MEEe
=nnaneee Alegir WMl Beok Legeler
Users el

1111111111111

Revision History

Revision Date Author Notes

1.00 1 SEP 2013 M.|Eberhard Created from disassembl ed TURMON
Replace HSR support with 88-2S10

1.01 1 SEP 2013 M.|Eberhard 2nd port support
Parallel port read during

1.02 3 SEP 2013 M. Eberhard initialization, to clear OP-80
Don’t skip checksum loader if

1.03 9 SEP 2013 M.|Eberhard leader character is 0. Also,
change name from MBLme to MBLe
Check for RAM end before

1.04 [12MAR 2014 M)Eberhard initializing /O ports, so that
incoming echo transmission will
complete

1.05 5JUN 2014 M. [Eberhard Ignorg Sense Switch A1l
Turnkey Module compatibility:

2.00 12 AUG 2014 M. Eberhard Relocate most code to RAM and
execute from there.
88-SYS-CLG compatibility:

2.01 24 AUG 2014 M. Eberhard relocate ALL I/O instructions to
RAM before executing any.
Make ROM code position

3.00 16 JAN 2016 M. Pouglas independent, and speed up

initialization

ABSTRACT

MBLe is an improved version of the Altair MBL PROM, a checksum loader
for loading files that are “punched” in the Altair Binary Absolute

Load Format. Most software distributed by MITS, suc h as Altair BASIC

(on paper tape) ands Altair Cassette Tape BASIC, ar e “punched” in this
format.

Files punched using MITS’s TURNMON PROM (or the imp roved UBMON PROM)
“D” command are punched in this format, as are file s created by
MAKEALT (which is a CP/M utility that converts .HEX files to Altair-

compatible .TAP files).

CONTENTS
1. MBLe IMPROVEMENTS......ccoiviieeeeee e, 3
2. INSTALLATION. ... s 4
3. SUPPORTED DEVICES AND PORT ADDRESSES.......... s 4
5. OPERATING PROCEDURES........cccccovvieee i, 6
6. ERROR INDICATIONS......ovtiiiiieieeeeeeeee i, 8
7.8800b TURNKEY MODULE COMPATIBILITY....ccccccce. e 8
APPENDIX A - SOURCE CODE LISTING........cccooeee. i 9

16 January 2016
88 MBLe PROM vers. 3.00

1. MBLe IMPROVEMENTS

MBLe works exactly the same as the Altair MBL PROM,
following changes:

1.

Turnkey Module Compatibility

MITS’s MBL PROM will not work with any of their Tur
except the oldest revision of these boards, without
CLG rework, because the Turnkey Module will disable
the first IN instruction from the sense switch port

of the Turnkey Module will disable the PROMSs upon a
instruction. See Section 7.)

To fix this, MBLe relocates itself to the same 256-
where its stack is located, and runs from there - n

any IN or OUT instructions while running in PROM. S
MBL PROM, MBLe works correctly will all Turnkey Mod

Position Independence

MBLe 3.0 and later PROMSs will run from any 256-byte
except page 0.

High-Speed Serial Tape Reader Support

MBL'’s 88-HSR load device has been replaced with sup
from the second port on the 88-2S10. Thus, the fron
switch setting that was originally assigned to the
below) now selects the 88-2S10’s second serial port
device. This makes it possible to load Altair BASIC
using a high-speed RS-232 tape reader connected to
second port, and still use the 88-P10’s first port

OAE OP-80 Support

An initial read is performed from both the 88-PI1O a
Port 0, to clear data handshake latches in external
the Oliver Audio Engineering OP-80 paper tape reade
loading files (e.g. Altair BASIC) with the OP-80 wo

MAKEALT and UBMON Punched File Support

Both MBL and MBLe skip over the checksum loader tha
punched on an Altair BASIC tape between the tape le
actual file to be loaded. (MBL contains its own che

is independent of the particular file being loaded.

does contain a checksum loader, the binary value of
character is also the length (in bytes) of the chec

and MBLe both use this leader value to count bytes

the checksum loader.

However, tapes that were punched using MAKEALT, or
versions of UBMON “D” command, may not contain a ch
Such tapes just has a long string of leader nulls b

16 January 2016
88 MBLe PROM vers. 3.00

except for the

nkey Modules
MITS'’s 88-SYS-
the PROMSs upon
. (Some versions
_ny INor OUT

byte page of RAM
ever executing

O, unlike MITS’s
ule versions.

page of memory,

port for loading
t panel sense
88-HSR (see

as the load

and other files
the 88-2SI0’s
for the Terminal.

nd the 88-4P10
devices such as
r. This makes

rk correctly.

tis normally

ader and the
cksum loader that
) On a tape that
the leader

ksum loader. MBL
as it skips over

with older
ecksum loader.
efore the file to

MBLE . PRN

MBLe - Enhanced Multi Boot Loader for the Altair 8800

Loads and runs an Altair 'Absolute Binary File' from input
transfer port specified by the Sense switch settings.
Normally run in PROM at address OFEOOh. However, since
version 3.00 the PROM 1is position independent and can run
at most any 256 byte boundary.

vers. Date Author Ccomments
1.00 01sep2013 M. Eberhard
Disassembled from MITS EPROMS
1.01 O01sep2013 M. Eberhard
Modified to support e.g. a fast reader on the 2SI0's 2nd
port, instead of a MITS HSR
1.02 03sep2013 M. Eberhard
initial read from parallel ports to clear latches
(fixes the 0P-80)
1.03 09sep2013 M. Eberhard
fix for no checksum Toader (see 7 below.)
1.04 12Mar2014 M. Eberhard
Search for end of RAM before initializing ports, so the
UART has time to finish echoing, upon entry
1.05 053Jun2014 M. Eberhard
Ignore sense switch All (see 9 below)
2.00 11Aug2014 M. Eberhard
Major rewrite: copy to RAM and run from there, so it works
with an 8800b Turnkey Module too
2.01 24Aug2014 M. Eberhard
Also move I/O port setup to RAM code, so that MBLe will
work with older Turnkey modules, with just the 88-SYS-CLG
rework (Which may disable PROM on any IN or OUT
instruction). Also tidy up comments.
3.00 16Jan2016 M. Douglas
Make the PROM_position independent by making the RAM
sizing and relocation routines position independent.
Change the address relocation technique to free up the
space required for the position independent code.
Eliminate the two second start-up delay by sizing RAM with
a page-by-page search instead of a byte-by-byte search.

written to assemble with ASM by Digital Research.

Thanks to Geoff Harrison for his MBL disassembly, which I
plagerized freely.

** Differences between MITS MBL and MBLe *%*

1) The code starts off by relocating itself to the highest
page of RAM that 1is found, so that it will still work on
a Turnkey Module that phantoms the PROMs upon a IN from
port FFh (the Sense Switches), or any IN or OUT
instruction (i.e. 88-SYS-CLG Turnkey Modules)

2) A1l HSR support is eliminated, including 88-4PIO Port 1
initialization and code for starting the HSR transport.

3) The second 88-2SI0 port (port 1) is initialized.

4) The 88-HSR entry in PTABLE is replaced with an entry for
the 8-2SI0 port 1. See sense switch table below.

5) PTABLE has an 8th entry, which is the same as the 7th
(2510 port 1). Testing for illegal sense switch setting
is eliminated.

Page 1

MBLE.PRN

6) An initial read is performed for both the 88-PIO and the
88-4PI0 Port 0, to clear data handshake latches 1in
external devices such as the oP-80 paper tape reader

7) If the Teader character is 0, then no checksum loader
will be skipped.

8) The end-of-memory hunt to find the end of RAM occurs before
the I/0 ports get initialized, instead of afterwards. This
gives t1me for the UART to finish transmitting the echo of
e.g. the 'T' character, when entering MBLe from UBMON.

9) Sense switch All s ignored when getting the Toad device,
rather than generating an I error. This allows All to be
used for something else - e.g. selecting a boot disk.

Program Notes

Since the 8800b Turnkey Module disables PROMS whenever an IN
instruction accesses port FFh, this code cannot execute from
PROM - at Teast not from the point where the Sense Switches
are read onwards. Additionally, some versions of the Turnkey
Module are broken, and will disable PROM when *any* IN
instruction is executed. This means that MITS's MBL, as well
as versions 1.xx of MBLe, will not work in a Turnkey ModuTe.

MBLe 3.00 Strategy:

1) search the memory space for the highest actual RAM, as
MITS's MBL did. This page of memory will be used not only
for the stack, but also for the relocated MBLe code.

2) Copy code into the high RAM page that was found in step 1.
(This 1is called the RAM Execution Page.) The high byte
of addresses are relocated to the RAM execution address
as the bytes are copied.

3) Jump to the RAM code, and run from there - never to
return to PROM.

The RAM page is Taid out as follows:
* The high portion (From RAMPAG up to FFh) contains the
relocated MBLe code
* Immediately below this is the stack, initialized to RAMPAG
and growing downward. (Note that a PUSH decrements the
stack pointer before writing to the stack.)
The stack therefore has as much space as is occupied by the
bit of code that executes from PROM: plenty of room.

A1thou%h this uses more memory in the highest page of RAM,
it will behave the same as MITS's MBL, because both programs
still abort with an "M" error if a Load Record attempts to
write anywhere into the page that contains the stack.

An Altair 'Absolute Binary File' has 4 sections, which may be
separated by any number of nulls. These sections are:

1) The Leader, which comprises 2 or more identical bytes, the
value of which is the length of the Checksum Loader.

2) The Checksum Loader, which is a program that is normally
used to Toad the subsequent sections

3) zZero or more Load Records, each structured as follows:
Byte 0: Sync Byte = 3Ch (identifies a Load Record)

Byte 1: NN = number of data bytes in record
Byte 2: LL = Load address low byte
Byte 3: HH = Load address high byte

Bytes 4-NN+3: NN data bytes to store at HHLL, NN>O
Page 2

00cA
00c2

003C
0078
0055
000D

O00FF
0007

0010

MBLE . PRN
Byte NN+4: CC = checksum of bytes 2 through NN+3

4) The Go Record, structured as follows
Byte 0: Sync Byte = 78H (identifies the Go Record)
Byte 1: LL = Tow byte of go address
Byte 2: HH = high byte of go address

Altair file Leaders and Checksum Loaders are specific to
both the version of the particular software and the memory
size. For example, the Checksum Loader for 4K Basic 3.2 is
different than the cChecksum Loader for 8K Basic 3.2. And
both the Leader and Checksum Loader for 8K Basic 3.2 are
different than those for 8K Basic 4.0.

MBL and MBLe are able to read any such Altair file by simply
skipping over the Leader and Checksum Loader, and loading
the Load and Go Records directly.

MBLe chooses its input port based on the front panel Sense
Switches <2:0>, using the conventions set up in Basic 4.X,
more or Jless.

Device bits 2:0
88-2SI0 Port A (2 stops) 000b
88-2510 Port A (2 stops) 001b

88-SI0 010b
88-ACR 011b
88-4PIO 100b
88-PIO 101b

88-2SI0 Port B (2 stops) 110b
88-2SI0 Port B (2 stops) 111b

Prior to Basic 4.0, MITS used different Sense Switch settings
to specify the console device. You can load an older tape
with MBLe by setting the switches according to the above
table and starting the load. After MBL has skipped over the
Checksum Loader on the tape and has begun to load the Load
Records (but before the Toad completes) change the Sense
Sswitch settings as required by the earlier version of Basic
(or other program) that you are loading.

JZOP EQU O0CAH ;JZ OPCODE
JNZOP EQU 0C2H ; JNZ OPCODE

’
; ALTAIR ABSOLUTE BINARY FILE EQUATES

’

ALTPLR EQU 3CH ; PROGRAM LOAD RECORD

ALTEOF EQU 78H ; EOF/GO ADDRESS RECORD

ALTBNR EQU 55H ; BEGIN/PROGRAM NAME (NOT SUPPORTED)
ALTBND EQU ODH ; END-OF-NAME MARK (NOT SUPPORTED)

SSWTCH EQU OFFH ; FRONT PANEL SWITCH REGISTER
LDMASK EQU 007H ;LOAD DEVICE MASK <-ME (WAS OOFH)

:88-2SI0 REGISTERS

S2CTLA EQU 10H ;ACIA A CONTROL OUTPUT PORT
Page 3

MBLE . PRN

0010 = S2STAA EQU 10H -ACIA A STATUS INPUT PORT
0011 = S2TXDA EQU 11H ACIA A TX DATA REGISTER
0011 = S2RXDA EQU 11H ‘ACIA A RX DATA REGISTER
0012 = S2CTLB EQU 12H ‘ACIA B CONTROL OUTPUT PORT
0012 = S2STAB EQU 12H ACIA B STATUS INPUT PORT
0013 = S2TXDB EQU 13H ‘ACIA B TX DATA REGISTER
0013 = S2RXDB EQU 13H ACIA B RX DATA REGISTER
- ACIA CONTROL REGISTER BITS
0001 = s2ps1 EQU 000000018 - COUNTER DIVIDE SEL 1
0002 = S2DS2 EQU 000000108 * COUNTER DIVIDE SEL 2
0004 = s2wsl EQuU 000001008 ‘WORD SELECT 1
0008 = S2WS2 EQU 000010008 ‘WORD SELECT 2
0010 = S2WS3 EQU 00010000B ;WORD SELECT 3
0020 = S2TC1 EQU 001000008 ‘TX CONTROL 1
0040 = S2TC2 EQU 01000000B ;TX CONTROL 2
0080 = S2RIE EQU 100000008 ‘RX INT ENABLE
0003 = S2RST EQU 000000118 “MASTER RESET
-ACIA STATUS REGISTER BITS
0001 = S2RDF EQU 000000018 :RX DATA REG FULL
0002 = S2TDE EQU 000000108 ‘TX DATA REG EMPTY
0004 = S2DCD EQU 000001008 ‘DATA CARRIER DETECT
0008 = S2CTS EQU 00001000B ;CLEAR TO SEND
0010 = S2FE EQU 000100008 * FRAMING ERROR
0020 = S2ORE EQU 001000008 ‘RX OVERRUN ERROR
0040 = S2PE EQU 010000008 ' PARITY ERROR
0080 = S2IRQ EQU 100000008 : INTERRUPT REQUEST
:88-SIO EQUATES
:88-SIO REGISTERS
0000 = STOCTL EQU 00 - CONTROL PORT
0000 = STOSTA EQU 00 ' STATUS
0001 = STOTXD EQU 01 * TRANSMIT DATA
0001 = STORXD EQU 01 ‘RECEIVE DATA
- STATUS REGISTER BITS
0001 = STOIDR EQU 000000018 - INPUT DEV RDY (RX BUF FULL)
0004 = STOPE EQU 000001008 ' PARITY ERROR
0008 = STOFE EQU 000010008 ' FRAMING ERROR
0010 = STODOV EQU 000100008 :DATA OVERFLOW
0080 = STOODR EQU 100000008 *OUTPUT DEV RDY (TX BUF EMPTY)
:88-ACR (AUDIO CASSETTE RECORDER) EQUATES
NOTE: THE ALTAIR 88-ACR IS BUILT AROUND AN ALTAIR 88-SIO
:88-ACR REGISTERS
0006 = ACRCTL EQU 06 - CONTROL PORT
0006 = ACRSTA EQU 06 ' STATUS
0007 = ACRTXD EQU 07 : TRANSMIT DATA
0007 = ACRRXD EQU 07 *RECEUVE DATA
- STATUS REGISTER BITS
0001 = ACRIDR EQU 000000018 - INPUT DEV RDY (RX BUF FULL)
0004 = ACRPE EQU 000001008 ' PARITY ERROR

Page 4

0008
0010
0080

0020
0021
0022
0023
0024
0025
0026
0027

0001
0002
0004
0008
0010
0020
0040
0080

0080
0040

0004
0004
0005
0005

0002

0043
004D
004F

MBLE . PRN

ACRFE EQU 000010008 ; FRAMING ERROR
ACRDOV EQU 000100008 ; DATA OVERFLOW
ACRODR EQU 100000008 ;OUTPUT DEV RDY (TX BUF EMPTY)

;88—4PIO EQUATES
;NOTE: THE 88-HSR USES PORT 1 OF THE 88-4PIO

;88—4PIO REGISTERS

P4CAO EQU 20H ;PORT O SECTION A CTRL/STATUS
PADA0 EQU 21H ;PORT O SECTION A DATA

P4CBO EQU 22H ;PORT O SECTION B CTRL/STATUS
P4ADBO EQU 23H ;PORT O SECTION B DATA

P4CAl EQU 24H ;PORT 1 SECTION A CTRL/STATUS
P4DA1l EQU 25H ;PORT 1 SECTION A DATA

P4CB1 EQU 26H ;PORT 1 SECTION B CTRL/STATUS
P4DB1 EQU 27H ;PORT 1 SECTION B DATA

; CONTROL REGISTER BITS

P4C1CO EQU 000000018 ;C1 CONTROL BIT O

P4C1C1 EQU 000000108 ;C1l CONTROL BIT 1

P4DDR EQU 00000100B ;DATA DIRECTION REGISTER
P4C2C3 EQU 00001000B ;C2 CONTROL BIT 3

P4C2C4 EQU 000100008 ;C2 CONTROL BIT 4

P4C2C5 EQU 001000008 ;C2 CONTROL BIT 5

PAIC2 EQU 010000008 ;C2 INTERRUPT CONTROL BIT
P4IC1 EQU 100000008 ;C1 INTERRUPT CONTROL BIT

; STATUS REGISTER BITS

PARDF EQU 100000008 ; RX DATA REG FULL

HSRRDF EQU 010000008 ;RX DATA REG FULL for HSR

;88—PIO REGISTERS

PIOCTL EQU 04 ; CONTROL PORT
PIOSTA EQU 04 ; STATUS

PIOTXD EQU 05 ; TRANSMIT DATA
PIORXD EQU 05 ; RECEIVE DATA

; STATUS REGISTER BITS

PIORDF EQU 000000108 ; RX DATA REG FULL

CERMSG equ 'c!' ;checksum error
MERMSG equ ™' ;memory error
OERMSG equ 'o’ ;overwrite error

; ORG statement _ _ _

; Run-time relocation of addresses is done by replacing any
; byte that matches the MSB of the ORG address with the MSB
’

of the destination RAM address. This requires that the value

of the ORG MSB never appears in the assembled code other
than as the MSB of an address. FDOO works well for this.
Page 5

FDOO
O00OFD
0080

FDOO

FDO1
FDO4
FDO7
FDO8

FDOB
FDOC

FDOD
FDOE
FDOF
FD10
FD11
FD12
FD13
FD14

FD15
FD16

FD18

F3

318000
21C900
ES

CD7EOQO

3B
3B

24
7E
47
2F
77
BE
70
c8

cl
0E2C

25

FD19 EB

FD1A
FD1C

FD1F
FD20

FD23
FD24

FD25
FD26

1E23
21E1E9

ES
CcD7¢00

3B
3B

7E

FEFD

MBLE . PRN

org OFDOOh
ADRMARK equ ($ SHR 8)
STACKO equ 80h

;address mark value
;page zero stack

; Start of Code

that is not RAM.

1xi sp,STACKO
Txi h,RET
push h

call STACKO-2

; SZLOOP - check a byte in each
SZLOOP: dcx sp
dcx sp

inr h
mov a
mov b
cma
mov m
cmp m
mov m

H

rz SZLOOP

pop b

mvi Cc,NOTREL AND OffH
dcr h

xchg

mvi e,MOVELP AND OffH
Txi h,0E9E1h

push

call STACKO-4

;interrupts off during load

Size RAM (position independent). Assumes page 0 exists,
then checks byte C9 in each page until a page is found

;setup a stack on page zero

;H=0, L=RET instruction

;RET at STACKO-2

;puts addr of SZLOOP in stack RAM

page until RAM not found

;point SP to SZLOOP address
; in stack memory

;move
;read
;save
; form

to next 256 byte page
from address in hl
original value in b

and write inverted value

;read and compare
;restore original value

Move PROM image to high RAM (position independent).
on entry, HL is within the 1st page AFTER the end of
RAM. At the current stack pointer is the address of
SzLooP from the RAM sizing Toop above.

;BC->SZLOOP in PROM .
;BC->NOTREL 1n PROM

;point HL inside last page of RAM
; form RAM destination in DE
yDE->MOVELP 1n RAM

yH=PCHL ,L=POP H
yPOP H, PCHL qt STACK-4, STACK-3
;PROM MOVELP in stack mem and HL

; Move code from PROM to RAM. If a byte matches the MSB of the

; assembled ORG address (i.e.

it is an address MSB), then

; it is replaced with the destination RAM MSB.

MOVELP: dcx sp
dcx sp
mov a,m
cpi ADRMARK

Page 6

;point SP to MLOOP address
; in stack memory

;Get next EPROM byte

;relocatable address byte?

MBLE . PRN

FD28 C5 push b ;put jump address on stack
FD29 CO rnz ;jhz NOTREL)
FD2A C1 pop b ;remove unused jump address
FD2B 7A mov a,d ;a=MSB of code image in RAM
FD2C 12 NOTREL: stax d ;move byte to RAM
FD2D 1C inr e ;bump pointers
FD2E 2C inr 1
FD2F CO rnz ;jnz MOVELP copy to end of 256 byte page
) ; code image has been copied to high RAM and addresses relocated.
Init
; the stack pointer just below the code, then jump to the code.
FD30 62 mov h,d ;HL and DE in RAM execution page
FD31 2E35 mvi 1,RAMCOD AND Offh ;HL->entry address in RAM
FD33 F9 sph1 ;stack grows down from start
FD34 E9 pchl ;jump to start
; RAM Execution Code
; A1l of the following code gets copied into the RAM Execution
; Page (which is the highest page of RAM that was discovered
; during initialization).
; On Entry:
; d = h = RAM Execution Page
; Delay 1/10s to allow time for a 110 baud character to finish
; transmission. A character may have been typed in a monitor
; (e.g., UBMON) just prior to entering MBL. The RAM size and
; copy loops above provide a max delay of about 10ms.
FD35 018D20 RAMCOD: Txi b,8333 ;1/10s, 24 cycle Toop @2mhz
FD38 0B DELAY: dcx b ;5
FD39 78 mov a,b ;5
FD3A Bl ora C ;4
FD3B C238FD jnz DELAY ;10
: Reset all known Toad devices
; Note that a bug in the 88-SYS-CLG rework to older Turnkey
; Modules will cause any IN or OUT instruction to occasionally
; cause the PROMs to become disabled. For this reason, this
; initiaization is done after the code relocates to RAM.
; On Entry:
; a=20)
; h = d = RAM Execution Page
; On EXit:
; h = d = RAM Execution Page
;Make 4PI0 'A' channels inputs and 'B' channels outputs
FD3E D320 out P4CAQ ;access 4PIO Port OA DDR
FD40 D321 out P4DAO ;set 4PIO Port OA as 1input
FD42 D322 out P4CBO ;access 4PIO Port OB DDR
FD44 2F cma ;OFFH
FD45 D323 out P4DBO ;set 4PIO Port OB as output

;Set up the other 3 4PIO ports all the same
Page 7

FD47

FD49
FD4B

FD4D
FD4F
FD51

FD53
FD55
FD57

FD59
FD5B

FD5D
FD5E
FD60

FD61
FD62
FD64
FD65

FD66
FD68
FD69

FD6A
FD6B
FD6C
FD6E

FD6F

FD72
FD73

FD75

3E2C

D320
D322

3EO03
D310
D312

3E11
D310
D312

DBFF
E607

87
C6ED
5F

1A
2EE6
1F
77

2EDF
77

1c

1A
2EE1
77
D275FD

2C
36C2

CDES5FD

mvi

out
out

;Send reset command to both 2SIO ports

mvi
out
out

MBLE . PRN

a,2cH ;bits 0,1: C1

input active Tow, int off

;bit 2: access data reg
;bits 3-5: C2 output handshake

P4CAO ;4PIO
P4CBO ;4PIO

a,S2RST ;2SI0
S2CTLA ; 2SI0
S2CTLB ;2SI0

Port OA control
Port OB control

reset
Port A
Port B

;Set up both 2SIO ports: 8 data bits, 2 stop bits, no parity,
; clock divide by 16

a,l11H ;8N2, /16

mvi
out
out

S2CTLA ;2SI0
S2CTLB ; 2SI0

Port 0 control
Port 1 control

Patch the GETBYT routine with the correct parameters for the

; On Entry & Exit:)
; h = d = RAM Execution Page

; Toad port that 1is specified by Sense Switches 2:0

ani

add
adi
mov

Tdax
mvi
rar
mov

mvi
dcr
mov

inr
Tdax
mvi
mov

jnc
inr
mvi

SSWTCH
LDMASK

a
PTABLE and OFFh

;read sense switches
;This also disables PROMS...
;bits specifies load device

;2 bytes/entry
;Look up in PTABLE

e,a ; de=PTABLE ((SWITCHS) <2:0>)

d
1, (GBDP+1) and OFFH

m,a

1, (GBSP+1) and OFFh

;Data port addr place
;move jnz flag int carry
;install data port addr

;Status port addr place
;stat port = data port-1
;install stat port addr

;next table entry is
;..the status port mask
;status mask place
;install stat port mask

;test jnz flag
;jnz right after mask
;install jnz opcode

Flush external data Tatches for e.g. the 0P-80
; or flush garbage from UARTs
; On Entry & Exit:
; d = RAM Execution Page

s wswswsw
—
[%2]
(]
N
Q)
oY)
—_
—_

; Skip over Teader - a sequence of identical bytes, the value

Page 8

MBLE.PRN

of which is the length of the checksum Toader. If the value
is 0, then there 1is no Toader to skip, so go get records.
On Entry:

d = RAM Execution Page
On exit:

c = checksum loader length

d = RAM Execution Page

The 1st byte of the checksum loader has already been read

FD78 CDDEFD call GETBYT ;get 1st byte

FD7B 4F mov c,a ;humber of bytes in loader
FD7C B7 ora a ;Null Teader?

FD7D CA8FFD jz RCHUNT ;y: skip Teader

FD80 CDDEFD LDSKIP: call GETBYT ;get another byte

FD83 B9 cmp C

FD84 CA80FD jz LDSKIP ;Toop until different

Skip over checksum loader

On Entry:
The 1st byte of the checksum loader has already been read
c=checksum Toader Tlength
d = RAM Execution Page
On Exit:
d = RAM Execution Page
The checksum loader has been skipped

FD87 0D dcr C ;since we got a byte already
FD88 CDDEFD CLSKIP: call GETBYT ;get a loader byte

FD8B 0D dcr C

FD8C C288FD jnz CLSKIP

; Main Record-Loading Loop

Hunt for a sync character - either for another Load Record
; or for the Go Record. Ignore all else.
; On Entry:
; c=20
d = RAM Execution Page
; On jmp tp LDREC:
; c=20

RCHUNT address 1is on the stack

)

)

)

)

4 -

; d = RAM Execution Page
;

R

FD8F 62 CHUNT: mov h,d ;restore page address
FDI90 2E8F mvi 1,RCHUNT and OFFh

FD92 E5 push h ;create return address
FD93 CDDEFD call GETBYT ;hunt for sync character
FD96 FE3C cpi ALTPLR ;Toad record sync byte?
FD98 CAA3FD jz LDREC ;Y: go load the record
FD9B FE78 cpi ALTEOF ;EOF record sync byte?
FDI9D CO rnz ;N: 1dgnore

; Fall into GO record execution

MBLE.PRN
Go Record: Get the Go Address and go there

On Entry:
Go-Record sync byte has already been read
FD9E CDDAFD call GETWRD ;get a,l=address
FDAl 67 mov h,a ;high byte
FDA2 E9 pchT ;go there

Load Record: Read and store data from a Load Record

’

’

; On Entry:

; The Load Record sync byte has already been read

; c=20

; d = RAM Execution Page

; RCHUNT's address is on the stack

: On Return (to RCHUNT):

; c=20

; d = RAM Execution Page]

; A complete Load Record's data has been Toaded into RAM
’
L

FDA3 CDDEFD DREC: call GETBYT ;get record byte count
FDAG6 41 mov b,c ;c=0: initialize checksum
FDA7 4F mov c,a ;C counts data bytes

FDA8 CDDAFD call GETWRD ;get load address into a,l
FDAB 67 mov h,a ;h1l = record load address

;Loop to read c data bytes into memory at hl.
;Make sure data won't overwrite RAM Execution Page.

FDAC 7A LRLOOP: mov a,d ;d=RAM Execution Page

FDAD BC cmp h ;error if same page as load address
FDAE 3E4F mvi a,O0ERMSG ;overwrite error message

FDBO CAC8FD jz ERDONE ;error exit if overwrite

FDB3 CDDEFD call GETBYT ;get a data byte

FDB6 77 mov m,a ;store data byte

FDB7 BE cmp m ;did it store correctly?

;Entry at MERR from end-of-RAM search (while running in ROM)

FDB8 3E4D MERR: mvi a,MERMSG ;Memory Error message
FDBA C2C8FD jnz ERDONE ;error exit if mismatch
FDBD 23 inx h ;bump dest pointer

FDBE 0D dcr C ;bump byte count

FDBF C2ACFD jnz LRLOOP ; Toop through all bytes

; validate checksum, fail if it doesn't match
; ¢ = 0 here

FDC2 CDDEFD call GETBYT ;test record's checksum
FDC5 C8 rz ;match: get another record
FDC6 3E43 mvi a, CERMSG ;Checksum Error message

; Fall into ERDONE

;Error handler: o
; Save error code and address at beginning of memory
Page 10

o MBLE. PRN
; Hang writing the error code forever, to all known consoles.

FDC8 320000 ERDONE: sta 00000H

FDCB 220100 shld 00001H

FDCE FB ei

FDCF D301 ERHANG: out SIOTXD ; STIO

FDD1 D311 out S2TXDA ; 2SI0

FDD3 D305 out PIOTXD ; PIO

FDD5 D323 out P4DBO ;4PIO port O
FDD7 C3CFFD jmp ERHANG

;---Subroutine---------------—-——————-
Get 2-byte word from transfer port

’

; On Entry:

; b=checksum so far

; On EXit:

; T = next byte

; a = subsequent byte

; b := b+a+]
FDDA CDDEFD GETWRD: call GETBYT
FDDD 6F mov 1,a

; Fall into GETBYT

;---Subroutine--------—-—— - - - -
; wWait for and get a byte from the transfer port

; This code gets modified once the input port is known
; On Entry:

; b=checksum so far

; On EXit:

; a = input character

; Z set if received byte matched previous checksum

b := b+a
GETBYT: _
FDDE DBOO GBSP: in 0 ; (Status Port Address)read status
FDEO E600 GBMASK: ani 0 ; (Port Mask)
FDE2 CADEFD jz GETBYT ;(may become jnz) wait for data

; Fall into GETNOw

;---Subroutine--------—-—— - - - - - -
; Get a byte from the transfer port

; This code gets modified once the input port is known
; On Entry:

; b=checksum so far

; On EXit:

; a = input character

; Z set if received byte matched previous checksum

b := b+a

GETNOW: ;call to flush port
FDE5 DBOO GBDP: in 0 ; (Data Port place)get data byte
FDE7 B8 cmp b ;set z if this byte matched cksum
FDE8 F5 push psw ; temp save
FDE9 80 add b ;update checksum in B
FDEA 47 mov b,a
FDEB F1 pop psw ;recover data byte

Page 11

MBLE . PRN
FDEC C9 ret ;A=byte, B=checksum

;---Table--------------" o i o e
;Port Parameters: One 2-byte entry for each input port:

; Byte 1 = Data port address * 2 + JNZ_f1a?

; (The status port 1is assumed to immediately preceed the data

; port.)

; Byte 2 = ready mask for data input

FDED 2201 6TABLE: db S2RXDA*2 ,S2RDF

;0:2S10 A (2 stop bits)
FDEF 2201 db S2RXDA*2 ,S2RDF ;1:2ST0 A (2 stop bits)
FDF1 0301 db SIORXD*2+1,SIOIDR ;2:S10
FDF3 OFO01 db ACRRXD*2+1,ACRIDR ;3:ACR
FDF5 4280 db P4DA0*2 , PARDF ;4:4P10 Port O
FDF7 0AOQ2 db PIORXD*2 ,PIORDF ;5:PIO
FDF9 2601 db S2RXDB*2,S2RDF ;6:2SI0 B (2 stop bits)

; The last table entry is just a copy to fill it out.
FDFB 2601 db S2RXDB*2,S2RDF ;7:2SI0 B (2 stop bits)

FDFD end

Page 12

	MBLe.pdf
	MBLE.PRN.pdf

