

Martin Eberhard’s

User’s Manual

i

ME2700
Martin Eberhard’s Orphan EPROM Programmer

User’s Manual

 ME2700 Programmer

15 March 2021 ii Martin Eberhard

 ME2700 Programmer

15 March 2021 iii Martin Eberhard

ME2700
Martin Eberhard’s Orphan EPROM Programmer

Rev B and C PC Boards, Rev 1.02 & 1.03 Firmware

The ME2700 is designed to program many of the "orph an" 24-pin NMOS and CMOS EPROMs
and EEPROMs - those with non-standard voltages, pec uliar pinouts, proprietary
programming algorithms, etc., especially those EPRO Ms that cannot be programmed by
"universal" EPROM programmers. (The ME2700 can also program all of the “standard”
24-pin EPROMs.) In particular, the ME2700 supports single-voltage and 3-voltage
variants of the 2708 and 2716, all variants of the 2732, programming voltages from
12V through 26V, most 8K-byte EPROMs in 24-pin pack ages, and “Skinny DIP” packages
as well as standard-width packages. It has provisio ns for an external negative
programming voltage supply, to support EPROMs such as the Intersil IM6654, which
needs Vpp=-40V.

The list of supported EPROMs in Appendix A only inc ludes EPROMs for which
datasheets were found, so that programming compatib ility could be verified. Most
of these EPROMs (including the Soviet and East Germ an variants) have been tested
on the ME2700.

The ME2700 can program with the slow-and-standard m ethods, as well as pretty much
any of the Smart/Quick/Fast/Express algorithms spec ified by the various EPROM
manufacturers. For the supported EPROMs, the algori thms provided are faithful
implementations of the algorithms specified by thei r manufacturers.

The ME2700 requires no special host-side software. It is completely self-contained
and menu-driven, requiring only a terminal program (e.g. Hyperterm or Teraterm)
that can send and receive ASCII files, and a 9600-b aud RS232 serial port. It will
accept and produce EPROM image files in either Inte l Hex format or Motorola S-
Record format.

A unique feature of the ME2700 is the Custom EPROM Editor, which lets you define
and save (in onboard EEPROM) up to four custom EPRO M specifications. You can
specify the functions for pins 18 through 22, the p rogramming voltage, special
voltage requirements for Vcc during programming, cu stom programming algorithm,
etc. If your EPROM is not supported, and it has its data pins and address pins A0
through A9 in the standard locations, then you prob ably can create a custom EPROM
spec to program it with the ME2700.

The ME2700 firmware can be updated via its serial p ort. If a future firmware
release supports an EPROM that you need to program, or fixes a bug that’s been
bugging you, you can easily update the firmware in your ME2700.

One thing the ME2700 does not do is attempt to automatically identify the EPROM
that is inserted. Some 24-pin EPROMs will divulge t heir ID if you apply +12V to
address pin A9. A few others have different (non-st andard) ID methods. But most
EPROMs do not include any provision for reading the ir ID, and applying +12V to
their address pin A9 will actually damage the EPROM .

The ME2700’s universal 12V AC adapter is rated for line input from 100V to 240V,
50Hz or 60 Hz, so it should work anywhere in the wo rld. The menus and this manual,
however, are only in English.

The only differences between the Rev B and Rev C PC boards are the replacement of
transistor Q1 (which had become obsolete) and some minor tweeks to the layout
(just because I was revising the PC board anyway). As part of these tweeks, the
gates within U8 were swapped a bit, and a few compo nents moved.

-Martin Eberhard
21 October 2018

 ME2700 Programmer

15 March 2021 iv Martin Eberhard

ME2700 Revision History

PCB Firmware Manual Date Change Notes

B 1.00 Prelim 2 Jan 2016 First complete version

B 1.01 1.01 20 Jan 2016 First released version

B 1.02 1.02 2 Feb 2016
Typo fixes in manual. Add ASCII to BD output.
Default to EPROM size for UI & US commands.

B
1.02 &

1.03
1.02A 1 Jun 2016 Typo corrections

B
1.02 &

1.03
1.02B 1 Jun 2016 Typo correction in BOM

B
1.02 &

1.03
1.03 15 Feb 2018 Support TTC004B as a substitute fo r 2SC6043 in Q1

B&C
1.02 &

1.03
1.03A 21 Oct 2018

Support Rev C PC Board. Add rework for pull-down
resistor on the base of Q9 (for both rev B and
rev C boards), to tolerate a somewhat leaky
2N3904 transistor in Q9.

B&C
1.02 &

1.03
103B 15 Jun 2020 Better transistor for Q1: 2SC6097

B&C
1.02 &

1.03
103C 15 Mar 2021 Fix a few typos (Thanks JRL!)

 ME2700 Programmer

15 March 2021 v Martin Eberhard

Contents

Section 1. Getting Started......................... 1

Section 2. ME2700 Programmer Usage................. 3

2.1 Worldwide Operation 3

2.2 Serial Port Connector Pinout 3

2.3 LEDs 3

2.4 Manual Voltage Adjustment 3

2.5 Intersil Option 4

2.6 Power Supply Voltage Checking 5

2.7 Programming an EPROM from a File 5

2.8 Reading an EPROM into a File 5

2.9 Copying an EPROM 5

2.10 File Address Offset 6

2.11 Buffer Address Offset 7

2.12 Data Invert 8

Section 3. ME2700 Commands......................... 9

3.1 EPROM Commands 9

3.2 File Transfer Commands 10

3.3 Buffer Commands 12

3.4 Miscellaneous Commands 13

3.5 Diagnostic Commands 13

Section 4. Custom EPROM Editor..................... 16

4.1 CEE General Commands 16

4.2 CEE Pin Assignment Commands 17

4.3 CEE Programming Parameter Commands 18

Section 5. Programming Algorithms.................. 21

5.1 Simple Programming Algorithm 22

5.2 Fast Programming Algorithms 23

Section 6. ME2700 Theory of Operation.............. 25

6.1 Architecture 25

6.2 Microcontroller 25

6.3 Logic Supplies 25

6.4 +6.2V Supply 25

6.5 -5V Supply 25

6.6 Microcontroller-Controlled High-Voltage Supply 26

6.7 EPROM Digital Pin Interface 26

Section 7. Downloading Firmware via the Serial Port 27

7.1 Firmware Download Instructions 27

7.2 Intel Hex File Format for Firmware Downloads 28

 ME2700 Programmer

15 March 2021 vi Martin Eberhard

Section 8. ME2700 Programmer Assembly.............. 30

8.1 Printed Circuit Board Assembly 31

Section 9. Checkout and Adjustment................. 35

9.1 Basic PCBA Checkout 35

9.2 Microcontroller Bring-Up 37

9.3 Microcontroller-Assisted Checkout and Adjustmen t 38

Section 10. Functional Testing..................... 43

10.1 Basic Buffer Operations and File Transfer 43

10.2 EPROM Reading and Programming 47

Section 11. Printed Circuit Board.................. 51

11.1 Bill of Materials 51

11.2 Rev B and C PCBA Component Placement 53

11.3 Rev B and C PCBA Schematics 55

Appendix A. Supported EPROMs and EEPROMs........... 59

EPROMs and EEPROMs Sorted by Device Type 59

EPROMs and EEPROMs Sorted by Manufacturer 61

 ME2700 Programmer

15 March 2021 1 Martin Eberhard

Section 1. Getting Started

This section is a quick overview of basic ME2700 op eration. Follow these
steps to load a hex file into the ME2700’s buffer, and then program the
buffer contents into an EPROM.

1. Set up your computer’s RS232 port and terminal prog ram for 9600 baud,
no handshaking. (Use a USB-to-RS232 dongle if your computer does not
have an RS-232 port.)

2. Connect the ME2700 to your computer’s RS232 port wi th a straight-
through 9-pin male to 9-pin female cable, plug it i n, and turn it on.
You should see the startup message in your terminal program’s window:

====================================
* ME2700 *
====================================
* Orphan EPROM Programmer *
* By Martin Eberhard *
* Firmware Version 1.03 *
====================================

Current Device Type is 00: 2704
EPROM data invert off
Type ? for command list
>

Note that the ”Current Device Type” will be the sam e as it was the last
time you used the ME2700.

3. Type “EL” for a list of supported EPROM Device Type s. Find your EPROM
Device Type, and note its index number (the 2-digit number from the EL
list). Use the “ET” command to select that EPROM De vice Type, for
example,

>ET 18
Current Device Type is 18: TMS2532
>

If you are unsure if this is the correct type of EP ROM, use the “ED”
command to see the EPROM pinout, as well as a list of the manufacturer
part numbers supported by this EPROM Device Type. F or example:

>ED
Type 18: TMS2532, size: 4096 x 8
 -----v-----
 A7 -| 1 24 |- Vcc Programming Vcc = 5V
 A6 -| 2 23 |- A8
 A5 -| 3 22 |- A9
 A4 -| 4 21 |- Vpp 25.2V
 A3 -| 5 20 |- -CS/-PGM
 A2 -| 6 19 |- A10
 A1 -| 7 18 |- A11
 A0 -| 8 17 |- D7 Supported Devices:
 D0 -| 9 16 |- D6 Hitachi HM62532
 D1 -| 10 15 |- D5 SGS M2532
 D2 -| 11 14 |- D4 TI TMS2532
GND -| 12 13 |- D3

Vpp during read: 5V
Programming pulse width: 50 mS
Programming cycles: 1
>

 ME2700 Programmer

15 March 2021 2 Martin Eberhard

4. Send an Intel hex file of the EPROM image from your terminal program to the
ME2700. The ME2700 will echo the data as it is sent . Any errors will be flagged
at the end of the line with a question mark followe d by a 3-letter error code
(e.g. “?Csm” for a checksum error). When the file f inishes loading, the ME2700
will give a count of the errors, as well as a count of the records that were
successfully loaded into the buffer. If the error c ount is not 0, then check
your serial port connection and setup, and try agai n.

5. Insert a blank EPROM of the selected type into the ZIF socket.

6. Program the EPROM with the “EP” command.

>EP
Make sure the correct Device Type is selected, and that the EPROM
is inserted correctly, with pin 1 closest to the so cket handle.\r"
Ready to program (Y/N)? Y
Programming -
Verifying
EPROM matches buffer
>

The “-“ following the word “Programming” will spin like a propeller while the
EPROM is being programmed. Depending on the EPROM D evice Type, this may take
several minutes.

Once the programming completes, the ME2700 will ver ify the programming by
comparing the EPROM contents to the buffer contents .

7. When the prompt returns and the Busy LED turns off, remove the
programmed EPROM from the ZIF socket.

That’s all there is to it! Once you get to know the rest of the ME2700
commands, you will be able to read an EPROM and upl oad its contents as a hex
file, edit the EPROM data and write it back to anot her EPROM, and a whole lot
more.

 ME2700 Programmer

15 March 2021 3 Martin Eberhard

Section 2. ME2700 Programmer Usage

The previous section walked you through the most ba sic ME2700 Programmer
operation. Here are some specifications, and the pr ocedures for some more
common EPROM operations.

2.1 Worldwide Operation

The ME2700’s AC adaptor is a world-wide adapter, su ited for 50 Hz or 60 Hz,
90VAC to 260V. The prongs are USA-type prongs, but simple adapters to other
prong types are readily available.

2.2 Serial Port Connector Pinout

The DA-9 connector is a compatible with standard PC serial port.

Female DA-9 Pin Signal

2 Data Out (out of the ME2700)

3 Data In (in to the ME2700)

5 Ground

For a normal PC connection, you will need a standar d straight-through male
DA-9 to female DA-9 cable like this. (Other pins do n’t matter.)

Male DA-9 Pin Signal Female DA-9 Pin

2 Data Out (out of the ME2700) 2

3 Data In (in to the ME2700) 3

5 Ground 5

2.3 LEDs

Two LEDs tell you the most basic state of the progr ammer.

The blue ‘POWER’ LED, and indicates that the AC ada pter is energized and the
power switch is on.

The red LED indicates that the ME2700 is ‘BUSY’. Wh en lit, the EPROM socket
is energized, and an EPROM should not be removed or inserted.

2.4 Manual Voltage Adjustment

The five voltage adjustments on the ME2700 are norm ally adjusted to “nominal”
voltages, which allow programming of most EPROMs wi thout further adjustment.
Four of these adjustments (VR1 through VR4) adjust four Vpp settings, while
the fifth adjusts a high Vcc setting that is used t o program some EPROMs.

The nominal Vpp settings are adjusted using the AVP P command, while measuring
the voltage at TP3. Type “AVPP 1”, and then adjust VR1 until TP3 measures
12.7V. Then do the same for the other three adjustm ents.

AVPP Adjustment Nominal TP3 Voltage

0 - About 11.5V

1 VR1 12.70V ± 0.05V

2 VR2 13.15V ± 0.05V

3 VR3 21.00V ± 0.05V

4 VR4 25.20V ± 0.05V

 ME2700 Programmer

15 March 2021 4 Martin Eberhard

Adjust the programming Vcc by measuring the voltage at TP2 and adjusting VR5.
The nominal voltage for this adjustment is 6.20V ± 0.02V.

A few of the more obscure EPROMs supported by the M E2700 require you to
adjust the programming Vcc manually. If your select ed EPROM Device Type
requires this Vcc adjustment, then a message will p rompt you to make the
adjustment. (When you later select an EPROM that pr ograms with nominal
voltages, you will also be prompted to readjust the programming Vcc supply.)

If the programming Vcc requires adjustment, measure the voltage at TP2, and
adjust the voltage with VR5.

2.5 Intersil Option

The Intersil IM6654 and IM6658 (and perhaps some ot her EPROMs) require a
negative Vpp programming voltage, rather than the p ositive voltages required
by practically every other NMOS EPROM. The ME2700 c an program EPROMs that
require a negative Vpp with the installation of the Intersil Option
components, and the attachment of an external, regu lated negative power
supply (-41 volts for the Intersil IM6654, -31V for the IM6658).

The Intersil Option requires installation of the fo llowing components, not
normally installed in the ME2700. (So long as the s hunt is removed from J4,
the inclusion of these components will not affect p rogramming other EPROM
Device Types.)

√√√√ Qty Location Value Digikey Part Number

 1 R39 6.8 1/4W Resistor S6.8HCT-ND

 1 R41 330 ohm 1/4W Resistor 330QBK-ND

 1 R40 1K ohm 1/4W Resistor CF14JT1K00CT-ND

 2 D13, D14 1N4004 Diode 1N4004-TPMSCT-ND

 1 C22 0.1 uF 50V Chip Capacitor 478-4855-ND

 1 C23 33 uF 50V Electrolytic Capacitor P5180-ND

 1 Q17 2N6520 Transistor 2N6520TACT-ND

 1 Q16 BD179G Transistor BD179GOS-ND

 1 J4 2-pin 0.1” Header A19423-ND

 1 J4 2-pin shunt 3M9580-ND

 1 J5 3-pin male 0.156” connector WM4621-ND

When programming an Intersil IM6654 or IM6658 EPROM , short the pins of J4
with a shunt, and connect an external power supply to J5:

Pin IM6654 Programming Function IM6658 Programming func tion

1 No Connection No Connection

2 41 volt negative terminal 31 volt negative termin al

3 41 volt positive terminal 31 volt positive termin al

Select the EPROM Device Type (03 for the IM6654 or Type 25 for the IM6658),
and program the EPROM.

Important: Remove the shunt from J4 when programming any othe r type of EPROM.

 ME2700 Programmer

15 March 2021 5 Martin Eberhard

2.6 Power Supply Voltage Checking

The ME2700 tests Vpp during programming, and will a bort programming if the
measured voltage is more than about 15% high or low from the expected
voltage. However, the external (Intersil Option) su pply does not get checked.

Vpp will be low if the EPROM is drawing too much cu rrent - either because it
is defective or if the wrong EPROM Device Type is s elected. Although the
ME2700 will shut down quickly when overcurrent is d etected this way, the
EPROM may still be damaged, and should probably be discarded.

Vpp will be too high only due to some fault with th e ME2700 itself.

2.7 Programming an EPROM from a File

Here is how you program an EPROM from a file, using the (default) automatic
file address offset mode.

{Power-on}
>ET {correct EPROM Device Type}
{insert blank EPROM in the socket}
> {send S-Record or Intel Hex file to the ME2700}
>EP
Make sure the correct Device Type is selected, and that the EPROM
is inserted correctly, with pin 1 closest to the so cket handle.\r"
Ready to program (Y/N)? Y
Programming -
Verifying
EPROM matches buffer
>

2.8 Reading an EPROM into a File

You can read an EPROM, and save the data in a stand ard format (either Intel
Hex or Motorola S-Record) on your computer.

{Power-on}
>ET {correct EPROM Device Type}
{insert programmed EPROM in the socket}
>ER
Success
>UI {start file capture on your computer before hitting return}
{Intel Hex file follows}
>

Use US instead of UI to create a file in Motorola S-Record format.

2.9 Copying an EPROM

You can read an EPROM, and then write it into any n umber of blank EPROMs.

{Power-on}
>ET {correct EPROM Device Type}
{insert source EPROM in the socket}
>ER
Success
{insert blank EPROM in the socket}
>EP
Make sure the correct Device Type is selected, and that the EPROM
is inserted correctly, with pin 1 closest to the so cket handle.\r"
Ready to program (Y/N)? Y
Programming -
Verifying

 ME2700 Programmer

15 March 2021 6 Martin Eberhard

EPROM matches buffer
{insert another blank EPROM in the socket}
>EP
Make sure the correct Device Type is selected, and that the EPROM
is inserted correctly, with pin 1 closest to the so cket handle.\r"
Ready to program (Y/N)? Y
Programming -
Verifying
EPROM matches buffer
>

2.10 File Address Offset

Simple Intel Hex files and Motorola S-record files have 2-byte (4 hex digit)
addresses. Thus, the address in a hex file can be t hought of as having 2
components: without any file address offset, the hi gh byte (first 2 hex
digits) can be 00 through 1F (depending on EPROM si ze), and the low byte
(second 2 hex digits) represents the address within one page of the EPROM.

The EPROM data may be a computer program intended t o run at address 0000, or
it may be intended to run at some other address. If it is intended to run at
some other address besides 0000, then the high byte of the 2-byte addresses
in the hex file that you will send to the EPROM wil l not be 00-1F. Instead,
these bytes will be the high byte of the intended t arget address.

You can tell the ME2700 what the file address offse t is, using the F AO (File
Address Offset) command. If you specify automatic F ile Address Offset mode
(by typing the F AO command with no value), then the File Address Offs et for
downloads will be set to the high address byte from the first received record
of the file. Automatic File Address Offset mode is the default after reset.

When you download a hex file to the ME2700, the Fil e Address Offset is
subtracted from the high address bytes for the data in the file. Any data
whose address high byte minus the File Address Offs et is not between 00 and
1F will not be loaded into the buffer.

Note that it is possible for some of the data withi n a single record will get
loaded into the buffer, and some of it will not. (T his will happen if the
record spans an EPROM boundary.) Such records are n ot counted as loaded
records in the reporting at the end of the file, th ough the data that fit
into the buffer does get written into the buffer.

If you have a hex file that spans several EPROMs, y ou can program each EPROM
sequentially by first setting the File Address Offs et for one of the EPROMs,
then clearing the buffer, and then sending the whol e hex file, and then
programming the EPROM. Repeat this procedure for ea ch EPROM - setting the
File Address Offset appropriately. Each time, only data whose address high
byte minus the File Address Offset equals 00-1F wil l get loaded into the
buffer - the others will be ignored.

Similarly, if you are reading an EPROM that is inte nded to run at an address
besides 0000, you can generate the correct hex file by setting the File
Address Offset before uploading the buffer. The Fil e Address Offset that you
specify with the F AO command will be added to the high address byte in every
record uploaded. If automatic File Address Offset m ode is selected, then the
File Address Offset will be 00.

 ME2700 Programmer

15 March 2021 7 Martin Eberhard

2.11 Buffer Address Offset

The Buffer Address Offset allows you to specify the high byte of the buffer
starting address for EPROM operations, including re ading (ER command),
comparing (EC command), and programming (EP command). The specified Buffer
Address Offset is added to the high byte of the EPR OM address to compute the
high byte of the buffer address for these operation s.

Using the Buffer Address Offset, you can load a lar ge file (as large as 8K
bytes), and then program it into several smaller EP ROMs. For example, if you
have already loaded a 4K-byte Intel Hex file into the buffer, then you could
program it into four 2708 (1Kx8) EPROMs like this:

>ET 4
Current Device Type is 04: 2708
>BAO 0
Buffer Address Offset: 00h
{insert first 2708 EPROM}
>EP
Make sure the correct Device Type is selected, and that the EPROM
is inserted correctly, with pin 1 closest to the so cket handle.\r"
Ready to program (Y/N)? Y
Programming -
Verifying
EPROM matches buffer
>BAO 4
Buffer Address Offset: 04h
{insert second 2708 EPROM}
>EP
Make sure the correct Device Type is selected, and that the EPROM
is inserted correctly, with pin 1 closest to the so cket handle.\r"
Ready to program (Y/N)? Y
Programming -
Verifying
EPROM matches buffer
>BAO 8
Buffer Address Offset: 08h
{insert third 2708 EPROM}
>EP
Make sure the correct Device Type is selected, and that the EPROM
is inserted correctly, with pin 1 closest to the so cket handle.\r"
Ready to program (Y/N)? Y
Programming -
Verifying
EPROM matches buffer
>BAO C
Buffer Address Offset: 0Ch
{insert fourth 2708 EPROM}
>EP
Make sure the correct Device Type is selected, and that the EPROM
is inserted correctly, with pin 1 closest to the so cket handle.\r"
Ready to program (Y/N)? Y
Programming -
Verifying
EPROM matches buffer

 ME2700 Programmer

15 March 2021 8 Martin Eberhard

Similarly, you could read a larger EPROM and progra m its data into several smaller
EPROMs.

You can also read several smaller EPROMs into the b uffer, and then program their
combined data into one single larger EPROM:

>BAO 0
Buffer Address Offset: 00h
{insert first 2708 EPROM}
>ER
EPROM read into buffer, checksum 12
>BAO 4
Buffer Address Offset: 04h
{insert second 2708 EPROM}
>ER
EPROM read into buffer, checksum BE
>FAO 8
Buffer Address Offset: 08h
{insert third 2708 EPROM}
>ER
EPROM read into buffer, checksum 87
>BAO C
Buffer Address Offset: 0Ch
{insert first 2708 EPROM}
>ER
EPROM read into buffer, checksum 91
>ET 18
Current Device Type is 18: TMS2532
{insert blank TMS2532 EPROM}
>BAO 0
Buffer Address Offset: 00h
>EP
Make sure the correct Device Type is selected, and that the EPROM
is inserted correctly, with pin 1 closest to the so cket handle.\r"
Ready to program (Y/N)? Y
Programming -
Verifying
EPROM matches buffer

2.12 Data Invert

If your EPROM will be used in a host system that ha s inverting data buffers
(such as the Memory Merchant MM65K16S S-100 memory board), then you can
specify Data Inversion with the “DI 1” command. Thi s will invert the data
when written to the EPROM, as well as when it is re ad back from the EPROM.

 ME2700 Programmer

15 March 2021 9 Martin Eberhard

Section 3. ME2700 Commands

3.1 EPROM Commands

The EPROM commands generally deal with the EPROM, a nd the 8K-byte buffer in
the ME2700. For Compare, Program, and Read commands , the buffer address
always equals the EPROM address plus the Buffer Add ress Offset (set with the
BAO command).

For these EPROM commands, <beg> is the beginning ad dress, both for the EPROM
and for the buffer. <cnt> is the byte count for the command. <cnt>=0000 is
interpreted as <cnt>=2000 hex (the entire buffer) w hen the command refers to
the buffer, and is interpreted as the full EPROM si ze when the command refers
to the EPROM. If you don’t enter values for <beg> a nd <cnt>, they both
default to 0000. If you enter only one value, it is assumed to be <beg>, and
<cnt> defaults to 0000. The EPROM commands will alw ays stop after the last
address of the selected EPROM Device Type.

>BAO <offset> Buffer Address Offset

BAO sets the Buffer Address Offset for reading, com paring, and
programming EPROMs to <offset>. The Buffer Address Offset is added to
the upper address byte of the buffer’s starting add ress of the ER, EC,
and EP commands.

See the Buffer Address Offset subsection under ME2700 Programmer Usage
for further details about the Buffer Address Offset , and how it is
used.

>DI {0/1} Data Invert

DI 1 selects inverted data mode. (This is useful wh en the EPROM will be
used in a system that has inverting data buffers, s uch as the Memory
Merchant MM65K16S S-100 memory board.) When Data In vert is enabled, all
data bytes are inverted when the EPROM is programme d, and also when the
EPROM is read. DI 0 turns off Data Invert mode.

>EB <beg> <cnt> Blank-Check EPROM

EB starts at address <beg> and checks <cnt> bytes o f the EPROM to see
if they are blank (data=FF). Any non-blank bytes ar e reported to the
console. If all bytes in the specified range are bl ank, this command
responds with “EPROM is blank”.

>EC <beg> <cnt> Compare EPROM to Buffer

EC compares <cnt> bytes of the buffer to the EPROM, starting at address
<beg>. Any differences are reported to the console. If all bytes are
the same, this command responds with “EPROM matches buffer”.

>ED <Device Type> Display EPROM Specs

ED displays details about the specified EPROM Devic e Type, including a
picture of the EPROM’s pinout and its programming s pecifications, as
well as a list of manufacturer’s part numbers for E PROMs that are
compatible with this Device Type. If no <Device Typ e> is specified,
then the currently-selected EPROM Device Type will be displayed.

Note that the list of supported EPROMs is represent ative. If your EPROM
is not listed here, then compare its specifications to those displayed
with the ED command, to verify compatibility.

 ME2700 Programmer

15 March 2021 10 Martin Eberhard

>EE <Device Type> Invoke Custom EPROM Editor

The last 4 EPROM Device Types are custom EPROMS, al lowing you to define
your own EPROM. The EE command allows you to edit t he specified EPROM,
which must be one of the last four listed EPROMs. S ee section 4 for
details about editing a custom EPROM.

>EL List supported EPROMs

EL lists all of the EPROM Device Types, and their i ndices, for use with
the ED, EE, and ET commands.

>EP <beg> <cnt> Program EPROM from Buffer

EP programs <cnt> bytes of the EPROM with data from the buffer, the
EPROM starting at <beg>, and the buffer address sta rting at <beg> plus
the Buffer Address Offset. The programmed range is verified when
programming is complete, and any errors are reporte d to the console. If
the programmed range matches the buffer when done, then this command
will respond with “Success”.

Before programming, the relevant states of the ME27 00 (Programming
algorithm, programming cycles) are displayed, and y ou are asked if you
want to proceed.

Typing control-C or ESC during programming will abo rt cleanly, leaving
the EPROM in a reasonable state.

See Section 5, Programming Algorithms , for additional details.

>ER <beg> <cnt> Read EPROM into Buffer

ER reads <cnt> bytes of data from the EPROM into th e buffer, the EPROM
starting at <beg>, and the buffer address starting at <beg> plus the
Buffer Address Offset. This command always responds with “EPROM read
into buffer” followed by “EPROM checksum: XX”.

>ES <beg> <cnt> Compute EPROM Checksum

ES reads and adds together <cnt> bytes of data from the EPROM, starting
at address <beg>. Only the low byte of the sum is k ept. This command
responds with “EPROM checksum: XX”.

>ET <index> Select EPROM Device Type

ET sets the current EPROM Device Type for all other operations.
Selecting an <index> that specifies a custom EPROM that has not yet
been defined produces an error.

?E Help with EPROM Commands

?E prints a help screen for these EPROM commands.

3.2 File Transfer Commands

>FAO Automatic File Address Offset Mode (default)

FAO (with no parameter) selects automatic File Addr ess Offset mode.
When downloading a file to the ME2700, the File Add ress Offset will be
taken from the high address byte of the first recei ved record. When
uploading a file from the ME2700, the File Address Offset will be 00.

 ME2700 Programmer

15 March 2021 11 Martin Eberhard

>FAO <offset> Set File Address Offset

FAO sets the File Address Offset for uploads and do wnloads to <offset>.
The File Address Offset is added to the upper addre ss byte when
uploading buffer data, and subtracted from the addr ess of downloaded
Intel Hex records and Motorola S-Records.

See section 2.10, File Address Offset , for details about the File
Address Offset, and how it is used during uploading and downloading.

>UI <beg> <cnt> Upload Buffer as Intel Hex

UI prints <cnt> bytes of the buffer contents, start ing at address
<beg>, on the console as Intel Hex files. The File Address Offset is
added to the high address byte for each record. All records (except
perhaps the last one) are 16 bytes long, and the tr ansfer ends with an
Intel Hex end-of-file (type 01) record. To upload i nto a file, start
the file capture after you type UI, but before you type <return>.

If no value is provided for <cnt> then the byte cou nt will be set to
the size of the currently selected EPROM Type.

>US Upload Buffer as Motorola S-Records

US prints <cnt> bytes of the buffer contents, start ing at address
<beg>, on the console as Motorola S-record files. T he File Address
Offset is added to the high address byte for each r ecord. All records
(except perhaps the last one) are 16 bytes long, an d the transfer ends
with a Motorola S-record end-of-file (S9) record. T o upload into a
file, start the file capture after you type US, but before you type
<return>.

If no value is provided for <cnt> then the byte cou nt will be set to
the size of the currently selected EPROM Type.

>: Begin Intel Hex record

Buffer addresses are calculated by subtracting the File Address Offset
from the address in each record, and then increment ing after each data
byte of the record has been handled.

If the record type is 00 (a data record), then all data whose target
buffer address is between 0000 and 1FFF will be loa ded into the buffer.
Any data whose target address is outside this range will not be loaded.

If the record’s checksum does not match the compute d checksum, then “?
Csm” will be printed, and the error count will be i ncremented.

Invalid hex characters (including lowercase a-f) pr int “? Hex” and
cause the error count to be incremented.

Record types other than 00 (data) and 01 (end-of-fi le) print “? Rec”
and cause the error count incremented.

Byte count other than 00 for a type 01 record (end- of-file) print “?
Rec” and cause the error count to be incremented.

The prompt is not normally displayed after receipt of an Intel Hex
record. If the record type is either 00 (data) or 0 1 (end-of-file), and
the record byte count is 00, then the record count, the count of
records loaded into the buffer, and error count are displayed and then
cleared, and the prompt is displayed.

 ME2700 Programmer

15 March 2021 12 Martin Eberhard

>S Begin Motorola S-record

Buffer addresses are calculated by subtracting the File Address Offset
from the address in each record, and then increment ing after each data
byte of the record has been handled.

If the record type is S1 (a data record), then all data whose target
buffer address is between 0000 and 1FFF will be loa ded into the buffer.
Any data whose target address is outside this range will not be loaded.

An S5 (record count) record will compare the ME2700 ’s record count to
the record count in the record. If they do not matc h, then “? Cnt” is
printed, and the error count is incremented.

If the checksum in the record does not match the ch ecksum computed by
the ME2700, then “? Csm” is printed and the error c ount is incremented.

Invalid hex characters (including lowercase a-f), w ill print “? Hex”
and cause the error count to be incremented.

Any record type besides S1 (data), S5 (record count), and S9 (end-of-
file) will print “? Rec” and cause the error count incremented.

An end-of-file record may be a full S9 record (with byte count,
address, and checksum fields), or it may be just ‘S 9’. (This
abbreviated S9 record is sometimes found in old S-r ecord files.)

If the byte count for a type S5 (record count) or S 9 (end-of-file)
record is not 00, then “? Rec” is printed, and the error count is
incremented.

The prompt is not normally displayed after receipt of a Motorola S-
record. If the record type is either S1 (data) or S 9 (end-of-file), and
the record byte count is 00, then the record count, the count of
records loaded into the buffer, and error count are displayed and then
cleared, and the prompt is displayed.

?F Help with File Transfer Commands

?F prints a help screen for these file transfer com mands.

3.3 Buffer Commands

>BD <beg> <cnt> Display Buffer Contents

BD displays the specified range of buffer contents, 16 hex bytes to a
line, (except the first line if its least-significa nt digit is not 0).
Each line is preceded by a 4-digit hex address. Aft er the hex display,
the same data are displayed in ASCII. Non-printing ASCII characters are
represented as a period. If you don’t enter values for <beg> and <cnt>,
then the entire buffer contents will be displayed. The checksum of the
specified region of the buffer is printed last.

You can pause and resume the display with the space bar, and abort with
either <Control-C> or ESC.

>BE <addr> Edit Buffer

BE allows you to edit the buffer contents starting at address <addr>.
The address and its contents are first printed on t he console. If you
type <return>, the contents will remain unchanged. If you type a
hexadecimal number and then <return>, the value you type will replace
the buffer contents at that address.

After you type <return>, the contents of the next a ddress in the buffer

 ME2700 Programmer

15 March 2021 13 Martin Eberhard

are displayed, allowing you to modify that address. This continues
until you type <control-C> or ESC.

Every address that ends with 0 or 8 will start a ne w line, displaying
first the address, then the data.

>BF <val> Fill Buffer with Value

FB fills the entire buffer with <val>. If you don’t enter a value for
<val>, then the buffer will be filled with 00.

This command responds with “Buffer filled with <val >”.

?B Help with Buffer Commands

?B prints a help screen for these buffer commands.

3.4 Miscellaneous Commands

>DS Display all Settings

Displays various settings for the ME2700.

>ECHO {0/1} Set Terminal Echo

ECHO 0 turns terminal echo off; ECHO 1 turns it on.

>RESET Reset ME2700 Programmer

RESET is just like power-cycling the ME2700.

>? Help

Typing a question mark prints a help screen that br iefly explains the
main commands.

>?N General notes on ME2700

This command prints a page of general notes about t he ME2700.

>?L View Firmware Loader Notes

?L displays notes on loading new firmware into the ME2700 via the
serial port. Firmware loading is discussed in a lat er section.

^S Pause Serial Port Output

Control-S (XOFF) tells the ME2700 to stop sending d ata. Any subsequent
character (including XON, which is control-Q) will re-enable the ME2700
output, and that character will be discarded by the ME2700.

3.5 Diagnostic Commands

These commands are intended only for diagnosing the ME2700, especially during
initial bring-up and when you want to adjust the pr ogramming voltages. They
allow you to control various signals to the EPROM s ocket directly, so that
you can measure and adjust voltages, and test funct ionality.

For these commands, if you don’t enter a value (0 o r 1), then 0 is assumed.

Most of these commands will leave the BUSY light li t. Use the RESET command
to turn it off prior to programming any EPROMs.

 ME2700 Programmer

15 March 2021 14 Martin Eberhard

>AVPP {0-4} Adjust Vpp

AVPP allows you to adjust the four Vpp voltages, us ing a voltmeter at
TP3. AVPP 0 disables the switching power supply, re sulting in Vpp about
0.5V lower than the voltage from the wall adapter. The following table
shows the nominal adjustment voltages for each sett ing:

AVPP Adjustment Nominal TP3 Voltage

0 - About 11.5V

1 VR1 12.70V ±0.05V

2 VR2 13.15V ±0.05V

3 VR3 21.00V ±0.05V

4 VR4 25.20V ±0.05V

>TAS {0/1} Test -AS pin

If the selected EPROM Device Type has a -AS pin, th en this command
tests it. TAS 0 will set the -AS signal inactive, a t TTL high (>3V).
TAS 1 will set the -AS signal active, at TTL low (< 0.7V).

>TCS {0/1} Test CS Pin

If the selected EPROM Device Type has a CS pin, the n this command tests
it. “Active” and “inactive” voltages for this pin d epend on the
polarity of the CS signal, for the selected EPROM D evice Type. TCS 0
will set the CS signal inactive. TCS 1 will set the PGM signal active.

>TOE {0-2} Test -OE Pin

If the selected EPROM Device Type has a -OE pin, th en this command
tests it. TOE 0 will set the -OE signal inactive, a t TTL high (>3V).
TOE 1 will set the -OE signal active, at TTL low (< 0.7V). If the
selected EPROM Device Type requires +12V on the -OE pin during
programming, then TOE 2 will test this voltage on t he -OE pin.

>THI {0/1} Test Stuck-High Pin

If the selected EPROM Device Type has a stuck-high pin, then this
command will test it. THI 1 sets the pin to +5V, TH I 0 sets low.

>TPGM {0/1} Test PGM Pin

If the selected EPROM Device Type has a PGM pin, th en this command
tests it. “Active” and “inactive” voltages for this pin depend on the
polarity of the PGM signal, for the selected EPROM Device Type. TPGM 0
will set the PGM signal inactive. TPGM 1 will set t he PGM signal
active.

>TPROG Test Programming

TPROG will continuously write the buffer data to th e EPROM socket, for
the purpose of testing the ME2700 (not for programm ing the EPROM!) End
this command with either Control-C or ESC. All of t he EPROM signals and
timing will be the same as during normal programmin g for the selected
EPROM Device Type. If the programming algorithm is a “Fast” algorithm
(with verification), then this loop will behave as though the EPROM
verified on the last possible try. Together with an oscilloscope, this
command is useful to test hardware, and to verify t hat a programming
algorithm (particularly a custom algorithm) is corr ect.

 ME2700 Programmer

15 March 2021 15 Martin Eberhard

>TREAD Test Reading

TREAD will continuously read the EPROM socket, for the purpose of
testing the ME2700 (not for reading the EPROM!) End this command with
either Control-C or ESC. All of the EPROM signals a nd timing will be
the same as during normal reading for the selected EPROM Device Type.
Data from the EPROM does not get written to the buf fer.

>TVBD {0/1} Test Vbb and Vdd Pins

If the selected EPROM Device Type has a Vbb pin and /or Vdd pin, then
this command tests them. TVBD 0 turns these pins of f (near 0V). TVBD 1
sets the Vbb pin (pin 21) to -5V and the Vdd pin (p in 19) to +12V.

>TVCC {0-2} Test Vcc Pin

TVCC 0 turns Vcc (on pin 24) off. TVCC 1 turns it o n to the normal
voltage during reading: +5V. TVCC 2 turns pin 24 on to its programming
voltage for the selected EPROM Device Type, which i s one of the
following: 0V, +5V, +6.2V, or +12V.

>TVPP {0-3} Test VPP Pin

If the selected EPROM Device Type has a VPP pin, th en this command
tests it. TVPP 0 turns the Vpp pin off (near 0V). T VPP 1 sets the Vpp
pin to the required voltage for a normal EPROM read operation (0V or
5V, depending on the selected EPROM Device Type). T VPP 2 sets the Vpp
to its programming-inactive state (the voltage betw een write pulses, if
this EPROM Device Type pulses the Vpp pin). This wi ll be either 0V or
5V, depending on the EPROM Device Type. TVPP 3 sets the Vpp pin to its
programming voltage.

>WA <val> Write Address Pins

WD writes <val> to the address pins of the EPROM so cket. Every ‘0’ bit
will drive the corresponding pin to TTL low (<0.7V) . Every 1 bit will
drive the corresponding pin to TTL high (>3V).

>WD <val> Write Data Pins

WD writes <val> to the eight data pins of the EPROM socket. Every ‘0’
bit will drive the corresponding pin TTL low (<0.7V). Every 1 bit will
drive the corresponding pin to TTL high (>3V).

>RD Read Data Pins

RD reads the EPROM data pins and displays the resul ts on the screen.
Use a jumper wire to ground or 5V, to test each pin .

?D Help with Diagnostics

?D prints a help screen for these diagnostic comman ds.

 ME2700 Programmer

15 March 2021 16 Martin Eberhard

Section 4. Custom EPROM Editor

The last four EPROMs displayed by the EP command ar e custom EPROMs. If any of
these EPROMs has not been defined, then it will be listed as “undefined” with
the EL command. You can define a custom EPROM using the Custom EPROM Editor
(CEE). Enter the CEE by typing EE <n> at the main p rompt, where <n> is the
EPROM Device Type number for one of the four custom EPROMs.

If you have an oscilloscope, you can use the TREAD and TPROG commands to
observe the EPROM reading and programming waveforms (without an EPROM
inserted in the socket) for custom EPROM Device Typ es that you have created.

The CEE’s prompt is “EEnn>”, where nn is the number of the EPROM that you are
editing. Exit the CEE with the QU prompt. Until a n ame is assigned to a
custom EPROM (with the EN command), it will appear as “unassigned” in the
list of supported EPROMs.

4.1 CEE General Commands

EEnn>? Print General Help Menu

EEnn>?A Print Pin Assignment Help Menu

EEnn>?P Print Programming Parameters Help Menu

EEnn>COPY <Device Type> Copy EPROM Specs

Copy all specifications from EPROM the specified De vice Type. Use this
command when you want to create a new EPROM Device Type that is similar
to an existing one. You may edit the copied EPROM D evice Type
specifications once it is copied.

EEnn>DELETE Delete EPROM

Deletes all parameters for the current EPROM Device Type. The current
EPROM Device Type will then become “unassigned” in the EL command.

EEnn>ED <Device Type> Display EPROM Specs

ED displays details about the specified EPROM Devic e Type, including a
picture of the EPROM’s pinout and its programming s pecifications, as
well as a list of manufacturer’s part numbers for E PROMs that are
compatible with this type. If no <Device Type> is s pecified, then the
EPROM Device Type that you are editing will be disp layed.

EEnn>En <name> Name EPROM

Assigns name to current EPROM Device Type. Until a name is assigned to
a custom EPROM Device Type, it will appear as “unas signed” in the list
of supported EPROM Device Types displayed by the EL command.

EEnn>TPROG Test Programming

TPROG will continuously write the buffer data to th e EPROM socket, for
the purpose of testing a custom EPROM Device Type (not for programming
the EPROM!) End this command with either Control-C or ESC. All of the
EPROM signals and timing will be the same as during normal programming
for custom EPROM Device Type that you are editing. If the programming
algorithm is a “Fast” algorithm (with verification) , then this loop
will behave as though the EPROM verified on the las t possible try.
Together with an oscilloscope, this command is usef ul to verify that
the custom EPROM Device Type’s programming algorith m is correct.

 ME2700 Programmer

15 March 2021 17 Martin Eberhard

EEnn>TREAD Test Reading

TREAD will continuously read the EPROM socket, for the purpose of
testing the custom EPROM setup (not for reading the EPROM). End this
command with either Control-C or ESC. All of the EP ROM signals and
timing will be the same as during normal reading fo r the EPROM. Data
from the EPROM does not get written to the buffer.

EEnn>Q Quit the Custom EPROM Editor

Returns to the main command prompt.

4.2 CEE Pin Assignment Commands

Pins 18 through 22 are initially unassigned, and ea ch may be assigned to one
of several possible signals. (Due to hardware limit ations, not every signal
may be assigned to every pin. However, most EPROMs can be supported with the
available pin choices.) If you assign more than one signal to the same pin,
then the last one assigned will override previous a ssignments. There are a
few exceptions to this rule:

• Vpp may be assigned to the same pin as either Outpu t Enable or Chip Select
• PGM may be assigned to the same pin as either Outpu t Enable or Chip Select

EEnn>A9 <pp> Assign A9 Signal to Pin

Signal A9 is assigned to the specified pin, where < pp> may be 0 or
between 18 and 22. 0 means unassign A9.

EEnn>A10 <pp> Assign A10 Signal to Pin

Signal A10 is assigned to the specified pin, where <pp> may be 0 or
between 18 and 22. 0 means unassign A10.

EEnn>A11 <pp> Assign A11 signal to pin

Signal A11 is assigned to the specified pin, where <pp> may be 0 or
between 18 and 22. 0 means unassign A11. Note that if A11 is assigned
to a pin then any stuck-high pin assignment will be come unassigned.

EEnn>A12 <pp> Assign A12 Signal to Pin

Signal A12 is assigned to the specified pin, where <pp> may be 0 or
between 18 and 22. 0 means unassign A12. Note that if A12 is assigned
to a pin then any Address Strobe pin assignment wil l become unassigned.

EEnn>ASN <pp> Assign Address Strobe Signal to Pin

The (active-low) Address Strobe Signal is assigned to the specified
pin, where <pp> may be 0 or between 18 and 22. 0 me ans unassign Address
Strobe. Note that if Address Strobe is assigned to a pin then any A12
pin assignment will become unassigned.

EEnn>CS <pp> Assign Chip Select Signal to Pin

The Chip Select Signal is assigned to the specified pin, where <pp> may
be 0 or between 18 and 22. 0 means unassign Chip Se lect. Note that Chip
Select may share a pin with either Vpp or PGM.

EEnn>CSP {0/1} Assign polarity to Chip Select Sign al

CSP defines the polarity of the Chip Select signal, where negative
polarity is the default. 0 means negative polarity, 1 means positive
polarity.

 ME2700 Programmer

15 March 2021 18 Martin Eberhard

EEnn>HI <pp> Assign Stuck-High Pin

The specified pin will be stuck high, where <pp> ma y be 0 or between 18
and 22. 0 means unassign Stuck-High pin. Note that if a pin is assigned
to be stuck-high then any A11 pin assignment will b ecome unassigned.
Note that any unassigned pins will be stuck-low.

EEnn>OEN <pp> Assign Output Enable Signal to Pin

The (active-low) Output Enable signal is assigned t o the specified pin,
where <pp> may be 0 or between 18 and 22. 0 means u nassign Output
Enable. Note that Output Enable may share a pin wit h either Vpp or PGM.
It also may be assigned to be at +12V during progra mming - see OEV
command. (If the -OE pin assigned to be +12V during programming, then
that pin may not also be assigned to the Vpp or PGM signals.)

EEnn>PGM <pp> Assign Program Signal to Pin

The Program Signal is assigned to the specified pin , where <pp> may be
0 or between 18 and 22. 0 means unassign Program. N ote that PGM may
share a pin with either Chip Select or Output Enabl e.

EEnn>PGP {0/1} Assign polarity to Program Signal

PGP defines the polarity of the Program signal, whe re negative polarity
is the default. 0 means negative polarity, 1 means positive polarity.

EEnn>PPP <pp> Assign Vpp Signal to Pin

The Vpp Signal is assigned to the specified pin, wh ere <pp> may be 0,
18, 20, 0r 21. 0 means unassign Vpp. Note that Vpp may share a pin with
either Chip Select or Output Enable.

EEnn>VBB {0/1} Assign Vbb to Pin 21

VBB 1 assigns -5V Vbb to pin 21. VBB 0 unassigns Vb b.

EEnn>VDD {0/1} Assign Vdd to Pin 19

VDD 1 assigns +12V Vdd to pin 19. VDD 0 unassigns V dd.

4.3 CEE Programming Parameter Commands

EEnn>BCK {0/1} Blank Check before Programming

BCK 1 enables a blank-check before programming, BCK 0 disables it.
Disable blank check for EEPROMs, and for any EPROM Device Type that
erases to an indeterminate (or non-FF) state.

EEnn>FF1 {0/1} Write FF during Programming Pass 1

FF1 1 causes the first programming pass through the EPROM to write FFh
data to every byte. (This is necessary to erase som e EEPROMs.) FF1 0
disables this feature.

EEnn>FN1 <nn> Define n for Programming Pass 1

Defines the n parameter for programming pass 1, whe re n must be between
0 and 7. See PTU command for time units and FP1 com mand for an
explanation of what n means.

EEnn>FN2 <nn> Define n for Programming Pass 2

Defines the n parameter for programming pass 2, whe re n must be between
0 and 7. See PTU command for time units and FP2 com mand for an
explanation of what n means.

 ME2700 Programmer

15 March 2021 19 Martin Eberhard

EEnn>FP1 <p> Define Programming Pass 1

Selects one of 5 possible “fast” programming algori thms for pass 1:

<p> Algorithm

0
Program each byte until it matches, then program it an
additional n times

1
Program each byte until it matches, then program it with one
additional pulse that is n * PPW 1 long

2
Program each byte until it matches (P times), then program it
an additional nP times

3
Program each byte until it matches (P times), then program it
one additional time with a pulse that is nP * PPW 1 long

4 Program each byte n times

5 Program each byte with one pulse that is n * PPW 1 long

1. PPW is the amount of time set by the combination of the PPW and PTU commands

EEnn>FP2 <p> Define Programming Pass 2

Selects one of 5 possible “fast” programming algori thms for pass 2.
(See table for FP1.)

EEnn>OEV {0/1} Set +12V to Output Enable Pin durin g Programming

OEV 1 will cause the Output Enable pin to be driven to +12V during
Programming. This is only allowed if the Output Ena ble signal is
assigned to either pin 19 or pin 20.

EEnn>PMX <mm> Define Max Value for P, or Number of Programming Passes

If any Fast programming algorithm is selected that programs until each
byte matches (P), then this command defines the max imum value for P. If
the Simple Programming Algorithm is selected (using the SPA command),
then this command defines the number of programming passes. P < 256.

EEnn>POL {0/1} Enable EEPROM-Type Completion Polli ng

POL 1 will cause polling after each byte written, r eading back the data
and waiting for it to match the written data. (This is how many EEPROMs
signal the end of their write cycles.)

EEnn>PPS <nn> Define Programming Pulse Separation

Defines the minimum time between programming pulses , in units defined
by the PTU command. <nn> =0 means as short as possi ble. <nn> must be
less than 128.

EEnn>PPW <nn> Define Programming Pulse Width

Defines the programming pulse width, in units defin ed by the PTU
command. <nn> =0 means that the programming pass wi ll be skipped. <nn>
must be less than 128.

EEnn>PTU {0/1} Define Programming Pulse Time Units

PTU 0 means that values given with the PPW and PPS commands are in
units of 10 uS. PTU 1 means that these values are i n units of 1 mS.

 ME2700 Programmer

15 March 2021 20 Martin Eberhard

EEnn>PUL <p> Define Write Pulse Signal

Defines which EPROM signal is used as the write pul se:

<p> Signal

0
High-voltage pulse on the Vpp signal, returning to 0V
between pulses

1
High-voltage pulse on the Vpp signal, returning to +5V
between pulses

2 Digital programming pulse on the Program (PGM) si gnal

EEnn>SPA Specify Simple Programming Algorithm

This will overwrite any Fast programming algorithm specified by FP1 or
FP2. The simple programming algorithm writes once p er byte for the
entire EPROM range, and then repeats this sequence the number of times
specified by the PMX command.

EEnn>VCP <v> Define Vcc During Programming

Defines the voltage on the Vcc pin (pin 24) during programming:

<v> Vcc during Programming

0 0V

1 5V

2 6.2V

3 12V

EEnn>VPP <v> Define Vpp During Programming

Defines the voltage on the Vpp pin during programmi ng:

<v> Vpp if pin 18 Vpp if pin 20 or 21

0 Switcher off Switcher off

1 13.45V 12.70V ±0.05V

2 13.85V 13.15V ±0.05V

3 21.70V 21.00V ±0.05V

4 25.90V 25.20V ±0.05V

EEnn>VPR <v> Define Vpp During Reading

Defines the voltage on the Vpp pin during read oper ations:

<v> Vpp during Reads

0 0V

1 5V

 ME2700 Programmer

15 March 2021 21 Martin Eberhard

Section 5. Programming Algorithms

The ME2700 has a very flexible programming algorith m - or more accurately,
selection of algorithms. All of these algorithms ar e based around the idea
that programming a single byte involves the followi ng steps:

1. Write the address to the EPROM address pins
2. If the EPROM Device Type has an address strobe pin, then strobe it to

the inactive state (high), and then back to the act ive state (low)
3. Write the data to the EPROM data pins
4. Pulse the appropriate signal for the specified amou nt of time
5. Wait (if so required) for the specified amount of t ime between pulses,

or (if so required) poll (EEPROM-style) for write c ompletion

For each EPROM Device Type, the following constants are defined:

• The EPROM’s pinout
• Any stuck-high pins
• The programming voltage, Vpp
• Special programming voltage requirement for Vcc
• Special programming voltage requirement Output Enab le
• The programming pulse width
• On which signal the programming pulse is applied
• The minimum separation between programming pulses
• The programming algorithm (see below)
• Whether or not to blank-check the EPROM before prog ramming
• Whether or not to write FF to each byte before prog ramming it (as

required for some EEPROMs)
• Whether or not to poll each byte for completion (as required for some

EEPROMs)

During the entire programming cycle:

• The Output Enable pin is disabled, if it exists (ex cept during verify)
• The Chip Select pin is enabled, if it exists
• The Vcc pin is raised to an elevated voltage, if re quired
• The Output Enable pin is raised to an elevated volt age, if required
• The Vpp pin is driven to the required voltage, unle ss it is pulsed per-

byte

 ME2700 Programmer

15 March 2021 22 Martin Eberhard

5.1 Simple Programming Algorithm

This algorithm sequentially writes every byte of th e specified range of the
EPROM, and then repeats the specified number of tim es.

Power up for reading

Blank - check EPROM

Power down

no

yes no

yes

Ask user: continue anyway?

Power up for programming

 Blank?

 Yes?

Verify EPROM & report

Pass = 0

Write EPROM
at Address

Address = Address + 1

Count = Count + 1

no

no

yes

Address = <adr>

 Address
> max?

Done

Power down

Power up for reading

Power down

Abort

yes

 Pass >
max?

 ME2700 Programmer

15 March 2021 23 Martin Eberhard

5.2 Fast Programming Algorithms

The ME2700’s Fast Programming is a flexible system, designed to allow
implementation of all (or at least most) Fast/Quick /Express/Rapid/Turbo/
Whatever programming algorithms specified by the va rious EPROM manufacturers.
All of these Fast Programming algorithms have eithe r one or two phases. Each
phase may be defined independently, each comprising one pass through the
specified address range of the EPROM.

Each of the two Fast Programming phases is one of 6 possible types:

0. Program each byte until it matches, then program it an additional n times,
where n is a value between 0 and 7

1. Program each byte until it matches, then program it with one additional
pulse that is n * PPW long, where n is a value betw een 0 and 7

2. Program each byte until it matches (P times), then program it an
additional nP times, where n is a value between 0 a nd 7, and where the
maximum P is specified (and is less than 256)

3. Program each byte until it matches (P times), then program it one
additional time with a pulse that is nP * PPW long, where n is a value
between 0 and 7, and where the maximum P is specifi ed (and is less than
256)

4. Program each byte n times, where n is a value betwe en 0 and 7

5. Program each byte with one pulse that is n * PPW lo ng, where n is a value
between 0 and 7

Additionally, the first pass may be specified to wr ite 0FFh to every byte,
instead of writing buffer data. This is for erasing some type of EEPROMs,
such as the Intel 2816A.

The following page shows the general Fast programmi ng algorithm, where one of
the above six byte-programming algorithms is used f or each phase of the
algorithm.

 ME2700 Programmer

15 March 2021 24 Martin Eberhard

 Power up for reading

Blank - check EPROM

Power down

no

yes no

Address = <adr>

Write EPROM at Address
with Phase 1 Smart algorithm

yes

no

no yes

Ask user: continue anyway?

Power up for programming

 Blank?

 Yes?

 Address
> max?

Abort

Verify EPROM & report

Address = Address + 1

Done

no

Power down

Power up for reading

Power down

Abort

yes

 Fail?

yes
Address = <adr>

Write EPROM at Address
with Phase 2 Smart algorithm

yes

no

no yes Address
> max?

Abort

Address = Address + 1

 Fail?

 Phase 2
defined?

 ME2700 Programmer

15 March 2021 25 Martin Eberhard

Section 6. ME2700 Theory of Operation

6.1 Architecture

The following is a very brief description of the ME 2700 Programmer’s circuit
operation.

6.2 Microcontroller

At the heart of the ME2700 Programmer is a 40-pin P IC18F45K20
microcontroller, running at 16 MHz (meaning a 250 n S instruction cycle time),
which includes the following functions:

• 32K of Flash program memory, which holds the ME2700 firmware. This
Flash memory can be reprogrammed in place via the 6 -pin PIC ICP
connector and a Microchip PICkit III programming de vice.

• Internal SRAM, used for transmit and receive queues , variable storage,
and general purpose registers.

• Internal EEPROM, used to store settings that will b e retained when the
power is off, as well as custom EPROM definitions.

• An internal UART that is connected to the serial po rt through a MAX232
RS232C transceiver.

• An external 8K-byte serial SRAM chip (which is used for the EPROM
buffer), attached to the PIC’s SPI bus

• An internal voltage reference, PWM circuit, and vol tage comparator,
combined together to become the Vpp voltage regulat or.

• A multi-channel A/D converter, used to measure Vpp for foldback current
limiting

The PIC’s Flash memory has been programmed with two pieces of firmware:
the Loader and the Programming Firmware.

6.3 Logic Supplies

V2 regulates the Wall adapter’s +12V down to about +5.15V, used for some of
the logic, as well as for powering the EPROM. It is deliberately set a bit
above the normal 5.0V, because marginally programme d bits in this class of
EPROMs are more likely to fail when Vcc is high. It is normal for this
regulator to get pretty warm during operation, part icularly during
programming. (This is the only component that shoul d ever get warm.)

V1 regulates the +5.15V supply down to 3.3V for the PIC microcontroller, the
serial SRAM, and the data buffer that sits between the microcontroller and
the EPROM.

6.4 +6.2V Supply

V3 regulates the Wall adapter’s +12V down to 6.2V, adjustable with VR5. This
power supply is used to provide special Vcc voltage for some EPROMs during
programming. It is adjustable because some EPROMs n eed slightly different
voltages, such as 5.5V or 6.5V. When these EPROMs a re to be programmed, the
user can adjust this supply as needed.

6.5 -5V Supply

U11, together with C17 and 18, comprise a switched- capacitor voltage inverter
that produces -5V from the +5.15V supply.

 ME2700 Programmer

15 March 2021 26 Martin Eberhard

6.6 Microcontroller-Controlled High-Voltage Supply

The various Vpp voltages are produced by a switchin g power supply that is
directly controlled by the PIC microcontroller. The PIC’s internal PWM is set
up to produce a 108 KHz pulse-train to the base of Q1, which in turn kicks
current through inductor L1, to boost voltage at C1 3, using diode D2.

The PIC’s internal voltage comparator compares the output from one of the
four voltage dividers (R7-R14 and VR1-VR4) to its i nternal voltage reference.
When the measured voltage is too high, the PIC’s in ternal PWM circuit stops
producing pulses to Q1. Once the measured voltage f alls below the reference,
the PIC’s PWM again generates pulses. In this way, Vpp is produced and
regulated by the PIC.

Firmware selects which of the four voltage dividers is used for this
feedback, depending on what Vpp voltage is required . The resistor values of
each divider have been chosen to produce the variou s Vpp values needed for
the various EPROMs supported by the ME2700.

Resistor R5, transistor Q2, and diodes D3 and D4 se rve as an approximately
100 mA current limiter for Vpp. Q2 is normally satu rated, and the voltage
drop across this circuit is 1.4V. If Vpp current ex ceeds about 100 mA, Q2
will come out of saturation, and the voltage drop a cross it will rise,
causing Vpp to be reduced proportionally to Vpp cur rent. While generating
Vpp, the firmware connects another one of the volta ge dividers to it’s A/D
converter, to verify that the produced voltage is w ithin ±15% of the intended
voltage, and shuts the power supply (with an error message) down if not.
Thus, when Vpp current is very much in excess of ab out 100 mA (which will
occur only when something is wrong with the EPROM b eing programmed), the
firmware performs a foldback current limiting funct ion for Vpp.

Vpp can be directed to any one of the following EPR OM pins: 18, 20, 21. If
Vpp is directed to pin 18, then it will be one diod e drop (about 0.7V) higher
than on the other pins. This is to support EPROMs l ike the 2708, which need
about 26V for Vpp, compared to about 25V for other EPROM Device Types.

6.7 EPROM Digital Pin Interface

All signals to the EPROM are buffered. The data pin s are buffered with a
74LVC245 bidirectional buffer. Address pins 0 throu gh 7 are buffered with a
74LS374 8-bit latch. These two buffer chips are dri ven by the same 8 data
pins of the PIC microcontroller, its Port D. The la tch signal for the 74LS374
is also the signal that drives the BUSY light.

Pin 23 (address pin A8) and pin 22 (usually address pin A9) are buffered by 2
inverters from the 74ACT04 hex inverter, with firmw are compensating for this
inversion.

All of the other digital signals (A10-A12, CS, -OE, PGM, etc.) are selectable
for pins 18 through 21, as required for the particu lar EPROM selected. These
pins also may be driven to either negative voltages or higher voltages, as
needed for power supplies, programming voltages, et c.

 ME2700 Programmer

15 March 2021 27 Martin Eberhard

Section 7. Downloading Firmware via the Serial Port

You can load new ME2700 firmware via the serial por t. Most likely, you will
load a firmware update that I have emailed to you. However, if you have the
programming skills and I am not providing some firm ware feature that you
need, then you can create your own firmware (probab ly by modifying mine), and
download that to your ME2700.

The ME2700 firmware is divided into two components: the ME2700 Loader Kernel
(the Loader, which cannot be downloaded via the ser ial port) and the ME2700
Programming Firmware (the Programming Firmware). Th e primary function of the
Loader is to load new Programming Firmware via the serial port, eliminating
the need to use a PIC programming device, such as t he PICkit 3.

This section describes how to load new Programming Firmware.

7.1 Firmware Download Instructions

Connect your ME2700 to the serial port of your comp uter (or a serial port
dongle on the USB port of your computer) and start a terminal program, such
as Hyperterm. Set up the terminal program this way: 9600 baud, 8 data bits,
no parity, XOFF/XON handshaking enabled .

To enter the Loader, type capital L a few times imm ediately after you turn on
the ME2700, or immediately after issuing a Reset co mmand. You will see the
Loader message, instead of the ME2700 sign-on banne r:

 ME2700 Loader 1.0

When you see this message, the ME2700 is ready to r eceive a Programming
Firmware file in Intel Hex format. The Loader expec ts to see an Intel Hex
file exactly like that produced by Microchip’s MPAS M assembler.

The PIC microcontroller has insufficient RAM to loa d and validate the entire
Programming Firmware before writing it to FLASH. In stead, the Loader writes
to FLASH whenever it gets a complete 32-word ‘row’ of data (where a word is 2
bytes in the hex file). This means that a failed Pr ogramming Firmware load
will probably corrupt the Programming Firmware in F LASH memory. (However, the
Loader itself is hardware-protected against being o verwritten.)

Before you send the hex file, make sure your termin al program has XOFF/XON
handshaking enabled . Handshaking is required so that the Loader can pa use the
file transmission from time to time, to write the r eceived data into FLASH.
Otherwise, data will be lost, and the Programming F irmware will be corrupted.

Once your terminal program is set up correctly, sen d the hex file (typically,
me2700.hex) to the ME2700. It will take a few minut es to download, and you
should see the hex file as it downloads. If there a re any errors, they will
be flagged with a brief error message:

Message Meaning
 ?Csm Checksum error in Intel Hex record
 ?Hex Illegal (non-hex) character received
 (Only ‘0’-‘9’ and ‘A’-‘F’ are allowed)
 ?Ver Flash read-back verify error

When the firmware load is complete, the Loader will print the total number of
Intel Hex records loaded, as well as the number of errors detected. If the
error count is anything but 0000, the firmware load failed, and the loaded
firmware is most likely corrupted.

If you got your new firmware file from me, then I w ill have included a

 ME2700 Programmer

15 March 2021 28 Martin Eberhard

comment that tells you how many records should have been loaded. If the
reported number of loaded records does not match th e number that I provided,
then the firmware load was probably not successful, and the loaded firmware
is most likely corrupted.

If the load is successful, you can jump to the new Programming Firmware by
typing the ESC key several times. Or you can power- cycle the ME2700.

If the load fails for any reason, you can try again immediately after the
failed load, when Loader message is printed. Or, yo u can type capital L
immediately after powering on the ME2700 to invoke the Loader to try loading
again.

7.2 Intel Hex File Format for Firmware Downloads

This section specifies the format of Intel Hex file s that are accepted by the
Loader, as well as the error messages that are prin ted by the Loader. This
Intel hex format is exactly the format produced by Microchip’s MPASM
assembler. Note that this specification is slightly different than Intel Hex
files accepted by the Programming Firmware.

An Intel Hex record is defined as follows:

:NNAAaaTTDDDDDD..DDDDCC

• A colon marks the beginning of an Intel Hex record. All characters are
ignored until a colon has been received. This means that comment lines in
the Intel Hex file (that contain no colons) will be ignored. This also
means that any record where the initial colon has b een corrupted will be
ignored without being caught as an error .

• NN defines the number of Data bytes in the record.

• AAaa is the address field of the record. AA is the most significant
address byte; aa is the least significant address b yte.

• TT is the record type.

• DD is a data byte. Data bytes belong in memory at s equential addresses,
starting at AAaa. The record should have NN data by tes.

• CC is the checksum of the record. The low byte of t he sum of NN, AA, aa,
TT, all the DDs, and CC should be 00.

• A carriage return (CR), a line feed (LF), or both, is optional.

Three Intel Hex record types are accepted; all othe r records are ignored.

1) Type 00 records are data records. Data records are written to FLAS H only
if a Type 04 record has already been received, with extended address =
0000. If no Type 04 record has been received yet, o r if the last Type 04
record set the extended address to something other than 0000, then the
data record will be ignored. This means (for exampl e) that an Intel Hex
file cannot write to the Config registers of the PI C.

2) A Type 01 record (with 0 bytes of data) is an End-Of-File record, a nd is
required at the end of the file to force a write to FLASH of the last RAM
buffer full of data. NOTE: a data record (Type 00) with 0 bytes of data is
NOT treated as an End-of-file record.

3) Type 04 records set the extended address for the subsequent record s. The
"address" field of the Type 04 record (bytes 2 and 3) is ignored. The
first 2 bytes of the "data" field (bytes 5 and 6) s et the extended
address. MPASM sets the extended address to 0000 fo r FLASH data, and to
other values for the PIC Config registers, EEPROM, etc.

 ME2700 Programmer

15 March 2021 29 Martin Eberhard

The PIC's FLASH memory is organized in 64-byte ‘row s’. The Loader assumes
that each Intel Hex record fits completely within o ne FLASH row. However, one
FLASH row may be (and probably will be) made up of several hex records. (In
other words, no record is allowed to have data that is split between two 64-
byte FLASH rows.) Hex files generated by MPASM meet this requirement.

If the hex file has data for only part of a FLASH r ow, then only the data
supplied in the Hex file will be changed - the othe r bytes in that FLASH row
will remain unchanged, because the Loader first rea ds the old FLASH data from
each row into its RAM buffer, filling in the missin g data for that row.

After each row is written, the Loader verifies the write by reading it back
and comparing it to the row data in its RAM buffer.

The Loader checks the checksum for all records, inc luding ignored records.

The following conditions will generate an error mes sage, and increment error
count that is reported after the end of the file:

1) Checksum Error (The checksum of the record was incorrect.)

2) Bad Hex Error (something besides ‘0’-‘9’ or ‘A’-‘F’ when expecti ng hex)

3) Verify Error (FLASH read-back did not match the RAM buffer data)

The Loader actually writes to FLASH when a new hex record addresses FLASH
memory in a different FLASH row than the previous r ecord, or when a type 01
record is received. This means that FLASH write-ver ification occurs after the
address and record-type fields of the next hex data record have been
received, and before its data bytes are received. A nd this (in turn) means
that if a verify fails, then the verify error messa ge will be printed in the
middle of the next hex record, and will refer to th e previous record(s).

Erasing and writing one FLASH row takes significant ly longer than a character
time at 9600 baud, and the FLASH write cannot be in terrupted. For this
reason, your terminal program must respect XOFF/XON handshaking: the Loader
will issue an XOFF prior to programming a FLASH row , and then will wait for
your terminal program to respond to the XOFF, accep ting up to about 127 more
characters after sending the XOFF. When the Loader receives no characters for
3.2 mS (3 character times at 9600 baud) after sendi ng an XOFF, it assumes
that your terminal program has paused transmission, and will program the
FLASH row. The Loader will send an XON when the FLA SH row programming is
complete. The Loader will not receive any character s from its serial port
while it is busy programming FLASH - such character s will be lost.

The hex file must end with a type 01 (End-Of-File) record. Receipt of a type
01 record causes the following actions:

1) The total number of records that were actually load ed into the FLASH is
printed. (Type 01 and type 04 records, as well as a ny type 00 records that
were not written to FLASH do not count.) This can b e checked manually, to
make sure no records were dropped, and the load was in fact successful.

2) The total number of errors detected is printed. Any thing other than 0000
means that the load was unsuccessful, and the loade d code should not be
trusted.

3) Control returns to the Loader, reprinting the Loade r's brief sign-on
message. (To run the newly loaded code, hit the ESC key 3 times in a row)

 ME2700 Programmer

15 March 2021 30 Martin Eberhard

Section 8. ME2700 Programmer Assembly

Assembly requires basic electronics skills, a decen t soldering iron and
solder, needle-nosed pliers, diagonal cutters, wire strippers, and a couple
of screwdrivers.

Take your time to install all components in their c orrect locations, with the
correct orientation. Install all components flush t o the PC board, and with
good, clean soldering. Inspect your work when you a re done.

The silkscreen on the PC board is verbose, mainly t o help you assemble it
correctly and to aide in debugging. But the silkscr een is not perfect. When
in doubt, refer to these assembly instructions.

Be careful with diode type and orientation: the dio de’s stripe must align
with the stripe on the silkscreen. The silkscreen h as an abbreviation of the
diode number, to aide in putting the correct diode in each location.

Also pay attention to the orientation of the three electrolytic capacitors.
Reversing these capacitors can cause some excitemen t.

There is logic to the order of assembly: the smalle r components first, the
larger ones later. Also, unusual components are ins talled first, so that bulk
components will not be installed in the wrong place s.

All unlabeled transistors are 2N3906 transistors.

When installing IC sockets, check their orientation , and make sure they seat
completely against the PC board with no pins bent u nder. I suggest soldering
them in place with just one or two pins, then re-he ating these solder
connections while pressing the component to the boa rd, to get them nice and
tight. Solder the rest of the pins once the socket is flush to the PC board.

This manual has check boxes next to every step, so you can check off each
step when it is complete. Some of the check boxes a re at the left margin;
others are the left column of tables.

 ME2700 Programmer

15 March 2021 31 Martin Eberhard

8.1 Printed Circuit Board Assembly

Follow these steps to assemble the PC board. The or der of component
installation has been chosen to ease assembly and t o minimize mistakes. Low-
profile components are inserted first, so that the PC board will lie flat on
your workbench during soldering, and less-common co mponents are installed
before more-common components. Most component value s are printed (or
abbreviated) on the PC board silkscreen.

Step 1. Install the following 1/4 W, 1% resistors.

√√√√ Qty Locations Value Digikey Part Number

 1 R1 887 1% 887XBK-ND

 1 R2 287 1% 287XBK-ND

Step 2. Install the following 1/4 W, 5% resistors.

√√√√ Qty Locations Value Digikey Part Number

 1 R5 6.8 5% S6.8HCT-ND

 2 R4,R18 270 5% 270QBK-ND

 2 R9,R13 1.6K 5% 1.6KQBK-ND

 1 R7 1.8K 5% 1.8KQBK-ND

 3 R3,R30,R31 10K 5% 10KQBK-ND

 2 R8,R10 22K 5% 22KQBK-ND

 2 R12,R14 43K 5% 43KQBK-ND

 5 R16,R23,R28,R29,R33 330 5% 330QBK-ND

 6 R11,R32,R34,R35,R37,R38 2K 5% 2.0KQBK-ND

 10 R15,R17,R19-R22,R24-R27 1K 5% CF14JT1K00CT-ND

Step 3. Install the following 1 W, 5% (small form-factor) r esistors.

√√√√ Qty Locations Value Digikey Part No.

 1 R6 1K 1W 5% 1KWCT-ND

 1 R36 2.2K 1W 5% PPC2.2KW-1CT-ND

Step 4. Install the following diodes. Be very careful about orientation and
also be very careful to put the correct diode in each location. It’s a
good idea to bend the leads such that the last 2 or 3 digits of the
diode number will be readable when the diodes are s oldered in place.

Note that all of the BAT46 diodes are labeled “5817 ” on the PC board.

√√√√ Qty Locations Value Digikey Part Number

 5 D3-D6,D11 Diode, 1N4004 1N4004-TPMSCT-ND

 6 D1,D7-D10,D12 Diode, BAT46 BAT46CT-ND

 ME2700 Programmer

15 March 2021 32 Martin Eberhard

Step 5. Install all of the DIP sockets flush to the PC boar d, paying attention
to their orientation:

√√√√ Qty Locations Value Digikey Part Number

 2 U7,U11 8-pin DIP ED3044-5-ND

 3 U4,U6,U8 14-pin DIP ED3045-5-ND

 3 U1,U3,U5 16-pin DIP ED3046-5-ND

 2 U9,U10 20-pin DIP ED3054-5-ND

 1 U2 40-pin DIP ED3048-5-ND

Step 6. Install the large power diode in D2. Be very careful about
orientation. The leads need to be bent close to the diode body.

√√√√ Qty Locations Value Digikey Part Number

 1 D2 Diode, 1N5821 1N5821-TPMSCT-ND

Step 7. Install the following 14 capacitors. Note that C20 is labeled
“0.1” on the PC board, but should be loaded with a 0.047 uF capacitor.

√√√√ Qty Locations Value Digikey Part Number

 1 C20 0.047 uF, 50V BC2686CT-ND

2 C17,C19

10 uF, 6.3V
ceramic

445-8592-ND

 5 C1,C3-C6 1 uF, 16V 445-8614-ND

 10 C2,C10-C16,C18,C21 0.1 uF, 50V 478-4855-ND

Step 8. Install the following four TO-92 devices. Be very s ure you put
the right component in each location. Double-check their orientation.
When installed, these components should stand strai ght, and have about
3/16 inch of lead between the PC board and their pl astic bodies.

√√√√ Qty Locations Value Digikey Part Number

 1 V1 MCP1700-3302E MCP1700-3302E/TO-ND

 1 V3 LM317L LM317LZ-ND

 1 Q9 2N3904 2N3904FS-ND

 3 Q10,Q12,Q15 2N6520 2N6520TACT-ND

 9 Q3-Q8,Q11,Q13,Q14 2N3906 2N3906FS-ND

Step 9. Install 5 trim-pots in the following locations, and set them to
approximately the center of their ranges.

√√√√ Qty Locations Value Digikey Part Number

 5 VR1-VR5 1K ohm Trimpot 3306P-102-ND

Step 10. Install Q1 standing straight up on the board. For R ev B boards,
Q1’s writing faces toward the right (away from the inductor, L1). For
Rev C boards, the writing faces up, toward the boar d edge. (Note that
the silkscreen for Q1 is misleading.)

√√√√ Qty Location Value Digikey Part Number

 1 Q1 2SC6097 2SC6097-EOS-ND

 ME2700 Programmer

15 March 2021 33 Martin Eberhard

Step 11. Install Q2 standing straight up on the board. For R ev B boards,

Q2’s writing faces toward the right (toward the EPROM socket). For Rev
C boards, the writing faces down, away from the boa rd edge.

√√√√ Qty Location Value Digikey Part Number

 1 Q2 BD440 BD440S-ND

Step 12. Install connectors in the following locations. Be s ure they are
installed completely flush to the board. Also be su re that the larger
holes are completely filled with solder.

√√√√ Qty Locations Value Digikey Part Number

 1 J1 5.5 mm barrel connector CP-063AH-ND

 1 J3 DA9, female 626-1561-ND

 1 J2 Header, 6-pin A31116-ND

Step 13. Install the inductor snugly against the PC board. M ake sure the
wires are pulled tight through their holes before s oldering.

√√√√ Qty Locations Value Digikey Part Number

 1 L1 100 uH 732-1424-ND

Step 14. Install the three electrolytic capacitors. Be sure to install
them with the correct orientation. The negative sig n on each capacitor
should be farthest from the + sign on the PC board.

√√√√ Qty Locations Value Digikey Part Number

 3 C7-C9 C 100 uF 35V, low ESR 495-6004-ND

Step 15. Screw the TO-220 voltage regulator to its heatsink, and then
solder this subassembly onto the PC board.

√√√√ Qty Location Value Digikey Part Number

 1 V2 LM317 LM317TGOS-ND

 1 V2 Heat sink HS368-ND

 1 V2 6-32 x 1/2” screw

 1 V2 6-32 nut

Step 16. Install the Textool ZIF socket . Install the socket with its
handle toward the top edge of the PC board - the ha ndle should be
closest to the marked pin-1 pad. It is very important to open the
socket (handle perpendicular to the PC board) befor e you solder it in
place. Failure to open the socket before soldering will cause the
socket to open incorrectly during use.

√√√√ Qty Locations Value Digikey Part Number

 1 U12 24-pin ZIF socket

Step 17. Install the power switch. Make sure it is flush to the board
while soldering and that all holes are completely f illed with solder.

√√√√ Qty Locations Value Digikey Part Number

 1 SW1 SPDT switch EG2365-ND

 ME2700 Programmer

15 March 2021 34 Martin Eberhard

Step 18. Install LEDs in the following locations, paying att ention to
their orientation. (The LEDs have a flat side that should match the
flat side shown on the silkscreen LED outline.)

√√√√ Qty Locations Value Digikey Part Number

 1 LED1 Blue LED C503B-BCS-CV0Z0461-ND

 1 LED2 Red LED 365-1189-ND

Step 19. (Rework) Install a 22K ohm resistor on the solder side of t he PC

board. Solder one end of the resistor to the base o f Q9, and the other
end to the trace that connects to the emitter of Q9 . (There is a
nearby via on the trace to the emitter of Q9 that i s perfect for
this.) Be careful not to short out the pins of Q9.

√√√√ Qty Locations Value Digikey Part No.

 1 R42 22K 1/4W 5% 22KQBK-ND

Step 20. Install a 6-32 x 1/2” screw and a 6-32 nut as a sup port leg in
each of the four corner holes.

Step 21. Inspect your work! Check for shorts, inadequate sol der, component
orientation, etc. This is a high-current circuit, a nd construction
mistakes will probably damage components.

Note that the ICs are not yet installed on the PCBA . This will be done
after some power supply checkout.

 ME2700 Programmer

15 March 2021 35 Martin Eberhard

Section 9. Checkout and Adjustment

Basic checkout requires a voltmeter and either a co mputer terminal (such as
the most excellent Wyse WY-30 1) or a PC with a serial port and a terminal
emulation program. These tests are sequential - if you find a defect, do not
move on until the defect has been corrected!

CAUTION: There are high voltages present on this bo ard - not high enough to
hurt you (unless you really try), but definitely hi gh enough to damage
components if you accidentally short a high-voltage signal to a digital
signal. Be especially careful when probing the two 7407’s, as these chips
have both high-voltage signals on their pins, as we ll as digital signals from
other chips, including from the PIC. One false move with your meter or scope
probe and you will blow the output driver on some o ther chip. Voice of
experience here...

9.1 Basic PCBA Checkout

These measurements are mainly made on the labeled t est points along the right
edge of the PC Board.

Step 1. At this point, no ICs should be installed. Turn the power switch off
(toggle toward the board edge), and plug the AC Ada pter into J1. Hook
the ground lead of your voltmeter to the GND test p oint (TP1). Turn
the power on. The blue “POWER” LED should light.

Step 2. Measure the following voltages to confirm power sup ply operation:

√√√√ Measure Measurement Meaning

TP6

12.0V to 12.3V Correct operation

 >12.3V Incorrect wall adapter?

<12V
Incorrect wall adapter? PC board short?
Wrong component somewhere?

TP5

5.1V to 5.25V Correct operation

 otherwise R1 and R2 correct? PC board short?

TP72

3.2V to 3.4V Correct operation

 otherwise Correct component in V2? PC board short?

TP2

Adjust VR5 for
6.20V ± 0.02V

Correct operation

 Can’t adjust Incorrect R15 or R16? PC board short?

TP3

11.2V to 11.7V Correct operation

 Otherwise Check switcher circuit: L1,D2,R5,Q2,D5, e tc.

Step 3. Turn the ME2700 off and install the ADM660 IC in U1 1. Turn the ME2700
back on, and measure the -5V supply.

√√√√ Measure Measurement Meaning

TP4

-5V to -5.25V Correct operation

 Otherwise
Incorrect C17-C19? U11 installed correctly?
PC board short?

1 The Wyse Technology WY-30 was the first product th at I designed professionally.
2 U10 pin 20 on Rev B PC Boards

 ME2700 Programmer

15 March 2021 36 Martin Eberhard

Step 4. Turn off the ME2700 Programmer. Install ICs in the following
locations, paying attention to orientation. Be care ful not to bend any
leads as you insert the ICs.

√√√√ Qty Locations Value Digikey Part Number

 1 U1 MAX232 RS-232 transceiver 296-1402-5-ND

 1 U8
74ACT04 High-power hex
inverter

296-4351-5-ND

 2 U4,U6
7407 hex open-collector
buffer

296-1436-5-ND

 2 U3,U5 74LS139 dual 2-bit decoder 296-1640-5-ND

 1 U9 74LS374 8-bit D flip-flop 296-1662-5-ND

 1 U10
74LVC245A low-voltage 8-bit
buffer

296-8503-5-ND

 1 U7 23K640 8K-byte serial SRAM 23K640-I/P-ND

1 U2

PIC Microcontroller, pre-
programmed with ME2700
firmware

PIC18F45K20-I/P-ND

+ ME2700 Firmware

U2 is a PIC microcontroller with internal flash mem ory. You must use
a PIC that has been pre-programmed with the ME2700 Loader Kernel 1.0,
or program it in place yourself, using a PC, a Micr ochip PICkit-3
programming device, and my program file. (J2 is the PICkit-3
compatible in-circuit programming connector for thi s purpose.) The
PIC must also be loaded with the ME2700 Programming Firmware, which
can be loaded via the serial port - see section 7. If you are using
the PIC that I supplied, then it has already been p rogrammed with
both the loader and the programming firmware.

Step 5. Turn the ME2700 back on, and re-check the voltages from
steps 2 and 3 above.

 ME2700 Programmer

15 March 2021 37 Martin Eberhard

9.2 Microcontroller Bring-Up

Step 2. Plug a terminal (or a PC with a terminal program) i nto the ME2700
Programmer’s serial port connector, making sure to connect the
transmit signal (TxD, pin 2) from the ME2700 to rec eive signal of the
terminal and the receive signal (RxD, pin 3) from t he ME2700 to the
transmit signal of the terminal. (No hardware hands haking signals are
required.) For a normal PC, you will need a straigh t-through DA-9S to
DA-9P.

Step 3. Set up the terminal (or terminal program) this way:

Baud Rate 9600

Stop Bits 1

Parity None

Handshake XON/XOFF

Step 4. Plug in the ME2700 Programmer and turn it on. On th e terminal screen,
you should see a sign-on banner and a prompt like t his:

====================================
* ME2700 *
====================================
* Orphan EPROM Programmer *
* By Martin Eberhard *
* Firmware Version 1.03 *
====================================

Current Device Type is 00: 2704
EPROM data invert off
Type ? for command list
>

 If you do not see this banner, check the following :

√√√√ Check

 Is the terminal setup right? - baud rate, etc. as above

 If you are using a PC (maybe with an RS-232C - to - USB dongle),
check that this is all working correctly. You can r oughly test it
with a loop-back from pin 2 to pin 3.

 TxD, RxD and GND wiring from the ME2700 Programmer to the
terminal. Are TxD and RxD reversed?

 Are IC1 and IC2 inserted correctly?

 Is IC2 in fact programmed? (With the right code?)

Step 5. Just the blue LED should now be lit. Debug if not.

√√√√ LED State Meaning

 LED1
Power

On Correct

Off PC Board short? IC inserted backwards?

 LED2

Busy

Off Correct

On Short on PC board?

Step 6. Type ‘?’ to see a full help screen. You will try ou t all of the
commands on this screen in the following sections.

 ME2700 Programmer

15 March 2021 38 Martin Eberhard

9.3 Microcontroller-Assisted Checkout and Adjustment

NOTE: The following steps involve dialog with the ME2700 ’s monitor. The
monitor’s prompt is ‘>’. You should type what is in bold , and the monitor
will respond as indicated. If you turn off the powe r between steps, you may
need to repeat the dialog up to the point where you are working, when you
power back on. Most settings (such as the selected EPROM Device Type) are
stored in EEPROM, and will be retained when the pow er is off.

All voltages are referenced to ground - reconnect t he voltmeter ground lead
to the PCBA GND pin. If the terminal and/or ME2700 Programmer are off, then
turn them back on.

Step 1. Test and Adjust Vpp Supply

Connect the positive lead of your voltmeter to TP3 for the following
tests.

>AVPP 1
Vpp set for 12.70V (Measure at TP3)
Note: Vpp will be about 0.7V higher on pin 18
>

Now, both LEDs should be lit:

√√√√ LED State Meaning

 LED1
Power

On Correct

Off LED1 Orientation?

 LED2

Busy

On Correct

Off LED orientation? PC board short?

Measure the voltage at TP3

√√√√ Measurement Meaning Action

 11V to 16V Correct operation Adjust VR1 for 12.70V ± 0.05V

0V to 10.9V Problem

• Correct component in R7 and R8?
• Problem with Vpp Switcher

circuit?

 >16V Problem • Correct component in R7 and R8?

>AVPP 2
Vpp set for 13.15V (Measure at TP3)
Note: Vpp will be about 0.7V higher on pin 18
>

Measure the voltage at TP3

√√√√ Measurement Meaning Action

 11V to 17V Correct operation Adjust VR2 for 13.15V ± 0.05V

0V to 10.9V Problem

• Correct component in R9 and R10?
• Problem with Vpp Switcher

circuit?

 >17V Problem • Correct component in R9 and R10?

 ME2700 Programmer

15 March 2021 39 Martin Eberhard

>AVPP 3
Vpp set for 21V (Measure at TP3)
Note: Vpp will be about 0.7V higher on pin 18
>

Measure the voltage at TP3

√√√√ Measurement Meaning Action

 16V to 25V Correct operation Adjust VR3 for 21.00V ± 0.05V

0V to 15.9V Problem

• Correct component in R11 and R12?
• Problem with Vpp Switcher

circuit?

 >25V Problem • Correct component in R11 and R12?

>AVPP 4
Vpp set for 25.2V (Measure at TP3)
Note: Vpp will be about 0.7V higher on pin 18
>

Measure the voltage at TP3

√√√√ Measurement Meaning Action

 19V to 32V Correct operation Adjust VR4 for 25.20V ± 0.05V

0V to 18.9V Problem

• Correct component in R13 and R14?
• Problem with Vpp Switcher

circuit?

 >32V Problem • Correct component in R13 and R14?

Step 2. Test Data Outputs

>WD 55
>

The BUSY light should now be on. Use a voltmeter to measure the
voltages on the data pins (9-11 and 13-17) to see 5 5h there. Logic low
should be less than 0.2V, and logic high should be more than 3V. Try
it again with the opposite polarities:

>WD AA
>

Resolve any problems with the data driver before co ntinuing.

Step 3. Test the Address Drivers

First, select an 8K EPROM, which will have 13 addre ss lines:

>ET 24
Current Device Type is 24: 57C49C
>

Now write a pattern to the address lines:

>WA 0AAA
>

 ME2700 Programmer

15 March 2021 40 Martin Eberhard

The ED command will show you a picture of the EPROM :

>ED
Type 24: 57C49C, size: 8192 x 8
 -----v-----
 A7 -| 1 24 |- Vcc Programming Vcc = 6.2 V
 A6 -| 2 23 |- A8
 A5 -| 3 22 |- A9
 A4 -| 4 21 |- A10
 A3 -| 5 20 |- -OE/Vpp Pulsed from 5V to 12. 7V
 A2 -| 6 19 |- A11
 A1 -| 7 18 |- A12
 A0 -| 8 17 |- D7 Supported Devices:
 D0 -| 9 16 |- D6 WSI WS57C49C
 D1 -| 10 15 |- D5
 D2 -| 11 14 |- D4
GND -| 12 13 |- D3

Vpp during read: 0V
Programming pulse width: 150 uS
Programming cycles: 1
>

Use this picture as a guide to measure the 13 addre ss line voltages.
Try it again with address bits at the opposite pola rities:

>WA 1555
>

Resolve any problems with the address drivers befor e continuing. N ote that
the absence of a load on the upper address lines ma y cause a false voltage
reading. If a signal is not a solid logic-low, test it agai n after inserting
a 10K resistor in the ZIF socket, between ground (p in 12) and the pin you are
testing. If the voltage levels are acceptable with this test resistor, then
the driver is okay.

Step 4. Test the Data Receivers

>TVCC 1
Vcc pin 24 active state
>WD 0
>RD
Data Read: 00
>

Use a 220 ohm resistor to pull each of the data pin s high (to pin 24
of the ZIF socket) or low (to pin 12 of the ZIF soc ket), and test the
result with the RD command. (Floating pins will hav e random results.)

Step 5. Test Vcc at 5V and 6.2V

Pin 24 should now measure about 5.15V.

>TVCC 2
Vcc pin 24 at programming level
>

Pin 24 should now measure 6.20V.

>TVCC 0
Vcc pin 24 inactive state
>

Pin 24 should now measure less than 0.3V.

 ME2700 Programmer

15 March 2021 41 Martin Eberhard

Step 6. Test 12.7V Vpp on pin 20

>TVPP 3
Vpp pin 20 programming mode 12.7V
>

Pin 20 should now measure 12.7V.

>TVPP 2
Vpp pin 20 programming mode inactive state
>

Pin 20 should now measure about 5V

>TVPP 1
Vpp pin 20 read mode
>

Pin 20 should now be less than 0.3V.

>TVPP 0
Vpp pin 20 powered off
>

Pin 20 should still be less than 0.3V.

Step 7. Test Vbb and Vdd

>ET 4
Current Device Type is 04: 2708

(The Busy LED should have turned off.)
>TVBD 1
-5V Vbb pin 21 and +12V Vdd pin 19 active state
>

Pin 21 should now measure about -5.15V, and pin 19 should now measure about
+12V.

>TVBD 0
-5V Vbb pin 21 and +12V Vdd pin 19 inactive state
>

Pin 21 and pin 19 should now measure about 0V. (May be -0.4V with no load)

Step 8. Test -OE

>TOE 2
-OE pin 20 at programming level
>

Pin 20 should now measure about +12V

>TOE 1
-OE pin 20 active state
>

Pin 20 should now measure about 0V

>TOE 0
-OE pin 20 inactive state
>

Pin 20 should now measure about 5V.

Step 9. Test 25.9V Vpp on pin 18

>TVPP 3
Vpp pin 18 programming mode 25.9V
>

Pin 18 should now measure about 25.9V.

 ME2700 Programmer

15 March 2021 42 Martin Eberhard

>TVPP 0
Vpp pin 18 powered off
>

Pin 18 should now measure less than 0.39V.

Step 10. Test 25.2V Vpp on pin 21

>ET 5
Current Device Type is 05: TMS2758
>TVPP 3
Vpp pin 21 programming mode 25.2V
>

Pin 21 should now measure about 25.2V.

>TVPP 0
Vpp pin 21 powered off
>

Pin 21 should now measure less than 0.2V. (less tha n 0.4V with no load)

Step 11. Test 12V Vcc

>ET C
Current Device Type is 0C: TMS2716
>TVCC 2
Vcc pin 24 at programming level
>

Pin 24 should now measure about 12V.

>TVCC 1
Vcc pin 24 active state
>

Pin 24 should now measure about 5.15V.

>TVCC 0
Vcc pin 24 inactive state
>

Pin 24 should now measure less than 0.2V.

Step 12. Reset When Done

>RESET
====================================
* ME2700 *
====================================
* Orphan EPROM Programmer *
* By Martin Eberhard *
* Firmware Version 1.03 *
====================================

Current Device Type is 0C: TMS2716
EPROM data invert off
Type ? for command list
>

Step 13. Test with some EPROMs

Use the BF command to fill the buffer with a patter n. Select the
correct EPROM Device Type with the ET command, and then program a
few EPROMs to verify basic functionality.

 ME2700 Programmer

15 March 2021 43 Martin Eberhard

Section 10. Functional Testing

Power-off the ME2700 Programmer. If you were testin g using a terminal, then
connect it to a computer with a terminal program th at can send and receive
files. Set up the terminal program for 9600 baud, 1 stop bit, no parity. This
program expects a display screen that is at least 2 4 rows of 80 columns, so
adjust the display of your terminal appropriately.

Power-on the ME2700, and see that your terminal pro gram can talk to it.

Note: The ME2700 Programmer uses a ‘File Address Of fset’ when uploading and
downloading files. The File Address Offset is set b y the user (with the F AO
command), and defines an 8-bit offset for the high address byte in the hex
files. During uploads, this file address offset is added to the high address
byte in the hex records. During downloads, the reco rd data is only loaded
into the buffer if the high address byte in the hex record minus the File
Address Offset is 00 through 1F. If you issue the F AO command with no
parameters, then you have selected automatic file a ddress offset mode, where
the file address offset is assumed to be the high-b yte of the address in the
first received hex record.

During downloads, the hex records are checked for v alid record types, correct
checksum, legitimate hexadecimal characters, correc t record count (for
Motorola S5 records). Any errors in these checks wi ll generate a brief error
message and bump the error count.

The record count, loaded record count (records with where the address high
byte minus the File Address Offset was between 00 a nd 1F), and error count
are displayed, and then reset whenever an end-of-fi le record is encountered.

Note that no command is required to start downloadi ng to the ME2700
Programmer. The ME2700 simply detects a valid Intel Hex (any line that starts
with ‘:’) or Motorola record (any line that starts with ‘S’). (Interestingly,
you could mix and match S-records and Intel Hex rec ords in the same
download...)

10.1 Basic Buffer Operations and File Transfer

You can always pause ME2700 transmission using the space bar on your
keyboard. Any key will restart transmission when pa used.

Step 1. Display the Default Buffer Data

>BD
0000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

<etc.>

1FC0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
1FD0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
1FE0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
1FF0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Buffer checksum: 00
>

 ME2700 Programmer

15 March 2021 44 Martin Eberhard

Step 2. Fill the Buffer with a Constant

>BF 55
>Buffer filled with 55
>BD 40 100
040: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
050: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
060: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
070: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
080: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
090: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
0A0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
0B0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
0C0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
0D0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
0E0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
0F0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
100: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
110: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
120: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
130: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
Buffer range checksum: 00
>FB AA
>Buffer filled with AA
>BD 32 81
032: AA AA AA AA AA AA AA AA AA AA AA AA AA AA **************
040: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
050: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
060: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
070: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
080: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
090: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
0A0: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
0B0: AA AA AA ***
Buffer range checksum: AA
>

(Note that you can display portions of the buffer b y specifying the
start address and the number of bytes to display.)

Step 3. Edit the Buffer

>BE 110
110: AA 01 AA 02 AA 03 AA 04 AA 05 AA 06 AA 07 AA 08
118: AA 09 AA <control-C>

>BD 100 40
100: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
110: 01 02 03 04 05 06 07 08 09 AA AA AA AA AA AA A A *******
120: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
130: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
Buffer range checksum: B3
>

Step 4. Upload Buffer Contents to your Computer as an Intel Hex File

You will need to use your terminal program to captu re the file in your
computer. I suggest calling the file INTEST.TXT.

For this demonstration, I am randomly setting the p age address to 0x68
- you will see the result in the file.

>FAO 68
>File Address Offset: 68

 ME2700 Programmer

15 March 2021 45 Martin Eberhard

>UI 0 200 {start file capture before hitting Return}
:10680000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE8
:10681000AAAAAAAAAAAAAAAAA9AAAAAAAAAAAAAAD8
:10682000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC8
:10683000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8
:10684000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8
:10685000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA98
:10686000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA88
:10687000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA78
:10688000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA68
:10689000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA58
:1068A000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA48
:1068B000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA38
:1068C000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA28
:1068D000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA18
:1068E000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA08
:1068F000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF8
:10690000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE7
:10691000010203040506070809AAAAAAAAAAAAAAA4
:10692000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC7
:10693000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB7
:10694000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7
:10695000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA97
:10696000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA87
:10697000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA77
:10698000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA67
:10699000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA57
:1069A000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA47
:1069B000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA37
:1069C000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA27
:1069D000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA17
:1069E000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA07
:1069F000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF7
:00000001FF
>

{Stop capturing and close the file on your computer }
Use a text editor to examine the file INTEST.TXT, t o make sure it
transferred correctly, and to delete the ‘>’ at the end.

Step 5. Upload Buffer Contents to your Computer as a Motoro la S-record File

You will need to use your terminal program to captu re the file in your
computer. I suggest calling the file STEST.TXT.

For this demonstration, I am randomly setting the p age address to 0x31
- you will see the result in the file.

>FAO 31
>File Address Offset: 31
>US 0 200 {start file capture before hitting Return}

S1133100AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1B
S1133110AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0B
S1133120AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFB
S1133130AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEB
S1133140AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADB
S1133150AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACB
S1133160AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABB
S1133170AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB
S1133180AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9B
S1133190AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8B
S11331A0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7B
S11331B0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6B
S11331C0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5B

 ME2700 Programmer

15 March 2021 46 Martin Eberhard

S11331D0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4B
S11331E0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3B
S11331F0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2B
S1133200AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1A
S1133210010203040506070809AAAAAAAAAAAAAAD7
S1133220AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFA
S1133230AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEA
S1133240AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA
S1133250AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA
S1133260AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA
S1133270AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
S1133280AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9A
S1133290AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8A
S11332A0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7A
S11332B0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6A
S11332C0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5A
S11332D0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4A
S11332E0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3A
S11332F0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2A
S9030000FC
>

{Stop capturing and close the file on your computer }

Use a text editor to examine the file STEST.TXT, to make sure it
transferred correctly, and to delete the ‘>’ at the end.

Step 6. Test downloading files to the ME2700 Programmer, us ing the two files
we just created. First we will fill the buffer with something
different, to be sure. (If you are paranoid, power- cycle the ME2700.)
Note that we set the File Address Offset to match t he base address in
the hex file - otherwise nothing will get loaded in to the buffer.

>BF 99
>Buffer filled with 99
>BD 25 44
25: 99 99 99 99 99 99 99 99 99 99 99
30: 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99
40: 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99
50: 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99
60: 99 99 99 99 99 99 99 99 99
Buffer range checksum: A4
>FAO 68
>File Address Offset: 68

{Now, start sending the file INTEST.TXT to the ME27 00}

>:10680000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE8
:10681000AAAAAAAAAAAAAAAAA9AAAAAAAAAAAAAAD8
:10682000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC8
:10683000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8
:10684000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8
:10685000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA98
:10686000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA88
:10687000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA78
:10688000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA68
:10689000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA58
:1068A000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA48
:1068B000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA38
:1068C000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA28
:1068D000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA18
:1068E000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA08
:1068F000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF8
:10690000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE7
:10691000010203040506070809AAAAAAAAAAAAAAA4

 ME2700 Programmer

15 March 2021 47 Martin Eberhard

:10692000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC7
:10693000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB7
:10694000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7
:10695000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA97
:10696000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA87
:10697000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA77
:10698000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA67
:10699000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA57
:1069A000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA47
:1069B000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA37
:1069C000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA27
:1069D000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA17
:1069E000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA07
:1069F000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF7
:00000001FF
Records: 21, Bad Records: 00
20 records loaded into buffer with Address File Off set: 68
>BD 100 100
100: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
110: 01 02 03 04 05 06 07 08 09 AA AA AA AA AA AA A A *******
120: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
130: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
140: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
150: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
160: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
170: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
180: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
190: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
1A0: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
1B0: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
1C0: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
1D0: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
1E0: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
1F0: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
Buffer range checksum: 33
>

You can test with the file STEST.TXT the same way. Remember that its
File Address Offset is 31.

10.2 EPROM Reading and Programming

Here, you need a few blank EPROMs - preferably seve ral types. This section
assumes 2732 EPROMs, but you can test with other ty pes instead. Known-good
EPROMs would be nice. You will also want an EPROM e raser, as you will be
filling EPROMs with junk.

Step 1. Low-voltage Operations

>ET 12
Current Device Type is 12: 2732

Install a blank 2732 into the ZIF socket, with pin 1 closest to the
ZIF socket handle.

>EB
EPROM is blank
>

{or...}
Error Address: XXXX EPROM: ZZ
{perhaps several errors}
Fail
>

Whether or not the EPROM is blank, you can read it back and see what

 ME2700 Programmer

15 March 2021 48 Martin Eberhard

it contains:

>ER
EPROM read into buffer
EPROM checksum:00
>BD 0 100
0000: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0010: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0020: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0030: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0040: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0050: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0060: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0070: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0080: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0090: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00A0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00B0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00C0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00D0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00E0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00F0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
Buffer range checksum: 00
>

(Obviously, if the EPROM was not blank, it would no t read as all
FF’s and the checksum would be different.) You can now compare the
buffer to the EPROM. Then, you can change the buffe r data to force a
failure.

>EC
EPROM matches buffer
>BE 85
0085: 00 77 00 <control-C>
>EC
Error Address: 0085 Buffer: 77 EPROM: 00
Fail
>

Step 2. Programming Operations

First, create some interesting data.

>BF 55
>Buffer filled with 55
>BE
0000: 55 1 55 2 55 4 55 8 55 10 55 20 55 40 55 80
0008: 55 AA 55 <control-C>
>BE 19A
019A: 55 12 55 34 55 56 55 78 55 9A 55 BC
01B0: 55 DE 55 F0 55 <control-C>
>BD 0 200
0000: 01 02 04 08 10 20 40 80 AA 55 55 55 55 55 55 55 @.*UUUUUUU
0010: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0020: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0030: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0040: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0050: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0060: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0070: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0080: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0090: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
00A0: DE F0 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
00B0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
00C0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU

 ME2700 Programmer

15 March 2021 49 Martin Eberhard

00D0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
00E0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
00F0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0100: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0110: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0120: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0130: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0140: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0150: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0160: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0170: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0180: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0190: 55 55 55 55 55 55 55 55 55 55 12 34 56 78 9A BC UUUUUUUUUU.4VX.<
01A0: DE F0 55 55 55 55 55 55 55 55 55 55 55 55 55 55 ^pUUUUUUUUUUUUUU
01B0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
01C0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
01D0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
01E0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
01F0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
Buffer range checksum: 3C
>

Now, program an EPROM. (The “-“ character following the word
“Programming” in the following example will rotate through the
characters -\|/ to create the effect of a spinning propeller, while
the EPROM is being programmed.)

>EB
EPROM is blank
>EP
Please be sure the EPROM is inserted correctly, wit h pin 1
closest to the socket handle. Ready to program (Y/N)? Y
Programming -
Verifying
EPROM matches buffer
>

If you get any error messages, try again with anoth er EPROM, to
determine if the problem is with the EPROM or the M E2700 Programmer.

Clear the buffer, and then calculate the EPROM’s ch ecksum. It should
be the same as it was in the buffer:

>BF 0
Buffer filled with 00
>ES
EPROM checksum: 3C
>

Read the EPROM back into the buffer and have a look . If all goes well,
it will go like this:

>ER
EPROM read into buffer
EPROM checksum: 3C
>BD 0 200
0000: 01 02 04 08 10 20 40 80 AA 55 55 55 55 55 55 55 @.*UUUUUUU
0010: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0020: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0030: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0040: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0050: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0060: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0070: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0080: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU

 ME2700 Programmer

15 March 2021 50 Martin Eberhard

0090: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
00A0: DE F0 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
00B0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
00C0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
00D0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
00E0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
00F0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0100: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0110: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0120: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0130: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0140: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0150: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0160: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0170: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0180: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0190: 55 55 55 55 55 55 55 55 55 55 12 34 56 78 9A BC UUUUUUUUUU.4VX.<
01A0: DE F0 55 55 55 55 55 55 55 55 55 55 55 55 55 55 ^pUUUUUUUUUUUUUU
01B0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
01C0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
01D0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
01E0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
01F0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
Buffer checksum: 3C
>

Congratulations, your ME2700 EPROM Programmer appea rs to function
correctly.

 ME2700 Programmer

15 March 2021 51 Martin Eberhard

Section 11. Printed Circuit Board

11.1 Bill of Materials

The following is the complete Bill of Materials for the both the Rev B and
Rev C ME2700 PC Boards, without the Intersil Option . (See page 4 for the
Intersil Option components. All Digikey part number s are current, and all
components are in stock at the time this was writte n.

Note that Digikey charges far too much for Textool ZIF sockets. You will save
about $10 if you buy this part on eBay. Look for th e type that has the wider
slots for the EPROM pins, so that your ME2700 can p rogram both the normal
0.6” wide EPROMs, as well as the “Skinny DIP” 0.3” wode EPROMs.

Component Value Reference Name Qty Digikey Part Number

¼ W Resistor 887 Ω 1% R1 1 887XBK-ND

¼ W Resistor 287 Ω 1% R2 1 287XBK-ND

¼ W Resistor 6.8 Ω R5 1 S6.8HCT-ND

¼ W Resistor 270 Ω R4,R18 2 270QBK-ND

¼ W Resistor 1.6 KΩ R9,R13 2 1.6KQBK-ND

¼ W Resistor 1.8 KΩ R7 1 1.8KQBK-ND

¼ W Resistor 10 KΩ R3,R30,R31 3 10KQBK-ND

¼ W Resistor 22 KΩ R8,R10,R42 3 22KQBK-ND

¼ W Resistor 43 KΩ R12,R14 2 43KQBK-ND

¼ W Resistor 330 Ω R16,R23,R28,R29,R33 5 330QBK-ND

¼ W Resistor 2 KΩ R11,R32,R34,R35,R37,R38 6 2.0KQBK-ND

¼ W Resistor 1 KΩ R15,R17,R19-R22,R24-R27 10 CF14JT1K00CT-ND

1W Resistor 1 KΩ R6 1 1KWCT-ND

1W Resistor 2.2 KΩ R36 1 PPC2.2KW-1CT-ND

Silicon Diode 1N4004 D3-D6,D11 5 1N4004-TPMSCT-ND

Schottky Diode BAT46 D1,D7-D10,D12 6 BAT46CT-ND

8-pin DIP socket U7,U11 2 ED3044-5-ND

14-pin DIP socket U4,U6,U8 3 ED3045-5-ND

16-pin DIP socket U1,U3,U5 3 ED3046-5-ND

20-pin DIP socket U9,U10 2 ED3054-5-ND

40-pin DIP socket U2 1 ED3048-5-ND

Schottky Diode 1N5821 (30V, 3A) D2 1 1N5821-TPMSCT-ND

Ceramic Capacitor 0.047 µF, 50V C20 1 BC2686CT-ND

Ceramic Capacitor 10 µF, 6.3V C17,C19 2 445-8592-ND

Ceramic Capacitor 1µF, 16V C1,C3-C6 5 445-8614-ND

Ceramic Capacitor 0.1µF, 100V C2,C10-C16,C18,C21 10 478-4855-ND

3.3V Regulator MCP1700-3302E/TO V1 1 MCP1700-3302E/TO-ND

Adj. Regulator LM317L V3 1 LM317LZ-ND

NPN Transistor 2N3904 Q9 1 2N3904FS-ND

 ME2700 Programmer

15 March 2021 52 Martin Eberhard

Component Value Reference Name Qty Digikey Part Number

PNP Transistor 2N6520 Q10,Q12,Q15 3 2N6520TACT-ND

PNP Transistor 2N3906 Q3-Q8,Q11,Q13,Q14 9 2N3906FS-ND

Trimpot Bournes 1 KΩ VR1-VR5 5 3306P-102-ND

Trimpot AMP/TE 1 KΩ VR1-VR5 (Alternate) 0 A105776-ND

NPN Transistor 2SC6097 Q1 1 2SC6097-EOS-ND

PNP Transistor BD440 Q2 1 BD440S-ND

Barrel Connector 5.5mm x 2.0mm J1 1 CP-063AH-ND

9-pin Connector DA9F J3 1 626-1561-ND

6-pin header 0.1” Spacing J2 1 A31116-ND

Electrolytic Cap. 100 µF, 35V C7-C9 3 495-6004-ND

Torroidal Inductor 100 µH, 2A L1 1 732-1424-ND

Adj. Regulator LM317 V2 1 LM317TGOS-ND

TO-220 Heat Sink 577102B04000G V2 1 HS368-ND

6-32 x 1/2" screw V2 & PCB corners 5

6-32 nut V2 & PCB corners 5

24-pin ZIF socket Textool U12 1 Buy on eBay!

SPDT Switch 5A, 120V SW1 1 EG2365-ND

Blue LED 5 mm LED1 1 C503B-BCS-CV0Z0461-ND

Red LED 5 mm LED2 1 365-1189-ND

Switched Cap.

Inverting Regulator
 ADM660 U11 1 ADM660ANZ-ND

RS232 Tranceiver MAX232 U1 1 296-1402-5-ND

Hex Inverter 74ACT04 U8 1 296-4351-5-ND

Hex O.C. Driver 7407 U4,U6 2 296-1436-5-ND

Dual Data Selector 74LS139 U3,U5 2 296-1640-5-ND

8-Bit D-Flip-Flop 74LS374 U9 1 296-1662-5-ND

8-Bit Bi-dir. Buffer 74LVC245A U10 1 296-8503-5-ND

64 kb Serial RAM 23K640 U7 1 23K640-I/P-ND

 ME2700 Programmer

15 March 2021 53 Martin Eberhard

Rev B and C PCBA Component Placement

These drawings are the printed circuit board outlin es and silkscreen layers
for both the Rev B and Rev C PC Boards. These can h elp you find components on
the printed circuit board assembly.

Rev B PC Board

 ME2700 Programmer

15 March 2021 54 Martin Eberhard

Rev C PC Board

 ME2700 Programmer

15 March 2021 55 Martin Eberhard

11.2 Rev B and C PCBA Schematics

The following pages are the schematic for the rev B and Rev C ME2700
Programmer’s printed circuit board assembly.

 ME2700 Programmer

15 March 2021 56 Martin Eberhard

Martin
Eberhard

Martin
Eberhard

 ME2700 Programmer

15 March 2021 59 Martin Eberhard

Appendix A. Supported EPROMs and EEPROMs

The following is a list of the EPROMs and EEPROMs s upported by the current
version of the ME2700 firmware. Although they are g enerally in order of size,
the order is arbitrary. As more EPROMs are supporte d in future firmware
releases, new EPROM Device Types will be added to t he end of the list. (In
other words, these Device Type numbers will not cha nge.)

Underlined devices have been tested on the ME2700. Devices in italics have
not been tested (generally because the part is unav ailable), but data sheets
have been verified.

Although some of these EPROM Device Types may have the same size and
programming voltages, they are separate types becau se of pinout differences,
differences in Vcc during programming, and/or diffe rences in programming
algorithm.

EPROMs and EEPROMs Sorted by Device Type

Type 00: 2704 512x8 EPROM
Intel 2704, National Semiconductor MM2704, Signetics 2704

Type 01: 2804A 512x8 EEPROM (time delay for write completion)
Exel X12804A, Seeq 2804A , Xicor X2804A

Type 02: 28C04 512x8 EEPROM (polled write completion)
Atmel AT28C04 , General Instruments 28C04, Microchip 28C04A

Type 03: IM6654 512x8 EPROM (Requires Intersil Option)
Intersil IM6654

Type 04: 2708 1024x8 EPROM (Vcc=+5V, Vbb=-5V, Vdd=+12V)
AMD AM2708, Electronic Arrays EA2708, Fairchild F2708 , Intel 2708 ,
Intel D2708L , MME U555C , Motorola MCM2708, Motorola MCM68708, National
Semiconductor MM2708 , NTE NTE2708, Oki MSM2708AS, Signetics 2708, Tesla
MHB8708C, Texas Instruments TMS2708 , Toshiba TMM322

Type 05: 2758 1024x8 EPROM (Vcc=+5V, pin 19 low)
Harris HM-6758, Intel 2758, National Semiconductor MM2758Q-A , Texas
Instruments TMS2508, Texas Instruments TMS2758-JL0

Type 06: 2716 2048x8 EPROM (Vcc=+5V, Vpp=25V)
AMD AM2716, Eurotechnique ET2716Q , Fujutsi MBM2716, Hitachi HN462716,
Intel 2716 , Mitsubishi M5L2716K, MME U2716C, Motorola MCM2716, National
Semiconductor MM2716, NEC uPD2716, NTE NTE2716, Oki MSM2716AS , SGS-
Thomson M2716, Signetics 2716 , Soviet 573RF2 , Tesla MHB2716C, Texas
Instruments TMS2516 , Thomson-Mostek ET2716Q, Toshiba TMM323D, Toshiba
TMM323DI

Type 07: 2716A 2048x8 EPROM (Vcc=+5V, Vpp=21V)
(No datasheets found)

Type 08: 2716A-fast 2048x8 EPROM (Vcc=+5V, Vpp=21V)
SGS-Thomson M2716A-fast

Type 09: 2716B 2048x8 EPROM (Vcc=+5V, Vpp=12.7V)
AMD AM2716B

Type 0A: 27C16H 2048x8 EPROM (Vcc=+5V, Vpp=25V)
Fairchild NMC27C16H, National Semiconductor NMC27C16H

 ME2700 Programmer

15 March 2021 60 Martin Eberhard

Type 0B: 27C16B 2048x8 EPROM (Vcc=+5V, Vpp=12.7V)
Fairchild NMC27C16B

Type 0C: TMS2716 2048x8 EPROM (Vcc=+5V, Vbb=-5V, Vdd=+12V)
Motorola TMS2716, Texas Instruments TMS2716

Type 0D: 57C191 2048x8 EPROM
Waferscale Integration WS57C191, Waferscale Integration WS57C191B ,
Waferscale Integration WS57C291, Waferscale Integration WS57C291B

Type 0E: 57C191C 2048x8 EPROM
Waferscale Integration WS57C191C , Waferscale Integration WS57C291C

Type 0F: 2816A 2048x8 EEPROM (time delay for write completion)
Samsung KM2816A, Seeq 2816A, Seeq 5516A

Type 10: 28C16 2048x8 EEPROM (polled write completion)

Atmel AT28C16 , Atmel 28C16E, Catalyst CAT28C16A, Exel XLS2816A, Exel
XLS28C16A, Microchip 28C16A , On Semiconductor CAT28C16A, Xicor X2816B

Type 11: 2816Ai 2048x8 EEPROM (erase before write, >10 mS write pulse)
Intel 2816A , Seeq 52B13

Type 12: 2732 4096x8 EPROM (Vpp=25V)
AMD AM2732, Electronic Arrays EA2732Q, Fairchild F2732, Fujitsu
MBM2732, Hitachi HN472732G , Intel 2732 , Mitsubishi M5L2732K , MME U2732 ,
Motorola MCM2732, NEC uPD2732, Toshiba TMM2732D, Toshiba TMM2732DI

Type 13: 2732A 4096x8 EPROM (Vpp=21V)
AMD AM2732A, Fujitsu MBM2732A, Hitachi HN482732AG, Intel 2732A, NEC
uPD2732A, Rockwell R87C32

Type 14: 2732A-fast 4096x8 EPROM (Vpp=21V)
SGS-Thomson M2732A-fast

Type 15: 2732B 4096x8 EPROM (Vpp=12.7V)
AMD AM2732B

Type 16: 27C32H 4096x8 EPROM (Vpp=12.7V)
Fairchild NMC27C32H, National Semiconductor NMC27C32H

Type 17: 27C32B 4096x8 EPROM (Vpp=12.7V)
Fairchild NMC27C32B , National Semiconductor NMC27C32B

Type 18: TMS2532 4096x8 EPROM (TI-unique pinout, Vpp=25V)
Hitachi HN462532 , Motorola MCM2532, SGS M2532, Texas Instruments
TMS2532

Type 19: TMS2532A 4096x8 EPROM (TI-unique pinout, Vpp=21V)
Texas Instruments TMS2532A

Type 1A: TMS2732A 4096x8 EPROM (TI-unique programming, Vpp=21V)
Texas Instruments TMS2732A

Type 1B: 57C43 4096x8 EPROM
Waferscale Integration WS57C43 , Waferscale Integration WS57C43B

Type 1C: 57C43C 4096x8 EPROM
Waferscale Integration WS57C43C

Type 1D: 68764 8192x8 EPROM
Motorola MCM68764 , Motorola MCM68766

Type 1E: LH5749 8192x8 EPROM
Sharp LH5749

 ME2700 Programmer

15 March 2021 61 Martin Eberhard

Type 1F: 27HC641 8192x8 EPROM
Atmel AT27HC641 , Atmel AT27HC642, Microchip 27HC641

Type 20: 27HC641s 8192x8 EPROM (no blank-check)
Signetics 27HC641

Type 21: 27HC641R 8192x8 EPROM
Atmel AT27HC641R, Atmel AT27HC642R , Microchip 27HC641

Type 22: 57C49B 8192x8 EPROM
Waferscale Integration WS57C49B

Type 23: 57C49C 8192x8 EPROM
Waferscale Integration WS57C49C

Type 24: 52B13H 2048x8 EEPROM, 1.2 mS write pulse
Seeq 52B13H

Type 25: IM6658 1024x8 EEPROM, (Requires Intersil Option)
Intersil IM6658

Type 26: LH57191 2048x8 EEPROM
Sharp LH57191

Type 27: 28C04n 512x8 EEPROM
NEC 28C04

EPROMs and EEPROMs Sorted by Manufacturer

Numbers in parenthesis are the ME2700 Device Type. As above, chips that have
been tested on the ME2700 are underlined . Those in italics have only had
their data sheets verified.

AMD
AM2708 (04), AM2716 (06), AM2716B (09), AM2732 (12), AM2732A (13), AM2732B
(15)

Atmel
AT28C04 (02), AT28C16 (10), 28C16E (10) , AT27HC641 (1F), AT27HC642 (1F),
AT27HC641R (21) , AT27HC642R (21)

Catalyst
CAT28C16A (10)

Electronic Arrays
EA2708 (04) , EA2732Q (12)

Eurotechnique
ET2716Q (06)

Exel
X12804A (01), XLS2816A (10) , XLS28C16A (10)

Fairchild
F2708 (04), F2732 (12) , NMC27C16B (0B) , NMC27C16H (0A) , NMC27C32B (17),
NMC27C32H (16)

Fujitsu
MBM2732 (12), MBM2732A (13)

General Instruments
28C04 (02)

Harris

 ME2700 Programmer

15 March 2021 62 Martin Eberhard

HM-6758 (05)

Hitachi
HN462532 (18), HN462716 (06) , HN472732G (12), HN482732AG (13)

Intel
2704 (00) , 2708 (04), 2708L (04), 2716 (06), 2732 (12), 2732A (13),

2758 (05), 2816A (11)

Intersil
IM6654 (03), IM6658 (25)

Microchip
28C04A (02) , 28C16A (10), 27HC641 (1F or 21)

Mitsubishi

M5L2716K (06) , M5L2732K (12)

MME
U555C (05), U2716C (06)

Motorola
MCM2532 (18) , MCM2708 (04) , MCM2716 (06) , TMS2716 (0C) , MCM2732 (12) ,
MCM68708 (04) , MCM68764 (1D), MCM68766 (1D)

National Semiconductor
MM2704 (00) , MM2708 (04), MM2716 (06) , NMC27C16H (0A) , NMC27C32B (17),
NMC27C32H (16), MM2758Q-A (05)

NEC
uPD2716 (06) ,uPD2732 (12) , uPD2732A (13), uPD28C04

NTE
NTE2708 (04) , NTE2716 (06)

On Semicondutor
CAT28C16A (10)

Oki
MSM2708AS (04) , MSM2716AS (06)

Rockwell
R87C32 (13)

Samsung
KM2816A (0F)

Seeq
2804A (01), 2816A (0F) , 52B13 (11) , 52B13H (24) , Seeq 5516A (0F)

SGS-Thomson (ST)
SGS M2532 (18) , M2716 (06) , M2716A-fast (08), M2732A-fast (14)

Sharp
LH5749 (1E) , LH57191 (26)

Signetics
2704 (00), 2708 (04), 2716 (06), 27HC641 (20)

Soviet
573RF2 (06)

Tesla
MHB8708C (04), MHB2716C (06)

 ME2700 Programmer

15 March 2021 63 Martin Eberhard

Texas Instruments
TMS2508 (05) , TMS2516 (06), TMS2532 (18), TMS2532A (19), TMS2708 (04),
TMS2716 (0C), TMS2732A (1A), TMS2758-JL0 (05)

Thomson-Mostek
ET2716Q

Toshiba
TMM322 (04), TMM323D (06), TMM323DI (06), TMM2732D (12) , TMM2732DI (12)

Waferscale Integration
WS57C191 (0D) , WS57C191B (0D), WS57C191C (0E), WS57C291 (0D) , WS57C291B (0D),
WS57C291C (0E), WS57C43 (1B), WS57C43B (1B) , WS57C43C (1C), WS57C49B (22),
WS57C49C (23)

Xicor
X2804A (01) , X2816B (10)

