A Comprehensive Memory-Test for the Altair 8800

In 1977, having spent several hundred hours debugging my then-company’s Altair 8800 computer, and then spending several hundred more helping my friend debug his to help get out SCCS Interface mailing, one of the necessary tools turned out to be that old stand-by, the Memory-Test.
A memory-test is usually used to test out the computer when simpler methods say that the machine is OK; but further verification is needed. The reason that a memory-test is used, is that it seems most of the problems encountered with many computers, especially older models using more discrete memories with many chips on memory-boards, such as the Altair 8800 system, turn out to be “flaky” memory. This is easy to understand when you consider that the CPU does rely on having at least some working memory.

After trying several dozen memory-test routines several hundred times apiece, some from magazines and quite a few that I wrote myself, I eventually came to the conclusion that none of the tests I had previously seen contained all of the necessary functions that were required in a truly great memory-test.

I therefore decided that if the mountain wouldn’t come to me ... etc. So, I started to design my own good memory-test.

The first thing I did was to determine what I thought were the really *needed* functions and features of the ideal memory-test, what was just wanted, and what could actually be implemented on a comparatively simple CPU like the 8080.

First: It must be thorough:
A.
Most simple memory-tests simply select a byte, shove it throughout the memory-test-area, and then check to see if it’s still there. This method will not uncover the types of errors caused by adjacent-pattern interference, or that caused by poor address decoding. To rectify that problem, my test would include three entirely different types of data-patterns; worst-case first and easiest last. First, a pseudo-random CRC-based pattern would be placed throughout the entire memory test-area. Then a check would be made of the stored pattern in memory to see if it matched the expected stored pattern and was still held in memory correctly.

Second, a pattern of alternating ones and zeroes (a “checkerboard” pattern) would be stored and then tested.

Third, a pattern of all bits set would be stored and tested.

All three of the above tests would be repeated with its complement before proceeding to the next test; thus all ones would be followed by all zeroes; leaving the memory cleared when the program was finished.
B.
Most simple memory tests just do not catch timing-sensitive problems. Either they make the mistake of immediately checking to see if the byte stored is still correct and miss problems of the sort where the memory “forgets” after a while, or they don’t test for problems that occur when memory is rapidly and repeatedly accessed. To cover both problems, the new test would first store the entire test-pattern throughout the memory test-area, before coming back to see if it was correct. Also, the test would be made using the 8080 “PUSH” and “POP” instructions. These two instructions access two bytes of sequential memory in the fastest manner possible to the 8080 CPU.
C.
By doing every test twice, the second time with the complement of the first data-pattern, every bit in the test-area will have been tested six times; three times in each state.
Second: It must be fast:

A.
Most simple memory-tests are fairly fast; just because they are simple tests to begin with. Most that make any claim to being thorough are anything but fast. I have run across machine-language memory-tests that would take weeks to check only 16K of memory. This is intolerable when you really want to know if the change you just made really fixed that memory board. By using several complex tests rather than one simple test repeated endlessly, you can achieve a high degree of confidence without endless agonizing.

B.
Quite obviously, the memory-test must be written in assembly-code or “machine-language; as the overhead of even a truly great compiler would slow it down tremendously. Also, other constraints would be impossible. A memory-test of this nature should be hand-coded and assembled to ensure the memory-test completes sometime in the same year it’s started.

Third: It must be easy to use:

Some simple memory-tests for 8080 machines require you to use the front-panel of the computer to both input parameters and interpret results. This is both awkward and time-consuming. The new test would prompt you from your usual terminal that you ordinarily used. It would ask you what the starting and ending addresses of the test-area was. Then, it would let you know if the test passed or failed; and if failing would tell you where the error was, the expected-data, the found-data, and which bits were in error; to ease the problem of finding which chip (or chips) were probably having problems. All input and output should be in easily readable and machine-compliant format: Not decimal; but either hex or split-octal. The first version used split-octal. The latest has input and output in hexadecimal.

Fourth: It must be completely ROM-able:

To be of maximum usage on a machine where you’re not sure if ANY of your RAM memory is working, you need what at-first seems impossible: It must not use any RAM to store variables in, use as counter, or even have a push-pull/return stack. This might seem to preclude subroutines; but it doesn’t. Instead, all tests, counters, return-jumps from subroutines, test bytes and such are all contained in the (rather limited set of) the basic 8080 CPU registers alone. This allows the program to test memory and find what’s causing problems without even having a single working RAM board in the machine.
Last, but not least:
It should use *ONLY* the 8080 instruction-set; not later and fancier codes like are available with the Z-80 and later “compatible CPUs that have more registers and methods that allow such things to be implemented in a much simpler fashion. This allows the program to be used on just about all 8080 compatibles with only minor recompiling for different I/O schemes and terminals.

After all that description; try the new memory-test in ROM, and see how well it fits the described criteria above.

The program as assembled was ORGed to start at FC00h, take up about 1K of ROM, or a 2708 on a ByteSaver™ board, and reside at top of memory. This can be changed of course to reside wherever you like, even starting at 0000h and residing on a known good RAM board.

To accommodate people with different I/O boards from MITS and various terminals, and to make the program easy to use without extensive recompiling, the SENSE switches are used to select various options: The default, with all switches at 00h or off, being a TTY hooked up to the original MITS single SIO board at port-0.

As options, the program now allows four different I/O board addresses/types:

Board:
Sense-switch setting:

MITS SIO board at port-0
Switch 1 down and switch 0 down:
00000000B
00H
MITS 2SIO board at port-16
Switch 1 down and switch 0 up:
00000001B
01H
MITS 2SIO board at port-18
Switch 1 up
and switch 0 down:
00000010B
02H
Proc-Tech 3P+S board at port-0
Switch 1 up
and switch 0 up:
00000011B
03H
The program also accommodates four different terminal-types (Clear-Screen & Back-Space):
Generic TTY
Switch 3 down
and switch 2 down:
00000000B
00H
ADM-3A
or compatible
Switch 3 down
and switch 2 down:
00000100B
04H
VT-100
or compatible
Switch 3 up
and switch 2 down:
00001000B
08H
SWTP TVT
or compatible
Switch 3 up
and switch 2 up:
00001100B
0CH
To start the program running:

Enter your desired terminal configuration in the sense-switches.

Enter the start-address of the ROM in the address switches, hit STOP, RESET, EXAMINE, and then RUN.

The program should then clear-screen (if that type of terminal) and prompt you for the starting address. Hit the Escape-Key to jump to the monitor (Usually MITS boot-ROM at FF00H).
Note-1:
Because of using the PUSH and POP instructions, which *always* access two bytes at a time, it’s best (but not necessary) to use even numbered memory test areas.

Note-2:
Don’t use FFFE-FFFF as ending-address. The program will hang checking for end.
Enjoy.

 / ' /

 ,-/-, __ __. ____ /_

 (_/ / (_(_/|_/ / <_/ <_

1
3

