk errors that occur (SET DSKERR) and
to guard the terminal of the job processing the SYSTEM.INI from any messages
sent by other terminals (SET GUARD).

Note

that the SET command only affects the job that used it. For example,
the SET DSKERR command above only affects the job the system comes up under.
(For information on forcing commands to other jobs, see Section 16.5,
"Forcing Input to a Job (FORCE).")

See the SET reference sheet in the AMOS System Commands Reference Manual,
(DWM-0010049), for more information on SET.

16.2 Attaching Jobs (ATTACH)

When the system first begins to process the SYSTEM.INI, it automatically
attaches the first job listed in the JOBS command and the terminal defined
by the first TRMDEF command. Except for this speciaL case, however, the
system does not automatically link jobs with terminaLs. (When a job is
linked to a terminal, the job and terminal are "attached." When a job is
not linked to a terminal, the job is "detached.") A detached job must have
a terminal attached to it before it can do terminal input or output. A

detached terminal, on the other hand, can be accessed through terminal
service calls or the general TRM driver. You cannot attach a job to a

detached terminal from that terminaL itself; you must do it from another
term i na I.

To attach jobs and terminals, you must use the ATTACH command. Once a job
is attached to a terminal, it uses that terminal for input and output.

You can use the ATTACH command in several different ways:

ATTACH Terminal,Job

Thts command attaches the terminal and job named. If the terminal or job
are already attached to other units, the ATTACH command detaches them before
it attaches them to each other.

ATTACH Job

This ATTACH command attaches the user's own terminal to the job named (and
detaches it from the current job).

ATTACH

(Changed 30 April 1981)

The JOBMEM command in the SYSTEM.INI takes the form:

JOBMEM Jobname Bank—#:StartAddress—EndAddress

Page 24

0

where Jobname specifies the job
selects the memory bank the user
and EndAddress select the beginni
in that hank you want to allocate.

you •are aL
partition wi

ng and ending

locating memory
11 reside in, and
addresses of the

to. Bank—fl:
StartAddress
memory block

is up and running, JOBMEM becomes a user command. You can
tell you what areas of memory are allocated to your own job

There are some important restrictions on the use of
JOBMEM documentation mentioned above for complete
Also see the ALpha Micro Integrated Systems User's
for information on bank switching.

16.3.1 Allocating Memory in Bank Zero (MEMORY)

your system does not bank switch memory, do not use the JOBMEM
to allocate memory within the SYSTEM.INI, use the
For example:

FORCE JOB2 MEMORY 32K.

Note that even if you
SYSTEM.INI is always
the monitor to the
MEMDEF commands have
32K, if the monitor
(32K—29K) in the
memory in Bank Zero.

r system bank switches memory, the last command in the
MEMORY 0; this restores all sharable memory not used by

job the system is coming up under. For example, if your
set up a sharable area of 32K and switchable banks of

actually only takes up 29K, you can add t.he remaining 3K
sharable portion to the job that has the first block of

In a bank—switched system, use the MEMORY command tor all jobs whose memory
is located in Bank Zero or sharable memory. When we talk about setting up

(Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND FILE

This use of the ATTACH command lists the terminals that are currently
attached, and the jobs to which they are attached. For more information on
ATTACH, see the ATTACH reference sheet in the AMOS System Commands
Reference Manual, (DWM—00100—49).

16.3 AlLocating Memory (JOBMEM)

Systems that bank switch memory require that you use the JOBMEM command to
allocate memory to a user memory partition. Do not use JOBMEM to allocate
memory to the job the system is coming up under. (For complete information
on JOBMEM, refer to the JOBMEtI reference sheet in the AMOS System Commands
Reference Manual, (DWM—OO100—49), and the document Memory Management
Option in the "System Operator's Information" section of thefl AMOS Software
Update Documentation Packet.)

After the system
use JOBMEM to
and to other jobs on the system.

JOBMEM; refer to the
instructions on its use.
Guide, (DWM—OO101—O0),

NOTE: If
command. If you are going
FORCE and MEMORY commands.

THE SYSTEM INITIALIZATON COMMAND FILE Page 25

the line printer spooler, you will see that we use a MEMORY 4K command to
allocate memory to the job running the spooler. That's because our sample
SYSTEM 1111 is setting up the spooler to run in sharable memory

16.4 Killing Jobs (KILL)

To properly initialize the jobs on the system, you should KILL the jobs that
you have defined. A KILL command sends a ControL—C to the specified jQb;
this puts the job at the monitor level, ready to receive and send data. The

KILL commands must appear after any ATTACH commands, but before any FORCE
commands are used to send commands or data to the job. Do not kill the job
that the system is coming up under (i.e., the first job in the JOBS command

tine).

Use one KILL command for each job on the system except for the job •the

system is coming up under:

KILL JOB2
KILL J084

16.5 Forcing Input to a Job (FORCE)

The FORCE command gives you a way of sending input to another job. To send
one line of input to another job, use the FORCE command followed by the
jobname and the input. For example, our sample SYSTEM.INI contains this
line:

FORCE JOB2 LOG DSK2:2,2

The Line above logs JOB? into the system under account DSK2:C2,2]. You can

also send several lines of input to a job by typing a carriage return after
the jobname. Example:

FORCE JOB2

After that point, alt lines of text that follow (up to a blank line) will be
sent to the specified job. (A blank line is a carriage return alone on a

line.) Example:

FORCE J082
LOG DSK2:2,2
ORDER.PRG

(Changed 30 April 1981)

I You MUST moUnt a disk before yoU can read or write data t&tt. REMEM8ER:
Never mount a disk while another user is accessing it

16.7 Setting He'ad Load Time (HEDLOD)

The HEDLOD command sets the head Load time for a Persci floppy
runs under control of the AM—200 or AM—210 floppy disk controLler

The number that follows the HEDLOD command selects the number of real—time
clock ticks that the AM—200 board must keep the disk drive heads loaded
after a data transfer. The example in the SYSTEM.INI file in Section 2.0
is:

HEDLOD 1800

tells the floppy disk controller to keep the heads loaded for 1800
ticks (30 seconds when the reaL—time clock is operating at 60 Hz)

any data transfer. The HEDLOD command does not affect disk drives
do not allow software control of head load timing. You may omit this

if you are not running with a Persci floppy disk. -

16.8 DYSTAT

DYSTAT is a system program that
operating system by way of a cont
requires that your system contain
DYSTAT command if you do not want

reports on the
inuous display on
a memory—mapped
to run this display,

NOTE: DYSTAT runs asynchronously without regard :to user job. If you are
going to use DYSTAT, you must incLude it in the monitor (by using a SYSTEM
command in the SYSTEM.INI) so that it is in system memory at all times. If
you try to execute the DYSTAT command and it is not in system memory, the
system fails the first time the job scheduler calls on DYSTAT for an update
because it sees that DYSTAT is no longer in memory. (Remember that the
system executes system commands in the partition of the user that requested
the command; after it is finished, it usually deletes the program from the
partition.)

The DYSTAT program also requires that the TODCNV routine is in system memory
so that it can display the current time in the header line of the DYSTAT
display. Load TODCNV into system memory by using a SYSTEM command in the
SYSTEM.INI, just as you loaded DYSTAT.

(Changed 30 April 1981)

•
:tZ. —...:,.:4cqcj3.t.

THE SYSTEM INITIALIZATON COMMAND FILE

16.6 Mounting Disks (MQUNT)

The system automatically mounts the System Disk (DSKO) for you at
of system start—up. If you wish it to mount •••other disks as well;
one MOUNT command for each disk drive you want to mount. Example:

MOUNT DSK1:
MOUNT STDO:

Page 26

C
the time
include

disk that
boards.

This
clock
after
that
line

dynamic status of
a video monitor. D

video hoard. Omit

the
YStAT

the

THE SYSTEM INITIALIZATON COMMAND FILE Page 27

For more information on DYSTAT, see the DYSTAT reference sheet in AMOS
System Commands Reference Manual, (DWM—OO100—49).

16.9 Setting Up the Line Printer Spooler

You can set up the line printer spooler from AMOS command level (and doing
so is a good technique for debugging the spooler if you have problemsbringing it up). However, usually you will want to bring up the spooler atthe time of system start—up by placing the proper instructions in the
SYSTEM.INI.

The sample SYSTEM.INI in Section 2.0 shows the following 6 lines:
FORCE SPOOL
MEMORY 4K
LOG 1,2
LPTINI PRINTR.INI

WAIT SPOOL

These six lines set up the system tine printer spooler. (A spooler is a
program that sets up a queue (or waiting line) for a particular program.
When a Line printer spooler is in control, requests for use of the printerare placed into a queue. As the printer becomes available, the spooler
looks at the request at the top of the list, finds the file, and sends it tothe printer. The spooler then removes that request from the queue. Theprinter prints files in the order of their requests in the queue.)

Setting up a Line printer spooler is a good example of the kinds of things
you can ask the SYSTEM.INI file to do at the time of system start up. For a
detailed explanation of how to set up the line printer spooler, see thedocument Setting Up the Line Printer Spooler in the "System Operator's
Information" section of the AMOS Software Update Documentation Packet.

ank
'nk-

I

(Changed 30 April 1981)

THE SYSTEM INITIALIZATON COMMAND. FILE —

INITIA
Interface board
Interface driver
Interface statement

INDEX Page 30

2

7

7
8

JOBMEM

JOBS
3, 24
6

KILL

Line printer spooler 27

MEM

MEMDEF
MEMERR

MEMORY

MEMORY 0
Memory allocation
Memory banks .

Memory boards
128K byte
32K word
64K byte

Memory errors .
Memory management
Modifying SYSTEM.INI

Editing
MONTST
Warning

Monitor
MONTST
MOUNT

MOUNT command .

14

14

1

14

i

1.

NEWTRM

Non—sharable device
Non—switchable memory

Operating system

PARITY
Phoenix hard disk
Physical drive zero
Pliceon memory boards
PROII
Pseudo termi.nats

-U€UE . . -.

Real—time clock
RES

(Changed 30 April 1981)

17
1

1

14 to
2

10, 12

4. 1k ?'.' f.

Sample SYSTEM.INI
SET

BPI .
DSKERR . . -
GUARD

Sharable device
Single-bit errors
SRCH monitor call
Switchable system
SYStIEM
SYSTEM

System startup
SYSTEM.IwI
SYSTEM.MON . .

Terminal baud rate
Terminal drivers
Terminal name .
TIME
TRM.DVR Restrictions
TRMDEF
Type—ahead buffer

21

THE SYSTEM INITIALIZATON COMMAND FILE — INDEX Page 31

2

SETTING LIP THE LINE PRINTER SPOOLER

ApriL 1981
Revision A02

This document reflects AMOS versions 4.5 and later

I

SETTING UP THE LINE PRINTER SPOOLER Page ii

cm

S

'Alpha Micro', 'AMOS', '4LphaRASIC', 'AM—lOG',
'AIphaPASCAL', 'ALphaLISP', and 'PIphaSERV'

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA 92714

©1981 — ALPHA MICROSYSTEMS

AL!HA MIcROSYSTEMS
17881 Sky Park North
Irvine, CA 92714

SETTING UP THE LINE PRINTER SPOOLER Page iii

Table of Contents

1.0 INTRODUCTION
1

2.0 MODIFYING THE SYSTEM.INI TO SET UP THE SPOOLER 2

2.1 Setting Up the SpooLer Job 3
2.2 Defining a Pseudo—terminal 3
2.3 Allocating Additional Queue Blocks 3
2.4 Attaching a Terminal to the Spooler Job 4
2.5 "Killing" the Spooler Job 4
2.6 Using the FORCE command to Set Up the Line

Printer Spooler 4
2.6.1 "FORCE SPOOL" 4
2.6.2 "MEMORY 4K" 5
2 6 3 "LOG OPR" 5
2 6 4 "LPTINI PRINTR INI" 6
2.6.5 "BLANK LINE" 6
2.6.6 "WAIT SPOOL" 6

3.0 SETTING UP MULTIPLE SPOOLERS 6

4.0 THE SPOOLER PARAMETER FILE 7

4.1 DEVICE Command 8
4.2 NAME Command S
4.3 DEFAULT Command 9
4.4 OPERATOR Command 9
4.5 FORMFEED Command 9
4.6 FORMS Command 10
4.7 BANNER Command 10
4.8 HEADER Command 10,
4.9 LPP Command 11
4.10 WIDTH Command 11

5.0 SPECIFYING FORMS 11

6.0 TROUBLESHOOTING THE SPOOLER PROGRAM 12

INDEX 15

(Changed 30 April 1981)

• • • • • • • • • • • • • •

••

I

SETTING UP THE LINE PRINTER SPOOLER Page 1

1.0 INTRODUCTION

things.

The spooler program has a number of
print multiple file copies, print a
delete a file after it is printed,
remember what type of form should be mounted on a printer,
printer by name, etc. In addition, the spooler (LPTSPL.PRG) is re—entrant,
which means that you may load it into system memory.

(NOTE: However, loading LPTSPL.PRG into system memory is not usually a goodidea. In setting up a line printer spooler, you do not run LPTSPL.PRG
directly; instead, you run the LPTINI program which calls LPTSPL. Since
LPTINI must be run in each memory area in which you are setting up a
spooler, and since it Loads LPTSPL.PRG into memory over itseLf, placing
LPTSPL.PRG in system memory does not save you any memory space in the
individual area in which you are setting up the spooler and just increases
the size of your monitor area.)

You may either set up the spooler in system memory or (if
switches memory) you may place it in a bank—switched memory
reducing the size of the monitor in system memory). You
more than one Ii
more than one
multiple printer

For more information on the features and operation of
spooler, see the documentation on the PRINT command
Commands Reference Manual, (DWM—UO100—49) and the section
Files (PRINT)," in the AMOS User's Guide, (DWM—0O100—35).

The purpose of this document is to help you set up the line printer spooler
on your own system. To that end we have included on your System Disk two
text files: SYSLPT.INI and PRINTR.INI. SYSLPT.INI is a sample system
initialization command fiLe much like the regular SYSTEM.INI file with which
you are already familiar, except that it includes those command lines
necessary for bringing up the spooLer program. (See Section-2.O, below, for
a discussion of changing the SYSTEM.INI.) The PRINTR.INI is a sampLe spooler
parameter file that contains information necessary for customizing the
spooler program for your own use.

(Changed 30 April 1981)

I

The line printer spooler takes
by "spooling" a printer request
available, it prints the file
This allows your job to print fi
system without tying up your job
your printer request (using

care of handling requests to use the printer
into a queue. (As the printer becomes
specified by the next request in the queue.)
les at the same time as other jobs on the
until the printer is free. You simply enter

the PRINT command) and then go on to other

special features. For example, it can:
banner page that identifies the listing,
recognize wildcard file specifications,

identify a

your system bank
partition (thus
may also install

ne printer spooler (which you may want to do if you haveprinter). Installing multiple printer spoolers gives you
queues; one for each printer that is handled by a spooler.

the line printer
in the AMOS System
titled "Printing

SETTING UP THE LINE PRINTER SPOOLER Page 2

You may install multiple spoolers by setting up multiple spooler jobs. Each
job can have a different spooler parameter tile; this enables you to spool
to several different printers on the system at the same time.

Before attempting to set up the line printer spooler, read this entire
document carefully. Then modify the PRINTR.INI file that we have supplied
to reflect your own needs or create your own spooler parameter file. At
that point you can either use the SYSLPT.INI file •to boot the system up with
the new line printer spooler, or you can change your existing SYSTEM.INI
file as outlined below. If you do not want the line printer spooler to be
set up automatically when the system comesup under the control of the
SYSTErI.INI or the SYSLPT.INI, you may set up the spooler yourself from the
keyboard by following the instructions in Section 6.0, "Troubleshooting the
-Spooler."

2.0 MODIFYING THE SYST€ff.INI TO SET liP THE SPOOLER

The discussions below assume that you are familiar with the document titled
The System Initialization Command File which appears in the "System
Operator's Information" section of the AMOS Software - Update documentation
packet; that document contains information on the JOBS, TRMDEF, DEVIBL,
ATTACH QUEUE, MEMORY, and FORCE commands, and discusses how to modify a
SYSTEM. INI.

Take a look at the sample system initialization command file we provide
(SYSLPT.INI)

JOBS JOB1,SPOOL
TRMDEF TERM1,AM300=1,SOROC,100,100,go
TRMDEF TERt16,AM300=6:16,TELTYP,100,100,100
TRMDEF DUMMY,PSEUDO,NULL,32J,30,2
DEVTBL DSK1,TRM,MEM,RES
BITMAP DSK,606,O,1
QUEUE 15
SYSTEM
CLKFRQ 60

ATTACH DUMMY,SPOOL
KILL SPOOL
FORCE SPOOL
MEMORY 4K
LOG 1,2
LPTINI PRINTR.INI

WAIT SPOOL
F

MOUNT DSK1:
MEMORY V

(Changed 30 April 1981)

SETTING UP THE LINE PRINTER SPOOLER
Page 3

This sytem initialization command tile assumes that you do nt want o bankSwitch memory. The following sections discuss this initialization commandfile, and we go through each step of installing a line printer spooler.

2.1 Setting Up the Spooler Job

The first step in setting up the line printer spooler is to define the jobin which it is to run. The SYSLPT.XNI tile above creates job SPOOL in whichto run the spooler program by including SPOOL in the job definition command(JOBS). You may use any unused job to control the spooler program.

2.2 Defining a Pseudo—terminal -

So that we do not tie up a terminal when entering the comrrithnds to SPOOL thatwill set up the line printer spooler, we define a pseudo—terminal with whichto run the job. A pseudo—terminal requires no actual hardware I/O device.The terminal definition (TRMDEF) command:

TRMDEF DUMMY,PSEUDO,NULL3O3O2

defines the pseudo—terminal named DUMMY. Be careful that the buffer sizesyou specify (in this case, 30,30,2) are large enough to contain the commandsthat you are going to be forcing to the job via the FORCE command. (See thedocument The System Initialization Command File for information on thePSEUDO interface driver, the NULL terminal driver, and the TRMDEF command.)

2.3 Allocating Additional Queue Blocks
The line printer spooler uses the system queue blocks to store requests forprinting. When the system is initially brought up, 20 of these queue blocksare allocated by the system. Two of the blocks are used for every printerdefined on the system, and three for every file request. Because queueblocks are required by other portions of the operating system, the spoolerwill not allow the number of free queue blocks to go below six. Therefore,with the standard allocation of 20 queue blocks, you may queue a total offour printer requests at any one time. If you want to be able to queue alarger number of requests, use the QUEUE command in the systeminitialization command file to allocate additional blocks. In the exampleabove, we have used the QUEUE command to allocate an additional is blocksfor a total of 35.

NOTE: If you are setting up more than one line printer spooler, make sure toaLlocate enough extra queue blocks. For example, if you are setting up twoline printer spoolers, you will need twice as many queue blocks as if youwere setting up one spooler.

(Changed 30 April 1981)

SETTING lip THE LINE PRINTER SPOOLER
Page 4

2.4 Attaching a Terminal to the SpooLer Job

No jobs and terminals are automatically assigned to one another except for

the job under whose controt the system comes up (the first job on the JOBS

line) and the terminal defined by the first TRMDEF command. We must

expLicitLy attach any other jobs and terminal.s by using the ATTACH command.

So, we attach the spooler job and the pseudo—terminaL:

ATTACH DUMMY,SPOOL

C,!

2.5 "Killing" the Spooler Job

To properLy initiatize a job, you must aLways use the
job after attaching a terminal to it but before forcing

KILL SPOOL

KILL command on that
any cotnTwands tc it:

2.6 Using the FORCE command to Set Up the Line Printer Spooler

FORCE SPOOL
MEMORY 4K
LOG 1,2
LPTINI PRINTR.INI

2.6.1 "FORCE SPOOL" — The first line of this sequence

that we are starting a set of commands that we want to
(Because a carriage return appears at the end of the job
that more than one line of input follows; a blank Line
the group of commands and data that we are forcing to the

Once the spooLer job has been aLlocated, you have attached a terminRl or a

pseudo—terminal to the job, and you have used the KILL command on the job,

you can start the spooLer program itself. All commands issued to the

spooler job during the spooler initialization go through the FORCE command.

Now that we have attached the pseudo—terminal DUMMY to the job SPOOL, we can

send the commands to the job that will get the line printer sooLer program
up and running. FORCE the following sequence to the job:

The folLowing sections discuss each element of this FORCE secluence:

tells the
send to job
name, AMOS

signals the
job.)

system
SPOOL.

knows
end of

(Changed 30 April 1981)

SETTING UP THE LINE PRINTER SPOOLER Page 5

2 6 2 "MEMORY 4K" — The first thing to do is to allocate the spooter job
some memory so that it will be able to bring up the Line printer spooler
program This spooler program requires at least 4K bytes of memory in whichto work. On a bank—switched system, you must use the JOBMEM command (NOT
the MEMORY command) before the FORCE command if you want to allocate the
spooler memory in a bank—switched partition. For example:

-

F

ATTACH NULL,SPOOL
JOBMEM SPOOL 3:111530—123030
KILL SPOOL
FORCE SPOOL
LOG OPR:
LPTINI PRINTR

WAIT SPOOL

NOTE: We have determined that, on the average, 4K of memory is the usual
amount of memory required to bring up the spooler program. This amount may
vary depending on the particular device driver or terminal driver you areusing to run the printer. (See Section 6.0, "Troubleshooting the Spooler
Program," for instructions on determining the exact amount of memory
required by your particular use of the line printer spooler programJ For
information on the JOBMEM command, see The System Initialization CommandFile and Memory Management Option in the "System Operator's Information"
section of the AMOS Software Update Documentation Packet.

2.6.3 "LOG OPR:" — The spooler job is no different from any other job onthe system—— it has to be logged in to a disk account and must have memoryif it is to run a program. Here we log the spooler job into the System
Operator's account, OPR: (DSKO:1,2).

NOTE: If you do not log the spooler job into an account, it will not be ableto run the spooler program. In that event, you will not see an error
message; the system will simply not be able to bring up the spooler.

We log the spooler into account [1,2] because it must reside in the SystemOperator's account in order to override the normal AMOS account protection.
This is necessary if a user wishes the PRINT command to delete tiles in an
account outside of his or her own project.

IMPORTANT NOTE: Although we show the system initialization command file
logging the spooler job into account [1,2], you may not wish to do so. (Ifyour System Operator account is password protected, you would have to
include the password in the SYSTEM.INI file, which would then make that
password accessible to ingenious but unauthorized users.) To avoid placing
the password to account [1,2J in the SYSTEM.INI file, you may log thespooler into any disk account (most commonly [1,4]); however, note that the
LPTINI program will always transfer the spooler job to account [1,2J once
the program is running.

(Changed 30 April 1981)

SETTING UP THE LINE PRINTER SPOOLER Page 6

2 6 4 "LPTINI PRINTR INI" — Now we bring in the LPTINI proqram LPTINI
reads the specified parameter file (in this case, PRINTR.INI), and brings inthe actual line printer spooler program, LPTSPL. The parameter file,PRINTR.INI tells LPTINI how to customize the spooler program for your.own
needs. (See below for information on PRINTR.INI). The file specificationthat you provide to LPTINI may that of any text file that you have createdas long as it is a valid spooler parameter file. The fiLe specification
default extension is .INI, and the default account is E1,4J.

2.6.5 1BLANK LINE" — The blank line (a carriage return atone on a line)signals the end of the forced input to SPOOL.

2.6.6 "WAIT SPOOL" — The next line:

WAIT SPOOL

tells the system to wait until SPOOL is finished executing LPTINI before itproceeds with bringing up the system; this allows the spooler program tofinish any tricky allocations and initializations.

3.0 SETTING UP MULTIPLE SPOOLERS

To set up another spooler, you may basically follow the same ihstructions
you followed when setting up the first spooler. Just make sure that youdefine a new job for the new spooler and that you assign it its own area ofmemory. (You may use the same pseudo terminal for the second spooler as youdid for the first.) The following portion of a SYSTEM.INI shows setting up
two spoolers on a bank switched system. Notice that each spooler job uses adifferent .INI file—— SPOOL uses PRINTR.INI, and SPOOL2 uses PRNTR2.INI.
Each spooler parameter file specifies a different system printer.

(

(Chanqed 30 ApriL 1981)

SETTING UP THE LINE PRINTER SPOOLER °" '

F

ATTACH NULL,SPOOL
JOBMEM SPOOL 3:111530—123030
KILL SPOOL
FORCE SPOOL
LOG OPR:
LPTINI PRINTR

WAIT SPOOL

ATTACH NULL,SPOOL2
JOBMEM SPOOL2 3:123032—134340
KILL SPOOL2
FORCE SPOOL2
LOG OPR:
LPTINI PRNTR2

WAIT SPOOL2
F

CLKFRQ 60
MEMORY 0

4.0 THE SPOOLER PARAMETER FILE

The commands that appear in the spooler parameter tile set the default
information used by the spooler program when dealing with the specific job
to which the parameter applies. You can set up several printers on the
system, all maintaining a separate printer Queue, by setting aside a job for
each printer (as we did in the example above), and creating a different
parameter file for each job. By merely changing the name of the printer to
be used and the printer specification, you may initialize as many separate
printer queues as you would like.

We have provided a sample parameter file for you, PRINTR.INI:

DEVICE=TRFI:TERM6
NAME=LPTO
DEFAULT=TRUE
OPERATOR=JOB1
FORMFEED=TRUE
F OR M S N OR MA L

B A N NE R=T RUE

H EA bE R= F ALSE
LPP=56
WIDTH=1 32

You can create your own file (named with any valid filename) using the
system text editors, VUE or EDIT. The format used by the elements of thefile is:

command=argument

(Changed 30 April 1981)

SETTING liP THE LINE PRINTER SPOOLER Page 8

where argument is a value or attribute to be assigned to the command. Only
one command may appear on each Line of the file. Some commands take a
hoolean argument (a true or false value). LPTINI understands the following
boolean arguments:

TRUE FALSE
T F

ON OFF

YES NO

V N

1 0

Here is a list of the parameter file commands:

4.1 DEVICE Command

The format of the command is:

DEVICEdevspec

where devspec is the specification of the device that is going to be used as
the printer. If you are using a terminal as a printer, your command line
might look something like this:

DEVICE=TRM TERI'16 ("

which

uses the generalized terminal driver, TRM.DVR. The terminal must have
been defined in a TRMDEF command line in the system initialization command
file, and must have a .TDV program in account 051<0:11,6].

If you are using a Centronics device driver, the command line might looklike this:

DEVICE=CEN:

which selects a device defined in the DEVTBL command of your system
initialization command file. Whatever device specification you use for this
second j'ormat, the device specified must be in your DEVTBL command tine in
the SYSTEM.INI, and must have a .DVR program in account DSKO:[1,6].

4.2 NAME Command

The format of this command is:

NAMEstring

(Changed 30 ApriL 1981)

SETTING UP THE LINE PRINTER SPOOLER Page 9

where string is a one— to six—character name that you want to assign to the
device specified by the DEVICE command Since more than one Line printer
spooler can be set up on a system, each handling a different printer, giving
a name allows you to specify a particular printer to the PRINT command.

4.3 DEFAULT Command

This command takes the format:

DEFAULT=boo lean

If the argument for this command evaluates to TRUE, the spooler program
defines the printer defined by the DEVICE command •as the default printer to
be used when no printer is specified to the PRINT command This command is
an optional one; use it only when more than ore printer is being defined on
the. system. If you omit DEFAULT from all spooler parameter files on the
system or if all DEFAULT commands are set to false, the default printer is
that printer with the least number of blocks waiting to be printed.
To specify a non—default printer when you use the PRINT command, enter the
name of the printer (as specified in the NAME command above) followed by an
equal sign. Then enter the specification selecting the files you want toprint. For example:

.PRINT DIABLO=*.LST

4.4 OPERATOR Command

The format of this command is:

OPERATORtjobname

where jobname specifies the job to which the spooler will send error
messages and requests for forms changing. If you omit the OPERATOR command,
the spooler will use the first job on the JOBS line of the SYSTEM.INI as the
operator job.

4.5 FORMFEED Command

This command takes the form:

FORMFEEDboo lean

The command sets the form feed switch default to 1FF if the argument
evaluates to TRUE or sets it to INOFF if the argument evaluates to FALSE.
(See above for a list of legal boolean arguments.) The lEE switch tells the
spooler to perform special form feed handling; this ensures that the printer

(Changed 30 April 1981)

SETTING UP THE LINE PRINTER SPOOLER Page 10

is always at top—of—form when the spooler begins to print a new listing.
br some applications (such as check printing), it is not desirabl.e to have
a final form feed output at the end of each listing; the /NOFF switch
disabLes this final form feed. It you omit the FORMFEED command, the
spooter program sets the default to 1FF.

4.6 FORMS Command

The format of this command is:

FORMS=formname

where formname is one to six characters that you choose to identify a type
of form (e.g., CHECKS, 2PART, etc.). It you omit the FORMS command, the
spooler us-es the de!aul-t formname of NORMAL.

The purpose of this command i to allow you specify the kind of forms that
should be mounted on the particular printer defined by this parameter file.
The PRINT command then checks printer requests against this to see if the
forms shouLd be changed; if the printer request specifies a different form
than the one mounted on the printer, an error message occurs informing •the
user that he must change the forms.

c4.7 BANNER Command

The format of this command is:

RANNER=boolean -

This command sets IBANNER as the default switch if the command argument
evaluates to TRUE or sets it to /NOBANNER if the argument evaluates to
FALSE. (See the table above for legal boolean arguments.) If BANNER is setto true, a banner page wiLl be printed at the front of each listing. The
banner identifies the file printed, the printer on which the listing was
made, the date the listing was printed, etc. If you omit the BANNER
command, the spooler sets the default switch to /BANNER.

4.3 HEADER Command -

This command takes the form:

HEAD ERboo lean

The HEADER command sets /HEADER as the default switch if the command
argument evaluates to TRUE or sets it to /NOHEADER if the argument evaluatesto FALSE. The /HEADER switch tells the spooler program to print page
headers. Page headers are titles printed at the top of every page which

(Changed 30 April 1981)

SETTING UP THE LINE PRINTER SPOOLER Page 11

4.9 LPP Command

This command takes the form:

LPPnumber

where number specifies the default number of tines per page. The spooler
program uses this value in determining where td print page headers. If 'ou
omit the LPP command, the spooler uses the value of 56. You may overridethe value set by the LPP command by usingthe/Lpp switch when you use the
monitor PRINT command.

4.10 WIDTH Command

This command takes the form:

WIDTHnumber

where number specifies the default width (in characters) of the printedline. The spooler program uses this value in determining the width of page
headers. If you omit the WIDTH command, the spooler uses the value of 132.
You may override the value set by the WIDTH command by using the /WIDIH
switch when you use the monitor PRINT command.

NOTE: The values you give to WIDTH must range between 80 and 132. If you
specify a number less than SO, the spooler uses 80; if the number is greater
than 132, the spooler uses 132.

5.0 SPECIFYING FORMS

printer by including the
the time of spooler

forms specified in print
they match.

give the name of the file, the daie on which it was printed, and the
page number.
If you omit the

The /NOHEADER
HEADER command,

switch disables the
the default switch

printing of page
/NOHEADER

headers.

You can specify the type of form to be used on the
FORMS command in the spooler parameter file atinitialization. The PRINT command compares the
requests against this default form to make sure that

After the spooler program is up, you can change that forms default by using
the SET command:

.SET FORMS printername formname

where printernanie specifies the specific printer on which the form must be
mounted, and formname gives the form type. For example:

(Changed 30 April 1981)

SETTING UP THE LINE PRINTER SPOOLER Page 12

.SET FORMS T1810 2PART EQ

Once a form has been set using the SET command, the PRINT command checks aLl
print requests sent to that printer to make sure that the proper tyne of
forms is being specified.

It the form you specify in the PRINT command is not mounted on the printer
when the fiLe is selected for printing, the spooler sends this message to
the terminal attached to the operat-or job:

;LPTSPI. — Please mount form forinname on printernarne

This message repeats once •a minute until the spooLer is notified that the
form has been mounted (via the SET command). Since both LPTINI and PRINT
us-e the default formnaxne NORMAt, you can omit the FORMS command in the
parameter file if you only use one kind of paper in your printers.

6.0 TROUBLESHOOTING THE SPOOLER PROGRAM

In the event that you have been unable to get the spooler up and running
properly, you may find this section helpful.

Once the system has been booted, run the SYSTAT program to see what the
spooler job is doing; it all has gone well you should see that the spooler
job is running LPTSPL in an EW state. If the job is not running LPTSPL, orif it is in a C state, something has gone wrong.

You can run the LPTINI program on your own terminal to see what is
happening. Be warned that this procedure will lock up your terminal; but it
should give you some idea of what went wrong. You will have to reboot the
system to gain control of your terminal after you are finished.

To see why the spooler did not initialize properly, log into 11,2] and
allocate yourself the same amount of memory as the spooler job. Now run the
LPTINI program, specifying the same parameter file that you used earLier in
attempting to bring up the spooler. If you see nothing on the terminaL
after about 20 seconds or so, everything is probably allright. If you have
another terminal connected to the system, run SYSTAT to see if the spooler
job is now in EW state. If it is, something is wrong with the way you set
up the spooler in the SYSTEM.INI. Check over your SYSTEII.INI tile for some
error in setting up the job, defining the pseudo—terminal, allocating
memory, or defining the output device. If you stilL see no reason why the
initialization process should have failed, try attaching the spooler to a
real terminal (not the pseudo—terminal). By doing this, you will he able to

see

any error messages generated during the initialization process. If you
are using a serial output device, and a TRMDEF command exists for your
printer device (that is, it is defined as a terminal), you may attach the
spooler job directly to the printer.

(changed 30 April 1981)

?Invaljd command X
You specif

which LPTINI
for errors.
proper form

?Bad DEVICE specification
The device you specified as the printer

not a valid device specification. Make sur
specified is in the device table (the DEVTBL I
and the the device has a driver program in DSKO:[1,6J.

?Nonexistent job name specified for OPERATOR
The job you specified in your OPERATOR command does not exist.

Check your speLling, and examine a SYSTAT display to see a list of the
valid jobs on the system.

?Insufficient memory to run spooLer, expand memory by n bytes
You did not specify enough memory to run the Line printer spoo

program. Increase your memory allocation by the amount specified.
amount of memory required by the spooler program depends on
particular device to which you are printing, and so may exceed
recommended amount of 4K.

Page 13SETTING UP THE LINE PRINTER SPOOLER

Chances are, you won't get that' far. Most errors are caught by the LPTINI
program which displays an appropriate error message. These are the messages
dispLayed by LPTINU

MEMORY ALLOCATION FAILED
You did not allocate enough memory to the job.. LPTINI wasn't

able to load itself and its impure areas. Allocate more memory.

ied command or argument "X" in your spooler parameter file
was not able to recognize. Check the spelling in the file
Make sure that your parameter command arguments are in the

(e.g., numeric or boolean).

even

in your DEVICE command is
e that the •device you

me of the SYSTEM.INI),

ler
The
the
the

(Changed 30 April 1981)

lij —' ? 'w'c' 'r I

SETTING UP THE LINE PRINTER SPOOLER

Index

Page 15

Adding a job
AdditionaL queue blocks .
ALlocating memory

Bank switching system .

Non—memory management system
ATTACH command
Attaching terminals

Bank switched memory
BANNER command

DEFAULT command
DEVICE command

Ending the FORCE sequence

3

3

5

5

3

3

1

10

9

8

FORCE command .

Forcing job input
FORMFEED command
FORMS command. to 11

HEADER command

JOBMEM command
JOBS command .

KILL command .

10

5

3

Line printer spooler
LOG command
LPP command
LPTINI.PRG

Error messages
LPTSPL.PRG

MEMORY command
Multiple line printer 1,

.6.1
8

3

6

6

6
Additional queue blocks
Bank switched systems

MuLtiple printer queues

NAME command
NULL terminal driver .

(Changed 30 April 1981)

SETTING UP THE LINE PRINTER SPOOLER -

OPERATOR command .
OPR

PRINT
Printer queue
PRINTR.INI
PSEUDO interface driver
Pseudo terminal

Queue
Queue blocks
QIJEUE command

SET FORMS
Setting up the spooler -
Specifying forms
Spooler job
Spooler memory requirements
Spooler parameter file

BANNER
DEFAULT
DEVICE
FORMFEED

FORMS
HEADER
LPP
NA*1E

OPERATOR

WIDTH
Spooling
SYSLPT.INI
SYSTAT command
System initialization
System memory
System Operator's account
SYSTEM.INI

TRMDEF command .
Troubleshooting the spooler

WAIT command
WIDTH command

S

1

1

1, 6
3

3, 6

1

3
3

11
4
11

3

5

óto
10

....8
10
10

• . . • 11....8
• . . - 11

1

• . - 1 to
• . . • 12....1

1

S

1

7

2

rage ic

fl

3

12

6
11

(Changed 31) April 1981)

ApriL 1981
Revision AOl

MEMORY MANAGEMENT OPTION

This

document describes how to set up and use more than 64K of memory inyour Alpha Micro computer system by hank switching memory. It will not tellyou how to address your memory boards; in order to implement memorymanagement you will have to refer to documentation supplied by the boardmanufacturer(s). For more information, refer to the Alpha Micro IntegratedSystems User's Guide, (DWM—00100—Q0).

Become familiar with this documentation before trying to implement memorymanagement on your system. Also, try to become familiar with the addressingof the various memory boards you will be using in your system. If you haveproblems implementing memory management, refer to Section 3.0 to see if theproblem is explained there.

For
a full explanation of memory management, see Section V, "MemoryManagement," of the Integrated Systems User's Guide, (DWM—O0101—O0).

1.0 SETTING UP A MEMORY BANK

Unless the system initialization command file (SYSTEM.INI) contains MEMDEFcommands, the operating system (AMOS) will not recognize any memory beyondthe first 64K (1K = 1024; 64K = 65536). There is one MEMDEF command foreach bank of memory to be defined. The MEMDEF commands must be before thefinal SYSTEM command in the SYSTEM.INI.

Due to the way AMOS works, there must be a totally sharable portion ofmemory starting at location 000000. This sharable portion must be largeenough to hold AMOS, which requires a minimum of ilK (this size increases as

more

jobs, terminals, devices, and system programs are defined). You mayalso place the line printer spooler in sharable memory, which requiresbetween 4 and 5K. Typically, the sharable portion will be 16K with nosystem programs, 32K if RUN.PRG is in system memory, or 48K if BASIC.PRG andRUN.PRG are in system memory. If sharable memory takes up some amount xK,then the largest bank—switched portion of memory can take up (64 — x)K ofmemory. Bank—switched memory refers to that portion of memory past sharablememory. There may be multiple banks of various sizes, as long as thelargest bank is no larger than (64 — x)K, and there is no sharable memorypast xK.

Bank—switched memory must be physically addressed to the memory address thatit will occupy when that bank of memory is active. (Refer to themanufacturer's specifications for the appropriate switch or jumpersettings.) For instance, asuming that sharable memory is from OK to 31K andbank—switched memory starts at 32K, no bank—switched portion of memory canbe addressed to a physical address below 32K. In this situation, assuming16K memory boards, there would be one sharable memory board addressed for

(Changed 30 ApriL 1981)

MEMORY MANAGEMENT OPTION Page 2

OK—15K, one sharable memory boai'd addressed for 16K—31K, and then the
bank—switched memory boards. Two banks of 32K would have two boards in one
bank addressed for 32K—47)< and for 48K—63K respectively, and in the second
bank a board addressed for 32K—47K and a board for 48K—63K.

In addition to the physical memory address, all, bank—switched memory boardshave an I/o port address associated with them. This I/O port is what isused to turn the various memory boards on and off. There may be more thanone I/O port possible per board, depending on the manufacturer of the memoryboard.

This scheme allows memory boards to be turned on or off by sending a valueto the I/o port of the memory board. More than one bank may use the sameI/O port, as long as the value for turning on a particular bank is differentthan the value for turning on a different bank.

1.1 Defining .a Memory Bank (MEMDEF)

There is one MEMDEF command for each memory bank. Memory bank numberingstarts at 0 and is incremented by one for each MEMDEF statement. Therefore,three MEt'IDEF instructions in the initialization file define Banks 0, 1, and2.

The form of the MEMOEF command is as follows:

MEMDEF boa rdo—adr,on—cnst ,off—cnst/boardl . . . /boa rdN—adr,on—cnst,off—cnst

1. All operands are in octal, unless the SET HEX command has been
executed.

2. "boardx—adr" is the I/O port address that the board is set up on.
3. "on—cnst" is the on constant—— the value that is used to turn thepiece of memory at this I/O port on.
4. "off—cnst" is the off constant—— the value that is used to turn thepiece of memory at this I/O port off. This will usually turn offthe entire board except for any memory that is sharable or set upfor a different I/O port.
5. The slash (I) allows multiple memory addresses to share the same

bank of memory. This is especially convenient when using a large
memory board (32K — 64K) that resides all at one I/O port but hasdifferent "on" and "off" values for smaller pieces of memory (8K to16K).

Assuming a 16K sharahle portion residing at the front of a 64K memory board,the remaining 48K of memory is switchahle, and so are two other 64K memoryboards with only 48K active on them; the first hoard is set up at I/O port100, the second board is set up at 101, the third board is set up at 102;the "on" constant for memory on all boards in Bank Zero is 1, for memory in

(Changed 30 April 1981)

MEMORY MANAGEMENT OPTION Page 3

Bank 1 is 2, for memory in Bank 2 is 4; the "OFF" constant for all memory is
0; the MEMDEF commands would then be as follows:

MEMDEF 100,1,0/101,1,0/102,1,o ; Bank Zero
MEMDEF 100,2,O/101,2,O/102,2,O ; Bank 1
MEMDEF 100,4,O/1O1,4,01102,4,O ; Bank 2

Note that memory from OK to 15K is not set up to be switchable. Also notethat a piece of all memory boards is in all banks. The boards would be set
up in the following manner:

Board 1: I/O port 100 16K—31K On constant = 1 Off constant = 0
32K—47K On constant 2 (all boards)
48K—63K On constant = 4

Board 2: I/O port 101 16K—31K On constant = 2
32K—47K On constant= 4
48K—63K On constant = 1

Board 3: I/O port 102 16K—31K On constant = 4
32K—47K On constant = 1

43K—63K On constant = 2

Board 1 Board 2 Board 3
+ + ÷ + + +

0—15K Isharedl unusedi lunusedi
+ + ÷ + + +

16—31K Bank 0 Bank ii Bank 2(
+ + + + + +

32—47K Bank if Bank 2 Bank Of
+ + + + + +

48—63K fBank 2j fBank 0 Bank 1
+ + + + + +

Note that this is but one possible memory configuration and is set up in astrange way for demonstration purposes. A more efficient use of 64K memoryboards is possible if different portions of the board are set up atdifferent I/O addresses or (if the entire board is at one I/O address) if
different portions have different "on" constants.

This scheme allows the use of different manufacturers boards in the same
system, as long as they can be set up at various I/O addresses and the
largest piece turned on by a particular constant is small enough so that itdoes not overflow into sharable memory.

After the system is booted, the MEMDEF command takes on a new function. The
MEr4DEF command now allows you to see how memory is configured. The MEMDEF
command will display a map of all active banks as a string of characters,with each character representing 1K of memory. Assuming a 13K monitor andthe above example memory definition, here is what MEMDEF would display after
you have booted the system:

(Changed 30 April 1981)

MEMORY MANAGEMENT OPTION
Page 4

OK K 16K 24K 32K 40K 48K 56K 64K
I I I

I I IBANK 0 MMMMMMMMMMMMMSSSBBBBBBBBBBBB8BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BANK 1 MMMMMP1MMMMMMMSSSBB
BANK 2 MMMMMMMMMPIMMMSSSBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

"N" stands tor ¶monitor" memory (memory used by the monit
"sharable" memory (memory that is not monitor memoryswitched), and "B" stands for "bank—switched" memory.sharable memory can be accessed by all banks, this area ofas a part of alt, banks, It is always active. The area ofthe monitor and sharable programs is also called "system memory."
Programs can be loaded into system memory using the SYSTEM command in theSYSTEM.INI file. The spooler can reside in system memory or inbank—switched memory. Any remaining sharable memory after the system isbooted up that is not used by the monitor or programs in system memory isadded to the beginning of Bank Zero and is available to the job the systemcomes up under. (The last command in the SYSTEM.INI file, MEMORY 0,allocates all available memory in Bank Zero to the job the system comes upunder.)

There is a good reason why there is no memory appearing at "64K." As youcan see, the counting of memory starts at OK, not 1K. If there were memoryat "64K," it would really be "65K," which is 66560 bytes of memory, since 1K= 1024.

The MEMDEE display is also a handy way to verify that you have jumpered theboards properly. Memory which the system cannot find will be missing fromthe display. Bad memory boards can sometimes be located in this fashion,too. Of course, if the bad board is in sharable memory or Bank Zero, thesystem may not come up at all.

2.0 ALLOCATING MEMORY TO JOBS

With this memory management system, the MEMORY command becomes obsoleteexcept for allocating memory in Bank Zero. Do not use the MEMORY command toallocate memory for any job other than the first job in Bank Zero, the jobthe system comes up under. Instead, use the JOBMEM command to allocatebank—switched memory.

(However, remember to use the MEMORY command if yoU are allocating the lineprinter spooler in system memory. See Setting Up the Line Printer Spoolerin the "System Operator's Information" section of the AMOS Software Updatedocumentation packet for information on allocating the spooler in eithersystem or bank—switched memory.)

(Changed 30 April 1981)

or), "5" stands for
and is not bank
Since monitor and
memory is treated

memory used by

MEMORY MANAGEMENT OPTION Page 5

Use the JOBMEM command as follows:

JOBMEM jobnam Bank—number:StartAddress—EndAddress

1. "jobnam" is the name of the job for which memory is to be
allocated. The user's current job is used if "jobnam" is not
specified.

2. "Bank—number" is the number of the memory bank that the job is to
reside in.

3. "StartAddress" is the starting memory location for the job.

4. "EndAddress" is the ending memory location for thejob.

If you specify no arguments, JOBMEM tells you how much memory is allocated
to your job. If you specify a job name with no memory argument, JOBMEM
tells you how much memory is allocated to the specified job.

Here are some sample JOBMEM statements:

.JOBMEM JOB2 1:40OOO—177376

.JOBMEM JOB3 2:40000—77776
TJOBMEM JOB4 2:100000—137776 !E
TJOBMEM JOBS 2:140000—177376&
.JOBMEM JOBS E
CURRENT MEMORY ALLOCATION IS 2:140000—177376
.JOBMEM @ED

CURRENT MEMORY ALLOCATION IS 0:32370—177376

The first example gives the job called J082 all of the memory in Bank 1.
The second through the fourth examples allocate the 48K of memory in Bank 2
in 16K partitions to three different jobs. The fourth job (JOBS) really
gets 16K minus 256 bytes of memory (16128 bytes total) due to the fact that
the top 256 bytes of memory are not accessible. (The top 256 bytes of
memory are reserved for the I/O ports.) The fifth example lists the memory
allocation for the job called JOBS. The final example lists the memory
allocation for the current job.

2.1 JOBMEM Error Messages

?Memory allocation format error
J0BMEM is confused by the format of the information you've given it; it

may be that you've made a spelling error.

?Non—existent bank number
If you've specified a bank number greater than the number of MEMDEF

commands in the SYSTEM.INI, you'll see this message.

(Changed 30 April 1981)

MEMORY MANAGEMENT OPTION Pge 6

°Non—ex-,stent job
You've specified a job that does not exist. Check the JOBS commandline in your SYSTEM.INI or run SYSTAT to see a list of the jobs on thesystem.

'Allocation overlaps monitor or system memory
Monitor and system memory is sharable between users; that means thatyou must not allocate any part of it to an individual user. Reduce yOuruser allocations, or removesome of the programs. that you've previouslyadded to system memory by deleting the appropriate SYSTEM commands in yourSYSTEM.INI.

?Illegal. memory range (end is below base)
You probably entered your ending memory address before you entered thestarting address. The starting address of the memory block you want toallocate must be less than the ending address.

?Atlocation is not within requested bank's defined memory
You've asked for memory in a valid bank, but the memory addresses thatthe bank is set for do not include the addresses that you've tried toallocate. Check your MEMOEF commands, and the addressing of your memoryboards.

?Requested allocation would overlap job Jobname
You've tried to alLocate memory to one job that belongs to another.The job you've overlapped is named Jobname. (e.g., ?Requested allocation (would overlap job JOBA.)

3.0 FlINTS, RESTRICTIONS, AND WARNINGS

The next few paragraphs discuss some of the things that you should avoiddoing when setting up your system for bank—switched memory. We also discusssome of the miscellaneous pieces of information that you should know to setup your system in this way.

When power is initially supplied to the system, or whenever the reset buttonis pressed, Bank Zero must turn itself on and all other banks must turnthemselves off. Any other configuration may cause system failure eitherimmediately after AMOS starts executing the SYSTEM.INI file, or when theMEMOEF statements in the SYSTEM.INI file are executed.

All memory in a particular bank must be contiguous. That is, you cannothave a piece of switchable memory starting at one location and ending atanother, a "hoLe" where there is no memory, and then another piece ofswitchable memory. This is also true of sharable memory, and all memory ina system that does not use bank switching. You can, however, have sharablememory up to some point, a "hole," and then bank—switched memory. This isnot the case with Bank Zero, which must always be contiguous with sharablememory.

(Changed 30 April 1981)

MEMORY MANAGEMENT OPTION Page 7

If you are allocating a line printer spooler and there is not enoughsharable memory for the spooler, your spooler will not work. Make sure thatthe spooler's "end adr" is lower than the top of sharable memory if you areplacing the spooler in system memory.

If too many modules are loaded into the monitor with the SYSTEM command,monitor memory will extend into the bank—switched area, and the system willnot work properly. You can use the MENDEF command after you boot the systemto check this out.

The MEMOEF commands must come before the final SYSTEM command in theSYSTEM.INI. It is recommended that the MEMDEF commands be placed right after
the TRMDEF commands.

MEMDEF does not check to see if an I/O address with the same on/offconstants was previously allocated. it is up to the System Operator to makesure that SYSTEM.INI is set up properly and that a single piece of memory isnot aLlocated to two different banks.

When the MEMDEF display shows the last column of bank—switched memory at"62K" (instead of at "63K" where it belongs), you may have a problem withyour disk controller board(s). The 8131 driver IC for the bootstrap PROMmust be removed from any board controlling a disk device that is not thesystem device. PHANTOM must be removed from these boards also. Only theboard which controls the system device can have the bootstrap PROM andPHANTOM enabLed.

All memory addresses must be on word boundaries. In octal, memory addresses
on word boundaries end with 0, 2, 4, or 6. in hex, they end with 0, 2, 4,6, 8, A, C, or E.

With this memory management system, there is no way for a user to have aportion of memory in one bank, and another portion in another bank, unlesshe is running a specially written assembly language program and uses the8NKSWP monitor call. The user must be in sharable memory when he issuesthis call. (There is more information on the ANKSWP call in the AF1OSMonitor Calls Manual, (DWM—UO100—42).)

A bank of memory may be composed of part or a-li of- several different boards.,even- it the boards are made by different manufacturers

(Changed 30 April 1981)

April 1981
Revision A02

DEFINING SWITCHABLE SYSTEM MEMORY

The Alpha Micro Operating System (AMOS) allows you to change theconfiguration of your system by changing the system initialization commandfile (SYSTEM.INI) that controls the system start—up process. When you add a
new disk device or terminal, you add information about that device to theSYSTEM.INI.

As more device controllers and drivers become available, you will probablyhave a greater variety of devices on your system. Each time you add a newkind of device, however, your monitor becomes larger because the SYSTEM.INIinstructs the monitor to incorporate within itself the software necessary tohandle the new device. The larger your monitor becomes, the less memory isavailable to user memory partitions. The area of memory used by the monitoris called system memory.

If your system does not use memory management (that is, if you do not bankswitch memory), there is nothing you can do about reducing the size of yourmonitor except remove programs that have been loaded into system memory viathe SYSTEM command in the SYSTEM.INX or change the configuration of yoursystem.

Beginning with AMOS Version 4.3, if your system uses memory management, youmay now reduce the size of your monitor by placing bitmaps intobank—switched memory. To do this, you must first set aside an area of

switchable

memory as system memory. (For information on bank—switchedsystems, refer to Memory Management Option, in the "System Operator'sInformation" section of the AMOS Software Update documentation packet andsee the Alpha Micro Integrated Systems User's Guide, (OWM—OO1O1—0O).) Atthis time, bitmaps are the ONLY portions of the monitor that you can pLacein switchable system memory.

1.0 THE SYSMEM COMMAND

The first step in defining switchable system memory is to make sure thatyour SYSTEM.INI contains valid MEMDEF commands. MEMDEF commands set upswitchable memory banks that allow the system to access more than 64K ofmemory. (Individual users are still restricted to a maximum memorypartition of 64K.) The switchable portions of these banks are usuallyallocated to user jobs, but you will be setting aside part of this area foryour switchable system memory.

Now that your system is bank switching memory, you can use the SYSMEMcommand in the SYSTEM.INI to tell the system which part of a memory bankoutside of the sharable monitor area you want to assign to the system

(Changed 30 April 1981)

DEFINING SWITCHABLE SYSTEM MEMORY
Page 2

bitmaps (NOTE When you use SYSMEM in the SYSTEM.xwI, you may only usit to define switchable system memory.)

The SYSMEM command takes this form:

SYSMEM

where Bank/i identifies the specific memory bank in which you want toallocate switchable system memory, StartAddress and EndAddress select thebeginning and ending addresses of the block of memory you want to allocateto switchable system memory.

Switchable system memory may not overlap sharable memory. That is, youcannot allocate to switchable system memory any memory locations in thenon—switched area of memory. (The non—switched area of memory is used bythe monitor.)

You may not allocate to switchable system memory the last 256 bytes of the64K address space. (These bytes are reserved for the I/O ports.) Thehighest memory address you can allocate, then, is 177376.
Once the system is up and running, you can use SYSMEM at AMOS command leveLto find out what area of memory is set aside as switchabte system memory.For example:

•SYSMEM

System memory allocations are:
3: 100000—1 66774

2.0 DEFINING SWITCHABLE SYSTEM MEMORY

To define switchable system memory, edit the SYSTEtI.INJ and make thesechanges:

1. First, you must define the area of switchable memory you want toset aside for system memory. Enter the SYSMEM command for thispurpose. SYSMEM commands must appear after any MEMDEF commands,but before any BTTMAP commands.

NOTE: You can use more than one SYSMEM command in your SYSTEM.INIif you want to allocate more than one area of switchable systemmemory

SYSMEfsI uses the same format as the JOBMEM command. For example:

SYSMEM 2:100000—116150

CChnqed 30 ApriL 1981)

Page 3

The command above allocates 7272 bytes to Bank Two (the thirdmemory bank on the system) for bitmaps. (When you use SYSMEM,remember that the BITMAP commands refer to the number of decimalwords you need to reserve for bitmaps, NOT the number of bytes.One word is two bytes, so double the bitmap size to find the numberof bytes you need to allocate with the SYSMEM command.)
2. Next, identify those bitmaps you want to place in switchablememory by including a /S at the end of the appropriatecommand tines in your SYSTEM.INI. For example:

3.0 ERROR MESSAGES

time of system start—up, AMOS automatically places theyou have previously designated (via the /S option on thecommand line) into the switchable system area you have

If you make an error in defining
following error messages:

swi tchab le system memory, you see the

?System memory not allocated — monitor memory will be usedYou tried to place a bitmap in switchable system memory (via the /Soption in the BITMAP command line), but AMOS couldn't find anyswitchable system memory. (You can also see this message if you didnot allocate enough switchable system memory to hotd the designatedbitmaps.) AMOS therefore places the bitmap in the area of sharabtememory used by the monitor. Check to see that SYSMEM commands arepresent in your SYSTEM.INI.

?Memory allocation format error
SYSMEJI didn't understand the format of your SYSMEM command tine.For example, did you leave out the colon after the bank number?

?Nonexistent bank number
You've given SYSMEM a bank number larger than the total number ofMEMOEF commands in your SYSTEM.IrI. (That is, you've referred to abank number that does not exist.)

(Changed 30 April 1981)

DEFINING SWITCHABLE SYSTEM MEMORY

BITMAP
BITMAP
BITMAP

DSK,1818,O,1 ,2,3,4,5/
AMS,39,0,1
HWK,606,O,1 IS

system
BITMAp

The BITMAP commands above tell
monitor area in Memory Bank Zero for
and AMS1:. The other two BITMAP
option by including a IS at the end
therefore knows that the bitmaps
051(4:, 051(5:, HWKO:, and HWK1: are
system memory.

3. At the
bitmaps
BITMAP
defined.

AMOS to reserve 39 words in the
the bitmaps for devices AMSO:
commands select the switchabte
of the command line. AMOS

forDSKQ;, DSK1:, DSK2:, OSK3:,
to be placed in switchable

DEFINING SWITCHABLE SYSTEM MEMORY Page 4

?ALlocation overlaps monitor memory :CT)
You must not allocate to switchabLe system memory any of the

sharable memory area. (Sharable memory is memory that contains the
monitor and thatall users can access.) Type MEMDEF followed by a

RETURN to see the memory bank configuraton for your system. This
display telLs you which areas of memory you can allocate to switchable
system memory.

?Illegalmemory range (end is beLow base)
Ending address of the block of memory you allocate to switchable

system memory must be greater than the starting address.

?Allocation is not within requested bank's defined memory
You've specified a valid bank number to the SYSMEM command, but that

bank is not addressed for the memory locations you've requested. Check
the addressing of your memory boards and check the MEMDEF statements in
the SYSIEtI.TNI.

?ALlocation overlaps memory previously allocated to a job
You've already tried to allocate to switchable system memOry an area

that has already been allocated (via the JOBMEM command) to a user job.
Check your bank number and memory addresses in the SYSMEM command. If
they're all right, check the memory allocations for the jobs on your
system.

—7,

(Changed 30 ApriL 1981)

May 1980
Revision AOl

CONFIGURING FLOPPY DISK DRIVERS

1.0 INTRODUCTIoN

The AMOS system supports several different kinds of disk devices. Becauseeach type of device has its own characteristics and requirements, a separatedevice driver program must exist for each kind of disk device you use onyour system.

The disk driver program links AMOS's generalized disk •service routines withthe physical disk device. One disk driver exists for each kind of hard diskthat you can run under control of the AM—500, AM—400, and AM—410 hard diskcontrollers.

In the past, several different floppy disk drivers existed: one for each
combination of drive type and disk format. A much larger number of floppydisk formats are now available. For this reason, rather than providing aseparate disk driver for each possible combination of device, type and diskformat, we have given you the ability to configure your own floppy diskdrivers. -

1.1 New Alpha Micro Disk Formats

Before Release 4.2, only three floppy disk formats were available:IBM—compatible (STD), Alpha Micro format CAMS), and Image format (1MG).With the introduction of a new floopy disk controller (the AM—210) that canhandle disks in double—sided, double—density formats, a new range of floppydisk formats is now possible. The FIXDVR program allo,s you to configureyour own floppy disk drivers based on the particular disk type, floppy diskcontroller, and disk format you want to use. You must use FIXDVR toconfigure a driver for each different combination of device, controller, andformat that occurs on your system.

2.0 USING FIXDVR

To run the FIXDVR program, log into the Device Driver Library account,DSKO:[l,6]. Then type FIXDVR followed by a RETURN:

.LOG DSK0:[1,6Jifl

.FIXDVRflJ

(Changed 1 May 1980)

CONFIGURING FLOPPY DISK DRIVERS
Page

FIXDVR now begins to ask you series of questions, so that it can determinehow to confiqure a floppy disk driver that matches your particularcombination of disk type, disk controfler, and disk format:
1. Controller Type (A) AM—200, (B) AM—210 or (C) Icon:

Enter the letter A, B, or C to select the type of floppy diskcontroller you are using for your floppy disk drive. If you selectthe Icom controller, FIXDVR skips down to question #4 (see beLow).
2. Drive type (U Penci, (B) Wangco, or (C) CDC:

Enter the letter that selects the type of disk drive you areus ing.

3. Double—density?

FIXDVR asks this question only if you have already specifiedthe AM—flu as your disk controller. Enter a Y for Yes, or an N forNo, depending on whether you plan to use the driver ondouble—density disks.

4. Format (A) 510, (8) AMS, or (C) 1MG:

Enter the letter that selects the disk format you want thedriver to-use. You may not specify the APIS format if the drive-i' isto use single—density format on a drive running under control ofthe AM—210 disk controller. If you have previously selected theIcon controller, FIXDVR now skips down to question #6. (If you areusing the Icon controt.i.er, you may not specify the APIS format.)
3.. DoUbt-e—sjd-d?

—Fflfl.yR asks this question onty if you have already soecifiedthe AN—fib -as your disk control.ler. Enter a I for Yes, or an N forNo, depending on whether you plan to use the driver on double—sideddisks.

6. Enter new driver name:

Enter the name that you want to give to the driver program.The standard names that you might want to use are listed below inSection 4.0.

FIXDVR now displays this message:

New driver is now in memory, bitmap size is nn

The driver that you created is now in memory. Use the SAVE command to saveit on the disk. For example:

.SAVE DDS.DVRjyJ

(Changed 1 Play 1980)

CONFIGURING FLOPPY DISK DRIVERS Page 1

The command above saves the driver onto the disk (in the account you arelogged into, DSKO:[1,6J) 'as the file DDS.DVR. If you do not specify anextension,, the SAVE command saves the file under the extension .DVR(whichindicates a device driver program).

FIXDVR could not find
configuring a driver for
2000VR.DVR be in DSKO:E1,6J;
21ODVR.DVR in DSKO:[1,63.
requires that ICMDVR.DvR be

2. Please enter V or N

the necessary file.
the AM—200, FIXDVR

a driver for the
A driver, for the

in DSKO:C1,6).

If you are
requires that

AM—210 requires
Icom 'controller

Several of the questions that
answer with a V or N for Yes or No.

3. ?Invalid reponse

FIXDVR asks require that you

Several of the questions that FIXDVRenter a letter to select an option (e.g.,
format).

asks require that you
an A to select 5Th

4. ?Invalid device

You have a bad version
ICMDVR.DVR in DSKO:E1,6J.

5. ?Icom does not 'support AMS format

of 200DVR.bUR, 21ODVR.DvR, or

You tried to format an Icom floppy diskette in' AMS format.(Icom floppy drives only support STD and 1MG format.)

6. ?AM—210 does not support single—density AMS format

You
, may not use single—density API'S format on a device that

runs under the control of the AM—210 floppy disk controller.
7. ?AM—200 does not support CDC floppy disks

You may only run CDC floppy disks under the control of theAM—210 floppy disk controller.

(Changed 1 May 1980)

2.1 FIXDVR Error Messages

You may see the following error messages when using FIXDVR:

1. ?Could not find xxxxxx.DVR

CONFIGURING FLOPPY DISK DRIVERS

1 0 fIODIFYING THE SYSTEM INITIALIZATION COPIMAND FILE

You iliust modify the system inltializatioi, command file (SYSTEM flU) to
1. Add the device for which you have just defined a device driver tothe DEVTBL command line. NOTE: If you have too many devices or tJieDEVTBL command line to fit all on one line, you max use severalDEVTBL command lines. For example:

DEVTBL DSKl,AMSO,AMS1;A$2AM3DDcGDD
DEVTBL TRM,MEM,RES,/MTM

2. Add BITMAP commands to the SYSTEM.INI to define bitmaps for the newdevices you are adding to the system. Use the bitmap size given inthe final FIXDVR message. For example, if you are defining adriver for a two—drive device, and ihe format retiuires a bitmap of39, you might have seen this message:

New driver is now in memory, bitmap size is 39
Now you must add the appropriate BITMAP command to the SYSTEM.INI.For example:

BITMAP M'IS,39,O,1

4.0 STANDARD DISK DRIVER NAMES

Below is a list of me of the standard names you can assign to the deviceariver defined by FII(Dvt-

Driver Name Characteristics
STD Single—density, Single—sided, STD formatSDS Single—density, Double—sided, STD formatDSS Double—density, Single—sided, STD formatDDS Double—density, Double—sided, STD formatAPIS Single—density, Single—sided, APIS formatSDA Single—density, Double—sided, APIS formatDSA Double—density, Single—sided, APIS formatDDA Double—density, Double—sided, APIS formatSSI Single—density, Single—sided, 1MG formatSDI Single—density, Double—sided, 1MG formatDSI Double—density, Single—sided, 1MG formatODI Double—density, Double—sided, 1MG format

(Changed 1 May 1980)

-. -.
i':;., .Afl41$$ •

CONFIGURING FLOPPY DISK DRIVERS
Page 5

5.0 FORMATTING DISKS

When you format a disk, you will use either the FMT200 or the FMT21Oformatting programs (depending on whether you are running the devicecontaining that disk under control of the AM—200 or the AM—210 Floppy DiskController).

NOTE: If you are using an AM—200 controller, make sure that the AM—200format—enable switch is turned ON before you format a disk. The Icomcontroller is not capable of formatting diskettes; if you are using an Icomcontroller, you must buy preformatted disks.
The device specification you give to the formatting orogram will identifythe driver (and thus the format) used for that device. For example, if youwant to format a disk in Drive One of a device that uses the DSS driver(double—density, single—sjed, STD format), enter:

.FMT21O DSS1:

FMT21O then formats the disk in the proper format, and you see:
BEGIN FORMATTING
EXIT

(Changed 1 May 1980)

May 1980

AMOS VERSION 4.4 METHOD OF HANDLING BAD DISK BLOCKS

1.0 INTRODUCTION

AMOS Version 4.4 supports a new method of hand1ing bad areas on devices such
as the Phoenix disk drive. This class of high—performance disk drives,
because of the high density of data on such devices, may contain flaws which
prevent contiguous alLocation of the disk area. As disk drives
incorporating the newer technologies become available, the need for error
tolerance becomes increasingly important. The Phoenix disk drive is the
first disk supported on the Alpha Micro system where the media is not
guaranteed to be 100% good.

AMOS Version 4.3 supported an interim solution to this problem by simply
marking all bad blocks as "in—use," thereby preventing their use within a
file. Although this method soLved most of the problems posed by the media
flaws, it introduced others, such as the possible fragmentation of storage
on a surface, preventing the use of that surface as a single random file.
Because of the actual distribution of bad blocks on the Phoenix drive, this
did not turn out to be a major problem. However, recognizing that this was
not the optimal solution, we reserved fifteen spare or "alternate" tracks on
each Phoenix drive for use as alternate storage. To better support future
disk drives, and to eliminate the possibility of surface storage
fragmentation, we have implemented a new method of handling media flaws
which uses these spare tracks.

2.0 THE NEW METHOD OF HANDLING BAD BLOCKS

The new technique of handling bad blocks is to flag bad tracks and
translate these tracks to the spare tracks at the time of disk access. This
method results in several advantages:

1. The entire disk surface is available for use. That is, no "bad"
blocks can exist in the middle of a surface, preventing compLete
use of the surface as a random file.

2. DSKCPY—type utilities can be used on the surface, speeding up
backup time.

3. Disk maintenance utilities, such as DSKANA and DSPAK, do not need
to treat the disk as a special case; it can be accessed the same
way as any other device.

4. The actual choice of bad tracks versus bad blocks is device
dependent, making the new method easily expandable for future
devi ces.

AMOS VERSION 4.4 METHOD OF HANDLING BAD DISK BLOCKS Page 2

The technique used is as foLlows:

1. The certification program for the disk creates the tile BAOBLK.SYS
which contains a list of bad tracks or blocks, depending on the
particular device, CurrentLy, the Phoenix uses bad tracks.

2. The DEVTBL command reserves space for an Alternate Track Table
system memory. DEVTBL does this automatically, with no change
the command format. The size of the Alternate Track Table
device dependent; currentLy, the Phoenix causes 30 bytes to
allocated for each surface.

3. The MOUNT command reads the
Track Table whenever a disk

BADBLK.SYS file into the Alternate
is mounted.

4. Whenever a disk access is requested, the disk driver scans the
Alternate Track Table to see if the requested block is in a track
which is marked as bad. If so, a translation is pertormed to
access the requested block within the alternate track assigned to
that bad track.

The actual allocation
currently, the Phoeni
tracks. The first bad
the second is assigned

of alternate t
x allocates trac
track on a Phoenix
to track 809, and so on.

5. When the system is being booted, the bootstrap routine must read in
BADBLK.SYS to handle the case where SYSTEM.MON is allocated on an
alternate track.

At the current time, the Phoenix
technique of checking for bad areas.

3.0 CONVERTING TO THE NEW METHOD

is the only device that uses the BADBLK.SYS

Because of the advantages of the new method of handling media
Phoenix users will want to convert their disks to use the new
old format is still usable under AMOS Version 4.4; however, the
may not be supported in future releases.

YOU MUST CONVERT ALL DISKS TO THE NEW FORMAT!

(Of course, if you are a first—time Phoenix user as of AMOS Release 4.4,
your disks are already using the prop!r system.)

To convert a disk surface to the new format, follow this tour—step
procedure:

in
in
is
be

racks is device dependent;
ks 808—822 as aLternate
is assigned to track 808;

flaws,
format
old

most
The

format

1. First, be certain that you are
(Use the SYSTAT command to see

running under Version 4.4 of AMOS.
which version of AMOS you are

AMOS VERSION 4.4 METHOD OF HANDLING BAD DISK BLOCKS Page 3

using) The following procedures will have no effect if you are
running under AMOS Version 4.3 or earlier.

2. Create a backup copy of the surface to be converted on a certified,
but otherwise blank cartridge. (In the case of converting a

cartridge disk, you will need to clear off a fixed surface so that
you can place your backup there.)

3. Certify the surface to be converted, using the CRT41O program.

4. Copy the files from the backup disk to the newly certified disk via
COPY.

Before AMOS Version 4.4, Phoenix users were restricted to using COPY when
backing up a Phoenix surface. Now, after you have converted a disk, you
may use DSKCPY from that time on to copy that converted disk to a certified,
but blank, cartridge or surface when you want to do a backup, as long as the
backup disk has also been certified via the 4.4 or later CRT41O.

(Remember that DSKCPY makes a Literal image; any data on the backup disk
will be destroyed during the copy.)

April 1981

SOFTWARE INSTALLATION INSTRUCTIONS FOR THE AM—120

1 .0 INTRODUCTION

This document describes the software that accompanies the AM—120 Auxiliary
I/O Controller board and gives instructions for installing that software.
Some of the programs described beLow are new and some are programs from
previous software releases that we have modified to take advantage of the
features of the AM—120 board.

The AM—120 Auxiliary I/O ControLler board provides the following features:

1. Two full. RS—232 serial I/O ports (one of which contains a remote
reset line). Connecting a terminal to the port with the remote
reset line allows you to reboot the system from that terminal.

2. Three 8—bit parallel output ports and two 8—bit parallel input
ports.

3. An interval timer. The length of the timer's interval is software
selectable.

4. Power failure detection and handling.

5. A clock/calendar with battery backup. This clock/calendar
maintains both the time and the date (including day of the week)
even when your system is not on.

6. Memory error interrupt.

For more information on the AM—120, and for information on physically
installing the board in your system, see the document Installation
Instructions AM—120, (PDI—00120XX).

2.0 THE SOFTWARE INCLUDED WITH THE AM—flU

Below is a list of the software we supply with the AM—120 board:

CAL12O.PRG Calibration program for time—of—day clock oscillator
on the AM—120.

DATE.PRG Reads and sets system date from the AM—120.
TIME.PRG Reads and sets system time from the AM—120..
AM12O.IDV Interface driver for the AM—120.
AM12O.MAC The source code for the AMI2O.IDV interface driver.

SOFTtJARE INSTALLATION INSTRUCTIONS FOR THE AM—120 Page 2

Note the command reference sheets attached to this document for the CAL12O,
DATE, and TIME programs The PRG tiles listed above must appear in account
[1,4) of your System Disk, and the IDV file must appear in account Ei,61 of
your System Disk.

3.0 .TfE AM120.IDV INTERFACE DRIVER

The AM12O.IDV interface driver allows you to use the two seriaL ports on the
ATI—120 for terminals or printers. You must also use the driver if you want
to use the parallel ports in interrupt driven mode, the memory error
interrupt, or the interval timer. (The AM12O.IDV interface driver handles
all of these interrupts.)

We have designed the AM12O.IDV driver so that installing an AM—120 board in
a system that uses an AM—iOO CPU allows you to use the AM—120 parallel
ports, memory error interrupt and interface timer in exactly the same way as
you would use those features on the AM—100/T CPU board. This means you may
use software originally written for the AM—lO0/T on the AM—120 with no
modification. NOTE: To ue the parallel ports in interrupt driven mode, or
the interval timer on a second AM—120 board in your AM—iOO based system, you
must modify the AM12O.IDV program by inserting your own code that handles
the function you want to perform. We have provided the source code for the
interface driver to allow you to do so.

If your system uses an AIi—100 CPU, the AM12G.IDV driver allows up to two
Ari—120 boards in the same system. If your system uses an AM—1O(VT CPU, the
interface driver allows one AM—120 board in your system; that board must he
physically addressed to the "alternate second board address," and you must
reference the serial ports on it as ports 2 and 3. (In this case, the
AM—100IT acts as the first auxiliary I/O controller board in the system.)
(See the document Installation Instructions AM—12O for information on
installing the AM—i 20 board.)

4.0 USING THE AM—120 SERIAL I/O PORTS

To tell the system that you want to use a terminal or printer that is
connected to one of the serial ports on the Al—12O, you must include an
appropriate TRMDEF statement in your system initialization command file that
references the AM—i20 interface driver. (For information on the TRMDEF
statement and on modifying the SYSTEM.INI file, see the document The System
Initialization Command File in the "System Operator's Information" section
of the AMOS Software Update documentation Packet.) The TPMDEF statement for
the At1120.IDV is very similar in form to the TRt4DEF statement for the AM—3i0
interface board. The interface statement portion of the TRMDEF statement
takes this form: . .

SOFTWARE INSTALLATION INSTRUCTIONS FOR THE AM—120 Page 3

where you may optionally supply a baud rate code for the terminal. The

I/O—port—address is a number from 0—3 and selects the serial port you want
to use. (If you are using one AM—12O board with an AM—lOU, you have serial
ports 0 and 1 available; if you are using two AM—120 boards, you have serial
ports 0—3 available.) As an example, a TRMDEF statement for a terminal
connected to the AM—120 on a system using an AM—l00 Cpu might look Like
this:

TRMDEF TERM1,AM1201 :37316,SOROC,100,100,100

The optional baud rate codes that you can specify are:

:30316 50 baud
:30716 75 baud
:31316 110 baud
:31716 134.5 baud
:32316 150 baud
:32716 300 baud
:33316 600 baud
:33716 1200 baud
:34316 1800 baud
:34716 2000 baud
:35316 2400 baud
:35716 3600 baud
:36316 4800 baud
:36716 7200 baud
:37316 9600 baud
:37716 19200 baud

5.0 SUPPORTING UTILITY PROGRAMS

We have modified the DATE and TIME programs so that you can set the system
date and time from the AM—120 clock/calendar, and you can reset the date and
time maintained by the AM 120

On a system with an AM—120, DATE also maintains the day of the week as part
of the date. The DATE program now supports European date format as well as
American format. (A date in European format looks Like this: 26 January
1982; a date in American format looks Like this: January 26, 1982.) You may
optionally request that DATE automaticalLy reset the date at midnight.

A new program, CAL12O, allows you to use a high—frequency counter to
calibrate the AM—120 oscillator.

For information on DATE, TIME, and CAL12O, see the command reference sheets
for DATE, TIME, and CAL12O in the AMOS System Commands Reference Manual
(DwM—10010—49).

SOFT%AfiE lNsraLATLON INSTRIJCTIOF4S FOR THE Atl—120 Page-4

6.0 INTERNAL FORMATS FOR DATE AND tIME

The formats that AMOS uses for. storing the system date and time are the same
whether or not your system contains an :AM—12O board.

AMOS stores the time of da' in two words in system memoryas the number of
system cLock ticks since midnight. (The "system clock" is not the AM—120
clock/calendar or interval timer, but is the cLock on the CPU board derived
from the AC line frequency.) For informatior on these two words in system
memory (TIME and TIME+2), see the AMOS Monitor Calls Manual, (DWM—OO100—42).

AMOS stores the system date in two words in system memory. These two words
contain the month, the day, the year, and some flag bits. The byte at the
word DATE contains the month, the byte at the word DATE+1 contains the day,
and the byte at DATE+2 contains the last two digits of the year. The byte
at DATE+3 contains some flag bits, only two of which are currently used.
Within the flag byte, bits 0—6 are currently unused; a one in bit 7 means
that an AM—120 is present in the system; and, a one in bit 6 means that DATE
is using the European date format.

NOTE: Some programmers have in the past assumed that DATE+3 will always
contain zero. This is not true; programs that depend on this assumption may
experience problems when used on a system that uses the AM—12O software.

April 1981

SOFTWARE INSTALLATION INSTRUCTIONS FOR THE AM—710 MEMORY BOARD

The AM—710 memory board is a 128K byte memory board produced by Alpha Micro.
One of the features of this board is its ability to detect parity errors.
This document discusses the changes you must make to your system

initialization command fiLe when instaLling the AM—hO memory board. We

also discuss what happens when a parity error occurs.

For technical information on the AM—liD board, see the Alpha Micro
Integrated Systems User's Guide, (DWM—0010100). That manual will also
tell you how to set the AM—hiD I/O port address and how to address the
boards.

NOTE FOR BANK SWITCHING SYSTEMS: If your system bank switches memory, you
will also want to consult the ALpha Micro Integrated Systems User's Guide
for information on what on— and off—constants to specify in the MEMDEF
commands that define the memory banks made up of your AM—71O memory boards.

1.0 ENABLING PARITY ERROR DETECTION FOR THE AM—71O

To enable the AM—710 memory board's parity error detection feature, you must
use the PARITY command. Although you may use this command at AMOS command

level, you will almost always want to use it within your system
initiaLization command file, SYSTEM.INI. (For information on changing your
system initialization command fiLe, see The System Initialization Command
File, in the "System Operator's Information" section of the AMOS Software
Update Documentation Packet.)

Place the PARITY command in your system initialization command file after
the MEMERR command. Type PARITY followed by the I/O port addresses of the
AM—710 boards in your system (separating the addresses by commas). For
example:

PARITY 100,101,102

This I/O port address is three digits for octal numbers and twp digits for
hexadecimal numbers. (NOTE: Do not enter hex numbers unless you have used
the SET HEX command for your job.) If you have more I/O port addresses than
will fit on one command line, you may enter multiple PARITY command lines.
For example:

PARITY 101,102,103,104,105
PARITY 106,107,110,111,112

SOFTWARE INSTAllATION INSTRUCTIONS FOR THE AM—710 MEMORY BOARD Page 2

2.0 THE MEMERR COMMAND

The AM—710 memory board requires the presence of the MEMERR command in the
system initialization command file as well as the use of the PARITY command.

If your system uses only AM—710 boards, do not specify an address after the
MEMERR command. For example:

MEMERR

PARITY 100,101,102

If your system contains Piiceon 32K word boards as well
AM—710s, specify the MEMERR port address required by
boards. For example:

MEMERR 250
PARITY 100,101,102

as one or mOre
the Pliceon memory

(If your system uses Piiceon 32K word memory boards, refer to the Alpha
Micro Integrated System User's Guide for information on the error I/O
address to supply to the MEMERR command.)

3.0 PARITY COMMAND ERROR MESSAGES

Section 4.0 below discusses the error messages you can see when a parity
error actually occurs. In addition, there are several other messages you
can see that result from the improper use of the PARITY command itself:

?There is no AM—710 at port address xxx
Where xxx is an I/O port address you specified

command line. This address did not match the jumpered
of any of the AM—710 boards in your system. Check t
line to make sure that you entered the port address
check the memory boards to make sure that their p
jumpered correctly.

on your PARITY
I/O port address

he PARITY command
correctly; then

ort addresses are

?Command format error
You did not supply any I/O port addresses, or in some other way used

an improper format.

4.0 WHAT HAPPENS WHEN A PARITY ERROR OCCURS?

Your system can respond in a variety of ways when a

depending on your system's particular configuration:

AM—100 CPU and AM—710 memory boards — Memory error detection is not
supported.

If your system contains an AM—bOlT CPU (Pre—Revision F) and one or more
AM—710 memory boards:

4

parity error occurs

SOFTWARE INSTALLATION INSTRUCTIONS FOR THE AM—flU MEMORY BOARD Page 3

If a parity error is detected, the monitor sends a "5" to the statusdisplay port and halts the CPU.

If your system contains an AM—100/T CPU (Revision F or
CPU and an AM—120 Auxiliary I/O Controller) and oneboards:

If a parity error occurs, the monitor will send a "9" to the statusdisplay board, and wilt display the message:

?AM—71[) parity error for job xxxxxx

on the Operatoj-'s terminal. (The Operator's terminal
attached to the job the system came up under.) If the
memory parition the parity error occurred is attterminal (as opposed to a pseudo terminal), that
message:

?Parity error

The monitor then halts that job.

is the terminal
job in whose

ached to a real
user sees the

When a parity error is reported, the System Operator should informstill running that a memory error has occurred, and ask them towhat they were doing and logoff. Then the System Operator should
computer and inspect each AM—710 memory board.

error occurs, you can only identify which memory board
error by looking at each AM—710 memory board to see if itsare lit. Make note of the memory board on which the parity

At this point you must decide whether to continue operating with the memoryboard that generated the parity error or whether to swap the board out foranother one. Parity errors can reflect a transient problem that surfacesonce and then is never seen again. You may therefore wish to continuerunning the system as is until a parity error occurs again. If the parityerror occurs on the same memory board more than once or twice in a greatwhile, you probably will want to remove the questionable memory board andreturn it to your dealer for inspection and/or repair.
To reset an AM—fib memory board's parity error indicator, you must perform ahardware reset on your system.

4.1 Other Memory Errors

Note that if your system uses Piiceon 32K word memory boards as well asAM—Yb boards, in addition to parity errors reported by AM—710 boards, youmay also encounter other types of memory errors reported by the Piiceonboards. If a Piiceon 32K word memory board (only for use with the AM—100/Tor AM—100/AM—120) detects an uncorrectable memory error, the monitor sends a

later) (or an AM—lOb
or more AM—71O memory

When a parity
encountered the
LED indicators
error occurred.

all users
finish up
open the

0,
-u

:
U

) 0 -1
, - z

w
O

rt
o0

rn
0) ø

O
rt

—
C

D
O

)S
U

, -
—

r
rt

r
_r

-p
n

3)
—

3

0C
C

—
D

U
)

0 Z
n-

i a
rt

C
D

-"
U

,
o

-o
—

4

rt
r

C 0
0

-4
cm

—
<

-I
t

0 a
.0

-I
(I

)
-,

rP
-I

I 0
a

-I r rn
)r

r-
-i-

It
(0

I

It
-s

rt
fD

0
rP

O
I

ni
m

u, rC
0

03
-<

0)
'

-,
ID

a
0

tn
-c -0
C

r m
a

a
w

a
C

D
-I

-
(3

o
-n 0)

—
(a it'

—
3

0
In

-

SOFTWARE NOTICE FOR AM—410 USERS

April 1981
Revision A03

This document reflects AMOS versions 4.4 and Later

• r

0(I)
-4-Jto

'-C
-

a
c-i
0<I

U
)

<
C

C
0-t

(ifl
-(0

'1—
E

.r
Q

U
it'—

U
)

W
O

N
-

I—
rd

Q
I—

 Z
fl.!

—
0

(00'
U

)
0'

-
(0-

S
>

-
0

>
-S

0_i
L

(0
S

c
(0

0
5

0(0
cO

E
 <

—
U

)
0)

00
c_i

0
<

-o
—

-4>
-'

.o
n

a.
E

is
-

C
fl

L
U

)G
i

.C
4-'

C
C

C
C

C
La

tr
o—

'
a

O
>

I
rC

L
_JL

JL
5-

(0
C

-I
C

N
-4

(0
0'r

ao
o

-J —
'—

4
r-t

-<
I

In
5

(0
C

-c2-

WC
-)

-II—0aU
)

CI-U
-

-

0C
')

SOFTWARE NOTICE FOR AM—410 USERS Pna 444

Table of Contents

1.0 INTRODUCTION

1.1 Important Notes

2.0 THE PHOENIX DISK CONfIGURATION

2.1 Using the Phoenix as a Non—Syst
2.2 Using the Phoenix as the System

3.0 THE CERTIFICATION PROGRAM, CRT41O

3.1 Hints and Restrictions
3.2 Sample Use of CRT41O
3.3 Using CRT41O
3.4 How CRT41O Certifies a Disk
3.5 CRT41O Error Messages

4.0 THE BADBLK PROGRAM

4.1 Using BADBLK
4.2 BADf3LK Error Messages

5.0 THE DSKANA PROGRAM

INDEX

em Device
Device

1

2

2

3
4

5

5

5

6

8

9

10

10
11

11

SOFTWARE NOTICE FOR AM—41O USERS

1.0 INTRODUCTION

Disks that run under the control of the AM—410 Hard Disk Controller differ
somewhat from the other hard disks supported by Alpha Micro. They therefore
require different techniques for data backup, disk formatting, and disk
initialization. (As of this reLease, the only disk that runs under control
of the AM—410 is •the 90—megabyte CDC Phoenix hard disk.) The purpose of this
document is to acquaint you with these devices.

The technoLogy that gives the Phoenix disk a much higher density of data
than more conventional drives (e.g., the CDC Hawk), aLso makes media flaws
(i.e., bad disk blocks) a much more Likely possibiLity. Therefore it is
necessary to use the CRT41O command to certify a Phoenix logical unit before
you use it. This certification process identifies any bad tracks on the
disk, formats the disk, and initializes it.

IMPORTANT NOTE:

As of AMOS version 4.4, the system handLes devices that contain media
flaws differently than earlier versions of the operating system.
(That is, AMOS now uses a "bad track" instead of a "bad block" method
of keeping track of media flaws.) For more information, refer to AMOS
Version 4.4 Method of Handling Bad Disk BLocks, in the "System
Operator's Information" section of the AMOS Software Update
documentation packet.

The information in this document reflects AMOS 4.4; it assumes that if
you have Phoenix devices that were certified with a pre—4.4 version of
CRT41O, you have converted your Phoenix disk surfaces via the
instructions given in AMOS Version 4.4 Method of Handling Bad Disk
Blocks. If you have not done this conversion, refer to the
previous version of this document in your 4.3 AMOS Software Update
documentation packet, Software Notice for AM—410 Users, for
instructions on backing up and analyzing your Phoenix surfaces.

CRT41O certifies the Phoenix media by checking each disk track. It creates
the file BADBLK.SYS[1,2] and lists any bad tracks on the media in that file.
AMOS assigns spare Phoenix tracks (called alternate tracks) to the bad
tracks, to be used in their place whenever the system tries to access a
block on the bad tracks. The BADBLK command displays the contents of
BA DBLK . 5(5 [1, 2]

(Changed 30 April 1981)

SOFTWARE NOTICiEJfOR AM410 USER-S Page 2

1 1 Important Notes

There are several things you must keep in mind before you begin to use thePhoenix disk:

1. You must not format or initialize a disk that runs under control of
the AM—41O. That means that you must not use the SYSACT initialize
command. (After you use CRT41O to certify the disk, however, you
may use SYSACT to add user accounts to the disk.)

2. As of AMOS Version 4.4, you may use the AMOS disk diagnostic
tests REDALL, RAZA, and RNDRED on the Phoenix.

3. As of AMOS version 4.4, you may use DSKCPY or COPY to back up a
Phoenix surface. Both DSKCPY and COPY have been changed so that
they will not write over the BADBLK.SYS[1,2J file on the backup
disk, and will not write into bad disk tracks.

4. We have increased the thoroughness and reliability with which
CR1410 searches for bad disk areas. This means that certifying adisk now takes longer than under AMOS Version 4.3. certification.

2.0 THE PHOENIX DISK CONFIGURATION

The CDC Phoenix disk contains S fixed platters of 15 megabytes each and a
removable 15—megabyte cartridge. Each of these platters is a separatelogical unit and must be accessed as such. The cartridge always bears thehighest unit number for that physical device. (For example, if you have asingle Phoenix you are using as a non—System Device, then SMDO: — SMD4: arefixed disks; the cartridge is 5M05:.) The one exception to this rule is thePhoenix physical device being used as the System Device. If the system isrunning off the cartridge, the System Disk cartridge is DSKO: and the fieddisks are logical units DSK1:—DSK5:. (A second Phoenix on this systemfollows the general rule above; the cartridge is DSK15: and the fixed disksare DSK1O:—DSK14:.)

Each Phoenix logical unit contains 808 (#0—807) tracks, ith 36 sectors pertrack, to give a total of 29088 (decimal) sectors (or disk blocks) on eachunit. The Phoenix also contains 15 spare (or "alternate") tracks, #808—322.
Each disk block contains 512 bytes. The Phoenix requires a bitmap size of1818 words.

Note that AMOS allows you to place bitmaps in switchable system memory.(See the document Defining Switchable System Memory, in the "SystemOperator's Information" section of the AMOS Software Update documentationpacket, for information on using this technique to reduce the monitor size.)
The device driver program for the Phoenix disk is SMD41O.DVR[1,6] on theSystem Disk. The bootstrap loader program is SMDLOD.PRG in account 11,4] onthe System Disk.

(Changed 30 April 1981)

SOFTWARE NOTICE FOR AM—410 USERS

The paragraphs below discuss adding the Phoenix to your system either as the
System Device or as a non—System Device. (Hardware settings on the disk
controllers on your system define the device that the system attempts to
boot from.)

If you have several Phoenix disks, note that the first physical device
contains logical units zero through five (e.g., DSKO:—DSK5:), a second
Phoenix device contains logical units ten through fifteen (e.g.,
DSK1O:—DSK15:), a third Phoenix contains logicaL units twenty through
twenty—five, and so on.

2.1 Using the Phoenix as a Non—System Device

If you are not using the Phoenix disk as the System Device (that is, if you
boot the system off some other type of device), you will need to follow some
simple steps before you can access the Phoenix disk:

1. Rename the Phoenix driver program from DSKO:SMD41O.DVRE1,6J to
DSKO: SMD.DVRC1 ,6J.

2. Now you need to define the Phoenix disk as a system device. To do
this, edit your system initialization command tile, SYSTEM.INI, and
add the devices SMDO, SMD1, SMD2, SMD3, SMD4, and SMD5 to the
DEVTBL command line. This adds the Phoenix to your system device
table. (For information on using the DEVTBL command to define
devices and on using the BITMAP command to define disk bitmaps, see
The System Initialization Command File, (DwM—OO100—09, Rev A03),
in the "System Operator's Information" section of the AMOS Software
Update documentation packet.)

3. Add BITMAP commands to the SYSTEM.INI to define bitmap areas for
the Phoenix. (The Phoenix requires a bitmap size of 1818 decimaL
words.) Remember that you can set up your system so that part of
system memory resides in a switchable area of a memory bank. You
can thus place your bitmaps in switchable system memory and so
reduce the size of the monitor. Now reboot the system with your
new SYSTEM.INI. You can now access the Phoenix.

If you want more information on adding new disk devices to your system,
refer to the document Defining Non—System Disk Devices in the "System
Operator's Information" section of the AMOS Software Update documentation
packet. Section 4.0 of that document, "Building a System on a New Device,"
explains how to convert the Phoenix to the System Device after you have
added it to your system as a non—System Deyice.

The configuration of your Phoenix non—System Device is as folLows: The five
fixed platters are SMDO:, SMD1:, 5M02, SMD3:, and SMD4:. The removable
cartridge is SMD5:.

(Changed 30 April 1981)

SOflWARE NOTICE FOR '1M—410 USERS Page A

2.2 Using the Phoenix as the System Device

If the Phoenix is your System Device, you will want to copy all of the
system software from the System Disk cartridge down to one of the fixed
disks:

1. Turn on the computer, holding down the reset button. Cpu power
must be on whenever the Phoenix disk is cycled up. Therefore,
always turn the computer on before cycling up the Phoenix; always
cycle down the Phoenix before turning off your CPU. If you do not
follow this procedure, it is quite possible that the data on your
Phoenix disk wilt be damaged. NOTE: We recommend that you always
leave your Phoenix drive powered up when you are not using it.
This allows the filter system to continually guard the disk
surfaces. (Of course, if you are not using your system, you will
probably want to write—protect the drive, cycle it down, and turn
off your CPU even though you leave the drive powered up.)

2. Insert the Phoenix System Disk Update cartridge according to the
instructions accompanying the drive. Cycle it to READY status.

3. The logical unit the system boots off of is ALWAYS known as DSKO:.
The System Disk Update cartridge contains the programs
SYSTEM.tIONE1,42 and SYSTEM.INI[1,4J; therefore the system
recognizes it as a System Disk and tries to boot the system off the
cartridge. Because you are running off the cartridge, the fixed
platters are units DSK1:—DSK5: and the cartridge is DSKD:. (NOTE:
Even after you install the system software onto a fixed platter, if
you reset the computer with the System Disk Update cartridge
mounted, the system tries to boot off the cartridge.)

4. To instalL the system software on the first fixed platter, use the
CPY41O command. This command certifies DSK1: and copies the
contents of the cartridge down onto that fixed disk.

5. You can now remove the cartridge and insert a data pack. The next
time you reset or turn on the system, the system boots off the
fixed disk on which you have instaLled the system software.

NOTE: If you do not want to remove the cartridge from the drive,
but do not want the system to boot off the cartridge, erase file
SYSTEM.MONC1,4J from the cartridge. Now the system cannot
recognize the cartridge as a System Disk and therefore will not
attempt to boot off it.

However, it is most important that you always keep an intact System
Disk cartridge (i.e., it contains recent system software and
SYSTEM.MON and SYSTEM.INI) around so that you can re—instaLl the
system should the fixed disk become damaged.

6. The fixed platters are now logicaL units DSKO:—DSK4: and the
non—System Disk cartridge is DSK5:.

(Changed 30 April 1981)

SOFTWARE NOTICE FOR AM—410 USERS Page 5

3.0 THE CERTIFICATION PROGRAM, CRT41O

The CRT41O program certifies a Phoenix logical unit by reading, writing, and
verifying every block of the disk. It also formats and initializes the
disk.

3.1 Hints and Restrictions

There are several things you should keep in mind before using the
certification program:

1. Only the System Operator may run CRT41O. Log into the System
Operator's account, [1,2J, before using the program.

2. You may ONLY use CRT41O on disks that run under control of the
AM—410 Controller.

3. Run CR1410 on every logical unit of a Phoenix disk before the first
use of that device. Make sure that the logical unit is not
write—protected.

4. A logical unit does not have to be mounted before you certify it;
CRT41O mounts the disk for you.

5. CRT41O writes data in every byte of the logical unit you are
certifying. If there is data on that unit, make sure that you back
it up onto another device before using CRT41O.

6. CRT41O communicates directly with the AM—410 Controller without
going through the Phoenix driver program. Therefore, you MUST NOT

run CRT41O at the same time as any other program that accesses
devices that run under control of the AM—410.

3.2 Sample Use of CRT41O

Below is sample output of a typical disk certification. The next section
discusses the questions that CR1410 asks and the messages that it displays.

(Changed 30 April 1981)

SOFTWARE NOTICE FOR AM—410 USERS Page 6

Begin certification of SrnDO:
Curretit track is: 1

Current track is:

3.3 Using CRT41O

To use CRT41O, enter CR1410 followed by the specification of the logical
unit you want to certify. For example:

.CRT410 SMD5: t

You now see the following message:

CAUTION: This program writes to all blocks.

(If you do not want to continue the certification, you may enter a Control—C
at this point.)

CR1410 now asks you several questions:

(Changed 30 April 1981)

.CRT41O SMDO: @10
CAUTION: This program writes to aLl blocks

Enter maximum acceptable number of bad tracks: 40
?15 bad tracks i
Enter maximum ac
Display current
Current track is: 0
Enter serial number (10 char.' max):

s maximum
ceptable number of bad tracks: 10 f!ii
track? (Y or

PAYROL1.1 RET

fl

?Track 7 did not verify
?Track 8 did not verify

Current track is: 14
Current track is: 15

Current track is: 807

?2 bad tracks
Certification

detected
complete

SOFTWARE NOTICE FOR AM—410 USERS Page 7

1. Enter maximum acceptable number of bad tracks:
Give CR1410 the maximum number of bad tracks that you willaccept on the disk you are certifying, If the number of bad tracksthat CR1410 finds exceeds this value, CR1410 tells you so and thenaborts the certification, returning you to AMOS command level:

?Device has exceeded maximum number of errors

2. Display current track? (V or N):
If you want CR7410 to tell you as it verifies each track,enter a V; otherwise, enter an N. If you answer Y, CR1410 nowdisplays this message:

Current track is: 0

NOTE: Asking CR1410 to display the number of the track it iscurrently verifying greatly increases the length of time it takesto certify a disk surface.
3. Enter serial number (10 char. max):

You may optionally give CR1410 a ten—character alphanumericI.D. for the logical unit you are certifying. CR7410 writes thisidentifier into the BADBLK.SYS file for that logical unit.
After answering the questions above, CR1410 begins to certify the disk. Yousee this message:

Begin certification of Devn:

where Devn: is the device specification you supplied on the CR1410 commandline.

If you asked CR1410 to tell you its track position as it certifies, you nowsee a list of messages that can look something like this:
Current track is: 1

Current track is: 2
Current track is: 3

and so on. When CR1410 encounters a track that does not verify, it tellsyou so. For example:

(Changed 30 April. 1981)

SOFTWARE NOTICE FOR AM—410 USERS
Page 8

?Track 15 did not verify
?Track 16 did not verify

When finished certifying the disk, CRT41O teLLs you how many bad tracks it
found. For exampe:

74 bad tracks detected
Certification complete

3.4 How CR1410 Certifies a Disk

CRT41O folLows these procedures when it certifies a disk:

1. CR1410 creates a file named BADBLK.SYS in account :1,23 on the disk
you are certifying. This tile wilL contain a list of all of the
bad tracks on the disk, If you have specified a serial number,
CR1410 writes that information to this file.

2. CR1410 writes one data pattern in every byte on the first track of
the disk. Then it reads each byte on that track and verifies the
data. (CR1410 checks for CRC errors as well as data verification
errors.)

If any data does not verify, CR1410 places the number of the track
in the BADBLK.SYS file and tells you that the track is bad. For

example:

?Track 35 did not verify

CR1410 writes a total of four data patterns, following the
procedure above for each data pattern.

3. CR1410 now moves on to the next disk track and performs these
operations again, reporting any bad tracks that it finds (and
entering their numbers into the BADBLK.SYS file). CR1410 verifies
every track. When it finishes, CR1410 tells you that it is done
and how many tracks are bad. For example:

?3 bad tracks detected
Certification complete

4. Now CR1410 computes a hash total for the BADBLK.SYS file and stores
it in the file. This value provides a validity check that other
programs (e.g., SADBLK) can use to make sure that the BADBLK.SYS
file is complete and healthy. When AMOS accesses a disk block, it
checks to see if that block occurs on a bad track; if so, AMOS uses
the alternate track assigned to that bad track instead.

(Changed 30 April 1981)

SOFTWARE NOTICE FOR AM—410 USERS Page 9

If you interrupt the CR1410 program by typing a Control—C, you see:

?Certification incomplete

and CRT410 intentionaLly writes a bad hash total to the BADBLK.SYS
file. (A bad hash totaL teLls other programs that may later look
at the file that the data in the file is not complete and is not to
be trusted.)

3.5 CRT41O Error Messages

Below are the error messages you can encounter when using CRT410.

?You must be logged into PPN [1,2] to run CRT41O
Because it writes data into every byte on the disk, CR1410 is a

dangerous program to run. You must be logged in as the System Operator
to certify a disk. Log into the System Operator's account, [1,2J,
before trying to use CR1410.

?15 bad tracks is maximum
You specified a number greater than 15 as the maximum number of

bad disk tracks you would accept on the certified disk. However, the
BADBLK.SYS file cannot handle more than 15 bad disk tracks; so, enter a
number less than 15.

?Track 0 did not verify. (First track must verify.)
The first track of the disk did not verify. CR1410 cannot

continue the certification if the first disk track does not verify, so
it now stops the certification and returns you to AMOS command level.

?Track n did not verify.
CRT41O marked track n in the BADBLK.SYS file as a bad track.

?Device has exceeded maximum number of errors
CRT410 found more bad tracks than the value you specified as the

maximum number of bad tracks that you would accept. CRT41O now aborts
and returns you to AMOS command level.

?SlOfJ data transfer error
An error occurred with the AM—410 controller board. CR1410 aborts

and returns you to AMOS command Level. If you receive this error
several times, you may have hardware problems.

?Nonexistent device
Your device specification on the CRT41I) command line is invalid;

the system believes that the device does not exist. Check your
spelling and try again.

(Changed 30 April 1981)

SO-ETWARE NOTICE FOR AM—410 USERS Page It

(7)
?Certification incomplete

You typed a Control—C to interrupt the disk certification. CRT41O

now intentionaLly writes a bad hash totaL to the BADBLK.SYS fiLe to let
other programs know that the data in the file is incomplete and not to
be trusted.

4.0 THE BADBLK PROGRAM

The BADBLI(program allows you to see the contents of the BADBLK.SYS file
created by the certification program, CR1410. BADBLK also verifies the
BADBLK.SYS hash total. In future releases, BADBLK will allow you to modify
BADBLK.SYS to rebuild a damaged disk.

BAOBLK checks the specified disk to see if it was certified by a pre—4.4
version of CRT41O; if it was, BADBLK displays the number of bad blocks on
the disk. If the disk was certified by a 4.4 version of CR1410, ADBLK
displays the number of bad tracks. (The messages you see will tell you if
BADBLK is displaying the number of bad blocks or tracks.)

NOTE: Although AMOS version 4.4 handLes disks that have been certified via
the "bad block" or the "bad track" method, future releases may not support
the old bad block system. Therefore, you must convert alL Phoenix surfaces
certified by pre—4.4 CRT41O over to the new system by certifying those
surfaces with CRT41O versions 4.4 or later.

4.1 Using BADALK

To use BADBLK, type BADBLK followed by the specification of the device whose
BADBLK.SYS file you want to see. Then type a RETURN. For example:

.BADBLK 5MM:

If BADBLK found the BADBLK..SYS file, it tells you so:

SMD1: BADBLK.SYSC1,2J

BADBLK now tells you the serial number associated with that device and the
number of tracks or blocks marked as bad on that disk. For example:

Serial number: INVENTORY2
Number of bad blocks: 0

If there are any blocks or tracks listed in the BADBLK.SYS file, BADBLK
lists them for you. For example:

(Changed 30 April 1981)

SOFTWARE NOTICE FOR AM—410 USERS Page 11

Number of bad tracks: 3

CAUTION; HASH TOTAL DID NOT VERIFY
The BADBLK.SYS tile contained a bad hash

that the data in that tile is not to be trusted.
files off the logical unit containing that
careful not to overwrite the BADBLK.SYS file on
re—certify the disk.

You may also see several system error messages if your device specification
is invalid. For example:

?Cannot INIT Devn: — device does not exist
The system did not recognize the device specif$cation you gave.

Check your spelling and try agatn.

?Cannot READ Filespec — disk not mounted
The system is unable to read the device

BADBLK command line because it is not mounted. Use
to mount the ci-isk and try again.

5.0 THE DSKANA PROGRAM

you specified on the
the MOUNT command

most part, the new method of handling disk flaws is transparent.
reason, DSKANA is able to treat any disk that was certified with a

later version of CR1410 in the same way that it does a device that
contain a BADI3LK.SYS[1,2] file.

35 36 37

BADBLI(exits and returns you to AMOS command level:

EXIT

NOTE: Track numbers are decimal; block numbers are octal.

4.2 BADBLK Error Messages

You can see the following BADBLK error messages:

?File not found: Devn:BADBLK.SYS
BADBLK was not able to find the BADBLK.SYS file for the disk

specified. Make sure that the device you specified is a Phoenix
and that the disk has been certified (i.e., you've run CRT41O on
device).

you
disk
that

cates
alL

being
Then

total. This mdi
Use COPY to copy

BADSLK.SYS file,
the new disk.

For
For
4.4
does

the
that
or
not

(Changed 30 April 1981)

p

1

SOFTWARE NOTICE FOR AM—410 USERS — INDEX

Index

Page Index—i

Alternate track
AM—410 controller

BADBLI(program
BADBLK.SYSE1,2]
BADBLK.SYSC1,2] hash total
BADBLK.SYS[1,2] verification
Bitmap size

Certification procedure
CPY41O
CRT41O
CRT41O questions

Device table
Disk certification . . -

Disk configuration .

Disk diagnostic tests
Disk identifier
Disk serial number .
Displaying BADBLK.SYS[1,2]

Error messages
BADBLK
CR1410

maximum number of bad tracks
Media flaws
Multiple Phoenix disks

Non—system Device

Phoenix disk

Restrictions

Sample disk certification
SMD41O.DVRE1,63
SMDLOD.PRG[1,41
Switchable system memory
System Disk
SYSTEPI.MONE1,4J

2

1

5

1, 10
1, 8
8

8

3

8

4
1, 5
6

3

1, 5

2

2

7
7 to
10

2

8

11

9

9

1

3

3

1 to 2

(Changed 30 April 1981)

May 1980

DISK LABELING PROCEDURES

ALthough removable disk cartridges provide an extremely convenient and
portable method of backing up and exchanging data, problems sometimes occurin identifying just what information is on a cartridge if that disk packdoes not contain a label on the outside of the pack, or if it is improperlylabeled.

To solve this problem, Alpha Micro has developed a set of software which
allows you to establish and verify a permanent, identifying label on eachdisk. The LABEL program writes data to a disk that serves as identificationfor that disk. Other programs (e.g., MOUItT, XMOUNT.SBR, or your own
assembly language programs) read the disk identification information on thedisk and tell you which disk is currently mounted.

Being able to permanently Label a disk results in several advantages:
1. You may easily determine what disk is mounted, even if

you are using the system from a remote site.

2. Your programs can verify that the correct disk is mounted
before they begin to change data on that disk.

At the current time, the disk labeling system consists of these new and
modified programs:

LABEL Labels a disk by writing identifying data onto Block
Zero of that disk. Also displays a disk's label.

MOUNT Displays the name of the disk that was just mounted or a
List of all mounted disks.

XMOUF4T A BASIC subroutine that your BASIC programs can use, It
returns the contents of the disk identification field so
that your BASIC programs can verify that the correct
disk is mounted.

In future releases, additional programs will make use of the disk label.
This document contains information on the LABEL and MOUNT commands. Also,see the MOUNT and LABEL reference sheets in the AMOS System CommandsReference Manual, (DWM—0O100—49). For information on XMOUNT, refer to
XMOUNT — Basic Subroutine to Mount a Disk, in the "BASIC Programmer'sInformation" section of the AMOS Software Update documentation packet.
The last section of this document describes the exact format of the disklabel, so that your assembly language programs can access the Labelinformation.

DISK.tABELThG PROCEDURES Page 2

1.0 LABEL 0
The LABEL program gives you
information and to display that
Block 0 of the disk, and are
verify that the correct disk has

There are three situatiQns in which

a way to label
information. Disk
used to allow both
been mounted.

you will want to use LABEL:

1. A disk has never been labeled and you want to give
label.

it a

2. A disk has a LabeL
information..

3. A disk has a label and

1.1 Labeling a Disk

and you want to display

you want to change it.

that

To give a disk a label, enter LABEL followed by
logical device that holds the disk; then type a
want to label the disk in logical devic.e DSK5:,

.LABEL DSKS:

the specification of the
RETURN. For example, if you
enter:

I

Now LABEL asks you for the following information:

VoLume Name:
Enter up to 40 characters that describe the disk. The MOUNTprogram displays this field when it gives the list of the mounteddisks on the system. The purpose of this information is primarily togive you a way to identify the contents of the mounted disk.

Volume ID:
Enter up to ten characters as the Volume ID. This field is usedby programs to determine if the proper disk has been mounted. TheXMOUNT subroutine (an assembly language routine callable by your BASICprograms) returns this field. The MOUNT program displays this field(as well as the Volume Name) when it lists the disks mounted on thesystem.

InstaLlation:
Enter the name of your instalLation or company. This field,which may contain up to 30 characters, identifies the site where thedisk was created. This information will be particularly useful if youexchange disks among different installations.

labels are
descriptive
stored in

DISK LABELING PROCEDURES Page 3

System:
Enter the name of the computer system this disk was created on.

This field may be up to 30 characters in length, and is especially
useful when an installation has more than one computer system.

Creator:
The name of the person who created the disk. This field may

contain up to 30 characters.

When you finish entering the requested information, LABEL returns you to
AMOS command level. The disk is now labeled with the information youspecified. The Label also contains the date on which you Labeled the disk.

1.2 Displaying a Disk Label

Once a disk contains a label, you may use the LABEL command to display thatlabel. Just enter LABEL followed by the specification of the disk whoselabel you want to see. Now type a RETURN. For example:

.LABEL DSK3:
Currently labeled as:

Documentation Archives (ARCHIVEO1)
Created on 1—Jan—SO at Alpha Microsystems on System B by Jack Smith
Last access: 5—Apr—80

Volume Name: "C

The creation date is the date the disk was labeled; the date of last accessis the date the disk was last mounted.

After LABEL displays the label information, type a Control—c to return your
terminal to AMOS command level.

1.3 Changing a Disk Label

To change a disk label, enter LABEL followed by the specification of thedisk whose label you want to change. Now type a RETURN. For example:

.LABEL HWK1:
Currently labeled as:

Test Data (TESTDATAO1)
Created on 17—Apr—80 at Computer Products, Inc. on System 1 by Anne B.
Last access: 21—Apr—80

Volume Name: -

DISK LABELING PROCEDURES n---- /

LABEL asks you for the new Labeling information. Answer each question
the new information you want to place in the label. (See Section 1.1,ling a Disk," for information on these fields.) When you enter the Last

ion, LABEL returns your terminal to AMOS command level, and the diskcontains the new information.

1.4 LABEL Error Messages

If you specify a nonexistent device, you see:

?Cannot INIT Devn: — device does not exist

where Devn: is the disk specification you gave. Check your spelling and tryagain. If you still see this message, use the DEVTBL command to see a listof the valid devices on the system.

If the LABEL command line is not in proper format (for example, if you type
LABEL followed by a RETURN), you see:

?Fi Ic specification error

Check the format of your command line and enter it again. Make sure thatyou include the colon after the device specification.

2.0 MOUNTING A LABELED DISK

Whenever you change a floppy disk or a hard disk cartridge (whether labeledor not), you must always use the MOUNT command to inform AMOS that thebitmap in memory for that device is no longer valid. If you do not mount adisk when you change it, AMOS has no way of knowing that it may be using the
wrong bitmap when it writes data to that device; severe damage to the dataon the disk could result. NOTE: Never mount or unmount a disk when otherusers are accessing that disk; you wilL damage the file structure on thedisk by doing so.

You may use MOUNT to mount a disk, unmount a disk, or to display a list ofall mounted disks on the system. NOTE: As of AMOS Release 4.4, you may usethe /W switch to tell MOUNT to wait until the specified device is readybefore mounting the disk. For more information on using MOUNT to mount or
unmount a disk, see the MOUNT reference sheet in the AMOS System Commands
Reference Manual, (DWM—OO100—49).

When MOUNT sucessfully mounts a disk, if that disk has a disk label storedin 8lock 0, you see:

x (y) mounted

Now,
with
"La be
quest
label

rcv .t (

DISK LABELING PROCEDURES Page 5

where "x" is the Volume Name, and "y" is the Volume ID specified when the
disk was labeled. (For more information on these two fields of the disk
label, see Section 1.1, "Labeling a Disk," above.)
For example:

.MOUNT DSK1: @JD
System Disk (5(5001) mounted

If you want to see a list of all disks that are mounted on the system, type
MOUNT followed by a RETURN. For example:

.MOUNT E
Disks mounted:

System Disk (SYSOO1)
Payroll Data (PRDOO1
Payroll Data (PRDOO2
Development Disk (DEVOO1)

following information: device
(For example, the Volume Name of
ts Volume ID is "(5(5001)".)

exact format of the disk Label.
presently used by the disk

will be used by future releases

Size

2 words 125252 052525
40 bytes ASCII text
10 bytes ASCII text
30 bytes ASCII text
30 bytes ASCII text
30 bytes ASCII text
4 bytes System date format
4 bytes System date format
4 bytes System date format

10 bytes ASCII text
4 bytes System date format

10 bytes ASCII text

)

)

DSK1

DSK2:
DSK3:
DSK4:
DSK5: Backup Disk #3 (BCKOO3)
AMSO: Transfer Disk (TRNOO1)

Each line of the display gives the
specification, Volume Name, and Volume ID.
the disk in device DSKO: is "System Disk"; i

3.0 CONTENTS OF THE DISK LABEL

Systems programmers may be interested in the
f4ote that not all of the defined fields are
identification software; these unused fields
of Alpha Micro software.

Field Contents

Header
Volume Name
Volume ID
Creator
Installation
System Name
Creation Date
Access Date
Backup Date #1
Backup Vol. ID #1
Backup Date #2
Backup Vol ID #2

DISK LABELING PROCEDURES Page 6

The fields are used as follows:

Header Used to flea that this disk is labeled. If the
flag words are not correct, certain programs
wiLl ignore the LabeL.

Volume Name An ASCII string that
field is designed
contents of the disk
Jan/March 1980).

describes the disk. This
to be a description of the
(e.g., Archives Disk —

Volume ID A short ASCII string that describes the disk.
This field is used by programs, checking for the
proper disk being mounted (e.g., ARCHV1).

Creator An ASCII string that describes who created this
disk (e.g., John Hoolihan).

Installation An ASCII string that names the site where the
disk was created (e.g., Acme Computers, Inc.).
This is useful when installations interchange
disks.

System Name An ASCII string that gives
particular computer system,
installation, on which the disk
Purchasing).

the name of the
within an

was made (e.g.,

Creation Date

Access Date

The original date on which the disk was
labeled.

The date the disk was last MOUNTed.

Backup Date #1 The date of the
backup). This fi
recent backup.
this time, but

last backup (the "father"
eld gives the date of the most

We do not use this field at
it is reserved for future use.

Backup Volume ID #1 The volume ID field of
most recent backup
exists. This field is
but it is reserved for

the disk ' on which the
(the "father" backup)

not used at this time,
future use.

Backup Date #2 The date of the "backup before last" or
"grandfather" backup. This field is not used
at this time, but is reserved for future use.

Backup Volume ID #2 The volume ID field of the
"grandfather" backup exists.
used at this time, but it
future use.

disk on which the
This field is not
is reserved for

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR

April 1981
Revision A03

This document reflects AMOS versions 4.5 and later

DISK IAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page ii

'Apha Micro', 'AMOS', 'ALphaBASIC', 'AM—lOU',
'AIphaPASCAL', 'ALphaLISP', and 'AIphaSERV'

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA 92714

© 1981 — ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North
Irvine, CA 92714

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page iii

Table of Contents

1 0 NOTE TO THE SYSTEM OPERPTOR 1

1 1 important Note to Phoenix Hard Disk
Drive Users . . 2

1.2 Maintaining a Disk 2

2.0 FORMATTING DISKS 3

2.1 Disk Certification 3
2.2 Disk Formats ;.. 4
2.3 The Disk Formatting Programs 4

3.0 LABELING AND IDENTIFYING A DISK 5

3.1 Labeling the Disk 5
3.2 Identifying a Disk 7

4.0 USING THE SYSACT COMMAND 8

4.1 Initializing a Disk 8
4.2 BuiLding the Disk Account Structure 9

4.2.1 AL locating User Accounts 10
4.2.2 Changing and Deleting User Accounts 11

5.0 DISK DIAGNOSTIC TESTS 12

5.1 REDALL and RNDRED 13
5.2 DIAG2 14
5.3 OSKANA 15

5.3.1 Displaying the DSKANA Option Summary . 15
5.3.2 The DSKANA Default Mode 16
5.3.3 Using the OSKANA List Option 18
5.3.4 Using the DSKANA Errors Only Option .. 19
5.3.5 Specifying an Output File 20

6.0 RECOVERING FROM DISK ERRORS 20

6.1 HandLing Hard and Soft Disk Errors 20
6.1.1 Cleaning Up the Disk 20
6.1.2 Getting Rid of Bad Disk Blocks .. 21

6.2 DSKANA File Errors 23
6.2.1 DSKANA File Error Messages 25

7.0 PACKING THE DISK 26

7.1 When to Pack a Disk 26
7.1.1 Displaying the Bitmap 27

7.2 DSKPAK 27
7.3 COPY (the /PACK Option) 28

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page iv

8.0 DISK BACKUP 28

8.1 The COPY Command 28
8.2 The DSKCPY Command 30

8.2.1 Important Note for Hawk Hard Disk
Drive Users 31

8.2.2 The Hard Disk Multipl.e—Unit Device 32
8.2.3 The Hard Disk Two—unit System Device 33

8.2.3.1 Backing Up the System Disk 33
8.2.3.2 Backing Up the Data Disk 34
8.2.3.3 Restoring the System Disk 35

8.2.4 The FLoppy Disk Multiple—Unit System 35
8.2.5 The Floppy Disk Two—unit System Device ... 36

INDEX

I

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR

1.0 NOTE TO THE SYSTEM OPERATOR

Page 1

This document discusses some of the maintenance procedures that you, as the
System Operator, must perform on the disks used on the system. We've aimed
this discussion at the System Operator (the person in charge of the details
of system administration and maintenance) because we assume that most
general users of your system will not be concerned with disk maintenance,
and because many of the commands we talk about below can be fatal to your
data if used carelessly or without full understanding of command operation.

The next few pages tell you how to: 1. format disks; 2. initialize disks; 3.
label and identify disks; 4. allocate and change user accounts on a disk; 5.
pack a disk; 6. perform disk diagnostic tests; 7. recover from disk errors;
and, 8. perform disk backup.

The System Operator should establish a regular schedule for disk backup and
disk diagnostic tests. For example, an hour every Tuesday and Friday
morning might be set aside for disk diagnostic tests and disk backup. If
you are changing or creating a lot of data or if you are particularly
concerned about the security of your data, you might want to back up your
disks once or twice every day.

Because many of
Operator's job is
time when other
weekends).

these procedures must be done when only the System
accessing the disks, it is wise to schedule them during a
users are off the system (for example, early morning or

NOTE:

Previous
the use
sometimes
make our
conventions:

versions of this document used the term "file record." However,
of the word "record" can cause some confusion because it is
used in other documents to mean several different things. To help

terminology more consistent, we have adopted the following

A physical record
physical grouping of
supported by Alpha
Physical record sizes
device, and may range

is the sector on the disk.
data on the disk. The hard disk
Micro use a physical record
for floppy disk devices vary
from 128 bytes to 512 bytes.

This is the actual,
devices currently
size of 512 bytes.
depending on the

A disk block is the logical grouping of data on the disk that AMOS
uses when reading from and writing to the disk. AMOS always transfers
data one disk block at a time. A disk block may be made up of one or
more physical records. Each disk block has a number associated with it
that AMOS uses to reference that block. Disk blocks (except in the
special case of devices that use the 1MG device driver) are always 512
bytes long.

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 2

A logical record is the logical grouping of data on the disk as
structured by your programs, and has little to do with the physical
records or disk blocks on the disk, except that a logicaL record may not
be larger than a disk bLock. (For example, a BASIC program might set up
a data file in which every logicaL record is just large enough to
contain customer addresses and names—— 60 bytes, for instance.)

1.1 Important Note to Phoenix Hard Disk Drive Users

As of AMOS Version 4.4, bad block handling has changed for devices that run
under control of the AM—41O (e.g., the Phoenix hard disk drive). Make sure
that you read the document AMOS Version 4.4 Method of Handling Bad BLocks

in
the "System Operator's Information" section of the AMOS Software Update

Documentation Packet before you use DSKCPY, CRT41O, or DSKANA on a Phoenix
disk, if that disk was certified by a pre—4.4 version of CRT41O.

1.2 Maintaining a Disk

There are four stages in the Life of a disk:

Next you may decide
identifying Label to
LABEL, you will always
hard disk cartridge or

initial use. Fi
IMPORTANT NOTE:

controL of the
RT41O command to
Users in the

AMOS Software

rst you
Do not
AM—410

certify
"System
Update

Finally, you will need to establish the account structure on the
disk by allocating user accounts.

2. After
files
time yo
ones.
arises.

you have set the disk up, you use it. That
to the disk as well as create new fiLes on
u may allocate additional user accounts and

You may also use LABEL to re—label the

is, you transfer
it. During this
change existing
disk as the need

3. You maintain and protect the data on the disk by performing
frequent disk backups and by running diagnostic tests that look for
device and media oroblems. If diagnostic tests indicate problems,
you may have to reconstruct the data on a damaged disk.

4. After a disk has been in use for some time, you may want to recycle
the disk by initializing it (or re—certifying it in the case of

(Changed 30 April 1981)

I

1. When it is brand new, you set a disk up for
format the disk; then you initialize it.
format or initialize disks that run under
Hard Disk Controller. Instead, use the C
the disk. See Software Notice for AM—410
Operator's Information" section of the
Documentation Packet.

to
the
put
at

use
disk
a ph

loppy

the LABEL
(Of cours

ysical label
diskette to

program to write an
e, even if you don't use

on the outside of a

identify that disk.)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 3

disks that run under ccintrol of the AM—410); this clears all data
from the disk. Before re—using a disk, however, run some disk
diagnostic tests on it to be sure that the disk media is healthy.
After initializing or re—certifying the disk, the old account
structure is gone, so allocate new user accounts.

2.0 FORMATTING DISKS

A new floppy or hard disk must be formatted and initialized (or certified)
before you can write data to that disk. Formatting a disk sets the disk up
so that it is organized into a specific pattern; it is then ready to receive
data written in that same pattern. Whenever the system performs an action
on a file, it knows the format it must use to read or write that file
because of the device specification you incLude in the specification of the
file. For example:

.COPY DSK1 :AMSO:NEWFIL.TXT fEED

tells the system to read the file NEWFIL.TXT in AMS format (since you
specified device AMSO:), and copy it to Drive One of the System Device (in
whatever format is used by OSK1:). Disks to be used in device AMSO: must be
formatted in MIS format; disks to be used in device DSK1: must be formatted
in whatever format is used by the System Device.

You only need to format disks that have never been formatted before or whose
format you wish to change (e.g., to change a floppy disk from STD to AMS
format). New floppy disks usually come preformatted in STD format. You
should NOT format these disks if you plan to use them in STD format. (When
you format a disk in a disk drive, that disk may take on certain
characteristics of that drive. So, when you buy a disk already formatted,
you should refrain from formatting the disk if you can; this helps to ensure
that you can read that disk on different disk drives.)

ICOM floppy disk users may not format disks because the ICOM disk controller
does not support disk formatting. ICOM floppy disk users must therefore buy
their disks preformatted.

NOTE: Formatting a disk destroys all data on that disk.

2.1 Disk Certification

Before we continue with our discussion of disk formatting, it is important
to mention again this important warning: if a disk runs under control of the
AM—410 (e.g., a Phoenix disk), you must not format or initialize that
disk. Instead, you must certify it via the CRT41O command. CRT41O also

formats

and initializes the disk. See Software Notice for AM—410 Users in
the "System Operator's Information" section of the AMOS Software Update
Documentation Packet.

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 4

2 2 Disk Formats

Alpha Micro supports severaL different disk formats. For information on the
disk formats available, and for information on converting floppy System
Devices from one format to another, refer to the dcicuments titled Disk

Drivers

and Formats, ConfigUring FLoppy—Disk Drivers, and Defining
Non—System Disk Devices, in the "System Operator's Information" section of
the AMOS Software Update Documentation Packet.

2.3 The Disk Formatting Programs

After you have decided on the format you want your disks to use, you must
use the proper formatting program to format those disks. The major disk
formatting programs used by Alpha Micro are:

FMTSOO The formatting program for disk devices used under the
control of the AM—500 Hard Disk Controller (e.g., the
CDC Hawk hard disk).

FMT200 The formatting program for disk devices used under the
control of the AM—200 Floppy Disk Controller (e.g.,
Persci and Wangco floppy disks). Formats single
sided, single density floppy disks.

FMT21O The formatting program for disk devices used under the
control of the AM—210 Double Density Floppy Disk
Controller (e.g., Wangco disks). Formats single— and
double—sided, and single— and double—density floppy
diskettes.

FMT400 The formatting program for disk devices used under the
control of the AM—400 Hard Disk Interface (e.g.,
Century Data Trident disks). Formats each logical
unit as a separate device.

To use one of the formatting programs listed above, enter the name of the
appropriate formatting program followed by the specification of the device
holding the disk you want to format. Your device specification tells the
formatting program which disk driver program you are going to be using on
the disks in that device, and therefore which disk format to use. (For
information on configuring a floppy disk driver for your particular
combination of disk controller, disk drive and disk format, see Configuring

FLoppy
Disk Drivers in the "System Operator's Information" section of the

AMOS Software Update Documentation Packet.) Suppose that you are using a
Persci drive to read and write MIS—format floppy disks. To format a disk in
Drive Zero in AMS format, enter:

FMT200 AMSO: ThID

t

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR
Page 5

The formatting program now says:

BEGIN FORMATTING

When the program has finished, you see:

EXIT

The formatting programs FMT200, FMT21O, FMT400, and FMT500 all work in thesame way as our example above. FMT500 requires that you mount the diskbefore you format it (use the MOUNT command); the other formatting programsdo not require that the disk be mounted.

IMPORTANT

NOTE: No other job may run on the system while you format a disk,so make sure all users are off the system before you use one of theformatting programs listed above.

3.0 LABELING AND IDENTIFYING A DISK

Of course you will always place a physical label on the outside of a disk

pack

or floppy diskette to identify that disk. You may also write a labelto the disk itself. The LABEL program allows you both to establish anddisplay a disk Label.

The disk label helps you to identify the disk. Another method of checkingthe contents of the disk is to create a hash total for that disk. (A hashtotal is a number that uniquely identifies a group of data.) The HASHERprogram allows you to generate a hash total for a specific disk. The hashtotals for two disks will only be the same if the contents of those disksare identical.

3.1 LabeLing the Disk

Labeling a disk results in two advantages: you can determine what disk ismounted, even if you are at a remote site, and your programs can check to besure that the proper disk is mounted before changing data on that disk.
To Label a disk, enter LABEL followed by the specification of the devicethat contains the disk you want to label. For example:

.LABEL D5K3: @ffJ

Now LABEL asks you for the following information:

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 6

Volume Name:
Enter up to 40 characters. This field describes the disk (e.g.,

Payroll Data from Jan—March 1980). The MOUNT program displays this
information when it mounts the labeled disk.

Volume ID:
Enter up to ten characters as the Volume 1.0. This fieLd is used

by programs to determine if the proper disk has been mounted. (MOUNT

displays this field, too, when it mounts the disk.)

Installation:
Enter the name of your installation or company. This field may

contain up to 30 characters, and identifies the site where the disk
was created (e.g., CompuWord, Inc.).

System:
Enter the name of the computer system this disk was created on.

This field may be up to 30 characters in length.

Creator:
Enter the name of the person who created the disk. This fieLd may

contain up to 30 characters.

When you finish entering the required information, LABEL returns you to AMOS

command leveL.

Once a disk contains a label, you can use LABEL to dispLay that information.
Type LABEL followed by the specification of the device that contains the disk
whose label you want to see; then type a RETURN. For example:

.LABEL HWK1:@

Since the disk already has a label, LABEL displays that information for you.
For example:

Currently labeled as:

Documentation Archives (ARCHIVEO1)
Created on 12—APR—80 at Beachlogs, Inc. on System C by J.K.Milne
Last access: 8—JUN—80

Volume Name:

Notice that LABEL incorporates into the disk label the date the disk was

labeled (creation date) and the date the disk was last mounted ("last access").
Now LABEL begins to ask you for the various label fields. If you do not want
to change any of the information in the label, type a Control—C. Otherwise,
you may answer the questions as in the paragraphs above.

For more information on LABEL, refer to Disk Labeling Procedures in the
"System Operator's Information" section of the AMOS Software Update
Documentation packet.

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR 'Page7

3.2 Identifying a Disk

The FlASHER program allows you to generate a hash total for a specified disk.This gives you a number that you can compare against the hash total of anotherdisk to see if the disks contain identical data. You will probably find HASHERto be particularly helpful when you are making multiple copies of a disk viaDSKCPY. If the hash total of the master disk does not match the hash totals ofthe disks copied to, the copies are not perfect.
• To use HASHER, enter HASHER followed by a RETURN:

.HASHER

When the system asks for the input drive, enter the name of the disk for whichyou want hash totals:

Input drive: DSK2: ED

Now you see:

[Hashing nnnn blocks]

where nnnn is the number of blocks on the specified disk.
When HASHER is finished, you see:

Hash is: nnn

where nnn is the hash total for the specified disk.
NOTE TO HAWK HARD DISK USERS: When you use DSKCPY on a Hawk disk, DSKCPY
alLows you to use the special fast copy mode or the slower /0 mode. (If youuse the DSKCPY fast copy mode for Hawk devices, no other user may run on thesystem while the copy is taking place; the /0 mode, while slower, allows usersto continue running on the system.) DSKCPY optionally generates a hash totalfor a disk, but it generates the hash total differently depending on whetheryou are using the fast copy mode or the /0 mode. That means that the hashtotaL differs for the same disk, depending on the mode in which the disk copywas made.

To allow you to use HASHER to generate a disk hash total that is compatiblewith one generated by DSKCPY, HASHER also has a Hawk fast copy and a /0 mode.Just as with DSKCPY, HASHER does not allow you to run other users on the systemif you use the default Hawk fast copy mode. You see:

%All other users will be suspended while. HAWK hash is running.
Hit return to continue or control—C to abort:

If no other users are on the system, you may type a RETURN. If you want HASHERto generate a hash total in the same way that DSKCPY does when it uses the /0mode, use the HASHER /0 switch. For example:

.HASHER /0E

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 8

You may use HASHER with the /0 switch while other users are running on the
system. For more information on I-lASHER, see the HASHER reference sheet in the
AMOS System Commands Reference Manual, (DWM—O0100—49).

4.0 USING THE SYSACT COMMAND

The SYSACT command allows you to perform several disk maintenance functions.
You may use SYSACT to: 1. initialize (that is, clear) a disk; 2. allocate user
accounts on a disk; 3. change account passwords; 4. delete user accounts; and,5. display a List of accounts (and passwords) on a disk.

4.1 Initializing a Disk

After you have formatted a disk, you must initialize it if you are going to
build an account structure on that disk. If you are simply going to transfer a
literal image of another disk onto the newly formatted disk (via DSKCPY) you donot need to initialize it. (Remember that if you are using a disk that runs
under control of the AM—410, you must not format or initialize it.)
Initializing a disk writes zeros in the Master File Directory and the bitmap.I-f you wish to clear the data on a disk, you do not need to reformat it (unless
you want to change the format that it uses); just re—initialize it.
NOTE: Once you have initialized a disk, there is no way to access the data on
that disk—— you have, in effect, erased the disk.

To initialize a disk:

1. If the disk drive you are using allows it, write—protect all devicesthat yoU are not going to initialize.

2. Log into the System Operator's account:

.LOG [1,2JED

3. Mount the disk you want to initialize. Type MOUNT followed by thespecification of the device holding the disk. Type a RETURN. For
example:

.MOUNT AMS1:

4. Type SYSACT followed by the specification of the device that holds the
disk you want to initialize:

.SYSACT AMS1: EflJ

You now see the SYSACT prompt, *.

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 9

5. Be very sure that you have specified the correct device. To make sure
that the disk is empty, use the SYSACT L command; type an L followed
by a RETURN:

*L
If the disk has already been initialized and is in use, you see a list
of PPNs and passwords.

If the device you specified does not hold the disk you want to
initialize, type an E and a RETURN to exit SYSACT and return to AMOS
command level.

6. If you have specified the correct device, type an I followed by a
RETURN:

7. SYSACT now tells you:

Initializing the disk clears all files — enter V to confirm:

SYSACT initializes the disk only if you enter a V followed by a
RETURN. When it has finished, SYSACT displays its prompt symbol.

8. To exit SYSACT and return to AMOS command level, type an E followed by
a RETURN:

4.2 Building the Disk Account Structure

After you have initialized a disk, that disk is now ready to receive data. Youcan now begin to build accounts and files on the disk. Use SYSACT to allocateuser accounts.

All files on a disk are associated with an account on that disk. Usually, youmay not write any files to the disk until a user account exists to hold thosefiles. (However, you can copy files onto an initialized disk that has noaccount structure if you copy from the System Operator's account, E1,23. Inthis case, the COPY command aLlocates the proper accounts for you on the newdisk as it copies over the files.)

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 10

You can only access a file if you: '1. log into the 'account which contains thefile; or, 2. specify the account the file belongs to within that filetsspecification.

Each account on the disk has a directory associated with it (called a User FileDirectory or UED) that lists the files in that account. Every disk has oneMaster File Directory (called the MFD) that maintains a list of all UFDs onthat disk. When you first initialize a disk, SYSACT creates the MFD on thedisk, but no UFDs exist. As you use SYSACT to allocate user accounts, SYSACTcreates the IJEDs for those accounts.

4.2.1 Allocating User Accounts

1. LOG into the System Operator's account:

.LOG [1,2] ED

2. Mount the disk you want to use the SYSACT command on.

.MOUNT DSK1: @j

3. Type SYSACT followed by the specification of the device holding thedisk you want to allocate user accounts on. Then type a RETURN.

I.SYSACT OSK1:

You now see the SYSACT prompt, *.

4. To see a list of the SYSACT commands you can use, type an H followed
by a RETURN:

*H
5. To allocate an account, type an A followed by a space and the project

number and programmer number of the account you want to allocate.(Separate the numbers with a comma.) These numbers must be octal, andmust not be greater than 377. For example, suppose you want toallocate the user account DSK1:[100,1]:

*A 1O0,1j

Now SYSACT asks you if you want to assign a password to that account:
PASSWORD:

You may enter a password of six characters or less. If you enter justa RETURN, SYSACT assigns no password to the account.

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Paae 11

6. If you want to allocate another account, use the A command again.
Follow the procedure above until you have added all accounts that youwish to allocate.

7. To exit from SYSACT and return to the monitor, enter an E after the
prompt; then type a RETURN:

*E
You may not create more than 63 user accounts on a single disk; that is the
maximum number of entries in the Master File Directory.

4.2.2 Changing and Deleting User Accounts

Once you have created user accounts on a disk, you can begin to create andtransfer files on that disk. At any time you may change or delete user
accounts by using the SYSACT command.

NOTE: Always erase any files in an account before deleting it. SYSACT won'tlet you delete an account if there are files in that account.
1. Log into the System Operator's account:

.LOG [1,23

2. Mount the disk on which you want to use SYSACT:

.MOUNT AMS1:

3. Type SYSACT followed by the specification of the device that contains
the disk whose accounts you want to change or delete. Type a RETURN:

.SYSACT AMS1:

Now you see the SYSACT prompt, *.

4. If you want to see a list of all accounts already allocated on that
disk, type an L followed by a RETURN.

5. To change the password of an account:

a. Enter a C followed by a space and the project—programmer number ofthe account whose password you want to change. For example, to
change the password of account E11O,63:

*C 110,6J
PASSWORD; MILO ED

The new password for account [110,63 ts now MILO.

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 12

b. To remove a password entirely from the account, enter just a
RETURN:

*C 11O,6
PASSWORD:

6. To delete a user account, enter a D followed by a space and the
project—programmer number of the account you want to delete:

*D 11O,6
7. To exit from SYSACT, type an E followed by a RETURN:

5.0 DISK DIAGNOSTIC TESTS

There are a number of diagnostic tests you can run to check your disk media,the disk controller and the physical device itself. (NOTE: As of AMOS Version4.4, you may use any of the disk diagnostic programs below on a disk thatruns under control of the AM—410.)

Before running any of the tests that we discuss below, it is a good idea to usethe SET DSKERR command:

.SET DSKERR

If you do not use SET DSKERR, the system reports only hard errors. Once youhave SET DSKERR, the system reports any soft errors that occur, and tells youat what disk location the error occurred. (NOTE: The system makes an exceptionfor hard disks used with the AM—500 Hard Disk Controller. Even if you use SETDSKERR, the system reports only hard errors for such devices. However, usingSET DSKERR does tell the system to report the disk location at which the harderror occurred.)

REMEMBER:
SET DSKERR only affects error reporting for the job that used theSET command.

A soft error is a read—error. When a soft error occurs, the system has toretry readina the data in a specific disk location. The system does not reportsoft errors unless you use SET DSKERR. When a set number of soft errors haveoccurred at the same disk location (usually eight), the system reports a harderror. An occasional soft error is not in itself an indication of seriousproblems, but frequent soft errors may indicate maladjustments in the physicaldevice or disk controller, or probLems with the disk media itself. Theparticular message the system uses to report a soft error depends upon the typeof device; check with Appendix A of the AMOS User's Guide, (DWM—OO100—35),for a list of soft error messages. For example, if the system had to retryreading a disk block on a floppy disk drive five times, you might see somethinglike this:

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 13

CRC Error — AMS1: BLock 145
CRC Error — AMS1: Block 145
CRC Error — AMSI: Block 145
CRC Error — AMS1: BLock 145
CRC Error — AMS1: Block 145

A hard error occurs when the system has repeatedly tried to read the same disk
location, but has failed to do so. A hard error is a serious matter, since it
indicates that the system has given up trying to read the disk block affected.

If any of the disk diagnostic tests are not able to complete an analysis
because of a hard error, they tell, you so:

?Cannot READ Filespec — device error

If you have used the SET DSKERR command, the system tells you where on the disk
the hard error occurred. For exampLe:

AM500 ERROR CODE 4 FOR DRIVE 1 BLOCK 12 (CYLINDER 0 HEAD 0 SECTOR 12)

To see what the error codes for a specific disk drive mean, consult the
hardware documentation that accompanied that drive. (For example, the error
message above occurred on a CDC Hawk hard disk running under control of the
AM—SOO Hard Disk Controller. For that specific disk drive, an error 4 is a CRC
Error—— a Cyclic Redundancy Check error.)

For information on recovering from disk errors reported by the diagnostic
tests, refer to Section 6.0, "Recovering From Disk Errors."

5.1 REDALL and RNDRED

Both REDALL and RNDRED perform read tests on a specified hard or floppy disk.
REDALL reads all disk blocks (or the number you specify) beginning with the
first block on the disk. RNDRED performs random—read tests.

Neither REDALL nor RNDRED alter the data on your disk; they merely read the
data and report any read errors that occur.

To use REDALL:

1. Enter REDALL followed by the specification of the device you want to
read. Type a RETURN.

.REDALL DSK1:

The command above tells REDALL to read all blocks on the specified
disk.

2. If you don't want REDALL to read all blocks on the disk, follow the
disk specification with the number of blocks you want read:

.REDALL DSK2:10OE

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 14 I(Do not put a space between the device specification and the number of
blocks.) The command above tells REDALL to reed the first 100 blocks
on DSK2:.

3. PEDALL now tells you the number of blocks it is reading:

.REDALL DSK3:
• Reading 9696 blocks

EXIT

4. REDALL exits when it finishes reading the blocks. If any errors
occurred, REDALL tells you so by displaying the appropriate error
message on the screen.

To use RNDRED:

1. Enter RNDRED followed by the specification of the device you want to
test. Type a RETURN:

.RNDRED AMS1: tED

RNDRED now randomly selects a disk track and performs a seek and read
operation on a random block of that track. RNDRED continues on,
selecting and reading disk locations at random. You see nothing on
the screen unLess RNDRED finds an error.

2. When you wish to exit RNDRED, type a Control—C; otherwise, RNDRED
continues until you reset the system.

RNDRED and REDALL can display the usual system error messages that result from
an invalid device specification. For example:

.RNDRED DSK2: E
TCannot READ DSK2: — device not mounted

.REDALL ASM2:2O0
TCannot READ ASM2: — device does not exist

5.2 DIAG2

DIAG2 tests floppy disks by performing read/write tests. It does not verity
write operations and does not destroy the data on your diskette.

To use DIAG2:

1. Enter DIAG2 followed by the specification of the device you want totest. Type a RETURN:

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 15

.DIAG2 SIDO:

2. DIAG2 waits until you are ready. Then it proceeds with the test:

Hit return when ready:
Test 1 — track 0 read/write
Test 2 — track 76 read/write
Test 3 — random seek—verify 500 times
Test 4 — speed seek tracks 0 and 76 10 times
EXIT

If any errors occur, D1A62 displays the appropriate error messages. If you
give DIAG2 an invalid device specification, you can also see standard system
error messages (e.g., — device does not exist).

5.3 DSKANA

Use of the DSKANA command is a very important part of your disk maintenance
'routine. DSKANA analyzes the data on a specified disk and rewrites the
bitmap. DSKANA also reports lost and mislinked disk blocks, inconsistent
block counts, and other file errors. Use DSKANA frequently on every disk on
the system. (You might make it a practice to use DSKANA on every disk just
before you back it up.)

NOTE:

NEVER use DSKANA while other users are accessing the specified disk;
to do so may damage the bitmap and the files on the disk. Make sure
that the disk you are analyzing is write—enabled; DSKANA must be able
to rewrite the bitmap out to the disk. Before you use DSKANA, you
must log into account [1,2].

5.3.1 Displaying the DSKANA Option Summary

DSKANA operates in several different modes. For example, the default mode
tells DSKANA to display a list of PPNs as OSKANA analyzes the disk accounts
and then to give the final disk analysis messages that report the results of
the analysis. If you would like more information (such as a display of all
disk blocks and files on the disk, including the blocks and files in whichfile errors (if any) occurred), use the List (IL) option. If you want just
a List of the disk blocks and files in which file errors (if any) occurred,
use the Errors only (/E) option. If you want to send the DSKANA display to
a file, specify an output file.

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 16

If you become confused about the DSKANA options, enter DSKANA followed by a

RETURN:

.DSKANA RET

DSKANA displays a summary of the modes and options available to you.

5.3.2 The DSKANA Default Mode

Log into [1,2]. Now, enter DSKANA followed by the specification of the
device that contains the disk you want to anaLyze. Then type a RETURN. For
example:

.DSKANA DSK1:

You now see:

[Begin analysis of Devn]

where Devn is the device you specified. If you are not using DSKANA on a
device that runs under the control of the AM—410 hard disk controller, you
see nothing more for some minutes, except for a list of PPNs as DSKANA
proceeds through the accounts on the disk. Then you see some messages that
tell you the results of the analysis. For example:

.DSKANA HWK1: EE
TBegin analysis of HWK1J

[1,2]
[1,4J
[1 0,6]

[110,1]
[300, 20]
[The following blocks were marked in use but not in a file]

1767 1772 2562 3456 6265 10270 11555 11567
11661 12272 12303

[The following blocks were in a file but not marked in use]

[Rewriting BITMAP]

no file errors

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 17

Below we discuss the messages that you see at the end of the disk analysis:

1. [The folLowing blocks were marked in use but not in a fiLe]

It is quite likeLy that numbers wiLl appear beneath this
message; if they do, it is nothing to worry about. These are the
addresses of disk blocks that the system has previously marked •as
being in use during intermediate operations. In tact, one reason
to run DSKANA frequently is that it reclaims these temporarily
aLlocated blocks so that they can be used by files.

2. [The following bLocks were in a tile but not marked in use]

A list of numbers under this message is an indication of
problems in the disk tile structure. Somehow the block linking
structure of the disk has gone astray. If you are using a disk
that runs under control of the AM—410 and that was certified via a

pre—4.4 version of CRT41O, this message can also indicate that a
block marked as bad in the BADBLK.SYS file was not marked in use in
the bitmap. (The pre—4.4 version of CRT41O marks all bad blocks in
use in the bitmap.) You must take immediate steps to restore the
integrity of the data on your disk. (See Section 6.0, "Recovering
From Disk Errors.")

3. [Rewriting BITMAP)

After performing its disk analysis, DSKANA always rewrites the
bitmap so that it reflects the true block allocation on the disk.
Before it reconstructs the bitmap, DSKANA compares the bitmap hash
total with the total stored in the bitmap itself. If the two do
not agree, DKSANA tells you so:

[BITMAP on disk had a bad hash total]

(A hash total is a computed value used to check the integrity àf a

group of data.) This message can be an indication of read/write
errors, but is not necessarily anything to worry about. It would
be a good idea to use the SET DSKERR command so that you will be
made aware of any soft disk errors that occur in the future. If
this message occurs more than once in a great while as you use
DSKANA, you may have a hardware problem.

4. no file errors

If you see the message above, you know that DSKANA has
completed the disk analysis, and that the file structure on the
disk is intact.

If the message instead says something like:

5 file errors

you have a serious, problem. The file structure on the disk is in
error, and you are going to have problems in recovering the data on
the disk. For information on coping with this problem, see Section

(Changed 30 April 1981)

¼

6.2, "DSKANA
to run DSKANA
where on the
/E options
exactly what

File Errors" The fi
again with the IL or

disk the file errors
if you are to see the
is wrong with the fi

rst thing you wilL have to do is
IE switch, so that you can see

occurred. You must use the IL or
file error messages that indicate

le structure on the disk.

NOTE TO PHOENIX DRIVE USERS:

If you are using a device that runs under the control of the AM—41O,
before DSKANA begins its analysis, it looks for the file BADBLK.SYSE1,2J
on the disk. This file contains a list of any bad blocks or tracks on
that disk. If the disk was certifed by an AMOS 4.4 or later version of
CRT41O, DSKANA ignores theBADBLK.SYS tile and analyzes the disk in the
same way that it analyzes any other disk.

If the disk was certified by a pre—4.4 version of
take into account the- information in BADBLK.SYS
the hash total of BADBLK.SYS. If the hash total

[BADBLK.sys contains a bad hash code]

CRT41O, DSKANA must
First, CRT41O checks

is bad, you see:

You then know that the original certification was not
or that the file was damaged in some way. If
anything else is wrong with the disk, let the disk
Or, you may exit DSKANA by typing a Control—c.
should use COPY to copy all files off the disk, since
information in BADBLK.SYS that is of doubtful
re—certify the disk.

allowed to finish
you want to see if

analysis continue.
In either case, you

DSKANA is using
integrity. Then

If the BADBLK.SYS hash total was OK, and if you are using the IL switch
(see below), DSKANA now prints the numbers of any bad blocks. For
example:

[bad disk blocks]
334 335 2035

Now DSKANA continues on •with the disk analysis, displaying a list of
PPNs as it analyzes the disk accounts.

5.3.3 Using the DSKANA List Option

If you want to see more information on how DSKANA is proceeding with its
analysis of the disk besides just the PPNs of the accounts it is analyzing,
select the List option by including the IL switch at the end of the commandline. For example:

.DSKANA AMS1;/L

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 18

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 19

The analysis proceeds as in the example above, but now you
disk address of the account, and 2. a list of all files in
with the disk addresses used by the bLocks in those files.

For example, you might see the following information for a small account:

3444 3445 3446 3447 3450
3607 3610 3611 3614 3615

The account [200,1] has three files: INDEX.HLP, GLOSRY.TXT, and HEADER.TXT.
The directory for the account appears at disk address 6627 and takes up only
one disk block. INDEX.HLP takes up one disk block (11430). GLOSRY.TXT
takes up twelve disk blocks. HEADER.TXT takes up two disk blocks (4130 and
4632).

If a file error is on the disk, you see a fiLe error message in the
appropriate spot in the DSKANA display. For example:

[Begin analysis of DSK3:J

[1,4]
Directory 143
ME BAS 144

354 712 1126
145 146 147

4010
150

Block 0 — block reserved for system use only in DSK3:ME.BAS[1,4J

(For a list of the file error message, see Section 6.2.1, "DSKANA File Error
Messages.")

5.3.4 Using the DSKANA Errors Only Option

If you want to see a list of only the disk blocks and files in which errors
occurred, use the /E option. For example:

.DSKANA HWK1:/E

The display you see looks just like the one you wou
no switches at all, except that if DSKANA finds
disk block and file in which the error occurred. For example:

.DSKANA 05K3:/E
[Begin analysis of DSK3J

[20,1]
[30,4]
Block
[30,5]

[200,1]
Directory 6627
INDEX HLP 11430
GLOSRY TXT

also see: 1. the
the account along

HEADER TXT 4130 4632

3451 3452

Id see if you were using
a file error, you see the

731 — Block used in previous file in DSK3:GLIDX.RUN[30,4J

(Changed 30 April 1981)

.DSICANA DSKO:ERRORS.LST=DSK1 :/L RET

If the sped
analysis.
the file or
the current

tied file already exists, DSKANA deletes it before beginning the
When DSKANA is finished, you may use the TYPE command to look at
you may use the PRINT command to print it. DSKANA always writes
date into the file as the first line of that file. For example:

Disk analysis list file -on 7/12/80

6.0 RECOVERING FROM DISK ERRORS

Disk errors can come to your attention in one of two ways: 1

the system (e.g., one of the disk diagnostic programs) can
hard error on the disk; or 2. DSKANA can report file errors
the blocks on the disk are incorrectly Linked).

A program on
report a soft or
(indicating that

In either case, you must immediately do what you can to restore the
integrity of the data on the disk. Remember: the procedures beLow are aimed
at effecting a partial recovery of your data. Once the linking structure of
your disk or the disk media itself goes wrong, retrieving the data on that
disk is difficuLt. The most effective measure is a preventive one: that is,
run DSKANA regularly, so that if trouble does occur, you catch it before it
has done major damage to your data. Make frequent backups so that you can
easily restore damaged data.

6.1 Handling Hard and Soft Disk Errors

If the system has trouble reading a disk Location (a soft error), it retries
that read operation eight times before it gives up and declares that disk
block to be unreadable. If you do not have the SET DSKERR option in effect,
the system does not report these retries; instead, after eight soft errors
occur, the system reports a hard error.

If you begin to see soft errors when reading a particular disk, it is a good
idea to follow the disk cleanup procedures below before the soft errors can
develop into hard errors.

6.1.1 Cleaning Up the Disk

If you have made no changes
was made, all you have to doit (using the appropriate
Formatting Programs") and in
Disk"). Then use the REDALL
make sure that the disk is

(Changed 30 April 1981)

to the files on the disk since your last backup
at this point is clear the disk by formatting
formatting program—— see Section 2.3, "The Disk

itializing it (see Section 4.1, "Initializing a

program to read the freshly initialized disk to
OK. If the disk media seems to be healthy, you

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 20

5.3.5 Specifying an Output File

You may tell DSKANA to send its display
output file on the DSKANA command line.

to a disk file by specifying an
For example:

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 21

can copy your backup onto the empty disk. Remember, however, that in the
case of disks which run under the control of the AM—410, you may NOT formator initialize the disk. Instead, you must re—certify the disk with CRT41O.

If you have changed some files since your Last backup, you must attempt to
save the data on the damaged disk. If the system can still read the disk
blocks (that is, if you have soft rather than hard errors), use the COPY
command to copy all files over to a good disk. (Use the REDALL program to
make sure that the output disk is good before copying over to it.)
If you are dealing with a hard error, the system is not able to read atleast one of the disk blocks. Use the SET DSKERR command. Then run REDALLto try to read the disk. REDALL then tells you which disk blocks are
unreadable. Write those bad bloélc numbers down.

Now there are a couple of things you can try. You may be able to fix the
hard error by simply recomputing the block CRC (Cyclic Redundancy Check).
Use the DSKDDT program to do so:

1. Enter DSKDDT foLlowed by the specification of the questionable
logical device. Then type the number of the disk block you want to
check. Hit RETURN. For example, to check block #20 on DSK1:,
enter:

DSKDDT DSK1 :20 RET

2. DSKDDT loads the specified block into memory. Now type an E
followed by a RETURN (the DSKDDT Exit command):

DSKDDT now writes the block back out to the disk, recomputing the
CRC in the process.

3. Do this for all bad disk blocks on the disk.

4. Now, use REDALL on the disk again. With any luck, the disk is now
healthy again. NOTE: This procedure does not ensure that your data
is intact. (Fixing the CRC error may actually cause some data in
the block to be Lost; however, correcting the CRC does allow the
system to read the block.) You may want to dump the restored block
with the DUMP BLOCK command to see if you need to modify the datain it.

6.1.2 Getting Rid of Bad Disk Blocks

If using DSKDDT did not fix the hard errors on the disk, you must take morestringent measures and get rid of the bad blocks. To find out what files
the bad blocks belong to, use DSKANA with the IL or /E options. DSKANA
exits when it finds the first bad block, but at least it tells you which
file contains that first bad block. For example, if block 12 is bad in the

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 22

file VARSET.BAS, the DSKANA display for that file might look something likethis

VARSET GAS 5 6 7 10 12 AM500 ERROR CODE 4
FOR DRIVE 1 BLOCK 12 (CYLINDER 0 HEAD 0 SECTOR 12)

Keep track of the files in which the bad blocks appear. You can use theDSKFIL command to check an individual file for a hard error.
Using DSKCPY to copy the damaged disk to another disk won't solve the
problem—— DSKCPY exits and returns you to AMOS command level when itencounters a hard error.

Simply erasing the bad files will not help either. If you erase a file thatcontains a bad block and then run DSKANA again, DSKANA frees up the badblock so that the system can allocate it to another file.
The only solution is to erase the bad files and then to use the COPY commandto copy the good files over to another disk.

1. Make sure that the disk you are copying to has no hard errors.(Use the REDALL program or the DSKANA program.)

2. Erase the bad files by using the ERASE command. (Be very carefulnot to run DSKANA again on the bad disk after this point, or thebad blocks will be freed again.)

3. Log into the System Operator's account and copy the good files onthe disk over to the backup disk:

.LOG [1,2]

.COPY AMS2:AMS1:[] ED

The COPY command above copies all accounts on AMS1: over to AMS2:.It two files exist on APIS1: and A.MS2: with the same name,extension, and account number, the command above deletes the fileon AMS?: and replaces it with a copy of the corresponding AMS1:file. If you don't want COPY to replace duplicate files, use the/NODELETE switch. (For example: .COPY MS2:=AMS1:U]/NODELETE
Because you are logged into the System Operator's account, thecommand above copies all files in all accounts on AMS1: over to the
corresponding accounts on AMS2:. If the corresponding account does
not exist on AMS2:, the COPY command creates it, transferring to itany password associated with the source account.

4. Now is the time to restore the files that you erased. Copy themover to the good disk from your most recent backup disk.
5. Back up the good disk.

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 23

6. Now that you have copied all of the good fiLes over to the newdisk, get rid of the bad blocks on the original disk by formattingthe disk. For example:

FMTSOO OSK1:
BEGIN FORMATTING
EXIT

7. After you have formatted the disk, use the REDALL program to see if
the original hard errors resulted from actual physical damage tothe disk. If everything is OK, you can initialize the disk andbegin to use it agair.

If hard and soft errors are frequent occurrences on your system, you oughtto take a look at the disks themselves. (For example, if you are usingfloppy disks, are you storing them correctly? Are they scratched or dusty?)
You might also check your disk controller board and the physical deviceitself for maladjustments.

6.2 DSKANA File Errors

For the purposes of this discussion, we assume that you have already handled
any soft or hard errors on the disk, and that the only problem with the diskat this point is in the linking of the disk blocks.

If DSKANA reports file errors (e.g., 5 file errors) or lists disk blocks
under the message: [The following blocks were in a file but not marked inuse], the block linking structure of the disk is in error. You must take
immediate steps to recover the data on your disk.

Run DSKANA again, but this time use the /L switch so that you can see whatdisk blocks were assigned to each file or use the IE switch if you just want
a list of the blocks and files where the errors occurred.
Look for the file error messages in the display (see Section 6.2.1, "DSKANA
File Error Messages"). Their location in the display indicates which diskblocks are incorrectly linked, and this tells you which files are bad. Forexample, if part of the DSKANA display looks something Like:

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 24

.DSKANA DSK3 /E
[Begin analysis of DSK3J

[20,1)
C30,4J
Block 731 — Block used in previous file in DSK3:COPYR.LSTC3O,4][30,5]

then you know that a disk block used by the tile COPYR.LST was also used byanother file. Two tiles cannot share the same disk block.

It you are fortunate enough to have a very recent backupdisk, and the filesyou have changed since that backup are okay, you can simply copy those
changed files from the damaged disk over to the backup disk, which nowbecomes your original. (Of course, this assumes that the backup disk is allright. You might make it a practice always to run DSKANA before backing upa disk, so that you know that your backup disk is always good.) Nowinitialize the damaged disk; this clears the disk.
If you are not so lucky as to have a recent backup disk, you must do whatyou can to salvage the data on your original disk:

1. Make a disk backup so that you have a copy with which to work.
2. Now that you have found out what files are bad, use the ERASE

command to erase those files from the disk. If you do not do so,the errors in the linking structure will propagate, and you willlose even more data.

3. After clearing the bad files from the disk, run DSKANA again tomake sure that all øroblems have been cleaned up.

4. Once no more file errors show up, you must set about restoring thefiles you have erased. If you have old backup disks that containgood copies ot the files that you have just erased, restore thosetiles on your disk by copying them over trom the backup disks.
Make a final backup copy of your newly restored disk.
The discussion above assumes that damage has been done only to your files;if the linking structure of the disk directories themselves is bad, you mayhave to copy off of the disk whatever files you are able to, and theninitialize the disk and start over with a new account structure.
A systems expert may be able to reconstruct disk directories by using DSKDDTto actually change the binary data on the disk. (Directory entries are notstored in straight ASCII, but in a special packed tormat called RAD5O; youwill have to make the conversion yourself.) Using DSKDDT to reconstructdirectories is very dangerous; do not try it except as a last resort, and besure to make a backup first!

(Changed 30 April 1981)

g' —'

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR

6.2.1 DSKANA File Error Messages

Below is a list of the file error messages that DSKANA can display when youuse the List (IL) or Errors only (/E) options. The location of the messagesin the display telLs you the disk location of the bad block link.
1. Block used in previous file

The Last disk bLock listed in the file where this messageappears also exists in another fiLe. Since two files cannot sharea disk bLock, this message means that the system made an error inallocating disk space to the two files.
2. Block marked as bad

A block marked as bad in the BADBLK.SYS file has been mistakenlyallocated to a file.
3. This file has a bum block count

The actual disk block count for the file where this messageappears does not match the block count assumed by the file itself.The system made an error in allocating blocks to this fiLe.
4. Illegal block link

A link in the file where this message appears points to aninvalid disk address (e.g., to a disk block that does not exist).
5. Block reserved for system use only

A link in the file where this message appears points to a diskblock that is reserved for system use. The system has mistakenlyallocated a disk block that should not be allocated to a file.
6. Block creates endLess Loop in file

The linking structure of this file is such that eventually thedisk blocks point back to themselves. That is, block—A points toblock—B which points back to block—A.

7. Device error on Devn:

This block contains a hard error that the system could notrecover from.

8. [unable to locate BITMAP for rewriteJ

DSKANA couldn't find the bitmap area in memory for the devicebeing analyzed. This means that the bitmap in memory may beinvalid.

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 26

9. BITMAP rewrite error code' XxXxX

The bitmap could not be written back out to the disk. Thenumber you see is the error code that indicates what the problem
was. For a list of these error codes, see Chapter 6, "The File
Service System," in the AMOS Monitor Calls Manual, (DWM—OO1OO-42).

7.0 PACKING THE DISK

NOTE:
Before packing a disk, make sure the linking structure of the disk isintact. We recommend that you use DSKANA before you pack a disk.

The next few pages refer frequently to sequential and random tiles. If youare not familiar with these terms, see Chapter 5, "Introduction to Files,"
in Introduction to AMOS, (DWM—0O100.-65).

7.1 When to Pack a Disk

C

1. If a

first
disk,
to be

block belongs to
free disk block on
and writes the bloc
located toward the

a sequential file, AMOS searches for
the disk beginning with the front of
k there. Sequential fiLe blocks thus
front of the disk.

the
the

tend

2. If AMOS is
LAST area on
file there.
the disk.

trying to write out a random
the disk in which the file wi
Random files thus tend to be

file, it searches for the
11 fit, and writes the
located toward the end of

This scheme leaves an area in the middle of the disk for new file blocks.When you delete a file from the disk, the disk blocks that made up that fileare now free for use by other files. "Packing" the disk consolidates thesefree areas on the disk by sliding the random files down toward the end ofthe disk and sliding the sequential file blocks up toward the front of thedisk. This allows the system to make efficient use of the free space onthat disk.

You especially need to reduce fragmentation of free space on the disk ifmake use of a number of random files. If you onLy use sequential files,will not need to pack the disk very often because the system, asallocates disk blocks for sequential files, fills in any "holes" leftdeleted sequential files.

(Changed 30 April 1981)

Besides explaining the concept of
why packing a disk is necessary!
you can use to pack a disk: DSKPAK

"packing the disk," this section
and gives information on the two
and COPY (with the /PACK option).

explains
commands

When AMOS writes file blocks out to the disk, it follows this allocationscheme:

you
you
it
by

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 27

On the other hand, if you use lare random files, you wilt. probably want topack the disk quite often, perhaps before every disk backup. It'sparticularly important to consolidate free space if you use random filesbecause when it comes time to allocate space for a random file, the totalnumber of free blocks on a disk doesn't matter—— it's the number of treeblocks that appear in a contiguous group that counts. For example, it isquite possible to get a device full error when allocating a random file of50 blocks, even though you have 200 blocks free on that disk—— the systemhas to find SO contiguous disk blocks.

7.1.1 Displaying the Bitmap

If you want to have some idea of how much in need of packing your disk is,you can take a look at the bitmap of that disk. A bitmap is a map of yourdisk. That is, it tells the system what blocks on the disk are availableand which are in use by a file. If you Look at the bitmap, you see a matrixof is and Os which represents the free and used blocks on that disk. Eachblock on the disk is represented by a one if that block is in use and a zeroif it is free.

If all of the is are clustered together in large groups at the beginning andend of the disk, with only occasional Os scattered among the groups, thedata on the disk is efficiently allocated. If, however, the is and Os seemto be randomly mixed on the disk, you should pack the disk. To see adisplay of your bitmap, enter DUMP BITMAP followed by the specification ofthe device whose bitmap you want to see. For example:

.DUMP BITMAP DSKO: ED

You now see on the screen the bitmap of the disk in device DSKO:. To freezethe display, type a Control—S; to resume the display, type a Control—Q. Tointerrupt the display, type a Control—C. At the end of the display, the
DUMP command tells you how many blocks are available on the disk:

3411 free blocks

7.2 DSKPAK

DSKPAK packs all random files on the disk. That is, it moves all randomfiles toward the end of the disk, consolidating the free area in the middleof the disk for new random files. It does this by sliding random files downto occupy the area left by deleted files. If there are no sequential fileblocks in the random file area, DSKPAK causes all of the random files toform one contiguous area at the end of the disk.

Do NOT run DSKPAK while other users are accessing the specified disk. Torun DSKPAK, enter DSKPAK and the specification of the device you want topack:

.DSKPAK DSKi: @!D

(Changed 30 ApriL 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 28

2When DSKpAK is finished, you see the AMOS prompt.

7.3 COPY (the /PACK Option)

You can use the COPY command to pack the data on your disk if you use theIPACI(option.

NOTE: It is VERY important that no other job be alLowed to access the diskwhile you are packing it. If fact, it is good practice never to pack a diskwhile other jobs are running on the system.

To pack all files on the disk, log into the System Operator's account,C1,2]. Then type: COPY/PACK, the specification of the device you want topack, an equal sign, the specification of the same device, and a RETURN.For example:

.LOG [1,23 SD
TCOPY/PACK DSK1:=DSK1:[J @E!J

The command above copies every file on DSK1: over to itself. This causesthe system to reallocate blocks for all files on the disk, writing overareas left by deleted files. (This command does NOT pack the User FiLeDirectories or the Master File Directory of the disk.) To completely packthe disk, you might have to perform this command several times.
NOTE: To achieve maximum packing of the disk, use the COPY command from theSystem Operator's account to copy all files from one disk to another freshlyinitialized disk. (In this case, you don't need the /PACK option since youare not copying files over to themselves.)

8.0 DISK BACKUP

The most important procedure in your disk maintenance routine is diskbackup. You will have noticed that the discussions of the disk diagnostictests assume that you have recent backups of all of your disks. Backups areyour only assurance that you can at least partially recover from disaster.
Make disk backup a regular procedure on your system. You should encourageall users to back up the files in, their own accounts to either their owndata disk or to a communal data disk. You should do regular backups of theSystem Disk and any important data disks.

8.1 The COPY Command

Before using COPY to back up files, you will probably want to use the SETcommand to set DSKERR:

.SET DSKERR SD

(Changed 30 April 1981) -

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 29

Setting
this option tells the system to report any soft disk errors to your

job

Individual users may back up the tiles in their own accounts by using the
COPY command. For example, to transfer copies of all tiles in account
DSKO:C300,1] to the same account on DSK1:, enter:

.LOG DSK0:E3OO,1JiJ
.COPY DSK1: @JD

Individual users may also back up accounts that are within the same project.
For example, to back up all accounts in Project 100 from DSKO: to DSK1:, log
into an account in Project 100 and specifiy wildcard PPNs in the COPY
command:

.LOG DSKO:E100,0]

.COPY DSK1:EJ[100,*J @fl

To back up all accounts from one device to another (for example, DSKO: to
DSK1:), log into the System Operator's account:

.LOG El,2J 1D

.COPY DSK1:=[J @jIJ

Because you are logged into the System Operator's account, the command above
acts very differently than the usual COPY command:

1. The command above conies all files in all accounts on DSKO: over to
DSK1: regardless of whether those accounts are in Project 1.)

2. Even though there is no wildcard PPN symbol •on the left side of the
equal sign, the command above copies all files in all accounts on
DSKO: over to their corresponding accounts on DSK1: (not into the
single account you are logged into, £1,2J).

3. It the destination account does not exist on DSK1:, the command
above creates it. The command above transfers over to a new
account any password associated with the corresponding source
account files are being copied from.

To back up specific accounts, enter the correct account specifications. Forexample:

.LOG [1,21 D

.COPY DSK1:[200,*],[100,*J @IJ

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 30

8.2 The DSKCPY Command

IMPORTANT NOTE: As of AMOS Version 4.4, you may use DSKCPY on devices that
run under control of the AM—410 hard disk cont76tler, but only if the diskyou are copying from and the disk you are copying to have both been
certified with an AMOS 4.4 or later version of CRT41Q. If either disk hasbeen certified with a pre—4.4 version of CRT41O, you must use COPY to backup the disk.

Use DSKCPY to make a literal image of one disk onto another. You may use
DSKCPY on any type of disk; however, you may not copy between disks ofdifferent types. (We say that two devices are of the same type if they usethe same device driver program. All devices that use the same device driver
appear in the DEVTBL line of €he system initialization command file with the
same three—character device code. For example, DSK1, DSK2, and DSK3 use thesame device driver; AMSO, AMS1, AMS2, and AMS3 use the same device driver.)So, you can use DSKCPY to copy between any two dec'ices that share the samedevice code (e.g., from AMS1: to AMS2; 5103: to 5101:, 051(3: to DSK2:, etc.)
Besides copying and verifying data from one disk to another, DSKCPY alsooptionally generates a hash total for the disk copied to. To generate ahash total, use the /H switch. (For example: .DSKCPY/H.) (For fullinformation on DSKCPY, see the DSKCPY reference sheet in the AMOS SystemCommands Reference Manual, (DWM—OO100—49).

IMPORTANT NOTES:

1. Never run DSKCPY while other jobs are accessing the disks you are
copying between.

2. A common mistake in using DSKCPY is to accidentally reverse theinput and output device specifications. This has the effect ofcopying your empty disk onto your original disk. To avoid thissituation, if your disk device allows it, always write—protect thedisk from which you are planning to copy.
3. Before you copy to a disk, make sure that the disk is empty or thatit does not contain any data that you need. Make sure that thedisk is in the proper format. If the disk already contains data(that is, it is not brand new), you do not need to reformat it.(However, remember that using DSKCPY writes over any data alreadyon a disk.)

4. If you use DSKCPY to copy a disk that has soft errors, DSKCPY willdisplay the proper error message when it encounters the soft error,and then will attempt to copy the bad block over to the outputdisk, recomputing the CRC in the process. Since it had troublereading the bad block, the copy that DSKCPY makes of the block maycontain garbled data.

If you use DSKCPY to copy a disk that has one or more hard errors,DSKCPY aborts the copy when it encounters the first hard error, andreturns you to AMOS command level.

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 31

If you suspect that yOur disk has hard or, soft errors, follow the
procedures outLined in Section 6.1, "Handling Hard and Soft DiskErrors .'

5. You can use DSKCPX to copy both System Disks and data disks. (ASystem Disk is a disk the system can boot from—— that is, itcontains elements of the operating system necessary for systemoperation. A data disk is any disk that is not a System Disk.)

We have divided the information below into instructions for backing up harddisk devices and floppy disk devices.

We have additionally divided those instructions into information on usingDSKCPY on: 1. Multiple—unit devfces; and 2. Two—unit System Devices.
If you are using DSKCPY on a device that has more than two logical units(for example, besides DSKO: and DSK1:, your system also has DSK2: andDSK3:), backup procedures are the same regardless of whether that device isa System Device as long as you avoid copying to the drive containing theSystem Disk.

However, if you are using DSKCPY on a System Device that contains onLy twoLogical units (DSKO: and DSK1:), using DSKCPY becomes more complicated
because you MUST use DSKO: (the drive reserved for the System Disk) duringthe backup procedure. This can be tricky because intermediate steps in thebackup may require that you write over the System Disk or replace that diskwith a backup disk.

8.2.1 Important Note for Hawk Hard Disk Drive Users

DSKCPY uses a special fast copy mode for Hawk devices only. This mode givesa disk copy in approximately one—third the time of the traditional Hawk disk

copy

(about 6 minutes versus 18 minutes.) However, it does require that noother user be using the AM—500 controller while the disk copy is takingplace. When you use DSKCPY on a Hawk device, you see:

ZAll other users wilt be suspended while HAWK copy is runningHit return to continue or a control—C to abort:

If no other users are accessing disks that run under the AM—500, you maytype a RETURN to continue; otherwise, type a Control—c to exit DSKCPY.
If it is not convenient for all users to stop running on the system, you mayuse the /0 switch to tell DSKCPY to use the slower copy mode for the Hawkdevice. If you use the /0 switch, you qo not see the message above; otherusers may run on the system, but the disk copy wilt take about 13 minutes.
If you use the /H switch to generate a hash total for the copied to Hawkdisk, the hash total will differ for the same disk, depending on whether youused the Hawk fast copy mode or the /0 mode. The /0 switch has no effectwhen DSKCPY is being used on a non—Hawk device.

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 32

As you read the instructions in the sections beLow, remember that if you are
using DSKCPY on a Hawk device, you must decide whether to use the fast copy
mode or the /0 mode.

8.2.2 The Hard Disk MultipLe—Unit Device

The instructions below assume that you are working with a disk in which at
least one logical unit is an unrernovabLe, permanently fixed disk. We assume
that you are copying between disk cartridges or from the fixed disk to a

cartridge. The instructions below also apply to using DSKCPY on a device
that contains only two logicaL units (e.g., HWKO: and HWK1:) if that device
is not a System Device, since yu do not have to worry about writing over
the System Disk.

If you are using a hard disk device that contains more than two logical
units within one physical device (e.g., the Century Data Trident which can
contain DSKO: through DSK18:), you will, treat that single device as a

multiple—unit system. That is, you can back up each logical unit separately
by copying one logical unit to another. (If you have two of these kinds of
devices you will probably want to back up by copying from one drive to
another. Be advised, however, that backing up several hundred megabytes of
data is a very slow process!)
To copy either System Disks or data disks:

1. Write—protect the disk you are copying. (For example, if you are
going to make a backup copy of the disk in device DSK2:,
write—protect DSK2:.) If possible (that is, if you can arrange to
perform the DSKCPY when no other users are going to be accessing
the disks), write—protect ALL disks except the one you are copying
to.

2. If you need to change disk cartridges, do so. This may require
cycling—down the disk drive, but you do NOT need to turn off the
drives or the computer.

3. Enter:
.DSKCPY fED

4. DSKCPY now asks you which devices to copy between:

Input Drive:
Output Drive:

For input drive, enter the specification of the device you are
copying from. For output drive, enter the specification of the
device you are copying to. For example, if you are copying from
AMS1: to AMS3:, enter:

Input Drive: AMS1: RET

Output Drive: AMS!:
[Copying 616 blocks]
[Duplication and verification completed]

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 33

DSKCPY tells you how many disk blocks it is copying, and gives you
progress reports on the status of the disk copy. When you see the
AMOS prompt, DSKCPY is done.

8.2.3 The Hard Disk Two—unit System Device

If you are using DSKCPY on a System Device, and that device has only twological units (DsKO: and DSK1:), using DSKCPY becomes a little more
complicated because you cannot avoid using DSKO:. (If you are copying from
a fixed disk to a disk cartridge, follow the procedures above for
multiple—drive systems.) - -

To copy a data disk, you must first back up the System Disk (the fixeddisk), copy the data disk down from a cartridge onto the System Disk, and
then copy that back up to another cartridge. Then you must restore the
System Disk from the backup. This procedure requires that you change
cartridges several times, so to make sure that no mix—ups occur, carefully
label aLl, cartridges so that you can be sure which cartridge is the System
Disk backup, which is the original data disk, and which is the data disk
backup.

8.2.3.1 Sacking Up the System Disk

1. Write—protect DSKO: and DSK1:.

2. Insert a backup disk cartridge to which you will copy the System
Disk. (This may require cycling—down the disk drive, but do notturn it or the system off.)

3. Write—enabLe DSK1:.

4. Use the DSKCPY command to copy from the System Disk (DSKO:) to the
cartridge:

.DSKCPY @EJ
'input Drive: DSKO:
Output Drive: DSK1:
[Copying 9696 blocks]
[Duplication and verification completedj

5. Remove the cartridge. Label and date -it (e.g., SYSTEM DISK BACKUP
1/23/80).

(Changed 30 ApriL 1981)

•,

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 34

8.2.3.2 Backing Up the Data Disk
"Ci

A. PART I: -

1. Write—protect DSK1: and DSKO:.

2. Place the data disk you want to copy into DSK1:.

3. Load DSKCPY into memory:

.LOAD DSKO:DSKCPY[l,4]

4. Before proceeding, make sure that you have backed up your
System Disk. The next step writes over everything on DSKO:,
and without a valid system backup you will not be able to get
your system up and running again.

5. Write—enable DSKO:.

6. Copy the data disk onto DSKO:

.DSKCPY

Input Drive: DSK1:
Output Drive: DSKO: RET

[Copying 9696 blocksJ
[Duplication and verification completed]

7. DO NOT TURN OFF THE SYSTEM OR THE DISK DRIVES.

B. PART It:

1. Write—protect DSKO: and DSK1:.

2. Place the data disk backup cartridge into DSK1:, but do NOT
TURN OFF THE SYSTEM OR THE DRIVES. (Remember, the System Disk
on DSKO: is temporarily gone.)

3. Write—enable DSK1:.

4. Copy DSKO: to DSK1:.

.DSKCPY RET
Input Drive: DSKO: @iD
Output Drive: DSK1:
ICopying 9696 blocks]
[Duplication and verification completed]

5. Remove the backup cartridge. Date and label it (e.g., DATA
BACKUP 4/20/al). DO NOT TURN OFF THE DRIVES OR THE SYSTEM.

(Changed 30 April 1981)

%.

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 35 '
8 2 3 3 Restoring the System Dik

After copying a data disk, you MUST restore the data originally on DSKO
1. Write—protect DSKO and DSK1

2. Place the System Disk backup cartridge into DSK1:. (Do NOT turnoff the drive or the system.)

3. Write—enable OSKO:.

4. Copy DSK1: to DSKO:.

.DSKCPY @fl -

Input Drive: DSK1: a
Output Drive: DSKO:
[Copying 9696 blocks)
EDuplication and verification completedJ

5.
Remove the System Disk backup disk and store it in a safe place.The system is now up and ready for normal use.

6. Delete the DSKCPY program from memory:

.DEL DSKCPY

8.2.4 The Floppy Disk Multiple—unit System

These instructions apply to all situations where you can avoid writing toDSKO: of the System Device——that is, you are using: 1. a floppy disk devicethat contain more than two logical units (e.g., you have AMS2: and AMS3: aswell as AMSO: and AMS1:); 2. a floppy disk device that has only two logicalunits, but that device -is not a System Device (since you don't have to worryabout writing over the System Disk); and 3. a two—unit System Device to copySystem Disks.

To copy either System Disks or data disks:

1. Do not turn off the computer or the disk drives. Do not remove theSystem Disk.

2. Write—protect the drives you wilt not be copying to.
3. Insert the original and backup disks in the drives. (The originaldisk is the disk you want to copy; the backup disk is the emptydisk you will be writing to.)
4. Type DSKCPY followed by a RETURN.

(Changed 30 April 1981)

. A; &U

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 36

(I
5. DSKCPY now asks which disks you want to copy between:

Input Drive:
Output Drive:

For input drive, enter the specification of the device you are
copying from. For output drive, enter the specification of the
device you are copying to. For example, if you are copying from
AMS1: to AMS2:, enter:

Input Drive: AMS1:
Output Drive: AMSO: JD
[Copying 616 bLocks]
[Duplication and verification completed]

6. DSKCPY is now done, Write—enable the disks.

8.2.5 The Floppy Disk Two—unit System Device

The instructions below apply to a situation where you MUST use DSKO: of a

two—unit System Device. (That is, you must copy a non—System Disk and you
only have two drives with which to do it.)

To copy a System Disk, follow the instructions above for multiple—unit
systems; leave the System Disk in DSKO:, and copy it to DSK1:.

To copy a data disk:

1. Do not turn off the system or the disk drives. Leave the System
Disk in DSKO:.

2. Write—protect DSK1:.

3. Insert the input disk into DSK1:.

4. Use the LOAD command to load the DSKCPY program:

.LOAD DSKO:DSKCPYE1,4J RET

5. Remove the System Disk. Insert the backup disk into DSKO:.

6. Enter DSKCPY followed by a RETURN:

.DSKCPY RET

7. For input drive, enter the specification of the device you are
copying from. For output drive, enter the specification of the
device you are copying to. For example:

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page 37

Input Drive: DK1: RET
Output Drive: DSKO:
[Copying 616 blocks]
[Duplication and verification completed]

8. When DSKCPY has finished, remove the backup disk and reinsert the
System Disk. Mount the System Disk.

9. Delete DSKCPY from your memory partition:

.DEL DSKCPY

(Changed 30 ApriL 1981)

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page Index—i

Index

2, 9 to 10
4
4

4
2

4, 12 to 13
10

• 1, 28, 30
• 28
• 30
• is

CDC Hawk hard disk 4,Changing disk formats
3

COPY
3

COPY/P
28CRC error
13

CRT41O 3,
Data disk
DIAG2
Diagnostic tests

DIAG2
DSKANA

REDALL
RNDRED

Disk Certification . . .
Disk formats
Disk formatting
Double—density format
Double—sided format .
DSKANA

Analysis report
Default mode
Errors only option .
File error messages
List option
Option summary

DSKCpY

DSKCPY /0 mode
DSKCPY and Hawk disks
DSKCpY fast copy mode

(Changed 30 April 1981)

AlLocating user accounts
AM—200
AM—210
AM—400
AM—410
AM—500

Assigning account passwords

Backup
COPY

DSKCPY
BADBLK.SYS

13

22, 26, 28 to 29

18

28, 31
14
1, 12
14
15
13
14
3
4.4.4.4
15

• 19
16

• 15
• 25
• 15, 18
• 15
• 30
• 7, 31
• 7, 31

• • C • p •• • •,• •- vi
:-kr':. j' • • • I • •• •

DSKCPY hash total
DSKPAK

Identifying a disk
Initializing a disk

LABEL
Labeling a disk . .

Maintenance
MFD

MOUNT

MOUNTIng a labeled disk .

Packing a disk
COPY/P
DSKPAK

Persci floppy disk
Phoenix Hard Disk

Backup
certification
formatting
initialization

Re—certifyinci disks
Re—using disks
Recomputing the CRC
Recycling disks
REDALL
Restoring disk directories
RNDRED

1 to 2
10
S to 6

SET DSKERR
Single—density format
Single—sided format
Soft error
SYSACT

Allocate
Change

12, 28.4.4
12,.8
10

- 11

29

(Changed 30 April 1981)

DISK MAINTENANCE PROCEDURES FOR

FMT200
FPIT21O
FMT400
FMT500
Formatting a disk
Formatting programs

Hard error
Hash total
HASHER

HASHER /0 mode
HASHER and Hawk disks
HASHER fast copy mode

THE SYSTEM OPERATOR Page Index—2

30
• 26to27
.4.4-4.4
• 2 to 3-4

13
18, 30.7
7
7
7

7
2, 8

2, 6
2, 5

.6
26
28
27
4
3
30
18
3

3

2

2

• 21.2
13

• 24
• 14

Delete
Exit
Help
Initialize

System Disk
System Operator

COPY

System Operator's account

Trident

12
• 11

10.9
28, 31
1, 29

• 29
• 29

32

UFD
User accounts

• 10.9
.6.6
.4

DISK MAINTENANCE PROCEDURES FOR THE SYSTEM OPERATOR Page Index—3

Volume ID
Volume name

Wangco floppy disk . .

(Changed 30 April 1981)

April 1981
Revision AOl

DEFINING NON—SYSTEM DISK DEVICES

There are many times when you need to configure your system to access a diskdevice other than the System Disk. Examples of this would be adding anAM—500 and Hawk disk drive to an AM—400 Trident based system, or adding anAMS—format floppy to an SID—format system. In both of these cases, theprocedure is essentially the same. In addition to defining the device onyour system, it is often necessary to transfer data from one type of deviceto another, or to convert a System Disk from one device or format toanother. This document will cover both the definition of new disk devicesand the transfer of data.

1.0 DEFINING NEW DISK DEVICES

To add a new disk device to your system, follow the procedure outlinedbelow. It is a good idea to create a copy of your SYSTEM.INI file andmodify that copy, rather than to modify the SYSTEM.INI file itself. Themodified copy can be tested using the MONTST program, without riskingcreating a version of your SYSIEM.INI file which will not properly boot thesystem. Then, when you are sure that your new system initialization commandfile works, rename it to SYSTEM.INI. Regardless of these precautions, youshould have a backup copy of your System Disk, just in case your changesdon't work.

1. Add the device driver program to those in the [1,6] area on DSKO:.Each device to be used on the system must have a device driverprogram in this area. The device driver program must have a uniquethree—character name and an extension of .DVR. After locating thedriver program for the device you wish to use, it should be renamed
to a three—character name. For instance, the driver for the AM—500is distributed as HWK500.DVR on standard System Disks; before useit should be renamed to a three—character name such as UWK.DVR. Ifyou are defining a floopy disk, you must use the FIXDVR program tocreate a new driver for your particular configuration of drive,format and controller. See the document titled Configuring FloppyDisk Drivers in the "System Operator's Information" section of theAMOS Software Uodate documentation packet for more information.

2. Using one of the system text editors, VUE or EDIT, make these
changes to your SYSTEM.INI file:
a. Add the new device name to your device table; that is, add thethree—character device name defined in step #1 to the DEVTBL

command line. This defines the new device name, and allows I/O
to take place through the new device driver. Disk devices are

(Changed 30 April 1981)

sharable devices, and should therefore be defined befoein the DEVTBL command line. If you cannot fit the newnames alt on one line, you may use more than one DEVTBLcommand.

You must include both the device name and all valid unitnumbers in the DEVTBL command line. Thus, if you are adding anAPIS—format floppy driver to your system and wish to be able toreference both drives 0 and 1, you must add the device codesAMS0 and AMS1 to the DEVTBL command Line.

b. To allow the system to write information on the new device,must define a bitmap -for the new device. A bitmap ismethod by which the system allocates space on the device.add a new bitmap, place a BITMAP command for theimmediately after any other BITMAP commands.
command requires that you specify the device code, the bitmapsize, and the units (drives) to which this bitmap will beapplied.

The device code is the three—letter code you defined in step#1.

to define an APIS device (which has a bitmap sizeand to sihare the buffer between units 0 and 1, add

If you do not wish to share the bitmap buffer, but wish to haveseparate buffers for each unit, add two Lines which read:

BITMAP AMS,39,O
BITMAP AMS,39,1

to incluce the driver
for faster response
this, inert the command

DEFINING NON—SYSTEM DISK DEVICES

always
the I
device

Page 2

you
the

To
new device
The BITMAP

The bitmap size
defining. If you
FIXDVR program
devices, see the
devi ce.

is dependent on the particular device you areare working with a floppy disk drive, thewiLl tell you the bitmap size. For other
documentation accompanying the particular

Each BITMAP command actually defines a buffer in
which is used for reading and writing the bitmap
the device. This bitmap buffer may be shared by
of the same device, r:esulting in a saving of syst
exchange for this aving, however, I/O mustfrequently to the dev;ice to update the bufferbitmap buffers were not shared.

For example,
of 39 words)
the command:

system memory
to and from

multiple units
em memory. In

be done more
than if the

BITMAP AMS,39,O,1

c. You may
memory
device.

wish
area
To do

(Changed 30 April 1981)

program in your system
while working with the new

DEFINING NON—SYSTEM DISK DEVICES
Page 3

SYSTEM xxx.DVRE1,6J

into the SYSTEM INI file just above the final SYSTEM commandline. In almost all cases, this is not really necessary, asthe system wilt fetch the driver from the disk each time it isneeded if it is not already in memory, and will load it intothe memory partition of the user who is requesting access tothat device. However, including it in system memory will speedup the response time of the system. NOTE: Never include thedriver for your System Device in system memory—— since thatdriver was MONGENed into your monitor, it is always in system
memory anyway, and adding it via the SYSTEM command just takesup uneccessary space.

IMPORTANT NOTE: There are several situations where you must puta non—System Device driver into system memory:

i. If you are using the IS option of the BITMAP command toplace bitmaps for non—System Devices in switchable memory,you must place the drivers for those devices in system
memory.

ii. Some programs (notably BASIC, RUN, COMPIL, and AIphaVUE),do not follow standard memory module conventions, andtherefore require that the device driver of any non—SystemDevice be in system or user memory if you are going to
access that device while using those programs. (You mayplace the driver into system memory using the SYSTEMcommand, or the individual user may load it into his ownmemory partition via the LOAD command before invoking oneof the programs listed above.)

3. After performing the preceding steps, boot up the system using theMONIST command:

.MONTST SYSTEM,TEST.INI

(Remember that to use the MONTST command your System Disk (DSKO:)must be on the fixed disk of the System Device, and your job mustbe operating in the first memory partition on the system (Bank Zerofor bank switching systems))

You should now be able to access the new devices for both reading andwriting. Once you are satisfied with the operation of the device and yourchanges to your SYSTEM.INI file, rename yur temporary initialization commandfile to SYSTEM.TNI and reset the system. You are now up and running.

(Changed 30 April 1981)

DEFINING NON—SYSTEM DISK DEVICES
Page 4

2.0 TRANSFERRING DATA TO AND FROMTUE DEVICE

Once a device has been defined on the system using the procedures describedabove, any of the standard system utilities may access it. If you arestarting with a new device with no data on it, use the correct formattingprogram to write formatting information onto the device. You may then usethe SYSACT program to initialize the device and to create accounts on thatdevice. You may then use the COPY command to to cooy data onto the newdevice.

If you wish to read existing data off of the new device, merely mount thedevice and use COPY to transfer the data.

3.0 BUILDING A SYSTEM ON A NEW DEVICE

Once you have defined the new device on your system, you may wish to createa System Disk for the device so that you can boot your system from the newdevice. To create a new System Disk, follow the procedure outlined below:
1. Format and initialize the device on which you want to build asystem.

2. Copy your current System Disk over to the new device.
3. Log into the new device on account [1,43 and create a new monitor.Use the MONGEN program to do this. (See Generating SystemMonitors in the "System Operator's Information" section of theAMOS Software Update documentation packet.)

When MONGEN asks you for the driver name, specify the driver forthe device for which you are building the System Disk. After yourun MONGEN, save the new monitor onto the new device, but don'treboot the system at this point.
4. Edit the SYSTEM.INI command file on the new System Disk and changethe BITMAP commands for all DSK devices to match the bitmap sizeand configuration of the new device. Remove the old specificationsfor the device from the DEVTBL command, If you wish, you may addthe current system device as a peripheral to the new System Disk byusing a method similar to the one you used to create your currentSystem Disk.

5. You may now use the MONIST program to test your new System Disk.If it successfully boots, you may wish to change your hardwareconfiguration to boot off the new device; you may find informationregarding this in the installation instructions accompanying thedevice.

(Changed 30 April 1981)

May 1980
Revision A03

DISK DRIVERS AND FORMATS

1.0 INTRODUCTION

This document discusses the disk drivers and formats supported by AlphaMicro software and how to use them. One mark of the AMOS system'sflexibility is that it allows you to customize your system software for yourparticular hardware configuration by selecting the disk driver programs anddisk formats that you want to use.

2.0 DISK FORMATS

The format of a disk refers to the way that the data on a disk isstructured. This discussion concerns itself with two main areas: thephysical and the logical disk format.

The physical format means the number of bytes in each sector on the disk(which in turn dictates the number of sectors on each track). The logicalformat refers to the way in which AMOS reads the physical format, includingblocking factor and file structuring.
We call the sector a physical record, because it refLects the physicalorganization of data on the disk. AMOS imposes a logical organization onthe disk (regardless of the physical attributes of the device); we callthese logical units of data disk blocks. Except in the special case ofdevices that use the 1MG device driver, disk blocks are always 512 byteslong. For hard disk devices currently supported by Alpha Micro, the size ofthe disk block is the same as the physical record size (512 bytes); floppydisk devices sometimes use a physical record that is smaller than a diskblock.

The following paragraphs discuss the disk formats that Alpha Micro currentlysupports:

1. Standard (SID) Floppy Disk Format —— This format comes in bothsingle— and double—density, and single— and double—sided versions.All are designed to use IBM—compatibLe diskette formatting.Single—density diskettes are formatted with 128 bytes per sectorand 26 sectors per track. Double—density diskettes are formattedwith 256 bytes per sector and 26 sectors per track. Double—sideddiskettes for both densities merely have twice the number of tracksper diskette (154 instead of 77). The format for both densities is512 bytes per block, with single—density blocked at 4 sectors perdisk block, and double—density blocked at 2. Both densities have

(Changed 1 May 1980)

DISK DRIVERS AND FORMATS
Page 2

sectors mapped out to read every 5th sector to improve rotationallatency time, thereby allowing one 512—byte disk block to be readwithin one revolution of the disk. The AMOS file system is fullysupported on this format. Single—density, single—sided diskettesare supported on both the AM—20fJ and AM—210 floppy diskcontrollers; double—density and double—sided diskettes aresupported on the AM—210 only.

2. AMS Floppy Disk Format —— This format also comes in both single—and double—density, and single— and double—sided versions. All areformatted in 512—byte sectors. Single—density has 8 sectors pertrack; double—density has 16. The physical records are interleavedon a 3—to—i basis to improve latency for sequential accesses.Double—sided diskettes merely have twice the number of tracks perdiskette (154 instead of 77). The logical format is the same asthe physical format, with each disk block being one 512—bytephysical record. The AMOS file system is fully supported on thisformat. Single—density, single—sided AMS format diskettes aresupported on the AM—200 controller; only double—density diskettes(both single— and double—sided) are supported on the AM—210.
3. Image (1MG) Floppy Disk Format —— The physical format is the sameas standard format, with 128— or 256—byte sectors and 26 sectorsper track. The logical format is the same as the physical format.Image format is supplied to allow the programmer to read a non—AMOSdiskette (such as one created on an IBM computer) by physicalrecord number, and to retrieve the data under the programmer's ownfile structure. The AMOS file system will operate under thisformat, but is extremely inefficient due to the small disk blocksize (128 bytes) and the fact that one full revolution must occurbetween sequential reads. Image format for single—density,single—sided diskettes is supported by the AM—200 controller; bothsingle— and double—density, sinole— and double—sided diskettes aresupported by the AM—210.

4. Trident Hard Disk Format —— The Century Data Trident drives havetheir own special format. All drives use a 512—byte physicalrecord which is also their disk block size. The T—25, T—50, and1—200 drives all have 22 sectors per track; the T—80 and T—300 have32. The T—25 has 408 tracks per surface; all other Trident harddisks have 815.

5. Hawk Hard Disk Format —— The CDC Hawk drive has its own specialformat which gives a physical record size of 512 bytes, 812 tracks,and 12 records per track.
6. Phoenix Hard Disk Format —— The CDC Phoenix drive has its ownspeciaL format which gives a physical record size of 512 bytes.Each surface has 808 tracks, with 36 records per track. (Actually,each surface has 822 tracks; fifteen of those tracks are spare or"alternate' tracks that are used in case bad tracks are detected onthe surface.)

(Changed 1 May 1980)

DISK DRIVERS AND FORMATS
Page 3

3.0 HARDWARE DISK DEVICES

The AMOS system supports several different disk devices. Each device hasits own peculiar traits, and must be understood for proper systemconfiguration. The following paragraphs describe the various hardwaredevices currently supported:

1. Persci Floppy Disk —— Runs under the control of the AM—200 floppydisk controller. The Persci supports all single—sided,single—density floppy disk formats described above. The Persci iscapable of formatting diskettes.

2. Wangco Floppy Disk —— Runs under the control of the AM—200 orAM—210 floppy disk controller. With the AM—200, the Wangcosupports all single—sided, single—density floppy formats describedabove. With the AM—21O, it supports all single—sided, single— anddouble—density formats, except for single—density AMS format. TheWangco is capable of formatting diskettes.
3. CDC Floppy Disk —— Runs under the control of the AM—210 floppydisk controller. It supports all single— and double—sided, single—and double—density formats, except for single—density APIS format.The CDC is capable of formatting diskettes.
4. Icom Floppy Disk —— This is the original system offered with the

AM—100 computer, but it is no longer in extensive use because ofthe limitations it imposes. The Icom disk runs under control ofits own controller board, and does not have the capability offormatting diskettes. The Icom supports only single—density,
single—sided STD and 1MG formats.

5. Trident Hard Disk Subsystem —— The Century Data Trident is aspecial, large disk—pack subsystem that runs under control of the
AM—400 interface board and the Century Data 1150—A formatter unit.The only format supported on this device is the Trident format.
The unit will reformat disk packs (one surface at a time). TheT—25, T—50, and T—80 Tridents have 5 surfaces; the T—200 and T—300
have 19 surfaces each. (The T—200 and T—300 are formatted asnineteen individual disks; the T—25, T—50, and T—80 are formattedas five individual disks.)

6. Hawk Hard Disk Subsystem —— The CDC Hawk is a special disk—packsubsystem that runs under control of the AM—500 Hard diskController board. The only format supported is Hawk format. TheAM—500 is capable of formatting disks.
7. Phoenix Hard Disk Subsystem —— The CDC Phoenix is a special disksubsystem that runs under control of the AM—410 Hard diskController board. The only format supported is Phoenix format.

The AM—410 is capable of formatting disks.

(Changed 1 May 1980)

#4". .' c. '.*th..4t'.ta

DISK DRIVERS AND FORMATS
Page 4

3 1 DISK DRIVER PROGRAMS

A driver is a program that links the generalized disk service routines ofthe monitor with the physical disk device. You can generate your ownversion of the monitor (via the MONGEN Program) that incorporates a specificdisk driver into the monitor for use as the System Device (device DSK:).The disk drivers reside in account DSKO:E1,6J, and can be called in asneeded if you have more than one type of device on your system, or if youwish to operate with several different types of formats on one device. Inother words, your System Device may be a Persci in single—density standardformat, but you may use a separate driver (called AMS, for instance), toread an AMS—format diskette. In this instance you would generate asingle—density standard format driver to use with MONGEN when you create themonitor. The MIS driver exists in account E1,6J of the system disk, and isavailable for use when you want to read AMS—format diskettes.
Drivers are supplied to you on your System Disk in the [1,63 account; theyhave a six—character name that represents the device type they handLe.Below are listed the disk drivers that are currently available, along withthe devices they support:

200DvR — AM—200 with Perscj or Wangco
21ODVR — AM—210 with Wangco or CDC
ICMDVR — Icom floppy disk
TRIT25 — AM—400 with Trident 1—25
TRIT50 — AM—400 with Trident 1—50
TRIT8O — AM—400 with Trident 1—80
1R1300 — AM—400 with Trident 1—300
HWK500 — AM—500 with CDC Hawk
SMD41O — AM—410 with CDC Phoenix

The drivers above all have the .DVR extension. Since aLL devices must beidentified by a three—character device name, you will have to rename or copyover the particular drivers to some chosen three—character device code; thiscode wiLl aLso have to be added to your SYSTEM.INI file in both the DEVTBLand BITMAP command Lines. You may call these drivers any three—charactername you choose, except for the System Disk defined when you use MONGEN togenerate a new monitor, which will always have the device code of 03K.
The floppy drivers must be configured by the FIXDVR program prior to use.See the document Configuring Floppy Disk Drivers in the "System Operator'sInformation" section of the AMOS Software Update documentation packet forinformation on configuring floppy drivers.

3.2 FORMATTING PROGRAMS

Formatting programs are provided for those devices that support formatting.The following is a list of the programs provided:

(Changed 1 May 1980)

I

DISK DRIVERS AND FORMATS
Page 5

FF11200 — All formats suopqrted by the AM—200
FF11210 — Alt formats supported by the AM—210
FF11400 — ALL formats supported by the AM—400
FF11500 — Hawk format for CDC Hawk disks

(NOTE: Use the CR1410 program to format and initialize disks that run undercontrol of the AM—410.)

3.3 MONGEN

The MONGEN program is used to generate a new system monitor by overlayingthe disk driver area in an existing monitor with a different disk driverfrom the List above. (See Generating System Monitors in the AMOS SoftwareUpdate documentation packet.) You do not need to rename the disk driver
used in the MONGEN procedure to a three—character device code; you mayreference it directly by its six—character name (e.g. 1R1180 for a Trident
1—80). The MONGEN procedure automatically renames this device so that itcan be referenced as DSK in the new system. Note that you must configure
floppy drivers with FIXDVR prior to the MONGEN procedure, however.

(Changed 1 May 1980)

- I. - - ..i..-
..'.. •- :••?': c:.'; 3''1r,.4%i4%:;

July 1979
Revision AOl

GENERATING SYSTEM MONITORS

1.0 INTRODUCTION

allows you to generate system monitors for any diskthe necessary disk driver into an existing monitor.
To build a new monitor, you need an existing monitor (AMOS version 3.1 orlater), and the disk driver for the specific device that you are going touse as the System Disk. The monitor that you will normally use is the fileSYSTEM.MON Located in account [1,4] of the System Disk. The disk driver tobe used will be one of the drivers in DSKO:[1,6J. MONGEN will insert thedriver into the monitor (overlaying the old driver), and Leave the newmonitor in memory. You may then test the new monitor directly from memory(via the MONTST command), or you may save it onto a disk (via the SAVEcommand).

2.0 USING THE MONGEN PROGRAM

Type MONGEN followed by a REtURN:

.MONGEN

The MONGEN program responds with:

INPUT MONITOR NAME:

enter the file specification of
the foundation of your new
monitor DSKO:SYSTEM.MON[1,4J by
enter a file specification, the
you want to use a monitor not
specifications.

MONGEN locates the
partition. Be sure
disk drivers, as
a coupLe of disk
memory.

the monitor program you are going to use asmonitor. You may specify the default systementering just a carriage return. If you
default device and account is DSKO:[1,4]; if
in that account, include device and account

Now MONGEN asks for the specification of the disk driver you want to insertinto the monitor:

NEW DISK DRIVER NAME:

(Changed 1 July 1979)

The MONGEN program
hardware by inserting

specified monitor and loads it into your memorythat you have enough room to accomodate the monitor and
well as the MONGEN program itself, and also enough room forbuffers. Typically this requires about 16K bytes of user

GENERATING SYSTEM MONITORS
Page 2

Enter the file specification of the disk driver program you want to useYou may NOT enter just a carriage return. The default device is DSKO:, thedefault account is [1,6J, and the default extension is DVR

MONGEN locates the disk driver program and loads it into memory above thePreviously loaded monitor. MONGEN now inserts the driver into the properarea of the monitor (thus overlaying the original disk driver). The newmonitor is now complete in your memory partition.
Now MONGEN asks for a name tobe given to the new monitor:

NEW MONITOR NAME:

Enter a one— to six—character name (the default extension is .MON); this isnow the name of the new monitor in memory. MONGEN now exits, leaving thenew monitor as a module in your memory partition. You can test the newmonitor by using the MONTST program, or you can save the monitor as a diskfile by using the SAVE command.

NOTE: MONGEN does not affect the currently running mPnitor either in memoryor on the System Disk. Nor does MONGEN test the new monitor; it merelybuilds a new monitor as a module in your memory partition.

3.0 DISK DRIVER PROGRAMS

The hard disk drivers currently available are listed below. These programsare on your System Disk in account [1,6].

SMD41O — CDC Phoenix 90—megabyte hard disk (512—byte sectors).
HWK500 — CDC Hawk 10—megabyte hard—disk (512—byte sectors).TRIT2S — Calcomp Trident 25—megabyte hard—disk (512—byte sectors).TRITSO — Calcomp Trident 50—megabyte hard—disk (512—byte sectors).TRIT8O — Calcomp Trident 80—megabyte hard—disk (512—byte sectors).TRI300 — Calcomp Trident 300—megabyte hard—disk (512—byte sectors).

In addition, the system supports a number of floppy disk drivers. With theadvent of the AM—210 Floppy Disk Controller, the system now supportsdouble—sided and double—density diskettes. Because the possiblecombinations of device type, floppy disk controller type, and disk formathave greatly increased the number of possible floppy disk drivers, we nowprovide a program, FIXDVR, that you can use to configure the floppy diskdrivers you need. See Configuring Floppy Disk Drivers in the "SystemOperator's Information" section of the AMOS Software Update documentationfor information on using FIXDVR, and for a list of the possible floppy diskdrivers you can create. (For information on the physical disk formats usedby the various floppy disk drivers, see Section 2.0, "Disk Formats," in thedocument titled Disk Drivers and Formats in the "System Operator'sInformation" section of the AMOS Software Update documentation packet.)

(Changed 1 July 1979)

USING THE MAGNETIC TAPE UTILITY PROGRAMS

October 1979

This document reflects AMOS versions 4.3 and later

USING THE MAGNETIC TAPE UTILITY PROGRAMS
Page ii

(H

'AMOS', 'AIphaBASrC', and 'AM—iflO'

are trademarks of products
and software of

ALPHA MICROSYSTEMS
Irvine, CA 92714

©1979 — ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North
Irvine, CA 92714

• - •.

USING THE MAGNETIC TAPE UTILITY PROGRAMS Page iii

Table of Contents

1.0 INTRODUCTION
1

2.0 SETTING YOUR SYSTEM UP TO USE MAGNETIC TAPE UNITS 1

2.1 Using System Commands to Access
the Magnetic Tape Unit

22.2 Concepts
2

3.0 SETTING TAPE DENSITY

3.1 SET BPI Error Messages
4

4.0 REWINDING A TAPE
4

4.1 REWIND Error Messages
5

5.0 TRANSFERRING DATA BETWEEN DISK FILES AND TAPE 5

5.1 How TAPE Writes Data to a Tape 55.1.1 Organization of Data on the Tape 65.1.2 Reblocking Data 65.2 Transferring Data from a Disk File to Tape 75.3 Transferring Data from Tape to Disk Files 105.4 TAPE Error Messages 13

6.0 THE SKIP COMMAND
14

6.1 SKIP Error Messages
15

INDEX

USING THE MAGNETIC TAPE UTILITY PROGRAMS Page '1

1.0 INTRODUCTION

Alpha Micro has developed several magtape utility programs that support theAM—600 Magnetic Tape Transport Formatter Interface. These programs—— TAPE,REWIND, SET, and SKIP—— are all programs that you can invoke at AMOS commandlevel by entering the proper command. For information on accessing themagnetic tape driver (MTU.DVR) directly from within your own assemblylanguage programs, see the AMOS Monitor Calls ManuaL, (DWM—OO100—42). Forbrief summaries of the tape utility programs, refer to the AMOS SystemCommands Reference Manual, (DWM—OO100—49).

You will be most likely to use your magnetic tape transport to transferfiles to the AMOS system from other computer systems. Magnetic tape alsoprovides inexpensive backup media. The TAPE program works only withsequential disk files that contain fixed—Length records. It does notsupport any random—access file format on the tape. TAPE can convert yourdata from ASCII to EBCDIC form and vice versa. See Section 5.0,"Transferring Data Between Disk Files and Tape," below, for more informationon the kind of data you can transfer.

Make sure that you have defined
the DEVTBL command Line of
SYSTEM.INI. Magnetic tape units
slash on the DEVTBL command line

the magnetic tape units as system devices in
the system initialization command file,
are not sharable, so place them after a

For example:

DEVTBL DSK1,STDO,STD1,MEM,RES,/MTUOMTUIMTU2MTU3PTP

In the example
magnetic tape uni
which also is
numbered 0 through 7.

above, the devices MTUO, MTU1, MTU2, and MTU3 are thets. (The example above includes a paper tape punch, PTP,not sharable.) The AM—600 supports up to eight tape units,

The program MTSTAT.SYS must be in system memory. (You must place it insystem memory by entering a SYSTEM MTSTAT.SYS command line in theSYSTEM.INI,.) The magnetic tape driver program uses MTSTAT.SYS to determinetape density and tape speed. If MTSTAT.SYS is not in system memory, whenyou try to perform a magnetic tape unit operation, you see:

MTSTAT .SYS NOT FOUND

Make sure that
Once you have
magnetic tape uni
programs. Reboot

the magnetic tape driver, MTU.DVR, is in account DSKO:[1,6J.
modified your SYSTEM.INI to include information on thets, you are ready to use the magnetic tape utility
the system with your new SYSTEM.INI.

2.0 SETTING YOUR SYSTEM UP TO USE MAGNETIC TAPE UNITS

USING THE MAGNETIC TAPE UTILITY PROGRAMS
Page 2

2.1 Using System Commands to Access the Magnetic Tape Unit

Besides the magnetic tape utility programs discussed in this document,MTU.DVR allows you to use several AMOS commands to access the magnetic tapeunits. To look at files on magnetic tape, use the ASCDMP command. Enter

.ASCDMp Devn: D

where Devn: selects the magnetic tape unit you want to access. ASCDMPdisplays (in ASCII form) the tape block currently in position at the tapetransport read heads. To display the next block, use ASCDMP again. NOTE:If you try to read past the end of the file, ASCDMP blows up; type aControl—C to exit ASCDMp.
- -

You may use the TYPE command to display a magnetic tape file. Enter:

.TYPE Devn: &fiJ

where Devn: selects the magnetic tape unit you want to access. TYPEdisplays the file currently in position at the transport read heads. Todisplay the next file, use TYPE again.

You may use COPY to copy from a disk file to the magnetic tape. Enter:

SCOPY Devn:=Fi lespec tED

where Devn: selects the magnetic tape unit you want to access and Filespecselects the disk file you want to copy to the tape. Make sure that Filespec
is a valid AMOS file specification. You may i-iot use COPY to copy datafrom the magnetic tape to a disk file.

2.2 Concepts

Before we describe the tape utility programs, it might be a good idea todefine a few of the terms that appear in the following discussion:

1. Magnetic Tape Transport — A transport is the hardware that readsand writes data on a magnetic tape (also known as a tape unit).(The mechanisms within the transport that actually read and write
the data are called heads.)

2. Magnetic Tape — The magnetic tape is the media on which thetransport acts. Tapes are either 7—track or 9—track; the tapeutility programs work correctly on either type. The utility
programs assume that your tape is capable of recording at Least 800bits per inch. The standard magnetic tape length is 2,400 feet,but the tape utility programs function on any length of tapesupported by your tape transport.

3. BPI — The BPI (bits—per—inch) value specifies the density of the
data on the magnetic tape (either 1600 or 800 bits per inch). When

USING THE MAGNETIC TAPE UTILITY PROGRAMS Page 3

the system starts up, the magnetic tape driver assumes that the BPIyou will be using is 1600. If this value is incorrect, you mustuse the SET BPI command to enter the correct SPI. You may recordat either 800 or 1600 EPI, but when you read a tape you must readit at the BPI it was recorded at.

4. Density — When we talk about tape density, we are talking about
the BPX a tape was recorded at. This figure gives the density ofthe data on the disk.

5. Load Point — When the magnetic tape is positioned so that themetallic film at the start of the tape is at the transport readheads, that tape is said to be at load point. Until the tape is at
toad point, you cannot read or write data on the tape.

6. Mounted — The magnetic tape is mounted when it is correctly
threaded on the tape drive. See the documentation accompanying
your tape transport for information on mounting tapes. (NOTE:Mounting a tape is not the same as mounting a disk. When you mount
a disk, you must actually use the MOUNT command to mount it. If
you use MOUNT on a magnetic tape unit, it does no harm, but
accomplishes no purpose, either.)

3.0 SETTING TAPE DENSITY

When you use the tape utility programs to read or write data on a magnetic
tape, the system must know the density of the data you want to read orwrite. When the system starts up, the default data density is 1600 BPI. If
you use the TAPE command to transfer data from the tape to disk files, make
sure that the current BPI value is the same as the density value under whichthe data was originally recorded. If you use the TAPE command to write data
from the disk to the magnetic tape, make sure that the current SPI value is
set to the density you want to have the data recorded at.

To set the tape density value, use the SET EPI command. At AMOS commandlevel, enter:

.SET BPI Devn:NNNN RET

where Devn: selects the magnetic tape unit you want to affect. NNNN is the
BPI value you want to use. For example:

.SET BPI MTUO:80O

(SET BPI sets a flag in the magnetic tape module, MTSTAT.SYS. The tapedensity does not get changed to the specified value until you actually readfrom or write to the magnetic tape unit. At that time, MTU.DVR reads the
BPI value from MTSTAT.SYS and sends it to the transport.)

USING THE MAGNETIC TAPE UTILITY PROGRAMS
Page 4

(23.1 SET Rn Error Messages

If you give an invalid device specification or incorrect en value to theSET BPI command, you see:

The format for the command is: SET OPI MTU*:XXXXWhere * = a tape drive in the range 0 thru 7 andxxxx is either 800 or 1600.

Check your device specification. (You can see a list of the valid systemdevices, including the magnetic tape units, by typing DEVTBL followed by aRETURN.) The AM—600 supports up to eight tape drives (unit numbers 0—7).Make sure that you have specified a BPI value of either 800 or 1600.

4.0 REWINDING A TAPE

To rewind a magnetic tape, use the REWIND command. Enter:

.REWIND Devn: EffJ

where Devn: selects a magnetic tape unit. Make sure that no other user isaccessing the specified tape unit.
This program returns a tape to load point. If the tape is already rewound,using REWIND does no harm.

Make sure that the tape you want to rewind is correctly mounted. TypeREWIND followed by the specification of the unit whose tape you want torewind. Type a RETURN. For example:

.REWIND MTtjl:

You now see one of the following messages:

1. Tape is rewinding now
This message is the most common and indicates that the tape isin the process of rewinding. The rewind will be finished in amoment.

2. Tape is already rewinding
Someone else has already begun to rewind the tape. The rewindwill be finished in a moment.

3. Tape cannot be rewound — it is at load point.
The tape has already been rewound (or has never left loadpoint). Check to see that you are specifying the correct tapeunit.

REWIND returns you to AMOS command level while the tape is still rewinding.

USING THE MAGNETIC TAPE UTILITY PROGRAMS Page 5

4.1 REWIND Error Messages

If you use REWIND incorrectLy, you see one of the following error messages

?File specification error
The system didn't understand the format of your command line. Forexample, you typed REWIND followed by a RETURN, without a device numberspecified. Re—type theline.

?Cannot OPEN Devn: — device does not exist
The system didn't recognize your specification of the magnetictape unit. Check your spelling. Type DEVTBL followed by a RETURN for

a list of the devices (including magnetic tape units) defined on thesystem.

Tape cannot be rewound — it is at load point
REWIND cannot rewind the tape; it is already at load point. Checkto see that you have specified the correct device.

5.0 TRANSFERRING DATA BETWEEN DISK FILES AND TAPE

The TAPE utility program copies data from disk files to magnetic tape andvice versa.

If you are reading from a magnetic tape created on another system, chancesare that the data is incompatible with the AMOS system. For example,
AIPhaBASIC requires that all data records it handles end with a carriagereturn/line—feed pair; if these are not present, BASIC may not be able toread the tape data you have written into a file. The screen—oriented texteditor, VUE, requires that each line end with a carriage return/line—feed
pair, and that the line be less than 510 characters. TAPE can convert yourdata from ASCII to EBCDIC and vice versa; beyond that, any data conversionand manipulation required to make your data compatible with the AMOS systemis left up to you.

5.1 How TAPE Writes Data to a Tape

Before we discuss the actual operation of the TAPE program, it is importantto understand how TAPE actually copies data to the tape from a disk file andvice versa. Records on tape are organized sequentially; that is, recordsare written one after the other and are read back the same way. (TAPE doesnot support a random—access file format.) Records are grouped on the tapeinto blocks. (The exact number of records per tape block is set by you whenyou originally write the data to the tape; this is called the blockingfactor.)

USING THE MAGNETIC TAPE UTILITY PROGRAMS Page 6

(H5.1.1 Organjzatio of Data on the Tape — When it writes data to a tape,MTU.DVR magnetizes a short amount of tape at the end of every tape block.This magnetized interval is called an Inter—record Gap (!RG), and when thetape drive reads the data back again, the tape drive automaticallyrecognizes an IRG as marking the end of a tape block. The hardware itselfbegins reading after the IRG and stops when it reaches the next one.
Because an IRG takes up room on the tape that might otherwise be used tostore data, it is a good idea to make the tape blocks relativeLy long incomparision to the IRG. In this way, you can make more efficient use of thetape by minimizing the amount of wasted space on it.
When TAPE finishes copying the data from your disk file to the magnetictape, it writes a special symbol to the tape called an EOF, or end—of—filemarker. This marker designates the end of the fiLe so that when you useTAPE to copy the data back to a disk file, TAPE knows when the end of thefile has been reached.

The tape transport detects the end of the tape. When you use TAPE to writedata to the tape, TAPE rewinds the tape one block when it reaches the end ofthe tape; then it writes an EOF to indicate the end of the file.

5.1.2 Reblocking Data — When you write data to a tape from disk, severalof the disk file records form one tape block. The number of records perblock is called the blocking factor. For example, if you write 25 recordsper tape block, the blocking factor is 25. Of course, the actual amount ofdata per tape block also depends upon the number of characters in each diskfile record.
When you write data to a tape, the TAPE program asks you if you want to doreblocking. What this means is that you can choose the number of datarecords to write to a tape block. (This number does not have to be thenumber of data records per disk block that appear in the disk file.) TAPEis able to calculate the number of characters per tape block after it asksyou the length of your data records and the blocking factor you want to use.
The ability to change the blocking factor of the data records whentransferring data from disk to tape is an important factor in makingefficient use of the magnetic tape.

If you do not want to do reblocking, TAPE assumes that your data records are512 bytes long, and that you want to write one record per tape block. Whenyou write data to a tape, make sure that you make note of the length of yourdata records and the blocking factor you use. Also remember to write downthe number of tape blocks you are transferring. When you transfer the databack to a data file you will have to know alL of this information.

USING THE MAGNETIC TAPE UTILITY PROGRAMS Page 7

5 2 Transferring Data from a Disk File to Tape

When you write data from a disk file to a tape, you may translate the data
from ASCII to EBCDIC or vice versa. TAPE requires that the file be asequential file with fixed—length records. Make sure that the currentsystem BPI value for the unit you are using is the data density you want touse to record the data on the tape.

To write data to a tape from a disk file, enter:
.TAPE

Now TAPE begins to ask you a series of questions. You can exit TAPE andreturn to AMOS command level it any time by typing a Control—c in responseto any of the questions below.

1. The screen clears and you see:

This is the magnetic tape program.
It can copy files from disk to tape or it can copy files
from tape to disk.
*
*
*
Which do you want to do?
1— Copy a file from disk to tape.
2— Copy a file from tape to disk.

Type the number of the option you wish.
Answer?

Enter a 1, followed by a RETURN. (If you enter anything but a 1 or
a 2, TAPE asks the question "Which do you want to do?" and then
displays the example above again.)

(If you change your mind about wanting to write to tape, type aControl—C to interrupt TAPE and return you to AMOS command level.)
2. Now the screen clears and TAPE displays the message:

Tape can do character code conversion.
What type of conversion do you want to do?
1 — None.
2 — Convert the ASCII file to an EBCDIC file.
3 — Convert the EBCDIC file to an ASCII file.

Type the number of the option you wish.
Answer?

TAPE is able to translate your date from ASCII to EBCDIC form, andvice versa. Because you are transferring data from a disk file to

USING THE MAGNETIC TAPE UTILITY PROGRAMS
Page 8

the tape, this question is asking if you want to translate the datain the file before you write it to tape.
Ehter the number that selects the conversion (if any) that you wantto p!rform. You must enter a 1, 2, or 3 (or a Control—C to exit toAMOS command level); any other answer causes TAPE to re—display theexample above.

3. The screen clears and you see:

Type in the name of the disk file you want copied to tape.Answer?

Enter a valid AMOS file specification You may only enter thespecification of a sequential file.
4. Now the screen clears and TAPE displays this message:

Which tape drive are you using?
(For example — MTUO: MTU1: MTU2: etc.)
Answer?

Give the specification of the magnetic tape unit you want to use(e.g., MTUS:). If you decide at this point that you do not want tocontinue with the TAPE operation, type a Control—c to exit to AMOScommand level.

5. The screen clears and you see:

Tape can do reblocking of the disk file.
This means you can specify the length of the recordand the number of records in a tape block.

Do you want to do reblocking?
Answer yes or no —

Answer YES or NO; depending on whether or not you want to doreblocking. (See Section 4.1., "Reblocking;' for a discussion onreblocking.) If you want to do reblocking, the screen clears andTAPE displays this message:

What is the size of the record?
(For example: 10, 20 512 or any size you want)
Answer?
*
*
*
What is the number of records in a block?Answer?

TAPE assumes that the sequential file you want to copy to tape hasfixed—length records. Give the length of the record (in bytes,

I % I. ft4q,

USING THE MAGNETIC TAPE UTILITY PROGRAMS Page 9

including any record delimiters such as carriage returns andLi ne—feeds.)

If you enter just a RETURN, TAPE assumes a record length of 512.

Now give the number of these records you want to fit into one tapeblock. This is called the blocking factor.
6. TAPE now clears the screen and tells you how many characters youare writing in a tape block. For example:

You are writing 2500 characters in a tape block.
If this number does not reflect what you really want to do, you maytype a Control—C to exit from TAPE to AMOS command level. Forexample:

You are writing 0 characters in a tape block.

The message above indicates that you entered invalid data to thereblocking questions. Exit TAPE via a Control—C, and try again.
7. Next you see:

*
*
*
Ts the tape loaded?
Type return if it is

When you are sure that the tape is physically mounted on the tapedrive, and that the tape is at load point, type a RETURN. (If youdo not want to start writing at the beginning of the tape, the tapedoes not have to be at load point.)
8. Now TAPE asks:

Is the tape drive on—line?
Type return if it is

Make sure that the tape drive is on—line. (Check with thedocumentation that accompanied your tape transport to see whatbutton or switch to push to put the drive on—line.)
Now the TAPE program begins its data transfer. When the copy isfinished, TAPE clears the screen and you see a message that tells
you how many tape blocks were written and how many errors occurred.
For example:

There were 100 tape blocks written or read.
There were 0 errors.

USING THE MAGNETIC TAPE UTILITY PROGRAMS Page 10

nYour tape drive detects any parity or CRC errors and reports them
back to the AM—600 controller.

9. Remember to make note of the size of the data records, the numberof data records per tape block, and the total number of tape blocksyou wrote. Also remember the BPI value you recorded the tape at.When you transfer the data back to a disk file, you will need thisinformation.

10. If you do not rewind the tape, you can write another file beginningat the next position on the tape. (You can keep using TAPE without
rewinding the tape until the tape is full.)

5.3 Transferring Data from Tape to Disk Files
When you copy data from tape to a disk file, TAPE requires that the file bea sequential file with fixed—length records. Make sure that the current BPIvalue for the drive you are using is the value originally used to record thedata.

To write data to a disk file from a magnetic tape, enter:
.TAPE fID

Now TAPE begins to ask you a series of questions:

1. The screen clears and you see:

This is the magnetic tape program.
It can copy files from disk to tape or it can copy filesfrom tape to disk.
*
*
*
which do you want to do?
1— Copy a file from disk to tape.
2— Copy a file from tape to disk.

Type the number of the option you wish.
Answer?

Enter a 2. (If you enter anything but a 1 or a 2, TAPE asks thequestion "Which do you want to do?" and then displays the exampleabove again.)

(If you change your mind about wanting to write to a disk file,type a Control—C to interrupt TAPE and return to AMOS commandlevel.)

USING THE MAGNETIC TAPE UTILITY PROGRAMS Page 11

2. Now the screen clears and TAPE displays the message:

Tape can do character code conversion.
What type of conversion do you want to do?
1 — None.
2 — Convert the ASCII file to an EBCDIC file.
3 — Convert the EBCDIC file to an ASCII file.

Type the number of the option you wish.
Answer?

TAPE is able to conv4rf your tape data from EBCDIC to ASCII form,
and vice versa. Because you are transferring data from tape to adisk file, this question is asking if you want to translate the
data on the tape before you write it to disk. Enter the numberthat selects the conversion (if any) that you want to perform.
(You must enter a 1, 2, or 3; any other answer causes TAPE to
re—display the example above.) To interrupt TAPE and return to
AMOS command level, type a Control—C.

3. The screen clears and you see:

Type in the name of the disk file the tape is to be
copied into.
Answer?

Enter a standard AMOS file specification (e.g.,
DSKO:MAIL.DATE11O,2]). (The default extension is .DAT. TAPE
assumes the account and device you are currently logged into.)

4. The screen clears and you see:

Which tape drive are you using?
(For example — MTUO: MTU1: MTU2: etc.)
Answer?

Give the specification of the magnetic tape unit you want to use(e.g., MTU5:). If you decide at this point that you do not want to
continue with the TAPE operation, type a control—c to exit to AMOS
command Level.

5. TAPE now displays this message:

You must supply blocking information on the tape file.
This means you must say how many characters are in a
record and how many records are in a tape block.

What is the size of the record?
(For example: 10, 20, 512, or any size you want)
Answer?

USING THE MAGNETIC TAPE UTILITY PROGRAMS
Page 12

Give the number of bytes in each data record. Include any recorddelimiter bytes, such as carriage returns and line—feeds.
NOTE: When writing data from a disk file to tape, blockinginformation is optional. However, when you write data from tape toa disk file, you MUST supply blocking information. TAPE has noway of knowing the blocking factor and record length you suppliedwhen you originally wrote the data onto the tape. You must nowsupply that information to successfully retrieve your data from thetape.

After you answer the question above, TAPE asks:
*
*
*
What is the number of records in a block?
Answer?

Give the blocking factor you used when you originally wrote thedata to the tape. (For example, if you wrote 100 data records pertape block, enter the number 100.)

You MUST enter an answer for the questions above on blockinginformation. If you enter just a RETURN, TAPE re—displays thequestions.

6. Now you see a message that tells you how many characters TAPE hascalculated to be in a tape bLock. For example:

You are reading 10000 characters in a tape block.
If this number is not correct (for example, it is 0), there wassomething wrong with your answers to the questions on blockingabove. Type a Control—C to exit to AMOS command level and. tryagain. After this message, TAPE asks you for the number of blocksyou want to read from the tape. For example:

You are reading 2500 characters in a tape block.*
*
*
ow many tape blocks do you want to read?
Answer?

Enter the number of tape blocks you want to transfer to a diskfile. TAPE will read no more than the number of blocks youspecify, but under certain circumstances will read less. Forexample, if the end of the tape is reached before TAPE has read thespecified number of blocks, it will stop, If an end—of—file markeris reached, TAPE stops reading.

USING THE MAGNETIC TAPE UTILITY PROGRAMS Page 13

NOTE: Some tapes contain a special header block at the front of thetape as the first file. This header file may be onLy one blocklong. If you use TAPE on such a tape, it reads this file first andstops, reporting that it read only one block. Use TAPE againwithout rewinding the tape, and you will read the first of yourfiles on the tape.

(NOTE: See Section 6.0., "The SKIP Command," for information onusing SKIP to skip over files and header files.)
7. Now TAPE asks:

*
*
*
Is the tape loaded?
Type return if it is

Type a return when you are sure that the tape is physically mountedon the tape drive reel. Make sure that it is at or past loadpoint. Type a PETURN. (If you do not want to start reading at thefront of the tape, it does not have to be at load point.)
8. Now you see:

Is the drive on—line?
Type return if it is

Type a RETURN when you are sure that the tape drive is on—line.
9. TAPE now transfers over the data from the tape to the disk file.It clears the screen and tells you how many tape blocks it readfrom the tape and how many errors occurred. For example:

There were 200 tape blocks written or read.
There were 0 errors

Your tape drive detects any parity or CRC errors and reports themback to the AM—600 controller.

10. If you do not rewind the tape, you can use TAPE again to copy thenext file on the tape. In this way, you can read a tape thatcontains many fiLes, even if those files consist of records ofdifferent sizes grouped with different blocking factors.

?Memory allocation tailed
When you specified the number of characters per tape block,gave too large a number. (For example, you specified a record size100,000.) Check the validity of the blocking information you gaveTAPE.

You are writing 0 characters in a tape block.
This message indicates that you made an error whenTAPE's questions on data blocking. Type a Control—c to exit

command level and try using TAPE again.

?Cannot OPEN Filespec — file already exists
You tried to write data

the same specification already
command Level. Check your
entered the correct device and
again, but enter a different fi
?Cannot READ Filespec — file not found

You tried to write data from a disk file to the tape, but thesystem cannot find the specified file. TAPE returns you to AMOScommand level. Check your file specification to make sure that youentered the correct account and device specifications. Try using TAPEagain, but enter a different filespec.

?Cannot READ Devn: — file not found
You are trying to write data from the magnetic tape to a diskfile, but TAPE cannot read the tape. You usually see this message when

you try to read from a blank tape or when the tape is not positioned atthe start of a tile.

?Cannot WRITE Devn: — device not ready
The tape drive is not on—line. Push the on—line switch or buttonon the tape transport.

?Cannot READ Devn: — device error
You see this message if the

that at which the tape was recorded.
need to change the system BPI value.)
there is a bad spot on the tape.

system SPI value is different than
(Use the SET BPI command if you
You can also see this message if

USING THE MAGNETIC TAPE UTILITY PROGRAMS Page 14

5.4 TAPE Error Messages

If you give TAPE invalid device specifications you see the standard systemerror messages. For example:

?Cannot READ Devn: — device does not exist
You gave an invalid specification to TAPE's question: Which tapedrive are you using?. Make sure that the magnetic tape units aredefined as devices in the system device table.

(I

you
of
to

answering
to AMOS

from the tape to a file, but a file with
exists. TAPE returns you to AMOS

file specification to make sure that you
account specifications. Try using TAPE
lespec.

USING THE MAGNETIC TAPE UTILITY PROGRAMS Page 15

6.0 THE SKIP COMMAND

The SKIP command tells PITU.DVR to skip to the next end—of—file marker on thetape. Use SKIP to skip over initial header files at the front of the tapeand to skip over files on the tape you dontt want to read.

IMPORTANT NOTE: Make sure that no other user is accessing the tape driveyou are using when you use SKIPS

To skip to the beginning of the next file, enter:
.SKIP Devn: IED

where Devn: selects the magnetic tape unit you want to use. For example:

.SKIP MTU4;

If the tape is currently positioned at the front of a file, the SKIP command
causes the tape drive to skip over the entire file to the beginning of thenext one. If the tape is currently positioned in the middle of a tile, theSKIP command causes the tape drive to move to the beginning of the nextfile.
When SKIP finishes, it returns you to AMOS command level.

6.1 SKIP Error Messages

If you supply an invalid device specification, you see: -

?File specification error

Make sure that the magnetic tape unit you specified is a valid systemdevice. (Type DEVTBL followed by a RETURN to see a List of all system
devices, including the magnetic tape units.)

USING THE MAGNETIC TAPE UTILITY PROGRAMS — INDEX Page Indek—1

Index

Blocking data
Blocking factor
BPI

Changing blocking
COPY

Data blocking
Data conversion
Data incompatibility
Data restrictions
Default blocking factor
Default BPI .

Default record length
Density
Detecting errors
DEVTBL

EBCDIC
EOF (end—of—fiLe)
Error messages

REWIND
SET BPI
SKIP
TAPE

IRG (Inter—record Gap)

Load point

Marking end—of—tape
Mount
MTSTAT.SYS
MTU.DVRE1,6J

1

6

6

3, 13

2

9—track .
2

AM—600
-

ASCDMP
. 1, 10, 13

ASCII
2

6, 11

factors . 6

5

1

1

USING THE MAGNETIC TAPE UTILITY PROGRAMS — INDEX Page Index—2

Non—sharable devices
1

On—line 9, 13
Rebtocking data 6, 8Record delimiters 8
REWIND

SETBPI
3Setting tape density 3

Setting up for mag tape 1
Sharable devices

1
SKIP 14
System initialization-tonthand file 1
SYSTEM.INI

1

TAPE

Tape organization . 6Transferring data - 2, 5, 7, 10Transport . 2
TYPE

April 1981

THE MAGNETIC TAPE FILE BACKUP PROGRAMS

1.0 INTRODUCTION

The Alpha Micro magnetic tape backup system consists of three programs:
FILTAP, the program to transfer files from disk to tape; TAPFIL, the program
to restore files to disk from tape; and TAPDIR, the program to list the
contents of a magnetic tape. These three programs when used with the AM—600
Magnetic Tape subsystem allow you to easily and rapidly back up and restore
both sequential and random files. The programs have full witdcarding
capability and allow you to back up multiple disk surfaces on a single tape.
The software also aLlows you to split a single backup across multiple reels
of tape.

NOTE: To use these programs, you must use Version 4.5 or later of the
magnetic tape driver, MTU.DVRE1,6J, supplied on the disk with the programs.

These programs store and read data on the magnetic tape in a special
variable—length record format developed by Alpha Micro. This format was
optimized for the characteristics of the Alpha Micro computer and its
magnetic tape subsystem; it was not intended that this format be used for
data interchange with other, non—Alpha Micro computers. If you wish to
transfer data to other computers using the magnetic tape subsystem, you
should use the TAPE program; see lising the Magnetic Tape Utility Programs
in the AMOS Software Update Documentation Packet for more details on that
prog ram.

IMPORTANT NOTE: It is important to remember that this set of programs was
designed as a mechanism for backing up disk files. That means that FILTAP
writes files to the tape along with their full device and account
specifications. (It also writes the date and time of backup.) Therefore,
when using TAPFIL to read a tape, if you want to access a specific file you
MUST specify the disk and account from which the file was backed up, as well
as the magnetic tape drive containing the tape you want to access. For
instance, if you stored a file on tape from DSK2:, you must specify the
device specification "DSK2:" when you restore the file from the tape. We

give specific examples in the sections below.

1.1 Witdcarding Features

All three programs have been designed to function as much as possible like
their disk—oriented counterparts (COPY and DIR) to make the magnetic tape
software as easy to use as possible.

FILTAP, TAPFIL, and DIRTAP use wildcard symbols and specification defauLts
in the same way that COPY and DIR do. This is because, like COPY and DIR,
FILTAP, TAPFIL, and DIRTAP are "wildcard commands."

THE MAGNETIC TAPE FILE BACKUP PROGRAMS Page 2

Wildcard commands differ from other AMOS commands in that besides accepting
the standard AMOS fiLe specification:

Devn:fi lename.extension[p,pnjC/switches}

they also accept a variety of wiidcard specifications. A wildcard file
specification allows you to select multiple fiLes with only one file
specification. These file specifications can contain the special wildcard
symbols it, ?, C], and ALL:. For example, to specify all files in alt.
accounts of DSKO: that have a .BAS extension, wildcard commands permit the
file specification:

DSKO:*.BAS[]

(In the example above, the symbol * stands for all possible filenames.) In
addition, the wildcard commands allow you to set account, device, and switch
specification defaults. For example, the wildcard command line:

.FILTAP C100,2J*.BAS,*.TXT[117,6],*.LST RET

sets the default account specification to [100,2]. The command line thus
selects all .BAS and .LST files in account [100,2], and all .TXT files in
account [117,6J. (Notice that the account specification setting the default
occurs before the filename and extension rather than after it, as is the
case with a standard AMOS file specification.)

1.1.1 Switches and Wildcard Commands — "Switches" are option requests.
Each switch must begin with a slash, I. Remember that wiLdcard commands
recognize two types of switches: "file" switches and "operation" switches.
An operation switch applies to all of the file specifications on an entire
command line no matter where it appears on that command line.

A file switch may apply to only specific file specifications, depending on
where it appears on the command line. If a file switch appears at the endof a file specification, it applies only to the files selected by that
specification. For example:

.FXLTAP *.BAS,*.TXT/QUERY,*.LST @

in the command line above, the /QLJERY switch (a file switch) applies only to
those files selected by the *.TXT file specification. If a file switch
appears before a file specification, it becomes the default switch, and
applies to all of the files selected by the following file specificationsunless it is overridden for a particular file specification by another
switch, or until a new default is set. For example:

.FILTAP *.BAS,/QUERY*.TXT,* . LST,*.MPC/NOQUERY,*.PRG @23

the /QUERY switch affects all files selected by the specifications *.ixi,
*.LST, and *.PRG, but not the files selected by the specification *.MAC.

THE MAGNETIC TAPE FILE BACKUP PROGRAMS Page 3

Because wildcard file specifications are extremely powerful, they can have
very widely ranging effects. If you are not famiLiar with the way in which
wildcard commands work, be sure to read Chapter 9 of the AMOS User's
Guide, (DWM—OO100—35) before attempting to use wildcard specifications.

2.0 WRITING DISK FILES TO TAPE — THE FILTAP PROGRAM

The FILTAP program writes disk files to the magnetic tape. This program
accepts a standard wildcard fiLe specification which specifies the files to
back up.

The FILTAP program operates in two modes: /APPEND and /NOAPPEND mode. In
/APPEND mode, FILTAP searches for the last file on the tape and starts
writing the new files immediately after any data already on the tape. In
/NOAPPEND mode, FILTAP does not look to see if any data is already on the
tape, but just starts writing files at the beginning of the tape. The
default mode of operation is /APPEND. Of course, if the tape is blank
(i.e., a new tape), you should specify the /NOAPPEND mode.

Call, the FILTAP program by giving a wildcard specification for the files you
wish to back up:

.FILTAP{/switches) Filespec1{/switches)(,Filespec2{/switches}...}J

The Filespec default is *.* and the account and device you are logged into.
The default switches are /NOQUERY/APPEND.

The FILTAP program now asks you for the device code and unit number of the
magnetic tape drive you want to write to:

Enter tape unit number:

(FILTAP assumes a device code of MTU.)

.FILTAP now writes the files to tape, listing each file as it transfers it.
(NOTE: Because FILTAP also writes the date and time of the backup to the
tape, you should use the system commands DATE and TIME to set the system
date and time before you use FILTAP..)

2.1 Example

For example, to back up aLl fiLes from disk device DSKO: to the magnetic
tape drive MTUO: (starting at the beginning of the tape), use the following
command:

THE MAGNETIC TAPE FILE BACKUP PROGRAMS Page 4

.FILTAP DSKO:EJ/NOAPPEND
Wnter tape unit number: O@
AMSORT.SYSE1,4J to MTUO:AMSORT.SYSE1,4J

Total of 1282 fiLes transferred

2.2 Writing to Multiple Tapes

If all, of the files you specified will not fit on one tape, FILTAP displays
the following message:

%Tape is full, please mount another tape then type RETURN to
% continue, or type control—C to abort copy

If you wish to continue backing up files on another reel of tape, wait for
the current tape to finish rewinding, mount a new reel of tape, then type
RETURN on your terminal. The backup will continue on the new reeL. If you
wish to abort the backup, type a Control—C.

2.3 FILTAP Switches

FILTAP provides the switches below:

/QUERY or /Q Ask user for confirmation before copying files (file
switch).

/NOQUERY or /NO@ Don't ask for confirmation (default, file switch).

/APPEND or IA Write files to tape at the end of existing files
(default, operation switch).

/NOAPPEND or /NOA Write files at beginning of tape (operation switch).

2.4 Error Messages

You may see the following error messages when using the FILTAP program:

?Cannot find DSKO:SCNWLD.SYSE1,4J or MEM:SCNWLD.SYS
The FILTAP program needs this file to be able to process wildcard
symbols in your tile specification. This message can indicate
that SCNWLD.SYS does not exist, or that you do not have enough
memory to load the file into your partition.

THE MAGNETIC TAPE FILE BACKUP PROGRAMS Page 5

?Cannot READ Devn — device does not exist
?Cannot READ Devn — device is not mounted

You tried to copy to or from a device that is not listed in the
DEVTBL command in your SYSTEM.INI, does not have a driver in area
[1,62 of the System Disk, is not file—structured, or is not
mounted. ("Devn:" is the device you specified.)

%No file—oriented device corresponding to Devn: is mounted
You specified a device, but left off the unit number. FILTAP
cannot find a logical unit that matches your specification. Try
mounting the device.

%Tape is full, please mount another tape then type RETURN to
% continue, or type control—C to abort copy

There is no more room on the current reel of tape. Mount another
reel and type RETURN to continue the backup process, or type a
control—c to abort the backup procedure.

3.0 RESTORING DISK FILES FROM TAPE — THE TAPFIL PROGRAM

Use the TAPFIL program to transfer files back to the disk from tape. The
files must have been written to the tape via FILTAP. TAPFXL provides full
wildcarding, allowing easy selection of the tiles to be restored, as well as
automatic renaming facilities.

To use TAPFIL, enter the TAPFIL command followed by an output specification,
an input specification, and any optional switches:

..TAPFIL{/switches) outspec = {inspecl(/switchesH,inspec2{/switches}. . .}}1E10

The output specification defauLts to the input specification. The input
specification defaults to *.* and the device and account you are logged
into. The default switches are /NOQUERY/DELETE.

TAPFIL now asks you for the device code and unit number specifying the tape
drive you wish to read from:

Enter tape unit number:

TAPFIL assumes a device code of MTU.

TAPFIL then rewinds the tape and starts searching for the specified files.
As TAPFIL finds them on the tape, it transfers the files to the disk and
accounts you have specified.

The output specification you supply to TAPFIL is the specification of the
file(s) you wish to create. TAPFIL provides full wildcarding. Just as with
the COPY command, you may not copy files from one account to another unless:
1) the account you are copying from is in the same Project as the account to
which you are copying; or, 2) you are logged into the disk account into
which you are copying the files; or, 3) you are logged into the System

THE MAGNETIC TAPE FILE BACKUP PROGRAMS Pag&6

0Operators account, [1,2]. (As with the COPY command, Logging into account[l,2J gives you certain priviLeges. The default account specification of the
Outfilespec when you are logged into [1,2] is the wiLdcard account, C].Also, if you are Logged into [1,2], TAPEIL will create the account you arecopying to if it does not exist.)
The input specification is a list of the files you wish to copy from thetape. The input specification must give the exact specification of the file
you wish to copy, including device and account of the file as it is storedon the tape.

3.1 Example

For example, assume you are logged into DSKO:[140,1J and you wish to copy a
file from tape that was backed up from your own account (DSKO:E140,1J).
Enter:

.TAPFIL = FILE.DATD
Inter tape unit number: Oa
MTUO:FILE.DAT to FXLE.DAT
Total of 1 file transferred

Note that in the example above, the output specification defauLted to the
input specification, and the input device and account defaulted to the
device and account you are currently Logged into.
If you want to copy a file from tape that was backed up from another device
and account (b8K2:[1,4] for example), you would enter the following command:

.TAPFIL = DSK2:TEST.BAS[1,4J 1ED
Enter tape unit number: O@
MTUO:DSK2:TEST.BAS[1,4J to TEST.BAS
Total of 1 file transferred

If you want to restore all the files stored on a tape to their original
device and account, you would Log into [1,2] and enter the following
command:

.TAPFIL = ALL:[J cD

If you want to return all the files stored on a tape back to their accountsof origin in Project 110 of DSKO:, you would log into an account in Project
110 and enter the following:

.TAPFIL DSKO:[J=DSK3:Cl10,*J

If you include a filename and/or extension in your output specification, youcan rename the copies of the files you are writing to disk. For exampLe:

.TAPFXL b8K3:[J*.OLD = DSK1:[3UO,1?J*.MAC

...•

THE MAGNETIC TAPE FILE BACKUP PROGRAMS Page 7

copies all .MAC files from the tape backed up from accounts E300,1'J on
DSK1: to the same accounts on DSK3:, and renames the file extensions from
.MAC to .OLD.

3.2 Restoring from Multiple Tapes

If you are restoring files from muLtiple tapes created by the FILTAP
program, you must enter separate TAPFIL commands for each tape.

3.3 TAPEIL Switches -

TAPFIL provides the foLlowing switches:

/OllER? or /0 Ask user for confirmation before copying files (file
switch).

/NOQUERY or /NOQ Don't ask for confirmation (default, file switch).

/DELETE or ID Copy over to an existing file, thereby deleting it
(default, file switch).

/NODELETE or /j'40D Dont copy over to any existing files (file switch).

3.4 Error Messages

You may see the following error messages when using the TAPEIL program:

?Cannot find DSKU:SCNWLD.SYSE1,4] or MEM:SCNWLD.SYS
The IAPFIL program needs this file to be able to process wildcard
symbols in your file specification. This message can indicate
that SCNWLD.SYS does not exist, or that you do not have enough
memory to load the file into your partition.

?Cannot READ Devn — device does not exist
?Cannot READ Oevn — device is not mounted

You tried to copy to or from a device that is not listed in the
DEVTBL command in your SYSTEM.INI, does not have a driver in area
[1,6] of the System Disk, is not file—structured, or is not
mounted. ("Devn:" is the device you specified.)

%No file—oriented device corresponding to Devn: is mounted
You specified a device, but left off the unit number. TAPFIL
cannot find a logical unit that matches your specification. Try
mounting the device.

THE MAGNETIC TAPE FILE BACKUP PROGRAMS Page 8

?Tape is not file structured
The tape you are trying to read was not written by the FILTAP

program. The TAPFIL program can only read tapes written by
FILTAP. Check to make sure you have mounted the correct reel of
tape.

?Missing output specification
You omitted the equaL sign in your TAPFIL command line; TAPFIL
couldn't telL which information was your input specification and

which was your output specification.

?More than one output specification
You may not supply more than one output specification.

?Files may not be transferred to RES:
You may only add programs to system memory by using the
command within your system initiaLization command

SYSTEM. INI.

C1,2J, can't create [p,pnJ
account to a nonexistent account unless

under £1,2J. If you copy to a nonexistent
under E1,2], TAPFXL will create the account.

?Output MFD is full
The Master File Directory only has room for 64 entries. The

transfer in progress would have created a new account, but there
is no room in the MFD.

%Bypassing BADBLK.SYSE1,2J
BADBLK..SYS exists to prevent bad blocks
on a device from being allocated, and
should never be directly accessed.

You cannot copy the BADBLK.SYS file, since this would lead to
corruption of the file system.

?Device full
There is no more room on the disk.

?Cannot OPEN Devn: — protection violation
TAPFIL could not transfer the files. You are not allowed to write
into an account you are not logged into unless the project
number of that account is the same as the project number of the
account you are copying from. You must either log into the System
Operator's account, E1,2J, or the account you are copying into to
accomplish the transfer.

SYSTEM
file,

%Not copied — Destination file already exists
You tried to copy to an existing file while the
was in effect.

?You are not logged in under
You cannot copy from an
you are logged in
account while logged

/NODELETE option

THE MAGNETIC TAPE FILE BACKUP PROGRAMS Page 9

4.0 LISTING THE CONTENTS OF A TAPE — THE TAPDIR PROGRAM

The TAPDIR program displays a list of the files that have been stored on atape. (NOTE: You may only use TAPDIR on a tape that was written via
FILTAP.) The TAPDIR program has been designed to be as similar to the DIRprogram as possible.

To create a list of the files on a tape, enter the following command:

.TAPDIR{/switch}{Ljstfi . .} E!.J

Where the optional Listfilespec specifies where the output listing is to beplaced. If you specify no listfile or equal sign, the display goes to yourterminal. By specifying a lThtfile, you can send the display to a disk fileor printer.

The optional inspec allows you to select the files you wish to include inthe directory listing. The default is the device and account you are loggedinto, and a file specification of *.*.

TAPDIR now asks for the device code and unit number of the drive containingthe tape that you want to get a directory listing of:
Enter tape unit number:

Now TAPDIR creates the output listing, showing the relative position of eachfile on the tape, the full file specification, the size of the file, whetherthe fiLe is a linked (L) or contiguous (C) file (that is, whether it is asequential or a random file), and the date and time that the file waswritten to the tape. At the end of the listing, TAPDIR gives the total
number of fiLes and blocks that it has found.

4.1 Example

For example, to list all the files on a tape on your terminal, enter the
following command:

.TAPDIR ALL:rJ
Enter tape unit number: 0

1 DSKO: SYS MAC 140,1 16 L 14—May—80 14:52:23
2 DSKO: NBSORT MAC 140,1 4 L 14—May—80 14:52:25
3 DSKO: FILTAP MAC 140,1 23 L 14—May—80 14:52:25
4 DSKO: JANE DAT 140,1 99 C 14—May—80 14:52:27Total of 4 files in 142 blocks

To create a file (DJRECT.LST) in the account and device you are logged intothat contains a list of all data (.DAT) files on the tape, enter thefollowing command:

.TAPDIR = ALL:*.DAT[]

THE MAGNETIC TAPE FILE BACKUP PROGRAMS Page 10

4.2 DIRTAP Switch

DIRTAp provides the following switch

IKILL or 1K Delete and replace existing Listfile if it has the
same specttication as your Listfilespec. (Operationswitch.)

4.3 Error Messages

You may see the following error messages when using the TAPDIR program:

?Cannot find DSKO:SCNwLD.Sys[j,4] or NEM:SCNWLD.Sys
The TAPDIR program needs this tile to be able to process wildcard
symbols in your file specification. This message can indicate
that SCNWLD.SYS does not exist, or that you do not have enoughmemory to load the file into your partition.

?Cannot READ Devn — device does not exist
?Cannot READ Devn — device is not mounted

You tried to copy to or from a device that is not listed in the
DEVTBL command in your SYSTEM.INI, does not have a driver in areaE1,6J of the System Disk, is not file—structured, or is not
mounted. ("Devn:" is the device you specified.)

%No tile—oriented device corresponding to Devn: is mounted
You specified a device, but left off the unit number. TAPDIRcannot find a logical unit that matches your specification. Trymounting the device.

?Tape is not file structured
The tape you are trying to read was not written by the FILTAP
program. The TAPDIR program can only read tapes written by
FILTAP. Check to be sure you've mounted the correct reel of tape.

?More than one output specification
You may not supply more than one output specification.

?Device full
There is no more room on the disk.

%No such files
TAPDIR was unable to find any files matching your inputspecification.

April 1981

BUILDING A TERMINAL DRIVER (THE NEWTRM PROGRAM)

Because of the device independent nature of the Alpha Micro system, adding a
new kind of terminal is a simple matter—— you need only modify your system
initialization command file to contain a terminal definition statement forthe terminal, and add a terminal driver program for the new terminal to your
System Disk. The terminal driver program defines the terminal to the
system, giving information about the particular characteristics of thedevice. Because terminals differ so widely, certain functions may be useful
only for certain types of -terthinals. The two main types of terminals arehard copy terminals, which output data to a permanent display via aprinting mechanism, and CRT terminals (alo called video display
terminals, or VDT), which output data to a video screen. The terminaldrivers for CRT terminals are the most difficult to write, since the
programmer must worry about cursor positioning and other screen—orientedfunctions.

1.0 THE NEWTRM PROGRAM

Using NEWTRM to build a new terminal driver will take you about half an hour
and will require that you are familiar with the characteristics of the
terminal you need the driver for. It is a good idea to have the user's
manual that accompanied your terminal at hand while you use NEWTRM so that
you can look up the information that NEWTRM requests.

NEWTRM uses the following files. Do not erase or modify them.

Alpha Micro supports a wide range of terminals by providing a large number
of terminal driver programs (in both source and assembled form). In thepast, if you wanted to use a terminal for which Alpha Micro does not supply
a terminal driver, you had to try to modify an existing terminal driver to
perform the functions of the new terminal, or had to laboriously write your
own driver program. Either case required that you understand quite a bit
about AMOS assembly language and terminal drivers.

Beginning with Release 4.5, Alpha Micro is providing a tool to help our
users develop their own terminal driver programs for any kind of terminal
they would like to add to the system. The tool is a terminal driver
building program called NEWTRM. This orogram provides you a skeleton
terminal driver, and allows you to customize the skeleton terminal driver
according to the needs of your particular terminal. You customize theterminal driver by answering a number of questions with yes or no, values,
or parameters which describe your terminal.

BUILDING A TERMINAL DRIVER (THE NEWTRM PROGRAM) Page 2

DSKO:TABDEF.MAC[1,6J VARDEF.MACC1,6J
DSKO:TDV1 .MACE1,6] DSKO:TDV2.MAc[1,6J
DSKO: ECHO.MAC £1 ,6J DSKO: NEWTRM. PC FE7,5J

To use NEWIRM, log into the Driver Library account, DSKO:C1,6J:

.LOG DVR:

Now, run the terminal driver building program NEWTRM by entering:

.NEWTRPI @jJ

NEWTRM now gives a set of instructions:

Terminate all input lines with carriage returns.
All numeric input is in decimal.
Separate numeric answers on the same line with spaces.
All NUMERIC answers default to 0.
If you have any problems, refer to the NEWTRM documentation.

Next, NEWTRM asks a long series of questions. Your answers to thesequestions will tell NEWTRM how to customize the skeleton driver to form aterminal driver for your particular terminal. The result will be a .MACfile that you can assemble to produce an assembled terminal driver program.

You may enter your answers in either uppercase or lowercase letters, or acombination of both. Also, any response of yes or no you enter may beabbreviated to the first letter of the word. For example, to a yes—noquestion you wish to answer in the affirmative, you may enter any of thefollowing:

YES

Yes
Y

y

We discuss each of the questions asked by NEWTRM below:

1.1 What is the name of the driver?

NEWIRM first asks for the name of the new terminal driver. Choose a one— tosix—character name for the driver. You should use a name that readilyidentifies the type of terminal supported by the driver (for example,"HAZEL" for a Hazeltine terminal). Do not supply a file name extension(that is, if you want to use the name SOROC, enter just "SOROC", not"SOROC.TDV"). For example:

What is the name of the driver? SOROC 1D

You will later add this terminal driver name to the system initializationcommand file TRMDEF statement that will define your terminal. (Forinformation on modifying the system initialization command file to add a newterminal to your system, see The System Initialization Command File in the

BUILDING A TERMINAL DRIVER (THE NEWTRM PROGRAM) Page 3

"System Operator's tnformatio&' section of the AMOS Software Updatedocumentation packet.)

1.2 Enter the number of nulls required after a line feed:
Some terminals require that one or more null characters be sent to themfollowing a linefeed. These null characters serve as a delay so that theterminal does not print the first few characters following the linefeed onthat same line, before actually performing the linefeed. Usually only hardcopy terminals require this delay. For example, your terminal might requirethat 6 nulls be sent after- a linefeed to ensure that the beginning of thenext line actually follows the Linefeed. Enter 0 if no delay is required.

1.3 Enter the number of nulls required after a form feed:
Some terminals, again usualLy just hard copy terminals, require that one or
more null characters be sent to them following a form feed. These nullcharacters serve as a delay so that the terminal does not print the first
few characters following a form feed on the bottom of that same page, before
actually performing the form feed. Your terminal, for instance, mightrequire that 4 nulls be sent to it after a form feed in order to process theform feed before printing further characters. Enter 0 if no delay isrequi red.

1.4 Does your terminal have a keyboard?

Some terminals are output—only devices, and have no keyboard. Enter yes or
no. If your answer is no, NEWTRM will ask you no further questions.
Instead, it wilL say "Please wait...", then finish building the terminaldriver. For information on what to do next, once you are returned to AMOS
command level, see Section 2, "Finishing Up."

1.5 Is RUBOUT a shift—underline?

Answer yes if the RUBOUT key (sometimes labeled RUB, DEL, or DELETE) is sent
by pressing the Shift and Underscore keys simultaneously. This is the onlyway that a shifted rubout is generated. Otherwise, you must have a separate
key for RUBOtjT that you don't have to shift for; in this case, answer no.

1.6 Is your terminal a CRT?

Answer yes if your terminal has a video display screen. (CRT means
cathode—ray tube, a common reference to the actual device whichelectronically displays characters on the screen. Often known as a VDT, orVideo Display terminal.) Answer no if your terminal is a "hard copy"

BUILDING A TERMINAL DRIVER (THE NEWTPM PROGRAM) Paae4

terminal, that is, if it prints a permanent cony of its interaction with youand the system on paper. f you answer no, NEWIRM will ask yOu no furtIerquestions. Instead, it will say "Please wait...", then finish building theterminal driver. For information on what to do next, once you are returnedto AMOS command level, see Section 2, "Finishing Up."

1.7 Enter the number of rows on the screen:

Enter the number of horizontal rows that may be displayed on the terminal atone time. This number is usually 16, 24 or 25 rows.

1.8 Now enter the number of columns:

Enter the number of vertical columns that may be displayed at one time.This number is usuaLly 32, 40, 64, 72, 80 or 132 columns.

1.9 For the cursor positioning command, is the row sent first?
Following the cursor positioning command from the terminal driver, if your
termimal must receive the ROW byte from the terminal driver before itreceives the COLUMN byte, answer yes. If it must receive the COLUP1N bytefirst, then the ROW byte, answer no.

1.10 Enter the positional offset from 1,1:

NEWTRM assumes that the home position on the video dsplay terminal is 1,1(row 1, coLumn 1.) However, many terminals make the home position 0,0, andsome use 32,32, so NEWTRM accepts an offset value relative to 1,1. Thisoffset value is added to 1,1. If the home position on your terminal is0,0, enter —1. If the home position on your terminal is 32,32, enter 31.

1.11 Enter the decimal ASCII value of the function leadin code:
Some terminaLs use function codes, while others use control codes, toperform operations such as clear screen or position cursor. If yourterminal accepts function codes, it requires a function leadin code to tellit to recognize the following input as a function code. NEWTRM requiresfrom you the decimal equivalent of the ASCII value for the leadin code. Atypical leadin code, for example, is an ESCAPE. You would enter the ASCIIvalue for an ESCAPE, which is 27 (base 10). If your terminal uses onlycontrol codes (e.g., Control—K CK) for cursor up), enter a 0.

BUILDING A TERMINAL DRIVER (THE NEWTRM PROGRAM)
Page 5

1.12 Enter the delay (in clock ticks) required after functions
Some terminals, whether using function codes or control codes, require atime delay to complete execution after receiving commands to CLEAR (clearscreen), EQS (erase to end of screen), EOL (erase to end of line), or evento position the cursor. Some terminals may also require a time delay afterany insertion or deletion of lines or characters. If your terminal requiresa time delay after any of these operations, enter the number of clock ticksrequired to delay until the command taking the longest to execute iscomplete. You can calculate this number of clock ticks by:

1. Knowing the current baud rate setting of your system. (Say 19,200baud.)

2. Counting the number of characters the terminal needs to generate tocomplete that longest operation. (Say it takes 1920 characters todo the longest operation on your terminal.)
3. Dividing the number of characters that need to be sent by the baudrate to obtain the decimal part of a second. (1920/19200 = 0.1seconds.)

4. Knowing the cycles per second (Hertz, or Hz) of A.C. power used byyour system as a reference frequency. In North America and a fewother areas, 60 Hz is used, but most of the rest of the world uses50 Hz. (Say 60 Hz.)

5. Finding the time of one cycle (one clock tick), in seconds. For 60Hz, one cycle is approximately 0.01667 seconds. For 50 Hz, it is0.02 seconds. (Say 0.01667 seconds per clock tick.)
6. Dividing the decimal part of a second, previously obtained, by thelength of one clock tick to find the number of clock ticksrequired. (0.1/0.01667 = 6 clock ticks.)

The result, rounded up to the nearest whole clock tick (in our case, still 6clock ticks), is the number of clock ticks required to delay before sendingfurther information to the terminal while the terminal is performing atime—consuming function. NEWIRM causes the terminal driver to accomplishthis delay by using the SLEEP monitor call and simply doing nothing for theduration of that operation.

If your terminal does not require a delay after receiving any command, entera 0.

1.13 Does the terminal have insert and delete line functions?
Your terminal will have both or neither, but not just one or the other.Enter yes if it has both, or no if it has neither.

•

BUILDING A TERMINAL DRIVER (THE NEWTRM PROGRAM)
Page 6

1 14 Does the terminal have erase to end of screen9 I
Enter yes if the terminal has the ERASE to END OF SCREEN (EOS) feature,.orno if it does not.

1.15 Does the terminal have erase to end of line?
Enter yes if your terminal has the ERASE to END OF LINE•(EQL) feature, or noif it does not.

1.16 Do you want function keys translated?

Some terminals have special keys called function keys. They might belabeled Fl, F2, F3 and so on. When pressed, they send unique codes to theterminal driver to request the performance of equally unique functions.Those codes transmitted by these function keys can be "translated" to theirequivalent codes in the Alpha Micro text editor, AIphaVUE. By answering yesto this question, you cause NEWTRM to set certain flags in the terminaldriver so that VUE responds directly to the various function keys. If youdo not have function keys, or do not want them translated, answer no. Thenext question will not be asked.

1.17 Enter the decimal ASCII value of the function key leadin code:
You are asked this question only if you answer yes to the previous one. Torecognize the unique code sent from the terminal which indicates that thekey pressed is a function key, the terminal driver must first receive thefunction leadin code. This function leac!in code is typically an ESCAPE,having a decimal ASCII value of 27. If your terminal has function keys,enter the decimal ASCII value of the function leadin code it transmits tothe driver. If your terminal does not have any function keys, but ratherincorporates terminal functions into control codes, enter a 0.

1.18 Enter the delay required between function key characters:
When you press a function key, the terminal returns to the terminal driver asequence of characters, one at a time, to accomplish the specified function.Each separate character is sent at the repeat rate of the terminal (the rateat which characters are repeated when, on the various terminals, you eitherhold down a key or hold down both a key and the REPEAT key). The terminaldriver determines whether or not the character sequence is that of afunction key by first testing for the function key leadin code character.If it finds that character, it then performs a counting loop internally,then looks at a buffer. Function key characters alone are found in thebuffer at the end of that loop; if the terminal driver finds a character inthe buffer, it knows a function key is being transmitted. If the length ofthe loop time is too short, the terminal driver won't find the character in

4. Taking the final result and rounding it up to the nearest integer.
(223.)

Enter that value (in our example, 223) in response to the question.

NOTE: Sometimes, if the value as determined above is slightly too low (dueto overhead or other factors), and when the function key is pressed several
times rapidly in succession (or the REPEAT key is aLso used), the function
key translation routine cannot translate the function key properly.
Changing the value determined above to a slightly higher value should solvethe problem.

1.19 Are there terminating characters sent by function keys?

Some terminal, function
the function key transmi
or a combination of two
<ETX>, <CR>, <CR><LF>,
know if this terminating
code consists of); if
characters. Answer yes to
terminating code of one
code characters are sent.

function keys
question if

NOTE: Some terminals allow you to set the character or characters of the
terminating code with a manual switch built into the terminal itself. You
may set this switch into any position available; in any case, the terminal
driver discards it. However, we recommend that you do not select the <EOT>
(i.e., the <End of Transmission>, or Control—D) switch position if your

Page 7
BUILDING A TERMINAL DRIVER (THE NEWTRM PROGRAM)

the buffer whether or not it isa function key character. Much too long aloop time simply delays the system. The length of time the terminal driverdoes its timing loop is determined by your answer to this question.Determine the delay count required by:

1. Finding which is lower: 1) the "effective repeat baud rate" (themaximum repeat rate (in characters per second) the terminaL canaccomplish, multiplied by 10); or 2) the actual baud rate theterminal will be operating at. (Say the "effective repeat baud
rate" is 600 (for 60 characters per second). Say the actuaL baudrate of the terminal is 19,200. The lower value is 600.)

2. Dividing 1 by that lower value. (1/600 or 0.001666....)
3. Dividing the result by a constant vaLue depending on which

processor your system uses. For the At.1—100, that constant is
.0000075, and for the AM—bOlT, that constant is .000004333....
(Say it is ' an AM—100. 0.001666.. .10.0000075 = 222.222(approximately).)

If you answered yes to the question, "Do you want
translated?", NEWTRM asks you this question (and the following
you answer yes to this one).

keys send an "end—of—key" code that tells the system
ssion is over. This code may be a single character,
or more characters. Typically, the code is <EUT>,
or something similar. The terminal driver needs to
code is sent (but doesn't care what characters the
the code is sent, the driver discards all of its

this question if the function keys send a
or more characters. Answer no if no terminating

BUILDING A TERMINAL DRIVER (THE NEWTRM PROGRAM)
Page 8

terminal operates over a telephone line. This is because <EOT> will cause (' "some modems, which are between the terminal and the system running theterminal driver program, to disconnect the phone line

1.20 Enter the number of terminating characters:
If you answered no to the question, "Are there terminating characters sentby function keys?", this question will not appear. If you answered yes, nowenter the number of characters in the function key terminating code. Forexample, if the terminating code is <ETX>, enter a 1; if the terminatingcode is CCR><LF>, enter a 2. The terminal driver will ignore that manycharacters following the charaãter unique to the function key. The terminaldriver does not care what those characters are, but must know exactly howmany of them are in the terminating code.

1.21 Are there values sent by function keys that should be discarded?
Some terminal function keys send more than the function leadin code and thecharacter unique to the given key. Any characters coming before these twoshould be discarded. For example, the BEEHIVE DMxx series returns tourcharacters, <STX><ESC><ASCII character><ETX>. For that terminal, <ESC> isthe leadin character, the ASCII character is unique to a given key, and<STX> must be discarded. <Efl> is the function key terminator, also to bediscarded, but which is handled in a different way, based on your answers tothe previous two questions. Answer yes to the current question if yourterminal transmits characters (including the terminating character) otherthan the leadin character and the unique character. If you answer no,NEWTRM skips to the second question below.

1.22 Enter the decimal ASCII value of the character to discard:
If you answer yes to the question "Are there values sent by function keysthat should be discarded?", NEWTRM asks you this question. Answer byentering the decimal equivalent of the ASCII value of the character to bediscarded, then type a RETURN. Do not enter the value of any terminatingcharacters. NEWIRM will repeat the question until you identify all thecharacters (other than terminating characters) to be discarded. After youhave finished, type just a RETURN when the question is asked again; NEWTRMwill go on to the next question.

BUILDING A TERMINAL DRIVER (THE NEWTRM PROGRAM) Page 9

1.23 Is the XXX command implemented on the terminal?

Where XXX is a command name. NEWTRM begins a tour question loop which itrepeats for each of 27 commands your terminal may implement (that is,electronically support based on its construction). For example, you firstsee:

Is the clear screen command implemented on the terminal?

If you answer yes, NEWTRM then asks:

Does the clear screen command require a delay?

Whether you answer yes o no to this question, but dependent uponinformation asked of you earlier, NEWIRM may ask you:

Does the clear screen command use the standard leadin code?

And finally, NEWTRM requests the command code or codes your terminaltransmits for the clear screen command:

Enter the decimal ASCII value(s) of the command code(s):

Then NEWTRM repeats the sequence for the second command:

Is the cursor home command implemented on the terminal?

If you answer no this time, NEWIRM skjps the three questions dependent on a
yes and inquires about the next command. And goes on in this manner to ask
you about each of the 27 commands listed below, basing the secondary
questions upon your response to Is the XXX command implemented on theterminal?. Here are the commands NEWTRM asks you about:

BUILDING A TERMINAL DRIVER (THE NEWTRM PROGRAM)
Page 10

Command Name
TCRT Functior,

clear screen
0cursor home
1cursor return (is not asked; it is an ASCII standard) 2cursor up
3cursor down
4cursor left
5cursor right
6lock keyboard
7unlock keyboard
8erase to end of line
9erase to end of screen

10protect field (reduced intensity)
11protect field (normal intensity)
12enable protection of fields 13disable protection of fields 14delete line
15insert line
16delete character
17insert character
18read cursor address
19read character at Ourrent cursor address 20start blinking field
21end blinking field
22start line drawing or alternate character set 23end line drawing or alternate character set 24set horizontal position
25set vertical position
26set terminal attributes
27cursor Positioning

none
The commands in the above list are the only ones that NEWTRM asks you about(except for cursor return, which is standard for all ASCII terminals, andwhich therefore is automatically provided by NEWTRM). They are the TCRTcommands supported by Alpha Micro. The numbers to the right of the commandsin the list above are the TCRT functions for each command. (NOTE: CursorPositioning, the last on the List, has no TCRT function.) If you wish toimplement additional terminal commands, the source file which NEWTRM createsfor you must be modified "by hand" to contain those additional commands.

NOTE: Some terminals (such as the ADM—31) implement the end blinking fieldand/or the end line drawing field as an end attribute command. If this isthe case for your terminal, enter the single end attribute command sequencewhen either the end blinking field or the end line drawing field sequencesare requested by NEWTRM.

1.23.1 Does the Xxx command require a delay? — Answer the firstadditional question with a yes or no. The delay referred to is the delayyou entered in response to the question, "Enter the delay (in clock ticks)required after functions:'

BUILDING A TERMINAL DRIVER (THE NEWTRM PROGRAM)
Page 11

/ -—
1.23.2 Does the XXX command use the standard leadjn code? — This secondquestion is not asked unless you have indicated, in response to an earlierquestjo NEWTRM asked you, that there is a leadin code. Answer yes if thecommand in question is implemented as a multiple character sequence. Answerno if the command is implemented as a control character.

1.23.3 Enter the decimal ASCII value(s) of the command code(s): — Enterthe decimal equivalent of the ASCII value(s) of the command code(s). Donot enter the leadin code. NEWTRM automatically places it if the commandrequires a leacjin code. Enter the values by separating them with a space,then type a RETURN. You can enter a maximum of 10 values per command.
This is the last of the secondary questions. Now NEWTRM asks you about thenext command in the list, until it has inquired about all 27. Then it goeson to the question below.

1.24 Does the cursor Positioning command require a leadin code?
Answer yes if your terminal requires the same leadin code for the cursorPositioning command sequence as it does for the 27 commmands above. Answerno if either no leadin is used or if a different leadin is required.

1.25 Enter the cursor Positioning command sequence:

Do not enter the leadin code, If you answered yes to the question above,saying the same leadin code is required, NEWTRM automatically places it.Enter the decimal value of each byte, separated by spaces, until a maximumof 10 bytes are entered. Type a RETURN after you enter all the bytes of thesequence.

1.26 Enter a code returned by a function key:
This question and the next one are only asked if you have indicated earlierthat your terminal has one or more function keys that are to be translatedinto AIphavUE commands. These two questions alternately repeat until youenter just a RETURN in response to this question.
Enter the ASCII value (in decimal) returned by a specific function key thatuniquely identifies that key. Then type RETURN. For example, assume thatthe Leadin code for your terminal's function keys is CESC>. Say that one ofthe terminal's cursor positioning keys sends <ESC>cA> when pressed. Inresponse to this question you would enter 65, the decimal ASCII value for A.(See Section 5.0 for a complete decimal equivalent ASCII chart.)

BUILDING A TERMINAL DRIVER (THE NEWTRM PROGRAM) Page 12

1.27 Now type a VUE command that cdrresponds to the function key:
This question follows the previous question for each of the function keys.It correlates the terminal's function keys to specific operations withinVUE. In response to this question, press the actual key (plus theControl—key) that VUE uses for the specific operation you want to correlateto the function key. Do NOT type a RETURN. (NEWTRM expects you to type a
VUE command, and is waiting for it. If you type a RETURN, NEWTRM does notprocess the RETURN until it again asks you, "Enter a code •returned by afunction key:", at which time NEWTRM thinks you are telling it there are no
more function codes to enter.) For example, an IBM terminal sends <ESC><A>
from a function key to indicate MOVE CURSOR UP. To make VUE correspond tothat function key of your IBM terminal, enter a Control—K in response tothis question, because *K is the VUE command for MOVE CURSOR UP.

2.0 FINISHING UP

NEWTRM has asked its last question. You will see "Please wait...", then;

The driver is complete. You may assemble and test it now.

NEWTRM has created the source fiLe for your terminal driver. Now you must
assemble the program by using the MACRO command. Enter;

.MACRO SOROC

where "SOROC" is the name you used in telling NEWTRM what terminal driver tobuild. When MACRO finishes and returns you to AMOS command level, renamethe .PRG fiLe it produced to the terminal driver extension, .TDV:

.RENAME/D *.TDVSOROC PRG lED

You now have a finished terminal driver program, customized for your
term i na I.

3.0 ERROR MESSAGES

NEWTRM has one error message. You may also see standard ALPhaPASCAL error
messages. Typing a Control—C CC) closes the partially completed outputfile and aborts NEWTRM.

?Bad answer — try again
You typed an answer that did not start with a Y, y, N or n.
NEWTRM repeats the question.

BUILDING A TERMINAL DRIVER (THE NEWTRM PROGRAM) Page 13

4.0 WORKSHEET FOR YOUR TERMINAL

Use this section as a worksheet for your specific terminal. You will• findthe information you need in your terminal user's manual. If NEWTRM asksabout a feature your user's manual doesn't mention, the terminal probablydoes not implement that feature. You may find commands using different
terminology in the user's manual. Comparing this document's text to themanual's, you will be able to find the information NEWTRM is asking for.

NEWTRM WORKSHEET FOR THE

TERMINAL

NEWTRM uses the following files. Do not erase or modify them.

DSKO:NEWTRM.PCF[7,5] DSKO:TDV1 .MAC[1,6J
DSKO:ECHO,MACE1 ,6] DSKO:TDV2.MACC1,6]
DSKO:TABDEF.t'IAC[l,oJ DSKO:VARDEF.MACC1 ,6J

Log into the Driver Library account, DSKO:[1,6J:. Run NEWTRM by entering:

.NEWTRM J

Remember, these are the rules:

Terminate all input lines with carriage returns.
All numeric input is in decimal.
Separate numeric answers on the same line with spaces.
All NUMERIC answers default to 0.
If you have any problems, refer to the NEWTRM documentation.

Also, remember that you may use any of these combinations for yes or no
responses: YES, Yes, yes, Y, y or NO, No, no, N or n.

What is the name of the driver (6 char, or less; no extension)?
Enter the number of nulls required after a line feed: —
Enter the number of nulls required after a form feed: —
Does your terminal have a keyboard? Y N
Is RUBOUT a shift—underline?

Y NIs your terminal a CRT? Y N
Enter the number of rows on the screen;
Now enter the number of columns: —
For the cursor positioning command, is the row sent first? Y NEnter the positional offset from 1,1: —
Enter the decimal ASCII value of the function leadin code: —
Enter the delay (in clock ticks) required after functions: —
Does the terminal have insert and delete line functions? V N
Does the terminal have erase to end of screen? V NDoes the terminal have erase to end of line? V NDo you want function keys translated?

V N
Enter the decimal ASCII value of the function key leadin code:
Enter delay required between function key characters: —
Are there terminating characters sent by function keys? Y NEnter the number of terminating characters: ——

Are values sent by function keys that should be discarded? V NEnter the decimal ASCII value of the character to discard:

ECC
t

000EC
t

waU
)

I—I.-C
t

U
)

-4C
t

a-JCa-lEC
t

U
)

I—C0a-Ia-J-4D

D
_

CS
-'

a'-i
C

t
Z

 040 C
t

w
 C

 U
) U

) C
F

- S a
as

.j<
U

) 0 a C
0 l>

C
U

)
U

)
4000)1-4 0
C

 '- U
i-i C

U
)

C
oo.

-Joe4040
O

 I—
 0 cc

C
U

JC
t

a
r cc a
I—

 C
 1-4

C
'-

a C
 U

)
U

) C
 C

 a
40 F

- U
) 0

C
') -1 0>

-

U
)

0)
c'-

3
0) —

J
-c m
0>'I,

-4
C

11
r 0
t C

l)
C

U
 <

0)
-'0

0)
m

c-,0)
0)0.
LU

)
:3a
C

r-
0)La4-)

C'V
a)

E
C

00)
0:3C
0)0)
C

U
)

C
0)

C
C

4.1
C

04-'
a-'-U

)
L

O
onC

a

LLD
O

('U
)L

43:3
-C

 0
4.)

L
U

C
0)

0)4-'
O

C
o U

)

-' >
,t—

 >
%

p-
>

0 - 0) - 0) .IC
0) -z

r—
) C

—
, C

—
'

C
—

' C
'V

0 InC
 C

U
0t o-c

>
-r- >

r- >
n—

 >
r C

4-'
4-3

4-a
4Q

I.1
0

1-1 0 1-4 0 —
 0 a

—
l C

 —
 C

C
 11

C
 U

)
0

D
 0 :3 0 D

 0 :3
0)

C
l) *- C

fl *- C
fl

C
l) *- L

C
cc

cc
cc

L
0)

0)
0)

0)0
O

 -c
-c o

-c C
 -c

—
 4)

r-
44 c—

 4'r 4)
0

O
0O

oO
oO

o,
4444444444444444
-I-)

I—
_)

0
C

')
C

')
U

)
U

)).
>

t) >
t >

.t
0)

0) C
O

) C
U

) C
d) C

z
S

Q
-z

a
S

C
- 0

a
a

0.
0.C

C
 G

O
 C

 0) C
 (0 C

U
) C

00)00)00) 0 W
Ir-

'- L r L r-
L

L
44

4)
L

4-a L 44 L 4-a L 0
0000('000C
C

O
C

O
C

O
C

oj
:3

:3
:3

:3
'3—

'3—
'3- 44*-

44
*-

0)
C

U
C

V
C

U
d)

(U
 -c £U

c 0) c C
O

 .c
5..

44
4-)

4-a
4Q

)s
>

..
>

>
,

E

C
C

C
C

L
C

U
 t (U

t3
'0 t C

V
 0

0) E
 0) E

 0) E
 4) E

M
—

C
 E

C
E

C
 E

 C
E

L 0 LO
 L C

L 044
D

O
D

O
D

O
D

O
(U

4.'
43

4)
4-'

0)
0) U

)
0) U

)
0) W

 0) U
) a

L
L

L =
 L

>
1

>
>

0)
0)

0)
0)

C
U

 -0
C

V
C

U
 0 (0 0

0
0

0
0

4-'
O

U
)000U

)O
U

)
U

)
C

')
C

l)
C

ad)
L

L
L

LC
L 0. L a L 0. L ü-r
0)

0)
0)

0)
4-

3 44 3 4-
3

3
C

O
C

O
C

O
C

O
O

ui a U
)

U
) a w

 a 0

aI—C
-

0U
)

C0)
4-a'C0)

L0)L-v-JC
V

CEL0)
4-'

0)
-C4.3

0
O

n
4-'

CL0)
0)

0
>

E
r

-I-
C

L
C

0
-o

Lw
a

0)
>

-c
r-

4)
4-'

L
—

,
-1-

4-'
U

)
0

0)
C

t
C

D
4-

0
C

t
C

a
0

r
CC

U

-c
0)

4-a
--a
.0

0)
2

E
0)

C
V

U
)

C
U

)
0)

C
C

t

-t0)0)
C

U

0

I
I

I
T

I
I

I
I

I
I

I
1111

I
III

I
I

I
I

I

II
I

I
I

I
I

I
III

II
I

I
I

I
I

I
I

II
I

IIII
I

I
I

J
I

II
III

I
I

I
I

I
I

I

I
IIII

I
I

I
1111

I
III

I
I

I
I

I

II
IIII

I
I

III
III II II

I
I

I
I

I
IIII

I
I

I
I

IIII
III II

I
I

I
I

I

III
IIII

I
I

I
I11111 II II

I
I

I
I

II
I

I
IIII

I
I

I
I1111 II II

I
I

I
I

I

I
I

I
I

IIII
I

I
I

11111
II II

I
I

I
I

II
I

F
IIII

I
I

I
I

Iliii
I

I
I

I
I

I
I

I
I

I
I

U
)

C
'.

X
 a j))

a-
I- a C

t C
C

 11 J
w

S
C

 a
00 w

I'll
t0.a

11111111
1401-15

4-'
000)3

0)
- .C

43Q
>

,4-J
04-'

0)
C

l)
'0)

C
V

C
U

-r-4)
-rU

)o
U

)
LU

)
C

E
L.0

O
C

ta
C

l)
'0

C
dJ_J0)

L
S

O
O

t
4)440)r-

t)
urn

L
0)L

C
4-JC

rM
--

t)
•.C

C
U

)
0)caC

V
C

C
-I--'i--

C
U

4-o
0)

'I-
-J

C
U

E
a)0)

i*-0
L1J

C
U

4444Q
J

0)
0

C
L '20

0)0—
a

LC
0

•1-O
tL

C
U

)U
)0)tL0)w

4).,0)
0W

0C
0

0)L
r_aQ

0rLC
C

O
n_c

L
C

O
.,—

L
L

L
:34-0)

L
0.C

a4).1-
0)0)tO

'-30
O

4-C
-4

(0
LO

C
4-'O

4-'4-V
0)*(U

-JaC
V

Q
0)0.

0)
ttoa)

O
Q

C
U

4sC
L3o

N
C

C
4-) L O

D
t..j..a 0)4)

C
U

C
U

V
r O

Y
C

) C
V

4-a-4J44
r—

>
,-r-L

0)0)
C

4-'C
C

U
.0C

C
d)0)4400d)LLL

LC
(u0).,-

L4)
0

0)5
3*-0)0>

0)w
r.r0LC

C
C

V
m

O
•C

-r-4)000C
0

C
V

U
)*-

LO
aO

0).rn0)
*_La.r.rn-cw

L.rS
C

N
r-rQ

a
E

ttc')
U

)
0)

4444444)
0)

D
C

_crj C
LLL

D
C

C
C

L
L

L
L

zS
U

00)_J4j0),00
—

'
1-00)G

JL
U

)rno
L

00000
00)0)0)0)—

'fl44L4JL
2

D
C

V
U

)U
)U

)U
)U

)O
U

)O
)44flC

U
d)

L
U

)
32t—

'
0)LLLLLO

_J(00)000)0
00C

c)D
D

D
D

D
0C

LLLLC
a)C

Z
um

o

flU
)

C
D

C
t

0.0)EC
U

CL0)>L1?>aI—-IC

0U
)

SCaU
)

C
t

-.

v

BUILDING A TERMINAL DRIVER (THE NEWTRM PROGRAM) Page 15

5.0 DECIMAL EQUIVALENT ASCII CHART

VALUE CHARACTER VALUE CHARACTER VALUE CHARACTER

0 NULL 48 0 96
1 SOft 49 1 97 a
2 SIX 50 2 98 b
3 ETX 51 3 99 c
4 ECT 52 4 100 d
5 ENQ 53 5 101 e
6 ACI(54 6 102 f
7 BEL 55 7 103 g
8 BS 56 8 104 h
9 HI -- 51 9 105 1

10 LF 58 106 j
11 VT 59 ; 107 k
12 FF 60 108
13 CR 61 = 109 m
14 So 62 110 n
15 SI 63 111 o
16 DLE 64 a 112 p
17 DC1 65 A 113 q
18 DC2 66 6 114 r
19 DC3 67 C 115 S
20 DC4 68 D 116 t
21 NAK 69 E 117 u
22 SYN 70 F 118 v
23 ETB 71 6 119 w
24 CAN 72 H 120 x
25 EM 73 I 121 y
26 ss 74 J 122 z
27 ESC 75 K 123 {
28 FS 76 L 124

I29 65 77 M 125 }
30 RS 78 N 126 -
31 US 79 0 127 DEL
32 SP 80 P
33 1 81 Q

34 82 R

35 83 S

36 $ 84- 1
37 %- 85 U
38 86 V
39 87 w
40 (88 x
41) 89 V

42 * 90 z
43 + 91 1

44 92
45 — 93]
46 94
47 / 95

AMOS Software Update Documentation
AMOS Release 4.5
April 1981

SYSTEM PROGRAMMER'S INFORMATION

This section contains the following documents:

I/O Programming on the Aloha Micro Computer, Revision AOl

Terminal Service System

. I

AMOS 4.5 SOFTWARE UPDATE DOCUMENTAT1ON PACKET

'Alpha Micro', 'AMOS', 'AIphaRASIC', 'AM—iDO',
'AIphaPASCAL', 'AIphaLISP', and 'AIphaSERV'

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA 92714

These documents reflect AMOS Versions 4.5 and later

©1981 — ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North
Irvine, CA 92714

May 1980
Revision AOl

I/O PROGRAMMING ON THE ALPHA MICRO COMPUTER

Whenever a program must communicate with an I/O device, whether within an
interface driver, a device driver, or a hard—coded program, it is said to be
using I/O programming. The Alpha Micro central processors (the AM—100 and
the AM—bOlT) both use a memory—mapped I/O technique. Except for a few
minor differences, these two processors are completely compatible; those
minor differences occur in I/O programming. This document outlines the
various methods and techniques used in I/O programming, and explains the
differences between the two Atphd Micro processors.

The
Alpha Micro processors both contain 256 separate I/O locations, each

eight bits wide. These I/O locations are mapped into memory locations FF00
(hex) through FEFF (hex). These locations may be accessed as bytes (AM—100
and AM—bOO/fl or as words (AM—100/T only). When byte operations are
performed on the I/O locations, the two processors behave identically; it is
only when word operations are performed that differences appear.

For word operations, the AM—bOO uses only the low—order half of the word
during a write operation. During a read, the I/O byte is replicated in both
halves of the resulting word.

The AM—100/T, on the other hand, will properly read and write words to the
I/O locations, providing that the I/O controller handles word operations.
Currently, no Alpha Micro interface boards handle 16—bit transfers.
However, to leave this feature available for future use, a slight change in
the way that I/O word operations are performed was necessary. On the
AM—100/T processor, a read—word operation to a controller handLing
byte—reads only, returns the resultant byte in only the upper half of the
word. This differs from the AM—100, which returns the byte in both halves
on a read—word operation. Likewise, word—mode I/O writes use only the data
in the upper byte when using byte—oriented controllers.

Therefore, when programming byte—oriented devices (all currently available
devices are byte—oriented), you should avoid word—mode instructions whenever
possible to avoid any contusion. If word—mode instructions must be used,
then only the high—order byte should be used. If word—mode I/O to
byte—oriented controllers is restricted to the high—order byte, the AM—100
and AM—100/T are completely compatible.

(Changed 1 May 1981)

I/O PROGRAMMING ON THE ALPHA MICRO COMPUTER Page 2

Instructions that generate a rea&modify—write sequence (format 7 and 10 op
codes using destination modes 1 through 7) ignore the read portion of the
sequence and do only the write. This was engineered into the design of the
processors to avoid confusion with I/O devices which use the same I/O
location for two different functions based on whether a read or a write
operation is being performed. Therefore, if you wish to read the contents
of an I/O Location with a format 10 op code, it may only be done in the
source field of the instruction. When writing to an I/O location, any
format 7 op code or format 10 op code with destination modes 1—7 may be used
if such an instruction makes sense without the read operation.

Examples:

1. CLRB arHOFFO4 Clears I/O location 4.

2. CLR arHOFFO4 AM—100: CLears I/O location 4.
AM—bolT: Clears I/O location 4 on
a byte—oriented controller. Clears
locations 4 and 5 on word—oriented
controllers.

3. TSTB &#H0FFQ5 Won't work without read—— writes junk
to I/O location 5.

4. BIT #2,arHOFFO6 Won't work without read—— writes junk
to I/O location 6.

5. BIT arHofFoo,#2 AM—bOO: Will work fine. AM—bOlT:
Will not work—— contents of I/O
location 6 are read into upper byte
only.

6. BIT arHoFFoo,#28. Will work fine on all processors.
The AM—100 brings data into both
halves; the AM—bOO/I into the upper
half.

7. CMP rHoFF07,R0 Will not work unless controller is
word—oriented and the controller is
on the AM—bOlT.

8. CMPB a#HOFF08,R0 Will work fine on both processors.
9. BISB #2,a#-HOFFO9 Will not work. Requires a read—

modify—write sequence for proper
operation. Writes junk into I/O
location 9.

Example #6, above, is the onLy change Likely to be required in converting an
existing driver to run on the AM—bOO/I. (The underscore, —, used in example
#6 is a MACRO expression operator which tells MACRO to shift the expression
(2) the specified number of bits. Hence, a shift of eight (decimal) bits
puts the 2 into the upper half of the word.)

(Changed 1 May 1981)

April 1979

TERMINAL SERVICE SYSTEM

1.0 INTRODUCTION

The terminal service system incorporated in the AMOS monitor is a flexible
and efficient set of routines and drivers for interfacing a variety of
different terminals with different interface boards. You may write your own
drivers for terminals and interfaces not supported by Alpha Micro. This
document describes the general structure and function of the terminal.
service system, but does not go into detaiLs on how to write user—defined
drivers. We have made available the sources to TRMSER, FILSER and several
terminaL drivers for those individuals who want to write their own terminaL
driver programs. DetaiLs on the monitor calls used within terminal and
interface drivers are in the AMOS Montitor Calls Manual, (DWM—OO100—42).
For a general overview of the Alpha Micro Operating System, see Part III of
Introduction to AMOS, (DWM—OO100—65).

2.0 GENERAL STRUCTURE

The monitor contains a general terminal processing routine called TRMSER
whose function is to link user programs and monitor processes to the outside
world of interactive terminals; this is done purely on a data basis, without
regard to terminal or interface hardware. TRMSER processes data on a

character—by—character basis. Monitor calls are available to your programs
for passing characters and full buffers of data between the terminals and
the system. Think of TRMSER as a telephone operator who switches calls back
and forth between sources and destinations without regard to the type of
telephone in use or the name of the person using that telephone. TRMSER
also provides the synchronous link to the asynchronous world of the terminal
hardware.

TRMSER is a monitor routine that is embedded in the operating system
skeleton monitor, SYSTEM.MON. In addition to the general TRMSER routine in
the monitor, there must exist one or more routines called drivers that take
the data from TRMSER and translate it as necessary into the specific codes
required by the hardware and then route it to the terminal through the
interface board. These drivers reside in account C1,6J of the System Disk,
and are automatically loaded into system memory in response to the terminal
definition (TRMDEF) command lines in the systm initiaLization command file
(SYSTEM.INI file) at the time of system startup. Driver programs MUST be
reentrant; only one copy of a driver is loaded into memory regardless of the
number of terminals or interface boards of that type defined on the system.

The terminal service system uses two general types of drivers: interface
drivers and terminal drivers. Interface drivers contain the routines
necessary to get data characters to and from the interface boards that plug
into the S—lOU bus. Terminal drivers contain routines that process each

TERMINAL SERVICE SYSTEM Page 2

character that goes to or from theterminal. Terminal drivers handle code
character conversions, echoing functions, line—feed null characters, cursor
control, and special functions as required by the type of terminal in use.

3.0 INTERFACE DRIVERS

Interface drivers link the TRMSER routines and the actual hardware
responsible for getting characters to and from the terminal device. The
interface drivers are assembly language programs with an .IDV extension.
The filename of the interface driver appears in the TRMDEF command line of
the SYSTEM.INI file, and tells the system what kind of interface is being
used by the terminal defined by that command line. TypicaL drivers are for
the AM—300 board, the Processor Technology 3P+S board and the IMSAI 510—2
board. The interface driver handles all initialization sequences for the
board if required, and also sets up interrupt processes if the board
supports it. Those boards which are not interrupt driven get put into the
clock scanner queue for asynchronous access every clock tick. A special
interface driver exists on the system called the PSEUDO interface driver; it
controls no hardware at all, but instead represents a software—controLlable
interface for inter—job communication and control.

4.0 TERMINAL DRIVERS

Terminal drivers customize the handling of character input and output based
on the type of terminal being used. They are assembly language programs
that have the .TDV extension. The filename of the driver is the name by
which the terminal type is referenced in the TRMDEF statements in the
SYSTEM.INI file. Typical terminal drivers are for the ADM3, the Soroc, the
Teletype, the Multiterm and the Silent 700.

The terminal driver processes all input and output chracters, and determinesif these characters need special handling because of the type of terminal
being used. The terminal driver handles echo control and different methods
of character deletion. For example, most CRT terminals have the ability to
back up and erase the character being deleted, while hard copy terminals
(such as the Teletype) must explicitly echo the character, usually in a
format that distinguishes the characters from those accepted as input.

Terminal drivers may also be written for software—controlled ports, and two
such drivers are built into the monitor already. The PSEUDO and NULL
terminal drivers are used in conjunction with the PSEUDO interface driver,
and provide a means for passing characters straight through to thecontrolling job or discarding output characters that are unimportant.
Terminal drivers are usually unconcerned with the type of interface used to
physically tie the terminal to the computer.

TERMINAL SERVICE SYSTEM Page 3

5.0 INTERSYSTEM DRIVER LINKS

The relationship between the different elements of the terminal service
system can seem confusing at first; nevertheLess, efficient systems—Level
programming requires a thorough understanding of the links that exist
between these items. The folLowing units are referenced in further
discussions:

1. JOB — A job is the unit that controLs the operation of one task or
a series of tasks running on the system. A job is independent of
any other jobs running on the system unless it is tied to them by

special user software. Every job on the system has a unique name
one to six characters long.

2. TERMINAL — A terminal is the hardware device used to physically
transfer data into the system, and get data from the system to the
user on a character—by—character basis. Terminals do not
themselves have names. Typical terminals might be a Teletype,
ADM3, Soroc, etc.

3. TERMINAL DEFINITION — A terminal definition unit is a block of
memory in the system area set up by a TRMDEF statement. It is the
basic unit by which a terminal in the system is referenced when

attaching that terminal to a specific job, or when using the
terminal as an I/O device under control of the IRM device driver.
The terminal definition unit has a unique name one to six
characters Long.

4. INTERFACE DRIVER — An interface driver is the program that
transfers characters back and forth between the terminal and the
hardware interface board to which the terminal is physically
connected. The interface driver has a name one to six characters
long that is referenced by the TRMDEF statements in the SYSTEM.INI
fiLe. Interface drivers reside in account DSKO:[1,6], and have the
extension .IDV.

5. TERMINAL DRIVER — A terminal driver is the program that performs
the character code conversions required by the terminal in use.
The program has a name (one to six characters long) that is
referenced onLy in the TRMDEF statement of the SYSTEM.INI.
Terminal drivers reside in account DSKO:E1,6J and have an extension
of .TDV.

6. DEVICE DRIVER — A device driver is a program that aLlows the system
to communicate with any I/O device connected to the system. Device
drivers are written for disks, tape units, printers and terminals.
The handling of terminals as devices for use by the generalized
fiLe service system is done through the TRM device driver, and not
through the terminal drivers themselves. Device drivers have a one
to three character name that is referenced in the device table
statement (DEVTBL) in the SYSTEM.INI, and in user file
specifications (e.g., AMS1:FILNAM.TXT). Device drivers reside in
account DSKO:[1,6J and have the extension of .DVR.

TERMINAL SERVICE SYSTEM

The terminal definition unit
driver and to the defined termina
which terminals are referenced
to a job, the JCB (Job Control
become linked to each other.
not linked up to a terminal defi
be detached if it is not linked
controlling terminal, and vice versa.

A job performs I/o operations through the particular device driver
referenced by the device specified in the file specification. A job
performs terminal operations through the linked terminaL definition unit for
the terminal that is controlling that job. A detached job is placed into
terminal wait state if it attempts to perform a terminal input or output
operation. Since I/O operations differ in structure and usage from terminaL
operations, performing I/o operations to a terminal must be done through
some mechanism other than directly into the terminal definition unit. From
a system standpoint, the terminal definition unit performs differently thana device driver. To allow this, a generaL device driver has been writtencalled TRM which allows terminals to be accessed as devices, as opposed to
being accessed only as job controlling terminals. This operation will bedescribed later.

5.1 Terminal Input Characters

Terminal input characters are processed through a complex chain of events.
When a terminal keyboard character is struck by the operator, it istransferred to the hardware interface which then passes it to the interfacedriver routine. The interface driver routine reads in the character andthen passes it to the TRMSER processor. TRMSER puts the character into theinput buffer to wait for pickup by the program or monitor. As an
asynchronous event, it echoing is not suppressed or is local to the
terminal, TRMSER passes the character back to the terminal driver (when itis about to be echoed) to again allow the terminal routine to performspecial functions. An example of this is the special echoing of Control—ucharacters for line deletion or rubouts for character deletion. The
terminal routine then passes the character (or the converted character) back
to TRMSER to be sent to the output processor.

5.2 Terminal Output Characters

Terminal output characters can come from two main sources: 1. characters tobe echoed from the input processor; and, 2. characters to be output(generated by the monitor or user program) as messages or data to the user.Both are handled differently from a buffering standpoint, but eventually are
presented to a common output routine in TRMSER to be sent to the terminal.
Each character for output goes from TRMSER to the terminal driver forpossible output code conversion or character translation. An exampLe ofthis would be the null sequence sent after every line—feed for timing

Page 4

contains the links to the defined interface
I driver; it thus is the basic unit by
on the system. When a terminal is attached

Block) and the terminal definition unit
A job is considered to be detached if it is

nition unit, and a terminal is considered to
to a JCB. A job may only be linked to one

TERMINAL SERVICE SYSTEM H Page 5 H

purposes to the Si lent 700 terminaL driver. The terminal driver processes
the character and then sends it back to TRMSER for position processing.
TRMSER then passes the output character (or converted character) from the
terminal driver to the interface driver where it is physically output to the
terminal.

6.0 USING TERMINALS AS I/O DEVICES

Most programs (including the print spooler) perform input and output
operations to I/O devices rather than to the controlling terminal. In some
instances it is desirable to perform these operations on a terminaL rather
than a specific I/O devicedefined by its own device driver. One example
would be the printing of data on a Multiterm or Teletype, or the use of
these terminals as the output device of the printer spooler. Any terminal
may be accessed as a device through the general device driver called 1gM.
The TRM device driver acts as a software link between the format required by
the FILSER file service system and the TRMSER terminal service system. Any
terminal can be considered a device by using the device code TRM and using
the name given the terminal definition unit as the filename (the extension
and PPN are ignored in the file specification).

For example, suppose you have a Teletype connected to an AM—300 board on
port number two. Your TRMDEF command in the SYSTEM.INI file might look like
this:

TRMDEF TELLY,AM—3002:2,TELTYP,80,100,20

This Teletype may then be accessed as an output device by the file
specification for any I/O operations requiring a specific device:

TRM:TELLY

To output directly to this device from BASIC, you would first open . the
device:

OPEN #file,"TRM:TELLY",OUTPUT

and then display data as follows:

PRINT #file,variable—list

The variable List may contain text and variables that you want to print as
well as PRINT USING masks.

c., • I•

using termin'aLs as I/O devices or to spool to
space to include the TRM.DVR program in system

You would use the command:

SYSTEM TRM.DVRE1,6J

before the last SYSTEM command in the SYSTEf'hINI fi
to do this, however, since FILSER automatically
your memory partition when it is needed if it. is

Le. It is not necessary
Loads the TRM driver into
not in system memory.

TERMINAL SERVICE SYSTEM

If you are planning on
it might save some
during system startup.

,r.'pae6

C• them,
memory

AMOS Software Update Documentation
AMOS Release 4.5
April 1981

BASIC PROGRAMMER'S INFORMATION

This section contains the following documents:

BASORT — BASIC Subroutine for Sorting Random and SequentiaL Files,
Revision A02

COMMON — BASIC Subroutine to Provide Common Variable Storage

FLOCK — BASIC Subroutine to Coordinate Multi—user Fl le Access,
Revision AOl

SPOOL — BASIC Subroutine for Spoolinq Files to the Line Printer,
Revision AO2

XLOCK — BASIC Subroutine for Multi—user Locks, Revision AOl
XMOIJNT — BASIC Subroutine to Mount a Disk, Revision AOl

AMOS 4 5 SOFTWARE UPDATE DOCUMENTATION PACKET

(Th

'Alpha Micro', 'AMOS', 'AIphaBASIC', 'AM—lOO',
'AIphaPASCAL', 'ALphaLISP', and 'ALphaSERV'

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA 92714

These documents reflect AMOS Versions 4.5 and later

©1981 — ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North
Irvine, CA 92714

April 1981
Revision A02

BASORT — BASIC SUBROUTINE FOR SORTING RANDOM AND SEQUENTIAL FILES

BASORT is an external assembly language subroutine, caLLable from
AIphaBASIC, which can sort both random and sequential files. (A random file
is one in which the records are physically grouped together in one area of
the disk. A sequential file's records are not necessarily contiguous on the
disk.) If your memory partition is large enough (that is, if the entire fiLe
will fit into user memory at one time), BASORT will perform an internal
memory—based heap sort. If there is not enough room in user memory for the
entire file, BASORT does a disk—based poLyphase merge—sort. The combination
of these two modes results in a respectably fast sort utility.

The BASORT package
FLTCNV.PRG——atl of which must be in
BASORT.SBR is automatically loaded into
BASIC program, but AMSORT.SYS and FLTCNV
system or user memory. Once AMSORT.SYS
re—entrant; BASORT.SBR is not. (For
into system memory, see The System mit
the "System Operator's Information"
Documentation Packet.)

1.0 SORTING RANDOM FILES

memory before
user memory upon

.PRG must be
and FLTCNV.PRG are loaded, they are
more information on loading programs

ialjzation Command File document in
section of the AMOS Software Update

When you use BASORT to sort random files, BASORT sorts the file onto itself
(that is, it replaces the original, unsorted file with a file containing the
sorted data). Therefore, if you wish to retain a backup copy of the
unsorted file, you must create a separate copy to be sorted.

BASORT for random files is calLed via:

Where

XCALL BASORT,CHANEL,RECCNT,RECSIZ,K1SIZ,K1POS,K1ORD,K2SIZ,
K2POS,K2ORD,K3SIZ,K3POS,K3ORD,K1TYPE,K2TYPE,K3TYPE

CHANEL File channel on which fiLe to be sorted is open for
random processing.

RECCNT Number of records in the file you are sorting.

RECSIZ Size of the records in the file you are sorting.

K1SIZ

Ki POS

The size, in bytes, of sort key #1.

The first character position occupied by key #1.

(Changed 30 ApriL 1981)

consists of three moduLes——BASORT.SBR, AMSORT.SYS, and
BASORT is used.
direction from the

loaded by the user into

'I "

String
Floating Point
Binary

K2TYPE The data type of key #2. (See K1TYPE, above.)

K3TYPE The data type of key #3. (See K1TYPE, above.)

Keys are the elements of the data records you wish to base your sort on
(i.e., customer name, order• number, etc.). If you want to use less than
three keys, all entries in the XCALL command line for the unused keys must
be zero. If the key types are omitted, BASORT assumes string data type.

All arguments in the XCALL command line are numeric, but may be passed as
either floating point or string values. For exampLe, "99" is a vaLid entry.

• The first character in a record is considered to be position 1.

2.0 SORTING SEQUENTIAL FILES

When you sort a sequential fiLes, you must specify both an input and an
output file. If you wish to sort a file back onto itself, you may specify
the same file for both input and output. Before BASORT is caLled, the file
must be opened for input. BASORT Leaves the file open for output.

BASORT — BASIC

Ki ORD

K2SIZ

K2POS

K2ORD

K3SIZ

K3POS

K3ORD

Ki TYPE

SUBROUTINE FOR SORTING RANDOM AND SEQUENTIAL FILES Page 2

Sort order of key #1: Cl for ascending sequence, 1 for
descending seqeuence.

The size, in bytes, of sort key #2.

The first character position occupied by key #2.

Sort order of key #2. (See K1ORD, above.)

The size, in bytes, of sort key #3.

The first character position occupied by key #3.

Sort order of key #3. (See K1ORD, above.)

The data type of key #1. Key types are:

0=
1=
2=

(Changed 30 April 1981)

& — '

BASORT — BASIC SUBROUTINE FOR SORTING RANDOM AND SEQUENTIAL FILES Page 3

Call BASORT for sequential filesvia:

XCALL BASORT,CHAN1,CHAN2,RECSIZ,K1SIZ,K1POS,K1ORD,K2SIZ,K2POS,
K2ORD,K3SIZ,K3POS,K3ORD

Where:

CHAN1 The tile channel on which the input file is open.

CHAN2 The file channel on which the output tile is open.

RECSIZ The size, in bytes, of the Largest record in the
file, including the terminating carriage
return/l-jnefeed characters.

K1SIZ—K3ORD The same as for random files.

If
you are in doubt about the size of the largest record to be sorted, make

RECSIZ larger than necessary; too small a value results in truncation of
data records.

NOTE: Sequential tiles contain only ASCII data. For that reason, when you
sort sequential files you do not have to specify the data type of the sort
keys; BASORT knows that all keys in a sequential file are strings.

3.0 BASORT ERROR MESSAGES

?AMSORT.SYS not found in memory

The sort utility routine, AMSORT.SYS, must be loaded into user or
system memory before calling BASORT.SBR.

?Bad channel number in XCALL BASORT

The channel number you passed to BflORT was invalid. This error can
occur if the file is not open, or it the value given as channel is not
an integer.

?File improperly open in XCALL BASORT

When you call BASORT, the file you wish to sort must be open for INPUT
or RANDOM processing.

?FLTCNV.pRG not found in memory

The fLoating—point conversion module, FLTCNV.PRG, must be loaded into
user or system memory before calling BASORT.SBR.

(changed 30 April 1981)

BASORT — BASIC SUBROUTINE FOR SORTING RANDOM AND SEQUENTIAL FILES Page 4

?Illegal value in XCALL BASORT (I)
One of the arguments to the BASORT call was invalid. Check the key
sizes and positions to make sure they fit into the record size which
you specified. Also make sure that you have given vaLid key types.

?Read file error in XCALL BASORT

An error occurred during a read operation while sorting your file.

?Write file error in XCALL BASORT

An error occurred during a write operation while sorting your file.

?Wrong record size in XCALL BASORT

The record size you specified when calling BASORT does not match the
record size you specified when you OPENed the file.

C

(Changed 30 ApriL 1981)

'

cc

January 1979

COMMON — BASIC SUBROUTINE TO PROVIDE COMMON VARIABLE STORAGE

1.0 INTRODUCTION

COMMON is an assembly language routine that aLlows you to place data into a
common storage area in memory. This is useful for passing data between
chained programs, passing messages between jobs, or any other function that
requires a data area accessible to more than one program or person. By
assigning a name to each packet of information within the common area, you
can have several of these packets in common storage ready to be retrieved by
other users or programs at various times.

1.1 THE COMMON SUBROUTINE

You can caLl COMMON to send data to the common area via:

XCALL COMMON,SEND,MSGNAM,VAR

You can call COMMON to retrieve data from the common area via:

XCALL COMMON,RECV,MSGNAM,VAR

Where:

SEND A one—byte binary variable that contains zero. You usually
define SEND as foLlows:

MAP1 SEND,B,1,O

RECV A two—byte binary variable, where the first byte must be set
to one, and the second byte functions as a flag that
indicates whether or not COMMON found the requested packet of
information. If COMMON did not find that packet, it returns
a zero in this byte; otherwise it is non—zero. You usually
define RECV as:

MAP1 RECV
MAP2 F'RCV,B,l,l
MAP2 RCVFLG,B,1,O

MSGNAM A six—character string that specifies the name of the packet
to be sent or received.

VAR A variable to hold the data to be sent or received. The
variable must represent data that is less than 151 bytes
long.

COMMON — BASIC SUBROUTINE TO PROVIDE COMMON VARIABLE STORAGE Page 2

You may load COMMON into either syftem or user memory. If you load COMMON
into a userts memory partition, only that user can access the data stored by
COMMON. If you load COMMON into system memory (making the data accessible
to aLt users), be sure that ?'ISGNAM is unique for each packet.

c • ' E ••)

FLOCK — BASIC SUBROUTINE TO COORDINATE MULTI—USER FILE ACCESS Page 15

At this point, programs 1 and 2 have both been delayed. Since no other
programs are present, the reasons for their delays will remain unchanged.
DEADLOCK has occurred.

But DEADLOCK will not occur if program 2 requests permission to open tiles
1001 and 1002 for exclusive use in the same order as program 1. For
DEADLOCK to occur, program 1 must be granted permission to open file 1001
for exclusive use, but be delayed permission to open tile 1002 for exclusive
use. However, if program 1 is granted permission to open file 1001 for
exclusive use, the corrected program 2 (see program 1) will not be allowed
to execute lines 21—990; thus it will be unable to obtain permission to open
file 1002 for exclusive use. DEADLOCK cannot occur.

5.0 BIBLLOGRAPHY

SHAW, A.C. (1974). The Logical Design of Operating Systems,
Prentice—Hall, Inc., Englewood Cliffs, N.J.

(Changed 30 April 1981)

S 1 -
FLOCK — BASIC SUBROUTINE TO COORDINATE MULTI—USER FILE ACCESS Page 14

4 0 PREVENTING DEADLOCK (
NOTE For the purposes of the following discussion, permission to open a
file or use a record will be referred to as possessing a resource

The possession of a resource by some job XYZ can directly or indirectly
cause the execution of other jobs to be delayS. It isther, possible for
one of these delayed jobs to possess a resource needed by job XYZ, thus
causing execution of job XYZ to be delayed also. This is knàwn as a
DEADLOCK. None of the jobs involved can proceed since each requires a
resource owned by one of the other jobs involved. The situation is
permanent because none of the jobs involved can proceed until one of the
other jobs proceeds and relinquishes a needed resource.

DEADLOCK can only occur if a job requests more than one resource
simultaneously. There is a simple method of preventing DEADLOCK which in
most cases is feasible to implement: that is,ALWAYS request resources in
the same order.

Here is a simple illustration of the principle. First we consider what can
happen if resources are requested in differing order in two programs:

10 !PROGRAM 1
20 XCALL FLOCK,O,2,RET,1001
21 XCALL FLOCK,0,2,RET,1002
100 REMARK ** BODY OF PROGRAM **
990 XCALL FLOCK,1,0,RET,1002
991 XCALL FLOCK,1,O,RET,1001
992 END

10 !PROGRAM 2
20 XCALL FLOCK,O,2,RET,1002
21 XCALL FLOCK,0,2,RET/1001
100 REMARK ** BODY OF PROGRAM **
990 XCALL FLOCK,O,2,RET,1001
991 XCALL FLOCK,0,2,RET,1002
992 END

Consider the following sequence of execution:

1. Program 1 executes lines 10 and 20, obtaining exclusive permission
to open file 1001.

2. Program 2 executes lines 10 and 20, obtaining exclusive permission
to open file 1002. It then executes line 21, and must be delayed
because Program 1 already has exclusive permission to open file
1001.

3. Program 1 executes line 21, and must be delayed because Program 2
already has exclusive permission to open file 1002.

(Changed 30 ApriL 1981)

I
,,ip

FLOCK — BASIC SUBROUTINE TO COORDINATE MULTI—USER FILE ACCESS Page 13

10 !REORGANIZATION PROGRAM
20 XCALL FLOCK,0,0,RET,1001
21 XCALL FLOCK,0,0,RET,1002
22 OPEN #1001 ,"INDEX",RANDOM,Sl 2,KEY1
23 OPEN #1002,"DATA",RANDOM,512,KEY2
30 XCALL FLOCK,4,2,RET,1001
31 XCALL FLOCK,4,2,RET,1002
32 CALL REORGANIZE REORGANIZE INDEXED DATA FILE
33 XCALL FLOCK,6,0,RET,1002
34 XCALL FLOCK,6,0,RET,1001
40 CLOSE #1001 : CLOSE #1002
41 XCALL FLOCK,1,O,RET,1001
42 XCALL FLOCK,1,0,RET,1002
50 END --
60 REORGANIZE:
70 REMARK *** SUBROUTINE GOES HERE ***
80 RETURN

10 !INQUIRY PROGRAM
20 XCALL FLOCK,0,0,RET,1001
21 XCALL FLOCK,O,O,RET,1002
22 OPEN #1001,"INDEX",RANDOfd),512,KEY1
23 OPEN #1002,"DATA",RANDOM,512,KEY2
30 INPUT "EMPLOYEE #",EMP$
31 IF EMP$="" THEN LEAVE
40 CALL LOOKUP !LOCATE EMP$ IN INDEX FILE, RETURN EMPLOYEE REC II IN KEY2
41 !XCALL FLOCK,O,0,RET,KEY1 IS IN EFFECT WHEN LOCKUP RETURNS
42 IF KEY2=0 THEN ?"EMPLOYEE NOT ON FILET' : GOTO 30
50 XCALL FLOCK,3,4,RET,1002,KEY2
51 IF RET <> 1 THEN 55
52 INPUT "DO YOU WISH TO WAIT? ",ANSWERS
53 IF ANSWERS <> "Y" AND ANSWERS <> "YES" THEN 30
54 XCALL FLOCK,3,O,RET,1002,KEY2
55 READ #1000,EMPLOYEE'RECORD
56 XCALL FLOCK,5,O,RET,1002,KEY2
57 XCALL FLOCK,5,0,RET,1001,KEY1
60 CALL DISPLAY DISPLAY EMPLOYEE'RECORD
70 GOTO 30
80 LEAVE:
90 CLOSE #1001 CLOSE #1002
91 XCALL FLOCK,1,O,RET,1001
92 XCALL FLOCK,1,O,RET,1002
100 END

200 LOOKUP: REMARK **SUBROUTINE GOES HERE**
299 RETURN
300 DISPLAY: REMARK **SUBROUTINE GOES HERE**
399 RETURN

(Changed 30 April 1981)

FLOCK — BASIC SUBROUTINE TO COORDINATE MULTt—USER FILE ACCESS Page 12

10 ON ERROR GOTO ABORT C20 XCALL FLOCK,O,O,RET,1000
21 OPEN #1000,"FILE",RANDOM,6,KEY
30 XCALL FLOCK,3,O,RET,1000,1
31 XCALL FLOCK,3,O,RET,1000,2
32 KEY = 1 : READ #1000,X
33 KEY = 2 : READ #1000,Y
34 XCALL FLOCK,5,0,RET,1000,2
35 XCALL FLOCK,5,O,RET,1000,1
40 PRINT X—Y
50 CLOSE #1000
51 XCALL FLOCK,1,0,RET,1000
60 END
70 ABORT: -

71 XCALL FLOCK,2,O,KEY
72 ON ERROR GOTO 0

3.3 Improved File Interlocks

In Section 3.2 we said that tile—open interlocks can incur long deLays upon
any users trying to access a file after one user has ooened it and therefore
locked them out. Nevertheless, it is sometimes necessary to lock an entire
file for exclusive use. For example, if tile XYZ is becoming full, you might
wish to copy the tile XYZ into a new, larger file TEMP, and then delete XYZ
and rename TEMP to XYZ. Or, as another example, you might wish to
reorganize an index and data file. Obviously, during these maneuvers, you
want assurance that no other user can access the file.

Action 4 obtains exclusive access to a file by obtaining exclusive access to
all the records of that file. Exclusive access is relinquished by using
Action 6. Action 3, Mode 0 or 4, is necessary before reading a sequence of
records in order to avoid the interconsistency problem. It Action 4 is
used, it is necessary to use Action 3, Mode 0 or 4, before reading
individual records which won't be used for updating. This is because a user
who has exclusive use of a tile can re—create it, which requires that aLL
other users with the file open must then reopen it. Action 3 performs the
necessary reopenings.

3.3.1 Example — Here are two partial programs which illustrate the use of
improved file interlocks:

(Changed 30 April 1981)

• — £ f.

FLOCK — BASIC SUBROUTINE TO COORDINATE MULTI—uSER FILE ACCESS Page 11

5 ON ERROR GOTO ABORT
10 XCALL FLOCK,O,0,RET,1000
20 OPEN #1000,"FILE",RANDOM,ó,KEY
30 KEY=1
40 XCALL FLOCK,3,2,RET,1000,KEY
50 READ #1000,x
60 X=X+1
70 WRITE #1000,X
80 XCALL FLOCK,5,0,RET,1000,icEy
90 CLOSE #1000
100 XCALL FLOCK,1,0,RET,1000
110 END
120 ABORT:
130 XCALL FLOCK,2,0,RET
140 ON ERROR GOTO 0

3.2.2 The Interconsistency Problem — Here is how the programs of Section
1.3 could be rewritten to incorporate Record—Update interlocks:

10 ON ERROR GOTO ABORT
20 XCALL FLOCK,0,O,RET,1000
21 OPEN #1000,"FILE",RANDOM,6,KEY
30 KEY = 1

31 XCALL FLOCK,3,2,RET,1000,KEY
32 READ #1000,X : X=X+1 : WRITE #1000,X
33 XCALL FLOCK,5,0,RET,1000,KEY
40 KEY = 2
41 XCALL FLOCK,3,2,RET,1000,KEY
42 READ #1000,x : X=X+1 : WRITE #1000,X
43 XCALL FLOCK,5,0,RET,1000,KEY
50 CLOSE #1000
51 XCALL FLOCK,1,0,RET,1000
60 END
70 ABORT:
71 XCALL FLOCK,2,0,KEY
72 ON ERROR GOTO 0

(Changed 30 April 1981)

FLOCK — BASIC SUBROUTINE TO COORDINATE MULTI—USER FILE ACCESS Page 10

Since the second program does not update 'FILE', it requests permission to
(Th)

open it using Mode 0 with Action 0. This enables other programs which read
but do not update 'FILE' to open and process 'FILE' simultaneously.

3.2 Record—Update Interlocks

most programs open files when the programs begin, and close those tiles when
they end. The programs may not actually need the tiles to be open
throughout execution, but by not repeatedly opening and closing the tiles,
the programs avoid many undesirable delays.

File—open interlocks that are sét Cock out the entire tile; it a tiLe is
open throughout the run of a program, and thus unavailable to programs run
by other users, serious or annoying delays can result.

ALthough tile—open interlocks do prevent concurrency problems, they
generalLy reduce concurrency tar more than is necessary. Typically,
file—open interLocks lock out the entire tile to prevent access to the
single record. Locking out an entire tile to prevent access to a single
record is like using a sledge hamme'r to drive a push—pin. ALL that is
actually necessary is to delay any other user attempting to modify the
record until the user originally accessing the record is done.

Consider an example of application in which you and several other users are
interactively updating an employee record tile. Assume files are kept open
only where required. Once you display an employee's record, it is necessary
that all the other users wait for you to finish making changes to that
record before they can, in turn, access it; otherwise two users might
concurrently attempt to update the same employee record. This results in
the multiple update problem described in Section 1.2. In other words, all
other users must wait for one user to enter changes to the employee's record
before any other user can access and modify that record. This is called a

record—update interlock, and is a tar less severe restriction to all the
users accessing a file than a tile—open interlock is.

Actions 3 and 5 of FLOCK permit concurrent access to individual records to
be controlled. Action 3, Mode 0 or 4, is used betore reading a sequence ot
records which will not be used for updating, in order to prevent
interconsistency errors (see Section 1.3). Action 5 is used after the
sequence ot reads. Action 3, Mode 2 or 6, is used before reading records
which will be used tor updating. Action 5 is used again after rewriting the
records.

3.2.1 The Multiple Update Problem — Here is how the program of Section
1.2 couLd be rewritten to incorporate Record—Update interlocks:

(Changed 30 April 1981)

' •,'Q;4,'9e
FLOCK — BASIC SUBROUTINE TO COORDINATE MULTI—USER FILE ACCESS Page 9

5 ON ERROR GOTO ABORT
10 XCALL FLOCK,0,2,RET,1000
20 OPEN #1000,"FILE",RANDOM,6,KEY
30 KEY=1
40 READ #1000,X
SO X=x+l
60 WRITE #1000,X
70 CLOSE #1000
80 XCALL FLOCK,1,0,RET,1000
90 END

100 ABORT:
110 XCALL FLOCK,2,0,RET
120 ON ERROR GOTO 0

3.1.2 The Interconsistency Problem — Here is how the programs of Section1.3 could be rewritten to incorporate file—open interlocks:

10 ON ERROR GOTO ABORT
20 XCALL FLOCK,0,2,p.ET,1000
30 OPEN #1000,"FILE",RANDOM,o,KEY
40 KEY = 1 : READ #1000,X
50 X = X+1 : WRITE #1000,X
60 KEY = 2 : READ #1000,X
70 X = X+1 : WRITE #1000,X
80 CLOSE #1000
90 XCALL FLOCK,1,0,RET,1300
100 END
110 ABORT:
120 XCALL FLOCK,2,0,RET
130 ON ERROR GOTO 0

10 ON ERROR GOTO ABORT
20 XCALL FLOCK,0,0,RET,1000
30 OPEN #1000,"FILE",RANDOM,6,KEY
40 KEY = 1 : READ #1000,X
50 KEY = 2 : READ #1000,Y
60 PRINT X—Y
70 CLOSE #1000
80 XCALL FLOCK,1,0,RET,1000
90 END

100 ABORT:
110 XCALL FLOCK,2,0,RET
120 ON ERROR GOTO 0

The above programs will now function correctly in a concurrent environment.While the first program is updating 'FILE', no other programs can have'FILE' open. This prevents the second program from reading 'FILE' when itis in a partially updated state.

(Changed 30 April 1981)

'. 4 $fl!FyØnpi'

FLOCK — BASIC SUBROUTINE TO COORDINATE MULTI—USER FILE ACCESS Page 8

The problems outlined in Sections 1.2 and 1.3 can be solved by using FLOCK
to any of the above levels of compLexity. In your design you are free to
trade off complexity for performance, so Long as you use a single leveL of
compLexity consistently for any given data file.

3.1 FiLe—Open Interlocks

Using just Actions 0 through 2, it is possible to implement a very simplefile access coordination scheme which solves the problems of Sections 1.2
and 1.3. Action 0, Mode 0 or 4, is used before opening a fiLe for input
only (that is, opening a fiLe for RANDOM processing, upon which only READs
will be performed). Action 0, Mode 2 or 6, is used before opening a file
for output (i.e., a file open for RANDOM processing, upon which READs or
WRITEs will be performed, or a file which may be re—created). Finally,
Action 1 is used after closing any fiLe, and Action 2 is used before any
abnormal termination points in the program.

3.1.1 The Multiple Update Problem — Here is how the. program of Section
1.2 could be rewritten to incorporate file—open interLocks:

10 XCALL FLOCK,0,2,RET,1000
20 OPEN #1000,"FILE",RANDOM,Ô,KEY
30 KEY = 1

40 READ #1000,X
50 X=x+1
60 WRITE #1000,X
70 CLOSE #1000
80 XCALL FLOCK,1,O,RET,1000
90 END

The program now will function correctly in a concurrent environment. If any
other programs have 'FILE' open when line 10 is executed (and have correctly
informed FLOCK of the fact with Action 0), FLOCK wiLl make the above program
wait until the other program closes 'FILE'. Furthermore, no more programs
will be allowed to open 'FILE' until the above program reaches line 80.

The above program has no provisions for the user typing 'C, or for other
errors occurring which will abort execution. This can be corrected by
further rewriting the program, as folLows:

(Changed 30 April 1981)

FLOCK — BASIC SUBROUTINE TO COORDINATE ?IULTI—USER FILE ACCESS Page 7

A Return—Code greater than 1 is an indication of some programming error.
For calls to FLOCK which do not use modes 4 or 6, the statement:

IF Return—Code>1 THEN PRINT "FLOCK Error" : STOP

The FLOCK subroutine builds its dynamic tabLes
It is very important, BEFORE running any BASIC
ensure that the monitor is configured to make
queue blocks available. A good ruLe of thumb is
for which permission has been granted requires
permission is relinquished.

NOTE: The monitor is initially
available queue. At any time in the
SYSTEM command, you may execute the
'nnn' more queue blocks for general use.

out of monitor queue blocks.
program using FLOCK, to

an adequate number of these
to assume that each request
three queue blocks until

Once the system is up and running, no more queue blocks can be added to the
monitor. You must give your best guess at your total, requirements before
running the program. The QUEUE command takes on a new life once the system
is running, If you type the QUEUE command the system will, respond by typing
back the current number of free queue blocks in the available queue list.
It is by this method that you nay keep tabs on the operation of your system
as far as queue block usage.

3.0 USING FLOCK

There are three levels of increasing complexity with which FLOCK subroutine
calls may be incorporated into a program system:

1. Use Actions 0 through 2 to implement file—open interlocks (see
Section 3.1).

2. Use Actions 0 through 2 to
Actions 3 and 5 to implement
(see Section 3.2).

3. Use Actions 0 through 2, 4,
interlocks and use Actions 3
record—processing interlocks (see

(Changed 30 April 1981)

implement file—open interlocks and use
individual record—update interlocks

and 6 to implement complete file
and 5 to implement individual
Section 3.3).

should be used while debugging. For calls
Return—Code = 1 should be checked to det
immediately satisfy the request. Modes 4 and 6
way to allow the user to cancel a request which

2.2 Queue Block Requirements

which use modes 4 or 6,
ermine if FLOCK was able to
are generally used in this
may involve a lengthy delay.

SYSTEM.INI
'QUEUE nnn'

file prior
command which

to the final
will allocate

"'fl 'SPP4lS'

FLOCK — BASIC SUBROUTINE TO COORDINATE MULTI—USER FILE ACCESS Page 6

Action 5, Mode 0: Informs FLOCK that processing of 'Record' of 'File', for
which permission was granted by Action 3, has been
completed. If data has been buffered for output, it iswritten to disk.

Action 6, Mode 0: Informs Flock that exclusive processing of 'File', for
which permission was granted by Action 4, has been
completed. Any succeeding programs which are granted
use of 'File' by Actions 3 or 4 will automatically
reopen 'File!. This is done in case exlusive processing
of 'File' has caused it to be re—created. If data has
been buffered for output, it is written to disk.

2.1.2 File — File specifies a file—channel number. File is ignored by
Action 2 and may be omitted if 'Record' is also omitted. The file specified
may be either RANDOM or SEQUENTIAL for Actions 0 and 1, but must be a RANDOMfile for all other actions.

In order for FLOCK to function properly, file—channel numbers should denotespecific and unique files. This means you must systematically assign
file—channel numbers to your files when designing applications programs,being careful to assign the same numbers to the same files and different
numbers to different files.

File—channel numbers 1 through 999 have been reserved for use by Alpha Microsoftware. Although there is nothing to prevent your programs from using
these numbers, you are advised against doing so in conjunction with FLOCK sothat no conflict can arise between your application programs and any present
or future Alpha Micro software on your system.

2.1.3 Record — Record specifies a logical record number. Record is
ignored and may be omitted for Actions 0 through 2, 4, and 6.

2.1.4 Return—Code — Return—Code denotes a variable in which FLOCK olacesa number that indicates the success or failure of an action:

Code 0: Successful (All actions)
Code 1: Resource unavailable (Actions 0, 3, 4)
Code 2: Open request has already been granted (Action 0)
Code 3: Permission to open must first be granted (Actions 1, 3—6)
Code 4: Duplicate request for use of some record in file (Actions 3, 4)
Code 6: Permission to use some record in file must first be granted(Actions 5, 6)

Code 100: Unimplemented Action
Code 101: File—channel number must be open in AIphaBASIC for RANDOM

processing (Actions 3—6)

(Changed 30 April 1981)

$

FLOCK — BASIC SUBROUTINE TO COORDINATE MULTI—USER FILE ACCFSS Page 5

Action 0, Mode 6 Requests permission to open 'File' for exclusive use.If the request cannot be immediately granted,
Return—Code 1 is returned.

Action 1, Mode 0: Informs FLOCK that 'File' has been closed. Implicitly
informs FLOCK that any processing of records in 'File'
has been completed (i.e., Actions 5 or 6 are performed
automatically as necessary).

Action 2, Mode 0: Informs FLOCK that abnormal program termination is about
to occur. Performs Action 1 as necessary.

Action 3, Mode 0: Requests permission to read 'Record' of 'Fill' for
non—exclusive use (i.e., record wiLl not be used to
update file). Permission to open 'File' must already be
granted. The request is placed in a

first—come—first—served queue and the program is deLayed
until the request can be granted.

Action 3, Mode 2: Requests permission to read 'Record' of 'FiLe' for
exclusive use (i.e., record will be used to update
file). Permission to open 'File' must already be
granted. The request is placed in a

first—come—first—served queue and the program is delayed
untiL the request can be granted.

Action 3, Mode 4: Requests permission to read 'Record' of 'File' for
non—exclusive use (i.e., record wiLl not be used to
update file). Permission to open 'FiLe' must already be
granted. If the request cannot be immediately granted,
Return—Code 1 is returned.

Action 3, Mode 6: Requests permission to read 'Record' of 'File' for
exclusive use (i.e., record will be used to update
file). Permission to open 'File' must aLready be
granted. If the request cannot be immediately granted,
Return—Code 1 is returned.

Action 4, Mode 2: Requests permission to read/write all records of 'File'
for exclusive use (i.e., processing will update and
possibly re—create file). Permission to open 'File'
must already be granted. The request is placed in a
first—come—first—served queue and the program is delayed
until the request can be granted.

Action 4, Mode 6: Requests permission to read/write all records of 'File'
for exclusive use (i.e., processing wilL update and
possibly re—create file). Permission to open 'File'
must already be granted. If the request cannot be
immediately granted, Return—Code 1 is returned.

(Changed 30 April 1981)

FLOCK — BASIC SUBROUTINE TO COORDINATE MULTI—USER FILE ACCESS Page 4

The READ—WRITE—READ—WRITE sequence itt the first program can be considered as
steps in a single update operation. To prevent the situation outlined above
from occurring, we need a mechanism for preventing access to a collection of
data during such an update operation. Otherwise, we may retrieve a
colLection of data which has only been partially updated. In actual
applications, this can lead to accessing noneistent records through an
index file, incorrect totals on reports, inconsistent reports, etc.

2.0 THE FLOCK SUBROUTINE

Use FLOCK to prevent the kinds of problems we discussed in the paragraphs
above. FLOCK provides a way trsynchronize attempts at accessing files and
devices so that you can avoid partially updating or scrambling data.

2.1 Flock Calling Sequence

The calling sequence for FLOCK in BASIC is:

XCALL FLOCK, Action, Mode, Return—Code, File, Record

Where:
I'

1. Action, Mode, File, and Record are all either floating point
expressions which evaluate to positive integer values, or string
expressions which represent positive integer values.

2. Return—Code is a 6—byte floating point variable.

2.1.1 Action & Mode — Action, modified by mode, specifies the action to
be performed by FLOCK:

Action 0, Mode 0: Requests permission to open 'File' for non—exclusive
use. The request is placed in a first—come—first—served
queue and the program is delayed until the request can
be granted.

Action 0, Mode 2: Requests permission to open 'File' for exclusive use.
The request is placed in a first—come—first—served queue
and the program is delayed until the request can be

granted.

Action 0, Mode 4: Requests permission to open 'FiLe' for non—exclusive
use. If the request cannot be immediately granted,
Return—Code 1 is returned.

(Changed 30 April 1981)

M i, 4.

FLOCK — BASIC SUBROUTINE TO COORDINATE MULTI—USER FILE ACCESS Page 3

10 OPEN #l,IFILEIt,RANDOM6 KEY
20 KEY = 1 : READ #1,X
25 X = X+1 : WRITE #1,X
30 KEY = 2 : READ #1,.X
35 X = Xli : WRITE #1,X
40 CLOSE #1 : END

10 OPEN #l,1FILE',RANDOM,o,KEY
20 KEY = 1 : READ #1,X
30KEY2: READ#2,Y
40 PRINT X—Y
50 CLOSE #1 : END

If the values in recordsone and two of tFILEI are identical, then theyshould continue to be identical, if the first program (which increments thevalues in both records by one) is executed. Hence, if the values in recordsone and two are identical, and we execute both of the above programsconcurrently, we would like the second program to print zero, thus:
X USER#1 REC#1#2 USER#2 X V

— OPEN #l,"FILE",RANDOM,o,KEY 5 5
5 KEY1:READ#1,X 5 5
6 Xx+i :WRITE#1,x 6 55 KEY2 READ#1,X 6 5
6 Xx+1 :WRITE#1,x 6 6
6 CLOSE#1 :END 6 6

6 6 OPEN #1 ,"FILE",RANDOM,6,KEY — —

6 6 KEY1:READ#1,X 6—
6 6 KEY = 2 READ #1,Y 6 6

— 6 6 PRINTX—Y 66
0

— 6 6 CLOSE#1 :END 6 6

However, under some circumstances it is possible for the second program toprint 1, rather than 0:

X USER#1 REC#1#2 USER#2 X Y

— OPEN #l,"FILE',RANDOM,6 KEY 5 5
5 KEY = 1 READ #1,X 5 56 Xx+1 :WRITE#1,x 6 5
6 6 5 OPEN #l,SIFILEII,RANDOM,6,KEY — —
6

6 5 KEY=1 READ#1,x 6 —6 6 5 KEY?: READ#1,Y 6 56
6 5 PRINTX—Y 6 5

1
6 6 5 CLOSEft1 :END 6 55 KEY2: READ#1,x 6 5
6 X=x+1 :WRITE#1,X 6 6
6 CLOSE #1 : END 6 6

(Changed 30 April 1981)

e,

FLOCK — BASIC SUBROUTINE TO COORDINATE mULTI—USER FILE ACCESS Page 2

p t1

X USER#1 REC#1 USER#2 x

— OPEN #1,"FILE",RANDOM,6,XEY 5

— KEY1 5

5 READ #1,X 5

6 XX+1 5

6 WRITE #1,X 6

6 CLOSE #1 6

6 END 6
— 6 OPEN #1,"FILE",RANDOM,6,KEY —

6 KEY = 1 —

-- 6 READ #1,X 6

— 6 x=x+i 7

— 7 WRITE #1,X 7

7 CLOSE#1 7

— 7 END 7

NOTE: In this exampLe, the value in record 1 is initialLy 5.

However, under some circumstances it is possible for record 1 to onLy be
incremented by 1, instead of 2, after being accessed by two users:

X USER #1 REC #1 IJSER#2 X

— OPEN #1,"FILE",RANDOM,t,KEY 5

— KEY1 5

5 READ #1,X 5

5 5 OPEN #1,"FILE",RANDOM,o,KEY —

5 5 KEY1 —

5 5 READ #1,X S

5 5 XX+1 6

5 6 WRITE #1,X 6

5 6 CLOSE #1 6

5 6 END 6

6 XX+1 6

6 WRITE #1,X 6

6 CLOSE #1 6

6 END 6

To prevent this situation from occurring, we need a method of preventing
overlap in READ—modify—WRITE sequences on shared data.

1.3 The Interconsistency Problem

Consider the foLLowing two programs:

(Changed 30 April 1981)

April 1981
Revision AOl

FLOCK — BASIC SUBROUTINE TO COORDINATE MULTI—USER FILE ACCESS

1.0 INTRODUCTION

Some special file protection is required when your system has two or moreusers, and those users can run a program or programs which access the samefiles. FLOCK is a BASIC subroutine which protects files from this potentialconcurrent access, and proteéts one user from accessing information thatanother user is updating at the same time. The remainder of Section 1 inthis document describes in detail the potential problems of multi—user fileaccess. Section 2 details how you can use the FLOCK ("File Locking")subroutine from a BASIC program to coordinate shared file access andprocessing Section 3 gives you some schemes to implement FLOCK in yourprograms. Section 4 discusses the hazard of "Deadlock," and how to avoidit. Section 5 is a bibliography.

1.1 FLOCK Program Require5
The FLOCK.SBR program is an external assembly language subroutine which iscallable from BASIC. FLOCK only functions properly if it is loaded intosystem memory (via the SYSTEM command in the system initialization commandfile, DSKO:SYSTEMINIE14J) FLOCK also requires that you have FLTCNV.PRGin system memory.

1.2 The Multiple Update Problem

Consider the following program:

10 OPEN #l,"FILE",RANDOM6 KEY20 KEY = 1

30 READ #1,X
40 x=x÷i
.50 WRITE #1,X
60 CLOSE #1
70 END

The purpose of this program is to increment record 1 of 'FILE' by one. Iftwo users execute this program concurrently, we wish the value in record oneto be incremented by two, thus:

(Changed 30 April 1981)

1[

4flØM.m

FLOCK — BASIC SUBROUTINE TO COORDtNATE MULTI—USER FILE ACCESS

Table of Contents

1.0 INTRODUCTION
1

Page iii

2.0 THE FLOCK SUBROUTINE 4

2.1 Flock
2.1.1
2.1.2
2.1.3
2.1.4

2.2 Queue

Calling Sequence
Action & Mode
File
Record
Return—Code

Block Requirements

3.1 File—Open Interlocks
3.1.1 The Multiple Update Problem
3.1.2 The Interconsistency Problem

3.2 Record—Update Interlocks
3.2.1 The Multiple Update Problem
3.2.2 The Interconsistency Problem

3.3 Improved File Interlocks
3.3.1 Example

4.0 PREVENTING DEADLOCK ..- 1-4

5.0 BIBLIOGRAPI4Y 15

(Changed 30 April 1981)

1.1 FLOCK Program Requirements
1.2 The Multiple Update Problem
1.3 The Intercoñsistency Problem

1

1

2

3.0 USING FLOCK

4
4
6
6
6

7

7

8

8

9
10
10
11
12
12

• 'F'" t

Page ii

C

'Apha Micro', 'AMOS', 'AphaBASIc', 'AM—lOO',
'AIPhaPASCAL', 'AlphaLISp', and 'AlphaSERv'

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA 92714

©1981 — ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North
Irvine, CA 92714

FLOCK — BASIC SUBROUTINE TO
COORDINATE MULTI—USER FILE ACCESS

April 1981
Revision AOl

This document reflects AMOS Versions 4.5 and later

.1 $ r' 'k'.a MUöJ*W m

April 1981
Revision A02

1.0 INTRODUcTION

SPOOL is an assembly language routine that you can call from BASIC to spoola disk file to the line printer. (To "spool" a file is to insert it intothe printer queue, after which you can continue to do other things while

your

file waits in the queue for its turn to be printed.) You can specifyto SPOOL which printer you want the file to be printed on, the number ofcopies to print, the form to print it on, the lines per page and the width(measured in characters) per line. Also you can specify any combination ofswitches to turn on or off the banner option, the delete option (whichdeletes the file from the printer queue after printing), the header option,the formfeed option, or the wait option.

and later)
other words,

is
the

fully
only

2.0 THE SPOOL SUBROUTINE

Call SPOOL via:

where:

XCALL SPOOL,FILE$,PRINTER$ SWITCHES COPIES FORMS LPP WIDTH

SWITCHES A floating point variable or
various control switches andprinting of the file. You
system or user memory if you
SWITCHES argument.

expression that specifies
flags that affect the

must load FLTCNV.PRG into
are going to use the

(Changed 30 April 1981)

SPOOL — BASIC SUBROUTINE FOR SPOOLING FILES TO THE LINE PRINTER

The current
compati ble
information
you want to

version of SPOOL (AMOS versions 4.2with earlier versions of SPOOL. Inthat you must supply to SPOOL is the specprint; all other parameters are optional.

FILES

PRINTERS

A string variable or expression that gives thespecification of the file you want to print. If youspecify a file which does not exist, SPOOL doesn't tellyou that it can't find the file (but, of course, doesn'tprint anything).

A string variable
the printer to
PRINTERS is a

printer.

or expression
which you

that
want to

gives
send

the
the

name of
file. If

• C•.•

SPOOL — BASIC SUBROUTINE FOR SPOOLING FILES TO THE LINE PRINTER Page 2

The control switches that SPOOL uses are.exactly the
same as the switches used by the monitor PRINT command.
(See the AMOS System Commands Reference Manual
(DWM—O0100—49), for information on PRINT.)

Each switch you can use has a numeric code associatedwith it (see below). For example, the BANNER switch
code is 1; the DELETE switch code is 4. Set controlswitches by putting the sum of the appropriate switch
codes into the SWITCHES variable. For example, if you
want to use the BANNER and DELETE switches (to tell theline printer spooler program to print a banner page anddelete the file after printing it), load SWITCHES with 5
(BANNER cod& + DELETE code). If you omit SWITCHES,
SPOOL uses the default switches for the selectedprinter.

Switch codes:

BANNER 1

NOBANNER 2
DELETE 4
NODELETE 8
HEADER 16
NOHEADER 32
FF 64
NOFF 128
WAIT 256

COPIES A floating point variable or expression that specifies
the number of copies to be printed. If you omit COPIES
or it is zero, the line printer spooler program prints
one copy.

FORMS A string variable or expression that specifies the form
on which the file is to be printed. If you omit FORM$or it is a null string, the line printer spooler uses
the NORMAL form.

LPP A floating point variable or expreñion that specifies
the number of lines per page. SPOOL only uses thisvalue it you have specified the HEADER switch in the
SWITCHES variable. If you omit LPP, the spooler programuses the default value for the specified printer.

WIDTH A floating point variabLe or expression that specifies
the width (in characters) of the print line. If you
omit WIDTH, the spooler program uses the default valuefor the specified printer.

(Changed 30 April 1981)

A. —. ¼'4 .,

SPOOL — BASIC SUBROUTINE FOR SPOOLING FILES TO THE LINE PRINTER Page 3

2.1 Error Messages

The SPOOL subroutine returns no error messages except:

?No spooler allocated

If you see the message above, it means that no line printer spooler program
is currently running on the system.

(Changed 30 ApriL 1981)

•

ApriL 1981
Revision AOl

XLOCK — BASIC SUBROUTINE FOR MULTI—USER LOCKS

XLOC!<

is an assembly Language routine that your BASIC program can call toset and test "Locks." Include the XLOCICSBR in system memory by using theSYSTEM command within the SYSTEM.Ir.Jj file. NOTE: You MUST include XLOCK insystem memory.

A Lock is a tool to help you synchronize attempts to access devices andfiles. You can imagine the problems that result when you have two userstrying to update the same record of the same file at the same time. A lockis an entity created by a program to help it keep track of whether a certaindevice, file, etc., is in use at the specific time that the program wants toaccess it. The general way that the locking system works is this:
1. When you want to prevent access to something (a file, a device,etc.) while your program accesses it, you create (that is, "set") asystem lock on that resource.

2. Whenever you want to access a device or file, your program tries toset the lock associated with that item; if it is already set, youknow that another user's program is using the device or file.
3. When you are finished accessing a device or file, you destroy (thatis, "clear") the lock so that other programs can now access theresource.

Note that a system lock is NOT a security device—— it's a convenience. Ifa program wants to allow its users to write to a file without checking tosee if another user is there first, it can do so (and run the risk of createchaos). A system lock simply provides a convenient way to help a programkeep its users from conflicting in their attempts to use system resources.The only job that can clear a lock is the job that originally set the lock.BASIC does not automatically clear Locks when a program exits, so be careful

that

your program clears any locks it has set before it exits. (For morebackground information on why locks are necessary, see the document FLOCK:BASIC Subroutine to Coordinate Multi—user File Access, in the "BASICProgrammer's Information" section of the AMOS Software Update documentationpacket.)

1.0 THE XLOCK SUBROUTINE

Call XLOCK from BASIC via:

XCALL XLOCK, MODE, LOCK1, LOCK2

(Changed 30 April 1981)

•
- - • • - •'•. r.• I •

•
• : • I • •

XLOCK — BASIC SUBROUTINE FOR MULTI—USER LOCKS Page 2

Where

MODE The function you want to perform. These modes are:

Mode 0: Set lock and return.
Mode 1: Set lock. (Wait if already Locked; then set).
Mode 2: Clear lock (if set by your job).
Mode 3 Return list of all system Locks and the jobs that

set them.

(See below for a discussion of each mode.)

LOCK1 The first digit of the lock code. (See below.)

LOCK2 The second digit of the lock code. (See below.)

Use MAP statements at the front of your program to define MODE, LOCK1, and
LOCK� as two—byte binary variables. (They may not be floating point orstring variables.) Far example:

MAP1 MODE, B, 2
MAP1 LOCK1, 8, 2
MAP1 LOCK2, 8, 2

Before you call XLOCK, your BASIC program must first set up the correct
values for MODE, LOCK1, and LOCK2.

2.0 THE LOCKS

A system lock is a two—level numeric lock; the number representing either
Level may be from 1 to 65535. (A value of zero in either position acts as awildcard. That is, any number will match in that position when it comes toclearing or setting that lock.) Some typical locks are:

1,1
1,2
4,0
100,100

The numbers you choose are up to you. You may choose to assign some meaningto the numbers (for example, the first number might be the file—channel
number of the file you want to lock, and the second number might be thenumber of the record within that file that you want to lock.)
Since both numbers in the lock may range from 1 to 65535, the actual
possible number of unique locks is 65535 * 65535. But, every time youcreate a lock, the system sets aside a block in the monitor queue in systemmemory for that lock. Since there are initially only 20 queue blocksavailable, it's a good idea to keep the number of Locks to a minimum. Agood rule is that a program should not have more than two or three locks k.active at any one time. As you clear a lock, that queue block becomes

(Changed 30 April 1981)

XLOCI(— BASIC SUBROUTINE FOR MULTI—USER LOCKS
Page 3

available again. (So, in essence, every time you set a lock you create it,and every time you clear a lock, you destroy it.)

3.0 THE MODES

The MODE argument in the XLOCK call tine can contain one of four values(0—3) which selects one of the four possible locking modes:

3.1 MODE 0 (Lock and Return)

This mode tells XLOCK to create a lock with the value LOCK1,LOCK2. If thelock already exists (i.e., some other job is accessing the file or deviceyou want to use), XLOCK returns with MODE equal to the number of the jobthat set the lock. (A job number is assigned to each job in the order thatthe jobs were defined in the JOBS command in the system initializationcommand file. For example, the first job definàd in the JOBS command lineis Job #1. The SYSTAT command lists the jobs in this order.) If the lockdoes not already exist, XLOCK creates it and returns with a zero in MODE.You've now set the lock.

3.2 MODE 1 (Lock and Wait)

This XLOCK mode is identical to MODE 0, except that if the lock alreadyexists, XLOCK tells the system to put your job to sleep until the lock iscleared. That means that your job will be in an inactive state (except forwaking at every clock tick to test the status of the lock) until the jobthat originally set the lock clears it. If you use this mode, take intoconsideration the fact that another user may be waiting for the same lock;it's possible that the lock might be cleared and then grabbed up either bythe same or another job before your job wakes up.

3.3 MODE 2 (Clear Lock)

XLOCK clears the lock specified by LOCK1 and LOCK2 and returns to yourprogram. A zero returned in MODE indicates that the lock you tried to clearwasn't set by your job; a one returned indicates that you sucessfullycleared one lock; a number greater than one indicates that you cleared morethan one lock (which means that LOCK1 or LOCK2 were originally set to zero——the wi ldcard value). You may never use XLOCK to clear a lock that was notset by your job. (NOTE: If you attach your terminal to another job, XLOCKconsiders you a new job.)

(Changed 30 April 1981)

I

XLOCK — BASIC SUBROUTINE FOR MULTI—USER LOCKS Page 4

3 4 MODE 3 (List Locks)

MODE 3 returns a complete list of all the locks set on the system and thenumbers of the jobs that set them When you use MODE 3, LOCK? mustrepresent a mapped array large enough to hold the expected data When XLOCKreturns from a MODE 3 call, MODE contains the number of locks that are seton the system, LOCK1 contains your job number, LOCK? contains one three—wordentry for each Lock that is set on the system. (You must set up this entryas three binary words in a MAP statement.) The first two bytes hold the jobnumber; the second and third words hold the actual LOCK1 and LOCK? values ofthe specified Lock. The following is an example of how to set up the MAPstatement for a MODE 3 call:

10 MAP1 MODE, B, 2 -

20 MAP1 MYJOB, B, 2
30 MAP1 LISTARRAY
40 MAP? LOCKENTRY(25)
50 MAP3 JOBNUMBER, B, 2
60 MAP3 LOCK1, B, 2
70 MAP3 LOCK?, 8, 2
80 Start of Program goes here
100 MODE = 3
110 XCALL XLOCK, MODE, MYJOB, LISTARRAY
120 Rest of program goes here

4.0 WXLDCARDS

A system lock consists of two numbers, the values of LOCK1 and LOCK?. Ifeither of these two numbers is a zero, that number is a wildcard and anynumber between 1 and 65535 will match it. (A wildcard is a symbol that ismatched by any other symbol.)

You can use wildcards for various reasons. For example, suppose that youdecide that the LOCK1 value is going to represent a particular tile and thatthe LOCK? value will represent a particular record in that file. If youwant to stop all references to that file while your program is accessing it,you would set the lock with a zero in LOCK? and the number representing yourfile in LOCK1. Anyone who tries to set a Lock that has the same LOCK1 valueas your lock won't be able to do so; the system will tell him that that lockalready exists (since your wildcard in LOCK? will match any number he maytry in that position). No one (including yourself) will be able to set alock with the same LOCK1 value until you clear the lock. Note that settinga lock with both numbers zero will prevent anyone from setting a lock, sincethe system will say that all possible locks are already set.

(Changed 30 April 1981)

XLOCK — BASIC SUBROUTINE FOR MULTI—USER LOCKS
Page 5

5.0 PROGRAMMING EXAMPLES

The following is a small sample demonstration program that you may want touse to experiment with XLOCK, and to get a feeling for how it works. itasks you for the values of MODE, LOCK1, and LOCK?, and then reports back onthe results of the locking operation you asked for. Remember: MODE = 0 setsa lock, MODE = 1 sets the lock after waiting for it to be cleared; MODE = 2clears the lock, and MODE = 3 displays the locks set.
10 Sample Program to Illustrate File Locking
15 MAP1 COUNTER, F
20 MAP1 MODE, B, 2
25 MAP1 LOCK1, B, 2
30 MAP1 LOCK?, B, 2 -

35 MAP1 LOCKARRAY
40 MAP? LOCKENTRY(25)
45 MAP3 JOB, B, 2
50 MAP3 Li, B, 2
55 MAP3 L2, B, 2
60 START:
65 INPUT "MODE, LOCK1, LOCK2: ",MODE,LOCK1,LOCK2
70 FLAG = MODE
75 IF MODE = 3 GOTO DISPLAY
80 XCALL XLOCK, MODE, LOCK1, LOCK2
85 PRINT "Mode = ";MODE
90 IF FLAG = 0 AND MODE <> 0 PRINT "Lock already set."
95 IF FLAG = 2 AND MODE = 0 PRINT "You didn't set that lock."
100 IF FLAG = 2 AND MODE = 1 PRINT "You cleared the lock."
105 IF FLAG = 2 AND MODE > 1 PRINT "You cleared more than one lock."110 GOlD START
115 DISPLAY:
120 XCALL XLOCK, MODE, LOCK1, LOCKARRAY
125 PRINT "Your job number is: ";LOCKi
130 PRINT "Current locks in use = ";MODE
135 IF MODE = 0 GOTO LOOP
'140 FOR COUNTER = 1 TO MODE
145 PRINT SPACE(S);
150 PRINT STR(L1 (COUNTERfl+","+STR(L2CC0UNTER));
155 PRINT SPACER) : PRINT "(Job";JOB(COJJt.JTER);")"
160 NEXT
165 LOOP:
170 PRINT : GOTO START

XLOCK is often used to lock individual records within a tile so that morethan one user can update that file at the same time. LOCK1 might contain anumber that represents the particular file you want to open for mulit—userupdating (perhaps by containing the tile's file—channel number). LOCK2might hold a number that represents the specific record within the file thatyou want to update.

(Changed 30 April 1981)

XLOCK — BASIC SUBROUTINE FOR MULTI—USER LOCKS
Page 6

5.1 Calculating Record Numbers 1":

We assume that you will usually be using XLOCK to control multi—userupdating of random files. (For information on random files, see Chapter 15of the AIPhaBASIC User's Manual, (DWM—00100—01).) If you are going to belocking a specific tile record, you need to understand the relationshipbetween disk blocks and file records. A record (sometimes called a "logicalrecord") is a grouping of data that you define; you also define the lengthof that record. Just as an example, let's define a file record thatcontains 6 bytes for a customer ID number, 24 bytes for a customer name, 10bytes for the name of the customer's sales contact, and 10 bytes for thecustomer phone number. This file record would then contain 50 bytes. Adisk block is a physical grouping of data on the disk that is always 512bytes long. AMOS always transfers disk information in this 512—byte block.BASIC unblocks a disk block into smaller groups—— your logical records. Forexample, one disk block (512 bytes) would contain 100 of the logical recordswe defined above (50 * 100 = 500) with 12 bytes left over. No logicalrecord is ever larger than a disk block. NOTE: You specify the size of yourlogical record in the OPEN statement for the file.

The reason for our explanation above is this: if you want the LOCK2 value tocontain the number of the record you are updating, it must contain therelative number of the disk block being used, and not the logical recordnumber. When BASIC unblocks a disk block into logical records, it bringsthe entire disk block into your memory partition. Even if you are onlyupdating one logical record in that disk block, the entire disk blockremains in your memory area until you either close the file or read alogical record that is in a different disk block. What this means is thatmore than one user could try to write out the same disk block at the sametime even though they are updating different logical records. So, you mustprevent access, not only to the logical record that you are updating, but tothe entire disk block that contains it.
You must calculate the relative disk block number yourself by dividing thelogical record number by the blocking factor. (The blocking factor is thenumber of logical records that can fit in one disk block.) In the exampleabove where we had logical records 50 bytes long, the blocking factor is 10.Remember that each disk block is 512 bytes long and will be blocked tocontain as many logical records as will fit.
If one of your lock digits is the disk block number, you can prevent accessto the entire disk block; no one can access any of the logical records inthe disk block until you clear the lock.
REMEMBER: The lock wildcard symbol is a zero, so calculate your disk blocksbeginning with one instead of zero. Before you unlock the lock on a diskblock, force the system to write that record by reading a logical recordthat falls outside of that disk block. (NOTE: You may also use theRANDOM'EORCED mode in your OPEN statement to force BASIC to perform a diskread or a disk write every time you access the file. See Chapter 15 of theAIPhaBASIC User's Manual for more information.) The sample program belowmay help to clarify the last few paragraphs.

(Changed 30 April 1981)

XLOCK — BASIC SUBROUTINE FOR MULTI—USER LOCKS
Page 7

5 2 Sample Program to Illustrate- File Record Locking

10 Sample Program to Illustrate File Record Locking15 ! Remember to load XLOCK.SBR before running!20 MAP1 MODE, B, 2
! Define locking variables25 MAP1 LOCK1, B, 2

30 MAP1 LOCK2, B, 2
35 MAP1 LOGICAL'RECORD

! Define logical record40 MAP2 CUST'ID,F,o contents—— 50 bytes45 MAP2 CUSTOMER,S,24
! of customer info.50 MAP2 CONTACT,S,10
! Customer ID is actually55 MAP2 PHONE,S,10
! logical record number.60 MAP1 RECORD'SIZE,F,,SO

65 ! Scratch variables:
70 MAP1 RECORDNUM,F Logical record number75 MAP1 FLAG,F
80 MAP1 QIJERY,S,1
85 ! Begin program:
100 START:
105 LOOKUP "CUSTID.DAT",FLAG

! If file doesn't exist,110 IF FLAG = 0 THEN GOTO FILE'ERR
! report error and exit.115 OPEN #100, "CUSTID.DAT",RANDOM,RECORDISIZERECORDNUM

120 LOCK1 = 100 "100" represents CUSTID file125 PRINT "Welcome to the Customer Maintenance Program."
130 LOOK:
135 INPUT "Please enter customer identification number: ",RECORDNuM140 Note: Customer ID is just number of that logical record.
145 Calculate relative disk block number (assumes logical
150 records begin with zero):
155 LOCK2 = (RECORDNIJM/1o)+1
160 Lock the disk block used by the record.
165 XCALL XLOCK,MODE,LOCK1,LOCK2
170 READ #100, LOGICAL'RECORD
175 PRINT "Customer information:"
180 PRINT TAB(5);"Customer ID#: ";CUST'ID
185 PRINT TAB(5);"Customer name: ";CUSTOMER
190 PRINT TAB(5);"Sales contact: ";CONTACT
195 PRINT TAB(5);"Phone #: ";PHONE
200 UPDATE:
205 INPUT "Do you wish to change any info? ";QUERY
210 IF UCS(QUERY) = "N" THEN GOTO LOOP
215 PRINT "Customer ID: ",CUST'ID
220 INPUT "Enter customer name: ";CUSTOMER
225 INPUT "Enter sales contact: ";CONTACT
230 INPUT "Enter phone number: ";PHONE
235 WRITE #100, LOGICAL'RECORD
240 ! Force BASIC to bring different disk block into memory.245 (If we are in first disk block, since blocking factor is250 10, record number > 10 will force in next disk block)255 IF LOCK2 = 1 THEN RECORDNUM = 10 ELSE RECORDNUM = 0260 ! Now bring in different disk block:
265 READ #100, LOGICAL'RECORD

(Changed 30 April 1981)

- - .---•,,,

XLOCK — BASIC SUBROUTINE FOR MULTI—USER LOCKS
Page 8

270 Release the lock
275 MODE=2
280 XCALL XLOCK, MODE, LOCK1, LOCK2285 LOOP
290 INPUT "Do you wish to see info on another customer? ",QUERy295 IF UCS(QUERY) = "Y" THEN GOTO LOOK300 EXIT:
305 PRINT "Returning you to AMOS.."310 CLOSE #100
315 END
320 FILEIERR: Oops. File didn't exist.325 PRINT."File error. Please see System Operator."330 END

(Changed 30 ApriL 1981)

May 1980
Revision AOl

XMOUNT — BASIC SUBROUTINE TO MOUNT A DISK

1.0 INTRODUCTION

XMOIJNT is an assembly language routine that allows you to mount a disk fromwithin a BASIC program without Leaving BASIC. You should calL it wheneveryou change a disk and your BASIC program is going to sort files or createnew files on the newly changed disk. (You must always mount a disk afteryou've changed it and before you write to it; otherwise the system willthink that the old disk is still in the drive. When it comes time to writeinformation out to the new disic, the disk's bitmap will be wrong, and thesystem will try to write to the new disk as if it had the same areas free asthe old one.) Besides bringing into memory the proper bitmap, XMOUNT alsoloads in the alternate track table, if any, for the specified device.
IMPORTANT NOTE: NEVER mount or unmount a disk while someone is accessingthat disk.

The XMOUNT program is fully re—entrant, so you may load it into systemmemory via the SYSTEM command in your SYSTEM.INI. (See The SystemInitialization Command File in the "System Operator's Information" sectionof the AMOS Software Update documentation packet for information on theSYSTEt'LIpfl.)

1.1 THE XMOUNT SUBROUTINE

You can call XMOUNT to mount a disk via:

XCALL XMOUNT,DEV,VOLID$

Where:

DEV String variable that represents a device specification(e.g., "DSKl:"). You may optionally follow the device
specification with "lU" to unmount the device (e.g.,
"DSKO: IU")

VOLID$ String variable in which the volume ID of the mounted
device will be returned. This variable must be 10 bytes
long. If it is not specified the labels block will not
be read. This variable is ignored if the /U option is
used.

If you specify the unmount option, the "U" must be uppercase. When youunmount a disk, you prevent BASIC and most system programs from accessingthat device.

(Changed 1 May 1980)

SOFTWARE PUBLICATIONS FILE REFERENCE NUMBER: AMOS 4.5 Software Update Docurneritati on Pac kel

SOFTWARE DOCUMENTATION READER'S COMMENTS

i/e appreciate your help in evaluating our documentation efforts. Please feel free to attach additional comments. If you require a written response, check here: C

NOTE: This form is for comments on software documentation only. To submit reports on software problems, use Software
Performance Reports (SPAs), available from Alpha Micro.

Please comment on the usefulness, organization, and clarity of this manual:

Did you find errors in this manual? If so, please specify the error and the number of the page on which it occurred.

What kinds of manuals would you like to see in the future?

Please indicate the type of reader that you represent (check all that apply):

o Alpha Micro Dealer or OEM

o Non-programmer, using Alpha Micro computer for:
o Business applications
o Education applications
o Scientific applications
o Other (please specify):

o Programmer:
o Assembly language
o Higher-level language
o Experienced programmer
o Little programming experience
o Student -

0 Other (please specify):

NAME:

DATE:

TITLE:

__

PHONE NUMBER:

ORGANIZATION:

ADDRESS:

CITY: STATE:

ZIP OR COUNTRY

.
-n

0.
.0

•
—

1

•
-1

•
2

• •
(I

) 0 -T
i

• • •
m 0

•
m

•
-D

• •
-1

•
m 2

0)
•

2

.
—

l
a

.
-

-
-

•
'D

3r
• •

lo
zO 0

.
•

=

2

•

•
•

C
U

T
A

LO
N

G
 L

IN
E

