
I

MNT-16
APRIL 1978

PRENTICE COMPUTER CENTRE
University of Queensland

'TEeD Editing '
- A Tutorial Course

for
PDP-IO and PDP-II Users

S. H. Algie

\ '

PRENTICE COMPUTER CENTRE

University of Queensland

TEeD Editing

- A Tutorial Course

for

PDP-10 and PDP-11 Users

1 st Edition
April 1978

© S.H. Algie

S.H. Algie

Department of Mining and Metallurgical Engineering
University of Queensland

(i)

INTRODUCTION

This book has been written to provide a complete description of the procedures used
in editing files with the TECO (Text Editor and Corrector) program. The approach used here
differs from that used in the "DECsystem- I Q TECO Programmer's Reference Manual"
(DEC-l(,7J-UTPRA-A-D) which describes what is referred to here as TECO-10 and in the "PDP-
11 TECO User's Guide" (DEC-II-UTECA-A-DNI) which describes TECO-Il. These are
referred to here as "Reference Manuals" and they are not very effective as teaching texts. This
book presents a tutorial course in TECO editing; commands are introduced in the order in
which they are needed for effective learning of the TECO 1 311gU age. Practical exercises are
given after each of the first six chapters.

TECO is a programming language. The use of TECO for programmed editing is treat­
ed in some detail and care has been taken to present it in a way which is familiar to users of
high level languages such as FORTRAN, ALGOL and PASCAL.

It is suggested that you should work through the exercises based on the first four
chapters before you attempt to edit important files. You can learn TECO as you go but it will
still take a few hours at the terminal to master it and in the meantime you can do a lot of
damage. TECO is so powerful that it is a bit like a loaded gun. Be careful! However, once you
have mastered TECO you will find that you can perform almost any editing task so quickly
and easily that you will wonder how you managed without it.

CONVENTIONS

Throughout this book the symbol ® stands for the ASCII character ESCAPE (or
ALTMODE); characters transmitted by holding down the CONTROL key while striking
another (generally x) are represented by a symbol © . Throughout the text ASCII characters
such as LINE FEED are written in upper case but when they are given in commands and
confusion may arise they are written thus: <line feed>. Terminal output is underlined to
distinguish it from input typed by the user.

DECLARATIONS

The terms "TECO", "DECsystem-l(,7J", "PDP-II ", "DECTAPE", "RT-l1 ",
"RSTSjE" and "RSX-l1" are trademarks of the Digital Equipment Corporation.

The author assumes no responsibility for any loss of, or damage to, computer files
which may result from the application of procedures described in this book.

Please inform the author of any errors.

Copyright © 1978 S.H. Algie

1 acknowledge with pleasure and gratitude the willing assistance of my friends and
colleagues in the writing and production of this book. I especially thank my wife for her
patience.

Steve Algie

(ii)

CONTENTS

Introduction

PART ONE ESSENTIAL TECO EDITING

1. Deleting and Inserting Text

2. Additional Text Modification Commands

3. TECO Input and Output

4. Additional Input and Output Commands

PART TWO ADV ANCED INTERACTIVE TECO EDITING

5. Command Storage

6. Text Arguments

PART THREE PROGRAMMED TECO EDITING

7. TECO as a Programming Language

8. Numeric Arguments

9. Extensions and Examples of TECO Programming

APPENDIX CHAPTER-BY-CHAPTER SUMMARY OF TECO COMMANDS

PART ONE

ESSENTIAL TECO EDITING

1. Deleting and Inserting Text.

2. Additional Text Modification Commands.

3. TECO Input and Output.

4. Additional Input and Output Commands.

The four chapters in this part contain sufficient information to enable the user to
tackle effectively most interactive editing tasks. Some of the information given here is not
essential to the immediate requirement of basic editing but is required for the understanding of
the more advanced techniques described in subsequent parts.

1. DELETING AND INSERTING TEXT

Information which is to be input to a computer is usually stored as a file. An except­
ion would be the information which you enter through a terminal keyboard, although if you
copy this from a written record this written version might be considered a file of sorts. Decks
of punched cards and rolls of punched paper tape are two types of files; the predominant type
of file at present is that stored on some kind of magnetic disk. The information stored in such
a file may comprise computer programs or data (which is information to be processed by the
computer). Data may consist of numeric information or of text; processing includes simply the
output of data in a form you can understand. For example, a book could be stored in a file as
text data and the computer, operating under an appropriate program of instructions could
have this typed out at your command. A sad thing about files is that the information contain­
ed in them rarely remains correct, or appropriate, for long. The book mentioned above will
probably go into a new revised edition!

What do you do when you want to change a part of a file? Retype the whole file and
re-enter it? This approach has little appeal if you want to change, say, just one "X" to a "Y" in
the middle of a long program. It might be appropriate if you want to change 9 5% of the data
in a data file.

If you learnt computing using decks of cards you will remember that you could
change that "X" to a "Y" by

(1) searching for the line on which it occurs

(2) searching for the card which corresponds to that line

(3) replacing it with an altered card.

You will be relieved to know that editing is possible with disk files too, using TECO. Moreover,
the computer does the searching for you.

WHAT IS TECO?

TECO, the lext Editor and COrrector, is a computer program. If you really wanted
to, you could write your own (e.g. FORTRAN) program to change every letter X in a file to a
Y. If you arranged your program to write the message "what letter do you want altered and
what is it to be changed to?" so that when you typed in X,Y the change was made then you;d
have written a simple editing program. TECO is just a better one.

2

TECO is a very powerful program which enables you to accomplish almost any task
of editing ASCII files. With TECO you can insert new sections into files, delete sections,
rearrange the contents of a file without deleting from or adding to it, merge two files and split
a file into sub-files. Moreover, this does not exhaust the powers of TECO. Its features allow the
user to make the most complex conditional alterations.

For example, you could write a report, or even a book, and using the computer store
it as a file. You could then, using TECO, change a paragraph here or there, rearrange the
sections, add sentences, change words and then with one (complex) command have the revised
version typed out in pages of, say 60 lines with each line containing as close to, say, 70
characters as possible but without splitting words across two lines. Unfortunately TECO does
not correct spelling errors automatically.

TECO is so useful that it is made part of the set of system programs in many
computers. If it is present it can be run by giving the system command:

. R TECO (DECsysteml(j) and RT-ll) or
RUN $TECO (RSTS/E) or
TECO (RSX-ll)

This loads and runs the program but instead of asking a question like that written
above, TECO indicates that it is ready to receive instructions (or commands) from the user by
typing an asterisk:

*

The many commands available in TECO allow you to instruct it to read a file, alter
it (e.g. change every X to Y), and write the correct file. If TECO understands your command it
will execute it; if not it won't and will print an error message instead. TECO will, of course,
execute commands as you actually give them, which is not always the same as how you intend­
ed to give them.

Thus, there is a price to pay for TECO's convenience. You can drop a deck of cards
and it's a nuisance. With TECO you can cause yourself real grief, especially if you let your
attention slip or panic. Imagine the situation: you've unintentionally deleted your file, you
aren't sure what you should do next and there's someone standing behind you and waiting
impatiently (and unsympathetically) for you to finish. A disaster is about to occur. This won't
happen to you if you study these notes carefully. You probably won't find the advice that you
should be very careful any more helpful! Unfortunately there is no more practical advice that
can be given.

One reason for this is TECO's very strength. The commands which you will give to
change the contents of your files are generally in the form of numbers and letters, the letters
usually being one or two letter abbreviations of the name of the command (e.g. D for delete).
However almost every key on the terminal acts as a command. If you don't get in the habit of
checking to see what you actually typed, as distinct from what you thought you typed, you
will change your file in unintended ways. "Murphy's Law" applies in this case: the unintended
command you give will be the one which is hardest to correct!

You do need to think while editing. If you change every X to a Y you must realize
that you can't always undo this by subsequently changing every Y to an X! This is nothing to
do with TECO; the same would happen with the FORTRAN example given above.

Another problem is that, like FORTRAN, TECO has been developed over a number
of years and like FORTRAN retains a number of features which are redundant It also has
features which are better avoided. Some of these will be mentioned in these notes but the
preferred forms are emphasized.

A final word of encouragement: The concepts involved in TECO are of general
application in many editing programs. When you've learned TECO you'll have little trouble in
learning another if it should be necessary.

3

ASCII CHARACTERS

It has been stated above that TECO is used for editing files which consist of ASCII
characters. These are the characters which can be entered Llsing a standard terminal; the letters
stand for American Standard Code for Information Interchange. There are 128 characters in
the full set and each character has a defined code number. For example, "A" is the 65th
character in the set and thus has the ASCII code 65 (decimal) or, since these are often
expressed in the octal (base eight) system, 101 (octal). In the binary system used in computers
(and punched paper tapes) each ASCII character can be represented by a sequence of seven
binary digits or "bits" (i.e. 0's and 1 's).

This should not be of much concern to you in using TECO but it is important to
realize that the ASCII code is simply a convention; there are other representations which are
used in other applications. In particular, the representation of the single number 352 used
internally by a computer during arithmetic operations is nothing at all like the three ASCII
characters 3, 5, and 2. To repeat, TECO is designed to edit files consisting of ASCII characters.
Generally speaking these are files designed for human readers such as source files, data files and
output files.

It is helpful, and common, to set out the list of ASCII characters as shown in the
accompanying table. This shows the characters in four groups of thirty-two. The third group,
which includes the upper case alphabet, is a convenient reference point. The code numbers
here run from 64 to 95 (decimal). The fourth group is rather commonly missing from terminal
equipment and includes the lower case alphabet. It can be seen that the code (decimal) for a
lower case letter is formed by adding 32 to the code for the corresponding upper case form.

The second group is primarily mathematical and has no direct relationship with the
reference group. However, the first group is rather special and the characters in it may be
described in two ways. Firstly, they have special names (not all of which are needed in TECO)
such as NULL, ESCAPE and TAB. These describe their function, although this may not be
immediately obvious to the uninitiated. The second way is to refer to these as "control
characters" since they can be transmitted from a terminal by holding down the CONTROL
key while striking another character from the third group. Thus NULL is also CONTROL-@
and TAB is CONTROL-I. In effect, the CONTROL key automatically subtracts 64 from the
code (decimal) of the other character. Some control characters can only be transmitted in this
second form; others, e.g. CARRIAGE RETURN, are generally provided with special keys on
the terminal and can thus be given in two forms although it is obviously more convenient to
use the special single key under usual circumstances.

Some of the control characters produce a response at the terminal i.e. CARRIAGE
RETURN, LINE FEED, TAB, VERTICAL TAB, BACKSPACE (if the terminal is equipped for
this) and FORM FEED. The others, on the great majority of current terminals, produce no
direct response; they are non-printing characters. This can be checked by switching the termin­
al to LOCAL (typewriter) mode and striking the control characters. However, and particularly
in TECO, it is important to know if a control character has been typed. TECO provides this
knowledge through its echoeing convention.

When a terminal is in ON LINE mode (connected to the computer) there is no direct
connection between the keyboard (the input device) and the typing mechanism (the output
device). The characters entered on the keyboard are transmitted to the computer which
processes them and, where appropriate, "echoes" them by sending a signal to the output
device. Thus normally if you type a character it will appear on the paper record just as if the
terminal had been in LOCAL mode. However, in TECO, all control characters received by the
computer are processed specially. Those which have a physical effect on the terminal, such as
LINE FEED, are echoed normally except for FORM FEED (which is echoed as a number of
LINE FEEDS with a consequent saving in paper) and CARRIAGE RETURN which automatic­
ally has a LINE FEED character added after it before both are echoed. There is nothing
intrinsically special about this particular group of control characters. The ASCII convention is
simply that the signals associated with the (decimal) codes 8 through 13 produce effects on the
carriage mechanism rather than on the printing mechanism.

THE ASCII CHARACTER SET
..j::.

GROUPl GROUP 2 GROUP 3 GROUP 4
CONTROL CHARACTERS UPPER CASE LOWER CASE

CONTROL
Key Name Code: Code: Code: Code:

and: Octal Decimal Character Octal Decimal Character Octal Decimal Character Octal Decimal

@ NULL (/)(/)(/) (/) SPACE 040 32 @ 100 64
,

140 96
A 001 1 ! 041 33 A 101 65 a 141 97
B (/Jf/J2 2 /I (/J42 34 B 102 66 b 142 98
C f/Jf/J3 3 # 043 35 C If/J3 67 c 143 99
D f/J04 4 $ 044 36 D If/J4 68 d 144 If/J0
E (/)f/J5 5 % f/J45 37 E If/J5 69 e 145 1 f/J 1
F (/If/J6 6 & 046 38 F If/J6 7f/J f 146 102
G BELL (/Jf/J7 7 I 047 39 G If/J7 71 g 147 If/J3
H BACK SPACE (,lll(,ll 8 ((,ll5f/J 4(,ll H I1f/J 72 h 15f/J 104
I TAB f/J11 9) 051 41 I III 73 i 151 105
J LINE FEED (,ll12 10 * f/J52 42 J 112 74 J 152 106
K VERT TAB 013 11 + 053 43 K 113 75 k 153 107
L FORM FEED 014 12 , 054 44 L 114 76 1 154 108
M CARR. RTN. 015 13 - 055 45 M 115 77 m 155 109
N f/J16 14 056 46 N 116 78 n 156 110
0 017 15 / 057 47 0 117 79 0 157 III
P 020 16 f/J (/J60 48 P 12(,ll 8f/J p 160 112
Q 021 17 1 (/J61 49 Q 121 81 q 161 113
R 022 18 2 (/J62 50 R 122 82 r 162 114
S f/J23 19 3 063 51 S 123 83 s 163 1 15
T 024 20 4 064 52 T 124 84 t 164 116
U 025 21 5 065 53 U 125 85 u 165 117
V 026 22 6 066 54 V 126 86 v 166 118
W 027 23 7 067 55 W 127 87 w 167 119
X (/130 24 8 (/J7(/) 56 X 130 88 x 17(/) 120
Y 031 25 9 071 57 y 131 89 y 171 121
Z 032 26 072 58 Z 132 90 z 172 122
[ESCAPE 033 27 , (/)73 59 [133 91 { 173 123
\ 034 28 < f/J74 60 \ 134 92 I 174 124
] f/J35 29 = 075 61] 135 93 } 175 125

t or A 036 3(,ll > 076 62 t or A 136 94 ~ 176 126
+- or - (,ll37 31 ? (,ll77 63 +- or- 137 95 RUBOUT 177 127

5

The other control characters are echoed by transmitting two characters to the
output device. The first is a caret (A), or on some terminals, up-arrow (t) and the second is the
character which is used in combination with the CONTROL key to form the alternate form of
the character. Thus CONTROL-A is echoed as AA (or tA). The exception to this is ESCAPE
which finds very frequent use in TECO. This has its own key but can be formed as CONTROL-[.
For convenience TECO echoes this with the single character $.

The convention followed here is to enclose the echoed representation of a control
character within a circle, e.g. @ or ®. This is to avoid confusion with the corresponding
single characters. This is not done in actual TECO terminal records, of course, and if there is
serious confusion you can suppress TECO's echoeing convention so that control characters are
not echoed.

It should be noted that some control characters are transmitted by holding down the
CONTROL key while typing a character which is transmitted by holding down the SHIFT key
and striking a key. In such cases it is necessary to hold down both the CONTROL and the
SHIFT keys while striking the character key. For example, on some terminals the character
CONTROL-t is entered as CONTROL-SHIFT-N.

THE TEXT (EDITING) BUFFER

When you use TECO your basic aim is to produce a new file. This may be complet­
ely new or it may be an altered version of one which already exists. Now you could create a
new file by writing directly into it (i.e. you type the character "A" on the terminal and the
representation of "A" is written directly into the file). This would not be very convenient. It
is far better to use the computer's memory (its "core") to store a section of input from the
terminal so that you can check it before committing it to your output file.

In the same way if you are altering a file it is convenient to read a section of the file
and store it in core before making the changes and outputting the new version of the file. In
other words you use the computer memory as a "buffer" to "absorb" a quantity of text, or
program, which is read from your terminal or existing files so that changes can be made in
context and checked before the new file is finally written.

Actually, in TECO there are a number of "buffers"; these are simply areas of core
used for temporary storage. The first of these which you will encounter is called the text (or
editing) buffer. As the name implies it is here that the text to be changed is temporarily stored;
it is empty when you first enter TECO from the system.

On your command, TECO reads your file into the text buffer, it makes the changes
which you specify to the material in the text buffer and, again on your command, writes the
contents of the text buffer into another file which you specify. You are then left with your
old file and a corrected file (with a different name). If you are satisfied with your corrections
you can then delete the old file.

If you don't tell the computer to write the contents of the text buffer into a file it
will be lost! The text buffer is simply part of the computer core and will be written over by
the computer after you have finished with TECO.

Since you can add to the text in the buffer through the terminal keyboard you can
use TECO to create an entirely new file. In this case there is clearly no need to read anything
into the text buffer and no old file is involved.

The most familiar physically recognizable computer files are undoubtedly decks of
punched cards. It is quite likely that you have already done some editing of such card files and
have some experience in the basic task of finding the card which is to be altered and then
replacing it with a corrected one. In detail there are several ways of looking for that card. You
could search for it as the nth card in the deck or as, say, the second card after the first one
which has an "X" in the first column.

6

Alternatively, you might not choose to look for the card itself; you might prefer to
look for a particular character or word and change the card which happens to contain the nth
occurrence of that character or word. Editing with TECO can follow either of these approach­
es. You have to specify just what it is that you are seeking and the computer, through TECO,
finds the part of the file you wish to change. This beats shuffling through decks of cards.

However, there is an important difference between card editing and TECO editing.
The files stored in the TECO text buffer are not arranged in lines (records) like a sequence of
cards. They are simply a sequence of characters.

You may have seen punched paper tapes used with computers. Each row of holes
across the tape represents one character (including such characters as CARRIAGE RETURN,
<cr>, and LINE FEED, <If». When you punch a tape, using a suitably equipped terminal,
the typed record of what you have entered will show a series of separate lines corresponding to
your typing of CARRIAGE RETURN LINE FEED combinations. However, the tape will
appear as a continuous record of rows of punched holes. Unless you are experienced at reading
the punched tape directly you will not know where one line ended and the next began.

The TECO text buffer is similarly arranged. When text has been entered, either
through the keyboard of a terminal or from an existing file, it appears to be a continuous
sequence of characters. If the buffer is empty it will contain no characters at all; if full (this
depends on the size of the computer) it might contain thousands, all in a continuous sequence
or "string".

this:

CDEF
GHI J

NOP

For example, you may have typed on the terminal a section of file which goes like

KLM

(etc.)

The corresponding section of the text buffer will consist of the following string of characters:

.. CD EF <cr> <If> GHI J <If> KLM <cr> <If> NOP<cr><lf> .. (etc.)

You should note particularly that SPACE is a character and that in TECO LINE FEED is
added automatically when you type CARRIAGE RETURN while entering text through a
terminaL

THE BUFFER POINTER

The foregoing description of the continuous string of characters stored in the buffer
may at first suggest to you that it would be difficult to find the parts of the file you wish to
change. In fact this task is made very easy by the invention of a "buffer pointer". This pointer
can be placed between adjacent characters in the buffer (and before the first and after the
last). To repeat, it is placed between, not on characters in the buffer.

For example, in the following text the pointer, shown here by an arrow, lies
between the C and the D .

. . . ABCD< cr><1f> EFGH< cr><lf> ...
t

If you move it one place to the right (in TECO this direction of movement is caned "forward"
or "down") it will lie between the D and the CARRIAGE RETURN (i.e. at the end of the text
in the "line" ABCD) and if you move it forward two more places it will be between the LINE
FEED and the E (i.e. at the start of the line EFGH<cr><lf». The LINE FEED rather than
the CARRIAGE RETURN is taken to delimit the end of the line.

7

Actually the pointer is fictional. Internally the computer numbers all the characters
in the buffer and your command to move the pointer two places forward is translated by
TECO into a form such as "update the internal counter to indicate that the n+2nd rather than
the nth character is now being considered". You will appreciate the greater convenience of the
pointer concept.

Some versions of TECO which are specifically written for use with Yisual .!display
U.nit (V.D.U.) terminals actually show an image of a pointer at the appropriate position in the
text on the screen. If you don't have access to such a facility you will still find it helpful to
have a mental picture of the pointer just like the image on the V.D.U. screen.

Needless to say, you don't have to know what the internal numbers of the charact­
ers are, although you can find out. However it is necessary to remember that pointer position
n lies between the nth and n+ 1 st characters; the pointer position before the first character is
given the number C/J (zero). The pointer position immediately after the last character in the
buffer has the same number as the total number of characters in the buffer. You never have to
know what this is because TECO allows you to identify this position with the letter Z (mean­
ing the last character, as in the alphabet).

In fact Z is a TECO command, the first mentioned so far. You issue this command,
like all TECO commands, by typing the letter Z on the terminal. It makes no difference
whether commands are entered in upper or lower case form.

The special characteristic of the Z command which allows you to identify it with the
number of characters in the buffer is that it is one of a group of commands which is said to
"return" a numeric value. That is, apart from any effect on the pointer or text, such
commands take on a numeric value which can be used as a "numeric argument" for the follow­
ing command. This will be illustrated below. As it turns out the Z command does nothing to
the pointer or the text; it simply returns the number of characters in the text buffer.

Before any editing can be done it is necessary to locate the point in the text where
the changes are to be made. In this chapter only the most direct ways of locating text will be
considered. Thus the first "active" commands to be described are those which move the
pointer and allow you to confirm where it is located. The first of these is the direct jump.
When TECO executes the command nl (for lump), where the numeric argument n is a
positive integer, or a command (e.g. Z) which returns a value, the pointer will be moved to
position n (between the nth and n+ 1 st characters).

In practice you usually only need to use a couple of special cases. The command ZJ
moves the pointer to the end of the buffer and qJl moves it to the start.

The start of the buffer is also identified by the command B (for !!eginning) which,
like the Z command returns a value (it does not move the pointer). The value returned is,
however, always zero. It is not obvious why this command has been included in TECO.

In fact the special command J also sends the pointer to the start which illustrates
another feature of TECO: there are often a number of ways of doing the same thing. However,
most of the time there is a preferred way which is simpler than the others. For example, the
integer, n, which is used as the numeric argument of the nl command, can itself be an integer
mathematical expression. That is, (2+3)1, means move the pointer to the position numbered 5,
(i.e. between the 5th and 6th characters). Also, just as Band Z refer to special pointer
positions the command . (period or full stop, but read as "point" or "pointer") returns the
number of the current pointer position. Thus the command (. + 12)J would move the pointer
forward 12 positions from its current position.

This is quite straight forward but it is a little inconvenient and there is another
command, nC (for n ~haracters) which moves the pointer n positions forward if n is positive
and backwards if n is negative. Thus (. + 12)1 can be replaced by 12C.

8

It is more surprising that there is a command, nR, (for Reverse) which moves the
pointer back n positions if n is positive and forward n positions if n is negative. Thus 12C is
equivalent to -12R.

You should be aware of the special meanings for B, Z and. and that the numeric
argument can be an expression but you will find that, at the start, you need only know the
commands J, ZJ and nC to be able to move the pointer character by character.

If you need to know the value of a numeric argument such as Z or . you can use
the "equals" command n= (i.e. n equals) where n is the numeric argument of the = command.
This will type the value of n, the numeric argument. Thus the command . = will type the
number of characters to the left of the current pointer position. A CARRIAGE RETURN
LINE FEED combination is automatically added after the number is typed so that the
terminal printer (carriage) is left at the start of a new line after this command is executed.

The concept of numeric expressions has been introduced mainly as background
information; you won't need to use expressions in simple TECO editing. However, if you
intend to use them you must read the later section which describes their use in detail. Express­
ions in TECO-II are fairly straightforward but in TECO-10 there are (very) unusual features.
Only one of these is of immediate concern.

In TECO-l Q} a space in a numeric expression is equivalent to a + operator. It
must have seemed a good idea at the time. The (indirect) requirement that this imposes is that
you should not use any SPACE characters in, or immediately after, numeric expressions. This
means that a SPACE must not be used between a numeric argument and the following
command. That is, Z J is not the same as ZJ. The safest approach is to apply this rule to all
forms of TECO. This way you will avoid any risk of confusion in changing between TECO-if/)
and TECO-Il.

LINE ORIENTED MOVEMENT COMMANDS

It is often preferable to examine files line by line rather than character by character.
TECO can be instructed to operate on this basis in commands which examine the characters
one by one until a LINE FEED character is identified. This is taken to mean that the end of
one line (and the beginning of the next) has been found. For example if n is positive the
command nL (for Lines) moves the pointer to the position immediately after the nth LINE
FEED after the current pointer position. That is, if the pointer is currently somewhere in a line
of text the command L (or lL) moves it to the position just before the first character of the
next line.

If n is negative the pointer is moved back to the beginning of the nth line before the
current line. The command Q} L moves it to the start of the line in which the pointer is
currently located and -1 L (or -L) moves it to the start of the preceding line.

Actually, as well as LINE FEED the characters FORM FEED and VERTICAL TAB,
which also advance the output device by a number of lines, and also the end of the buffer, are
considered by TECO to define the end of a line.

Thus, with the commands J, ZJ, nC and nL you can move the pointer all over the
buffer. The next problem is that of checking the location of the pointer.

TYPE-OUT COMMANDS

With a printing tenninal the way to find out where the pointer is located is to type
out part of the line in which it is currently located. The command nT (for lype-out) works a
bit like nL although it does not move the pointer. Thus for positive n, the command nT types
out everything between the current position of the pointer up to (and including) the nth LINE
FEED after it. The command T (or 1 T) types the rest of the current line.

9

For negative n, the command nT types from the start of the nth preceding line up to
the pointer and thus the command -1 T (or -T) types the previous line and current line up to
the pointer and 0T types from the start of the current line up to the pointer.

If you had a file:

ABCD
EFGH
IJKL

and you didn't know where the pointer was you could give the command T. If the result was
that the terminal typed out

FGH

you would know that the pointer is between the E and the F in the second line.

Most of the time you will be content to start typing exactly at the pointer and to
stop exactly before the start of a line (n positive). However, you don't have to do this. The
command (m,n)T (where m<n and both are positive integers) types everything from the m +
18t through the nth characters in the buffer (without moving the pointer). This is not a general
construction; it only works with certain specified commands, one of which is the T command.

This fOlm of the command is usually used in conjunction with commands such as B,
Z and . which return a numeric value, for example, (B, .)T (read as "Type out from beginning
to the pointer") or (., Z)T (read as "Type out from pointer to the end of the buffer"). A
command such as (37, lqJ5)T, using explicit numeric values must be very unusual. For
example, you may well wish to type out the whole of the text in the buffer (without moving
the pointer). This can be done with the command (B,Z) T. In fact this is so common that the
numeric argument pair B, Z (or qJ,Z) is given the special symbol H (for wHole buffer) so that if
you want the whole buffer typed you give the command HT.

The numbers m and n in the argument pair m,n can themselves be integer express­
ions. Thus the command ((. -1), C. + 1))T would type out the character before and the character
after the pointer. Another way you use this would be to type out a specific section of the text.
First you would move the pointer to the position immediately before the start of the section
to be typed and give the command. = which would type out the number of this pointer
position, e.g. 346. Then you could move the pointer to the position immediately after the end
of the text to be typed and give the command (346, .)T which (in this example) would have
the desired effect.

You should understand that the T command causes just those specified characters
from the text buffer to be typed. If these do not include CARRIAGE RETURN and LINE
FEED characters then these actions will not be produced on the terminal. Type-out starts
wherever the last terminal typing action left the carriage; it does not in general start or end on
a new line.

For example the two commands (l)T, which types from the start of the line to the
pointer, and T, which types the part of the line after the pointer, can be combined to type the
whole line. That is, qJTT types the whole line with no indication at all of where the pointer is
located within it.

In TECO-ll the command nV (for yerify) types out Cn-I) lines on either side of the
pointer. This command is equivalent to (I-nnnT and the command V is thus the same as (l)TT.

TECO-ll also provides an automatic form of the Verify command. TECO is set to
do this by the "enabling" command nEV mnable Yerify). If n is equal to zero this option is
not operative. This is the initial (default) value which applies when TECO is entered. If n
changed to a non-zero value with this command a portion of the text around the pointer is
typed out automatically before the asterisk prompt character which signifies that TECO is
ready to accept more commands. The command EV with no argument returns the current
value of the setting (the last n given).

10

If n is equal to -1 the current line is typed out; if n is in the range 1 to 31 the
current line is typed out with a LINE FEED immediately after the pointer position. If n is
greater than 31 the current line is typed out with the ASCII character whose (decimal) code is
equal to n immediately after the pointer position. You can also choose to type out (m-I) lines
on either side of the current line as well with the command (m*256+n)EV where n is as
described above.

This keeps you informed of where the pointer is after every command execution and
is the next best thing to V.D.U. version of TECO. However, you really need a fast terminal to
use it; if you use a ten character per second printing terminal you will probably find it too
slow (and wasteful of paper) since with only a little practice you will find that in many cases
type-out is redundant. It is very useful while you are learning.

You don't need to remember the ASCII codes. The command @ x (CONTROL­
CARET, or CONTROL-UPARROW, x or, on some terminals, CONTROL-SHIFT-N x) returns
the ASCII code of the character x. The characters commonly used with this command to show
the pointer position are LINE FEED, PERIOD (FULL STOP), read as "point" and EXCLAM­
ATION POINT. Thus to set TECO to type out the current line with an exclamation point
(exclamation mark) after the pointer position the command ctD lEV can be given.

TECO-ll provides for the reverse of the @ x command. The command:

n@
types out the character whose (decimal) ASCII code is n.

The FORM FEED command can sometimes usefully be given before a type-out
command. This is simply the form feed character (CONTROL-L). In TECO it is echoed as a
few line feed characters to avoid needless waste and when you type FORM FEED the paper
advances a few lines. The advantage is that when this command is executed the same action
occurs. If you give the three commands:

@
(note the line feed actions produced)

HT

the whole buffer will be typed out clearly separated from the other typing on the page. This
gives you a clean copy of the text. It is shown later in this chapter how you can enter the
FORM FEED command without having the corresponding action echoed.

If you add the commands nT and HT to J, ZC, nC and nL you will be able to move
the pointer around, check where it is and type out the contents of the buffer. However, you
won't yet be able to do anything to the contents of the buffer.

TEXT DELETION

The essential things to do with the text in the buffer are to delete unwanted
portions and to add new sections. The first of these operations can be done with the command
nD (for .Qelete) which for positive n deletes the n characters immediately following the pointer
and for negative n deletes the n preceding characters. Deletion is exactly what happens; the n
characters are removed and the string of text in the buffer is closed up so that the pointer is
left between the two characters either side of the deletion. Remember, a SPACE is an ASCn
character, just like a letter.

TECO includes a line-oriented deletion command nK (for Kill) which for positive n
deletes all characters from the pointer up to and including the nth following line feed character
and for negative n deletes from the start of the nth preceding line up to the pointer. The line in
which the pointer is currently located can be deleted in two ways. If the pointer is already at
the start of the line the command K (or lK) will do the job. If the pointer is not at the start of
the line you could first give the command ~L followed by the command K. Alternatively you
could give the command 0K which deletes from the start of the current line to the pointer and
then give the command K which completes deletion from the pointer to the end of the line.

11

The K command is one which takes the alternate form (m,n)K and thus the
command HK will delete all the text in the buffer. In TECO-ll the command (m,n)D is
allowed as an alternative to (m,n)K. The (m,n)K and (m,n)D commands automatically include
the command mJ; the pointer is always left at the deletion.

COMMAND FORMAT AND THE ESCAPE KEY

Now that you know how to move the pointer around the buffer and how to type
out its contents and delete unwanted sections only one more command is required to complete
the basic set of commands for changing the contents of the text buffer. This is the command
to insert new characters. To do this you will have to type (on the terminal) the string of
characters to be inserted. This however, raises a number of points which must be considered
before the details of text insertion are given.

When you type a command on the terminal keyboard it is not, in general, executed
immediately. This has been implied in examples already shown, such as ZJ, in which a number
of commands have been combined. The compound command is not executed by TECO until
you indicate that it is complete. In many other system programs execution starts when you
type a CARRIAGE RETURN. This is not a suitable character to use in TECO because when
you come to insert text into the buffer you will wish to include CARRIAGE RETURN
characters and you will not want this to initiate execution.

The solution used in TECO is to use the special ASCII character called ESCAPE. It
is also called ALTMODE or PREFIX on some terminals. It generally has its own key (marked
ESC, ALT or PRE) but can also be entered as CONTROL-[(CONTROL-SHIFT-K). The
function of this command, which is interpreted immediately it is entered, is to alter the
current mode of interpreting characters entered from the terminal. In other words it signals the
computer to "escape" from the current mode of interpretation. The ESCAPE character is not
a printing character on most terminals but TECO is set to echo a $ character whenever
ESCAPE is entered. In these notes this echoed symbol is written ® to distinguish it from the
actual $ sign.

A single ESCAPE signifies that a command is complete. You could type a ® after
each complete command (e.g. :J ® 3T ® ®) but in fact this is unnecessary and generally
not done since there is no change in interpretation involved. If you type ® after a numeric
command such as Z, it is treated as complete and does not act as a numeric argument. The
main use of the single ESCAPE will be illustrated in connection with insertion of text.

Double ESCAPE, that is typing ESCAPE immediately followed by another ESCAPE,
signals that the whole group of commands is to be executed. Execution starts immediately the
second ESCAPE is typed. The double ESCAPE resets the terminal to the start of a new line so
that the first type-out command will appear on a new line. This is not necessarily true of
subsequent type-out commands. The asterisk prompt character which signals that the previous
commands have been executed and that TECO is ready to accept more commands does not
necessarily appear on the start of a new line; it is simply typed at the position of the terminal
carriage at the end of the last type-out operation.

For example, the text buffer contains:

ABCDEF < cr> <If>GHIJKL< cr> <If>

The following terminal record is produced:

:JLTJ3C(j)T®®
GHIJKL
ABC*

TEXT INSERTION

The description of the ESCAPE character should make the operation of the
insertion command reasonably clear. This command has the form

I ... text ... ® Cl stands for Insertion)

12

and its effect is to insert the string of characters denoted ... text ... into the text buffer
immediately to the left of the pointer so that the pointer is located immediately after the last
character inserted. The stling .. , text ... is referred to as a text, as distinct from a numeric,
argument. In this case it is the argument of the I command.

When the I is encountered during the execution of a command string TECO changes
its mode of interpretation so following characters are interpreted as text to be inserted and not
as commands. A "T" is simply the letter T and does not stand for the type-out command. This
mode continues until an ESCAPE character is encountered in the command string. When this is
met the mode of interpretation reverts to the normal condition in which characters represent
commands.

With the exception of a few special characters which will be described later, all
characters lying between the I and the ® are inserted into the text in the buffer. This includes
SPACE, CARRIAGE RETURN and LINE FEED characters which should, therefore, only be
used when it is intended that they should be entered into the buffer.

As an example of this command, if the pointer is currently in the line ABCDE<cr>
<If> as shown:

:'T®®
CDE
.!.

The following command:

~JXYZ ®0TT ®® will produce:

ABXYZCDE

Since all insertions take place immediately to the left of the pointer, insertion
commands can be written in series with no difficulty. For example,
:IA ® IB ® IC ®® has the same effect as
:IABC@®

With TECO-10 alphabetic characters are inserted in exactly the same case (i.e. upper
or lower) as they are typed. However TECO-l1 makes all insertions into the text in upper case
form regardless of how they are typed on the terminal. There is, however, a way of inserting
lower case letters which will be described later.

If you are inserting a large block of text it is a good idea to limit insertions to about
ten to fifteen lines at a time. As has been shown, there is no problem in doing so and this
practice can avoid a couple of things which sometimes cause trouble (such as overfilling the
command buffer). These are unlikely events but it is not much fun to have to retype a very
long command. You will find that it pays to be fairly conservative when learning TECO.

You must expect to make (at least) a few typing errors when giving long commands.
These can be corrected, provided you see them, before the command string is executed by
using the command editing techniques which will be explained shortly.

COMMON INSERTION ERRORS

One of the commonest errors made by beginners occurs when inserting a new line.
To do this the pointer is placed between the <If> character at the end of the line before the
insertion, that is, before the first character of the line which will follow the insertion. If you
forget to type <cr> at the end of a string of characters which forms the new line you will
simply add these at the start of the line which was meant to follow the inserted line. If you
have the following text in the buffer with the pointer between the first LINE FEED and the
D:

ABC<cr><lf> DEF<cr><lf>

and you wish to insert the line XYZ between the two lines you should give the command

:IXYZ<cr> «If> is added automatically)

®
If by mistake you type IXYZ ® the command HT will reveal:

ABC
XYZDEF

This also reinforces the recommendation that you should frequently use the T
command to check that the changes you desired were actually carried oU,t.

13

Commands which are followed by a text argument string (I is the only one mention­
ed so far) must always be terminated with @ . The command

':IABC CI> OT ~
will insert ABC and type from the start of the line to the pointer. However, the command
:IABCOT CD])
will insert ABCQT and not type anything. Almost every TECO user will make such a mistake at
some time.

A potentially more disastrous error results if you forget to precede the string to be
inserted with the letter I. This is quite easy to do. The result is that the characters to be
inserted are treated as commands and since almost every character on the keyboard is a
command of some kind (only a few have been mentioned so far) various unintended
operations will be performed until an invalid command is encountered. An error recovery
technique which will allow this mistake to be corrected, if you recognize immediately that it
has occurred, will be described in a later chapter.

Only the user can guard against these errors.

COMMAND EDITING

As you have probably realized, when you type commands on the terminal they are
stored in a buffer (the command buffer) until the double ESCAPE starts execution. While
awaiting execution these commands can themselves be edited. After all, you will inevitably
strike the wrong key sometime. In fact it is most important that you develop the rigid auto­
matic habit of checking (not just looking at) the command string before you strike that second
ESCAPE. The few seconds required are nothing in comparison with the time and effort
involved in recovering from unintended commands.

The simplest command editing character is the RUB OUT key. When you strike this
key the last character entered through the terminal is deleted from the command buffer and
TECO echoes the deleted character on the terminal. If you strike the RUB OUT key again the
character which is now the last in the command buffer will be deleted and echoed. You can
delete the entire command by repeatedly striking the RUBOUT key. If you type:

':J2L3T and then type RUBOUT twice, the terminal record will show:
!J2L3TT3 and the command in the buffer will be:

:J2L

You should note that double ESCAPE is a special combination which has its special
significance of signalling the start of execution only when entered as two consecutive
characters from the terminal. You could place two consecutive ESCAPES in the command
buffer (e.g. by typing one ESCAPE followed by an arbitrary character which you then delete,
and then a second ESCAPE) but this will not start execution. In TEeO-1I it has no signific­
ance at all. However in TECO-l Q, when this combination is reached during the eventual
execution and any commands which may have been entered after it will not be executed. For
example, the command:

':J3qn (!) x RUBOUT ~ ® T ®@ , where x is the arbitrary (deleted) character, will type
only the first three characters in the text buffer. The command T is not executed.

14

The CONTROL-U (@) character provides a more powerful deletion function than
the RUBOUT key. This character deletes everything in the command buffer back to (but not
including) the last CARRIAGE RETURN LINE FEED combination. If you want to delete
back past this point you must give a RUBOUT to delete the LINE FEED. Another @ will
then extend the deletion back to the CARRIAGE RETURN LINE FEED combination before
that. Changes to the command buffer can only be made by successive deletions working back
from the last character en tered; there is no direct way of making a change in the middle of the
command without going through this process.

You can delete the whole command string by typing enough @ characters (with
RUBOUTS as required). Com~te deletion is signalled when TECO types another prompt
asterisk on the terminal. The ~ character does not echo the deleted characters.

A command string which has been extensively altered can be very hard to read. The
echoeing of deleted characters can be quite confusing. However, the combination @ SPACE
(@ gives an audible signal on the terminal) causes TECO to type out on the terminal the
current version of the last line of the command string. This is a "clean" version with no echoed
characters from the RUBOUTs you may have used. Everything in the command buffer from
the last CARRIAGE RETURN LINE FEED combination to the end is typed out.

In TECO-ll (only) the current version of the whole command buffer back to the
asterisk prompt character can be typed out with the @* combination.

If you have managed to make a complete mess of the command string and consider
that it would be better to start again the easiest thing is to type the combination @@ .
This aborts the entire command and you are free to start afresh. This is not exactly the same as
actually deleting everything in the command buffer but in this context it has the same effect.

It should be noted that these editing characters are not themselves included in the
command string. Neither do they have any effect on the pointer or the text buffer.

MORE ON COMMAND FORMAT

Commands can be written as a long continuous string. This is not, however, a good
practice; some formatting of command strings is very desirable.

Except in text argument strings where every character, except control characters, is
included as text, the three characters CARRIAGE RETURN, LINE FEED and SPACE are
ignored (with an exception described below) in the command string. Thus individual
commands can be separated by blanks and command strings can extend over several lines. As a
rough guide, write your commands in groups as you would say them. For example, "Jump to
start, type a line, move on two lines and type it" would be typed as JT2LT<space>. If the
command is too long to say comfortably it is too long to write without a break. As a guide you
should probably have a space after every three to six characters in a control string (except for
text arguments). Until you gain experience you should not put too many commands in one
command string. If, with experience, you write longer command strings use a new line after
every, say, five or six such groups.

The command string

:: JT2LTZJ-LTJ3LKT@®

is easier to understand in the following form

::JT2LT ZJ-LT J3LKTa:xID

This is meant as a reasonable guide; the aim is to produce an easily checked
command. Don't separate numeric or text arguments from their commands!

Some computer systems are arranged so that if you type more characters than will
fit on one line of the terminal a local CARRIAGE RETURN LINE FEED action is produced
on the terminal but is not transmitted. You can quickly check if yours works this way. If it
does not you must strike LINE FEED to move to a new line. As mentioned above this will
only be significant if it is done in a text argument. If you have to do this and you don't want
the CARRIAGE RETURN and LINE FEED to be included in the text you simply strike
RUBOUT twice to remove the unwanted characters.

15

Rather unfortunately ® (i.e. TAB) has a special command function and cannot be
used for formatting. TAB is an insertion command:

<tab> ... text ... ® is equivalent to I<tab> ... text ... ®;
it inserts a TAB and ... text ... to the left of the pointer. Some users find it handy but it is
recommended that it should not be used, particularly if you intend to progress to programmed
TECO editing.

It has already been stressed that SPACE characters are not to be used within or
immediately after numeric expression or arguments. In contrast, ordinary parentheses,
(and), may be used freely with their usual meaning in numeric expressions. Their use is
strongly recommended in any situation involving possible ambiguity, particularly in
expressions in which negation is specified.

The parentheses which are used with the compound numeric argument, as in (m,n)T
are strictly optional, though the comma is essential. It is, however, a good idea to use them.

COMMAND REPETITION

A group of commands may be executed repeatedly by enclosing the group within a
pair of angle brackets. The opening angle bracket mayor may not be preceded by a numeric
argument (which may be an expression). A positive argument preceding the opening angle
bracket indicates the number of repetitions. For example the command 5<2CD> will delete
every third character after the pointer until five have been deleted (satisfy yourself that this is
so). This is a trivial example of the use of angle brackets but in fact they are a powerful
feature. Commands enclosed in angle brackets can be nested just as arithmetic expressions can
be nested in parentheses with the maximum depth of nesting being in the range 1 (jJ to 2(jJ levels
depending on the system. The closing angle bracket terminates the enclosed commands; a
numeric argument cannot be passed across it to the next command in the string.

The second option with angle brackets is to have the preceding argument zero or
negative. In this case all the bracketed commands are skipped altogether and execution
continues with the first command after the corresponding closing angle bracket. This is the
first command encountered which indicates TECO's capacity for conditional execution of
commands. These powers are described fully in the section on programmed TECO editing.

If any of the commands described so far are enclosed in angle brackets without a
preceding numeric argument their execution will be repeated indefinitely. To stop this process
you will have to abort the execution with the appropriate methods described below. Neverthe­
less this form of repetition has an important place in more advanced editing.

INV AUD COMMANDS

The command -101 is obviously invalid since the pointer positions are numbered
from 0 to Z. The command J(-l(jJ)C is also invalid and so is ZJl(jJC.

16

TECO executes all commands in the command string until an invalid command, such
as these, is encountered. It does not attempt to execute the invalid command but instead types
out a question mark followed by a three letter error code and a one-line explanation of the
error. Two commands are available to assist in explaining the error. Expanded explanations are
listed in the appropriate manuals.

If. after an error message is received, the command? (Question) is given as the very
next command the source of the error can be identified. Typing? (no ®® required) causes
TECO to type that section of the command string which preceded the invalid command (these
were executed) and that part of the invalid command up to and including the character at
which the error was detected and finally to type out another question mark. In TECO-l (/J the
maximum number of characters typed is ten.

For example, typing? after the command
:JT2LT5 LTZJ 1 (/JCT ®® had produced the response:

?POP ATTEMPT TO MOVE POINTER OFF PAGE (or POINTER OFF PAGE)

would cause the following type-out:

.:? LT5 L TZJ1QC? (TECO-l (/J)

.:l:.

This is very useful because it allows you to find out just how much of the command
string has been executed.

The procedure described above is that followed by TECO in default of any overrid­
ing instructions. The command lEH (for Enable Help) sets TECO so that only the question
mark and three letter code is typed after an invalid command has been encountered. The
command 2EH sets TECO to type the code and brief explanation. This is the default option.
The alternate default command is (/JEH (read as no special action).

The command EH with no numeric argument can be used to find the current error
explanation procedure. The command takes on this value and thus becomes a special numeric
argument like B, . or Z. Its value can be typed out with the = command, :EH = (00) .

In TECO-l q) the expanded explanations are also stored in a file which is accessible to
TECO. The command 3EH sets TECO to type the code, the one-line explanation and the
detailed explanation. If any other EH option is current the detailed explanation will be typed
if a slash, /, is typed after the error is detected and before any other command (except ?) is
given. Both / and? can be used (in either order) after the error is reported, provided that no
other command is given.

In TECO-Il there is no accessible file of expanded error explanations. The
command 3EH sets TECO to type out the code and the one-line explanation and in addition to
type out the command up to and including the command which caused the execution to stop,
just as if a ? had been typed.

If you do get an error message be sure to take note of it! You can get into strife if
you continue to give new commands after ignoring an error message. As will be described later,
you can recover fairly simply from some invalid commands, but only if you recognize the error
as soon as it occurs.

A point to note is that if an illegal J, C, R, or D command is given TECO can
immediately tell that it is illegal because it knows the number of characters in the buffer.
However a line-oriented command is different because TECO doesn't know how many <If>
characters are present. If you command 1 ~L and the pointer was in, say, the second last line
the pointer will move to the end of the buffer in its search for 1 ~<lf> characters but will not
move past the last position. This command is not invalid however the pointer will have moved
only to the end of the buffer. Similarly, the pointer will be moved to the start of the buffer by
an excessively large negative argument for the L command. You should make frequent use of
the T command to verify the pointer position.

17

The worst kind of mistake is an unintended command which is not invalid but
doesn't do what you want. The only way to discover such errors is to check frequently what
you have actually done. As has been mentioned, forgetting the I at the start of an insertion
command causes many problems but at least execution usually ends with an invalid command
which warns you that something has gone wrong. You get no warning if you enter two adjac­
ent numeric commands, forgetting to separate them. For example, C.Z) instead of (. ,Z) or (5.)
instead of (5+.). In this situation TECO ignores all but the last command in the string of
adjacent numeric commands. Thus (5.) is taken to be simply (.). A preceding numeric
argument before the string continues to apply. This is not invalid; there is a call for this
construction. However, if you did not intend this you are in trouble.

STOPPING

There are three main reasons for wanting to stop what you are doing when using the
TECO program. The first is the completion of the editing task; you will wish to return to the
system program. The second is that you have recognized that your command is taking a very
long time to execute and is probably in an infinite iteration; you will wish to abort the execut­
ion. The third is that you have given a command to type out an unnecessarily long section of
text; you will wish to abort the type-out.

The basic way you leave TECO is via the @ character. However the exact mode of
operation is dependent on the particular combination of the TECO version and the ~rating
system. In TECO-l~ the monitor recognizes @ characters as they are entered; Q9is a
monitor command, not a TECO-l f/J command. A single @ results in immediate return to the
monitor except when a command is being executed. In the latter case double @will abort the
execution and return control to the monitor. You can reenter your TECO job from the
monitor as described below. Aborting execution is an abrupt procedure. It is up to the user to
find out how much of the command was executed.

There is a TECO-lq) command which returns control to the monitor. This is the @
character. This command is automatically followed by a CARRIAGE RETURN LINE FEED
combination when entered from the terminal. It does not have an immediate effect in the way
@ does; instead, it is entered in the command string so that when execution of the string
reaches the @ control is returned to the monitor. The @ and @ characters have effects on
input and output which will be described in the appropriate section.

In TECO-ll @ is a command; in standard systems @ within TECO is not
recognized as a system command with an immediate function. Thus a single @ character can
be included in the command string (like the @ in TECO-lq)) to cause exit from TECO when
command execution reaches this point. CONTROL-Z is a completely different command in
TECO-II.

In TECO-II you can abort execution by typing double @. However this does not
result in exit from TECO; instead it produces the message

?XAB EXECUTION ABORTED
:.t
and leaves TECO-II ready for more commands. Again, it is up to the user to determine just
what the execution had achieved before it was aborted.

It is advisable to consult the TECO reference manuals for details of the operation of
@ . These differ from system to system. In both DECsystem-lllJ and RT-ll systems you can
return to the monitor to perform simple system commands (e.g. ASSIGN) which do not call
other programs into the core over the TECO core areas and then return to the TECO job with
no effect on the contents of the editing buffer. This is achieved with the monitor command
.REENTER. The command buffer is, however, reinitialized and any commands which were not
executed before the return to the monitor are, in general, lost. They can be accessed by a
command described later.

The contents of the buffer will be lost when you finally leave TECO by these
commands. Saving the contents by outputting to more permanent files is covered in a later
chapter.

18

If you wish to abort type-out you simply strike the @ character. This stops the
typing without affecting the execution of the command in other respects. The completion of
the execution is signalled as usual with the asterisk prompt character which appears on the
start of a new line. Occasionally the @ character will suppress the typing of this asterisk, in
which case it can be recovered by typing @ .The @ character only works this way when
entered during execution of a command string. Sometimes a command string may include a
number of type-out commands. The @ command cancels all type-out in that string (after it
is given); it does not apply only to the type-out command current when it was given. In
TECO-ll the @ command can be altered so that it applies only to the type-out command
current when it is given so that subsequent type-out commands in the same command string.
The details of the command to do this will be explained later but it can be achieved with the
command:

(ET#16)ET and can be undone with the command:

(ET#16-16)ET

This is an example of the g,nable Terminal terminal control command.

THE CARET (UP-ARROW) COMMAND

TECO allows an interesting extension of its echoing convention for control charact­
ers. Control characters which are TECO commands can be entered in a command string in an
alternate two-character form by typing CARET (or UP-ARROW) followed by the character
which would normally be struck while holding down the CONTROL key. The command
string doesn't actually contain the control character when it is entered this way; it contains
the two characters as typed. However, during execution of the command string the CARET
command signifies that the following character is to be interpreted as if it had been entered
while the CONTROL key was held down, i.e. as the corresponding control character.

As an example, the FORM FEED command described previously could be entered
as CARET/L (the alternative form is CONTROL-L). If this form is used no form- or line-feed
actions will be echoed at the terminal when the command is entered.

According to one school of thought the CARET form should be used for all TECO
commands and the CONTROL characters should only be used where they have an immediate
function (e.g. {QO. This is not a bad idea but it can only be applied fully in TECO-ll. You
should choose the convention that suits you; the CONTROL form is used here because both
TECO-l f/J and TECO-l1 are being described. A disadvantage of mixing conventions is that it
complicates command string editing. CONTROL-Z is one character and CARET/Z is two yet
both are echoed exactly alike by TECO.

In non-standard systems using TECO-ll in which @ has immediate system
command function the TECO-ll command @ must be entered in the CARET/C form.

You can actually enter an undefined command combination such as CARET/U in
the command string. However execution will cease and an error message will be given when it
is encountered; it is not a valid TECO command. In TECO-lf/J the character C, which is
normally a valid command, is not defined as a command if it follows a CARET.

SPECIAL CHARACTERS

A number of special-function characters have been described. These are ESCAPE,

~BOUT' @and@(and@inTECO-lf/J).Inaddition,thecombinations @<space>,
tG ® and @ @ also have special functions. The particular system in operation may

a so have other reserved characters.

Obviously you can't insert these into the text buffer using the I ... text ... ®
command. At this stage it is most unlikely that you would want to. However, TECO does
possess the power to handle these as if they were ordinary characters and this is described in
later sections.

19

SUMMARY OF CHAPTER ONE

This chapter has described the fundamental commands of TEeo: how to enter and
leave TEeO; how to move the pointer to the part of the text which is to be changed and
velify this position with the type-out command; how to delete unwanted text, insert new
strings of characters and verify the change with the type-out command. The commands which
will be described in later chapters perform some of these operations more conveniently but
the basic sequence of editing operations remains the same.

It has been explained that some commands may take numeric arguments and some
take text arguments (delimited by the command letter and an ESCAPE character). These
commands may be given in a long command string which may be corrected or altered before
its execution is commanded by typing double ® . Some commands move the pointer, others
have effects on the text. Some return numeric values while yet others control the execution
of the command string.

If one thing is to be stressed it is the need to be CAREFUL. Read your command
string before you type double ESCAPE. Take notice of any error messages.

fIRST TECO EXERCISE

The best way to learn is to practise. You have now been given sufficient informat­
ion to create and edit a string of text. After the appropriate system command e.g .

. R TECO <cr>
:!:.

The computer responds with an asterisk. You should then insert a string of text
and then move the pointer through it, typing out to verify the pointer's position. You should
then modify it by adding and deleting strings of characters. You need only use the commands

J, ZJ, nC, nL, nT, HT, nD, nK, HK (careful!) and I ... text ... ®
although you may like to try using such forms as (m,n)T, compound arguments such as (3+.)
and the repeated operation using angle brackets.

It is an excellent learning exercise to edit using this restricted set of commands.
You should master these although more advanced forms given later can be used in place of
some of them.

If you are using TECO-II your first command should be:

:@!EVeD® ,
*
which causes TECO to type out the current line automatically with an exclamation mark
where the pointer is. The example here shows that the buffer is empty. If you are using
TECO-liJ you should add the command (liT to the end of every command string Gust before
the ® CV). This will type out the current line up to the pointer. It is better to use (liT than T
because the former types out an insertion made to the left of the pointer.

Don't forget the I (for Insert) at the start of your insertion text argument! You
only need a few lines in the buffer for this exercise. Finally, even if it is stating the obvious,
read this chapter carefully before you attempt the exercise and write down what you intend
to do before you get to the terminal.

20

2. ADDITIONAL TEXT MODIFICATION COMMANDS

The set of commands already given is sufficient for basic editing. However there are
some other very convenient commands which you will appreciate, particularly after some
practice with the basic set.

STRING SEARCH

TECO can be instructed to search for a specified string of characters in the text
buffer and, if successful, to reposition the pointer at the end of this string. This can save you
the trouble of, say, counting the number of characters from the start of the line to the end of
the string and then giving the C command. You may have discovered that this is not at all
convenient when you are not sure if spaces are actually <space> characters or have been
entered with CONTROL-I i.e., <tab> characters.

The S (for ~earch) command has the form:

nS ... text ... @
where ... text ... represents a string of ASCII characters and n is a positive integer (assumed
to be equal to 1, if not specified). TECO searches the text which lies after the current pointer
position for the nth occurrence of the specified string, and, if the search is successful,
repositions the pointer after the last character. In TECO-1! the search string can contain up to
128 characters which are to be matched in the text; in TECO-l ~ the limit is 36 but this is quite
enough in most editing procedures.

If the string does not occur n times the pointer is moved to start of the buffer and
an error message is typed. However, if the command was given within an iteration (i.e. the
string containing the command is enclosed within angle brackets) failure is not an error; the
pointer is still moved to the start of the buffer. In TECO-II a message is typed:

% SEARCH FAIL IN ITER

but execution continues.

The S command is very convenient but you have to ensure that the search string is
sufficiently specific. If you wish to place the pointer at the end of the word THOUSAND
(which only occurs once, say) you could give the command JSTHOUSAND ® (You should
note the advisability of the J command). It would probably be sufficient to use JSUSAND ® ,
since "USAND" doesn't appear in many words. The commands SAND ® ' SND CD or SD ®
are progressively less specific and would be useless for locating "THOUSAND" in a large text.
However, even the last of these might be quite sufficient if, for example, you had typed the
part of the line after the pointer and could see that "THOUSAND" occured and was the first
word which ended with the letter D.

You should use the T commands to verify that you have located the string you
wanted.

THE FUNCTIONAL STRING SEARCH

This command, abbreviated FS (for functional §.earch), is an extension of the S
command. It has the form:

nFS ... textl ... CD ... text2 ... @
where n is a positive integer, and its effect is to search for the nth occurrence of ... text! .. .
in the buffer after the present pointer position, delete this string, replace it with ... text2 .. .
and leave the pointer positioned immediately after the newly inserted string.

If ... textl ... is not found in the portion of the text in the buffer after the present
pointer position, the search fails, no deletion or replacement occurs, the pointer is moved to
the start of the buffer and unless the command was used within an iteration, an error message
is typed.

21

The FS command takes the place of the command string: S ... textl ... (of m
characters) ® -mD! ... text2 ... ®. It executes three commands in one (and also counts the
number of characters in string 1). All multiple function commands must be treated carefully;
with a series of single function commands you are more conscious of what each command will
achieve.

Until you gain experience be wary of using this command in an iteration loop. You
can easily make an unknown number of unintended changes which you might not be able to
check without retyping the file and examining it carefully.

You can use this command to find and delete strings without replacement. However
the command FS ... text ... ® ® which accomplishes this is executed immediately because
of the double @. If you want to include it in a longer string of commands you could use
FS ... text ... ® x ® -D to change ... text ... to an arbitrary character, x, which is then
deleted. An alternative to this procedure will be described in a subsequent section.

TECO-Il allows the character @ as an alternative to the two characters FS in this
command. This is a mnemonic for Replace. The FS form will be used here.

TECO-ll allows the second part of the FS command to be executed separately as
the FR (functional Replacement) command. This has the form:

FR. " text ... @
and is equivalent to the command sequence:

-nDI ... text ... CD
in that n characters (the length of the last insertion) to the left of the pointer are deleted and
replaced with ... text ... as specified in the argument. This command is sueful if you execute
a search successfully and then realize that you should have given an FS command. This only
holds if the pointer is still at the end of the matched string and no other search commands
have been executed.

SPECIAL TECO-l1 SEARCHES

TECO-l1 provides for a number of variant fonns of the Search (S) and Functional
Search CFS) commands. The commands

-nS ... text ... ® and -nFS ... text ... ®
which involve a negative argument are similar to the positive argument commands except that
the searches proceed in the opposite direction, i.e. from the pointer back towards the start of
the buffer. If the pointer is initially in, or at the start of, the specified text string this is
counted as the first occurrence. If the search succeeds the pointer is moved to the position
immediately after the specified occurrence and if it fails the pointer is moved to the start of
the buffer and an error message is printed (same as for positive argument search).

The bounded search features are more significantly different. The commands

(m,n)S ... text ... ® and (m,n)FS ... text ... CD
in which both m and n can be positive or negative and, in addition, m can be zero, execute the
searches as defined by the sign of n but fail if the pointer has to be moved more than ABS(m)­
ABS(m)-l positions to obtain a match. If the specified occurrence of the string is found within
the specified extent of text the pointer is moved to the end of that string (this may involve a
move of more than ABS(m)-l positions). If the bounded search fails the pointer is not moved.
The special case of m equal to zero is equivalent to an nS or nFS search except that the
poin ter is not moved if the search fails.

The command:

(1, 1)S ... text ... CD
has a very useful function as a comparison rather than a search command. If the string of
characters immediately following the pointer matches the specified text then the pointer is
moved to the end of this string; if not the pointer is not moved.

22

TECO-ll also provides a convenient way of spec~ing a bounded search in terms of
a number of lines rather than characters. The command n ~ allows this. The argument n is
taken to be a specified number of line terminator characters after (before, if negative) the
current pointer position and the value returned by the <fOJ command is the number of
characters between the pointer and this line terminator. Abounded search can thus be limited
to m lines (rather than m characters) by entering it as

(m @' n)S ... text ... ®
If (f9 is not available to TECO in your system use CARET/Q.

These commands are quite useful, particularly in advanced editing. However similar
results can be obtained (though not as conveniently) in other ways. Users of TECO-l ~ manage
well enough without them.

AUTOMATIC SEARCH TYPE-OUT

The advisability of frequent checking of the pointer position has been stressed.
Inexperienced users in particular may find the automatic search type-out option useful.

This option is enabled with the nES (Enable fie arch type-out) command. This is very
like the nEV command which has been described previously but applies in both TECO-l ~ and
TECO-ll. The difference is that the type-out only occurs after a successful search and not
after every command string execution. The various forms of this command are exactly as
described for the nEV command except that the option of printing the surrounding lines is not
available in TECO-10. To summarize, the default setting is zero (no effect) and if n =-1 the
current line is typed. If n is in the range 1-31 a LINE FEED is given after the pointer and if n
is greater than 31 the ASCII character whose decimal code is n is given after the pointer
position. In TECO-ll if n=(m*256+n) (m-I) lines either side of the current line are also
printed with the pointer position defined by n in the expression. The command CfJ) x can be
used in conjunction with this command.

Thus if a line contains the characters ABCDEFG<cr><lf> and the command
SDEF (Dis given to search it for the string DEF, the following results can be obtained:

:. q)ES SCDE ®®
:. (no typeout)

:. -IES SCDE ®®
ABCDEFG (line typed)

:: lES SCDE ®®
ABCDE

FG (line feed at pointer position)

:. 32ES SCDE ®®
ABCDE FG (space at pointer position)

One of these options may suit you. Once this command is given it applies through­
out the TECO job or until it is changed by another ES command.

Automatic type-out never occurs if the search command is in an iteration loop
(enclosed within angle brackets).

The command ES with no numeric argument is used to find the ES option currently
in force. The command returns the value of the argument n which was given in the last nES
command. That is, the ES command, like the Z command, is a numeric argument and its value
can be typed with the equals command. Thus continuing the previous example:

:. ES = C!XD
32

23

SEMICOLON - MODIFIED SEARCHES

The search commands may validly be placed inside angle brackets to form an iterat­
ion loop without necessarily having a numerical argument to precede the opening bracket.
Provided that the command string does not allow the same occurrence of the string to be
found repeatedly (as it would be in the command <SABC(!)0L» the iteration must come to
an end eventually because the search string can only occur a finite number of times.

The command J< FSX ® Y ® > would certainly change every X in the buffer to a
Y but it would not end when the last search for an X failed. This is not an error condition
(because the FS command is enclosed within angle brackets), but the pointer would be moved
to the start of the buffer and execution would continue indefinitely. This can be avoided with
the semicolon command.

In the present context (the more general function of this command is described
later), the semicolon command is used to modify a search command in a command string
which is enclosed in angle brackets. This command is given immediately after the search
command to which it applies and its effect is to modify the action taken by TECO if that
search command should prove unsuccessful.

If the search which has just been completed was successful the semicolon has no
effect at all. If, however, the last search was unsuccessful all commands following the semi­
colon in the string which is enclosed by the angle brackets are ignored and the first command
after the right angle bracket (which terminates the iteration loop containing the semicolon) is
then executed. The movement of the pointer is the same as for normal searches.

This procedure provides the correct way to change every X to a Y. For example, you
may wish to make this change, return the pointer to the start and then type the whole text.
This can be achieved by the command J<FSX ® Y ®;>JHT. When the last X is found it will
be changed to a Y and, since the last search was successful the enclosed search command is
repeated. This time the end of the buffer will be reached and no X will be found and, since the
search has failed, the next command executed will be J followed by HT.

The same could be achieved by the command J<SX ®;-DIY ®>JHT. Note that
the semicolon is placed immediately after the search command which it modifies.

The semicolon command is used only within angle brackets. It provides the correct
way of terminating an indefinite search loop; it also suppresses search failure warnings,

As another example, the following command types out every line in which the word
READ occurs at least once J < SREAD CD ; ~L TL>. The final L inside the loop advances the
pointer to the next line after the first occurrence of READ in the line has resulted in the
typing of the line. If this L command was omitted the first line containing READ would be
printed repeatedly until you stopped the nonsense by typing @ @ to abort execution
(then REENTER TECO-l(i)).

THE Q-REGISTERS

TECO uses another part of the computer core, in addition to the text buffer, for
storage of text. This is called the Q-register buffer. There are 36 Q-registers each of which is
given a single character name using the letters A-Z and the numbers f/J-9. In general the Q­
register name will be referred to by the letter "i". A very useful feature of these Q-registers is
that they can be used for storage of portions of text for later recall to the text buffer.

The Xi command (for teXt copy) copies text from the text buffer into Q-register i.
In the form of its numeric arguments the Xi command is similar to the T command in that nXi
copies all the text from the pointer through the nth following end of line character into Q­
register i and (m,n)Xi copies from the m+ 1 8t through the nth character into Q-register i. It
follows that HXi copies the whole buffer into Q-register i; HXi is equivalent to (f/J,Z)Xi.

24

The buffer pointer is not moved by the Xi command and the text in the text buffer
is not altered in any way. However, the previous contents of Q-register i, if any, is deleted
before the next text is copied. The only limit to the amount of text that can be stored in
Q-registers is the amount of computer core space.

The notation Xi really stands for 72 different commands. The letter i is replaceable
with 36 alphanumerics (alphabetic case is not significant) and each of these commands can be
written in either the n lines form or the (m,n) characters form. The letter i is not an argument
of the letter X~ it does not have to be terminated with an ESCAPE.

The Gi command (for Qet copy) copies the contents of the Q-register i back into the
text buffer. There are no arguments associated with this command. The command Gi simply
inserts a copy of the text in Q-register i immediately to the left of the current pointer position.
After the insertion the pointer is located immediately after the end of the inserted text. The
contents of Q-register i are not altered.

The Xi and Gi commands provide by far the easiest way of re-arranging parts of a
file. For example, you may have a file with three sections and you wish to interchange the first
and third parts. One way to do this would be to copy section one into Q-register A and delete
section one in the text buffer. The pointer could then be moved to the end of section two and
section one could be inserted here with the command GA. Section three could then be copied
into a Q-register (you could use Q-register A again) and this section could be deleted from the
text buffer. The pointer could then be moved to the start of the buffer and section three
inserted here from the Q-register used to store it.

The Q-registers are a very powerful feature in TECO and other aspects of their use
will be described in subsequent sections.

SAVING COMPLETED EDITING

It is a safe practice, especially when learning TECO, to copy, from time to time, the
whole of the text buffer into a Q-register with the command HXi. If this is done regularly you
will always have a copy of the text, with all but the last few changes, available for copying
back into the text buffer in case of a disaster such as an unintended HK command. You need
only use one Q-register for this as all you need is an updated edited version.

This procedure requires that you have adequate computer core available for your job
but this should be the case since, as will be seen in the section on TECO input and output,
there is no need to keep large amounts of text in the buffer. In fact, you should not do so.

DiRECT ENTRY TO Q-REGISTERS

In both TECO-l (jJ and TECO-II text can be copied from the command buffer to the
Q-registers. The primary use of this feature is in the storage of commands for repeated use
(described later) but it can also be used to transfer text to the Q-registers without going
through the procedure of inserting it into the text buffer, copying it to a Q-register and finally
deleting it from the text buffer.

The characters entered in the command buffer are not classified into commands and
text; this only occurs during execution, which is started by double ESCAPE. Thus, text to be
stored in a Q-register can be entered directly into the command buffer (after the prompt
asterisk has been received). Now, if the "command string" is aborted by typing @ @ the
characters which had been entered are not deleted (this was mentioned previously) but are
retained until overwritten by subsequent entries into the command buffer. If the first
command given after the asterisk prompt character which follows the @ @ is *i (copy
from asterisk) the retained characters are copied to Q-register i. Note that the asterisk prompt
will not serve as the first character of the command; you have to enter another.

25

In TECO-l (jJ *i can be followed by other TECO commands in a command string, the
execution of which is signalled by typing ®®. In TECO-l1 it is executed immediately (like
the? command after an error). This means that you must be careful to specify the correct
Q-register the first time; there is no chance to edit this command. If you make a mistake you
will overwrite the contents of the wrong Q-register.

TECO-Il provides a more conventional way of entering text into the Q-registers
directly. This is through the tUi (lIpdate Q-register i) command. This must be entered in the
CARET/U fonn because CONTROL-U will delete the current line in the command buffer. This
command takes the form:

tUi ... text ... ®

where ... text ... represents the string of characters which are copied into Q-register i
(overwriting any previous contents). This form has advantages in programmed editing.

EXAMINING THE Q-REGISTERS

The basic way of examining the contents of a Q-register is to copy it into the text
buffer and type it out on the terminal. This is the only way in TECO-l (jJ. It is a little inconven­
ient if this text must then be deleted from the buffer and in this case the easiest approach is to
copy the whole buffer into a spare Q-register and delete it before getting and typing-out the
Q-register you want to examine. This can then be deleted and the original contents of the
buffer can be retrieved. The pointer will be left at the end of the text.

In TECO-ll a much more convenient operation is defined. The command :Gi
(modified Qet Q-register i) types out the contents of Q-register i on the terminal without
copying it into the text buffer or moving the pointer. The command :Qi returns the number of
characters stored in Q-register i (but does not type it out). The command @ returns the total
number of characters stored in all the Q-registers (it has a different function in TECO-l 0).

SPECIAL TECO-l1 BUFFERS

In TECO-l1 the most recently entered search command text argument is stored in a
special buffer and can be used in three ways. It can be inserted into the text buffer to the left
of the pointer with the command G_ (Get UNDERSCORE) or, on some terminals, G+-- (Get
BACKARROW). It can be typed out on the terminal without being entered into the buffer
with the command :G_ (or :G+--). Finally, it may be implied in search commands.

If a search command such as S, FS, (m,n)S etc. is entered without a text argument
TECO assumes that the last search command text argument entered also applies to this
command. For example, you may have given the command:

:JSDOGS®®

and having found the first occurrence of "DOGS" have realised that you should have found
the third occurrence. You could then give the command:

:2S®®
and so achieve the desired result. This also works in TECO-10 but the stored string is not
accessible.

TECO-l1 also stores the negative of the length of the most recent insertion, text
string or successful search test string. The insertion may have come from an I command, a G
command, an FS command, an FN command (described in a later section) or an FR command.
This information can be used in conjunction with the FR (Functional Replacement) command
for correcting an unintended insertion. However you have to recognize that an error has been
made before you make another insertion or search. You must also ensure that the pointer is
positioned at the end of the incorrect insertion.

26

The actual number of characters involved in the last insertion can be ascertained
with the @ command which returns the negative of this number. The command

FR ... text ... CD
is thus equivalent to

@D I ... text ... ®
If it is desired to return the pointer to the start of the insertion which has just been made the
command:

@C
can be given.

The command @ is equivalent to the argument:

(.+ @,.)
That is, it is the (m,n) argument which covers the part of the text involved in the last insertion
or successful search, provided that the pointer is at the end of that string. If you have made an
insertion in the wrong place and if you recognise the error before you make another insertion
or successful search and if the pointer is at the end of the insertion (and if you remember the
commands) you can give the command string:

@XiFR®

to store the wrongly inserted string in Q-register i and delete it from the text. On the whole it
is preferable to remember to check what you're about to do before starting execution of a
command string. Prevention is a lot better than cure.

In addition to these, TECO-l1 also stores the most recent file specification. This is
described later in connection with TECO input and output.

These features are not available in TECO-l 0.

SECOND TECO EXERCISE

You should now repeat the things you have tried in the first exercise using addition­
al commands. Insert some text (you could copy a few sentences from these notes) into the
buffer and modify it.

The set of commands suggested previously was

J,ZJ,nC,nL,nT,HT,nD,nK,HK and I ... text ... CD.

These should now be supplemented with the commands

S ... text ... ® ' FS ... text 1 ... ® ... text 2 ... (]) , Xi and Gi.

You could start off by making a copy of the text you insert into the buffer using the
Xi command, if a disaster should occur a fresh copy can be obtained with the Gi command.

You should certainly try angle brackets and the semicolon modifier in this exercise.
Numeric argument pairs and compound argument expressions may be tried as an optional
extra.

With this set of commands you will be able to tackle quite complex editing
problems. You'll also be able to make some monumental errors - this is part of learning.

The main deficiency at this point is that you haven't been given the commands
which allow you to transfer text from the buffer to a stored disk file and vice versa. This is
dealt with in the next section.

3. TECO INPUT AND OUTPUT

All the editing commands given so far make changes to the text in the buffer. The
end purpose of this is always to create an output file in which the modified text is stored.
Often the original text is entered from an input file in which it has been stored previously.

27

If you don't understand the input and output commands you will not be able to use
TECO effectively.

TECO OUTPUT

You have by now learnt how to insert and modify text in the buffer. It is approp­
riate that you should now learn how to store the contents of the buffer so that they are not
lost on exit from TECO. In general this involves three operations. First TECO must be told
where the buffer contents are to be placed. Second, the buffer must be copied. Third, the
completion of storage must be indicated. Note that the output operation is one of copying;
the buffer contents remain unchanged.

The first of these steps is controlled by the EW cgnable Write) command. This has
the form:

EWfilespec ®
where the text argument, filespec, specifies the device on which output is to take place and the
name to be given to the file created. The precise form of the filespec is system dependent and
involves optional elements; the appropriate reference manual should be consulted for details.
Every character between the EW and the ESCAPE is taken as the text argument (i.e. filespec).
There can be no spaces between EW and filespec in TECO-ll ; they are allowed in TECO 10.

All systems allow a form of filespec:

dev: filename.extension

in which dev: is the name of the actual device on which the operation will occur e.g. DXl: for
the disk unit number 1 or TT: for the terminal printer. If the device is not file-structured
(e.g. a printing unit) dev: is sufficient identification. However, with file-structured devices
(e.g. disks), where a number of files may be stored together it is also necessary to specify the
name given to the file as an identification (filename. extension). If such a file is to output on
the current default device there is no need to include dev: in filespec.

Users of DECTAPE or magnetic tape should also consult the reference manual.

The EW command does not actually perform any output operations. Furthermore
only one file at a time may be open for output. In TECO-l f/J an EW command automatically
closes any output file previously enabled. In TECO-l1 the open file must be explicitly closed
or reference to it must be deleted (killed) before another EW is valid.

OUTPUT OPERATIONS

The fundamental output operation is specified by the command (m,n)P (for
outEut). This is a copying operation (like (m,n)Xi) and does not affect the buffer or the
pointer. When the command:

(m,n)P

is executed the m+ 1 st through the nth characters are copied to the currently enabled output
file as specified by the latest EW command. If this file is left open subsequent output
commands will append the specified output to the previously output text in this file.

The command HP copies the whole of the text buffer to the output file since His
equivalent to (0,Z),

28

As will be explained, it is desirable to separate the text in large files into "pages"
with the FORM FEED character. This can be done by entering FORM FEEDS into the buffer.
However, if it is desired to output the whole of the buffer with a FORM FEED appended this
can be done directly with the special output command PW (outEut With FORM FEED).

Should the buffer be empty when the command PW is executed it will not copy a
blank page to the output file. If you want to do this you will have to insert a FORM FEED in
the buffer explicitly.

The command nPW will execute the PW command n times. That is, it will copy the
buffer, with a FORM FEED, n times in the output file and leave the buffer unchanged. To
repeat the HP command n times it is necessary to use the command form:

n<HP>

The command (m,n)PW is equivalent to (m,n)P. No FORM FEED is appended. This
is for information only; it is preferable to reserve the PW command for the Put With function.

OUTPUT FILE CLOSURE

When output to a file is complete it is necessary to close it. This is particularly
important with file-structured devices because a file which has not been closed is liable to be
overwritten by subsequent operations on that storage unit. File closure can be specified
explicitly with the command EF (.End file). No filespec is required because it only operates on
the currently open output file.

In TECO-10 every EW command automatically closes any currently open output
file.

PROBLEMS WITH TECO OUTPUT

The EW command is interpreted in TECO as meaning that a new file with the
specified filespec is to be written. You cannot open an existing file to receive more output. To
achieve this you have to input the old file to the buffer (described later), output it to a new
file, append the additions, close the file and finally, if necessary, rename with the old name
outside TECO.

If an EW filespec refers to an existing file a warning message will be typed:

% SUPERSEDING EXISTING FILE

If this is unintended and not wanted you must take action immediately. This brings out the
point that it is a good idea to give EW commands singly. If you give the command

EWfilespec CD (output commands) EF

the message will be given but it will be too late; the warning is not an error message and the
file will be over-written with the EF command.

Recovery from this condition in TECO-l~ is a little complex and requires commands
which have not yet been discussed. In TECO-ll recovery can be made directly with the EK
mdit Kill) command; this leaves the file which is being superseded intact. A new output file
can then be selected. It is important not to give an EF or EW command before this problem
has been resolved. These commands will replace the old file with a new empty file of the same
name. Recovery from this can be difficult.

The exception to this occurs with RSX-ll. If the EW filespec includes a version
number explicitly (by default the latest version is assumed) then any previously existing file
with that specification is deleted from the directory at once. There is no recovery process short
of examining the whole file storage device. The reference manual describes how TECO handles
version numbers.

29

The TECO-il EK command completely undoes the most recent EW command
(provided that the file hasn't been closed). After an EK command the output file will not be
listed in the storage device directory, even if output has already been made to it. An existing
file of the same name will not be superseded. After an EK command that file can be reopened
with another EW command. The EK command can be used to kill an unclosed file when, for
example, the wrong output has been made to it. There is no provision in TECO for deleting
closed files.

An output file should not be closed prematurely. If a file has been closed it is not
possible to append to it directly. You will have to copy the additional material to another
output file and merge it later using input commands. In addition, it is not possible to delete
material from an output file selectively without inputting the file to the TECO text buffer.

The commands given to this point allow the creation and storage of new files. In
TECO-l~ this common situation is provided for directly with the monitor command:

.!-MAKE filespec <cr>

which is equivalent to:

-=-R TECO <cr>

':EWfilespec CD
In TECO-ll under both RSTS/E and RSX-ll the equivalent system command is:

MAKE filespec < cr>

In TECO-ll under RT-ll the situation is a little different in that TECO is not the
default editing program but in general is specified by the switch

/TECO

entered after an EDIT command (e.g. EDIT/TECO). TECO can be made the default editing
program with the monitor command:

. SET EDITOR TECO <cr>

and when this is the case the /TECO switch can be omitted. Assuming that this has been done,
the equivalent to the MAKE commands discussed above is:

. EDIT/CREATE filespec <cr>

TECOINPUT

So far the only way described of entering text into the buffer is through the
terminal. This has been sufficient for the creation and subsequent storage of new files.
However, the major use of TECO is in the editing of existing files. To do this the file which is
to be edited must be copied into the text buffer; this is the only place where the text can be
altered. This is done with the TECO input operations; the act of copying a file into the buffer
is usually called reading. The input file is in no way affected by any of the TECO input
operations.

Before a file can be read into the text buffer it must be specified so that TECO
knows where to look for it. The ER (for Enable Read) command does this. It has the form:

ERfilespec ®
where filespec follows the rules described in connection with the EW command.

The ER command doesn't actually perform input; it enables TECO to perfonn input
from the specified file with subsequent commands. It does, however, terminate input from any
previously specified input file. Thus only one file can be used for input at a given time. An ER
command referring to the current input file re-sets it at the start.

30

PAGES

It is not necessary to copy the whole of a file into the text buffer at one time. The
buffer is an area of the computer's core (memory) and it is wasteful to use too much of it.
Besides, the input file will frequently be too big to fit in its entirety. Essentially there is no
problem in editing large files with a small buffer; you read in part of the file, edit it in the
buffer, output the corrected text to a new file, read in the next part and so proceed until
whole file has been dealt with.

This is how TECO works and if you plan your editing carefully it works well. The
problem in practice is that reading a file is not like leafing through a book; you can't go back.
TECO input is a one-way process. When text is copied into the buffer from the input file you
may imagine that a pointer is moved through the file keeping track of how much of it has been
read. This pointer can only move forward through the file. If you have entered and edited part
of the input file and then, for example, have unintentionally deleted the whole contents of the
text buffer (and you haven't saved it in a Q-register) you can't immediately re-read the part
you've lost. You have to go through an error recovery process which involves repeating some
of what you had done before the mistake was made.

Within this mode of operation TECO works most efficiently when the number of
characters in the text buffer does not exceed about 4(/)(/)O, or alternatively, when the buffer
contains a maximum of 50-60 lines of text. This is equivalent to a conventional page of printer
output. It is, in any case, convenient to divide files into pages (pages are separated by a FORM
FEED character) to improve their readability when printed. In TECO page divisions in the
input file are used to keep the amount read into the buffer with each input operation at
around the optimum.

It is up to the user to reduce the text stored in the buffer from time to time with
output commands. If you don't delete or output text you can certainly use up all the available
core space. This is expensive and wasteful in itself and generally slows the editing process.

It is best if input files are divided into pages of 60 lines or less but TECO will handle
files which are not divided into pages. This is explained under input operations. If desired
TECO can be used to divide a file into pages. It may be worthwhile doing this as a preliminary
to the real editing task.

INPUT OPERA nONS

The basic TECO input command is the A (Append) command. This copies text from
the input file and appends it to the current buffer contents. If the input file is divided into
pages the Append command reads one page.

When TECO reads a page everything down to, but not including, the FORM FEED
which marks the end of the page is copied. The FORM FEED never enters the buffer however
an internal variable (flag) is set to show that the last input was terminated at the end of a page.

Since the end-of-page FORM FEED does not enter the buffer pages can be merged
there directly. The A command does not take a numeric argument; nA is a different command.
To append (and merge) n pages the command:

n<A>

must be used. After such an operation attention should be given to the size of the text buffer.

If the input file is not divided into pages the copying process will proceed until the
end of the file is reached or, after the core available to the bufer is two-thirds full, either a
LINE FEED is encountered or the buffer is within 128 characters of capacity. After such an
operation it is advisable to check the size of the buffer (Z=) and if it is too big break it up into
pages by inserting FORM FEEDs every 6(/) lines or so. It could then be output and the new file
used as the input file for more efficient editing.

The A command has no effect if the end of the input file has previously been
encountered.

31

If you wish to read the next page into the buffer without appending it to the
previous contents the buffer should be cleared with the command HK before the A command
is entered. The command string HKA is, for many users, preferable to the Y (yank) command
which is exactly equivalent. With HKA you must actually specify that the buffer is to be
deleted; with Y your efforts can be destroyed before you realize what you have done.

In TECO-Il the action of the Y command can be modified through one part of the
nED (I;;nable .Qefaults) command. If n=-l Y works as described; if n=(j) or n=} then, if no
output file has been opened, Y works as described but if an output file is open and there is
text in the buffer the Y command will not be executed and an error message will result. This
reinforces the warning that Y must be treated carefully. Perhaps you should use HKA.

It will become apparent that in general editing it is not necessary for the user to
know whether or not input was terminated by a FORM FEED in the input file. However, it is
possible to find out. The command @ returns -1 if the last input ended at a FORM FEED
and returns (j) if this was not the case.

Another flag is set during input commands to indicate whether or not the last input
operation was terminated by encountering the end of the input file. Again, this is not normally
required by the user but if it is needed the command ~ will return -1 if the end of file was
reached and 0 if it was not.

INPUT/OUTPUT PROBLEMS

The main problem with TECO input operations is to remain alert to the state of the
text buffer. Should the buffer be cleared or should the next page be appended? Is the buffer
getting too big? Should it be divided into pages? This is your responsibility.

The problem of how to deal with an undesired EW command was left unresolved for
TECO-10 users. The question was what to do when an EW command is set to supersede a
wanted file. In TECO-ll the EK command undoes this. In TECO-l (/J the output file which is to
be superseded can be saved by first executing an ER command on it.

It is quite acceptable to issue ER and EW commands with the same filespec and to
read from this file and output to a file of the same filespec at the same time. Physically a
completely new file is being created by the output operations; when the file is closed this new
file will be renamed and reference to the file actually used for input will be deleted from the
device directory.

Thus, in TECO-l 0, the file in question can be saved by transferring it through the
buffer (without editing) to the new output file of the same filespec. That is, it can be
completely copied. This is best done with commands which have yet to be described, but the
principle has been established. The disadvantage of this procedure is that it may well be quite
costly, though surely you wouldn't forget the filespec of a large and important file.

An alternative procedure is to leave the TECO program altogether with @ (this
does not close the output file) and re-run TECO (do not REENTER). This saves you from the
need to copy the file but loses anything you may have had in the buffers. Anything output to
the file named in the EW command will be lost but provided the file has not been closed with
EF the old file of that name will not be superseded.

This description of the ER and EW commands conceals a hazard for TECO-ll users.
When an EW command has been given, but no ER command has been given, then, after output
is complete and the file is closed, the name of the output filename is added to the device
directory. This causes no problems but the procedure is different if an ER command has
preceded the EW command. When an ER command is given TECO copies the device directory
and stores it internally. When output to a file specified by an EW command is completed the
file closure operation re-writes the device directory using the stored directory with the refer­
ence to the newly completed output file added to it. This directory is lost and all files are
disabled when you exit from TECO-ll.

32

Now, in an RT-il system it is occasionally useful to change disks during an editing
job. If the disk is changed with the current ER command having been made on first disk and
output is then made to the second disk and the output file is closed TECO will overwrite the
second disk's directory with the directory referring to the first disk. To avoid this give an ER
on a different device (any filename) then give an ER on the device with new disk. *

An ER command can refer to a disk, for example, in a non-file-structured way, i.e.
ERdev: (I). In this way the whole contents of the disk can be read into the buffer regardless of
file boundaries. This can be useful in recovering lost (ASCII) files. This is best done with
commands which are yet to be described (TECO-IO.

EXAMPLES OF FILE MANIPULATION

Creating a new file has been described. In editing an existing file the basic procedure
is to read the old file (e.g. FILE.OLD) into the buffer a page at a time, make the changes
desired, output the altered page to a new file (e.g. FILE.NEW) and repeat until all pages have
been altered (if necessary) and output. FILE.NEW is then closed.

This procedure is recommended in preference to writing the output file with the
same filespec as the input file (which you can do) since both the altered and the original files
are kept. This is wise; you may have made an editing error which at worst may have produced
an empty file. Don't delete the old file until you have verified that the new one is what you
want. It is customary to rename old files with the extension .BAK to signify that they are
back-up files. Renaming and deleting files is best done outside TECO.

It is a good idea to keep a master copy of important files and to perform editing
only on copies of it. This may seem ultra-cautious but TECO does give you the power to wreak
havoc on files.

Input and output does not have to be confined to one input file for one output file.
Files can be merged quite simply. The single output file is specified in an EW command, the
first input file is enabled with an ER command and the required parts of it are transferred
through the buffer to the output file. The next input file is then enabled (the output file is left
open) and it too is transferred to the output file and so on. Merging does not have to proceed
page by page. The join can be made at any point by making use of the text buffer.

Splitting a file is accomplished by enabling the input file (the one to be split) with
an ER command. The first output file is then specified with an EW command and the first part
of the input file transferred to it. The second output file is the opened (in TECO-10 the
second EW closes the first output file automatically), the next part of the input file transferred
and so on.

If, in splitting a file, it is desired that there should be some duplication (overlap) in
the new output files it is in general necessary to re-read the input file after the first output file
has been closed and discard the unwanted part before creation of the subsequent and overlapp­
ing files can proceed. In particular cases the text and Q-register buffers may be used to store
the overlapping part and so avoid the need to re-read the input file.

The commands described in this chapter form the basis of TECO input and output.
You should practice using these before going on to the more complex commands.

THIRD TECO EXERCISE

The essential commands for TECO input and output are ER and EW for file specific­
ation, A to append a page from the output file to the buffer contents (or as much of the file as
possible if it is not divided into pages), HP to output the whole of the buffer (leaving the
buffer and pointer unchanged) and PW to output the buffer with a FORM FEED appended (if
there is text in the buffer). The general command (m,n)P is usually used in a special form such
as (0, .)P or (.,Z)P. You will also need EF and EK (TECO-ll only).

*Alternatively, leave TECO and REENTER (but this disables all enabled files).

The set of basic editing commands has now grown to consist of the following:

J, ZJ, nC, nL, nT, HT, nD, nK, HK, I ... text ... ®,
nS ... text ... (!), nFS ... text 1 ... ® ... text 2 ... (!),
Xi, Gi,

EWfilespec(!), (m,n)P, HP, PW,

EF, EK (TECO-ll),

ERfilespec @, A.

33

Use these commands to create a file (e.g. FILEl). You need only insert enough text
into the buffer to allow the file to be identified by its contents, e.g. THIS IS FILE 1. Clear the
buffer and create a couple more files. Now clear the buffer and read in FILE I ; check it with
an HT command. Append the other files to the text and output the merged files as a new file;
clear the buffer and read and type out the merged file. Since it is not divided into pages this
can be done with one A command.

Now make another new file by inputting FILE1 and outputting it with the PW
command, clearing the buffer and repeating with the other original files. This new file will be a
merged file with pages. Try inputting this file, checking the buffer after each A command to
see how page by page input works. You could then split this file into others.

You will soon gain familiarity with these commands and in the process will learn the
need to remain aware of the contents of the buffer during input and output operations. It is
preferable to use the default devices for this exercise; if you don't you will almost certainly get
the dev: part of the filespec wrong at some stage (usually forgetting to include it). This is the
first thing to check when TECO can't execute an ER command on a file you've just created.

You should also become familiar with the TECO messages by giving an EW
command while an output file is already open and also naming an existing (but unimportant)
file. This will give TECO-ll users an opportunity to try the EK command. You should also
make a simple multi-page file, as described, open it with an ER command and read one or two
pages. Now give another ER command on the same (current input) file, clear the buffer,
append a page and confirm that the file has been re-enabled at the start.

34

4. ADDITIONAL INPUT AND OUTPUT COMMANDS

The basic input/output commands enable you to perfonn all the essential file
handling tasks in TECO. However, there are a number of very common editing tasks which
require the execution of a string of these commands. TECO provides additional compound
commands which can be used with greater convenience in place of these strings of basic
commands.

THE NEXT-PAGE INPUT/OUTPUT COMMAND

Very often, when you finish editing a page, you will want to write the text in the
buffer into the output file, appending a FORM FEED if the input was so terminated, clear the
buffer and read in the next page from the input file. A single command does all this.

This command is nP. It is clearly quite different from the (m,n)P command and it is
unfortunate that the same mnemonic form should have been used for it. It is recommended
that nP should be thought of as standing for !lext rage.

If n = 1 or is omitted the next Page command will output and delete the current
buffer (appending a FORM FEED if the last input operation was tenninated by a FORM
FEED) and finally will perfonn an append input operation (read in the next page). If n> 1 this
sequence will be perfonned n times.

Like the PW command, nP will not output a completely blank page, although it can
read one which is in the input file. Thus, nP will output and delete the current buffer contents,
read in a new page, output that page (preserving the page layout in the input file) clear the
buffer, read in a new page and so on. If a file containing many pages is being edited, you can
skip over pages which don't require editing with the nP command. The output file written this
way will be exactly the same as the input file except that any totally blank pages (i.e. consec­
utive FORM FEEDs in the input file) will not appear in the output file.

EXITING FROM TECO

The common way out of TECO is with EtQ, either as a command or as a character
with immediate control function. In some systems @ allows current input/output operations
to be completed before it has its tenninating effect; this is not generally true of double @. In
TECO-10 @ allows the completion of input/output operations but also has an effect (to be
explained) on file naming. It is necessary to consult the reference manuals on these points.

The @ command is an abort command; in nonnal use you should allow TECO to
indicate with the prompting asterisk that it has completed input/output before you enter @.
If you must abort input/output it will be your responsibility to check on how much actually
took place. You should beware of the risk of missing or duplicated sections in files created
during interrupted output operations. Files will not necessarily be closed after execution is
aborted.

It may be noted that in TECO-10 and in TECO-ll under RT-l1 the monitor
command:

.CLOSE

can be used to close a file which was left open when the TECO task was tenninated (e.g. by
@). However, there is no certainty that the output to the open file is complete in such
circumstances; it is better to avoid mistakes in the first place.

The EX (for Exit) command provides a convenient way of terminating a simple
editing jo b. It is another multi-function command whose exact operation must be understood.
The EX command perfonns sufficient nP commands to transfer, firstly the contents of the
text buffer, and subsequently the rest of the input file, to the output file (appending FORM
FEED characters as indicated by the appropriate flag), then gives an EF and finally returns to
the monitor with @. The buffer is left empty.

35

TECO-ll provides an alternative form for use in systems where re-entry from the
system is not possible (in TECO-l0 and with RT-ll you can .REENTER the TECO program).
This is the EC (£xit to ~ommand level) command which is the same as EX except that TECO
returns the asterisk prompt instead of exiting.

For example, to use TECO to make a copy of a file you could (after clearing the
buffer) give the command:

:ERFILE.OLD ® EWFILE.NEW CD EC ®®
or in some systems:

':ERFILE.OLD ® EWFILE.NEW CD EX CD ®
.:.REENTER

The nP command contained within the EX (EC) command will not output the initially empty
buffer.

This is the safe way to finish a simple task of file creation or text correcting (on a
single file). It ensures that an output command is given and results in an error message if no
output file has been enabled.

It is not necessarily an appropriate command if you wish to merge, split or generally
re-arrange several files all in the one TECO job.

EDITING WITH A BACK-UP FILE

The EW and ER commands are quite sufficient for editing a file. You could use an
ER command and read (e.g. FILE.OLD) and after an EW command write into the corrected
version as FILE.NEW. The uncorrected file, FILE.OLD still exists. The procedure usually
adopted after such an operation is to rename the old file with the extension .BAK (for
Back-up) and then rename the corrected file with the original name of the uncorrected file.
That is, you start off with an incorrect file named (e.g.) FILE.EXT and end up with a copy of
this incorrect file called FILE.BAK and a corrected file called FILE.EXT.

This is simply a safety procedure in case your editing was not wholly satisfactory in
which case it may be simpler to re-edit the .BAK file rather than to try to patch up the faulty
editing incorporated on the altered file.

In the RSX-ll system the procedure would be a little different since the filespec
includes a version number. If this is not specified the latest version is assumed. Old versions are
kept until explicitly deleted.

The EB (for Enable Back-up) command provides an easy way of performing the
back-up file creation operation described above. The form of the command is

EBfilespec (!)
where the argument filespec is the file specification of the file to be edited. In the example
above filespec would be FILE.EXT.

The EB command incorporates an ER command to enable reading of the input file
and an EW command to hold the output. It also specifies special action when the file is closed.
When a normal closure is executed (EF, EX, EC or EG - to be described), except in RSX-l1,
the output file is closed with the name of the original file specified in the EB command; this
file is renamed with the extension .BAK. Any existing file with the same name and extension
.BAK is deleted; only the most recent .BAK file of that name is kept.

In TECO-10 the command @ closes an output file but does not perform renaming.
The output is contained in a file named nnnTEC.TMP where nnn is the user's job number. This
temporary file can be read by an ER command but cannot be specified in an EB command. It
will be overwritten by the next EB operation. Also, in TECO-10 the filespec in an EB
command cannot refer to a file with the extension .BAK. If it should be necessary to read the
back-up file (e.g. the editing performed on it was not satisfactory) you will have to use an ER
command to read it.

36

In RSX-ll the EB command creates an edited file with a version number one higher
than that specified in the filespec. Any number of previous versions may be kept within the
limits of storage space.

To re-read an earlier (back-up) version in RSX-il the specific version number must
be given. The TECO-ll filespec storage buffer is useful in this situation. This stores the most
recent filespec given in an EW, ER or EB command (also EI and EN, described later). In
RSX-l1 this filespec includes the version number even if it was not explicitly stated. It will be
recalled that with an RSX-Il EW command the filespec is immediately entered in the file
directory. An EW command is implied in the EB command and therefore the filespec in the
filespec buffer after an RSX-ll EB command is the output filespec which has a version
number one greater than the input file version number. Thus the full filespec of the input file
in RSX -11 can be found by examining the filespec buffer and subtracting one from the version
number.

The command which types out the most recent filespec is:

:G*

and this has no effect on the buffers or pointer. The command:

G*

copies the contents of the filespec buffer into the text buffer to the left of the pointer.

In all TECO-ll systems an EK command given before closure while an EB command
is current removes all reference to the output file and leaves the input file open. That is, EK
converts an EB command to an ER command.

The EB command is very useful for the common simple editing task in which a few
changes are to be made to update a file. The standard procedure is to specify the file in an EB
command, make the alterations and exit with EX. This is so common that all systems provide a
system command to facilitate it. Thus:

.TECO filespec (DECsystem-l \ll);

.EDIT/TECO filespec or .EDIT filespec (RT-I1);

TECO filespec (RSTS/E and RSX-l1)

are equivalent to the appropriate system command to enter TECO followed automatically by
the TECO commands

:EBfilespec ® HKA ® ®
Regardless of this endorsement, the EB command is not without its pitfalls. It is

easy to forget that the output file contains only what you specifically output to it; EB does
not imply an automatic EX command. Furthermore problems arise when only the most recent
previous version is kept as a .BAK file. RSX-ll brings its own problems.

As an example of what can go wrong consider this sequence in editing a single-page
file.

':EBFILE.EXT ® A <IXV
.: (some editing) HK <1X]) (unintended deletion of all text in buffer)

':EX <IX!) } or :. EC ®®
.:. REENTER <cr>

The file FILE.EXT is stored but is empty. If you, unthinkingly, give the following
commands

:EBFILE.EXT <D A @J)
:: (nothing in buffer, can't think why, give up) EX<IXD

You will be left with an empty file called FILE.EXT and an equally empty file called
FILE.BAK.

It is not possible to execute an EB command while another EB command is still
current. In TECO-lO this is explicitly invalid. In TECO-ll this is not possible because of the
general rule against opening an output file while another remains open. This removes a very
dangerous possibility of back-up file loss.

37

You can give ER commands while an EB command is current and can return (except
in RSX-ll) to the original input file because the input filename is not changed until the output
file is closed. In RSX-Il it is necessary to refer explicitly to the correct version number.

Details regarding the operation of this command are given in the reference manuals.

INPUT/OUTPUT SEARCHES

All search commands which have been given to this point operate only within the
text in the buffer. TECO also possesses commands which allow searches to proceed to search
the rest of the input file if a match is not found within the buffer. Such a search command is
the

nN ... text ... CD
(iNput search) command.

This command is analogous to the nS search command but if the search through the
buffer is not successful it automatically performs an nP command to output the buffer (with a
FORM FEED if the last input was so terminated), clear the buffer and append the next page of
input. This page is then searched. If the search is unsuccessful the sequence is repeated until
either a match is found, when the pointer is left at the end of the string of text which has been
matched, or else the whole of the rest of the file has been examined unsuccessfully. In this
event the buffer is left empty and (unless the command is in an iteration) an error condition
results. The search command text argument must lie wholly in a page; it shouldn't include a
FORM FEED as this might put it on two pages.

This command is not valid if no output file is open. In TECO-ll it can be of the
reverse, -nN, or bounded, (m,n)N, forms. This does not, of course, imply that it can search
back through the input file; the text in the buffer marks the limit of how far back the search
can proceed.

This command has its functional variant (analogous to FS)

nFN ... textl ... CD ... text2 ... ®
in which the search argument ... text! ... is replaced with ... text2 ... if it is found. Its
operation is otherwise as described for the N command.

These commands should not be casually substituted for the Sand FS commands. If
you use the wrong search text argument and so come to the end of the file before you have
finished editing you will have to re-read the output file to get back to the point where you gave
the unintended command.

An important use for the N command is in recovery from an output error. This may
have been due to premature output file closure or occasionally a system fault. The result may
be that you have file with a large amount of correctly edited material on it but it is not
complete. The procedure here is to open this file for reading with an ER command and to
open another for output. Clear the buffer (or save it in a Q-register first). Now, it is assumed
that you know the last bit of editing which was successfully output (consult your memory or
the terminal record). You should now find a unique piece of text within the last section of
output and specify this as the search text in an N command.

The result will be that all the file output prior to the page identified with this search
command is passed to the new output file. Since the page in the buffer was also successfully
output previously it can be output again with another P command.

38

The problem now is to return to the original file which was being edited as the input
file and to pass over the part which had been correctly edited. This is achieved with the
UNDERSCORE (or BACKARROW) search command which has the form

n_ ... text ... (!) or n*- ... text ... CD
and is similar to the N search except that it performs no output. If the text is not found in the
buffer the buffer is cleared before the next page is read in; it performs the sequence HKA
instead of an nP operation. This command also takes the reverse and bounded forms but it
does not have a functional replacement variant form.

This command can be put to good use in the situation described above. The last page
which was correctly edited and output is identified as described above and the identifying text
used in an UNDERSCORE search. When this search terminates this last corrected page will be
in the buffer and all previous pages will have been discarded. Since this page has been corrected
it can also be deleted and the next page read in with the HKA sequence. Editing may then
proceed.

The UNDERSCORE search may also be used to recover from an unintended
unsuccessful N search. The slight additional problem here is that before the input file can be
read again from the start it will be necessary to issue another ER command on the original
input file to re-open it.

SAFE EDITING

There are two causes of errors in TECO; your own mistakes and system faults. You
should judge, in the light of your own experience, which is the more likely. Your own errors
may affect the buffer or input/output operations. System faults are more likely to affect the
input/output operations although a system crash will, of course, lose the buffer contents. In
any case you should consider taking some precautionary measures against errors. The small
cost and inconvenience involved is nothing compared to that required to make good a wrecked
file.

Dealing first with the buffer, don't make insertion text arguments too long. Ten to
fifteen lines has been suggested. Don't let the buffer get too big. Apart from the expense the
more there is in the buffer the more there is to get lost. Until you gain experience you may
find it useful to copy the buffer into a Q-register from time to time in case you give a deletion
command by mistake; this does use core space but the cost is small in relation to the
protection it offers.

Regarding output, it is particularly sad if an almost complete output file cannot be
closed and is overwritten before it can be salvaged. The basic safeguard is to close it frequently.
If you are making a new file you should give an EC (or EX) command to output the buffer and
close the file every so often. You can then re-open the file with an EB command and return to
point you had reached before. Clear the buffer explicitly (just to be sure) then give the
command (e.g.) 1 ~~P where the numeric argument is surely big enough to transfer the whole
input file; nP has no effect after the end of file has been reached. A more elegant method (but
one which has not yet been fully explained) is to clear the buffer and then read the input file
page by page until the end of the file is encountered using the command:

<P(-(1+ @));> orin TECO-ll, <P @ @;>
You can then proceed to enter more text into the buffer and then into the file.

In normal file modification under an EB command it is safe practice to give an EC
(or EX) command periodically. This ensures that the text in the buffer is output and also
passes the rest of the input file to the output file, which is then closed and renamed. The
standard precautions concerning the EB command must be borne in mind, particularly the fact
that only one .BAK file is kept. In RSX-l1 systems the number of stored versions must be
kept under control.

39

THE EXIT AND GO COMMAND

In TECO-10 the command:

EG® (for Exit and go, not an enabling command)

first performs an EX command and then, instead of stopping with the system ready to accept
commands, it automatically re-executes the last monitor command involving program
compilation which was given before TECO was entered (using the same arguments, e.g.
filespec, as was used before). The compile class commands are COMPILE, EXECUTE, LOAD
and DEBUG.

The usual way of using this command is as follows. A program has been executed
and then it is desired to change a parameter which cannot be entered into the program during
its execution. The file (program) is immediately edited in TECO using an EB command and
after the change has been made the command EG is given to exit and immediately execute the
new version. This is a rather small convenience in normal editing but can be used in
programmed TECO. This procedure can also be used when compilation has revealed errors.
The error listing can be examined before the program is edited without affecting the EG
command since this does not involve a compile class command.

In TECO-ll using R T-ll the command:

EG . . . string ... (!)
performs an EX command and passes the ... string ... to the system as a system command.
This may be a command in itself or the specification of an indirect command file. This is
powerful in programmed TECO.

In TECO-ll using RSTS/E the command:

EG ... string ... CD
performs an EX command and then checks the extension part of the most recently closed
output file. If the extension is:

.CTL the CCL command: SUBMIT ... string. .. is executed;

. FO R "" " Fa R TRAN. . . string . . . "

.MAC " MACRO ... string. .. " "

.RNO "" " RNO ... string. . . " "

If the extension is not one of these four only the EX is performed.

In RSX-ll the EG@command is identical to the EX command.

In TECO-l fjJ and in TECO-ll under RSX-ll the EG® command may be written
without the concluding ESCAPE. In interactive editing it will be followed by two ESCAPEs
since it will be the last TECO command executed but in programmed editing this is not so. In
the interests of consistency the ESCAPE should be added so that in all systems EG may be
regarded as a command which takes a text argument. In TECO-10 and TECO-l1 under RSX-ll
the argument is null.

SECONDARY INPUT AND OUTPUT STREAMS

TECO-ll under RSTS/E and RSX-ll allows for the specification of two input and
two output files at the same time although only one of each of these can be active at one time.
When TECO is entered the "primary stream" is active; output commands apply to the primary
output file and input commands apply to the primary input file. To switch from the primary
(default) output stream to the secondary output stream the command:

EA (for Enable Alternative output)

is executed. This doesn't open or close any files, nor does it affect the buffer; it simply means
that future output commands such as EW, HP and EF will apply to the secondary output file.
To change back from the secondary to the primary output stream the command:

EW@

is executed. Again, this doesn't open or close any file.

40

In this way you can open two output files and switch output between the two as
desired. This can save a certain amount of closing and re-reading files during file splitting.

Analogous commands are applicable to input. The command:

EP (for .Enable alternative in~ut)

selects the secondary input stream. You can then open a secondary file with an ER command.
The switch back to the primary input stream is achieved with the command:

ER@

which again has no effect on the files or buffer.

TECO only simulates two channels and these commands are only useful with disk
files. The file handling procedures used in RSX-l1 must be kept in mind. If a file has been
opened for reading with an ER command and then an EW command has been given with the
same filespec (including version number), the directory reference of the open input file is
immediately deleted. If this is done input should not be switched away from the current input
stream because it will then be impossible to open this file again (it has been deleted and super­
seded by the new output file with the same filespec).

"WILD CARD" FILE SPECIFICATION

TECO-ll under RSTS/E and RSX-l1 allows incompletely specified files to be
referenced. The details are system-dependent and the Reference Manual should be consulted.
As an illustrative example, under the control of the EN command (described here) TECO
interprets the filespec *. TEC as referring to the next file in the directory with any file name at
all as long as it has the extension .TEe.

The only command which can accept such a "wild card" filespec is the command:

ENfilespec e!) (for Enable Next)

This is a preset or enabling command only and is used prior to the command:

ENe!)
which loads the filespec buffer with the next filespec which is compatible with the "wild card"
filespec. Note that a full filespec is stored in the filespec buffer; this can be typed out with the
:G* command.

If you are involved in a normal editing task and you want to examine or process all
files which match a particular "wild card" notation it is probably easiest to use a series of
EN ® : G* commands and note the files you want to specify in later ER commands. You
could do this directly using commands which have not yet been described but this is more
appropriate in programmed TECO.

FILESPEC SWITCHES

All systems using TECO except RT-ll allow certain switches in file specifications.
The general form is:

filespec/switch
The Reference Manuals should be consulted on these points but of particular interest are the
switches

/ (that is, a blank switch)
in RSTS/E to allow easy editing of a BASIC-PLUS program file which contains continuation
lines and the switches

/SUPLN and /GENLSN
in TECO-10 which respectively suppress and generate Line Sequence Numbers. The Line
Sequence Number is a five digit number with leading zeroes followed by a TAB character.
These are included in some files produced by other programs and can be suppressed on input
by the first of these switches. The /GENLSN switch is used in conjunction with the EW (or
EB) command to add them to file in the buffer which does not have them.

FOURTH TECO EXERCISE

The essential commands described in this chapter are nP, EB and EC (or EX then
.REENTER). The Nand _ or -<- searches are all but essential; you will probably not feel the
need for the others for quite some time.

The basic set of TECO commands is now complete:

J, ZJ nC, nL, nT, HT, nD, nK, HK, I ... text ... (,[),

nS ... text ... @' nFS ... textl ... CD ... text2 ... @,
Xi, Gi,

EWfilespec @' (m,n)P, HP, PW, EF, EK (TECO-ll),

ERfilespec ®,
EBfilespec ®, nP, EC (TECO-l1), EX,

N ... text ... @, _ ... text ... @.

41

When you master this set of commands you will be able to tackle effectively almost
any editing task you are likely to face. You will find as you read on that there are more
powerful commands and that frequently used command strings can be stored ready for
immediate use but these are really convenient extras; you now have been given enough
information to be a TECO editor.

The additional essential commands described here must be practised. For a start the
nP command should be tried. Make a simple three page file as described in the last exercise,
clear the buffer and append the first page and then output it with the command P. Examine
the buffer and proceed with P commands until the input file has been copied into the output
file. Now check the contents of the output file and compare with the input file. You could
repeat this using an A command in place of a P command to merge two pages.

The same input file can be used to try the EC (or EX) command. Pre-set the input
file and open an output file, clear the buffer and give the EC command; examine the output
file. For a variation, start with the first page already in the buffer before giving the EC
command.

It is very important to understand the EB command. Make a simple file (e.g. "THIS
IS FILE 1", named FILE 1) and specify it in an EB command. Clear the buffer and read it in.
Now insert the text "first modification" (for example) and output the buffer and close the
output file either explicitly or with Ee. Now examine the contents of FILE! and also of
FILE 1.BAK. Users of RSX-ll should examine the latest two versions.

For a demonstration of the loss of a file give an EB on FILEt, clear the buffer, input
the file and clear the buffer again. Now give the EC command; this simulates an unintended
command sequence. Now give another EB on FILE!, clear the buffer and input and examine
the file. Think about it. Give another EC command (this simulates lack of thought!) and
examine FILE 1 and FILE 1.BAK. Where is the original FILE I? This does not apply in RSX-ll.

The N and UNDERSCORE searches should be tried by making a simple multi-page
file (PAGE 1, PAGE 2, PAGE 3 etc.) and following through the steps detailed in this chapter
for returning to the previous editing point.

The EB, ER, EW and EK commands should be tried with an EB command still
current to gain familiarity with the TECO messages.

42

PART TWO

ADVANCED INTERACTIVE TEee EDITING

5. Command Storage

6. Text Arguments

The information given in this part extends to cover most problems in interactive TECO
editing. Some readers, for example those with terminals which handle all ASCII characters, will
have little need of some of the features of TECO described here. Nevertheless it is advisable to
read all sections to learn what can be achieved with TECO. On the other hand, the sections
concerned with command storage and the literal specification of control characters contain
information which is essential in advanced TECO editing.

The best way to learn to use these commands is to incorporate them into your editing
procedures whenever you think they will be helpful.

5. COMMAND STORAGE

The Q-registers have, in addition to the features already described, the capacity to store
commands. This facility is very important in programmed TECO editing. However, it is also
extremely useful at this stage. An incidental but convenient use is in recovery from a common
insertion error.

EXECUTION OF STORED COMMANDS

Command strings are simply strings of ASCII characters. They are entered into the
command buffer and interpreted as commands during execution. However, the Q-registers do not
distinguish character strings by their origin or purpose. Command strings can be stored in the
Q-registers just as text can be stored. Furthermore the command Gi which copies the text in
Q-register i into the buffer has an analogue in the command Mi.

This command, which stands for Macro (a word used to describe TECO command strings)
copies the contents of Q-register i into the command execution string in place of the Mi command
so that the next command executed when Mi is encountered is the first command in the string
stored in Q-register i.

For example, the text buffer contains

ABC< cr><lf> DEF< cr>< If>GHI< cr><lf>

and Q-register D contains LTJL. The command

:. JL2C MD IJlLT ®~ is equivalent to

* JL2C LT JL IJlL T C!X!) and so will produce the following type-out.

GHI

DEF

*

The contents of Q-register i are not affected by the Mi command which is essentially a
copying command. However the Mi command differs from the Gi command in that the text which
was inserted in the command execution string is not entered permanently in the command string

43

buffer. To do this the limits of the temporarily inserted commands (text) must be recorded
internally by TECO. This has two important effects. Firstly, the inserted command string must be
complete in itself; TECO cannot look past these internal limits to interpret the command. This
should be kept in mind when examining the rules for stored commands which are given below.

The second effect relates to the nesting of macros. Just as the command string in the
buffer can "call" a stored macro with the command Mi, the stored macro can itself call stored
macros with Mi commands. The restrictions are that each macro must be complete in itself and
that because of the limitations of TECO's internal recording of where the temporary storage takes
place, such nesting is limited to a depth of approximately ten levels.

When the Mi command is given the contents of Q-register i are copied. The contents of
Q-register i can be changed in any way by the commands invoked by Mi because it is the copied
text which is being executed and not the text actually stored in Q-register i. If changes are made
to the Q-register referred to in the Mi command the original contents will be permanently lost since
the copy which was placed in the command buffer is deleted after it has been executed.

STORAGE OF COMMANDS

The basic way of creating a stored macro is to enter it (as text) into the buffer and to copy
it into Q-register i with an Xi command. This is not very convenient. There are occasions in pro­
grammed editing with TECO-l (/J when this procedure must be followed. In TECO-II the
tUi ... text...® can be used instead.

However, in interactive TECO editing, as described so far, the easiest way of storing
macros is to use the *i command described in a previous section. It has already been explained that
if a command string is aborted before execution, by typing ~ <fa) ,the aborted string can be
transferred to Q-register i if the very next command given is i.):rc;wever, this command also
applies in another case.

The second way applies after the command to be stored has been completed with a
C!X!) and execution ~as been initiated. If *i is given as ~he very next co~ma~d the whole of the
preVIOUS command stnng (less the second of the conc1udmg ESCAPEs, whIch IS not part of the string
but simply signals that the string is complete for execution) is stored in Q-register i. This applies
even if the command string contains invalid commands which caused execution to stop before the
whole string had been executed.

In this way invalid command macros can be stored and entered into the text buffer with
the Gi command, where they can be edited to produce a correct version which can be returned to
the Q-register for execution.

The *i command must be first given after either the execution or abortion of the
command which is to be stored. Note that the * prompt character, printed to TECO to indicate
readiness for a command, will not serve as the * of this command. You have to type another
asterisk.

Finally, and very usefully, although *i must be the first command executed after the
command which is to store was executed or aborted, the error explanation commands? and / can
precede it.

RULES FOR STORED COMMANDS

Stored commands may quite legally contain single or double ESCAPEs. In TECO-10,
if a macro containing double ESCAPEs is executed as part of a command string execution will stop
when this combination is reached.

Thus if Q-register A contains IABC a:xD the command

44

* MA 0LT ®!), which is equivalent to

*I ABC C!XD 0LT C!X:!) will tenninate after the insertion of ABC with no type-out.

However, in TECO-ll double ESCAPE has no significance. It should not, therefore, be used as
a method of stopping execution.

In TECO-Il execution may be stopped from within a macro by including (fC) in it.
When this character is encountered TECO-ll immediately returns to the command le~ and the
asterisk prompt is typed. You should note that the t'fO command is different function when it
is entered in the actual command string; in that caserrresults in exit from TECO. In TECO-IO
you can make a somewhat improper use of 6C) to abort execution from a macro. The tfO
character can be entered either in the CARET(c form or by methods not yet described. When it is
encountered execution ceases because it is not a legal TECO-I0 command. An error message is
typed and TECO returns to the command level and types an asterisk prompt.

This is preferable to the use of @ in TECO-10 to terminate execution from within
a macro because @ has an effect on output operations and results in exit from TECO. It is
preferable to the use of double ESCAPE for reasons of compatibility between TECO-IO and
TECO-il.

The main restriction on the execution of stored macros is that the macro must be
complete in the Q-register. It is perfectly legal to store an incomplete macro; it is not correct to
try to execute it in incomplete form. The follciwing examples illustrate this.

If I is stored in Q-register B the command':: MB ABC C!X:!) will not insert ABC into
the text because the I command in Q-register B lacks a text argument and so is incomplete. An
error message will result. On the other hand, if ABC CD is stored in Q-register C the command
:. IMC (Y)will not insert ABC into the text; it will insert the two characters MC and no error
messag~h(be given.

In contrast, a numeric argument is not an essential part of the following command in the
way that a text argument must follow certain commands. Thus, a numeric argument may precede
an Mi command and an Mi command (if it is one which ends with a command which returns a
numeric value) may be used as a numeric argument for the following command. If Q-register A
contains the single character J, the command

':ZMA C!XD
will move the pointer to the end of the buffer. The same effect will be produced by the command

:. MAJ C!X:!)
if Q-register A contains the single character Z.

As another example, any stored group of repeated commands must be completely
enclosed within a pair left and right angle brackets in the Q-register if it is to be executed by an Mi
command. That is, it is not legal to try to express the command J 3<IA CD !- > J 3T C!X:!) by
storing 3< IA ® in Q-register A and giving the command JMAL> J3T ~

RECOVERY FROM AN INSERTION COMMAND ERROR

Q-register commands and storage can save you a lot of trouble if, in a long insertion
command (you may be creating a new file), you find that you have forgotten to include the I which
is necessary to indicate the start of an insertion string. In this case your text argument will be
interpreted as a string of commands. If you execute this non-insertion command by typing CD:})
various odd commands will be executed until finally execution will stop when an invalid command
is encountered and an error message will be typed.

45

However, all is not lost. If, for example, the command ':*A C!XBis given immediately
as the next command the whole command (and hence the insertion string) can be saved in
Q-register A (in this case). The same could have been achieved if the error had been recognised
before 00 had been given. In this case the string could have been completed, aborted with
@ \f9 and then stored with *i.

With the command string safely stored in Q-register A the recovery process can proceed.
First it is necessary to restore the text buffer to its condition before the undesired command was
given (if necessary). This is where a recently updated copy in a Q-register (not A in this case!) is
useful. The text can then be stored in a Q-register with an HXi command and the buffer cleared
with HK. The stored command can then be copied into the buffer with the GA command, edited,
like text, to insert the missing I at the start and then be returned in corrected form tl) Q-register
A with the command HXA. The buffer is then cleared, the original contents of the text buffer
restored with Gi, the pointer correctly positioned, and finally the corrected command can be
re-executed with the command *MA ($)1). If the stored command consists solely of text to be
inserted it is easier to move the p-;interYo'the insertion point and give the command GA C!>®.

The procedure of inserting the missing I at the start of the command must be followed.
It is not legal simply to store the text argument part of the command in Q-register A and give the
command IMA because one of the rules of storing commands is that text arguments can't be stored
separately from their commands.

This is certainly extra work but it can be a lot easier than starting again from scratch. It
does depend on your immediately recognizing that- the insertion string was in error. You must take
note of error messages!

You may at some stage find that an insertion string is correctly executed even though the
initial I has been left out. This will occur if the first character in the string is CTRL-I (or <tab»,
as is not uncommon in lines of FORTRAN programming.

This occurs because the command I (fi) string ® can be replaced by (ff) string CD.
This is a totally unnecessary command. It woulcih'ave been a lot nicer if ® could'lla've been
reserved for formatting command strings.

RUNNING OUT OF CORE SF ACE

The ultimate amount of core space available to the TECO buffers (e.g. text, command
and Q-registers) depends on the system as a whole. It is definitely a finite quantity. TECO auto­
matically swaps core space between the various buffer areas as required, however, a command to
insert more text into any of the buffers may have the result that all available core space is used.

The various versions of TECO give different responses to commands which would
exceed core capacity. If a command is being executed when capacity is exceeded execution stops
and an error message is typed (?COR STORAGE CAPACITY EXCEEDED in TECO-10 and
?MEM MEMORY OVERFLOW in TECO-ll). Capacity can also be exceeded while typing a
command (for instance along insertion text). With TECO-ll the terminal bell rings when
capacity is exceeded this way and you should delete a few characters to shorten the command.
You should also examine the text buffer to see if some of it should be output before you continue.
With TECO-10 you do not get this warning.

The core is not necessarily absolutely filled when these warnings are given. You will
generally find that you have enough space to output some text or to reduce the amount stored
in the Q-registers. You must take note of the message. Given sufficient determination you can,
by ignoring them, totally use up all core space so that no TECO commands can be executed. If you
do this you will need to use operations outside TECO to try to retrieve the situation.

46

FIFTH TEeo EXERCISE

This is a short chapter but very important. You should take particular care to confirm
the rules for using stored commands through practical tests. It is easiest to store the macro with
the *i command; the problem at this stage with storing commands through either the buffer and
the Xi command or with the tU command (TECO-ll) is that you will not be able to include
ESCAPE characters in the text. This is covered in the next chapter.

Enter the command lAC!) in Q-register A and clear the buffer. Give the command MA
and examine the buffer. Repeat thIS with the command 5<MA>. Now store the command
<IA@ > in Q-register B and give the command 5MB. All these forms are acceptable because
the macro is complete in each case. You might confirm that it is not correct to store IA CD >
in Q-register C and then give the command 3 <MC. Neither is it correct to store A(!)
(Q-register D) and give the command IMD.

With the Q-registers left as described above store the command MA in Q-register E.
Since no ESCAPE characters are involved you can do this by clearing the buffer, inserting MA,
copying this to Q-register E and then clearing the buffer (or use t UMA CD in TECO-ll).
Now give the command 4<ME> and satisfy yourself that you can explain what happened. Repeat
this command, use the command *F to store the command string in Q-register F, clear the buffer,
copy the text in Q-register F into the buffer with GF and examine it to confirm that the command
string is not permanently altered by the replacement of the Mi commands with the stored command
strings during execution. TECO-l1 users could use the command :GF.

You should also confirm that a TECO macro can modify the Q-register in which it was
stored. To show this store the following command in Q-register G:

HK IOVERWRITTEN (!) HXG HK

N ow execute this macro and then examine the contents of Q-register G.

Finally, you should confirm that a macro can return a numeric argument. Store 3 in
Q-register H and then give the command MH=. Of course, if the macro ends with an angle
bracket it cannot return numeric values.

Don't try to run out core space unless you have money to burn.

47

6. TEXT ARGUMENTS

Insertion and search commands require text arguments. In the editing described to this
point these have been simple and definite. However, definite arguments are unnecessarily
restricting; it may be satisfactory to search for, say, just the first alphabetic character (whatever
it may be) in a file consisting mainly of numeric data. The commands described in this section
allow this.

Alphabetic case is another consideration in text arguments. Alphabetic case control is
also covered here.

The remaining problem with text arguments is the literal specification of certain
characters. For example, when extensive use is made of stored macros the need to edit them will
soon arise. This is done by copying the macro into the text buffer and editing it there using normal
TECO editing techniques. The problem with this is that macros often contain special characters
which cannot be specified in text arguments using the commands described previously. The most
common example is provided by the ESCAPE characters which occur in almost all macros. The
problem here is to specify the ESCAPE character literally so that it can be entered normally
without signifying the end of the argument.

THE AT-SIGN MODIFIER

The problem of including ESCAPE characters in text arguments is so common that a
special procedure has been included in solely to deal with it. This is the @ (AT -sign for
Alternative Text) modifier. This applies to insertion and search arguments in TECO-l 0 and
to all text arguments in TECO-II.

The @ is entered immediately before the first letter of the command which it modifies
(i.e. after any numeric argument), e.g.@I, @S, n@FS or @ER (TECO-II only). The effect is that
the first character after the command is taken to indicate what the delimiting character for the text
argument will be. It is not taken as part of the argument. The text argument is then terminated by
the next occurrence of this first character (again, it is not taken as part of the argument. In this
fonn ESCAPE has no delimiting function and can be included in the text. The general form of such
a command is, for example

@S / ... text. .. /

where / is arbitrary but must not occur within ... text... . It is common to use the slash, /, as the
delimiter. No ESCAPE character is required when this form of text argument is used.

The FS command also takes this form:

@FS/ ... text 1.../ ... text 2 ... /

and deletion without replacement can readily be specified:

@FS/ ... text...//.

Double ESCAPE cannot be entered directly but the practice of including this combination
in macros is not recommended anyway.

THE ASCII INSERTiON COMMAND

The @ modifier applies only to the inclusion of ESCAPES in text arguments. However
there are other characters which cannot be included in text arguments in the usual way. These
fall into three classes: those which have special TECO functions inside text arguments (described
in this chapter); those which have immediate consequences (such as RUBOUT) and, to an extent,
those which affect the terminal carriage mechanism. TEeO deals with these in a number of ways.

48

Firstly, allY ASCII character can be inserted into the text buffer and from there combined
with text or with commands. This may not be very convenient but with some characters it is the
only way. Once a character is in the text buffer it causes no problems; the problem is to get it into
the command string in a literal form. The command which allows any ASCII character to be entered
into the text buffer has the form

nle!)

where n is the decimal ASCII code of the character and the terminating ESCAPE character is
mandatory. This inserts the single specified character into the buffer to the left of the pointer.

This command may be used to insert carriage control characters without causing any
effect on the terminal. The characters which are the most likely candidates for this treatment are
listed here:

Character Code (decimal) Character Code ~decimal)

NULL (/) BACKSP ACE (@) 8

m
3 TAB (@) 9
7 LINE FEED (@) 10

15 VERTICAL (@) 11
TAB

@ 21 FORM FEED c&) 12
ESCAPE 27 CARRIAGE (t) 13
RUB OUT 127 RETURN

NULL is a special character which can be inserted and output but which is not read by
input operations. Combinations such as @ @ need not be entered this way; they can be
entered with other techniques provided an arbitrary character is entered, and immediately deleted,
between them.

It has not yet been explained why there is a need far the literal specification af other
characters. This will now be clarified.

INSIDE-TEXT -ARGUMENT COMMANDS

TECO possesses a class of commands which operate only when they are given inside a
text argument. Some of these also function as quite different commands when entered outside
text arguments. There is no conflict in this; TECO recognizes when characters in a command string
are inside or outside a text argument.

If these commands are ta be useful they must be capable of being edited. The problem is
that if, for example, a certain character has a command function inside an insertion text argument
and you wish to insert it into a macro using TECO insertion commands you have to specify it
literally. Otherwise, since you are entering it in an insertion argument it will exercise its command
function when you try to enter it.

In fact, in TECO-l1 no such commands are defined for insertion text arguments (they
are in search arguments). In TECO-IQ a number are defined for the purpose of allowing texts
which contain both upper and lower case characters to be edited from a terminal which possesses
only one case (usually upper case). Although, in TECO-lqJ, only a few commands are defined as
inside-text-argument commands a large number have been set aside for future developments and
so are classed as inside-text-argument commands. All control characters except @ , @ , @
and the carriage controls @ through @ are so reserved.

This means that there is an important difference in this regard between TECO-l ~ and
TECO-ll. In TECO-ll the only characters which require literal specification in insertion

49

commands are those with special function discussed in the previous section. In TECO-I 0 all
reserved characters must be specified literally when they are included in insertion text arguments
if they are not to be interpreted as commands.

In search text arguments the situation is different. In TECO-l 0 the set of characters
defined above are reserved as commands but in TECO-ll a (smaller) set of defined characters
also have command functions. Thus in both versions there are a number of characters which may
require literal specification in search text arguments.

It is certainly possible, and occasionally appropriate, to construct a search text with
literal specification of inside-text-argument commands by inserting the search command into the
buffer using the ASCII insertion command, transferring this to a Q-register and then executing it
as a macro. As a general method this is far too inconvenient. Accordingly special literal specification
commands have been defined. These apply only to defined or reserved inside-text-argument
commands and do not operate on those special characters which can only be inserted with the
ASCII insertion command.

Before describing these the operation of some inside-text-argument commands will be
illustrated.

COMMANDS INSIDE SEARCH STRINGS

Sometimes when searching for a character string it may be convenient to accept any
character as a match in a particular position in the string. For example you may wish to search a
text for the first four letter word ending in AND. The search string to achieve this can be written
using the inside text command @ (read as character). This causes any character at this position
in the string to be accepted as a match. Bowever, there must be a character at that position. Thus,
for the example described, the command would be:

S@AND(D

On the other hand, it may be desired to accept any character as a match at a particular
position in the search string except for one particular character. The inside text command @ x
(read as Not x), where x is the character excepted from constituting a match, will achieve this.
For example if it is desired to search a text for the first four letter word beginning with Sand
ending in ND but not including the word SAND, a suitable command would be:

5S @)AND®

The command @ causes TECO to accept any separator character as a match at this
position. A separator is any character except a letter or a digit; in TECO-l 0 the DOLLAR,
PERCENT SIGN and PERIOD (FULL STOP) are not acceptable as separator characters with this
command.

In some systems @ has a special function which precludes its use within TECO. It may
be possible to disable this function (e.g. in some systems, with the monitor command .SET TTY
NO PAGE) after which this command will be usable in TECO.

TECO-ll provides an alternative procedure for entering such control characters into
text arguments. This is the CARET (or UPARROW) command which works exactly as described
previously for normal TECO commands in that, during execution, the character following the
CARET is interpreted as a control character. This command is actually available as a selectable
option controlled by the ED command (described previously). It is not available as the default
option in all systems but applies if the ED value is -lor 0; the command lED disables this
option.

By using this fonn of command you can enter CARRIAGE RETURN as CARET-M
to avoid having a carriage return action echoed while the command is being entered. TECO-IO

50

users would have to use the nl@insertion command to achieve this.

The other special inside text match control command is the @x command which has
a number of variants. In each variant form the effect is to accept as a m'a?c"h, at the specified
position on the search string, the first occurrence of a character from one of the following groups
specified in the command. The following forms are common to TECO-l0 and TECO-ll:

@A

@D

@L

*0 s

any alphabetic character (A-Z and a-z).

any digit ((/)-9).

any end of line character (LINE FEED, FORM FEED,
VERT TAB, end of buffer).
any string of SPACE and/or TAB characters.

Teco-10 allows a number of other forms of this command:

@v any lower case alphabetic character (a-z).

@w any upper case alphabetic character (A-Z).

@<nnn> the ASCn character whose octal code is nnn.

@ [a,b,c, ..] anyone of the ASCII characters a,b,c, etc.

TECO-l1 also has a set of these commands which are not available in TECO-10 :

@C

@)R
@X

any RAD50 character (i.e. any alphanumeric,
PERIOD or DOLLAR).
any alphanumeric character.

equivalent to @.

Only TECO-10 provides the direct equivalent of the ASCn insertion command. This is
the @<nnn> command which allows any ASCII character to be inserted into a search text
argument literally. In TECO-ll the problem is usually resolved through the use of the CARET
command inside the text argument. You can search for CONTROL/C in the text with the command
CARET -C. The only difficulty arises with a search for RUBOUT which is not a CONTROL character.
If it is not possible to search for a known context the search text argument must be constructed
indirectly via the Q-registers as described above.

TECO-II possesses three special commands which allow stored character strings to be
inserted directly into search text arguments. The command:

@ Qi is used to specify that the text stored in Q-register i is to be taken as part of the search
text argument in the place occupied by this command. The command:

@Q* has the same effect but using the text stored in the filespec buffer. The command:

@Q_ (or @Q+--) is similar but uses the text stored in the search string buffer thus the
command string:

S @Q_®is equivalent to S(~).

It is important to realize that when these special search-text-building commands are
executed the string stored in the search string buffer includes the text which has been inserted
into the search argument. For example, assume that the last search command argument was XYZ.
The command:

* If the last character in the buffer is a SPACE TEeO-II will not accept it as a match with this command.

51

will search for the string ABCXYZDEF. If the next search command is also:

SABC @ Q_DEF@

the string sought will be ABCABCSYZDEFDEF.

The TECO-ll restriction on the length of a search text string to a maximum of 128
characters to be matched still applies, even though with these commands it may take more than
one character in the text argument to define one character to be matched. In TECO-10, where
the matching limit is 36 characters, the search text argument is limited to a maximum of 80
characters including those needed to define the characters which are to be matched.

The other inside-text-commands are associated with alphabetic case control or literal
specification.

INSIDE-TEXT LITERAL SPECIFICATION

There is evidently a large number of characters which have special command functions
when used inside search text arguments in both versions of TECO (and inside insertion text
arguments in TECO-10). If it is desired to search for, say, the character tfX) it must be specified
literally; if it isn't it will be taken to indicate that any character will matcYat this position.

~. eral specification is indicated in both versions with the inside-text-argument
command t , although, as explained below, it is preferable to use the equivalent form @ in
TECO-10. he occurrence of @ (or (f'R) in TECO-lfi) indicates that the following character
is to be taken literally. Thus, to search f~0 the following command string can be used:

S®®C!).
In TECO-l1 @ need only be used in search text arguments (there are no inside­

insertion-text-argument commands in TECO-ll) and can also be used to specify ESCAPE
literally and provides an alternative to the use of the @ modified text argument fonn. In TECO-10 ® does not apply to ESCAPE but the command ® does.

The choice of ~ for this command, which can be fairly commonly used in editing
macros, is a little odd since, like (ts), it may be a system command and not automatically
available in TECO. Depending on'tri'e system, this character may be freed for use in TECO with
a system command (e.g .. SET TTY NO PAGE). If this is not possible there are alternative
procedures.

In TECO-ll the @ command may be given in the alternative CARET -Q fonn. In
TECO-10 the alternative command @ is preferable in any case since it is directly equivalent to
(@) in TECO-ll.

In a search command the sequence tQ @ specifies that the single character (fX) is to
be matched. The sequence t QtX means that the smgle character t (specified by tQn)ying
before the single character X, and the character X are to be matched. The second fonn will fail if
the text being searched contains only (fX) and vice versa. The indiscriminate mixing of CARET
and CONTROL fonns can thus lead to Yroblems in subsequent editing. The CARET fonn is not
available as an inside-text-argument command in TECO-l f).

TECO-lf) has literal specification command which applies to whole text arguments and
not just to the next character. The command fFn in a text argument causes all succeeding
characters with command func~'ons in the textst'ring to be interpreted literally. This interpretation
is cancelled either by another tT character or when the end of the argument is reached. This
command does not apply to ES APE, @ or @ itself.

52

This means that it is only necessary to enter a single rtTl character at the start of the text
argument to ensure that all characters within it (except for speciaf characters, ~, @ and ESCAPE)
are interpreted literally. The argument is terminated normally with an ESCAP . f it IS wished to
include the characters rfRl , @ or ESCAPE literally within the text argument they may be
preceded by rtRl , whic'ncloes not affect the Q:] function WhiC~ay be current and applies only
to the single forlowing character. However, like @ and (ts), tT may be a system command which
will have to be disabled by the monitor command .SET tfy 'COMPATIBILITY before it can
be used in TECO.

ALPHABETIC CASE AND TERMINAL CONTROL

TECO commands may be given in either upper or lower case alphabetic characters but
alphabetic case is an important consideration in text arguments.

Not all terminals are equipped to transmit or print lower case letters; if these letters are
not available it is generally the case that all 31 ASCII characters with decimal codes 96 to 126 are
missing, i.e. the last 32 characters in the set with the exception of RUB OUT . Even if the full ASCII
set is available on the terminal it will be necessary to ensure that the system is set to receive lower
case characters (e.g. by a monitor .SET TTY LC command).

Within TECO itself transmission to and from the terminal is controlled by the nET
(]nable !erminal) command. In TECO-IQ this command only affects the transmission of
information to the printer. If n is equal to zero control characters are echoed in the CARET form
as described, except for ESCAPE which is echoed as a DOLLAR; this is the default option. If n
is non-zero characters are transmitted literally; non-printing characters are not printed. If the
terminal is one which does print special symbols for control characters these will be printed.

The nET command has much more to it in TECO-ll. In TECO-ll the ET value is
stored as a bit-encoded word, i.e. it is stored as a string of Q's and l's but significance is attached
to whether or not particular bits are zero or one rather than to the number which these '{is and l's
represent in binary form. If all bits are set to zero TECO-ll commands which involve the terminal
proceed as described. This is not necessarily the default setting.

If Bit Q is set literal transmission occurs. If Bit 2 is set (i.e. if only this bit is set the
value ofET is 22 = 4) lower case characters are input as lower case. Normally in TECO-ll
characters are inserted in upper case form regardless of how they are entered in the text argument.
When this bit is set lower case characters can be inserted exactly as they are entered.

Bit 1 (ET = 21 = 2) relates to V.D.U. terminals, Bit 4 (ET = 24 = 16) controls the
operation of the CONTROL-0 character (described previously). Bit 8 (28 = 256) truncates output
lines to the terminal's width (RSTS/E and RSX-ll). Other bits relate to commands which have
not yet been discussed. To set more than one bit of the ET word the argument should be entered
as the sum of the numbers corresponding to the desired bits. For example, to set Bit 2 and Bit 4
simultaneously (and no others) use the command:

(4+ 16)ET

The command ET returns the current value; after the command shown above it would return 2C/J.
To set Bit 2 and Bit 4 in addition to whatever bits are already set use the command:

(ET#(4+ 16))ET

The hachure (#, "hash") means bitwise logical OR; it is described in a later chapter. To switch a
bit off it is essential first to ensure that it is actually set. For example:

(ET# 16-16)ET

sets and switches off bit 4.

S3

It will be necessary to consult the reference manual for full details of the default settings.
These depend on the operating system and the terminal equipment.

To summarize, if you have a terminal which handles lower case letters and if the system
is set to accept them and if, in TECO-II, Bit 2 of the ET word is set, then you will have no trouble
in inserting text in either alphabetic case.

CASE FLAGGING DURING TYPE-OUT

Another consideration in TECO's handling of alphabetic case concerns type-out. TECO
provides for the type-out of lower case characters on terminals which print only the upper case
forms by "case flagging". The lower case characters are distinguished by printing an apostrophe
immediatciy before the equivalent upper case character. Thus, the lower case character "a" is typed
as " 'A ". This is called lower case flagging and is controlled by the nEU (gnable 1!pper/lower)
command.

Lower case flagging is specified when the argument is equal to zero. This is the default
setting in most (not all) systems. The current value is returned by the command EU with no
argument. All 32 characters with decimal ASCII codes in the range 96-127 are considered to be
lower case characters; the upper case equivalent is the character whose ASCII code number is 32
less. Thus, for example, left curly bracket is the lower case equivalent of left square bracket.

This option is inappropriate if the terminal has the ability to print lower case characters.
It is automatically overridden if the ET command is set for literal transmission but this may not be
a desirable option either. The appropriate option in this circumstance is for case flagging to be
disabled. This is done by specifying n=-1 in the EU command.

If case flagging is disabled with an upper-case-only terminal lower case characters are
printed as their upper case equivalents and are not distinguished from them.

Upper case flagging is selected by setting n= 1. This is useful with an upper-case-only
terminal when the text being typed is mainly in lower case characters; these are typed in upper
case equivalent form and the smaller number of actual upper case characters are distinguished by
being preceded by an apostrophe.

CASE CONTROL IN SEARCHES

If the system and TECO are equipped and enabled to handle both alphabetic cases
specifying case in search command text arguments is straightforward. In both versions ofTECO
the default option for search commands is that case is disregarded in seeking a match, i.e. if the
text argument contains the letter "A" either "A" or "a" in the text will be a satisfactory match.
The same will be true if the se~h argument was "a". This is called "either-case mode". This
option is controlled by the n ~ command. In this application the @ is used outside the text
argument and is quite different 111 its effect from the inside-text-argument command of the same
form.

If the argument, n, of this command is zero either-case mode (the default option) is
enabled. If n=1 "exact-case mode" applies to searches. In this mode a match is achieved only
when the alphabetic case of the character in the text is the same as that used in the search argument.
The command 0 with no argument returns the current value of the case mode setting.

In TECO-l (jJ an additional inside-text-argument command is defined for use in
conjunction with the case mode command, n @. This allows the case mode setting to be varied
within a search text argument.

54

If the exact-case search mode is currently operative it is possible to specify that some
characters in the search string may be accepted in either-case mode by enclosing them with ®
commands. Thus the command

~ 1 @ JSABC@ DEF®QXD

will be successful if it locates a string in which ABC are in upper case and each of the following
characters DEF is in either upper or lower case. For example, it will be successful if it locates
ABCDEF or ABCdef or ABCDEf of ABCDeF, etc.

CASE CONTROL WITH LIMITED TERMINALS

In TECO-l f/J full provision has been made to allow editing of texts which contain
characters whose ASCII codes are in the range 96-127 (decimal) from terminals on which these
characters are missing. In practice the procedures are rather cumbersome and unless the need is
pressing it is better to save the task of editing such files until access to a full ASCII terminal can
be obtained.

In TECO-II the task described above is more difficult. A full ASCII text can be
searched satisfactorily but lower case characters can only be inserted from an upper case terminal
with the ASCII insertion command nle!). The easiest way to do this is to memorize the ASCII
codes for lower case characters. Another way is to use the@ x command which returns the
code of the character x. Thus to enter lower case "a":

Since the pointer is left at the end of an insertion it is no problem to form a long insertion string by
a sequence of such commands.

Inside TECO-Il search text arguments the@x command has the specific function of
specifying that the character to be matched at this positlOn is the lower case equivalent of the
character x. A1132 characters with decimal ASCII codes 96-127 can be specified in this (but only
in search text arguments). This is the extent ofTECO-ll provisions for editing full ASCII texts
with limited terminals.

In TECO-lf/J the inside-text-argument command @ x functions as described above
but is limited to the specification of non-alphabetic lower case characters. It also differs from the
TECO-Il command in that it can be used in both insertion and search arguments.

In TECO-10 case conversion of alphabetic characters is specified by a number of
commands using two control characters. These are G which specifies lower case and tf\V) which
specifies upper case. However there are three forms in which these commands can be use'c:r:Case
control applies only to alphabetic characters and only within insertion and search text argument
strings.

The default condition is for no conversion to take place. Characters are taken to be of
the case in which they are entered. With the tenninal equipment under discussion this is upper case.
The command @ outside a text argument means that all characters are to be taken to be in the
lower case form, unless overruled by the higher priority commands which are given inside text
arguments. This is quite sufficient if only insertion commands are to be given. However the default
search setting is either-case mode so this command will only be significant in searches if used in
conjunction with the 1-..(tX) exact mode command. The default translation mode can be restored
with the command f/J~

There are analogous commands 6\V) and f/J @ (also for use outside text arguments),
These are not required with terminals which~andle upper case only,

55

The (t\T) command outside a text argument apRlies until cancelled (by Q ®, ~ or
Q @) but is riTh'er weak. A double § command (i.e. (tV) rtv1 occurring inside a text argument
overrules any general (outside text) conversion command ~iclr1s current but, unless overruled for
a single character, s~ifies that all succeeding characters within that string only are to be interpreted
as lower case. The ~ 0Wl command inside a text argument has an analogous effect in causing
characters to be taken t~e upper case. This is useful, even with an upper-case-only terminal
because it overrides any general ® conversion command. For example, the command

:.@ IABC ~ @ DEFCDi)

inserts the string abcDEF. This could also be achieved by the command:

* I G @ ABC @ ~ DEFQX!)

When conversion commands are given inside a search text argument then exact-case search
mode applies to all characters under control of the inside text translation command. For example the
search command

.:. 8 JSABC @ @ DEFQX!)

will be successful if the text contains any of the strings abcDEF or ABCDEF or abCDEF etc., but
not if it contains only ABCdef or AbcDeF.; the DEF string must be in upper case.

The highest priority conversion command is the single ® or @ inside a text argument.
This converts the next character only to the specified case. It overrules any current double character
conversion command inside the text and any general conversion command. Again, exact case search
mode applies for the character whose case is so specified.

The command:

will be successful if the text contains:

"A case of TECO conversion" or "A Case Of TECO Conversion" (or variant forms of these permitted
by the optional initial capitalization). Note that if the command I @ had not been given all
characters before "TECO" would have been matched in either case mode.

The commands !tVl and @ have different meanings in TECO-l1. The command e
applies only to RT -11 with'"fue VTII graphics processor (see Reference Manual).

SIXTH TEeO EXERCISE

A large number of commands have been described in this chapter but it isn't very likely
that you will need all of them. The most important new concept introduced here is that there are
a number of inside-text-argument commands which are in general quite different in effect from
the commands represented by the same characters when used outside text arguments. In TECO-l!D
an extensive range of control characters has been reserved for this purpose in search and insertion
text arguments and these can only be expressed in the CONTROL/character form. In TECO-ll
there is a smaller set of resrved inside-text-argument commands and, except for ESCAPE, these
apply only to search text arguments and, with the ED command, these can be expressed in the
CARET - (or UPARROW-) character form. CARET is a TECO-ll inside- and outside-text­
argument command (but depends on the ET setting).

56

The most commonly used commands from this chapter are:

@ (command)/. .. text.../ , n@ , @ (inside), ~ (inside)

@ (inside, TECO-ll), @ (inside, TECO-10), !\ or t (TECO-ll).

You should remember that the text delimiting character in @-modified text arguments is arbitrary
(/ is common) but must not appear in the text.

You should certainly practise entering insertion and search commands in the @-modified
form. You can include ESCAPE characters in this way and so create macros either through the text
buffer or, in TECO-ll, with the @tU/ ... text ... / command. You can now edit macros in text
buffer as well.

Inserusome text in the buffer and then execute a few indefinite searches through it using
the @ and tN inside-text-argument commands. After this has been done store one of these
com~ndS in a -register and copy it into the text buffer to edit it. The task is to change the@
to a t (or vice versa). This involves searching for the character with a literal specification command
(what appens if you don't include the (fQ), or (fR) in TECO-l~ ?). A literal specification is
also required to insert the new character i.'iTECO~.

The other inside-text-argument commands can be applied when the need is perceived.
There is not much point in practising the case conversion commands unless you will have to use
them. Exact mode searching is very useful if you have files which make extensive use of both cases
and a terminal with the full ASCII character set.

PART THREE

PROGRAMMED TEeo EDITiNG

7. TEeO as a Programming Language

8. Numeric Arguments

9. Extensions and Examples of TEeO Programming.

This, the final part, extends to cover programmed TEeO editing. This involves two
groups of commands. The first comprises the TEeO execution transfer commands; the
second deals with manipulation of the numeric values which are used to form expressions
which are tested to determine conditional execution structures. TEeO is a powerful
programming language but the structured approach as used here, is almost essential in writing
understandable editing programs.

A knowledge of the commands described in the previous two parts is assumed. In
particular the procedures of storage and subsequent execution of commands must be
thoroughly understood.

This part completes the description of the TEeO editing commands. Mastery,
however, comes only with practice. No exercises have been prepared for this section; the best
way to understand programmed TEeO editing is to apply it to your own editing problems.

7. TEeO AS A PROGRAMMING LANGUAGE

The information given to this point is sufficient for most interactive TEeO editing.
That is, editing in which the user makes the decisions as to what will be changed while the job
is in progress. If your main interest is the correction of program source files this may be
sufficient. However, there is another class of problem for which this approach is not
convenient. An example of this type is the formatting of text. The text could be a book or it
could be a source program. The characteristic which place this task in the class under
consideration are that a large number of changes have to be made, the sequence of text
changes required to produce the final format varies from, say, line to line and that the final
format may vary from line to line.

Despite the fact that the precise sequence of changes required at any point cannot
be stated explicitly in such a problem it is possible to develop an algorithm which describes
how the desired format can be achieved. The algorithmic structures used in such a develop­
ment may be the familiar sequential operations, "if-then-else", conditional execution,
"repeat-while" or "repeat-until" repetitions and, in a limited way, the unconditional transfer
of execution or "go to". The additional features of TEeO which will now be described allow
such algorithms to be implemented. In other words, complex editing tasks can thus be
accomplished by writing a TEeO program.

Many people are rather surprised when informed that programs can be written
using TEeO as the language. In fact every string of commands, e.g. JHT, is a program of
instructions which describes the sequence of operation to be performed on the text being
edited.

Perhaps this example is too simple to be classed as a program. However already you
can write a TEeO "program" to make a ~mple) change to a whole file without intervention
from the user. The command':!:J<FNX~YCD ;>(])®changes every X in a file to a Y.

57

58

The procedure used in this case can be expressed as an algorithm:

move pointed to the start of buffer
store current value of automatic type-out setting
set for no automatic type-out

repeat
repeat

search for next X
delete it
insert a Y

until end of buffer reached
fin
output the page
clear the buffer
read a new page

until no more input
fin
restore original automatic type-out setting

The use of the word "fin" (short for "finish") to point out the end of a structural
block is somewhat unusual but is introduced here because it is a necessary indicator in the
general TECO implementation of such units. The word "end" already has a well established
meaning and has therefore been avoided for this purpose.

The angle bracket construction provides a sophisticated means of controlling TECO
execution. It will be recalled that if the angle brackets are opened with a preceding positive
numeric argument they indicate that number of repetitions of the enclosed group of
commands. If the preceding numeric argument is negative the enclosed commands are
skipped; that is, the brackets indicate conditional transfer of execution. If there is no
preceding numeric argument control must be transferred out of the loop by the semicolon
command. This has a more general function than has been explained so far. In general the
semicolon command, which can be used only inside angle brackets, is written:

n;

and when the numeric argument is negative the semicolon is ignored. When the numeric
argument is greater than or equal to zero the semicolon effects immediate transfer of
execution to the command following the corresponding closing angle bracket.

It is possible to build up structured TECO programs using these forms. However, it
is not convenient to do so in general. The depth of nesting of angle brackets is limited and
there are some problems in developing a visually clear format which reveals the program
structure. In practice most users apply these commands to fairly simple and readily
comprehensible commands. TECO possesses an alternative set of execution control commands
which, although of a rather lower level, are quite general. These will be used to implement
structured TECO programming.

It is not suggested that "standard" high level commands, familiar to all TECO users,
such as < FSstring I @ string 2 CD ; > should be broken into their underlying structural
components. The aim of structured programming is to make a program easier to write
correctly, to verify and to modify. This should be kept in mind. However, the TECO
conditional execution commands allow the most general editing algorithm to be programmed.

That was the good news. The not-so-good news is that TECO, like FORTRAN,
possesses the rather weak "if-then" and "go-to" constructions. This means that the favoured
"if-then-else", "repeat-while" and "repeat-until" structures cannot be programmed directly in

TECO. There are two ways this can be overcome. The first is to follow a strict format in
writing TECO. This approach will be followed in these notes. The second is to write a pseudo­
TECO program using such words as "if", "then" and "else" and then edit this "High Level
TECO" program (using another TECO program) to convert it to real TECO. This will not be
pursued further but is worth thinking about.

You are most strongly advised to adopt one of these procedures. Do not write
"unstructured" TECO; it is too hard to follow.

TECO has provision for non-executable comments within commands. These must
be used freely. In fact, in the following sections the algorithmic key words, "if', "then", etc.,
are included as comments in TECO programs to accentuate the structure. An uncommented,
let alone unstructured, TECO program is almost impossible to understand.

Finally, a TECO program can even be made interactive, to a limited extent.
Messages can be typed out during program execution and execution may be stopped so that
user instructions may be input to change the course of the editing.

When should you write a TECO program?

The answer to this question depends on your skill and experience with TECO.
As a "rule of thumb", if you have to use pencil and paper to work out how to achieve the
desired editing you should consider writing a program. If, as well as using pencil and paper to
plan the commands, you will want to do the same editing job in the future you certainly
should write a fully commented program and store it either on paper or as a file (ready for
re-use) as appropriate.

You should remember that it is (at least) as easy in TECO as in any other
programming language to make mistakes in logic, in syntax and in writing. This is why
structured programming concepts can be so usefully applied in TECO. Additionally it will be
seen that TECO possesses only limited aids to program error diagnosis.

Storing and using TECO programs

To create a TECO program you must first construct an algorithm which describes
the sequence of operations required to achieve the editing task. Then you implement this
(on paper) as a TECO program using the structured forms suggested. The next job is to enter
this program as actual commands. The immediate aim is to store the program in a Q-register
so that it can be executed as a macro. This is best done by entering the program as commands
(that is, after the asterisk prompt). The CONTROL characters and ESCAPES complicate the
alternative procedure of inserting the program into the buffer as text.

59

After a reasonable .number of lines have been entered into the command buffer
abort the command (@ @) and enter it into Q-register i with the command *i. Enter
the next segment into another Q-register and finally copy the segments into the buffer to
merge them in the correct sequence before returning the complete Q-register of a
Q-register. At this stage (or earlier if it is a long program) you should output the program to a
file in case of disaster. It is conventional to give TECO program files the extension .TEC .

After the program is verified (some useful commands to aid this are given later) a
copy of the correct program should be made. This can used again whenever the same editing
task is to be performed. The basic procedure is as fonows:

60

-:..R TECO < cr> (for example)

'::ERPROGI. TECCD®

'::HKA Xi®®

(reads the program and stores it in Q-register i)

.! ERPROG . FOR CD HKA ®®
(reads the file to be edited)

.! MiCD®
(execute the program)

.!EXCD®

The Q-registers provide subroutine (procedures) capability in TECO programming.
Frequently used subroutines can be stored in separate files and entered into the appropriate
Q-registers as shown in the example above. Alternatively, the main-and sub-programs can be
stored in one file and the program can be written so that it loads the sub-programs into the
appropriate Q-registers automatically. This means that you can maintain a set of your own
complex editing programs. For example you might have one to format your TECO programs.
It cannot be over emphasized that you must make stored TECO programs as fully commented
(and even self-documented) as possible. You will see why if you ever wish to modify one which
isn't so written.

The terminal keyboard represents another input stream. TECO-ll under RSTS/E
and RSX-ll allows this channel to be accessed by a file. The command:

EIfilespec ® (for §nable Indirect input)

presets TECO so that the next TECO call for terminal input will come from specified file and
not from the keyboard. This is quite useful for loading TECO programs into Q-registers. The
file containing the program is referenced in an El command and when the asterisk prompt
appears this file is loaded into the command buffer. It can be executed directly by typing double
ESCAPE or entered into Q-register i by typing double BELL (@ @) followed by *i. This
can be done without disturbing the current input file.

Input from the EI file stops when the end of the file is reached. The first input goes
to the command buffer and it can be executed as a command either by a typed double ESCAPE
at the end of the file or by double ESCAPE in the file. In the latter case the remainder of the
file is then available to be input at the next request for terminal input. If the executed
commands include EI CD the file is closed and the remaining parts are discarded. This is
significant under RSX-ll (see Reference Manual).

Any error which occurs after the EI command and before the call for input from the
terminal will close the indirect command file. The file can be closed explicitly with the
command E1 ® . Since the files read by the EI command are usually TECO programs and are
given the identifying extension. TEC this extension is assumed if none is specified. This is the
only example of a default extension being assumed in TECO.

The input from an EI file is never combined with commands already entered through
the terminal; the EI command simply presets where the next input will come from. It is not
possible to insert the contents of an EI file into the buffer directly by typing I and then
Elfilespec CD . To enter the file into the buffer it should be entered via a Q-register as
described above. Keyboard commands can of course be appended to the end of the input EI
file before execution is started.

TECO comments

Strings of text, enclosed by exclamation marks, may be inserted anywhere in a
TECO command string (with the exception of text arguments) without effect. Such a string is
used to include explanatory comments in a TECO program. Space and carriage return/

line feed are also ignored and should be used freely to document the program. For example
a TECO program could start with a title as follows:

! PROGRAM TO EDIT TEXT! < cr>

! EDITED TEXT IS OUTPUT IN 10 LINE PAGES! < cr>

(commands follow).

Comments may be included in command strings and may separate numeric
arguments from the commands to which they apply. They must not however separate a
command which takes a text argument from the intended text because they will be interpreted
as part of the text.

The TECO execution transfer commands

As mentioned above there are two execution transfer commands in TECO; uncon­
ditional transfer or "go to" and the conditional transfer or "if then".

The unconditional transfer command transfers execution to a particular location in
the command string (or macro) marked by a label ("tag") which is simply a TECO comment
(but limited to a maximum length of 128 characters). The tag referenced in this command,
which has the form OtagCD or, in TECG-II, @O/tag/ (which is usually easier to read) must
occur in the command string or macro in which the transfer command is given and its delimit­
ing exclamation marks are not included in the reference. After transfer execution continues
with the first command after the concluding! of the tag matched in exact-case mode.

When an atagCDcommand is encountered TECa searches that command string or
macro level for the first occurrence of the referenced tag. The search commences at the start
of that command string and thus the tag can appear either before or after the transfer
command. As far as TECO is concerned it doesn't matter how many times the tag appears in
that macro level; it is an essential requirement for clear programming that the referenced tag
should appear once only in the command string or macro.

If you don't take care to make the reference unique you must expect the trouble
which will surely befall you!

The following example illustrates the use of this command.

* (commands) J

ONEXTPART@

(more commands)

!NEXTPART! T@®

61

After the first commands are executed the pointer is moved to the start of the buffer
by the J command and then execution passes to the first command after !NEXT PART! (which is
is T) and types the first line.

If the structured programming approach is to be followed, and this is strongly
recommended, this command should be used with great restraint. In fact it is urged that you
should, as far as possible, use it only in conjunction with the TECO conditional transfer
command.

The conditional transfer command has the form:

(n)" x commands'

in which n is the numeric argument whose value determines whether a test, represented by a
single letter (generally, x) succeeds or fails. If the test is satisfied then the commands which are

62

entered between the letter x, following the quotation mark ("), and the final apostrophe
Cor ') are executed. If the test is not satisfied the commands enclosed within "x and the final
apostrophe are skipped and execution passes directly to first command after the apostrophe.

The "x and the final' must be used in matching pairs. They may be nested (like
parentheses in arithmetic expressions), but must be complete within a single macro level. The
closing apostrophe is a command termination; a numeric value, for example, cannot be passed
across it.

Letter:

G

L

E

N

The four basic test commands, represented above by x, are:

Execute the enclosed commands if:

n is Greater than zero

n is Less than zero

n is Equal to zero

n is Not equal to zero

A number of other tests will be described later.

As is the case with unconditional transfer command uninhibited use of this
conditional execution command is extremely undesirable. Recommended usages are described
below.

You are explicitly warned against using these commands to transfer into or out of
angle bracket execution loops. There is a way of transferring out with these commands but it
is unnecessary; the semicolon command is the appropriate command for use with angle
brackets.

Recommended TEeO programming structures

The favoured command forms used in structured programming are the if-then-else
conditional execution, repeat-while pre-tested iteration and the repeat-until post-tested
iteration. These can be implemented in TECO but not as directly as we might wish. The main
convention which is followed is that, in implementing the structured units, the command
string which mayor may not be executed depending on the result of a TECO conditional
execution transfer test is always replaced by an unconditional transfer command. This is
illustrated in the following preferred formulations:

If-then-else structure

A specific case will be shown first:

!IF (n - 3) NOT greater than zero! (n - 3) "G OELSE CD '
! THEN! (commands executed if n is not greater than 3)

OFIN®
!ELSE! (commands executed ifn is greater than 3)

!FIN!

The first thing to notice is that the structure is expressed in the form "if something
is not true-then-else". This is necessary to maintain the if-then-else flow of execution and,
based also on experience with structured FORTRAN, the slight inconvenience involved in
writing the commands is worthwhile. Any test can be used to control the execution in this
structure and for the general test, "x, the form is:

!IF n"x NOT satisfied! n"x OELSE CD' etc.

where n represents an expression.

The practice of including explanatory comments is highly recommended. The comments
need not take the form shown above.

The sequence:

!IF next character is not COLON! (0A-tt :)"E OELSEeD'

(the command 0A is described later) is clearer than:

!IF (0A-tt:) NOT equal to zero! (0A-tt :)"E OELSEeD'

63

There is only one test which should be expressed differently. It is rather ridiculous to
write" if n is not equal to zero is not true-then-else" when the tests "E and "N are complementary
(these are the only complementary tests in TECO). In this case it is better to express the test:

lIF n equals zero! n"N OELSEeD'

The next thing to consider is what happens when there are a number of such
structures in a program. All will end in !FIN! but TECO transfers to the first tagafter an 0
command. The solution here is to identify each structure by a number which is unique in that
macro level. The first structure is number 1 the second 2 and so on (a bit like statement numbers
in FORTRAN); it is not necessary that these numbers be sequential but they must be unique.

If-then-else structure

lIF n"x is NOT satisfied! n"x OELSE NeD'

!THEN!

(commands executed if n"x is not satisfied)

OFINNeD

!ELSE N!

(commands executed if n"x is satisfied)

!FINN!

The indenting of the commands is deliberate and is discussed further in a later chapter
under format. The aim is always for clarity; this should be kept in mind.

Repeat structures

The considerations discussed above apply to the "repeat-while" and "repeat-until"
structures which are given below in general form:

Repeat-while structure

!REPEATN!

!WHILE n"x NOT satisfied! n"x OFIN N@'

(commands executed while nl/x not satisfied)

OREPEATNeD

!FINN!

Repeat-Until structure

!REPEATN!

(commands executed at least once and until

nl/x is satisfied)

!UNTIL nl/x IS satisfied! nl/x OFIN NeD'

OREPEATN(D

!FINN!

Note that the UNTIL condition is not of the logical complement type. This has been
chosen deliberately so that all the "repeat" structures (there is another) end of the same way.

64

The selection of these forms for recommendation has been made carefully and in
the light of experience gained in writing structured FORTRAN programs. The reward for the
restraint used in writing this way is in clearly, easily corrected and modified programs which,
with the addition of a few explanatory comments are virtually self documented.

Examples of these structures are given in subsequent sections. In particular comments
may usefully be included within these structures to clarify the test condition which is being
applied.

A particular advantage of these structures is that they allow very direct implementation
if the program algorithms developed in the "if-then-else" and "repeat" structural forms; the use
of these key words to double as comments and tags is important. You can program these using
angle brackets but comments tend to be left out as inessential and the program gets hard to
follow. The author's preference is to limit angle bracket structures to sequences containing
relatively few commands (maybe a dozen), written on one line and not nested. There's nothing
really wrong with them; it's that they don't impose a clear programming style and in TECO
programs clarity is a must.

Sometimes, after a formally written TECO program has been completed, it will be
apparent that some structures within it can be expressed rather neatly with high level TECO
commands. In principle there is nothing wrong with changing these if it makes you happier.
However, this should not be done until the program is fully verified; it is terribly easy to lose
the structured form when a program written with angle bracket commands is being patched up.
It is not a good idea to invoke a macro from within an angle bracket loop; it is too easy to lose
control over the limited depth of nesting allowed.

Direct entry of TECO programs

TECO-Il programs may be invoked directly from the system. Under RSTSjE the
system command

MUNG filespec or MUNG filespec, text

is equivalent to

RUN $TECO

.:Itext CD EIfilespecQXD

That is, the (optional) text is inserted into the buffer and the named file is specified as an indirect
file entered in response to the request for terminal input.

Under RSX-ll the corresponding commands have the same form:

MUNG filespec or MUNG filespec,text

equivalent to

TECO

':1 text CD EIfilespecQXD

If the MUNG command is not available the system command

TECO @filespec

is equivalent to

TECO

':EIfilespecC!XD

Under RT-ll TECO programs can be executed directly from the system level. The
command

65

. ED IT / EXECUTE [: tex t 1 filespec

is equivalent to

.R TECO

~ERfilespec®HKA HXZ HK Itext®MZQXD

That is, it reads the first page of the named file (this file remains enabled for further read
commands) and copies it to Q-register Z. It then clears the buffer and inserts the specified text
and finally executed the text in Q-register Z as a macro.

66

8. NUMERIC ARGUMENTS

Numeric arguments are used to control all TECO conditional execution commands.
In this chapter the provisions of TECO for generation and storage of numerics are explained.
Particular attention must be given to the rules for forming numeric expressions; these have a
number of unconventional features.

Numeric expressions

Numeric expressions may be formed from numbers entered in a command string
and from commands which return numeric values. The complete set of rules for forming
these expressions will now be discussed.

A numeric expression is only significant if it precedes a command which makes use
of a numeric argument. If it is not followed by such a command it is evaluated but has no
effect. On the other hand, if it is important that a numeric expression should be evaluated
but should not apply to the following command (e.g. the % i command, explained later in this
chapter) then an ESCAPE character entered after the numeric expression will stop it from
acting as an argument.

Numeric expressions are formed by combining numeric terms with numeric
operators. The arithmetic operators defined in TECO are +, -, * (multiplication) and /
(integer division). These have their normal meanings, but recall that in integer division the
remainder is lost. A + before an expression is ignored and a - before an expression negates it,
that is, it is equivalent to multiplying the expression by -1. In TECO-l qJ a SPACE in an
expression is equivalent to +.

In TECO it is not illegal to combine numeric terms without operators. In this case
only the last numeric term in the unseparated string has an effect, except that an operator
preceding the string continues to apply. Thus:

B.Z=Z
-Z53=-53
8-ZZ.=8-.

It is important to realize that such numeric strings are not treated as errors in TECO; you
may well have left out the operator by mistake but TECO will not indicate this.

Normal numeric expressions with operators are performed from left to right. There
is no hierarchy of operators That is, the expression:

3+4*5 =35 (not 23).

It is fortunate that simple addition and subtraction is more common in TECO than multiplic­
ation and division but when you do use the latter you must be very careful to check that
expressions are evaluated as you intend. Parentheses must be used freely to make clear the
order of evaluation; all expressions inside parentheses are evaluated before operators outside
parentheses are performed, Thus:

3+(4* 5) =23 (as expected).

The expression:

-(3+(5*(7/C-2)) =12

and it will be seen below that the parentheses around the term -2 are essential.

Two other operators find use in forming TECO expressions. These are the logical
operators & (bitwise logical AND) and # (bitwise logical OR). The characters & and # are
known as ampersand and hachure (hash) respectively. Bitwise logical operators work by
examining the binary representation of the numbers being operated on. The AND operator
generates a new number which has a 1 in every bit position in which both input numbers have
a 1 and the OR operator generates a new number which has a 1 in every position where
either of the input numbers has a 1. All remaining bit positions are set to qJ.

67

In practice these operators are used very simply. The binary representation of 0 has
every bit position occupied by a 0 and the representation of -1 has each position occupied by
a 1. Thus:

(-1)#(-1)=(-1)
(-1) &(-1)=(-1)
(-1)#0=(--1)
(-1) &0=0
0# 0=0
0&0=0

These results conform to the convention that (-1) is logical TRUE and 0 is logical FALSE.
However in TECO there are no defined logical variables and you may find it preferable to
think in terms of (-1) and 0 as "all bits 1" and "all bits 0" respectively rather than as TRUE
and FALSE. The use of parentheses, (-1), may seem excessively cautious; it is not, as will
be shown below.

There are other things you could do with logical operators. For example you could
form expressions using 1 instead of (-1). It isn't worth while. It is far safer to stay with one
completely conventional usage. One of the very rare occasions in TECO in which logical
operators are used in another way is in the setting of the bit-encoded ET word as described
without explanation previously.

If you stick to the recommended usage with (-1) and f/J, the logical complement can
be formed quite simply. If n is a logical value, (-1) or 0, the expression:

-en + 1)

gives the complement. That is, if n=(-1) this expression is equal to 0 and vice versa. In
TECO-ll this can be formed more directly with the ~ (or CARET/UNDERSCORE or
BACKARROW) command:

n (;) which is equal to -en + 1).

This is still evaluated if n is not equal to (-1) or f/J but its usefulness in such a case is not obvious.

The reason for enclosing the (-1) values in parentheses in these examples has to do
with the way in which TECO handles adjacent numeric operators. Adjacent operators occur in
the expression:

0&-1

but not in

0&(-1).

The difficulty that this raises is that adjacent operators are not defined mathematically but, at
the same time, TECO does not recognise them as errors. Unfortunately TECO-l f/J and
TECO-ll handle adjacent operators very differently.

In TECO-l1, when adjacent operators are encountered the whole of the expression
to the left of the second operator is discarded. The second operator is taken to be the start of
a new expression. Thus:

0&-1=-1 and 3+--4=-4

while

0&(-1)=0 and 3+(-4)=-1

There is of course no problem in an expression such as:

3+ES

even if the command ES should return the value (-1) since here there are no adjacent operators
in the command string. The negative sign is incorporated in the internal representation of the
number.

In TECO-l 0 the treatment of adjacent operators is quite odd. If adjacent operators
are encountered the last numeric value encountered is interpolated between the operators. Thus:

- 2-+ 3 =-2-(2) +3 =-1

68

Clearly you must take care to avoid such expressions. The particular problem in TECO-10 is
that a SPACE in an expression is equivalent to a + ; this has strange consequences. For example,
the expression:

4+7

may be written with SPACE characters to improve legibility. Unfortunately it is equivalent to:

4+4+4+7 =19

and is not equal to 11. The combination SPACE + SPACE is taken to be +++ and the last
numeric (4 in this case) is interpolated between each adjacent pair.

This is why it was recommended that SPACE characters should not be used in
TECO-IO expressions. They should also be avoided in TECO-ll lest you develop bad habits
which could cause disasters when you use TECO-I0.

The value of a numeric expression may be typed out by using the expression as the
numeric argument of the equals command:

n=

As explained earlier, this command causes the value of n to be typed out on the terminal
followed by CARRIAGE RETURN and LINE FEED. This command can be modified so that
the carriage is not moved after the number is typed out by entering it as follows:

n:=

This option only applies in TECO-ll.

Encoding and Decoding

In editing the need may arise to write a numeric argument as text. For example, if
pages are counted automatically as editing proceeds you may wish to enter the page number as
text at the top or bottom of the buffer. Alternatively, a page number may be included in the
text and you may wish to use this number as a numeric argument.

The act of expressing a number as a string of ASCII characters is called decoding. That
is, when the single number which is stored in the computer core in binary code as, for example,
1101001 is expressed by writing the three characters I, 0 and 5 (which we read as 1 (5) it has
been decoded. The reverse procedure in which the three characters 1,0 and 5 converted to a
single number in the computer is called encoding. In TECO these operations take the form of
transfers between numeric arguments and the text buffer.

These transfers between text and numeric argument can be achieved with two forms
of the Backslash, \ , command. The command n\ transfers (decodes) a numeric argument n to
the text buffer. The decimal expression of the value of n is inserted as ASCII characters
immediately to the left of the current pointer position. That is, if the numeric argument n is
equal to 437 the ASCII characters 4, 3 and 7 are inserted before the pointer.

The reverse transfer (encoding), from text to numeric argument, is achieved by the
command, \ , (with no numeric argument). Note that the \ command is therefore a numeric
argument itself and is used to precede a command which requires such an argument. The
exact function of this is to take on the decimal value of the string of digits (optionally
preceded by a + or - sign), which starts immediately after the current pointer position and is
ended by the first nondigit character encountered, and to move the pointer to the end of this
string. If there is no string the value 0 is returned.

Thus if the buffer contains the following section of text ... ABC34561 0 <space> 2EF ...
t

the command returns the numeric value 610 for use as an argument and moves the pointer
position between the 0 and the space which precedes the 2.

Q-Register Numeric Storage

The essential features of the Q-registers have been described previously in connection
with the Xi and Gi commands for text storage and the *i and Mi commands for command

storage. The 36 Q-registers are identified by the letters A-Z and numerals 0-9.

The Q-registers can also be used for the storage of integer numeric arguments. The
command nUi (for Update) transfers the numeric argument n to Q-register i overwriting any
previous contents. Note that the argument is transferred and cannot be used as an argument
until it has been retrieved. For example, the command 2UA= is not valid.

To copy the contents of Q-register i for use as a numeric argument (not as text) the
command Qi is used. That is, the command Qi returns the numeric value stored in Q-register i
as a numeric argument. Thus the correct form of the invalid command given above would be

.!2UAQA=@eB

2

69

In this command string the integer 2 was stored in Q-register A by the command UA
and retrieved for use as the numeric argument of the = command by the command QA. The
contents of Q-register i is not changed by the command Qi.

The integer stored in Q-register i can be incremented by 1 and the incremented value
returned as a numeric argument for the next command with the command:

%i
This command is equivalent to the command string:

(Qi + 1) UiQi

If the stored number is to be incremented but it is not wanted as an argument the command
should be terminated with a single ESCAPE character, as described previously.

In TECO-10 a stored integer can be incremented by n using angle brackets (but
the value is not returned because the closing angle bracket is a command terminator):

n<%i>
In TECO-ll the angle brackets are not required; the command:

n%i

increments the integer stored in Q-register i by n and returns the incremented value.

To return the contents of Q-register i as text the n\ command must be used. Thus,
to enter the integer stored in Q-register A as ASCII characters immediately to the left of the
pointer the following command would be given

*QA\ @@

The Colon Command

The colon (:) is used extensively in TECO-l1 but in various ways. In one use it
signifies a type-out action, for example, : G* which types the last filespec on the terminal
or : = which modifies the = command so that the carriage is not moved after the numeric
value is typed.

The most general use of the colon is to modify a command which mayor may not
produce an error condition depending on the state of the command environment (the buffers,
pointer position, stored files etc.). A command of this type, when preceded by a colon,
returns a numeric value as well as performing its normal function. If the command can be
executed successfully the value returned is (-1); if it fails the value returned is 0 and any
error procedures (e.g. typing of error messages and return to the command input state with
the asterisk prompt) are skipped and execution passes to the next command in the string.

In TECO-10 the sole use of the colon is in one particular example of the general
type. Any search command (S,FS, N,FN, UNDERSCORE or BACKARROW) can be preceded
by a colon to modify its behaviour as described. If the search is successful the command
behaves normally but also returns the value (-1); if it fails there is no error message and the

70

value 0 is returned to act as an argument for the next command. The pointer is, however, still
moved to the start of the buffer in the event of a search failure. The colon is entered after any
numeric argument but before any @ modifier, thus:

:S ... text ... (Dor n:S ... text ... ® or n:@S/ ... text ... / .

This also applies in TECO-Il except that if the colon modified search command
precedes a command which requires a positive argument (e.g. the nP command) a value of
(-1) is interpreted as 65535. Care is needed.

In both versions of TECO the most common use of this modified command is in
controlling an indefinite repetition and, recognizing this, all search commands inside angle
brackets are automatically colon-modified. This is why they do not generate error messages
when they fail. This also explains why a search command inside angle brackets and followed
by a semicolon controls the execution. The (automatically) colon modified search acts as the
numeric argument for the n; loop break command.

The TECO-ll bounded search command can be used to produce a special form:

(1,I)S ... text ... CD
Which acts as a comparison command. If this is expressed as a colon-modified search:

(1,1):S ... text ... CD
then, if the text which lies immediately after the pointer matches the specified text argument
the pointer is moved to the end of the matched string and the command returns the value
(-1). If a match is not obtained the pointer is not moved and the command returns the
value 0. This is a useful command and it can be expressed in the special short form:

:: S ... text ... CD
In TECO-ll the colon modifier can also be used to precede the file opening

commands ER, EB and EN. If the specified file exists the value (-1) is returned; if it cannot
be found (this would normally be a fatal error) it returns the value 0. This can be useful in
programmed editing where input is to come from one or more of a number of files which
mayor may not be present.

Another use in TECO-l1 is in connection with the Q-register pushdown list
described in the next chapter.

More Commands which Return Values

I t is often useful in programmed TECO to control the sequence of command
execution according to the text in the buffer. In TECO-ll the: : S comparison may sometimes
be used for this. Another way, available in both TECO-10 and TECO-ll, is with the command:

nA (for ASCII value)

This is distinguished from the append command by the numeric argument (which must be
present); the append command, A, does not take an argument.

In TECO-ll the command nA returns the value of the (decimal) ASCII code of the
(. +n + 1) th character in the text buffer. The commonest form of this command is:

0A

which returns the value of the next character after the pointer. In TECO-10 this command
refers only to the character after the pointer regardless of the value of n; for consistency the
form 0A shoulL! always be used.

In TECO-10, if the pointer is at the end of the buffer this command returns the
value zero. In TECO-ll the command nA where n is greater than or equal to zero and where
the pointer is at the end of the buffer is regarded as an attempt to move the pointer off the
page and is an error. An analogous situation applies at the start of the buffer. This command
should not be used to see if the pointer is at the end of the buffer. The correct command for
this is:
(2-.)

which returns zero if the pointer is at the end.

The system-dependent commands @ and tH (enter as CARET-H because
CONTROL/H is BACKSPACE) return the current value of the console switch Agister and the
time of day respectively and @ (TECO-II) returns the date. In TECO-ll 'tV returns the
version number of the TECO program; this book is based on version 27.

71

In TECO-10 a specific use is made of the version number. From time to time
changes are made to the TECO program. Some of these can affect the operation of programs
written in accord with previous versions. For example, the P command in early versions created
a < formfeed> character; this is no longer the case. The TECO EO (Enable Old) command
changes the current TECO version to the specified old version so that old programs can be
successfully operated.

The default option is that TECO is set for the latest version. The command
nEO (n> 0) sets TECO to operate the specific version which is required. For versions up to
version 21, n is equal to 1. Versions 22, 23 and 23B the value of n is 2. The default (newest)
version can be restored by the command 0EO (or nEO with n negative). The command EO
with no argument returns the current value (n) of the EO flag.

In order to protect a TECO-10 program from future changes it could have as one
of its first commands, nEO where n corresponds to the version for which it is written
(currently 23B, n = 2). Its last commands should include 0EO to restore the default version
setting. This command is not used in TECO-II.

Compound Logical Expressions

It is frequently convenient to base a conditional execution command on a compound
logical expression. For example, an alteration to the text in the buffer may be programmed as
a "repeat until" structure in which repetition is terminated when either all the text has been
treated (-1 placed in Q-register A, otherwise (/)) or an error condition has been met (-1 placed
in Q-register B, otherwise 0). This could be expressed:

!REPEAT!
(editing commands)

!UNTIL! (QA#QB) ilL OFIN ® '
OREPEAT ®

!FIN!

The important thing about such compound logical expressions is that, even when
properly used, they are mainly a convenience to the programmer. Subject to some qualification,
the computer "doesn't care" whether it has to execute a compound logical expression or,
instead, a sequence of simple conditional execution commands. The second approach is always
open to the programmer; the compound logical expressions are simply an alternative. When
compound logical expressions are not properly used they are positively harmful to good
programming.

Compound logical expressions are properly used when they can be clearly under­
stood (by human readers) and when they significantly simplify the appearance of a program
(again, to a human reader). Even if these conditions are met, if the time taken to construct and
write the compound forms is significantly greater than that required to code the simple
sequential alternative form then the use of the compound form, being uneconomic, is improper.

A string of logical expressions an separated by "or" or "and" as in:

if (condition A) or (condition B) or (...... etc) is true then

can be readily understood. Similar strings preceded by a simple negation (of the whole string)
are also readily grasped.

However, as soon as "and" and "or" are used in the one string, (and parentheses
become necessary to make the meaning clear) the risk of misunderstanding greatly increases.

72

Add a couple of "not" operations and the expression runs the risk of being effectively
incomprehensible. Such expressions have no place in any sort of programming.

To these general cautions must be added the consideration that TECO does not
possess a simple command structure which allows direct use of compound testing such as:

if «A = B) or (C* D)) and (E< F)) then

where A through F represent numeric arguments.

This is, in the light of the comments above, just about as complex a logical expression
as may be usefully employed and in TECO programming, in particular, is certainly complex
enough to require the exercise of some thought in its implementation. The clearest procedure
is probably the one shown below (referring to the above example).

!IF! Q)UA Q)UB Q)VC
(A-B)"E -IVA'
(C-D)"N -1 VB'
(E-F)"G-IUC'

«GA#GB) &GC) liE OELSE (1) ,
!THEN! (commands executed if expression equal to-1)

etc.

The block of conditional execution commands used in this example do not themselves
confonn to the previously recommended structured forms but in this case clarity, one of the
aims of structured programming, is better served by the simplicity of the scheme demonstrated
here.

A particular trap in using logical operators lies in expressions in which the terms can
have values other than <,I) or (-1). For example, it is correct to use the following form to execute
certain commands only if the character after the pointer is A or F.

!IF! QVi 0U2

(0A- tt A)/IE - 1 VI'

(f/JA- tt F)"E -1 U2'

Ql#Q2+1"N OELSE'

!THEN! (commands executed if next character is A or F)
etc.

However it is not correct to use the following sequence:

!IF! cr/JA- tt A -1)#(0A- tt F -1) + 1 /IN 0 ELSE'
etc.

This will work if the next character is A or F but it will also result in the execution of the
commands in question if the next character is E. Logical operators are tricky things.

There are lots of clever things you can do with logical operators but the cleverest thing
of all is limit use to simple expressions with terms which are <,I) or (-1).

As indicated previously, TECO includes a number of other test commands which can
be specified by writing the appropriate letter in place of the x in the general form (n)"x
(commands)'.

Thus the test will be satisfied, and the commands delimited by /I X and' will execute if,
with x replaced by:

C n is the decimal ASCII code of an alphabetic Character (upper or lower case letter) a digit,
$ sign or . (period or full stop);

D n is the decimal ASCII code of a Digit;

A n is the decimal ASCII code of an Alphabetic character (i.e. upper or lower case letter);

73

In TECO-l (j) the" C test is satisfied by a % sign in addition to the others listed (alphanumeric, $
or .). There are two other tests:

V n is the decimal ASCII code of a lower case letter.

W n is the decimal ASCII code of an upper case letter.

In TECO-Il it is hard to believe but the" V and "W tests have reversed meanings:

V n is the decimal ASCII code of an upper case letter.

W n is the decimal ASCII code of a lower case letter.

In addition, TECO-ll allows another test:

R n is the decimal ASCII code of an alphanumeric (upper or lower case letter or a digit).

In both versions the letter L can be replaced by T (for True) or S (for Successful
search) while E can be replaced by F (for False) or U (for Unsuccessful search). These are
merely a mnemonic convenience. In fact they can be dangerous if used unthinkingly. The two
commands T and S are satisfied by an argument which is merely negative and not
necessarily equal to -1 (logical true).

TECO-l1 also allows the substitution of "> in place of "G and "< in place of L.
A choice of so man¥, forms when one will do seems excessive (even for TECO). You only
need to remember 'G, '1., and "E.

Decimal and Octal Integers

To this point it has been implied that all TECO numeric operations assume ordinary
(decimal) integers. This is indeed the case and the main difference between TECO-10 and
TECO-ll in this regard is that in the former the range of integers allowed is from _235 to 235 - 1
(-34 359 738 368 to 34 359 738 367) while in TECO-ll the range is from _215 to 215 _1
(-32768 to 32767).

These ranges reflect the internal representation of the numbers in binary form. Thus,
in TECO-ll, 16 bits are available per interger and one of these is reserved to indicate the sign.
This may possibly be a significant consideration in some cases because the maximum integer
size in TECO-l1, while more than adequate for any normal editing task, could conceivably be
exceeded. Up to the limit of 65 555 an unsigned number greater than 32767 is treated as a
negative number. For example, the command

65535=

types out -1. These problems would surely never arise with TECO-10.

TECO-l (j) has limited facilities for handling octal (base eight) integers. The command
to (CARET/O, not CONTROL-Q, for Octal) preceding a numeric entry from the terminal
causes it to be interpreted as an octal integer. For example

tOI\/)

is interpreted as decimal 8 and this value is used to evaluate the argument in the TECO command
string. For example:

tOl(j)+3 = 11

In TECO-l1 the to command is not limited to the immediately following numeric inp~nly.
Instead it applies to all subsequent numeric input until it is cancelled by the command ~
(for Decimal) which restores the default condition.

All TECO calculations are based on decimal numbers; the only purpose of the to
command is to get octal input accepted in the decimal form used by TECO. It therefore follows
that values returned by TECO commands and used in numeric arguments are not affected by to
commands; they are already in the correct form. Only new input is affected.

74

TECO-II makes particular provision for octal encoding and decoding. Even if a to
command is current the command

n\

inserts the in pu t value n into the text exactly as it is entered. That is, if 10 is entered the
characters 1 and 0 are inserted (not 8). In the opposite operation of encoding text as a
numeric, if a tOcommand is current the \ command returns the value of the ASCII digit string
read as an octal number and converted to decimal form. The string 10 will be returned as 8 for
use in numeric arguments.

When octal input is current the digits 8 and 9 are illegal. This applies to the n\ and \
commands in TEeO-li.

The only call for the conversion of TECO's decimal numbers into octal form arises
when the user would like to see the numbers in octal form; TECO never uses octal numbers
for its operations. Accordingly the only decimal-to-octal conversion occurs within a type-out
command. The double equals command:

n==

converts the decimal number n to octal and types it out on the terminal followed by CARRIAGE
RETURN and LINE FEED. The command:

n:==

has a similar effect except that the carriage is not moved after the number is typed. No sign is
involved in the conversion of a number to octal representation. Thus in TECO-II if you had
to convert the decimal number 65 535 to octal it would be typed out as 177777. You would
never be concerned about this with TECO-I0. The double equals command has no effect on
the prevailing mode of interpretation for input.

It may be useful to recall that if you should wish to know the octal ASCII code of
a character, x, you can give the command:

@x==

and it will be typed out.

TECO Variables

It will have been apparent from the examples given in this chapter that the capacity
of the Q-registers to store numeric values can be used to give TECO a facility for handling
variables. A numeric value can be assigned to a particular Q-register and recalled as required for
use or for alteration and re-storing. The difference from high-level programming languages is
that the variables are identified only by storage location and not by a unique and permanent
name. This way of using storage registers will be familiar to the many users of programmable
pocket calculators. The responsibility that it imposes on the user is that of ensuring that the
register invoked actually contains the data appropriate to the wanted variable. In particular it
is necessary to ensure that Q-register contents are not over-written by macros called from the
main program. A way of guarding against this is described in the next chapter.

There is an error in the current version of TECO-II which results in the error message "missing right
parenthesis" when a macro which returns a numeric value is included (correctly, according to the rules) in a
parenthetical expression. The user must allow for this. If necessary the value returned can be stored in

Q-register i before the expression is evaluated and recalled with the command Qi within it.

9. EXTENSIONS AND EXAMPLES OF TECO PROGRAMMING

This chapter completes the description of the TECO commands. Additional
structured programming units are described and some examples of TECO programs are given.
The chapter ends with a discussion of the costs of using TECO.

Interactive programmed TECO

75

TECO can type out programmed messages during execution. This is in addition to
any type-out of text or numeric values. The message which is to typed out is entered in the
command string at the place whe~he message is wanted and is delimited by a 0 character
at each end of the message. The ~ characters are not typed out. The message can contain
any character except @ and may be of any length. The first 0 (for ASCII string)
character is the actual command and can therefor be entered in eIther the CONTROL-A or
CARET/A form; the second is the message delimiter and as such is not a command and must
be entered in the CONTROL-A form only.

TECO-II allows the alternative text argument form:

@ 0 / ... message ... / or @ t A / ... message ... /

where / re~esents an arbitrary character (not in the message). This avoids the need to include
a second in the message argument and permits the user to maintain a convention of using
the CARE -character form in TECO-I! command strings.

One use for this command is to identify type-out commands. For example, a program
might type out the page number in one case and a line number in another. The very real risk of
confusion is removed if the type-out command is preceded by a message such as:

10 PAGE NUMBER = 0
Particular attention must be~id to the carriage position characters when using this

command. For example the adjacent ~ commands: o .. message 1 .. ~ ~ .. message 2 .. 0
will type:

.. message 1 2.. (no separation of messages) unless SPACE and CARRIAGE RETURN
(and LINE FEED) characters are explicitly included in the messages. Messages specified in
this way but interspersed with type-out commands CT, =, := etc.) must be written to take into
account the position of the carriage after each typing action.

A more complex but very useful application of this command is illustrated below in
connection with the interactive input command.

When the command @ (for Type-in) is encountered in the execution of a
command string execution pauses until a single character is entered on the terminal keyboard.
When this has been entered execution starts again with the ASCII code number of the entered
character supplied as the numeric argument for the next command in the string. Some
characters may not be entered this way (e.g. @ in some systems); consult the Reference
Manuals on this point.

A common example of the use of the ~ and @ commands is in the interactive
control of the execution sequence. This is illustrated in the following sequence:

o TYPE Y TO CONTINUE; ANYTHING ELSE WILL CAUSE EXECUTION TO STOP: ~
!IF! (@ - @ Y)"N OELSE(~)
!THEN!

!ELSE!

!FIN!

(comm~ds which continue execution)
OFIN\!)

(commands which stop execution)

'76

First the message telling the user what to do is typed, then execution pauses while
a character is entered. The ASCII code of the entered character is tested to see if it is equal
to the ASCII code of the letter Y and the result used to control the sequence of execution.

The @ command only accepts one character but this does not prevent strings of
characters from being entered. A crude example follows; execution pauses while text is
inserted into the buffer:

~ ENTER TEXT TERMINATED BY AN ESCAPE CHARACTER

@UA
!REPEAT!

!WHILE NOT ESCAPE! (QA - Q})@)) liE OFIN G),
QAIC!) @ UA

OREPEAT CD

After the message is typed the execution pauses while a character is entered. Its value
is stored in Q-register A. The stored value is then tested to see if an ESCAPE character was
entered and if one was, execution passes on to the next part of the program. If the character
was not an ESCAPE it is entered in the buffer to the left of the pointer, execution pauses for
the next character to be entered and the testing process is repeated. It is assumed that nothing
important was stored in Q-register A.

This is a crude example because it makes no provision for the correction of errors
in the entry of the text from the keyboard. One way of overcoming this would be to type out
the entered text and have the user type Y if it is correct. If it is not correct the entry
procedure can be repeated until it is completed correctly. Another approach would be to
allow RUBOUT or other immediate function characters to act in their normal way to delete
characters from the string.

TECO-ll has a number of additional provisions for using the @ command. If
Bit 3 (23 =8) of the ET word is set the characters entered through the keyboard will not be
echoed as they are typed. An obvious case where this is desirable is in !hi(entry of secret
passwords. Bit 5 (25 = 32) of the ET word 8lso concerned with the (t]J command. If this
bit has been set when execution reaches a ty command there is no pause for entry. If a
char~er has already been entered it is accepted but if there is no character ready waiting for
the ItY command the value (-1) is returned and execution continues withou t pause.

In systems where the EI command is implemented the @ command can be used
in a procedure such as that illustrated above to input text from the specified file rather than
from the keyboard. This provides a way of avoiding the need to close and subsequently reopen
the current input file while the contents of another file are being interpolated. Bit 3 of the ET
word might well be set to no echo when such input is being accepted.

The Q-Register Pushdown List

The previous example of the @ command function made use of a particular
Q-register to store the value of the entered character. It was assumed that nothing was stored
in it beforehand. This is not at all desirable if a program (like the example) is to be stored in
a file for reuse from time to time as a general purpose procedure (macro). This problem is
overcome with the following TECO feature.

An additional 32 storage locations are available during the execution of a TECO
command string. These locations are cleared every time TECO completes execution of a
command string and types an asterisk. These storages are caned the Q-register Pushdown List
and the command [i (left square bracket i, read as "pushdown") copies the contents of
Q-register i into the top register of the Pushdown List (without changing Q-register i). The
maximum depth of the stack is 32 entries.

77

The command]i (right square bracket i, read as "pop up to i") transfers the contents
of the top register of the Pushdown List to Q-register i, erasing it from the Pushdown List and

the contents of Q-register L The vvhich was made in the Pushdown List
immediately before the one which is transferred is now at the top of the Pushdown List. It is
important to realise that once an entry has been made in the Pushdown List there is no way of

from which Q-register it originally came. There is only one Pushdown List and it serves
all Q-registers. Furthermore, the entries can be retrieved in the reverse order of entry (last
in - first

of Q-registers can be exchanged using the Pushdown List. For example.
':::[A[B]A]B

the contents of Q-registers A and B without affecting any other Q-registers. This can
be extended to more complex re-arrangements. Another use when the strictly sequential order
of could be used would be to reverse the order of the characters in a string of text.

the main use of the Pushdown List is in making TECO macros truly general
purpose. A macro may be written using Q-registers A through D (for example). The problem
is that these may be in use; the solution is to start the macro with the command
sequence"

[B
which puts the stored material into the Pushdo"wn List and frees these registers
for use in the macro. The macro then ends with the sequence:
]D]C]B]A
to restore the Q-registers to their former state.

The problem is a more difficult if the function of the macro is to store material
which is to be preserved after the execution of the macro has been completed. In this case care
must be exercised to ensure that this does not overwrite other wanted material. Each program
should have an introductory comment section which details of such requirements.

It is not only Q-register contents which should be preserved in a general purpose
macro. If special flag settings (e.g. search mode, ET etc.) are required in the macro then the
previous settings should be stored in Q-registers the Pushdown List) for the duration of the
execution of the macro and be restored at the end.

The [i and] i commands in TECO···ll have a very useful feature; a numeric argument
entered immediately preceding these commands continues to apply just as if they were not
present at alL A numeric argument may be validly entered before an Mi command so that it
applies to the first command in the macro. With this feature the TECO~ll macro may start with
a series of push down commands and the calling numeric argument will apply to the next
command after this series. Comments are totally and have no effect in any case. The
same at the end of a macro in TECO-l1; the macro may generate a numeric value which
is to to the first command after the Mi command and still end with a series of pop up
commands. This does not vyork if the Pushdown List was when the pop up command was

This feature is not available in TECO~ 1~. A reasonable convention here is that one
Q-register (Q-register ~ is suggested) should be reserved for temporary storage of

numeric arguments passing between the command and the macro. A macro with a calling
numeric argument would then start:
U0 (etc.) Q~ (first command ...)
An would be used to pass a numeric out of the macro.

1 allows a nice pr<?:~dure for aborting the execution of a program. Any TECO
execution can be aborted typing \t9 @ (Sl , system dependent), The trouble is
that if the previous contents of Q-registers or various flag settings have been stored in the
Pushdown List by the program they will not be returned and will be lost since the Pushdown List
is cleared vvhen execution ends. In TECO-ll this can be overcome using Bit 15 (_2 15 = -32768)
of ET word bit sets the sign to "-' If this bit is set to 1) TECO-ll records that

by off this bit it but does not terminate

78

To make use of this feature the TEeO-II program is written as a "repeat while Bit 15
is se t" stru ct ure :

'SAVE PREVIOUS STATE IN PUSHDOWN LIST!
[B [C [D (etc.)

!SET ET BIT 15!
(-32768#ET)ET
IREPEAT l(b!

lFIN 1~!

!WHILE ET BIT 15 SET! ET"L OFIN l~®'
!THE ACTUAL PROGRAM GOES HERE!

!AT THE END OF THE PROGRAM TURN OFF
BIT 15 SO THAT THE PROGRAM WILL STOP!
(32767&ET)ET
OREPEAT l~ CD

!RESTORE THE PREVIOUS STATE!
]D]C]B]A

(Note that a special technique is used to switch off Bit 15.)

This is such a useful procedure that it is probably worthwhile remembering it as one
of the "standard" TECO-II forms and writing it with the high level TECO conditional execution
commands < n; > thus;

[B [C [D (etc.)
(-327 68#ET)ET <ET;
!THE ACTUAL PROGRAM GOES HERE!
(32767&ET)ET>
]D]C]B]A

This can readily be included in any TECO-II program which makes use of the Pushdown List.

Bit 6 (2 6 =64) in the TECO-lI ET word can be used to allow a TECO program to run
with the terminal detached. This is system-dependent (see Reference Manual). It requires a
lot of confidence in the program before this option can be used. If this is used it is wise also to
use the option controlled by Bit 7 of the ET word. If this bit is set any error condition
encountered in a TECO program results in the termination of TECO after the error message is

. This option also prevents the typing of informational messages and causes immediate
termination of TECO when a @ is typed. It is, however, no help if a detached program enters
an infinite loop.

TECO programs

TECO possesses limited aids to program correction, When an invalid command is
encountered the? command given immediately will type out a section of the current command
string up to the error but in TECO-II this may involve an inconveniently large amount of typing
if the program is large. The? command can be used in another way. When the? is not the first
command after an error it is treated as a normal command and when execution reaches this point
TECO procedes to type out each command as it is executed. This command tracing continues
until another? is encountered or, in TECO-ll, until the end of the current command string is
reached"

Again, this can produce an inconveniently large amount of type-out, though this is a
matter for the user to decide. One problem with TECO-II is that as the search for tags
referenced in 0 commands proceeds from the start of the current macro level all comments/
tags are examined fully and are typed out under the? command with no additional CARRIAGE
RETURNs added. This produces a lot of type-out and, on some terminals, the carriage types
away over at the right hand side of the page. This does not occur with TECO-l~.

79

The principle involved in using the? trace mode is that the user can follow the progress
of execution and can trace the flow through various conditional paths. It is often more
convenient in practice to achieve the same thing by including a number of /fA) messages in the
program. These might be a simple series of numbers or letters or quite detailed descriptions of
the location. The purpose is to show that execution has passed a certain point.

It is not possible to have TECO pause in the execution of a macro but it is often
desirable to see how the buffer and pointer position have been changed by a series of commands.
One convenient way of doing this is to include a sequence such as 0T HT T, identified with a
type-out message, at key points. Important Q-registers can also be examined in a similar way.
Remember that if you use the Pushdown List you will not be able to examine the actual
Q-register contents (as they were during execution) after the program execution has finished.
The push down and pop up commands which make the program general-purpose should
therefore be added after all corrections have been made when the temporary type-out commands
can also be removed.

The best way to test and correct TECO programs is to write them in a fully structured
style and test the structural units separately. It is a simple matter to split a large structured
program into its units and insert the numeric values so that each execution path is tested once,
which is sufficient. The individually tested units can then be recombined confidently.

Programmed TECO is not very different from ordinary interactive TECO; you have to
keep a very clear picture of the pointer position. The new feature is the need to check the
execution control logic. As stated before, you should take care to limit the use of logical
operators to numerics which can only take the values ¢ and (-1); this rule can save alot of
trouble.

You must expect infinite loops in programs. Be ready to strike CONTROL/C before
the cost gets too high. Type-out messages in untested programs come into their own in this
situation.

When an error in a program has been located the program must be copied into the
buffer for editing. To do this you must be familiar with the commands described in chapter six.
In general there are so many ESCAPE characters in programs that it is best to make all search and
insertion commands @-modified. You must verify every change you make.

More on structural units

A strict pattern has been recommended for writing TECO programs. This is in the
interest of clarity - one of the strong points in favour of structured programming in general.
The structures which have been formally defined are the "if-then-else" and "repeat while/repeat
until" units. However, while these may be sufficient for any programming task they are not
always convenient. The additional structure of "case of" and "go to" do have their applications
and can add clarity even though they involve unconditional transfer of execution across
uncompleted levels of control.

The important thing is that the destination of the transfer is always a defined logical
point such as the end of the case structure or to the end of the loop. What does not occur in
structured programs, and what you must therefore take care to avoid in writing structured
TECO, is unconditional transfer to some arbitrary destination.

The if-then structure

The simple "if-then" structure is quite common. This is really an "if-then-else" with
the "else" part being null. This could be programmed in the manner shown previously with
the comment !NULL! included after the !ELSE N! but there is no advantage in this and the
straightforward approach is to use the following form:

80

lIF n/lx NOT satisfied! n/lx OFIN N(!)'
!THEN!

(commands executed if n/l x not satisfied)
!FINN!

The command sequence /Ix (commands)' is itself an "if-then" structure. Provided that
the command sequence to be executed if the test is satisfied is short there can be no objection to
writing it directly. The considerations governing this are similar to those which govern the use of
angle bracket structures. As a "rule of thumb" half-a-dozen commands is probably close to the
limit and the /Ix and the I should remain on the same line. For example, if the character after the
pointer is a "B" it is desired to set a flag and pass over both the B and the following character,
otherwise advance one character only. This can be programmed as follows:

OUI
!IF next=B set flag and skip! (~A-tt B)"E - 1 Ul C'
!skip character! C

It should be noted that in this example the test command is /IE. If the structure had been
programmed in the alternative form the logically complementary test /I N would have been used to
ensure the familiar "if-then" flow.

Case structure

It is usual in text editing programs for the course of command execution to be determined
by the text itself. For example, if the character after the pointer is "A" a particular action may be
taken, if it is "B" another, "C" yet another and so on. This can be programmed as a nested set of
"if-then-else" structures but this is not always convenient and is often hard to follow. In such
situations the "case" structure is often preferable. It is implemented as follows:

!CASE N!
n"x OCASE N#l ~ I
m/lx OCASE N#2 $,
p' x OCASE N#3 $ I

!other cases!
(comma~ executed if none of nl/x, m"x, pI/x satisfied),
OFIN N\!J

!CASE N#l!
(comma~ executed if n"x is satisfied)
OFIN N\!)

!CASE N#2!
(commands executed if m" x is satisfied)
OFINN®

!CASE N#3!
(commands executed if p" x is satisfied)

!FINN!

CASE N#M is read as "CASE structure N, number M".

In practice some care is required in applying the "case" structure in TECO. In particular
the commands executed in each case must be complete units with one point of entry and one point
of exit; in TECO it is often tempting to transfer out of one case directly into another. This may
occur when the desired action depends on the next character or, in some cases, the next two
characters in the text. This should be avoided. The correct procedure in such a case is use a series
of case structures to analyze the text and generate the numerics (n,m,p above) which are then used
to control execution of the final case structure which contains the commands to perform the
desired actions. An example is given later.

81

The case structure can be expressed in a simplified form if the number of commands
to be executed in a particular case is small. For example:

!CASE Nt
!CASE N#l!
!CASE N#2!

nl/x (commands) OFIN N ®'
m"x (commands) OFIN N CD'
p" x OCASE N 3 @ ,

!other cases! (commands)
OFINN@

!CASE N#3! etc.

Unconditional transfer

Unconditional transfer should be to a logical point in the program but since it is not to
the obvious end of a structure the destination should be made to stand out visually. One way of
doing this is to enclose the tag within asterisks as shown below:

!GO TO! O***TAG*** CD

!***TAG***!

The tag should have some significance itself. It might be
!***ERROR ***!, for example.

One of the comparatively few cases where this command is genuinely useful is where a
terminating condition is encountered deep within the program structure. In such a case it makes
more sense to transfer directly to the end of the program than to return level by level carrying a
termination "flag". Note that in this example transfer is indeed to a logical point in the program.

Repeat-break structure

Another command structure which is occasionally useful is the middle-tested loop or
"repeat-break" structure. This can be implemented on TECO as follows:

!REPEATN!
(commands executed at least once and until
n" x is satisfied)

!BREAK if nl/x IS satisfied! nl/x OFIN N ®'

!FINN!

(commands executed while nl/x is NOT satisfied)
OREPEATN®

This could be regarded as the fundamental "repeat" structure with the "repeat-while"
and "repeat-until" structures as variants of it. However, it is conventional to give preference to
the latter two structures where possible.

Formatting TECO programs

Paragraphing or indenting of the commands within a structural unit is an accepted
and recommended formatting style in structured programming. The commands executed within
a structure (this may include other structural units) are indented so that the limits of the
structure (for example, !REPEAT N! and !FIN N!) stand out clearly.

The usual way to do this to to use the TAB facility. Unfortunately TECO uses TAB
as a command. The solution is to use SPACE characters. This is not as inconvenient as may first
appear. One way to use SPACEs is to type them in directly (an indentation of four SPACEs is
sufficient) but this is not much fun if you have, say, five levels of indentation. The easiest
procedure is avoid using TAB as a TECO command (no trouble) and enter the program using
TAB characters for indenting. Then copy the program into the buffer and use the program

82

given below to change the TABs into SPACEs. This program interprets a TAB as a producing
four-SPACE indentation rather than eight. Note that you can't use a program written with
TABs until they have been changed. You must ensure that TABs which are wanted in search and
insertion commands are not changed.

If you are entering the formatting program given below you could write it using TABs
for indenting and with the command S<tab> (!) replaced with $* CD . Then use an FS
command to change every TAB to four SPACEs and finally replace the * with TAB. The
formatting program is more general than this; it correctly changes TABs even if they are not at
the start of a line.

If your program has so many nested structural units that the necessary indentation is
leaving you with very short lines you should consider whether or not it might be better all
round to write the deeply indented sections as a separate macro. If the problem is simply one of
space when entering the program with TABs you can start indenting this section afresh and edit
in the necessary TABs to bring it into line with the rest of the program before changing the
TABs to SPACEs.

One other problem introduced by the use of SPACEs for formatting concerns extend­
ing numeric expressions over more than one line. This may well introduce SPACEs into the
expression which is disastrous in TECO-l ~. The solution is to terminate the unfinished
expression at the end of a line with a command Ui to store the partial value and then to
commence the continuation of the expression on the next line (after any SPACEs) with the
command Qi.

In case you are doubtful of the benefits of writing structured, commented TECO
programs, see how long it takes you to work out what the following program does. This
unstructured, uncommented example is taken from the TECO-l~ Reference Manual:

!L! OA-9"N!M! OA-58"NCOM @ I CD I <tab> (!) I LOL ®
You should also confirm that it ends with an error.

As an exercise, you could fe-write the program in a formally structured style. You will
probably find it hard to avoid making it end correctly!

The question of cost

The cost of using TECO for programmed editing cannot be ignored. Given that the
file to be changed is worth editing in the first place, the cost of editing is influenced by the time
taken to write and verify the program and the actual running cost. The emphasis in this book
has been on effective techniques for writing programs but this must be seen in perspective.

For example, it is certainly possible to write a TECO program along the formal lines
described to perform exactly the same function as
J<FNX (!) Y (!) ;>
following the detailed algorithm shown previously. It would, however, be inappropriate;
wherever it is clear to do so use the standard high level TECO command forms. If you can think
up the TECO command in your head (correctly!) it is safe enough to use it.

On the other hand there is nothing inherently wrong with using the formal structure.
It is just that in this case the TECO program will take a little longer to write. This, however,
brings us to the main point of TECO programming. Anything you can do with programmed
TECO can be done with interactive TECO (in which you make the decisions on what is to be
changed). You write a TECO program to save money (and time is money).

EXAMPLE 1

!This is a program to generate a software tab. It is assumed
that there are no backspaces and that control characters

83

are echoed in a two character form except for escape and the carriage
control characters.!
[0 [1 [2 [3 [4 [5 [6
!The particular tabbing desired is stored in G-register 0;
the default is 4 column tabbinS!
4UO
J OUI OU3 -lU4 OU6
!REPEAT I!
!WHILE tabs remain! :8 $"E OFIN 1$'

!Mark tab position! -C .U5
!IF it follows last insertion' (.-Ql)"N OELSE 2$'
!THEN insert spaces instead of the tab l

D QO{I $> IU1 (Q6t4)U6
OFIN 2$

!ELSE 21
OU2 (Q6tQ3)U6 OU3 OL
!REPEAT 3!
!WHILE start of line not found! Q2"L OFIN 3$'

!CASE 41
!CASE 411 at start! (.-2)"L -lU2 OFIN 4$'
!CASE 412 after carriage return!

-2C (OA-13)"E 2C -lU2 OFIN 4$' 2C
!Other cases back one line~ count end of lines!

%3$ -L
!FIN 4!
OREPEAT 3$

!FIN 3!
!IF on same line as last insertion! (.-Q4)"N OELSE 5$'
!THEN count carriase positions' «Q6-Q3)t(Q5-Ql»U6

OFIN 5$
!ELSE 5! !Mark start of line and count carriase positions!

.U4 (Q5-Q4-Q3)U6
!FIN 5!
!Search for two-character echoeinS characters (not
examined before)!
QIJ
!REPEAT 6!
!Pass over strinss of spaces!

OA-~~ DE S~ES$ (.-Q5)"G Q5J"
!BREAK when reach tab! (.-Q5)"E OFIN 6$'

!CASE 7!
!CASE 711 null - contr61 ~!

OAt8/8-l"E %6 OFIN 7$'
!CASE 7.2 control n - control z!

OA-l/13-1"E%6 OFIN 7S'
!CASE 7.3 control characters codes 28 - 31!

OA-24/4-1"E %6 OFIN 7S'
!FIN 7!
C
OREPEAT 6$

!FIN 6!
!Insert spaces in place of ta~, assu~ins no backspaces!
Q5J D (Q6/QO*QOtQO-Q6)U5 Q5{I $> .U1 (Q6tQ5)U6

!FIN 2!
OREPEAT 1$

!FIN 11
J6 J5 J4 J3 J2]1]0
!End of prosram!

84

The most appropriate scheme of TECO programming is the one which is cheapest.
In many cases this is the procedure which allows you to design, write and verify a program in
the minimum time. The structured approach described here is extremely effective in meeting
this requirement. The importance of program verification cannot be overemphasized; the damage
that an incorrect TECO program can do to a file will be clear to you by now. Again, the
structured approach may be justified on the score of easy logic verification alone.

The cost of writing and verifying a program is a once only cost. The other component
of total cost is running cost and this depends on how many times the program is to be used.
Running cost is made up of computer time and a charge for use of the computer core; the
balance between these depends on the policy of the owner of the system. It is important to
find out what TECO costs on your system.

The TECO program operates by interpreting each character in the command string
and then taking the required execution action. Even if the command is in a loop and has been
executed many times before it is examined each time it is encountered. The time taken to
interpret the commands is quite significant and every character in the string is examined, even
if it is ignored (as are comments). The time taken to execute the commands is often quite small
in comparison. It is recommended that you find out how much it costs in your system to
interpret commands. For example you could create a macro containing a l¢~ character
comment and execute it 1 ~~ times to find out how much it costs to process about 1 ~ f/J@@
characters in a command string.

The other major cost in TECO is that associated with core use. To examine this you
could place 1 ¢¢f/; characters in a Q-register and see how much it costs to copy it into the text
buffer I ~ times so that the buffer contains 1 el ~~¢ characters. Don't forget to clear the buffer
afterwards. Continuing your investigation you could make a 1 ~ page file with 4~00 characters
per page give an EB command on this file followed by an EC (or EX) and see how much it costs
to input and output that amount of text. You may be surprised.

To give a specific example, 25 (jJr:N command characters were interpreted for the same
cost as inputting and outputting 4¢¢¢ characters of text (about one full conventional page). The
cost was about the same as 3~ seconds of a programmer's time. The cost of interpretation
increased by about 10 percent for each page stored in the buffers.

Clearly it is cheaper to run a program with a smaller number of characters in its
commands than another which is equivalent but has a larger number of characters. If a program
repeats a sequence of 50 command characters for every line of text the processing cost will be
(using the costs quoted above) about one-eighth of the cost of input and output. If the number
of command characters per line is halved it will only reduce the total cost by about five percent.

This saving may be worthwhile but should be judged against the cost of achieving it.
If it is important, bear it in mind that efforts should be directed first at the most frequently
executed sections of the program. If it is imperative to reduce the running cost you should
seriously consider whether you should be using TECO.

The reason TECO was written in the first place is that by providing a large number
of commands which are represented by a few letters but which perform complex operations it
minimises the user's time in achieving editing tasks. The penalty is that the computer's time on
the task is increased over what might be achieved by a dedicated user using a lower level language.

DECsystem-l ~ users might investigate XTEC, an experimental version of TECO~ 10
with the same commands but which compiles the command string once inste.ad of interpreting
each command as it is encountered. XTEC was written by Mark R. Crispin and is available
from the Digital Equipment Users' Society (DECUS). It can give great savings on some programs
but some features need to be investigated carefully (for example, passing numeric arguments
to macros requires care).

It is, of course, quite possible to make the same changes to a file in different ways by
programs which are not equivalent. It is possible in such cases to get very different running costs.
It is the user's responsibility to select the best algorithm but structured TECO, by preserving

the algorithmic form, assists the user in this regard, especially when program modifications are
being made.

85

This discussion leaves us with a problem. If a TECO program is to be understandable
it should be fully commented. However an extensively commented program is somewhat more
expensive to run than the same program without comments; how much more depends very
much on the editing task.

The recommended solution if this problem is significant is to make two programs.
One program is th source program. This should be fully commented and formatted; it is the
one you write first, verify and retain for later modifications. The other is a stripped-down
"run-only" version with all comments, other than those which double as tags for transfer
commands, deleted, all non-text-argument SPACEs removed and key words such as REPEAT,
ELSE, FIN and CASE abbreviated to R, E, F and C respectively. If the source program is
formally written in the recommended style this can be done quite easily using interactive
TECO. However this can also be achieved with a TECO program which may be easier if the
source program has been written by someone who has not followed the advice given here.

Such a program is given below; it provides a good example of what can be done with
TECO. On the first pass through the buffer unnecessary SPACEs are deleted and the tags
referenced by 0 commands are marked with an asterisk and simplified if they contain key
words. The corresponding 0 commands are simplified if necessary and additional occurrences
of the referenced tag are deleted. On the next pass all comments except those starting with
asterisks are deleted. Blank lines are also removed. During the passes commands are examined
in detail and text arguments are skipped so that they are not altered in any way. The program
is designed to be general; if it could have been assumed that exclamation marks did not occur
inside text arguments the second pass could have been greatly simplified.

Since a large number of commands are executed per character in the buffer this
program must itself be stripped down. This is best done by hand in the first instance.

This stripping-down process is sufficient to make considerable savings in some
TECO-l f/J programs. However, this is not necessarily so with TECO-ll. In detail, the operation
of the unconditional transfer command in TECO-II is rather different from that in TECO-l f/J.
It will be recalled that TECO searches the current macro level for the first occurrence of the
tag referenced in the 0 command. In TECO-II this involves the detailed processing of every
character in the macro level until the tag is found. For example, in the following section of a
program:

!REPEAT 1!
(a great number of characters)
!REPEAT 2!

(a few commands)
o REPEAT 2 (f)
etc. (both loops end immediately)

each pass through the inner loop takes almost as long to process as one through the outer loop.
The simple solution (provided a structured program has been written) is to store such inner
structures as separate macros and to replace them in the main program with an Mi command.
The depth of nesting of macros is system dependent but shouldn't be a problem. The sample
program has been re-arranged in this way and the stripped-down version is up to ten times
faster than a fully-commented version written as a single macro (TECO-l1). The
commented program remains the definitive version.

Concluding Remarks

You have now reached the end of the book and I hope you will apply TECO
fruitfully in your own work. Don't get carried away though; TECO is only a means to an end!

EXtlMPI ... E ~:.~

!This is a proSram to remove all comments from a proSram unless
thes are tass for 0 commands or start with an asterisk. Ta~s

which are kes words:REPEAT, ELSE, CASE and FIN are shortened to
R, E, C and F respectivels. Blank lines are also deleted.
text arSuments are not altered in anv was.!

IThe proSram operates bv skippin~ over text arSuments, except for
o commands on the first pass, and passins commands which mi~ht el1d
with the letter 0 to locate 0 commands. The tas referenced bv an 0
command is found and marked with an asterisk and subseGuent
occurrences of this tas are deleted.!

!The pro~ram operates in two passes throush the buffer.
is to mark the referenced tass; the second is to delete
unnecessar~ comments. I

, T h f! ::: .. r () S r a 1"11 w j. :I. 1 I,.J D 7' 1.-:. unci ~:.) r- TEe 0 _ .. 1 0, T E C () 1. 1. ", 1"1 d X T F C

ThE') '1":;. r··:;;t
the

C) uti t :i. ~:; n () t. ,j f? S :i. ~.,:; 1"1 edt. D'"; t r- :i. p X TEe p r D !'.l r a 111 s; \ t h :i. -::; i ~::. not 1", e cps ;:; a r- ~::) .,

[0 [1 [2 [3 [4 [5 [6 [7 [R [Z [Y [X
ISet for exact sear-ches t.o find taSs!

.. ···XU:] :1. '·'x
'Set. pass count.er zero'
OUt
!Generate a macro to handle lower case commands!
IAn~ lower- case letter is tr-eated as an upper case one!
!This could be handled in TECO-11 with the ~u command l

!This particular for-m is used because "w and"v are
different in t.he two ver-sions l

J@I\ OAUO (QO-71)/26-1"E QO-32UO"\
(O? •) X Z (0,.) 1<

! (N.B. Ans cOffiffients inside a generated macro such as this will not be
deleted b~ this proSram since thes occur inside a text argument) I

I Insert. null to avoid soins off paSe!
o I ~~

! REF'E(~T l'
!Initialize star-t. of line marker l

OU?
ICoffimence two passes throush the buffer!
!HEPEAT 2!
!WHILE end of buffer not reached l (Z-.-l)"l OFIN 2$'

!Initialize flags i

OU2
!CASE 3 examine next character (in roush or-der of freGuencs)!
!CASEs are!

<space> - delete
<blank lines> - delete
<exclamation> - start of comment found
5 - start of single character text argument command
I
N

r'I
~p

F - start of two-character text arSument command
~u en)
~ - check to see if next character makes command
E

~A - start of messaSe command
o - start of "So to " command
"<character> - two-charactel- command; skip
Q
U

[

J
X
M
G

other cases: sinSle character command; skipl
!Get the ascii value of the next character!
MZ
!Delete spaces on first pass!
!N.B. Spaces often occur in strinss - caution:
this will delete the tab in a space-tab combination!
!It is a peculiarits of TECD-l1 that the last space
must be deleted separatels!
QO-~~ °E .U4 :S~ES$·L (Q4")K' Q4J OA-~~ °E D' DFIN 3$'

!Delete blank lines l

!A start of line marker lS placed between the
carriase return and the line feed I

QO-13"E C (OA-I0)"E (.-Q7-2)"E -2D' lUl' OFIN 3$'

!Generate comment case!
QO-~~!"E lU2 OFIN 3$'

!Skip two characters!
QO-~~"·E 2C OFIN 3$'
QO-~~Q·E 2C OFIN 3$'
QO-~~U"E 2C OFIN 3$'
QO-~~%·E 2C OFIN 3$'
QO-~~-~"E 2C OFIN 3$'

!Generate more cases!
QO-~~S·E 2U2 OFIN 3$'
QO-~~I"E 2U2 OFIN 3$'
QO-~~F·E 3U2 OFIN 3$'
QO-~~O'E 4U2 OFIN 3$'
QO-~~~A"E 5U2 OFIN 3$'
QO_MMM"E 6U2 OFIN 3$'
QO-~~E"E 7U2 OFIN 3$'

!Skip two characters l

QO-M~[·E 2C OFIN 3$'
QO-~~]·E 2C OFIN 3$'
QO-~~X"E 2C OFIN 3$'
QO-~~M·E 2C orIN 3$'
QO-~~G·E 2C orIN 3$'

!Generate more cases!
QO-~~N·E 2U2 OrIN 3$'
QO-~~_·E 2U2 OFIN 3$'
QO-~~ "E 2U2 OFIN 3$'
QO-~~~R'E 2U2 orIN 3$'
QO-21"E 3U2 orIN 3$'

!Other cases.skipi

87

r:
!FIN 3!

! Cf~~:;E -4!
Q2-6"E OCASE 4t1$'
U:;::· .. ·"/" E: OCtl!)[4:1!:2~;!

OrIN .H;
! CA~:;E 4:1= 1 !

'Caret found, check if next character ffiakes command!

C MZ
ICASE 5!
!CASEs are: ~A~ ~I, ~R, ~U AND ~~I

QO-~~A·E -c 5U2 OFIN 5$'
QO-~~I'E -C 3U2 OrIN 5$'
QO-~~R"E -C 3U2 orIN 5$'
UO-~~U·E -c 3U2 orIN 5$'

QO-~~~·E 2C OU2 orIN 5$'
!Otherwise skip both!

C
!FIN ~j'
OFIN 4$

ICASE 4:11:21
!E found, check if next character makes
te;.;t cOI1!1l"land!
C Ml
!CASE 6!
!CA~3E~:; .:31'e:
(~O··-'~'~W" [.. _[:

EW,
3l.J:2
3U2
3U:2
3U2
3U2
3U2

EF~ , EE:v
OrIN 6 ~> '
OFIN 6$'
orIN 6$'
orIN 6$'
orIN 6$'
DFIN 6$'

(W-··'~~I:;:· E ··-c
(~O-··'·''''B'' E ····C
QO--"'~G" E -c
Qo·-~r'N· E --c
QO····'~'~ I" E ··-C
!Otherwise
C

skip both!

!FIN 6 1

!FIN 4!
! CA~3E "/!

Q2-1"[DCASE 711$'
(~2· N DeASE }:1:2$'

!Other cases (I.E. Q2 =O)!
OrIN 7~;

! CASE 7:1r.:I.!
!Start of comment found!

EG, EN AND E1 !

!IF first pass skip! Ql~E 2S!S OrIN 8$~

!ELSE delete except if first character
is * (delete marker ~)! ~ ~ -
OU3 .U4 C
(OA-~~*)·E D -lU3'

CBnE «(H~. H,'
!FIN B1
OFIN 7$

! CM;E ?:jJ:2!
!Text arSument command found!
!See if @-modified!
--c

! IF @--IYIOC"ii f i ed! (OA-''''~C~)" N DEL.SF 9$'
!THEN move to text delimiter l

(02·_·3) O[C' 2C
!Store delimiter and Sene rate
search macro to find second occurrence of delimiter!
! N • B. Pel r- t. () f t. h t~ t e ;< tis c f.) P :i. ~"' d :i. 1-, In <:~ k :i. I, ~.i t. h :i. ~". Il'I a c r 0 !
0f:1U3 ., U4
I:~~~;~~ e~3I!~ @I/~I;/

(CH v •) XY (c~4? H\ 1"1Y
!Record start of text!
(Q4+:I.)U3
DFIN 9!f>

!ELSE 9!
!Move to start of text and record!
(CC·-3) HE C·' ::.~C .U3
'IF not ~A command then skip to $!

(02-S)"N @S/$/ OFIN 10$'
!ELSE Sener-ate search macro for ~A!

IS$ ~~~AI$ @I/$/

(en, .) XY (03 ~ • H< flY
!FIN 10!

! FIN ()!

!Record end of text!
(.-.. 1)U4
! CAm:: 1:1.!
! CASE :l. H::I. ! ! I F not (] CCmllVli!H'I'~i! «(n"·-4)· N OF I N 11'~;'­

!CASE 1112! !IF not first pass! Ql"N OFIN 11$'
!Other cases Sener-ate search macro for UP t.o

first 35 charact.ers of taS!
!(necessar~ for TECD-10)!
Q3J I:S!$ (Q4t3)J OUO
(Q4-03-35)"G (Q3t38)J -:l.UO'
!N.B. If less than full tas is sousht
it will not end with exclamation!
@I/!$/ QO"L -2C D C'
(Q3,.)XY (Q3,Q3t3)K Q4J
QO"L Q3t35J' D OO"E Df
!N.B. Macro ~ is :s<exclamation>taS<exclamation>$
(no final <exclamation> if onl~ part of the taS)!
• U~2 J
!IF 'las found! MY"[OELSE 12$'

!Put * at start of 'las, record lensth of
and start of taS:
(Q2-Q3)U5 -QSC QOti"N -C %S' 1*$.U~
!Simplif~ ke~ words!
! CAi;;E 13!
!FIN, ELSE, CASE and REPEAT become F. [, C and R!

!NIB. Could use ::S in TECD-ll!
<:SFINS)$ (.-Q2-3)"[-2D 2UO OFIN 13$'
Q2J (:SELSES)S (.-a1-4)~E -3D 3UO dFIN 13$'
Q2J (:SCAS[$)$ (.-Q2-4)"E -3D 3UO OFIN 13$'
Q2J <:SREPEATS)$ (.-Q2-6)"E -5D SUO OFIN 13$'
OUO

!FIN 13!
!Return to callinS 0 command and
s i lYIr:o·l i f~ :i. t to S!:,I H·)f.~ ",dt.Fi ~~h() l'tened tag!
Q3J (Q2-Q3)"L (l-QO)C' C QOD
!Allow for chanses to text!
! (taS ma~ come before or after D command)!
(Q2-Q3)"l (1-QOfQ4)U4' (Q4-QO)U4

(JO

(Q2-Q7)"L (1-QOt07)U7' J
!Delete extra occurrences of 'laS!
! (onls the first occurrence is siSnificant)!
!REPEAT 1.4!
!WHILE taS still found l MYtl"G OFIN 14$'

-(05+1)C .U2 28!$ (Q2-.)U6 Q6D
!Allow for chanses to 'lex'll
!(taS ma~ come before or after a command)!
(Q2-03)"L (Q4+06)U4'
(Q2-Q7)"L (Q7+Q6)U7' J
DF~[PE(~IT 1.4~;

! FIN :1.4'
OFIN :I.;';::~I;

! EL~:;E 12!
!Look for *taS (mas have been found before)!
!Generate a macro from macro s bs addins * aftf.~r the :s!
J GY .U2 J 3C I*S
(O~Q2+1)XX (0,Q2+1)1\
!IF not found! MX"L OFIN 15$'

!Look for *t (mas have been simplified before)!
~I GX • U? J 4C
!Prepare to simplifs 0 command'
!Look at first letter of 'laS (stored as macro x)!
'CASE 16!

OA-~~F"E ?UO OFIN 16$'
OA-~~E·E 3UO OFIN 16$'
OA-~~C"E 3UO OrIN 16$'
OA-~~R"E SUO OFIN 16$'
OUO

!FIN 161
!IF kes word Sene rate m~~ro to search for
short tas E.G. :S<exclamation>F n<exclamation>$!

aO"N C OOD (O,Q?-QO)XX'
(0 9 (l2-"(~(» 1\

!IF not found! MX"L OELSE 17$'
GY "'A

TAG ~A (2,.-1)T ~A NOT FOUND IN BUFFER.

(0,.)1\
OF I N :1. 7~i;

!ELSE 17!
!Return to 0 command and simplifs it!
d3J c abD (Q4-~O)04 -

!FIN J7!
! FIN :J.~.)!

!FIN 1.2!
!FIN 1.1!

!Move past end of text arSument!
(CH+:J.)J

!FIN ?!
OI:~EF'EAT 2$

!FIN 2!
,..I C

!UNTIL 2 passes throuSh buffer completed! %1-,,2"[OFIN :1.$'
Of~EPEAT H;

!FIN 1!
!Del€~t.e null!

.... 1)

!Restore search mode!

Q8~X

1X 1Y JZ J8 J7 J6 J5 J4 J3 J2 J1 JO
!End of proSram!

THE PROGRAM IS SHOWN HERE AS A SINGLE PROCEDURE
FOR CLARITY. IN PRACTICE IT IS USED AS A SET
OF MACROS.

This proSram was written on an upper case onls terminal.
A TECD pro~ram was used to convert the comments to
lower case.

91

Al

APPENDIX

CHAPTER-BY-CHAPTER SUMMARY OF TECO COMMANDS

COMMANDS EXPLAINED IN CHAPTER O~

Commands which return a numeric value

B

Z

H

EH

EV

@x
Pointer movement commands

nJ

J

nC

nR

nL

L

0L
-L

Type-out commands

nT

(m, n)T

n@
nV

nEV

n=

FORM FEED or @

Beginning of buffer; returns zero (0).

End of buffer; returns number of characters in buffer.

Pointer position; returns the number of characters to the left of
the pointer.

Whole buffer; same as (S, Z) or (I/), Z).

Returns current EH setting.

TECO-II only: Returns current EV setting.

Returns ASCn code of character x.

Jump to position n; i.e. between nth and n + 1 st characters.

Jump to start of buffer; same as \1IJ.

Move pointer forward over n characters; same as C. + 11)J.

Move pointer back (Reverse) over n characters; same as -nCo

Move pointer to position immediately after nth following end-of-Lin,,:
character.

Move to start of next "line"; same as 1 L.

Move to start of current "line".

Move to start of previous "line"; same as -1 L.

Type out all characters between pointer and the nth following end-of­
line character; pointer not moved. Format as for nL.

Type out m + 18t through nth characters; m < n; pointer not moved.

TEeO-II only: 'Type out the character whose (decimal) ASCn code is n.

TECO-ll only: Verify; type out (n - 1) lines on either side of the
pointer.

TECO-ll only: Enable verify; type before asterisk prompt;

n = (/J; no effect (default setting)

n = -1 ; type current line;

n = I - 31; type current line with LINE FEED after pointer;

n> 31; type current line with character whose code is n after the
pointer;

n = (m*256 + n); as above but also types (m - 1) lines either side of
current line.

no argument; return current value of n.

n Equals; type out the value of the numeric argument n.

When executed as a command causes a form feed action.

A2

Deletion commands

nD

(m, n)D

nK

(m, n)K

Insertion commands

I ... text ... 0

<tab> ... text ... CD
Error commands

?

nER

Command string editing characters

RUBOUT

@
@SPACE

Execution control commands

@

Delete n characters after pointer. Format same as for nCo

TECO-II only: same as (m, n)K

Delete (Kill) an characters between the pointer and the nth following
end-of-line character. Format same as for nL.

Delete (Kill) the m + 1 st through nth characters. Format as for (m, n)T;
automatically performs mJ command.

Insert the character string ... text ... , which is delimited by landeD,
immediately to the left of the pointer. That is, the pointer is located at
the end of the insertion.

Same as I <tab> ... text ... @; not recommended.

As first command after an error message; types out part of the command
string ending with the command which caused the error.

TECO-lq) only: used like? and can be typed before or after?; types out
an expanded description of the error.

Enable Help:

n = 0 or n = 2; type error code and message (default setting)

n = 1; type code only.

no argument; return current value of n.

TECO-10 only:

n = 3; type code, message and expanded description of error.

TECO-II only:

n = 3; type code, message and execute?
command.

Deletes last character in command string

Deletes back to, but not including last <cr><lf> pair in command.

Types out correct version of command string from last < cr ><If> pair
to the end.

TECO-ll only: types out the whole of the current version of the command
string.

Aborts whole command (if given before execution has started).

Command string complete; start execution.

Interpretation of preceding command completed.

TECO-IO:in command string - return to command level; not recommended.

TECO-l~: not a TECO command; execution not in progress - return to
system; has other functions.

TECO-ll: as a command; return to system when preceding commands
in string have been executed.

TECO-10: as a command; return to monitor when preceding commands
have been executed.

A3

Execution control commands - continued

n< ... commands ... >

1\ or t

Abort commands

Execute ... commands ... thus:

n> (/J; execute n times,

n < (/J; skip execution,

no argument; repeat execution indefinitely.

Interpret next character in command string as a control character.

TECO-l~: command execution in progress; stop execution, return to
monitor.

TECO-l1: command execution in progress; stop execution, accept
new command string.

Command execution in progress: stop all type-out, continue execution.

System commands (see Reference Manuals)

.R TECO
(DECsystem-l~ and RT-ll)

RUN $TECO (RSTSjE)

TECO (RSX-ll)

.REENTER
(DECsystem -1~)
and RT-ll)

@ (DEC system -1~)

Numeric expressions

+

SPACE

(expression)

Formatting of commands

Text arguments

<cr> and <If>

SPACE (or <space»

Enter TECO; all buffers empty;

all options (e.g. EH) have default values.

Re-enter TECO provided no other programs have overwritten core;
text buffer and pointer not changed; command buffer reinitialized.

Return to monitor immediately.

Between terms: addition.

Between terms: subtraction;

Before a term: negation.

TECO-l~: same as +:

TECO - 11: no significance;

The use of space characters in or immediately after numeric expressions
should be avoided.

Indicates order of evaluation of terms of an expression; use freely.

All (allowable) characters in a text argument are significant.

Can be used freely outside text arguments.

Can be used freely outside text arguments except where numeric
arguments are involved.

A4

COMMANDS EXPLAINED IN CHAPTER TWO

Commands which return a numeric value

ES Returns the current ES setting.

The following apply to TECO-11 only:

:Qi

@
@

@
Type-out commands

Returns number of characters between pointer and mth following
LINE FEED character.

Returns the number of characters in the text in Q-register i.

Returns negative of length of last insertion or successful search string.

Returns (m, n) arguments to cover last insert or successful search,
provided pointer at end of string; same as (. + ®,.).
Returns the total number of characters stored in the Q- registers.

The following apply to TECO-ll only:

:Gi

Search commands

nS ... text ... CD

Type out text in Q-register i; does not affect buffers.

Type out the most recent search string.

Searches for ... text ... starting at the pointer:

n positive: searches for nth occurrence of string after pointer;

no argument: n = 1 is assumed;

if successful pointer left at end of matched string;

if unsuccessful pointer left at start of buffer and error occurs.

Note: a search failure inside angle brackets is not an error.

nseD

nES

TECO-l1 only:

(m, n)S ... text ... ®

TECO-ll only:

n negative: searches towards start of buffer.

The last search command text argument string executed is assumed
to apply.

Enable automatic type-out after a successful search:

n = f/J: no effect (default setting);

n = -1: type line containing matched string;

n = 1 - 31: type line with LINE FEED after pointer;

n> 31: type line with character whose code is n after the pointer;

n = (m*256 + n): as above but also types out (m - 1) lines on either side
ofline with matched string;

no argument: returns current value of n.

Bounded search; n as for normal search but pointer not moved more than
ABS(m) - 1 positions in obtaining n matches of string;

if search is unsuccessful pointer is not moved;

m = f/J: the (f/J, n)S command is equivalent to an nS command with no
pointer movement on failure.

Search commands - continued

(m,n)S@

Replacement commands

The last search command text argument string executed is assumed
to apply.

AS

nFS ... text 1 ... (D ... text 2···CD
As for nS ... text ... CD command except that if search is successful
the matched string, ... text 1 . .. is deleted and replaced with
... text 2

The following apply to TECO-ll only:

(m, n)FS ... text 1 ... G) ... text 2 ... G)

As above but search is an (m, n) search.

@ ... text 1 ... (D ... text 2···CD

FR ... text ... (!)

Store and recall commands

Alternative form for FS command.

Deletes number of characters equal to length of the last insertion or
successful search string to left of pointer and replaces them with ... text ... ;

an S command followed by an FR command is equivalent to an FS
command.

Note: the letter i in these commands stands for any letter or digit (alphabetic
case is not significant).

nXi

(m, n)Xi

*. 1

Gi

Copy all characters between pointer and the nth following end-of-line
character in Q-register i; pointer and buffer not affected. Q-register i
overwritten.

Copy m + 1 st through nth characters in Q-register i; m > n; pointer and
buffer not affected; Q-register i overwritten.

As first command after @ (tG) command string abortion: copy
contents of command string b~er in Q-register i; Q-register i overwritten.

Copy text in Q-register i into buffer to left of pointer;

Q-register i not affected.

The following apply to TECO-ll only:

tU ... text ... (!)
G- or G+-

Execution control command

Insert ... text. .. into Q-register i; Q-register i overwritten.

Copy last search command text argument string into buffer to left of
pointer;

After a search command in a command string enclosed in angle brackets:
ignored if search is successful; if search fails execution passes to first
command after corresponding closing angle bracket.

A6

COMMANDS EXPLAINED IN CHAPTER THREE

Commands which return a numeric value

ED

@

@)

Output commands

EF

EK

EWfilespecCD

(m, n)P

(m, n)PW

nPW

Input commands

A

nED

ERfilespec®

y

Returns the current ED setting

FORM FEED flag: returns -1 if last input terminated by FORM FEED;

otherwise (jJ.

End of file flag: returns -1 iflast input terminated by end of file;

otherwise (jJ.

Close current output file.

TECO-l1 only: remove all reference to current output file.

Open new file described by filespec to receive output.

Copy m + 1 st through nth characters in buffer into output file;
no effect on buffer or pointer.

Alternative form for (m, n)P; not recommended.

Copy buffer into output file n times, appending a FORM FEED to the
buffer contents each time.

Append next page of input file to end of text in buffer; if input file not
in pages input to end of file or to limit imposed by core available; no
effect on pointer.

TECO-ll only: default setting is system-dependent; has several effects
but if:

n = -1: Y works as described;

n = f/J or 1: Y works as described if no output file open, otherwise Y
command is invalid.

Pre-set existing file described by filespec for input.

Clear the buffer before appending next page of input; equivalent to HKA;
not recommended.

System commands (see Reference Manuals)

.MAKE filespec

MAKE filespec

. EDIT/CREATE filespec

(DEC system-l (jJ)

(RSTSjE and RSX-ll)

(RT-ll, TECO as default editor)

These commands are equivalent to the appropriate system command
to enter TECO, followed by the TECO command:

EWfilespec®® .

A7

COMMANDS EXPLAINED IN CHAPTER FOUR

Input/output commands

EBfilespecCD

EC

EG ... string ... CD

EX

Preset the specified file for input and open a new file with the same
filespec for output.

TECO-ll only: output current buffer and transfer rest of input file
to output file.

TECO-10: perform EX command and re-execute last compile class
system command;

TECO-ll under RSX-l1: same as EX.

TECO-ll under RT -11: perform EX command and execute ... string ...
as system command;

TECO-l1 under RSTS/E: perform EX command and execute ... string ...
as system command according to filename extension of last output file
closed.

Output current buffer, transfer rest of input file to output file and
return to system (exit from TECO).

FN ... text 1 ... G) ... text 2 ... G)

N ... text ... CD

-'" text···CD

nP

Store and recall commands

Performs an N ... text ... CD search and if successful replaces the matched
text with ... text 2... .

Searches buffer for ... text ... like an S ... text ... (1) command but if
unsuccessful outputs the buffer and inputs the next page from the input
file. Numeric arguments as for S command.

Like N ... text ... CD command except that when the buffer has been
searched without success it is deleted before the next page is input.

Next Page: outputs current buffer and clears it then inputs next page from
the input file; this sequence performed n times.

The following apply to TECO-l1 only:

G*

:G*

Copy filespec used in the last EB, EI, EN, ER or EW command from the
filespec buffer into text buffer to left of pointer.

Type out the most recent filespec; does not affect buffers.

Secondary input/output stream commands

EA

EP

EReD

EWCD

The following apply to TECO-l1 only:

Enable the secondary output stream.

Enable the secondary input stream.

Enable the primary input stream (default condition).

Enable the primary output stream (default condition).

"Wild card" file specification commands

The following apply to TECO-ll only:

ENfilespecCD

EN®

Enables "wild card" filespec matching.

Enter next filespec which matches pre-set "wild card" form into
filespec buffer.

A8

System commands (see Reference Manuals)

. TECO filespec

. EDIT filespec

TECO filespec

. CLOSE
(DECsystem-lqJ)
and RT-ll)

CD ECsystem-l qJ)

CRT -11, TECO as default editor)

(RSTS/E and RSX-ll)

These commands are equivalent to the appropriate system command
to enter TECO followed by the TECO command:

EBfilespec CD HI(A(J)(D
Closes an output file left open on exit from TECO; not recommended
except in emergency.

COMMANDS EXPLAINED IN CHAPTER FIVE

Storage and recall commands

*i

Mi

Note: the letter i in these commands stands for any letter or digit (alphabetic case
is not significant)

As first command after @ @ command string abortion or
after command execution: copy contents of command string
buffer into Q-register i;

Q-register i overwritten.

Copy text in Q-register i into command execution string;
Q-register i not affected.

TECO-I!: within macro - return to command level.

TECO-l~: not a command - has same effect as in TECO-II but
caused by error condition.

A9

AlO

COMMANDS EXPLAINED IN CHAPTER SIX

Commands which return a numeric value

ED

ET

@ (outside argument)

Insertion command

Text specification commands

@(command)/ ... text .. ./

CONTROL characters

Search string matching commands

Returns current ED setting.

Returns current ET setting.

Returns current search mode setting.

Insert the single character whose (decimal) ASCII code is n to the left
of the pointer.

Text argument delimited by arbitrary character (e.g. /) after command
and its next occurrence; delimiters do not appear in text; ESCAPE
characters can be included in text.

TECO-H,il: applies to search and insertion text arguments only.

TECO-IIlJ only: the control characters, except @' ®, ® and
@ - QB), are reserved inside search and insertion text arguments
as commands (not all yet defined).

Note: The following commands mean that at the place in the search string occupied by the
command the specified characters are to be accepted as a match.

Any alphabetic character.

Any digit.

Any line terminator.

Any string of SPACE or TAB characters.

The following apply to TECO-10 only:

@v
@W
@ <nnn>

@ [a,b,c ...]

Any lower case alphabetic.

Any upper case alphabetic.

The character whose octal ASCII code is nnn.

Anyone of the ASCII characters a, b, c

The following apply to TECO-II only:

Any RADSqJ character (alphanumeric, PERIOD or DOLLAR).

Any alphanumeric.

Same as @.
The characters which match the text stored in Q-register i.

The characters which match the last filespec.

The characters which match the last search text argument.

All

Search string matching commands - continued

The following apply to both TECO-lf/J and TECO-II:

@ (inside argument)

Any character except the specified character x.

Any separator character;

TECO-II: Any character which is not an alphanumeric;

TECO-H,ll: Any character which is not an alphanumeric, DOLLAR,
PERCENT or PERIOD.

Any character; a character must be present at this position.

Text argument interpretation commands

nED

@ (inside argument)

@ (inside argument)

@ (inside argument)

TECO-II only: enables CARET command inside text arguments;

n = -1 or f/J; CARET enabled;

n = 1; CARET disabled;

also effects Y command.

Take next character literally; does not apply to characters with
immediate control functions;

TECO-IQl: does not apply to ESCAPE.

TECO-lf/J only: like @ but applies to ESCAPE.

TECO-l f/J only: take all following characters in this text argument
literally except @ and @ ;
cancelled by another @ .

t (CARET or UPARROW) TECO-ll only: Take next character as CONTROL/character.

Terminal control commands

nET

nEU

Alphabetic case control commands

TECO-l\il:

n = \il; enable standard echoeing;

n #0 \il; enable literal type·out.

TECO-iI only:

Bit 0 (l): enable literal type-out;

Bit (2): see Reference Manual; (V.DoUo terminals);

Bit 2 (4): transmit lower case;

Bit 4 (16): cancel @ after type-out;

also has other Bit functions.

Enables case flagging on type-out:

n = -1: no case flagging;

n = (/J: lower case characters flagged:

n = 1: upper case characters flagged.

a becomes 'A;

n @ (outside argument) Search mode:

@ x (inside argument)

n = f/J: either case mode; match achieved regardless of case;

n = 1: exact case mode; match achieved only if alphabetic cases match.

TECO-lI: character x taken to be lower case equivalent;

TECO-lf/J: character x taken to be lower case equivalent but only
applies to non-alphabetic characters.

Al2

Alphabetic case control commands

The following apply to TECO-IV) only:

® (outside argument)

~ ® (outside argument)

® ® (inside argument)

® (inside argument)

@ (outside argument)

~ @ (outside argument)

@ @ (inside argument)

@ (inside argument)

All characters to be taken as upper case unless overruled.

Restores default condition; no case conversion.

All following characters in this argument taken as lower case
unless overruled; exact mode implied in search.

Take next character only in lower case; exact search implied.

All characters to be taken as upper case unless overruled.

same as ~® .
All following characters in this argument taken as upper case
unless overruled; exact mode implied in search.

Take next character only in upper case; exact search implied.

A13

COMMANDS EXPLAINED IN CHAPTER SEVEN

Input commands

The following apply to TECO-l1 only:

EIfilespec ®

Execution control commands

n"E

n"G

n"L

n"N

Otag®

n' ,

Comment or tag command

! ... text ... !

System commands

Enables indirect input; next TECO request for input from the
terminal comes from referenced file; not available under RT -11.

Closes indirect input file.

Apostrophe: marker for conditional execution command; used in
matching pairs with commands n"x; is a command terminator.

n equal to ~: ignored;

n not equal to (/): execution passes to command after matching
apostrophe.

n greater than ~: ignored;

n not greater than q;: execution passes to command after matching
apostrophe.

n less than q;: ignored;

n not less than ~: execution passes to command after matching
apostrophe.

n not equal to (/): ignored;

n equal to f/J: execution passes to command after matching apostrophe.

Unconditional transfer of execution to command following first
appearance of ! tag! in current macro level.

Within angle brackets only:

n negative: ignored;

n = q; or positive: execution passes to command following corresponding
closing angle bracket.

Ignored except as destination of an unconditional transfer of
execution command.

The following apply to TECO-ll only:

.EDIT /EXECUTE [: text] filespec

MUNG filespec, text

TECO @ filespec

RT -11: Enters first page of named file in Q-register Z, enters the
text into the buffer and executes the text in Q-register Z as a macro.

RSTS/E and RSX-ll: Inserts the text into the buffer and enables
the named file for indirect entry in response to the request for
terminal input.

RSX-l1: as above but does not insert text into the buffer.

A14

COMMANDS EXPLAINED IN CHAPTER EIGHT

Numeric operator commands

There is no hierarchy of operators

*
/
&

n~

n:=

Multiplication.

Integer division (remainder lost).

Bitwise logical AND.

Bitwise logical OR.

TECO-I1 only: equivalent to -en + 1); used to form logical
complement.

TECO-1I only: type-out n and leave carriage at end of type-out.

Octal and decimal conversion commands

@

to

n==

n:==

Encoding and Decoding commands

n\

\

TECO-II only: accept all following numeric input as decimal;
restores default condition.

CARET-O:

TECO-IQl: accept following numeric input as octal; applies to next
input only;

TECO-l1: accept all following numeric input as octal.

Type out the decimal numeric n as an octal number.

Type out n as an octal number and leave carriage at end of type-out.

Insert the ASCII character representation of n to the left of the pointer.

Return the numeric value of the string of ASCII digits to the right of the
pointer.

Commands which return numeric values

nA

EO

@
@
tH

Q-register commands

Qi

nUi

%i

n%i

TECO-ll: returns value of decimal ASCII code of (. +n + 1)th character
in buffer; f/JA returns code of next character after pointer;

TECO-l Ql: returns value of next character after pointer regardless of n;
use QlA.

TECO-IQl only: returns EO value ofTECO program.

TECO-ll only: returns current date (system-dependent).

Returns current value of the console switch register.

Returns time-of-day (system-dependent); use CARET-H form to
avoid BACKSPACE.

TECO-ll only: returns version number of TEeO program.

Return the value of the numeric stored in Q-register i.

Store the numeric n in Q-register i; Q-register i overwritten.

Add 1 to the numeric stored in Q-register i and return the incremented value.

TECO-ll only: add n to the numeric stored in Q-register i and return
the incremented value.

AlS

Colon-modified commands

In TECO-l~ this applies to search and insertion commands only.

: Command

: : S ... text ... CD
Execution control commands

nEO

n"A

n"C

n"D

n"F

n"R

n"S

n"T

n"V

n"V

n"W

Modifies commands which may succeed or fail depending on state
of buffer etc. :

if command succeeds returns the value (-1);

if command fails returns the value ~.

Equivalent to (1, 1) : S ... text ... CD .

Enables old version ofTECO-l~:

n = 1 versions up to 21 ;

n = 2 versions up to 23B.

n is ASCII code of alphabetic: ignored;

n is not ASCII code of alphabetic: execution passes to command after
matching apostrophe.

n is ASCII code of alphanumeric, $ or. (TECO-l~: also %): ignored;
n is not ASCII code of one of above: execution passes to command
after matching apostrophe.

n is ASCII code of digit: ignore; n is not ASCII code of digit:
execution passes to command after matching apostrophe.

Same as nilE.

TECO-l1 only:

n is ASCII code of an alphanumeric: ignore;

n is not ASCII code of alphanumeric: execution passes to command
after matching apostrophe.

Same as n"L.

Same as n"L.

Same as n"E.

TECO-l~:

n is ASCII code of lower case alphabetic: ignored;

n is not ASCII code or lower case alphabetic: execution passes to
command after matching apostrophe.

TECO-l1.

n is ASCII code of upper case alphabetic: ignored;

n is not ASCII code of upper case alphabetic: execution passes to
command after matching apostrophe.

TECO-l~: as for nl/V in TECO-ll.

TECO-ll: as for nl/V in TECO-lI,1l.

A16

COMMANDS EXPLAINED IN CHAPTER NINE

Interactive programming commands

@ ... message ... @

Q-register commands

Types out ... message ... : the second A must be a CONTROL/A;

TECO-1I only: the @-modified form may be used.

Execution pauses until one character has been entered through the
terminal; the ASCII code of this character is returned as a numeric
value.

In TECO-II only a numeric argument can pass across the following commands.

[i

1 i

Execution trace command

?

Terminal control commands

ET

Copy the contents of Q-register i to the top of the Pushdown List;

List cleared when execution terminates.

Copy contents of top register of Pushdown List into Q-register i;
Q-register i overwritten.

Not first command after error: causes TECO to type out each
following command as it is executed; cancelled by another?;

TECO-II only: cancelled at end of current execution.

TECO-II only:

Bit 5 (32): read with no wait; @ command returns value (-1) with
no pause in execution if no character has been typed already;

Bit 6 (64): detach terminal;

Bit 7 (128): terminate TECO if error occurs.

Bit 15 (-32768): switched off if CONTROL/C is typed.

\

