
Read Timing for the Altair 8 inch Floppy

For those who have looked at Altair disk code, it is well known that the sector loop transfers two

bytes per iteration instead of just one. This technique allows the 2mhz 8080 to keep up with the

32us per byte transfer rate of the disk drive. However, the first solution that comes to mind – a

single byte transfer per loop iteration – also works. For example, given a pointer to a sector buff-

er in HL and a byte count in B, the loop could be written as shown below:

 Single Byte Transfer per Iteration

wtData in DSTATUS ;(10) get drive status byte
 ora a ;(4) wait for NRDA flag true (zero)
 jm wtData ;(10)

 in DDATA ;(10) read the byte
 mov m,h ;(7) move the byte to memory
 inx h ;(5) increment memory pointer
 dcr b ;(5) decrement byte count
 jnz wtData ;(10) get next byte

This loop is 61 cycles. It must be less than 64 cycles (32us) for the 2mhz Altair 8080 to keep up

with the disk transfer rate. With three cycles to spare, this loop can handle about a 4% speed var-

iation between two drives.

I have verified this loop works in a modified CP/M and disk transfer utility. I've had reliable disk

interchange between three different drives – a direct-drive FD400, a DC motor belt-drive FD410,

and an AC motor belt-drive FD510.

So why was the more complex two byte per loop transfer used? Most likely because the FD400

specs allow for ±1.5% long term speed variance and ±1.5% instantaneous speed variance (ISV).

For a short burst, an in-spec drive could be as much as 3% fast or 3% slow. This represents a po-

tential 6% speed difference between two drives. In this case, the 61 cycle loop above could fail

to keep up. So it seems that Bill and/or Paul decided to err on the side of caution and created the

two byte read loop.

The typical two byte per iteration loop found in Altair code (given a pointer to the sector buffer

in HL and a byte count in B) is shown on the following page. This loop is 107 cycles. It must be

less than 128 cycles for the 2mhz Altair 8080 to keep up with the disk transfer rate. While the

107/128 cycles appears to give plenty of headroom for speed variance, the limiting factor in this

loop is actually the time at which the second byte is read. The second byte is available from the

controller during cycles 64 to 128 after NRDA is asserted for the first byte. This code performs

the read at 70 to 94 cycles after first byte NRDA is asserted. This provides worst case headroom

of six cycles which, in turn, can accommodate a speed variance between drives of about 9%.

 Two Byte Transfer per Iteration

wtData in DSTATUS ;(10) get drive status byte
 ora a ;(4) wait for NRDA flag true (zero)
 jm wtData ;(10)

 in DDATA ;(10) read the byte
 mov m,h ;(7) move the byte to memory
 inx h ;(5) increment memory pointer
 dcr b ;(5) decrement byte count
 jz rdDone ;(10) read is done when B=0

 dcr b ;(5) decrement count for 2nd byte
 nop ;(4) delay for 2nd byte

 in DDATA ;(10) at 70-94 cycles after 1st NRDA
 mov m,h ;(7) move the byte to memory
 inx h ;(5) increment memory pointer
 dcr b ;(5) decrement byte count
 jnz wtData ;(10) get next byte

rdDone ...

A loop very similar to the one shown above appears in all versions of Altair Disk BASIC and

Altair DOS. Even third-party products like Lifeboat and Burcon CP/M use the same loop. Ap-

parently, however, this loop was not properly implemented in the Altair Disk Boot Loader

PROM (DBL).

The DBL PROM does not include the NOP instruction prior to reading the second byte in the

loop. The DBL reads the second byte at just 66-90 cycles after NRDA is asserted for the first

byte. This provides worst case headroom of just two cycles. A speed variance between two

drives of just over 3% could cause boot failure, even though once booted, a 9% difference could

be tolerated. There is spare room in the DBL PROM to insert the NOP instruction, or a different

bootloader PROM (like CDBL from Martin Eberhard) could be used to provide 9% or better

speed tolerance.

Write Timing for the Altair 8 inch Floppy

Similar to the read sector loop, the write sector loop in original Altair software also transfers two

bytes per iteration instead of just one. Again, however, the first solution that comes to mind – a

single byte transfer per loop iteration – also works. For example, given a pointer to a sector buff-

er in HL and a byte count in B, the loop could be written as shown below:

 Single Byte Transfer per Iteration

wtData in DSTATUS ;(10) get drive status byte
 rrc ;(4) wait for ENWD flag true (zero)
 jc wtData ;(10)

 mov a,m ;(7) A=next byte to write
 out DDATA ;(10) write the byte
 inx h ;(5) increment memory pointer
 dcr b ;(5) decrement byte count
 jnz wtData ;(10) get next byte

This loop is 61 cycles. It must be less than 64 cycles (32us) for the 2mhz Altair 8080 to keep up

with the disk transfer rate. However, unlike a read loop which has to accommodate disks written

at different rotation rates, write timing is derived from the CPU clock. This means there is no

speed variance to worry about – the three cycles of headroom in this loop are plenty. This avoids

the messy double-byte transfer used in the typical Altair write loop shown here:

 Two Byte Transfer per Iteration

 mvi d,ENWDMSK ;write data flag mask
 mov e,m ;E=first byte to write
 inx h

wtData in drvStat ;read drive status register
 ana d ;write flag (ENWD) asserted (zero)?
 jnz wtData ;no, keep waiting

 add e ;put byte to write into accumulator
 out drvData ;write the byte

 mov a,m ;A=next byte to write
 inx h
 mov e,m ;E=byte to write next loop
 inx h ;increment source buffer pointer
 dcr c ;count byte just written
 jz wrDone ;jump if sector done

 dcr c ;count byte about to write
 out drvData ;write 2nd byte
 jnz wtData ;loop if count <> 0

wrDone ...

