
^ m m g m m

u

OMITS, Inc. 1977

First Printing, June, 1977 2450 AtamoS.E./Atbuquerque, New Mexico87106

TABLE OF CONTENTS

Section Page

1. INTRODUCTION ' . 1

1-1. Introduction to this Manual 3

1-2. Loading and Initializing DOS 3
1-3. Program Development Procedure . . . 9
1-4. Notation and Definitions 14
1-5. DOS Input Conventions 17

2. MONITOR T9

2-1. Introduction to the Monitor 21
2-2. Input from the Console 21
2-3. Monitor Commands 23
2-4. Monitor Error Messages 25
2-5. File Name Conventions 28

3. TEXT EDITOR 31

3-1. Introduction 33

3-2. Edit Commands 34

4. ASSEMBLER 43

4-1. Statements 46

4-2. Addresses . 47
4-3. Op-Codes 52
4-4. Assembler Error Messages 71

5. LINKING LOADER 73

5-1. Introduction 75
5-2. Address Chaining 77
5-3. Relocatable Object Code Module Format 77

6. DEBUG SI

6-1. Introduction S3
6-2. Display S7
6-3. Modify 37
6-4. Breakpoints 88
6-5. Controlling Execution 89
6-6. Using Debug with Relocated Programs 90

7. MISCELLANEOUS SYSTEM PROGRAMS 91

7-1. I N I T . . 93
7-2. CNS 93
7-3. SYSENT 93
7-4. LIST 95

M S

June, 1977 ^

APPENDICES

A. ASCII Character Codes 99
B. Disk Information 101
C. Monitor Calls 103
D. Absolute Load Tape Format 111
E. The File Copy Utility 112
F. Bootstrap Loaders 121

INDEX . 127

oos

1 June, 1977

L oos
^ ^ June. 1977 1/(2 B l a n k)

J

1. INTRODUCTION

1-1. Introduction to This Manual

The Altair Disk Operating System (DOS) is a system for developing

and running Assembly Language programs. It consists of a Monitor and

several system programs. The parts of this manual describe the various

components of the system.

Chapter 2—the Monitor. The Monitor provides control and disk

file management for all of DOS. Monitor Input/Output routines are avail

able to any program running under DOS.

Chapter 3—the Text Editor. The Editor (EDIT) creates, modifies

and saves ASCII coded files. Typical Editor files include Assembly

Language programs and data.

Chapter 4—-the Assembler. The Assembler (ASM) converts symbolic

Assembly Language programs into relocatable machine code modules.

Chapter 5—the Linking Loader. The Linking Loader (LINK) loads

the relocatable object code modules into memory, assigns addresses to

symbols and resolves external references.

Chapter 6—Debug. Debug is a versatile symbolic debugging program

With Debug, the programmer can interrupt execution of a program, examine

and modify the contents of register and memory locations.

Chapter 7—Miscellaneous System Programs.

Console (CNS) transfers command of the Monitor from one terminal

device to another.

Initialize (INIT) allows the system parameters (amount of memory,

number of disks, etc.) to be changed without reloading the system.

1*2- Loading and Initializing DOS

When the computer is first turned on, there is nothing of value

in the semiconductor read/write memory. Therefore, before DOS can be

used, the Monitor must be loaded from disk. This requires another

program, the loader. The loader may reside in read-only memory or may

be loaded from paper tape or cassette.

A. Systems with a Disk Boot Loader PROM mounted in the proper

slot of a PROM Memory Card have the loader program readily

available in non-volatile memory. Use the following procedure

to load DOS with the DBL PROM:
M S

June, 1977

1. Turn on the power to the computer, disk drives and peri-

pherals.

2. Raise STOP and RESET simultaneously and then release them.

3. Raise switches A15-A8 and lower switches A7-A0.

4. Actuate EXAMINE.

5. Make sure the DOS diskette is mounted in disk drive 0,

that the door is closed and the disk has come up to speed

(approximately 5 seconds).

6. Enter sense switch settings for the terminal I/O board

from Table 1-A.

7. Press RUN.

DOS should start up and print MEMORY SIZE? For the remainder

of the initialization procedure, see Section C below.

For systems without the DBL PROM, the loading procedure involves

entering a bootstrap loader from the computer front panel,

running it to load a disk loader program from paper tape or

cassette and then running that loader to load the Monitor from

disk. The procedure for doing this is as follows:

1. Turn on the power to the computer and peripheral devices.

2. Raise the STOP and RESET switches simultaneously and then

release them.

3. Make sure the terminal is on-line (on a Teletype^, this

means the mode switch is set to LINE).

Now enter the proper loader program for the device through

which the loader tape is to be entered. The bootstrap loaders

are in Appendix F.

The bootstrap loaders are entered on the front panel switches

A7 - AO. Each switch has two positions, up and down. By

convention, up is designated as 1 and down as 0. Therefore,

the eight switches represent one byte of data. Each group of

three switches, starting from the right, can represent the

digits 0 through 7. The leftmost two switches represent the

digits 0 through 3. For example, to enter the octal number

315, the switches AO through A7 are set to correspond to the

following table:

COS

June, 1977

Switch A7 A6 A5 A4 A3 A2 A1 AO

Position up up down down up up down up

Octal Digit 3 1 5

The data bytes of the loader programs are shown in octal and

are to be entered on AO - A7 in this manner. To enter the

programs:

4. Put switches AO -. A15 in the down position.

5. Raise EXAMINE.

6. Put the first loader program data byte in switches AO - A7.

7. Raise DEPOSIT.

8. Put the next data byte in AO - A7.

9. Depress DEPOSIT NEXT

10. Repeat steps 8 and 9 for each successive data byte until

the loader is completely entered.

Now check the loader to make sure it has been entered correctly:

11. Put switches AO - A15 in the down position.

12. Raise EXAMINE.

13. Check to see that the lights DO - 07 correspond to the
t

correct data byte for the first location. A light on

indicates 1; off means 0. The rightmost three lights

correspond to the rightmost octal digit. The next three

lights represent the middle digit and the leftmost two

lights represent the left digit.

If the data byte is correct, go to step 16.

If the data byte is not correct, go to step 14.

14. Put the correct value in switches AO - A7.

15. Oepress DEPOSIT.

16. Oepress EXAMINE NEXT.

17. Check each successive byte by repeating steps 1 3 - 1 6

until the whole loader is checked.

18. If there were any incorrect bytes, check the whole loader

again to see that they were corrected.

Now the paper tape or cassette labelled DISK LOADER can be read.

for the paper tape version, put the tape in the reader and make

sure it is positioned on the leader. The leader is the section

of tape at the beginning with a series of 302o characters (3 of

8 holes punched). For the cassette version, put the cassette in

the reader and make sure it is completely rewound.

19. Put switches AO - A15 in the down position.

20. Raise EXAMINE.

21. Enter the proper sense switch settings for the load and

terminal devices in switches A8 - A15. The rightmost four

switches contain the load device setting, and the leftmost

switches contain the setting for the terminal devices.

Table 1-A shows both the octal sense switch setting and

the load and terminal switches to be raised for each

standard Altair system peripheral. If a device is used

for interface to the terminal, the switches in the "Ter-

minal Switches" column must be raised. If the device

interfaces the peripheral through which DOS is being

loaded, the "Load Switches" are raised.

Sense Switch
Setting

Terminal
Switches

Load
Switches Channels

2SI0
(2 stop bits) 0 None None 20,21

2SI0
(1 stop bit) 1 A12 A8 20,21

SIO 2 A13 A9 . 0,1

ACR 3 A13,A12 A9,A8 6,7

4PI0 4 A14 A10 40,41,
42,43

PIO 5 A14,A12 A10,A8 4,5

Non-Standard
terminal 14

No terminal 15

22. Start the loading process. If the load device is connected

to the computer through an 88-SIO A, B or C or an 88-PIO

board, start the tape reader and then press the RUN switch

on the computer front panel. For the 2SI0 or 4PI0 boards,

press RUN and then start the reader. For the ACR, rewind

and start the cassette. Listen to the signal from the

tape (through an auxiliary earphone). When the steady tone

changes to a warble, press RUN on the computer.

6
90S

June, 1977

If the checksum loader detects a loading error, it turns on

the Interrupt Enable light and stores the ASCII code of an

error letter in memory location 0. The error letter is also

transmitted over all terminal data channels. If a terminal is

connected to one of these ports, it prints the error letter.

The error letters are as follows:

C Checksum error. If the checksum on the DOS disk file

does not equal the checksum generated by the loader, C

error results. "The error may not occur if the diskette

is loaded again. If it does occur three times consecu-

tively, the loader tape or diskette is at fault and

must be replaced.

M Memory error. Data from the disk does not store properly.

The location at which the error occurred is stored at

locations 1 and 2 absolute.

0 Overlay error. An attempt was made to load data over

the loader.

1 Invalid Load Device. The setting of the sense switches

is incorrect.

C. When the Monitor has been loaded correctly, it responds with

the first initialization question.

MEMORY SIZE?

Here the programmer may specify the amount of memory, in bytes,

to be used by DOS. Typing a carriage return or zero causes

DOS to use all of the read/write memory in the system. The

next question is

INTERRUPTS?

Typing Y enables input interrupts and Typing N or carriage

return disables them. If interrupts are enabled, special-

characters may be used to control program execution.

NOTE

Input interrupt features may be used only if the input inter-

face board is strapped to accept interrupts. See Section 2-2

for information on 1/0 interrupts. If interrupts are not

strapped, the answer to the INTERRUPTS? question must be N.

The next question is

HIGHEST DISK NUMBER?

to which the programmer responds with zero if there is one

disk in the system, 1 if there are two disks and so on. The

next question is

HOW MANY DISK FILES?

to which the programmer responds with the number of disk

files (both sequential and random) to be open simultaneously.

Responding with a carriage return sets the number of files at

zero. Finally, DOS asks

HOW MANY RANDOM FILES?

Again, the programmer responds with a number or with a carriage

return, which specifies zero random files.

To save time, especially when a slow terminal is in use, all

of the initialization answers can be entered at once with the

parameters separated by spaces. For example:

MEMORY SIZE? 0 Y 1 2 0

tells DOS that

1. it is to use all available memory,

2. input interrupts are enabled,

3. there are two disk drives in the system,

4. two sequential and

5. no random disk files are to be open at any given time.

When DOS has been properly initialized, it prints the follow-

ing prompt message

DOS MONITOR VER x.x

The Monitor prints a period to indicate that it is now ready

to receive commands.

oos

June, 1977

1*3* Program Development Procedure

DOS is designed to allow the translation of an Assembly language

program on paper to an operating Machine Language program with a minimum

of time and effort. The process involves entering the Assembly language

program into a disk file with the Text Editor, translating the file to

Machine language with the Assembler and loading the program into memory

with the Linking Loader.

Before the process can proceed, the disks in use must be mounted

with the MNT command. To mount disk 0, the following command is used:

_ ^ M N T 0 < c r >

where <cr> means carriage return. Other disks may be mounted in the

same command by typing their numbers after the zero, separated by spaces.

Mounting the disk(s) tells DOS the location of all the files and

free space on each disk. If an attempt is made to run a program before

the disk on which it is stored is mounted, a PROGRAM NOT FOUND error

will result.

1. The first step in program development is to enter the program

into a disk file with the Text Editor. The Editor is loaded

from disk and run by the following command:

JEDIT<cr>

When it is loaded, it prints

DOS EDITOR VER x.x

ENTER FILE NAME

to which the user replies with the name of the file to be

entered or edited. The editor then prints

ENTER DEVICE NUMBER

which is answered with the number of the disk drive where the

file is stored.

Assume that an Assembly language program called SAMP is entered

into a file on disk drive 0. The Editor is run with the fol-

lowing command:

^EDIT SAMP 0 <cr>

The file name (SAMP) and device number (disk 0) can be entered

in the EDIT command to avoid the necessity of asking the file

name and device number. The Editor searches disk drive 0 for

a file name SAMP to edit. If it finds no such file, it prints
cs
!„n. is?? the following messages:

CREATING FILE

00100

00100 Is the number of the first line of the file. Now, all

that is necessary is to enter the lines of'the program.

After each carriage return, the next line number is generated

automatically so that the next line can be entered. This

process continues until all the lines of the program have been

entered.

00340 PROD DB 0,0 <cr>

00350 END <cr>

00360 <cr>

To stop the generation of line numbers, type a null line (just

a <cr>). The Editor prints an asterisk (*) to indicate it is

ready to accept new commands. To check the file in order to

make sure it has been entered without error, type

IP

This prints all of the lines on the current page with their

line numbers. In this example, there is only one page (see

paging commands, p. 40 , for an explanation of program pages),

so the P command prints the whole file. The output appears as

follows:

00100 LDA

00110 LHLO

IER

CAND

LOAD MULTIPLIER<cr>

LOAD MULTIPLICAND<cr>

*p

00100

00110

00120 SHFTR

00130 SHFTR

LDA IER

LHLD CAND

RAR

RAR

00240 CAND DB 64

00250 PROD DB 0,0

10
oos

June. 1977

Suppose the line at 120 was inadvertantly entered again at

line 130. To eliminate one of them, use the D (for Delete)

command.

130 <cr>

*

It is not necessary to type the leading zeros in the line

number. To add another line between number 100 and 110, use

the I (for Insert) command.

100

00105 ; A COMMENT LINE <cr>

00107 <cr>

The line number specified is that of the existing line imme-

diately before the desired position of the new line. The

Editor generates a line number halfway between the two existing

lines. After typing the new line, a <cr> causes another

number to be generated halfway between the inserted line and

the next existing line. New lines can be inserted in this

manner until there is no more room. Insertion of new lines

is stopped by typing a null line.

When the file is in satisfactory form, the Editor is exited

by typing the following command:

This makes all of the changes, closes all of the files properly

and provides a backup file. The backup file is the edited

file as it appeared before the latest series of changes were

made. If the edited file is unusable for some reason, the

backup may be used to replace it.

When the program has been entered into a disk file with the

Editor, it may be submitted to the Assembler for translation

into machine language.

The Assembler is loaded and run with the following command:

J\SM <cr>

The Assembler prints

DOS ASM VER x.x

ENTER FILE NAME !

000003

000006

000007

000012

000013

000014

000017

000020

000023

000024

000025

000030

000033

000033

000034

000036

000040

The user enters the name of the Assembly language program file

and a <cr>. The Assembler then prints

ENTER DEVICE NUMBER

to which the user replies with the number of the disk drive on

which the file resides and a <cr>.

At this point, the Assembler proceeds immediately to assemble

the program in the specified file. In our example, we can type

J\SM SAMP 0 <cr>

to avoid having the computer ask for the file name and drive

number.

The Assembler produces a file with the machine language program

and a listing. The listing is that of the source code (the

input to the Assembler) along with other pertinent information.

The Assembler listing of our sample program appears as follows:

SAMP LISTING

072

052

037

322

077

353

052

031

042

353

051

322

303

040

200

000033'

000034'

000024'

000036'

000036'

000100

000120 SHFTR

000130

000135

000140

000150

000160

000170

000190 SCAN

IER

CAND

PROD

000225

000228

000230

000240

000250

000260

LDA

LHLD

RAR

JNC

CMC

XCHG

LHLD

DAD .

SHLD

XCHG

DAD

JNC

JMP

DB

DB

DB

END

IER

CAND

SCAN

PROD

D

PROD

H
SHFTR

32

128,0

LOAD MULTIPLIER

LOAD MULTIPLICAND

SHIFT 'ER RIGHT

JUMP IF NO CARRY

TURN OFF CARRY

SAVE 'CAND IN C,D

LOAD PROD IN H,L

ADD 'CAND TO PROD

STORE PROD

RESTORE 'CAND

SHIFT LEFT

REPEAT IF NOT FINISHED

JUMP TO MONITOR. WHEN

FINISHED

12

The rightmost four columns are the source listing. Note that

there is not much room for comments at the end of the line.

If the comments are too long for the allotted space, the excess

is printed on the next line and operation is not affected. pQg

i June. 1977

The next column to the left is the Text Editor's line number.

The next two columns are the octal representation of the object

code (the output of the Assembler). If the source instruction

does not produce a machine instruction (END, for example),

this column is left blank. If the source instruction defines

the contents of memory (DB or DW, for example), those contents

appear in the object code column. Source instructions that

produce object code instructions (LDA, for example) are repre-

sented by the octal instruction code and the address of the

operand. Addresses followed by an apostrophe are to be relo-

cated. Their actual addresses are not determined until the

program is loaded into memory.

Finally, the leftmost column is a list of the relative addresses

of the object code instructions and memory areas. If a letter

precedes the address, it indicates an error. The letter desig-

nates the nature of the error and the position indicates the

address where the error occurred. A list of error letters and

their meanings is in section 4-4, p. 71.

If an error is detected by the Assembler, it can be corrected

by reentering the Text Editor and making the necessary changes.

The ability to pass programs rapidly from the Text Editor to

the Assembler and back makes DOS an extremely effective tool

for writing and debugging Assembly language programs.

Finally, the Linking Loader is used to load the program into

memory and execute the program. The Linking Loader is loaded

typing the following command:

^ LINK <cr>

When the Linking Loader starts, it prints

DOS LINK VER 1.0
*

To load the sample program, type

^L SAMP 0 <cr>

If the file name and drive number had been omitted, LINK would

have asked for them. This command causes LINK to load our

file into memory beginning at location 24000g. Other starting

addresses can be specified (see Linking Loader, L command, p.

76), but the default value is adequate for our purposes. The

following command causes the program to be executed:

^X <cr>

This command causes control to be passed to,whatever program

begins at location 24000g. Again, other starting addresses

can be specified (.see Linking Loader, X command, p. 51).

If the program does not run as expected (and that is not

improbable), the program bugs can be tracked down by Debug.

For a description of the use of Debug, see Section 6, p. 83.

1-4. Notation and Definitions

In the specification of command formats and examples, the follow-

ing notation conventions are used:

< > Angle brackets enclose information that must be

supplied by the user

[] * Square brackets enclose information that is optional

and may be specified by the user.

<cr> Carriage return (ASCII 013) on most terminals, <cr>

is typed with the Return key.

<space> a space (ASCII code 032)

Control/x where x is a character, is typed by holding down the

Control key while typing the character.

In examples, characters output by the computer are underlined.

Information typed by the user is presented exactly as it is to be typed.

All punctuation and spacing must be observed.

The following definitions are used throughout this manual:

byte eight bits of binary information. Memory locations

each contain 1 byte of information and the ASCII

code uses 1 byte to represent 1 character,

file set of information accessible to a program by name

or number. Program modules, data blocks and infor-

mation transferred to or from I/O devices may all be

considered to be files. In this manual, files are

divided into two broad classes: Sequential and

Random.

j M S

14 I June. 1977

A Sequential file is organized as a string of bytes

of information. From any point in a sequential file,

only the next byte may be accessed directly. Data

bytes are written after the last existing byte of

the file. Sequential files can be divided into two

types, depending upon how the data bytes are inter-

preted:

a) ASCII files in which each byte represents a char-

acter according to the American Standard Code for

Information Interchange (see Appendix A for a

table of ASCII codes) and

b) binary files in which the binary data are taken

as such with no code conversions applied. Two

special types of binary files are distinguished

from other binary files by their contents. Abso-

lute files are those which conform to the Absolute

Tape Dump format in Appendix B. The Monitor's SAV

command produces absolute files. Relocatable

files conform to the relocatable object code

module format in Section 5-3. The Assembler pro-

duces relocatable files which the Linking Loader

can then load into memory.

Random files are organized as a series of records,

each of which may be accessed separately from the

rest. Each record has a unique number which may be

used to read, modify or write on any record in the

file at any time.

The various system programs follow certain conven-

tions for file names. See section 2-7 for an explan-

ation of these conventions. Appendix E shows an

example of the use of files in a DOS program.

program an ordered set of machine and/or Assembler instruc-

tions that direct the computer to perform a given

series of operations. The two major classes of

programs are system programs and user programs.

a) system programs are stored on disk in absolute

binary files and thus may be loaded and run

simply by typing the program's name to the

Monitor. System programs run in memory imme-

diately above the Monitor and below user programs.

b) user programs are those programs that run in high

memory above the system programs. The usual pro-

cedure for developing user programs is to con-

struct them from one or more relocatable code

modules produced by the Assembler and linked

together by the Linking Loader. For a discussion

of relocatable modules, see Section 5-3, page 77.

prompt When the Monitor or a system program takes control,

it prints a message indicating which program is

running and whether it is ready to receive commands.

The Monitor prompts with a period (.) which precedes

each command. Similarly, Editor and Linking Loader

commands are typed after an asterisk (*). Debug and

the Assembler prompt only once after the program is

loaded.

The Monitor also prompts the programmer when insuf-

ficient information has been given in a command.

For example, if the programmer types

J1NT <cr>

the computer prints

ENTER DEVICE NUMBER

Typing the number and a carriage return causes the

command to be executed.

oos

June, 1977

1-5. DOS Input Conventions

All Input to DOS (as from a terminal) is handled through the

Monitor's input routine. This routine has several properties which set

constraints on the form of input.

All 128 ASCII characters are accepted by the input routine except

characters of the form Control/x where x is any letter. Some Control/

characters are used to control the input routine and the rest are ignored.

<cr> terminates a line. The input buffer is cleared and subsequent

input is taken as a new line, d i n e feed> is considered an input character.

The input buffer accepts the first 72 characters as one line of

input. If more than 72 characters are input in a line, the contents of

the buffer are discarded and a new line is begun.

Special characters include the following:

a) Rubout deletes the last character in the buffer. When Rubout

is typed, a backslash (\) and the last character in the buffer

are printed. Each successive Rubout prints the previous char-

acter. Typing another character prints another backslash and

the character. All of the characters between the backslashes

are deleted. If Rubout is typed with no characters in the

buffer, a <cr> is printed.

b) Control/U deletes the current contents of the input buffer.

c) Control/R displays the current contents of the input buffer.

Example:

EXAMPLE LENE\ENE\INE <Control/R>

EXAMPLE LIME

Typing three rubouts deleted the characters between the back-

slashes. Typing Control/R displayed the final appearance of

the line.

d) Control/I is a tab character. When a tab is printed, spaces

are printed so that the next character is printed at the start

of the next 8 space column.

The following special characters are recognized if input interrupts

are enabled (see p. 22).

cos

June, 1977 17

Causes execution of a program to pause until Control/Q

is typed. This can be used to pause during a listing

or to pause during execution of a program to examine

intermediate values.

causes execution to resume after a Control/S. Con-

trol /Q has no effect if no Control/S has been typed,

causes execution of a program to be suspended and

control to be passed to the Monitor. During the

execution of certain I/O operations (Mount, Open,

Kill, etc.), Control/C does not terminate execution

until the operation is completed,

prevents output from the computer. Execution pro-

ceeds normally, but no output is generated until

either another Control/0 is typed or another command

is requested by the Monitor or Editor. Example:

Suppose the following Editor command is typed:

*P

00100 LDA IER

00200 LHLD CAND

<Control/0>

The Print command action is completed, but no output

appears on the terminal until the Editor's prompt

asterisk appears, requesting another command.

Other constraints are imposed by the system programs in use and

are discussed in the descriptions of the Editor, Assembler, Debug and

miscellaneous programs. Some of the standards which apply to all of the

system programs are as follows:

a) All commands must be typed in upper case.

b) The fields of the command are separated by delimiters. These

delimiters include space, tab, comma, semicolon and colon.

Colons are used specifically to separate multiple commands on

a single line.

oes! I

June,i'!977

Control/S

Control/Q

Control/C

Control/0

c

oos

June. 1977 19/(42 Blank)

J

J

2. THE MONITOR

2-1. Introduction to the Monitor

The Monitor is the control center of the DOS system. It is used

to load and execute system and user programs and to execute Input/

Output routines for all of the system's peripheral devices.

The Monitor is loaded first to load and execute all the other

system components. It remains in memory at all times, passing control

back and forth to system and user programs and providing I/O services.

The Monitor's device-independent Input/Output system reduces pro-

gramming effort. The programmer could write a different input or output

routine for each I/O device used by a program. But these device handler

routines are incorporated into the Monitor, so the programmer can perform

the desired information transfer simply by calling the Monitor. Monitor

Calls are described in detail in Appendix C.

When DOS has been loaded and initialized, the Monitor starts up

and prints the following message.

DOS MONITOR VER x.x

This message is also printed when the Monitor is entered from another

program. The period indicates that the Monitor is ready to receive

commands.

2-2. Input from the Console

Input from the console keyboard is handled by a central Monitor

routine regardless of the system program that is running at the time.

This routine provides the following special characters and functions.

Rubout deletes the last character in the input buffer.

Typing Rubout causes a backslash (\) and the last

character in the buffer to be printed. Subsequent

Rubouts print the immediately previous character in

the buffer. When a character other than Rubout is

typed, a second backslash and the character are

printed. All the characters between the backslashes

are deleted.

Backarrow (*-) same as Rubout

oos

June, 1977

Control/R causes the current contents of the input buffer to

be printed on the console. Example:

EXEMPLE LINE\ENIL ELPME\AMRLE<Control/R>

EXAMPLE

In this example, typing Rubout 10 times deleted the

characters between the backslashes; typing Control/R

displays the current appearance of the line.

Control/U clears the input buffer.

<cr> terminates a line of input. The current contents

of the line buffer are passed to the program and

the line buffer is cleared.

If input interrupts are enabled, the following special character

functions are available:

Control/C suspends execution of the current program and

returns control to the Monitor.

Control/S temporarily suspends execution of a program until

Control/Q is typed.

Control/Q causes execution of a program to be resumed after

a Control/S

Control/0 allows execution to proceed normally, but prevents

output to the terminal. No output is printed until

another Control/0 is typed or another command is

requested by the Monitor or Editor.

To enable interrupts on the older I/O interface boards (PIO, SIO

A, B, C), install a jumper from the IN interrupt line'to PINT or, if the

Vector Interrupt board is in use, to VI7.

On newer interface boards (2SI0, 4PI0), install the jumper between

PINT or VI7 to the interrupt request line for the input channel. DOS

automatically assures that input interrupts are enabled.

For more information, see the manual for the interface board in

use.

cos

June, 1977

2-3. Monitor Commands

The Monitor is directed to perform its functions by commands.

The general form of a Monitor command is as follows:,

<command code> [<field> <field> . . .]

where the command code is the three letter designation of the command

to be performed and the fields are the required operands for the

specific command. The fields are separated by spaces, tabs or other

legal delimiters. If insufficient information is given in the operand

fields for a given command, the Monitor asks for the missing information

and will not proceed until the information is typed. If the Monitor

cannot execute the requested command, it prints an error message which

indicates the reason the command could not be executed.

The following abbreviations and definitions are used in the des-

criptions of the Monitor commands:

delimiter characters that separate the fields in a command.

Legal delimiters are <space>, tab (Control/1),

comma, semicolon and colon,

device number of the device to be used in the command

action. The Monitor at present supports only floppy

disk drives in the commands, so the term "device" is

interchangeable with the term "drive number."

file name of the data or program file on which the

command action is to be performed,

list a series of device numbers or file names separated

by delimiters.

Table 2-A. Monitor Commands

Connnand

DEL <file><device>

DIN <devicex1ist>

Function

deletes the named file from the indicated device,

initializes the listed disk drives by writing the

track and sector number in each sector. Zeros are

written into each byte of each sector, destroying

any existing files and marking each sector as free.

The DOS disk is initialized at the factory and must

not be initialized again. Doing so will destroy all

system programs as well as user files.

oos

June, 1977

Command

DIR <device>

Function

DSM <device list>

Prints a directory of the files on the indicated

device. See section 2-7 for an explanation of the

file name conventions.

Dismounts the disks on the listed device or devices.

A disk must be dismounted before it is removed from

a drive. Failure to do so may cause file link

errors the next time the disk is read.

LOA <file><device> Loads the named file into memory from the specified

device. The file must be an absolute binary file.

The LOA command automatically adds # to the file

name.

Mounts the disks on the specified devices. The MNT

command causes the system to read each specified

diskette and creates a table of unused space. When

files are created or modified, the system checks the

table for unused sectors. This command must be

given before the files on a disk may be accessed.

Renames the file <old name> on the specified device

to have a name <new name>.

MNT <device list>

REN <old name>

<new name>

<device>

RUN <file><device>

SAV <file><device>

<lst 1ocation>

Loads the named file from the specified device and

runs it. The file must be an absolute binary file.

A # sign is automatically added to the file name.

Contents of memory from the first location to the

last location are saved as an absolute binary file

<last location><sa> With the specified name. A # sign is automatically

added to the file name. Any subsequent RUN command

causes execution to begin at <sa>.

If the input to the Monitor is not one of these commands, the

Monitor searches disk drive 0 for an absolute program file which has a

name corresponding to the input. If such a file is found, it is loaded

and run. The following system programs are run in this manner:

oos

June, 1977

aos

ASM Assembler - see chapter 4

EDIT Text Editor - see chapter 3

DEBUG Debug package - see chapter 6

LINK Linking Loader - see chapter 5

INIT Disk initialization program - see chapter 7

CNS Console - see chapter 7. Console allows the Monitor

command console to be changed to another

terminal.

Drive 0 must be mounted before running these programs.

2-4. Monitor Error Messages

When the Monitor detects an error in the execution of a command

or a Monitor Call, it prints an error message and terminates execution

of the operation. In the case of an error in a Monitor Call, the error

message is printed and control returns to the calling program.

A Monitor error message contains the following information:

Error Code the error codes are given in Table 2-B

File Number the number of the file that was being accessed when

the error occurred

RQCB Address the address of the Request Control Block of the

Monitor Call that caused the error.

Opcode the operation code of the Monitor Call that caused

the error

Return Address the address to which control would have returned

had the error not occurred.

Table 2-B. Error Codes

Error Code Meaning

1 FILE TABLE ENTRY MISSING

The file table contains entries for thirteen disk files (numbered

. 0 - 1 2) and four other I/O files (0 - 3) . If a file number other

than these is encountered, an error occurs.

2 DEVICE NOT IN PHYSICAL DEVICE TABLE

The following devices are listed in the physical device table:

Teletype or Teletype compatible terminal

Audio Cassette

High-Speed Paper Tape Reader

June,.197* Floppy Disk

An attempt to transfer information to or from another device

causes an error.

3 HANDLER NOT IN HANDLER TABLE

An attempt was made to perform an invalid operation on an I/O

device, for example, to output to a paper tape reader.

4 BOARD NOT IN I/O TABLE

The following I/O boards are in the I/O table:

2SI0

S I O A , B, a n d C

4PI0

PIO

Use of other boards is not supported.

5 SHORT DATA TRANSFER

The end of data transfer came before the specified number of bytes

was read or written.

6 CHECKSUM ERROR

When a program is loaded, the Monitor keeps a running sum of all-

the bytes in each record. The least significant byte of this sum

is the checksum. At the end of the record, it is compared with

the checksum byte in the record. If there is a discrepancy between

them, an error has occurred in loading the program and the Checksum

Error message is printed.

7 MEMORY ERROR

An attempt was made to write into a bad memory location. This

could be a non-functioning read/write memory location or a location

in read-only memory.

10 BAD FILE NUMBER

A bad file number is one which has not been opened or which is

greater than the number of files allocated at initialization.

11 FILE LINK ERROR

During a disk file read, a sector was read which did not belong

to the file. A FILE LINK ERROR often occurs after a disk has been

removed from a drive without being dismounted first.

12 I/O ERROR

A checksum error occurred in 18 successive disk read operations.

A checksum error on a disk read causes the disk controller auto-

matically to re-read the sector. A Disk 1/0 Error indicates that
oos

'6 June, 1977

c
the error is a permanent defect in the file, disk or disk drive.

13 BAD FILE MOOE

A sequential operation was attempted on a random file or vice

versa.

14 DEVICE NOT OPEN

An attempt was made to input or output a file through a device

which had not been opened to that file.

15 DEVICE NOT ENABLED

The door of a disk drive has not been closed, or the motor of the

drive has not had time to come up to full speed.

16 DEVICE ALREADY OPEN

An attempt was made to mount a disk which has already been mounted.

17 INTERNAL ERROR

DOS became confused. Please report the circumstances of this

error to the MITS, Inc. Software Department.

20 OUT OF RANDOM BLOCKS

All sectors allotted for random files have been filled.

21 FILE ALREADY OPEN

An open operation was attempted on a file that was already open.

22 FILE NOT FOUND

The file name referred to was not found on the specified device.

23 TOO MANY FILES

An attempt was made to create a file when the disk directory was

already full.

24 MODE MISMATCH

A command that expected a character string operand received a

number, or vice-versa. This error often occurs when the quotation

marks are left out of a character string in a command.

25 * END OF FILE

During a read operation, an end of file mark was encountered before

the read operation was complete.

26 DISK FULL

All of the sectors of the disk have been used.

27 BAD RECORD NUMBER

An attempt was made to refer to a random file record that was

oos ^ ^ specified file.

June. 1977
27

30 FILE TABLE FULL

An attempt was made to have more than thirteen disk files or four

I/O files open at one time.

31 Unused

32 TOO MANY OPEN DISK FILES

An attempt was made to open more disk files than were specified

at Initialization.

33 FILE ALREADY EXISTS

An attempt was made to name or rename a file with a name that

already exists in the directory.

2-5. File Name Conventions

When a directory of disk files is listed by the DIR command, the

file names are preceded by special characters that denote the file type.

These characters and their meanings are as follows:

absolute binary files. Files with this character

are produced by the Monitor's SAV command and are

used as input by the LOA and RUN commands. System

program names appear in the directory with a pound

sign(#).

* relocatable load module. These files are output

by the Assembler and used as input by the Linking

Loader.

% listing file. The optional source listing from ASM

carries this designation.

& Editor source file. The output of the Editor carries

this designation.

$ Editor backup file. When a file is modified by the

Editor, the old, unmodified file is renamed to have

this designation.

28

oos

June, 1977

These characters are supplied automatically by the system programs

and Monitor commands which create the files. Therefore, they need not

be supplied by the programmer. For example, the command

J \ S M M U L T I O

is used to assemble the file which appears in the directory as

&MULTI

Similarly, the command

^EDIT TEXT 0

creates a source file called &TEXT.

File names in the DEL and REN commands must appear exactly as they

do in the directory. For example, the Editor backup file

$LETTER

may be deleted by

J3EL $LETTER

without affecting the source file &LETTER or any other file. '

oos

June, 1977 29/(30 B1

J

J

J

J

3. THE TEXT EDITOR

3-1. Introduction

Although the Text Editor is primarily used to create and maintain

Assembly Language program files, it can be used for any ASCII coded file.

EDIT is a line-oriented Editor, in that its commands operate on lines of

text which are addressable by number. Line numbers are assigned auto-

matically as the file is being created. A special command allows auto-

matic renumbering of lines. The Assembler ignores EDIT line numbers in

its input file except when producing a source listing.

Once the system disk (on drive 0) has been mounted with the MNT

command, EDIT may be loaded and run with the following command:

^EDIT <file><device>

where <fi!e> is the name of the file to be created or modified, and

<device> is the number of the disk where the file is stored. When EDIT

prints an asterisk (*), it is ready to accept commands. EDIT requires

at least 2 disk files to be allocated at initialization.

The Text Editor is designed to minimize memory usage by dividing

files into pages. Only one page resides in memory at a time, while the

rest of the file remains on disk. The number, length and content of

pages are completely under the programmer's control. Access to the

pages is sequential; the paging commands refer to the next page in the

file. The S command always refers to the first page of the file, so

the Editor can go back to the beginning of a multipage file from any

point.

Edit commands are provided to add, delete and replace lines, find

and substitute character strings and modify individual lines. The form

-of an EDIT command is as follows:

<x> <field>[<field>] <cr>

where x stands for the EDIT command letter in use, and field is a line

number or character string, depending upon the command. The command

letter and fields are separated by delimiters.

The EDIT commands operate on individual lines or on ranges of

lines. A line is referenced by stating its number in an EDIT command.

For example,

P 1 5 0

oos

June, 1977

prints line 150 on the console. A range of lines is referenced by .

stating the beginning and ending lines of the range. Thus,

R 200 230

replaces lines 200 to 230, inclusive. All line and range references

are to lines on the current page only. Before a line or range on another

page may be referenced, that page must be loaded into memory.

3-2. Edit Commands

A. Inserting, Deleting and Replacing lines. The following com-

mands insert, delete and replace whole lines:

I <number><1ncrement><cr> Inserts a new line at <number>

or the first available line

after <number>. After the <cr>,

EDIT prints <number> or, if

there is already a line at

<number>, the number of the

first available line after

<number>. All input up to the

next <cr> is inserted as the

new line. In the Insert mode,

the Editor automatically assigns

numbers to the lines as they are

entered. If <increment> is not

specified, the line number

increment is that last used in

an N command. If there has

been no previous N command, the

default increment is 10. After

a line is typed and a carriage

return entered, EDIT adds the

increment and checks to see

that the new line number is

less than the next existing

line number. If it is^not,

the increment is reduced to

half the difference between

cos

June, 1977

the previous line number and

the next existing line number.

This process is repeated until

no new line- numbers are possible.

Then the Insert mode is exited

and an asterisk is printed.

When a file is being created by

the Editor, there are no exist-

ing lines,so each line is

numbered with the specified or

default increment.

Example:

JEDIT TEST 0

DOS EDITOR VER 0.1

CREATING TEST

00100 THIS IS A TEST <cr>

00110 FILE SHOWING LINE <cr>

00120 NUMBER INCREMENTS <cr>

00130 <cr>
*

In this example, new line num-

bers were generated after every

carriage return until a null

line (a line with no characters

before the carriage return) was

typed. Then Insert mode was

terminated and the prompt aster-

isk printed. In the following

example, insertions are made

into file TEST:

* 1 1 1 0

00115 INSERT ONE <cr>

00117 INSERT TWO <cr>

00118 INSERT THREE <cr>

00119 INSERT FOUR <cr>

0 <1st number> [<2nd number>] <cr>

R <lst number> <2nd number> <cr>

In each case, the increment was

halved, until it was not possible

to insert another line.

Deletes all lines from <lst

number> to <2nd number>, inclu-

sive. If <2nd number> is omitted,

one 1ine is deleted.

Replaces the lines from <lst

number> to <2nd number>, inclu-

sive, with input from the con-

sole. After the <cr>, EDIT

displays the number of the

first line to be replaced. All

input to the next <cr>, replaces

the line. After the next <cr>,

the number of the next line to

be replaced is displayed. Typ-

ing a null line causes that line

and the remaining lines in the

range to be deleted. If <2nd

number> is omitted, one line is

replaced.

Finding a String. The following commands display the next

occurrence of a character string:

F <string> <cr>

S <string> <cr>

Finds the next occurrence of

<string> on the current page.

If <string> is found, the line

in which it appears is printed.

If it is not found, an asterisk

is printed and EDIT is ready

for further commands. The

search begins on the line

immediately after the current

line.

The same as F, except the

search can extend over page

boundaries.

36

oos

June. 1977

In-Line Editing: the Alter Command. The Alter command allows

adding, deleting or modifying characters within a line without

affecting the other lines in the file. The format of the

Alter command is as follows:

A <number> <cr>

where <number> is the number of the line to be altered. The

Alter command allows the use of several subcommands which order

changes to be made. The subcommand action begins with the

next character to the right of the current position. Changes

are made from left to right.

In the listing of subcommands below, 'n' preceding the

subcommand letter means the subcommand may be preceded by a

number which indicates the number of times the subcommand is

to be repeated. For example:

3CABC

is equivalent to three subcommands

CA

CB

CC

in sequence.

The Alter subcommands are not echoed. When they are used,

the only output from the computer is a display of the line as

modified.

In the examples that follow, assume the following command

has been executed:

A 100

where line 100 is in file TEST on page 35. The Alter subcom-

mands are as follows:

Command

n<space>

nC<characters>

nD

H<string>

I<string>

Explanation

skips over and prints the next n

characters in the line. Typing

<space> displays

00100 T

changes the next n characters in the

line to the specified characters.

Typing 3CHAT displays

00100 THAT

deletes the next n characters.

Typing D displays

00100 THAT

and deletes the following space.

The effect of the subcommand is not

apparent until the next subcommand

is executed.

deletes the rest of the line and

inserts the string in its place.

The string is terminated either by

<Escape> or by <cr>. (On some ter-

minals, Altmode is used rather than

Escape.) Terminating with <Escape>

allows the Alter command to receive

further subcommands. <cr> exits

Alter mode. Typing H'S N0<Escape>

displays

0100 THAT'S NO

inserts the string before the next

character. The string is terminated

either by <Escape> (Altmode on some

terminals) or by <cr>. Typing

<Escape> allows further subcommands

to be issued. Typing <cr> exits

Alter mode. Typing ILINE <cr> dis-

plays

38
oos

June. 1977

0100 THAT'S NO LINE

and exits Alter mode.

To demonstrate the remaining Alter subcommands, the command

^A 100 <cr>

is executed again. This command reenters Alter mode on the

same line as before and moves the current position to the

beginning of the line.

nK<character>

R<string>

nS<character>

X<string>

deletes everything up to (but not

including) the nth occurrence of the

character. If the character does

not exist, or if there are fewer

than n of them, the subcommand does

nothing. Typing K0 displays

0100

The effect of the subcommand is not

apparent until the next subcommand

is executed.

replaces the next character with the

string. The string is terminated by

<Escape> or <cr>. Typing <cr> exits

Alter mode. Typing RS0ME <space>

<Escape> displays

0100 SOME

skips over and prints all characters

up to, but not including, the nth

occurrence of <character>. If no

such character exists, or if there

are fewer than n of them, the sub-

command does nothing. Typing SN

displays

0100 SOME LI

skips to the end of the line and

inserts the string at that point.

The string is terminated with <Escape>

or <cr>. <Escape> allows further

COS

June. 1977 39

subcommands to be issued. <cr> exits

Alter mode. Typing X, THAT! <cr>

displays

0100 SOME LINE, THAT!

When all of the desired changes have been ordered, Alter

command mode is exited with one of the following subcommands:

<cr> replaces the existing line with the

line as modified and exits Alter

mode.

Q exits Alter mode, but makes none of

the ordered changes. The changes

are lost.

0. Paging commands. The amount of memory used by the Text Editor

may be minimized by dividing the file to be edited into pages

and loading one page into memory at a time. Pages are mani-

pulated by the following commands:

B Loads the first page of the file

into memory. Note that after a B

command is issued, the line number

is unpredictable. An additional

command (.such as P <number>) is

needed to refer to any specific line

on the page.

C Loads the next page of the file into

memory and saves the current page on

disk.

L Loads the next page into memory and

deletes the current page

W <number> Writes the lines currently in memory

from the first to <number> onto disk

as a page.

E. Miscellaneous commands:

N <increment> Renumbers all of the lines in the

file. The difference between suc-

cessive line numbers is <increment>.

oos

June, 1977

u
P [<first number>

[<second number>]]

E <file name>

<device number>

U

Q <file name>

<device number>

U

oos

June. 1977

The first line number is always

100.

Prints all lines from the <lst

number> to the <2nd number>, inclu-

sive. If there is no second number,

1 line is printed. If no line num-

bers are given, the entire current

page is printed.

As the Editor proceeds through the

named file making changes, it copies

the modified file into a temporary

file called EDIT.TEM. When the E

command is executed, the remaining

unmodified lines of the file are

copied into EDIT.TEM. This file is

then assigned the name of the edited

file. The first character of the

original file name is changed to $.

This provides a backup file. Any

previous backup file is deleted.

If a file name and device number are

specified in the E command, EDIT

proceeds to edit that file. Thus,

another file may be edited without

having to reload the Editor. If

the file and device are not specified,

control is passed to the Monitor.

Q exits to the monitor without renam-

ing any files. The changes made by

the Editor are ignored. The Q com-

mand allows the user to abort an

editing session without damaging any

files. The file name and device num-

ber may be specified as in the E

command to edit another file without

having to reload the Editor.

41/(42 Blank)

J

J

J

u

nntE

W

M S

June, 1977 43/(44 Blank)

-t

J

4. THE ASSEMBLER

The Assembler is a system program that translates programs from

Assembly Language into machine language. In principle, machine language

can be used to write programs for the computer. A machine language pro-

gram is one in which the instructions to the computer are represented by

binary numbers one, two or three bytes long. The practical problems

of machine language programming, however, make its use virtually impos-

sible for all but the simplest programs. First, it is difficult to

remember all of the binary machine language codes and enter them into

the computer without error. Second, machine language requ res the pro-

grammer to remember all of the addresses in the program a;'i refer to

them explicitly. Finally, if a machine language program does not work

as desired, it is extremely difficult to determine what went wrong.

Assembly language programming is preferable to machine language pro-

gramming because it avoids all of these difficulties. Machine instruc-

tions are referred to in Assembly language by unemonics that are des-

criptive of the operation and that are relatively easy to remember.

Addresses can be specified explicitly, but they can also be referred to

symbolically. That is, a memory location can be given a label and

referred to subsequently simply by mentioning that label. Finally,

Assembly language provides the programmer with a complement of error

messages that make the process of debugging much easier than in machine

language programming.

The DOS Assembler translates Assembly Language to machine language

by means of a two step process. In the first step, the Assembler reads

the Assembly Language program and assigns addresses to all of the sym-

bols. In the second step, the program is read again and the instructions

are converted to their machine language equivalents. On this second

pass through the program, the program m y be listed on the terminal or

in a disk file. If the Assembler detects an error in the

program, the place where the error occurred is marked in the listing

with a letter that indicates the nature of the error.

Once the system disk is mounted in drive 0, the Assembler is run by

typing the following command to the Monitor:

_^ASM <file name> <device> [<device type> <device number-]

where the <file name> i? the name of the disk file that contains the

oos

June, 1977

source program and <device> is the number of the drive where that file

resides. If a <device type> is specified, an Assembler listing is

written in a file on the specified device. If the <device type> is TTY,

the listing is printed on the terminal; if the <device type> is FDS, it

is sent to floppy disk. The name of the listing disk file is the file

name in the ASM command preceded by a percent sign (.%). The following

message is printed on the terminal upon termination of the assembly:

xxxxx ERRORS DETECTED

where xxxxx is the number (in octal) of errors encountered in the pro-

gram.

The machine language, object code module that results from the

Assembler's action is written on the same disk as the source code. The

name of the object code file is the <file name> preceded by an asterisk

(*). For example, after the following command is executed:

J\SM SOURCE 0 FDS 1

the object code file is named *S0URCE and is written on disk 0. The

listing of the source program is named %S0URCE and resides on disk 1.

When the assembly and listing are complete, the Assembler prints

ANY MORE ASSEMBLIES?

Typing "Y" causes the Assembler to start over and ask for the new file

name, device number and.listing file parameters. Thus, another file may

be assembled without reloading the assembler. Typing N or <cr> exits

the Assembler and returns control to the Monitor.

4-1. Statements

The fundamental unit of an Assembly Language program is the state-

ment, whose form is as follows:

[label] <op-code> <operand> [,<operand>] [comment]

The label is a tag by which other statements in the program can refer

to this statement. Not all statements in a program need to be labelled.

Since program execution proceeds normally in order from the lowest memory

location to the highest, statements that need to be executed in normal

sequence need not carry labels. If, on the other hand, a statement needs

to be executed out of normal order, it must carry a label. Such out-of-

order execution is called branching and it is particularly important in

programmed decision making and loops. Labels can also be used to refer

46

cos

June, 1977

to memory locations for storing data. This use will be discussed more

fully in section 4-2B below.

The op-code is the mnemonic of the machine instruction or Assembler

pseudo-operation to be performed by the statement. Machine instruction

op-codes are translated by the Assembler into machine language instruc-

tions. Assembler pseudo-ops are not translated, but direct the Assembler

itself to allocate storage areas, set up special addresses, etc.

The op-code is followed by one or more operands, depending upon

the nature of the instruction. An r^erand is an address - specified in

any one of several manners - where the computer is to find the data to

be operated upon. In the case of an AOC (add with carry) instruction,

for example, the operand is the address of the location whose contents

are to be added to the accumulator. In the MOV (above) instruction, the

two operands are the addresses of the location from which a data byte is

to be taken and to which it is to be moved.

Comment may be added to the end of a statement if they are separated

from the rest of the statement by a semicolon. Comments are ignored by

the Assembler, but they do appear in the Assembler listing and may thus

be used by the programmer for documentation and explanation.

4*2. Addresses

A program is a series of statements that are stored in memory and

executed either in the order in which they are stored or in sequence

directed by statements in the program itself. The data operated upon by

the program or used to direct the program's actions is stored in memory

and referred to by the addresses of the locations in which it is stored.

Therefore, addresses are used both to control execution of the program

and to manipulate data. Much of the versatility of the Assembly Language

programming system in DOS results from the various ways in which addresses

may be represented and modified.

The DOS Assembler recognizes addresses in three major forms;

constants, labels and address expressions.

A. Constants. A constant is an address that is stated explicitly

as a number. For example, the instruction

JMP 23000

oos

June. 1977 47

causes execution to proceed from the location whose address is

23000 decimal. A constant address may be expressed in octal,

decimal or hexadecimal notation.

1. Octal address constants are strings of octal characters

(0 - 7) whose first character is zero^ The allowable

range of values is -01777777 to 01777777.

Examples:

0377

01345

017740

2. Decimal address constants are strings of decimal digits

(0 - 9) without a leading zero. The allowed range is

-65536 to 65536. Examples:

255

1024

23000

3. Hexadecimal address constants have the following form:

X'hhhh'

where h is any hexadecimal digit (0 - 9, A - F). The

allowed range is -X'FFFF' to X'FFFF'. Examples:

X'FOOO'

X'2300'

X'OOF'

4. Character address constants have the following form:

"xx"

where x is any ASCII character except ("). The characters

are translated into binary according to their ASCII codes

and the resulting two-byte quantity makes up the address.

Examp es:

"Al"

"BZ"

B. Labels. When a statement is labelled, the label is entered

into the symbol table in the Assembler along with the address

of the statement. Any subsequent statement can then use the

label to represent that address. Two types of labels can be

used in the DOS Assembler; names and program points.

oos
4 8 June. 1977

Names are strings of up to 6 alphanumeric characters.

The first character must be a letter and the subsequent

characters may be letters, numbers or dollar signs.

Examples:

SHIFT

LBL1

A$0UT

The usual use of labels is to refer to a statement by

name. For example:

SHIFT RAR

JNC SHIFT

The operand of the jump instruction tells the computer to

branch back to the RAR (rotate right) instruction if there

is no carry out of the shift. If there is a carry, execu-

tion proceeds with the next instruction after the jump.

Data bytes can bear labels as well. For example:

A M ADDEND

ADDEND DB 255

These instructions add the contents of location ADDEND to

the accumulator with carry. In this example, the contents

of ADDEND have the value 255 decimal.

For the purposes of clarity and ease of use, names

should be systematically applied. That is, they should be

logically related to the statements or data locations they

represent and should be easily distinguishable from other

names in the program.

Sometimes, short branches and Icops require statements to

be labelled, but those labels are not important to the whole

program. Rather than filling up the symbol table with unique

names, the programmer may prefer to label those statements with

program points.

2. Program points are special labels with'the following form:

.x

where x is any letter. A letter may be used any number

of times in a single program. Unlike names, program points

may be referred to in two ways. The program point

reference -x refers to the most recently encountered

program point with letter x.. The program point reference

+x refers to the next program point in the program

with the letter x. Therefore, while any number of

statements may be labelled with the same program point,

a statement may only refer to the two program points

bracketting it in the program.

Address Expressions. The DOS Assembler allows addresses to be

specified relative to other addresses. For example, to refer

to the fourth location after the location labelled LOC, the

following expression can be used:

LOC+4

Expressions of this form are called address expressions.

Address expressions may be comprised of any of the following:

Name

Constant

Program point reference

Address expression + constant

The sixteen bit values of the names, constants, program point

references and address expression., are combined and truncated

to 16 bits to form the value of the final address expression.

oos

June, 1977

Example:

SHIFT+5

+A-010

LOC+X'F'

Special Addresses. The DOS Assembler allows certain addresses

to be referred to directly with special notation.

* indicates the present contents of the location counter.

That is, * refers to the address of the current instruc-

tion or the current data address.

Registers may be addressed symbolically by name. There-

fore, such instructions as

MOV H,A

are interpreted to refer to the correct registers.

Addressing Modes. The addresses of statements or data loca-

tions are specified in one of five different modes. The DOS

Assembler addressing modes are Absolute, Relative, Common,

Data and External.

Absolute addresses are the actual hardware addresses of

the designated locations. Address constants in themselves

(not in address expressions) refer to absolute mode addresses.

If an absolute mode address is specified, all of the other

addresses in the program must be relocated to fit it.

Relative addresses are relocated by the action of the

Linking Loader. Unless otherwise specified, all symbolic

addresses (names, program points, address expressions) are in

Relative mode. To calculate a Relative mode address, the

Assembler calculates a displacement which the Linking Loader

adds to a relocation base address when the program is loaded.

In this way, the loader can load the program anywhere in

memory and all the addresses bear the correct relation to

each other.

An External mode address is one that refers to a location

in another program. A name must be mentioned in an EXT state-

ment before it can be used as an External mode address.

External addresses allow a program to use routines or data in

another program.

Data and Common mode addresses refer to separate blocks

of memory locations that may or may not be contiguous with the

programs which make the references. Data mode addresses are

so designated by being mentioned in a DAT statement. Common

mode items are designated by CMN statements. The difference

between Common and Data addresses is that Data addresses may

only be referenced by the program in which they are defined,

whereas Common mode addresses are available to any program.

In addition, several Common blocks can exist simultaneously and

be referred to by name.

In an address expression, the constituent addresses may

have different modes. Any mode expression combined with an

Absolute mode address has the mode of the expression. The

difference-of two expressions of the same mode is of Absolute

mode.

4-3. Op-Codes

Op-codes are of two types. One type, the machine codes, are the

mnemonic expressions of the 8080 instructions. These op-codes and their

associated operands are discussed in section A, below, which is reprinted

from the Intel 8080 Microcomputer System Users' Manual. The Assembler

can use any address expression to derive the required address for direct

or immediate addressing instructions. Register instructions can use any

address expression as long as its value is the address of a register

(0 - 7 absolute). Before a register indirect mode instruction may be

used, the register pair must be loaded with an address. Any address

expression can be used to supply that address.

oos

June, 1977

A computer, no matter how sophisticated, can only

do what it is "totd" to do. One "teils" the computer what

to do via a series of coded instructions referred to as a Pro-

gram. The reaim of the programmer is referred to as Soft-

ware, in contrast to the Hardware that comprises the actua)

computer equipment. A computer's software refers to all of

the programs that have been written for that computer.

When a computer is designed, the engineers provide

the Centra) Processing Unit (CPU) with the ability to per-

form a particular set of operations. The CPU is designed

such that a specific operation is performed when the CPU

control logic decodes a particular instruction. Consequent^,

the operations that can be performed by a CPU define the

computer's instruction Set.

Each computer instruction allows the programmer to

initiate the performance of a specific operation. At) com-

puters imptement certain arithmetic operations in their in-

struction set, such as an instruction to add the contents of

two registers. Often logica) operations (e.g.. OR the con-

tents of two registers) and register operate instructions (e.g.,

increment a register) are inciuded in the instruction set. A

computer's instruction set will aiso have instructions that

move data between registers, between a register and memory,

and between a register and an I/O device. Most instruction

sets also provide Conditions) Instructions. A conditional

instruction specifies an operation to be performed only if

certain conditions have been met; for example, jump to a

particuiar instruction if the result of the last operation was

zero. Conditional instructions provide a program with a

decision-making capability.

By logically organizing a sequence of instructions into

a coherent program, the programmer can "tell" the com-

puter to perform a very specific and useful function.

The computer, however, can only execute programs

whose instructions are in a binary coded form (i.e., a series

of 1's and O's), that is called Machine Code. Because it

would be extremely cumbersome to program in machine

code, programming languages have been deveioped. There

OOS
June, 1977

are programs available which convert the programming Ian-!

guage instructions into machine code that can be inter-

preted by the processor.

One type of programming language is Assembty Lan-

guage. A unique assembly language mnemonic is assigned to

each of the computer's instructions. The programmer can

write a program (called the Source Program) using these

mnemonics and certain operands; the source program is

then converted into machine instructions (caited the Object

Code). Each assembly language instruction is converted into

one machine code instruction (1 or more bytes) by an

Assembier program. Assembty languages are usually ma-

chine dependent (i.e., they are usuaiiy able to run on oniy

onetypeofcomputer).

THE 8080 tNSTRUCHON SET

The S080 instruction set includes five different types

ofinstructions:

* Data Transfer Group—move data between registers

or between memory and registers

* Arithmetic Group - add, subtract, increment or

decrement data in registers or in memory

. Logica) Group - AND, OR, EXCLUS)VE-OR,

compare, rotate or complement data in registers

or inmemory

* Branch Group - conditiona) and unconditiona)

jump instructions, subroutine ca)) instructions and

return instructions

* Stack,)/0 and Machine Contro) Group — inciudes

I/O instructions, as wei) as instructions for main-

taining the stack and interna) contro) flags.

tnstruction and Data Formats:

Memory for the 8080 is organized into 8-bit quanti-

ties, catted Bytes. Each byte has a unique 16-bit binary

address corresponding to its sequentiat position in memory.

53

The 8080 can directly address up to 65,536 bytes of mem-

ory, which may consist of both read-oniy memory (ROM)

etements and random-access memory [RAM) etements (read/

write memory).

Data in the 8080 is stored in the form of 8-bit binary

integers:

DATA WORD

D? Dg Og O4 D3 O2 Di Do

MSB LSB

When a register or data word contains a binary num-

ber, it is necessary to estabfish the order in which the bits

of the number are written. !n the Intei 8080, B)T 0 is re-

ferred to as the Least Significant Bit (LSB), and B)T 7 (of

an 8 bit number) is referred to as the Most Significant Bit

(MSB).

The 8080 program instructions may be one, two or

three bytes in length. Multiple byte instructions must be

stored in successive memory locations; the address of the

first byte is always used as the address of the instructions.

The exact instruction format win depend on the particuiar

operation to be executed.

Single Byte Instructions

D? Do

Two-Byte Instructions

Byte One

Byte Two

Byte One

Byte Two

D?

0?

Three-Byte Instructions

D?

D?

Byte Three D?

Do

Do

Do

Do

Do

Op Code

Op Code

Data or
Address

Op Code

Data

or

Address

Addressing Modes:

Often the data that is to be operated on is stored in

memory. When muiti-byte numeric data is used, the data,

like instructions, is stored in successive memory locations,

with the least significant byte first, foltowed by increasingly

significant bytes. The 8080 has four different modes for

addressing data stored in memory or in registers:

* Direct - Bytes 2 and 3 of the instruction contain

the exact memory address of the data

item (the tow-order bits of the address are

in byte 2, the high-order bits in byte 3).

* Register — The instruction specifies the register or

register-pair in which the data is located.

* Register Indirect - The instruction specifies a reg-

ister-pair which contains the memory
54

address where the data is located (the

high-order bits of the address are in the

first register of the pair, the low-order

bitsinthesecond).

* Immediate — The instruction contains the data it-

self. This is either an 8-bit quantity or a

16-bit quantity (least significant byte first,

most significant byte second).

Unless directed by an interrupt or branch instruction,

the execution of instructions proceeds through consecu-

tively increasing memory locations. A branch instruction

can specify the address of the next instruction to be exe-

cuted in one of two ways:

* Direct—The branch instruction contains the ad-

dress of the next instruction to be exe-

. cuted. (Except for the 'RST' instruction,

byte 2 contains the low-order address and

byte 3 the high-order address.)

* Register indirect - T h e branch instructionindi-

cates a register-pair which contains the

address of the next instruction to be exe-

cuted. (The high-order bits of the address

are in the first register of the pair, the

low-order bits in the second.)

The RST instruction is a specia) one-byte cai! instruc-

tion (usuaity used during interrupt sequences). RST in-

ciudes a three-bit field; program contro) is transferred to

the instruction whose address is eight times the contents

of this three-bitfield.

Condition Flags:

There are five condition flags associated with the exe-

cution of instructions on the 8080. They are Zero, Sign,

Parity, Carry, and Auxiliary Carry, and are each represented

by a 1-bit register in the CPU. A flag is "set" by forcing the

bit to 1; "reset" by forcing the bit to 0.

Untess indicated otherwise, when an instruction af-

fects a flag, it affects it in the foilowing manner:

Zero: If the result of an instruction has the

value 0 , th is f tag is set; otherwise i t i s

reset.

Sign: Ifthemostsignif icantbitoftheresultof

the operation has the value 1, this fiag is

set; otherwise it is reset.

Parity: tf the modulo 2 sum of the bits of the re-

sult of the operation is 0, (i.e., if the

result has even parity), this fiag is set;

otherwise it is reset (i.e., if the result has

odd parity).

Carry: If the instruction resuited i a carr/

(from addition), or a borrow sfrom sub-

traction or a comparison) out of the high-

orderbi t , th isf)agisset;otherwisei t is

reset.
OOS

June. 1977

Auxiliary Carry: tf the instruction caused a carry out

o f b i t 3 a n d i n t o b i t 4 o f t h e r e s u i t i n g

vatue, the auxitiary carry is set; otherwise

it is reset. This flag is affected by singie

precision additions, subtractions, incre-

ments, decrements, comparisons, and tog-

icai operations, but is principatty used

with additions and increments preceding

a DAA (Decima) Adjust Accumutator)

instruction.

Symbots and Abbreviations:

The fottowing symbois and abbreviations are used in

the subsequent description of the 8080 instructions:

SYMBOLS MEANtNG

accumuiator Register A

addr 16-bit address quantity

data 8-bit data quantity

data 16 16-bit data quantity

byte 2 The second byte of the instruction

byte 3 The third byte of the instruction

port 8-bit address of an)/0 device

r,r1,r2 One of the registers A,B,C,D,E,H,L

DD0,SSS The bit pattern designating one of the regis-

ters A,B,C,D,E,H,L (DDD=destination, SSS=

source):

OOO or SSS REGiSTER NAME

111 A

000 3

001 C

010 D
011 E

100 H
101 L

rp Oneoftheregisterpairs:

8 represents the B,C pair with 8 as the high-

order register and C as the tow-order register;

0 represents the D,E pair with D as the high-

order register and E as the low-order register;

H represents the H,L pair with H as the high-

order register and L as the low-order register;

SP represents the 16-bit stack pointer

register.

RP The bit pattern designating one of the regis-

ter pairs 3,0,H,SP:

RP REG)STERPA)R

00 8-C

01 D-E

10 H-L

00S 11 SP

June. 1377

rh The first (high-order) register of a designated

register pair.

rt The second (tow-order)' register of a desig-

nated register pair.

PC 16-bit program counter register (PCH and

PCL are used to refer to the high-order and

low-order 8 bits respectivety).

SP 16-bit stack pointer register (SPH and SPL

are used to refer to the high-order and low-

order 8 bits respectivety).

r ^ Bit m of the register r (bits are number 7

through 0 from left to right).

Z,S,P,CY,AC The condition ftags:

Zero,

Sign,

Parity,

Carry,

and Auxitiary Carry, respectivety.

() The contents of the memory location or reg-

isters enctosed in the parentheses.

— "ts transferred to"

A Logica) ANO

V ExctusiveOR

V InctusiveOR

+ Addition

— Two's comptement subtraction

* Muitiptication

"tsexchangedwith"

The one's comptement (e.g., (A))

n The restart number 0 through 7

NNN The binary representation 000 through 111

for restart number 0 through 7 respectivety.

Description Format:

The foitowing pages provide a detailed description of

the instruction set of the 8080. Each instruction is de-

scribed in the foXowing manner:

1. The MAC 80 assembter format, consisting of

the instruction mnemonic and operand fietds, is

printed in BOLDFACE on the left side of the first

line.

2. The name of the instruction is enctosed in paren-

thesis on the right side of the first line.

3. The next line(s) contain a symbotic description

of the operation of the instruction.

4. This is fottowed by a narative description of the

operation of the instruction.

5. The fottowing line(s) contain the binary fietds and

patterns that comprise the machine instruction.

55

The !ast four tines contain incidents) information

about the execution of the instruction. The num-

ber of machine cycies and- states required to exe-

cute the instruction are tisted first.)f the instruc-

tion has two possibie execution times, as in a

Conditiona) Jump, both times wilt be listed, sep-

arated by a siash. Next, any significant data ad-

dressing modes (see Page 4-2) are listed. The last

tine lists any of the five Piags that are affected by

the execution of the instruction.

Data Transfer Group:

This group of instructions transfers data to and from

registers and memory. Condition flags are not affected by

any instruction in this group.

MV! r, data (Move immediate)

(r) (byte 2)

The content of byte 2 of the instruction is moved to

register r.

data

Cycles:

States:

Addressing:

Ftags:

2

7

immediate

none

MOVr1 , r2 (Move Register)

(r1) -*— (r2)

The content of register r2 is moved to register r1.

MV) M, data (Move to memory immediate)

« H) (L)) - * - (b y t e 2)

The content of byte 2 of the instruction is moved to

the memory location whose address is in registers H

and L.

Cycles: 1

States: 5

Addressing: register

Ftags: none

MOV r, M (Move from memory)

(r) -*— ((H) (L))

The content of the memory tocation, whose address

is in registers H and L, is moved to register r.

data

Cycles:

States:

Addressing:

3

10

immed./reg. indirect

Ftags: none

Cyctes: 2

States: 7

Addressing: reg. indirect

Ftags: none

MOV M, r (Move to memory)

((H) (L)) -*— (r)

The content of register r is moved to the memory lo-

cation whose address is in registers H and L.

LX) rp, data 16 (Load register pair immediate)

(r h) ^ — (byte 3),

(r!) (byte 2)

Byte 3 of the instruction is moved into the high-order

register (rh) of the register pair rp. Byte 2 of the in-

struction is moved into the tow-order register (rt) of

the register pair rp.

R

low-order data

high-order data

Cyctes: 2 Cyctes: 3

States: 7 States: 10

Addressing: reg. indirect Addressing: immediate

Ftags: none Ftags: none ^

June, 1977 ̂

LDA addr (Load Accumuiator direct)

{A)-*-((by te3) (by te2))

The cqntent of the memory location, whose address

is specified in byte 2 and byte 3 of the instruction, is

moved to register A.

1
low-order addr

high-order addr

Cyctes: 4

States: 13

Addressing: direct

Flags: none

STA addr (Store Accumulator direct)

«byte3)(byte2)) (A)

The content of the accumuiator is moved to the

memory location whose addressis specified in byte

2 and byte 3 of the instruction.

low-order addr

high-order addr

Cycies: 4

States: 13

Addressing: direct

Fiags: none

LHLD addr (Load H and L direct)

(L) ^ — ((byte3)(byte2))

(H) ^ - ((b y t e 3) (b y t e 2) + 1)

The content of the memoty location, whose address

is specified in byte 2 and byte 3 of the instruction, is

moved to register L. The content of the memory loca-

tion at the succeeding address is moved to register H.

1

high-order addr

SHLD addr (Store H and L direct)

((byte3)(byte2)) — (L)

«byte3) (byte2) + 1)-*— (H)

The content of register L is moved to the memory lo-

cation whose address is specified in byte 2 and byte

3. The content of register H is moved to the succeed-

ing memory iocation.

low-order addr

high-order addr

Cycies: 5

States: 16

Addressing: direct

Flags: none

LDAX rp (Load accumuiator indirect)

(A) ((rp))

The content of the memory location, whose address

is in the register pair rp, is moved to register A. Note:

only register pairs rp^B (registers B and C) or rp=*D

(registers D and E) may be specified.

Cycles: 2

States: 7

Addressing: reg. indirect

Fiags: none

STAX rp (Store accumulator indirect)

((rp)) -*— (A)

The content of register A is moved to the memory lo-

cation whose address is in the register pair rp. Note:

oniy register pairs rp=8 (registers B and C) or rp-0

(registers D and E) may be specified.

0

Cyctes: 2

States: 7

Addressing: reg. indirect

Flags: none

XCHG (Exchange H and L with D and E)

(H) ^ - (D)

(L) (E)

The contents of registers H and L are exchanged with

the contents of registers D and E.

oos

June. 1977

Cyctes: 5

States: 16

Addressing: direct

Fiags: none

Cycies: 1

States: 4

Addressing: register

Flans: none

57

Arithmetic Group:

This group of instructions performs arithmetic oper-

ations on data in registers and memory.

Untess indicated otherwise, at) instructions in this

group affect the Zero, Sign, Parity, Carry, and Auxitiary

Carry ftags according to the standard ruies.

AO -subtraction operations are performed via two's

compiement arithmetic and set the carry fiag to one to in-

dicate a borrow and dear it to indicate no borrow.

ADC r (Add Register with carry)

' (A) (A) + (r) + (CY)

The content of register r and the content of the carry

bit are added to the content of the accumuiator. The

resuit is piaced in the accumuiator.

Cycies: 1

States: 4

Addressing: register

Fiags: Z,S,P,CY,AC

ADD r (Add Register)

(A) -*— (A) + (r)

The content of register r is added to the content of the

accumulator. The result is placed in the accumuiator.

Cycies: 1

States: 4

Addressing: register

Flags: Z,S,P,CY,AC

ADC M (Add memory with carry)

(A) (A) + ((H) (L)) + (CY)

The content of the memory location whose address is

contained in the H and L registers and the content of

the CY flag are added to the accumulator. The result

is placed in the accumulator.

Cycles: 2

States: 7

Addressing: reg. indirect

Flags: Z,S,P,CY,AC

ADD M (Add memory)

(A) - * - (A) + ((H)(L))

The content of the memory location whose address

is contained in the H and L registers is added to the

content of the accumulator. The resuit is ptaced in

the accumulator.

Cyctes: 2

States: 7

Addressing: reg. indirect

Ftags: Z,S,P,CY,AC

AD) data (Add immediate)

(A) ^ — (A) + (byte2)

The content of the second byte of the instruction is

added to the content of the accumuiator. The resuit

is otaced in the accumulator.

Cycles: 2

States: 7

Addressing: immediate

Flags: Z.S.P.CY.AC

58

AC) data (Add immediate with carry)

(A) -*— (A) + (byte 2) + (CY)

The content of the second byte of the instruction and

the content of the CY flag are added to the contents

of the accumulator. The resutt is ptaced in the

accumuiator.

data

Cycles: 2

States: 7

Addressing: immediate

Ftags: Z.S.P.CY.AC

SUB r (Subtract Register)

(A) (A) - (r)

The content of register r is subtracted from the con-

tent of the accumuiator. The resutt is ptaced in the

accumuiator.

Cycies: 1

States: 4

Addressing: register

Flags: Z,S,P,CY,AC

OOS
June. 1977

SUB M (Subtract memory)

(A) - * - (A)- ((H) (L))

The content of the memory location whose address is

contained in the H and L registers is subtracted from

the content of the accumuiator. The resuit is placed

in the accumuiator.

SBtdata (Subtractimmediatewithborrow)

. (A) -*— (A) - (byte 2) - (CY)

The contents of the second byte of the instruction

and the contents of the CY flag are both subtracted

from the accumulator. The result is placed in the

accumulator.

Cycies:

States:

Addressing: reg. indirect

Flags: Z,S,P,CY,AC

SUtdata (Subtractimmediate)

(A) -*— (A) - (byte 2)

The content of the second byte of the instruction is

subtracted from the content of the accumuiator. The

resutt is ptaced in the accumuiator.

1 1 1

data

Cyctes: 2

States: 7

Addressing: immediate

Flags: Z.S.P.CY.AC

data

Cyctes: 2

States: 7

Addressing: immediate

Flags: Z.S.P.CY.AC

iNR r (Increment Register)

(r) ^ — (r) + 1

The content of register r is incremented by one.

Note: Att condition ftags except CY are affected.

Cycles: 1

States: 5

Addressing: register

Ftags: Z,S,P,AC

S8B r (Subtract Register with borrow)

(A) (A) - (r) - (CY)

The content of register r and the content of the CY

ftag are both subtracted from the accumuiator. The

resutt is ptaced in the accumuiator.

Cycies: 1

States: 4

Addressing: register

Ftags: Z,S,P,CY,AC

t N R M (Increment memory)

((H) (L)) -*— ((H) (L)) + 1

The content of the memory location whose address

is contained in the H and L. registers is incremented

by one. Note: At) condition ftags except CY are

affected.

Cyctes: 3

States: 10

Addressing: reg. indirect

Flags: Z,S,P,AC

SBB M (Subtract memory with borrow)

(A) -*— (A) - ((H) (L)) - (CY)

The content of the memory location whose address is

contained in the H and L registers and the content of

the CY ftag are both subtracted from the accumuia-

tor. The resutt is ptaced in the accumuiator.

Cyctes:

States:

OOS'

June. 1977

Addressing: reg. indirect

Ftags: Z.S.P.CY.AC

OCR r (Decrement Register)

(r) (r) - 1

The content of register r is decremented by one.

Note: Ait condition ftags except CY are affected.

T V ! 1

Cyctes: 1

States: 5

Addressing: register

Ftags: Z,S.P.AC

59

OCR M (Decrement memory)

((H) (L)) — ((H) (L)) - 1

The content of the memory location whose address is

contained in the H and L registers is decremented by

one. Note: Ait condition fiags except CY are affected.

1 1

Cyctes: 3

States: 10

Addressing: reg. indirect

Fiags: Z,S,P,AC

DAA (Decimat Adjust Accumulator)

The eight-bit number in the accumulator is adjusted

to form two four-bit Binary-Coded-Decimat digits by

the fotlowing process:

1. If the value of the least significant 4 bits of the

accumuiator is greater than 9 or if the AC fiag

is set, 6 is added to the accumutator.

2. tf the vaiue of the most significant 4 bits of the

accumulator is now greater than 9, or if the CY

ftag is set, 6 is added to the most significant 4

bits of the accumutator.

NOTE: Att ftags are affected.

tNXrp (tncrement register pair)

(rh) (rt) — (rh) (rt) + 1

The content of the register pair rp is incremented by

one. Note: No condition ftags are affected.

Cyctes: 1

States: 5

Addressing: register

Flags: none

DCX rp (Decrement register pair)

(rh) (rt) -*— (rh) (rl) - 1

The content of the register pair rp is decremented by

one. Note: No condition ftags are affected.

Cyctes: 1

States: 5

Addressing: register

Fiags: none

Cycles: 1

States: 4

Ftags: Z,S,P,CY,AC

Logica) Group:

This group of instructions performs logicai (Boolean)

operations on data in registers and memory and on condi-

tion ftags.

Untess indicated otherwise, att instructions in this

group affect the Zero, Sign, Parity, Auxiliary Carry, and

Carry flags according to the standard rules.

ANA r (AND Register)

(A) (A) A (r)

The content of register r is togicatty anded with the

content of the accumutator. The resutt is ptaced in

the accumutator. The CY ftag is cieared.

Cycies: 1

States: 4

Addressing: register

Flags: Z,S,P,CY,AC

DAO rp (Add register pair to H and L)

(H) (L) -*— (H) (L) + (rh) (rl)

The content of the register pair rp is added to the

content of the register p a i r H a n d L . T h e r e s u i t i s

ptaced in the register pair H and L. Note: Onty the

CY ftag is affected. It is set if there is a carry out of

the doubte precision add; otherwise it is reset.

Cyctes: 3

States: 10

Addressing: register

Ftags: CY

60

ANA M (AND memory)

(A) — (A) A ((H) (L))

The contents of the memory location whose address

is contained in the H and L registers is iogicatly anded

with the content of theaccumutator.Theresuit is

ptaced in the accumutator. The CY ftag is cieared.

Cyctes: 2

States: 7

Addressing: reg.indirect

Ftaqs: Z.S.P.CY.AC

00S

June. 1977

AN) data (AND immediate)

(A) -*— (A) A (byte 2)

The content of the second byte of the instruction is

logicatty anded with the contents of the accumuiator.

The resuit is piaced in the accumuiator. The CY and

AC ftags are cteared.

, 1 1

data

Cycies: 2

States: 7

Addressing: immediate

Flags: Z.S.P.CY.AC

X R A r (Exclusive OR Register)

(A) -*— (A) V (r)

The content of register r is exciusive-or'd with the

content of the accumuiator. The resuit is placed in

the accumuiator. The CY and AC ftags are cieared.

Cycies: 1

States: 4

Addressing: register

Ftags: Z,S.P,CY,AC

XRA IV) (Exclusive OR Memory)

(A) (A) V ((H) (L))

The content of the memory location whose address

is. contained in the H and L registers is exctusive-OR'd

with the content of the accumuiator. The result is

placed in the accumulator. The CY and AC ftags are

cteared.

Cycies: 2

States: 7

Addressing: reg. indirect

Fiags: Z.S,P,CY,AC

XRtdata (Exciusive OR immediate)

(A) (A) V (byte 2)

The content of the second byte of the instruction is

exclusive-OR'd with the content of the accumuiator.

The result is piaced in the accumulator. The CY and

AC ftags are cteared.

data

OOS

June. 1977

Cycies: 2

States: 7

Addressing: immediate

Ftags: Z.S.P.CY.AC

ORA r (OR Register)

(A) - *- (A) V (r)

The content of register r is inciusive-OR'd with the

content of the accumutator. The resutt is piaced in

the accumutator. The CY and AC ftags are cteared.

Cyctes: - 1

States: 4

Addressing: register

Ftags: Z.S.P.CY.AC

O R A M (OR memory)

(A) — (A) V ((H) (L))

The content of the memory location whose address is

contained in the H and L registers is inciusive-OR'd

with the content of theaccumuiator .Theresui t is

ptaced in the accumutator. The CY and AC ftags are

cteared.

Cyctes: 2

States: 7

Addressing: reg. indirect

Ftags: Z.S.P.CY.AC

ORtdata (ORtmmediate)

(A) -*— (A) V (byte 2)

The content of the second byte of the instruction is

inciusive-OR'd with the content of the accumutator.

The resutt is placed in the accumulator. The CY and

AC ftags are cteared.

m *

data

Cycies: 2

States: 7

Addressing: immediate

Ftags: Z.S.P.CY.AC

CMP r (Compare Register)

(A) - (r)

The content of register r is subtracted from the ac-

cumuiator. The accumutator remains unchanged. The

condition ftags are set as a resutt of the subtraction.

The Z ftag is sat to 1 if (A) = (r). The CY ftag is set to

1 if (A M (r) .

Cyctes: 1

States: 4

Addressing: register

Ftags: Z.S.P.CY.AC

61

CMP M (Compare memory)

(A) - ((H) (U)

The content of the memory location whose address

is contained in the H and L registers is subtracted

from the accumutator. The accumutator remains un-

changed. The condition ftags are set as a resutt of the

subtraction.TheZftag is set t o 1 if (A) = ((H)(L)).

The CY ftag is set to 1 if (A) < ((H) (U) .

Cyctes:

States:

Addressing: reg. indirect

Flags: Z,S,P,CY,AC

CP) data (Compare immediate)

(A) - (byte 2)

The content of the second byte of the instruction is

subtracted from the accumuiator. The condition flags

are set by the resutt of the subtraction. The Z flag is

set to 1 if (A) = (byte 2). The CY ftag is set to 1 if

(A) < (byte 2).

RRC (Rotateright)

(A,J -*— (An-1) ; (Ay) - * - (Ag)

(C Y) ^ - (Ag)

The content of the accumutator is rotated right one

position. The high order bit and the CY ftag are both

set to the. vatue shifted out of the low order bit qpsi-

tion. Onty the CY ftag is affected.

Cyctes: 1

States: 4

Fiags: CY

RAL (Rotate left through carry)

(An+1) - * - (A n) ; (C Y) ^ — (A?)

(AQ) -*— (CY)

The content of the accumutator is rotated left one

position through the CY ftag. The low order bit is set

equat to the CY ftag and the CY ftag is set to the

vatue shifted out of the high order bit. Onty the CY

ftag is affected.

Cyctes: 1

States: 4

Ftags: CY

data

Cyctes:

States:

Addressing: immediate

Flags: Z,S,P.CY,AC

RAR (Rotate right through carry)

(A,,) — (An+1) ; (CY) (AQ)

(Ay) -*— (CY)

The content of the accumutator is rotated right one

position through the CY ftag. The high order bit is set

to the CY ftag and the CY ftag is set to the vaiue

shifted out of the low order bit. Oniy the CY ftag is

affected.

RLC (Rotate left)

(An+1)^— (An);(Ao)-^-(Ay)
(CY) -*— (Ay)

The content of the accumuiator is rotated left one

position. The low order bit and the CY ftag are both

set to the vatue shifted out of the high order bit posi-

tion. Onty the CY ftag is affected.

CMA

Cyctes: 1

States: 4

Fiags: CY

(Comptement accumutator)

(A) — (A)

The contents of the accumulator are compiemented

(zero bits become 1, one bits become 0). No ftags are

affected.

1

Cycies: 1

States: 4

Fiaos: CY

Cyctes: 1

States: 4

Flaqs: none

62

00S

June. 1977

CMC (Compiement carry)

. (CY) (CY)

The CY ftag is comptemented. No other ftags are

affected.

0 ! o ' 1 * ! 1 ' 0 ! 1 ' 1 ! 1

1 1

Cycies: 1

States: 4

Ftags: CY

STC (Set carry)

(CY) — 1

The CY ftag is set to 1. No other ftags are affected.

Cyctes: 1

States: 4

Ftags: CY

Branch Group:

This group of instructions atter norma) sequentiat

program ftow.

Condition ftags are not affected by any instruction

in this group.

The two types of branch instructions are uncondi-

tiona) and conditional Unconditiona) transfers simpty per-

form the specified operation on register PC (the program

counter). Conditionat transfers examine the status of one of

the four processor ftags to determine if the specified branch

is to be executed. The conditions that may be specified are

as foiiows:

COND)T)ON

NZ

Z

NC

C

PO
PE

P

M

- not zero (Z 0)

- zero (Z= 1)

- no carry (CY = 0)

- carry (CY - 1)

-par i ty odd (P = 0)

- parity even (P = 1)

- ptus (S - 0)

- minus (S = 1)

CCC

000

001
010
011
100
101
110
111

JMP addr (Jump)

(PC) -*— (byte 3) (byte 2)

Controt is transferred to the instruction whose ad-
oos
June. 1977

dress is specified in byte 3 and byte 2 of the current

instruction.

tow-order addr

high-order addr

Cyctes: 3

States: 10

Addressing: immediate

Ftags: none

Jcondition addr (Conditionat jump)

tf (CCC).

(PC) -*— (byte 3) (byte 2)

If the specified condition is true, control is trans-

ferred to the instruction whose address is specified in

byte 3 and byte 2 of the current instruction; other-

wise, controt continues sequentiaity.

low-order addr

high-order addr

Cyctes:

States:

Addressing:

3

10
immediate

Ftags: none

CALL addr (Cait)

((SP) - 1) (PCH)

((SP) - 2) (PCL)

(SP) — (SP) - 2

(PC) -+— (byte 3) (byte 2)

The high-order eight bits of the next instruction ad-

dress are moved to the memory location whose

address is one less than the content of register SP.

The low-order eight bits of the next instruction ad-

dress are moved to the memory location whose

address is two less than the content of register SP.

The content of register SP is decremented by 2. Con-

trol is transferred to the instruction whose address is

specified in byte 3 and byte 2 of the current

instruction.

1

high-order addr

Cycles:

States:

Addressing:

Ftags:

5

17

immediate/reg. indirect

none

63

Ccondition addr (Condition cait)

)f (CCC),

((SP) - 1) (PCH)

((SP) - 2) — (PCL)

(SP) (SP) - 2

(PC) (byte 3) (byte 2)

if the specified condition is true, the actions specified

in the CALL instruction (see above) are performed;

otherwise, contro) continues sequentiatty.

low-order addr

high-order addr-

Cycies: 3/5

States: 11/17

Addressing: immediate/reg. indirect

Ftags: none

RET (Return)

(PCL) ((SP));

(PCH) ((SP) + 1);

(SP) -*— (SP) + 2;

The content of the memory location whose address

is specified in register SP is moved to the low-order

eight bits of register PC. The content of the memory

location whose address is one more than the content

of register SP is moved to the high-order eight bits of

register PC. The content of register SP is incremented

by 2.

RSTn (Restart)

((SP) - 1) (PCH)

((SP)-2)-<— (PCL)

(SP) (SP) - 2

(PC) -*— 8-(NNN)

The high-order eight bits of the next instruction ad-

dress are moved to the memory location whose

address is one less than the content of register SP.

The low-order eight bits of the next instruction ad-

dress are moved to the memory location whose

address is two less than the content of register SP.

The content of register SP is decremented by two.

Controt is transferred to the instruction whose ad-

dress is eight times the content of NNN.

N N N

Cycles: 3

States: 11

Addressing: reg. indirect

Flags: none

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 N N N 0 0 0

Program Counter After Restart

Cyctes: 3

States: 10

Addressing: reg. indirect

Ftags: none

PCHL (Jump H and L indirect - move H and L to PC)

(PCH) -*— (H)

(PCL) — (L)

The content of register H is moved to the high-order

eight bits of register PC. The content of register L is

moved to the low-order eight bits of register PC.

Rcondition (Conditionat return)

tf (CCC),

(PCL)-*—((SP))

(PCH)-*— ((SP) + 1)

(SP) -*— (SP) + 2

tf the specified condition is true, the actions specified

in the RET instruction (see above) are performed;

otherwise, controt continues sequentiatty.

0

Cycies: 1/3

States: 5/11

Addressing: reg. indirect

Flaqs: none

Cycles: 1

States: 5

Addressing: register

Fiags: none

COS

Stack,)/0, and Machine Controi Group:

This group of instructions performs I/O, manipulates

the Stack, and aiters interna) controt ftags.

Untess otherwise specified, condition ftags are not

affected by any instructions in this group.

FLAG W O R D

D? Dg Dg D4 D3 Da O1 Do

AC 1 CY

PUSH rp (Push)

((SP) - 1) (rh)

((SP) - 2) (rt)

(SP) (SP) - 2

The content of the high-order register of register pair

rp is moved to the memory tocation whose address is

one less than the content of register SP. The content

of the tow-order register of register pair rp is moved

to the memory location whose address is two less

than the content of register SP. The content of reg-

ister SP is decremented by 2. Note: Register pair

rp =* SP may not be specified.

Cyctes: 3

States: 11

Addressing: reg. indirect

Ftags: none

PUSH PSW (Push processor status word)

((SP) - 1) (A)

((SP) - 2)o - * - (CY) , ((SP) - 2) 1 -*— 1

((S P) - 2) 2 — - (P) , ((S P) - 2) 3 - ^ - 0

((SP) - 2)4 -*— (AC) , ((SP) - 2)5 0

((SP) - 2)g — (Z) , ((SP) - 2)y (S)

(SP) — (SP) - 2

The content of register A is moved to the memory

location whose address is one less than register SP.

The contents of the condition ftags are assembled

into a processor status word and the word is moved

to the memory location whose address is two iess

than the content of register SP. The content of reg-

isterSPisdecrementedbytwo.

Cyctes:

States:

Addressing! reg.indirect

Flags: none

OOS

Juried 1977

POP rp (Pop)

(rt) -*—((SP))

(rh) ((SP) + 1)

(SP) -*— (SP) + 2

The content of the memory location, whose address

is specified by the content of register SP, is moved to

the low-order register of register pair rp. The content

of the memory location, whose address is one more

than the content of register SP, is moved to the high-

order register of register pair rp. The content of reg-

ister SP is incremented by 2. Note: Register pair

rp =* SP may not be specified.

Cyctes: 3

States: 10

Addressing: reg. indirect

Ftags: none

POP PSW (Pop processor status word)

(CY)-*— «SP))Q
(P) ((SP))2
(AC) — ((SP))4
(Z) ((SP))g
(S) ((SP))?
(A) -*— ((SP) + 1)

(SP) (SP) + 2

The content of the memory location whose address

is specified by the content of register SP is used to

restore the condition ftags. The content of the mem-

ory location whose address is one more than the

content of register SP is moved to register A. The

content of register SP is incremented by 2.

Cycies:

States:

3

10

Addressing: reg. indirect

Flags: Z.S,P,CY,AC

65

XTHL (Exchange stack top with H and L)

(L) — ((S P))

(H) - ^ - ((S P) + 1)

The content of the L register is exchanged with the

content of the memory location whose address is

specified by the content of register SP. The content

of the H register is exchanged with the content of the

memory location whose address is one more than the

content of register SP.

E! (Enableinterrupts)

The interrupt system is enabled fottowing the execu-

tion of the next instruction.

1

1

Cycles: 5

States: 18

Addressing: reg. indirect

Flags: none

SPHL (Move HL to SP)

(SP) -*— (H) (L)

The contents of registers H and L (16 bits) are moved

to register SP.

Cycies: 1

States: 4

Flags: none

D) (Disableinterrupts)

The interrupt system is disabted immediatety foi-

lowing the execution of the 0) instruction.

1

1 ' 1 ! o i 1 ' ! o ' 0 ' i ! 1

port

Cycies: 1

States: 5

Addressing: register

Flags: none

)N port (input)

(A) (data)

The data piaced on the eight bit bi-directionai data

bus by the specified port is moved to register A.

Cycles: 1

States: 4

Flags: none

HLT (Halt)

The processor is stopped. The registers and flags are

unaffected.

1 1 1

port

Cycies: 1

States: 7

Fiags: none

NOP (No op)

No operation is performed. The registers and flags

areunaffected.

Cycies: 3

States: 10

Addressing: direct

Flags: none

OUT port (Output)

(data) -*— (A)

The content of register A is piaced on the eight bit

bi-directiona) data bus for transmission to the spec-

ified port.

Cycles: 1

States: 4

Flags: none

port

Cycles: 3

States: 10

Addressing: direct

Flags: none

6 6

oos

June. 1977

[NSTRUCT!ON SET

"0V„„:
MOV M.r
MOV r. M
HLT
MVI r
MVI M

OCHr
!NR M
OCR M
AOOr
AOCf
SUBr
SBBr

ANAr
XRAr
ORAr
CMPr
AOO M
AOCM
SUB M
S8BM

AWA M
XRAM
ORAM

ACI

SU!
SB!

OR!
CP!
RLC
RRC
RAL
RAR

JMP
JC

JZ
JNZ
JP
JM
JPE
JPO
CALL
CC
CMC
cz
CNZ
CP
CM
CPE
CPO
RET
RC
RNC

RZ 0 0 I 1) 3 0 ' 5/!!
RNZ 0 0 0 0 C 8 5/M
RP ! 0 0 . 0 5/!'

0 0 0 5/11
RPE 0 0 0 9/11

0 0 0 8 0 5/11
RST t 11
IN 0 0 to
OUT 0 ' 0 0 to
LX! 8 0 0 3 0 0 0 '3 to

Pair 8 & C
LX! 0 0 0 0 ! 0 0 3 to

Pair 0 & E
LX! H 3 0 0 0 0 3] to

Pair H & L
LX! SP 0 0 ' 0 3 3 to
PUSH B 0 0 0 3

PUSHO 0 ! 0 0

PUSH H 0 0 3
:tac!<

PUSH PSW ' a t 3 !1

POP 8 0 0 0 0 3 to

POPO 0 ! 0 0 0 tC

POPH a u 8 0 to

POP PSW ! 0 3 3 to

STA ! 0 3 3 !3
LOA 8 0 t3
XCHG 0

XTHL 0 f) 3 .'9
SPHL 3 3- S
PCHL 3 3 S
OAO 8 Add B & C to H & L 0 0 3 3 to
OAO 0 Add 0 & E to H & L p 0 3 3 to

Add H & L to H & L 0 0 0 3 to
OAOSP 0 0 0 3 to
STAX8 0 0 0 0 1) c 8
STAXO 0 0 0 ! 0 3 3
L0AX8 0 3 0 0 t 3 3 7
LOAXO 0 0 0 1 ! 3 0
INXB 1) 0 a 0 1] 3 5
INXO 0 0 0 < 0 0 5

0 a 0 0 3 S
INXSP 0 0 t 0 0 5
OCX 8 0 0 1] 3 ! 5
OCXO 0 0 0 ! I 3 5

1) 0 3 5
OCXSP 0 0 3 5

0 0 ! 0 t
STC 0 0 ! ! 0
CMC 0 0 ! ! I

0 0 0 0 t
SHLO 0 0 0 0 3 3)6
LHLO 0 0 3 3 !6
E! 3
01 ! 0 0
NOP No-optrttton 0 0 i) 0 0 3 3 3 *

RZ
RNZ

RPE

RST
IN
OUT
LX! 8

LXISP
PUSH B

PUSH 0

PUSH H

PUSH PSW

POP 8

POPO

POPH

POP PSW

STA
LOA
XCHG

XTHL
SPHL
PCHL
0A08
OAO 0

OAOSP
STAX8
STAXO
LOAX8
LOAXO
INXB
INXO

INXSP
OCX 8
OCXO

OCXSP

STC
CMC

SHLO
LHLO
E!
01

Pair 8 & C ^

Pair 0 & E

Pair H & L

stack

AddB&C toH & L
Add 0 & E to H & L
Add H & L to H & L

3 0

8 0

0 0

0 0 I] I

0 0 0 !

C!ocH2!
Cvd<t

NOTES; 1. 000 or SSS -000 8 - 001 C - 010 0 -011 E - 100 H - 101 L - 110 Memory - 111 A.

OOS

June, 1977 67

B. Pseudo-Ops. "Pseudo-op" is the name given to Assembly Language

instructions that do not produce any machine code, but which

direct the Assembler to perform its operations. The DOS

Assembler provides op-codes for reserving storage space, . .

defining the contents of memory locations and controlling the

parameters of the Assembler's operation.

The following table is an alphabetical list of pseudo-

ops along with their formats and functions. In these descrip-

tions,^ designates an address expression, and n designates a

name. All other no.tation conventions are the same as in the

rest of the DOS manual.

Table 4-A. DOS Assembler Pseudo-Ops

Instruction Format Description

CMN[/<block name>/] <nl>, [<n2>, ...] Common definition. The names

nl, n2, . . . are declared to

be in the Common block with the

designated block name. If the

block name is omitted, Blank

Common is used. Each name is

assumed to require one byte

unless it is written in the

form

N(m)

where m is an address expres-

sion that gives the length in

bytes of the area assigned to

the name N. If another CMN

statement is encountered with

the same block name, the first

address assigned by the second

statement directly follows the

last address assigned by the

first statement.

DATA <n!> [,<n2>],... The names nl, n2, . . . are

68
oos

June. 1977

DB <el> [e2] [,...]

or

DB"<character string>"

DC "<character string>"

DS <e>

defined to be in the Data area.

Each name is assumed to require

one byte unless it has the form

N(m)

where m is an address expression

that gives the length in bytes

of the area assigned to N.

Define Byte. The address expres-

sions el, e2, ... are evaluated

and stored in successive bytes

in memory. The character string

form stores the ASCII codes of

each character in successive

bytes. The two forms may be

mixed in a single statement.

Character Constants are treated

as character strings unless

they are components of address

expressions.

Define Character. The characters

in the string are stored one

byte per character. The high-

order bit of each byte is set to

zero except for the last byte

which has its high order bit

set to 1. This arrangement

allows quick searches for the

end of the string.

The address expression e is

evaluated and defines the num-

ber of bytes of space that are

allocated. The contents of

the space are not affected.

All names used in e must be

defined prior to the DS state-

ment.

cos

June, 1977

DM <el>[,e2] [,...]

END<e>

END IF

ENTRY <nl>[,n2] [,...]

EQU <e>

Define Word. The address expres-

sions el, e2, ... are evaluated

and stored as 16 bit (two-byte)

words. The addresses conform

to the 8080 address convention

that the low-order byte comes

first and the high-order byte

comes second. All addresses

and address offsets are handled

in this way, so the DM statement

must be used to define addresses.

END is the last statement of

each program. The address ex-

pression e is the execution

address of the program. Spec-

ifying e=0 (absolute) is equi-

valent to specifying no execu-

tion address.

Terminates the conditional

assembly started by a previous

IFF or IFT statement.

Define Entry Points. The names

nl, n2, ... are names of entry

points in other programs and

are defined as names in the

program being assembled. The

names must appear in an ENTRY

statement before they appear

as labels.

Define Equivalence. The address

expression e is evaluated and

assigned to the label of the EQU

statement. The label is required

and may not have appeared pre-

viously as a label or in a DMN

70

oos

June. 1977

or DATA statement. AIT names

used in e must have been defined

previous to the EQU statement.

EXT <n!> [,n2] [,...] The names nl, n2, ... are

defined to.be external refer-

ences. They may not have been

used as labels or in a CMN or

OATA statement.

IFF <e> Conditional Assembly - False.

If the value of the address

expression e is false, (=0

absolute), then all of the

statements until the next ENOIF

are assembled. If the value is

true, the statements are not

assembled. Conditional assem-

blies may not be nested.

4-4. Assembler Error Messages

Assembler error messages are printed in the leftmost column of the

source code listing on the line in which the error occurred. The error

codes are as follows:

Table 4-B. Assembler Error Messages

Code Meaning

2 Second operand missing. An instruction that requires two

operands was only given one.

A Absolute required. Data, Common, External or Relative address

was given where an Absolute value was required.

B Block Name error. A Common or Data block name was invalid.

C Too many Common blocks. Only 17Common blocks are allowed.

D Digit invalid. V a l i d d i g i t s a r e 0 - 9 i n d e c i m a l , 0 - 7 i n

octal and 0 - 9 and A - F in hexadecimal.

E Expression error. Error in the syntax, symbols or position

of an address expression.

F Operand field too long.

L Label error.

M Multiply defined name.

COS

June, 1977

Name too long. Six characters is maximum.

Op-code invalid. An Op-code was encountered which is not in

the list of op-codes recognized by the Assembler.

Phase error. Probably an error in the Assembler. Please

report errors to the MITS, Inc., Software Department.

Quoted string error. The ending quotation mark was missing

from a character string.

Field or line terminated too soon.

Undefined name.

Value invalid. An address expression value was negative, too

large or otherwise unusable.

oos

June, 1977

oos

June, 1977 73/(74 Blank)

5. THE LINKING LOADER

5-1. Introduction

The output file of the Assembler is a relocatable object code

module. That is, it is a machine language program module (.object code)

that can be loaded by the appropriate loading program—anywhere in memory

and executed (relocatable). Moreover, the Assembler allows the module

produced by an assembly to refer symbolically to addresses in other

modules as long as all of the modules that refer to each other are

loaded into memory at the same time (see page 71, EXT pseudo-op).

The program that loads relocatable modules into memory and links

their symbolic references to the proper addresses is called the Linking

Loader (LINK). In the simplest case, where an entire program is con-

tained in one module, LINK loads the program into memory and causes

control to jump to its starting address.

In the more complex case, where several modules are to be loaded

into memory and linked together to form a single large program, LINK

serves many functions. It loads the modules and makes sure that bytes

of a module are not destroyed by loading subsequent modules in over-

lapping locations. It makes the connections between all external

references and the addresses to which they refer. It prints lists of

those external references for which no addresses have been defined. It

can even search the disks for files to resolve these undefined references -

and automatically load them. All of these functions are controlled by

the Linking Loader's commands which are described in Table 5-A. For an

explanation of the use of LINK in this case, see Appendix E.

If the system disk is mounted on drive zero, the Linking Loader

is loaded and run by typing the following command to the Monitor:

J. INK

When LINK starts, it prints the following message:

DOS LINK VER x.x
*

The asterisk means LINK is ready to receive commands.

oos

June, 1977!

Table 5-A.

L <file> <device>

[<address at which to

load relocatable module>]

S <device>

Linking Loader Commands

Loads a module at the specified

address. The module is loaded from

the specified disk. The module

must be in LINK 'S relocatable code

format. If the loading address is

not specified, the default address

is 24000g for the first module to

be loaded and the next available

location above the previous module

for all subsequent modules. The L

command automatically adds a * to

the file name. For an example of

the use of the L command, see

Appendix E, Section 2.

Displays the names in all of the

currently loaded modules and their

assigned addresses. Undefined names

are displayed with asterisks instead

of addresses.

Displays all undefined names in all

current modules.

For each undefined entry point name,

LINK searches the specified device

for a relocatable file by that name

and loads it. For an example of the

use of the S command, see Appendix

E, Section 2.

Exits to the Monitor

X [execution address] Begins execution of the program

at execution address . If the

execution address is omitted, X

branches to the address in the

76

oos

June. 1977

last encountered END statement.

If no END statement has been en-

countered, X branches to location

24000g.

5-2. Address Chaining

Each time LINK encounters a reference to a symbol that has not yet

been defined, it enters the address of the reference into a chain. Each

entry in the chain contains a pointer to the previous entry. The last

entry contains zero absolute. When the symbol is defined, LINK goes

through the chain again from the last entry to the first, replacing the

contents of each entry with the assigned address of the symbol. As a

result of this process, each reference to the symbol points to the cor-

rect address.

LINK handles external references by saving the unresolved chains

from all of the modules. The contents of the first entry in a chain

for one module is the address of the top of the chain for the previously

loaded module.

The U command can be used to display the undefined symbols in all

loaded modules.

5*3. Relocatable Object Code Module Format

The Assembler creates and LINK uses files which conform to the

Relocatable Object Code Module format. Each module consists of records

of 1024 bits each. A record is made up of a number of load items, each

one of which is preceded by at least one control bit.

A. .If the first bit is 0, the next eight bits are loaded as an

absolute data byte. If the first bit is 1, the next two bits

are input as a control field as follows:

B. Control Bits Action

01 The following 16 bits are loaded as

a relocated address after adding

the relocation base address.

10 The following 16 bits are to be

loaded as a Data block reference

address after adding the Data base.

oos

June, 1977!

11 The following 16 bits are to be

loaded as a Common block reference

address by adding the current Common

base.

00 The next 9 bits are to be input as

a control field and the following

16 bits as an address.

The 9-bit control field has the following format:

aannnxxxx

where aa designates the type of the address

aa Type

00 Absolute

01 Relocated, relocation base is added before loading.

10 Data reference. Data base is added before loading.

11 Common reference, current Common base is added-

before loading.

nnn is the length, in bytes, of the program or common block

name. When nnn = 0, the name is blank. If a name is specified,

it immediately follows the address in the module,

xxxx is a 4 bit control field as follows:

xxxx Action

1 Define Common Size. The address is interpreted

as the size of the Common block that has the spec-

ified name. This type of item may be preceded

only by Define Entry Name items. The program

with the largest blank Common block must be

loaded.first. All programs which refer to named

Common blocks must define them to be the same

size.

2 Define Data Size. The address is interpreted as

the size of the Data area. If this item is pre-

ceded only by Define Entry Name and Define Common

Size items, normal memory allocation takes place.

oos

June, 1977

If, however, Data block references occur before

this item is loaded, the Data base is assigned to

be the address of the first location from the top

of memory, and all Data block reference addresses

are subtracted from rather than added to the base.

Set Location Counter. The address is loaded into

the loading location counter.

Address Chain. The current value of the loading

location counter is placed in each element of the

chain whose top element is the address.

Set Common Base. The assigned address of the

named Common block is the current Common base.

Chain & Call an External Name. The name is

placed into the loader table, if it is not already

there. The address chain whose top element has

the specified address is linked to the chain for

the name if it has not yet been loaded or to the

name (if it has been loaded).

Define Entry Point. The address is assigned to

the named entry point.

Define Program Limit. The address is that of the

first location after the program.

End of Record. This record indicates the end of

the program being loaded and the end of data in

this record. A is the execution address.

End of Module. End of load module. Control re-

turns to the loader.

79/(92 Blank)

J

J

M m wa

003

June, 1977 81/(82 Blank)

J

6. ' DEBUG PACKAGE

6-1. Introduction

The Debug package Is a system program which provides facilities

for debugging Assembly Language programs. Commands allow the following

operations:

1. Display the contents of memory locations, registers or flags

in several modes (octal, decimal, etc.)

2. Modify the contents of memory locations, registers or flags.

3. Insert, display and remove breakpoints to initiate pauses in

program execution.

4. Start execution of the program at any address or at any break-

point.

A. Running Debug. After the system disk is mounted in drive zero,

Debug is entered from the Monitor by typing

J3EBUG

Debug indicates that it is loaded and running by printing

DOS DEBUG VER x.x

on the terminal. At this point, it is ready to receive com-

mands. The Monitor may be reentered by typing R.

B. Addressing Modes. Debug can display, modify or transfer pro-

gram control to any point in memory. In addition, entry to

Debug causes the registers and condition flags to be stored in

memory, making them available for display or modification.

Most of the Debug commands may be preceded by an address.

This address may be expressed in any one of several modes.

1) Explicit. Anywhere an address is expected, a number

is interpreted as an octal address. A number preceded

by a pound sign (#) is interpreted as a decimal address.

The address is entered into an address pointer in

Debug. All commands operate on the location in the

address pointer. The current contents of the address

pointer may be accessed by typing a period (.). Thus,

oos

June, 1977!

the Debug command

displays the contents of the location whose address is.

currently in the address pointer. The use of the period

is optional, in this case, since

./

and

/

cause the same operation to be performed.

2) Relative. An address may be specified in the follow-

ing form:

<address> + <offset>

For example:

100 + 10, the location whose address is 100g

+ 10g or . - 2 refers to the location whose

address is that of the current location minus 2g.

Two special cases of indirect addressing involve the

<line feed> and <t> commands.

<line feed> increments the address pointer and

displays the contents of the result-

ing location.

<+> on some terminals) decrements

the address pointer and displays the

contents of the resulting location.

In both cases, the increment in the symbolic I/O mode

(see Section 2-1) is the length of the current instruc-

tion - 1, so that the next location displayed is that

of the next instruction. In the W mode, the increment

is 2 bytes and in all other modes the increment is

one byte.

Typing an equal sign (=) after a relative address

specification causes Debug to print the resultant

address.

3) Indirect. Typing <tab> (Control/1) refers to the

location whose address is the contents of the current

cos

June, 1977

location. For example:

70/ JMP 5000 <tab>

5000/ SHLD 4750

Typing 70/ In the symbolic I/O mode W causes Oebug to

display the instruction at 70 which is a JMP to loca-

tion 5000. Typing <tab>, which is equivalent to

.<tab>, causes Debug to reference the instruction at

location 5000. Subsequently, typing / causes the

instruction at location 5000 to be displayed.

Typing <tab> when the current location is the low

order byte of a two-byte address or the low order

register of a register pair causes the address pointer

to be loaded with the contents of both bytes of the

address or the pair of registers.

4) Register. When Debug is entered, or when a breakpoint

is encountered, Debug stores the contents of the regis-

ters and condition flags in memory in the following

order:

Register Remarks

F Condition Flags

Bit Meaning

0 Carry

2 Even Parity

4 Half Carry (for decimal

arithmetic)

6 Zero

7 Sign (One means the MSB of

result was 1)

A Accumulator

C Note: The low order register of a

pair is first)

B.

E

D

L

U
M S

June, 1977 8 5

H

S Low order byte

S High order byte

Once a register has been opened, typing <11ne feed>

or <+> causes the next or preceding register in the

list to be accessed and displayed.

86
oos

June. 1977

6-2. Display

Typing the following command:

<address>/

where the address is in any mode, causes Debug to display the contents

of the specified location in the current I/O mode.

A. I/O Modes. Debug displays the contents of locations in

several modes which may be specified by the programmer. The

I/O mode is specified by typing dollar sign ($) or <ESCAPE>

(<Altmode> on some terminals) followed by a letter.

If no I/O mode is specified, Debug proceeds as if the mode

were specified as octal. Typing a semicolon (.;) instead of /

displays the contents of the current location in octal, regard-

less of the current I/O mode.

B. Displaying a Range of Locations. Typing the following command:

<address 1>, <address 2>T

displays the contents of all the locations from <address 1>

to <address 2>, inclusive, in the current I/O mode.

6-3. Modify

The contents of a location may be modified by displaying the cur-

rent contents of the location and then typing the new contents. For

example

50/ M M A O R A A <cr>

./ ORA A

Letter

0

D

W

A

S

I/O Mode

Octal

Decimal

Double byte octal. Displays contents of two suc-

cessive locations. This is used primarily to dis-

play addresses.

ASCII. The characters displayed have ASCII codes

equal to the contents of the location.

Symbolic. The instruction at the location is

displayed in Assembly Language symbolic form. All

bytes of the instruction are displayed, but address

bytes are displayed in octal form.

COS

June, 1977

The instruction ORA A replaces the original XRA A. All input after the

display is used to modify the current location until the location is

filled or until a delimiter is typed. The normal delimiter is <cr>.

Other delimiters are as follows:

<line feed> displays the next location

<+> displays the previous location

/ or ; displays the modified contents of

the current location

<tab> displays contents of the location

addressed by* current location (typed

as Control/1).

<ESCAPE>, +, !, = are special and terminate input even

though they have no specific function

in this context

Input is interpreted according to the current I/O mode. If the

input cannot be interpreted, "?" is printed on the terminal and the

connnand must be repeated.

6-4. Breakpoints

Breakpoints provide the ability to pause in the execution of a

program at any point and examine the contents of memory locations,

registers and condition flags. A breakpoint is set by the X command,

which has the following form:

<address> X

This command sets the next available breakpoint at the specified address.

Eight breakpoints are available (numbered 0 - 7) . When a breakpoint is

encountered during execution of the program, the following message is

printed on the terminal:

<number> BREAK@ <address>

Execution is suspended until it is restarted by a P or G command.

The positions of all the breakpoints in use can be displayed by

the Q command:

Q<cr>

88

oos

June. 1977

Example:

10X

20X

377X
Q

0 e lo

1 @ 20

2 @ 377

Any (or all) breakpoints may be removed by the Y command:

Y

or

Y<number>

If no number is specified, all breakpoints are removed. If a number is

specified, only that breakpoint is removed.

6-5. Controlling Execution

Oebug may be used to control the execution of a program by means

of the G and P commands.

A. The G Command. Execution can be started at any location by the G

command:

<address>G

where the address is the location where execution is to start.

B. The P Command. Execution can be made to proceed from a break-

point by means of the P command:

[<number>] P

If the number is typed, execution proceeds from the specified

breakpoint. If the number is omitted, the most recently

encountered breakpoint is specified. The P command cannot be

used if no breakpoint has been encountered or if the break-

point with the specified number has not been assigned.

C. Breakpoints and Execution Commands. When a G or P command is

executed, Oebug replaces the bytes at the breakpoint addresses

with RST instructions. These instructions cause control to be

transferred to locations 0, 7, 17, 27, 37, ... 77. At these

locations, JMP instructions branch to a breakpoint handling

routine in Debug. The bytes that were replaced are saved in a

table and stored after the breakpoint is executed.

COS

June. 1977 89

When a P command is executed, Oebug reconstructs the instruction

at the breakpoint by referring to the table and executes that instruction

before branching to the instruction after the breakpoint. If the instruc

tion at the breakpoint is itself a CALL, JMP or RST instruction, Debug

branches to the proper location.

When a breakpoint RST is executed, the breakpoint routine saves

all registers and condition flags and restores the original byte in the

instruction string. In operation, the breakpoint processing procedure

is transparent to the programmer and program execution' is unaffected,

except for the pauses initiated by the breakpoints.

6-6. Using Debug with Relocated Programs

The Assembler produces relocatable code modules that can be loaded

in any place in memory by the Linking Loader. Thus, the addresses of

program statements are not determined until the program is loaded. In

order to use Debug on such programs, special functions are provided for

handling base addresses.

Typing an apostrophe (') recalls the execution address returned by

the Linking Loader for the current load module. Thus, the statement

'G

causes Debug to start execution of the module at the Linking Loader

execution address.

The execution address may or may not be the first location in the

program. For this reason, Oebug also includes the capability of storing

any address and recalling it for use in any Debug command. The statement

<address>%

stores the address and

&

recalls it for use. The address may be that of the first location in a

module, common or data block, etc.

90

oos

June. 1977

Raogsmn^ m m pmemEag

91/(92 Blank)

d

7. MISCELLANEOUS SYSTEM PROGRAMS

7-1. INIT

INIT is a system program that allows the initialization of the

system (.the number of disks, disk files, etc.) to be changed without

reloading the system. INIT is run by typing

J N I T

to the Monitor. INIT then prints the question

MEMORY SIZE?

and the initialization dialog proceeds exactly as it does when the sys-

tem is loaded (see Section l-2c, p. 7).

7-2. (^S

CNS allows the console through which the user issues commands to

be changed to another terminal. To use CNS, type

JINS <channel> <sense switch>

to the Monitor, where <channel> is the octal data channel number of

the new console's I/O board, and <sense switch> is the new I/O board's

octal sense switch setting. The data channel is the low order channel

of the board and the sense switch settings are shown in Table 1-A on

page 5.

For example, to switch to a terminal using a 2SI0 board with 2

stop bits through channel 20, the following command is typed:

j:NS 20 0

7-3. SYSENT

SYSENT is a system program file that contains addresses of several

Monitor routines that are available for user program use. The following

routines are available:

ABORT exits to the Monitor and prints "PROGRAM

ABORTING" oh the terminal

EXIT exits to the Monitor and prints "PROGRAM EXITING"

on the terminal

ABORT and EXIT both return control from the program to the Monitor and

close all files. The program name is found in location TASKNM (see

below). ABORT is generally used to exit under error conditions while

EXIT is used under normal exit conditions.

oos

June, 1977!

10 allows access to. the Monitor Call

1/0 routines. The following sequence

is used in the calling program

CALL 10

DM (address of Request Control

Block)

See Appendix C for more information

on Monitor Calls and Request Control

Slocks.

Two special routines are used to print text messages.

TASKNM contains the address of the memory

area where ABORT and EXIT find the

name of the calling program. The

program name must be stored at this

location before an ABORT or EXIT

call is executed.

MSG prints a user selected message on

the terminal. The following sequence

is used:

CALL MSG-

DW (address of first byte

of message)

MSG prints the message bytes until

it prints a byte with the most

significant bit set to one. Thus,

the message should be stored with a

DC pseudo-op.

To use the routine in SYSENT, the desired names must be defined as

External names in the calling program. (See EXT statement, Table 4-A.)

When the calling program is loaded into memory for execution, SYSENT

must also be loaded. The following Linking Loader command is used for

this purpose:

L SYSENT 0

This command loads SYSENT just above the user program.

DOS

Juns, 1977

7-4. LIST

LIST is a BASIC language routine that allows DOS Assembler listing

files to be printed on a line printer. To use LIST, BASIC must be run-

ning and the DOS disk must be mounted. The following command runs LIST

RUN"LIST",<device number>

where the device number is that of the disk drive- upon which the DOS

disk is mounted.

LIST asks for the name of the program (the % sign is added auto-

matically) and the device number of the disk on which the listing file

resides. The listing is then printed on the system line printer.

30S

June, 1977 95/(96 B1

u

oos

June, 1977 97/(98 Blank)

J

APPENDIX A. ASCII CHARACTER CODES

DECIMAL CHAR. DECIMAL CHAR. DECIMAL CHAR.

000 NUL' 043 + 086 V

001 SOH 044 087 W

002 STX 045 - 088' X

003 ETX 046 . 089 Y

004 EOT 047 / 090 Z

005 ENQ 048 0 091 E

006 ACK 049 1 092 \

007 BEL 050 2 093]
008 BS 051 3 094

009 HT 052 4 095 <

010 LF 053 5 096 *

011 VT 054 6 097 a

012 FF 055 7 098 b

013 CR 056 8 099 c

014 SO 057 9 100 d

015 SI 058 : 101 e

016 OLE 059 ; 102 f

017 DC! 060 < 103 g

018 DC2 061 = 104 h

019 DC3 062 > 105 i

020 0C4 063 ? 106 j

021 NAK 064 @ 107 k

022 SYN 065 A 108 1

023 ETB 066 B 109 m

024 CAN. 067 C 110 n

025 EM 068 D m 0

026 SUB 069 E 112 P

027 ESCAPE 070 F 113 q

028 FS 071 G 114 r

029 GS 072 H 115 s

030 RS 073 1 116 t

031 US 074 J 117 u

032 SPACE 075 K 118 V

oos

June, 1977

DECIMAL CHAR. DECIMAL

033 < 076

034 " 077

035 # 078

036 S * 079

037 % 080

038 & 081

039 ' 082

040 (083

041) 084

042 * 085

LF=Line Feed FF=Form Feed

CHAR. DECIMAL CHAR.

L 119 w

M 120 X

N 121 y

0 122 z

P 123 {

Q 124 [
R 125

S 126

T 127 DEL

U

CR=Carriage Return DEL=Rubout

100

oos

June. 1977

APPENDIX B

DISK INFORMATION

1- FORMAT OF THE ALTAIR FLOPPY DISK

1-1. Track Allocation

Track Use

0 - 5 DOS Memory Image

6 - 6 9 Space for either Random or Sequential files

70 Directory Track

71 - 76 Space for Sequential files only

1-2. Sector Format

There are 32 sectors per track and 137 bytes per sector. Of these

bytes, 128 are available for data storage.

Tracks 0 - 5

Byte Use

0 Track number + 128 decimal

1 - 2 Sixteen bit address of the next higher location in

Tracks 6

Byte

0

4

3-130

131

132

2

memory than the highest location saved on this sector

128 bytes of DOS code

Stop byte (255 decimal)

Checksum. Sum of the bytes 3 - 1 3 0 with no carry out

of one byte

76

Use.

Most significant bit always on. Contains track number

plus 200 octal.

(Sector number)*!7 MOO 32

File number from directory. Zero means this sector is

not part of any file. If the sector is the first of a

group of 8 sectors, 0 means the whole group is free.

Number of data bytes written (0 to 128). This is

always 128 for random file data blocks. For random

file index blocks, this number is the number of groups

allocated for this file.

Checksum. Sum of bytes 3 - 134 with no carry out of

one byte.

oos

June, 1977!

Byte Use

5, 6 Pointer to the next group of the file. The first byte

is the track number and the second.byte is the sector

number. Zero indicates the end of the file.

7 - 1 3 4 Data

135 Stop byte (255 decimal)

136 Unused

1-3. The Directory Track

The Directory takes all of track 70. Each sector has 8 file name,

records, each 16 bytes long. The format of the sector is as follows:

Byte Use

0 - 7 File name

8, 9 Pointer to the start of the file (track, sector).

10 File mode. 2=sequential, 4=random

1 1 - 1 5 Unused

If the first byte of the file name is 0, the file has been deleted.

If the first byte is 255 decimal, the file is the last in the directory

and all file name records after it are ignored.

2. RANDOM FILES

2-1. Format of Random Files

A random file may contain any number of sectors. The first two

sectors are the "index blocks." The "Number of Data Bytes" field in

the first block indicates the number of groups currently allocated to

this file. The next 256 bytes in the two blocks give the designations

of the data sectors in the file in the order they occupy in the file.

The upper two bits in the byte give the group number and the lower 6

bits give the track number - 6.

2-2. Using Random Files

The user must allocate a 128 byte buffer for each random file to

be open at one time in the program. A Random Read or Write transfers an

entire 128 byte block at a time into or out of the buffer assigned to

that file.

The format of the data in the buffer is defined by the user.

102

30S

June. 1977

APPENDIX C. MONITOR CALLS '

Since the Monitor contains all the I/O routines for all of the

peripheral devices in the system, it is not necessary for the programmer

to write I/O routines for each program. Instead, the program can call

the Monitor to handle all input and output.

For this reason, DOS I/O is device-independent. The programmer

need not consider the idiosyncracies of individual I/O devices when a

program is being written, and the I/O device can be chosen at the time

the program is executed.

The instruction sequence for calling* the Monitor from an Assembly

language routine is as follows:

CALL 10 ;10 IS DEFINED IN SYSENT

DW (Request Control Block address) ;A SYSTEM PROGRAM FILE (SEE

SECTION 7-3).

The Request Control Block (RCB) is a block of data which provides the

information the Monitor needs to perform the requested operation.

The first two bytes in every Request Control Block have the same

significance. The first byte is always the operation code byte which

tells the Monitor the action being requested. The second byte is a

status byte which is set to zero if the operation is completed success-

fully and to a non-zero value if an error occurred. The error codes

are in. Appendix

In the list that follows, the Request Control Blocks for each

I/O Monitor call are given, beginning with the third byte. When an RCB

is constructed, DB statements can be used to define the byte quantities

and DW to define the two-byte quantities. This is because the two-byte

quantities are interpreted as addresses and must conform to the 8080's

format for addresses (first byte is the low order byte).

I/O MONITOR CALLS

M S

Juna, 1977

Operation Code Description

Open 104 Prepares a file for input or output.

Assigns a file number to the file.

A file must be opened before infor-

mation can be transferred to or from

it. The next Read or Get operation

after Open begins with the first byte

in the file.

Byte Function

3 File number. The file is referred

to by this number until it is closed.

4 File type. The bits of the file

type byte have the following signi-

ficance:

0 - sequential input

1 - sequential output

2 - random. Open for input and out-

put simultaneously.

7 - explicit device specification.

If bit 7 is on, transfer takes

place through the device speci-

fied in bytes 5 and 6. Other-

wise, bytes 5 and 6 are ignored

and transfer takes place through

the last device used for this

file.

Note: Bit 0 is the least signi-

ficant bit. Only one bit may be

on at one time.

5 Kind of Device

0 - Teletype

1 - cassette tape

6 - floppy disk

6 Device number

7, 8 Address of file name area

104

oos

June. 1977

Close 105 Ends the connection between a file

number and a file. Normal exit from

a system program or jumping to loca-

tion zero causes all files to be

closed.

Byte

3

Function

File number

Read 102 Reads a number of bytes from a

sequential file - either on disk or

on another 1/0 device

Byte Function

3 File number

4 Mode. The bits of the mode byte have

the following significance:

Bit 1 on - Echo. Prints all char-

acters as they are entered.

Bit 1 off - no echo.

Bit 2 on - ASCII. Control/R Control/U

and Rubout recognized, input termin-

ates on <cr>.

Bit 2 off - Absolute binary code.

Mote: Bit 0 is the least signifi-

cant bit.

5, 6 Address of input buffer.

7, 8 Number of bytes to be transferred

(two-byte quantity interpreted as

an address)

9, 10 Number of bytes actually transferred

(interpreted as an address). This

operation begins by reading the next

byte after the last byte to be read

and reads the specified number of

bytes.

Write 103 Writes a number of bytes into a file

on a disk or another 1/0 device.

The bytes are written after the

last byte in the file.

Byte Function

3 File number

4 Mode. The bits of the mode byte

have the following significance:

Bit 2 on - ASCII. Adds nulls to the

end of the line, expands tabs.

Bit 2 off - Absolute.

Note: Bit zero is the least signi-

ficant bit.

5, 6 Address of write buffer

7, 8 Number of characters to be written

(interpreted as an address)

9, 10 Number of bytes actually transferred

(interpreted as an address)

Random Read 4 Reads a 128-byte record from a

random file on disk. The record is

read into a 128 byte buffer in mem-

ory which must have been previously

allocated. An error results if a

Random Read is performed on a se-

quential file.

Byte Function

3 File number

4, 5 Address of memory buffer

6, 7 Record number (interpreted as an

address)

Random Write 5 Writes a 128 byte record into a

random file. The record is written

from a 128 byte memory buffer. An

error results if a Random Write is

performed to a sequential file.

106

COS

June, 1977

Byte

3

4, 5

6, 7

Function

File number

Address of memory buffer

Record number (interpreted as an

address)

Get Character 2 Reads the next character (1 byte)

from an input file. If the file is

on disk, it must be opened for input.

The first Get after Open reads the

first character in the file.

Byte

3

4

Function

File number

Byte reserved for the character to

be read

Put Character 3 Writes a character (1 byte) on an

output file. The character is added

to the end of the file. If it is a

disk file, the file must be opened

for output first.

Byte

3

4

Function

File number

Character to be written

Block Input 107 Reads a sector (.128 bytes) from a

disk file* into a buffer in memory.

Returns the address of the first

data byte in the buffer and a

pointer to the number of bytes in

the block.

Byte Function

3 File number

4, 5 Pointer to number of bytes in the

block

6, 7 Pointer to first available data byte

*Block Input may be used to input data from a terminal. In that case,

only 1 byte is transferred into the buffer. Use of Block Input in this

oos

June, 1977

way may save programming effort, but Get Character is much faster and

more efficient.

Block Output 110 Writes a sector .(128 bytes) to a

disk file*. Returns the addresses

of the first byte of the next 128-

byte buffer to be written and the

number of empty bytes in the buffer.

To write a block of data, the Block

Output routine is called to get

pointers to the memory buffer. The

buffer is then filled with data to

be output and the Block Output rou-

tine is called again to write the

data. Each successive Block Output

call returns pointers to be used by

the next Block Output call.

Byte Function

3 File number

4, 5 Pointer to the number of bytes left

empty in the buffer. When this

number is zero, the buffer is full.

6, 7 Address of the first byte in the

buffer.

*Block Output may be used to output data to a terminal. In that case,

each Block Output call outputs one byte.

These Monitor calls are used in the following manner: The Input

or Output routine is called to get the pointers to the buffer. In the

Input case, the buffer is filled with input data. In the Output case,

the program must fill the buffer with data to be Output. As each byte

is transferred either to or from the buffer, the byte counter (pointed

to by bytes 4 and 5) is decremented. When the counter reaches zero,

the transfer to or from the buffer is complete. Calling Block Output

again writes the buffer onto the specified disk file and returns new

pointers. Calling Block Input again reads another sector of data and

returns new pointers.

108

COS

June, !977

In addition to these I/O Monitor Calls, Monitor Calls are available

which perform the operations of the Monitor commands. These calls allow

files to be opened, saved and deleted; disks to be mounted and dismounted,

etc. without having to return control to the Monitor. The first two

bytes of each of the command Monitor Calls are the same as the I/O

Monitor Calls except for the codes. The listings below show the rest of

the bytes of the Request Control Blocks.

Operation Code Description

Initialize 45 Same as DIN command

Byte Function

3 Kind of device (disks are the only

devices currently supported).

Byte = 6.

Byte Function

4 Device number

Rename 44 Same as REN command

Byte Function

3 Kind of device = 6 for disk

4 Device number

5, 6 Address of 8-byte old name field

7, 8 Address of 8-byte new name field

Delete 43 Same as DEL command

Byte Function

3 Kind of device = 6 for disk

4 Device number

5, 6 Address of 8 byte file name

Directory 42 Same as DIR command

Byte Function

3 Kind of device = 6 for disk.

4 Device number

5, 6 File number where the output of the

directory is to be written. The

file must be open for output.

Dismount 41 Same as DSM command.

oos

June, 1977!

Byte Function

3 Kind of device = 6 for disk

4 Device number

Mount 40 Same as MNT command.

Byte Function

3 Kind of device = 6 for disk

4 Device number

Save 106 Same as SAV command.

Byte Function

3 Kind of device

6 for disk

0 for Teletype

4 Device number

5, 6 Address of 8 byte file name

Load 100 Same as L0A command

Byte Function

3 Kind of device

0 for Teletype

1 for cassette tape

6 for floppy disk

4 device number

5, 6 address of 8 byte file number

7, 8 address of first byte to be saved

9, 10 address of last byte to be saved

11, 12 starting address

oos

June, 1977

o

APPENDIX D. ABSOLUTE LOAD TAPE FORMAT

The paper tape dump of an object program consists of 3 records. The

Begin/Name record is first, and carries the name of the program and

comments (version number, date, etc.) The program records follow

the Begin/Name record. The last record is an end-of-file record.

The formats of the records are as follows:

A. Begin/Name Record

Begin record sync byte

Program name

Terminates the Begin/Name record

C.

Byte 1 125Q

2-4 Name

5-N 15Q

Program Record

Byte 1 74Q

2
3, 4

5-N

N+5

Load Address

Program Data

Checksum

End-of-File Record

Byte 1 1700

Program record sync byte

Number of bytes in this record

Low order byte is first

All bytes except the first two are

added with no carry to generate a

checksum byte used to detect load

errors.

EOF Record sync byte

2, 3 Begin Execution Address

oos

June, 1977! m

APPENDIX E. THE PILE COPY UTILITY

As an example of the use of the various facilities of DOS to solve

a specific problem, the listing of a file copying routine is given

in this appendix. - -

This program copies a file from one file and device to another. Any

file on any device in the system may be copied to any other device

with this program.

The program is highly structured, with a central routine (COP) that

calls a number of other routines to perform specific actions.

To copy a file, run the copy program by typing the following command

to the Monitor:

j : op

The program is stored on disk as an absolute binary file so it is

loaded and run immediately. When the program starts, it prints the

following messages:

COPY FILE

SET UP INPUT

It then asks for the type of device from which the file is to be

copied. The user answers with "FDS" for a disk or "TTY" for the

terminal. At this point, the copy program asks the device number

(0, if there is only one device of that type) and the name of the

file to be copied. If the device is "TTY", no file name need be

specified. After the input parameters have been entered, the program

prints

SET UP OUTPUT

and asks the device type, number and file name for output. If the

output device is "TTY", no output file name need be specified.

When the copy action is complete, the program exits.

This Appendix lists the main routine COP and some of the more impor-

tant or instructive subroutines. For a complete listing of the

routines, use COP to copy them to the terminal. To do this, specify

the output device as TTY and copy the following routines.

&DN &TABLE &ASK

&DTYP &C0P &SYSENT

&LDEM &CMPB

&M0VB &AANS

! i OOS.'

I ; June, 1977

2. To run the copy program from the Assembly Language source files on

the system disk, it is first necessary to assemble all of the files

in the list above. To do this, type the following command:

J\SM COP 0

when the file is assembled, ASM prints

000000 ERRORS DETECTED

ANY MORE ASSEMBLIES?

The programmer replies to this question with the name of the next

program to be assembled. This process continues until all of the

programs in the list have been assembled. To load these modules

into memory.and link them together into the copy program, the Link-

ing Loader is run with the following command:

j^LINK

When LINK prints its prompt asterisk, the main copy procram module

COP can be run with the following command:

* L C 0 P 0

At this point, LINK loads the module into memory and resolves the

references to all symbolic addresses. Since numerous other symbols

are as yet undefined, DOS prints a list of these symbols as follows:

TSKNM * MSG * DTYP * ON * ASK

* M0V8 * 10 * EXIT * BDEX *

ABORT *. GDEX *

The asterisks after each file number indicate that the names are

undefined. These names are all those of entry points in the modules

that have not been loaded.

To load some of the required modules, the following command may be

typed:

*S 0

The S command adds asterisks to the undefined names and searches the

specified disk for files with the resulting names. When LINK finds

such a file, it loads and links it. Finally, LINK prints a list of

those entry names that are still undefined:

TSKNM * MSG * M0V8 * 10

* EXIT * ABORT *

oos

June. 1977 113

Entry point M0V8 is contained in file MOVB, so that it can be

defined by the following command:

* L M 0 V B 0

The remaining entry names are In file SYSENT which is loaded with

the following command:

^ L S Y S E N T O

Now that all of the required modules are loaded and linked together,

the entire program is ready to be executed with the following command:

The copy program starts up and prints its prompt questions as above.

COP L I S T I N G

The following statements define the entry point and external

references.

309100 E N T R Y COP
000200 EXT E X I T , A B O R T
000300 EXT T A S K N M , M S G
000400 EXT M O V 3 , I O
000500 EXT D T Y P , D N , A S K
000600 EXT G D E X , B D E X
0 0 0 7 0 0 -

000800 :IDENTIFY P R O G R A M A N D SET RADIX
000900 -

001000 C O P LXI H , C O P I D ;GET PRGID
001100 S H L D T A S K N M ;PUT A W A Y
001200 C A L L MSG ;DISPLAY IT
001300 DW C O P I D

The setup routines are basically a series of Monitor Calls. They

ask the operator for the file name and disk number, open the required

files and check to make sure everything is operating properly.

001400
001500 ;SET UP INPUT FILE
001600 ;
301700 C A L L MSG ;TEL O P R W H A T S G O I N G ON
001800 DW S E T U I N
001900 C A L L DTYP ;INPUT D E V I C E TYPE
002000 STA DTIN
002100 C A L L DN ;DEVICE N U M B E R
002200 STA DNIN - i
002300 C A L L ASK ;FILE NAME
002400 DW A S F N M
302500 LXI D , F N I N ;PUT IT A W A Y

oos

June, 19

832603
032700
802800
802900
003000
803100
003200
003300
003400
003500
003518
803600
003700
003800
003900
004000
004108
804200
004300
084400
004508
804600
084700
004800
804900
005000
005100
005200
005300
805400
005500
005600
805700
005800
005900
806000
806100
006200
006380
806318
006400
806500
006600
006700
006800
006900
007000
007100
007200
007300
007480

CHRIN

CALL
CALL
DW
LDA
ORA
JNZ
LDA
CP I
JNZ
LXI

SHLD
CALL
DW
JMP
LXI
SHLD

SETO

CHROU

CALL
DW
CALL
STA
CALL
STA
CALL
DW
LXI
CALL
CALL
DW
LDA
ORA
J N Z

LDA
CPI
JNZ
LXI

SHLD
CALL
DW
JMP
LXI
S H L D

:MISC INIT

MOV8
10
RBINOP
STINOP
A
NOINOP
DTIN
6
CHRIN ,
H,BLKGC

GCROUT
10
BLGCRB
SETO
H,CHRGC
GCROUT

; S E T UP OUTPUT F I L E

M I N I T CALL
CALL

MSG
SETUOU
DTYP
DTOU
DN
DNOU
ASK
ASFNM
D,FNOU
M0V8
10

RSOUOP
STOUOP
A
NOOUOP
DTOU
6
CHROU
H,BLKPC

PCROUT
10
BLPCRB
MINIT
H,CHRPC
PCROUT

I L D

O L D

;OPEN FILE

;CHECK STATUS

;UNABLE TO OPEN
;IS INPUT DEVICE A DISK

;N0 - DO INPUT BY C H A R A C T E R S
;SET UP GC FOR

BLOCK INPUT ROUTINE

;SET U BLOCK GET POINTERS

;G0 SET UP OUTPUT
;USE CHRGC ROUTINE

;TELL OPR NHATS GOING ON

;DEVICE TYPE

;DEVICE NUMBER

;FILE NAME

; P U T I T A W A Y

;OPEN FILE

;CHECK STATUS

;UNABLE TO OPEN
;IS O U T P U T DEVICE DISK

;N0 DO OUTPUT 3Y CHAR
;SET UP PC FOR
BLOCK PUT ROUTINE

;SET UP BLOCK PUT POINTERS

;G0 DO MISC INIT
:SET UP OUTPUT BY CHAR

; I N P U T L E A D E R

: O U T P U T L E A D E R

oos

June. 1977 1 1 5

The copy loops call the get character and put character routines

to copy binary bytes or ASCII coded characters.

007500 ;

007600 ;MAIN COPY LOOPS

007700 ;

007800 LDA FNIN ;GET F I L E TYPE

007900 C P I ; ED IT SOURCE?

008000 J Z ASCCOP ;YES - I S A S C I I F I L E

008100 CP I ; E D I T BACKUP F I L E ?

008200 JZ ASCCOP ;YES - I S A S C I I F I L E
008300 C P I ; L I S T I N G F I L E ?

008400 JZ ASCCOP ;YES - I S A S C I I F I L E

008500 ; ;NO - MUST BE BINARY
008600
008700 ;B INARY COPY LOOP

008800
008900 B INCL1 MVI 3 , 1 5 SET COUNTER

009000 B INCLP CALL GC GET CHARACTER

009100 DW BINEOF EOF ROUTINE

009230 CALL PC PUT BINARY BYTE

009300 C P I 0377 RUBOUT?

009400 JNZ B INCL1 NO - RESET COUNTER & LOOP

009500 DCR B ONE LESS RUBOUT TO GO

009600 J Z EX IT ALL DONE

009700 JMP BINCLP LOOP

009800 BINEOF MVI B , 1 5 ADD RUBOUT EOF MARKER

009900 MVI A , 0 3 7 7 RUBOUT

010000 B I N E O l CALL PC OUTPUT RUBOUT .

010100 DCR B ONE LESS TO GO

010200 JNZ B I N E O l LOOP I F NOT DONE

010300 JMP EXIT ALL DONE
010400

010500 ^ A S C I I COPY

010600
010700 ASCCOP LDA DTOU ;CHECK DEVICE TYPE

010800 CP I 6 ; I S I T F D S

010900 JNZ ASCCL2 ;NO - MUST EXPAND CTL I , E T C .

011000 ASCCL1 CALL GC ;GET CHARACTER

011100 DW ASCEOF ;EOF ROUTINE
011200 CALL PC ;OUTPUT ASC CHAR TO D I S K ,

011210 ; NO TAB EXPAND

011300 CP I 332 I S CHAR CTL Z
011400 JZ EX IT YES - ALL DONE

011500 JMP ASCCL1 NO LOOP

311600 ASCEOF MVI A , 0 3 2 ADD CTL Z TO F I L E
011700 CALL PC OUTPUT IT

011800 JMP EXIT ALL DONE
011900 ASCCL2 CALL GC GET CHARACTER
012000 DW ASCEOF EOF ROUTINE

012100 STA DA PC 2 PUT CHAR AWAY

312200 CALL 10 OUTPUT IT

COS

(June, 1977

012303

312400

012500

012600

DW

C P I

J Z

JMP

RBPC2

332

EX IT

ASCCL2

; I S CHAR CTL Z?

;YES - ALL DONE

;NO LOOP

;GET CHARACTER ROUTINES

GC

GCNWBL

BLKGC

Get character uses block input M o n i t o r Calls to read data from

the input f i l e . The routine checks for input errors and end-of-file

m a r k s .

012700 ?

0 1 2 8 0 0
012900

013000

013130

313233

313330

313400

313500

313630

013700

013800

013900

014330

014130

014200

014210

014330

314433

314500

314633

314730

014830

014900

015003

015100

015203

315333

315400

315500

315600

015*700

015833

315 i<30

3 1 6 J 3 3

316133

316203

C H R G C

PUSH

LHLD

PCHf

C A L i .

DW

LDA

CP I

POP

J Z

PUSH

ORA

JNZ

LHLD

MOV

ORA

JZ

DCR

LHLD

MOV

INX

SHLD

POP

JMP

POP

CALL

DW

LDA

CP I

J Z

ORA

JNZ

LDA

JMP

H

GCROUT

1 0

BLGCRB

BLGCST

325

H

BDEX

H

A

ABORT

BLGCCP

A ,M

A

GCNWBL

M

BLGCDP

A,M

H

BLGCDP

H

GDEX

H

1 0

RBGC

STGC

325

BDEX

A

ABORT

DAGC

GDEX

SAVE [H ,L]

GET ADDRESS OF ROUTINE TO USE
JUMP TO IT

SET UP POINTERS FOR NEW BLOCK

;CHECK STATUS

; I S IT EOF

;RESTORE [H ,L]

;TAKE EOF EXIT

;SAVE [H ,L]

;ANY ERRORS

;YES - 3 A I L OUT

;GET POINTER TO

NUMBER OF BYTES LEFT

;GET NBR BYTES LEFT

I S ZERO MUST GET ANOTHER BLOCK

ONE LESS

GET POINTER TO DATA

GET DATA

ADVANCE POINTER

PUT POINTER AWAY

RESTORE [H ,L]

TAKE NORMAL EXIT

RESTORE [H ,L]

GET CHARACTER

CHECK STATUS

EOF?

YES

ERROR STATUS

YES - 3 A I L OUT

Put character uses block output Monitor Calls to write data into

the output file.

316333 ;

016403 ;PUT CHARACTER ROUTINES

316500 ;

016600 PC PUSH H ;SAVE [H ,L]

01670 0 LHLD PCROUT :GET ADDRESS OF ROUTINE TO USE

ocs

June, 1377 117

016800 P C H L ;JUMP TO IT
016900 B L K P C PUSH PSW ;SAVE DATA
017000 L H L D B L P C C P ;POINTER TO N U M B E R
017010 ; OF B Y T E S LEFT IN BUFFE
017100 MOV A . M ;GET N U M B E R OF B Y T E S LEFT
017200 ORA A ;IS IT ZERO?
017300 JNZ B L K P C S :NO STUFF BYTE
017400 C A L L 10 ?SET UP P O I N T E R S FOR NEW BLOCK
017500 DW B L P C R B
317600 LDA B L P C S T :CHECK S T A T U S
017700 O R A A
317800 JNZ A B O R T NO G O O D - B A I L O U T
817900 B L K P C S DCR M O N E LESS BYTE
018000 LHLD B L P C D P G E T P O I N T E R TO D A T A
018180 POP PSW R E S T O R E DATA
018200 MOV M , A PUT D A T A IN B U F F E R
018300 INX H A D V A N C E P O I N T E R
018400 S H L D B L P C D P P U T P O I N T E R A W A Y
018500 POP H R E S T O R E [H,L]
018680 RET A L L DONE
018700 C H R P C POP H R E S T O R E [H,L]
018800 PUSH PSW S A V E C H A R A C T E R
013900 STA DAPC S T O R E C H A R A C T E R
019000 C A L L 10 O U T P U T IT
019100 DW RBPC
019208 LDA S T P C :CHECK S T A T U S
019388 JNZ A B O R T
819438 POP PSW ;RESTORE C H A R A C T E R
319588 RET :ALL D O N E
819603
819700 :TAKE C A R E OF L E A D E R
019800
819900 ILD RET . +**
020000 O L D RET . ***
020100 ;

020288 ;ERROR B A I L O U T S
020380
020400 N O I N O P C A L L MSG
320500 DW M S H O I N
820600 JMP A B O R T
828708 N O O U O P C A L L MSG
020800 DW M S N O O U
823900 JMP A B O R T
021030 U S N O I N DB 015
021100 DB 812
021200 DC "INPUT FILE OPEN ERROR"
021300 M S N O O U OB 815
021430 DB 812
021500 DC "OUTPUT FILE OPEN ERROR"

118

oos

June. 1977

The following Reguest Control Blocks correspond to COP's Monitor

C a l l s .
8 21603
021703 ;OPEN INPUT F I L E REQUEST BLOCK

321833 ;

021930 ;OPEN W/ ERROR MSG SUPPRESSION
322000 RBINOP DB 0104+0203

022130 ST1NOP DS 1 STATUS

022200 DB 1 F I L NBR
322303 DB 1+0233 SEQ I N , E X P DEV

022400 DTIN DS 1 DEV TYPE

322500 DNIN DS 1 DEV NBR

" 2 2 6 0 0 DW FNIN PTR TO F I L E NAME

J 2 2 7 0 0 FNIN DS 8 F I L E NAME

-022803 ;

322933 ;OPEN OUTPUT F I L E REQUEST BLOCK

323330 *

323130 ;OPEN W/ ERROR MSG SUPPRESSION

023200 RBOUOP DB 0104+3233

023300 STOUOP DS 1 ;STATUS

323400 DB 2 7F ILE NBR
023500 DB 2+0200 ;SEQ OUT,EXP DEV

023630 DTOU DS 1 ;DEVICE TYPE

023703 DNOU DS 1 ;DEV NUMBER
323800 DW FNOU ;PTR TO F I L E NAME

323930 FNOU DS 8 : F I L E NAME
324030

024100 CHARACTER GET REQUEST BLOCK

024233

024303 RBGC DB 2 CHRGFT

324400 STGC DS 1 STATUS

024500 DB 1 F I L E NBR

024600 DAGC DS 1 DATA
024700

324803 :CHARACTER PUT REQUEST 3L0CK

024933

025000 RBPC DB 3 ;CHRPUT

325133 STPC DS 1 ;STATUS

025200 DB 2 ; F I L E NBR
325333 DAPC DS 1 :DATA

325403 ;

325500 :REQUEST BLOCK TO SET UP CHRGET POINTERS INTO

325600

025700 BLGCRB DB 0107 SET UP BLK GET POINT

325830 BLGCST DS 1 STATUS BYTE
325930 DB 1 INPUT F I L E NUMBER

326003 BLGCCP DS 2 POINTER TO NUMBER

326010 ; LEFT IN BLOCK

326130 BLGCDP DS 2 ;PO INTER TO DATA

326230 DS 2 :RESERVED FOR MONITOR

326300 :

326430 ;REQUEST BLOCK TO SET UP CHRPUT POINTERS INTO

oas

June, 1977

026509
026600
026708
026800
026900
026910
027080
027100
027200
027300
027400
027500
027600
027700
327800
027900
328300
028100
028200
028300
328400
028500
028603
028700
028800
028900
029333

B L P C R B DB 3110 ;SET UP BLK PUT P O I N T E R S
B L P C S T OS 1 ;STATUS BYTE

DB 2 ;OUTPUT FILE NBR
B L P C C P DS 2 ; P O I N T E R TO S P A C E
; LEFT IN. BLOCK
B L P C D P DS 2 ; P O I N T E R . T O D A T A

DS 2 ;RESERVED FOR M O N I T O R

C H A R PUT W/ T A B E X P A N S I I O N

R B P C 2

D A P C 2

;MISC

G C R O U T
P C R O U T
C O P I D

DB
DS
DB
DB
DW
DW
DS
DS

DS
DS
OB
DB
DC

0133 ;WRITE
1 ;STATUS
2 ;OUTPUT FILE N U M B E R
3 ;ASCII
DAPC2 ;PTR TO B U F F E R
1 ;SIZE OF B U F F E R
2 ;NUMBER T R A N S F E R E D
1 ;DATA

2
2
015
012
"COPY FILE'

A D D R E S S OF GC R O U T I N E TO USE
A D D R E S S OF PC R O U T I N E TO USE
C R
LF

The following are messages for the dialog with the operator.

029100 A S F N M
029200
329300

DB 315
DB 312
DC " E N T E R FILE NAME

329400 S E T U I N
029500
329603

DB 015
DB 012
D C " S E T UP I N P U T "

329703 S E T U O U
329800
329903

.DB 315
DB 312
D C " S E T UP OUTPUT '

333000 END COP

OOS

June, 1977

o

Octal Address Octal

000 076

001 003

002 323

003 020

004 076

005 0XX

006 323

007 020

010 041

011 302

012 077

013 061

014 032

015 000

016 333

017 020

020 017

021 320

022 333

023 021

024 275

025 310

026 055

027 167

030 300

031 351

032 013

033 000

o

APPENDIX F. 'BOOTSTRAP LOADERS

2 stop bits - none up

1 stop bit - A8 up

Octal Data

076

003

323

020

076

0XX (XX = 21 for 2 stop bits,
25 for 1 stop bit)

323

020

010 041

011 302

012 077

013 061

014 032

015 000

016 333

017 020

020 017

021 320

022 333

023 021

024 275

025 310

026 055

027 167

030 300

031 351

032 013

033 000
oos
June. 1977 1 21

PIO

Load Sense Switches A10, A8 - up

Bootstrap Loader

Octal Address Octal Code

000 041

001 302

002 077

003 061

004 023

005 000

006 333

007 004

010 346

011 001

012 310

013 333

014 005

015 275

016 310

017 055

020 167

021 300

022 351

023 003

024 000

1 2 2

oos

June. 1977

SIO

Load Sense Switches A9 - up

Bootstrap Loader

Octal Address Octal Data

M l

M l 302

002 477

003 061

004 022

005 000

006 333

007 000

010 017

011 330

012 333

031 001

014 275

015 310

016 055

017 167

020 300

021 351

022 003

023 000

u
oos

June, 1977

ACR

Load Sense Switches A9, A8 - up

Bootstrap Loader

Octal Address Octal Data

000 041

001 302

002 077

003 061

004 r 022

005 000

006 333

007 006

010 017

011 330

012 333

013 007

014 275

015 310

016 055

017 167

020 300

021 351

022 003

124

oos

June. 1977

023

L / 4PI0

Load Sense Switches

Bootstrap Loader

Octal Address

000

001

002

003

004

005

006

007

010

011

012

013

, 014

^ 015

016

017

020

021

022

023

024

025

026

027

030

031

032

033

034

U
oos

June, 1977

000

A 10 - up

Octal Data

257

323

040

323

041

076

054

323

040

041

302

077

061

033

000

333

040

007

330

333

041

275

310

055

167

300

351

014

000

125/126 blank

INDEX

u

o

u

28
$ 28
% 28

& 28
90

' 90

* . 28

2 e r r o r 71

8080 I n s t r u c t i o n S e t 53
84

A command (ED IT) 37

A command (L INK) 76

A e r r o r 71
ABORT 93
A S C I I C h a r a c t e r C o d e s 99

A S C I I f i l e 15

A b s o l u t e a d d r e s s 51

A b s o l u t e f i l e 15

28
A b s o l u t e l o a d t a p e f o r m a t I l l

A d d r e s s - s p e c i a l 51

A d d r e s s E x p r e s s i o n 50

A d d r e s s c h a i n i n g 77

A d d r e s s e s ' * * 51

A d d r e s s i n g mode 51

A l t e r command 37

A n g l e b r a c k e t s 14

A s s e m b l e r 11

45

A s s e m b l e r l i s t i n g 12

A s s e m b l e r p s e u d o - o p s 68
A s s e m b l y L a n g u a g e 9

45

3 command (ED IT) 40

B e r r o r 71
B a c k a r r o w 21

B a c k u p f i l e (ED IT) . 28

Bad F i l e Number . . . 26

B i n a r y f i l e 15

B l o c k i n p u t 107

B l o c k o u t p u t 108

B o o t s t r a p l o a d e r 4
121

B r e a k p o i n t 88

B y t e 14

C command (ED IT) 40

C e r r o r 71

C s ubcommand (SO IT) . . 38

CMN 68
CNS 93

COP 112

oos
June. 1977 !

127

C a r r i a g e R e t u r n 14
17

22
40

C a s s e t t e . . 5
C h a r a c t e r a d d r e s s . . 43

Checksum e r r o r ^ . . 7

26
Check sum l o a d e r 7

C l o s e 105

Comment 47
Common a d d r e s s 52
C o n s o l e 93
C o n s t a n t a d d r e s s 47
C o n t r o l / C I S

22
C o n t r o l / 1 17

84

C o n t r o l / O 18
22

C o n t r o l / Q 18

22
C o n t r o l / R 17

22

C o n t r o l / S 18
22

C o n t r o l / U 17

22
C o n t r o l / x 14

17

D command (ED IT) 36

D e r r o r 71

D subcommand (ED IT) 38

DATA 68

69

DC 69

DEBUG S3
DEL command 23
DIN command 23

D IR command 24
DSM command 24
DS 69

DW 70

D a t a a d d r e s s 52

D e c i m a l a d d r e s s 48

D e f i n i t i o n s 14

D e l e t e command (EDIT) 36

D e l e t e 109

D e l i m i t e r I S

23

D e v i c e 23

D e v i c e t a b l e . . 25
D i r e c t o r y t r a c k 102

D i r e c t o r y 109

128

oos

June. 1977

/ D i s k B o o t L o a d e r 3

D i s k F u l l 27
D i s k L o a d e r 5

D i s k f o r m a t

D i s m o u n t * * 189
E command (EDIT) * * 41

E command (L INK) 76

E e r r o r 71

EDIT 33

END 70

ENDIF 70

ENTRY 70

70
EXIT
EXT 1

E d i t o r 9

33

E d i t o r b a c k u p f i l e 28

E d i t o r s o u r c e f i l e 28
E n a b l e 27

End o f f i l e 27

E r r o r c o d e (M o n i t o r) 25

E r r o r m e s s a g e s (M o n i t o r) 25

E x p l i c i t a d d r e s s 83

E x t e r n a l a d d r e s s 51

E x t e r n a l r e f e r e n c e 75

F command (EDIT) 36

F e r r o r 71

File 14
23

F i l e - A S C I I 15
F i l e - a b s o l u t e 15

F i l e - r a n d o m 15

F i l e - r e l o c a t a b l e 15
F i l e - E d i t o r b a c k u p . 28
F i l e - E d i t o r s o u r c e 28

F i l e - a b s o l u t e 28

F i l e - l i s t i n g 28
46

F i l e - r a n d o m 102

F i l e - r e l o c a t a b l e 28

F i l e - s e q u e n t i a l 105

F i l e Copy u t i l i t y 112

F i l e L i n k E r r o r 26

F i l e mode 2*7

F i l e n a m e 28

F i l e number 25

F i l e t a b l e 25
28

F i n d i n g a s t r i n g . . . 36

Format of disk 101
/ F r o n t p a n e l s w i t c h e s 4

G command (DEBUG) 89

Ge t c h a r a c t e r 107

oos
June, 1977 1 2 9

H subcommand (ED IT) 38

H a n d l e r t a b l e 26

H e x a d e c i m a l a d d r e s s . 48

I command (EDIT) . * 34

I s ubcommand (ED IT) 38

I / O E r r o r 26

I / O T a b l e 26

I/O modes (DEBUG) 87
I F F 71

I N I T . . 93

10 94
I n c r e m e n t 34

40

84

I n d i r e c t a d d r e s s i n g . . . 84

I n i t i a l i z e 109

I n i t i a l i z i n g DOS . 7

I n p u t c o n v e n t i o n s 17

I n p u t i n t e r r u p t 7
18
22

I n s e r t command (ED IT) 34
I n s t r u c t i o n s e t - 8 0 8 0 53
I n t e r n a l e r r o r 27

I n t e r r u p t - i n p u t 7
18
22

I n t r o d u c t i o n 3

I n v a l i d Lo ad D e v i c e E r r o r 7

K subcommand (ED IT) . . 39

L command (EDIT) 40

L command (L INK) 76

L e r r o r 71

LINK 13
51
75

L IST 95

LOA command 24

L a b e l 46

48

L i n e 33

L i n e f e e d 84

L i n k i n g L o a d e r 13

51

75

L i s t 23
L i s t i n g f i l e 28

46

Load s w i t c h 6
L o a d i n g M S 3

Load 110

M e r r o r 71
MNT command 9

24
COS

June. 1977 1 21

MSG 94

M a c h i n e l a n g u a g e 45
Memory e r r o r 7

M n e m o n i c 45

Mode m i s m a t c h 27

M o n i t o r . . 21

M o n i t o r C a l l s . . 103

M o n i t o r commands 23

M o n i t o r e r r o r m e s s a g e s „ 25

Moun t . . . 110

N command (ED IT) . . . 40

N e r r o r 72

Name 49

N o t a t i o n 14

0 e r r o r . . . 72

O b j e c t c o d e 13

45

O b j e c t c o d e m o d u l e 46

O c t a l a d d r e s s . . 48

O p c o d e 25

46

O p c o d e l i s t 52

Open 27
104

O p e r a n d . . . 47

O v e r l a y e r r o r 7
P command (DEBUG) 89

P command (EDIT) 41

P e r r o r 71
P a g e 33

43

P a g i n g commands 40

P a p e r t a p e 4

P h a s e E r r o r 72

P r o g r a m D e v e l o p m e n t P r o c e d u r e 9

P r o g r a m 16

P r o g r a m - s y s t e m 16

P r o g r a m - u s e r 16

P r o g r a m p o i n t . . . 53

P r o m p t 16

P s e u d o - o p s . . - 68

P u t c h a r a c t e r 107

Q command (DEBUG) 88

Q command (EDIT) . . 40

41

Q e r r o r 72

R command (EDIT) 36

R subcommand (ED IT) 39

REN command . 24

RQCB a d d r e s s 25

RUN command 24

Random b l o c k 27
Random f i l e . . 15

102
DOS

June, 1977 1 3 1

Random r e a d 106

Random w r i t e 106
R a n g e . 33

87

Read 105

R e c o r d number * * 27

R e l a t i v e a d d r e s s 51
84

Relocatable file 15
28

R e l o c a t a b l e l o a d m o d u l e 75

R e l o c a t a b l e o b j e c t c o d e m o d u l e 77

Rename 109

R e p l a c e command (EDIT) 39

R e q u e s t C o n t r o l B l o c k (RQCB) 183

R e t u r n a d d r e s s 25

R u b o u t . . . * * 17
21

S command (EDIT) 36

S command (L INK) 76
S subcommand (ED IT) 39

SAV command 24

SYSENT 93

S a v e 113

Sector 101
S e n s e s w i t c h . * * 6

S e q u e n t i a l f i l e 15

S o u r c e c o d e 45

S o u r c e f i l e (ED IT) 28

S o u r c e l i s t i n g 12

S p a c e . 14

38

S q u a r e b r a c k e t s 14

S t a r t i n g a d d r e s s 75

S t a t e m e n t 46

Subcommand (EDIT) 37

S y s t e m p r o g r a m 16

T e r r o r 72

TASKNM 94

T e r m i n a l s w i t c h 6

T e x t E d i t o r (ED IT) 9

33

T r a c k 101

U command (L INK) 76

U e r r o r 72
U p a r r o w 84
U p p e r c a s e 18
User p r o g r a m 16
V e r r o r 72
W command (EDIT) 40

W r i t e 106

X command (DEBUG) 88
X subcommand (ED IT) 39

Y command (DEBUG) 89
90S

1 3 2 June, 1977

Microsoft CP/M BAS1C-

Addendum to Microsoft BASiC Manuai
for Users of CP/M Operating Systems

A CP/M version of BASIC (ver 4.5) is now available from Microsoft.
This version of BASIC is supplied on a standard size 3740 single density
diskette. The name of the file is MBAS1C.COM. To run MBAS1C, bring up
CP/M and type the following:

A>MBAS1C <carriage return>

The system will reply:

xxxx Bytes Free
BASIC Version 4.5
(CP/M Version)
Copyright 1977 (C) by Microsoft
Ok

You are now ready to use MBAS1C. MBAS1C is identical to Altair
Disk BASIC version 4.1, with the following exceptions:

1. MBASiC requires 17K of memory.(A 28K or iarger CP/M
system is recommended).

2. The initialization dialog has been replaced by a
set of options which are placed after the MBASIC
command to CP/M. The format of the command line
is:

A>MBAS!C ^<filename>]^/F:<number of files>j
^/M:<highest memory location^

items enclosed in brackets are optional.

if <fi!ename> is present, MBASIC proceeds as if a
RUN <filename> command were typed after initiali-
zation is complete. A default extension of .BAS
is used if none is supplied and the filename is
less than 9 characters long. This allows BASIC
programs to be executed in batch mode using the
SUBMIT facility of CP/M. Such programs should in-
clude a SYSTEM statement (see below) to return to
CP/M when they have finished, allowing the next
program in the batch stream to execute.

if /F:<number of files> is present, it sets the
number of disk data files that may be open at any
one time during the execution of a BASIC program.
Each file data block allocated in this fashion re-
quires 166 bytes of memory. If the /F option is

J

omitted, the number of files defaults to 3.

The /M:<highest memory !ocatton> option sets the
highest memory location that wilt be used by MBASiC.
!n some cases it is desirable to set the amount of
memory well below the CP/M's FDOS to reserve space
for assembly language subroutines.)n ail cases,
<highest memory iocation> shouid be below the start
of FDOS (whose address is contained in locations 6
and 7). !f the /M option is omitted, aii memory up
to the start of FDOS is used.

NOTE

Both cnumber of fHes> and <highest memory iocation>
are numbers that may be either decimal, octai (pre-
ceded by 60) or hexadecimal (preceded by 6H).

Examples:

A>MBAS!C PAYROLL.BAS Use a H memory and 3 files,
load and execute PAYROLL.BAS.

A>MBAS!C !NVENT/F:6 Use all memory and 6 files,
!oad and execute iNVENT.BAS.

A>MBAS!C /M:32768 Use first 32K of memory and
3 files.

A>MBAS!C DATACK/F:2/M:&H9000
Use first 36k of memory, 2
files, and execute DATACK.BAS

3. The DSKF function is not supported by MBASiC. Use
CP/MSTAT.

4. The FiLES statement in MBAStC takes the form
F!LES[<f!lename^. if <filename> is omitted, all
the files on the currently selected drive wil! be
listed. <fiiename> is a string formula which may
contain question marks (?) to match any character
in the filename or extension. An asterisk (*) as
the first character of the file name or extension
wil! match any file or any extension.

Examples:

FiLES
FiLES "*.BAS"
FiLES "B:*.*
FiLES "TEST?.BAS"

1

5. The LOF(x) function returns the number of records
present in the last extent read or written (usually
by a PUT or GET).

6. CSAVE and CLOAD are not implemented.

7. LUST and LPRiNT assume a 132 character wide printer
and write their output to the CP/M LST: device.

8. All filenames may include A: or B: as the first two
characters to specify a disk drive, otherwise the
currently selected drive is used.

9. Filenames themselves follow the normal CP/M naming
conventions.

10. A default extension of .BAS is used on LOAD, SAVE,
MERGE and RUN <filename> commands if no "." appears
in the filename and the filename is less than nine
characters long.

11. The error messages "DISK NOT MOUNTED", "D!SK ALREADY
MOUNTED", "OUT Of RANDOM BLOCKS", and "FILE LINK
ERROR" are not included in MBASIC.

12. The CONSOLE statement is not included.

13. To return to CP/M use the SYSTEM command or state-
ment. SYSTEM closes all files and then performs a
CP/M warm start. Control-C always returns to MBASIC,
not to CP/M.

14. if you wish to change diskettes during MBASIC opera-
tion, use RESET. RESET closes all files and then
forces CP/M to re-read all diskette directory infor-
mation. Never remove diskettes while running M8AS1C
unless you have given a RESET command. The RESET
statement takes the place of the MOUNT and UNLOAD
statements in Altair BASIC.

15. MBASIC will operate properly on both Z-80 and 8080
systems.

16. MBASIC does not use any of the restart (RST) in-
struction vectors.

17. The FRC1NT routine is located at 103 hex and the
MAK1NT routine at 105 hex (add 1000 hex for ADDS
versions). These routines are used to convert the
argument to an integer for assembly language sub-
routines.

J

18. !f the LEFT$ or R!GHT$ string functions have zero
as the number of characters argument, they wil!
return the null (length zero) string.

19* The ERR() Disk error function is not supported as
CP/M handles ail disk error recovery.

20. Control-H (backspace) deietes the last character
typed and is echoed to the terminal.

21. RESTORE <!ine number> may now be used to set the
DATA pointer to a specific iine.

22. Ali error messages and prompts are printed with
lower case characters when appropriate.

23. Control-S may be used to cause program execution to
pause, in the suspended execution state, control-C
wil! cause a return to BASiC's command ievel, and
any other character wi!i cause the program to resume
execution.

24. The EOF function may be used with random files, if
a GET is done past end of file, EOF wiii = -1.
This may be used to find the size of a fiie using a
binary search or other algorithm.

25. LSET/RSET may be used on any string. The previous
restriction to FiELDed strings has been eliminated.

26. The string function !NPUT$(<number of characters>
[y[#]<fi!e number>]) may be used to read <number of
characters> from either the console or a disk file,
if the console is used for input, no characters wiil
be echoed and aii controi characters are passed
through except Controi-C, which is used to interrupt
execution of the)NPUT$ function.

27. VARPTR(#<fiie number>) returns the address of the
disk data buffer for fiie <fi!e number>.

BASIC Reference Manual

Addenda, April, 1977

1. Page 33, sub-paragraph b:

LINE INPUT ["<prompt string>",j; <string variable -names.

CHANGE TO:

LINE INPUT E"<prompt strings";] <string variable>

2. Page 40, Paragraph 5-3b, line 9:

The of the <integer expression> is the starting address of . . .

CHANGE TO:

The <integer expression is the starting address of . . .

3. Page 41. Insert the following paragraphs between Paragraphs 3 and 4.

ADDITION:

The string returned by a call.to USR with a string argument is that
string the user's routine sets up in the descriptor. Modifying [D,E] does
not affect the returned string. Therefore, the statement:

C$-USR(A$)

results in A$ also being set to the string assigned to C$. To avoid
modifying A$ in this statement, we would use:

C$-USR(A$+" ")

so that the user's routine modifies the descriptor of a string temporary
instead of the descriptor for A$.

A string returned by a user's routine should be completely within
the bounds of the storage area used by the original string. Increasing
a string's length in a user routine is guaranteed to cause problems.

4. Page 49, last paragraph, line 7:

. . . leading $ signs, nor can negative numbers be output unless the sign
is forced to be trailing.

CHANGE TO:

. . . leading $ signs.

1

1

J

UAJJLL RUiUiCULe M i L U i AUUatiUA, A p i l i , 1JJ J

Page 2

5. Page 59, last line: L'J:* - r - - - -

520 CLOSE #1 r "

.. CHANGE TO:_ —r

CLOSE 1 --r^r-. -

6. Rage 70, CLEAR [<expression>] explanation:

Same as CLEAR but sets string space to the value . . .

CHANGE T0:__-r.- . . .

Same as CLEAR but-sets string space (see 4-1) to the value . . .

7. Page 70; CLOAD <string expression> explanation, second line:

: . .character of STRING expression> to b e . . .

(BANGE TO: . -- _ .

rr; Character of <STRING expression to be . . .

8. Page 71: - . -. j; . r-r- , ...

C$AVE*<array name> _ __ iHE(cassette), Disk

CHANGE TO:

CSAVE*<array name> __ '. — - 8K (cassette) r Extended, Disk _ _

9. Page 75. insert the following after LET and before LPRINT.

ADDITION:

- - LINE INPUT LINE INPUT "prompt string": string variable name

y — - r Disk -- = -

r LINE INPUT prints the prompt string on the terminal and assigns all
input from the end of the prompt string to the carriage return to

r- the named string variable. No other prompt is printed if the prompt
string is omitted. LINE INPUT may not be edited by Control/A.

10. Page 76t POKE explanation, second line:

t^t f-If I is negative, address is 65535+1, . . .

CHANCE TO:

. . . If I is negative, address is 65536+1, . . .

1

1

J

BASIC Reference Manual Addenda, April, 1977
Page 3

11. Page 80, 0CT$: ^

O C R OCT$(X) 8K, Extended, Disk

CHANGE TO:

OCTf 0CT$(X) Extended, Disk

12. Page 81:

SPACE$ SPACE$(I) 8K, Extended, Disk

CHANGE TO:

SPACE$ SPACE$(I) Extended, Disk

13. Page 91, line 4:

. . . question (see Appendix E).

CHANGE TO:

. . . question (see Appendix H).

14. Page 95, first paragraph, line 3:

. . . Por instructions on loading Disk BASIC, see Appendix E.

CHANGE TO:

. . . For instructions on loading Disk BASIC, see Appendix H.

15. Page 103, line 11:

C (in extended) retains CONSOLE function.

CHANGE TO:

C (in Extended and Disk) retains CONSOLE and all other functions.

16. Page 112, Paragraphs, Line 3:

USRLOC for 4K and 8K Altair BASIC version 4.0 is 111 decimal.

CHANGE TO:

USRLOC for 4K and 8K Altair BASIC version 4.0 is 111 octal.

17. Page 114, third paragraph, line 2:

. . . by the first character of the STRING expression.

CHANGE TO:

4

1

J

m u i L M n e m u m M i t u i M U C M n , A p p n ,

. . . by the first character of the <string expression>. Note that the
program named A is saved by CSAVE"A".

!8. M e x , line 12: "" ^

ADDITION:

NULL . . . " ^ v v ' . -. J- .-72

u

?

4

4

J

o

u

J

DuD!jTj3

2450 Alamo SE
Albuquerque, NM 87106

