altair 680b system monitor manual # altair 680b system monitor manual ## TABLE OF CONTENTS | Section | <u>on</u> | P | age | |---------|--|---|-----| | I. | Abstract | • | 2 | | II. | Notes on the Format of This Manual | | 3 | | III. | Starting Up the PROM Monitor | ٠ | 4 | | IV. | Description of the Monitor Commands | • | 6 | | ٧. | User Program Debugging With the PROM Monitor | • | 12 | | VI. | Paper Tape Format | | 15 | | VII. | PROM Monitor Memory Use Information | ٠ | 17 | | VIII. | Baudot Teletype Option Information | | 21 | | IX. | PROM Monitor Source Listing (ACIA Version) | • | 25 | | Χ. | PROM Monitor Source Listing (Baudot Version) | | 31 | ## I ABSTRACT This document describes the functions and operating procedures of the Altair 680b PROM Monitor, a system program which allows the user to examine and change the contents of memory locations, load formatted object tapes into memory, start program execution at a specified address, and debug user programs. A source listing of the PROM Monitor is included so that its I/O and hexadecimal conversion routines may be utilized by user programs. #### II NOTES ON THE FORMAT OF THIS MANUAL All numbers used in this document are hexadecimal (base 16) unless otherwise indicated. - 2) In the examples provided in this document, underscoring is used to indicate user typed information. - 3) The symbol (CR) is used to represent a carriage return. - There are two versions of the PROM Monitor, one which supports the use of the ACIA chip, and one for use with a Baudot Teletype. All information in this manual applies to both versions of the Monitor, except where otherwise noted. - 5) Symbolic addresses which are referenced but not defined in the examples, such as OUTCH and OUT2H, are entry points in the PROM Monitor. Refer to appropriate source listing (Section IX for the ACIA version and Section X for the Baudot version) for detailed information on these routines. - 6) Assembly code examples follow the conventions of the 680B Resident Assembler. ## III STARTING UP THE PROM MONITOR ## A) Power up sequence - Strap the appropriate bits at location F002 to indicate the presence of a terminal, the type of terminal, and the number of stop bits to be used. (See the 680B Operator's Manual.) - 2) Turn the Altair ... computer on. - 3) Turn the terminal on. - 4) Switch the Halt-Run switch to the Halt position. - 5) Actuate the Reset switch. - 6) Switch the Halt-Run switch to the Run position. - 7) The PROM Monitor will respond by sending a carriage return and line feed to the terminal and printing a ".". The "." is the Monitor's prompt character which indicates that the Monitor is ready to accept a command. #### NOTE Use steps 4 through 7 to start the Monitor if the system is already powered up. ## B) Entering the PROM Monitor from a User Program There are three methods of entering the Monitor from a user program. The first method is to include the following instructions at the appropriate place in the program. #### JMP X JUMP TO RESTART ADDRESS This has the same effect as doing a Reset from the front panel. The Monitor is entered at its reset entry point, causing the stack pointer and all system parameters to be initialized. #### NOTE If the user program is outputting to the terminal just prior to the execution of these instructions, the last character sent to the terminal may be lost when the Monitor initializes the terminal control register. The second method of entering the Monitor from a user program is to include the following instruction at the appropriate place in the program. #### JMP CRLF The symbol CRLF must be correctly defined in the user program for the version of the Monitor being used (ACIA or Baudot). The Monitor is entered, the stack pointer is loaded from SAVSTK (00F6 and 00F7), and a carriage return, line feed, and the Monitor's prompt character are sent to the terminal. The third method of entering the Monitor from a user program is to place a SWI (software interrupt) instruction at the appropriate place in the program. This method is generally used for program debugging and therefore discussion of this feature is delayed until section V. ## IV DESCRIPTION OF MONITOR COMMANDS ## M - Memory Examine and Deposit Command Purpose - To examine and optionally modify the contents of a single memory byte. #### Usage - - 1) Type M in response to the Monitor's ".". - A space will be printed. - Type the four digit hexadecimal address of the byte to be examined. - 4) The two digit hexadecimal contents of the specified byte will be printed, preceded by and followed by a space. - 5) To change the contents of the specified byte, enter the new contents by typing two hexadecimal digits. - 6) To leave the contents of the specified byte unaltered, type a carriage return (or any other non-hexadecimal character). #### Examples - To examine and leave unaltered the contents of 00A2, the following command is used: #### .M 00A2 FF <CR> 2) To deposit a 09 in location 0072, the following command is used: #### .M 0072 E1 09 (Note that a carriage return is not used.) #### NOTE The contents of the specified byte are not changed until two valid hexadecimal digits are entered. Therefore, if an invalid digit is typed, the contents of the location will remain unchanged. ## N - Memory Deposit and Examine Next Command Purpose - Used after an M command to examine and optionally modify the contents of the next sequential memory byte. #### Usage - - 1) Type N in response to the Monitor's ".". - 2) The Monitor will type the next sequential memory address, preceded by and followed by a space. The contents of the byte will be printed, followed by a space. - 3) To change the contents of the specified byte, enter the new contents by typing two hexadecimal digits. - 4) To leave the contents of the specified byte unaltered, type a carriage return (or any other non-hexadecimal character). ## Examples - To load a string of ASCII characters into successive memory bytes starting at location 0050, use the following commands: .M 0050 00 4D .N 0051 00 49 .N 0052 00 54 N 0053 00 53 2) To check and correct a sequence of instructions located at 0015 through 0018, the following commands are used: .M 0015 4C <CR> .N ØØ16 5C <CR> .№ ØØ17 36 <u>32</u> .N 0018 37 <CR> ## J - Jump to Specified Address Command Purpose - To start program execution at a specified address. #### Usage - - 1) Type J in response to the Monitor's ".". - 2) A space will be printed. - Type the four digit hexadecimal address at which execution is to begin. - 4) The processor will jump to the specified location and start execution of the program stored there. #### Example - To start execution of a program which starts at 02F3, the following command is used: #### .J Ø2F3 ## L - Load Paper Tape Command Purpose - To load formatted object tapes into memory. (See Section VI for paper tape format.) #### Usage - - 1) Type L in response to the Monitor's ".". - Place the paper tape in the reader and start the reader. Loading begins with the first data record (type S1). Any information preceding the first data record, including the header record (type S0) is ignored. Normal termination of the load occurs when an end of file record itype S9) is encountered. Control returns to the Monitor's command decoding section and any information following the S9 on the tape is interpreted as Monitor commands. Therefore, the paper tape reader should be turned off as soon as the S9 is printed on the terminal. If a checksum error occurs while the tape is being read, control is returned to the Monitor's command decoding section and the rest of the information on the tape is interpreted as Monitor commands. If this occurs, the paper tape reader should be turned off and the paper tape should be reloaded from its beginning. ## Suppressing Teletype Echo #### NOTE This information applies only to the ACIA version of the PROM Monitor. While loading a paper tape, Teletype echo can be suppressed by one of two methods. The first method is to use the Monitor's M command to store an FF into the Monitor's echo flag (location 00F3). The command ## M 00F3 03 FF turns off Teletype echoing. The L command can then be used to load the paper tape. (The L will not be echoed!) When the load is completed, the command #### M 00F3 FF 00 is used to restore Teletype echoing. (Only the FF, which is printed by the Monitor, will appear on the terminal!) #### NOTE Only the most significant bit of the echo flag affects Teletype echoing. Therefore, any number loaded into 00F3 which has bit 7 set will suppress echoing, and any number loaded into 00F3 which has bit 7 clear will restore echoing. The second method of suppressing Teletype echo is to have the first data block of the paper tape load an FF into location 00F3 and to have the last data block load a 00 into location 00F3. This can be accomplished by including the following mnemonics in an assembly code program. NAM EXAMPL ORG \$00F3 FCB \$FF TURN OFF ECHO FOR LOAD (PROGRAM STATEMENTS) ORG \$00F3 FCB Ø RESTORE TTY ECHO END This is the method used on all MITS supplied paper tapes. When using this method, a typical load looks like: .L S00B00004D454D5445535420B5 S10400F3FF08 S9 If a checksum error occurs, Teletype echoing will remain off. The command .M 00F3 FF 00 can be used to restore echoing. (Only the FF will appear on the terminal!) ## P - Proceed From Program Breakpoint Command Purpose - To proceed from a program breakpoint. Usage - - 1) Type P in response to the Monitor's ".". - 2) Program execution will be resumed. ## NOTE A discussion of program breakpoints is included in Section V. ## V USER PROGRAM DEBUGGING WITH THE PROM MONITOR ## Setting Program Breakpoints When a program is not performing properly, it is often helpful to stop program execution at strategic points for the purpose of displaying and/or modifying the contents of the processor registers and memory locations. This is known as setting
program breakpoints. The PROM Monitor allows a program breakpoint to be set by insertion of a SWI (software interrupt) instruction at the point in the program where the break is to occur. When the SWI instruction is executed, the status of the processor is pushed onto the stack according to the format shown in Table 5-1. The PROM Monitor gains control of the processor and may be used to examine and/or modify the contents of the registers and memory locations. | Stack Pointer | > | | |---------------|---|----------------------------------| | SP+1 | | Condition Codes | | SP+2 | > | Accumulator B | | SP+3 | > | Accumulator A | | SP+4 | > | Index Reg (High Order Byte) | | SP+5 | | Index Reg (Low Order Byte) | | SP+6 | | Program Counter (High Order Byte | | SP+7 | | Program Counter (Low Order Byte) | TABLE 5-1 When the Monitor is entered at a program breakpoint, the stack pointer is saved in locations 00FA and 00FB. When an N command is executed, the contents of 00FA and 00FB are incremented by one and then used as the address of the next memory byte to be examined. Therefore, if an N command is issued directly after entering the Monitor at a breakpoint, the address displayed will be SP+1 (see Table 5-1) and the contents displayed will be the contents of the condition codes register. Further N commands will display the contents of the remaining processor registers in the order shown in Table 5-1. Alternatively, the contents of the stack pointer can be determined by using the M and N commands to examine locations 00F6 and 00F7, where the Monitor stores the high and low bytes of the stack pointer, respectively. Once the contents of the stack pointer have been determined, the M and N commands can be used in conjunction with Table 5-1 to examine and/or modify the contents of the processor registers. The P command is used to continue program execution after a breakpoint. The P command causes the stack pointer to be loaded from locations 00F6 and 00F7 and the other processor registers to be pulled from the stack. Program execution is resumed at the address of the SWI instruction that caused the break, plus one. #### NOTE The contents of the stack pointer may be changed by modifying the contents of locations 00F6 and 00F7. However, great caution should be exercised when so doing since the P command causes the processor registers to be pulled from the stack. Any number of breakpoints may be present in a program at one time. It should be clear that insertion of a SWI instruction may make re-assembly of the program necessary. A breakpoint can be removed by replacing the SWI instruction with a NOP or by deleting the SWI instruction and re-assembling the program. ## Breakpoint Routines Whenever the PROM Monitor is entered at a program breakpoint, the flag BRKADR (location F2) is checked. If the most significant bit (bit 7) of BRKADR is clear (=0) then the Monitor assumes processor control. (This is the normal course of events since the Monitor initializes BRKADR to 03 whenever the Reset function is performed.) However, if the most significant bit of BRKADR is set (=1), which can be accomplished by using the command M ØØF2 Ø3 FF or including the instruction COM SF2 SET BRKADR FLAG in a program, then control is transferred to location 0000 when a program breakpoint occurs. This feature can be used to perform special functions when program breakpoints occur. Two examples of the use of this feature are given below. This example illustrates the use of a breakpoint routine to print the contents of the processor's registers and continue program execution each time a program breakpoint occurs. | | ORG | Ø | BREAKPOINT ROUTINE ADDRESS | |------|-------|-------|------------------------------| | | LDA B | #@15 | SEND CR AND LF | | | JSR | OUTCH | TO TERMINAL | | | LDA B | #012 | | | | JSR | OUTCH | | | | TSX | | X POINTS TO PROCESSOR STATUS | | | LDA B | #7 | INITIALIZE COUNTER | | LOOP | LDA A | X | BYTE OF STATUS TO A REG | | | PSH B | | OUT2H & OUTS CLOBBER B REG | | | JSR | OUT2H | PRINT OUT BYTE OF STATUS | | | JSR | OUTS | SPACE OVER | | | PUL B | | RESTORE B REG | | | INX | | BUMP POINTER | | | DEC B | | DECREMENT COUNTER | | | BNE | LOOP | IF NOT DONE, KEEP PRINTING | | | RTI | | CONTINUE PROGRAM EXECUTION | This example illustrates the use of a breakpoint routine to examine the contents of the A register and transfer control to the Monitor if A is clear (contains all zeroes). If A is not clear, program execution continues. This type of routine is used to implement "conditional breakpoints". | | ORG | Ø | | |--------|-------|--------|-------------------------| | | JMP | \$0300 | THIS BREAKPOINT ROUTINE | | | ORG | \$0300 | STARTS AT 0300 | | | TST A | | TEST CONTENTS OF A REG | | | BNE | CONTIN | A ALL ZEROES? | | | JMP | CRLF | YES, JUMP TO MONITOR | | CONTIN | RTI | | NO, CONTINUE PROG EXEC | #### VI PAPER TAPE FORMAT The PROM Monitor supports the paper tape format established by Motorola. The first character of a record is an S. The digit following the S defines the type of record. SØ = Header Record S1 = Data Record S9 = End of File Record Header records (type SØ) contain the program name, and are ignored by the PROM Monitor. The end of file record (type S9) causes the Monitor to terminate the loading process. Data records (type S1) contain the actual data to be loaded and are of the form: #### SINNAAAADDDDDDDDDDD......DDCC where Sl specifies that the record is a data record, NN is a two digit hexadecimal byte count specifying the number of remaining bytes in the record (1 byte = 2 frames of tape), AAAA is the 4 digit hexadecimal starting address of the data block, each DD pair consists of two hexadecimal digits which are combined to form a byte, and CC is the checksum of all preceding frames (excluding the S and 1). The checksum is the one's complement of the binary sum of the byte count, the address, and the data bytes. Further information concerning the paper tape format is given in Figure 6-1. FIGURE 6-1. Paper Tape Format #### VII PROM MONITOR MEMORY USE INFORMATION ## Monitor Memory Location The ACIA version of the PROM Monitor is 256 bytes long and resides in locations FF00 through FFFF. The Baudot version of the Monitor is 512 bytes long and resides in locations FE00 through FFFF. ## Monitor Stack The stack pointer is initialized to 00Fl whenever the Monitor is entered at its reset entry point. The stack pointer can be changed by using the Monitor's M and N commands to alter the contents of SAVSTK (see Monitor flags below) #### NOTE The contents of SAVSTK should generally not be changed when the Monitor is entered at a program breakpoint as this will cause the P command to operate improperly. ## Monitor Flags Locations 00F2 through 00FF are reserved for use by the Monitor. These locations are assigned as described below. With the exceptions of BRKADR, ECHO, and SAVSTK, these locations should generally not be tampered with. #### BRKADR (00F2) - BREAKPOINT ADDRESS FLAG If bit 7 of BRKADR is clear (=0) the Monitor gains processor control when a program breakpoint occurs. If bit 7 is set, control is transferred to location 0000 when a breakpoint occurs. See Section V for further information. ECHO (ØØF3) - TELETYPE ECHO FLAG (Applies to ACIA version only) If bit 7 of ECHO is clear, Teletype input is echoed. If bit 7 is set, Teletype echo is suppressed. See Page 9 for further information. EXTFLG (00F4) - EXTENDED CHARACTER FLAG (Applies to Baudot version only) EXTFLG is set when the Baudot character input routine receives the extend character and cleared after the extended character is received. See Section VIII for information on the Baudot version of the Monitor. BUFULL (00F5) - BUFFER FULL FLAG (Applies to Baudot version only) If BUFULL is clear then the contents of the character buffer are not current. If BUFULL is set (any bits high) then the contents of the character buffer are current. SAVSTK (00F6-00F7) SAVSTK is used to save and restore the contents of the stack pointer. TEMP (ØØF8) TEMP is used for temporary storage during computation of paper tape checksums. BYTECT (00F9) - BYTE COUNT BYTECT contains the byte count during paper tape loading. XHI (ØØFA) XHI stores the high order byte of the index register. XLO (ØØFB) XLO stores the low order byte of the index register. #### NOTE XHI and XLO are also used to store the stack pointer when the Monitor is entered at a program breakpoint. This allows the N command to be used to examine the processor status. (See Section V for further information.) SHIFT (00FC) (Applies to Baudot version only) SHIFT is set whenever the Baudot Teletype is in the upper case mode. SHIFT is clear whenever the Baudot Teletype is in the lower case mode. SAVEX (ØØFD-OOFE) (Applies to Baudot version only) SAVEX is used by the Baudot output character routine to save and restore the contents of the index register. BUFFER (ØØFF) (Applies to Baudot version only) BUFFER is the character buffer used by the Baudot input character routine. ## Interrupt Vectors The non-maskable interrupt vector points to location 0104. The maskable interrupt vector points to location 0100 in the ACIA version of the Monitor. See Section VIII for information concerning the maskable interrupt vector in the Baudot version.) ## VII BAUDOT TELETYPE OPTION INFORMATION The Baudot version of the PROM Monitor is a 512 byte, 2 PROM chip version of the Monitor, which contains the necessary software to support a Baudot Teletype (using bit banger I/O) and convert between Baudot (5 level code) and 7 bit ASCII. #### NOTE The Monitor supports Baudot Teletypes wired for half duplex only. ## Baudot Input Input from the Baudot Teletype is handled by using the maskable interrupt feature of the 6800 MPU. Therefore, the interrupt mask (bit 4 in the processor condition codes register) must be clear (=0) to enable input from the Baudot Teletype. The maskable interrupt vector points to location FEGO. When a maskable interrupt request is
acknowledged, the Monitor checks to see if the the interrupt request was originated by the Baudot Teletype. If so, the character code is clocked in. If the request was originated by a device other than the Baudot Teletype, control is transferred to location 0104. The Baudot input routine converts from Baudot to ASCII and then stores the ASCII character into a 1 byte buffer. Therefore, one character type ahead is possible. #### NOTE The Baudot output character routine masks out interrupts and therefore a character typed while output is occurring is likely to be either misread or lost entirely. #### Baudot < > ASCII Conversion Figure 8-1 shows the Baudot keyboard which the Monitor's Baudot < > ASCII conversion is based on. The Baudot character set contains 55 (decimal) useable codes. For most computer applications this is an insufficient number of character codes, and therefore the PROM Monitor supports an extended Baudot character set. Table 8-2 shows the characters supported by the Baudot version of the Monitor. The following is a list of conventions used for Baudot < > ASCII conversion. - Extended characters are formed by combining an & (the extend character) with another upper case character. For example, an "=" sign is represented by "&;". - On output, if an ASCII code cannot be matched with a Baudot code, the extend character is printed, followed by a blank. - 3) On input, control characters are formed by combining an & (the extend character) with the appropriate lower case character. For example, to send a control-A, the extend character must be typed, followed by a letters shift, followed by an A. - 4) On input, any upper case extended character which is not explicitly defined in Table 8-2 is matched to the ASCII control character of its associated lower case. For example, an extended ":" (&:) is matched to a control-C. - on input, the codes for null, line feed, and carriage return are unaffected by case. For example, a lower case line feed, an upper case line feed, and an extended line feed are all matched to an ASCII 12 (octal). - 6) The letters and figures shift codes are not matched to ASCII codes. They serve only to change the character case. Figure 8-1. Baudot Keyboard | BAUDOT
(OCTAL) | LOWER
CASE | UPPER
CASE | EXTENDED
CASE | |----------------------------|---|--|------------------| | Ø 1 2 3 4 5 6 7 | NULL
E
LINE FEED
A
BLANK
S
I
U | NULL 3 LINE FEED - BLANK CONTROL-G 8 7 | SEE *2 BELOW | | 10
11
12
13
14 | CAR RETURN
D
R
J
N | CAR RETURN
\$
4 | ESCAPE
@ | | 15
16
17
20
21 | F
C
K
T | í
:
(
5 | *
<
| | 22
23
24
25 | L
W
H
Y |)
2
SEE *1 BELOW
6 | *
> | | 26
27
30
31
32 | P
O
O
B
G | 0
1
9
?
&(EXT CHAR) | g.
+ | | 33
34
35
36
37 | FIG SHIFT M X V LTR SHIFT | FIG SHIFT / ; LTR SHIFT | * | ^{*1} ON INFUT A STOP IS MATCHED TO A NULL. THERE IS NO ASCII CODE WHICH WILL OUTPUT A STOP. TABLE 8-2 Baudot <>ASCII Conversion ^{*2} THIS CHARACTER IS PRINTED AS A BACK ARROW ON TELETYPE MODEL 33. PAGE 001 PROM MON IX PROM MONITOR SOURCE LISTING (ACIA VERSION) | 00001
00002 | | | ** | NAM | PROM | MONITOR | |---|--|---|--|--|---|---| | 00003
00004 | | | ** ALT | AIR 680B PR | | R | | 00005
00006
00007
00008
00009
00010
00011
00012
00013 | | 0100
0104
F002
0000
F000
F001 | MIVEC
NMIVEC
STRAPS
NOTERM
ACIACS
ACIADA | OPT
OPT
EQU
EQU
EQU
EQU
EQU | S
PAGE
\$100
\$104
\$F002
\$F000
\$F000 | PRINT SYMBOL TABLE
PAGINATED LISTING | | 00015 | | | | TOR STACK A | ND FLAGS | | | 00016
00018
000120
00000000000000000000000000 | 00F1
00F2
00F3
00F4
00F6
00F6
00FF
00FF
00FF | 0001
0001
0001
0001
0001
0001
0001
000 | STACK
BRKADR
ECHO
EXTFLG
BUFULL
SAVSTK
TEMP
BYTECT
XHI
XLOW
SHIFT
SAVEX
BUFFER
** | RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB | \$F1
11112111121 | BOTTOM OF MONITOR'S STACK BREAKPOINT ADDRESS FLAG TTY ECHO FLAG EXTENDED CHARACTER FLAG BUFFER FULL FLAG TEMP FOR STACK POINTER TEMPORARY STORAGE BYTE CGUNT XREG HIGH XREG LOW BAUDOT SHIFT FLAG TEMP FOR INDEX RG BAUDOT CHARACTER BUFFER | | 00034
00035 | FF00 | | ** | ORG | \$FF00 | | | 00035
00037
00038 | | | * INPU | ONE CHAR
CHAR IF BI | INTO A-REAT 7 OF EC | GISTER
HO FLAG IS CLEAR | | 00040
00041
00042
00043
00044
00045
00048 | FF00
FF02
FF04
FF06
FF08
FF0B
FF0D | 8D 22
24 FC
C6 7F
D1 F3
F4 FØØ1
24 74
39 | INCH | BSR
BCC
LDA B
CMP B
AND B
BCC
RTS | POLCAT
INCH
#\$7F
ECHO
ACIADA
OUTCH | ACIA STATUS TO A REG
RECEIVE NOT READY
MASK FOR PARITY REMOVAL
CHECK ECHO FLAG
GET CHARACTER
ECHO
NO ECHO | | 00049
00050
00051
00052 | | | * THE
* POIN | FOLLOWING N
TS TO POLCA
HE MONITOR | OP LINES
T IN THE | UP THE ENTRY
TWO VERSIONS | | 00054 | FFØE | Ø1 | | NOP | | | PAGE 002 PROM MON ``` ** 00059 * INPUT ONE HEX DIGIT INTO B REG * RETURN TO CALLING PROGRAM IF * CHARACTER RECEIVED IS A HEX * DIGIT. IF NOT HEX, GO TO CRLF 00060 00061 00062 00063 ** 00064 00065 FFØF 8D EF INHEX BSR INCH GET A CHARACTER 00066 FF11 C0 30 00067 FF13 2B 3C #'0 C1 SUB B BMI NOT HEX #$9 IN1HG 00068 FF15 00069 FF17 CMP B BLE 09 ØA NOT HEX #$11 C1 00070 FF19 11 CMP B 2B 34 00071 FF1B BMI NOT HEX 00072 FF1D 00073 FF1F 16 30 #$16 C1 CMP B NOT HEX IT'S A LETTER-GET BCD BGT 00074 FF21 C0 07 00075 FF23 39 SUB B RETURN IN1HG RTS 00077 00078 * POLE FOR CHARACTER * SETS CARRY IF CHARACTER IS IN BUFFER * CLOBBERS B REG 00079 00080 00081 *** 00082 FF24 F6 F000 POLCAT LDA B 00083 FF27 57 ASR B 00084 FF28 39 RTS ACIA STATUS TO B ACIACS ROTATE RORF BIT INTO CARRY RETURN 00088 00089 ** * LOAD PAPER TAPE * LOAD ONLY S1 TYPE RECORDS * TERMINATE ON S9 OR CHECKSUM ERROR 00090 00091 ** 00092 00093 FF29 8D D5 00094 FF2B C0 53 LOAD BSR INCH READ FRAME #'S SUB B LOAD 00095 FF2D 26 FA BNE FIRST CHAR NOT (S) 00096 FF2F 8D CF 00097 FF31 C1 39 00098 FF33 27 1C 00099 FF35 C6 F0 00100 FF35 26 F0 00101 FF39 4F BSR CMP B INCH #'9 READ FRAME Ε̈́1, BEO S9 END OF FILE 00099 00100 FF37 00101 FF39 4F 00102 FF3A 8D 17 00103 FF3C C0 02 00104 FF3E D7 F9 00105 FF40 8D 20 FF42 8D 0F CMP B SECOND CHAR NOT (1) ZERO THE CHECKSUM READ BYTE BNE CLR A LOAD BSR BYTE SUB B BYTE COUNT GET ADDRESS OF BLOCK GET DATA BYTE STA B BSR BYTECT BADDR LOAD11 BSR BYTE DECREMENT BYTE COUNT DONE WITH THIS BLOCK STORE DATA BUMP POINTER 7A 00F9 27 05 00107 FF44 DEC BYTECT 00108 FF47 00109 FF49 BEQ LOAD15 E7 STA B 00110 FF4B 08 00111 FF4C 20 00112 FF4E 4C 00113 FF4F 27 INX GO BACK FOR MORE INCREMENT CHECKSUM ALL OK - IT'S ZERO BRA INC A BEQ F4 LOAD11 LOAD15 D8 LLOAD LOAD 00114 FF51 20 58 CHECKSUM ERROR - QUIT BRA CRLF ``` PAGE 003 PROM MON | 00117
00118
00119 | | | | * INTO | BYTE (2 HEX
B REG | | | |--|--|----------------------------------|----------------------------|--------------------|--|------------------------------------|--| | 00120 | | | | * A IS | USED FOR PA | APER TAPE | CHECKSUM | | 00121
00122
00123
00124
00125
00126 | FF53
FF55
FF56
FF57
FF58 | 8D
58
58
58
58 | BA | BYTE | BSR
ASL B
ASL B
ASL B
ASL B | INHEX | GET FIRST HEX DIG
SHIFT TO HIGH ORDER 4 BITS | | 00127
00128
00129
00130 | FF59
FF5A
FF5C
FF5E
FF5F | 18
D7
8D
18
DB | F8
B1
F8 | | ABA
STA B
BSR
ABA
ADD B | TEMP
INHEX
TEMP | ADD TO CHEKSUM
STORE DIGIT
GET 2ND HEX DIG
ADD TO CHECKSUM
COMBINE DIGITS TO GET BYTE | | 00132 | FF61 | 39 | | | RTS | | RETURN | | 00132
00133
00134
00135
00136
00137 | | | | * STOR | 16 BIT ADDI
E SAME ADDRI
BERS B REG | | | | 00138
00139
00140
00141
00142 | FF62
FF64
FF66
FF68
FF6A
FF6C | 8D
D7
8D
D7
DE
39 | EF
FA
EB
FB
FA | BADDR | BSR
STA B
BSR
STA B
LDX
RTS | BYTE
XHI
BYTE
XLOW
XHI | GET HIGH ORDER ADDRESS
STORE IT
GET LOW ORDER ADDRESS
STORE IT
LOAD X WITH ADDRESS BUILT
RETURN | | 00147
00148
00149
00150 | | | | * PRIN.
* CLOBE | r byte in a
Bers b reg | REG | | | 90151
90152
90153
90154 | FF6D
FF6E
FF6F
FF70
FF71 | 16
54
54
54 | | OUT2H | TAB
LSR B
LSR B
LSR B
LSR B | | COPY BYTE TO B
SHIFT TO RIGHT | | 00155
00156
00157
00160
00161
00162 | FF72
FF74
FF75
FF77
FF79 | 54
8D
16
C4
CB
C1 | Ø1
ØF
3Ø
39 | OUTHR | BSR
TAB
AND B
ADD B
CMP B | OUTHR
#\$F
#\$30
#\$39 | OUTPUT FIRST DIGIT
BYTE INTO B AGAIN
GET RID OF LEFT DIG
GET ASCII | | 00163
00164
00165
00166 | FF7B
FF7D
FF7F
FF8Ø | C1
23
CB
Ø1 | Ø4
Ø7 | | ADD B
NOP
NOP |
#7 | IF IT'S A LETTER ADD 7
LINE UP OUTCH ENTRY POINTS | PAGE 004 PROM MON | 00167
00168 | FF81
FF82 | 8C
C6 | 20 | OUTCH
OUTS | FCB
LDA | В | \$8C
#\$20 | USE CPX SKIP TRICK
OUTS PRINTS A SPACE | |---|--|----------------------|--|---------------|--|--------|--|---| | 00171
00172
00173 | | | | | ניטס ו | PUTS C | HARACTER : | IN B | | 00174
00175
00176 | FF84
FF85 | 37
8D | 9D | OUTC1 | PSH
BSR
ASR | | POLCAT | SAVE CHAR
ACIA STATUS TO B REG | | ØØ177
ØØ178 | FF87
FF88
FF8A | 57
24
33 | FB | | BCC
PUL | В | OUTC1 | XMIT NOT READY
CHAR BACK TO B REG | | 00179
00180 | FF8B
FF8E | F7
39 | F001 | ** | STA | В | ACIADA | OUTPUT CHARACTER | | 00183
00184
00185
00186 | | | | * EXAM | | | OSIT NEXT | LO AS POINTER | | ØØ187 | FF8F | DE
Ø8 | FA | NCHANG | LDX | | XHI | INCREMENT POINTER | | 00188
00189
00190
00191
00192 | FF91
FF92
FF94
FF96
FF98 | DF
96
8D
96 | FA
FA
D5
FB | | STX
LDA
BSR
LDA | | XHI
XHI
OUT2H
XLOW | PRINT OUT ADDRESS | | 00193
00194 | FF9A
FF9C | 8D
8C | Dl | ** | BSR
FCB | | OUT2H
\$8C | USE CPX SKIP TRICK | | ØØ195
ØØ196 | | | | * EXAM | INE 8 | DEPOS | IT | | | 00197
00198
00199
00200 | FF9D
FF9F
FFA1 | 8D
8D
A6 | C3
E1
ØØ | CHANGE | BSR
BSR
LDA | Δ | BADDR
OUTS
X | BUILD ADDRESS
PRINT SPACE
BYTE INTO A | | 00201
00202 | FFA3
FFA5 | 8D
8D | C8
DB | | BSR
BSR | Λ | OUT2H
OUTS | PRINT BYTE
PRINT SPACE | | 00203
00204 | FFA7
FFA9 | 8D
E7 | AA
ØØ | | BSR
STA | В | BYTE
X | GET NEW BYTE
STORE NEW BYTE | | 00206
00207 | | | | ** COMM | ND I | ECODIN | SECTION | | | 00208
00209
00210
00211
00212
00213
00214
00215
00217
00218
00218 | FFAB
FFAD
FFAF
FFB1
FFB3
FFB7
FFB9
FFBC
FFBD
FFBF | 9E6D6D6DB17D1 | F6
ØD
DØ
ØA
CC
2E
C8
FFØØ
C3
4C | CRLF | LDS
LDA
BSR
LDA
BSR
LDA
BSR
TBA
BSR
CMP | В | SAVSTK
#SD
OUTCH
#\$A
OUTCH
#
OUTCH
INCH
OUTS
#'L | CARRIAGE RETURN LINE FEED PROMPT CHARACTER READ CHARACTER MAKE A COPY PRINT SPACE | | 00220 | FFC1 | 27 | 8C | | BEO | N.A. | <u>LLÖAD</u> | LOAD PAPER TAPE | PAGE 005 PROM MON | 00221
00223
00223
002224
002226
002227
00223
00223
00223
00223
00223 | FFC3
FFC5
FFC7
FFC9
FFC9
FFCD
FFCF
FFD1
FFD3
FFD5
FFD7 | 81
26
8DE
827
827
827
826
3B | 4A
04
99
00
4D
CEE
4EC
50
D4 | NOIJ ** * RESE | BEQ
CMP
BNE
RTI | A
A | 1IO | #'J
NOTJ
BADDR
X
#'M
CHANGE
#'N
NCHANG
#'P
CRLF | | GET ADDRESS TO JUMP TO JUMP TO IT EXAMINE & DEPOSIT E & D NEXT PROCEDE FROM BREAKPOINT | |--|--|---|--|---|---|---------|-----|--|----|--| | 00235
00236
00237
00238
00239 | FFD8
FFDB
FFDD | 8E
C6
37 | 00F3
03 | RESET | LDS
LDA
PSH | В | | #ECHO
#3 | | INITIALIZE STACK POINTER
INIT ECHO AND BRKADR FLAGS | | 00240
00241
00242
00243
00244
00245 | FFDE
FFDF
FFE2
FFE5
FFE7
FFE9
FFEB | 37
F7
F6
2B
C4
CA
F7 | F000
F002
19
04
D1
F000 | | PSH
STA
LDA
BMI
AND
ORA
STA | BBB BBB | | ACIACS
STRAPS
NOTERM
4
SD1
ACIACS | j | MASTER RESET ACIA
LOOK AT STRAPS
NO TERM - JUMP TO Ø
GET # OF STOP BITS
INIT ACIA PORT | | 00246
00247 | | | | ** SOFT | WARE | INTE | RRU | JPT ENTE | RY | POINT | | 00248
00249
00250
00251
00252
00253 | FFEE
FFFØ
FFF2
FFF4
FFF6 | 9F
9F
D6
2B
20 | F6
FA
F2
ØA
B3 | INTRPT | STS
STS
LDA
BMI
BRA | В | | SAVSTK
XHI
BRKADR
NOTERM
CRLF | | SAVE STACK POINTER SAVE SP FOR N COMMAND IF BIT 7 OF BRKADR IS SET JUMP TO Ø GOTO COMMAND DECODER | | 00256
00257
00258
00260 | | | | CONTRACTOR OF THE PARTY | COME | THE | IN | TERRUPT | VE | CTORS | | 00260
00263
00264
00265
00266
00268 | FFF8
FFF8
FFFA
FFFC
FFFE | Ø10
FFI
Ø10
FFI | EE
14 | | ORG
FDB
FDB
FDB
FDB
END | | | SFFF8
MIVEC
INTRPT
NMIVEC
RESET | | MI VECTOR
SWI VECTOR
NMI VECTOR
RESET VECTOR | PAGE 006 PROM MON MIVEC 0100 NMIVEC 0104 STRAPS F002 NOTERM 0000 ACIACS F000 TOTAL ERRORS 00000 # PAGE 001 PROM MON X PROM MONITOR SOURCE LISTING (BAUDOT VERSION) | 00001
00002 | | | | ** | NAM | PROM | MONITOR | |---|---|---------------------------------------|--|--|---|---|--| | 00003
00004
00005 | | | | ** Al
** Bl | TAIR 680B P
AUDOT VERSIO | ROM MONITO
N 1.0 | DR . | | 00006
00007
00008
00009
00010
00011
00012
00013 | 4471 | FE 01 00 F0 F0 F0 | 04
00
02
00
00 | MIVEO
NMIVI
CRAZI
STRAI
NOTEI
ACIAO
ACIAI | ec eğu
7 eğu
Ps eğu
RM eğu
Cs eğu
DA eğu | S PAGE
PAGE
\$100
\$100
\$100
\$100
\$500
\$500
\$500 | PRINT SYMBOL TABLE
PAGINATED LISTING | | 00015
00016
00018
00019
000022
000022
000022
000022
00002
00002
00002
00002
00002
00002
00002
00002
00002
00002
00002 | 900F45689ABCDFF
900F6F689ABCDFFF
900F6F689ABCDFFF | 000 | 71
71
71
71
71
71
71
71
71 | ECHO
EXTFI
BUFUI
SAVS:
TEMP
BYTEC
XHI
XLOW
SHIF:
SAVE:
BUFFI | OR RMB | SF1 | BOTTOM OF MONITOR'S STACK BREAKPOINT ADDRESS FLAG TTY ECHO FLAG EXTENDED CHARACTER FLAG BUFFER FULL FLAG TEMP FOR STACK POINTER TEMPORARY STORAGE BYTE COUNT XREG HIGH XREG LOW BAUDOT SHIFT FLAG TEMP FOR INDEX REG BAUDOT CHARACTER BUFFER | | 00031
00032 | FE00 | | | ** | ORG | \$FE00 | | | 00033
00034 | | | | **
* MAS | | RRUPT VECT | OR POINTS TO GET | | 00035
00036 | FE00 | 86 | 40 | GET | LDA A | #\$40 | THIS BIT ROTATES INTO CARRY TO SIGNAL STOP BIT ARRIVAL | | 00037
00038
00039
00040
00041
00042 | FEØ2
FEØ5
FEØ6
FEØ8
FEØ9 | F6
56
24
7E
01 | FØØ2
21 | ** | LDA B
ROR B
BCC
FCB
FCB | STRAPS
GETBIT
\$7E
001 | IF BIT 0 OF F002 IS LOW THEN INTERRUPT CAME FROM
BAUDOT SO CLOCK IN CHAR CODE IF BIT 0 IS HIGH JUMP TO 0100 (HEX) | | 00043
00044
00045 | | | | | S IS THE UP | PPER CASE | CONVERSION TABLE | | 00046
00047
00048
00049
00050
00051
00052 | FEØB
FEØC
FEØD
FEØF
FEØF
FEIØ | 00
33
0A
2D
20
7
37 | | UPCAS | FCB
FCC
FCB
FCC
FCB
FCB
FCC | 0
/3/
\$A
/ - /
\$20
/87/ | NULL LINE FEED BLANK CONTROL G (BELL) | | 00053 | FE12 | йó | | | FCB | \$D | CARRIAGE RETURN | PAGE 002 PROM MON | 00054 | FE13
FE14
FE15 | 24
34 | | | FCC | /\$4'/ | | |--|---|--|------------------------|--------|--|--------------------------------------|---| | 00055
00056 | FE15
FE16
FE17
FE18
FE19 | 34
27
2C
21
3A | | | FCC
FCC | /[:(5/ | | | 00057
00058
00059
00060
00061 | FE1A 35
FE1B 22
FE1C 29
FE1D 32
FE1E 000
FE1F 36
FE20 30
FE21 31 | | | | FCC
FCC
FCB
FCC | /"/
/)/
/2/
0
/6019?/ | SLOT FOR STOP | | 00062
00063
00064
00065 | FE22
FE23
FE24
FE25
FE26
FE27
FE28 | 39FØØEFB | | ** | FCB
FCB
FCC
FCC
FCC | Ø
Ø
/./! | SLOT FOR & SLOT FOR FIGURES SHIFT | | 00068 | 0068 * END OF UPPER CASE TABLE | | | | | | | | 00069
00070
00071
00072
00075
00076
00078
00078 | FE29
FE2B
FE2E
FE31
FE32
FE34
FE35
FE36
FE37 | 8D
566
58D
464
444
444
444 | 3D
FØØ2
37
F5 | GETBIT | BSR
LDA B
ROR B
BSR
ROR A
BCC
ASL A
LSR A
LSR A
LSR A | WAIT11
STRAPS
WAIT11
GETBIT | WAIT HALF A BIT TIME PUT DATA BIT INTO CARRY FINISH UP BIT TIME COLLECT CODE IN A IF MORE TO COME GO GET EM GET RID OF STOP BIT RIGHT JUSTIFY CODE | | 00080
00081 | | | | * WE H | AVE THE COD | E IN A NO | W | | 00082
00083
00084
00085
00086
00088 | FE38
FE3A
FE3C
FE3E | 81
26
D7
3B
5F | 1B
Ø3
FC | CLRSF | CMP A
BNE
STA B
RTI | #\$1B
NTUP
SHIFT | IF IT'S AN UPSHIFT
SET THE SHIFT FLAG
AND RETURN FROM INTERRUPT | | 00088
00089
000990
000993
000994
000995
000996 | FE3F
FE40
FE42
FE44
FE46 | 5F
81
27
D1
2B | 1F
F8
F4
31 | NTUP | CLR B
CMP A
BEQ
CMP B
BMI | #\$1F
CLRSF
EXTFLG
EXTCAR | IF IT'S A DOWNSHIFT
CLEAR THE SHIFT FLAG
IF EXTENDED CHARACTER
IS SET GO TO EXT
CHARACTER SEARCH | | 99995 | FE48 | CE | FEE2 | * ccm | LDX | #LOWCAS-
LOWER CAS | 2 | | 00097
00098 | r L 4 B | D1
2B | FC
20 | * SET | POINTER TO
CMP B
BMI | SHIFT
UPCAR | IF SHIFT FLAG IS SET
THEN INDEX INTO UPPER CASE TABLE | PAGE 003 PROM MON | 00099 | | | | ADDAX | ĪŅX | | | ADD A REG TO X REG | |--|--|----------------------------------|-------------------------------|---------------|---|------------------|--|--| | 00100
00101
00102
00103
00104
00105 | FE51
FE53
FE54
FE56
FE58
FE5A | 4A
53
D7
E4
D7
3B | FC
F5
Ø1
FF | DONE ** | DEC
BPL
COM
STA
AND
STA
RTI | B
B
B
B | ADDAX BUFULL 1,X BUFFER | FORM MASK SET BUFFER FULL FLAG MASK OFF LOW 6 OR ALL 8 STORE CHAR INTO BUFFER RETURN FROM THE INTERRUPT CTER CODE ROTATE IN START BIT OR IN STOP BIT SEND A BIT | | 00108 | | | | * PUT (| CLOCI | ks out | THE CHARAC | CTER CODE | | 00110
00111
00112
00113 | FE5B
FE5C
FE5E
FE61 | 48
8A
87
8D | 40
F002
05 | PUT
NXTBIT | ASL
ORA
STA
BSR | A
A
A | #\$40
\$F002
WAIT11 | ROTATE IN START BIT
OR IN STOP BIT
SEND A BIT | | 00114
00115
00116
00118 | FE63
FE65
FE66
FE68 | 8D
44
26
CE | 03
F6
02AF | WAIT11 | BSR
LSR
BNE
LDX | A | WAITII
NXTBIT
#687 | WAIT AROUND FOR 22 MIL SECS
SHIFT TO NEXT BIT
IF MORE TO SEND THEN DO SO
11 MIL SEC DELAY | | 00119
00120 | FE6B
FE6C | Ø9
26 | FD | WAIT | DEX | | WAIT | | | 00123
00124
00125
00126
00127
00129 | FE6F
FE72
FE74
FE76 | CE 81 26 97 | FEØ8
1A
D9
F4 | UPCAR | LDX
CMP
BNE
STA | A
A | #UPCAS-2
#\$1A
ADDAX
EXTFLG | ROTATE IN START BIT OR IN STOP BIT SEND A BIT WAIT AROUND FOR 22 MIL SECS SHIFT TO NEXT BIT IF MORE TO SEND THEN DO SO 11 MIL SEC DELAY POINT TO UPPER CASE TABLE IF IT'S THE EXTEND CHAR THEN SET THE EXTENDED CHAR FLAG AND RETURN FROM INTERRUPT | | (A/A 1 OC | FF79 | CF | FFFU | FYTTAR | LUX | | #EXTEND-2 | 2 POINT TO EXTENDED CHAR TABLE CLEAR THE EXTENDED CHAR TABLE | | 0011233456789011333456789001133344123445 | FE82
FE84
FE86
FE88
FE8B
FE8D
FE8F | 27
6DA
CC2966 | CF
ØF6
FEE2
CØ
FC | СНКИР | BEOT BPL LIDA BRA LIDA BLOA | B
A
A
A | DONE X CHKNXT #LOWCAS— #\$C0 ADDAX SHIFT OKUP #\$1B SHIFT PUT | IF MATCH FOUND THEN WE ARE DONE IF MINUS ENCOUNTERED THEN CODE NOT IN TABLE SO MAKE INTO CONTROL CHAR BY TAKING LOWER CASE ASCII AND SETTING MASK TO GET RIG OF HI ORDER 2 BITS BEFORE CHECKING UPPPER CASE TABLE CHECK THE SHIFT FLAG SEND OUT FIGURES SHIFT AND SET SHIFT FLAG AS NECESSARY SET POINTER TO UPPER CASE TABLE | | 99143
991443
991445
991446
991449
991551
99152 | | | 01 | OKUP | BSR
BPL
LDA
BSR
LDX
CMP
BEQ | A
B | #UPCAS
SEARCH
RESTR
#\$1A
PUT
#EXTEND-2
1,X
RESTR | CALL SEARCH ROUTINE IF POSITIVE, SEARCH WAS SUCCESSFUL SEARCH FAILED SO OUTPUT EXTEND CHARACTER 2 | PAGE 004 PROM MON | 00153
00155
00155
00156
00157
00158
00159
00160 | FEAB
FEAC
FEAD
FEB1
FEB3
FEB5 | Ø8
A6 | 00
F6
20
04
1A | ** | INX
INX
LDA A
BPL
LDA B
BSR
BRA | X
NXT
#\$20
BOUT2
REST2 | BUMP POINTER TWICE
LOAD THE BAUDOT CODE INTO B
IF MINUS - END OF TABLE
NO MATCH FOUND - OUTPUT BLANK | |--|--|----------------------|------------------------------|------------------|---|--|--| | 00161 | | | | * BOUTY | CH IS THE O | UTPUT CHA | RACTER ROUTINE | | 00162
00163
00164
00165
00166 | FEB7
FEB9
FEBA
FEBB | ØF
36 | FD | BOUTCH
BOUT2 | SEI
PSH A | SAVEX | SAVE X,A,&B
DISENABLE INTERRUPTS | | 00167
00168
00169
00170 | FEBC
FEBF
FEC1
FEC3
FEC5 | 8D
2B
D6 | FEE4
16
CC
FC
Ø8 | | PSH B
LDX
BSR
BMI
LDA B
BEO | #LOWCAS
SEARCH
CHKUP
SHIFT
RESTR | SET POINTER TO LOWER CASE
TABLE AND CALL SEARCH ROUTINE
IF MINUS, THEN SEARCH FAILED
CHECK THE SHIFT FLAG | | 00172
0 01 73 | FEC7
FEC8 | 27
36
86 | 1F | | PSH A
LDA A | #\$1F | IF FLAG IS SET THEN SEND OUT
LETTERS SHIFT AND CLEAR FLAG | | 00174
00175
00176 | FECA
FECC
FECE | 8D
97 | 8F
FC | | BSR
STA A
PUL A |
PUT
SHIFT | A IS CLEAR ON RETURN FROM PUT | | 00176
00177
00178 | FECF
FED1 | 32
8D
33
32 | 8A | RESTR
REST2 | BSR
PUL B | PUT | RESTORE B | | 00179
00180
00181 | FED3
FED5 | 32
DE
ØE | FD | | PUL A
LDX
CLI | SAVEX | RESTORE A REG
RESTORE X REG
ENABLE INTERRUPTS | | 00182
00183
00184 | FED6 | 39 | | RET | RTS | | RETURN | | 00184
00185
00186
00187 | | | | * RETU | RNS WITH CO | DE IN A I | VERSION TABLES
F FOUND
F NOT FOUND | | 00188 | FED7
FED8 | 4F
6D | 00 | SEARCH
NXTCHK | CLR A | X | | | 00189
00190
00191 | FEDA
FEDC | 2B | FA
ØØ | MATCHA | BMI
CMP B | RET | IF MINUS - END OF TABLE | | 00192
00193 | FEDE
FEEØ | E1
27
Ø8 | F6 | | BEO
INX | X
RET | MATCH - RETURN
INCREMENT POINTER | | 00194
00195 | FEE1
FEE2 | 4C
20 | F4 | | INC A
BRA | NXTCHK | INCREMENT OUTPUT CODE
CONTINUE SEARCH | | 00196
00197 | | 20 | ~ 1 | ** * IOWE | R CASE CONV | | | | 00198 | mmm A | aa | | ** | | IL. | NAMES OF THE PARTY | | 00199
00200
00201 | FEE5 | 00
45 | | LOWCAS | FCC
FCB | Ø
/E/
ŞA | NULL | | 00201
00203 | FEE6
FEE7 | ØA
41 | | | FCC | /A/ | LINE FEED | | 00204 | FEE8
FEE9
FEEA
FEEB | 2Ø
53
49
55 | | | FCB
FCC | \$20
/SIU/ | BLANK | PAGE 005 PROM MON | 00205
00206 | FEEEEVIL23456789AFEEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 0442AE63B4AC78901F27 | | | FCB
FCC | | \$D | RJNFCK | CARRIAGE RETURN
PZLWHYPQOBG/ | |---|--|--|------------------------|--------------|-----------------------------------|-------|-------------------|-----------------------------|--| | 00207
00208 | FEFF | 00 | | ** | FCB | | Ø | | SLOT FOR FIGURES SHIFT | | 00209 | | | | * INCH | ENTRY | POIN | r M | JST BE | AT START OF SECOND PROM | | 00210
00211 | FF00
FF01 | 4D | | INCH | FCC | | /M | KV/ | | | 00213
00214
00215
00216
00217
00218 | FFØ2
FFØ3
FFØ5
FFØ7
FFØA
FFØC | 58
56
8D
24
7F
D6
39 | 1F
FC
ØØF5
FF | HANG | BSR
BCC
CLR
LDA B
RTS | | HAI | LCAT
VG
FULL
FFER | IF BUFFER IS EMPTY HANG AROUND FOR INTERRUPT CLEAR THE BUFFER FULL FLAG PUT CHAR INTO B RETURN | | 99219
99229
99221
99222
99223
99224 | | | | * RETU | RN TO (| CALLI | VED | I INTO
PROGRAM
IS A I | M IF
HEX | | ØØ224
ØØ225 | FFØD
FFØF | 8D
CØ | F1 | INHEX | BSR
SUB B | | IN | ÇH | GET A CHARACTER | | 00226 | FF11 | 2B | 3Ø
3D | | BMI | | #1
C1
#\$ | 2 | NOT HEX | | 00227
00228 | FF13
FF15 | C1
2F | 09
0A | | CMP B
BLE | | LN | LHG. | NOT HEX | | 00229
00230 | FF17
FF19
FF1B | C1
2B | 35 | | CMP B
BMI | | #\$
C1 | | NOT HEX | | 00230
00231
00232
00233
00234
00235
00235 | FF1B
FF1D
FF1F
FF21 | C1
2E
CØ
39 | 2E 31
CØ Ø7 | ĮŅ1HG | CMP B
BGT
SUB B
RTS | | #\$16
C1
#7 | | NOT HEX
IT'S A LETTER-GET BCD
RETURN | | 00236
00237 | | | | | HELPS | LINE | UP | ENTRY | POINTS | | 00238
00239 | FF22 | 20 | 93 | BBOUTC
** | BRA | | BO | JTCH | | PAGE 006 PROM MON ``` * POLE FOR CHARACTER * SET CARRY IF CHAR IN BUFFER IS CURRENT 00240 00241 00242 00243 00243 01244 FF24 D6 F5 00245 FF26 57 * CLEAR CARRY IF NOT CURRENT POLCAT LDA B BUFULL ASR B 00246 FF27 00247 00248 * LOAD PAPER TAPE * LOAD ONLY S1 TYPE RECORDS * TERMINATE ON S9 OR CHECKSUM ERROR 00248 00249 00250 00250 00251 FF28 8D D6 00253 FF2A CØ 53 00254 FF2C 26 FA 00255 FF2E 8D DØ 00256 FF3Ø C1 39 00256 FF3Ø C1 31 00258 FF34 C1 FØ 00258 FF34 C1 FØ 00260 FF38 4F 00260 FF38 AF 00261 FF39 CØ 02 00262 FF3B D7 F9 00263 FF3F 8D D7 00264 FF3F 8D ØF ** LOAD READ FRAME BSR INCH #'S LOAD SUB B BNE FIRST CHAR NOT (S) INCH #'9 C1 #'1 BSR CMP B READ FRAME BEQ S9 END OF FILE CMP B LOAD SECOND CHAR NOT (1) ZERO THE CHECKSUM READ BYTE BNE CLR A BYTE #2 BSR SUB B BYTE COUNT GET ADDRESS OF BLOCK GET DATA BYTE STA B BYTECT 00263 FF3F 8D 7 F9 00264 FF3F 8D 00F 00265 FF41 8D 00F 00266 FF46 27 05 00267 FF48 20 F4 00270 FF48 20 F4 00271 FF4D 4C 00272 FF4E 27 00273 FF5 00274 FF5 00277 FF5 00277 FF5 00277 FF5 00278 FF5 00281 FF55 00281 FF55 00282 FF55 00283 FF55 00288 FF56 00289 00289 BSR BADDR BYTE LOAD11 BSR DECREMENT BYTE COUNT DONE WITH THIS BLOCK STORE DATA BYTECT DEC BEO STA B LOAD15 BUMP POINTER GO BACK FOR MORE INCREMENT CHECKSUM ALL OK - IT'S ZERO INX BRA LOAD11 LOAD15 INC A LLOAD BEO Cl BRA LLOAD C1 LOAD CRLF CHECKSUM ERROR - OUIT * READ BYTE (2 HEX DIGITS) * INTO B REG * A IS USED FOR PAPER TAPE CHECKSUM ** BYTE BSR INHEX GET FIRST HEX DIG ASL B ASL B SHIFT TO HIGH ORDER 4 BITS ASL B ASL B ADD TO CHEKSUM STORE DIGIT GET 2ND HEX DIG ADD TO CHECKSUM COMBINE DIGITS TO GET BYTE ABA TEMP STA B BSR INHEX ABA ADD B TEMP RTS RETURN 00290 00291 00292 00293 ** * READ 16 BIT ADDRESS INTO X * STORE SAME ADDRESS IN XHI & XLO * CLOBBERS B REG ``` PAGE 007 PROM MON | 994
995
992
996
992
999
999
999
999
999
999
999 | FF61
FF63
FF65
FF67
FF69
FF6B | 8D
D7
8D
D7
DE
39 | EF
FA
EB
FB
FA | ** BADDR ** * PRIN' * CLOB! | BSR
STA B
BSR
STA B
LDX
RTS
I BYTE IN A
BERS B REG | BYTE
XHI
BYTE
XLOW
XHI
REG | GET HIGH ORDER ADDRESS
STORE IT
GET LOW ORDER ADDRESS
STORE IT
LOAD X WITH ADDRESS BUILT
RETURN | |--|--|--|----------------------------------|------------------------------|---|--|--| | 00305
00306
00307
00308
00309
00310 | FF6C
FF6D
FF6E
FF6F
FF70
FF71 | 16
54
54
54
54
54
54
54 | Ø1 | OUT2H | TAB
LSR B
LSR B
LSR B
LSR B
BSR | OUTHR | COPY BYTE TO B SHIFT TO RIGHT OUTPUT FIRST DIGIT | | 00311
00312
00313
00314
00315 | FF73
FF74
FF76
FF78
FF7A | 16
C4
CB
C1
23 | ØF
30
39
05 | OUTHR | TAB
AND B
ADD B
CMP B
BLS | #\$F
#\$3Ø
#\$39
OUTCH | BYTE INTO B AGAIN
GET RID OF LEFT DIG
GET ASCII | | 00316
00317 | FF7C
FF7E
FF7F | CB
8C
C6 | 07
20 | outs | ADD B
FCB
LDA B | #7
\$8C
#\$2Ø | OUTS PRINTS A SPACE | | 00319
00320 | | | | * OUTC | OUTPUTS C | HAR IN B | | | 00321
00322
00323
00324 | FF81 | 20 | 9F | QUTCH | BRA | BBOUTC | | | 00324
00325
00326
00327 | | | | * EXAM | INE AND DEPO
CONTENTS OF | | LO AS POINTER | | 00327 | FF83 | DE
Ø8 | FA | NCHANG | LDX
INX | XHI | INCREMENT POINTER | | 00328
00329
003331
0003331
00033333
00033333
0003333
000333
000333
00033
00033 | FF85
FF86
FF88
FF8A
FF8C
FF8E
FF90 | DF
96
80
96
80
80 | FA
FA
EØ
FB
DC | ** | STX
LDA A
BSR
LDA A
BSR
FCB | XHI
XHI
OUT2H
XLOW
OUT2H
\$8C | PRINT OUT ADDRESS | | 00336
00337 | | | | * EXAM | INE & DEPOS | ıŢ | | | 00339
00340
00341
00342
00343
00344 | FF91
FF93
FF95
FF97
FF99
FF9D | 8D
8D
8D
8D
8D
E7 | CE
ØØ
D3
E4
B5
ØØ | CHANGE | BSR
BSR
LDA A
BSR
BSR
BSR
STA B | BADDR
OUTS
X
OUT2H
OUTS
BYTE
X | BUILD ADDRESS PRINT SPACE BYTE INTO A PRINT BYTE PRINT SPACE GET NEW BYTE STORE NEW BYTE | | 00346 | | | | * COMM | AND DECODING | G SECTION | | PAGE 008 PROM MON | 890123456789012345678901123455555555555555555555555555555555555 | FFAA357
FFFAA9ABD13357
FFFAA9BBB557
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 9C8C8D6DD7D17116DE171716BEFF6666 | F6
ØDCA
ØDCA
ØDCA
ØDCA
ØDCA
ØDCA
ØDCA
ØDCA | RESET | LILBURGERARRARRARRARRARRARRARRARRARRARRARRARRAR | B A A A A A A A A A A A A A A A A A A A | SAVSTK #\$D OUTCH #\$A OUTCH INCH OUTCH INCH OUTS #'L LLOAD #'J NOTJ BADDR X #'M CHANGE #'N NCHANG #'P CRLF #BUFULL | CARRIAGE RETURN LINE FEED PROMPT CHARACTER READ CHARACTER MAKE A COPY PRINT SPACE LOAD PAPER TAPE GET ADDRESS TO JUMP TO JUMP TO IT EXAMINE & DEPOSIT E & D NEXT PROCEDE FROM BREAKPOINT INIT STACK POINTER INIT BUFFER FULL FLAG INIT EXT CHAR FLAG INIT ECHO FLAG INIT BRKADR FLAG | |--|--|----------------------------------|--|--------------|---|---|---|---| | 00377
00378
00379
00380 | | | | **
* SOFT | WARE | INTERR | UPT ENTRY | POINT | | 99389
99389
993883
993884
993886
993886
99388
99388 | FFD4
FFD6
FFD8
FFD9
FFDC
FFDE
FFDE | 9F
9F
9B
9B
9A
20 | F6
FA
F002
F2
20
BD | INTRPT | | А | SAVSTK
XHI
STRAPS
BRKADR
NOTERM
CRLF | SAVE STACK POINTER SAVE SP FOR N COMMAND ENABLE INTERRUPTS IF NO TERMINAL BIT IS SET OR BIT 7 OF BRKADR IS SET JUMP TO 0
TO COMMAND DECODER | | 00388 | | | | * EXTE | NDED | CHARAC | TER TABLE | | | 8991234567898
388999349567898
80000000000000000000000000000000000 | FFE2
FFE3
FFE5
FFE6
FFE7
FFE8
FFE9
FFEA
FFEB
FFEC | 03FED9BDEABF | | EXTEND | FCB
FCC
FCB
FCB
FCB
FCCB
FCCB | | 3
\$1E
\$9
\$1B
\$1A
\$1A
\$F | ESCAPE CHARACTER | PAGE 009 PROM MON | 00401 FFED
00402 FFEE
00403 FFEF
00404 FFF0
00405 FFF1
00406 FFF2
00407 FFF3
00408 FFF4
00409 FFF5
00410 FFF6 | 3C
12
3E
1C
2A
11
23
19
25
ØC
40 | ** | FCC
FCB
FCC
FCB
FCC
FCB
FCC
FCB
FCC | | / <br \$12
/>12
/>1*/
\$11
/\$18
/\$C
/@/ | | |--|--|--|---|-----|---|---| | 00412
00413 | | The state of s | COME | THE | INTERRUPT | VECTORS | | 00414
00415 FFF8
00416 FFF8
00417 FFFA
00418 FFFC
00419 FFFE | FE00
FFD4
0104
FFCC | •• | ORG
FDB
FDB
FDB
END | | SFFF8
MIVEC
INTRPT
NMIVEC
RESET | MI VECTOR
SWI VECTOR
NMI VECTOR
RESET VECTOR | MIVEC FE00 NMIVEC 0104 CRAZY 0100 STRAPS F002 NOTERM 0000 ACIACS F000 ACIACS F000 ACIACA 000F1 BRKADA 000F2 ECHO 000F3 EXTFLG 00F4 BUFULL 000F5 SAVSTK 000F6 BUFTECT 000F9 XHI 000F9 XHI 000FB BYTECT 000F9 XHI 000FB BYTECT 000F9 CHANT FE00 CHRSF FE00 GETBIT FE00 GETBIT FE00 GETBIT FE3C NTUP ADDAX FE53 PUT FE3F ADONE FE53 PUT FE5B NXTBIT FE6B NXTBIT FE6B NXTBIT FE6B NXTBIT FE6B CHKNXT FE7E PROM Monitor Page 40 PAGE 010 PROM MON CHKUP FE8F OKUP FE99 NXT FEA7 BOUTCH FEB7 BOUT2 FEB9 RESTR FECF REST2 FED1 RET FED6 SEARCH FED7 NXTCHK FED8 LOWCAS FEE4 LINCH FF00 IN1HG FF00 IN1HG FF21 BBOUTC FF22 POLCAT FF24 LOAD FF28 LOAD FF28 LOAD15 FF4D LLOAD FF4E C1 FF50 BYTE FF52 BADDR FF61 OUT2H FF6C OUTHR FF74 OUTS FF77 OUTCH FF81 NCHANG FF83 CCHANG FF83 CCHANG FF83 CCHANG FF81 CCRLF FF9F NOTJ FFBF RESET FFCC INTRPT FFD4 EXTEND FFE2 TOTAL ERRORS 00000 • ## **USER'S DOCUMENTATION REPORT** In order to improve the quality and usefulness of our publications, user feedback is necessary. Your comments will help us effectively evaluate our documentation. Please limit your remarks to the document, giving specific page and line references when appropriate. Specific hardware or software questions should be directed to the MITS Customer Service or Software Departments, respectively. | NAME OF PUBLICATION | I: | | | |---|------------|------|--| | SUGGESTIONS FOR IMP | PROVEMENT: | | | | * | | | | | | | | | | | - | | | | | | | | | | | | | | ERRORS: | | | | | *************************************** | Name | | Date | | | Name | | Date | | | Organization | | | | | Street | | | | | City | State | 7in | | | | — — First Fold Here — — — — | | |---|--|---| | BUSINESS REPLY First Class Permit No. 2114, Albuquerque | | No Postage Stamp Necessary If Mailed in the United States | | Postage Will be Paid by: | MITS, Inc.
2450 Alamo S.E.
Albuquerque, New Mexico 87106 | |