a\ltallr msy orEmaTIe SYSTER
. DOCUMENIIION

June, 1977

TABLE OF CONTENTS

Section Page

1. INTRODUCTION e e e e e e e Ve e e e 1

1-1. Introduction to this Manual« ¢ . . e 3

1-2. Loading and Initializing DOS ¢« ¢ v o o v ‘e 3

1-3. Program Development Procedure . . . « . « « « ¢+ ¢ & « + & 9

1-4, Notation and Definitions ¢« « ¢ o v« o 14

1-5, DOS Input Conventions + « « « ¢« « . e e e e 17

2. MONITOR e et e e e e e e e e e e e e e e R

2-1. Introduction to the Monitor e e e . 21

2-2. Input from the Conscle e e e e e 21

2-3. Monitor Commands . . . + « ¢« « ¢ « » e e e e e e e 23

2-4. Monitor Error Messages « . . . e e e e e e 25

2-5, File Name Conventions « ¢« ¢ o v ¢ v v v ¢ o 28

3. TEXTEDITOR & v v v v ¢ vt e vt e st et v o e 0 s a0 o .3

3-1, Introduction . . .« ¢ v v v v 4 b e e e e e e e e e e 33

3-2. Edit Commands« . « « « . e e e e e e e 34

7 4, ASSEMBLER . & . v v v v o e e e e e e e e e e e e e 43
(~/ 4-7, Statements 4 v i 4 e 4 e e e e e e e e e s 46
42, AdAreSSES + . v v v v e e e e e e e e e e e W7

=3, 0p-C0des . « v v v 4 v e e e e e e e e e e e e . B2

4-4, Assembler Error Messages . . . « « ¢ ¢ « v ¢ w00 s N

5. LINKING LOADER e e e e e e e e e e e e e s 73

5-1. Introduction ¢ v v e v e e e e e e e e e 75

5-2. Address Chaining . . . « . « ¢« v v o e e e e e e e e 77

5-3. Relocatable Object Code Module Format« 77

6. DEBUG . . . « v v v v v v o . e e e e e e e e 81

6-1. Introduction « « v ¢« o« v o v o e e e e e 83

622, DISPIAY v ¢ v ¢ v v e e e e e e e e e e e e 87

6-3. Modify e e e e e e e e e e e e e e 87

6-4. Breakpoints e e e e e e e e e e e e e e 88

6-5. Controlling Execution . . . « v v ¢« ¢ v v ¢ 0 v v v 0. 89

6-6. Using Debug with Relocated Programs + .« . 90

7. MISCELLANEQUS SYSTEM PROGRAMS v « v v v v v v v v v o s 91

25 R ¢ T 93

7-2. CNS . . v v 0 e e e e e e e e e e e e e s 93

’ 7-3, SYSENT v v v v v v v e e e e e e s e e e e e e 93
{ Tede LIST o v v e e e e e 95

. 0es 7

June, 1977

APPENDICES

A, ASCII Character Codes v v v ¢ v v ¢« e v v o o 99
B. Disk Information « ¢ v v v v o v v e v e e e e 101
C. Monitor Calls « v & v ¢ v v v o v v e e v o o v« o o s « .. 103
D. Absolute Load Tape Format 11
E. The File Copy Utility v v v v v ¢ v v v v 0 v v 0 0 s 112
F. Bootstrap Loaders v « v v v v v e v v s v s 00w .. 121
INDEX © & & v v v v 0 v e e e e e e e e e e e e e e e e 127
005

Juna, 1977

777777777

ALTATR DS DOCUNIETATION

| SEETION |
[TRODUETION

1/(2 Blank)

G

1. INTRODUCTION
1-1. Introduction to This Manual

The Altair Disk Operating System (DOS) is a system for developing
and running Assembly Language programs. It consists of a Monitor and
several system programs. The parts of this manual describe the various
components of the system.)

~ Chapter 2--the Monitor. The Monitor provides control and disk
file management for all of DOS. Monitor Input/Output routines are avail-
able to any program running under DOS.

Chapter 3--the Text Editor. The Editor (EDIT) creates, modifies
and saves ASCII coded files. Typical Editor files include Assembly
Language programs and data.

Chapter 4--the Assembler. The Assembler (ASM) converts symbolic
Assembly Language programs into relocatable machine code modules.

Chapter 5--the Linking Loader. The Linking Loader (LINK) Toads
the relocatable object code modules into memory, assigns addresses to
symbols and resolves external references.

Chapter 6--Debug. Debug is a versatile symbolic debugging program.
With Debug, the programmer can interrupt execution of a program, examine
and modify the contents of register and memory locations.

Chapter 7--Miscellaneous System Programs.

Console (CNS) transfers command of the Monitor from one terminal
device to another.

Initialize (INIT) allows the system parameters (amount of memory,
number of disks, etc.) to be changed without reloading the system.

1-2. Loading and Initializing DOS
When the computer is first turned on, there is nothing of value

in the semiconductor read/write memory. Therefore, before D0S can be
used, the Monitor must be loaded from disk. This requires another
program, the loader. The loader may reside in read-only memory or may
be loaded from paper tape or cassette.
A. Systems with a Disk Boot Loader PROM mounted in the proper
slot of a PROM Memory Card have the loader program readily
available in non-volatile memory. Use the following procedure

to load DOS with the DBL PRQOM:
00

June, 1377

1. Turn on the power to the computer, disk drives and peri-

pherals.

Raise STOP and RESET simultaneously and then release them.

Raise switches A15-A8 and lower switches A7-AQ.

Actuate EXAMINE.

Make sure the DOS diskette is mounted in disk drive 0,

that the door is closed and the disk has come up to speed

(approximately 5 seconds).

6. Enter sense switch settings for the terminal I/0 board
from Table 1-A. .

7. Press RUN. :

DOS should start up and print MEMORY SIZE? -For the remainder

of the initialization procedure, see Section C belaow.

For systems without the DBL PROM, the loading procedure invalves

entering a bootstrap loader from the computer front panel,

[S LI I 7S T \ V)
« e e e

running it to Toad a disk loader program from paper tape or
cassette and then running that loader to load the Monitor from
disk. The procedure for doing this is as follows:

1. Turn on the power to the computef and peripheral devices.
2. Raise the STOP and RESET switches simultaneously and then
release them.)

3. Make sure the terminal is on-line (on a Teletype

means the mode switch is set to LINE).
Now enter the proper loader program for the device through
which the loader tape is to be entered. The bootstrap loaders
are in Appendix F.

TM, this

The bootstrap loaders are entered on the front panel switches
A7 - AQ. Each switch has two positions, up and down. By
convention, up is designated as 1 and down as 0. Therefore,
the eight switches represent one byte of data. Each group of
three switches, starting from the right, can represent the
digits Q0 through 7. The leftmest two switches represent the
digits 0 through 3. For examp]e,’to enter the octal number
315, the switches AQ through A7 are set to correspond to the
following table:

00s
June, 1977

00s
June, 1977

Switch A7 A6 A5 A4 A3 A2 Al A0
Position up up down down up up down up

Octal Digit 3] 5

The data bytes of the loader programs are shown in octal and
are to be entered on A0 - A7 in this manner. To enter the
programs:

4. Put switches AQ - A15 in the down position.

5. Raise EXAMINE. _
6. Put the first loader program data byte in switches A0 - A7.
7. Raise DEPOSIT.

8. Put the next data byte in A0 - A7.

9. Depress DEPOSIT NEXT '

10. Repeat steps 8 and 9 for each successive data byte until
the loader is completely entered.

Now check the Toader to make sure it has been entered correctly:

11. Put switches A0 - Al15 in the down position.

12. Raise EXAMINE, .

13. Check to see that the 1ights DO - D7 correspond to the
correct data b;te for the first location. A light on
indicates 1; off means 0. The rightmost three lights
correspond to the rightmost octal digit. The next three
Tights represent the middle digit and the leftmost two
lights represent the left digit.

If the data byte {is correct, go to step 16.
If the data byte is not correct, go to step 14.

14. Put the correct value in switches A0 - A7.

15. Oepress DEPOSIT. '

16. Depress EXAMINE NEXT.

17. Check each successive byte by repeating steps 13 - 16
until the whole lcader is checked.

18. If there were any incorrect bytes, check the whole loader

again to see that they were corrected.

Now the paper tape or cassette labelled DISK LOADER can be read.
For the paper tape version, put the tape in the reader and make

sure

it is positioned on the leader. The leader is the section

of tape at the beginning with a series of 3028 characters {3 of

8 holés punched). For the cassette version, put the cassette in
the reader and make sure it is completely rewound.

19. Put switches A0 - Al5 in the down position.

20. Raise EXAMINE. .

21. Enter the proper sense switch settings for the load and
terminal devices in switches A8 - A15. The rightmost four
switches contain the load device setting, and the leftmost
switches contain the setting for the terminal devices.
Table 1-A shows both the octal sense switch setting and
the load and terminal switches to be raised for each
standard Altair system peripheral. [f a device is used
for interface to the terminal, the switches in the "Ter-
minal Switches" column must be raised. If the device
interfaces the peripheral through which DOS is being
loaded, the "Load Switches" are raised.

Sense Switch Terminal Load
Setting Switches Switches Channels
2s10 .
(2 stop bits) 0 None None - 20,21
2510 -
(1 stop bit) 1 A2 A8 20,21
S10 2 A13 A9 0,1
ACR 3 A13,A12 A9,A8 6,7
4P10 4 Ala Al1Q 40,41,
42,43
P10 5 Al14,A12 A10,A8 4,5
Non~Standard
terminal 14
| No terminal 15

22.

Start the loading process. If the load device is connected
to the computer through an 88-SI0 A, B or C or an 88-PI0
board, start the tape reader and then press the RUN switch
on the computer front panel. For the 2SI0 or 4PI0 boards,
press RUN and then start the reader. For the ACR, rewind
and start the cassette. Listen to the signal from the

tape (through an auxiliary earphone). When the steady tone
changes to a warble, press RUN on the computer.

nos
June, 1977

If the checksum loader detects a loading error, it turns on
the Interrupt Enable light and stores the ASCII code of an
(~/ error letter in memory location 0. The error letter is also
transmitted over all terminal data channe];. If a terminal is
connected to one of these ports, it prints the error letter.

The error letters are as follows:

-C Checksum error. If the checksum on the DOS disk file
does not equal the checksum generated by the loader, C
error results. ‘The error may not occur if the diskette
is loaded again. If it does occur three -times consecu-
tively, the loader tape or diskette is at fault and
muyst be replacad.

M Memory error. Data from the disk does not store properly.
The location at which the error occurred is stored at
locations 1 and 2 absolute.

0 Overlay error. An attempt was made to load data over
the Teader.
I Invalid Load Device. The setting of the sense switches

is incorrect.

When the Monitor has been loaded correctly, it responds with
the first initialization question.

MEMORY SIZE? '
Here the programmer may specify the amount of memoéy, in bytes,
to be used by DOS. Typing a carriage return or zero causes
DOS to use all of the read/write memcry in the system. The
next question is

INTERRUPTS? .
Typing Y enables input interrupts and Typing N or carriage
‘return disables them. If interrupts are enabled, special.
characters may be used to control program execution.

NOTE

Input interrupt features may be used only if the input inter-
face board is strapped to accept interrupts. See Section 2-2
for information on I/0 interrupts. If interrupts are not
strapped, the answer to the INTERRUPTS? question must be N.

b~ c.

s

0as
\-/ﬁn/ 7

June, 1977

The next question is
HIGHEST DISK NUMBER?
to which the programmer responds with zero if there is one
disk in the system, 1 if there are two disks and so on. The
next question is
HOW MANY DISK FILES?
to which the programmer responds with the number of disk
files (both seduentia] and random) to be open simultaneously.
Resbonding with a carriage return sets the number of files at
zere. Finally, DOS asks
HOW MANY RANDOM FILES?
Again, the programmer responds with a number or with a carriage
-return, which specifies zero random files.
To save time, especially when a slow terminal is in use, all
of the initialization answers can be entered at once with the
parameters separated by spaces. For example:
MEMORY SIZE? QY 120
tells DOS that
it is to use all available memory,
input interrupts are enabled,
~ there are two disk drives in the system,
two sequential and

N —
P

5. no random disk files are to be open at any given time.
When DOS has been properly initialized, it prints the follow-
ing prompt message

DOS _MONITOR VER x.x

The Monitor prints a pericd to indicate that it is now ready
to receive commands.

0gs
June, 1377

G

Dos
June, 1977

1-3. Program Development Procedure

DOS is designed to allow the. translation of an Assembly language
program on ‘paper to an operating Machine Language program with a minimum
of time and effort. The process involves entering the Assembly language
program into a disk file with the Text Editor, translating the file to
Machine language with the Assembler and loading the program into memory
with the Linking Loader.

Before the process can proceed, the disks in use must be mounted
with the MNT command. To mount disk 0, the following command is used:

. MNT O <cr>)
where <cr> means carriage return. Other disks may be mounted in the
same command by typing their numbers after the zero, separated by spaces.

Mounting the disk(s) tells DOS the location of all the files and
free space on each disk. If an attempt is made to run a praogram bafore
the disk on which 1t is stored is mounted, a PROGRAM NOT FOUND error
will result.

1. The first step in program development is to enter the program
into a disk file with the Text Editor. The Editor is loaded
from disk and run by the following command:

-EDIT<cr>
When it is loaded, it prints

DOS EDITOR VER X.x

ENTER FILE NAME
to which the user replies with the name of the file to be
entered or edited. The editor then prints

ENTER DEVICE NUMBER
which is answered with the number of the disk drive where the
file is stored.
Assume that an Assembly language program called SAMP is entered
into a file on disk drive 0. The Editor is run with the fol-
lowing command:

LEDIT SAMP Q <cr>
The file name (SAMP) and device number (disk 0) can be entered
in the EDIT command to avoid the necessity of asking the file
name and device number. The Editor searches disk drive 0 for
a file name SAMP to edit. If it finds no such file, it prints
the following messages:

10

CREATING FILE
00100 .
00100 is the number of the first 1ine of the file. Now, all
_that is necessary is to enter the lines of' the program.
00100 LDA IER LOAD MULTIPLIER<cr>
00110 LHLD CAND LOAD MULTIPLICAND<cr>

After each carriage return, the next 1ine number is generated
automatically so that the next line can be entered. This
process continues until all the Tines of the program have been
entered.

00340 PROD DB 0,0 <cr>

00350 END <cr>

00360 <cr>
To stop the generation of line numbers, type a null line (just
a <cr>). The Editor prints an asterisk (*) to indicate it is
ready to accept new commands. To check the file in order to
make sure it has been entered without error, type

*p
This prints all of the 1ines on the current page with their
Tine numbers. In this example, there is only one page (see
paginé commands, p. 40 , for an explanation of program pages),
so the P command prints the whole file. The output appears as
follows:

*p
golo0 LDA IER
00110 LHLD CAND

00120 SHFTR RAR
00130 SHFTR RAR

00240 CAND 0B 64

00250 PRGD 0B 0,0
. o0s

June, 1977

/

k(‘

00s
June, 1977

Suppose the line at 120 was inadvertantly entered again at
Tine 130. To eliminate one of them, use the D (for Delete)
command.

*D 130 <cr>
%

It is not necessary to type the leading zeros in the line
number. To add another line between number 100 and 110, use
the I (for Insert) command.

*1 100 _

00105 ; A COMMENT LINE <cr>

00107 <cr>
The line number specified is that of the existing line imme-
diately before the dasired position of the new 1ine. The
Editor generates a line number halfway between the two existing
Tines. After typing the new line, a <cr> causes another
number to be generated halfway between the inserted line and
the next existing Tine. New 1ines can be inserted in this
manner until there is no more room. Insertion of new lines
is stopped by typing & null line.
When the f11e is in satisfactory form, the Editor is exited
by typing the following command:

*E
This makes all of the changes, closes all of the files properly
and provides a backup file. The backup file is the edited
file as it appeared before the latest series of changes were
made. If the edited file is unusable for some reason, the

backup may be used to replace it.
When the program has been entered into a disk file with the
Editor, it may be submitted to the Assembler for transiation
into machine language.
The Assembler is loaded and run with the following command:
-ASM <cr>
The Assembler prints
DOS ASM VER x.x
ENTER FILE NAME

P0POD
P00p03
PoDRG
popPo7
pop12
pogRI 3
ppop14
poO17
poop2p
popR23
popp24
 ppDR2S
P0093p
P00P33
P0pP33
pODB34
PDDP36
PoR4D

The user enters the name of the Assembly language program file
and a <cr>, The Assembler then prints
ENTER 'DEVICE NUMBER i
to which the user replies with the number of the disk drive on
which the file resides and a <c¢r>.)
At this point, the Assémbler proceeds immédiate]y to assemble
the program in the specified file. In our example, we can type
<ASM SAMP 0 <cr>
to avoid having the computer ask for the file name and drive
number,
The Assembler produces a file with the machine language program
and a listing. The 1isting is that of the source code (the
input to the Assembler) along with other pertinent information.
The Assembler listing of our sample program appears'as follows:
SAMP LISTING

972 pppp33' DOD1PP LDA IER LOAD MULTIPLIER
P52 pEPP34' pPPIIP LHLD CAND LOAD MULTIPLICAND
p37 ppR120 SHFTR RAR SHIFT 'ER RIGHT
322 pPpp24' PPe13p JNC SCAN JUMP IF NO CARRY
977 pPp135 cMe TURN OFF CARRY
353 pep14p . XCHG SAVE 'CAND IN C,D
052 pPPRE36' ppplsp LHLD PROD LOAD PROD IN H,L
p31 p00169 DAD. D ADD ‘CAND TO PROD
p42 ppep3s’t pOPI7P SHLD PROD STORE PROD
353 pp018e XCHG RESTORE 'CAND
051 PPP19® SCAN DAD H SHIFT LEFT
322 ppppRe' ppp2eD INC SHFTR REPEAT IF NOT FINISHED
303 ppeggp POP22s JMP PPP JUMP TO MONITOR. WHEN
ppp228 FINISHED
pap ppP23p IER DB 32
200 opp ppp24p CAND DB 128,90
ppp oD pPP25p PROD DB 0.0
00260 END

The rightmost four columns are the source listing. Note that
there is not much room for comments at the end of the line.

If the comments are too long for the allotted space, the excess

is printed on the next line and operation is not affected. 00s

dune, 1977

<

C

oas
June, 1977

The next column to the left is the Text Editor's line number.
The next two columns are the octal representation of the object
code (the output of the Assembler). If the source instruction
does not produce a machine instruction (END, for example),
this column {s left blank. If the source.instruction defines
the contents of memory (DB or DW, for example), those contents
appear in the object code column. Source instructions that
produce object code instructions (LDA, for example) are repre-
sented by the octal instruction code and the address of the
operand. Addresses followed by an apostrophe are to be relo-
cated. Their actual addresses are not determined until the

. program is loaded into memory.

Finally, tha leftmost column is a 1ist of the relative addresses
of the object code instructions and memory areas. If a letter
precedes the address, it indicates an error. The lettef desig-
nates the nature of the error and the position indicates the
address where the error occurred. A list of error letters and
their meanings is in section 4-4, p. 71.
If an error is detected by the Assembler, it can be corrected
by reentering the Text Editor and making the necessary changes.
The ability to pass programs rapidly from the Text Editor to
the Assembler and back makes DOS an extremely effective tool
for writing and debugging Assembly language programs.
Finally, the Linking Loader is used to load the program into
memory and execute the program. The Linking Loader is loaded
typing the following command:

- LINK <cr>
When the Linking Loader starts, it prints

DOS LINK VER 1.0 '

*

To load the sample program, type

*. SAMP Q <cr>
If the file name and drive number had been omitted, LINK would
have asked for them. This command causes LINK to load our
file into memory beginning at location 240008' Other starting
addresses can be specified (see Linking Loader, L command, p.

[

13

1-4.

14

76},

but the default value is adequate for our purposes. The

following command causes the program to be executed:

*X <er>
This command causes control to be passed to whatever program
begins at location 240008. Again, other starting addresses
can be specified (see Linking Loader, X command, p. 51).
If the program does not run as expected (and that is not
improbable), the program bugs can be tracked down by Debug.
For a description of the use of Debug, see Section 6, p. 83.

Notaticn and Definitions
In the specification of command formats and examples, the follow-
ing notation conventions are used:

< >

L1

<cre>

<space>
Control/x

Angle brackets enclose information that must be
supplied by the user

Square brackets enclose information that is optional
and may be specified by the user.

Carriage return (ASCII 013) on most terminals, <cr>
is typed with the Return key.

‘a space (ASCII code 032)

where x is a character, is typed by holding down the
Control key while typing the character.

In examples, characters output by the computer are underlined.
Information typed by the user is presented exactly as it is to be typed.
A11 punctuation and spacing must be observed.

The following definitions are used throughout this manual:

byte

file

eight bits of binary information. Memory locations
each contain 1 byte of information and the ASCII
code uses 1 byte to represent 1 character.

set of information accessible to a program by name
or number. Program modules, data blocks and infor-
mation transferred to or from [/0 devices may all be
considered to be files. In this manual, files are
divided iinto two broad classes: Sequential and
Random. | '

| £os
\v June, 1977

-

00s
June, 1877

A Sequential file is organized as a string of bytes
of information. From any point in a sequential file,
only the next byte may be accessed directly. Data
bytes are written after the last existing byte of
thé file. Sequential files can be divided into two
types, depending upon how the data bytaes are inter-
preted:

a) ASCII files in which each byte represents a char-
acter according to the American Standard Code for
Information Interchange (see Appendix A for a
table of ASCII codes) and

b) binary files in which the binary data are taken
as such with no code conversions applied. Two
special types of binary files are distinguished
from other binary files by their contents. Abso-
lute files are those which conform to the Absolute
Tape Dump format in Appendix B. The Menitor's SAV
command produces absolute files. Relocatable
files conform to the relocatable object code
module format in Section 5-3. The Assembler pro-
duces relocatable files which the Linking Loader
can then load into memory.

Random files are organized as a serjes of records,

each of which may be accessed separately from the
rast. Each record has a unique number which may be
used to read, modify or write on any record in the
file at any time. .

The various system programs follow certain conven-
tions for file names. See section 2-7 for an explan-
ation of these conventions. Appendix E shows an
example of the use of files in a DOS program.

program

prompt

an ordered set of machine.and/or Assembler instruc-

tions that direct the computer to perform a given

series of operations. The two major classes of
programs are system programs and user programs.

a) system programs are stored on disk in absolute
binary files and thus may be loaded and run
simply by typing the program‘s name to the
Monitor. System programs run in memory imme-~

- diately above the Monitor and below user programs.
user programs are those programs that run in high
memory above the system programs. The usual pro-
cedure for developing user programs is to con-
struct them from one or more relocatable code
modules produced by the Assembler and linked
together by the Linking Loader. For a discussion
of relocatable modules, see Section 5-3, page 77.

When the Monitor or a system program takes control,

it prints a message indicating which program is

running and whether it is ready to receive commands.

The Monitor prompts with a period (.) which precedes

each cdmmand. Similarly, Editor and Linking Loader

commands are typed after an asterisk (*). Debug and
the Assembler prompt only once after the program is
loaded.

The Monitor alsoc prompts the programmer when insuf-

ficient information has been given in a command.

For example, if the programmer types

=MNT <cr>
the computer prints
ENTER DEVICE NUMBER

Typing the number and a carriage return causes the

command to be executed.

o
—

00s

I
i June, 1977

(-

1-5. DOS Input Conventions

A1l input to DOS (as from a terminal) is handled through the
Monitor's input routine. This routine has several properties which set
constraints on the form of input. .

N A11 128 ASCII characters are accepted by the input routine except
characters of the form Control/x where x is any letter. Some Control/
characters are used to control the input routine and the rest are ignored.
<cr> terminates a line. The input buffer is cleared and subsequent
input is taken as a new 1iﬁe. <Tine feed> is considered an input character.

The input buffer accepts the first 72 characters as one line of
input. If more than 72 characters are input in a 1ine, the contents of
the buffer are discarded and a new line is begun. : '

Special characters include the following:

a) Rubout deletes the last character in the buffer. When Rubout
is typed, a backslash (\) and the last character in the buffer
are printed. Each successive Rubout prints the previous char-
acter. Typing another character prints another backslash and
the character. All of the characters between the backslashes
are deleted. If Rubout is typed with no characters in the
buffer, a <cr> is printed.

Control/U deletes the current contents of the input buffer.
c) Control/R displays the current contents of the input buffer.
Example:
EXAMPLE LENENENENINE <Control/R>
EXAMPLE LINE
Typing three rubouts deleted the characters between the back-
slashes. Typing Control/R displayed the final appearance of
the line.
d) Control/I is a tab character. When a tab is printed, spaces
are printed so that the next character is printed at the start
of the next 8 space column.

o
~—

The following special characters are recognized if input interrupts
are enabled (see p. 22).

oes
June, 1977

Control/S

Control/Q

Control/C

Contral/0

Causes execution of a program to pause until Contro1/Q
is typed. This can be used to pause during a listing
or to pause during execution of‘a program to examine
intermediate values. '
causas execution to resume after a Control/S. Con-
tro1/Q has no effect if no Control/S has been typed.
causes execution of a program to be suspended and
control to be passed to the Monitor. During the
execution of certain I/0 operations (Mount, Open,
Kill, etc.), Control/C does not terminate execution
until the operation is completed.
prevents output from the computer. Execution pro-
ceeds normally, but no output is generated until
either another Control/0Q is typed or another command
is requested by the Monitor or Editor. Example:
Suppose the following Editor command is typed:

*p

00100 LDA _IER

00200 LHLD CAND

<Control/0>

*

The Print command action is completed, but no output
appears on the terminal until the Editor's prompt
asterisk appears, requesting another command.

Other constraints are imposed by the system programs in use and
are discussed in the dascriptions of the Editor, Assembler, Debug and
miscellaneous programs. Some of the standards which apply to all of the
system programs are as follows:

a) A1l commands must be typed in upper case.

b) The fields of the command are separated by delimiters. These

delimiters include space, tab, comma, semicolon and coion.
Colons are used specifically to separate multiple commands on
a single line.

18

DGS; i
Juné.j1977

J

!

ALTALR DOS DOGUIIETATIOR

RS ECHITON g
MONITOR

C

2. THE MONITOR
2-1. Introduction to the Monitor

The Monitor is the control center of the DOS system. It is used
to load and execute system and user programs and to execute Input/
Qutput routines for all of the system's peripheral devices.

The Monitor is loaded first to load and execute all the other
system components. It remains in memory at all times, passing control
back and forth to system and user programs and providing I/Q services.

The Monitor's device-independent Input/Output system reduces pro-
gramming effort. The programmer could write a different input or output
routine for each I/0 device used by a program. But these device handler
routines are incorporated into the Monitor, so the programmer can perform
the desired information transfer simply by calling the Monitor. Monitor
Calls are described in detail in Appendix C.

When DOS has been loaded and initialized, the Monitor starts up
and prints the following message.

DOS MONITOR VER x.x

This message is also printed when the Monitor is entered from another
program. The period indicates that the Monitor is ready to receive
commands.
2-2. Input from the Console
Input from the console keyboard is handled by a central Monitor
routine regardless of the system program that is running at the time.
This routine provides the following special characters and functions.
Rubout deletes the last character in the input buffer,
Typing Rubout causes a backslash (\) and the last
character in the buffer to be printed. Subsequent
Rubouts print the immediately previous character in
the buffer. When a character other than Rubout is
typed, a second backslash and the character are
printed. All the characters between the backslashes
) are deleted.
Backarrow («) same as Rubout

00S
June, 1677

21

Control/R causes the current contents of the input buffer to
be printed on the console. Example: '
EXEMPLE LINENENIL ELPMENAMPLE<Control/R>
EXAMPLE
In this example, typing Rubout 10 times deleted the
characters between the backslashes; typing Control/R
displays the current appearance of the line.
Control/U clears the input buffer.
<cr> terminates a line of input. The current contents
of the 1ine buffer are passed to the program and
the Tine buffer is cleared.
If input interrupts are enabled, the following special character
functions are available:

Control/C suspends execution of the current program and
returns control to the Monitor.

Control/S temporarily suspends exécution of a‘program until
Control/Q is typed.

Control/Q causes execution of a program to be resumed after
a Control/s

Control/0 allows execution to proceed normally, but prevents

output to the terminal. No output is printed until
another Control/0 is typed or another command is
requested by the Monitor or Editor.
To enable interrupts on the oider /0 interface boards (PIO, SIO
A, B, C), install a jumper from the IN interrupt 1ine to PINT or, if the
Vector Interrupt board is in use, to VI7.
On newer interface boards (2SI0, 4PI0), install the jumper between
PINT or VI7 to the interrupt request line for the input channel. DOS
automatically assures that input interrupts are enabled.
For more information, see the manual for the interface board in
use.

0os.
22 June, 1977

2-3. Monitor Commands
The Monitor is directed to perform its functions by commands.
The general form of a Monitor command is as follows:
<command code> [<field> <field> . . .]
where the command code is the three letter designation of the command
to be performed and the fields are the required operands for the
specific command. The fields are separated by spaces, tabs or other
legal delimiters. If insufficient information is given in the operand
fields for a given command, the Monitor asks for the missing information
and will not proceed until the information is typed. If the Monitor
cannot execute the requested command, it prints an error message which
indicates the reason the command could not be executed.
The following abbreviations and definitions are used in the des-
criptions of the Monitor commands:
delimiter characters that separate the fields in a command.
Legal delimiters are <space>, tab (Control/I),
. comma, semicolon and colon.
device number of the device to be used in the command
action. The Monitor at present supports only floppy
disk drives in the commands, so the term “device" is
interchangeable with the term "drive number."
file name of the data or program file on which the
’ command action is to be performed.
list a serfes of device numbers or file names separated
by delimiters.
Table 2-A. Monitor Commands
Command Function

DEL <file><device> deletes the named file from the indicated device.

DIN <device><list> initializes the listed disk drives by writing the
track and sector number in each sector. Zeros are
written into each byte of each sector, destroying
any existing files and marking each sector as free.
The DOS disk is initialized at the factory and must
not be initialized again. Doing so will destroy all
system programs as well as user files.

a0s
June, 1977 : : 23

Command

DIR <device>

DSM <device 1ist>

LOA <file><deyice>

MNT <device list>

" table for unused sectors.

REN <old name>
<new name>
<device>

RUN <file><device>

SAV <file><device>
<1st location>
<last location><sa>

Function

Prints a directory of the files on the indicated

See section 2-7 for an explanation of the
file name.conventions.

Dismounts the disks on the listed device or devices.
A disk must be dismounted before it is removed from
a2 drive. Failure to do-so may cause file link
errors the next time the disk is read.

Loads the named file into memory from the specified
device.' The file must be an absolute binary file.
The LOA command automatically adds # to the file
name.

Mounts the disks on the specified devices. "The MNT
command causes the system to read each specified
diskette and creates a table of unused space. When
files are created or modified, the system checks the
This command must be
given before the files on a disk may be accessed.
Renames the file <o0ld name> on the specified device ‘

device.

to have a name <new name>.

Loads the named file from the specified device and
runs it. The file must be an absolute binary file.
A # sign is automatically added to the file name.
Contents of memory from the first location to the
last location are saved as an absolute binary file
With the specified name. A # sign is automatically
added to the file name. Any subsequent RUN command
causes execution to begin at <sa>.

If the input to the Monitor is not one of these commands, the

Monitor searches disk drive 0 for an absolute program file which has a

name corresponding to the input.
The following system programs are run in this manner:

and run.

24

If such a file is found, it is loaded

00s

June, 1977

C

ASM
EDIT
DEBUG
LINK
INIT
CNS

Assembler - see chapter 4

Text Editor - see chapter 3

Debug package - see chapter 6

Linking Loader - see chapter 5

Disk initialization program - see chapter 7

Console - see chapter 7. Console allows the Monitor
command console to be changed to another
terminal.

Drive 0 must be mounted before running these programs.

2-4. Monitor Error Messages

When the Monitor detects an error in the execution of a command
or a Monitor Call, it prints an error message and terminates execution

of the operation.

In the case of an error in a Monitor Call, the error

message is printed and control returns to the calling program.
A Monitor error message contains the following information:

Error Code
File Number

RQCB Address

Opcode

Return Address

Error Code
1

the error codes are given in Table 2-B
the number of the file that was being accessed when
the error occurred
the address of the Request Control Block of the
Monitor Call that caused the error.
the operation code of the Monitor Call that caused
the error
the address to which control would have returned
had the error not occurred.

Table 2-B. Error Codes

Meaning
FILE TABLE ENTRY MISSING

The file table contains entries for thirteen disk files (numbered
0 - 12) and four other I/0 files (0 - 3). If a file number other
than these is encountered, an error occurs.

DEVICE NOT IN PHYSICAL DEVICE TABLE

The following devices are listed in the physical device table:
Teletype or Teletype compatible terminal
Audio Cassette

208

High-Speed Paper Tape Reader

June,. 1977 Floppy Disk

25

10

11

12

26

An attempt to transfer information to or from another device
causes an errar.
HANDLER NOT IN HANDLER TABLE
An attempt was made to perform an invalid operdtion on an /0
device, for example, to output to a paper tape reader.
BOARD NOT IN I/0 TABLE
The following 1/0 boards are in the I/0 table:
2510
SI0 A, B, and C
4PI0
PIO
Use of other boards is not supported.
SHORT DATA TRANSFER
The end of data transfer came before the specified number of bytes
was read or written.
CHECKSUM ERROR .
When a program is loaded, the Monitor keeps a running sum of all
the bytes in each record. The least significant byte of this sum
is the checksum. At the end of the record, it is compared with
the checksum byte in the record. If there is a'discrepancy between
them, an error has occurred in loading the program and the Checksum
Error message is printed.
MEMORY ERROR
An attempt was made to write into a bad memory location. This
could be a non-functioning read/write memory location or a Tocation
in read-only memory.
BAD FILE NUMBER
A bad file number is one which has not been opened or which is
greater than the number of files allocated at initialization.
FILE LINK ERROR
Quring a disk file read, a sector was read which did not belong
to the file. A FILE LINK ERROR often occurs after a disk has been
removed from a drive without being dismounted first.
I/0 ERROR
A checksum error occurred in 18 successive disk read operations.
A checksum error on a disk read causes the disk controller auto-

matically to re-read the sector. A Disk I/0 Error indicates that
20s

June, 1977

14

15

20

21

22

23

24

25

26

27

nes

the error is a permanent defect in the file, disk or disk drive.
BAD FILE MOQDE
A sequential operation was attempted on a random file or vice
versa.
DEVICE NOT OPEN
An attempt was made to input or output a file through a device
which had not been opened to that file.
DEVICE NOT ENABLED
The door of a disk drive has not been closed, or the motor of the
drive has not had time to come up to full speed.
DEVICE ALREADY OPEN
An attempt was made to mount a disk which has already been mounted.
INTERNAL ERROR
DOS became confused. Please report the circumstances of this
error to the MITS, Inc. Software Department.
OUT OF RANDCM BLOCKS
A1l sectors allotted for random files have been filled.
FILE ALREADY QPEN
An open operation was attempted on a file that was already open.
FILE NOT FOUND

"~ The file name referred to was not found on the spec1f1ed device.

TOO MANY FILES
An attempt was made to create a file when the disk directory was
already full.

MODE MISMATCH
A command that expected a character string operand received a
number, or vice-versa. This error often occurs when the quotation
marks are left out of a character string in a command. '

" END OF FILE

During a read operation, an end of file mark was encountered before
the read operation was complete.

DISK FULL
A1l of the sectors of the disk have been used.

BAD RECORD NUMBER
An attempt was made to refer-to a random file record that was
not in the specified file.

June, 1977

27

30 FILE TABLE FULL
An attempt was made to have more than thirteen disk files or four
I/0 files open at one time.

31 Unused

32 TOO MANY OPEN DISK FILES
An attempt was made to open more disk files than were specified
at initialization. ‘

33 FILE ALREADY EXISTS
An attempt was made to name or rename a file with a name that
already exists in the directory.

2-5, File Name Conventions

When a directory of disk files is 1isted by the DIR command, the
file names are preceded by special characters that denote the file type.
These characters and their meanings are as follows:

absolute binary files. Files with this character
are produced by the Monitor's SAV command and are
used as input by the LOA and RUN commands. System
program names appear in the directory with a pound

sign (#).

* relocatable load module. These files are output
by the Assembler and used as input by the Linking
Loader.

% 1isting file. The optional source listing from ASM
carries this designation. ‘

& Editor source file. The output of the Editor carries
this designation.

$ Editor backup file. When a file is modified by the

Editor, the old, unmodified file is renamed to have
this designation.

00
28 June, 1977

These characters are supplied automatically by the system programs
and Monitor commands which create the files. Therefore, they need not
be supplied by the programmer. For example, the command

LASM MULTI O .
is used to assemble the file which appears in the directory as

AMULTT
Similarly, the command

LEDIT TEXT Q
creates a source file called &TEXT.

File names in the DEL and REN commands must appear exactly as they .
do in the directory. For example, the Editor backup file

SLETTER
may be deleted by

.DEL SLETTER
without affecting the source file &LETTER or any other file. -

208

June, 1877 29/{(30 Blank)

ALTATR DOS DOGURENTATITN

SEGTION [
[IEAREDIO

=e) =3

31/(32 Blank)

C

3. THE TEXT EDITOR
3-1. Introduction

Although the Text Editor is primarily used to create and maintain
Assembly Language program files, it can be used for any ASCII coded file.
EDIT is a line-oriented Editor, in that its commands operate on lines of
text which are addressable by number. Line numbers are assigned auto-
matically as the file is being created. A special command allows auto-
matic renumbering of Tines. The Assembler ignores EDIT 1ine numbers in
its input file except when producing a source listing.

Once the system disk {on drive 0) has been mounted with the MNT
command, EDIT may be loaded and run with the following command:

LEDIT <file><device> ‘
where <file> is the name of the file to be created or modified, and
<device> is the number of the disk where the file is stored. When EDIT
prints an asterisk (*), it is ready to accept commands. EDIT requires
at least 2 disk files to be allocated at initialization.

The Text Editor is designed to minimize memory usage by dividing
files into pages. Only one page resides in memory at a time, while the
rest of the file remains on disk. The number, length and content of
pages are completely under the programmer's control. Access to the
pages is sequential; the paging commands refer to the next page in the
file. The B command always refers to the first page of the file, so
the Editor can go back to the beginning of a multipage file from any
point.

Edit commands are provided to add, delete and replace lines, find
and substitute character strings and modify individual 1ines. The form
-of an EDIT command is as follows:

<x> <field>[<«field>] <cr>
where x stands for the EDIT command letter in use, and field is a line
number or character string, depending upon the command. The command
letter and fields are separated by delimiters.

The EDIT commands operate on individual lines or on ranges of
lines. A line is referenced by stating its number in an EDIT command.
For example,

P 150

20S
Juna, 1977 33

" prints line 150 on the console. A range of lines is referenced by
stating the beginning and ending lines of the range. Thus,

R 200 230
replaces lines 200 to 230, inclusive. A1l line and.range references
are to Tines on the current page only. Before a line or raﬁge on another
page may be referenced, that page must be loaded into memory.
3-2. Edit Commands

A. Inserting, Deleting and Replacing lines. The following com-

mands insert, delete and replace whaole lines:

I <number><increment><cr> Inserts a new line at <number>
or the first available line
after <number>. After the <cr>,
EDIT prints <number> or, if
there is already a line at
<number>, the number of the
first available 1ine after
<number>. A1l input up to the
next <cr> is inserted as the
new line. In the Insert mode,
the Editor automatically assigns
numbers to the 1ines as they are
entered. If <increment> is not
specified, the line number
increment is that last used in
an N command. If there has
been no previous N command, the
default increment is 10. After
a line is typed and a carriage
return entered, EDIT adds the
increment and checks to see
that the new line number is
less than the next existing
line number. If it is- not,
the increment is reduced to
half the difference between

20s
34 June, !

w0

~3

~1

C

00s
June, 1977

the previous line number and
the next existing line number.
This process is repeated until
no new line numbers are possible.
Then the Iﬁsert mode s exited
and an asterisk is printed.
When a file is being created by
the Editor, there are no exist-
ing lines, so each line is
numbered with the specified or
default increment.
Example:
-EDIT TEST O
DOS EDITOR VER 0.1
CREATING TEST
00100 THIS IS A TEST <cr>
00110 FILE SHOWING LINE <cr>
00120 NUMBER INCREMENTS <cr>
00130 <cr>

1 *

_ In this example, new line num-

bers were generated after aevery
carriage return until a null
line (a line with no characters
before the carriage return) was
typed. Then Insert mode was

. terminated and the prompt aster-

isk printed. In the following
example, insertions are made
into file TEST:
*I 110
C0115 INSERT ONE <cr>
00117 INSERT TWQ <cr>
00118 INSERT THREE <cr>
00119 INSERT FOUR <cr>

*

35

D <1st number> [<2nd number>] <cr>

R <1st number> <2nd number> <cr>

In each case, the increment was
halved, until it was not possible
to insert another line.

Deletes all lines from <Ist
number> to <2nd number>, inclu-
sive. If <2nd number> is omitted,
one line is deleted.

Replaces the 1ines from <Ist
number> to <2nd number>, inclu-
sive, with input from the con-
sole. After the <cr>, EDIT
displays the number of the

first line to be replaced. All
input to the next <cr>, replaces
the Tine. After the next <cr>,
the number of the next line to
be replaced is displayed. Typ-
ing a null line causes that line
and the remaining lines in the
range to be deleted. If <2nd
number> is omitted, one 1ine is
replaced.

B. Finding a String. The following commands display the next
occurrence of a character string:

F <string> <cr>

S <string> <cr>

36

Finds the next occurrence of
<string> on the current page.
If <string> is found, the line
in which it appears is printed.
If it is not found, an asterisk
is printed and EDIT is ready
for further commands. The
search begins on the line
immediately after the current
line.
The same as F, except the
search can extend over page
boundaries. - oos
June, 1977

W

c.

08
June, 1977

In-Line Editing: the Alter Command. The Alter command allows
adding, deleting or modifying characters within a Tine without
affecting the other lines in the file. The format of the
Alter command is as follows: ‘

A <number> <cr>
where <number> is the number of the line to be altered. The
ATter command allows the use of several subcommands which order
changes to be made. The subcommand action begins with the
next character to the right of the current pesition. Changes
are made from left to right.

In the listing of subcommands below, 'n' preceding the
subcommand letter means the subcommand may be preceded by a
number which indicates the number of times the subcommand is
to be repeated. For example: '

3CABC
is equivalent to three subcommands

CA

C8

cC
in sequence.

The Alter subcommands are not echoed. When they are used,
the only output from the computer is a display of the line as
modified. .

In the examples that follow, assume the following command
has been executed:

A 100
where line 100 is in file TEST on page 35. The Alter subcom-
mands are as follows:

37

Command
n<space>

nC<characters>

nb

Hestring>

I<string>

38

Explanation
skips over and prints the next n

characters in the line. Typing
<space> displays

00100 T
changes the next n characters in the
1ine to the specified characters.
Typing 3CHAT displays

00100 THAT
deletes the next n characters.
Typing D displays

00100 THAT
and deletas the following space.
The effect of the subcommand is not
apparent until the next subcommand
is executed.
deletes the rest of the line and
inserts the string in its place.
The string is terminated either by
<Escape> or by <cr>. (On some ter-
minals, Altmode is used rather than
Escape.) Terminating with <Escape>
allows the Alter command to receive
further subcommands. <cr> exits
Alter mode. Typing H'S NO<Escape>
dispiays

0100 THAT'S NO
inserts the string before the next
character. The string is terminated
either by <Escape> (Altmode on some
terminals) or by <cr>. Typing
<Escape> allows further subcommands
to be issued. Typing <cr> exits
Alter mode. Typing ILINE <cr> dis-
plays

00s

June, 1577

0100 THAT'S NO LINE
and exits Alter mode.
(‘/ To demonstrate the remaining Alter subcommands, the command
" *A 100 <cr>
is executed again. This command reenters Alter mode on the
same 1ine as before and moves the current position to the
beginning of the Tline.
nk<character> deletes everything up to (but not
including) the nth occurrence of the
character. If the character does
not exist, or if thare are fewer
than n of them, the subcommand does
nothing. Typing KO displays
0100)
The effect of the subcommand is not
apparent until the next subcommand
is executed.
R<string> replaces the next character with the
string. The string is terminated by
('/ <Escape> or <¢r>. Typing <cr> exits
Alter mode. Typing RSOME <space>
<Escape> displays
0100 SOME
nS<character> skips over and prints all characters
up to, but not including, the nth
occurrence of <character>. If no
such character exists, or if there
are fewer than n of them, the sub-
command does nothing. Typing SN
displays
0100 SOME LI
X<string> skips to the end of the 1ine and
inserts the string at that point.
The string is terminated with <Escape>
or <cr>, <Escape> allows further

L/
20s
June, 1977 338

40

subcommands to be issued. <cr> exits
Alter mode. Typing X, THAT! <cr>
displays ‘

0100 SOME LINE, THAT:

When all of the desired changes have been ordered, Alter
command mode is exited with one of the following subcommands:

<¢rs

replaces the existing Tine with the
line as modified and exits Alter
mode. ,

exits Alter mode, but makes none of
the ordered changes. The changes
are lost.

Paging commands. The amount of memory used by the Text Editor

may be minimized by dividing the file to be edited into pages

and loading one page into memory at a time. Pages are mani-
pulated by the following commands:

8

N <number>

Miscellaneous commands:

N <increment>

Loads the first page of the file
into memory. Note that after a B
command is issued, the line number
is unpredictable. An additional
command (such as P <number>) is
needed to refer to any specific line
on the page.

Loads the next page of the file into
memory and saves the current page on
disk.

Loads the next page into memory and
deletes the current page

Writes the lines currently in memory
from the first to <number> onto disk
as a page.

Renumbers all of the lines in the
file. The difference between suc-
cessive line numbers is <increment>.

0os
June, 1977

P [<first number>
[<second number>]]

E <file name>
<device number>

Q <file name>
<device numbers>

00s
June, 1977

The first 1ine number is always

100.

Prints all Tines from the <Ist
numbers to the <2nd number>, inclu-
sive. If there is no second number,
1 line is printed. If no line num-
bers are given, the entire current
page is printed.

As the Editor proceeds through the
named file making changes, it copies
the modified file into a temporary
file called EDIT.TEM. When the E
command is executed, the remaining
unmodified 1ines of the file are
copied into EDIT.TEM. This file is
then assigned the name of the edfted
file. The first character of the
ariginal file name is changed to §.
This provides a backup file. Any
previous backup file is deleted.

[f a file name and device number are
specified in the E command, EDIT
proceeds to edit that file. Thus,
another file may be edited without
having to reload the Editor. If

the file and device are not specified,
contr01 is passed to the Monitor.

Q exits to the monitor without renam-
ing any files. The changes made by

‘the Editor are ignored. The (com-

mand allows the user to abort an
editing session without damaging any
files. The file name and device num-
ber may be specified as in the E
command to edit another file with ut
having to reload thea Editor.

41/ (42 Blank)

ALTATR DOS DOGURIETAY
SECHION

S)

ASSEI

43/(44 Blank)

IE

C

4. THE ASSEMBLER

The Assembler is a system program that translates programs from
Assembly Language into machine language. In principle, machine language
can be used to write programs for the computer. A machine language pro-
gram is one in which the instructions to the computer are represented by
binary numbers oné, two or three bytes long. The practical problems
of machine language programming, however, make its use virtually impos~
sibie for all but the simpiest programs. First, it is difficult to
remember all of the binary machine language codes and enter them into
the computer without error. Second, machine language requ res the pro-
grammer ta remember all of the addresses in the program ani refer to
them explicitly. Finally, if a machine language program does not work
as desired, it is extremely difficult to determine what went wrong.

Assembly language programming is preferable to machine language pro-
gramming because it avoids all of these difficulties. Machine instruc-
tions are referred to in Assembly language by mnemonics that are des-
criptive of the operation and that are relat1ve3y easy to remember.
Addresses can be specified explicitly, but they can also be referred to
symbolically. That is, a memory location can be given a label and
referred to subsequently simply by mentioning that label. Finally,
Assembly language provides the programmer with a complement of error
messages that make the process of debugging much easier than in machine
language programming.

The DOS Assembler translates Assembly Language to machine language
by means of a two step process. In the first step, the Assembler reads
the Assembly Language program and assigns addresses to all of the sym-

bols. In the secend step, the program is read again and the instructions

are converted to their machine language equivalents. On this second
‘pass through the program, the program m y be listed on the terminal or
in a disk file. If the Assembler detects an error in the
program, the place where the error occurred is marked in the 1isting
with a letter that indicates the nature of the error.

Once the system disk is mounted in drive 0, the Assembler is run by
typing the following command to the Monitor:

. ASM <file name> <device> [<device type> <device number>]
where the <file name> is the name of the disk file that contains the

0os
June, 1977

45

source program and <device> is the number of the drive where that file
resides. If a <device type> is specified, an Assembler listing is
written in a file on the specified device. If the <device type>. is TTY,
the 1isting is printed on the terminal; if the <device type> is FDS, it
is sent to floppy disk. The name of the listing disk file is the file
name in the ASM command preceded by a percent sign (%). The following
message is printed on the terminal upon termination of the assembly:

xxxxx ERRORS DETECTED
where xxxxx is the number (in octal) of errors encountered in the pro-
gram.

The machine language, object code module that results from the
Assembler's action is written on the same disk as the source code. The
name of the object code file is the <file name> preceded by an asterisk
(*). For example, after the following command is executed:

LASM SOURCE 0 FDS 1
the object code file is named *SOURCE and is written on disk 0. The
listing of the source program is named %SOURCE and resides on disk 1.

When the assembly and 1isting are complete, the Assembler prints

ANY MORE ASSEMBLIES?
Typing "Y" causes the Assembler to start over and ask for the new file
name, device number and. 1isting file parameters. Thus, another file may‘
be assembled without reloading the assembler. Typing N or <cr> exits
the Assembler and returns control to the Monitor.

4-1. Statements

The fundamental unit of an Assembly Language program is the state-
ment, whaose form is as follows:

[label] <op-code> <operand> [,<operand>] [comment]
The label is a tag by which other statements in the program can refer
to this statement. Not all statements in a program need to be labelled.
Since program execution proceeds normally in order from the lowest memory
Tocation to the highest, statements that need to be executed in normal
sequence need not carry labels. If, on the other hand, a statement needs
to be executed out of normal order, it must carry a label. Such aqut-of-
order execution is called branching and it is particularly important in
programmed decision making and loops. Labels can also be used to refer

£os
46) June, 1977

C

to memory locations for storing data. This use will be discussed more
fully in section 4-2B below.

The op-code is the mnemonic of the machine instruction or Assembler
pseudo-operation to be performed by the statement. Machine instruction
op-codes are translated by the Assembler into machine language instruc-
tions. Assembler pseudo-ops are not translated, but direct the Assembler
itself to allocate storage areas, set up special addresses, etc.

The gp-code is followed by one or more operands, depending upon
the nature of the instruction. An cjerand is an address - specified in
any one of several manners - where “he computer is to find the data to
be operated upon. In the case of an ADC (add with carry) instruction,
for example, the operand is the address of the location whose contents
are to be added to the accumulator. In the MOV (above) instruction, the
two operands are the addresses of the location from which a data byte is
to be taken and to whick it is to be moved.

Comment may be added to the end of a statement if they are separated
from the rest of the statement by a semicolon. Comments are ignored by
the Assembler, but they do appear in the Assembler listing and may thus
be used by the programmer for documentation and explanation.

4-2, Addressas

A program is a series of statements that are stored in memory and
executed either in the order in which they are stored or in sequence
directed by statements in the program itself. The data operated upon by
the program or used to direct the program's actions is stored in memory
and referred to by the addresses of the locations in which it is stored.
Therefore, addresses are used both to control execution of the program
and to manipulate data. Much of the versatility of the Assembly Language
programming system in DOS results from the variocus ways in which addresses
may be represented and modified.

The DOS Assembler recognizes addresses in three major forms;
constants, labels and address expressions.

A. C(Constants. A constant is an address that is stated explicitly

as a number. For example, the instruction
JMP 23000

oos
June, 1977

47

© causes execution to proceed from the location whose address is

23000 decimal. A constant address may be expressed in octal,

decimal or hexadecimal notation.

1. Octal address constants are strings of octal characters
(0 - 7) whose first character is zero.- The allowable
range of values is -Q1777777 to 01777777.

Examples:
0377
01345
017740 ,

2. Decimal address constants are strings of decimal digits
(0 - 9) without a leading zero. The allowed range is
-65536 to 65536. Examples:

255
1024
23000
3. Hexadecimal address constants have the following form:
X' hhhh'
where h is any hexadecimal digit (0 - 9, A - F). The
allowed range is -X'FFFF' to X'FFFF'. Examples:
X'Fooo’
X'2300'
X' QOQF!
4. Character address constants have the following form:
Wyt
where x is any ASCII character except (). The characters
are translated into binary according to their ASCII codes
and the resulting two-byte quantity makes up the address.
Examp es:
a1
wgz"
ng

Labels. When a statement is labelled, the label is entered

into the symbol table in the Assembler along with the address

of the statement. Any subsequent statement can then use the
label to represent that address. Two types of labels can be

used in the DOS Assembler; names and program points.
208
June, 1977

0os
June, 1977

Names are strings of up to 6 alphanumeric characters.
The first character must be a letter and the subsequent
characters may be letters, numbers or dollar signs.
Examples:

SHIFT

LBL1

ASOUT
The usual use of labels is to refer to a statement by
name. For example:

SHIFT RAR
JNC SHIFT

The operand of the jump instruction tells the computer to
branch back to the RAR (rotate right) instruction if there
is no carry out of the shift. If there is a carry, execu-
tion proceeds with the next instruction after the jump.

Data bytes can bear labeis as well. For example:

AbC ADDEND

ADDEND DB 255
These instructions add the contents of location ADDEND to
the accumulator with carry. In this example, the contents
of ADDEND have the value 255 decimal.

- For the purpaoses of clarity and ease of use, names
should be systematically applied. That is, they should be
togically related to the statements or data locations they
represent and should be easily distinguishable from other
names in the program.

Sometimes, short branches and lcops require statements to
be labelled, but those labels are not important to the whole
program. Rather than filling up the symbol table with unique

49

50

names, the programmer may prefer to label those statements with
program points.
2. Program points are special labels with' the following form:
WX
where x is any letter. A letter may be used any number
of times in a single program. Unlike names, program points
may be referred to in two ways. The program paint
reference -x refers to the most recently encountered
program point with letter x. . The program point reference
+x refers to the next program point in the program
with the letter x. Therefore, while any number of
statements may be labelled with the same program point,
a statement may only refer to the two program points
bracketting it in the program.
Address Expressions. The DOS Assembler allows addresses to be
specified relative to other addresses. For example, to refer
to the fourth location after the location labelled LOC, the
following expression can be used:
LOC+4)
Expressions of this form are called address expressions.
Address expressions may be comprised of any of the following:
" Name
Constant
Program point reference
Address expression + constant
The sixteen bit values of the names, constants, program point
references and address expression. are combined and truncated
to 16 bits to form the value of the final address expression.

00s
dune, 1377

J

C

DOS
June, 1377

Example:

SHIFT+5

+A-010

LOC+X'F!

Special Addresses. The DOS Assembler allows certain addresses

to be referred to directly with special notation.

* indicates the present contents of the location counter.
That is, * refers to the address of the current instruc-
tion or the current data address.

Registers may be addressed symbalically by name. There-
fore, such instructions as

Mov H,A _
are interpreted to refer to the correct registers.

Addressing Modes. The addresses of statements or data Joca-

tions are specified in one of five different modes. The DOS

Assembler addressing modes are Absolute, Relative, Common,

Data and External. .

Absolute addresses are the actual hardware addresses of
the designatad Tocations. Address constants in themselves
(not in address expressions) refer to absolute mode addresses.
If an absolute mode address is specified, all of the other
addresses in the program must be relocated to fit it.

Relative addresses are relocated by the action of the
Linking Loader. Unless otherwise specified, all symbolic
addresses (names, program points, address expressions) are in
Relative mode. To calculate a Relative mode address, the
Assembler calculates a displacement which the Linking Loader
adds to a relocation base address when the program s loaded.
In this way, the loader can load the program anywhere in
memory and all the addresses bear the correct relation to
each other.

An External mode address is one that refers to a Tocation
in another program. A name must be mentioned in an EXT state-
ment before it can be used as an External mode address.
External addresses allow a program to use routines or data in
another program.

51

Data and Common mode addresses refer to separate blocks
of memory locations that may or may not be contiguous with the
programs which make the references. Data mode addresses are
so designated by being mentioned in a DAT statement. Common
mode items are designated by CMN statements. The difference
between Cammon and Data addresses is that Data addresses may
only be referenced by the program in which they are defined,
whereas Common mode addresses are available to any program.

In addition, several Common blocks can exist simultaneously and

be referred to by name.
In an address expression, the constituent addresses may

have different modes. Any mode expression combined with an
Absolute mode address has the mode of the expression. The
difference-of two expressions of the same mode is of Absolute
mode.

4-3. (Op-Codes

Op-codes are of two types. One type, the machine codes, are the
mnemonic expressions of the 8080 instructions. These op-codes and their
associated operands are discussed in section A, below, which is reprinted
from the Intel 8080 Microcomputer System Users' Manual. The Assembier
can use any address expression to derive the required address for direct
or immediate addressing instructions. Register instructions can use any
address expression as long as its value is the address of a register
(0 - 7 absolute). Before a register indirect mode instruction may be
used, the register pair must be loaded with an address. Any address
expression can be used to.supply that address.

0os

52 June, 1977

C

CaCa

c*"“?l\ o
<
N

A computer, no matter haw sophisticated, can only

do what it is “told” to do. One ‘‘teils” the computer what .

to do via a serias of coded instructions referred to as a Pro-
gram. The realm of the pragrammer is referred to as Soft-
ware, in contrast to the Hardware that comprises the actual
computer equipment. A computer’s software refers to ail of
the programs that have been written for that computer.

When a computer is designed, the engineers provide
the Central Processing Unit (CPU} with the ability to per-
form a particular set of aperations. The CPU is dasigned
such that a specific operation is performed when the CPU
control logic decodes a particular instruction. Consequentty,
the aoperations that can be performed by a CPU define the
computer’s Instruction Set.

Each computer instruction allows the programmer to
initiate the performance of a specific operation. Ail com-
puters implement certain arithmetic operations in their in-
struction set, such as an instruction to add the contents of
two registers. Often logical operations (e.g., OR the con-
tents of two registers) and register operate instructions (e.g.,
increment a register) are included in the instruction set. A
computer's instruction set will aiso have instructions that
move data between registars, between 2 register and memory,
and between a register and an |1/O device. Most instruction
sets aiso provide Conditional Instructions. A conditional
instruction specifies an operation to be performed anly if
certain conditions have been met; for example, jump to a
particular instruction if the result of the last operation was
zero, Conditional instructions provide a program with a
decision-making capability.

By logicaily organizing a sequence of instructions into
a coherent program, the programmer can ““tell” the com-
puter to perform a very specific and useful function.

The computer, however, can only execute programs
whose instructions are in a binary coded form (i.e., a series
of 1’s and O’s}, that is called Machine Code. Because it
would be extremely cumbersome to program in machine
code, programming languages have been deveioped. There

008
June, 1877

are programs availabie which convert the programming lan-|
guage instructions inte machine code that can be inter-
preted by the processor.

Qne type of programming language is Assembly Lan-
guage. A unigue assembly language mnemonic is assigned to
each of the computer’s instructions. The programmer can
write a program (called the Sourca Program) using these
mnremonics and certain operands: the source program is
then converted into machine instructions (calied the Object;
Code). Each assembly language instruction is converted inta!
one machine code instruction (1 or more bytes) by an
Assambier program. Assembly languages are usually ma-!
chine dependent (i.e., they are usuaily able to run on only:
one type of computer}.

THE 8080 INSTRUCTION SET

The 8080 instruction set includes five different types
of instructions:

+ Data Transfer Group—move data between registers.
or betwesn memory and registers

e Arithmetic Group — add, subtract, increment or
decrement data in registers or in memory

» Logical Group - AND, OR, EXCLUSIVE-CR,
compare, rotate or complement data in registers;
or in memory

o Branch Group - conditional and unconditionat|
jump instructions, subroutine call instructions and|
return instructions !

o Stack, I/O and Machine Control Group — includes|
1/0 instructions, as well as instructions far main-}

taining the stack and internal control fiags.

Instruction and Data Formats:

Memory for the 8080 is organized into 8-bit quanti-
ties, called Bytes. Each byte has a unigque 16-bit binary
address corresponding to its sequential position in memory.

53

The 8080 can directly address up to 65,536 bytes of mem-

ory, which may consist of both read-oniy memory {ROM)

elements and random-access memory (RAM) elements (read/
write memory).

Datz in the 8080 is stored in the form of 8-bit binary
integers:
DATA WORD

1
D,' Dg ' D5 De ' D3' Dz Dq Do
S8 38

When a register or data word contains a binary num-
ber, it is necessary to establish the order in which the bits
of the number are written. In the Intel 8080, BIT O is re-
ferred to as the Least Significant Bit (LSB), and BIT 7 (of
an 8 bit number) is referred to as the Most Significant Bit
(MSB).

The 8080 program instructions may be one, two or
three bytes in length. Multiple byte instructions must be
stored in successive memory locations; the address of the
first byte is always used as the address of the instructions.
The exact instruction format will depend an the particular
operation to be exscuted.

Single Byte Instructions
[] [

| Dy l Do [Op Code
Two-Byte Instructions
Byte One I D7I ol r ' I Dg | Op Code
Byte Two [Dy [R rD 2:2;::5
Three-Byte Instructions
Byte One | D7I L e Dg I Qp Code
Byte Two [D7T P TDOl Data
Byte Three| Dy o T TDQ I) :Ldress
Addressing Modes:

QOften the data that is 10 be operated on is stored in
memory. When muiti-byte numeric data is used, the data,
like instructions, is stored in succsssive memory locations,
with the least significant byte first, foliowed by increasingly
significant bytes. The 8080 has four different modes for
addressing data stored in memaory or in registers:

® Direct —Bytes 2 and 3 of the instruction contain
the exact memory address of the data
item (the low-order bits of the address are
in byte 2, the high-order bits in byte 3).

® Register — The instruction specifies the register or
ragister-pair in which the data is located.

® Register Indirect — The instruction specifies a reg-
54 ister-pair which contains the memory

address where the data is located (the
high-order bits of the address are in the
first register of the pair, the low-order
bits in the second). .

& immediate — The instruction contains the data it-
self, This is either an 8-bit quantity or a
16-bit quantity (least significant byte first,
most significant byte second).

Unless directed by an interrupt or branch instruction,
the executian of instructions proceeds through consecu-
tively increasing memory locations. A branch instruction
can specify the address of the next instruction to be exe-
cuted in one of two ways:

® Direct = The branch instruction contains the ad-

dress of the next instruction to be exe-
cuted. (Except for the ‘RST’ instruction,
byte 2 contains the low-order address and
byte 3 the high-order address.)

® Register indirect — The branch instruction indi-

’ cates a register-pair which contains the
address of the next instruction to be exe-
cuted. {The high-order bits of the address
are in the first register of the pair, the
low-order bits in the second.)

The RST instruction is a special one-byte call instruc-
tion (usually used during interrupt sequences), RST in-
cludes a three-bit field; program control is transferred to
the instruction whose address is eight times the contents
of this three-bit fieid.

Condition Flags:

There are five condition flags associated with the exe-
cution of instructions on the 8080. They are Zero, Sign,
Parity, Carry, and Auxiliary Carry, and are each represanted
by a 1-bit register in the CPU, A flag is ““set’’ by forcing the
bit to 1; "reset” by forcing the bit to 0.

Unless indicated otherwise, when an instruction af-
fects a flag, it affects it in the following manner:

Zero: If the resuit of an instruction has the
value 0, this flag is set; otherwise it is
reset.

Sign: If the most significant bit of the result of

the operation has the vaiue 1, this flag is
set; atherwise it is raset,

If the modulo 2 sum of the bits of the re-
sult of the operation is 0, (i.e., if the
result has even parity), this flag is set;
atherwise it is reset (i.e., if the result has
odd parity).

If the instruction resuited 1 a carry
(from addition), or a borrow (from sub-
traction or a comparison) out of the high-
order bit, this flag is set; otherwise it is '
reset.

Parity:

Carry:

00s
- June, 1377

Auxiliary Carry: If the instruction caused a carry out

of bit 3 and into bit 4 of the resuiting

vaiue, the auxiliary carry is set; otherwise
it is reset, This flag is affected by single
precision additions, subtractions, incre-
ments, decrements, comparisons, and log-
ical operations, but is principally used
with additions and increments preceding
a DAA (Decimal Adjust Accumulator)
instruction.

Symbols and Abbreviations:
The following symbols and abbreviations are used in
the subsequent description of the 8080 instructions:

SYMBOLS
accumulator
addr

data

data 16
byte 2

byte 3

port

rrlr2
DDD,SSs

RP

208

MEANING

Registar A

16-bit addrass quantity

8-bit data quantity

16-bit data quantity

The second byte of the instruction
The third byte of the instruction
8-bit address of an 1/0 device

QOne of the registers A8 C,D,EH,L

The bit pattern designating one of the regis-
ters A,B,C,D,E,H,L (DDD=destination, 585=
source):

DDD or 588 REGISTER NAME

m
000
001
010
on
100
M

One of the register pairs:

rITMmgow)»

B represents the B,C pair with B as the high-
order register and C as the low-order register;

D represents the D,E pair with D as the high-
order register and E as the low-order register;

H represents the H,L pair with M as the high-
order register and L as the low-order register;

SP represents the
register.

16-bit stack pointer

The bit pattern designating one of the regis-
ter pairs 8,0,H,SP:

RP REGISTER PAIR

v} 8-C

01 D-g

10 H-L

A} sP

June, 1§77

PC

SP

m

Z,35PCY.AC

3'!*l+<<‘:>‘*

NNN

The first (high-order) register of a designated
regi;ter pair.

The second (low-arder) register of a desig-
nated register pair.

16-bit program counter register (PCH and
PCL are used to refer to the high-order and
tow-order 8 bits respectively).

16-bit stack pointer register (SPH and SPL
are used to refer to the high-order and low-
order 8 bits respectively).

Bit m of the register r (bits are number 7
through 0 from left to right).

The condition flags:
Zero,
Sign,
Parity,
Carry,
and Auxiliary Carry, respectively.

The contents of the memory location or reg-
isters enciosed in the parentheses.

""Is transferred to”

Logical AND

Exclusive OR

{nclusive OR

Addition

Two's complement subtraction
Multiplication

“{s exchanged with”

The one’s complement (e.g., (A))
The restart number O through 7

The binary representation 000 through 111
for restart number O through 7 respectively.

Description Format:

The following pages provide a detailed description of
the instruction set of the 8080. Each instruction is de-
scribed in the following manner:

1.

. This is followed by a narative description of the

. The following line(s) contain the binary fields and

The MAC 80 assembler format, consisting of
the instruction mnemonic and operand fields, is
printed in BOLDFACE on the left side of the first

line.

The name of the instruction is enclosed in paren-
thesis on the right side of the first line.

. The next line{s} contain a symbaolic description

of the operation of the instruction.

operation of the instruction.

patterns that comgrise the machine instruction.

55

6. The last four lines contain incidental information
about the execution of the instruction. The num-
ber of machine cycles and- states required to exe-
cute the instruction are listed first, If the instruc-
tion has two possible execution times, as in a
Conditional Jump, both times will be listed, sep-
arated by a sfash. Next, any significant data ad-
dressing modas (see Page 4-2) are listed. The last
line lists any of the five Flags that are affected by
the execution of the instruction.

Data Transfer Group:

This group of instructions transfers data to and from
registers and memory. Condition flags are not affected by
any instruction in this group.

MOV 1,72 {Move Register)
(r1) —=— (r2)
The content of register r2 is moved to register r1,

ID SISIS

{0'11010

Cycles: 1
States: §
Addressing: register
Flags: none

MOV r, M
{r) ~=— ((H) (L))

{Move from memory)

The content of the memory location, whose address
is in registers H and L., is moved to register r.

BN
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: none
MOV M, ¢ (Move to memory)

((H} (L)) = ()

The content of register r is moved to the memory io-
cation whose addraess is in registers H and L.

ol 1Tl i Tofs!sls|
Cyctes: 2
States: 7
Addressing: reg. indirect
Flags: none

56

MV!r, data {Move Immediate)
{r) = (byte 2)
The content of byte 2 of the instruction is moved to
register r.

o' ofo'o o[1 170

data
Cycles: 2
States: 7
Addressing: immediate

Flags: none

MVI{ M, data (Move to memory immediate)
{(H) (L)} ~== (byte 2)
The content of byte 2 of the instruction is moved to
the memory location whose address is in registers H

and L.
ol ol 1T 1Tt 11T 11,
data
Cycles: 3
States: 10
Addressing: immed./reg. indirect

Flags: none

LX1 rp, data 16 {Load register pair immediate)
(rh} <= (byte 3},
(ri) = {byte 2)
Byte 3 of the instruction is moved into the high-arder
register {rh) of the register pair rp. Byte 2 of the in-
struction is moved into the low-order register {rf} of
the register pair rp.

ol al R rpl 0T oo
low-order data
high-order data
Cyeles: 3
States: 10
Addressing: immediate
Flags: none 208
June, 1377

C

LDA addr {Load Accumulator direct}
(A) = {{byte 3)(byte 2))
The cantent of the memory location, whose address
is specified in byte 2 and byte 3 of the instruction, is
moved to register A,

g lo T Ty Ty Pgls Ty

low-order addr
high-order addr
Cycles: 4
States: 13

Addressing: direct
Flags: none

STA addr {Store Accumulator direct)

{{byte 3)(byte 2)) — (A)

The content of the accumulator is moved to the

memory [ocation whose address is specified in byte
. 2 and byte 3 of the instruction.

o lo s T Tolglyly
low-order addr
high-order addr
Cycles: 4
States: 13
Addressing: direct
Flags:

none

LHLD addr (Load H and L direct)
(L) ~— {{byte 3)(byte 2))
(H) == ((byte 3){byte 2) + 1)
The content of the memoty location, whose addrass
is specified in byte 2 and byte 3 of the instruction, is
moved to register L. The content of the memory loca-
tian at the succeeding address is moved to register H.

SHLD addr (Store H and L direct)
{{byte 3)(byte 2)) <— (L)
({byte 3byte 2) + 1) === (H}
The content of register L is moved to the memory lo-
cation whose address is specified in byte 2 and byte
3. The content of register H is moved to the succeed-
ing memary location.

B

o ol TgTeg Ty iy

low-order addr

high-order addr

Cycles: 5
States: 16
Addressing: direct
Flags: none

LDAX rp {Load accumulator indirect)
{A) - {(rp)}
The content of the memory location, whose address
is in the register pair rp, is moved to register A. Note:
only register pairs rp=B (registers B and C) or rp=D
{registers D and E) may be specified.

0 0 R T P [1 ! 0 [1] Q
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: none
STAX rp (Store accumulator indirect)

({rp)) -=— (A)

The content of register A is moved to the memory lo-
cation whose address is in the register pair rp. Note:
only register pairs rp=8 (registers B and C} or rp=0
{registers D and E) may be specified.

Lolo

R'elalols T

Cycles: 2
States: 7
Addressing: reg. indirect
Flags: none

XCHG {Exchange H and L with D and E)
(H} e (D}
(L) == (E)
The contents of registers H and L are exchanged with
the contents of registers O and E.

|(1|111I0|1I0I1‘1J

0101110.11[0‘1|0
low-grder addr
high-arder addr
Cycles: 5
States: 16
Addressing: direct
80S Flags: none

June, 1977

Cycles: 1
States: 4
Addressing: register
Flags: nane

57

Arithmetic Group:

This group of instructions performs arithmetic oper-
ations on data in registers and memory.

Unless indicated otherwise, all instructions in this
group affect the Zero, Sign, Parity, Carry, and Auxiliary
Carry flags according to the standard rules.

All subtraction operations are performed via two's
complement arithmetic and set the carry flag to one to in-
dicate a borrow and clear it to indicate no borrow.

ADDr (Add Register)
(A) ==— {A) +{r}
The content of register r is added to the content of the
~accumulator. The result is placed in the accumulator.

ADCr {Add Register with carry)
" {A) e (A} + (1) +(CY)
The content of register r and the content of the carry
bit are added to the content of the accumulator. The
result is placed in the accumulator.

1T ool ol [sTsTs|
Cycles: 1
States: 4
Addressing: register
Flags: Z,SP,.CY,AC
ADCM - (Add memor‘y with carry)

(A) === (A} +{{H} (L)) +{CY)

The content of the memory location whose address is
contained in the H and L registers and the content of
the CY flag are added to the accumulator, The resuit
is placed in the accumulator.

1 Tolololo]s!s!s|
Cycles: 1
States: 4
Addressing: register
Flags: 2Z,S,P,.CY.AC
ADD M {Add memory)

(A} =— (A) + {{H) (L)}

|110]0[0l

1f1'1[oJ

Cycles:
States:
Addressing:
Flags:

AC! data

2

7

reg, indirect
Z,8,PCYAC

{Add immediate with carry}

The content of the memory location whose address
is contained in the H and L registers is added to the
content of the accumulator. The resuit is placed in

(A) ~— {A) + (byte 2) + (CY)
The content of the second byte of the instruction and
the content of the CY flag are added to the contents

the accumulator.

1ol alaolol Ty
Cycles: 2
States: 7

, Addressing: reg, indirect

Fiags: Z,5,P,CYAC
ADt data {Add immediate)

(A) =— (A) +{byte 2)

The content of the second byte of the instruction is
added to the content of the accumulator, The result
is placed in the accumulator.

LR
data
Cycles: 2
States: 7
Addressing: immediate
Flags: Z,5PCY,AC

58

of the accumulator. The resuit is placed in the

accumulator.

1 1 0 0 1 1 1 Q
data
Cycles: 2
States: 7
Addressing: immediate
Flags: 2Z,S,PCY.AC
susr (Subtract Register)

(A) =— (A) =(r)

The content of register r is subtracted from the con-

tent of the accumulator.

The result is ptaced in the

accumuiator.
FiToTo i To s 'Ts's |
Cycles: 1
States: 4
Addressing: register

Flags: 2,5P.CY,AC
00s
June, 1977

sSuB M {Subtract memory)
{A) =— (A} = ((H) (L))
The content of the memory location whose address is
contained in the H and L registers is subtracted from
the content of the accumulator. The resuit is placed
in the accumulator.

SBI data {Subtract immediate with borrow)
{A) = (A} — (byte 2) — (CY}
The contents of the second byte of the instruction
and the contents of the CY flag are both subtracted |
from the accumulator. The resuit is placed in the -
accumulator. "

[1Tolols Taly Ty Tel 1T T by Ty Ty iy
Cycles: 2 deta
States: 7
Addressing: req. indirect cSvt:it:ss 3
Flags: ZSP.CY.AC Addressing: immediate
Flags: Z.S,P,CY.AC
SUI data {Subtract immediate)
(A} == (A) — {byte 2)
The content of the second byte of the instruction is INR ¢ {increment Register)

subtracted from the content of the accumulator. The
‘ resuit is placed in the accumulator.

1T Ty T T Ty hy
data
Cycles: 2
States: 7
Addressing: immediate
Flags: Z,SP,CY,AC
SBB r {Subtract Register with borrow)

(A) == (A} —{r} — (CY}

The content of register r and the content of the CY
flag are both subtracted from the accumulator. The
result is placed in the accumulator.

‘ Lot ol ol a Pyl sl sls]

Cycles: 1
States: 4
Addressing: register
Flags: 2,8.PCYAC

SBB M {Subtract memory with borrow)
(A} ~=— (A} = {{H) (L)} - (CY}
The content of the memory location whose address is
contained in the H and L registers and the content of
the CY flag are both subtracted from the accumula-
tor. The result is placed in the accumulator.

L1roroli'171‘1104f

Cycles: 2
L/ States: 7
Addressing: req. indirect
208" Flags: Z,S,P.CY.AC

June, 1977

(r) = {r} +1
The content of register r is incremented by one,

Note: Alt condition flags except CY are affected.
|

fToToJoolTol1a ol
Cycles: 1
States: §
Addressing: register
Flags: Z,5,P,AC

iINR M {Increment memory) i
((H) (L)) == ({H} (L) +1
The cantent of the memory location whose address
is contained in the H and L, registers is incremented |
by one. Note: All condition flags except CY arei

affected. ;
i o] ! o] ! 1 ! 1 I 0 ‘ 1 ! Q [0 —l
Cycles: 3 ;
States: 10
Addressing: reg. indirect i
Flags: 2Z,SPAC
OCRr {Decrement Register)

(r) ~— {r) ~1
The content of register r is decremented by one.|
Note: All condition flags except CY are affected.

1—0’0[D’DTD]1'0'1]

Cycles: 1
States: §
Addressing: register
Flags: Z,S,P,AC

59

DCR M {Decrement memory}
((H) (L)) == ({H) (L)) ~1
The content of the memory location whose address is
contained in the H and L registers is decremented by
one. Note: All condition flags except CY are affected.

olol 111 To Ty Tyotly
Cycles: 3
States: 10
Addressing: reg. indirect

Flags: Z,5,P.AC

INX rp (Increment register pair)
{rh) (rl) == (rh) {rl} +1
The content of the register pair rp is incremented by
one. Note: No condition flags are affected.

[olo[rTe]Jalols T

Cycles: 1
States: 5
Addressing: register

Flags: none

DCX rp {Decrement register pair)
(rh} (rt) <= (rh} {r]) — 1
The content of the register pair rp is decrementad by
one. Note: No condition flags are affected.

ol o R]P1o'1’1]

Cycles: 1
States: 5
Addressing: register

Flags: none

DAD rp (Add register pair to H and L}
(H) (L) == (M) (L} + (rh) {r)
The content of the register pair rp is added to the
content of the register pair H and L. The result is
placed in the register pair H and L, Note: Only the
CY flag is affected. It is set if there is a carry out of
the double precision add; otherwise it is reset,

Lo]o]R’P

1’0]0|1]

Cycles: 3
States: 10
Addressing: register

Flags: CY

60

DAA {Decimal Adjust Accumuilator}

The eight-bit number in the accumulator is adjusted

to form two four-bit Binary-Coded-Decimal digits by

the foliowing process:

1. if the value of the least significant 4 bits of the
accumulator is greater than 9 or if the AC flag
is set, 6 is added to the accumulator.

2 tf the value of the most significant 4 bits of the
accumulator is now greater than 3, or if the CY
fiag is set, 6 is added to the most significant 4
bits of the accumulator.

NOTE: Al flags are affected.

[oT ol s Tolols Ty Ty

Cycles: 1
States: 4
Fiags: Z,5,P,CY,AC

Logical Group:

This group of instructions performs logical {Boolean)
operations on data in registers and memory and on condi-
tion flags.

Unless indicated otherwise, all instructions in this
group affect the Zero, Sign, Parity, Auxiliary Carry, and
Carry flags according to the standard rules.

ANA ¢ {AND Register)
(A) = (A) A (r)
The content of register r is logically anded with the
content of the accumulatar. The resuit is placed in
the accumulator. The CY flag is cleared.

|1|0|1‘o]0 s'srsw

Cycles: 1
States: 4
Addressing: registar

Flags: Z.S,P.CY,AC

ANA M {AND memory}
(A) == (AJA{(H) (L)
The contents of the memory location whose address
is contained in the H and L registers is Jogically anded
with the content of the accumuiator. The result is
placed in the accumulator. The CY flag is cleared.

]1'0'1’0'0‘1]1]0]

Cycles: 2
States: 7
Addressing: reg. indirect
Fiags: Z,5,P,CY.AC
20s
June, 1977

C

C

(‘/,

ANt data (AND immediate)
(A} == (A} A (byte 2)
* The content of the second Byte of the instruction is
logically anded with the contents of the accumulator.
The result is placed in the accumulator. The CY and

AC flags are cleared.
R EEERERE
data
Cycles: 2
States: 7
Addressing: immediate
Flags: Z,5,P,CY.AC
XRA ¢ {Exclusive OR Register)

{A) = (A} ¥ (r)

The content of register r is exclusive-or'd with the
content of the accumulator. The result is placed in
the accumulator, The CY and AC flags are cleared.

110111011Js's'sj

Cycles: 1
States: 4
Addressing: register
Flags: Z,8.°,CYAC

XRA M (Exclusive OR Memory)
(A) —— (A) ¥ ({H) {L)
The content of the memory location whose address
is. contained in the H and L registers is exclusive-OR'd
with the content of the accumulator. The resuit is
placed in the accumulator. The CY and AC fiags are
cleared.

T T ol T Ty T T3 Ty

Cycies: 2
States: 7
Addressing: reg. indirect
Flags: ZS8,PCY.AC

XR1 data {Exclusive QR immediate)
(A) =— (A) ¥ (byte 2)
The content of the second byte of the instruction is
exclusive-QR‘d with the content of the accumulator.
The resuit is placed in the accumulator. The CY and
AC flags are cleared.

ORAr {OR Register)
(A) = (A} V {r)
The content of register r is inclusive-QR’'d with the
content of the accumulator. The result is placed in
the accumulator. The CY and AC flags are cleared.

1‘0'1"1'0[5‘5‘5]

Cycles: 1
States: 4
Addrassing: register
Flags: 2Z,8.,PCY,AC
ORA M {OR memory)

(A} = (A} V ({H) (L}}

The content of the memory location whose address is
contained in the H and L registers is inciusive-OR'd
with the content of the accumulator. The result is
placed in the accumulator. The CY and AC flags are

cleared.
[+ Tol o T bty Ty
Cycies: 2
States: 7
Addressing: reg. indirect

Flags: Z,S,P.CY.AC

ORI data (OR Immediate}
{A) == {A)V {byte 2}
The content of the second byte of the instruction is
inciusive-OR'd with the content of the accumulator.
The result is placed in the accumulator. The CY and
AC flags are cleared.

1T T Ty T Ty Byl
data
Cycles: 2
States: 7
Addressing: immediate
Flags: Z.8,P.CY.AC

CMPr {Compare Register)

(A) = (n :
The content of register r is subtracted from the ac- |
cumulator. The accumuiator remains unchanged. The
condition flags are set as a result of the subtraction.

The Z flag is set to 1 if (A} = (r), The CY flag is set to |

PN PR ST P I R I B 1if (A} <(r). . ‘
data rTo T Ty Py s lsTs |
Cycles: 2 Cycles: 1
States: 7 States: 4
Addressing: immediate Addressing: register
208 Flags: Z,SP.CY,AC Flags: Z5PCYAC

June, 1877

€1

CMP M (Compare memory)

(A} = ((H) (L)

The content of the memory location whose address
is contained in the H and L registers is subtracted
from the accumulator. The accumulator remains un-
changed. The candition flags are set as a result of the
subtraction, The Z flag is set to 1 if (A} = ({H) (L}).
The CY flag is set to 1 if (A) < ({H} (L))},

L1'o‘1'1"1’1'1r0]

Cycles: 2
States: 7
Addressing: reg. indirect

Flags: Z,S,P,.CY.AC

CPI data (Compare immediate)
(A) ~ (byte 2)
The content of the second byte of the instruction is
subtracted from the accumuiator. The condition flags
are set by the resuit of the subtraction. The Z flag is
set to 1 if {A) = {byte 2), The CY fiag is set to 1 if
(A) < {byte 2).

1o Ty Dy Ty Ty Ty T
data
Cycles: 2
States: 7
Addressing: immediate

Flags: 2Z,5,P,CY,AC

RLC {Rotate left}
(Ant1) ~— (An) (Ag) ~— (A7)
(CY) =— (A7)
The content of the accumulator is rotated left one
position. The low order bit and the CY fiag are both
set to the value shifted aut of the high order bit posi-
tion. Oniy the CY flag is affected.

RRC {Rotate right)
(Ap) +— (An.1):
(CY) == (Ag}
The content of the accumulator is rotated right one
position. The high order bit and the CY flag are both
set to the value shifted out of the low order bit Rpsi-
tian. Only the CY flag is affected.

(A7) ~— (Ag]

[oToTo ol Ty Ty T]

Cycles: 1
States: * 4
Flags: CY

RAL {Rotate left through carry)
(An+1) === (A} [CY) =— (Ag)
{Ag) =— (CY) .
The content of the accumulator is rotated laft one
position through the CY flag, The low order bit is set
equal to the CY flag and the CY flag is set to the
value shifted out of the high order hit. Only the CY
flag is affected.

ol ool 1t To e Ty Ty

Cycles: 1
States: 4
Flags: CY

RAR {Rotate right through carry)
(Ap) = (Ane1) ; (CY) = (Ag)
(Ag) ~— (CY)
The content of the accumuiator is rotated right one
position through the CY flag. The high order bit is set
to the CY flag and the CY flag is set to the value
shifted out of the low order bit. Oniy the CY flag is
affected.

0'0[0‘1‘1'1‘1‘1]

Cycles: 1
States: 4
Flags: CY
cMA {Complement accumulator)

(A} = (A)

The contents of the accumulator are compiemented
(zero bits becorme 1, one bits become 0}. No flags are
affected.

0‘0'0'0'0'1'1’1j

[oro'1'o'1'1’1'1

Cycles: 1
States: 4
Flags: CY

62

Cycles: 1
States: 4
Flags:
ags: none 00S
June, 1577

C

C

¢

cMme {Complement carry)
{CY) =— €V
The CY flag is complemented. No other flags are

affected.
[oTol T Tyl

Cycles: 1
States: 4
Flags: CY

8TC {Set carry)
(CY) =1

The CY flag is set to 1. No other flags are affected.

R EEEEERE

9 !

Cycles: 1
States: 4
Flags: CY

Branch Group:

This group of instructions alter normai sequential
program flow.

Condition flags are not affected by any instruction
in this group.

The two types of branch instructions are uncondi-
tional and conditionai, Unconditional transfers simply per-
form the specified operation on register PC (the program
counter). Conditional transfers examine the status of one of
the four processor flags to determine if the specified branch
is to be executed. The conditions that may be specified are
as follows:

CONDITION

ccc

NZ -~ notzero (Z=0Q) Qaoo
Z - zero{Z=1) 001
NC - no carry (CY =0) 010
C = carry (CY=1) 011
PO — parity odd (P =0) 100
PE — parity even {P=1) 101
P - plus(S=0Q) 110
M - minus(S=1) mnm

JMP addr {Jump}
(PC) =— (byte 3) (byte 2)
Ce%ntrol is transferred to the instruction whose ad-

June, 1977

dress is specified in byte 3 and byte 2 of the current
instruction.

1T TaTalo Moty Ty

tow-arder addr

high-order addr

Cycles: 3
States: 10
Addressing: immediate
Flags: none

Jeondition addr {Conditional jump)
if (CCC),

(PC) === {byte 3) (byte 2)
If the specified condition is true, control is trans-
ferred to the instruction whosa addrass is specified in
byte 3 and byte 2 of the current instruction; other-

wise, control continues sequentially.
clclcfolilo

fow-order addr

1[1

high-order addr

Cycles: 3
States: 10
Addressing: immediate
Fiags: none
CALL addr {Cati}

{{SP) = 1) ~— (PCH)

{(SP) — 2) = (PCL}

(SP) == (SP) -2

(PC) < (byte 3} {byte 2)

The high-order eight bits of the next instruction ad-
dress are moved to the memory location whose
address is one less than the content of register SP.
The low-order eight bits of the next instruction ag-
dress are moved to the memory location whose
address is two less than the content of register SP.
The content of register SP is decremented by 2. Con-
trol is transferred to the instruction whose address is
specified in byte 3 and byte 2 of the current
instruction.

o T o T3 T3 T4 7

1‘1

tow-order addr

high-order addr

Cycles: 5
States: 17
Addressing: immediate/reg. indirect

Flags: none

83

Ccondition addr {Condition call}
If (CCC),

{{SP} = 1} = (PCH)

({SP) = 2) =— (PCL)

(SP} === {SP) —2

{PC) = (byte 3) (byte 2)
If the specified condition is true, the actions specified
in the CALL instruction (see above} are performed;
otherwise, control continues sequentially.

1P felcelce] il olo

low-order addr

high-order addr-

RSTn (Restart)
{(SP} = 1) ~— (PCH)
({SP} ~ 2) =— (PCL)
(SP) =— (SP) =2
(PC) = 8= {NNN)
The high'—brder eight bits of the next instruction ad-
dress are moved to the memory location whaose
address is one less than the content of register SP.
The low-order eight bits of the next instruction ad-
dress -are moved to the memory location whose
address is two less than the content of register SP.
The content of register SP is decremented by two.
Control is transferred to the instruction whose ad-
dress is eight times the content of NNN.

L1!1'NFN[N bty

Cycles: 3
States: 11
Addressing: reg. indirect
Flags: none

Cycles: 3/5
States: 11/17
Addressing: immediate/reg. indirect
Flags: none
RET {Return)
{PCL} —— ({SP});

(PCH) == ((SP} +1);

{SP) ~=— {(SP) +2;
The content of the memory location whose address
is specified in register SP is moved to the low-order
eight bits of register PC. The content of the memory
location whose address is'one more than the content
of register SP is moved to the high-order eight bits of
register PC, The content of register SP is incremented
by 2.

1'1T0[0‘1|010]1J

Cycles: 3
States: 10
Addressing: reg. indirect
Flags: none :

Rcondition
If (CCC),
(PCL) ~— ({SP})

(PCH) == ({SP} +1)

[SP) =— (SP) +2

{Conditional return)

If the specified condition is true, the actions specified
in the RET instruction (see above) are performed;
otherwise, controil continues sequentially.

1514131211108 8 7 6 5§ 4 3 2 1 0
tofofofofolajolofofonIn]n]afa]a]

Program Counter After Restart

PCHL (Jump H and L indirect — move H and L to PC)
(PCH) ~— (H)
(PCL} —=— (L}
The content of register H is moved to the high-order
eight bits of register PC. The content of register L is

moved to the low-order eight bits of register PC.

1}1‘CICTC OIOIO
Cyctes: 1/3
States: 5/11
Addressing: reg. indirect
Flags: none -

ad

b g Ty T Tg Ty
Cycles: 1
States: 5
Addressing: register
Flags: none
cas

L e map

C

C

Stack, 1/0, and Machine Control Group:

This group of instructions performs I/Q, manipuiates

the Stack, and alters internal control flags.

Unless otherwise specified, condition flags are not

affacted by any instructions in this group.

PUSH rp (Push)

{{SP) = 1} —~— (rh)

{{SP) —~ 2) === {rl)

{SP) - (SP) -2

The content of the high-order register of register pair
rp is moved to the memory location whose address is
one less than the content of register SP, The content
of the low-arder register of register pair rp is moved
to the memory location whose address is two less
than the content of register SP. The content of reg-
ister SP is decremented by 2. Note: Register pair
rp = SP may not be specified.

T " 7] ol T o7 7]

PUSH PSW

Cycles: 3
States: 11
Addressing: reg. indirect
Flags: none

{Push processor status word}

((SP} = 1) ~— (A)

((SP) = 2)g =— (CY) , {{SP} = 2}y =1

((SP} = 2)g =— (P}, ({SP}~2]3 =~ 0O

((SP) = 24 == {AC), {SP} = 2)g =— 0

{(SP} = 2)g == (2}, {(SP} =27 = (3)

(SP) == (SP) -2

The content of register A is moved to the memory
location whose address is one less than register SP.
The contents of the condition flags are assembied
into a processor status word and the word is moved
to the memory location whose address is two less
than the content of register SP. The content of reg-
ister SP is decremented by two.

[1'1[1]1'()'1'0'1]

Cycles: 3
States: 11
Addressing! reg. indirect
Flags: none

00s
June, 1977

FLAG WORD

Dy Dg Csg Da D Dg

G e - o]

POP rp {Pap)

(rl) - ((SP})

{rh) - ({SP}+ 1)

(SP} <— (SP) + 2

The content of the memory locatian, whose address
is specified by tha content of register SP, is moved to
the low-order register of register pair rp. The content
of the memory location, whose address is ane more
than the content of register SP, is moved to the high-
order register of register pair rp. The content of reg-
ister SP is incremented by 2. Note: Register pair
rp = SP may not be specifisd,

1 T el e folto oy]

Cycles: 3
States: 10
Addressing: reg, indirect
Flags: none

POP PSW (Pop processor status word)

{CY) =— ({SP))g

(PY =— {(SP})o

(AC) =~ ((SP)}4

(Z) -— {{SPl}g

(S} == ((SP))7

{A) —=— ({SP) + 1)

(SP) = (SP) +2

The content of the memory location whose address
is specified by the content of register SP is used to
restore the condition flags. The content of the mem-
ory location whose address is one more than the
content of register SP is moved to register A. The
content of register SP is incremented by 2.

T T T 1o o Ta T

Cycles: 3
States: 10
Addressing: reg. indirect
Flags: Z,5,P,CY AC

XTHL {Exchange stack top with H and L)

(L) <= ((SP))

{H) == {{SP} + 1)

The content of the L register is exchanged with the
content of the memory location whase address is
specified by the content of register SP. The content
of the H register is exchanged with the content of the
memory location whose address is one more than the
content of register SP.

BEEEEE RN
Cycles: 5
States: 18
Addressing: reg. indirect
Flags: none
SPHL {Move HL to SP)
(SP) ~w— {H) {L)

The contents of registers M and L {16 bits) are moved

to register SP,

IR

RN

Cycles: 1
States: 5
Addressing: register
Flags: none

IN port (Input)
{A) = (data)

The data placed on the eight bit hi-directional data
bus by the specified port is moved to register A,

1T P Ty Ty Ty T Ty
port
Cycles: 3
States: 10
Addressing: direct
Flags: none

QUT port (Output)
(data) ~— (A}

The content of register A is placed an the eight bit
bi-directional data bus for transmission to the spec-

ified porz.
1 T T T T Ty Ty
port
Cycles: 3
States: 10
Addressing: direct
Flags: none

66

El {Enable interrupts)
The interrupt system is enabled following the execu-
tion of the next instruction.

L1'1'1|1,1l

'RERER

Cycles: 1
States: 4
Flags: nane
DI (Disable interrupts)

The interrupt system is disabled immediately foi-
lowing the exaecution of the Di instruction.

R R

Cycles: 1
States: 4
Flags: none
HLT (Hait)
The processor is stopped. The registers and flags are
unatffected.
[OT1I1I1IOT1I1101
Cycles: 1
States: 7
Flags: none
NOP {No op)

No operation is performed. The registers and flags
are unaffected.

Lo[o]o'ojo'o'oloﬂ

Cycles: 1
States: 4
Flags: none

00s
June, 1977

Jd

(/‘

INSTRUCTION SET

§ y of Pr Instr
instruction Code (! Clacki2! Instruction Cade(1! Clagk{2!
Mnemanic Deseription Oy Oy Og Oy O3 O3 Oy Op Cycies Mnemonic Description Oy Oy Ds Og O3 Dz Oy Oy Cychs
MOV, ;3 Mova register 10 renister g1 & 0 DS S S $ RZ Return an zaeeo 1t 0 ¢ 1 0 00 5
MOV M, 1 Move reqister to memory gt 1t 1 ¢ 3§ § s 7 RNZ Return an na zero Tt 0 0 0 0 ¢ o0 s
MOV e M Move memory to register ¢ 1 a d a1 ra 7 RP Retum an patitive ot 2 0,00 $/11
HLT Halt 9 1 1 T ¢ 1 0 ? AM Retuen on minug 1 1 Tt 1 0 0 9@ LAk
MVIr Mave immagiate register ¢ 0 0 0 0 1 ' O 7 RPE Ratuen on panty even 14 t ¢ 10 0 ¢ 511
MVIM Movs immadiate memory 2 0 1 e oo 10 RPO Retern an parity add T t 0 0 0 0 0 L3R
INR ¢ ineremant ragister 60 9 0 0O 1 0 O 5 RST Restart 1Tt A A AT 1 11
BCR Dacremens register 0 ¢ 0o 0 D 1 0 1 5 IN input L I T | R RN N R R § 19
INR M Incrament memary 0o ¢ v+ 1 0 1 0 ¢ 10 out Output LIS S R A A 10
OCA M Decrement memary a0 1 1 0 Y 0 | 10 X8 Lasd immudiate register g 0 0 ¢ 0 0 0 1 iy
ADD ¢ Add register to A Tt 0 ¢ 0 0S5 S S 4 Pair8&C
ADC ¢ Add register t0 A with carey t 0 6 0 1 S § S 4 Lo Laad immediate register g 0 0 1 ¢ Q0 ¢ 1 10
sus:« Subtrace register from A 0 8 1 0 S § s k3 PairQ & £
SB8r Subtract register from A 10 g 1 v § § 8 4 LXIi H Load rmrmadiate ragistar ¢ 0 1 0 0 0 0 1! 1]
with Dorrow . PaicH & L
ANA 1 And regqister wah A [10 0 8§ § 8 4 LXI8P Laad immediste stack pointer 3 0 1 T 9 0 8 10
XRAf Exclusive Or registor weth A 1 g 1 2 vy 8 8§ 8§ 4 PUSH B Push-ragister Pawr 8 & C an 118 ¢ ¢ 1 01 1"
Ofiar Q¢ ragister with A 18t 1 05 § S 4 stack
CMPr Campare register with A t 0 t 1 1 S § S 3 PUSH O Push register Par 0 & E on 1 0 v 9 1t 0t 1
ADD M Add memary to A vt ¢ 0 a 0 1 1t aQ 7 stack
ADCM Add memary to A with carry T8 0 0 v 1 1 0 7 PUSH H Push cagister Paie M & L on 1 t 0 ¢ 1 01 n
SUB M Subtract memory from A 1T 6 0 P 01 o1Q 7 stack
SeeM Subtract mamary from A t g ¢ 1ot oo 7 PUSH PSW Push A and Flags 11 Tt 0 1 o0t 1
with farrow on stacx
ANA M And memory with A 10 1 6 0 1t 10 7 PGP B Pogp regrster pair 8 3 C off Tt 8 2 0 0 0 10
ARAM Exclusive Or mamory with A LI T T S N A 7 stack
0RAM Qr memory with & LI T R A B A 7 POPO Pop register pair O & E ait Tro0 1 8 0 0 1 16
CMP M Campare memary vth A LI N R S A A 7 stack.
ADI Add immediate 10 A L g 0 0 1 1 0 7 FOPH Pop registar pair H & L aff LI T4 2 0 0 1%
ACt Agd immediate ta A with 116 0 t 1 10 7 tack 4
. | AQPPSW Pap A and Flags L 1 0 0 0 1
sul 1o t gt o1 7 . off stack
S8l Subtract immediate from A o A T B | 7 STA Siore A direct ¢ 0 1 t 0 0 1 0 13
with borraw ‘{ LDA Load A direct 00 1 LI B B B 13
ANt And immediate with A LR T B S B 7 | XCHG Exehange 0GE, HE L [[I 4
X81 Exelusivs Or \mmediate with 11 [R S 7 ‘ Ragistars
A t XTHL Exchange tap af stack A & L LA S T B S .18
oR1 Or immediate with A LA T S S T T 7 { SPHL # & L (0 stack painter [R T T A 5
4] Campare smmediate with A LI T T T T S 7 T # & L to program counter 1ot 01 og o0 5
ALC Rotate A left 00 0 0 G 1 1 1 4 ! JADS AddB&CoHAL [N A S R B I 10
ARC Rotate A right g0 0 0 1 1 1 ¢ . pago AddO&GEWOHAL 60 90 t 1 Q@ ¢t 10
RAL Aotate A laft through carry 00 0 v & 1 11 4 i QA0 H AddH&LwoKal [T A B B - |]
RAR Rotate A right through ¢ 0 0 1ot 4 i 0ADSP Add stack ponter to H & L [R 19
carry STAX B Store A ndirect 0 ¢ 0 0 0 ¢ o0 7
e Jumo uncanditsonal LA S T B S R B | e STax o Stare A indireer 000 0 1 ¢ 0 1 2 7
i€ dump on carry LN T R SR B B B 10 LDAX 8 Load A indirect ¢ 9 0 06 10 10 7
INC Jump on no carry 11 ¢ 1 0 0 v 0 10 Loax o Load A indirect g 0 0 1t 1 o0 t 0 7
iz Jump on zero T8 ¢ 1 0 10 10 INX B {ncrement 8 & C registers 8 0 9 0 0 0 11 5
Nz Jumg an no zera t 1t o0 000 12 ie INX D Incramant O & € regusters 000 ¢ t 0o 1ot 5
P Jumo an gositive 1 I T SO S | 10 X H incramant M & L registers 5 04 1 ¢ 0 0 t ! 5
M Jump on minus [AN TS SRS B S B B} 9 INX 8P Incremant stack pointer 00¢ 1t 0 8 11 s
JPE Jumg on parity even LA R N JR S A 10 0cx s Decrement 8 & C 9 0 0 0 1 0 1 1 1
P9 Jume an parity odd t 1 1. 0 0 a 1t o 12 acxo Decrement D& E 009 9 10t H
CALL Cail unconartional LA R A B N A 7 OCX H Oecrement H & L e 0 0t g 1 5§
e Cait an carry LI A A OCXSP Oacrament stack pomnter (IR T S T Y B R | H
CNC Calf an no carry [T S R A A 1 ['7Y Camgtement A 6 ¢ r 2 1t 11 4
€z Call on zarp 11 o ¢t 1 00 nar $TC Set carry 00 1 LI N B | 4
CNZ Call on no z8rg 1 g ¢ 0 1+ 0 3 un? ome Compiement carry [/ 1 LIS T S N | 4
=4 Cail on positve Tt 1+t 1 0 1 00 nnt 0AA Qecimal adjust A 0o t 0 a1 1t 4
™ Cail on minus o 1 11t 1 00 nar SHLD Store H & L direct [} Tt 0 0 0 18
123 Cait an panty even 1 T 0t 1 0 ¢ nane LHLD Load H & L direct 00 LA S R B 16
crg Cail on parity odd 11 Tt 9 0 v 9 nne El Enabie interrupts 1 1 T 1 % ot 4
RET Retuen LI g 0 t 0 g 1 10 o Qisable interrupt [1 10 8 1 4
i Raturn on carty t 1 90 1t 1Y 0 o o8 SN NOP No-opsration o ¢ 0 0 a0 0 0 4
RNC Raturn an no carry 1Ty ¢ 1t 0 6 9 0 5111
.
NOTES: 1. 'DDDorSS5~0008-001C-0100 ~011 E-100H - 10T L. — 110 Memory — 111 A,
2. Two possible cycle timas, (5/11) indicate instruction cycles dependent on conditian Hags.
203
June, 1377 67

Pseudo~0ps. "Pseudé-op“is the name given to Assembly Language
instructions that do not produce any machine code, but which
direct the Assembler to perform its operations. The DOS
Assembler provides op-codes for reserving storage space, . _
defining the contents of memory locations and controlling the
parameters of the Assembler's operation.

The following table is an alphabetical 1ist of pseudo-
ops along with their formats and functions. In these descrip-
tions, e designates an address expression, and n designates a
name, - A1l other notation conventions are the same as in the
rest of the DOS manual. :

Table 4-A. DOS Assembler Pseudo-Ops

Instruction Format Description

CMN[/<block name>/] <nl>, [<n2>, ...] Common definition. The names

nl, n2, . . . are declared to
be in the Common block with the
designated block name. If the
block name is omitted, Blank
Common is used. Each name is
assumed to require one byte
unless it is written in the
form

N(m) .
where m is an address expres-
sion that gives the length in
bytes of the area assigned to
the name N. If another CMN
statement is encountered with
the same block name, the first
address assigned by the second
statement directly follows the
last addrass assigned by the
first statement.

DATA <nl> [,<n2>],... . The names nl, n2, . . . are

68

00s

i June, 1977

C

08 <el> [e2] [,...]
or
DB"<character string>"

(-/ DC "<character string>"

DS <e>

| (_/ £0s

June, 1977

defined to be in the Data area.

Each name is assumed to require

one byte unless it has the form
N(m)

where m is an address expression

that gives the length in bytes

of the area assigned to N.

Define Byte. The address expres-

sions el, e2, ...

and stored in successive bytes

ara evaluated

in memory. The character string
form stores the ASCII codes of
each character in successive
bytes. The two forms may be
mixed in a single statement.
Character Constants are treated
as character strings unless

they are components of address
expressions.

Define Character. The characters
in the string are stored one
byte per character. The high-
order bit of each byte is set to
zero excapt for the last byte
which has its high order bit

set to 1. This arrangement
allows quick searches for the
end of the string.

The address expression e is
evaluated and defines the num-
ber of bytes of space that are
allocated. The contents of

the space are not affected.

A1l names used in e must be
defined prior to the DS state-
ment.

69

OW <el>[.e2] [,...] Define Word. The address expres-
sions el, e2, ... are evaluated
and stored as 16 bit {(two-byte)
words. The addresses conform
to the 8080 address convention
that the low-order byte comes
first and the high-order byte
comes second. All addresses
and address offsets are handled
in this way, so the DW statement

) must be used to define addresses.

END <e> END is the last statement of

' each program. The address ex-
pression e is the execution
address of the program. Spec-
ifying e=0 (absolute) is equi-
valent to specifying no execu-
tion address.

ENDIF . Terminates the conditional

’ assembly started by a previous
IFF or IFT statement.

ENTRY <n1>[,n2] [,...] Define Entry Points. The names
nl, n2, ... are names of entry
points in other programs and
are defined as names in the
program being assembled. The
names must appear in an ENTRY
statement before they appear
as labels.

EQU <e> Define Equivalence. The address
expression e is evaluated and
assigned to the label of the EQU
statement. The label is required
and may not have appeared pre-
viously as a label or in a DOMN

00s
70) Juna, 1977

C

EXT <nl1> [,n2] [,...]

IFF <e>

4-4, Assembler Error Messages

or DATA statement. A1l names
used in e must have been defined
previous to the EQU statement.
The names nl, n2, ... are
defined to be external refer-
ences. They may not have been
used as labels or in a CMN or
DATA statement.

Conditional Assembly - False.
If the value of the address
expression e is false, (=0
absolute), then all of the
statements until the next ENDIF
are assembled. If the value is
true, the statements are not
assembled.. Conditional assem-
biies may not be nestad.

(-/ Assembler error messages are printed in the leftmost column of the

source code 1isting on the line in which the error cccurred.

codes are as follows:
Table 4-8.

The error

Assembler Error Messages

Cade Meaning

2 Second operand missing.

A Absolute required.

An instruction that requires two
operands was only given one.
Data, Common, External or Relative address

was given where an Absolute value was required.

Block Name error.
Too many Common blocks.
Digit invalid.

A Common or Data block name was invalid.
Only 17Common blocks are allowed.
Valid digits are 0 - 9 in decimal, 0 - 7 in

octal and 0 - 9 and A - F in hexadecimal.

E Expression error.
of an address expression.
F Operand field too long.
L Label error.
(_(M Multiply defined name.
5es

Juna, 1977

Error in the syntax, symbols or position

7

Name too Tong. Six characters is maximum.

Op-code invalid. An Op-code was encountered which is not in
the list of op-codes recognized by the Assembler.

Phase error. Probably an error in the Assembler. Please
report errors to the MITS, Inc., Software Department.

Quoted string error. The ending quotation mark was missing
from a character string.

Field or line terminated toc soon.

Undefined name.

Value invalid. An address expression value was negative, too
large or otherwise unusable. i

00s
June, 1977

ALTATR DOS DOCURTENTATIEL]

SEGUIE
HINKINGRIDRDER

73/(74 Blank)

C

5. THE LINKING LOADER
5-1. Introduction

The output file of the Assembler is a relocatable object code
module. That is, it is a machine language program module (object code)
that can be loaded by the appropriate loading program--anywhere in memory
and executed (relocatable). Moreover, the Assembler allows the module
produced by an assembly to refer symbolically to addresses in other
modules as long as all of the modules that refer to each other are
loaded into memory at the same time (see page 71, EXT pseudo-op).

The program that loads relocatable modules into memory and 1links
their symbolic references to the proper addresses is called the Linking
Loader (LINK). In the simplest case, where an entire program is con-
tained in one module, LINK loads the program into memory and causes
control to jump to its starting address.

In the more complex case, where several modules are to be Toaded
into memory and linked together to form a single large program, LINK
serves many functions. It loads the modules and makes sure that bytes
of a module are not destroyed by 1oad1hg subsequent modules in over-
lapping locations. It makes the connections between all external
references and the addresses to which they refer. It prints 1ists of
those external references for which no addrasses have been defined. It
can even search the disks for files to resolve these undefined references -
and automatically load them. A1l of these functions are contralled by
the Linking Loader's commands which are described in Table 5-A. For an
explanation of the use of LINK in this case, see Appendix E.

If the system disk is mounted on drive zero, the Linking Loader
is loaded and run by typing the following command to the Monitor:

LLINK ’

When LINK starts, it prints the following message:

DOS_LINK VER x.x

*

The asterisk means LINK is ready to receive commands.

00s

June, 1977 75

Table 5-A. Linking Loader Commands

L <file> <device> Loads a module at the specified
[<address at which to address. The module is lcaded from
. load relocatable module>] the specified disk. The module

must be in LINK's relocatable code
format. If the loading address is
not specified, the default address
is 240008 for the first module to
be loaded and the next available
Tocation above the previous module
for all subsequent modules. The L
command automatically adds a * to
the file name. For an example of
the use of the L command, see
Appendix E, Section 2.

A Displays the names in all of the
currently loaded modules and their
assigned addresses. Undefined names
are displayed with asterisks instead -
of addresses.

U Displays all undefined names in all

' current modules.

S <device> For each undefined entry point name,
LINK searches the specified device
for a relocatabie file by that name
and Toads it. For an example of the
use of the S command, see Appendix
E, Section 2.

E Exits to the Monitor

X [execution address] Begins execution of the program
at executijon address . If the
execution address is omitted, X
branches to the address in the

00S
76 June, 1977

C

last encountered END statement.
If no END statement has been en-
countered, X branches to location
240008.

5-2. Address Chaining
Each time LINK encountars a reference to a symbol that has not yet

been defined, it enters the address of the reference into a chain. Each
entry in the chain contains a pointer to the previous entry. The last
entry contains zero absolute. When the symbol is defined, LINK goes
through the chain again from the last entry to the first, replacing the
contents of each entry with the assigned address of the symboi. A$ a
result of this process, each reference to the symbel points to the cor-
rect address.

LINK handles external references by saving the unresolved chains
from all of the modules. The contents of the first entry in a chain
for one module is the addrass of the top of the chain for the previously
Toaded module.

The U command can be used to display the undefined symbols in ail
loaded modules.

5-3. Relocatable Object Code Module Format

The Assembler creates and LINK uses files whi;h conform to the
Relocatable Object Code Module format. Each module consists of records
of 1024 bits each. A record is made up of a number of load items, each
one of which is preceded by at least one control bit.

A. If the first bit is 0, the next eight bits are loaded as an

absolute data byte. If the first bit is 1, the next two bits
are input as a control field as follows:

B. Control Bits Action
N The following 16 bits are loaded as

a relocated address after adding
the relocation base address.
10 The following 16 bits are to be
’ loaded as a Data block reference
address after adding the Data base.

g0s o
June, 1877 17

78

1

00

The following 16 bits are to be
loaded as a Common block reference
address by adding the current Common
base.

The next 9 bits are to be input as

a control field and the following

16 bits as an address.

The 9-bit control field has the following format:
aannnxxxx
where aa designates the type of the address

aa
00
01
10
11

Iyee
Absolute

Relocated, relocation base is added before lcading.
Data reference. Data base is added before loading.
Common reference, current Common base is added-
before loading.

nnn is the length, in bytes, of the program or common block
name. When nan = 0, the name is blank. If a name is specified,
it immediately follows the address in the module.

xxxx is a 4 bit control field as follows:

XXXX
]

Action

Define Common Size. The address is interpreted
as the size of the Common block that has the spec-
ified name. This type of item may be preceded
only by Define Entry Name items. The program
with the largest blank Common block must be
loaded .first. All programs which refer to named
Common blocks must define them to be the same
size.

Define Data Size. The address is interpreted as
the size of the Data area. If this item is pre-
ceded only by Define Entry Name and Define Common
Size items, normal memory allocation takes place.

0os
June, 1977

If, however, Data block references occur before
this item is loaded, the Data base is assigned to
be the address of the first location from the top
of memory, and all Data block reference addresses
are subtracted from rather than added to the base.
Set Location Counter. The address is loaded into
the loading location counter.

Address Chain. The current value of the loading
Tocation counter is placed in each element of the
chain whose top element is the address.

Set Common Base. The assigned address of the
named Common black is the current Common base.
Chain & Call an External Name. The name is
placed into the loader table, if it is not already
there. The address chain whose top element has
the specified address is linked to the chain for
the name if it has not yet been loaded or to the
name (if it has been loaded).

Define Entry Point. The address is assigned to
the named entry point.

Define Program Limit. The address is that of the
first location after the program.

End of Record. This record indicates the end of
the program being loaded and the end of data in
this record. A is the execution address.

End of Module. End of load module. Control re-
turns to the loader.

! 79/(80 Blank)

ALTATR DOS DOGUREATION

SEGIION U]
DEBUG

81/(82 Blank) -

C

C

6. ' DEBUG PACKAGE
6-1. Introduction

The Debug package is a system program which provides facilities
for debugging Assembly Language programs. Commands allow the following
operations:

1.

00s

June, 1977'%

Display the contents of memory locations, registers or flags
in several modes (octal, decimal, etc.))

Modify the contents of memory locations, registers or flags.
Insert, display and remove breakpoints to initiate pauses in
program execution.

Start execution of the program at any address or at any break-
point.

Running Debug. After the system disk is mounted in drive zero,
Debug is entered from the Monitor by typing
-DEBUG
Debug indicates that it is loaded and running by printing
DOS DEBUG VER x.x
on the terminal. At this point, it is ready to receive com-
mands. The Monitor may be reentered by typing R.
Addressing Modes. - Debug can display, modify or transfer‘pro-
gram control to any-peint in memory. In addition, entry to
Debug causes the registers and condition flags to be stored in
memory, making them available for display or modification.
Most of the Debug commands may be preceded by an address.
This address may be expressed in any one of several modes.
1) Explicit. Anywhere an address is expected, a number
is interpreted as an octal address. A number preceded
by a pound sign (#) is interpreted as a decimal address.
The address is entered into an address pointer in
Debug. A1l commands operate on the locatien in the
address pointer. The current contents of the address
pointer may be accessad by typing a period (.). Thus,

83

84

~—

~—

the Debug command
v
displays the contents of the location whose address is.
currently in the address pointer. . The use of the period
is optional, in this case, since
v
and
/ v
cause the same operation to be performed.
Relative. An address may be specified in the follow-
ing form:
<address> + <offset>
For example:
100 + 10, the location whase address is 1008
t_108 or . - 2 refers to the location whose
address is that of the current location minus 28'
Two special cases of indirect addressing involve the
<line feed> and <+> commands.
<line feed> increments the address pointaer and
"~ displays the contents of the result--
ing location.
<t> (<~> on some terminals) decrements
the address pointer and displays the
contents of the resulting location.
In both cases, the increment in the symbolic I/0 mode
(see Section 2-1) is the length of the current instruc-
tion - 1, so that the next laocation displayed is that
of the next instruction. In the W mode, the increment
is 2 bytes and in all other modes the increment is
one byte.
Typing an equal sign (=) after a relative address
specification causes Debug to print the resultant
address.
Indirect. Typing <tab> (Control/I) refers to the
location whose address is the contents of the current

oos

June, 1977

C

00s
June, 1977

—

location. For example:

70/ JMP 5000 <tab>

5000/ SHLD 4750
Typing 70/ in the symbolic I/0 mode W causes Debug to
display the instruction at 70 which is a JMP to loca-
tion 5000. Typing <tab>, which is equivalent to
.<tab>, causes Debug to reference the instruction at
location 5000. Subsequently, typing / causes the
instruction at location 5000 to be displayed.
Typing <tab> when the current location is the Tow
order byte of a two-byte address or the low order
register of a register pair causes the address pointer
to be loaded with the contents of both bytes of the
address or the pair of registers.
Register. When Debug is entered, or when a breakpoint
is encountered, Debug stores the contents of the regis-
ters and condition flags in memory in the following
order:

Register Remarks
F Condition Flags
Bit - Meaning
0 Carry
2 Even Parity
4 Half Carry (for decimal
arithmetic)
Zero
7 Sign (One means the MSB of
result was 1)
A Accumylator
c Note: The low order register of a

pair is first)

85

H
S Low order byte _
S High order byte

Once a register has been opened, typing <11né feed>
or <+> causes the next or preceding register in the
Tist to be accessed and displayed.

00s
86 June, 1977

6-2. Display
(~/ Typing the following command:
<address>/
- where the address is in any mode, causes Debug to dfsp]ay the contents
of the specified location in the current /0 mode.
A. I1/0 Modes. Debug displays the contents of locations in
several modes which may be specified by the programmer. The
1/0 mode is specified by typing dollar sign {$) or <ESCAPE>
(<Altmode> on some terminals) followed by a Tetter.

Letter I/Q Mode
0 Octal
D -~ Decimal
W Double byte octal. Displays contents of two suc-

cessive locations. This is used primarily to dis-
play addresses.

A ASCII. The characters displayed have ASCII codes
equal to the contents of the Tocation.
S Symboiic. The instruction at the location is
(-/ displayed in Assembly Language symbolic form. A1l

bytes of the instruction are displayed, but address
bytes are displayed in octal form.
If no I/0 mode 1s specified, Debug proceeds as if the mode
were specified as octal. Typing a semicolon (;) instead of /
displays the contents of the current location in octal, regard-
less of the current 1/0 mode.
B. Displaying a Range of Locations. Typing the following command:
<address 1>, <address 2>T
displays the contents of all the locations from <address 1>
to <address 2>, inclusive, in the current [/0 mode.
6-3. Modify
The contents of a location may be modified by displaying the cur-
rent contents of the location and then typing the new contents. For
example
50/ XRA A ORA A <cr>
C ./ ORA A

0os .
Juna, 1377 87

The instruction ORA A replaces the original XRA A. A1l input after the
display i1s used to modify the current location until the location is
filled or until a delimiter is typed. The normal delimiter is <crs.
Other delimiters are as follows: ‘

<line feed> displays the next Tocation

<> displays the previous location

[/ or; displays the modified contents of.
the current location

<tab> . ' displays contents of phe Tocation

addressed by current location (typed
as Control/I).
<ESCAPE>, +, @, !, = are special and terminate input even
thaugh they have no specific function
in this context
Input is interpreted according to the current I/0 mode. If the
input cannot be intarpreted, “?" is printed on the terminal and the
command must be repeated.
6-4. Breakpoints
Breakpoints provide the ability to pause in the execution of a
pragram at any point and examine the contents of memory locations,
registers and condition flags. A breakpoint is set by the X command,
which has the following form:
<address> X
This command sets the next available breakpoint at the specified address.
Eight breakpoints are available (numbered 0 - 7). When a breakpoint is
-encountered during execution of the program, the following message is
printed on the terminal:
<number> BREAK@ <address>
Execution is suspended until it is restarted by a P or G command.
The positions of all the breakpoints in use can be displayed by
the Q command:
Q<cr>

00s
88 June, 1977

o

Example:

10X

20X

377X

Q.

0e1la

1020

2 @ 377

Any (or all) breakpoints may be removed by the Y command:

Y
or

Y<number>
If no number is specified, all breakpoints are removed. If a number is
specified, only that breakpoint is removed.
6-5. Controlling Execution

Debug may be used to control the execution of a program by means
of the G and P commands.

A. The G Command. Execution can be started at any location by the G

command:
<address>G
where the address is the location where execution is to start.

B. The P Command. Execution can be made to proceed from a break-

point by means of the P command:

(<number>] P
If the number is typed, execution proceeds from the specified
breakpoint. If the number is omitted, the most recently
encountered breakpoint is specified. The P command cannot be
used if no breakpoint has been encountered or if the break-
point with the specified number has not been assigned.

C. Breakpoints and Execution Commands. When a G or P command is
executed, Debug replaces thé bytes at the breakpoint addresses
with RST instructions. These instructions cause control to be
transferred to locations 0, 7, 17, 27, 37, ... 77. At these
locations, JMP instructions branch to a breakpoint handling
routine in Debug. The bytes that were replaced are saved in a
table and stored after the breakpoint is executed. '

00s
June, 1877

89

When a P command is executed, Debug reconstructs the 1nstrqct10n
at the breakpoint by referring to the table and executes that instruction
before branching to the instruction after the breakpoint. If the instruc-
tion at the breakpoint is itself a CALL, JMP or RST instruction, Debug
branches to the proper location.

When a breakpoint RST is executed, the breakpoint routine saves
all registers and condition flags and restores the original byte in the
instruction string. In operation, the breakpoint processing procedure
is transparent to the programmer and program execution is unaffected,
except for the pauses initiated by the breakpoints.

' 6-6. Using Debug with Relocated Programs

The Assembler produces relocatable code modules that can be 1oaded
in any place in memory by the Linking Loader. Thus, the addresses of
program statements are not determined-until the program is Toaded. In
order to use Debug on such programs, special functions are provided for
hand1ing base addresses.

Typing an apostrophe (') recalls the execution address returned by
the Linking Loader for the current load module. Thus, the statement

'G
causes Debug to start execution of the module at the Linking Loader
execution address.

The execution address may or may not be the first location in the
program. For this reason, Oebug also includes the capability of storing
any address and recalling it for use in any Debug command. The statement

<address>%
stores the address and

&
recalls it for use. The address may be that of the first Jocation in a
module, common or data block, etc.

00s
90 June, 1977

ALTAIR DOS DOGUMETATION

~ SEGTION Vi

IISGELLANEDTS SYSTEN PROGRANS

7. MISCELLANEQUS SYSTEM PROGRAMS
7-1. INIT

INIT is a system program that allows the initialization of the
system (the number of disks, disk files, etc.) to be changed without
reloading the system. INIT is run by typing

SINIT
to the Monitor. INIT then prints the question

MEMORY SIZE?
and the initfalization dialog proceeds exactly as it does when the sys-
tem is loaded (see Section 1-2¢c, p. 7).
7-2. CNS

" CNS allows the console through which the user issues commands to

be changed to another.terminal. To use CNS, type

.CNS <channel> <sense switch>
to the Monitor, where <channel> is the octal data channel number of
the new console's I/0 board, and <sense switch> is the new I/0 board's
octal sense switch setting. The data channel is the low order channel
of the board and the sense switch settings are shown in Table 1-A on
page 5. o

For example, to switch to a terminal using a 2510 board with 2
stop bits through channel 20, the following command is typed:

.CNS 200
7-3. SYSENT

SYSENT is a system program file that contains addresses of several
Monitor routines that are available for user program use. The following
routines are available:

ABORT exits to the Monitor and prints "PROGRAM .
‘ ABORTING" on the terminal .
EXIT exits to the Monitor and prints "PROGRAM EXITING"

on the terminal
ABORT and EXIT both return control from the program to the Monitor and
close all files. The program name is found in location TASKNM (see
below). ABORT 1is generally used to exit under error conditions while
EXIT is used under normal exit conditions.

00s
June, 1977) 93

10 allows access to the Monitor Call
I/0 routines. The following sequence
is used in the calling program

CALL 10
OW (address of Request Control
Block)

See Appendix € for more information
on Monitor Calls and Request Control

Blocks.
Two special routines are used to print text messages.
TASKNM contains the address of the memory

area where ABORT and EXIT find the
name of the calling program. The
program name must be stored at this
location before an ABORT or EXIT
call is executed.

MSG prints a user selected message on
the terminal. The following sequence
is used:

CALL MSG

W (address of first byte

of message)

MSG prints the message bytes until
it prints a byte with the most
significant bit set to one. Thus,
the message should be stored with a
OC pseudo-op.

To use the routine in SYSENT, the desired names must be defined as
External names in the calling program. (See EXT statement, Table 4-A.)
When the calling program is loaded into memory for execution, SYSENT
must also be loaded. The following Linking Loader command is used for
this purpose:

L SYSENT O
This command loads SYSENT just above the user program.

0es
94 June, 1977

7-4. LIST ‘
(-/ LIST is a BASIC language routine that allows DOS Assembler listing
files to be printed on a 1ine printer. To use LIST, BASIC must be run-
ning and the DOS disk must be mounted. The fo]lowiﬁg command runs LIST
RUN"LIST" ,<device number>
where the device number is that of the disk drive upon which the DOS
disk is mounted. '
LIST asks for the name of the program (the % sign is added auto-
matically) and the device number of the disk on which the listing file
resides. The listing is then printed on the system line printer.

203
~ June, 1977 95/(96 Blank)

.

ALTAIR B0S BOBUGIETTATION
APPEUDIGES

97/(98 Blank)

C

00s
June, 1977

APPENDIX A. ASCII CHARACTER CODES
DECIMAL CHAR. DECIMAL CHAR. OECIMAL CHAR.
20p NUL 943 + 086 v
P91 SOH pas4 , 987 W
pp2 STX pas - p8g’ X
203 ETX P46 . £39 Y
po4 EOT 047 / 299 z
pos ENQ 948 9 9N {
P06 ACK 249 1 p92 \
pp7 BEL psp 2 293]
298 BS 51 3 994 -
209 HT ps2 4 PS5 <
p1p LF P53 5 096 ‘
o1 VT P54 6 pa7 a
p12 FF 55 7 £98 b
213 R 956 8 999 ¢
214 S0 957 9 120 d
915 sI 958 1 e
216 DLE p59 ; 192 f
p17 bcl 269 < 193 q
918 DC2 © P61 = 104 h
219 DC3 062 > 105 i
p2p DC4 263 ? 196 j
p21 NAK P64 8 107 k
p22 SYN P65 A 108 1
£23 ETB P66 8 129 m
P24 CAN. 967 c 119 n
925 EM 968 D m 0
0§26 suB 069 £ 112 p
p27 ESCAPE 279 F 113 q
928 FS [Yal 8 114 r
929 GS p72 H 115 s
239 RS 973 I 116 t
£31 us 974 J 17 u
932 SPACE 975 K 118 v

99

DECIMAL CHAR. DECIMAL

c

HAR. DECIMAL

CHAR.

£33 !
P34 "
P35
936
037
038
939
pag
241
242
LF=Line Feed

- 22 3 WU =3k

* -~

1005

076
277
978
P79
289
P81
082
£83
pa4
£8s
FF=Form Feed

c

O C 4 oo v O =2 = 0

119
120
121
122
123
124
125
126
127

=Carriage Return

— ~ N < %X =

DEL

DEL=Rubout

oos
June, 1977

APPENDIX 8
DISK INFORMATION

(—/ 1. FORMAT OF THE ALTAIR FLOPPY DISK

1-1. Track Allocation

Track
0-5

6 - 69
70

71 - 76

Use

DOS Memory Image

Space for either Random or Sequential files
Directory Track

Space for Sequential files only

1-2. Sector Format
There are 32 sectors per track and 137 bytes per sector. Of these
bytes, 128 are available for data storage.

Tracks 0 -
Byte

0

1-2

3-130
131

(—/ 132

Tracks 6 -

Byte
0

(-, . D0S

June, 1977

5

Use

Track number + 128 decimal

Sixteen bit address of the next higher location in
memory than the highest location saved on this sector
128 bytes of DOS code

Stop byte (255 decimal)

Checksum. Sum of the bytes 3 - 130 with no carry out
of one byte

76

Use

Most significant bit always on. Contains track number
plus 200 octal. >

{Sector number)*17 MOD 32

File number from directory. Zero means this sector is
not part of any file. If the sector is the first of a
group of 8 sectors, O means the whole group is free.
Number of data bytes written (0 to 128). This is
always 128 for random file data blocks. For random
file index blocks, this number is the number of groups
allocated for this file.

Checksum. Sum of bytes 3 - 134 with no carry out of
one byte.

101

Byte Use
5, 6 Pointer to the next group of the file. The first byte

is the track number and the second.byte is the sector
number. Zero indicates the end of the file.
7 - 134 Data
135 Stop byte (255 decimal)
136 Unused
1-3. The Directory Track
The Directory takes all of track 70. Each sector has 8 file name.
records, each 16 bytes long. The format of the sector is as follows:

Byte Use

0-7 ~ File name

8, 9 Pointer to the start of the file (track, sector).
10 File mode. 2=sequential, 4=random

11 - 15 Unused ;

If the first byte of the file name is 0, the file has been deleted.
If the first byte is 255 decimai, the file is the last in the directory
and all file name records after it are ignored.

2. RANDOM FILES
2-1. Format of Random Files

A random file may contain any number of sectors. The first two
sectors are the "index blocks." The "Number of Data Bytes" field in
the first block indicates the number of groups currently allocated to
this file. The next 256 bytes in the two blocks give the designations
of the data sectors in the file in the order they ocbupy in the file.
The upper two bits in the byte give the group number and the lower 6
bits give the track number - 6. -
2-2. Using Random Files

The user must allocate a 128 byte buffer for each random file to
be open at one time in the program. A Random Read or Write transfers an
entire 128 byte block at a time into or qut of the buffer assigned to
that file. ' '

The format of the data in the buffer is defined by the user.

308
102 June, 1977

C

APPENDIX C. MONITOR CALLS

Since the Monitor contains all the /0 routines for all of the
peripheral devices in the system, it is not necessary for the programmer
to write [/0 routines for each program. Instead, the program can call
the Monitor to handle all input and output.

For this reason, D0S I/0 is device-independent. The programmer
need not consider the idiosyncracies of individual I/0 devices when a
program is being written, and the I/0 device can be chosen at the time
the program is executed.

The instruction sequence for calling the Monitor from an Assembly
language routine is as follows:

CALL 10 310 1S DEFINED IN SYSENT

DW (Request Control Block address) ;A SYSTEM PROGRAM FILE (SEE

SECTION 7-3).
The Request Control Block (RCB) is a block of data which provides the
information the Monitor needs to perform the requested operation.

The first two bytes in every Request Control Block have the same
significance. The first byte is always the operation code byte which
tells the Monitor the action being requested. The second byte is a
status byte which is set to zero if the operation is completed success-
fully and to a non-zero value if an error occurred. The error codes
are in Appendix

In the Tist that follows, the Request Control Blocks for each

1/0 Monitor call are given, beginning with the third byte. When an RCB -

is constructed, DB statements can be used to define the byte quantities
and DW to define the two-byte quantities. This is because the two-byte
guantities are interpreted as addresses and must conform to the 8080's
format for addresses (first byte is the low order byte).

1/0 MONITOR CALLS

oas
Juna, 1977

103

Operation Code Description
Open 104 Prepares a file for input or output.
' Assigns a file number to the file.
A file must be épened before infor-
mation can be transferred to or from
it. The next Read or Get operation
after Open begins with the first byte

in the file.
Byte Function
3 File number. The file is referred
. to by this number until it is closed.
4 File type. The bits of the file
type byte have the following signi-
ficance:

0 - sequential input

1 - sequential ocutput

2 - random. Qpen for input and out-
put simultaneously.

7 - explicit device specification.
If bit 7 is on, transfer takes
place through the device speci-
fied in bytes 5 and 6. Other-
wise, bytes 5 and 6 are ignored
and transfer takes place through
the last device used for this
file.

Note: Bit 0 is the least signi-
ficant bit. Only one bit may be
_on at one time,
5 Kind of Device

0 - Teletype

1 - cassette tape

6 - floppy disk

Device number

7, 8 Address of file name area

00S
104 : ‘ June, 1977

Close 105 Ends the connection between a file
(-/ number and a file. Normal exit from
a system program or jumping to loca-
tion zero causes all files to be

closed.
Byte Function
3 File number
Read 102 Reads & number of bytes from a

sequential file - either on disk or
on another I/0 device

Byte Function
3 File number
4 Mode. The bits of the mode byte have

the following significance:

Bit 1 on - Echo. Prints all char-
acters as they are entered.

Bit 1 off - no echo.

b Bit 2 on - ASCII. Control/R Control/U
and Rubout recognized, input termin-
atas on <cr>.

Bit 2 off - Absolute binary code.
Note: Bit 0 is the Teast signifi-

cant bit.
5, 6 Address of input buffer.
7, 8 Number of bytes to be transferred

(two-byte quantity interpreted as
an address)

9, 10 Number of bytes actually transferred
(interpreted as an address). This
operation begins by reading the next
byte after the last byte to be read
and reads the specified number of
bytes.

C

008
June, 1977 105

Write

103

Writes a number of bytes into a file
on a disk or another 1/0 device.

‘The bytes are written after the

last byte in the file.

Function
File number

Mode. The bits of the mode byte
have the following significance:

Bit 2 on - ASCII. Adds nulls to the
endvof the 1ine, expands tabs.

Bit 2 off - Absolute.

Note: Bit zero is the least signi-
ficant bit.

Address of write buffer

Number of characters to be written
(interpreted as an address)

Number of bytes actually transferred
(interpreted as an address)

Random Read

Reads a 128-byte record from a
random file on disk. The record is
read into a 128 byte buffer in mem-
ory which must have been previously
allocated. An error results if a
Random Read is performed on a se-
quential file.

B Wl
. e

ot
~N »; (1]

Function

File number

Address of memory buffer

Record number (interpreted as an
address)

Random Write

Writes a 128 byte record into a
random file. The record is written
from a 128 byte memory buffer, An
error results if a Random Write is
performed to a sequential file.

106 -

. 00s

* June, 1977

Byte Function

3 . File number
(—/ 4, 5 Address of memory buffer
6, 7 - Record number (interpreted as an
address)
Gét Character 2 Reads the next character (1 @yte)

from an input file. If the file is
on disk, it must be opened for input.
The first Get after Open reads the
first character in the file.

Byte Function
3 File number
4 Byte reserved for the character to
be read
Put Character 3 Writes a character (1 byte) on an

output file. The character is added
to the end of the file. If it is a
disk file, the file must be opened

(~/, for output first.
Byte Function
3 File number
4 Character to be written
Block Input 107 Reads a sector (128 bytes) from a

disk file* into a buffer in memory.
Returns the address of the first
data byte in the buffer and a
pointer to the number of bytes in

the block.

Byte Function

3 File number

4, 5 Pointer to number of bytes in the
block

6, 7 Pointer to first available data byte

*Block Input may be used to input data from a terminal. In that case,
only 1 byte is transferred into the buffer. Use of Block Input in this

C

208
June, 1377 107

way may save programming effort, but Get Character is much faster and

more efficient. '

Block Qutput 110 Writes a sector (128 bytes) to a

T disk file*. Returns the addresses

of the first -byte of the next 128-
byte buffer to be written and the
number of empty bytes in the buffer.
To write a block of data, the Block
Output routine is called to get
pointers to the memory buffer. The
buffer is then filled with data to
be output and the Block Qutput rou-
tine is called again to write the
data. Each successive Block Output
call returns pointers to be used by
the next Block Output call.

Byte Function
3 File number
4, 5 Pointer to the number of bytes left

empty in the buffer. When this
number is zero, the buffer is full.
6, 7 Address of the first byte in the
buffer.
*Block Output may be used to output data to a terminal. In that case,
each Block Qutput call outputs one byte.

These Monitor calls are used in the following manner: The Input
or Qutput routine is called to get the pointers to the buffer. In the
Input case, the buffer is filled with input data. In the Qutput case,
the program must fi1l the buffer with data to be ocutput. As each byte
is transferred either to or from the buffer, the byte counter (pointed
to by bytes 4 and 5) is decremented. When the counter reaches zero,
the transfer to or from the buffer is complete. Calling Block Output
again writes the buffer onto the specified disk file and returns new
pointers. Calling Block Input again reads another sector of data and
returns new pointers. ’

20s
108 June, 1377

In addition to these I/0 Monitor Calls, Monitor Calls are available
which perform the operations of the Monitor commands. These calls allow
files to be opened, saved and deleted; disks to be mounted and dismounted,
etc. without having to return control to the Monitor. The first two
bytes of each of the command Monitor Calls are the same as the I/0
Monitor Calls except for the codes. The listings below show the rest of
the bytes of the Request Control Blocks.

Operation Code Description
[Initialize 45 Same as DIN command i
' Byte Function
3 Kind of device (disks are the only
devices currently supportad).
Byte = 6. '
Byte Function
4 Device number
[Rename 44 Same as REN command j:]
Byte Function
3 Kind of device = 6 for disk
4 Device number
5, 6 Address of 8-byte old name field
7, 8 Address of 8-byta new name field
| Delete 43 Same as DEL command
Byte Function
3 Kind of device = 6 for disk
Device number
5, 8 Address of 8 byte file name
[Directory 42 Same as DIR command]
Byte Function -
3 Kind of device = 6 for disk.
4 Device number
5, 6 File number where the output of the
directory is to be written. The
file must be open for output.
[Dismount 4 Same as DSM command. ¥4J

00S
June, 1577 109

Byte Function
3 Kind of device = 6 for disk
4 Device number
[Mount 40 Same as MNT command. |
Byte Function
3 Kind of device = 6 for disk
Device number
[save ' 106 Same as SAV command.
Byte Function
3 Kind of device
6 for disk
0 for Teletype
4 Device number
5, 6 Address of 8 byte file name
Load 100 Same as LOA command]
Byte Function
3 Kind of device

0 for Teletype
1 for cassette tape
6 for floppy disk

4 device number
5, 6 address of 8 byte file number
7, 8 address of first byte to be saved
9, 10 address of last byte to be saved
11, 12 starting address

I

b 0os

110 : June, 1977

APPENDIX D. ABSOLUTE LOAD TAPE FORMAT
(~/ The paper tape dump of an object program consists of 3 records. The
Begin/Name record is first, and carries the name of the program and
comments (version number, date, etc.) The program records follow
the Begin/Name record. The last record is an end-of-file record.
The formats of the records are as follows:
A. Begin/Name Record

Byte 1 125Q Begin record sync byte

2-4. Name Program name

5-N 15Q Terminates the Begin/Name record
8. Program Record

Byte 1 74Q Pfogram record sync byte

2 Number of bytes in this record

3, 4 Load Address - Low order byte is first

5-N Program Data

N+5 Checksum A1l bytes except the first two are

added with no carry to generate a
checksum byte used to detect load
(./ errors.
C. End-of-File Record
Byte 1 170Q EOF Record sync byte
2, 3 ‘Begin Execution Address

(“/ 00s
June, 1977

12

CAPPENDIX E. THE FILE COPY UTILITY

As an example of the use of the various facilities of DOS to solve
a specific problem, the 1isting of a file copying routine is given
in this appendix.. -
This program copies a file from one file and device to another. Any
file on any device in the system may be copied to any other device
with this program.
The pragram is highly structured, with a central routine (COP) that
calls a number of other routines to perform specific actions.
To copy a file, run the copy program by typing the following command
to the Monitor:

.cop
The program is stored on disk as an absolute binary file so it is
loaded and run immediately. When the program starts, it prints the
following messages:

COPY FILE

SET UP INPUT
It then asks for the type of device from which the file is to be
copied. The user answers with "FDS" for a disk or "TTY" for the
terminal. 4At this peint, the copy program asks thé device number
(0, if there is only one device of that type) and the name of the
file to be copied. If the device is "TTY", no file name need be
specified. After the input parameters have been entered, the program
prints

SET UP QUTPUT .
and asks the device type, number and file name for output. If the
output device is "TTY", no output file name need be specified.
When the copy action is complete, the program exits.
This Appendix 1ists the main routine COP and some of the more impor-
tant or instructive subroutines. For a complete listing of the
routines, use COP to copy them to the terminal. To do this, specify
the output device as TTY and copy the following routines.

&DN &TABLE &ASK

&DTYP &COP! &SYSENT

&4LDEM 4CMPB

SMOVB GAANS
(. pos

} dune, 1977

2. To run the copy program from the Assembly Language source files on
(~/ the system disk, it is first necessary to assemble all of the files
in the 1ist above. To do this, type the following command:
<ASM COP 0 ~ ‘
when the file is assembled, ASM prints
000000 ERRORS DETECTED
ANY MORE ASSEMBLIES?
The programmer replies to this question with the name of the next
program to be assembled. This process continues until all of the
programs in the list have been assembled. To load these modules
into memory. and 1ink them together into the copy program, the Link-
ing Loader is run with the following command:
*LINK
When LINK prints its prompt asterisk, the main copy procram module
COP can be run with the following command:)

*L COP O
At this point, LINK Toads the module into memory and resolves the
references to all symbolic addresses. Since numerous other symbols
(‘/ are as yet undefined, DOS prints a list of these symbols as follows:
TSKNM * MSG * DTYP * DN * ASK
* MOVS * 10 * EXIT * BDEX *
ABORT * . GDEX *

The asterisks after each file number indicate that the names are
undefined. These names are all those of entry points in the modules
that have not been loaded.
To load some of the required modules, the following command may be
typed:

*S0
The S command adds asterisks to the undefined names and searches the
specified disk for files with the resulting names. When LINK finds
such a file, it loads and 1inks it. Finally, LINK prints a 1ist of
those entry names that are still undefined:
' TSKNM * MSG * Move * 10
* EXIT * ABORT *
i ("/ oes
June, 1877 » 13

114

Entry point MOV8 is contained in file MOVB, so that it can be
defined by the following command:
*L MOVB 0 .
The remaining entry names are in file SYSENT which is loaded with
the following command:
*L SYSENT 0
Now that all of the required modules are loaded and linked together,
the entire program is ready to be executed with the following command:
*X

The copy program starts up and prints its prompt queétions as above.

COP LISTING

The following statements define the entry poiﬁt and external

references.

200100 ENTRY cop

3aa299 EXT EXIT,A3Q0RT

09934da EXT TASKNM, MSG

202499 EXT MOVE, 10

3405040 EXT . DTYP,DN,ASK

799630 EXT . GDEX,BDEX

000749 ;

002800 ;IDENTIFY PROGRAM AND SET RADIX
99989 ; '

281388 cCop LXI H,COPID ;GET PRGID
201100 SHLD TASKNM ;PUT AWAY
091208 CALL MSG ;DISPLAY IT
201300 DW COPID

The setup routines are basically a series of Monitor Calls. They
ask the operator for the file name and disk number, open the required
files and check to make sure everything is operating properly.

291468 ;
961568 ;SET UP INPUT FiLE

2016046 ;

201728 CALL MSG ;TEL OPR WHATS GOING ON
a@18a4@ DW SETUIN

3819080 CALL DTYP ; INPUT DEVICE TYPE
G82008 STA DTIN

992108 CALL DN ;DEVICE WUMBER
092209 STA DNIN i

3462309 CALL ASK ;FILE NAME

262409 DW ASFNM :

202500 LXI D,FNIN ;BUT IT AWAY

00s
June, 1977

@

802600
002799
202800
202900
893000
903190
083200
003300
003400
203509
803510
203620
203700
003800
003900
004090
004100
004200
804300
004409
004580
804600
604769
884300
304900
665009
005100
805280
805320
8854089
805500
205600
2057049
205300
965909
906000
896100
006209
806300
296319
006409
006500
866600
206700
006809
606900
007800
807100
807200
907300
907490

00s
June, 1977

CALL
CALL
DW
LDA
ORA
JNZ
Lba
CPI
JINZ
LX1

SHLD
CALL
DW
JMP
CHRIN LXI
SHLD

MOVS

io
RBINOP
STINQP
A
NOINOP
DTIN

6
CHRIN .
H,BLKGC

GCROUT
10
BLGCRS
SETO
H,CHRGC
GCROUT

;SET UP OUTPUT FILE

SETO CALL
oW
CALL
STA
CALL
STA
CALL
DW
LXI
CALL
CALL

MSG
SETUOU
DTYP
DTOU
DN
DNOU
ASK
ASFNM
D, FNOU
MOV
10
RBOUOP
STOUCP
a
NOOUOP
DTOU

6
CHROU
H,BLKPC

PCROUT
I0
BLPCRB
MINIT
H,CHRPC
PCROUT

ILD
OLD

;OPEN FILE
;CHECK STATUS

;UNABLE TO OPEN
;IS5 INPUT DEVICE A DISK

;NO - DO INPUT 3Y CHARACTERS
;}SET UP GC FOR

BLOCK INPUT ROUTINE
;SET U . BLOCK GET POINTERS

;GO SEw UP QUTPUT
;USE CHRGC QUTINE

;TELL OPR WHATS GOING ON
;CEVICE TYPE

;DEVICE NUMBER

;FILE NAME

;PUT IT AWAY

;OPEN FILE

;CHECK STATUS

s UNABLE TQO OPEN
;IS OUTPUT DEVICE DISK

;NO DO OUTPUT 3Y CHAR

;SET UP PC FOR

BLOCK PUT ROUTINE

;SET UP BLOCK PUT POINTERS

;GO DO MISC INIT
;SET UP QUTPUT BY CHAR

; INPUT LEADER
;OUTPUT LEADER

115

116

The
to copy

207500
297609
9077048
007848@
207900
g08000
208109
208208
008304
208480
2308589
88600
968720
908820
208209
3090040
86a9laa
209209
989309
909482
3095008
g@96de
909728
099800
009948
910620
019129
319269
818309
619409
010508
31064649
ala7a9
91089@

- 81090¢

611000
g11lad
811200
grlale
811300
911429
811594
3116420
811744
gllsaae
gll9de
8120069
6121090
212244

copy Toops call the get character and put character routines
binary bytes or ASCII coded characters.

;MAIN COPY LOOPS
’
LDA FNIN :GET PILE TYPE
CPI "g" ;EDIT SOURCE?
Jz ASCCOP ;YES - IS ASCII FILE
CPI us" ;EDIT BACKUP FILE?
Jz ASCCOP ;YES - IS ASCII PILE
CPI wgn ;LISTING FILE?
Jz ASCCOP ;YES - IS5 ASCII FILE
3 " ;NO - MUST BE BINARY
?
;BINARY COPY LOOQP
BINCLL MVI 8,15 ;SET COUNTER
BINCLP CALL GC ;GET CHARACTER
DW BINEOF ;EOF ROUTINE
CALL pC ;PUT BINARY BYTE
CcpPI 3377 s RUBNUT?
JuNz BINCL1 ;NO - RESET COUNTER & LOOP
DCR B ;ONE LESS RUBOUT 70 GO
Jz EXIT ;ALL DONE
JMP BINCLP ;LOOP
BINEOF MVi 8,15 ;ADD RUBOUT EOF MARKER
MVZ A,8377 ;RUBOUT
BINEOL CALL PC ;OUTPUT RUBQUT .
DCR B ;ONE LESS TO GO
JNZ BINEOL ;LOOP IF NOT DONE
JMP EXIT ;ALL DONE
’
;ASCII COPY
ASCCOP LDA DTOU ;CHECK DEVICE TYPE
CPI 6 ;I5 IT FDS
INZ ASCCL2 ;NO - MUST EXPAND CTL I,ETC.
ASCCL1 CALL GC ;GET CHARACTER
oW ASCEOF ;EOF ROUTINE
CALL PC ;OUTPUT ASC CHAR TO DISK,
; NO TA3 EXPAWND
CPI 232 ;IS CHAR CTL 2
J2 EXIT ;YES - ALL DONE
JHP ASCCL1 ;NO LOOP
ASCEOF HVI A,832 ;ADD CTL 2 TO FILE
CALL PC ;OUTBUT IT
JMp EXIT ;ALL DONE
ASCCL2 CALL GC ;GET CHARACTER
DW ASCEOF ;EOF ROUTINE
STA DAPC2 ;PUT CHAR AWAY
CALL 10 ;OUTPUT IT

|
+ Cos

June, 1977

C

012300 DW RBPC2

9124060 CPI 332 7IS CHAR CTL 2?
3125496 Jz EXIT ;YES - ALL DONE
812608 Jup ASCCL2Z ;NO LOOP

Get character uses block input Monitor Calls to read data from
the input file. The routine checks for input errors and end-of-file

marks.

912799 ;

8128900 ;GET CHARACTER ROUTINES

212909 ;

213069 GC PUSH H ;SAVE ([H,L)

813129 LELD GCROUT ;GET ADDRESS OF ROUTINE TQ USE
2813299 PCHY ;JUMP TO IT

313360 GCNWBL CAL.L I0 ;SET UP POINTERS FOR WEW BLOCK
413409 oW - BLGCRB

313508 LDA BLGCST ;CHECK STATUS

913699 CPI 225 ;1S IT EOF

813704 POP H ;RESTORE [H,L]

213849 Jz BDEX ;s TAKE EQF EXIT

213949 PUSH H ;SAVE [H,L]

314000 ORA A ;ANY ERRORS

914130 : JNZ ABORT ;YES -~ BAIL OUT
014206 BLKGC LHLD BLGCCP ;GET POINTER TO
914210 ; NUMBER OF BYTES LEFT
914344 MOV A,M ;GET NBR BYTES LEFT
314434 ORA A

8145409 J2 GCNWBL ;IS ZERQ MUST GET ANOTHER BLOCK
814600 DCR M ;ONE LESS

814709 LELD BLGCDP ;GET POINTER TO DATA
314828 MoV A,M 1GET DATA

314980 INX H ;ADVANCE POINTER
815009 SHLD BLGCDP ;PUT POINTER AWAY
915100 POP 31 ;RESTORE [H,L]

315299 JMP GDEX ; TAKE NORMAL EXIT
315389 CHRGC POP H sRESTORE [H,L]

915400 CALL 10 :GET CHARACTER

d1s5580 DW RBGC ;CHECK STATUS

2156400 LDA STGC

a157d@ CPI 325 ;EQF?

315808 JzZ BDEX ;YES

31598 ORA A ;ERROR STATUS

8163949 JNZ ABORT ;YES - BAIL ouUT
816136 LDA DAGC '

416204 JMP GDEX

Put character uses block output Monitor Calls to writs data into
the output file.

gle6304@ ;

816409 ;PUT CHARACTER ROUTINES

816508 ’

916660 pC PUSH H ;SAVE [H,L]

dL6708 LHLD PCROUT ;GET ADDRESS OF ROUTINE TQ USE

acs
Juna, 1977 117

118

816880
9169090
217048¢
q17018@
917109
317209
817380
817430
8175469
91764809
317769
817849
2179499
218208
8131449
2182900
418300
61340¢
218500
818608
218790
213809
3139@9
gls0a9
819104
819208
81930d
913400
819509
196408
219709
g81980¢
919994q
020060
820149
9292008
09203649
8204480
g20560
820608¢
320709
8208400
829999
8219409
0211040
2212480
621309
8214080
8215989

BLKPC

~

BLKPCS

CHRPC

3

o

L
L
E

e me e O e v e

=z
(o]
—

2z
O
]

NOQUOP

MSNOIN

MSNOQU

PCHL
PUSH
LHLD

MoV
QRA
JNZ
CALL
bW
Lpa
CRA
JINZ
DCR
LHLD
POP
MoV
INX
SULD
POP
RET
POP

PUSH

STA
CALL
oW
LDA
JNZ
PQP
RET

RET
RET

RROR BAILOUTS

CALL
DW
JMP
CALL
DW
JMP
DB

PSW
BLPCCP

A,M
a
BLKPCS
10
BLPCRB
BLPCST
a
ABORT
M
BLPCDP
PSW
M,A

H
BLECDP
H

H

PSW
DAPC
io
RBPC
STPC
ABORT
PSW

AKE CARE OF LEADER

MSG
MSHIOIN
ABORT
MSG
MSNOQU
ABQRT
gLls
L2
"INPUT
alL5
812

;JUMP TO IT

;SAVE DATA

s POINTER TO NUMBER

OF BYTES LEFT IN BUFFE

;GE™ NUMBER OF BYTES LEFT

+IS 1T ZERO?

;NQ STUFF BYTE

;SET UP POINTERS FOR NEW BLOCK

;CHECK STATUS

;O GOOD ~ BAIL OUT
;ONE LESS BYTE

;GET POINTER TO DATA
;RESTORE DATA

;PUT DATA IN BUFFER
;ADVANCE PQINTER
;PUT POINTER AWAY
;RESTORE [H,L]

;ALL DONE

;RESTORE [H,L]
;SAVE CHARACTER
;STORE CHARACTER
;OUTPUT IT

;CHECK STATUS

;RESTORE CHARACTER
;ALL DONE

;***
o TR R
’

FILE OPEN ERROR"

"OUTPUT FILE OPEN ERROR"

cas
June, 1977

The following Reguest Control Blocks correspond to COP's Monitor

Calls.

(./ 221649 ;
921789 ;OPEN INPUT FILE REQUEST BLOCK
221390 ;
21900 ;OPEN W/ ERROR MSG SUPPRESSION
922998 RBINOP DB 0124+0209
922100 STINOP DS 1 ; STATUS
822290 DB 1 ;PIL NBR
322340 DB 1+8204 ;SEQ IN,EXP DEV
022430 DTIN DS 1 ;DEV TYPE
222580 DNIN Y] 1 ;DEV NBR
722600 DW FNIN ;PTR TO FILE NAME
422786 FNIN DS 8 ;FILE NAME
3228849 ;
322908 ;QPEN OUTPUT FILE REQUEST 3LOCK
323048 ;
@23130 ;OPEN W/ ERROR MSG SUPPRESSION
323209 RBQUOP DB 0104+3200
223340 STOUCP DS 1 ;STATUS
323440 DB 2 ;FILE NBR
823500 DB 2+9208 ;SEQ QUT,EXP DEV
923604 DTOU CS 1 ;DEVICE TYPE
923708 DNOU DS 1 ;DEV NUMBER
923840 DW FNOU ;PTR TO FILE NAME
9239940 FNOU Ds 8 ;FILE NAME
g24028

824199 ;CHARACTER GET REQUEST BLOCK

C 324200 ;

024308 RBGC DB

2 ;CHRGET
924408 STGC =~ DS 1 ;s STATUS
8245049 bB 1 ;FILE NBR
824600 DAGC DS 1 ; DATA
3247090 ;
0248908 ;CHARACTER PUT REQUES™T BLOCK
324908 ;
4250808 RBPC DB 3 ;CHRPUT
2251d0 STPC DS 1 ;STATUS
225204 DB 2 ;FILE NBR
825388 DAPC DS 1 ;DATA
825488 ;
325508 ;REQUEST BLOCK TO SET UP CHRGET POINTERS INTO D
925690 ;
225799 BLGCRBE DB a1e7 ;SET UP BLK GET POINTERS
325809 BLGCST DS 1 ;STATUS BYTE
925909 DB 1 ;INPUT FILE NUMBER
026800 BLGCCP DS 2 ;POINTER TO NUMBER
2266108 ; LEFT IN BLOCK
926146 BLGCDP DS 2 ;POINTER TO DATA
226208 DS 2 ;RESERVED FOR MOMNITOR
9263460 ;
926400 ;REQUEST BLOCK TO SET UP CHRPUT POINTERS INTO D

(_; tes

June, 1577 119

120

3265409
8266090
326709
226889
826909
826918
927040
827109
827299
827346
927490
227508
027600
027799
2273009
827906
928000
9281090
6282049
32813448
228429
9285646
228600
628709
928886
92894649
029000

The
@291949
929299

1029329

8294049
929544
329640

829789
829840
6299449

930008

.
r

BLPCRB DB
BLPCST DS
DB
BLPCCP DS
BLPCDP DS
Ds

8119 sSET UP BLK PUT POINTERS

1 ;STATUS BYTE
2 ;OUTPUT FILE NBR
2 ;POINTER TO SPACE

LEFT™ IN BLOCK
2 ;POINTER ,TO DATA
2 ;RESERVED FOR MONITOR

i
;CHAR PUT W/ TAB EXPANSIION

RBPC2 DB

3123 ;WRITE

DS 1 ; STATUS

DB 2 ;OUTPUT FILE NUMBER

DB] ;ASCII

DW DAPC2 ;PTR TO BUFFER

oW 1 ;SIZE OF BUFFER

bs 2 ;NUMBER TRANSFERED
DAPC2 DS 1 ;DATA
;
sMISC
;
GCROUT DS 2 ;ADDRESS OF GC ROUTINE TQ USE
PCROUT DS 2 ;ADDRESS QF PC ROUTINE TO USE
COPID DB 815 ;CR

DB 212 s LF

ne “COPY FILE"
following are messages for the dialog with the operator.
ASFNM DB 315

DB 812

Dc “ENTER FiLE NAME “
SETUIN DB 813

DB 812

olof "SET UP INPUT"
SETUOU D3 a1s

DB g12

DC "SET UP OUTPUT"

END COP

0os
June, 1977

APPENDIX F. "BOOTSTRAP LOADERS

(*/ 2s10

Load Sense Switches 2 stop bits - none up
1 stop bit - A8 up

Bootstrap Loader

Octal Address Octal Data
) p76
o1 283
po2 323
283 2p
2p4 276
285 XX (XX = 21 for 2 stop bits,
25 for 1 stop bit)

206 323
o7 220
219 041
pn 302

(_/ P2 277
£13 961
P14 p32
P15 200
216 333
27 922
P29 P17
221 329
P22 333
923 921
p24 275
025 31D
926 P55
p27 167
23p 300
231 351
P32 P13

(NJ 233 200

20s

June, 1977 121

PIO

Load Sense Switches
Bootstrap Loader
Octal Address

122

peo
M
pp2
283
094
pRs
pp6

P07

P12
pn
p12
p13
p14
P15
P16
n7
pzp
p21
p22
p23
D24

A10, A8 - 'up

Octal Code
041 .
3p2
p77
pe1
923
pep
333
pps
346
201
319
333
pps
275
312
P55
167
300
351
203
200

oas

. dune, 1977

C

SI0
Load Sense Switches
Bootstrap Loader
Octal Address

fij3]i]

861

992

983

paa

945

oa6

297

)Y

211

P12

931

pi4

P15

p1é

77

p2p

P21

£22

923

00s
June, 1977

A9 - up

Octal Data
L]
302
677
B61
g22
filih)]
333

pop
277

33p
333
2o
275
319
p55
167
3pp
357

- po3

opp

123

ACR
Load Sense Switches
Bootstrap Loader
Octal Address

il

ol

pp2

03

ppa

205

ppe

o7

719

Mm

p12

P3

4

P15

g6

217

929

p21

022

124

A9, A8 - up

Octal Data
241
3p2
977
P61
p22
200
333
(143
P17
33p
333
pp7
275
312
955
167
309
351
pp3

oos
June, 1977

C

_ p23
4PI0
Load Sense Switches
Bootstrap Loader
Octal Address

hop
m
g2
pp3
ppé
pp5
pp6
07
np
M
mz
g3
p14
p15
P16
/7
02p
221
P22
P23
924
925
P26
p27
P3P
P31
p32
233
P34

tos
June, 1977

A0 -up

pop

Octal Data
257
323
p4p
323
241
P76
54
323
pap
241
3p2
P77
261
p33
200
333
249
207
339
333
241
275
319
955
167
e
351
p14
JiiJ]

125/126 blank

B
S e e e e
e e e
& o 4 s e e e
l'l L

*

2 @rror
8@86¢ Instruction

= . » -

A command (EDIT)
A command {LINK)
A error . o« o+ .
ABORT . . .

ASCII Character Codes

ASCII file . . .
Absolute address
Absolute file .

Absolute load ta
Address - specia
Address Expressi
Address chaining
Addresses . . .
Addressing mode

Alter command .
Angle brackets .
Assembler . . .

Assembler listin
Assembler pseudo
Assembly Languag

8 command (EDIT)
B error
3ackarrow . . .
dackup file {(E2D1
Bad File Number

Binary file . .
Block input . .
Block output . .
Bootstrap loader

Breakpoint . .
Byte
C command (EDIT
C error . . .

(

Os ~— o «

C subcommand (E
CMN
CNS . . . &
CCP

20

June, 1977

[
« o e
P
Set . .
. PR
e e e e

pe format

1 .« .«

on . . .
e s e e

(= S

-0pPS . .

e . . .

T) o o W
S
« e e
e e e e

™y . .

INDEX

« e s e

s s e s s o

“ s e e a

" e e 4 s e o v » « ¢ s 8 e s ¢ e e % s & s 8 o u e 8 s &

* o o o @

e e o = e o s

e« v o & o @

e o e« o & @

- « o o o

« s & e & o

s e s = o3 e e e

« & s v e e

a e + s e s a4 s o

“ e & & & =2 3 s .

" 2 s o 9

e s+ 8 e e s s =

“ . s e e o 8 8 o s s e s e s @

« & s e s s

e e s e s

e v v ¢ & e e » v 8 u =

“ o e & e

v o e s o

. 4 0.

« ° s o & e

“ s e . e v » 2 e &

e ® e o s & s s &

s e e e 8

« s e o v

e s s e »

e e o s

“ s 8 s e &

¢« o o & = s . a ° o8 e

« & s o+ = n

+ e e s e

187
148

121

14
48
71
38
68
93
112

127

Carriage RELUIN + o o o o o o o & o o o o o o o & 14
17
22
49
CassSetL® o« o 4 o o « s o o o s s s v e e 0 »

Character address « + o o « o ¢ o o o o ¢ v « & 43
ChecKSUM SLLOL o o o o s o o o o s o o o s o » » 7

26
Checksum loader .+ . « « o« o o o o s s ¢ s o & s o 7
ClOSE@ & &+ v « o o s o o » o o o 2 « o s & » o o « 185
COMMENE + + o o o o o o s o o o s s o s o o s o o 47
Common AddLeSS + « ¢ o o o o s s 6 s e s e s 4 s s 52
CoNSOle v 4 « ¢ o o o o o b e e o+ 4 s e . - 93
Constant address . . + + 4+ .+ & e e s e e e e 47
Control/C v v v v ¢ 4 e 4 4 e e s s e s e e v e s 13

22
CONELEOL/T v o o o o 4 o 2 o o o 2 o o o o o v o & 17

84

CONErOLl/0 . v v v o v 4+ o s e e s s e e s s s e 18
22
CONLLOL/Q v v o o o o o 4 & o o o s s e s e e ow 18
22
COoNEZOL/R v v ¢ 4 & o o o s o s o s s o o o 2 s 17
22 ‘
CONEIOL/S & v & 4 o & o o o 4 b 4 s e e s e s 13

22
Control/U v v o v o s o o o o o o s s s e e s e s 17
22]

Control/X &+ o 4 & o v 4 e e e b s e e e e e e e 14

D command (EDIT) « « o o o o « o o s o o o o o o » 36
D BLEOL & o o o o o o 5 o o s o o 5 o'a s o o s o 71
D subcommand (EDIT) « o o o o o ¢ s o o o o o o & 38
DATA ¢ v o ¢ o o o o o » s a o o » o o o o o o o 68
DB ¢ v 4 o o o s o o o s o o o o ¢ a ¢ s 2 s s o s 69
DC v 4 ¢ o o o o o s s s 5 s o 8 s & s 8 6 ¢ o s 69
DEBUG &+ v v v o o o s o s o & 5 s o s o s » s s s 83
DEL command . + ¢ « o s o o « « s 4 o s s o o o @ 23
DIN command « « « o o o o o o s s s s o o s o o 23
DIR command « « « o o o o o o o & o o o 5 o s o 24
DSM commMand « « ¢ « s o 5 o & s o 6 ¢ ¢ o o e e 24
DS & v 4 o ¢ o s o o 5 9o 5 o o« s o o o s o o a2 s 69
DH o ¢ o o o o o o o o o s 5 s o o o o s o s s » o 78
Data address .« + « ¢ ¢ « ¢ o o s s e e e e s 52
Decimal address . .« &+ s ¢ ¢ 2 o o o o o o & o e 48
Definitions .+ « ¢ « o o 4 o o o 4 o s e e 4 4 e 14
Delete command (EDIT) e e e s e s s e s s e s e 36
DElete v v v 4 « v 4 e s e e s e s e s s e e e e . LD
DeliMiter ... v ¢ o & o o o o o o« 2 o » o v o 3 o 18

23
DEVICE v v o 4 o o o o o s s 5 s o s o o o s s o= u 23
Device table o o &« 4 v o o o o o s & 0 w2 e 4 s s s 25
DIiractory £rack + o s o s 6 o s o o o o o o+ « » o 102 ~
DIC8CEOLY ¢ « o v o o o o« o o o o o o o o o o « o 189 .

p0s

128 : June, 1977 ‘

Disk Boot Loader
Disk Full . . .
Disk Loader . .
Disk format . .
Dismount
E command (EDIT)
E command (LINK)
E error

EDIT « o & +» « &
END . ¢ ¢« & & &
ENDIF . . . « &
ENTRY .+ + « « &
EQU . . « .+ « &
EXIT o o o o o »
EXT & ¢ v o & &

Editor . . . « .

Editor
Editor
Enable . . « .+ .
End of file . .
Error code

Explicit address
External address

“ s & o & e e o B 8 s »

backup file
source file

External reference
F command (EDIT) .
F @CLOL & & o &
File « o v « v & &
File - ASCII . . .
File = absolute .
File - random . .
File = relocatable

File =
File =
File -
File -

absolute
listing .

File -
File -
File =
File
File
File
File
File
File

random .

Link Error
mode . . .
name . . .
number . .
table ., . .

Finding a string
Format of disk .

.

relocatable
sequential
Copy utility

.

.

(Mlonitor)
Error messages (Monit

.
.
.

Editor backup
gditor source

Front panel switches

G command (DEBUG)

Get character .
00s
June, 1977

a a e % & & % e e o v o

.
.
.
.
o]

« e 4 e o s e e “ e e s v e

« o e s e

W s e 5 8 e s e e b s e &

¢ v s % e « s v

« o s v v @

a s 8 8 8 s & ° ¢ & s s »

“ 8 e+ e s e o n

« e e e .

.

“ e s e e »

* s s = a4 s a =

« & + & v 4 o o

* s e e s @

« s s e .

" s v v e

« s & e o ¢ o

» e o s »

* e e s e o & @

P N T S T S R A R

.

s & 4 e o s a2 s e s s 4 % s+ s s s s e =

« 4 = s s e

v e s e e

.

-

“ 2 e s e

“ 8 s 8 e e s

« s o & 0

« ® o o

e« s e » s 4 2 e o s v »

« s 6 o e & 8 * e & & s o

a e e o s

" s s e s s+ e

e« o s o 0

27

181
109

10l
89

197

129

H subcommand (EDIT) . . .
Handler table . .

Hexadecimal address . . .
I command (EDIT) . .

i subcommand (EDIT) . . .
I/0 ELTOL & &+ o o o o o o
I/0 Table . +« « o o o o
1/0 modes (DEBUG) « s e s
IFF 4 o s o o o o o o o
INIT o 46 v« s o o o o «

I0 o v v e 0 e v e e e e

Increment . & . o 4 s . .

indirsct addressing

Initialize « « + &
initializing DOS
Input conventions ., . . .
Input interrupt

Insert command (EDIT) . .
Instruction set - 8084 . .
Internal error . . . « « o
interctupt - input

Introduction .« . .« .+ . .
Invalid Load Device Error
K subcommand (EDIT) . .

L command ({(EDIT)
L command (LINK) . . .
Lerror .+ . ¢ ¢ o & .
LINK « ¢ &+ &+ v &« & &

.
. e .

LIST o v v ¢ 4 6 o o o o
LOA command . . . « » o &
Label . . . « ¢« v ¢« o o &

Line v v o v v o o o o o &
Line feed
Linking Loader

LISt & . v 4 o o o o « & @
Listing file

Load switch .
Loading DOS .
Load
M error . . .
MNT command .

e v v s
« v e e e
e s e
D
o« s v 4 o
o e e e

130

« s e e

e s e e

¢« o ¢ o @

LTS Y R

e o s e »

« s s e e

« 4 s e »

* s 4 e

119
71

24

00s
June, 1977

MSG

Machine language ., .

Memory error
Mnemonic ., .
Mode mismatch
Monitor . .
Monitor Calls

. e .

Monitor commands . . .
Monitor error messages

Mount . . .

N command (EDIT) . .
N @FLOr & o« o o & &
Name ., ., . o e e e
Notation
O error .« « « ¢ + »
Object code

Object code module .

Octal address
Opcode . . .

Opcode list
Open

Operand . .
Overlay error

e o s e

A s e a
LI S SY
s s e e

* s e

P command (DEBUG) .

P command
P error . .
Page . . ., .

(EDIT™) . .

. s e

. .

Paging commands ., .

Paper tape
Phase Error
Program Developmen

Program . . « « o+
Program - system . .
Program - user . . .
Program goint . . .
Prompt . . . « + « &
Pseudo=0pPS + «' ¢ o .
Put character . . .

Q command
Q command

Q error . .
R command
R subcommand
REN command
RQCB address
RUN command
Random block
Random file

D0s
June, 1977

(DEBUG)
(Epi™) . .

L]

(2p1IT) . .

(EDIT)

. e
. e
. s
. .
. e

.

.

.
e
. e
. e
P
« .
. .
. .
-
. .
N
. e
-
PR
PN
e
. .

Proce
. .
-
. .
.o e
. .
v .
[
. e
. e
. .
PR
. .
P
P

d

« s e e e

u

s s & 8 s s » e e o

e

“ e 4 s e

« ¢ s e o

a2 e s s e s s s

* e o o &

« s o v s

. .

e o o 2

A & ¢ o % e o s =

.

« s e v e

s 4 o e e e e s @

« s & e o

« s e s o

.

« e e 4 a e

94
45

45
27
21
103

119

147

122

131

Random read «,« « o s + o o
Random write . .
RANGE ¢ & & o ¢ s o o o s o »

Read o+ 4 o o o o o o o o o o @
Record number . . « .+ ¢ + o« «
Relative address . . « + « + &

Relocatable file . . + « « o«

Relocatable load module . . .
Relocatable object code module
Rename . . . o s e o e .
Replace command (FD;m) . . .
Request Control Block (RQCB) .
Return address . ., « ¢« o+ « +
RUbOUE » & & & ¢ &+ o o o o 4

S command (EDIT) . . « + « « &
53 command (LINK) « + ¢ ¢ « o+ &
S subcommand (EDIT) e e e s
SAV command . . .

SYSENT o & o o o o o s s o o &
T - e T
SeCtOr « o 4 o o 0 e v e e s .
Sense switech . . . « « + .+ . .
Sequential file
Source code o« e e s
Source Eile (EDIT) o « + o o
Source listing . . « .+ « o .+ o
SPECE . + 4 ¢ 4 s e e e 8w s

Square brackets
Starting address .

Statement . . o . 4 s e e . .
Subcommand (EDIT) e s e e e s
System program . . s « ¢ o+ s
T error e s e s s s e s e e e
TASKNM & & & o o 2 o « « o o »
Terminal switch . . . « . . .
Text Editor (EDIT) . . « « «
Track . . . e e e e e e

U command (L¢N&) e v e e e e e
U @FIOL & v ¢ o ¢ « o ¢ o «
Uparrow . . .

Upper CaSe@ .+ o« « ¢+ o o o o s+
User program . + « « o« s o o+
V error . . e s e e e e s e
W command (EDLW) e e s e e e s
Weite 4 o 4 o o o o o o o o

X command (DEBUG) e e v e s a
X subcommand {(ZDIT) e e e e
Y command (DEBUG) e e e s e e

132

¢ e s e s e ®

s e e s e & e @

e & o o % a o o

« s e 2 e

s s e e e e &

L S S

« e s e s @

¢« & 4 s s s e »

e s s o s s s .

« s e s o o

“ s e s e & o

s & o 8 e ¢ s e o @

-

« s e & o o o @

“ s o ¢ 8 e s

R)

e e s s e w o @

e o & & & s o « o s s s e ®

* e e s e e e+ » e

¢« a e o s e @

s e & s s a o » * v e o e & s s s+ o

« e v s e o

1d6
1d6

1995

119
181

196 -

00s

uune, 1977

[

Microsoft CP/M BASIC-

Addendum to Microsoft BASIC Manual
for Users of CP/M Operating Systems

A CP/M version of BASIC (ver 4.5) is now available from Microsoft.
This version of BASIC is supplied on a standard size 3740 single density
diskette. The name of the file is MBASIC.COM. To run MBASIC, bring up
CP/M and type the following:

A>MBASIC <carriage return>
The system will reply:

xxxx Bytes Free

BASIC Version 4.5

(CP/M Version)

Copyright 1977 (C) by Microsoft
ok .

You are now ready to use MBASIC. MBASIC is identical to Altair
Disk BASIC version 4.1, with the following exceptions:

1. MBASIC requires 17K of memory.(A 28K or larger CP/M
system is recommended).

2. The initialization dialog has been replaced by a
set of options which are placed after the MBASIC
command to CP/M. The format of the command line
is:

A>MBASIC [<filename>) [/F:<number of filesq
[/M:<highest memory location>,

Items enclosed in brackets are optional.

If <filename> is present, MBASIC proceeds as if a
RUN <filename> command were typed after initiali-
zation is complete. A default extension of .BAS
is used if none is supplied and the filename is
less than 9 characters long. This allows BASIC
programs to be executed in batch mode using the
SUBMIT facility of CP/M. Such programs should in-
clude a SYSTEM statement (see below) to return to
CP/M when they have finished, allowing the next
program in the batch stream to execute. .

If /F:<number of files> is present, it sets the
number of disk data files that may be open at any
one time during the execution of a BASIC program.
Each file data block allocated in this fashion re=
quires 166 bytes of memory. |If the /F option is

%)

omitted, the number of files defaults to 3.

The /M:<highest memory location> option sets the
highest memory location that will be used by MBASIC.
In some cases it is desirable to set the amount of
memory well below the CP/M's FDOS to reserve space
for assembly language subroutines. In all cases,
<highest memory location> should be below the start
of FDOS (whose address is contained in locations 6
and 7). If the /M option is omitted, all memory up
to the start of FDOS is used.

NOTE

Both <number of files> and <highest memory location>
are numbers that may be either decimal, octal (pre-~
ceded by §0) or hexadecimal (preceded by &H).

Examples:

A>MBASIC PAYROLL.BAS Use all memory and 3 files,
load and execute PAYROLL.BAS.

A>MBASIC INVENT/F:6 Use all memory and 6 files,
load and execute INVENT.BAS.

A>MBASIC /M:32768 Use first'32K of memory and
: "~ 3 files.

A>MBASIC DATACK/F:2/M:&H3000)
Use first 36K of memory, 2
files, and execute DATACK.BAS

The DSKF function is not supported by MBASIC. Use
CP/M STAT.

The FILES statement in MBASIC takes the form
FILES{<filenames] . If <filename> is omitted, all
the files on the currently selected drive will be
listed. <filename> is a string formula which may
contain question marks (?) to match any character
In the filename or extension. An asterisk (¥) as
the first character of the file name or extension
will match any file or any extension.

Exampies:
FILES

FILES "'*.BAS"
FILES "B:*.*

FILES “TEST?.BAS"

O

10.

11.

12.
13.

14,

15.

i6.

17.

The LOF(x) function returns the number of records
present in the last extent read or written {(usually
by a PUT or GET). ‘

CSAVE and CLOAD are not implemented.

LLIST and LPRINT assume a 132 character wide printer
and write their output to the CP/M LST: device.

All filenames may include A: or B: as the first two
characters to specify a disk drive, otherwise the
currently selected drive is used.

Filenames themselves follow the normal CP/M naming
conventions.

A default extension of .BAS is used on LOAD, SAVE,

MERGE and RUN <filename> commands if no ''.' appears
In the filename and the filename is less than nine

characters long.

The error messages ‘'DISK NOT MOUNTED', "'DISK ALREADY
MOUNTED!', "OUT OF RANDOM BLOCKS', and “FILE LINK
ERROR'* are not included in MBASIC.

The CONSOLE statement is not included.

To return to CP/M use the SYSTEM command or state-
ment. SYSTEM closes all files and then performs a
CP/M warm start. Control-C always returns to MBASIC,
not to CP/M.

If you wish to change diskettes during MBASIC opera-
tion, use RESET. RESET closes all files and then
forces CP/M to re-read all diskette directory infor-
mation. Never remove diskettes while running MBASIC
unless you have given a RESET command. The RESET
statement takes the place of the MOUNT and UNLOAD
statements in Altair BASIC.

MBASIC will operate properly on both Z-80 and 8080
systems.

MBASIC does not use any of the restart (RST) in-
struction vectors.

The FRCINT routine is located at 103 hex and the
MAKINT routine at 105 hex (add 1000 hex for ADDS
versions). These routines are used to convert the
argument to an integer for assembly language sub-
routines.

18. 1f the LEFTS$ or RIGHTS string functions have zero
as the number of characters argument, they will
(& return the nuil (length zero) string.

19. The ERR() Disk error function is not supported as
CP/M handles all disk error recovery.

20. Control-H (backspace) deletes the last character
typed and is echoed to the terminal.

21. RESTORE <line number> may now be used to set the
DATA pointer to a specific line.

22. All error messages and prompts are printed with
lower case characters when appropriate.

23. Control-S may be used to cause program execution to
pause. In the suspended execution state, control-C
will cause a return to BASIC's command level, and
any other character will cause the program to resume
execution.

24, The EOF function may be used with random files. |f
a8 GET is done past end of file, EOF will = =1,
This may be used to find the size of a file using a
binary search or other algorithm.

Q 25, LSET/RSET may be used on any string. The previous
restriction to FIELDed strings has been eliminated.

26.. The string function INPUTS(<number of characters>
[,[#1<file number>]) may be used to read <number of
characters> from either the console or a disk file.
If the console is used for input, no characters will
be echoed and all control characters are passed
through except Controi-C, which is used to interrupt
execution of the INPUT$ function.

27. VARPTR(#<file number>) returns the address of the
disk data buffer for file <file number>.

i (:/3

1.

2.

BASIC Reference Manual

Addenda, April, 1977

Page 33, sub-paragraph b:

LINE INPUT ["<p:ompt string>",]; <string variable namew

CHANGE TO:

LINE. INPUT ["<prompt string>";] <string variable>

Page 40, Paragraph §-3b, line 9:

The of the <in§eger‘expression> is the starting address of . . .
CHANGE TO: |

The <integer expression> is the starting address of . . .

Page 41. Insert the following paragraphs between Paragraphs 3 and 4.
ADDITION:
The string returned by a call to USR with a string argument is that

string the user's routine sets up in the descriptor. Modifying [D,E] does
not affect the returned string. Therefore, the statement:

C3=USR(A$)

results in A$ also being set to the string assigned to C$ To avoid
modifying A$ in this statement, we would use:

C$=USR(A$+" ™)

so that the user's routine modifies the descriptor of a string temporary
instead of the descriptor for AS.

A string returned by a user's routine should be completely within
the bounds of the storage area used by the original string. Increasing
a string’s length in a user routine is guaranteed to cause problems.
Page 49, last paragraph, line 7:

« « . leading $ signs, nor can negative numbers be output unless the sign

_ 1s forced to be trailing.

* CHANGE TO:

« « « leading § signs.

7.

10.

C

e T N e T T, R I T 2 T
Page 2

Page 59, last line: Le T e o

$20 CLOSE #1 el = -

CHANGE TO: _ . --- —=:
820-CLOSE- 1 mnomew —=—-- | <ETIoor vasmarl s tiT

Page 70, CLEAR [<expression>] explanation:

o> - Same-as CLEAR-but .sets string space to_the value . . .
CHANGE TO: - _—:- ... __-.

~-. -Same a.sig:'LEAR-_butfggs_,string space-{see-4~1) to the value . . .

Page -70; CLOAD <string expression> explanation, second line:

5.4 ..character of STRING expression> to be.. . .
CHANGE TO: . .. e e -

s-s-v character of <STRING expression> to be . . .
Page 71: _:':'_r_: rrmThooL T L il T D Lo oImDo L Lmmmic. L

CSAVE*<array name> -8K-(cassette), Disk. .
CHANGE TQ: -

GSAVE*<array name> . . -. -:8K-(cassette) . Extended, Disk .

Page 75. Insert the following after LET and before LPRINT.

. ADDITION:

-2 T'LINE INPUT LINE INPUT "prompt string"; string variabie name

c=. - ---Extended, Disk- - oo oo - oim -

-.-LINE INPUT prints the prompt string on.the terminal and assigns all
input from the end of the prompt string to the carriage return to
;- the named-string variable. No other prompt is printed if the prompt
string is omitted. LINE INPUT may not be edited by Control/A.

Page 76, POKE explanation, second line:
e +1£ 1 is negative, address is 65535+I, . . .

CHANGE TO: ~

+ « s I£ I is negative, address is 65536+I, . . .

o e g v s

~

11.

12.

13.

14.

15,

16.

17.

BASIC Reference Manual Addenda, April, 1977

Page 3
Page 80, OCT$: |
oCT$ OCT$ (X) 8K, Extended, Disk
CHANGE TO:
OCT$ OCT$ (X) Extended, Disk i
Page' 81: \ _
SPACE$ SPACES(T) 8K, Extended, Disk
CHANGE TO:
SPACES SPACE$ (I) Extended, Disk
Page 91, line 4: ‘ AN
. « » question (see Appendix E).
CHANGE TO: ‘
. « « question (see Appendix H).
Page 95, first paragraph, line 3:

+ » « Por instructions on loading Disk BASIC, see Appendix E.
CHANGE TO:

« « « For instructions on loading Disk BASIC, see Appendix H.
Page 103, line 11: '

C (in extended) retains CONSOLE functiom.

CHANGE TO:

C (in Extended and Disk) retains CONSOLE and all other functions. '

Page 112, Paragraph 4, Line 3:

USRLOC for 4K and 8K Altair BASIC version 4.0 is 111 decimal.
CHANGE TO:

USRLOC for 4K and 8K Altair BASIC version 4.0 is 111 octal.
Page 114, third paragraph, line 2:
« « « by the first character of the STRING expression>.

CHANGE TO:

BT Y I T AT e R L, 1YY

. ,P_a.!'e. 4

e

« « » by the first character of the <string expression>. Note that the

program named A is saved by CSAVE"A',

18. Index, line 12:
A'DDI‘EON_:

NULL .

e e e e e e T2

Al — o~ PR——
......... . — e
TTeTTITT e iTTess
II LEmTIIIU T L S
[z
. LI TNTETL L . _ oL '
?
T ot = £y
mar mma Frace me e me e .l el R
- -

2450 Alamo SE
Albuquerque, NM 87106

