System Timing Modification for the
MITS®/Altair™ 88-DCDD Floppy Disk

By Tom Durston

To increase diskette interchangeability
from drive to drive and to minimize
disk | /O errors, two time constants on
the 88-DCDD Controller Board #1 have
been re-evaluated. The effect of this
timing change is to center the data
within the sector. This allows a greater
tolerance of disk drive misalignment.

A diskette written with the new write
delay should be marked "NWD" for
identification purposes. All BASIC
and DOS diskettes shipped from
MITS® after August 31, 1977 are
written with this new write delay and
are marked “NWD". These diskettes
are compatible with unmodified
systems.

To utilize the new write delay, the
Read Clear Timing must be changed
as indicated later in this article. If a
system does not require diskette
interchange capabilities and if there
has been no difficulty with disk /O
errors, the complete modification is
not necessary. However, it is advised
that the write delay be changed as
described in step llA. The modifica-
tion is strongly recommended for
multiple drive systems or single drive
systems where diskette interchange is
requirad.

A modification kit [MITS Part
#103678) is available at no charge to
owners of MITS/Altair™™ g88-DCDD
Floppy Disk Systems. If an owner
does not have the facilities for per-
forming the modification, Controller
Board #1 can be returned for complete
modification at no charge. However,
RS, the Read Clear one shot timing
resistor, will not be replaced, but the
correct resistor for RS will be returned
with the board and should be installed
upon completion of re-writing or
copying the diskettes, as indicated in
step IIC of the modification procedure.

An important feature of the modifi-
cation includes changing the timing IC
to 74LS221. This was done because
the 74LS221 is more stable and
predictable than the 74123. It also
eliminates the need for trimming or
adjusting the timing resistors.

4

|. PARTS REQUIRED (Included in the
FDSK Modification Kit)

2 each 74LS5221 IC

1 each 6.65K 1% resistor

1 each 12.1K 1% resistor

1 each 4,.32K 1% resistor

1 each B.45K 1% resistor
Il. MODIFICATION PROCEDURE

{Controller Board #1 Only)

A. Change the Write Clear one shot
timing from 280us to 389us.

1. Remove R11 and R12.

2. Install a 4.32K, 1% resistor in
the R11 position, and a 121K, 1%
resistor in the R12 position.

3. Remove IC F4, and install a
T4LS221 in its place.

4, If available, use an oscillo-
scope to measure the positive pulse
width at TP8 (IC F4, pin 5). This step is
not mandatory, due to the timing
predictability of 74L5221. The pulse
width should be in the range of 355us
to 425us (389us NOM £ 10%) when the
drive Is enabled and a diskette is
installed.

B. Copy all diskettes using the pro-
cedure listed in Article C that follows.
If the Read Timing is not being
changed, it is not necessary to copy
the diskettes.

C. Change the Read Clear one shot

timing from 140us to 214ps.

1. Remove RS and RE.

2. Install a 6.65K, 1% resistor in
the R5 position and an 8.45K, 1%
resistor in the RE position.

3. Remove IC F1, and install a
T4LS5221 in its place.

4, If available, use am oscillo-
scope to measure the positive pulse
width at TP5 (IC F1, pin 13). This step

MITS Part #101466
MITS Part #102225 (R5)
MITS Part #102226
MITS Part #102227 (R11)
MITS Part #102228 (RB)

(F1, F4)
(R12)

is not mandatory, due to the timing
predictability of the 74LS221. The
pulse width should be in the range of
195ps to 230ps (214ps NOM +10%)
when the drive is enabled and a
diskette is installed.

D.Change schematic notation to
coincide with the modification.

For step 3in parts Aand C, if ICs F1
and F4 are not socketed, remove the
soldered ICs by cutting all the pins.
Carefully remove each pin one by ona.
Clean the holes by using solder wick
or a solder removing tool. Do not
rermove the plated portion of the hole.
When soldering the new ICs in place,
solder each pin on both sides of the
PC board to ensure proper feed-
through connection.

A. Copy/Rewrite
Procedure

By Gale Schonfeld

The following procedures are recom-
mended for copying disk software
with the new disk Read/Write modifi-
cation using a multiple drive system.

Computer Notes Jan/Feb 1978

CAUTION: All disk software copying
should be done AFTER the Write
modification has been made but
BEFORE the Read modification is
madea.

METHOD | —Using Disk BASIC “PIP”
Utility Program.

If the user has Disk BASIC, versions
3.3, 3.4, 4.0, or 4.1, use the PIP utility
program provided on the system
diskette to copy onto a new diskette,
A PIP program listing, and instruc-
tions on its use, are included at the
end of this article.

STEP1: Load Disk BASIC. Initialize
the system for at least two disk
drives (i.e., HIGHEST DISK NUM-
BER should be answered with 1 or
higher).
STEP 2: MOUNT the diskette with
BASIC and PIP on it. Do not
attempt to MOUNT a diskette that
is new and has never had BASIC or
files on it.

STEP 3: LOAD PIP and type RUN.

STEP 4: Use the PIP Copy com-

mand to copy the old diskette (with
BASIC and the files) onto the new
diskette. COP will take approxi-
mately 30 minutes.

STEP 5: Check the new diskette by
re-loading BASIC (from the new
diskette), by MOUNTing, and by
printing a directory of files. This
will confirm that everything was
copied satisfactorily.

STEP 6: Make the disk Read modifi-

cation.

METHOD Il — Using Disk BASIC “PIP”
and DOS.

If the user has Disk BASIC and DOS
{Disk Operating System), Disk BASIC
and PIP can be used to copy the DOS
diskette. Follow the procedure de-
scribed in Method |, noting the follow-
ing exceptions:

STEF 3: LOAD PIP, but UNLOAD

the diskette with BASIC on it
before RUMning PIP. Place the
DOS diskette in the drive where
BASIC was previously located. It is
not necessary to MOUNT to copy
with PIP. RUN PIP, and proceed
with STEP 4 of Method |,

STEP 5: Check the new diskette by
loading DOS, by MOUNTIng, and
by issuing a directory command. If
possible, run several of the pro-
grams, and proceed with STEP & of
Method I.

Computer Notes Jan/Feb 1978

B. Single Drive BASIC Diskette Rewrite

Procedure

By Charles W. Vertrees

The following program illustrates how
to copy a diskette onto itself by
changing the write delay timing with
which each sector of the diskette is
written. The program is necessary in
order to take advantage of the changes
to the read and write time delays that
are being made on the MITS/Altair
88-DCDD Disk Controller cards. To-
gether, the program and hardware
changes will alter the physical posi-
tion within a sector of a diskette from
which the data is written and read.
This program works by buffering an
entire track of data at a time. This is
done by allocating the string array A$
with one element for each sector on a
track. The data on a specific track is
then read into this array and verified
by re-reading each sector to ensure
that it was read correctly the first time.
If for some reason the data for a given
sector will not verify, the sector will
read into the array again and then
re-read a second time to verify. This
process is repeated until verification
occurs. Once an entire track has been
read and verified, the data is then
written back onto the same physical
track of the diskette. To ensure that
the entire operation is done correctly,
the new written data is then re-read
and compared against the original
data. Again, if a specific sector will
not verify, it is re-written from the
original data and re-read to verify the
write. This process will continue until
all re-written data on the track is
verified.
100 CLEAR 137=34
110 PRINT: PRINT"DISK SELF COPY"

120 * GET TD TRACK ZERD
130 ouTa. O

The program should work without
encountering many REREAD or RE-
WRITE errors if the disk drive is in
correct operating condition and if
there is nothing wrong with the
diskette. If a large number of these
errors are enccuntered, this usually
indicates that there is something
physically wrong with the drive (align-
ment, transport, etc.) or with the
diskette.

To use this program, first make the
modifications to the write time delay
circuit on the controller boards. Then
bring up BASIC and enter this pro-
gram, which can be saved on the
diskette. The program must now be
run on all diskettes on which pro-
grams or data that may be needed for
future reference currently exist. Mext,
make the maodifications to the read
time delay circuitry on the controller
boards. This entire procedure should
greatly reduce the frequency of disk
1/O errors due to drive alignment
problems.

NOTE: This program takes about 30
minutes to run. It can run faster by
increasing the amount of string space
cleared in line 100. Currently, 4658
(137*34) bytes, the minimum amount
required, are cleared. This should be
changed to clear as much string space
as memory will allow after loading the
program. Make sure the diskette is up
to speed before RUN is typed.

140 IF (IMP(BJAND &4) <> O THEN WAITE. 2. 2: OUTS. 2: GOTO140

1530 * DO IT FOR ALL 77 TRACKS
160 FORT=0TO7&

170 PRINT: PRINT"READ T T

180 DIM A%(31)

190 FOR 5=0 TO 31 * READ &k COMPARE ALL SECTORS

200 AS(S)=DEKIS{S)
210 B$=DSKI%(5)

220 IF B <> AS{S) THEN PRINT“REREAD T":T:"S":S5:G0TO 200

230 NEXT S

240 PRINT: PRINT"WRITE T T

230 FOR S=0 TO 31 * WRITE NEW TRACK
260 DSHOSAS{S). 5

270 NEXT 3

280 FOR S5=0 TO 31 * CHECK MNEMW DATA
290 Bes=DEHI%(3)

300 IF A%(S)<>B% THEMN PRINT"REWRITE T“:T: “5%:5: DSKOsAS(S), B: OTD 290

310 NEXT 8

320 * GOTO NEW TRACK

330 ERASE A%

340 IF Te=74 THEN 3&0

350 WAIT 8,2, 2: 0UT 9.1

3560 NEXT T

370 CLEAR 200

380 PRINT:PRINT®THAT SHOULD DO IT"
3%0 END

C. Single Drive DOS Diskette Rewrite

Procedure

By Drew Einhorn

A program which runs under DOS
using only a single floppy disk drive
allows an update of the Write Timing
of the diskettes. This is now available
free of charge to those who have
purchased a copy of DOS prior to
December 1, 1977. Send a copy of the
invoice or a proof of purchase of DOS
to MITS, and request the DOS Rewrite
Diskette.

In order to update the Write Timing
on the diskettes, perform the follow-
ing procedure. This procedureassumes
only one disk drive is available.

STEP 1: Perform the modifications

to the Write circuits of the Disk
Controller (reference to stop num-
ber |14 or hardware modification).

STEP 2: Put the old DOS diskette in
Drive 0. Bootstrap, and perform
initialization as usuval. Do not MNT
it.

STEP 3: Remove the old DOS disk-
ette from Drive 0.

STEP 4: Place the diskette contain-
ing Write Time Delay wupdate
pragram in Drive 0,

STEP 5: Issue the command MNT 0.

STEP 6: Bun the Write Time Delay
program by typing TIMING in re-
sponse to the “." PROMPT. If there
is more than one drive and if the
diskette is in a drive other than 0,
the command is RUN TIMING n,
where n is the drive number,

STEP 7: The program will type out
CHANGE WRITE TIME DELAY
ENMTER DEVICE NEBR. Type 0, and
do not hit RETURMN.

STEP B: Remove the diskette from
drive 0, and place the diskette to be
re-written in drive 0.

STEP 9: Hit RETURN. The program
will begin executing. It will first
DSM the diskette and then go
around a loop 77 times, once for
each track into memory. The entire
track will then be compared with
the contents of memory with the
diskette. Any sector which does
not compare will be re-read and re-
compared, until they match. The
entire track will be re-written with
the new Write Time Delays and will
then be compared with memory.
Any sector that does not compare
will be re-written and re-compared.
When this process is completed,

the program will go to the next
track. When the last track Is
finished, the diskette is MNTed. It
takes approximately 3 minutes.
STEP10: If there is more than one
diskette to update, perform a
DSM 0 command, and go to step 4.
STEP 11: Perform the modifications
io the Read Circuits of the Disk
Controller.

D. Easy Floppy Disk
Alignment Check

By Tom Durston

The following procedure simplifies the
Index sensor alignment check on the
floppy disk drives by using signals
obtained on Controller Board #1. This
eliminates the need for disassembling
the drive chassis. The procedure is
based on using Read Clear (TP-5) as a
reference signal and on observing
Serial Read Data going into IC G1,
pin1or2.

This method allows an easy check
of the relative sector alignment be-
tween data written on the diskette and
the drive alignment. If necessary, this
method may be used to misalign the
drive to match the misalignment on
the diskette, allowing reading of data.

Mote that this procedure only shows
Index sensor and Stepper skew align-
ment and does not show Track Offset
alignment (Cats' Eye Pattern). For a
full drive alignment check and adjust-
ment, the procedure listed Iin the
8B-DCDD manual should be used.
Only the Index sensor should be
adjusted using the procedures listed
hera,

Shown here are two procedures for
checking drive or diskette alignment.
For easy control of the head position,
the Disk Exercisor Program listed on
page 118 of the 88-DCDD manual is
recommended. A dual trace oscillo-
scope is required for these tests.

1. INDEX

CHECK
a. Connect scope channel 1 probe to

TP-5 (F1-13) Read Clear. Sensi-
tivity = 2v/Div.

b. Connect scope channel 2 Probe to
IC G1, pin 1 or 2; Serial Read
Data. Sensitivity = 2v/Div.

c. Set sync to channel 1, positive
edge trigger.

d. Display channel 2 anly.

e. Set time base to 50us or 20us per
Div.

f. Run Exercisor program, insert
alignment diskette, and seek
tracks with Index BURST.

Cbserve the 40us low pulse repre-
senting the Index BURST. This low
pulse is typically 4us slower than the
actual Index BURST seen at the Read
amplifier in the drive. If the low pulse
is not seen, the drive is probably
geverely misaligned. Consult the 88-
DCDD manual for drive alignment
instructions, beginning on page 116.
2. RELATIVE ALIGNMENT CHECK

This procedurse may be used to
check alignment between a drive and a
diskette with data on it. If a diskette is
giving /O errors due to drive mis-
alignment when it was written, the
problem can be eliminated by tempo-
rarily misaligning the drive to position
the data correctly.

a. Connect scope channel 1 Probe to
TP-5 (F1-13), Read Clear. Sensi-
tivity = 2vidiv.

b. Connect scope channel 2 Probe to

IC G1, pin 1 or 2, Serial Read

Data. Sensitivity = 2v/div.

. Set sync to channel 1, positive
edge trigger.

. Display both channels.

. Set time base to 50 us/Div.

Run Exercisor program, insert

diskette to be checked, and seek O

and 78.

Channel 1 should show the Read
Clear pulse (140us old, 214us new),
which indicates the iength of time the
Read circuit is turned off. When Read
Clear is low, it allows the Read circuit
to start searching for the Sync Bit, the
first logic 1 in the data field.

Channel 2 should show the Serial
Read Data. Mormally, it consists of
several logic 1 pulses 50 to 100us after
the beginning of the Sector. The data

SENSOR ALIGNMENT

0

-0 o

Computer Notes Jan/Feb 1878

field starts with the Sync Bit 250 to
350us (old timing) or 350 to 500us
(new timing) after the beginning of the
sector. The logic 1 pulses after the
beginning of the sector are caused by
the nolse written by the Write circuit
being turned on when that sector was
written. There should be a long period
(250-400ups) of all logic 0 from the
noise pulses to the Sync Bil.

For optimum timing, Read Clear
should go low halfway between the
noise pulses and the Sync Bit. The
Read Circuit will generate errors if the
noise pulses occur after Read Clear
goes low or if the Sync Bit and Data
occur before Read Clear goes low.

If necessary, the Index Sensor may
be temporarily adjusted to allow
proper reading of a diskette by
centering the low time of Serial Read
Data as described earlier. Note the
original position of the Data, so the
Index Sensor may be returned to
normal. Check both inner and outer
tracks of the diskette in order to
compensate for skew in the data.

Program on page 27

About the Authors

Tom Durston is the MITS Engineering
Program Director and is involved primarily
with peripheral interface design. A MITS
employee for five years, Durston studied
Electrical Engineering at the University of
Virginia and the University of New Mexico.

Gale Schonfeid has been employed by MITS
for fwo years and is the Software User
Specialist. She is currently pursuing a
Bachelor of Sclence degree at the University
of New Mexico in Electrical Englneering/
Computer Science.

Chuck Vertrees is the Director of Softwara for
MITS. He has & B.5. in Electrical Engi-
neering from the University of New Mexico
and is currently studying for a Masters in
Computer Science.

Drew Einforn holds a degres in Mathematics
from the University of Oklahoma, He has been
employed by MITS for fwo years as a
scientific programmaer,

Computer Notes Jan/Feb 1978

More on the KCACR

By Doug Jones

Theannouncement of the new MITS®
KCACR board (Kansas City Audio
Cassette Recording) for their MITS/
Altair™™ microprocessor was indeed a
welcome relief for me and for a still
ailling papertape reader. With the
installation of this single board, a
world full of holes and spilled chad
has turned into neat little plastic
boxes each with a cassette tape. The
chaos of rattle-rattle-checksum error
has turned into absolute quiet, broken
only occasionally by an eject-click,
Regarding the hardware, the board
occupies one slot of the 680 expander
board. Its features include CMOS
logic for low power consumption, and
it uses total digital logic without a
single potentiometer or adjustment.
The input/output is at 300 baud,
allowing a speed tolerance of 20%.
The software that Is supplied with
the KCACR Is, likewise, quite good.
MITS' CSAVE BASIC Is supplied on an
audio cassette tape and its features
still amaze me. A bootstrap loader
PROM chip that fits into one of the
PROM sockets on the main board is
also supplied. Since this chip has no
name, | will refer to it as the KCACR
MONITOR. A large portion of this
article will concentrate on this chip.
Since there are many things to
discuss about the KCACR and related
software, | have organized this article
into four sections, all intending to
help you gain the most from the
hardware and software of the KCACR.
This writing will appear at times to
be a coliage of software tidbits that
have appearad over the last year in
Computer Notes, | would like to
give credit where it is due. My thanks
to Mark Chamberlin (I literally stole
his PUNBAS routine) and to Ron
Scales for his help on a rather sticky
interrupt problem.

I. Inverse Assambly of the KCACR

MONITOR

After putting this new PROM chip
on my 680 processor board, it was
nice to see its two primary functions
work well. A (Jjump to FDOO will allow
a load of a Motorola-formatted audio
cassette tape through the new port,
and a {Jjump to FD74 will allow a
properly-formatted dump of any se-
lected portion of memory. And it really
works quite well.

But curiosity started to get the
better of me. Exactly how does it
work, | asked myseif. Are there any
useful subroutines in it that can be
called by other programs? Are there
any provisions for turning off the
motor on a checksum error? | wanted
to know the answers to these and
other questions.

| ran a B80 Inverse Assembly
{“Inverse Assembler Makes Machine
Language Programs Understandable™,
by Doug Jones; Computer MNotes,
July 1977) on it and produced the
listing that is shown. The comment,
labels, and a bit of doctoring-up was
done using the EDITOR.

| received answers to my initial three
questions and they were "well", “yas",
and “no”. It may not turn off the
tapedeck motor on a checksum error,
but there are some useful routines in it
that are easily called from an assem-
bly language program. If you spend a
few minutes and study the KCACR
MONITOR program, perhaps you will
spot some useful subroutines or learn
a new programming technique, such
as the following question illustrates
about the KCACR MONITOR. The
problem s, “If BADDR (address
£FD59) is a subroutine that required a
JSR to enter, how do you exit?"

Il. Comparing the KCACR MONITOR
to the 680 MONITOR

Table 1 compares the addresses of
the major subroutines of both MOMN-
ITOR programs, and, interestingly
enough, both sets of subroutines
function identically except that they
address different ports. For example,
you wish to send a letter to the
teletype port
CB XX LDA B #(letter)

BD FF81 JSROUTCH

680 PROM MONITOR address.
On the other hand, you wish to send
a letter to the KCACR
B XX LDA B #(letter)
BD FDF5 JSR OUTCH

:KCACR MONITOR address.

The 680 PROM MONITOR manual
will give you register usage on all of
the other subroutines mentioned in
Table 1. Beware, for there are some
hidden “GOTCHAs", at least they
always seem to get me. A call to INGH
does not return an B-bit character;
parity has been stripped off of it...will
| ever learn?

Machine Language to BASIC Converter

By Richard Ranger

An annoying but necessary step in
using the machine language interface,
DEFUSR, in MITS@BASIC is the
conversion of the machine language
program into POKE statements within
the calling BASIC program. Using the
following program, MITS BASIC users
may utilize the machine language
subroutines to enhance the capabil-
ities of their computers.

Machine language subroutines that
can be interfaced to BASIC through
the use of DEFUSR have been written
for a number of different functions,
from multi-precision addition to fast
analog to digital conversion and
storage. A few of these programs have
appeared in Computer Notes, while
others are scattered throughout the
operation and checkout procedures of
various manuals for MITS peripherals.
Generally, memory slze is limited
during Initialization. The machine
language program is placed above this
initialization limit, so that any opera-
tion within this subroutine will not
affect BASIC. This routine is normally
accessed using the DEFUSR function
of MITS BASIC, and, since the syntax
for this statement varies from version
to version, you should refer to the
manual to find the correct syntax for
calling the DEFUSR function
subroutine.

The purpose of this program is to
eliminate the need to toggle in the
machine language subroutine each
time a new routine is used. Without
this program, it would be necessary to
toggle in the subroutine before calling
it with any BASIC program or to
convert each octal location and in-
struction to decimal and then into a
statement of the form:

POKE (address), (instruction).

Using the following procedure, the
machine can write its own BASIC
program that contains all the neces-
sary POKEs to duplicate the machine
language subrouting. By running this
POKE program, the machine language
subroutine is quickly POKEd into
position before it is needed by the
main or calling program.

If you are using disk BASIC,
proceed according to the following
instructions. First, bring up BASIC,
initializing with at least one sequential
file and limiting its size so that your
particular machine language program
will reside in its appropriate location
{usually above the BASIC interpreter).

Computer Notes Jan/Feb 1978

You must either toggle in the machine
language or use any method available
to enter the machine language pro-
gram initially, so the converter pro-
gram will be able to use the PEEK
function of BASIC to acquire the data.
After this has been accomplished,
LOAD the converter program, and
RUN it. At this time, you will be
required to enter the beginning and
ending locations of the machine
language program (in decimal) and a
temporary file name for the POKE
program. The converter will begin
PEEKIing the locations containing the
machine language routine and will
create a string comprised of a line
number, the characters “POKE", “, *,
“:“ the address, and the contents of
the PEEKed location. This string of
characters is then written on the disk
in ASCIl under the temporary file name
AND. AND may be merged with any
other program which does not contain
the same line numbers.

This method of creating machine
language subroutines that can be
interfaced with BASIC allows you to
write several different routines, merge
their corresponding POKE programs
into a larger BASIC program, and call
them much the same as BASIC
subroutines are called.

If you do not have a disk but still
require the use of machine language
subroutines, the temporary POKE
program must be written in ASCI but
placed on a medium other than floppy

disk. This problem may be resolved in
two different ways, depending upon
whether you have access to a teletype
with a paper tape punch and reader or
it you are limited to a cassette
recorder and mag tape.

If you do have access to a teletype,
load the machine language program as
before and delete lines 30, 35, and 140
from the converter program. Line 110
of the converter must be changed to
read: 110 PRINT T$. Enter the con-
verter program, make all the necessary
changes, type RUM, turn on the paper
tape punch, and type a carriage return.
The computer will then print the POKE
program on paper tape. After this has
been done, this ASCI paper tape may
be merged with the main BASIC
program by loading the main program
and then reading in the paper tape
program through the paper tape
reader. Again, note that the line
numbers of the POKE program and the
main program must be different.

If you do not have access to a
teletype or a floppy disk, your POKE
program must be saved in ASCll on a
cassette recorder. To accomplish this,
load the machine language as before
and be sure that BASIC has been
initialized with a “C" when WANT SIN-
COS-TAN was asked. (This write-up
assumes that the reader is using a
version of BASIC that incorporates the
CONSOLE command.)

Delete lines 30 and 35, and change
or add the following lines accordingly:

Continuved on page 28

Easy Floppy Disk Alignment Check - continued from page 7

10 PRINT: PRINT"PIF = VER 40"

20 CLEAR 0:X=FRE{(Q)=1300:IF ¥<0 THEN CLEAR $00 ELSE IF X=32000 THEN

CLEAR 32000 ELSE CLEAR X

30 DIMTECIS e FARY=0T@15: T2(Y¥Im~ It HEXTY:1 PRINT"* " i LINEINPUTES

40 IFBR=""THENCLEARZ00: END

50 IF LEN(BS)>3 THEN CS=RIGHTS(BS,LEN(BS)-3) ELSE Ci=BS

&0 BI=LEFTH(H5.3)

70 IFBM="DAT"THEN&EOD

BO IFBR="CEP"THENETO

90 IFES="LI1S"THENEOO

100 1F BS="CHNV"™ THEM 1040

110 IFBS="DIR"THEIF=-1: GRTAZ2T0

120 IF BS=""SAT"™ THEM Fs0:DIMASC(255):GATERTO

130 IFRE<>"1NI"THENPRINT"ERR™: GETE20

a0 GRSUB TéO

150 ASESTRINGSCI3T.03:MIDSCAS: 1364 1) CHRS(255D

160 FART=6TATE
170 FBR 5=0 T2 31

180 MIDECAS, 1. 23 CHRECTI+CHREC(5* | TOANDIL)

(L0 GESUB 6£00: DEK@% AS: S
200 NEXT 5.T

210 T=70:6@85U8 600 *DIRECTERY TRACK

220 AS=CHRE(TO}+CHRE(OI+CHRECOI+CHREC 1 28} +CHRS(1 2TI+CHRSCOD
230 A= AS+*CHRSC(OI+CHRI(255)+5TRINGS(12T-0)+CHRELES5)

240 DSKEEAE:0

Continued on page 28

Easy Floppy Disk Alignment Check - continuad

250 PRINT:PRINT™DANE"™

260 GATEZO0

270 GESUBTE0:@PEN"@"s ls™scanns RR": A
280 PRINT#L: |sCLASEI:HILL™:cxs= s« RR"+A
290 PRINT

300 PRINTYDIRECTORY DISK™:a

310 PRINT:I=0

320 FORS=0T@31

330 AS=DSHISC1T*S5ANDILY

340 AS=LEFTS{AS.]35)

350 AS=RIGHTS(AS. 128

340 F@R T=0 T@ 7

370 BS=LEFTS(AS:(T+I)=16)

380 BS=RIGHTS(BS. 16}

390 N3=LEFTH(BL 08}

400 BE3=RIGHTH(BS.8)

410 ¥=ASC(BE3):BS=RIGHTS(BS: T):¥Y=ASCIES)
420 BS=RIGHTH(BS.6)3:I=ASC(ESE)

430 IFASCIHE)=0THENGTO

440 IFASCI(N¥)}=Z2S55THENA490

450 RS="S5"; IFZ<»2THENRS="R"

460 IF F THENPRINTNE:™ ™iRE"™ "ixi"™
RE+™ "+STRE(XI4"- "+STRS(Y):I=l+l
a70 HEXTT

QB0 NEXTS

430 IF F OR I=0 THEN PRINT:GOTE@ 20
500 IF I=] THEW 560

510 SW=0

520 FER J=0 T@ I-2

CHAMGE LIME
iea
CHRNGE L INE
iie

iiz
CHANGE LINE
i48

142
14
145
148
i5e
isz
154

Machine Language o BASIC Converter - continuad fram page 27

188 TO RERD:
TEskKF+P RS+ SE+k b+ 0F e P E+BF+SE+YE+0E+P $+CE+SE+ 26+ CHREF (13D
118 TO READ:

¢ FOR J=1 TO LEM{T#):FPR=ASC{MIDF{TH J. 13>
ARD LINE 112:

WAIT 6. 126, 128; OUTT.FR: NEXT J
148 TO RERD:
REM THIS IS THE CONSOLE COMMAND FOR A 2510

RDD THE FOLLOWING LIMNES.

T#="CONSOLE 16, @"+CHR$C{13)

FOR I=i TO di@8 :REM A SLIGHT DELAY
HNEXT I

FOR K=i TO LENCTHX

PReASCCHMIDECTS: K, 153
WAIT 6. 128,128 @ OUT?. PR
NEXT K

"iY ELSE ABCI)=NE+"

530 IF ASCJI»AS(J+1) THEN SWAP ASCJ)s ASC(J+1)zS5W=-])

540 NEXT

550 IF SW THEN 510
560 FBR J=0 T@ I-1

570 PRINT ASCJ)

580 MEXT

590 PRINT:GETE20

&00 IFT2(Ad<>= | THEN&AD

G610 IFCINP(BIANDSAY="OTHENT2(AY =01 GATAS A0

G620 WAITE: 2,201 8UTH: 2

630 GETA&LD

640 IFT2(A}=TTHENRETURN

650 D=lzIFT2(A)>TTHEND=.

GE0 WAITH: 2, 2e@UTH, Dy TRLAY=T2CAI=-2% (D~
&T0 GBTR&A40

6B0 INPUT"TRACK™:T:IF T<0 THEN 20 ELSE
590 GE@SUBTGH0: GRSUBLOOD

TOO AS=DSKIS(S)tFOARI=OTOLENC(AS)=]

Ti0 TIS=@CTS(ASCIRIGHTS(AS. LENCASI=1)

=52

INPUT"SECTeR"} §

13

20 T23=LEFTS(™ 000".5-LENCTIS}I+TI15: PRINT T2%5

T30 IF 1 HOD 8=T7 THEN PRINT

Ta0 NEXT It PRINT

750 GATE &30

TE60 A=VALICE)

770 IFA<Q2RA> ISTHENPRINT"ERR": GRTE20
TEOD @UTH. 128:QUTHE-A

T90 RETURN

B00 GRSUBT&D

At this time, start the cassette
recorder (record mode), and, after a
few seconds, type RUN, followed by a
carriage return. The added parts of the
program will allow the computer to
place the POKE program on cassette
tape and will follow it with a CON-
SOLE command to the main terminal
in use. If an 1/0 card other than a 2510
is used for this terminal, line 142 must
be changed in accordance with the
appropriate console register setting
for that particular 1/O card (see page
34 of your BASIC manual). After the
POKE program has been made on
cassette, it may be merged with the
main BASIC program by first LOADing
the main program into the computer,
then typing CONSOLE 8, 3, followed
by a carriage return. The computer will
now take in data from the input port
#7, and, when all of the POKE program
has been entered, it will CONSOLE
back to the main terminal. (Mote again
that the line numbers of the POKE
program must be different from the
line numbers of the main program.)

In all of the procedures just out-

gy

B10 CI=RIGHTS(CS LEN(CSI-1+{A*2)) 1 IFASCECS)<>4@SaTHENPRINT ERR": GETAZO lined, the entire program, main BASIC

B20 CS=RIGHTS(CS.LENC(CE)=-})
810 APEN"1"s1.C3: A

8B40 IFEQFCI}THENCLASEI:=:GETA20
B30 LINEINPUT#1.AS

B850 PRINTAS:GETa840

BT0 GASUBTEOIB=A

plus the POKE program, may be saved
together as one main program after
they are both in the computer's text
buffer. The unmodified conversion

BRD C3=RIGHTS(C3,LEN(C3)=]+(A>9)): IFASCCCSI<»L@5ATHENPRINT ERR™: GATERO program set up for disk BASIC users Is
890 C3=RIGHTS(CS,LENCCS)-]):GASUBTAN: Cun

200 PRINT“FREM “iBi™ TO “iCr

BI0 IHPUTAS: [FASCIAR)<>ASCL"™Y") THEN 2O
920 FERT=0TATH

930 QUTE, 128:18UTE-C

a0 A=C:GASUBSO0: BUTE. | 28: AUTA. Br A= B GO
950 FE@R5=0T831

940 QUTH. 128:0UTE,B: BS=DSHIS(5)

SUB600

970 FE=DSKIS(S): IFFS«>BSTHENPRINT "REREAD": GATE960

980 BUTE. 128:12UTR.C

G990 DSK25B%, 5:Ci=DSKIS(5) 1 IFCI<>RBETHENPRINT"REWRI TE": GATE950

1000 NEXTS

1010 NEXTT

1020 PRINT"DENE™

1030 GETEz0

1040 GESUB TéO0 "ENABLE DISK
1050 FOR T=6 T® 76

1060 Gasun &0 "PASITION T@ TRACK T

1070 FOR 5=0 T@ 31

o8O AS=DSHIS(S): IF ASCIMIDSCAS:J-1)de>0 THEN 1120
1090 IF HIDSCAS: 136, 13=CHRE(2SS) THEN 1120

1100 MIDICAS, 126 1)=CHRIC2SS)

110 D5SK@sE AS.5

1120 MHEXT §
1130 NEXT T: GAT@ 20
2

28

also given in this article.
Program on Page 29

About The Author

Richard Ranger, a MITS engineering techni-
cian, /s a Navy veteran who worked in
airborne reconnassance. He s currently
studying at the University of New Mexico for a
dagraa in Electrical Engineering.

Computer Notes Jan/Feb 1878

