
KB11-B PROCESSOR

MANUAL (PDP-11/70)

digital equipment corporation

. ,

(

(

I.

(

EK-KB11B-TM-001

KB11-B PROCESSOR

MANUAL (PDP-11/70)

~{E~ WvYLt.

x

digital equipment corporation · maynard. massachusetts

lst Edition, September 1975

Copyright © 1975 by Digital Equipmertt Corporation

The material in this manual is for informational
purposes and is subject to change without notice.

Digital Equipment Corporation assumes no respon­
sibility for any errors which may appear in this
manual.

Printed in U.S.A.

This document was set on DIGITAL's DECset-8000
computerized typesetting system.

The following are trademarks of Digital Equipment

Corporation, Maynard, Massachusetts:

DEC

FLIP CHIP
DIGITAL

UNIBUS

DECUS

PDP
FOCAL

COMPUTE~ LAB

MASSBUS

(

(

, (TABLE OF CONTENTS

SECTION I BLOCK DIAGRAM AND CONCEPTS

SECTION II PROCESSOR

INTRODUCTION
CHAPTER 1 INSTRUCTION DECODE AND MICROPROGRAM CONTROL
CHAPTER 2 DATA PATHS
CHAPTER 3 PROCESSOR CONTROL REGISTERS
CHAPTER 4 TIMING GENERATOR
CHAPTERS DATA TRANSFERS
CHAPTER 6 ABORTS, TRAPS AND INTERRUPTS

SECTION III CONSOLE

(INTRODUCTION
CHAPTER 1 SWITCHES, INDICATORS AND OPERATION
CHAPTER 2 LOGIC DESCRIPTION

SECTION IV MEMORY MANAGEMENT

INTRODUCTION PDP-II/7D ADDRESS SPACE
CHAPTER 1 GENERAL DESCRIPTION
CHAPTER 2 MEMORY MANAGEMENT MAPPING FUNCTION
CHAPTER 3 PAR AND PDR ADDRESSING DtJRING RELOCATION
CHAPTER 4 GENERATION OF THE PHYSICAL ADDRESS
CHAPTERS ADDRESS VALIDITY
CHAPTER 6 DESCRIPTION OF PDR
CHAPTER 7 READING AND WRITING OF PAR AND PDR REGISTERS
CHAPTER 8 MEMORY MANAGEMENT ERROR HANDLING
CHAPTER 9 MEMORY MANAGEMENT REGISTERS (MMRD, 1,2 and 3)

SECTION V UNffiUSMAP

INTRODUCTION
CHAPTER 1 GENERATION OF THE PHYSICAL ADDRESS

(CHAPTER 2 UNffiUS/CACHE INTERFACE
CHAPTER 3 READING AND WRITING THE MAPPING REGISTERS

SECTION VI CACHE

,
I

SECTION I

BLOCK DIAGRAM AND CONCEPTS

Unless ot herwise indicated, references within this sec­
tion pertain to this sect ion only.

,c.

(

(

CHAPTERl

1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.1.6
1.2
1.2.1
1.2.2
1.2.3
1.2.4

CHAPTER 2

2.1
2.2
2.3
2.4

Figure No.

1-1
1-2
1-~

1-4
1-5
1-6
1-7
l-S
1-9
1-10
1-11
1-12

SECTION 1 BLOCK DIAGRAM AND CONCEPTS
CONTENTS

BLOCK DIAGRAM

BLOCK DIAGRAM
Processor
Memory Management
Unibus Map
Cache
Unibus
Optional Equipment -........................ .

MEMORY SYSTEM
Representation and Storage
Address Space
Mapping
Parity

CONCEPTS

Page

1-1-1
1-1-2
1-1-2
1-1-3
1-1-3
1-1-3
1-1-4
1-1-4
1-1-4
1-1-6
1-1-7
1-1-9

MICROPROGRAMMING 1-2-1
PARALLEL OPERATION (PIPELINING) .. 1-2-4
VIRTUAL MACIDNES 1-2-4
REENTRANT AND RECURSIVE PROGRAMMING 1-2-10

ILLUSTRATIONS

Title Page

PDP-11 /70 Block Diagram 1-1-1
PDP-l1/70 System Simplified Block Diagram 1-1-3
High and Low Byte 1-1-4
Memory Addresses 1-1-5
Word and Byte Addresses 1-1-5
Main Memory Addresses 1-1-6
Address Paths 1-1-6
Physical Address Space .. 1-1-7
16-Bit Mapping , I-l-S
IS-Bit Mapping .. I-l-S
22-Bit Mapping • 1-1-9
Parity (P) in the PDP-11/70 System .. 1-1-9

I-iii

This manual describes the KBII-B Central Pro­
cessor Unit, which is the basic component of the
PDP-II/70 Programmed Data Processor System.
The purpose of this manual is to:

I. provide an overall understanding of how
the KBII-B functions in the PDP-II/70
System.

2. describe how the KB II-B logic works in
sufficient detail to enable maintenance
personnel to perform on-site trouble­
shooting and repair.

The format of this manual is functional, i.e., the in­
ten t is to explain the various processes that are exe­
cuted by the KB II-B, as opposed to a module by
module logic description. Since this might be a
problem for a technician who has a module to re­
pair, an index of logic functions by module is
provided.

This manual is divided into six sections:

Section I is an introduction to the PDP-II /70.
It describes a block diagram of the system
and introduces some system concepts.

Section II describes the processor. Its six chap­
ters explain processor control, data manipu­
lation, Control Registers, timing, data
transfers and error handling.

Section III provides both an operating guide
to the Console and a detailed description of
its logic.

Section IV describes Memory Management
and address space.

1-1-1

INTRODUCTION

Section V describes the Unibus Map.

Section VI contains a description of the
Cache.

Due to the numerous references to specific logic
functions in the text, it is recommended that the
reader refer to the PDP-II/70 Engineering Print Set
while reading this manual.

Comments (both favorable and unfavorable), sug­
gestions, and corrections are welcome. A Reader's
Comment sheet is provided for this purpose at the
end of this manual.

RELATED DOCUMENTS
This manual should be used in conjunction with the
following related publications:

PDP-II /70 Maintenance and Installation
Manual

PDP-I 1/70 Processor Handbook

MJII Memory System Maintenance Manual

FPII Floating-Point Processor Manual

RWS04/RWS03 Fixed Head Disk Subsystem
Maintenance Manual

R WP04 Moving Head Disk Subsystem
Maintenance Manual

TWUI6 Magnetic Tape Subsystem Mainte­
nance Manual

PDP-II Peripherals Handbook

(

(

The POP-lIj70 is the most powerful computer in
the PDP-II family. It is designed to operate in
large, sophisticated, high-performance systems. It
can by used as a powerful computatiorial tool for
high-speed, real-time applications and for large
multi-user, multi-task, time-shared applications re­
quiting large amounts of addressable memory
space. Although it is a 16·bit machine, it applies
the power of a Cache memory and 32~bit memory
and I/O structure to demanding, multi-function
computing requirements.

The PDP-II 170 contains as an integral part of the
Central Processor Unit (CPU), the following hard­
ware features and expansion capabilities:

Cache memory organization to provide bipo~
lar memory speed at cote memory prices.

CHAPTER 1
BLOCK DIAGRAM

Memory Management for relocation and pro­
tection in multi-user, multi-task environments.

Ability to acceSs up to 4 million bytes of
Main Memory.

Optional high-speed mass storage controllers
as an integral part of the CPU. These con­
trollers provide dedicated paths to high per­
formance storage devices.

Optional Floating Point Processor

1.1 BLOCK DIAGRAM
The PDP-I 1/70 is a medium scale, general-purpose
computer. A block diagram of the computer is
shown in Figure 1·1.

L ____ ~ ~-I!L2Q....d'U_~ _~ ~~_ .J
MEMORY
BUS

-' INDICATES 32-81T DATA BUS

"OPTIONAL

110
BUS

110
BUS

110.
BUS

Figure 1-1 PDP-l1/70 Block Diagram

1-1-1

11-3191

The KBII-B Processor performs all arithmetic and
logical operations required in the system. Memory
Management is standard with the basic computer,
allowing expanded memory addressing, relocation,
and protection. Also standard is the Unibus Map,
which translates 18-bit Unibus addresses to 22-bit
physical memory addresses. The Cache contains
2048 bytes of bipolar memory that buffer the data
from Main (core) Memory. Main Memory is on its
own high data rate bus, The processor has a direct
connection to the Cache/Main Memory system for
high-speed access.

The PDP-ll/70 Console allows direct control of
the computer system. It contains a power switch for
the CPU. This switch may also be used as the mas­
ter switch for the system. The Console is used for
starting, stopping, resetting, and debugging. Lights
and switches provide the facilities for monitoring
operations, system control, and maintenance. De­
bugging and detailed tracing of operations can be
accomplished by having the computer execute
single instructions or single bus cycles, Contents of
all locations can be examined, and data can be en­
tered manually from the Console switches. Console
operation and logic are described in Section III of
this manual.

Also within the CPU assembly are pre-wired areas
for an optional Floating Point Processor, and for

. up to four optional high-speed I/O controllers
(RH70 Massbus Controllers). These controllers
have direct connections through the Cache to Main
Memory (using the Cache only for timing
purposes).

The Unibus remains the primary control path in
the 11/70 system. It is conceptually identical with
previous PDP-II systems; the memory in the sys­
tem still appears to be on the Unibus to all Unibus
devices. Control and status information to and
from the high speed I/O controllers is transferred
over the Unibus. This expanded internal implemen­
tation of the PDP-II architecture has no effect on
programming the PDP-I 1/70.

Three Unibus devices are standard on the PDP-
11/70:

I. a KWll-L Line Time Clock

2. a DLlI Synchronous Serial Interface (an
LA36 DECwriter II is also standard in
the PDP-ll /70)

1-1-2

3. a Unibus Terminator and Bootstrap
Module.

Also standard are 128KB of parity core memory.
Memory, in the PDP-I 1/70, is not on the Unibus,
but on its own high-speed bus (refer to Paragraph
1.2).

1.1.1 Processor
The Processor is the instruction execution section
of the system. It implements the PDP-I 1/45 instruc­
tion set. It also acts as the arbitration unit for
Unibus control by regulating bus requests and trans­
ferring control of the bus to the requesting device
with the highest priority.

The Processor contains arithmetic and control logic
for a wide range of operations. These include high­
speed, fixed-point arithmetic with hardware multi­
ply and divide, extensive test and branch oper­
ations, and other control operations.

The Processor is described in Section II of this
manual.

1.1.2 Memory Management
Memory Management provides the hardware facil­
ities necessary for address relocation and pro­
tection. It is designed to be a memory management
facility for accessing all of physical memory and for
multi-user. multi-programming systems where mem­
ory protection and relocation facilities are
necessary.

In order to most effectively utilize the power and ef­
ficiency of the PDP-ll /70 in medium and large
scale systems, it is necessary to run several pro­
grams simultaneously. In such multi-programming
environments, several user programs could be resi­
dent in memory at any given time. The task of the
supervisory program would be to control the execu­
tion of the various user programs, to manage the al­
location of memory and peripheral device
resources, and to safeguard the integrity of the sys­
tem as a whole by control of each user program.

In a multi-programming system, Memory Manage­
ment provides the means for assigning memory
pages to a user program and preventing that user
from making any unauthorized access to these
pages. Thus, a user can effectively be prevented
from accidental or willful destruction of any other
user program or of the system executive program.

(

(

(

(

(

(

The basic characteristics of Memory Management
are:

16 User mode memory pages

16 Supervisor mode memory pages

16 Kernel mode memory pages

8 pages in each mode for instructions

8 pages in each mode for data

Page lengths from 32 to 4096 words

Each page provided with full protection and
relocation

Transparent operation

6 modes of memory access control

Memory access to 2 million words (4 million
bytes)

Memory Management is described in Section IV of
this manual.

1.1.3 Unibus Map
The Unibus Map is the interface to the Memory
System (Cache and Main Memory) from the
Unibus. It performs the address conversion that al­
lows devices on the Unibus to communicate with
physical memory by means of Non-Processor
Requests (NPRs). Unibus addresses of 18 bits are
converted to 22-bit physical addresses using reloca­
tion hardware. This relocation is enabled (or dis­
abled) under program control.

The top 4K word addresses of the 128K Unibus ad­
dresses are reserved for CPU agd I/O device regis­
ters and is called the Peripherals Page. The lower
124K addresses are used by the Unibus Map to ref­
erence physical memory.

The Unibus Map is described in Section V of this
manual.

1.1.4 Cache
The Cache is a high-speed memory that buffers
words between the processor and Main Memory.
The Cache is completely transparent to all pro­
grams; programs are treated as if there were one
continuous bank of memory.

Whenever a request is made from the Processor to
fetch data from memory, the Cache does an ad­
dress compare to see if that data is already in the
Cache. If it is, it is fetched from there and no Main
Memory read is required. If the data is not already
in Cache memory, 4 bytes are fetched from Main
Memory and stored in the Cache, with the re­
quested word or byte being passed directly to the
processor.

When a request is made from the Processor to
write data into memory:

1. If it is stored in the Cache, it is written
both to the Cache and to Main Mem­
ory, thus assuring that Main Memory is
always updated immediately.

2. If it is not stored in the Cache, it is writ­
ten only to Main Memory.

Unibus Map references to memory are executed in
the same manner as processor references.

Because it stores 1024 words, and because pro­
grams tend to use localized sections of code and
data, the Cache already contains the next needed
word a very high percentage of the time, indepen­
dently of the program.

The Cache is also the interface between the high­
speed I/O controllers and Main Memory.

A detailed description of the Cache is contained in
Section VI of this manual.

1.1.5 Unibus
Most of the computer system components and pe­
ripherals connect to and communicate with each
other on a bus known as the Unibus. Addresses,
data, and control information are sent along the 56
lines of the bus. Refer to Figure 1-2.

11-3192

Figure 1-2 PDP-llj70 System
Simplified Block Diagram

1-1-3

The form of communication is the same for every
device on the Unibus. Peripheral devices use the
same set of signals when communicating with the
processor, memory, or other peripheral devices.
Each device, including memory locations, processor
registers, and peripheral device registers, is assigned
an address. Peripheral device registers may be ma­
nipulated as flexibly as memory by the central pro­
cessor. All instructions that can be applied to data
in core memory can be applied equally well to data
in peripheral device registers.

Processor Unibus operations are described in Sec­
tion II, Chapters 5 and 6 of this manual. Cache
Unibus operations are transacted through the
Unibus Map (Section V).

1.1.6 Optional Equipment

Floating Point Processor
The Floating Point Processor fits into prewired
slots in the Central Processor backplane. It pro­
vides a supplemental instruction set for performing
single- and double-precision floating point arith­
metic operations and floating-integer conversion in
parallel with the CPU. The Floating Point Pro­
cessor provides both speed and accuracy in arith­
metic computations. It provides 7 decimal digit
accuracy in single word calculations and 17 decimal
digit accuracy in double calculations.

Floating point calculations take place in the FPP's
six 64-bit accumulators. The 46 floating point in­
structions include hardware conversion from single­
or double-precision floating point to single-· or
double-precision integers. Refer to the Floating
Point Processor Manual for a detailed description.

High-Speed Mass Storage
Up to four high-speed I/O controllers can be
plugged into the KB II-B backplane. A dedicated in­
terface (wired on the backplane) connects these con­
trollers to the memory. A separate bus (Massbus)
connects the controllers to high-speed devices. Pre­
sent DIGITAL devices that utilize this bus struc­
ture are the RP04, RS04, RS03, and TUI6. The
RP04 is a moving head disk pack drive with capac­
ity for 88 million bytes and a transfer rate of 1.25
microseconds per byte. The RS04 is a fixed head
disk with a capacity of 1024K bytes and a transfer
rate of I microsecond per byte (1.2 microseconds at
50 Hz). The RS03 is a fixed head disk, 512K bytes,
2 microseconds per byte. The TUI6 is an industry
standard 1600 bpi tape unit.

1-1-4

Refer to the following manuals for detailed descrip­
tions of these high-speed devices:

RWS04/RWS03 Fixed Head Disk Subsystem
Maintenance Manual

RWP04 Moving Head Disk Subsystem
Maintenance Manual

TWUI6 Magnetic Tape Subsystem Mainte­
nance Manual

1.2 MEMORY SYSTEM

1.2.1 Representation and Storage
The PDP-Ilj70 is a 16-bit machine. The data is
stored in Main Memory in blocks, each of which
consists of two 16-bit words. Thus, the PDP-ll in­
struction set and the addressing modes are identical
to other PDP-lis, but data storage is implemented
in a 32-bit configuration. This is transparent to the
program and to the processor logic.

The PDP-II data word consists of two 8-bit bytes,
as shown in Figure 1-3. The program addresses ei­
ther a single byte, when it uses a byte instruction,
or a 16-bit word, when it uses a word instruction.

15 00
HIGH BYTE LOW BYTE

11-3193

Figure 1-3 High and Low Byte

From the point of view of the program, memory
can be viewed as a series of locations, with a num­
ber (address) assigned to each location. Thus, a
131,On-byte PDP-II memory could be represented
as in Figure 1-4.

Because PDP-II memories are designed to accom­
modate both 16-bit words and 8-bit bytes, the total
number of addresses does not correspond to the
number of words. A 64K-word'memory can con­
tain 128K bytes and consist of 777 7778 byte loca­
tions. Words always start at even-numbered
locations.

(

(

(

(

(

OCTAL
ADDRESSES

00 000 000

00 000 001

00 000002

00 000003

00 000004

• •
• •
•
•
•

00 777 774

00 777 775

00 777 776

00 777 777

lOCATIONS

-....,

11-3194

Figure 1-4 Memory Addresses

Low bytes are stored at even-numbered memory lo­
cations and high bytes at odd-numbered memory lo­
cations. Thus it is convenient, from the point of
view of the program, to represent the PDP-II mem­
ory as shown in Figure 1-5.

16-BIT WORD

Main Memory stores data in blocks. A block con­
sists of two 16-bit words (plus 4 parity bits). Figure
1-6 shows how the data for the same memory
shown in Figure 1-5 is stored in Main Memory.
Block boundaries are located on program addresses
whose low-order octal digit is either 0 or 4.

Main Memory addresses are block addresses. The
processor and the Unibus use word addresses and
the Cache translates these addresses to block
addresses.

The Cache, which is the interface to Main Memory
for the processor, the Unibus and the high-speed
I/0 controllers, reads and writes Main Memory as
listed below for each of these units:

High-Speed I/O Controllers

I. Read: double word only

2. Write: double word, single word, or
byte.

The controllers listed in Paragraph 1.1.6 do not im­
plement byte writes.

.....
1]5 BYTE 0807 BYTE 00 '

8-BIT BYTE
r.-:.0"=7---''''-.... --0-0 ,

00 000001

00 000003

00 000005

00 777773

00777 775

00777 777

-

-

HIGH lOW

HIGH lOW

HIGH lOW

,.,,;--...

HIGH lOW

HIGH lOW

HIGH lOW

WORD ORGANIZATION

/"

00000 000

00000002

00000004

00 777 772

00777 774

00 777 776

OR

WORD {

WORD {

{

{
{

Figure 1-5 Word and Byte Addresses

1-1-5

lOW

HIGH

lOW

HIGH

lOW

-

HIGH

lOW

HIGH

BYTE ORGANIZATION

00 000 000

00 000 001

00 000 002

00 000 003

00 000004

00 777 775

00 777776

00 777 777

11-3195

BLOCK
~----------------------------~~~----------------------------~

WORD 1 WORD 0
~------------~~~--------------~v~---------------'~~--------------~

BYTE 3 BYTE 2

00000 003 00 000002

00000007 00000006

BYTE 1

00000 001

00 000005

BYTE 0

00000000

00000004

00000000

00 000004

00000010

i...---'" - -~::-- ~ ::. ~ --:::---:::: -

00777 767 00777 766

00777 773 00 777772

00 777 777 00 777 776

- - -

00 777 765 00777 764

00 777 771 00 777 770

00 777 775 00777774

00 777 760

00777764

00777 770

00777774

11-4000

Figure 1-6 Main Memory Addresses

Processor or Unibus

I. Read: double word, but only Word 0
or Word I are transmitted to processor
or Unibus

2. Write: single word (Word 0 or Word I)
or single byte (one of bytes 0, I, 2, or 3).

1.2.2 Address Space
The PDP-II 170 uses 22 bits for addressing physical
memory. This represents a total of 222 (over 4 mil­
lion) byte locations.

Three separate address spaces are used with the
PDP-I 1/70. Main memory uses 22 bits, the Unibus
uses an 18-bit address, and the computer program
uses a 16-bit virtual address. This information is
summarized below:

16 bits program virtual space
18 bits Unibus space
22 bits physical memory space

216 = 64K bytes
218 = 256K bytes
4 million bytes

Refer to Figure 1-7. Memory Management gener­
oates the physical address output for the processor.

1-\-6

This address is an 18-bit address in the case of a
Unibus reference and a 22-bit address in the case of
a memory reference. The Unibus Map converts 18-
bit Unibus addresses to 22-bit Cache addresses.

CPU UNIBUS &
MEM. MGT. 18 ADDRESS BITS ~ADDRESS

ITS

22 ~ UNIBUS J ADDRESS MAP BITS

~
I

CACHE l 22 ADDRESS BITS

I
22
ADDRESS
BITS

MAIN
MEMORY

11-4001

Figure 1-7 Address Paths

(

(

(

Processor Addresses
See Figure 1-8. Of the over 2 million 16-bit word lo­
cations possible with the 22-bit physical address,
the top 128K are used to reference the Unibus
rather than physical memory. Maximum physical
memory is therefore 222 - 2 18 bytes, or a total of
1,966,080 words. The system size boundary is the
highest address available with the amount of mem­
ory included in the system. If the CPU address is
between 00 000 000 and the system size boundary,
an attempt is made to reference physical memory.
Memory addresses between the system size bound­
ary and 16 777 777 are known as Non-Existent
Memory (NEXM); any attempt to access these loca­
tions is aborted. If the address is in the top 128K,
17 000 000 - 17 777 777, the lower 18 bits of the ad­
dress are placed on the Unibus.

(17) 777 777 }

_J~7J!~~~0~ ___
(17) 757777

(Ill 000 000

16 777 777

SYSTEM SIZE
BOUNDARY

00000000

PERIPHERAL
PAGE 14K)

UNIBUS
REFERENCE
(l28K)

NON-EXISTENT
MEMORY OR NXM

MEMORY
REFERENCE

11·4002

Figure 1-8 Physical Address Space

1.2.3 Mapping
Mapping is the process of converting the virtual ad­
dress generated by the program to a physical mem­
ory address or to a Unibus address, or the process
of converting a Unibus address to a physical mem­
ory address.

The virtual address is mapped by Memory Manage­
ment; the Unibus address is mapped by the Unibus
Map. Neither of these increases memory access
time.

Memory Management and the Unibus Map are sep­
arate units and one may be enabled independently

1-1-7

of each other. They are both part of the KBII-B
and are included in all PDP-II /70 systems.

Refer to Figures 1-9 through I-II.

I. Mapping of processor addresses is per­
formed in one of three possible ways by
Memory Management:

2.

/6-BIT MAPPING
There is fixed mapping from virtual to
physical addresses. the lowest 28K vir­
tual addresses are treated as correspond­
ing to the same physical addresses. The
top 4K addresses cause Unibus cycles to
addresses 17 760 000 - 17 777 777. Refer
to Figure 1-9. 16-bit mapping is enabled
after .. Power Up, Console Start, or the
RESET instruction.

/8-BIT MAPPING
32K virtual addresses for each of the
three modes (Kernel, Supervisor, User)
are mapped into 128K of physical ad­
dress space. The lowest 124K addresses
reference physical memory. The top 4K
addresses cause Unibus cycles to ad­
dresses 17760000 - 17 777 777. Refer to
Figure 1-10.

22-BIT MAPPING
This mode produces 22-bit addresses for
accessing all of physical memory. The
top 128K addresses cause Unibus cycles
to addresses 17 000 000 - 17 777 777. Re­
fer to Figure I-II.

Mapping of Unibus addresses IS per­
formed by the Unibus Map.

UNIBUS MAP NOT ENABLED
When the Unibus Map is not enabled,
Unibus addresses 000 000 - 757 777 ac­
cess memory locations 00 000 000 - 00
757 777, i.e., they are not modified ex­
cept for the insertion of leading zeroes.

UNIBUS MAP ENABLED
When the Unibus Map is enabled,
Unibus addresses 000 000 - 757 777 are
relocated and a Unibus device may ac­
cess any location in physical memory.

777777

UNIBUS
(18 BITS)

000000

FLOW

'r====------.-- - ~~ - - - - - - r::::==--...,

124K

17000000

"­
"-

16777777

M~
"-

"­
"-,,-

I-:O=-=00::75::7:':7:::7=-7 ----1 1920K

177777 96K

f-'1"'60"'00=0 ___ --I ___ ~ ____ ~ __ =-:===-_-, _______ _
00157777

VIRTUAL
(16 BITS) 28K

"'0-"-00::..:0:..::0""0 __ --' ____________ c::..::="-"-=-"---_-' __________ "-0::..:0:..:0c;::0.::.00::.;0:..:0,--_-'

INCOMING
ADDRESS

---.. ~ = RELOCATION
----- =NOADDRESS

PHYSICAL
ADDRESS SPACE
(22 BITS)

ADDRESS
LOCATIONS
(MAX. AVAILABLE
MEMORY 1024K)

RELOCATION 11-3196

777777

UNIBUS
(18 BITS)

000000

177777

VIRTUAL
(16 BITS)

Figure 1-9 16-Bit Mapping

FLOW ..

16777777

1
1920K

124K 124K

____ MEM_

-- MGMT

L:OO.::.O::..:O:..:O.::.O __ ----' ________ ~.L.:O:..:O:..::O.::.O.::.OO::..:O:..::O'----' ___________ ,0""0""0",0",0,,,,00,,,,0::....-_--,

INCOMING PHYSICAL
ADDRESS ADDRESS SPACE

(22 BITS)

---.... ~ .. =RELOCATION

----_ =NO ADDRESS
RELOCATION

Figure 1-10 18-Bit Mapping

1-1-8

ADDRESS
LOCATIONS
(MAX. AVAILABLE
MEMORY 1024K)

11-3197

(

(

777777

UNIBUS
(18 BITS)

000000

000000

INCOMING
ADDRESS

--__ • R~LOCATION

- ---- 'NO ADDRESS
RELOCATION

FLOW

17777777
4K

17760000
17757777

124K

17000000
16777777

1920K
ADDRESS

.. 00000000

PHYSICAL
ADDRESS SPA£: E
(22 BITS)

..
----------..---

'\

\

Figure 1-11 22-lJit Mapping

17777777
PERIPHERAL PAGE

17600000

16777777

00757777
124K

00000000

ADDRESS
LOCATIONS
(MAX, AVAILABLE
MEMORY 1024K)

11-3198

1.2.4 Parity
This paragraph provides general information on
parity checking in the PDP-II/70 system. A de­
tailed description of this subject is provided in Sec­
tion VI of this manual (Cache) and in the Memory
Manual.

byte parity for data, and in addition it stores two
parity bits for the address information (tag storage)
associated with each two-word block of data.

System Reliability
Parity is used extensively in the PDP-I 1/70 to en­
sure the integrity of the data and thus to enhance
the reliability of the system. AlI memory (Cache
and Main Memory) has byte parity. Parity is gener­
ated and checked on all transfers between Main
Memory and Cache, and between Cache and the
CPU. It is checked between the high-speed mass
storage devices and their controllers, and again be­
tween the controllers and core memory. A software
routine can be used to log the occurrence of parity
errors, to handle recovery from errors, and to pro­
vide information on system reliability and
performance.

Parity in the System
Main Memory storeI') one parity bit for each 8-bit
byte, (refer to Figure 1-12). The Cache also stores

1-1-9

ADORES

I ADbREsS(P) I DATA(P) If-."=~_-I

ADDRESS
&

CONTROl(P)

CACHE

DATA(P)

MAIN CONTROL

Figure 1-12 Parity (P) in the
PDP-Ilj70 System

11-3199

The bus between Main Memory and the Cache con­
tains parity on the data lines and on the address
and control lines. The high-speed I/O controllers
check and generate parity for data transfers to
Main Memory, and they have the capability of han­
dling address errors that are flagged by the control
in the Cache memory. Refer to Section VI, Chapter
3 for a detailed description of the PDP-II /70 parity
system.

System Handling of Parity Errors
The design of the PDP-Ilj70 allows recovery from
parity errors. It also allows operation in a degraded
mode if a section of the memory system is not oper­
ating properly. This type of operation is possible un­
der program control by using the control registers.

I f part or all of the Cache memory is malfunction­
ing, it is possible to bypass half or all of the Cache.
Misses can be forced within the Cache, such that
all read data is brought from Main Memory. Oper­
ation will be slower, but the system will yield cor­
rect results. If part of Main Memory is not

1-1-10

working, Memory Management can be used to map
around it. If data found in the Cache does not have
correct parity, the memory system automatically
tries the copy in Main Memory, to allow program
execution to proceed. The correct data from Main
Memory automatically replaces the data in the
Cache which caused the parity error. Therefore,
if the error was caused by transitory conditions, it
will not occur again.

Aborts and Traps
One of two actions can take place after detection of
a parity error: (I) The cycle can be aborted. The
com puter then transfers control through the vector
at location 114 to an error handling rou­
tine. (2) The instruction is completed, but then
the computer traps (also through location 114). In
the first case, it was not possible to complete the
cycle; in the second case it was. This second type of
parity error usually (but not always) causes the trap
before the next instruction is fetched.

(

(

(

(

(

(

This chapter introduces several concepts that are
useful for the understanding of the KBII-B Pro­
cessor and the PDP-II /70 system. The first two of
these concepts, Microprogramming (2.1) and Paral­
lel Operation or Pipelining (2.2), should be well un­
derstood before reading any further. The other two
paragraphs, Virtual Machines (2.3) and Reentrant
and Recursive Programming (2.4), discuss system
concepts that may be easier to understand after a
working knowledge of the PDP-ll/70 has been
acquired.

2.1 MICROPROGRAMMING
The KBII-B Processor uses a microprogram con­
trol section which reduces the amount of com­
binational logic in the processor. This paragraph
introduces the concept of microprogramming by
first describing a digital computer, then dividing the
computer into various parts, and finally, describing
how some of these parts differ for a micro­
programmed processor.

Digital Computer Description
Although a computer can effect complicated
changes to the data it receives, it must do so by
combining a large number of simple changes in dif­
ferent ways. The part of the digital computer that
actually operates on the data is the processor. A
processor is made up of logical elements; some of
these elements can store data, others can do such
simple operations as complementing a data oper­
and, combining two operands by addition or by
ANDing, or reading a data operand from some
other part of the computer. These simple oper­
ations can be combined into functional groups;
such a group is called an instruction, and it in­
cludes operations that read data, operations that
combine, change, or simply move the data, and op­
erations that dispose of the data. Instructions can

CHAPTER 2
CONCEPTS

be further combined into programs, which use the
combined instructions to construct everi more com­
plex operations.

The logical elements of a processor can only per­
form a small number of operations at one time.
Therefore, to combine operations into an instruc­
tion, the instruction is divided into a series of oper­
ations (or groups of operations that can be
performed sim ultaneously). The processor does
each part of the series in order. One way to de­
scribe how the processor executes an instruction is
to call each operation (or group of operations) a
machine state. An instruction then becomes a se­
quence of machine states which the processor enters
in a specific order.

The processor can be completely described in terms
of machine states by listing all the machine states in
which the processor can perform (i.e., all the differ­
ent operations or groups of operations that it can
perform) and all the sequences in which these ma­
chine states can occur. The sequence of machine
states is determined by the current state of the com­
puter; this includes such information as the instruc­
tion being executed, the values of the data being op­
erated on, and the results of previous instructions.

I n terms of the machine state description, the pro­
cessor can be divided into two parts. The first part,
called the data section, includes the logic elements
that perform the operations which make up a ma­
chine state. The second part, called the control sec­
tion, includes all the logic that determines which
operations are to be performed and what the next
machine state should be. The data section and con­
trol section are discussed in the following
paragraphs.

1-2-1

The data section in the KBII-B is usually referred
to as the Data Paths and is described in Section II,
Chapter 2. The control section is described in Sec­
tion II, Chapter 1, Instruction Decode and Micro­
program Control.

The Data Section
During each machine state, the data section per­
forms operations selected by signals from the con­
trol section. The data section provides inputs to the
control section which help to determine the next
machine state; the data section also exchanges data
with other devices external to the processor.

The data section can be divided into three func­
tional sections; each section is discussed in one of
the following paragraphs.

The Data Storage Section
For the processor to combine data operands it
must be able to store data internally, while simulta­
neously reading additional data. Often, a processor
stores information about the instruction being exe­
cuted, about the program from which the instruc­
tion was taken, and about the location of the data
being operated on, as well as a number of data op­
erands. When the processor must select some of the
internally-stored data, or store new data, the con­
trol section provides control signals which cause the
appropriate action within the data storage sec.tion.

The Data Manipulation Section
This section includes the various logic elements that
actually change data. Many of these elements are
controlled by signals from the control section,
which select the particular operation to be per­
formed. Data manipulation is performed on data
being transferred between the processor and the
rest of the system, and on data that remains within
the processor. I n some cases, the data that remains
within the processor is used to control the pro­
cessor by providing inputs to the sensing section of
the processor control.

The Data Routing Section
The interconnections between the logic elements in
the data storage section and the elements in the
data manipulation section are not fixed; they are
set up as required in each machine state. The con­
trol section generates signals that cause the logic ele­
ments in the data routing section to form the
appropriate interconnections within the processor,
and between the data interface and the data storage
and manipulation sections.

1-2-2

The Control Section
The control section of a processor receives from the
data section, inputs which are used by the sensing
logic to help select the next machine state. The con­
trol section also generates control signals to all
parts of the data section and communicates with
other parts of the computer system through control
signals. The following paragraphs describe the three
parts of the control section.

The Sequence Control Section
The primary control of the processor is the selec­
tion of the sequence of machine states to be per­
formed. This is done by the sequence control
section which selects the next machine state on the
basis of:

1. the current machine state

2. inputs from the data section (such as the
instruction type or the data values)

3. information about external events.

The sequence control section maintains information
about the current machine state, and receives infor­
mation from the data section and the external envi­
ronment through the sensing section.

The Function Generator
In each machine state, the data section performs op­
erations selected by signals from the control section
of the processor. The function generator produces
these control signals on the basis of the current ma­
chine state and also on the basis of inputs from the
sensing section, such as information on the instruc­
tion type.

The Sensing Logic
In general, the sequence control section requires in
puts that select one of a limited number of machine
states to follow the current state.

The Control Section in the KBll-B
The function generator comprises the micro­
program Read Only Memory (ROM), its output
buffer, and several logic elements that generate con­
trol signals based on sensed inputs (notably
through the subsidiary ROMs). The sequence con­
trol comprises the microprogram address gener­
ation logic. The sensing section includes the various
logical elements that receive inputs from the data
section, especially the condition-code generator, the
subsidiary ROMs, and the branch logic.

(

(

(

~.

(

Microprogramming in the Control Section
Implementation
This paragraph describes two methods of imple­
menting the control section of a processor. The first
method, which is called the conventional method for
the purposes of this discussion, uses combinational
networks, with many inputs combined in varying
ways to produce each output. The second method,
which is called microprogramming, replaces most of
the combinational networks with an array struc­
ture. The array requires a small number (approx­
imately 10) of inputs to select the output states for
a large number (approximately 100) of signals. Be­
cause the array is a regular structure, it is simpler
to construct and understand, and less expensive.

Conventional Implementation
In a conventional processor, each control signal is
the output of a combinational network that detects
all the machine states (and other conditions) for
which the signal should be asserted. The machine
state is represented by the contents of a number of
storage elements (such as flip-flops), which are
loaded from signals that are, in turn, the outputs of
combinational networks. The inputs to these net­
works include:

I. the current machine state

2. sensed conditions within the Processor

3. sensed external conditions.

The number of logical elements in the processor is
often reduced by sharing the outputs of networks
which generate intermediate signals needed in the
generation of several control signals, or even in the
generation of control signals and machine states.
Unfortunately, while this reduces the size of the pro­
cessor, it increases the complexity and difficulty of
understanding the device because it is no longer ob­
vious what conditions cause each signal. In addi­
ton, the distinction between the sequence control
and the function generator is blurred, which makes
it more difficult to determine whether improper op­
eration is caused by a bad machine state sequence
or, more simply, by the wrong control signals
within an otherwise correct machine state.

Microprogrammed Implementation
The microprogrammed implementation is based on
the following observation. Each control signal is

completely defined if its value is known for every
machine state. The function generator section can
therefore be implemented as a storage device: the
storage is divided into words, with each word con­
taining a bit for every control signal; there is one
word for each machine state. During each machine
state, the contents of the corresponding word in the
storage element are transmitted on the control
lines. For most control signals, the output of the
storage unit is the control signal; no additional
logic is required.

The two tasks of the sequence control section are
to select the next machine state, and to provide in­
formation about the current machine state to the
function generator. The only information that the
function generator in a microprogrammed pro­
cessor requires is which word to use as control sig­
nals. Therefore, the seqence control simply provides
an address that selects the correct word. The se­
quence control must also select the address of the
next word to determine the machine state sequence.
Because the next machine state is determined in
part by the current machine state, information is
stored in the microprogram that helps to select the
next state; the microprogram word contains the con­
trol signal values and the address and sensing con­
trol information required by the microprogram
address generation logic (i.e., by the sequence
control).

In a microprogrammed control like the one de­
scribed above, the two major portions of the con­
trol section have been simplified to regular logical
structures. The function generator is entirely sepa­
rate from the sequence control, so it is easy to iso­
late malfunctions to the microprogram storage or
to the address generator. In addition, the sensing
logic is simplified, because each sensed condition is
reduced to a single signal and the sensing logic se­
lects the appropriate signals for the current ma­
chine state, based on signals output from the
microprogram storage. To summarize this dis­
cussion, a microprogrammed processor has a sim­
pler, more regular, more easily repaired control
structure, based on the generation of control signals
from stored information, and the selection of each
machine state, based on information stored in the
current machine state, and on information from a
simplified sensing section.

1-2-3

2.2 PARALLEL OPERATION (PIPELINING)
In a digital computer system, the processor is usu­
ally the fastest part of the system. In order to
achieve the maximum speed of operation, all parts
of the processor should be used as much as pos­
sible. To prevent the processor from wasting time
waiting for other parts of the system, the processor
must make use of the external data transfer inter­
face as much as possible. Because anyone oper­
ation that the processor performs uses only part of
the processor's available resources, the two consid­
erations above req uire the processor to perform sev­
eral operations in parallel.

I n general, the seq uence of operations required for
each instruction uses various parts of the processor
at different times. Some parts of the processor,
such as the program counter, are used only during
the early parts of the instruction; others, like the
shift counter, are used only during later parts of the
instruction. The processor can be fully utilized only
if different parts of the processor can be used for
parts of different instructions during the same ma­
chine state.

When the processor works on the early part of an
instruction at the same time that it completes the
previous instruction, this form of parallel operation
is called pipelining. The processor attempts to make
continuous use of the external data interface by
fetching each word addressed by the Program
Counter (PC) in succession (incrementing the PC
pur,inge~ch . transfer), on the assumption that the
next word required will be the one" following the
current instruction. In the pipelining analogy, the
processor attempts to fill a pipe, corresponding to
the different parts of the processor used succes­
sively by each instruction, with a series of
instructions.

The current instruction often requires some other
words from the external storage. At times, the next
instruction does not follow the current instruction
because the PC has been explicitly changed by the
current instruction. When either of these two condi­
tions occurs, the processor must stop the data trans­
fer begun after the instruction fetch and begin a
data transfer with a different address. I n the pipe­
line analogy, this is a break in the smooth flow of
instructions through the pipe; some time is lost be­
fore the pipe drains (the current instruction is com­
pleted) and can be refilled (a new instruction
fetched and a transfer begun to read the word fol­
lowing that instruction).

1-2-4

A second form of parallel operation occurs in the
K B 11- B to further improve the utilization of the
processor. Because the processor includes several
types of data storage and data manipUlation ele­
ments, with different interconnections, several data
transfers can take place within the processor simul­
taneously. As an example, during the same machine
state that completes an external data transfer, the
processor can read a general register into a tempo­
rary storage register, and perform an addition that
adds a constant to the program counter.

The use of parallel operations within an instruction
reduces the number of machine states (and there­
fore the total time) required to execute each instruc­
tion; the use of pipelining further reduces the
number of machine states required to execute a pro­
gram by effectively eliminating the elapsed time be­
tween many external data transfers.

2.3 VIRTUAL MACHINES
The processor executes instructions and operates on
data, both of which are stored in memory, and it re­
sponds to various asynchronous events.

The response to an interrupt or trap is not entirely
designed into the processor. Instead, the response is
controlled by a series of instructions (a program)
which is selected by a' simpler hardware response
when the asynchronous event is detected. Often, a
number of programs are required to respond to a
number of events, and the scheduling, coordination,
and interaction of these programs is one of the
most important (and difficult) parts of program­
ming a computer system.

I n many applications, the user programs that are
written for the system are treated as though they
are interrupt response programs. This is done to
simplify the scheduling, to allow each user program
to operate with a terminal (some form of character
I/O device), and to allow several user programs to
operate at once. By running several programs at
once, the processor can be utilized more fully than
is generally possible with only one user program,
which would often be waiting while devices other
than the processor completed data transfer oper­
ations. With several programs to be run, the pro­
cessor can be switched among the programs so that
those ready to run have the use of the processor
while others are waiting. The use of the processor
for several programs at the same time is called
multiprogramming.

(

(

\,

(

Running programs in a multiprogrammed system
presents several difficulties. Each program can be
run at arbitrary times, but all the programs must be
capable of running together, without conflict. A fail­
ure in one program must not be allowed to affect
other programs. Each program must be able to use
all features of the system in a simple, easily-learned
manner, preferably in such a way that the program
does not need to be modified to run in a different
hardware configuration.

These difficulties are overcome by providing each
program with a virtual machine. The programmer
writes his program as though it is to run by itself;
the program uses any system resources (such as
memory or peripheral devices), and the system pro­
vides the services necessary to support the program
and coordinate it with other programs in operation.
The physical hardware in the system is combined
with a control, or executive program, to simulate a
more powerful hardware machine; it is for this
more powerful, but abstract, machine that the pro­
grams are written.

Based on this discussion, the hardware machine
and the executive program must combine to fulfill
the foHowing four major objectives of the virtual
machine:

I. Mapping - The virtual machine of the
program currently in operation must be
assigned to some part of the hardware
machine.

2. Resource management - The scheduling
of programs, and the allocation of parts
of the hardware machine, must be per­
formed by the executive program.

3. Communication - The virtual machine
must be able to request services from the
executive program, and the executive pro­
gram must be able to transfer data back
and forth with the user programs.

4. Protection - The system that supports
the virtual machine, and all other virtual
machines, must be protected from fail­
ures in anyone virtual machine.

Each of these subjects is discussed in one of the fol­
lowing paragraphs.

1-2-5

Mapping
Each time a program is run (or, if the multi­
programming system is running several programs in
a round-robin manner, each time a program reo
sumes operation), it has some of the system dar­
dware allocated to it. This generally includes some
part of the memory to contain the instructions and
data required by the program, some of the pro­
cessor's registers, a hardware stack (which is ac­
tually an area in the memory and a pointer to that
area in a processor register), possibly some per­
ipheral devices, and perhaps a fixed, amount of the
processor's time. All of thse allocations must be
made in such a way that the hardware machine can
then execute the user program with a minimum of
extra operations; i.e., so that the execution of the
user program requires as few additional memory cy­
cles, or additional machine cycles, as possible.
Therefore, the allocation is done entirely in the
hardware machine; registers in the hardware con­
tain all the allocation (inapping) information, and
all references to virtual addresses, virtual stack loca­
tions, virtual register contents, or virtual devices
converted by hardware to physical references.

In a PDP-I 1/70 System, mapping is done by two
devices. The mapping of virtual registers into pro­
cessor registers, of the virtual stack, and of the vir­
tual program coonter, is done by loading the
appropriate values into the processor registers; one
of two sets of general registers can be selected for
the user, and the processor has a separate stack
pointer for user mode, while the program counter is
changed by interrupt and trap operations and by
the Return from Interrupt (RTI) or Return from
Trap (R TT) instructions.

The remaining mapping functions distribute the vir­
tual memory into the physical memory. In the phys­
ical memory, many specific addresses are reserved
for special functions; the lowest addresses are used
for interrupt and trap vectors, while the highest ad­
dresses are used for device registers. Because all
functions that require reserved addresses in the
physical memory are performed either by the phys­
ical machine or by the control program, these ad­
dresses need not be reserved in the virtual machine.
Therefore, the programs written to be run in the vir­
tual machine can use any addresses; specifically,
these programs can start at address 000000 and con­
tinue through ascending addresses to the highest ad­
dress needed.

In discussions of the virtual memory and the phys­
ical memory, it is often necessary to describe the ad­
dresses used to select data items within the
memory. The range of addresses that it is possible
to use is called the address space. The maximum
range of addresses that can be used in the virtual
machine (which in the PDP-ll/70 is the maximum
number that can be contained in a I6-bit word) is
called the virtual address space, while the maximum
range of· physical addresses that can exist in the
hardware system is called the physical address
space (in the PDP-II /70 this can be all the ad­
dresses expressed by a 22-bit number).

I f the user program is to use addresses in the vir­
tual address space that are reserved in the physical
address space, the virtual address space must be
relocated to some other part of the physical address
space. In a multiprogramming system, several user
programs, each in its own virtual address space,
may be sharing the physical address space. There­
fore, the relocation of the virtual address space into
the physical. address space must be variable; each
time a program is run, it may be allocated a differ­
ent part of the physical address space. Memory
Management provides the capability of varying the
relocation for each user program by storing a map
of the memory allocation in a set of registers.

Resource Management
In a multiprogramming system, each user program
operates in a virtual machine that can utilize any of
the possible devices or functions of the physical ma­
chine, as well as many functions performed by the
executive program. The resources that exist in the
system must be allocated to each user program as
required, but without allowing conflicts to arise
where several user programs require the same re­
sources. The physical machine and the executive
program must resolve any protective conflicts by
scheduling the resources for use by different pro­
grams at different times, and must schedule the
user programs to operate when the resources are
available.

The man,lgement of input/output or peripheral de­
vices is beyond the scope of this discussion, which
is primarily concerned with the basic PDP-I 1/70
System. Within the system, the two most important
resources which require the most care and effort to
control are the memory and the processor.

1-2-6

Processor Management
The processor can only execute one instruction at a
time. When several programs are sharing the use of
the processor, the processor operates on each pro­
gram in turn; either the processor is shared among
the programs, by using periodic interrupts to allow
the executive program to transfer the processor to
another user program, or each user program runs
to completion before the next user program begins.
To share the processor on a time basis, the execu­
tive program must perform the transfer from one
virtual machine to another. Each virtual machine is
given control of the physical machine by loading
the map of that virtual machine into the physical
machine. That is, the executive program changes vir­
tual machines by changing the contents of the pro­
cessor registers used by the virtual machine, and by
changing the contents of the registers in Memory
Management which map the virtual address space.

Memory Management
The following discussion assumes that Memory
Management is enabled. Memory Management is
much more complicated than Processor Manage­
ment. If a program uses a large proportion of the
virtual address space, and only a small amount of
memory is physically available in the system, the
program may be too large to fit into the memory
all at once. Fortunately, in most programs only a
small part of the program (or possibly several small
parts, one for the instruction stream and one or
more for blocks of data) is used at anyone time.
To take advantage of this fact, the virtual address
space is divided into pages so that each page can be
mapped separately. Only the pages that are in use
in the current instruction are required to be in the
physical memory during the execution of that
instruction.

A system which uses Memory Management to per­
mit each virtual machine to have a larger address
space than the available physical memory must also
include a mass storage device to hold those parts of
each virtual memory that are not in the physical
memory. As a program proceeds through a se­
quence of instructions, it requires different pages of
the virtual memory. The memory map in the Mem­
ory Management includes relocation information
for each page of the virtual address space, and also
includes information specifying which pages are cur­
rently in the physical memory. If the processor at­
tempts to perform transfers with a virtual address

(

(

which is on a non-resident page, the instruction is
aborted. A part of the executive program which
transfers the required page into the physical mem­
ory and changes the map in Memory Management
to reflect the newly available page is then executed.

Memory Use Statistics
If it is necessary for the executive program to bring
a page into the physical memory, but all of the
physical memory is already in use, the executive
program must remove another page (from the same
virtual machine or, in a multiprogramming system,
from some other virtual machine) from the physical
memory. When a page is removed from the phys­
ical memory, a copy of that page must be stored in
the mass storage device; if a copy of the page is al­
ready on the mass storage device, and none of the
data (or instructions) stored on the page have been
changed, the writing of the page onto the mass stor­
age device can be bypassed. Each time a page must
be replaced, the executive program attempts to pre­
dict which page is least likely to be used in the fu­
ture, so that it will not soon need to be moved
back into the physical memory.

Memory Management includes hardware to permit
choosing the page to be replaced and to determine
whether that page must be written onto the mass
storage device. Each external data transfer per­
formed by the processor requires that Memory
Management convert a virtual address into a phys­
ical address and keep track of which virtual pages
have been accessed and which virtual pages have
been written into. The executive program operates
on the assumption that pages which have been re­
cently accessed will also be used soon. To find a
page which can be replaced, the executive program
looks for a page which has not been used, prefera­
bly from the address space of a user other than the
current user. If there are no virtual pages currently
in the physical memory that have not been ac­
cessed, the executive program looks for a page that
has not been written into, to avoid having to copy
a page to the mass storage device. If all the virtual
pages in the physical memory belong to the current
user, the executive program looks for a page that
has not been used recently, again preferably one
that has not been written into. By use of the hard­
ware Memory Management unit and of a variety of
scheduling and allocation algorithms in the execu­
tive program, the system can provide a number of

1-2-7

user programs with virtual machines of great power
and flexibility, with a minimum burden on the user
program.

Communication
A program running in a virtual machine must be
able to communicate with the executive program,
to request various services performed by the execu­
tive program, or to determine the status of the sys­
tem. The same type of communication can be used
for communication between virtual machines, by
providing inter-machine communication as a service
through the executive program. The same hardware
functions that provide a means for the user pro­
gram to communicate to the executive prograll1 are
also used by the executive program to determine
the status of the user program when a trap or abort
condition occurs.

The user program requests services by executing
trap instructions (such as EMT, TRAP, or lOT).
Abnormal conditions caused by a program failure,
such as an odd address for a word data transfer, or
an attempt to execute a reserved instruction, cause
internal processor traps. I n either case, the trap
function performed by the processor serves to no­
tify the executive program that an instruction is
required.

Context Switching
The executive program must then begin executing
instructions to perform the requested service or to
correct the failure condition, if possible. However,
in order for the hardware machine to operate on
any program other than the user program, the map­
ping information must be changed to reflect the al­
locations used by the new program.

The trapping function performs the change of most
of the mapping information. The contents of the
Program Counter (PC) and the Processor Status
(PS) registers are changed directly; the old contents
are stored on a stack in memory, pointed to by a
stack pointer, and the new contents are supplied
from locations called a trap vector. The address of
the trap vector is provided by the processor and de­
pends on the type of trap instruction or trap condi­
tion, so that for each trap instruction or condition,
a different PC and PS can be supplied.

Memory Management stores the maps for the exec­
utive program and one user program in separate
registers. The processor indicates which map should
be used to relocate virtual addresses. During the ex­
ecution of instructions (as opposed to the interrupt
and trap service function), the address space map
to use is specified by bits 15 and 14 of the PS.
These bits also specify which Stack Pointer (SP) reg­
ister in the processor to use (there is a separate SP
for each virtual machine). Because the trap and in­
terrupt service function loads the PS register with a
new value, this function changes almost the entire
virtual machine context directly.

The only remaining parts of the virtual machine
context that require changes are the general regis­
ters in the processor. These can be changed either
by saving the contents of the registers from the pre­
vious virtual machine on the hardware stack and
loading new contents, or by selecting the alternate
set of general registers (the processor has two sets
of general registers, 0 - 5). Register set selection is
controlled by bit II of the PS register, so this
method can be used in conjunction with the trap
service function.

To summarize the change of virtual machines: the
mapping in the hardware system includes the selec­
tion of a register set, a stack pointer, a program ad­
dress (in the program counter), an address space,
and a processor status. The trap and interrupt ser­
vice function, which is performed by the processor
as an automatic response to trap an instruction or
abnormal condition, can change all of these selec­
tions as follows:

I. The program counter and processor
status are changed directly.

2. Bits 15 and 14 of the new PS select the
new address space and stack pointer.

3. Bit II of the new PS selects the new reg­
ister set.

The mapping and selection information for the pre­
vious virtual machine is completely saved, either by
remaining in unselected portions of the processor
and the Memory Management unit, or by being
stored on the hardware stack. If the selected regis­
ter set is shared with other virtual machines, the reg­
ister contents must be changed by an instruction
sequence.

1-2-8

Inter-Program Data Transfers
When the new virtual machine begins executing a
service program for the programmed request (if a
trap instruction was executed) or abnormal condi­
tion (if a trap condition occurred), the service pro­
gram must get information from the previous
virtual machine. This information may define the
status of the previous virtual machine, after an ab­
normal condition occurred, so that the service pro­
gram can correct the condition and· restore the
correct status before returning control to the pre­
vious virtual machine. If the service program is per­
forming a service, the information required from
the calling program may define the specific type of
service to perform, or provide the addresses of data
buffers, or specify device and file names.

Most information required by the service program
is stored in the calling program's address space. To
get this information, and to return information to
the calling program, the service program must be
able to operate in the present address space and
transfer data in the previous address space, at the
same time. The KBII-B Processor provides instruc­
tions to do this.

The special instructions that transfer data between
virtual address space make use of the PS register to
specify which address space is being used by the cur­
rent virtual machine, and which address space was
used by the previous machine (this is identified by
bits 13 and 12 of the PS). The data is transferred be­
tween the hardware stack of the current address
space and arbitrary addresses of the previous ad­
dress space. The calculations of the virtual address
in the previous address space; i.e., any index con­
stants or absolute addresses used to generate the vir­
tual address, are taken from the current address
space, just as the instructions are.

Each virtual address space is divided into an In­
struction (I) space and a Data (D) space. Each I or
D space has a full set of 216 virtual addresses. There­
fore, the communication instructions are available
in two versions; one to transfer with the previous I
space, and one to transfer with the previous D
space. A different instruction is needed for each
transfer direction as well, so there are four commu­
nication instructions: Move To Previous Instruction
(MTPI) space, Move To Previous Data (MTPD)
space, Move From Previous Instruction (MFPI)
space, and Move From Previous Data (MFPD)
space.

(

(

(

(

(

Returning to the Previous Context
Because all the mapping and context information
for the previous virtual machine is saved when the
trap and interrupt service function sets up a new vir­
tual machine, the hardware system can resume the
executiom of any program at the same point that it
was interrupted. This is done with a Return from
Interrupt (RTI) or Return from Trap (RTT) instruc­
tion, which replaces the PC and PS values of the
current virtual machine with the stored values from
the previous virtual machine.

The PS selects most of the mapping information, as
described previously, so the return instructions com­
pletely restore the previous context.

Protection
The hardware system and the executive program
must be protected from failures in each virtual ma­
chine. I n addition, most systems provide protection
so that no program operating in a virtual machine
can take control of the system or affect the oper­
ation of the system without authorization. A third
form of protection that is useful in a large and com­
plex system is the protection of the executive pro­
gram against itself. The executive program is
divided into a basic, carefully written Kernel, which
is allowed to perform any operation, and a broader
Supervisor, which cannot perform privileged oper­
ations. but which provides various services useful to
the executive program and to the user programs.

The forms of protection provided include the differ­
ent address spaces for different types of programs,
a variety of restricted access modes, and restricted
processor operations. The address space protection
can be used with any type of program, whether op­
erating in User, Kernel, or Supervisor mode. The re­
stricted processor operations are usable only in
Kernel mode; Supervisor mode has the same restric­
tions as User mode.

Separate Address Spaces
The most basic protection against modification of
the executive program by a User program (or of
the Kernel section by the Supervisor section) is the
separation of the address spaces. A program oper­
ating in User mode operates in the User address
space. It cannot access any physical addresses that

are not in that address space, regardless of their cor­
respondence to addresses in any other virtual ad­
dress space. The executive (Kernel) program can
prevent a User program from accessing other vir­
tual address spaces through the communication in­
structions (MTPI, MTPD, MFPI, MFPD) by
forcing bits 13 and 12 of the stored processor status
word to Is (to reflect User mode) before executing
an RTI or RTT instruction to return control to the
user program. This forces the previous mode bits in
the PS register to take on User mode, just as the
current mode bits are set to User mode, and the
communication instructions operate only within the
User address space.

Access Modes
Within one address space, it is often useful to be
able to protect certain parts of a program from un­
intentional. modification. This can be done by allow­
ing the data in those addresses to be read, but
prohibiting transfers into the addresses. This is
known as read-only (or write-protected) access.
Areas in a virtual address space that contain alter­
able data must permit read/write access, but areas
that contain unmodified instructions may be read­
only.

Another useful form of access protection dis­
tinguishes between read accesses that fetch instruc­
tions (or address constants) and any accesses that
transfer data. If instructions can be accessed by the
processor only as instructions, they can be executed
but they cannot be read or transferred to any other
part of the address space. This prevents the user
from determining what the instructions are in order
to tamper with the instruction sequence or attempt
to modify the program in undesirable ways. This
type of access restriction is called execute-only
access.

Memory Management provides a read/write, read­
only, and execute-only access modes system. The ac­
cess mode is stored in the mapping registers along
with the relocation information; in fact, when a
page of the virtual address space is not in memory,
a special access code that identifies the page as
non-resident is used. The execute-only access mode
is not a separate access mode, but is provided by
separating the address space into two address

1-2-9

spaces that are used for the different kinds of trans­
fers. One address space is used for all transfers that
fetch instructions and is called the Instruction (I)
space, while a second address space is used for all
data transfers and is called the Data (D) space. If
the two address spaces are mapped separately, at­
tempts to use the same address for an instruction
and for data may address different physical loca­
tions. If no addresses in the 0 space correspond to
the physical addresses used in the I space, the in­
structions cannot be accessed as data and an exe­
cute-only access mode has been achieved. This
mode must be used with caution: tables that are ac­
cessed by indexed address modes must be in 0
space and MARK instructions, which are stored on
the hardware stack as data and then executed, and
require the stack to be in the same virtual addresses
in I and 0 space.

Privileged Instructions
Certain PDP-II instructions that affect the oper­
ation of the hardware machine must be prohibited
in the virtual machine. These include the HALT in­
struction, which stops the physical machine and
thus prevents any virtual machine from operation,
the RESET instruction, which stops all in­
put/output devices, regardless of which virtual ma­
chine they are allocated to, and various PS change
instructions. These instructions are allowed only in
Kernel mode so that the executive program can con­
trol the entire hardware system; they are ineffective
in the Supervisor or User mode. The RESET and
Set Priority Level (SPL) instructions are allowed to
execute in these modes, but have no effect; the
HALT instruction activates a trap function so that
the executive program may stop all action for the
virtual machine that executed the HALT, but not
for other virtual machines.

2.4 REENTRANT
PROGRAMMING

AND RECURSIVE

. A program can generally be divided into routines,
each of which performs a function that is built up
from a sequence of instructions. Often, the function
performed by a routine is needed in several other
routines, so it is desirable to be able to call the rou­
tine from many other routines in the program; i.e.,

the program should be able to transfer the pro­
cessor to the instructions following the calling in­
struction. A routine which is called from other
routines is said to be subordinate to those routines
and is called a subroutine; the special instructions
that transfer the processor to the beginning of a
subroutine and that return the processor to the call­
ing routine are called subroutine linkage
instructions.

Recursive Functions
Some procedures are most easily implemented as a
subroutine that either performs a part of the pro­
ced ure and then calls itself to perform the rest of
the procedure, or completes a computation and re­
turns a partial (and finally, a complete) result. This
is called recursive operation. The common example
of a recursive procedure is one that calculates the
factorial of a number (the factorial is the product
resulting from the multiplication of a number, n, by
all smaller numbers). The recursive procedure to cal­
culate a factorial of a positive integer is as follows:

I. If n is I or 0, return I as the value of fac­
torial n.

2. If n is greater than I, compute the facto­
rial of n minus I, multiply that number
times n, and return that value.

For example, to compute the value of factorial 3,
the procedure is to compute the value of factorial 2
and multiply by 3. However, the value of factorial
2 is the value of factorial I times 2. The value of
factorial I is found by Step I. to be I, so the final
result is I times 2, multiplied by 3, or 6. The same
recursion computes the factorial of any positive in­
teger, in n recursions for a number n.

Use of a Stack in Recursive Routines
When a subroutine is calIed recursively, the linkage
information for each calI (the information required
to return to the calling program) must be saved dur­
ing subsequent calls. Since a recursive subroutine
can be called again before it returns from the first
call, the linkage information should not be stored
in a fixed location; instead, it is stored in a stack,
with each linkage in a different location and a
pointer that identifies the specific location for each
linkage.

1-2-10

(

(

(

(

(

Assume that subroutine A calls subroutine B,
which then calls subroutine C. Subroutine C must
return control to subroutine B before subroutine B
can return control to subroutine A. It can be seen
that in this case the last linkage which has not been
used for a return must be the first one used; i.e.,
the linkages must be used in a last-in, first-out se­
quence. A storage area whose locations are used for
last-in, first-out storage is called a stack; a pointer
is used to point to the last entry placed on the
stack, and the subroutine linkage instructions that
put information on the stack (a push operation), or
remove information from the stack (a pop oper­
ation), change the contents of the pointer so that it
always points to the correct word for the next link­
age operation.

One of the KB \\-B processor's general registers is
used by the subroutine linkage instructions as a
stack pointer. This register is the Kernel Stack
Pointer (SP) and it must be initialized to point to
the first word in a stack area. This same stack is
also used for storage of context or linkage informa­
tion by the trap and interrupt service function,
which is described in Section II, Chapter 6. The
traps, interrupts, and subroutine calls are all han­
dled in the same last-in, first-out manner.

A subroutine that can be called recursively should
not move data into fixed locations, because later ex­
ecutions of the same subroutine (before the current
execution is finished) may also execute the same
data transfer instructions. The best way to keep the
data storage for each execution of a subroutine sep­
arate is to store the data on the stack in the same
manner as the linkage information.

Reentrant Functions
Keeping the data storage separate from the pro­
gram is particularly important for programs and
subroutines that can be called from more than one
virtual machine. If several virtual machines are exec­
uting the same program, it can be called from more
than one virtual machine. If several virtual ma­
chines are executing the same program, it is desir­
able. to have only one copy of the program in the

physical memory, and to map each virtual address
space into the same physical address space. How­
ever, in a muliprogramming system, one virtual ma­
chine may begin execution of a program and then
be interrupted; a second virtual machine may begin
execution of the same virtual program and then run
out of time; the original virtual machine may re­
sume execution and complete the program; and the
second virtual machine may resume executions. The
programmer cannot make any assumptions about
where each virtual machine may resume execution,
nor can he make any assumptions about where
each virtual machine stops, so the program must be
capable of being reentered at any time, regardless
of what other virtual machines have done with the
program.

Programs designed to store all their data on a
stack, so that each virtual machine that uses the
program simply uses a different stack, are called re­
entrant programs. A different stack pointer is se­
lected each time a different virtual machine is
selected. If the executive program changes the con­
text of the user virtual machine, to run a different
user, it changes the address mapping of the stack
area and the contents of the stack pointer, so that
each activation of a program executes the program
in complete isolation from other activations by
other virtual machines.

Indexed Addressing of Parameters
When a program or routine calls a subroutine, the
calling routine may send data to the subroutine.
The amount of the data to be "passed" to the sub­
routine may vary, as may the amount of data re­
turned by the subroutine. By placing all the data on
the stack, the amount of data becomes unimpor­
tant. The subroutine may read different data items
on the stack by using the indexed addressing modes
with the stack pointer as the base register. Complex
subroutines may require that the last word placed
on the stack (the word with the lowest virtual ad­
dress, because the stack expands toward low ad­
dresses) contain the number of parameters passed
so that the program does not use other data also
on the stack but not intended as parameters.

1-2-11

I
'1

j
I

Separate Stack and Index Pointers
Using the stack pointer as the base address for in­
dexed addressing presents problems if the sub­
routine must, in turn, pass data to another
subroutine. Each time the first subroutine calculates
a parameter for the second subroutine, it pushes
the parameter onto the stack. The address in the
stack pointer changes to reflect the new data on the
stack. As a result, all instructions in the first sub­
routine which contain index constants are invalid,
because the base value that the index constants are
supposed to modify has changed. It would be very
difficult, if not impossible, to write a subroutine
that could use different index constants as the stack
pointer changes (because to remain reentrant, the
program cannot change any part of the instruction
code). A much simpler solution is to separate the
base register from the stack pointer by copying the
stack p'ointer value into another general register be­
fore using the stack for any other data. This is still
reentrant because any change of virtual machine
also changes the contents of (or the selection of) all
general registers.

The register commonly used as a separate index
pointer is register 5. The standard method of call­
ing subroutines in reentrant programs uses register
5 as the index pointer, register 6 as the stack
pointer, and a word on the stack (at the address
~ontained in the index pointer) that indicates the
number of parameters on the stack. In addition to
providing a straightforward and completely reen­
trant structure, this method is completely com­
patible with a similar form of non-reentrant
subroutine call. The same subroutine can be called
both by reentrant programs and by simpler pro­
grams that are non-reentrant.

Subroutine Call Compatibility
In a non-reentrant program, the parameters passed
to a subroutine are placed in-line; i.e., they are in
the addresses immediately following the address of
the calling instruction. The subroutine call and re­
turn instructions use a register to store the program

i. counter value for the calling program; the value in
the program counter at the time the subroutine call
Uump to subroutine or JSR) instruction is executed
is the address of the word following the JSR instruc­
tion. The standard register specified in the JSR in­
structions is register 5; register 5 can be used as an

index pointer while the stack is used for data stor­
age during the execution of the subroutine. The
JSR instruction does not destroy the previous con­
tents of register 5 when it stores the return address
in that register; the previous contents are pushed on
the stack, and are automatically restored by a Re­
turn from Subroutine (R TS) instruction.

When the RTS instruction restores the Program
Counter (PC) value stored by the JSR instruction,
the calling program must have .some means of by­
passing the stored data to get to the next instruc­
tion. The word immediately following the calling
instruction must contain the number of words occu­
pied by th~ parameters. Both of these requirements
can be fulfilled by placing a branch instruction in
the return location; the branch instruction advances
the PC so that the first word after the line parame­
ters, and the offset in the eight least-significant bits
of the branch instruction, contain the number of
words used for the parameters (the offset is multi­
plied by 2, before use, to generate a byte address).

The calling sequence and in-line parameter struc­
ture used by non-reentrant routines permits the sub­
routine to return control to the calling routine with
an RTS R5 instruction. For compatibility, the reen­
trant subroutine call must also permit the same
RTS R5 instruction to perform the return. How­
ever, when a subroutine has been called in a reen­
trant manner, R5 points to a location on the
hardware stack, not to the calling program. In addi­
tion, the space in the stack area used by the sub­
routine call must be released (the stack pointer
must be adjusted to point to the first location after
the parameter area) so that any additional informa­
tion on the stack (such as a return linkage to a rou­
tine that called the routine that called the current
subroutine) is accessible. Thus, the word pointed to
by R5 should contain an instruction, whose least­
significant bits are the number of parameters
passed to the subroutine, which can adjust the
stack pointer and also complete the subroutine re­
turn sequence.

The MA RK instruction performs this function in
the POP-II /10. A detailed description of the use of
this instruction is contained in the PDP-II/70 Pro­
cessor Handbook.

1-2-12

(

(

(

SECTION II

PROCESSOR

Unless otherwise indicated, references within this sec­
tion pertain to thi s section only,

SECTION II PROCESSOR
CONTENTS

INTRODUCTION

CHAPTER 1

1.1
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.2.4.1
1.2.4.2
1.2.4.3
1.2.5
1.2.5.1
1.2.5.2
1.2.5.3
1.2.5.4
1.2.5.5
1.2.5.6
1.2.5.7
1.2.5.8
1.2.5 .9
1.2.5.10
1.2.5.11
1.2.5.12
1.2.6
1.2.6.1
1.2.6.2
1.3
1.4
1.4.1
1.4.2
1.4.3
1.4.4
1.4.5
1.4.6
1.4.6,1
1.4,6.2
1.4.6.3
1.4.6.4
1.4.7
1.4.8
1.5
1.5.1
1.5.2
1.5.3
1.5.4

INSTRUCTION DECODE AND MICROPROGRAM CONTROL

MICROPROGRAM ROM AND BUFFER REGISTER
FLOW DIAGRAMS

ROM Timing .,.
Glossary ... ,.
Instruction Classes
Addressing Modes and Operand Fetch

General Register Addressing ..
Program Counter Addressing . .
A and C Forks: Operand Fetcl}

Flowchart Description
FLOWS 1
FLOWS 2
FLOWS 3
FLOWS 4
FLOWS 5
FLOWS 6
FLOWS 7
FLOWS 8
FLOWS 9 and 10 .
FLOWS 11 " ..
FLOWS 12 and 13
FLOWS 14 , ...

Following an Instruction Through the Flowcharts
Figures and Tables ...
An Instruction Example

ROMMAP
ROM ADDRESS

ROM Address Register (RAR)
ROM Address Selection
Branches and Forks
Branch Logic
Instruction Registers ..
A Fork Logic

Decode Logic
Address Bit Generation
Instructions Other Than Branch
Branch Instructions

C Fork Logic .
B Fork Logic

CONDITION CODES
Condition Code Storage
Condition Code Load Field
Instruction Dependent Control
SUBROM Address Generation

II-iii

Page

II-l-4
11-1-7
11-1-7
11-1-7

11-1-10
11-1-12
11-1-13
11-1-14
11-1-15
11-1-15
11-1-15
II-1-18
11-1-19
11-1-20
11-1-21
II-1-21
11-1-22
11-1-23
11-1-25
11-1-29
II-I-3~

11-1-31
11-1-31
11-1-31
11-1-35
11-1-37
11-1-37
11"1-38
11-1-39
11-1-39
11-1-40
11-1-40
11-1-42
11-1-42
11-1-42
11-1-42
11-1-47
II-I-50
II-I-51
II-I-53
II-I-53
II-I-54
II-I-54
II-I-54

1.5.5
1.5.6
1.5.7
1.5.8

CHAPTER 2

2.1
2.1.1
2.1.1.1
2.1.1.2
2.1.2
2.1.2.1
2.1.2.2
2.1.3
2.1.4
2.1.5
2.1.6
2.1.7
2.1.8
2.1.9
2.1.9.1
2.1.9.2
2.1.9.3
2.1.9.4
2.2
2.2.1
2.2.2
2.2.2.1
2.2.2.2
2.2.2.3
2.2.2.4
2.2.3
2.2.4
2.3
2.3.1
2.3.2
2.3.3
2.3.4

CHAPTER 3

3.1
3.2
3.3
3.4
3.5
3.6
3.7

C Bit Data
N Bit Data
Z Bit Data
V Bit Data

DATA PATHS

SECTION II PROCESSOR
CONTENTS (Cont)

Page

II-I-55
II-I-55
II-I-58
11-1-60

DATA MANIPULATION 11-2-3
Arithmetic and Logic Unit (ALU),............. 11-2-3

Description of ALU 11-2-3
ALU Control ... 11-2-4

Shifter (SHFR) . 11-2-6
Description of SHFR . . '.. 11-2-6
Shifter Control 11-2-7

Program Counter (pCA and PCB) 11-2-7
General Registers . 11-2-7
Source and Destination Multiplexers (SRMX and DRMX) 11-2-10
Source Register (SR) 11-2-11
Destination Register (DR) 11-2-11
Shift Counter (SC) 11-2-12
ALU Inputs 11-2-13

A Multiplexer (AMX) 11-2-13
B Multiplexer (BMX) 11-2-13
Constant Multiplexer 0 (KOMX) 11-2-14
Constant Multiplexer 1 (K1MX) 11-2-14

INPUTS TO PROCESSOR DATA PATHS 11-2-15
Bus Register Multiplexer (BRMX) 11-2-15
Internal Data Bus (INTD) 11-2-16

SSRJ Multiplexer 11-2-18
SCCH Bus Output 11-2-18
SCCM Multiplexer 11-2-18
SCCN Multiplexer 11-2-18

Bus Register (BR and BRA) 11-2-18
Instruction Registers (IR and AFIR) 11-2-18

PROCESSOR DATA PATHS OUTPUTS '. 11-2-19
Bus Address Multiplexer (BAMX) 11-2-19
Unibus Data Multiplexer (DMX) 11-2-19
Bus Register A (BRA)•........ 11-2-20
Display Multiplexer 11-2-20

PROCESSOR CONTROL REGISTERS

SWITCH REGISTER (SWR) AND LIGHT REGISTER (LR) 11-3-1
LOWER SIZE REGISTER 11-3-1
UPPER SIZE REGISTER 11-3-1
SYSTEM ID REGISTER 11-3-1
CPU ERROR REGISTER 11-3-2
MICROPROGRAM BREAK REGISTER (PB) 11-3-2
PROGRAM INTERRUPT REQUEST REGISTER (PIRQ) 11-3-2

II-iv

(

(

(

(

(

(,

3.8
3.9
3.9.1
3.9.2
3.9.3
3.9.4
3.9.5
3.9.6
3.9.7
3.9.8
3.9.9
3.9.10

CHAPTER 4

4.1
4.1.1
4.1.2
4.1.3
4.2
4.2.1
4.2.2
4.2.3
4.2.4.
4.3
4.3.1
4.3.2
4.3.3
4.4
4.5
4.6
4.6.1
4.6.2
4.7
4.8
4.8.1
4.8.1.1
4.8.1.2
4.8.2
4.8.2.1
4.8.2.2
4.8.3
4.8.3.1
4.8.3.2
4.9
4.9.1
4.9.2
4.9.3

SECTION II PROCESSOR
CONTENTS (Cont)

Page

STACK LIMIT REGISTER (SL) 11-3-3
PROCESSOR STATUS WORD (pS, PSW) 11-3-3

Reading the PS 11-3-5
Loading the PS 11-3-5
Processor Mode Bits [PS(15: 12)] 11-3-5
Current Processor Mode [PS(15:14)] 11-3-6
Previous Processor Mode [PS(13: 12)] 11-3-6
PS(15:12) Implicit Write 11-3-6
General Register Set Bit (PSll) 11-3-7
Priority [PS(07:05)]· . 11-3-7
Trace Bit (T Bit, PS04) .. 11-3-8
Condition Codes 11-3-8

TIMING GENERATOR

CLOCK SOURCES 114-1
Crystal Clock .. 114-2
R/C Clock 114-2
MAINT STPR Switch 114-2

SOURCE SYNCHRONIZER .. 114-2
Crystal Clock Selection 114-2
RC Clock Selection 114-2
MAINT STPR Selection 114-2
Synchronization 114-3

PHASE SPLITTER/BUFFER 114-3
Level Converter 114-3
Phase Splitter 11-4-4
Buffers .. 114-4

TIGC TPB AND TF 1144
RING COUNTER 114-4
TIMING PULSES, TI-T5 11-4-5

T5 H ... 11-4-6
T5 L ... 114-7·

TIME STATES (TIGE TSI L-l'S5 L) 114-9
PAUSE CYCLES AND CLOCK BR 114-9

Synchronous Pauses 114-9
Internal Bus (INT D) Pause (T2) 114-9
Cache Pause (5) 114-9

Asynchronous Pauses 114-9
Unibus Pause (T2) 114-9
INTR Pause (T2) 114-11

CLKBR,BRA 114-11
Non-Cache Cycles 114-11
Cache Cycles 114-12

MAINTENANCE STOPS .. 114-12
Single Cycle Mode 114-12
ROM+UPB 114·13
TIGB CONT L 114·13

II-v

CHAPTERS

5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.2
5.3
5.3.1
5.3.2
5.3.2.1
5.3.2.2
5.3.2.3

CHAPTER 6

6.1
6.1.1
6.1.2
6.1.3
6.1.3.1
6.1.3.2
6.1.3.3
6.1.3.4
6.1.3.5
6.1.3.6
6.1.3.7
6.1.3.8
6.1.3.9
6.2
6.2.1
6.2.1.1
6.2.1.2
6.2.1.3
6.2.1.4
6.2.1.5
6.2.2
6.2.2.1
6.2.2.2
6.2.2.3
6.2.3
6.2.3.1
6.2.3.2
6.3
6.3.1
6.3.2
6.3.3

SECTION II PROCESSOR
CONTENTS (Cont)

DATA TRANSFERS

PROCESSOR DATA TRANSFERS
Types of Data Transfers
Types of BUST Cycles
Types of Pause Cycles
BEND Cycle

UNffiUS INTERFACE
UNIBUS DATA INTERFACE

Unibus Data Transfer Protocol ...
Unibus Data Interface

Unibus Device References
Unibus Timeout
Control Register Reference

ABORTS, TRAPS AND INTERRUPTS

SERVICE FLOWS AND VECTORS ..
Vectors
CPU Error Register
Service Flows

ABORTS

Entry into the Service Flows .
BRK.90 and ZAP.OO ..
BRK.OO and BRK.1 0
Branch Enable 13
Red Stack Error (SER.OO and SER.1 0)
BRK.80 and BRK.20
BK.30
Entry into SVC.OO
SVC.OO - SV.90

Address Errors
Odd Address Error .. .
Non-Existent Memory Error .
Memory Management Aborts
Timeout Error
Timing of Address Error Aborts ..

Stack Errors
KemelR6
Stack Limit Errors
Timing of Stack Error Aborts

Parity Errors
Description
Timing of Parity Error Aborts

TRAPS AND INTERRUPTS
Illegal Halt
Console Flag ..
Cache Parity Trap

lI·vi

Page

11-5-1
11-5-3
11-5-4
11-5-4
11-5-5
11-5-5
11-5-5
11-5-5
11-5-6
11-5-6
11-5-8
11-5-9

11-6-1
11-6-1
11-6-2
11-6-2
11-6-2
11-6-2
11-6-2
11-6-2
11-6-3
11-6-3
11-6-3
11-6-3
11-6~3

11-6-3
11-6-3
11-6-3
11-6-5
11-6-5
11-6-6
11-6-6
11-6-7
11-6-7
11-6-8

11-6-10
11-6-10
11-6-10
11-6-11
11-6-12
11-6-12
11-6-12
11-6-12

(

(

(

(

6.3.4
6.3.5
6.3.6
6.3.7
6.3.8
6.3.9
6.3.10
6.4
6.4.1
6.4.2
6.4.3
6.5
6.5.1
6.5.2
6.5.3
6.5.3.1
6.5.3.2
6.5.3.3

Figure No.

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
1-12
1-13
1-14
1-15
1-16
1-17
2-1
2-2
2-3
2-4
2-5
2-6
2"7

SECTION II PROCESSOR
CONTENTS (Cont)

Memory Management Traps
Yellow Zone Trap (SL YEL)
Power Down Trap (PDNF)
FP Exception Trap
Program Interrupt Request .
External Interrupt (BUS BR)
T Bit Trap

UNillUS ARBITRATION AND INTERRUPT INTERFACE
Unibus Arbitration Interface Logic
NPR-NPG Sequence
BR-BG Interrupt Sequence and Passive Release

UNIBUS POWER MONITOR
Power-Down
Power-Up
PDP-11/70 System Power Control

ACLO ConnectiOns
octo Connections
Power Down ...

• • • • • oj • • • ~

ILLUSTRATIONS

Title

Block Diagram
ROM Word: Clock, ICs and Registers ..
Flow Chart Symbols (PIO Flows 2)
ROM Timing
Source and Destination Mode Formats . .
A and C Forks, General Case • . . .
Multiply Instruction
Divide Algorithm . •
Divide Instructions
Determination of an Instruction from the Binary Code
Instruction Execution Example
ROM Address
Sources of C Bit Data, Simplified Diagram
Sources of N Bit Data, Simplified Diagram
Sources of Z Bit Data, Simplified Diagram
VEN1 Sources of V Data Bit, Simplified Diagram

.

. . . . ~

• 01 ...

VEN2 Sources of V Data Bit, SimpUfied Diagram
Block Diagram Data Paths
Typical SHFR Bit
General Register Storage in GS and GD Storage Elements ...•........•.
Processor Status Word
SC Loaded With 00101
SC Loaded With 178
BRMX Selection, Simplified Schematic

II-vii

Page

11-6-12
11-6·12
II-6-12
11-6-12
11-6-14
11-6-14
11-6·14
11·6·14
11-6·17
11-6·17
11-6·18
11-6-19
11-6·20
11·6·21
11-6-21
11·6·21
11·6·21
11-6·22

Page

11·1·2
11·1·5
11·1-8
11-1·9

11·1·12
11-1·16
11-1·23
11-1·26
11-1·27
II·1·34
11·1·35
11-1·38
11·1·56
11·1·56
11·1·59
11·1-61
11-1-62

11-2·2
II·2~6

11-2-8
11·2·8

II-2·12
11-2·13
11-2·16

2-8
3-1
3-2
3-3
34
3-5
4-1
4-2
4-3
44
4-5
4-6
4-7
4-8
4-9
5-1
5-2
6-1
6-2
6-3
64
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12

Table No.

I-I
1"2
1-3A
1-3B
1-3C
I-3D
1-3E
1-4
I-SA
1-5B
1-5C
1-6

SECTION n PROCESSOR
ILLUSTRATIONS (Cont)

page

Internal Data Bus Block Diagram 11-2-17
CPU Error Register'. ~ . 11-3-2,
Program Interrupt Register • . 11-3-3
Stack Umit Register '. 11-3-3
Processor Status Word•...... 11-3-3
PSW Clock and Direct Set Simplified Schematic 1I~3-7

Timing Generator Block Diagram 114-1
TimingSource Synchronization 114-3
Timing Pulse Generation 114-5
Simplified Schematics of TIGD T5 H .. 114-6
Simplified Schematics ofTIGD T5 L , • 114-7
Time States 114-9
Timing Generator and Pauses 114-9
Clock BR Circuit (part of D~S-M8139-0-1, Sheet 3) 114-11
Clock BR Timing .. 114-12
Processor Data Transfers 11-5-2
Unibus Data Transfers 11-5-7
Address Error Aborts 11-6-6
Examples of Stack Limit 11-6-9
Stack Error Aborts 11-6-10
Parity Abort ;......................... 11-6-11
Program Interrupt Request Register 11-6-14
BR'- Interrupt Sequence 11-6-16
UBCD Free Clock 11-6-17
NPR-NPG Sequence•..... 11-6-18
INTR Sequence .. 11-6-19
Power-Down'........... 11-6-20
Power-Up•........• 11-6-21
PDP-11/70 ACLO and DCLO Connections 11-6-22

TABLES

Title

Microprogram Bit Usage
Sign Correction for MUL Instruction .
Instruction Microprogram Properties .
A Fork, BIN*-SMO•.......
AFork,DAC•....................
C Ford, BIN•...........•....
Branches (All Cycles on Flows 1)
Branch Signal Sources
A Fork Address Generation
A Fork, BIN*-SMO•
AFork,DAC•..................•.........
Branch Instructions

II-viii

Page

11-1-6
11-1-24
11-1-32
II-I-33
11-1-33
11-1-33
11-1-33
11-141
11-144
11-1-45
11-1-45
11-1-48

(

(

(

(

(

SECTION II PROCESSOR
TABLES (Cont)

Page

1-7 Branch Instruction ROM Address 11-1-49
1-8 C Fork Address Generation II-I-51
1-9 B Fork Address Generation II-I-52
1-10 Condition Code Load II-I-54
1-11 Subsidiary ROM Address Sources II-I-55
1-12 C Bit Data Sources II-I-57
1-13 N Bit Data Sources II-I-58
1-14 Z Bit Data Sources II-I-59
1-15 V Bit Data Sources 11-1-60
2-1 Non-Instruction-Dependent ALU Control Signals 11-2-5
2-2 Multiplexer Input Selection GSAM and GDAM 11-2-9

(2-3 Multiplexer Input Values 11-2-9
2-4 Multiplexer Input Selection GSREG and GDREG SET 1 11-2-10
2-5 ALU Input Multiplexers 11-2-13
2-6 BMX Output Selection · . 11-2-14
2-7 BMX Output From KIMX 11-2-15
2-8 Data Output to Unibus · . 11-2-20
2-9 Display Register Selection 11-2-20
3-1 Processor Status Word Bit Assignments 11-3-4
4-1 Ring Counter Stop and Pause Conditions 11-4-10
6-1 Service Flows 11-6-4
6-2 Processor Service in Order of Priority 11-6-13
6-3 Trap Vectors Enabled · 11-6-14
6-4 ACLO and DCLO Driver Outputs 11-6-21

lI·ix

(

The KBII-B Processor System is capable ofmanip­
ulating, storing, and routing data. The processor is
the system component that manipulates the data.
Although the processor is designed to effect com­
plicated changes to the data that it receives, it ac­
tually consists of elements making only simple
changes. The complex data manipulation are ach­
eived by combining a number of these simple
changes in a variety of ways.

The processor consists of logical elements, each ele­
:ment designed to perform a specific function. For
example, some elements store data, some read data
from another part of the computer, and others per­
form simple modifying functions such as com­
plementing the data or combining two operands,
either by arithmetic or by logical means. These
simple basic operations are combined into func­
tional groups known as instructions. An instruction
can include a number of operations so that data
can be combined, changed, moved, or deleted. In­
structions can be further combined into programs
which use a number of instructions to construct
even more complex operations.

The basic logical elements of the processor can per­
form only' a small number of operations at one
time. Therefore, to com bine a number of these oper­
ations into an instruction, the instruction must be
divided into a series of sequential steps. These steps
are called machine states, or cycles, and may per­
form either a single operation or several operations
at the same time. An instruction thus becomes a se­
quence of machine states. This sequence may be
fixed or may provide alternate paths (branches); in

II-I-l

INTRODUCTION

the latter case, internal conditions determine whIch
branch the instruction will follow.

The processor can be divided' into several func­
tional parts:

I. The Inter/ace section exchanges data
with devices external to the processor
(Chapters 5 and 6).

2.

3.

4.

The Data Paths section performs data
handling functions (Chapter 2).

Control section includes the logic tha t de­
termines which operations are to be per­
formed during a particular state and
what the next machine state should be
(Chapter 1).

The Timing section generates clock sig­
nals which synchronize the various oper­
ations of the KBI1-B Processor System
(Chapter 4).

5. The Control Registers store the results of
processor operations. This data may be
used in determining future processor op­
erations (Chapter 3).

The Interface section consists basically of logic nec­
essary for transferring data between the processor,
the Unibus, the memory, and the Console. The
Data Paths and Control sections interact to per­
form the three main processor functions of data
storage, modification, and routing.

The Data Paths section consists of storage registers,
shift registers, multiplexers, and an Arithmetic
Logic Unit (ALU). The multiplexers control the
data flow between registers. The ALU executes the
more complex data manipulations, while the shift
registers move the data bits stored in them, either
to the left or to the right.

Operation of the elements of the Data Paths section
is determined by the Control section. Refer to Fig·
ure 1·1. This section consists of a Read Only Mem­
ory (ROM) and its associated logic. The ROM
contains 25610 (4008) locations. Each location con­
tains 64 10 bits: This 64-bit ROM output is divided
into 29 groups or fields, each of which controls a
discrete part of the KB ll·B Processor. One of these
fields is caIled the Address Field (UADR or UAD).
The UAD field from the current machine state is
combined with selected data from other sections of
the KB ll-B Processor in the ROM address logic,
whose output is the ROM address for the next ma­
chine state. In this manner, the required machine
states are generated in the proper sequence. The
UAD field may either be used as the next ROM ad­
dress, or may be modified by the feedback from the
other sections of the processor to generate the next
ROM address. This aIlows for instruction branch­
ing that is dependent on other conditions, and also

11-1-2

~
ROM

ADDRE;SS
LOGIC

8 MEMORY

~ MANAGEMENT

ROM

8 UAD

I ! 56

1 !
DATA INTERFACE CONSOLE TIMING

PATHS

~ ~ J j
11-3101

Figure 1-1 Processor Control Section

for the use of machine states that are common to
several instructions. An auxiliary ROM in Memory
Management uses the same address as the pro­
cessor ROM.

(

(

(

(

(

(

(

The main function of the processor is to execute a
Program, or sequence of Instructions.

Instructions are stored in memory. A Program
Counter stores the address of the next instruction.
At the end of the execution of one instruction, the
processor fetches (reads from memory) the instruc­
tion that is to be processed next.

Instructions consist of a series of steps, called Ma­
chine States, or cycles, that are executed sequen­
tially. This sequence of steps is unique to each
instruction, although some steps, or series of steps,
may be common to several instructions.

The sequence of operations within each instruction
in the KBII-B is controlled by the microprogram
Read Only Memory (ROM).

A ROM is a storage device whose contents are pre­
determined and cannot be changed. Each address
generates a unique output. The KBII-B ROM has
an 8-bit address, which allows 2562 different out­
puts, each consisting of 64 bits.

This 64-bit output (ROM word) is divided into 27
fields, each of which controls a different part of the
processor.

The ROM word contains an address field, which in
most cases is the address of the next ROM word:
the ROM is self-sequencing. This address field can
be modified by conditions internal or external to
the processor, such as the instruction operation
code, the addressing mode or other factors.

11-1-1

CHAPTER 1
INSTRUCTION DECODE AND
MICROPROGRAM CONTROL

When an instruction is fetched (read from memory)
it is stored in two instruction registers (lR):IRCA
IR(15:00) and RAC] AFIR(l5:00). The contents of
these registers are decoded, and these decoded out­
puts control the ROM address, along with inputs
from other processor circuits.

The decoded outputs of the IR are also used to de­
termine how the results of the executed instruction
are interpreted in setting the Condition Codes. Refer
to Paragraph 1.5.

BLOCK DIAGRAM
Figure I-I is a block diagram of the KBll-B Read
Only Memory (ROM). The ROM contains 25610 or
4008 processor control words. F or each processor
machine cycle, one of these stored words is output
to .the Data Paths section and to the other· pro­
cessor circuits. The ROM word is divided into
fields, and each field controls a specific register,
multiplexer or process of the processor. In Figure
I-I, each control field is listed by a mnemonic
name and by bits of the microprogram word occu­
pied by the control field. The control selection that
is made, or the action that takes place for each
value that can be stored in the field, is listed under
the field name. Where possible, the field name and
description are placed next to the logical element
controlled by that field.

The microprogram ROM outputs that control
other parts of the processor must be stored ina buf­
fer register, so that the next microprogram word
can be selected while the current word is being
used. Therefore, a ROM Buffer Register (RBR) is
provided for these outputs (Paragraph 1.1).

0 t
COND

CD
ITION

L
FROM VARIOUS

DATA PATHS

l~
CONDITION CODE
GENERATOR

(GRAB, IRCE, F

T

:

'I
I
:1

i

I
I

!

1
SUBSIDIARY
ROM CONTROL

(II'lCHl

I 1

• ALU
.1

CONDITION CODE LOAD
CCL rT2) [54-52]

o NO CHANGE
1 INSTRUCTION DEPENDENT
2 SET /CLR FROM BR (CCOP)
3 LOAD FROM FPP IF ENABLED
4 CCLD4(ZaN ACC SHFR;C a V-Ol
5 CCLD5(Z aN ACC SHFR;C-AMXI5;

V-Void +(SHFRI5¥ AMXI5))
6 CCLD6(N,C, a V UNAFFECTED; Z-Z*SHFR=O)
7 CCLD7(Z,N,a V UNAFFECTED; C-ALU CARRY)

FRlM/R

l IR DECODE
(IRCB, C,Dl

I

I

• L-.r-.. FORK C

(IRCC)

1
~ FORK B

v (IRCB)

I
CONDITION J
CODE SUBS I DIARY

FORK ENABLE
FEN C14-123
o NO f'ORK
1 FORK A
2 FORK B
4 FORK C

MICRO ADDRESS FI E L 0

UAD[07-00]

TO ADDRESS GATING

MISCELLANEOUS

MSC (T 1) [29-27]

o NO EFFECT
1 FP ATTN
2 NOT USED
3 SET CONF IF KERNEL MODE
4 SPL (SET PRIORITY LEVEL)
5 GOND IT 10NAL BUST
6 BRO STROBE
7 BUST (BUS START)

BUS CONDITION
BSC (T1) [26-24]

o DATI
1 SRCI DATI
2 KERNEL DATI
3 SRC2 DATI
4 FC (CONTROLLED BY FPP)
5 DATO
6 BSOPI
7 BSOP2

B

B

SUBSIDIAR I
ROM
(IRCH) I

I

I
I

\

!

i
US DELAY I
SO (T1) [40-39] I

0 NO PAUSE
1 INTR PAUSE

~}BUS PAUSE

i
B

B
us CONTROL

I CT (Tl) [32- 30] I

0 NO Ef'FECT!
1 READ FPP DATA I
2 CONSOLE ACKNOWLEDGE

1 3 CLEAR FLAGS
4 IN IT IF KERNEL MODE
5 STACK REFERENCE :
6 ACKNOWLEDGE '
7 BEND (BUS ENOl

,
I

Figure 1-1 Block Diagram

11-1-2

ROM

(GRAA) BRANCH ENABLE

BEF [11 -8] UADR· [+40] UADR4 [+20]

0 --
I DESTINATION MODE 3,5,7 SR .. ,
2 CONDITION CODE Z -(PWRF+ INTR)
3 SC "" 0 SC<O
4 -DIV SUB CONDITION CODE N
5 .-OBD (ODD BYTE DESTINATION)t -DIV OUIT
6 BRI4(0) PS RESTORE
7 REGISTER DEPOSIT - [BROil - (T + CONF)]

10 RIP+ FP SYNC -(FP REO* FP SYNC)
11 SC"O DRO(1)
12 CONF (CONSOLE FLAG) -BRO
13 PF(O)*(SFtTF) PF(O)*(SF+ -TF)

14 -- t
15 - FJ/CLASS t -O/CLASS
16 DRO(I) SRI5(1)
17 RIP + FP SYNC FP SYNC*FI'I REG WR

t
(BEF=5)IIOBD= CONDITIONAL FORK B
(BEF=14)=CONSOLE BRANCHES
(BEF=14)=CONDITIONAL FORK C
(BEF=15)1I FJ/CLASS=CONDITIONAL FORK B)

~
FROM CONSOLE UNIBUS AND

?
CONSOLE
CONTROL

(UBC)

I

0
TO/FROM
UNIBUS
CONTROL
SIGNALS

~

t

~

FROM AFIR

U
AFIR DECODE

(RACE, F,H)
;-

FORK A

(RACE;F,H)

r;:--G" r--
0 A
0 T
R I
E ~r--S
S

BRANCH

r--- (RACL)

L...-r-

(RACK) ADR FEN

BEN

l..-

1
TRAPS AND -MISCELLANEOUS
CONTROL '
(PRIORITY ARBITRATOR)
(TMC)

il
TO/FROM
FPP, MEMORY MGMT.
INTERNAL DATA BUS
a UNIBUS

I--:=L
RAR

f- r- TO MEMORY MGMT.
(RACD) -

I.l
RARB

f- (RACA,I-
RACC)

L--..

I.l
RARA

f- (RACC, t--,-

RACD)
'----

ZAP
200

ROM .
I . I

r- ROM <63:60> (RACA)

r- ROM <59:56> (RACA)

r- ROM <55:52> (RACA)

r- ROM <51=48> (RACA)

r- ROM <47:44> (RACB)

r-- ROM <43:40> (RACB)

-r- ROM ,<39:36> (RACB)

~ ROM <35:32> (RACB)

r- ROM <31:28> (RACC)

r- ROM <27:24> (RACC)

r- ROM <23:20> (RACC)

~ ROM <19:16> (RACC)
.,

RBR . -----.
(RACA,
RACB,
RACC)

T2
~CCL}-CLK.

-it-.---- =PWE r---CLK ~ PAD
: BSD f-

r-- BCT

T1 t::
~ MSC f-'-CLK
~BSC r-

r---

GENERAL
REGISTER CONTROL

(GRAC)

TO r-- GENE RAL
TERS REGIS

t::: J}-~-t- ALU ALU

r-- ROM<15:12> (RACD) == } t- CTRL r-- TO ALU

(RACD) t== r- -(GRAA)

r- ROM <11:08> """""-
l-

r-- ROM<07:04> "'COJ ~ }

(RACD)~ fl 4 ROM <03:00>

•
TIMING
GENERATOR r-- TO ALL MODULES

(TIG)

FROM II
MEMORY MGMT.
a UNIBUS

1)-2619

(

(

(

Three output fields are used to select the next mi­
croprogram word (FEN, BEF, and UAD). They
are not buffered becaus~ they are used immediately
and the resulting address is buffered. Immediately

'after the beginning ofa machihecycle;' when a'''new
microprogram word becomes available, the ROM
address generation circuits begin the calculation of
the next ROM address. This corresponds to select­
ing the next machine state. The generated address is
assembled by the address gating logic and loaded
into the ROM Address Register (RAR). There are
three copies of the RAR to accommodate the out­
put loading required for 16 ROM elements, and to
transmit the ROM address to Memory Manage­
ment. (Refer to Paragraph 1.4.1.)

The address gating logic assembles the address
from five sets of inputs. The basic input, which is al­
ways present, is the Address (U AD) field of the cur­
rent microprogram word. The UAD is ORed with
the outputs of the Branch logic, which is controlled
by the BEF field of the microprogram word. The
Branch Control logic selects a set of condition in­
puts from signals received from the processor data
paths, the condition codes, and from the processor
interface modules. Depending on the state of the se­
lected inputs, the Branch Control generates one or
two signals that are used to modify the address
(Paragraph 1.4.4).

The three other inputs to the address gating circuits
are from the Fork logic. The three forks are similar
in implementation and purpose. Each fork uses
combinational logic to decode the instruction type
and a variety of processor conditions, and generates
one of a number of addresses that is combined with
the UAD input by masking. Each fork can be en­
abled by one bit in the Fork-ENable (FEN) micro­
program field; normally all forks are disabled. No
more than one fork is ever enabled at a time (Para­
graphs 1.4.6 - 1.4.8).

The A Fork logic, used to select the machine state
that follows an instruction fetch, requires a separate
instruction register (AFIR) because this fork must
operate rapidly and therefore puts a heavy load on
the IR outputs. The Band C Forks decode inputs

from the primary IR and use the outputs of a sub­
sidiary ROM, which decodes some classes of in­
structions. These forks are used after a destination
operand fetch and a source operand fetch,
respectively.

To summarize the operation of the microprogram
control logic: during each machine cycle, an ad­
dress is assembled from any enabled fork combined
with the address field of the microprogram word
and any enabled branches. This address is loaded
into the ROM address register to select a new mi­
croprogram word. At the beginning of the next ma­
chine cycle, the· new microprogram word is loaded
into the ROM buffer register and the sequence is
continued.

On power-up, the ROM is initialized and the pro­
gram is forced to a fixed address in memory which
contains the power-up subroutine. This subroutine
typically restores the program parameters that were
stored during power-down. Refer to Chapter 6
(Traps, Aborts and Interrupts) for a description of
these features.

DOCUMENTS
The documents listed below contain the informa­
tion required to follow an instruction from fetch to
execution.

1.

2.

KB II-B Flow Diagrams, drawing num­
ber D-FD-KBll-l, sheets 1 - 15. This
set contains a block diagram of the pro­
cessor on sheet 1, and the sequence of
microprogram cycles in flowchart form,
on sheets 2 - 15. The flowchart sheets
are labelled "FLOWS I" through
"FLOWS 15", and are referred to in this
manner throughout this manual. (Refer
to Paragraph 1.2.)

ROM Map, sheets 12 - 15 of theRAC
module schematic, drawing number 0-
CS-M8133-0-1. These four sheets repro­
duce the computer listing, in numerical
order, of the contents of each ROM
word, the name of each state, and the
page of the Flows on which this state is
shown. Refer to Paragraph 1.3.

11-1-3

The ROM and its control logic is shown on draw­
ing D·CS·M8l33-0-1, ROM & ROM Control
(RAC module), and on drawing D-CS-M8132-0-1,
IR Decode & Condo Codes (IRC module).

I. The ROM, ROM Buffer Register (RBR)
and ROM Address Register (RAR) are
shown on sheets 2 - 5 of RAC (drawings
RACA-RACD). Refer to Paragraphs
1.1 and 1.4.1.

2. The ROM Address bits (RADR), which
are the inputs to the RAR are shown on
sheet 11 of RAC (drawing RACL). Re­
fer to Paragraph 1.4.2.

3. The Branch Control logic is on sheet 10
(RACK) of RAC. Refer to Paragraph
1.4.4.

4.

5.

The A Fork logic is shown on sheets 6 -
8 of RAC (drawings RACE, RACF and
RACH). Refer to Paragraph 1.4.6.

The B Fork logic is on sheet 3 of IRC
(IRCB). Refer to Paragraph 1.4.7.

6. The C Fork logic is on sheet 4 of IRC
(I RCC). Refer to Paragraph 1.4.8.

7. The Condition Code logic is on sheets 6
- 9 of IRC (lRCE - IRCJ). Refer to
Paragraph 1.5.

Ll MICROPROGRAM ROM AND BUFFER
REGISTER
All control signals that are dependent only on the
machine state (i.e., that are not dependent on as­
ynchronous signals or on data inputs) are derived
directly from the outputs of the microprogram
ROM. The ROM contains 256 64-bit words; during
each processor cycle, one word is fetched from the
ROM and stored in a buffer register. The outputs
of the buffer register ate transmitted to the other
modules of the processor to act as control signals
or to be used in combinational logic that generates
control signals for all processor operations.

The ROM is implemented by 16 type 74187 256-
word X 4-bit read-only memories with open collec­
tor outputs; these outputs require termination by re­
sistive dividers in order to maintain a + 3 V signal
level when the ROM outputs are not low.

11-1-4

The buffer register is implemented primarily by
74S 174 D-type hex flip-flop registers. (Some bits
are implemented by individual flip-flops to provide
separate input clocking or greater output load
capacity.)

Various ROM bits are clocked into the output buf­
fer register at different times. Most bits are clocked
by the Tl pulse, while others are clocked by the T2
pulse. Certain bits are clocked on the trailing edge
of the TI pulse to allow slightly more time for the
processor to complete operations started by the pre­
vious machine cycle.

Figure 1-2 shows the ROM output bit, the type of
ROM IC that generates each bit (i.e., C58), which
groups of bits are stored in one 6-bit IC register,
and the time at which they are clocked into the
RBR. Table 1·1 gives much of the same informa­
tion, plus the name given to each field.

The output buffer register, shown on drawing
RACA, is clocked by the T2 pulse; none of the con­
trol signals transmitted from the 18 bits of storage
on this drawing can be assumed to have settled be­
fore the T3 pulse.

Five output signals are derived from the contents of
the buffer register that is clocked by the falling
edge of the T I pulse, rather than the leading edge
(drawing RACB). These signals (two pad write-en­
able and three pad address lines) gate the writing of
information into the processor general registers.
The data is transferred into the registers by writing
them with the TI pulse, so these enable signals
must not change until after the Tl pulse has
occurred.

One of the 6-bit output registers, shown on drawing
RACC, stores the output of bit 34 and of bits 32 -
28 of the ROM. Bit 33 is stored in a separate flip­
flop. This permits the buffer register to transmit
both polarities of USHCOO, with no additional sig­
nal delays. Bit 27 of the ROM, which generates
UMSCOO, is also stored on a separate flip-flop to
generate both polarities.

The microprogram bits which are used to calculate
the new ROM address are used only on the RAC
module, so they are not brought to module pins.
However, several of the branch-enable signals are
required either in both polarities or with greater fan­
out capacity; UBEF03, UBEFOl, and UBEFOO are
buffered by more than one gate.

(

(

T3
(RARI

Tl

Tl

A

FEN ,

B C

C58

BEN

C60

BSC AMX

C56 C57

~ SHe ~
.~ 133~:LI

C09

UAD

C61

BMX KMX

BCT

31 30 29 28

C08

I ' BSD, I' BAX, I' IBS

Tl ----------------------------~. 40 I ,. ,. I " : ,. I "
C55 C63 C09

PCA PCB SHF IRK PWE

I , I I I I
T2 51 50 49 48 47 46

C53 C54
-Tl--~

BRK BRX SRX DRX SRK DRK

J I I I I I I , ,

T2 63 62 61 I 60 59 58 f-- 57 56 55

C44 C52

NOTE:
C54= ROM IC type

Each 6-bit group: one 74S174 register.
Bits 27 e. 33 are individual 74S74 flip-flops.

Figure 1-2 ROM Word: Clock, ICs and Registers

11-1-5

C62

AlU

C59 C58

MSC

H:JJ
C56

PAD

C55

CCl , I ,
54 I 53 I 52

C51

11·3102

Table 1-1
Microprogram Bit Usage

Bit Positions Contents OockedAt

RACA

63 bus register clock (UBRK) T2
62 bus register multiplexer (UBRX) T2
61-60 source register MUX (USRX) T2
59-58 destination register MUX (UDRX) T2
57 source register clock (USRK) T2
56-55 destination register clock (UDRK) T2
54-52 condition-code load (UCCL) T2
51 program counter A CLK (UPCA) T2
50-49 program counter B CLK (UPCB) T2 (48-47 shifter control (USHF) T2
46 instruction register CLK (UlRK) T2

RACB

45-44 pad write-enable (UPWE) T1 + 15 ns
43-41 scratchpad address (UPAD) T1 + 15 ns
40-39 bus delay (UBSD) T1
38-37 bus address multiplexer (UBAX) T1
36-35 internal bus (UlBS) T1 (

RACC

34-33 shift counter (USHC) T1
32-30 bus control (UBCT) T1
29-27 miscellaneous control (UMSC) T1
26-24 bus conditions (UBSC) T1
23-22 A multiplexer (UAMX) T1
21-20 B multiplexer (UBMX) T1
19-18 constant multiplexers (UKMX) T1 I

17-15 arithmetic logic unit cont (UALU) Tl \.

RACD

14 fork C enable (UCFEN) not buffered
13 fork B enable (UBFEN) not buffered
12 fork A enable (UAFEN) not buffered
11-08 branch-enable (UBEF) not buffered
07-00 microprogram address (UADR) not buffered

11-1-6

1.2 FLOW DIAGRAMS
The Flows are a description, in flowchart form, of
the operation of the KB II-B Processor. Refer to
Figure 1-3. Each cycle, or machine state, is repre­
sented on the Flows by a rectangular box. The top
part of this box describes the operations executed
during the cycle. The bottom part lists the actual
operations that occur at each timing pulse.

The following information is supplied to aid in un­
derstanding and using the Flows:

1. A note on timing (Paragraph 1.2.1).

2. A glossary of abbreviations and terms
used on the Flows (Paragraph 1.2.2).

3. A definition of Instruction Classes (Para­
graph 1.2.3).

4. A description of Addressing Modes as
they relate to operand fetch (Paragraph
1.2.4).

5. A description of the Flow Diagrams,
page by page, which explains in general
terms the use of the cycles on each page
(Paragraph 1.2.5).

6. Tables listing the cycles on each Fork
used by each instruction (Paragraph
1.2.6).

1.2.1 ROM Timing
Refer to Figure 1-4. The ROM address RACL
RADR(07:00) H is clocked into the ROM address
register at T3. The ROM output for the new cycle
is clocked into the RBR at T1 - T2.

NOTE
The KBll.:.B is controlled by the clock circuits de­
scribed in Chapter 4, Timing Generator. For the pur­
poses of this Chapter and of Chapters 2 and 3, it
must be known that there are two types of clock sig­
nals: the timing pulses, TI - T5 and the time states,
TSI - TS5. The timing pulses are 15 ns wide and oc­
cur at 30 ns intervals. The time states occur at the
same time as the timing pulse of the same number
(TSI occurs at the same time as TI) and are asserted
for 60 ns.

The timing pulse shown as "T6" on the Flows occurs
at TI ef the next cycle.

1.2.2 Glossary
The symbols, abbreviations and terms listed below
occur on the Flow Diagrams and are also used in
the text of this manual.

SYMBOLS - A period or dot means "and" when
describing instruction classes, e.g.: "NEG.B" means
"NEG and NEGB."

+ is used for a logical inclusive OR.

* is used for a logical AND.

ANGLE BRACKETS (..•) - Indicates operations
that are executed for diagnostic purposes only and
are not necessary to the operation performed by the
cycle.

$ - Instruction dependent. See Chapter 2.

ACKN - ACKNowledge: signal that clears certain
trap and abort flags when they have been serviced.

AFIR - See IR

ALU - Arithmetic Logic Unit. See Chapter 2.

BA - Bus Address: Example: BA-PCB means that
the PCB is used as the address for a data transfer.

BC - Bus Condition: defines the type of data trans­
fer that is to be executed; example: BC-DA TI

BEND - Bus END: aborts a data transfer cycle
which cannot be completed because of an abort con­
dition (refer to Chapter 6) or one which was started
in the previous cycle and which is not required. See
Chapter 5.

BR - Bus Register: stores data received during
data transfers; also used as temporary storage dur­
ing instruction execution.

BRQ STROBE - Signal which clocks traps and in­
terrupts into the request register. See Chapter 6.

BUS - Source of data during any data transfer:
may be Unibus, Internal Bus or Cache; example:
BR-BUS.

BUS PAUSE.,.. Second ROM state of any data
transfer. See Chapter 5.

11-1-7

Connector from c;:::::::;" /I-FO'€,e, Condition for entry
another page --- BIN ~ /tI~ 7.-----e..- into flows that follow

of ~S(, 7. C~Z~ 4 2
Name ~ Er IlIblX ~.eoY'l'l!tJP SR, _ Address of
Cycle ~~ 7?)Pa:lNT SEYONi:J ZItl ROM cycle

IM>RJ:) IF.sF70~ 0"

Clock time
at which
operations
are executed

~~~~~~--~~~ 

} 
Description of Cycle operations 

Operations executed during Cycle 

Connector to 
another page: may 
be to Fork or Branch 

Branch 

BEN14: Branch 
Enable #148 

(317): Base address 
of next Cycle: 
final address 
depends on 
conditions 

Figure 1-3 Flow Chart Symbols (P/O Flows 2) 

11-1-8 

11·3135 

( 

( 



141 .. --------FIRST ROM CYCLE --------t.I ... --- SECOND ROM CYLE ---... 
T6 T6 

T1 T2 T3 T4 T5 Tl T2 T3 T4 

I I I I I I I I I 

T1H~~ ____________________________ ~r--l 
I ~-------------

T2H I r-I :: I I II-_______________________ -.l.._-..L_---II IL... ______ _ 
I I I 

T3H~----+I--~i---~~I------------------~--~--~I------~ 
I I I I I I 
I ADDRESS I I I l----t GENERATION--.. • 14·---ROM ACCESS TlME----.l. I 

I I I I I I 
I I I I I I I 
I I I I I I I 
I I I I I I I 

,B51 .. t4S0 ) 4B61~'6S3 R1R \C~~~K~gTI~~6 J R!R 
CLOCKED BUFFER (RBR) CLOCKED 

BITS 41:45 

ROM OUTPUT 
CLOCKED INTO 
BUFFER (RBR) 

11-3103 

Figure 1-4 ROM Timing 

BUST - BU STart: first cycle of any data transfer. 
See Chapter 5. 

BXX DISP - The left shifted (multiplied by 2) and 
sign extended value of the displacement field of a 
branch instruction. 

CC - Condition Codes 

CCLD - Condition Code Load 

CHECK STACK LIMIT - The contents of GD[6] 
are checked to see if there is a stack violation. See 
Chapter 6. 

CLEAR FLAGS - Asserted when UBCT=3: clears 
the Address and Stack Error Flags. See Chapter 6. 

CONF - CONsole Flag: causes the processor to 
halt when set. 

DATI - Transfer of one word of data to the pro­
cessor from memory or from a Unibus device. 
SRCl, SRC2, KERNEL DATI. See Chapter 5. 

DATO - Transfer of one word of data from the 
processor to memory or to a Unibus device. 

OF - Destination Field: bits 02:00 of instruction 
word; this number is the address of a register. 

OM - Destination Mode: bits 05:03 of instruction 
word. 

OR - Destination Register: see Chapter 2. 

EALU - Floating Point Processor ALU. 

GD[X] - General Destination register. See Chapter 
2. "X" designates the register number, e.g.: GD[4]; 
GD[DF] is the register designated by the Destina­
tion Field of the instruction word. The notation 
"GD[X]" means that the register is read. 

GR[X] - General Register: includes both GD and 
GS when writing into these registers. 

GS[X] - General Source Register. See Chapter 2. 
"X" designates the register number, e.g.: GS[4]; 
GS[SF] is the register designated by the Source 
Field of the instruction word. The notation 
"GS[X]" means that the register is read. 

INIT - INITialization pulse (10 ms). 

II -1-9 



INTR PAUSE - INTerRupt PAUSE: the processor 
stops and accepts an interrupt vector from the 
Unibus. See Chapter 6. 

IR,AFIR - Instruction Register which stores the in­
structon word. 

Left Arrow (f--) - Signifies transfer of data to unit 
on left from unit on right; example: BRf--BUS, the 
BR receives data from the BUS. 

PC,PCA,PCB - Program Counter. See Chapter 2. 

SC - Shift Counter. See Chapter 2. 

SF - Source Field: bits 08:06 of Binary instruction 
word; this number is the address of a register. 

SHFR - SHiFteR. See Chapter 2. 

SM - Source Mode: bits 11:09 of binary instruction 
word. 

SR - Source Register. See Chapter 2. 

SRCCON - Value generated to modify the SR dur­
. ing auto increment or decrement addressing mode. 

SV - Start Vector: address of a word that contains 
the address that is entered on power-up. See Chap­
ter 6. 

SW AP(XX) - The SHFR moves the low byte into 
the high byte position and the high byte into the 
low byte position of the designated register. 

TV - Trap Vector: address of a word that contains 
the address of a subroutine that is entered after a 
trap. See Chapter 6. 

1.2.3 Instruction Classes 
The instructions in the PDP-II Instruction Set are 
divided into classes by the decoding logic on RAC 
and IRe. Some of these classes are used on the 
Flows to determine the machine state to which an 
instruction will go next. 

During BSOPI and BSOP2 data transfer cycles, 
one of several types of bus cycles (DATI, DATIP, 

DATO or DATOB) may be executed during a 
given machine state. The type of bus cycle that is 
executed during one of these machine states also de­
pends on the instruction class. These instruction 
classes are described as follows: 

P /CLASS - Defines a group of instructions which 
require a I)ATIP instead of a DATI cycle when ob­
taining the word which is to be operated on. This 
allows for modification of the word without requir­
ing memory to restore the word first during a 
DA TI and then again during a DATO. In addition, 
it provides an interlock, i.e., the location cannot be 
accessed by another device while it is being oper­
ated on. The following instructions are P /c1ass: 

0003 DD SWAB 07 4R DD XOR 
0050 DD CLR 10 50 DD CLRB 
0051 DD COM 10 51 DD COMB 
0052 DD INC 10 52 DD INCB 
0053 DD DEC 10 53 DD DECB 
0054 DD NEG 1054 DD NEGB 
00 55 DD ADC 10 55 DD ADCB 
0056 DD SBC 10 56 DD SBCB 
0060 DD ROR 10 60 DD RORB 
0061 DD ROL 1061DD ROLB 
0062 DD ASR 10 62 DD ASRB 
0063 DD ASL 10 63 DD ASLB 
0067 DD SXT 11 SS DD MOVB 
04 SS DD BIC 14 SS DD BICB 
05 SS DD BIS 15 SS DD BISB 
06 SS DD ADD 16 SS DD SUB 

I/CLASS - Defines a class of instructions which re­
quire a DATI during a BSOPl: 

0057 DD 
0065 SS 
02 SS DD 
03 SS DD 
07 OR SS 

TS 
MFPI 
CMP 
BIT 
MUL 

07 lR SS 
10 57 DD 
10 65 SS 
12 SS DD 
13 SS DD 

DIV 
TSTB 
MFPD 
CMPB 
BITB 

0/ CLASS - Defines a class of instructions which re­
quire a DATO during a BSPl: 01 SS DD MOV 
and XO 66 DD MTP 

11-1-10 

( 

( 



BIN(ary) - All double-operand instructions; may re- E/CLASS - (Execute class) No address calculation 
quire both source and destination calculations: IS required. These instructions use EXC.80 or 

EXC.90 (Flows 3). In general, these are DAC*DMO 
01 SS DD MOV 11 SS DD MOVB or BIN*SMO*DMO: 
02 SS DD CMP 12 SS DD CMPB 
03 SS DD BIT 13 SS DD BITB 0003 DD SWAB 06 SS DD ADD 
04 SS DD BIC 14 SS DD BICB 0050 DD CLR 07 4R DD XOR 
05 SS DD BIS 15 SS DD BISB 0051 DD COM lO 50 DD CLRB 
06 SS DD ADD 16 SS DD SUB 0052 DD INC lO51DD COMB 

0053 DD DEC 1052 DD INCB 
0054 DD NEG lO 53 DD DECB 
0055 DD ADC lO 55 DD ADCB 

DAC - (Destination Address Calculation) All 0056 DD SBC lO 56 DD SBCB 
single-operand, register to destination or BIN*SMO 0057 DD TST lO 57 DD TSTB 
instructions: 0060 DD ROR lO 60 DD RORB 

0061 DD ROL lO61DD ROLB 
( always: 0062 DD ASR 1062 DD ASRB 

0063 DD ASL lO 63 DD ASLB 
0001 DD JMP 07 lR SS DIV 0067 DD SXT 12 SS DD CMPB 
0003 DD SWAB 07 2R SS ASH 01 SS DD MOV 13 SS DD BITB 
00 4R DD JSR 07 3R SS ASHC 02 SS DD CMP 14 SS DD BICB 
0050 DD CLR 07 4R DD XOR 03 SS DD BIT 15 SS DD BISB 
0051 DD COM lO 50 DD CLRB 04 SS DD BIC 16 SS DD SUB 
0052 DD INC lO51DD COMB 05 SS DD BIS 
0053 DD DEC lO 52 DD INCB 
0054 D NEG lO 53 DD DECB BSOPt - (BuS OPeration 1) When the ROM Bus 
0055 DD ADC lO 54 DD NEGB Condition (UBSC) equals 6 during a bus cycle 
0056 DD SBC lO 55 DD ADCB (data transfer), a DATO is executed for an O/class 
0057 DD TST lO 56 DD SBCB instruction, a DATIP for a P/class or a DATI if 
0060 DD RO lO 57 DD TSTB the instruction is neither 0/ class nor P / class. This 
0061 DD ROL lO 60 DD RORB condition is shown on the Flows as BC<-BSOPl. 
0062 DD ASR lO61DD ROLB 
0063 DD ASL 1062 DD ASRB BSOP2 - (BuS OPeration 2) When UBSC=7 dur-
0065 SS MFPI lO 63 DD ASLB ing a bus cycle, a DATOB is executed for a byte in-
0067 DD SXT lO 65 SS MFPD struction and a DATO for a word instruction. This 
07 OR SS MUL condition is shown on the Flows as BC<-BSOP2. 

J /CLASS - 00 01 DD JMP or 00 4R DD JSR -See 
FJ /class. 

if SMO: 
F /CLASS - Floating Point Processor instructions 

01 SS DD MOV 11 SS DD MOVB 17 XX XX - See FJ/class. 
02 SS DD CMP 12 SS DD CMPB 
03 SS DD BIT 13 SS DD BITB F J / CLASS - F / class or J / class, which require one 
04 SS DD BIC 14 SS DD BICB bus cycle less after the destination address calcu-
05 S DD BIS 15 SS DD BISB lation cycles than other DAC instructions (Flows 5 
06 SS DD ADD 16 SS DD SUB and 6). 

11-1-11 



1.2.4 Addressing Modes and Operand Fetch 
In general, the following steps are required for the 
execution of an instruction: 

1. Instruction Fetch: The instruction word 
is read from memory. The PCB is used 
as an address and a DATI is executed in 
FET.lO. The instruction word is stored 
in the instruction registers (lR and 
AFIR). 

2. Source Operand Fetch: This step is re­
quired only by BIN instructions whose 
source mode is not 0 (-SMO). This may 
require up to three DATI bus cycles, de­
pending on the addressing mode (refer 
to Paragraphs 1.2.4.1 and 1.2.4.2). 

3. Destination Operand Fetch: This step is 
required by all instructions that have a 
destination operand when the destina­
tion mode is not 0 (-DMO). Up to three 
bus cycles may be required, depending 
on the addressing mode. Address word 
fetches are DA TIs; operand bus cycles 
may be DA TIs (Ijclass instructions), 
DATOs or DATOBs (OJ class) or DA­
TIPjDATO(B)s (Pjclass). 

4. Execution: After fetching the operand(s), 
the operation specified by the op code is 
performed. Execution may require sev­
eral cycles or may be part of the destina­
tion operand fetch. 

PDP-II instructions allow six bits for each operand 
address. Three of these bits point to one of the gen­
eral registers; the other three define one of eight ad­
dressing modes, 0 - 7, which are defined in 
Paragraphs 1.2.4.1 and 1.2.4.2. The position of the 
bits in the instruction word is shown in Figure 1-5. 
Unary, or single-operand instructions require only 

BINARY OR DOUBLE 
OPERAND INSTRUCTION (BIN] 

15 11 

OP CODE 

UNARY OR SINGLE 
OPERAND INSTRUCTION WAC) 

15 

SOURCE 
09 OB 

MODE 

OP CODE 

a destination (DST) address, located in bits 05:00. 
Binary, or double-operand instructions require both 
a source (SRC) and a destination address; the SRC 
is located in bits 11:06 and the DST in bits 05:00. 

The mode determines how the contents of the regis­
ter are to be used. Addressing is said to be: 

DIRECT - when the contents of the register 
are the operand (mode 0); 

DEFERRED - when the contents of the regis­
ter are the address of the operand or the ad­
dress of the address of the operand (modes 1 
- 5 and 7); 

INDEXED - when the contents of the regis­
ter are added to those of the word following 
the instruction to obtain the address of the op­
erand (mode 6). 

Mode 7 is indexed and deferred. Modes 4 and 5 
decrement the contents of the register by 2 before 
address determination. Modes 2, and 3 increment 
the contents of the register by 2 after the address 
determination. 

Up to three bus cycles are required to obtain each 
operand, one for each level of deferral, plus one for 
indexing. 

NOTE 
Programming documentation sometimes refers to the 
contents of bits 05 :00 of an instruction word as a 
Source address. The KBll-B logic, however, treats 
any operand field in bits 05 :00 as a Destination ad­
dress. For example, MFPI and MFPD are shown on 
the PDP-II Programming Card as 006SSS and 
106SS, where "SS" indicates the source; these two in­
structions, however, are DAC and are executed as 
such: the contents of the SS field (bits 05:00) are 
used in the same manner as the bits 05:00 (= D D) in 
an INC (00S2DD) instruction. 

06 05 

REG MODE 

06 05 

MODE 

DESTINATION 
03 02 

DESTINATION 
03 02 

REG 

REG 

00 

00 

11- 3104 

Figure 1-5 Source and Destination Mode Formats 

11-1-12 

( 



( 

( 

1.2.4.1 General Register Addressing - "R" is any 
general register but register 7 (PC). The number of 
bus cycles listed below for each mode is that re­
quired for operand fetch. 

Mode Name 

o REGISTER 
Symbolic: %R 

Example: 
CLR %3=005003 

1 REGISTER 
DEFERRED 
Symbolic: (R) 

Example: 

2 

CLR (3)=005013 

AUTO-INCREMENT 
Symbolic: (R)+ 

Example: 

3 

CLR (3)+=005023 

AUTO-INCREMENT 
DEFERRED 
Symbolic: @(R)+ 

Example: 
CLR @(3)+=005033 

Definition 

Register R contains the 
operand. 

No bus cycle required. 

Register R contains the 
address of the operand. 

One bus cycle is 
required. 

Register R contains the 
address of the operand. 
The register is incre­
mented after the 
operand has been 
fetched. 

One bus cycle required. 

Register R contains the 
address of a location 
which contains the ad­
dress of the operand. 
The contents of the 
register are incre­
mented after its use. 

Two bus cycles are 
required. 

Mode Name 

4 AUTO-DECREMENT 
Symbolic: -(R) 

Example: 
CLR -(3)=005043 

5 AUTO-DECREMENT 
DEFERRED 
Symbolic: @-(R) 

Example: 

6 

CLR @-(3)=005053 

INDEX 
Symbolic: X(R) 

Example: 
CLR 100(3)=005063 

000100 

11-1-13 

Definition 

The contents of Regis­
ter R are decremented, 
then used as the address 
of the operand. 

One bus cycle is reo 
qUired. 

The contents of register 
R are decremented by 
2. The register then 
contains the address of 
a location which con­
tains the address of the 
operand. 

Two bus cycles are re­
qUired. 

The contents of register 
R are added to the 
word X to which the 
PC is pointing. This sum 
is the address of the 
operand. 

The word to which the 
PC is pointing is called 
the INDEX word (engi­
neering term) or BASE 
(programming term). 
This word may be the 
second or third word of 
an instruction. 

Two bus cycles are re­
quired. 



Mode Name 

7 INDEX DEFERRED 
Symbolic: @X(R) 

Example: 
CLR @100(3)=005073 

000100 

Definition 

Same as Mode 6, except 
that the sum is the ad­
dress of a location 
which contains the ad­
dress of the operand. 

Three bus cycles are re­
quired. 

1.2.4.2 Program Counter Addressing - "R" is the 
PC (general register 7). The number of bus cycles 
listed below for each mode is that required for oper­
and fetch. 

NOTE 
Modes 2, 3, 6 and 7 are also used with the PC as the 
register. The machine sequence for obtaining the oper­
and is the same in this case as that used when any 
other register is used. Modes 0; .,' 4 and 5 are not'i1-
legal, but are of no practical use. 

Mode Name 

2 IMMEDIATE 
Symbolic: #n 

Example: 

Definition 

The PC, after the instruc­
tion fetch, contains the ad­
dress of the operand, which 
is the word contained in 
the memory location 
following that in which the 
instruction word is stored. 
The PC is incremented by 
2. 

MOV #100,RO ; MOVE 100(8) TO REGISTER 0 

The operation ofthis mode is explained as follows: 

The statement MOV #lOO,RO assembles as two words. 
These are: 

o 1 2 7 0 0 
000 1 0 0 

Mode Name Defmition 

Just before this instruction is fetched and executed, the 
PC points to the first word of the instruction. The pro­
cessor fetches the fIrst word and increments the PC by 
two. The source operand mode is 27 (autoincrementthe 
PC). Thus, the PC is used as a pointer to fetch the 
operand (the second word of the :instruction) before 
being incremented by two, to point to the next instruc­
tion. 

3 ABSOLUTE 
Symbolic: @#A 

One bus cycle is required. 

Same as Mode 2, except 
that the word that follows 
the instruction is the ad­
dress A of the operand, 
instead of the operand 
itself. 

Example: CLR@#lOO = 005037 
000100 

6 RELATIVE 
Symbolic: A 

Example: 

Two bus cycles are re­
quired. 

Relative mode is assembled 
as index mode, using regis­
ter 7, the PC, as the index 
register. The base of the 
address calculation, which 
is stored in the second or 
third word of the instruc­
tion, is not the address of 
the operand (as index 
mode), but the number 
which, when added to the 
PC, becomes the address 
of the operand. Thus, the 
base is X-PC, which is 
called an offset. The 
operation is explained as 
follows: 

If the statement MOV 100,R3 is assembled at absolute 
location 20, the assembled code is: 

Location 20: a 1 6 7 0 3 
Location 22: 0 0 0 0 5 4 (54 = 100-24) 

11-1-14 

( 

( 

( 



( 

( 

. Mode Name Definition 

The processor fetches the MOV instruction and adds two 
to the PC so that it points to location 22. The source 
operand mode is 67; that is, indexed by the PC. To pick 
up the base, the processor fetches the word pointed to 
by the PC and adds two to the PC. The PC now points 
to location 24. To calculate the address of the source 
operand, the base is added to the designated register. 
That is, BASE+PC=54+24=100, the operand address. 

7 RELATIVE 
DEFFERED 
Symbolic: @A 

Two bus cycles are re­
qUired. 

Same as Mode 6, except 
that the sum BASE+PC is 
the address of a location 
which contains the address 
of the operand. 

Three bus cycles are re­
quired. 

1.2.4.3 A and C Forks: Operand Fetch - After an 
instruction has been fetched and decoded, the oper­
and(s) are obtained from memory, if the addressing 
mode is other than O. The operation required by 
the operation code is then executed. 

The A FORK is used by all instructions: 

1. Binary instructions that require source 
mode calculation (-SMO) calculate their 
source address and fetch the source 
operand. 

2. Binary instructions that require no 
source address calculation (SMO) and 
single-operand instructions are DAC and 
calculate the destination ad,dress and 
fetch the destination operand. 

3. Binary instructions with both SMO and 
DMO, single-operand instructions with 
DMO, and instructions that are not part 
of anyone of the classes listed on Flows 
3 and 5 are executed. 

The C Fork is used by F jclass instructions or by 
binary instructions with 2 source mode other than 0 
(-SMO) to calculate the destination address and to 
fetch the destination operand after the source oper­
and has been obtained on the A FORK. 

Figure 1-6 shows the A and C Fork source and des­
tination calculation cycles. After the instruction has 
obtained its operand(s) on these forks, it is exe­
cuted on the B Fork. 

1.2.5 Flowchart Description 
The KBll-B Processor flowcharts (drawing D-FD­
KBll-B-l) are divided into 14 drawings that illus­
trate options of the flow. Where possible, a contin­
uous sequence of machine states is shown on a 
single drawing. The succeeding paragraphs describe 
the machine operations illustrated on each drawing. 
The description does not attempt to give detailed in­
formation about each machine state shown on the 
drawing; this information can be derived directly 
from the flowcharts and the ROM map (Paragraph 
1.3). 

Data Transfers 
Data transfers require two machine states: a prelimi­
nary or BUST cycle, which sets up the conditions 
for the PAUSE cycle, during which the data is 
transferred. Data transfers are described in detail in 
Chapter 5. 

1.2.5.1 FLOWS 1 

Instruction Fetch 
Flows 1 illustrates the instruction fetch sequence, 
the address calculation sequence for five of the 
source modes, a special sequence for the MTPI and 
MTPD instructions, and the execution of the 
branch type instructions. 

Fetch States 
The basic instruction fetch sequence requires two 
machine states: FET.lO (fetch) and IRD.OO (IRde­
code). FET.lO completes a data transfer operation, 
begun during the last cycle of the previous instruc­
tion, which moves the instruction word from an ex­
ternal storage location to the instruction register 
(lR) and bus register (BR), and increments the pro­
gram counter by 2. If the data transfer is not over­
lapped (i.e., if the transfer was not begun before the 
end of the previous instruction), an additional state 
is required to begin the data transfer. 

The additional state, FET.OO, also checks for as­
ynchronous operations (such as bus requests) that 
must be performed before beginning a new instruc­
tion, and branches to BRK.90 (break) if necessary. 
When the instruction fetch is overlapped, the ma­
chine state that begins the data transfer must also 
perform the same check. 

11-1-15 



DAC 

DMI1J 

A FORK 

-E/CLASS 

I 

I 
(DF7 + BRQ) 

~ 
EXC.90 

(3) 

DMI1J 

I 
I 

BIN 

~ 
SM~ -SM~ 

t 
SMI SM23 

A FORK + ~ 
S13.00 S13.01 

(I) (I) 

DM¢ 

1 A FORK 

I 
DMI2 

l 
012.00 
012.01 

(5) 

E/CLASS 

! A FORK 

I 
-(DF7 + BRQ) 

~ 
EXC.80 

(3) 

C FORK 

I 
DM3 

l 
030.00 

(5) 

I 

A FORK 

I I 
SM45 SMS7 

+ + 
S45.00 SS7.00 

(I) (2) 

I I 
DM45 DMS7 

l l 
045.00 DS7.00 
045.01 DS7.01 

(S) (S) 

-DMf/J 

I 
SR!1J(I) SR!1J(I1J) SR¢(I) SR¢(f/J) 

~ ~ 
DF7 -DF7 DF7 -DF7 

J J 1 1 
007.00 

(4) 

LEGEND: 

000.80 007.10 
(4) (4) 

SM: SOURCE MODE 
OM: DESTINATION MODE 
OF: DESTINATION FIELD 
SR!II(ll: ODD BYTE ADDRESS 
SR!II «Il): EVEN BYTE ADDRESS 

000.90 
(4) 

I 
DMI2 

1 
012.90 

(5) 

, 
I I 

DM3 DM45 

1 1 
030.90 045.90 

(5) (S) 

DM12 DM3 , J 
012.80 030.80 

(5) (5) 

Figure 1-6 A and C Forks, General Case 

11-1-16 

I 
DMS7 

1 
DS7.90 

(S) 

DM45 ()MS7 , , 
045.80 DS7.80 

(S) (S) 

11-3105 

I 

I. 

( 

( 

( 



( 

Instruction Decoding 
IRD.OO begins a new data transfer that fetches the 
word following the instruction word. This data 
transfer is used for address modes 6 or 7, and for 
fetching the next instruction whenever the instruc­
tion being executed does not require other data 
transfers. 

In some cases, the CONDITIONAL BUST is not is­
sued, i.e., when a data cycle is required but the PC, 
which is specified as the address in IRD.OO, is not 
the required address. In this case, for example 
D30.00 (Flows 5), the DR is the address and a new 
BUST is issued. CONDITIONAL BUST, which is 
used only in IRD.OO (UMSC=5), and BUST are 
controlled by RACH BUST H. Refer to drawing 
RACH: 

The four AND gates must be negated to assert 
BUST. 

1. The top gate is negated when MCS=5 
or 7. 

2. The three other gates are enabled when 
MCS=5 (CONDITIONAL BUST in 
IRD.OO). 

3. The second gate from the top is asserted, 
and negates BUST during an IRD.OO 
that precedes S13.00 and S13.01 
(BIN*SM 123). 

4. The third gate from the top is asserted, 
and negates BUST during IRD.OO, if the 
instruction is a Branch and if there is a 
Brake Request (BRQ TRUE). FET.OO, 
which is a BUST cycle, follows IRD.OO 
in this case. 

5. The last gate prevents BUST from being 
asserted during an IRD.OO, if this cycle 
precedes the three cycles that calculate 
destination modes 1, 2 and 3 on the A 
Fork (DI2.00, DI2.01, DAC*DMI2; and 
D30.00, DAC*DM3; all on Flows 5). 
These cycles fetch the destination oper­
and but use the DR as the address, in­
stead of the PCB used by IRD.OO. 

The NAND gate prevents the negation 
of BUST during IRD.OO when the cycle 
that follows it is S67.00 (BIN*SM67, 
Flows 2), if the destination mode of the 
instruction is 1, 2, or 3. This cycle gets 
the index word for source mode 6 and 7 
of a binary instruction. The PCB is used 
here as the address and the bus cycle 
started in IRD.OO is completed. The 
NAND gate prevents BUST from being 
inhibited if the destination mode of the 
BIN instruction is 1, 2, or 3. 

In other cases, this data transfer operation is 
aborted by a Bus End (BEND) operation in the ma­
chine state following IRD.OO. During this machine 
state, the processor also loads the source and desti­
nation registers (SR and DR) with the contents of 
the general registers specified in the source and des­
tination fields of the instruction; this operation is 
also done in anticipation of the use of this data, 
and in many cases the data loaded into the SR and 
DR is ignored. However, when the data is needed, 
the anticipatory transfers allow the processor to op­
erate at maximum speed. 

Source Modes 1 - 5 
The A Fork logic is enabled during IRD.OO (FEN 
1), so the machine state that follows IRD.OO is de­
termined by decoding the instruction and certain 
other conditions. Six of the possible sequences that 
follow IRD.OO are shown on Flows 1. These in­
clude the beginning of the data fetch sequence for 
all binary instructions that have a source mode of 1 
- 5. If the source mode is 1, 2 or 3, the external 
data transfer is restarted with a new address and 
the incrementation of the source register is started 
for modes 2 or 3. If the source mode is 4 or 5, the 
external data transfer can not be started until the 
address has been decremented, so S45.00 performs 
a BEND. After performing the data transfer to 
fetch the word addressed by the source register, the 
sequence conditionally enables the C Fork logic. If 
the source mode is odd, another data transfer is re­
quired to fetch the data addressed by the word just 
fetched; otherwise the fork determines the next 
state. 

11-1-17 



Move to Previous Space Instructions 
For an MTPI or MTPO (Move To Previous) in­
struction, MTP.OO and MTP.lO read an address 
from the stack pointer and begin a data transfer op­
eration to fetch a data word that will be transferred 
to the destination address. The flow then transfers 
to the last state of the source-data-fetch sequence, 
because this state is alike for both the MTP se­
quence and the normal source data sequence. 

Branch Instructions 
For branch instructions, the A Fork logic deter­
mines whether the branch is successful, and if not, 
whether a bus request has been sensed. If the 
branch is successful, the PC must be changed be­
fore the next instruction is fetched; this is per­
formed by the BXX.OO - BXX.05 (branch) machine 
state which aborts the previous data transfer. This 
state also strobes any new bus requests. The BRQ 
STROBE must be performed in the state preceding 
the state that starts the instruction fetch; this in­
cludes FET.lO (in case the A Fork logic returns 
control directly to FET.OO), the next-to-Iast state of 
instructions that overlap the instruction fetch, and 
the last state of instructions that do not provide 
overlap. The machine state following BXX.OO is 
FET.OO. 

If the branch is not successful and no bus requests 
are sensed, the instrucion fetch continues the data 
transfer begun in IRO.OO; if a bus request is sensed, 
the sequence returns to FET.OO, which in turn trans-, . 
fers the sequence to BRK.OO. Table 1-3E lists the 
ROM words used by each branch instruction for 
the four possible sequences. 

1.2.5.2 FLOWS 2 

Indexed Source Modes and Operate Instructions 
Flows 2 illustrates the sequence of machine states 
for the data fetch for source modes 6 or 7, for the 
transfer of floating-point instructions to the FPP, 
and for the execution of five operate instructions. 

Indexed Source Modes 
For BfN*SM67, the indexed source modes for 
binary instructions, the transfer begun in fRO.OO is 
completed and an increment from the source regis­
ter is added to the data word; the resulting data 
word is used for a second data transfer. When this 
transfer is complete, a conditional fork is used to 

transfer to the sequence required for the current in­
struction, unless an indirect-indexed address re­
quires a third data transfer. In the latter case, the 
sequence continues through three machine states 
that are common to the sequences of all indirect 
source modes 3, 5, and 7, and in part to the MTPI 
or MTPO instruction. 

Floating-Point Instructions 
When a floating-point instruction is recognized by 
the A Fork logic, the sequence is transferred to 
FOP.OO (floating-point operation). In this state, the 
processor restores the PC to the value used to fetch 
the instruction, so that this value can be trans­
mitted to the FPP (which stores the value for use in 
reporting abnormal conditions during the execution 
of that instruction, and for restarting the instruc­
tion if interrupted), and notifies the FPP that a 
floating-point instruction is ready to be processed. 
The processor then enters a wait loop, consisting of 
two machine states, until the FPP acknowledges the 
FPATTN (FPP ATTENTION) signal and reads the 
contents of the IR. (The data is actually read from 
the BR, which at this time contains the same infor­
mation.) If the FPP is busy with a previous float­
ing-point instruction, the processor may have to 
wait for several microseconds; during the wait pe­
riod, the processor looks for other external requests 
and reJeases control if any occur. If an interrupt 
must be processed, the stored PC value allows the 
floating-point instruction to be refetched after the 
interrupt service is completed. After the IR and PC 
have been transferred to the FPP, the sequence is 
determined by the C Fork logic to perform the ad­
dress calculation for the floating-point data. 

RTI and RTT Instructions 
The RTI and RTT instructions differ only in the 
clocking of T bit traps after the data transfers, so 
the sequence of machine states is identical. This se­
quence performs two data transfers to restore the 
previous PC and PS words from the hardware 
stack, and performs two increment operations on 
the stack pointer. The sequence then continues with 
an instruction fetch. 

RTS Instruction 
The RTS sequence performs one register-to-register 
transfer and one external data transfer to restore 
the PC and the specified register, and updates the 
Stack Pointer (SP) after the transfer. The sequence 
then returns to the instruction fetch machine states. 

11-1-18 

( 

( 



SO B Instruction 
The sequence of machine states for the SOB instruc­
tion first generates a new PC value, based on the 
offset in the instruction, and then restores the old 
PC value if the value in the specified register will be 
o after decrementing. This is done because the test 
on the value of the register requires one machine 
state in every case, which can be combined with the 
calculation of the new PC value, and because the 
branch is successful most of the time; thus, the ex­
tra machine state to perform the restoration of the 
old PC value is executed less often than if an extra 
state were required when the branch is successful. 
The SOB sequence initiates the fetch of the next in­
struction during the last machine state, which also 
performs the decrement on the specified register. 

MARK Instruction 
The machine state sequence for the MARK instruc­
tion transfers the contents of general register 5 to 
the PC, transfers the top word on the hardware 
stack to register 5, then begins fetching the next in­
struction. The operation of the MARK instruction 
assumes that the instruction has been fetched from 
the top of the hardware stack; for a discussion of 
the purpose and effects of the MARK instruction, 
see Chapter 4. 

1.2.5.3 FLOWS 3 

No Memory Reference Execution 
Flows 3 illustrates the machine state sequences for 
a variety of instructions that do not require mem­
ory references other than the instruction fetch. A 
number of sequences are shown that transfer imme­
diately to machine states on other pages; they are 
shown only to illustrate the routing from A Fork to 
these states. These sequences include the breakpoint 
trap (OP3), lOT trap, the EMT and TRAP traps, 
and several groups of reserved op codes, including 
OP7, OP22, and RSVO. The illegal instructions 
JMP or JSR, with destination mode 0, also transfer 
directly to a point in the trap sequence. The four in­
structions ASH, ASHC, MFPI, and MFPO are 
shown on other pages which do not show the A 
Fork flow line; therefore, off-page connectors are 
shown on this drawing for these instructions with 
destination mode 0 (for other destination modes of 
these instructions, the sequence transfers to the des­
tination address calculation sequences shown on 
Flows 5 and 6). 

Multiply and Divide with Destination Mode 0 
For the multiply and divide instructions, a special 
sequence is used when the destination mode is O. In 
either case, this sequence precedes the normal se­
quence for that instruction. MUL.80 (multiply) sets 
up the step counter and transfers to M UL.l 0, be­
cause MUL.OO is used to complete the data transfer 
begun in the destination data fetch sequence. In 
OVS.OO (divide start), the contents of the register 
specified for the destination operand are transferred 
to the BR, which corresponds to the result of the 
data fetch sequence for other destination modes. 

E/Class and Negate Instructions 
For the majority of instructions that operate on 
data, one machine state is required to perform the 
data manipulation. If both the source (if any) and 
destination modes are 0, the data is already in the 
SR and DR registers as a result of IRO.OO. The 
data manipulation (selected by the subsidiary ROM 
for all except the NEG.B instruction) is performed, 
the data is stored in the general register specified by 
the destination field, and the sequence returns to 
the instruction fetch. The NEG and NEG.B instruc­
tions require two machine states because the com­
plement and increment operations cannot be 
performed on the data during the same state; there­
fore the external data transfer operation started in 
IRO.OO is aborted (a bus operation cannot be car­
ried across more than two machine states) and the 
sequence returns to FET.OO. The other instructions 
complete the data operation and return to FET.IO, 
unless a bus request has been sensed; because the 
transfer to the BRQ service sequence is performed 
by FET.OO, the bus operation must be aborted. 

RESET Instruction 
Three processor control instructions, RESET, 
HALT and WAIT, are executed by sequences 
shown on this drawing. The RESET instruction 
tnlnsfers general register 0 to the DR so that the 
contents of RO can be displayed in the DATA 
lights of the console during the reset operation, and 
then triggers the initialization pulse. The in­
itialization is inhibited if the processor is not oper­
ating in the Kernel mode; in this case, the 
instruction is, in effect, a NOP. The machine state 
that triggers the pulse recycles to itself until the 
pulse (which lasts for 10 ms) is completed, and then 
returns the sequence to the instruction fetch 
sequence. 

11-1-19 



HALT Instruction 
The HALT instruction does not actually stop the 
processor; instead, control is transferred to the con­
sole service sequence, which waits for manual inter­
vention to determine further operations. This is 
performed by setting the console flag and then re­
(uming to the instruction fetch sequence where the 
console flag generates a BRQ, which in turn trans­
fers to the break service sequence. The console flag 
is set only if the processor is in Kernel mode; a 
branch after HLT .. IO, (HALT) transfers control to 
the trap service sequence if the processor is not in 
Kernel mode, i.e., a HALT instruction in Super or 
User modes traps through location 4. 

W A IT Instruction 
The WAIT instruction is used to wait for an asynch­
ronoUs condition that either initiates the execution 
of a service program or enters the console service se­
quence. The basic wait loop consists of two ma­
chine states, so that the BRQSTROBE in one state 
is available for the branch in the other state. When 
any BI3:Q is sensed, the sequence goes to the first of 
two states that test for console requests and then 
for interrupts or traps (other than T bit traps) that 
supply vectors. If neither is found, the sequence re­
turns to the wait loop; otherwise, control is trans­
ferred to the appropriate sequence. 

Processor Status Change Instructions 
Two types of instructions that transfer data from 
the instruction word to the PS word are the CCOP 
instruction and the SPL instruction. The former af­
fects only the condition code bits [PS(03:00)] and 
the latter affects only the priority bits [PS(07:05)]. 
In the CCOP instruction, the external data transfer 
begun by the IRD.OO state is aborted because the 
processor must maintain the data in the BR register 
until the PS word is reloaded. In the SPL instruc­
tion, the first state does the actual transfer to the 
priority. The second state also begins a new instruc­
tion fetch and control transfers to FET.IO. SPL is a 
no-op (no change to the PS) unless the processor is 
in Kernel mode. 

1.2.5.4 FLOWS 4 

Destination Mode 0 Sequence 
Flows 4 illustrates the five sequences used when the 
destination mode is O. These sequences are entered 

through the C Fork microprogram address calcu­
lation; this fork is used to determine the next ma­
chine state after a source operand has been fetched. 
For all instructions except floating-point instruc­
tions, these sequences correspond to, or join, the se­
quences used when both the source and the 
destination modes are O. 

Not Register 7 
When the destination specification in an instruction 
refers to any general register other than register 7 
(the PC), and the other conditions for the se­
quences shown on this drawing are met, the instruc­
tion is executed by DOO.90 (destination mode 0). If 
the source address is odd, a byte-swap operation 
must be performed on the contents of the BR be­
fore the instruction-dependent data manipulation 
operation. If the source mode is also 0, no byte 
swap is required, and the execution is performed by 
the EXCS (execute) machine state. 

Register 7 
When the destination register is 7, the PC is modi­
fied. Because the PC is stored as a separate register 
(not in the general register set), the execution is ac­
complished by EXC.90, which requires the source 
data to be in the SR register. A machine state is 
therefore required to transfer the source data from 
the BR to the SR. A byte swap can be combined 
with this transfer, if necessary. 

Floating-Point Instructions 
F or most floating-point instructions, the destination 
specification refers to a floating-point accumulator 
if the destination mode is O. However, this sequence 
is also entered for the CFCC instruction and for 
the load and store status instructions, for which the 
destination specification refers to the general regis­
ters if the destination mode is O. Therefore, if the in­
struction is a CFCC instruction, the first machine 
state transfers the floating-point condition codes 
from the internal bus to the PS word. The contents 
of the DR, which contains the data read from the 
destination register during IRD.OO, is transferred to 
the BR so that the FPP can read the destination, if 
neccessary, and an FPA TTN signal is sent. The pro­
cessor then waits in a one-machine-state loop which 
tests for the FP SYNC signal; if the FPP sends a 
data word to be stored in the destination register, 

11-1-20 

( 

( 

( 



FOP.80 (floating-point operation) is entered, other­
wise the sequence returns to the instruction fetch se­
quence. After receiving data from the FPP, the 
processor again sends the FPA TTN signal and en­
ters the wait loop; if the FPP is operating with 
double-precision integers, the data receiving se­
quence is entered twice and the second word (which 
is the lower half of the 2-word variable) is stored in 
the same destination register, overlaying the first 
word. When the FPP has no more data to send, the 
processor returns to the instruction fetch sequence. 

1.2.5.5 FLOWS 5 

Destination Modes 1 - 3 
Flows 5 illustrates the machine state sequences used 
to fetch data specified by destination modes I, 2, or 
3. These sequences are entered from one of the two 
forks; some are entered from the A Fork decision 
point, for instructions which either do not require a 
source operand or have a source mode of 0, while 
others are entered from the C Fork decision point 
after the source operand has been fetched and 
placed in the SR. 

Sequence Entry 
All six sequences on this drawing start a data cycle 
(BUST). It should be noted that the CONDI­
TIONAL BUST in IRO.OO is not asserted when the 
two A Fork sequences on Flows 5 are entered; this 
is because the PC is not the address required for 
the OMI23 data cycles on this drawing. 

The four sequences entered from the C Fork deci­
sion point also start by transferring the contents of 
the BR to the SR, so that the source data is avail­
able in both registers; the opposite transfer is per­
formed for the A Fork entry to move the source 
data to the BR for the OA TO that follows the desti­
nation address calculation. If the destination is 3, 
there is no point in loading the BR from the DR be­
cause the address fetched by the first external data 
transfer is stored in the B R for use in the next data 
transfer. 

Destination Modes 1 and 2 
There are two entries from the C Fork decision 
point for address modes I or 2 because the source 
data may be an odd byte which must be swapped. 
This is the only difference between 012.80 (destina­
tion modes I or 2) and 012.90. After one of these 

states or 012.00 has been completed, the processor 
performs a three-way branch, to separate 1MP, 
1S R, and floating-point instructions, and instruc­
tions that transfer the source operand to the destina­
tion unchanged (specifically, the MOV, MTPI, and 
MTPO instructions) from all others. For floating­
point instructions, the external data transfer is 
aborted, and the sequence continues through the B 
Fork. decision point to FOPAO. For 1MP instru~­
tions, the sequence is directed to 1MP.00; for JSR 
instructions, to 1SR.00. For the three direct-transfer 
(0 Class) instructions, the external transfer is forced 
to be a OATO instead of a OA TIP or .a DATI, 
and the transfer is completed before an instruction­
dependent, condition-code load operation is per­
formed. The last machine state in the sequence for 
o Class instructions also begins the instruction fetch 
for the next instruction and checks forasynch­
ronous conditions requiring service. 

For all other instructions, the DATI or OATIP 
transfer is completed, and the B Fork logic is condi­
tionally enabled in 012.10. If a byte swap is needed 
because the destination address is to an odd byte, 
the extra machine state 012.30 is entered, and then 
the B Fork decision point. Note that in all three of 
the sequences shown (in 012.60, 012.10, and 
012.70) the destination register is incremented by a 
constant which can be either 0, I, or 2, depending 
on the address mode and whether a word or a byte 
operand is being fetched. 

Destination Mode 3 
The three sequences for destination mode 3 all en­
ter 030.10 (destination mode 3), which completes 
the data transfer, increments the destination register 
by the necessary amount, and transfers to 010.20, 
which begins the fetch of the operand addressed by 
the word just transferred. Because the first transfer 
during a destination mode 3 sequence can only he a 
full word, the increment used in the register update 
is always 2, not I. 

1.2.5.6 FLOWS 6 

Destination Modes 4 - 7 
Flows 6 illustrates six machine state sequences that 
are used to fetch the destination operand when the 
destination address mode is 4, 5, 6, or 7. These six 
sequences correspond to the six sequences for ad­
dress modes 1, 2, and 3. 

11-1-21 



Modes 4 and 5 require that the contents of the des­
tination register be decremented before the value is 
used in the external data transfer. They are treated 
by one of three sequences. Modes 6 and 7 use gen­
eral register 7 (the PC) first and then use the desti­
nation register. They are treated by one of three 
sequences. 

In either case, two of the three sequences are en­
tered from the C Fork and one from the A Fork. 
The two C Fork entries differentiate between 
source operands that require byte swapping and 
source operands that do not. There can be no re­
quirement for a byte swap on the A Fork entry, be­
cause the source operand would be address mode 0 
and the high byte of a register cannot be specified. 

C Fork Entries for Modes 4 and 5 
D45.80 (destination mode 4 or 5) and D45.90 differ 
mainly in the microprogram addresses contained in 
the microprogram word. Each state decrements the 
DR by the value of the destination constant, which 
is I for a byte operation in mode 4, and 2 for a 
word operation. Byte operations in mode 5 use a 
constan t of 2 because the data fetched from the ad­
dress taken from the DR is in turn used as an ad­
dress and must be a full word. The state following 
D45.80 or D45.90 begins the external data transfer, 
which may be a DATI, DA TIP, or a DATO, de­
pending on the specific instruction. D40.30 and 
D50.30, which follow D45.90, also perform the 
byte-swap operation on the source operand. In each 
of the two sequences, a different path is taken for 
destination mode 4 where only one data transfer is 
needed, than for destination mode 5 where a sec­
ond transfer is needed. The second transfer is per­
formed by a sequence that is common for address 
modes 3, 5, and 7; this sequence transfers the first 
word that is fetched from the BR to the DR and 
then uses the DR as the address for a second 
transfer. 

A Fork Entry for Modes 4 and 5 
D45.00, which is entered from the A Fork Decision 
point, is similar to D45.80 and D45.90, except that 
a BEN D is performed to abort the transfer begun 
during the IRD.OO machine state. The sequences 
that follow D45.00 are similar to the sequences that 

follow D45.80 or D45.90, ex_cept that the source op­
erand, if any, is already in the SR. 

Destination Modes 6 and 7 Entry 
For address modes 6 and 7, the first machine state 
entered from the C Fork decision point begins an 
external data transfer, using the contents of the PC 
as an address, and performs an increment operation 
on the Pc. The entry from the A Fork decision 
point continues the transfer begun by the IRD.OO 
machine state, so this entry is to D67.00 (destina­
tion mode 6 or 7) that follows the first state for the 
other entries. D67.1 0 adds the contents of the DR 
to the data read into the BR, thus performing the 
indexing operation, and then transfers to a machine 
state in the flow sequence for destination modes 4 
or 5. The transfer is to DIO.30 (a state also used 
for mode 4) if the mode is 6, or to DIO.I0 (a state 
also used for mode 5) if the mode is 7. The shared 
sequences perform the remaining one or two data 
transfers to fetch or store the actual data word. 

Ending Sequence 
When the last data transfer has been started, all six 
sequences enter a combined conditional fork and 
two-way branch that selects the next machine state. 
For O/class instructions (MOV, MTPI, and MTPD) 
the last data transfer is a D ATO operation, which 
is completed by D 1 0.40; this state also loads the 
condition codes. The processor then returns to the 
instruction fetch sequence. For all other instruc­
tions, the DATI or DA TIP transfer is completed in 
D I 0.60, leaving the destination data in the BR and 
the source data in the SR, and the B Fork logic is 
conditionally enabled. If a byte-swap operation is 
req uired for the destination data, D 12.30, which 
performs this operation for all destination modes 1 
- 7, is entered. FJ/Class instructions go directly to 
the B Fork. 

1.2.5.7 FLOWS 7 

ASH, ASHC, and Floating-Point Instructions 
Flows 7 illustrates the machine state sequences for 
the Arithmetic Shift (ASH) and Arithmetic Shift 
Combined (ASHC) instructions, and the first ma­
chine state of the floating-point instruction service 
after the destination address calculation. 

11-1-22 

( 

( 



( 

( 

ASH Instruction 
When the machine state sequence for the ASH in­
struction is entered from the B Fork decision point, 
the destination data is in the BR register. The six 
least-significant bits of the destination word are 
used as a 2's complement number which is the shift 
count for the instruction. The DR is loaded from 
the BR and this data is then loaded into the Shift 
Counter (SC) from the DR in ASH.iO. In an 
ASH.20, the condition codes are loaded, based on 
the- value of the word in the source register, and the 
SC is tested for a 0 shift count. If the shift count is 
0, the instruction is completed, and the processor re­
turns to the instruction fetch sequence; otherwise, 
one of two states is entered, depending on the sign 
of the shift count. ASH.30 (Arithmetic Shift) and 
ASH.40 perform the actual shift one bit at a time, 
and increment or decrement, respectively, the shift 
counter. These states also load the condition codes 
with the results of each shift, so that after the last 
shift the codes are correct, and test during each 
cycle to determine whether any further cycles are re­
quired. Note that the first change to the SC is per­
formed in ASH.20; all tests are done on the value 
before any changes are performed, so the last cycle 
in ASH.30 or ASH.40 is performed with the SC=O, 
and the final value in the SC is -0 (all Is). 

ASHe . Instrudion 
The ASHC instruction operates in a manner similar 
to the ASH instruction. The difference is that two 
words of data are shifted. ASC.OO and ASC.iO per-
form the same functions as ASH.OO and ASH.iO, 
and in addition, load the DR (after the SC has 
been loaded from the previous value in the DR) 
with the contents of a general register which is se­
lected by 0 Ring the destination register specifica­
tion with I. When the destination register specified 
by the instruction is an even-numbered register, the 
OR produces the number of the next higher num­
bered register. 

ASC.20 performs the first change of the SC, moves 
the first data word to the BR, loads the condition 
codes, and tests for a 0 SC, just as ASH.20 does. 
However, if the SC is 0, the sequence continues 
with ASC.80 (arithmetic shift combined), instead of 
returning immediately to the instruction fetch se­
quence. This state is required to test the second 
data word, so that the Z condition code can be set 
on the contents of both words. ASC.80 also starts 

the next instruction fetch, so the processor transfers 
to either FET.iO or B RK.OO rather than FET.OO. 

If the SC is not 0, ASC.20 is followed by ASC.30 
or ASC.40. These states perform the same oper­
ations as the corresponding states for the ASH in­
struction, and also cause shifting of the DR (which 
can be shifted internally, without passing the data 
through the ALU or SHFR). The bit shifted into 
the DR is selected by processor hardware. When 
the SC does reach 0, the next machine state is 
SC.60, which performs the same operations as 
ASC.80, but also stores the second word from the 
DR into the appropriate general register. 

Floating-Point Instructions 
When the B Fork logic decodes a floating-point in­
struction, FOP.40 (floating-point operation) is en­
tered. This state aborts the last external data 
transfer started by the destination-data-fetch se­
quence, and sends the destination address, not the 
destination data, to the FPP. The sequence then 
continues with the floating-point service machine 
states to perform whatever operations are required 
by the FPP. 

1.2.5.8 FLOWS 8 

Multiply Instruction 
The sequence of machine states shown on Flows 8 
performs a multiplication operation on two words 
of data, one from a general register and the other 
in a word specified by the destination field and fet­
ched into the BR. The results of the multiplication 
are stored in two general registers: one is the regis­
ter specified in the instruction, and the other is a 
register whose number is formed by ORing I with 
the number of the specified register (Figure 1-7). If 
the specified register has an odd number, only one 
register is used. 

DR (MULTIPLICAND) 

'1-0845 

Figure 1-7 Multiply Instruction 

11-1-23 



The multiplier is in the SR, the multiplicand in the 
DR, and the 32-bit product is formed in the BR 
and DR by an add and shift algorithm. 

The multiplier (SR) is used as a 32-bit, not a 16-bit, 
2's complement number. This is accomplished by ex­
tending its sign bit into the BR after every shift. 
The multiplication thus has as its operands a 16-bit 
multiplicand, the DR, and a 32-bit multiplier~ the 
SR. 

'n 2's complement notation, a negative 16-bit num­
ber (-A) is equivalent to (2 16 -A), and a negative 32-
bit number (-B) to (2 32 -B). When a combination of 
16- and 32-bit positive and negative numbers are 
multiplied, four conditions are possible, as shown 
in Table 1-2. 

Note that correction of the product is required 
when the DR (multiplicand) is negative. 

In Case 1, where both SR and DR are positive, the 
product is correct and no correction is required. 

In Case 2" 232 X DR must be subtracted, but since 
the product is only 32 bits wide, this term is out of 
range and no correction is required. 

In Case 3, 216 X SR has to be subtracted from the 
product, as this term is within the 32-bit product 
formed in the BR and DR. 

In Case 4, the first two terms are out of range, and 
216 X SR must be added to the product. Since in 
this case the SR is a 2's complement negative num­
ber, the addition is accomplished by subtracting it 
as in Case 3 (- - = +). 

The multiplication sequence begins with two ma­
chine states that set up the four registers (BR, SR, 

DR, and SC) used in the sequence,and performs 
the first test and shift on the DR. Note that an 
branches refer to the state of the 0 R and the SC at 
the beginning of the machine state preceding the 
branch, not the values in the registers at the end of 
that state. This is because the RAR is clocked at 
T3. The operand supplied by the destination-data­
fetch sequence is loaded into the DR, and the SC is 
loaded with the octal value 17 (decimal 15) in 
MUL.OO (multiply). 

In MUL.10, the BR is cleared; the other operand is 
in the SR as the result of IRD.OO. The SC is 
decremented. 

Fifteen multiplication cycles are then performed in 
MUL.20 and MUL.30. 

1. If the low order bit of the DR is 1 
[DRO(I)], the SR is added to the BR 
and both BR and DR are shifted right 
in a combined shift, which forms the 
product (MUL.20). 

2. If the low order bit of the DR is 0 
[DRO(O)], the shift is performed, but no 
add (MUL.30). 

At the end of these fifteen cycles, SC=O and DRO 
contains the sign bit of the multiplicand SDR). 

1. If DRO(I), the multiplicand was negative 
and correction is required. MUL.50 sub­
tracts the multiplier (SR) from the high 
order product (BR and DR). This is the 
same as subtracting 216 X SR from the 
product. 

2. If DRO(O). no correction is required 
(MUL.40). 

Table 1-2 
Sign Correction for MUL Instruction 

Case SR DR Representation of Product Generated Product Correction 
SR DR (2n SRX DR) Should Be: Required 

1 ~ ~ SR DR (SRXDR) (SRXDR) None 
2 <0 ~O 232-SR DR 232 DR- (SRXDR) -(SRXDR) None 
3 ~ <0 SR 216_DR 216 SR--(SRXDR) -(SRXDR) -216 SR 
4 <0 <0 232-SR 216 _DR 248_232DR-216SR+(SRXDR) (SRXDR) +216 SR 

11-1-24 

( 

( 

( 

( 



MUL.50 or MULAO store the more-significant half 
of the result into the register specified by the source 
field, and set the condition codes on the value of 
this word. 

MUL.60 stores the less-significant half of the result 
in the register, whose number is formed by ORing 
the source field with 1; if an odd register is speci­
fied, this value replaces the more-significant half of 
the result, which is lost. This is done because many 
multiplications produce a result which can be con­
tained in only one word, and this result is preserved 
by this action. The condition codes are altered to 
represent the value of the entire result; if all 32 bits 
are 0, the Z bit is set, and if the result cannot be 
contained in one word, the C bit is set. At the end 
of this cycle, the sequence returns either to the in­
struction fetch sequence, or, if an asynchronous con­
dition needing service was sensed by the BRQ 
STROBE in machine state MUL.40 or MUL.50, to 
the break service sequence. 

1.2.5.9 FLOWS 9 and 10 

The Divide Instruction 
Division is the process of counting the number of 
times one number (the dividend) can be reduced by 
another number (the divisor). The count of the 
number of reductions is called the quotient; the 
part of the dividend that cannot be reduced by the 
divisor is called the remainder. Division is more 
complicated than multiplication, for several 
reasons: 

1. Division produces two results, not one. 

2. During multiplication, the maximum re­
sult occurs when the maximum number 
is multiplied by itself. This result fits 
into two words; during division, the max­
imum result occurs when the largest pos­
sible number is divided by a very small 
number and the result does not fit into 
any reasonable number of words. There­
fore, the division algorithm must recog­
nize the overflow condition when the 
quotient is too large. 

3. During the division process, it is neces­
sary to recognize when the partial re­
mainder is smaller than the divisor; 
usually this is done by recognizing when 
the last reduction passed through ° and 
changed the sign of the remainder. This 
condition is called underflow and re­
quires that the results of the last reduc­
tion be restored in some way. 

The simplest division algorithm is to subtract the 
divisor from the dividend until underflow occurs, re­
store the remainder, and keep a count of all but the 
last subtraction for the quotient (this algorithm as­
sumes all positive numbers). This procedure is very 
tedious, particularly if an overflow condition exists, 
so a shorter algorithm is used that is based on the 
positional representation of numbers. 

The result of the division is a quotient that can be 
multiplied by the divisor to regenerate the dividend 
(with a difference equal to the remainder). If, dur­
ing the mUltiplication, each bit of the quotient can 
generate a partial product that becomes part of the 
total sum, then during the division, each bit of the 
quotient can be generated individually while reduc­
ing the partial remainder by an appropriate 
amount. To determine what the most-significant bit 
of the quotient should be, the number that is sub­
tracted from the dividend is equal to the divisor, 
multiplied by the positional value of the most-sig­
nificant digit. 

Figure 1-8 illustrates the division algorithm. At the 
beginning of the division, the dividend occupies all 
of a word register. The divisor has been multiplied 
by 2 to the nth power, so that the number which is 
first subtracted from the dividend is actually the 
divisor times the positional value of the most-signif­
icant bit. Before each step of the division, the divi­
sor is divided by 2, so that the correct number for 
generating the next bit of the quotient is formed; 
the division by 2 is done by shifting the 2-word divi­
sor 1 bit to the right. In order for the division al­
gorithm to operate with negative numbers, the 
reduction that is performed at each step of the divi­
sion must be the correct operation to reduce the re­
mainder; if the divisor and the partial remainder 

11-1-25 



NO 

YES 

NO 

LOAD DO 
LOAD HIGH HALF 
OF DR AND CLEAR 
LOW HALF 
CLEAR Q 
SHC--N 

NO 

NO 

YES 
L-~ __ ~ __ ~~ ____ ~ 

NO 

YES 

NO 

DONE 

Figure 1-8 Divide Algorithm 

II-I-26 

I Q r---
N o 

LEGEND: DD=DIVIDEND 
(REMAINDER IS DO <N-l'O» 
DR = DIVISOR 
Q=QUOTIENT 
SHC=SHIFT COUNTER 

11-1070 

( 

( 

( 

( 



( 

(that is, the dividend) have the same sign, the divi­
sor is subtracted from the remainder, but if their 
signs differ, the divisor is added to the remainder to 
reduce its magnitude. 

The algorithm that is illustrated does not perform a 
restoration if an underflow condition occurs. In­
stead, while underflow exists, succeeding operations 
are performed in the opposite manner to complete 
the restoration; while an underflow condition exists, 
the bits of the quotient are set only when the under­
flow is corrected and are cleared if the operation 
does not complete the restoration. If the original 
divisor and dividend are of opposite sign, the 
quotient should be negative, so bits of the quotient 
depend on the operation performed and its results, 
as follows: 

1. If the operation was a subtraction (the 
signs of the divisor and the partial re­
mainder were the same), the quotient bit 
is set if there was no underflow, and is 
cleared if there was underflow. 

2. If the operation was an addition (the 
signs of the divisor and the partial re­
mainder were different), the quotient bit 
is cleared if there was no underflow, and 
is set if there was underflow. 

The non-restoring division algorithm works because 
an underflow at any step can be corrected to within 
one multiple of the divisor by the succeeding steps. 
This is true because a binary number that is repre­
sented by all Is is changed to a number that is rep­
resented by aI, followed by all Os, when the 
number 1 is added to it. Therefore, the mUltiple of 
the divisor that is subtracted from the partial re­
mainder at any step is only one more multiple of 
the divisor than can be expressed by all the less-sig­
nificant bits of the quotient. The remaining single 
multiple of the divisor can be restored by a single 
operation (which is always an addition, because un­
derflow exists and the divisor and partial remainder 
have different signs) following the steps that gener­
ate the quotient bits; this step is aJso used to cor­
rect the remainder. 

Divide Instruction Sequence 
The divide (DIV) instruction is executed by the 
longest and most complex sequence of machine 
states used in the KBll-B Processor. This sequence 
is illustrated on two drawings. Flows 9 shows the 

register setup, the first two overflow tests, and the 
cycle of states that perform the actual division. 
Flows 10 shows the quotient and remainder sign 
corrections and the final overflow test. 

The division is performed by a non-restoring divide 
algorithm that is described above. The hardware im­
plementation (Figure 1-9) uses the SR to hold the 
divisor and begins with the dividend in the BR and 
DR registers. The BR contains the more-significant 
half of the dividend, while the less-significant half is 
in the DR. Each cycle of the division shifts the divi­
dend one bit to the left and shifts the next bit of 
the quotient into the least-significant bit of the DR. 
When the division terminates, the quotient is in the 
DR and the remainder is in the BR. 

DR (QUOTIENT) 

NOTE: 
Dividend in BR and DR. 

11-0844 

Figure 1-9 Divide Instructions 

The non-restoring divide algorithm can operate 
with positive or negative operands; however, the 
KBll-B always operates on a positive dividend to 
simplify the detection of underflow. (The divisor 
may have either sign.) The first two machine states 
of the division sequence test for a 0 divisor or a 
negative dividend, and set up the SR and DR regis­
ters. If a 0 divisor is sensed, the division is aborted 
and the C, V, and Z condition codes are set to in­
dicate that an error has occurred. 

Initial Setup 
If the dividend is negative, a sequence is entered to 
complement the dividend. Note that the branch on 
the N condition code occurs after DIV.20, although 
the condition code is loaded in DIV.1O (divide), be~ 
cause the branch condition must be available at the 
beginning of the machine state in which the branch 
is used. Similarly, the branch on the Z condition 
code after DIV.1O uses the condition code value set 
by DIV.OO, not the new value set by DIV.lO. 

11-1-27 



Negative Dividend Processing 
The sequence beginning with DVN.OO (divide nega­
tion) generates the 2's complement of the 2-word 
dividend as follows: 

1. The 2's complement of the less-signifi­
cant word is formed by first clearing the 
DR, then subtracting the SR, which con­
tains the low order word, from the 0 in 
the DR. The DR is cleared so that a sub­
tract from 0, which requires only one ma­
chine state, can be used; normally a 2's 
complement is generated by forming the 
l's complement and then incrementing, 
as shown for the remainder of correction 
steps. The 2's complement of the less­
significant word is stored in the register 
which originally held the less-significant 
word. 

2. 

3. 

DVN.20 generates a carry from the less­
significant word to the more-significant 
word. That is, if a carry-out of the most­
significant bit of the ALU occurs during 
the operations (which is repeated in 
DVN.20), a 1 is shifted into the DR. 

A 1 is subtracted from the DR. If a 
carry occurred in Step 2, the DR con­
tains 0 and the 2's complement of the 
more-significant word is formed; if no 
carry occurred, the DR now contains a -
1, which cancels the carry insert during 
the subtraction in DVNAO, and the 1 's 
complement of the SR is formed. This is 
the correct result if there is no carry. 

After the 2's complement of the dividend is formed, 
DVN.50 begins the restoration of the divisor to the 
SR and the dividend to the BR and DR. However, 
if the dividend is still negative, which occurs if the 
dividend was the maximum negative number (be­
cause the 2s complement notation can express one 
more negative number than positive number, the 
largest negative number complements to itself), the 
division cannot be performed and the sequence is 
aborted. 

Overflow Test and First Cycle 
After the setup is completed, the processor enters 
DIV.30 with a positive dividend in the BR and DR, 
17(8) in the SC, and the divisor in the SR. The next 

portion of the sequence performs the first cycle of 
the division and performs a test for overflow. This 
test is based on the fact that if underflow does not 
occur during the first cycle, the quotient is too 
large to be expressed in 16 bits. If the instruction is 
not aborted because of overflow, the processor en­
ters the DIV.70 machine state to begin the main di­
vide cycle. 

Division Process 
The test for underflow that determines whether 
DIV.80 or DIV.90 is entered is based on the follow­
ing considerations: 

1. If the divisor is negative, adding the divi­
sor to the dividend should produce a re­
sult closer to 0 than the original 
dividend. If the result is negative, under­
flow has occurred and a 0 is shifted into 
the DR. 

2. 

3. 

If the divisor is negative and the divi­
dend is also negative, an underflow con­
dition already exists. The divisor is 
subtracted from the dividend to return 
the dividend to a positive number. If the 
result is still negative, a 0 is shifted into 
the DR; if the result is positive, the un­
derflow has been corrected and a 1 is 
shifted in. 

For a positive divisor and dividend, a 
subtraction is performed. If the result is 
positive, a 1 is shifted into the DR, but 
if the result is negative, underflow has oc­
curred and a 0 is shifted in. 

4. If the divisor is positive and the dividend 
is negative, an addition is performed to 
correct an existing underflow. If the re­
sult is positive, the underflow has been 
corrected and a 1 is shifted into the DR, 
otherwise a 0 is shifted in. 

As a result of these considerations, the processor en­
ters DIV.80 if the divisor is positive and there is no 
underflow (ORO is a 1), or if the divisor is negative 
and there is underflow (ORO is a 0). DIV.80 per­
forms a subtract operation and shifts the carry-out 
of the ALU into the DR. (A carry-out of the most­
significant bit of the ALU indicates that underflow 
has occurred; if an uncorrected underflow existed, 
the carry indicates that it has been corrected.) 

11-1-28 

( 

( 

( 



( 
\ 

( 

( 

If the opposite conditions exist (SR is positive and 
DRO is 0, or SR is negative and SRO is 1), DIV.90 
is entered and an addition is performed, followed 
by a shift of the DR. Note that the cases for which 
a carry-out of the most-significant bit of the ALU 
exist are equivalent to the cases described above for 
which the least-significant bit of the DR is set. 

Remainder Storage and Sign Check 
After the divide cycle has been performed 15 times 
(the first division cycle) and the first decrement of 
the SC is performed in DIV.30 - DIV.60, DVC.OO 
(divide correction) writes the remainder from the 
BR into the appropriate general register, and trans­
fers control to one of four machine states, depend­
ing on whether a remainder correction is required 
and whether the quotient has the correct sign. 

Remainder Correction 
If, after the last division cycle, the least-significant 
bit of the quotient is a 0, an underflow condition 
still exists. This condition can be corrected (unless 
an overflow condition also exists) by adding a posi­
tive divisor or subtracting a negative divisor to cor­
rect the remainder. This is done by DVC.lO or 
DVC.20. If no remainder correction is needed, or 
following the remainder correction, DVC.30 or 
DVC.40 begins complementing the remainder in 
case the remainder has the wrong sign. The current 
value of the remainder is not disturbed until a deter­
mination is made of the appropriate sign. 

Quotient Sign Change 
If the N condition code is set, the original dividend 
was negative. The complemented remainder, which 
is negative because the corrected remainder is posi­
tive (if all underflow conditions are corrected), is 
stored as the final value of the remainder. If both 
the dividend and the divisor were positive, the 
quotient, which is also positive (the most-significant 
bit of the quotient must be positive or an immedi­
ate overflow condition aborts the division), is writ­
ten into the appropriate general register. Similarly, 
if both dividend and divisor are negative, the 
quotient should be positive and is written in its pre­
sent form. 

If the original signs of the dividend and divisor 
were different, the quotient should be negative. The 
quotient is complemented by DVC.80 and DVC.90; 
one special case in which the quotient is the most 
negative number is considered an error. 

1.2.5.10 FLOWS 11 

Memory Reference Execution Sequences 
Flows 11 illustrates eight sequences that execute the 
data manipulation stages of a variety of instruc­
tions, when those instructions require external data 
transfers to complete the instruction execution. 
These sequences are entered from the B Fork deci­
sion point. 

Standard Execution 
The· majority of instructions are executed by 
EXC.OO (execute). When this state is entered, the 
source operand, if any, is in the SR, and the desti­
nation operand is in the DR. EXC.OO performs one 
data manipulation operation and loads the condi­
tion codes; both the operation performed and the 
condition-code loading are controlled by subsidiary 
ROMs (i.e., they are instruction-dependent). 
EXC.OO performs the byte-swap operation in the 
SHFR automatically. 

For any instruction that is operating on an odd­
byte destinaton operand, EXC.OO also begins an ex­
ternal data transfer operation that is completed in 
EXC.lO; this operation transfers the result data to 
the destination address, which is taken from the 
DR. 

Negate Instructions 
Several instructions, which are otherwise treated in 
the same manner as those executed by EXC.OO, 
must be executed separately. The negate and negate 
byte (NEG .B) instructions require two machine 
states for execution because the 2's complement of 
a number is formed by first generating the 1 's com­
plement and then incrementing that value. After the 
negation is performed and the condition codes 
loaded, the processor performs a byte swap if the 
destination operand is an odd byte, and starts an ex­
ternal data transfer that is completed in EXC.lO. 

11-1-29 



Shifter Instructions 
Two instructions, which are executed by EXC.OO 
when they operate on an even byte [DRO(O)], use 
the SHFR to perform a right shift. These are the 
ASRB and ROR instructions. When these instruc­
tions operate on a destination operand taken from 
an odd-byte location [DRO(1)], a second machine 
state is required to perform the byte swap, which 
also requires the SHFR. Therefore, SHR.OO (shift 
right) performs the same actions as EXC.OO, except 
that no external data transfer is begun and no byte 
swap is performed. These functions are performed 
by SHR.10. No conflict occurs for the ASL and 
ROL instructions because left shifts are performed 
by the ALU, not by the SHFR. 

Test Instructions 
The three instructions that set the condition codes 
without modifying any stored data, TST, CMP, 
and BIT, are executed by machine states that do 
not start an external data transfer for the data 
operand~ 

Jump Instruction 
The jump (JMP) instruction performs only one op­
eration; it sets a new value in the Program Counter 
(PC). The value loaded into the PC is the destina­
tion address, not the destination data word. The 
last external data transfer to fetch the data word is 
aborted, (BEND) the PC is loaded, and a transfer 
to the instruction fetch sequence is performed by 
the machine state JMP.OO Gump). 

Jump to Subroutine Instruction 
The jump to subroutine (JSR) instruction performs 
two data transfers in addition to loading the PC. 
The contents of a register specified by the instruc­
tion are saved on the hardware stack, and the pre­
vious value in the PC is saved in the specified 
register. JSR.OO Gump to subroutine) the last exter­
nal data transfer, loads the destination address into 
the PCA (but does not load the PCB from the 
PCA, so that the PCB can be stored in the general 
register until JSR.40), and loads the SR with the 
contents of the specified register. JSR.lO transfers 
the SR to the BR, which is the register that holds 
data to be transmitted during external data trans­
fers, and loads the DR with the contents of general 
register 6, the Stack Pointer (SP). JSR.20 decr­
ements the SP by 2 (to allocate a word at the top 
of the stack for the data to be stored); the new 

value is stored in the SP and in the DR for use in 
the external data transfer started in JSR.30. JSR.40 
transfers the contents of the PCB to the specified 
general register and loads the PCB from the PCA. 
The data transfer begun in JSR.30 is completed in 
this state. 

Move From Previous Space Instructions 
The MFPI or MFPD instruction transfers data 
from the destination address to the hardware stack; 
it acts like a "push" instruction. If Memory Man­
agement is on, the address space from which the de­
sination data is taken may differ from the address 
space that the data is pushed into, but this does not 
affect the operations within the processor .. The 
MFP .00 state is entered with the data to be trans­
ferred in the BR; this state loads the condition 
codes and loads the SR from the hardware stack 
pointer. The MFP.80 machine state is entered if the 
destination mode is 0; this implies that the data is 
in a general register. This data is loaded into the 
DR while the bus operation started by the IRD.OO 
machine state is aborted. The MFP.90 machine 
state transfers the DR to the BR and loads the SR 
from the stack pointer. The sequence for destina­
tion mode 0 then joins the sequence for the other 
address modes in MFP.lO. This state decrements 
the SR (which contains the SP). SVC.80 and 
SVC.90 (Flows 13) complete the instruction by 
pushing the data onto the stack. 

1.2.5.11 FLOWS 12 and 13 - Flows 12 and 13 
show the abort, trap, interrupt and floating-point 
service routines. The abort, trap and interrupt se­
quences are described in Chapter 6. 

Floating-Point Instructions 
When the execution of a floating-point instruction 
by the FPP has been initiated, the processor enters 
a floating-point service sequence, beginning with 
FSV.20 (floating-point service). When this state is 
entered, the DR contains a destination address and 
the floating-point instruction has been transferred 
to the FPP. FSV.20 performs no operations; the 
BRQSTROBE is required only for the last state pre­
ceding the instruction fetch sequence. The processor 
waits, repeating FSV.20, until the FPP sends a syn­
chronization signal, and then performs a bus trans­
fer if the FPP requests one, or returns to the 
instruction fetch sequence if no operation is 
required. 

11-1-30 

( 

( 

( 

( 



If an external data transfer is required, the FPP 
sends a request at the same time as the FPSYNC. 
The transfer may be in either direction; from the 
FPP to the external storage locations, or from stor­
age to the FPP. In FSV.OO, the FPP supplies the 
bus control signals and a bus operation is started 
using the address in the DR. The BR is loaded 
from the internal bus, in case the FPP is supplying 
a word of data for transmission to a storage loca­
tion; if this occurs, the bus control signals supplied 
by the FPP also gate the contents of the BR to the 
external bus. 

FSV.lO completes the bus operation and loads the 
BR from the external bus, in case the operation is a 
transfer to the FPP. If the transfer is to the FPP, 
the data is gated from the BR onto the internal bus 
for use by the FPP, and the FPP can read the data 
when the FPATTN signal is transmitted. The DR 
is updated in case the FPP requires additional 
words of data. The general register specified in the 
instruction, from which the DR was loaded, is not 
accessed because the general register was updated 
by the total amount necessary during the destina­
tion address calculation states. After each transfer, 
the processor waits for the FPSYNC signal before 
proceeding. 

1.2.5.12 FLOWS 14 - Flows 14 shows the se­
quences for manual Console operations. These oper­
ations are described in Part III of this manual 
(Console). 

1.2.6 Following an Instruction Through the 
Flowcharts 
To follow a particular instruction through the flow­
charts, it is necessary to know which machine state 
sequences apply to that instruction in the particular 
state of the processor (specifically, which machine 
state will be entered from various fork decision 
points). 

The tables and diagrams in this paragraph are de­
signed to help determine the exact sequence of ma­
chine states for a particular instruction. Starting 
with either the binary code, or the symbolic name 
of the instruction, the machine state entered from 
each decision point, and what branches are taken at 

some of the primary branch points within the se­
quences shown can be determined. 

1.2.6.1 Figures and Tables - Figure 1-10 shows the 
correspondence between binary op codes and in­
struction mnemonics. 

1. Starting with the most-significant bit of 
the instruction code, look down the cor­
responding column of Figure 1-10 to 
find the number that matches the value 
of that bit in the instruction. 

2. 

3. 

The horizontal line to the right of that 
number leads to another vertical col­
umn, for the next most-significant group 
of bits in the binary code. Look down 
that line to find the number that 
matches the value of the corresponding 
bit or bits in the instruction. 

Repeat Step 2 for each portion of the 
binary code until the last number is fol­
lowed by the symbolic name and struc­
ture of an instruction instead of a 
horizontal line. That instruction corre­
sponds to the given binary code. 

When the symbolic code for an instruction is 
known, the reader can find that instruction in 
Table 1-3 which specifies the machine state se­
quences used to execute that instruction. The table 
is in alphabetical order according to the mnemonic 
codes used for the instructions, and lists both the in­
struction classes, if any, and the machine states en­
tered from various decision points, when used. The 
instruction classes are groupings of the instructions 
according to properties of the execution sequences 
(e.g., I, P, and O/Class instructions perform a 
DATI, DATIP, or DATO bus transfer as the last 
transfer of the destination data fetch sequence). 
While the A Fork decision point is used by all in­
structions (the A Fork decision point follows the in­
struction fetch sequence and is, in effect, the 
instruction decoding system), not all instructions 
use the B Fork or C Fork decision points; those 
which do not are indicated by entry "N.V." in the 
appropriate column. 

11-1-31 



Table 1-3A 
Instruction Microprogmm Properties 

Instruction Class 
I 

A Fork BFork C Fork Instruction Class A Fork BFork C Fork 

ADC.B P,E,DAC 
I 

See Table 1-3B EXC.OO (11) N.U. 

ADD: -SMO P,E,BIN See Table 1-3B EXC.OO(l1) See Table I-3D 

JMP -DMO J, FJ, DAC See Table 1-3C JMP.OO (11) N.U. 
DMO RSD.00(3) N.U. N.U. 

SMO P, E; BIN, DAC See Table 1-3C EXC.OO(l1) N.U. JSR -DMO J, FJ, DAC See Table 1-3C JSR.OO (11) N.U. 

ASH -DMO DAC See Table 1-3C ASH.00(7) N.U. 
DMO DAC 

! ASH.IO(3) ASH.OO (7) N.U. 

DMO RSD.00(3) N.U. N.U. 

MARK None MRK.00(2) N.U. N.U. 

ASHC -DMO DAC See Table 1-3C ASC.OO (7) N.U. 
DMO DAC I ASC.I0 (3) ASC.00(7) N.U. 

MFP -DMO I,DAC See Table 1-3C MFP.OO (11) N.U. 
DMO I,DAC MFP.80(3) N.U. N.U. 

r 

ASL.B P,E,DAC . See Table 1-3C EXC.OO (11) N.U. MOV -SMO O,E, BIN See Table 1-3B N.U. See Table I-3D 

ASR P,E,DAC See Table 1-3C EXC.OO(l1) N.U. 

ASRB DRO(O) P,E,DAC See Table 1-3C EXC.OO(l1) N.U. 
DRO(1) P,E,DAC See Table 1-3C SHR.OO(l1) N.U. 

SMO 0, E, BIN, DAC See Table 1-3C N.U. N.U. 

MOVB -SMO P,BIN See Table 1-3B EXC.OO (11) See Table I-3D 
SMO P,BIN,DAC See Table 1-3C EXC.OO (11) N.U. 

( 

Branch Instructions: BCC (BHIS), BCS (BLO~, BEQ, BGE, BGT, BHI, BHIS - See Table 1-3E 

BIC.B -SMO P,E,BIN See Table 1-3B EXC.OO(l1) See Table I-3D 
SMO P, E, BIN, DAC 

I 
See Table 1-3C EXC.OO(l1) N.U. 

MTP 0 MTP.OO (1) N.U. See Table I-3D 

MUL -DMO I,DAC See Table 1-3C MUL.OO (8) N.U. 
DMO I,DAC MUL.80 (3) MUL.OO (8) N.U. 

BIS.B -SMO P,E,BIN See Table 1-3B EXC.OO(l1) See Table I-3D 
SMO P, E, BIN, DAC See Table 1-3C EXC.OO(11) N.U. 

NEG.B -DMO P,DAC See Table 1-3C NEG.OO(l1) N.U. 
DMO P,DAC NEG.70(3) N.U. N.U. 

BIT.B -SMO I, E, BIN I ., See Table 1-3B TST.IO (11) See Table I-3D RESET None RES.00(3) N.U. N.U. 

SMO I, E, BIN, DAC ! See Table 1-3C TST.I0 (11) N.U. ROL.B P,E,DAC See Table 1-3C EXC.OO(l1) N.U. 

Branch Instructions: BLE, BLO, BLOS, BLT; BMI, BNE, BPL - See Table 1-3E ROR P,E,DAC See Table 1-3C EXC.OO(l1) N.U. 

BPT(OP3) None ! TRP.00(3) N.U. N.U. RORB DRO (0) P,E,DAC See Table 1-3C EXC.OO(ll) N.U. 

Branch Instructions: BR, BVC, BVS - See Table 1-3E 
I 

DRO (1) P,E,DAC See Table 1-3C SHR.OO (11) N.U. 

CCOP None I CCP.OO(3) N.U. N.U. 

CLR.B P,E,DAC See Table 1-3C EXC.OO (11) N.U. 

RTI None RTI.OO (2) N.U. N.U. 

RTS None RTS.00(2) N.U. N.U. 
I 

CMP.B -SMO I,E, BIN 
I See Table 1-3B TST.10 (11) See Table I-3D I 

SMO I, E, BIN, DAC I See Table 1-3C TST.10(11) N.U. 
! 

COM.B P,E,DAC See Table 1-3C EXC.OO (11) N.U. 

RTT None RTI.OI (2) N.U. N.U. 

SBC.B P,E,DAC See Table 1-3C EXC.OO(l1) N.U. 

SOB None SOB.00(2) N.U. N.U. ( 
DEC.B P,E,DAC See Table 1-3C EXC.OO (11) N.U. SPL None SPL.OO (3) N.U. N.U. 

DIV ~DMO I,DAC See Table 1-3C DIV.00(9) N.U. SUB -SMO P,E,BIN See Table 1-3B EXC.OO (11) See Table I-3D 

DMO I,DAC DVS.OO(3) DIV.00(9) N.U. SMO P, E, BIN, DAC See Table 1-3C EXC.OO (11) N.U. 

EMT None RSD.OO(3) N.U. N.U. SWAB P,E,DAC See Table 1-3C EXC.OO(l1) N.U. 

Floating Point: F,FJ : SXT P,E,DAC See Table 1-3C EXC.OO(l1) N.U. 

-FPPRESENT RSD.OO(3) N.U. N.U. 
FP PRES*-DMO FOP.OO(2) FOP.40 (7) See Table I-3D 
FPPRES*DMO FOP.OO (2) FOP.40(7) FOP.50 (4) 

TRAP None RSD.00(3) N.U. N.U. 

TST.B I,E,DAC See Table 1-3C TST.I0 (11) N.U. 

HALT None HLT.OO (3) N.U. N.U. WAIT None WAT.OO (3) N.U. N.U. 

INC.B P,E,DAC See Table 1-3C EXC.OO (11) N.U. XOR P,E,DAC See Table 1-3C EXC.OO(l1) N.U. 

lOT None 
1 

I TRP.OO(3) N.U. N.U. 

I 

11-1-32 



( 
Destination Mode 

0 

( 
2 

3 

4 

5 

6 

7 

Table I-3D 
A Fork, BINoto-SMO 

Source Mode Machine State 

1 
2 
3 
4 
5 
6 
7 

SRO 

0 
I 

0 
I 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

Table I-3D 
C Fork, BIN 

S13.00 (1) 
S13.01 (1) 
S13.01 (1) 
S45.00 (1) 
S45.00 (I) 
S67.00 (2) 
S67.00 (2) 

Machine State 

OP7:007.10 (4), -OP7:000.90 (4) 
OP7:007.00 (4), -OP7:000.80 (4) 

012.80 (5) 
012.90 (5) . 

012.80 (5) 
012.90 (5) 

030.80 (5) 
030.90 (5) 

045.80 (6) 
045.90 (6) 

045.80 (6) 
045.90 (6) 

067.80 (6) . 
067.90 (6) 

067.80 (6) 
067.90 (6) 

\.. 

Instruction 

Bee 
BeS 
BEQ 
BGE 
BGT 
BHI 
BHIS 
BLE 
BLO 
BLOS 
BLT' 
BMI 
BNE 
BPL 
BR 
BVe 
BVS 

Destination Mode 

o 

I 
2 
3 
4 
5 
6 
7 

Table 1-3C 
A Fork,DAC 

Ma4hine State 

(OP7 t B~R.Q):EXC.90 (3), 
-(OP7 + RQ):EXC.80 (3) 
012.00 (5 
012.00(5~ 
030.00(5~ 
045.00 (6) 
045.01 (6) 
067.00 (6~ 
067.01 (6) 

Table 1-3E 
Branches 

(All Cycles on FlowS 1) 

Branch Successful Branch Not Successful 
BRQPresent BRQ Not Present BRQPresent BRQ Not Present 

BXX.03 BXX.OO PET.OI PET.lI 
BXX.04 BXX.Ol ! PET.03 PET.13 
BXX.05 BXX.02 . , PET.03 PET. 13 
BXX.03 BXX.OO i PET.02 PET.12 
BXX.03 BXX.OO I PET.02 PET.12 
BXX.03 BXX.OO l PET.OI FET.II 
BXX.03 BXX.OO PET.OI PET.II 
BXX.05 BXX.02 , PET.03 PET.13 

~ 

BXX.04 BXX.O! PET.03 PET.!3 
BXX.04 BXX.OI PET.03 PET.13 
BXX.05 BXX.02 PET.03 PET. 13 
BXX.04 BXX.OI PET.03 PET. 13 
BXX.03 BXX.OO PET.02 PET. 12 
BXX.03 BXX.OO PET.OI PET. 11 
BXX.05 BXX.02 , (always successful) 

i 
BXX.03 BXX.OO i PET.OI PET.II 
BXX.04 BXX.OI PET.03 PET. 13 

; 
. 

1I-1-33 



IR 
15 

o 

IR 
14-12 

IR IR IR IR IR 
11-09 08 07-06 05-03 02-00 

O _______ l-rPc~PCtNDPSCH~G? (~ROFO:::--0_==_l?Fl;-~m"l 
1 0 BNE OFFSET 2 } 2 RTI , I 1 BEC OFFSET 3 3 BPT 

r- - - - - ~ 2--------.1 0 BGE OFFSET 1 JMP OST 4 RESERVEO 4 IOT I 
I DOUBLE OPERAND I 1 BL T OFFSET . 5 5 RESET 

(1 OF 2) I 3--------. 0 BGT OFFSET 6 6 RTT 
I 1 BLE OFFSET . 7 7 RESERVEO I I 1 MOV SRC, DST I 4 JSR REG, DST 2 0 RTS REG 

_________ -----~ 1 RESERVEO , 

I 2 CMP SRC,DST --------- ------,. 2 RESERVED I SINGLE OPERAND (1 OF 2) 1 3 SPL PRIORITY 

I 3 BIT SRC DST I 3 SWAB DST I';} I , ,5 1 01 I 0 CLR DST 6 CCOP MICROINSTRUCTION 

I 4 BIC SRC DST 1 COM DST I 1 7- J , " § 5~g 8H I L..: _______ _ 

I 5 BIS SRC,DST I I 0 NEG DST 

2 SBC DST I 1 ADC DST I 

~A~ SRC,~.J I 3 TST DST 

r 
I , 
I 
I 
I 
I 

'

6 1
0 I?~g~m I 

2 ASR DST 
3 ASL DST I 

L 7 RESERVED 1 0 MARK OFFSET --- - - ---:;-, l' MFPI SRC 
rREGiSTERAND OPERAND - - -., 2 MTPI DST , 
I I 1_ L 3 SXT DST 

7------n 0 MUL REG, SRC - - - - --. 
1 DIV REG, SRC I 

I 2 ASH REG, SRC 
3 ASHC REG, SRC 
4 XDR REG, SRC I I 5 RESERVED 
6 RESERVED 

L ~O~R~:_.o~T _____ -1 
rP"c A'Nm CHANGE 120F2)--, 

D-------+-.., 0 I? ~~~ gmH I 
I --------. 0 BHI OFFSET 

___ ::::::1 ____ ----.1 1 BLOS OFFSET I 
DOUBLE OPERAND I' 2 I? ~~~ gmn I 
(2 OF 2) 3 I? ~~6S g~~~g ((~g~» 
1 MOVB SRC, DST ,I 4 I 0 EMT CODE J ______ 1~~~ __ 
2 CMPB SRC, DST I 

'Si'NGLE O'PERAND(2 OF 2) - - - - - -', 
3 BITB SRC,DST II 5 1 0 I 0 CLRB DST 

1 COMB DST 
4 BICB SRC,DST , 2 INCB DST I I 3 DECB DST 

5 BISB SRC,DST , 1--------~1 0 NEGB DST I 1 ADCB DST I 2 SBCB DST 
_6 SU_B _SRC,DST.J I 3 TSTB DST , 6, 0 I 0 RORB DST I 1 ROLB DST I 

2 ASRB DST 
3 ASLB DST 

, 1 0 RESERVED , l ' . MFPD SRC 
1 1 2 MTPD DST I 
L...: 2....R~R~ _______ ~R~~ _ ---l 

rTI-OATING POiNT l 
SINGLE OPERAND 

fFLOATINGPOINToP'EFi'ATE--l 

I 
I , 

7--------,0-----,10 , 0 01 0~:1 II ~ §¥~~~ g~f I I 
3 STST DST 

1 ----------lL.., 0 CLR (FlO) FDST I I 
FLOAT INGPOI NTAc AND OPERAND1' I ~ ~~~ IVtg\ ~g~TU 

CFCC 
SETF 
SETI 
LDUB 
LDSC 
STAO 
MRS 
STCO 1--------.0 MUL(F/D) AC,FSRC IL~N~~~T I 6 

2 0 ADD (FlO) AC, FSRC I 3 2 SETL 
1 LD (FlO) AC, FSRC I 4 3 

3 0 SUB (FlO) AC, FSRC I 5 4 

I 
I 
I 

1 MOD (FlO) AC,FSRC ~Il SETD 

_____ ~ ,. CMP(F/D) AC, FSRC I 6 5 
4 0 ST(F/D) AC, FDST 7 6 

I 1 DIV(F/D) AC, FSRC I . , 7.J 
5 0 STEXP AC, DST L-:-, L _______ _ 

1 STC (F/D)(I/L) AC, DST I 6--------.0 STC(F/D)(D/F) AC, FDST I 
1 LDEXP AC, SRC 

L 7--------. 0 LDC(I/L)(F/D) AC, SR~~ I 
____ I~D~D~F2....A~S!!:.J 

Figure 1-10 Determination of an Instruction from the Binary Code 

11-1-34 

11-0789 

( 



( 

( 

Whenever possible, the entry for each active deci­
sion point specifies a machine state by its symbolic 
name, with the number of the flowchart where that 
state is illustrated in parentheses. If a particular ma­
chine state depends on additional conditions, those 
conditions are shown preceding the corresponding 
machine state and are separated from the state by a 
colon. 

To follow an instruction through the Flows with 
Table 1-3, execute the following steps: 

1. Find the instruction symbolic name in 
the INSTRUCTION column (Table 1-
3A). 

2. Go to the A Fork cycle shown under "A 
Fork" and follow the Flows until a B or 
C Fork, if any, is found. 

3. Go to the B or C Fork cycle shown in 
Table 1-3A. Repeat Steps 2 and 3 if the 
instruction uses both the Band C Forks. 

4. Determine the type of execute cycle from 
the CLASS column of Table 1-3. 

A sample instruction is taken through the Flows, us­
ing this documentation, in Paragraph 1.2.6.2. 

1.2.6.2 An Instruction Example - This paragraph 
traces one instruction through a sequence of ma­
chine states to illustrate the process of finding each 
machine state and using the flowchart and ROM 
map information to understand the operations per­
formed by the processor. The example instruction 
and the environment in which it is executed is 
shown in Figure 1-11. 

The instruction is a CMP, which subtracts the desti­
nation word from the source word and uses the re­
sult to set the condition codes. These may then be 
used by arithmetic and logic conditional branches. 

001000 022767 000015 000100 

(11<:11106 000000 

Its Source mode is 2 (SM2) and its source field (reg­
ister) is 7 (SF7). After the Fetch cycles. the PC (reg­
ister 7) contains 1002. This value is the address of 
the operand. A DATI is performed; it reads loca­
tion 1002 which contains 15, the source operand. 

The Destination mode is 6 (DM6) and the destina­
tion field is 7 (DF7). The PC contains 1006 after 
the source operand fetch. The destination operand 
is stored in the location whose address is the sum 
of the present PC (1006) plus the contents of the in­
dex word, whose address is 1004. The index word 
equals 100, and the d,estination operand is at loca­
tion 1106. Two DA TIs are required to obtain the 
destination operand: the first reads the index word, 
the second reads the operand. 

Immediately before the processor begins the ma­
chine state sequence for· this instruction, the Pro­
gram Counter (PC) contains the value 1000(8), the 
processor status word contains the value 000340, 
there are· no bus requests or other asynchronous 
conditions, and the processor is about to enter the 
FET.OX machine state. In this state, a DATI bus 
operation is begun, using the contents of the PC as 
the address. 

FET.IX 
Assuming that no requests have been strobed into 
the request register (refer to Chapter 6), the next 
machine state entered is FET.IX. In this state, the 
PC is updated (the new value is loaded into the 
PCA and does not disturb the PCB, which is still 
being used for the address in the data transfer) and 
the word that is read is loaded into the IR and BR. 
Thz PCA now contains 1002, the IR and BR con­
tain 022767, and the PCB still contains 1000; fi· 
nally, after the bus operation is completed, the PCB 
is updated to 1002. 

IRD.OO 
The third machine state entered is IRD.OO. In this 
state, the A Fork logic is enabled. According to Fig­
ure 1-10, the binary number in the IR represents a 

CMP #15, CHAR 

Figure 1-11 Instruction Execution Example 

11-1-35 



CMP instruction; the entry for this instruction in 
Table 1-3A refers to Table 1-3B, which indicates 
that for a source mode of 2 (as specified by the 
third octal digit of the instruction), the next ma­
chine state is SI3.01. Since both the source and des­
tination fields are 7, the IRD.OO machine state also 
loads the SR and DR with the updated PC value 
(1002). Since CMP is a binary instruction and its 
source mode is 2, RACH BUST is not asserted in 
IRD.OO (CONDITIONAL BUST, refer to Para 
graph 1.2.5.1). 

Source Operand 
In S13.01 the DATI is started, using the contents of 
the SR as the address. The contents of the SR 
(1002) are incremented by 2, and this value is writ­
ten back into the PCA and PCB, which now con­
tain 1004. 

The fifth machine state entered for this instruction 
is the S13.10 state. In this state, the DATI is com­
pleted, with the data that has been read-loaded into 
the BR register. The new contents of the BR are 15 
(the contents of the word following the instruction, 
which is the source operand). The DR is loaded 
with the updated contents of the register specified 
by the destination field of the instruction (because 
this is register 7, the DR is loaded from the PCB); 
the new contents of the DR is 1004. 

Destination Operand 
For a source mode of 2, the branch condition in 
S13.1O enables the Fork C logic. The entry for the 
CMP instruction in Table 1-3A refers to Table 1-
3D, which indicates that, for a destination mode of 
6 and the least significant bit of the SR equal to 0 
[SRO(O)=even address], the next machine state is 
D67.80, which is shown on Flows 6. This machine 
state transfers the contents of the BR (=source op­
erand) to the SR, and begins the third DATI bus 
operation, using the contents of the PCB as the 
address. 

The next machine state is D67.00, which completes 
the third DATI and increments the PCA by 2. Be­
cause the DR is intended to reflect the current con­
tents of the specified register, the DR is updated to 
reflect the new value in the PC, which is 1006. The 
data read into the BR is 100. This is the index 

word, which when added to the destination mode 
register (R 7 or the PC), is the address of the desti­
nation word. 

Following the D67.0 state, the processor enters the 
D67.1 state, where the PCB is loaded from the 
PCA and the contents of the BR is added to the 
contents of the DR. The result (1106) is the index 
word and is loaded into the DR. The branch condi­
tion in this machine state selects the DIO.3 state to 
follow the D67.1 state (-DM357). 

I n the D I 0.3 machine state, the processor begins a 
fourth bus operation, using the contents of the DR 
(1106) as the address. The type of bus operation 
performed depends on the instruction class, accord­
ing to Table 1-3A. A CM P instruction is an I/Class 
instruction, so a DATI operation is begun. This ma­
chine state also loads the BR from the SR, so that 
both registers contain 15. 

The next state entered depends on the instruction 
class. A CMP instruction is not F, J, or O/Class, 
so the D10.60 state is entered. This state completes 
the fourth DATI operation, loading the contents of 
the location addressed by the DR (location 1106) 
into the BR. This word is the Destination Operand, 
which equals O. 

Execute 
The D 10.60 machine state branch con dition enables 
the B Fork logic [DRO(O)]. The entry for a CMP in­
struction in Table 1-3A indicates that the next ma­
chine state is TST.1O (Flows II). 

The CMP instruction does not alter any data 
words, so no further bus operations are required. 
The TST.IO machine state performs instruction-de­
pendent ($ on Flows) data operations and condi­
tion-code loading. 

Flows II shows that the arithmetic operation is per­
formed with the A operand = BR (destination 
word) and B = SR (source word). The ALU Con­
trol ROM Map on drawing GRAK shows that for 
eM P. B, the operation is A - B-1, and that the 
SHFR does not change the result (except in the 
case of an odd byte operation, in which case the 
bytes are swapped). 

11-1-36 

( 



I n this example, the following operation is executed 
by the ALU: 

A input: a 000 000 000 000 000 
B input: -0 000 000 000 001 101 

1111111111110011 
minus 1: -0 000 000 000 000 001 

Result (to SHFR): 1111111111110010+carry 

The condition codes are then set as shown by 
the CC Control ROM Map on drawing IRe]: 

N is set if "SHFR(1S)O" (SHFR bit IS=O). 

Z is set if "A= B(1S:OO)" (four-input gate to 
IRCF Z DATAl L). 

V is set if "A IS*-B JS*-ALU1S+-A1S*B1S*ALU 
15" (bottom two inputs to the lower IRCE 
VDATA L 74S6S: A=AMX, B=BMX). 

C is set if "ALU COUT IS" (DAP] ALUCN 
L). 

I. The N bit is cleared, since bit I S of the 
SHFR is 1. 

2. The Z bit is cleared, since the output of 
the ALU is not O. 

3. The V bit is cleared, since AIS and BIS 
(AMX bit 15 and BMX bit IS) are the 
same. 

4. The C bit is set, since there IS a carry 
from ALU bit IS. 

NOTE 
The arithmetic and the Nand 
C condition code load oper­
ations are the opposite of 
those described in the PDP-
11/70 Processor Handbook. 
The instruction, however, per­
forms as specified in the 
Handbook. 

1.3 ROM MAP 
Refer to drawing D-CS-M8133-0-1, ROM & ROM 
CONTROL, sheets 12 - IS. 

These four drawings list all the ROM states in nu­
merical order. The following information is 
provided: 

I. I n the ST ATE column, the name by 
which the state is called on the Flows. 

2. In the FLOWS column, the sheet of the 
Flow Diagrams on which the ROM state 
is shown. 

3. In the ADR column, the ROM address 
of the state. 

4. In the BRK - ALU columns, the value 
of each of the ROM fields for each 
state. 

S. In the FEN column, the fork that is en­
abled, if any. 

6. In the BEN column, the branch that is 
enabled, if any. 

7. In the UAD column, the base address 
for the next ROM state, which may be 
modified if the FEN or BEN fields are 
other than O. 

1.4 ROM ADDRESS 
Refer to Figure 1-12. The ROM Address Register 
(RAR), which is clocked at T3, determines the out­
put of the ROM for the next cycle and supplies the 
address for the next cycle. It also supplies the ad­
dress for the Memory Management ROM (refer to 
Section IV). 

The input to the RAR [RACL RADR(07:00) H] is 
the address selection logic shown on RACL. The 
following are inputs to this logic: 

I. The UADR field of the ROM. In the ab­
sence of any of the modifying signals, 
this is the ROM address for the next 
cycle. 

2. The Branch inputs, which are controlled 
by conditions occurring in the rest of the 
processor logic. 

11-1-37 



PAR.1.4.4 

EXTERNAL .... BRANCH .... 
LOGIC 

CONDITIONS ... .... 
RACK 

PAR.1.4.5 PAR.1.4.6 

AFIR .... A FORK ..f\ 
RACJ,H 

.... RACE, F, H .... 

TI --.J PAR.1.4.B 
PAR.1.4.5 

.... B FORK '\ 

.... 
IRCB 

V 
IR 

PAR.1.4.7 

10.. C FORK '\ 
.... V 

IRCA lRCC 

J1 .... 
"'I 

---,I 

Figure 1-12 

3. The Fork logic, which is controlled by 
the instruction word there are three 
Forks: 

a. The A Fork, used by all instruc­
tions, is the instruction decoder for 
the KBII-B. 

b. The C Fork, which is used only by 
binary instruction that require ad­
dress calculation (SM not 0) 

c. The B Fork, which is used for exe­
cute cycles by instructions that re­
quire either source or destination 
address calculation, or both. 

Figure 1-12 lists both the paragraph and the logic 
drawings containing information about the ROM 
address generation. 

PAR.I.4.2 

RADR 

I > 

RACL 

ROM Address 

TO MEMORY 
MANAGEMENT ROM 

PAR. 1.4. I 
/~ 

PAR. I. I 

ROM 

RAR - u... -
--". 

UADR -

RACA 
RACA RACB 
RACC RACC 
RACD RACD 

T13 

11-3106 

1.4.1 ROM Address Register (RAR) 
There are three identical copies of the RAR. Refer 
to drawings RACA through RACD. In addition to 
the two copies (RARB and RARA) used to provide 
sufficient fanout for the 16 ROM ICs, a third copy 
(RAR, shown on RACD) is used to transmit the 
current microprogram word address to the Memory 
Management ROM (refer to Section IV of this 
manual). 

The RAR is normally loaded from inputs generated 
by the microprogram address selection logic shown 
on drawing RACL. Under some circumstances, the 
RA R is forced to address 200 by clearing all but 
the most-significant of the eight bits, and setting 
that bit. To permit setting the most-significant bit, 
it is implemented by a separate flip-flop. The re­
maining seven bits are implemented by 6-bit regis­
ters of the same type used for the ROM output 
buffer. 

11-1-38 

( 

( 

( 

( 

( 



( 

( 

RACA ZAP L is the signal used to force the pro­
cessor into a known state to start the processing of 
aborts and of the power-up sequence. The condi­
tions that can generate this signal are: 

I. Power-up sequence or start sequence 
(ROM INIT) 

2. Parity error abort, which is flagged 
UBCB PE ABORT during the micro­
program cycle which follows a pause 

3. All other aborts (TMCC ABORT), 
which are flagged during a pause cycle 
(RACB UBSOOI). 

PE ABORT and ABORT are gated with TIGO 
TS2 L, which remains asserted longer than the 
pulse TIGC T3 L that clocks the RAR, and ensures 
that the ZAP signal overrides the normal address. 

ROM INIT and ABORT are described in Chapter 
6 of this manual. 

1.4.2 RO M Address Selection 
Refer to drawing RACL. RAOR(07:00) are the in­
puts to the RAR. An address bit is asserted (high), 
when all four of the negative-input-OR gates have 
at least one low input. 

On all RAOR 74S64 gates, there are four input OR 
gates. Three of these gates are used for the forks, 
one gate each for the A, Band C Forks. The 
fourth gate is the OR of the ROM UAOR field bit 
and of the Branch Enable Bit (BRCAB) for that bit 
position. Since there is no branch enable for bit 3, 
the gate for RAOR03 has only one input, 
UAOR03. 

I. When all three fork inputs are negated, 
the OR gate inputs for the forks are low. 
The inputs to the fourth gate then deter­
mine the state of the address bit: if ei­
ther or both UAOR and BRCAB bits 
are asserted (low), the RAOR bit is as­
serted (high). 

2. Only one of the three UFEN bits is ever 
asserted at one time (in a microprogram 
word). When one of these bits is as­
serted, its input to its RAOR,. OR gates 
is high, and this OR gate is asserted if 
one or more of their fork logic input sig­
nals is asserted (low). In this case, the 
RAOR bit is asserted (high). 

From the above, it can be seen that: 

I. A branch can assert an RAOR bit for 
which the UAOR is not asserted; 

2. Any Fork can negate an RAOR bit for 
which the UADR bit is asserted. For ex­
ample, if UAOROO is asserted (low) and 
the A Fork (lower gate) is enabled, 
RAOROO is negated if none of the AO, 
AI, A2 RABOO signals are asserted 
(low). The A Fork has an address of 
377, or all eight UAOR bits asserted; 
any combination of these could be ne­
gated to generate any address between 
000 and 377. 

Fork Inputs 
The A Fork input, RACO UAFEN L is 
unconditional. 

The C Fork input, RACO UCFEN L, is disabled 
by BENI4 if the source mode is 3, 5 or 7. This 
branch occurs during source mode operand fetch 
when one more bus cycle is required to fetch the 
source operand. Refer to Flows 1, SI3.10 and 
Flows 2, S67.30: if -SM357, the next cycle starts the 
OM operand fetch on the C Fork; if SM357, both 
cycles fetch the operand in SI3.20 - S13.40 and 
then go to the C Fork. 

The B Fork input, RACO UBFEN L, is disabled 
by one of two conditions, both shown at the bot­
tom of Flows 6: 

I. BENI5. If the instruction is FJ/c1ass, it 
goes directly to the B Fork for execu­
tio n; if it is not F J / class, it branches to 
one of two cycles, depending on whether 
or not it is 0/ class, to complete its desti­
nation operand fetch. 

2. BEN05. An instruction that is neither 
0/ class nor F J / class goes to the B Fork 
if its destination address is not an odd 
byte. If it is an odd byte [ORO(l) or 
GRAB OBO] it first branches to 012.30 
to swap bytes in the BR, and then goes 
to the B Fork. 

1.4.3 Branches and Forks 
Normally, the address of the next microprogram 
word is derived from the contents of the micro­
address field (UA DR) in bits 7 - 0 of the current 

II-1-39 



microprogram word. Two Branch selectors allow 2-
way or 4-way branches on the conditions of various 
processor circuits and on the contents of various 
data registers. For most decision points encoun­
tered during the flow of machine states, this branch 
capability is sufficient. 

I n certain situations, particularly after an instruc­
tion or data has been fetched by a state sequence 
that is common to many instructions, it is necessary 
to select a next machine state that is unique to one 
or a small class of instructions. This requires a 
much wider branching capability. In the KBII-B 
Processor, this capability is provided by the Fork 
logic. Each of three forks generates one of a large 
number of possible addresses, based on the decod­
ing of the instruction, the address modes, and vari­
ous processor status indications. When a fork is 
enabled by the corresponding fork-enable bit of the 
microprogram, the address generated by the fork is 
loaded into the ROM address register instead of 
the contents of the microaddress field. 

1.4.4 Branch Logic 
The processor is controlled by words fetched from 
a microprogram ROM; each word represents a ma­
chine state. The sequence of machine states is con­
trolled by the sequence of ROM words fetched. 
Normally, each ROM word contains the address of 
the next word to be fetched. When it is necessary to 
provide for alterations in the sequence of machine 
states, two bits of the address contained in the cur­
rent ROM word can be altered by inputs that sense 
processor conditions and data values. The altered 
bits select different addresses, depending on their fi­
nal values, so that up to four different addresses 
can be selected. This 4-way branch permits a wide 
variety of machine state sequences to use the same 
microprogram words. 

The two bits that can be altered by branch condi­
tions are bits 5 and 4 of the microprogram address. 
Therefore, when a branch is used, the addresses se­
lected for different conditions differ by 20, 40 or 
60. There are 16 sets of branch conditions. One of 
the 16 sets is selected by the four branch-enable bits 
in the current microprogram word. 

The Console branch (Flows 14) can modify bits 7, 
6 and 2:0; it is not included in the explanation that 

follows, but is described in Section III (Console) of 
this manual. 

RACK BRCAB(05:04) L are the outputs of the 
branch logic; each signal is ORed with the corre­
sponding bit of the microprogram address from the 
current ROM word on one of the input gates to 
RACL RADR(05:04). When the 4-way branch is 
used, bits 5 and 4 of the U AD address are both ne­
gated (high), and the two branch signals select one 
of four addresses. If only a 2-way branch is desired, 
one of the UAD address bits is asserted (low), and 
the corresponding branch bit is ignored, because 
the result of the OR is always asserted. 

Refer .to drawing RACK. BRCAB05 Land 
BRCAB04 L are both generated by identical logic 
circuitry, which consists of two multiplexers and a 
4-input AND-NOR gate. UBEF(03:00) controls the 
circuit. 

UBEF03 selects the multiplexer: when this signal is 
not asserted, the top multiplexer is enabled and the 
lower one disabled. The opposite occurs when 
UBEF03 is asserted. 

UBEF(OI :00) selects which input to each half of the 
multiplexer IC is selected. Each IC has two 
outputs. 

UBEF02 selects which of the two outputs of the 
multiplexer selected by UBEF(OI :00) is gated 
through the BRCAB gate. 

When UBEF(03:00) = 00, the D1 inputs to the top 
multiplexers are selected. Since these are both 
ground, BRCAB(05:04) are both negated (high), 
and the corresponding ROM address bits, RACL 
RADR(05:04) follow the UADR(05:04) inputs, i.e.: 
the address is not modified.The same is true for 
UBEF = 14, which is the Console branch. 

Table 1-4 shows the inputs for each branch. 

1.4.5 Instruction Registers 
The instruction word is read from memory during 
FET.IO. It is clocked into the Instruction Registers 
at T1 of IRD.OO; this is shown as T6 of FET.IO on 
the Flows. 

11-1-40 

( 

( 

( 

( , 



UBEF RACK BRCAB 05 L 
Value 

00 GROUND 

01 IRCD DM357H 

02 IRCF Z2 (1) H 

03 GRAJSC = OL 

04 GRAJ DIV SUB L 

05 GRAB OBD (0) H 

06 DAPA BR14 L 

07 UBCF REG DEP (1) H 

10 RACK SYNC BRC 10 (1) H 

( 
11 GRAJ SC = 0 L 

12 TMCA CONF (1) H 

13 TMCB PF(O) * (SF + TF) H 

14 GROUND 

15 IRCB FJ CLASS L 

16 GRADDROOH 

17 RACK SYNC BRCI0 (1) H 

Table 1-4 
Branch Signal Sources 

RACK BRCAB 04 L 

GROUND 

GRAE SR EQ ONE L 

TMCB (PWRF + INTR) L 

GRAJ SC05 L 

IRCH N (1) H 

GRAJ DIV QUIT L 

SSRA PS RESTORE (1) H 

TMCB BRQ * -(T + CONF) L 

RACK FP REQ H * 
RACK SYNC BRC 10 (1) H 

GRADDROOH 

TMCB BRQ TRUE L 

TMCB PF(O) * (SF + -TF) H 

GROUND 

IRCC 0 CLASS L 

GRAHSR15 H 

RACK SYNC BRC 10 (1) H * 
FRMF FP REQ WR H 

11-1-41 

Connnents 

No Branch 

BRCAB05: Disable B Fork ifOBD, 
Flows 6 

Service Flows, Flows 12 

Console Branch, Flows 14 
Disable C Fork ifSM357, Flows 1&2 

Disable B Fork if F/J Class, Flows 6 



There are two copies of the I nstruction Register 
(IR): 

I. 

2. 

RAC) AFIR(\5: 00) (1) H, which is 
used only by the A Fork logic for rea­
sons of speed. For this same reason, 
there is an extra copy of bits 9 and 10 
[RACH AFIR(IOA:09A) (1) HJ. 

IRCA IR(\5:00) (1) H, which is used by 
the Band C Forks, the Condition Code 
logic and the rest of the KB1I-B logic. 

Both copies of the IR are clocked at Tl when the 
UIRK bit of the microprogram field is asserted in 
FET.IO. 

1.4.6 A Fork Logic 

1.4.6.1 Decode Logic - Refer to drawing RACE. 
The logic illustrated on this drawing is part of the 
A Fork. This fork operates as the instruction deco­
der of the processor. Immediately after the instruc­
tion has been loaded into the Instruction Register 
(IR) the A Fork begins to generate an address. Be­
cause this address must be available within one ma­
chine cycle, the A Fork is designed to operate at 
maximum speed. Therefore, the amount of decod­
ing is minimized; classes of instructions are recog­
nized and the bits that differentiate members of the 
class are used directly as low-order bits of the gener­
ated address. This technique can be understood by 
examining the address utilization by the forks. As 
an example, consider the selection of addresses by 
the A Fork for the group of instructions ranging 
from HALT to RTT. The binary op codes for all 
these instructions are identical except for the three 
least-significant bits. When the A Fork decode logic 
recognizes that all but the three least-significant bits 
are 0, bit 3 of the ROM address is set, and the 
three least-significant bits of the op code become 
the three least-significant bits of the address. 

1.4.6.2 Address Bit Generation - The logic shown 
on drawing RACE generates address bits for cer­
tain classes of instructions. These bits are then 
o Red with other signals that generate the same bits 
for other classes of instructions to generate the A 
Fork address. The address is then combined with 

the address from the microprogram in a bit-clear 
operation as shown on drawing RACL. 

The signal names indicate the use of each logic cir­
cuit as follows: 

I. The fork signals that are connected to 
the microaddress logic on drawing 
RACL have names that include RAB 
(for ROM Address Bit), followed by the 
number of the address bit to which the 
signal is connected. 

2. I n some cases, a signal is connected to 
more than one address bit because the 
same conditions generate both bits. 

3. Many RAB signals are connected to the 
same address bit. They are distinguished 
by a letter that tells which fork generates 
the bit, and where more than one signal 
can be generated for the same fork. 
Thus, the signal RACE AO RABOO is 
one of several signals used by the A 
Fork logic to generate bit 0 of the 
address. 

Branch instructions are described separately in Para­
graph 1.4.6.4. 

Table 1-5 shows the RAB bits asserted by each in­
struction on the A Fork. 

1.4.6.3 Instructions Other Than Branch 

RACE AO RAB (02:00) 
RACE AO RABOO L, RACE AO RABOI L, and 
RACE AO RAB02 L are used to generate micro­
program addresses 001 - 007: No other A Fork bits 
are enabled when these gates are enabled. The en­
abling conditions for all three signals are identical, 
except that each signal corresponds to a different 
bit of the Instruction Register. The IR bits passed 
through the AND-NOR gates are the destination­
mode bits for instructions that require Destination 
Address Calculation (DAC), but no source address 
calculation. If the destination mode is 0, the destina­
tion data is in the Destination Register and no ad­
dress calculation is required. 

11-1-42 

( 

( 

( 

( 



( 

( 

This group of microprogram words is used for the 
following groups of instructions: 

I. All single-operand instructions (with op 
codes of 005XDD, 105XDD, 006XDD 
and I 06XD D); this includes the instruc­
tion group from CLR to ASL (in both 
word and byte forms), the variable ad­
dress-space moves, SXT, and XOR. 
These instructions are recognized by 
their op codes and generate the signal 
RACE RCLASS H. 

2. The register and memory instruction 
group, which includes MUL, DIY, ASH, 
and ASHC. When one of these instruc­
tions IS decoded, the signal RACE 
(MUL:ASHC+MFP) H is generated. 

3. Any binary instruction with a source 
mode of O. Because the source data is al­
ready in the Source Register, it is not 
necessary to do the source data fetch. 
These instructions generate the signal 
RACE BIN*SMO H. 

4. The three instructions JMP, JSR, or 
SWAB. These three instructions use the 
same address calculation as the single­
operand instructions. The signal RACE 
JMP + JSR + SWAB H is generated. 

The instructions that use AO RAB(02:00) are listed 
below: 

0001 DO 
0003 DO 
00 4R DO 
0050 DO 
0051 DO 
0052 DO 
0053 DO 
0054 DO 
0055 DO 
0056 DO 
0057 DO 
0060 DO 
0061 DO 
0062 DO 
0063 DO 
0065 SS 
0067 DO 

JMP 
SWAB 
JSR 
CLR 
COM 
INC 
DEC 
NEG 
ADC 
SBC 
TST 
ROR 
ROL 
ASR 
ASL 
MFPI 
SXT 

07 OR SS 
07 IR SS 
07 2R SS 
07 3R SS 
07 4R 00 
105000 
105100 
10 52 DO 
1053 DO 
1054 DO 
10 55 DO 
10 56 DO 
10 57 DO 
10 60 DO 
106100 
10 62 DO 
1063 DO 

MUL 
DIY 
ASH 
ASHC 
XOR 
CLRB 
COMB 
INCB 
DECB 
NEGB 
ADCB 
SBCB 
TSTB 
RORB 
ROLB 
ASRB 
ASLB 

IF SMO: 
01 SS DO 
02 SS DO 
OJ SS DO 
04 SS DO 
05 SS DO 
06 SS DO 

MOY 
CMP 
BIT 
BIC 
BIS 
ADD 

II SS DO 
12 SS DO 
13 SS DO 
14 SS DO 
15 SS DO 
16 SS DO 

MOYB 
CMPB 
BITB 
BICB 
BISB 
SUB 

RA CE AO RAB03 
RACE AO RAB03 L is generated for the following 
groups of instructions: 

I. Branch instructions accompanied by a 
Bus Request (BRQ); these instructions 
generate A Fork addresses ranging from 
330 - 336. Refer· to Paragraph 1.4.6.4. 

2. Op codes 000000 - 000007; these instruc­
tions range from HALT to RTT and use 
microprogram addresses 010 - 017 (017 
is for op code 000007 and traps through 
location 4). 

000000 
000001 
000002 
000003 

3. 

0003 DO 
0050 DO 
0051 DO 
0052 DO 
0053 DO 
0055 DO 
0056 DO 
0057 DO 
0060 DO 

The instructions in this group are: 

HALT 
WAIT 
RTI 
BPT 

000004 
000005 
000006 
000007 

lOT 
RESET 
RTT 

Ejclass instructions, with the exception 
of the binary instructions that have both 
SMO*DMO, if these instructions have a 
DF7 or there is a BRQ to be serviced 
(DF7+BRQ). These instructions all go 
to address 030 because AFIR(05:03) are 
all Os, which causes RACE RAB(02:00) 
to be negated. RACF A2 RAB03 asserts 
bit 3 for BIN*SMO*DMO*(DF7+BRQ), 

The instructions in this group are: 

SWAB*DMO 
CLR 
COM 
INC 
DEC 
ADC 
SBC 
TST 
ROR 

0061 DO 
0062 DO 
0063 DO 
0067 DO 
07 4R 00 
10 50 DO 
1051 DO 
10 52 DO 
1053 DO 

ROL 
ASR 
ASL 
SXT 
XOR 
CLRB 
COMB 
INCB 
DECB 

11-1-43 



Table I-SA 
A Fork Address Generation 

Instruction Class AORAB Al RAB A2RAB Address Instruction Oass AORAB AlRAB A2RAB Address 

00 I 01 I 02 03 ~ OS 07 00 01 02 04 OS 00 03 OS & Flows 
I 

00 I 01 I 02 03 OS 07 00 01 02 04 OS 00 03 OS & Flows 

ADC,B P,E,DAC See Table 1-5B 
I 

i 

ADD: -SMO P,E,BIN See Table 1-5B 

JMP -DMO J, FJ, DAC See Table 1-5C 
DMO 000(3) 

SMO P, E, BIN, DAC See Table 1-5C 

ASH -DMO DAC See Table 1-5C 

JSR -DMO J, FJ, DAC See Table 1-5C 
DMO 000(3) 

DMO DAC X X 052 (3) MARK None X X X X 047 (2) 

ASHC -DMO DAC See Table 1-5C 
I MFP -DMO I,DAC See Table 1-5C 

DMO DAC X X X 053 (3) DMO I,DAC X X X 046 (3) 

ASL.B P,E,DAC See Table 1-5C I 

ASR P,E,DAC See Table 1-5C 

MOV -SMO 0, E,BIN See Table 1-5B 
SMO 0, E, BIN, DAC See Table 1-5C ( 

ASRB DRO(O) P,E,DAC See Table 1-5C 
DRO(l) P,E,DAC See Table 1-5C 

Branch Instructions: BCC (BHIS), BCS (BLO), BEQ, BGE, BGT, BHI, BRIS - See Table 1-7 

MOVB -SMO P,BIN See Table 1-5B 
SMO P, BIN,DAC See Table 1-5C 

.MTP 0 X X X 045 (1) 

BIC,B -SMO P,E, BIN See Table 1-5B 
SMO P, E, BIN, DAC See Table 1-5C I 

MUL -DMO I,DAC See Table 1-5C 
DMO I,DAC X 050(3) 

BIS,B -SMO P,E,BIN See Table 1-5B 
SMO P, E, BIN, DAC See Table 1-5C 

NEG,B -DMO P,DAC See Table 1-5C 
DMO P,DAC X X 301 (3) 

BIT,B -SMO I,E, BIN See Table 1-5B 
SMO I j E, BIN, DAC See Table 1-5C i 

RESET None X X X 015 (3) 

ROL.B P,E,DAC See Table 1-5C ( 
Branch Instructions: BLE, BLO, BLOS, BLT, BMI, BNE, BPL - See Table 1-7 

BPT (OP3) I None I· I X II I X I X 013 (3) 

Branch Instructions: BR, BVC, BVS - See Table 1-7 I 
CCOP None I X X 044 (3) 

ROR P,E,DAC See Table 1-5C 

RORB DRO(O) P,E,DAC See Table 1-5C 
DRO(1) P,E,DAC See Table 1·5C 

RTI None X X 012 (2) 

CLR.B P,E,DAC See Table 1-5C 

CMP,B -SMO I,E,BIN See Table 1-5B 

RTS None X 040(2) 

RTT None X X X 016 (2) 

SMO I, E, BIN, DAC See Table 1-5C I SBC,B P,E,DAC See Table 1-5C 

COM,B P,E,DAC See Table 1-5C 

DEC,B P,E,DAC See Table 1-5C 

SOB None X X X X 057 (2) 

SPL None X X X 043 (3) ( 
DIV -DMO I,DAC See Table 1-5C SUB -SMO P,E,BIN See Table 1-5B 

DMO I,DAC X X 051 (3) SMO P, E, BIN, DAC See Table 1-5C 

EMT None 000(3) SWAB P,E,DAC See Table 1-5C 

Floating Point: F,FJ 
-FPPRESENT 000 (12) 

FPPRES X 101 (2) 

HALT None X 010(3) 

SXT P,E,DAC See Table 1-5C 

TRAP None 000(3) 

TST,B I,E,DAC See Table 1-5C 

WAlT None X X 011 (3) 
INC,B P,E,DAC See Table 1-5C 

XOR P,E,DAC See Table I-SC 

lOT None X X 014 (3) 

11-1-44 



Source AORAB 
Mode 00 01 02 03 OS 07 

1 

2 

3 

4 

5 

6 

7 

( 

Destination Mode AORAB 
00 01 02 03 OS 

0: -(DF7+BRQ) 

0: BIN*(DF7+BRQ) 

0: - BIN*(DF7+BRQ) X 

1 X 

2 X 

3 X X 

4 X 

5 X X 

6 X X 

7 X X X 

Table l-sB 
A Fork, BIN··SMO 

Al RAB 
00 01 

X 

X 

X 

X 

X 

Table l-sC 
A Fork, DAC 

07 00 

11-1-45 

02 04 OS 

X 

X 

X 

X X 

X X 

X X 

X X 

A1RAB 
01 02 04 

X 

X 
X 

A2RAB Address 
00 03 OS & Flows 

021 (1) 

022 (1) 

022 (1) 

024(1) 

024 (1) 

026 (2) 

026 (2) 

A2RAB Address 
OS 00 03 OS & Flows 

020 (3) 

X 030 (3) 

030(3) 

001 (5) 

002 (5) 

003 (5) 

004 (6) 

005 (6) 

006 (6) 

007 (6) 



10 SS DO 
10 S6 DO 
10 S7 DO 
10 60 DO 

ADCB 
SBCB 
TSTB 
RO~B 

RA CE AO RAB04 

1061 DO 
10 62 DO 
10 63 DO 

ROLB 
ASRB 
ASLB 

RACE AO RAB04 L is generated for any branch in­
struction. This signal is an input to bits 4, 6 and 7 
of the microprogram address; as a result, all branch 
instructions generate A Fork addresses with these 
three bits set (addresses between 320 and 336). Re­
fer to Paragraph 1.4.6.4. 

RA CE AO RABOS 
RACE AO RABOS L is generated for MUL, DIY, 
ASH, and ASHC instructions with a destiilation 
mode of 0, and for SOB instructions. RACE BIN L 
eliminates the binary instructions from U /class. 
This RAB signal is also connected to RAB03 to 
generate addresses ranging from OSO to OS7. 

These instructions are listed below: 

07 OR SS MUL 07 3R SS ASHC 
07 IR SS DIY 07 7R NN SOB 
07 2R SS ASH 

RA eH AO RAB07 
RACH AO RAB07 is asserted for a NEG or NEGB 
instruction with DMO. Together with RACH A2 
RABOO, it generates address 301. 

RACF Al RAB(02:00) 
RACF A I RABOO L, RACF AI RABOI L, and 
RACF AI RAB02 L generate the three least-signifi­
cant bits of the ROM address for the classes of in­
structions described in the following paragraphs. 

HALT Through Op Code 7 - These instructions 
generate microprogram addresses ranging from 010 
- 017; the 1 in bit 3 of the address is generated by 
RACE AO RAB03 L. The following instructions 
are included in this group: 

000000 
000001 
000002 
000003 

HALT 
WAIT 
RTI 
BPT 

000004 
0000 OS 
000006 

lOT 
RESET 
RTT 

X/Class - The X/Class instructions, MARK, MFP 
'with a destination mode of 0, and MTP, generate 
addresses of 074, 046, and 04S, respectively. RAB02 
is forced to a I, and the two low-order bits are the 
complements of the corresponding bits from the In­
struction Register. Bit S of the address is set by 
RACF A2 RABOS L. 

U /Class - U /Class instructions include three 
groups: the binary instructions; the SOB instruc­
tion; and the MUL, DIY, ASH, and ASHC instruc­
tions with a destination mode of O. 

The Binary instruction use four microprogram ad­
dresses, 021 for SM I, 022 for SM23, 024 for SM4S, 
and 026 for SM67. These bits are controlled by 
AFIR(l1 :09); bit 0 (A I RABOO) can only be set by 
SM I [RACH BIN*(-SMOI) L]. Bit 4 of these ad­
dresses is set by RACH A I RAB04 [( -BFI =7)*(­
BFI =O)*(-SMO) = op codes with bits 14: 12 from I -
6 and not source mode 0]. The instructions in this 
group are: 

01 SS DO MOY II SS DO MOYB 
02 SS DO CMP 12 SS DO CMPB 
03 SS DO BIT 13 SS DO BITB 
04 SS DO BIC 14 SS DO BICB 
OS SS DO BIS IS SS DO BISB 
06 SS DO ADD 16 SS DO SUB 

MUL, DIY, ASH and ASHC with DMO and SOB 
use addresses OSO - OS3 and S7. Bits II :09 of the op 
code generate bits 02:00 of the address; bits 3 and S 
of the address is asserted by RACE AO RABOS. 

RTS:CCOP - Op codes 0002XX (RST:CCOP) use 
addresses 040 - 044. Bit 0 of the address is set' 
when IR(OS:03) = 3 (SPL), bit 1 when IR(OS:03) = 
2 or 3 (OP22, Flows 3 and SPL), bit 2 when 
IR(OS:03) = 4 (CCOP). Bit S of the address is set 
by RACF Al RABOS. The instructions in this 
group include: 

0002 OR RTS 
0002 10 Unused 

through 
000227 Unused 
00023N SPL 
000240 NOP 
000241 CCOP 

through 
000277 CCOP 

11-1-46 

( 

( 



( 

( 

( 

RACH Al RAB04 
RACH Al RAB04 L is asserted for the following 
instructions: 

1. Binary instructions with: 

01 SS DD 
02 SS DD 
03 SS DD 
04 SS DD 
05 SS DD 
06 SS DD 

2. 

0050 DD 
0051 DD 
0052 DD 
0053 DD 
0055 DD 
0056 DD 
0057 DD 
00 60 DD 
0061 DD 
0062 DD 
0063 DD 
0067 DD 

a. Both source and destination modes 
o (addresses 20 and 30); 

b. Any source mode except 0 (ad­
dresses 21, 22, 24, and 26); 

The instructions in this group are the fol­
lowing, when either SMO*DMO or 
SM(I:7). 

MOV II SS DD MOVB 
CMP 12 SS DD CMPB 
BIT 13 SS DD BITB 
BIC 14 SS DD BICB 
BIS 15 SS DD BISB 
ADD 16 SS DD SUB 

RjClass instructions with destination 
mode' 0, except MFP and the NEG.B in­
structions (addresses 20 or 30); 

The instructions in this group are the fol­
lowing, when DMO: 

CLR 
COM 
INC 
DEC 
ADC 
SBC 
TST 
ROR 
ROL 
ASR 
ASL 
SXT 

07 4R DD 
10 50 DD 
1051DD 
10 52 DD 
10 53 DD 
10 55 DD 
10 56 DD 
10 57 DD 
10 60 DD 
1061DD 
1062 DD 
1063 DD 

XOR 
CLRB 
COMB 
INCB 
DECB 
ADCB 
SBCB 
TSTB 
RORB 
ROLB 
ASRB 
ASLB 

3. SWAB instructions with a destination 
mode of o (also addresses 20 or 30). 

RA CF A I RABOS 
RACF Al RAB05 is asserted for RTS:CCOP ex­
cept when IR(05:03) = 1 which are unused op 
codes. 

RACH A2 RABOO 
RACH A2 RABOO generates bit 0 and 6 of the 
ROM address. It is asserted in the following cases: 

1. For NEG.B instructions with DMO, ad­
dress 301. RACH AO RAB07 asserts bit 
7 in this case. 

2. For branch instructions when RACF 
TRUEI is asserted. Refer to Paragraph 
1.4.6.4. 

3. For floating point instructions, address 
101. 

RACH A2 RAB(02:01) 
These bits are used by the branch instructions. Re­
fer to Paragraph 1.4.6.4. 

RACF A2 RAB03 
RACF A2 RAB03 asserts bit 3 of the address for 
Ejclass binary instructions (= both source and des­
tination modes equal to 0; no address calculation), 
either when the destination field is 7 or a BRQ is to 
be serviced. RACE AO RAB03 asserts bit 3 for the 
non-binary Ejclass instructions. 

The instructions in this group are the following, 
when SMO*DMO and (DF7+ BRQ): 

01 SS DD 
02 SS DD 
03 SS DD 
04 SS DD 
05 SS DD 
06 SS DD 

MOV 
CMP 
BIT 
BIC 
BIS 
ADD 

RACF A2 RABOS 

11 SS DD 
12 SS DD 
13 SS DD 
14 SS DD 
15 SS DD 
16 SS DD 

MOVB 
CMPB 
BITB 
BICB 
BISB 
SUB 

RACF A2 RAB05 asserts bit 5 of the ROM ad­
dress for MFP instructions with DMO, and for 
MARK and MPT instructions. 

1.4.6.4 I Branch Instructions - Table 1-6 lists the 
Branch Instructions, their op codes and the condi 
tions on which they branch. 

With the exception of BR, which always branches, 
the branch instructions are grouped in pairs, each 
of which. checks one condition (e.g.: BNE and BEQ 
check the Z bit). Bit 08 of the op code determines 
whether the instruction branches when the branch 
condition is true (lor asserted) or false (0 or ne­
gated). For example: BNE branches if z=o and 
BEQ branches if Z= 1. 

11-1-47 



RACF TRUE1 and TRUE2 are asserted when the 
branch condition is met. TRUE1 checks the result 
of branches that have a 1 in bit 15 of their op code; 
TR UE2 does the same for branches with a 0 in bit 
15 of their op code. These two functions cannot 
both be asserted at one time. 

Branch A Fork Address 
Table 1-7 shows the generation of RACL 
RADR(07:00) for branch instructions. 

Refer to Flows 1. Branch instructions (BXX) are 
shown on three separate branches: 

Table 1-6 
Branch Instructions 

Instruction Branch AFIR RACF (See Note 1) 
Condition IS 14 13 12 11 10 09 08 TRUE2 TRUEI 

BR Always 0 0 0 0 0 0 0 1 1 0 

BNE Z 0 0 0 0 0 0 1 0 X 0 
BEQ Z 0 0 0 0 0 0 1 1 X 0 

BGE N'VV 0 0 0 0 0 1 0 0 X 0 
BLT N¥V 0 0 0 0 0 1 0 1 X 0 

BGT Zv(NW) 0 0 0 0 0 1 1 0 X 0 
BLE Zv(NVV) 0 0 0 0 0 1 1 1 X 0 

BPL N 1 0 0 0 0 0 0 0 0 X 
BMI N 1 0 0 0 0 0 0 1 0 X 

BHI CvZ 1 0 0 0 0 0 1 0 0 X 
BLOS CvZ 1 0 0 0 0 0 1 1 0 X 

BVC V 1 0 0 0 0 1 0 0 0 X 
BVS V 1 0 0 0 0 1 0 1 0 X 

BCC,BHIS C 1 0 0 0 0 1 1 0 0 X 
BCS,BLO C 1 0 0 0 0 1 1 1 0 X 

NOTE 1 - "X" in the RACF TRUEI or TRUE2 columns means that the function is asserted if 
the "Branch Condition" is asserted. For example, if the instruction is a BNE or a 
BEQ, TRUE2 is asserted if the Z bit is set. 

NOTE 2 - The op code (AFIR < 15 :08) for each pair of Branch Instructions differs only in bit 
08. If bit 08 is set, the instruction branches, if the Branch Condition is asserted. If bit 
08 is not set, the instruction branches if the condition is not asserted. For example: 

BNE Z=O 
Z=1 

BEQ z=o 
Z=1 

Branch 
No Branch 
No Branch 
Branch 

( 

( 



( 

( 

( 

I. BXX*BCOK (Branch OK = condition 
met). In this case, cycles BXX.OO -
BXX.05 (all identical) are executed. 
Since the branch is successful, the PC 
plus the displacement is moved to PCA 
and PCB, a BRQ strobe is issued, the 
bus cycle started in IRO.OO is ended, 
and the microprogram goes to FET.OO. 
The instruction fetch sequence then fet­
ches the instruction pointed to by the 
new Pc. 

Table 1-7 

2. BXX* - BCOK* - BRQ (condition not 
met and no break request). Since BRQ is 
not true and the instruction does not 
branch, control goes to FET .11 -
FET.I3. 

3. BXX* - BCOK* - BRQ (condition not 
met and break request asserted). Control 
remains with the current PC, but the 
BRQ must be serviced; the next states 
are FET.OJ - FET.03, after which the 
BRQ is serviced. 

Branch Instruction ROM Address 

RACLRADR Result Next State 
07 06 OS 04 03 02 01 00 

I I 0 1 
I I 0 I 
I I 0 I 

I I 0 I 
I I 0 I 
J I 0 I 

I I 0 I 
I I 0 I 
I I 0 I 

I I 0 I 
I I 0 I 
I I 0 I 

0 0 0 0 BCOK * -BRQ FET.OX 
0 I 0 I 
0 I I 0 

I 0 0 0 BCOK*BRQ FET.OX 
I I 0 I 
I I I 0 

0 0 0 I -BCOK * -BRQ FET.IX 
0 0 I 0 
0 I 0 0 

I 0 0 I -BCOK * BRQ FET.OX 
I 0 I 0 
I I 0 0 

~ Input to RACL RADR (07:00): 

RACH A2 RABOO = TRUEI * BR INST 

RACH A2 RABOI = TRUE2 * DR INST 

'--------RACH A2 RAB02 = AFIR08 * BR INST 

'-----------RACE AO RAB03 = BRQ TRUE * BR INST 
0= -BRQ 
I =BRQ 

'----.-L.-------L.-----------RACE AO RAB04 = BR INST 

11-1-49 



Refer to Table 1-7. 

I. RACL RADR(07:06) Hand RADR04 
H are asserted (high) for all branch in­
structions by RACE AO RAB04, which 
is a decode of all branch instruction op 
codes. 

2. RACL RADR05 is negated (low) for all 
branch instructions. 

3. RACL RADR03 is asserted (high) when 
BRQ is true during a branch instruction 
and negated when BRQ is not true. This 
bit is controlled by RACE AO RAB03. 

4. RACL RADR02 is asserted when bit 08 
of the op code is I (branch if condition 
true). 

5. RACL RADROI is asserted by RACH 
A2 RABOI when RACF TRUE2 is 
asserted. 

6. RACL RADROO is asserted by RACH 
A2 RABOO when RACF TRUEI .is 
asserted. 

It can be seen from Table 1-7 that a branch is suc­
cessful (BCOK) under the following conditions: 

I. When the instruction requires a branch 
on condition false or not asserted 
(RAB02 = 0) and neither TR UE2 nor 
TR UE I are asserted (RABO I = 0 and 
RABOO = 0). 

2. When the instruction requires a branch 
on condition true or asserted (RAB02 = 
I) and either TR UE2 or TR UE I are as­
serted (RABOI = I or RABOO = I). 

A branch is not successful (-BCOK) when the 
above conditions are not met, i.e.: RAB02 asserted 
and neither TRUEI nor TRUE2 asserted, or 
RAB02 not asserted and either TRUEI or TRUE2 
asserted. 

1.4.7 C Fork Logic 
Refer to drawing fRCe. The logic shown on this 
drawing decodes the address modes and register 

specifications of the current instruction, and gener­
ates signals that control register selection and ad­
dress calculation in the processor. The logic also 
generates addresses for the C Fork microprogram 
address logic. The C Fork selects the address of the 
next microprogram address when a destination oper­
and must be fetched. 

Two 8251-1 BCD-to-Decimal Decoders are used to 
recognize the source and destination modes, respec­
tively, by decoding each 3-bit IR field. The source 
and destination modes determine the operations per­
formed in the fetching of operands; these signals 
are used throughout the IRC module. Destination 
mode 0 is also used to separate the C Fork ad­
dresses for this mode and all other destination 
modes, by connecting IRCC DSTMO L to the C 
Fork input for bit 7 of the ROM address (as shown 
on drawing RACL) and connecting IRCC DSTMO 
H to the input for bit 6. In this manner, the C 
Fork generates microprogram addresses ranging 
from 202 - 211 for destination mode 0, and micro­
program addresses ranging from 110 - 117 for 
other destination modes. 

The address generated by the C Fork logic depends 

( 

on: { 

I. For mode 0, whether or not the instruc­
tion is F j class. If it is not F j class, 
whether the destination field is 7 or not, 
and whether an odd byte swap is re­
quired (SRO = I or 0); 

2. For other modes, whether an odd byte 
swap is required. 

The C Fork multiplexer is 74S157 4-bit 2-Line-to-l­
Line Multiplexer that is controlled by IRCC 
DSTMO L. Recognition of destination mode 0 gen­
erates the four low-order bits of the microprogram 
address for the C Fork. The two high-order bits are 
directly controlled by the destination mode and bits 
4 and 5 are always O. Bit 3 of the address is always 
a I if the destination mode is not 0 (the input is a 
ground which generates a low output, which asserts 
the input to the microprogram address assembly 
logic on drawing RACL). For destination mode 0, 
bit 3 is controlled by the instruction class; the bit is 
set for F jclass instruc tions and clear for all others. 
Table \-8 summarizes the C Fork multiplexer 
outputs. 

( 

( 

II-I-50 



( 

/ 
\ 

( 

Table 1-8 
C Fork Address Generation 

Instructions Flows ROM Cycle C Fork Mult!I»lexer 
Adrs Name Input· Output: IRCC CO RAB 

OMO * -F /Class 4 202 007.00 
* OF7 * SRO (1) 

OMO * -F/Class 4 203 007.10 
* OF7 * SRO (0) 

OMO * -F /Class 4 204 000.80 
* -OF7 * SRO (1) 

OMO * -F /Class 4 205 000.90 
* -OF7 * SRO (0) 

OMO * F /Class 4 211 FOP.50 

OM12 * SRO (1) 5 110 012.90 

OM12 * SRO (0) 5 111 012.80 

OM3 * SRO (1) 5 112 030.90 

OM3 * SRO(O) 5 113 030.80 

OM45 * SRO (1) 6 114 045.90 

OM45 * SRO (0) 6 115 045.80 

OM67 * SRO (1) 6 116 067.90 

OM67 * SRO (0) 6 117 067.80 

1.4.8 B Fork Logic 
Refer to drawing IReB. The B Fork logic gener­
ates microprogram addresses that are used to select 
the next machine state after the destination operand 
has been fetched. For each instruction that operates 
on a destination operand, there is a unique micro­
program word that controls the execution of the op­
eration for that instruction. The majority of these 
instructions are included in the P /c1ass group. The 
P/c1ass instructions are executed by a single micro­
program word that is stored in ROM location 031, 
with the exception of the NEG, ASRB, and RORB 
instructions. The exceptions are made because these 

Enabled 03 02 01 00 

A H H L H 

A H H L L 

A H L H H 

A H L H L 

A L H H L 

B L H H H 

B L H H L 

B L H L H 

B L H L L 

B L L H H 

B L L H L 

B L L L H 

B L L L L 

instructions may require a byte swap during the exe­
cution cycle, and must use other machine states 
that permit a separate byte-swap operation for odd­
byte data. 

The B Fork addresses are generated by a 74S 157 2-
input, 4-bit multiplexer, and by two additional 
gates. IReB BO RAB04 L is connected to ROM ad­
dress bits 4 and 5, to generate ROM addresses rang­
ing from 60 - 67. IReB BO RAB03 L is connected 
to ROM address bits 3 and 4, to generate ROM ad­
dresses ranging from 31 - 36. The ROM addresses 
lIsed by the B Fork and the instructions executed 
by each address, are listed in Table 1-9. 

II-I-51 



Table 1-9 
( 

B Fork Address Generation 

Instructions Flows ROM Cycle IRCB Multiplexer Other 
Adrs Name Inputs Outputs Signals 

Enabled Asserted Asserted 

P/Class * -[(ASRB 11 031 EXC.OO A BORABOO BO RAB03 
+ RORB) * DRO (1) + NEGB] 

TST.B + BIT.B + CMP.B 11 033 TST.I0 A BORAB01 B1 RABOO 
BO RAB03 

JSR 11 034 JSR.OO A BO RAB02 BORAB03 

JMP 11 035 JMP.OO A BORAB02 B1 RABOO ( 
BO RAB03 

F/Class 11 036 FOP.40 A BORAB01 BORAB03 
BORAB02 

MUl 8 060 MUL.80 B BO RAB04 

DIY 9 061 DIY.OO B BO RABOO 
BORAB04 

ASH 7 062 ASH.OO B BO RAB01 
( 

BORAB04 

ASHC 7 063 ASC.OO B BORABOO 
BO RAB01 
BORAB04 

[ASRB + RORB] * DRO (1) 11 064 SHR.OO B BO RAB02 
BO RAB04 

( 
MFP 11 066 MFP.OO B BO RAB01 

BO RAB02 
BO RAB04 

NEG 11 067 NEG.OO Multiplexer disabled, 
output all 1 s. 

Note: All Signals on IRCB. 

( 

II-I-52 



( 

( 

( 

When the multiplexer is disabled for a NEG instruc­
tion, the outputs are all 1 s: this generates address 
67. For all other addresses, the inputs are selected 
by a signal that is generated for the MUL, DIV, 
ASH, ASHC, ASRB, RORB, and MFP instruc­
tions. When this signal is asserted, the B inputs of 
the multiplexer are used; RAB04 is forced to a 
logic I by a 0 V input. Conversely, the A inputs are 
used for F/c1ass, J/c1ass, K/c1ass, and most P/c1ass 
instructions; RAB04 is forced to a 0 by a +3 V in­
put. The instructions that use the A inputs of the 
multiplexer also assert IRCB BO RAB03 L. IRCB 
80 RAB(02:00) L are generated by connecting the 
instruction group signals to the multiplexer inputs 
in the order required for each signal. 

1.5 CONDITION CODES 
The four least-significant bits of the PS word con­
tain the processor condition codes. These bits store 
information about the value resulting from data ma­
nipulation during an instruction. The condition 
codes are not altered to reflect the results of ad­
dress calculations, but are changed only when an in­
struction explicitly operates on a unit of data. 

The condition codes can also be set to any specific 
value by transferring a word containing that value 
to the PS address. The value of the condition codes 
are altered by every interrupt or trap response func­
tion, and by every RTI or RTT instruction. In addi­
tion, individual condition-code bits may be 
manipulated directly, with the condition-code oper­
ate instructions. These instructions provide a means 
to set anyone, or more, of the condition codes 
with a single instruction that requires only one 
memory reference; a similar set of instructions can 
clear anyone or more bits. The condition codes are 
used in conditional branch instructions, so the vari­
ous means of manipulating the condition codes are 
useful because they permit setting up the PS word 
to respond in a particular way to various branch 
instructions. 

1.5.1 Condition Code Storage 
Refer to drawing IRCH. The circuits shown on the 
top half of this drawing are used to store the pro­
cessor condition codes; the remainder of the draw­
ing shows circuits concerned with the subsidiary 
ROMs used in condition-code calculation, instruc­
tion decoding, and Arithmetic and Logic Unit 
(ALU) control. 

The four condition-code bits, N, Z, V, and C, are 
stored in the four least-significant bits of the Pro­
cessor Status (PS) word. The remaining bits of the 
PS, and the PS loading and reading logic, are on 
the PDR module and are shown on drawing 
PDRD. (Refer to Chapter 3, Control Registers.) 
The condition codes are normally loaded to reflect 
the result of each instruction that operates on data. 
When this is done (by clocking the data inputs to 
each flip-flop), each bit takes on the value of the 
corresponding signal from the condition code gener­
ation logic on drawings IRCE and IRCF. Two Z 
bit flip·flops, provided to avoid the delay of a final 
stage OR gate before the clock time, are shown on 
drawing IRCF. 

Clocked Inputs - IRCH CCLK H clocks the condi­
tion-code flip-flops immediately following each 
ROM cycle (T6 is the Tl of the following cycle) ex­
cept when the clock is inhibited by a value of 2 in 
the Condition Code Load (CCL) bits in the micro­
program. In many cases where the condition codes 
are clocked, individual bits may remain unaffected 
by loading the bit from itself, through the com­
binational logic that generates the condition codes. 

BR Inputs - The condition code flip-flops can be 
loaded directly from the BR. This is done whenever 
the bus address transmitted by the processor ad­
dresses the low byte of the Processor Status (PS) 
word. UBCB CC DATA (1) H indicates this condi­
tion and is used to gate the BR bits into the direct­
set and direct-clear inputs of the flip-flops. Com­
plements are applied to set and clear inputs, so that 
each flip-flop is correctly set or reset. 

I R Inputs - A third method of modifying the condi­
tion codes allows bits to be set or cleared directly 
from the CCOP instruction, The four least-signifi­
cant bits of the IR are connected to either the set 
or clear inputs of the flip-flops, but not both. The 
selection of inputs is done by two enabling signals 
that are generated from opposite polarities of IR04. 
The same polarity inputs from the IR are used for 
either setting or clearing; only bits which are Is in 
the IR are altered, the remaining bits are not 
affected. 

When the condition codes are set or cleared from 
the IR, the normal clocking of the flip-flops is in­
hibited. When the condition codes are loaded from 

II-I-53 



the BR, the loading signal is present beyon~ the 
time when the data inputs are clocked, so the BR 
inputs take precedence. Unless one of these two 
conditions is true, the normal clocked input is used. 

The Z bit is stored in two flip-flops shown on draw­
ing IRCF. The flip-flop outputs are ORed to gener­
ate the value of the condition-code bit. If either 
flip-flop contains a I, the Z bit is considered to be 
a I. Both flip-flops are set or cleared together when 
either the BR or IR bits are transferred to the con­
dition codes. 

1.5.2 Condition Code Load Field 
The Condition Code Load (CCL) field of the ROM 
is decoded as shown on drawing IRCF to deter­
mine how the PSW condition-code bits are to be al­
tered. The CCL field is summarized in Table 1-10. 

1.5.3 Instruction Dependent Control 
When CCL = I, the Condition Code loading is in­
struction dependent, i.e., controlled by the oper­
ation code field of the instruction; this control is 
implemented by two subsidiary ROMs, CC CNTL 

ROM and the INSTR DECODE ROM, both 
shown on IRCH. 

1.5.4 SUBROM Address Generation 
IRCH SUBROM(04:00) H is the address, for the 
Condition Code Control and Instruction Decode 
ROMs; it is also the address for the ALU Control 
ROM (refer to Chapter 2). This address is gener­
ated from IRCA IR(l5:06), by the two multiplexers 
and the OR gate on drawing IRCH. 

Each subsidiary ROM contains 32 8-bit words. The 
32 addresses are organized as follows (addresses in 
octal): 

a. Addresses 0-7 are used for instructions 
with op codes containing 06 in IR 
(14:09). These include the rotates, shifts, 
MARK, MFP, MTP, and SXT. 

b. Addresses 10-\7 are used for instruc­
tions with op codes containing 05 in IR 
(14:09). These are the single-operand 
instructions. 

Table 1-10 
Condition Code Load 

RACAUCCL 
Output Asserted IRCF: Function 

02 01 00 

0 0 0 CCNON AFF L No change 

0 0 1 CCINSDEPH Instruction-dependent. Condition codes determined by 
subsidiary CC CNTL ROM. 

0 1 0 (IRCH SETCC H)* Set or clear CC; dependent upon IR. 

0 1 1 CCFP LOAD L Load CCs from floating-point processor 

1 0 0 CCLD4 Z and N: ACC SHFR 
C and V: 0 

1 0 1 CCLD5 Z and N: ACC SHFR 
C: AMX15 
V: VoId + (AMX VALU) 

1 1 0 CCLD6 . N, C, and V: not affected 
Z: Z* SHFR=O 

1 1 1 CCLD7 Z, N, and V: not affected 
C: carry 

* Generated on drawing IRCH. 

II-I-54 

( 

( 

( 

( 



( 

( 

( 

c. Addresses 20-27 are used for binary in­
structions [IR (14: 12) contains any value 
from I to 6]. 

d. Addresses 30-37 are used for the register 
destination instructions, which have a 7 
in IR(14:12). These include multiply and 
divide, the long shifts, and XOR. 

I nstructions included in a. and b. above, have sub­
rom addresses equal to IR(09:06) via the 0 inputs 
to the multiplexers; SUBROMA4 is low. 

For the register destination instructions, SUB­
ROMA4 is asserted, SUBROMA3 is driven by a 
+ 3 V input to the multiplexer, and the remaining 
three address bits take on the value of IR (11 :09) 
through the C inputs of the multiplexer. For binary 
instructions, the B inputs of the multiplexer are 
used; SUBROMA4 is asserted and SUBROMA3 is 
clear. This data is summarized in Table I-II. 

The SUB instruction is treated specially, to separate 
the ADD and SUB instructions when generating 
ROM addresses. Both SUB and ADD would nor­
mally generate ROM address 26 (the op codes 
differ only in bit 15). When the SUB instruction is 
decoded, the four least-significant bits of the ROM 
address are forced to Os to generate address 20. Ad­
dresses 27, 35, and 36 are not used. For the SWAB 
instruction, which is not in any of the four groups 
that generate ROM addresses, the contents of the 
I R generate the same ROM address that is used for 
the ASL instruction. The signal IRCH SWAB L is 
used to distinguish between the two instructions. 
The UALU signals are used to recognize that the 
ALU control is instruction-dependent, and that the 
outputs of the ALU control ROM on drawing 
G RAA are active. 

1.5.5 C Bit Data 
The C (Carry) bit of the PSW is set when a pro­
cessor operation causes a carry out of the most-sig­
nificant bit. The logic that generates the C bit data· 
is shown on drawing IRCF. Figure 1-13 is a sim­
plified diagram of the logic that asserts IRCF 
CDATA L. Each AND gate input covers a group 
of instructions that could cause a carry. The nota­
tion adjacent to each AND gate indicates the condi­
tions or instructions that enable the gate and the 
resultant C bit source that asserts IRCF CDATA 
L. 

Table l-12 lists the instruction-dependent CC 
CNTL ROM outputs that control the C bit for 
each group of instructions. IRCE WOB CARRY H 
and IRCE LOB CARRY H are derived from a 
74S 153 multiplexer. These C bit inputs are deter­
mined from AMX 00, AMX 07, or AMX IS. 

1.5.6 N Bit Data 
The N (negative) bit of the PSW is set when a nega­
tive result is produced by a processor operation. 
The logic that generates the N bit data is shown on 
drawing IRCF. Figure 1-14 is a simplified diagram 
of the logic that asserts IRCF NDAT A L. Each 
AND gate input decodes a particular group of in­
structions or processor operations for which a nega­
tive result might be obtained. 

For most of the instructions, the CC CNTL ROM 
outputs IRCH MODZN Hand IRCH ENZN H 
are asserted. These control outputs condition the 
NDATA logic to examine the SHFR output to de­
termine when the N bit should be set. For word or 
odd-byte operations, the input A logic tests 
SH FRA 15, and sets N accordingly. For byte oper­
ations, the input C logic testsSHFRA07. These in­
puts control the N bit for most operations. 

Table 1-11 
Subsidiary ROM Address Sources 

Type of ROM Address Input Subsidiary ROM Address Source 
Instruction Multiplexer Selected A4 A3 A2 Al AO 

Select 
SI SO 

IR(14:09) = 05 or 06 H H D 0 IR09 IR08 IR07 IR06 
Register destination H L C 1 1 IR11 IRI0 IR09 
Binary L H B 1 0 IR14 IR13 IR12 
Not used L L A Not Used 

II-I-55 



lRCF CClD 7 l _...:C:...--=C"'A"RR"Y'-______ -c ...... _... 

lRCH CMOD 1 H ::::;======r-l 
lRCC CC lNSDEPA H ]0--4---

lRCE WOB CARRY H 

lRCE LOB CARRY H 

GRAA AMX O*ASH l---""--' 
>-----L----./ 

DAPJ AlUCN l---.,.--""-__ ,, 

lRCF CENl H-ENC*CC lNSDEPA lRCH CMODO H 

lRCH ENe H 

lRCF CEN2 H - ENC* CC lNSDEPA* -CMODl 

lRCHCMOD1H--+-~----_i 

lRCF CC NON AFF l--~=====~=::::.--------::I 
lRCFCClD6l-------------------~--~ 

lRCE PS lOAD l 
IRCH C (1) H 

IRCE lOAD FCC l 

Figure 1-13 Sources of C Bit Data, Simplified Diagram 

IRCF CClD4 l---------., 

IRCF CClD 5 l--~----_., 

ASHC:C- DROO 

+5V 

MUL: C+-X 

lOAD PS + lOAD FCC 

CClDS+ CC NON AFF + ROM 101: 
NON - AFFECTED 

11-0793 

IRCH MDDZN H-+-..... ---i 
INCH SWAB l--+-+ ... -'I--- DAPJ SH~RA1S H --+ r----------

GRAA WORD+OB SWAP H ~>-____ _ 

~=~~~+~B SWAP)(CClD4+5+SwAa*MODZN*ENZNI 
SHFRA 1S-1 'N-1 

-MODZN H 

IRCF NEN1 H 

DAN SHFRA07 H---.,.--"'---_", 

MODZN H 

GRAA WORD+OB SWAP l-..... --t-----------~--

IRCE lOAD FCC H 2 
-IRCE PS lOAD H~ 

--..,,-....... IRCH N (1) H 

IRCH ENZN H 

IRCH CC 
INSDEP H 

DAPA BR03 H-..,.-...... 

IRCE CC-BR H---'-~'-

IRCF CHECKZ H 

+5 

)o-------..... -i~·IRCF NDATA l 

INPut E 
lOAD PS + lOAD FCC 

11-0794 

Figure 1-14 Sources of N Bit Data, Simplified Diagram 

11-1-56 

( 

( 

( 

( 



Table 1-12 
C Bit Data Sources 

CC Control ROM 
IRCFCDATAL Instruction 

CMODI CMODO ENC Source 

ROR.B, ASR.B 0 0 0 C +- AMXOO (VMODO= 1) 

ROL.B, ASL.B 0 0 0 C +- AMX08 (WORD) 
C +- AMX08 (OB) 

ASHC 0 0 I C+-DROO 

COM.B, NEG.B, 0 1 0 C+--ALUCN 
( SBC.B SUB 

MUL 0 I 1 C+--X 

CLR.B, ADC.B TST.B 1 0 0 C+-ALUCN 
CMP.B, ADD 

ASH 1 0 0 C+-AMXOO 

MFP,MTP,SXT } 
INC.B, DEC.B 

I 0 1 non-affected MOV.B, BIT.B, BIC.B 
BIS.B, XOR ( 

DIV 1 1 0 C+-l 
C+-Oif-DRIS 

SWAB C+-O 

Condition-Code Load Signals 

IRCFCCLD4 C+-O 

( IRCF CCLDS C+-AMXlS 

IRCFCCLD6 non-affected 

IRCFCCLD7 C+-ALUCN 



The input B logic tests for CMP.B instructions. Un­
der these conditions, if SHFRA 15 is 0, the N bit is 
set, and if SHFRAI5 is I, the N bit is cleared. In­
put D covers all cases where the N bit is not af­
fected by the current operation, and is therefore 
reloaded with the previous content, IRCH N(1) H. 
Input E allows IRCF NDATA L to be asserted by 
BR03 for load PS and load FCC functions. Table 
1-] 3 summarizes the sources of N bit data. 

1.5.7 Z Bit Data 
The Z (Zero) bit of the PSW is set when the result 
of a processor operation is O. The Z bit data that 
controls the condition code is generated by logic on 
drawings IRCF and GRAB. 

Figure 1-15 is a simplified diagram of the logic that 
asserts IRCF ZDATAI L and GRAB ZDATA2 L. 

These outputs are clocked into the Zl and Z2 flip­
flops, whose contents are ORed to provide the Z 
bit of the PSW condition code. 

ZDATAI Sources - The input gates that assert 
IRCF ZDAT A I L cover the special conditions that 
control the Z bit, independent of the SHFR out­
puts being equal to O. For example, during the DIY 
instruction execution, MODZN and ENZN are 
both low and the Z bit is set. For the special case 
of the CMP.B instruction, the logic tests for the 
SHRF output = I condition to determine the Z bit. 
The other input gates that assert IRCF ZDAT A I L 
test for load PS or load FCC operations and oper­
ations that have no effect on the Z bit. Under the 
former conditions, the Z bit is loaded from BR02 
and under the latter conditions, the Z bit is un­
changed [Z(1)H controls ZDATAI]. These special 
conditions are summarized in Table 1-14. 

Table 1-13 

Instruction 

CMP.B 

DIY 

MUL 

all other instruction-
dependent codes 

SWAB 

IRCF CCLD4 

IRCF CCLD5 

IRCF CCLD6 

IRCF CCLD7 

N Bit Data Sources 

CC Control ROM 

MODZN ENZN 

0 1 

0 0 

1 0 

1 1 

Condition-Code Load Signal 

II-I-58 

IRCF NDATA L 
Source 

N +- 1 if -SHFRAI5 = 1 
N+-O if SHFRA15 = I 

non-affected 

non-affected 

N +- 1 if SHFRA 15 = 1 
(word or odd byte) 

N +- 1 if SHFRA07 = 1 
(byte) 

N +- 1 if SHFRA08 = 1 

N +- if SHFR = 0 

N +- if SHFR = 0 

non-affected 

non-affected 

( 

( 



( 

IRCH MODZN H 

IRCF CCLD7 L 

I RCF CC NONAFF L 

IRCH Z(I) H 
IRCH LOAD FCC L 

IRCH PS LOAD L 

DAPJ. H SHFR <15:08> H 

GRAA WORD + DB SWAP L 

DAPJ. F SHFR <07:00> H 

GRAA DB SWAP H 

IRCF SET V H 

+5V 

IRCF MUL+DIV NZVEN H 

DAPA BR02 H 4 

IRCF NEN1 H =CC INSDEP*ENZN 1 
IRCF ZINV H ~ -MODZN II 

DAPJ A~B (15:B) +BYTE H 12 
DAPF A~B (7:0) H 13 

IRCE EN HIB H~BYINA.MODZN.NENI 

t 
HEX 

INVE~TERS +5V 

IRCE EN LOB H_,---,,~_ 
~(WDIN+SWAB) MODZN*NENI 

IRCH Z (I) H 
IRCF CHECKZ H 

NON AFFECTED 

IRCF ZDATA I L 

)O'G",R",AB::....=.Z D:::A.:c.TA",2o..:L"-j--QD 

ZI 

Z2 

IRCH cc CLK H 

IRCF ZI (11 L 

IRCH Z (I) H 

IRCHZ2(I)L 

11-0790 

Figure 1-15 Sources of Z Bit Data, Simplified Diagram 

Instruction 

CMP.B 
MUL 
DIV 
SWAB 
all other instruction-dependent codes 

IRCF CCLD4 
IRCF CCLD5 
IRCF CCLD6 
IRCF CCLD7 

Table 1-14 
Z Bit Data Sources 

CC Control ROM 

MODZN ENZN 

0 1 
1 0 
0 0 

1 1 

Condition-Code Load Signals 

II-I-59 

Z Data Source 

Z +- 1 if SHFR = 1 
Z +- 2(1)H if SHFR = 0 
Z+-l 
Z +- 1 if SHFR <07:00> = 0 
Z +- 1 if SHFR = 0 

Z+- 1 if SHFR = 0 
Z +- 1 if SHFR = 0 
Z +- Z(1)H if SHFR = 0 
non-affected 



ZDAT A2 Sources - The logic that generates 
GRAB ZDAT A2 L tests the SHFR output for O. 
The open-collector inverters function as 0 detectors 
for SHRF(l5:08) and SHFR(07:00). The enabling 
inputs, IRCE EN HIB H, IRCE EN LOB H, and 
IRCE EN WORD H are used to test each byte of 
the SHFR separately, or together. The additional 
GRAB ZDATA2 gate tests the SHFR output word 
for 0 under CCLD6 or MUL conditions. If the 
SHFR output is 0, the previous Z bit condition, 
Z( I )H, controls the new Z bit. 

1.5.8 V Bit Data 
The V (overflow) bit of the PSW is set when a pro­
cessor operation results in an arithmetic overflow. 
The logic that generates the V bit data is shown on 

drawing IRCE. The V bit is affected by two broad 
categories of instructions: arithmetic operations, 
and word or byte operations. The results of these 
operations and other special cases determine IRCE 
VDA TAL. To simplify the description, arithmetic 
operations and special cases are grouped as VENI 
inputs. Word and byte operations are grouped as 
VEN2 inputs. Table 1-15 summarizes the V bit data 
sources of both groups. 

VENI 
Figure 1-16 is a simplified diagram of the V bit 
data sources that are grouped in the VEN! cate­
gory. A 74S153 Dual 4-Line-to-I-Line Multiplexer 
is used to select the most-significant BMX bit for 
the arithmetic operations that involve the B input. 

Table I-IS 
V Bit Data Sources 

CC Control ROM 
Instruction 

VMODll VMODO J ENV 

VENl 

INC.B, ADC.B 0 0 0 

DEC.B, SBC.B 0 I 0 

NEG.B,ADD I 0 0 

SUB, CMP.B I I 0 

VEN2 

MFP, MTP, SXT, CLR.B, COM.B, 0 0 I 
TST.B, MOV.B, BIT.B, BIC.B, 
BIS.B, MUL, ASH, ASHC, XOR 

DIV 0 0 I 

ROL.B, ASL.B I 0 I 

ROR.B, ASR.B I I I 

Condition-Code Load Signals 

IRCF CCLD4 

IRCF CCLD5 (VEN2) 

IRCF CCLD6 (VEN!) 

IRCF CCLD7 (VENI) 

* A = DAPJ AMX SIGN H 

B = DAPD BMX15 H (word) or DAPe BMX07 H (byte) 

ALU15 = DAPJ ALU SIGN H 

11-1-60 

IRCE VDATA L Source* 

V +--A*ALUl5 

V+- A*-ALUI5 

V+- A*B*-ALUI5 + -A*-B*ALUI5 

V+-A*-B*-ALUl5 + -A*B*ALUI5 

V+-O 

V+-I 

V+- SHFRAI5 V AMXI5 

V +- SHFRA IS V AMXOO 

V+-O 

V +- Void + (SHFRAI5 V AMXI5) 

non-affected 

non-affected 

( 

( 



( 

( 

( 

IRCF CC INSDEP H-----.....-----." 

IRCH ENV H 

DAPC BMX07 H _----l"-, 

IRCH VMODI H 

):)---......... ---1 

II 

10 

3 

DAPJ AMX SIGN H 

4 
5 
6 

1112 

VMOiili: A*B*ALU 
VMODO\ A. B. ALU 

DAPJ A LU SIGN H --41-------7-, ~Ol 
FO~7 ___________ ~~-/ 

4 VMOil6: Ii *8 • ALU 
VMODO: A * B • ALU 

DAPD BMX15 H 
;>0---4--, SI SO 

lRCD BYINA H-------------' 
lRCE VDATA L 

IRCH VMODO H-------------' 
FROM VEN2 LOGIC 

lRCE CC+-BR H 

DAPA BROI H LOAD PST LOAD FCC: V-BROI 
DIV: V-1 

VMODI BYTE H VMODO H 

o (WORD) 0 

0 

I (BYTE) 0 

FO 

-BMXI5 

BMX15 

-BMX07 

Fl 

BMXI5 

-BMXI5 

BMX07 

lRCF MUL+DIV NZVEN H 

IRCF SET V H (. iiOilZiii) 

IRCH V (I) H 
I RCt LOAD FCC L 
IRCE PS LOAD L 

BMX07 

o o 

-BMX07 

o 

lRCF CC NONAFF L 
lRCF CCLD5 L 

lRCF CCLDS7 L 

1\-0791 

Figure 1-16 VENI Sources of V Data Bit, Simplified Diagram 

These are NEG.B, ADD, SUB, and CMP.B, as in­
dicated in Table 1-15. For these instruction-depend­
ent codes, the CC CNTL ROM asserts IRCH 
VMODI H, which gates the BMX outputs to the 
multiplexer inpu"ts, and IRCE VENI L, which en­
ables the multiplexer. IRCD BYINA H selects 
BMX 15 or BMX07 as the most-significant bit. 
IRCH VMODO H selects the BMX bit or its com­
plement at each output, as shown on the multi­
plexer truth table in Figure 1-16. 

The notation on Figure 1-16 indicates the condi­
tions and functions for which each AND gate input 
asserts IRCE VDATA L. 

For INC.B, ADC.B, DEC.B, and SBC.B instruc­
tion-dependent codes, CC CNTL ROM output 
IRCH VMODI H is low. As a result, the BMX 
multiplexer outputs are always O. For these instruc­
tions, B is eliminated from the source function, as 
listed in the source column of Table I-IS. 

VEN2 
Figure 1-17 is a simplified diagram of the V bit 
data sources that are grouped in the VEN2 cate­
gory. A 74S153 Dual 4-Line-to-I-Line Multiplexer 
selects the most-significant AMX bit for the word, 
odd-byte, or byte operations. The multiplexer truth 
table is shown on Figure 1-17. The multiplexer is 
only enabled by CCLD5, or those instruction-de­
pendent codes for which the CC CNTL ROM as­
serts IRCH VMODI Hand IRCH ENV H. As 
indicated in Table I-IS, these instructions include 
ROL.B, ASL.B, ROR.B, and ASR.B. For these in­
structions, the notation on Figure 1·17 indicates the 
conditions and functions for ,",hich each AND gate 
input assertsIRCE VDATA L 

For the majority of the instructions included in the 
VEN2 group of Table I-IS, VMODI is low. As a 
result, the AMX mUltiplexer is not enabled and 
none of the AND gate inputs will be enabled be­
cause IRCE VEN L is not asserted. Therefore, pro­
cessing these instructions clears the V bit. 

11-1-61 



( 
IRCH-SWAB H IRCE WOB CARRY H 
IRCH VMODI H 

WOB CARRY H * SHFRA15 IRCF CC INS DEP H 
IRCH ENV H 

9 DAPJ SHFRA15 H 
(WORD+OB SWAP) 

Fl (CCLD5+VEN2) 
* SHFRA15 

DAPB AMXOO H 
AMX07 .. OB SWAP + IRCF CCLD5 L IRCE 

AMX15*-OB SWAP 
IRCE VEN2 L VDATA L 

DAPC AMX07 
FROM VENI 

LOGIC 

7 
FO (WORD+OB SWAP) 

DAPJ SH FRA07 H (CCLD5+VEN2) SO 
*SHFRA07 

GRAA WORD+OB SWAP L 

IRCF CCLD5 L LOB CARRY" SHFRA07 

IRCH VMODO H IRCE LOB CARRY H ( 
WORD OR 
ODD BYTE VMODO IRCE IRCE 

SWAP *~ LOB CARRY WOB CARRY 

YES NO 0 AMX07 (ODD BYTE) 
AMX15 (WORD) 

YES YES 0 AMXOO 

NO NO AMX07 0 

NO YES AMXOO 0 

11-0792 

Figure 1-17 VEN2 Sources of V Data Bit, Simplified Diagram 

( 

11-1-62 



( 

( 

( 

This chapter describes the Data Paths of the KBII­
B Processor. The Data Paths consist of the logical 
elements that execute the data manipulations re­
quired by the Control section. The inputs to and 
the outputs from the Data Paths, as well as the 
Data Paths themselves, are described in this 
yhapter. 

All the elements of the Data Paths logic are con­
trolled by the microprogram ROM; a separate field 
of the ROM output word controls each of these ele­
ments. These fields, the values that they can as­
sume, and the function executed by the logic unit, 
are listed on the block diagram, Figure 2-1. 

The Arithmetic and Logic Unit (ALU), performs 
most of the arithmetic and all of the logic (AND, 
OR, EXCLUSIVE-OR) functions required by the 
instruction set (Paragraph 2.1.1). 

The ALU is the input to the Program Counter (PC) 
and to the Shifter (SHFR). The PC (Paragraph 
2.1.3) consists of two registers (PCA and PCB) and 
is used both to keep track of the next program in­
struction and as an auxiliary register during data 
manipulation. The SHFR is the input to the Gen­
eral Registers (G R) and to the Bus Register. The 

. SHFR transfers data from the ALU or from the 
PCB. The ALU data may be either unchanged, 
shifted one bit to the right, or byte-swapped (Para­
graph 2.1.2). 

The General Registers consist of two identical cop­
ies of 16 registers (00-178): one copy consists of the 
General Source (GS) registers, the other consists of 
the General Destination (G D) registers. Both of 
these copies are written at the same time and are 
identical (Paragraph 2.1.4). 

CHAPTER 2 
DATA PATHS 

The Source Register and Destination Register multi­
plexers (SRMX and DRMX, Paragraph 2.1.5) trans­
mit data from the GRs (including the PC or GR7) 
to the Source Register (SR) and to the Destination 
Register (DR). 

The SR and DR (Paragraphs 2.1.6 and 2.1.7), as 
their name implies, are used for source and destina­
tion address ami operand storage. In addition to 
this function, they are used as storage during cer­
tain instructions, such as MPY, DIV, ASH and 
ASHe. The SR cannot change data, but the DR 
can shift either right or left. 

The Shift Counter (SC) is used only for instructions 
that require multiple shifting: MPY, DIV, ASB 
and ASHe. A value is loaded into the SC, which 
counts to zero; at this time the instruction is com­
pleted. The DR is the input to the SC (Paragraph 
2.1.8). 

The logic elements described above, plus the BR, 
and the Constant Multiplexers (KOMX and 
K I MX) are the inputs to the ALU, via two multi­
plexers (AMX and BMX). These two multiplexers 
correspond to the A and B inputs of the ALU. 
AMX, BMX, KOMX and KIMX are described in 
Paragraph 2.1.9. 

The Bus Register MUltiplexer (BRMX, Paragraph 
2.2.1) receives data from all inputs to the Data 
Paths and selects one for storage in the Bus Regis­
ters (BR and BRA, Paragraph 2.2.3) and, during an 
instruction fetch, into the Instruction Registers (IR 
and AFIR, Paragraph 2.2.4). 

The inputs to the BRMX are the Cache, the 
SHFR, the Unibus via the Bus Buffer Register, and 
the Internal Data Bus (INTO, Paragraph 2.2.2). 

11-2-1 



I 

I 

B 

ALU 
(DAPF, DAPH) 

B M X (T1) [21 - 20] ,...----:;L,-,.L,----. 

A 

I ALU.!j. 

PCA I (DAPF,H) 

~). 
PCB I (DAPF,H) 

I 

ALU(Ti) [17-15] 
o NOT A 
1 B 
2 Ai 
3 A PLUS B 
4 NOtT USED 
5 A LUS A 
6 AINUS B 
7 IN$TRUCnON 

DErENDENT($l 

PCA(T2) [51] I 0 NO CLOCK 
, LOAD 

PCB(T2)[50-49J 

I o NO CLOCK 
1 LOAD 

SRX (T2) [61 -60J 
o SHFR 
1 GS 
2 SF7'SHFR; 

- SF7:GS 
3 NOT USED 

2 SF7:LOAD 
3 DF7: LOAD 

A 

PCBJ ~~s-l.7b 
SHF (T2) [48-47] 
o SWAP BYTES 
1 PCB 

I SHFR 
(DAPF,H,J) 

2 NO SHIFT 
3 RIGHT SHIFT 

J L PAD (T1') [43-41] 
,..-_"..=.7_--. G S GD G S 

GD )1 0 SF SF 4 SFvl 
(16 REGISTERS) 1 SF DF 5 DF GS )1 (16 REGISTERS) 

(GRAD EF Hl (GRAD E F.H) § ~OT U~ED ~ ~ 

D~ £0HF~ ~tg DRX (T2) [59-58J 
o SHFR 
1 GD 

PWE(TH) [45-44] 
GD 
SFvl 0 DON'T WRITE 
DF 1 CONDITIONAL 

~ ~ ~~FDsED 

I SRMX I 
(GRAD,E,F,H) 

DRMX I 
(GRAD,E,F,H) § gLT;S~tR;-DF7'GD BAX (T1)[38-37J 

o KOMX BMX I I AMX J ~ ~ M X ( DA P B ,C, D ) L,.,""":;( D:;;A~P-=B;:;,C;;,~D ):"""'..,J 

3 BR K K '" B "'S B P ~ S 

AMX nl1) [23-22] 

o DR 
1 PCB 
2 SR 
3 BR 

SRK (T2) [57] 
o NO CLOCK 
1 LOAD 

DRK (T2) [56-55r]_--=-=-_.., SHC m) [34-33] 0 DR 
o NO CLOCK I SC I 0 NO COUNT 1 PCB 

~ ~~:n r~~J (GRAJ) d Egr~bR<5:0> ~~; EALU (MAINT) 

.(> J I SR I DR 

3 LOAD i'>-DR 3 LOAD 178 DR 
1~[ ________ ~~~'Ir----01 R RR C R 

M M B 
X X 

~ (GRAD,F, H) (GRAD,E,F,H) 
~ __ -+I ____ ~~ ______________ LIL-I ________ ~I L UNIS US 

ADDR ES5 

~~~~~ ~ ______ ~I ____ ~I~I~ ____________ ~I L~ __________________________________________ ~S~R~~ B 
A

.. M lD KOMX
(DAPD)

SRCCON

DSTCON

K1MX
(DAPE)

SHFR CACHE

X
PCB

I I • (DAPB,
FROM FPP EALU --r-r-v' C,D)

'---

VIRTUAL ~

ADDRESS

MEMORY
MGMT.

(SAP,SSR,
SCC) ru

CACH E
ADDR ES5

DATA FROM

r-~==============r=====~~1/L:==========:I][======================~~ CACHE MEMORY
)

BUS BUFFER ,,/'-______ ..L.J ___________ ----l::> DATA TOI FROM

UNIBUS REGISTER '--"'.;-----"- < CACHE 8 UNIBUS Y ",~ UNIBUS(INCL.

, 7 BRX (T2) [62] ... _(;.;.P~D.;.;R.;;.;J) _ ___'(T3) SHFR ~ MAP REGISTERS)
BRMX I 0 SHFR D L

(PDRA) 1 BUS (DETERMINED FROM FPP UADRI I T
.-____ ---11 I BY ADDRESS) CPU UADR .. ~ ~

f---.L....L---------",,, TO CONSOLE DATA LIGHTS

1JII
BRK (T2) [63]
o NO CLOCK
1 LOAD

I L I LR ¢ ~ ~ 7 .(). .()- .(.7 IRK(T2)[46].-------------=c.~ E

I BR I I BRA IR I AFIR 10 NO CLOCK BR R
IDAPA) (PDRB) (IRCA) (RACJ) 1 LOAD ~~

L._ __ ~ ~ ________ ~ ___________ ~L._~I I IL.-____________ ~L_ _________ ~IL._ I .. ______ ~L._ __ ~B;.;.R~ ~~~~~O
SV

KMX (Til [19-18J

KOMX

o 1
1 2
2 SOURCE CONST.

3 DEST. CONST.

K1MX

START VECTOR
TRAP VECTOR
SOB 8 MARK OFFSET
BXX OFFSET

Figure 2-\ Block Diagram
Data Paths

11-2-2

--{yR yR .(>BR BR ~F MEMORY

ISS m) "[36-35J
o NO COMMAND
1 READ SW
2 LOAD PS
3 READ PS

INTERNAL

I LR II PS II PIRQ I
(P DRB) IIIRCH,PDRDli (PDRD)

II
I I~ ________ ~PI~RQ~

D
M
X

DATA BUS PS
~~~~ __ J-L._ ____ .~~~ ~-----------------~~~ (PORE) 

DATA DATA TO MEMORY 
FROM FPP MGMT. REGISTER, 

AND FPP DATA 

lr --
'DATA FROM MEMORY MGMT., 

SWITCH,CPU ERROR ,AND 
SYSTEM SIZE 8 ID REGISTERS. 

11-2618 

/ 
\ 

( 

( 

( 

( 



( 

The outputs of the processor Data Paths select and 
supply address, data and display information: 

I. The Bus Address Multiplexer (BAMX, 
Paragraph 2.3.1) selects the virtual ad­
dress for transmission to Memory Man­
agement from either the DR, the SR, or 
the PC. 

2. The (Unibus) Data Multiplexer (DMX, 
Paragraph 2.3.2) selects the source of 
data to the Unibus from the BR or from 
the Control Registers (Chapter 3). 

3. The BRA supplies data directly to the 
Cache, the Memory Management regis­
ters, the Floating Point Processor and 
the Control Registers (Paragraph 2.3.3). 

4. The Display Multiplexer is controlled by 
the Data Display selection switch on the 
Console and selects the Source of the 
Console data display from the SHFR, 
the FPP and CPU ROM Address Regis­
ters, the Light Register or the BR (Para­
graph 2.3.4). 

2.1 DATA MANIPULATION 
Data manipulation is done mainly by the logic ele­
ments, shown in the top-half of the Data Paths 
Block Diagram, Figure 2-1. 

The ALU is the most complex of these elements 
and is the only one that can combine two operands. 
It is the first one described. Its outputs are input to 
the PC or to the SHFR, from where they may be 
routed to the General Registers, to the SRs and 
DRs and back to the ALU via the A and B 
multiplexers. 

2.1.1 Arithmetic and Logic Unit (ALU) 
The primary data processing element in the KBll­
B (the only element that can combine two operands 
to forma result) is the Arithmetic and Logic Unit 
(ALU). The ALU can perform a variety of arith­
metic operations on two variables (such as addition 
or subtraction) and can perform a variety of logical 
operations on one or two variables, such as com­
plementing or ANDing. The specific operation per­
formed at any time is selected by the processor' 

control on the basis of the microprogram word and 
the current instruction. The manipulated operands 
are selected by two multiplexers, one for each of 
the ALU inputs. The operands can be the contents 
ofJhe SR, the DR, the BR, the PCB, or one of sev­
eral n um bers generated by the constant 
multiplex0r& 

The output of the ALU is gated either into PCA or 
into the SHFR, from which it can then be routed 
to any of the General Registers, or to the SR, the 
DR, or the BR (and the JR, although this path is 
not used). All of these destinations for manipuJated 
data are internal to the processor; when data is 
transferred out of the processor, it must go through 
the BRA. When the ALU outputs are routed to the 
PC, the signal paths do not pass through the 
SHFR; this means that when shift or byte-swap op­
erations are attempted with register 7 as the destina­
tion, the data that enters the PCA is unchanged. 
For example, an ASR PC instruction does not shift 
the PC but does set the condition code as would an 
ASR. 

2.1.1.1 Description of ALU - Refer to drawings 
DAPF and DAPH. The ALU does most of the 
data manipulation in the processor. It operates on 
two 16-bit words of data and a carry input to pro­
duce one 16-bit word of data and a carry output. 
When the M input is high, the ALU operates in the 
logical mode; when this signal is low, the ALU op­
erates in arithmetic mode. The carry signals are not 
active when the ALU is operating in the logical 
mode. Drawing DAPF shows the low byte and 
DAPH shows the high byte of the ALU. 

The 16-bit ALU is implemented with four 74S181 
4-bit Arithmetic Logic Units. Each 74S 181 includes 
look-ahead carry generation for the four bits. A sec­
ond level of look-ahead carry generation is pro­
vided by the 74182-1 Carry Generator. The carry­
propagate (P) and carry-generate (G) outputs of 
each 74S181 (except the most-significant four bits) 
are connected to the corresponding inputs of the 
74182-1, and the carry outputs of the 74182-1 are 
connected to the appropriate carry inputs of the 
ALUs. The least-significant bit carry input is con­
trolled by GRAA ALUC H, based on the output 
of the subsidiary instruction-dependent ALU con­
trol ROM. 

11-2-3 



The ALU can perform anyone of 16 logical func­
tions (each output bit is dependent only on the cor­
responding input bits) or anyone of 16 arithmetic 
functions (each output is dependent on the corre­
sponding input bits and on a carry propagated 
from less-significant bits). The selection of a particu­
lar function is controlled by five signals from the 
G RA module which select the mode (arithmetic or 
logical) and the function. The KBII-B uses only 
ten of the possible 74S 181 functions. These ten flfnc­
tions are listed at the bottom of drawing DAPF. 

The low order byte of the ALU is controlled by the 
SO - S3 inputs (DAPF LSO H - DAPF LS3 H) and 
the M input (DAPF LM H). The high order byte is 
similarly controlled by DAPH HSO H - DAPH 
HS3 Hand DAPH HM H. All of these signals are 
derived from GRAA ALUSO L - GRAA ALUS3 L 
and GRAA ALUM L. 

In addition to the data and carry outputs, each 
ALU element has a comparator output, which in­
dicates (if the ALU is in subtract mode) that the 
two inputs are equal. These outputs, which are 
open-collectors, are wire-ANDed for each data byte 
to generate equality signals that are used in forming 
the condition codes. 

DAPF A = B(7:0) H indicates that the inputs to 
the low data byte are equal. 

DAPF A = B(IS:O) L indicates that the inputs to 
the entire word are equal. DAPH BUS A = B(1S:8) 
H is the wired-AND of the A = B outputs for the 
high-byte ALUs on drawing DAPH. 

Four signals that are used in the generation of the 
Condition Codes are derived from the ALU: 

I. DAP) AMX SIGN H is the sign of the 
A input to the ALU. This signal corre­
sponds to AMX IS if the processor is op­
erating on word data, or to AMX07 if 
the processor is operating on byte data. 

2. DAP) ALU SIGN H is the sign of the 
ALU output; it is taken from ALUIS 
for word data or from ALU07 for byte 
data. 

11-2-4 

3. DAP) A = B(1S:8) + BYTE H indicates 
either that the high data byte is all Os or 
that the processor is operating on byte 
data. This signal is used in determining 
whether all the active data is Os for the 
Z condition code. 

4. DAP) ALUCN L is the carry output of 
the active portion of the ALU; it takes 
the carry output from the high byte for 
word data or the carry output from the 
low byte for byte data. This signal is 
used to generate the Carry (C) condition 
code. 

2.1.1.2 ALU Control - During each machine cycle, 
the ALU performs the function that is specified by 
the ROM ALU control bits [RACC UALU(2:0) 
H]. The signals that actually control the ALU (and 
also the SHFR) operations are shown on schematic 
GRAA. 

If the UALU bits equal 0 ~ 6, the control signals 
are independent of instructions being executed. If 
these bits equal 7, the control signals depend on the 
instruction code. In this last case (instruction de­
pendent), the notation "SALU" appears on the 
Flow Diagrams. 

The ALU control signals generated on the GRA 
module are: 

GRAA ALUS(3:0) L (ALU SO - S3 control) 

GRAA ALUM L (ALU mode control) 

GRAA ALUC H (Carry in) 

GRAA ALU INSDEP L controls the two 74SIS8 
multiplexers that select the source of these ALU 
control signals. GRAA ALU INSDEP L is low 
when the UALU bits equal 7 (A inputs), and high 
when the UALU bits equal 0 - 6 (B inputs). 

Non-Instruction Dependent Control 
The ALU control field in the main microprogram 
ROM is a 3-bit field that controls the values of six 
control signals. There is not a one-to-one relation­
ship between the ROM bits and the control signals, 
and not all possible combinations of control signals 
can be generated. Each control signal is the result 
of decoding the ROM bits. 

( 

( 

( 



( 
\ 

( 

( 

RACC UALUO and UALU2 are inverted by the 
multiplexer and generate GRAA ALUS3 and 
ALUS2, respectively. If UALU = I or 6, the out­
put of the 74S64 at the lower-left of GRAA goes 
high and G RAA ALUS I goes low; for other values 
of UALU, ALUSI is high. If UALU = 3, the BO 
input to the multiplexer is high and ALUSO is low. 

The M bit is asserted when UALU = 0 or I; 
GRAA MODE H goes high and ALUM L goes 
low. The carry bit is generated when UALU = 6 
by G RAA CIN L, which goes low and causes 
GRAA ALUC H to go high. 

These control signals are all inverted on DAPF and 
DAPH and input to the ALU. Table 2-1 shows the 
operation performed by the ALU for each value of 
the U AL U field, and the state of the control signals 
at the 74S181. 

Instruction-Dependent Control 
When the ALU control signals are instruction-de­
pendent, each of the six signals is controlled by a 
separate output signal from the subsidiary ALU 
control ROM, shown on drawing GRAA. The 
ROM inputs [IRCH SUBROMA(4:0) H] are de­
scribed in Chapter 1, Paragraph 1.5. 

When UALU = 7, the multiplexer SO inputs are 
low and the A inputs are selected. Two of the ALU 
select signals, GRAA ALUSO and ALUSl, take on 
the value of the ROM outputs. The other two, 

GRAA ALUS2 and ALUS3, are forced high when 
the SWAB instruction is being executed. The 
SW AB instruction does not have a unique ROM 
word, and uses the same word as the ASL instruc­
tion with some of the control signals modified in 
this manner. Refer to the ALU Control ROM 
Map, shown on drawing GRAK. 

The ALUM (mode control) signal is taken directly 
from the ROM, except when the SXT instruction is 
executed with a negative operand [IRCH N(l) H is 
high] or when both GRAA ROMM and ROMC 
are high (G RAA CDEP L). 

In the case of SXT and a positive operand [IRCH 
N(I) H low], GRAA ROMM is high, ROMC is 
low; this forces GRAA ALUM low, DAPF LM 
and DAPH HM high, which puts the ALU in the 
logic mode. DAPF LSO - LS3 (and DAPH HSO -
HS3) are respectively L, L, H, H and the ALlJ out­
put is 0 (refer to the ALU table on DAPF). In the 
case of a negative operand [IRCH N(l) H high], 
GRAA ALUM is high, which puts the ALU in the 
arithmetic mode. All other control signals being un­
changed, the ALU output is a 2's complement 
minus 1 (all Is). 

GRAA ROMM and ROMC are both high for the 
ROL, ROLB, ADC, ADCB, SBC and SBCB in­
structions. In this case, GRAA CDEP L is low and 
the ALU is put in the arithmetic mode instead of in 
the logic mode. 

Table 2-1 
Non-Instruction-Dependent ALU Control Signals 

UALU Operation Control Signals 
DAPF orDAPH Negation of 

LS3H LS2H LSIH LSOH LMH GRAAALUCH 
HS3H HS2H HSIH HSOH HMH 

0 notA L L L L H 
1 B H L H L H 
2 A (Plus carry) L L L L L 
3 A plus B (Plus carry) H L L H L L 
4 not used 
5 A plus A (Plus carry) H H L L L L 
6 A-B L H H L L H 
7 instruction-dependent Instruction Dependent 

11-2-5 



The ALU C (Carry-in) signal is modified for two 
classes of instructions. The DIY and ASHC instruc­
tions operate on 2-word operands, and the instruc­
tion-dependent state is one that shifts the two 
words left. The carry-in must take on the state of 
the most-significant bit of the less-significant word. 
For the ADC on ROL instructions, a carry insert 
signal is generated if the C bit is set; for the SBC in­
struction, the signal is generated if the C bit is 
cleared: This data-dependent carry generation is 
controlled by the assertion of both ROMM and 
ROMe. 

GRAA SGNEX MOYB is generated when a 
MOYB instruction is being executed. This instruc­
tion is used to extend the sign of the byte into the 
high byte when the destination is a General 
Register. 

GRAA WORD + OB SWAP Land H indicate 
. that the significant SHFR outputs include the high 
byte, and the sign of the output is bit 15 (rather 
than bit 7). 

2.1.2 Shifter (SHFR) 
The output of the ALU is input to the program 
counter (PCA) and to the SHFR. The inputs to the 
SHFR include, in addition to the ALU, the output 
of PCB. 

The SHFR can perform right-shift or byte-swap op­
erations on the data, or substitute the contents of 
the PC for the ALU outputs. In many cases, where 
an instruction is performed for an odd-byte destina­
tion operand, the data manipUlation required by 
the instruction is completed in the ALU and the 
transfer of the result to the odd-byte data lines is 
performed in the SHFR, all during one machine 
cycle. 

I n addition to its data manipulation (shifting and 
byte swapping) activity, the SHFR is used as a rout­
ing element. When General Register 7 (the PC) is 
transferred to the SR or to the DR, PCB is routed 
through the SHFR, to the SRMX or DRMX, then 
to the SR or DR. 

The output of the SHFR goes to the General Regis­
ters, GS and GO, to the SRMX and DRMX, to 
the BRMX and to the display multiplexer - where 
it provides the Data Paths display data. 

11-2-6 

2.1.2.1 Description of SHFR - The SHFR is a 
four-input multiplexer that provides unshifted, 
right-shifted and byte-swapped outputs from the 
ALU inputs. It accepts PCB as the fourth input. 
Left-shift operations are performed in the ALUby 
using the A plus A mode. The sum of A added to 
A is equivalent to the product 2A, which in turn is 
equivalent to shifting A (as a binary number) one 
bit to the left. 

Bits (00:06) and (08: 14) of the SHFR are similar, 
and are shown on drawing DAPF and DAPH. 

Special operations are required in the SHFR for 
the most-significant bit of each -byte. The SHFR 
logic for data bits 7 and 15 are shown separately on 
drawing DAPJ. 

BITS 00:06 AND 08:14 
Refer to Figure 2-2, which shows a typical SHFR 
bit 00:06 or 08: 14. 

ALU(n+lI 0 

ALU.n C 1/2 
745153 5HFRn H 

PCBn B 

ALU(n±8) A 

NOTE: 
5HFR51H n=00:06 

08:14 
5HFR50 H 

11-3107 

Figure 2-2 Typical SHFR Bit 

When a byte swap is required, the A inputs are se­
lected, and ALU(08: 14) are switched to the outputs 
of SHFR(00:06), and ALU(00:06) to the outputs of 
SH-F-R(08:121). Inputs B switch the PCB to the multi­
plexer outputs. Inputs C transfer ALU(00:06) and 
(08:14) to SHFR(OO:06) and (08:14) (no shift). A 
right shift is executed by using input 0, which trans­
fers ALU (n+ I) to SHFR n (for example, ALU05 
to SfIPR04). 

( 

{ 

( 



( 

( 

( 

BITS 07 and 15 
Refer to drawing DAPJ. The most significant bit of 
the shifter is SHFR 15. The shifter inputs are sim­
ilar to the inputs for other shifter bits when the 
byte-swap (A) or unshifted ALU inputs (C) are se­
lected. However, the input used for the right-shift 
mode is dependent on the instruction being 
executed. 

For some shift operations, such as ASR and 
ASRB, the sign of the data word is replicated. This 
is done by routing ALU15 (the most-significant, or 
sign, bit) to the right-shift inputs of both DAPJ 
SHFR 15 and DAPH SHFR 14. For right rotate 
(ROR and RORB) instructions and multiply in­
structions, this procedure is modified by forcing a 
second level 2-input 74S157 multiplexer to select 
GRAJ SHFR DATA H instead of DAPH PCB 15 
H. The signal GRAJ SHFR DATA consists in this 
case of the .carry (C) bit and the P /class instruction 
decode for the rotate instruction. For the multiply 
instruction, the input is used to extend the sign of 
the result during the calculation and to correct the 
sign on the cycle, if necessary. In this last case, it is 
high if the instruction is an I/class, and either the 
SR is greater than 0 during an instruction-depend­
ent cycle, or the contents of the SR are negative 
(SR 15 I) during a non-instruction dependent cycle. 

The shifter logic for data bit 7 must operate the 
same as the normal bits for word data, and as the 
most-significant bit for byte data. The right-shift in­
put must be able to receive one of three values; 
ALU08 for word data; ALU07 for byte shifts (if 
not a rotate instruction); or the Carry (C) bit for an 
RORB instruction. This is accomplished by multi­
plexing the C bit with the PCB input and forcing 
the SHFR to accept input B for an RORB instruc­
tion; for any other byte shift, the SHFR is forced 
to accept input C, the no shift input, so that 
SHFR07 and SHFR07 both receive ALU07. 
SHFRAI5 and SHFRI5 signals and SHFRA07 and 
SHFR07 signals are logically identical and appear 
only for additional loading capacity. 

GRAB Z DAT A2 L detects all Os at the SHFR out­
put. Depending· on the operation being performed, 
either the entire word of data or only one byte of 
data may be significant. For word data, both 
wired-AND circuits must detect all Os. For normal 
byte operations, only the low byte (SHFR07 -
SHFROO) must be all Os. During operations on odd 

bytes, or during a SWAB instruction, only the high 
byte is- tested. A fourth input, enabled by IRCF 
CHECKZ H, is used when the final result is two 
words, to clear the 0 (Z) bit if the second word 
does not contains all Os. If the second word is all 
Os, the Z bit retains the previous value. Thus, only 
if both words are all Os will the Z bit be set. 

2.1.2.2 Shifter Control - The SHFR is controlled 
by DAPF SHFRSO and SHFRSI H, which are in­
verted from GRAA SHFRSO and SHFRSI L. 
These signals, in turn, are generated by the same 
subrom that controls the ALU, and they are instruc­
tion-dependent when the ALU control signals are. 
Refer to Paragraph 2.1.1.2. 

GRAA SHFRSO and SHFRSI, when instruction­
dependent, take on the value of the subrom output, 
except in the case of the ASRB, ROROB, NEG 
and NEGB instructions if the destination mode is 
not 0, and in the case of the SWAB instruction. In 
both of these cases, DAPF SHFRSO and SHFRSI 
are forced low by G RAA SWAP L. 

2.1..3 Program Counter (PCA and PCB) 
The Program Counter (PC) provides the address of 
the next instruction to be fetched. The PC is imple­
mented as two 16-bit registers, PCA and PCB. 

PCA accepts data only from the ALU; this data is 
clocked in at T5 by DAPJ CLKPCA H when the 
PCA ROM bit = I. The output of PCA goes only 
to PCB, and is the only input to PCB. 

PCA is clocked into PCB at T1 by DAPJ CLKPCB 
H when the PCB ROM bits = I, 2 or 3: I is an un­
conditional load; 2 loads if the source field =7; 3 
loads if the destination field = 7, unless the instruc­
tion is I/c1ass and the UPWEOO ROM bit is high. 

(1/ class instructions are those that cause a high out­
put of the ITCH R (I CLASS) output of the instruc­
tion decode subrom. They are listed in the R 
(I/CLASS) column of the table on IRCJ). 

2.1.4 General Registers 
In all instructions that transfer data, each address 
reference specifies one of eight General Registers. 
The specific register (of the 16 in the KBII-B Pro­
cessor) used for each reference depends both on the 
value of the 3-bit register specification and on the 
processor state, as represented by the contents of 
the Processor Status (PS) word. 

11-2-7 



Two of the eight General Registers that can be spec­
ified in the instruction code are also used by the 
KB II-B as special-purpose registers. If the register 
specification has a value of 7, it specifies the Pro­
gram Counter (PC). This always refers to the hard­
ware PC register described in Paragraph 2.1.3. If 
the specification has the value 6, it specifies the 
hardware Stack Pointer (SP) register. 

One of three hardware registers, within the General 
Register data storage elements, is selected in this 
case, depending on the processor mode: register 6 if 
the processor is in Kernel mode, 16 if it is in Super 
mode, or 17 if in User mode. If the register specifi­
cation has the value 0 - 5, one of two registers is se­
lected, depending on the register set selection bit 
(bit II in the PS word). 

Figure 2-3 illustrates the General Register selection 
in the K B II-B Processor. Figure 2-4 shows the for­
mat of the Processor Status word (PS). 

REGISTER ADDRESSr-______ ~ 

NOTE: 

o 

2 

3 

4 

5 

6 

7 

10 

11 

12 

13 

14 

15 

16 

KERNEL SP (R6) 

SUPER SP (R6) 

GENERAL REGISTER 
SET 0 
PS<11>=O 

GENERAL REGISTER 
SET 1 
PS<II>=1 

}PS<15:14>=OI 
t--------I 

17 L..-_U_S_E_R_S_P_{ _R6_)_ ...... } PS <15: 14 > = 11 

Register 7 is the PC, which is stored separately. 

Figure 2-3 General Register Storage in 
GS and GD Storage:Elements 

11-0963 

IS 14 13 12 11 10 8 7 S" 3 2 1 0 

I, I II N~TUSED I PRIORITY ITINl'lvlcl 
~ 11-3098 

CURRENT MODE·-----.l f 
PREVIOUS MOOE*'------' 
GENERAL REGISTER 
SET(O,lI 

• MODE: 00 =KERNEL 
0' "SUPERVISO!!: 
11:USER 

Figure 2-4 Processor Status Word 

Each of the 16 General Registers is duplicated. The 
duplication allows the processor to access more 
than one register at a time. Each General Register, 
with the exception of register 7, is implemented by 
two copies in the two General Register storage 
elements. 

The General Source (GS) registers include 16 regis­
ters allocated as shown in Figure 2-3. The General 
Destination (G D) registers contain 16 registers used 
in. an identical manner. When data must be written 
into a General Register, it is written into both cop 
ies to ensure that all attempts to read the data will 
read the same value. However, by specifying differ­
ent register addresses to the GS and G D storage ele­
ments, it is possible to read the contents of a 
different register from each. This feature is used pri­
marily in reading the contents of the two registers 
specified by dOUble-operand instructions. 

Whenever the General Registers, as a group, serve 
as a data source, the PC (register 7) can be selected 
as one of the General Registers. This is accom­
plished by selecting the PCB input to the SHFR, 
and allowing the source or destination multiplexer 
to select the SHFR input, if register 7 is selected, 
and the GS or GO input if any other register is 
selected. 

Refer to schematics GRAD-GRAH. The General 
Registers are implemented in two sets of four 
310lA 64-bit random-access memories that are ar­
ranged in sixteen 4-bit words, Each General Regis­
ter is made up of one word from each of four 
memories, and the same word selection signals are' 
sent to all four memories for one copy of the regis­
ters. A different set of selection signals can be sent 
to the second copy of the registers while reading, 
but not when data is being written. 

Data is written when the W input is low. The write 
enable signals are GRAC GRWE LOB L for the 
low order byte, and GRAC GRWE HIB L for the 
high-order byte. The conditions for these signals 
are explained in a table on G RAC. 

11-2-8 

( 

( 

( 



( 

( 

I ndividual registers are selected for reading and 
writing by GRAC GDA (0:2) H and by GRAC 
GSA (0:2) H, all four of which go to the AO - A2 
inputs to the 310 I As. The register sets are selected 
by GRAC GDREG SET! Hand GSREG SET! H, 
which go to the A3 inputs to the 31O!As. 

The multiplexers are disabled when PAD =6; GSA 
(0:2) and G DA (0:2) are low in this case. 

General Register Selection 
Source and Destination Address Multiplexer 
[GRAC GSA(0:2), GDA(0:2)] - The microprogram 
selects the sources of the scratch pad addresses. The 
microprogram includes a 3-bit PAD field that se­
lects one of seven sets of sources; the value of 3 in 
the PAD field is not used. Some of the sources are 
constants, and are generated by +3 V and 0 V in­
puts to the GDAM and GSAM multiplexers; oth­
ers are taken from the IR source and destination 
register specifications of the instruction. Table 2-2 
shows the multiplexer inputs used for each PAD 
value. Table 2-3 shows the values of these inputs. 

PAD 

0 
I 
2 
3 
4 
S 
6 
7 

Table 2-3 
Multiplexer Input Values 

Input Value 

Bits 1 and 2 

Table 2-2 
Multiplexer blput Selection 

GSAM and GDAM 

GSAM GDAM 

A A 
A B 
C C 

not used 
A A 
B B 
GS and GD MX disabled 
D D 

Bit 0 

A Source Field [IR(07:08)] IfIR06=1, high. IfIR06=0, low, unless current mode is User 
and the source field = 6 or 7. 

B Destination Field [IR(OI :02)] 

C GSA(2:0) and GDA(2:0) = S 

D IfPSIS=O, GSA(2:0) and 
GDA(2:0)=6 (Register 6, Kernel 
or Super) 

IfPSIS=I, GSA(2:0) and 
GDA(2:0)=7 (Register 6, User) 

IfPAD=4, same as above, but GRAC PLUS I is ORed with 
IR06 to force an odd register address. Used only during MUL, 
DIV and ASHC. 

IF IROO=I, high. IflROO=O, low if the console is not active; or 
ifthe destination field.is not =6; or if PSI S=O (Kernel or Super 
current mode) and the instruction is other than MFP or MTP 
with destination mode 0; or if PS 13=0 (Kernel or Super previous 
mode) and the instruction is MFP or MTP with destination 
mode o. 

11-2-9 



General Register Set Selection (GRAC GDREG 
SET 1 and GSREG SET I) - The most-significant 
bit of the scratch pad address selects which General 
Register set is used. This selection is, in general, 
done by the multiplexer; in several cases, the pro­
cessor forces the selection of General Register Set 
I. Note that these multiplexers are always enabled. 

Table 2-4 shows the multiplexer inputs selected for 
each PAD value. 

PAD 

0 
1 
2 
3 
4 
5 
6 
7 

Table 2-4 
Multiplexer Input Selection 
GSREG and GDREG SET 1 

GSREGSET 1 GDREG SET 1 

A A 
A B 
C C 

not used 
A A 
B B 
C C 
D D 

GRAB SRC SET I Land DST SET 1 L are, re­
spectively, the A and B inputs to both source and 
destination multiplexers. 

Both gates are asserted (low) when the Console is 
not active, PS II is asserted, and registers 0 - 5 are 
specified by the source [IR(06:08)] or destination 
[I R(00:02)] fields of the current instruction; regis­
ters 0 - 5 are selected if not both IR08 and 07 (for 
the source field) or IR02 and 01 (for the destination 
field) are asserted. 

Set 1 is also selected when the Console is not ac­
tive, PSI4 is asserted (Super or User modes), and 
register 6 is specified by the instruction source or 
destination fields. This, in conjunction with the 
G RAC multiplexer outputs, forms address 16. If 
PSI5 is asserted, the A input to GRAC GDAO and 
GSAO is forced high, thus generating address 17 
(G RAC PLUS I). If the instruction is an MFP or 
an MTP, and UPEWOO = 1 (conditional), and the 
destination field = 6 or 7, and the mode is User or 
Super, and the Console is not active, GRAB DST 

-SET I L is also asserted. 

The C input to the Set 1 multiplexers is PSII, 
which defines the register set. 

The 0 input to these multiplexers is PS14(1)L 
which, when asserted (low),specifies User or Super 
modes. 

The output of these multiplexers, when low, causes 
the selection of General Register Set 1 through the 
GRAC GDREG SET! Hand GSREG SET! H 
OR gates. 

The two other inputs to the OR gates cause the se­
lection of SET!: 

I. During a Console operation, bit 3 of the 
address selects the Register Set and is 
clocked into IR03; it is then input to the 
OR gates to select the proper set. 

2. In the case of an MFP or MTP instruc­
tion with destination mode 0 and destina­
tion field =6, if UPWEOO= 1 
(conditional) and PS12= 1 (previous 
User or Super modes), set 1 is also se­
lected. I n an M FP instruction, the 
source is always specified in the field nor­
mally designated as destination. The des­
tination is the current mode stack. 

2.1.5 Source and Destination Multiplexers (SRMX 
and DRMX) 
The SRMX and DRMX select the input to the 
Source and Destination Registers (SR and DR). Re­
fer to drawing GRAD. 

The select inputs to these multiplexers are G RAC 
SRMX SEL Land DRMX SEL L, which are con­
trolled by the SRX and DRX ROM bits and by 
IRCB SRCF 7 L. 

When the SRX and DRX bits =0, the SHFR is se­
lected as the input to the SR and DR. When SRX 
and 0 RX = I, the General Source and Destination 
registers (GS and GO) are the SR and DR inputs. 
If SRX and DRX =2, the inputs are either the 
SHFR, if the Source or Destination fields =7, or 
the GS and GO if this is not the case. SRX =3 is 
not used; DRX =3 clears the DR at GRAJ 
TP(3:5), which is a flip-flop set by T3 and reset by 
T5. 

11-2-10 

( 

( 

( 



2.1.6 Source Register (SR) 
The Source Register (SR) performs two major func­
tions. It is the output buffer for the General Regis­
ters when addressed as the SR in an instruction, 
and it provides temporary storage during the source 
data-fetch operations. 

All output from the GS registers must be trans­
ferred through the SR. When the PC is selected as 
a source register, the data from the PCB is routed 
through the SHFR and the SRMX to the SR. 
From the SR, data can be routed anywhere in the 
processor through the ALU inputs, or the contents 
of the SR can be used as an address for external 
data transfers through the BAMX. The SR is also 
used as a temporary storage register during trans­
fers of data within the processor; e.g., when the old 
PC and PS are being stacked during an interrupt or 
trap service sequence, the SR holds the vector 
address. 

The SR is used as a data storage element for inter­
mediate results during instruction execution. The 
register and operand group instructions, such as 
multiply, divide, and the arithmetic shifts, use the 
SR to hold both operands and results. 

The outputs of the SRMX are connected directly to 
the inputs of the SR and are clocked by TI if en­
abled by the microprogram bit RACA USRK H. 
The outputs of the SR are routed to the ALU input 
multiplexers and to the bus address multiplexer. Bit 
o of the SR is also sent to the IRC module for use 
in one of the microprogram address generation cir­
cuits, the C Fork, for odd-byte source branches. 

The output of the SR is checked for two condi­
tions: SR ~ 0 and SR = + 1, by GRAE SR LEQ 
ZERO Hand SR EQ ONE L. The two flip-flops 
are clocked by the same signal that clocks the SR. 
They are both set if GS(OI: IS) = O. 

GRAE SR LEQ ZERO H is asserted if both flip­
flops are set and GRAD SROO H is low (SR=O) or 
if G RAH SR IS L is asserted (SR is negative). 

GRAE SR EQ ONE L is asserted if both flip-flops 
are set and GRAD SROO H is asserted (SR=+I). 

2.1. 7 Destination Register (DR) 
In addition to performing two functions similar to 
the major functions of the SR, the Destination Reg­
ister (DR) also operates as a data manipulation ele­
ment; specifically, the DR is used as a left or right 
shift register during register and operand instruc­
tions such as ASH, ASHC, MUL, and DIV. 

All output from the GO registers (and from the 
PC, when it is selected as a destination register) 
must be through the DR. Data from the DR can 
be routed anywhere in the processor through the 
ALU, or used as an address in external data trans­
fers through the BAMX. To transfer the contents 
of either the SR or the DR to an external data stor­
age location, the data must first be transferred from 
the SR or DR through the ALU to the BR, and 
then from the B R to the Cache, the Unibus, or the 
I nternal Data Bus. 

The DR is used as a control register and to accumu­
late the less-significant part of the result during reg­
ister and operand instructions such as multiply, 
divide, or the arithmetic shifts. The DR is also the 
source for data to be loaded into the Shift Counter 
(SC) register. 

Refer to GRAD through GRAH. The DR can be 
loaded with a left shift of one bit, a right shift of 
one bit, or no shift. The shift inputs are used when 
the processor must operate on two words of data at 
the same time (for example, during a multiply or di­
vide instruction) and the operation includes shift­
ing. The type of loading is determined by RACA 
UDRK(OO:OI), as shown on GRAD. During a right 
shift, DAPF ALUOO is loaded into GRAH ORIS. 
During a left shift, DAPJ LEFT DATA is loaded 
into GRAD o ROO; DAPJ LEFT DATA is high 
when both DAPJ COUTl5 H (the ALU carry out) 
and the instruction is 1/c1ass. This input is used dur­
ing the DIV instruction. When no shift is required, 
DRMX(OO: 15) are loaded into DR(OO: IS). 

The DR is cleared when the DRMX control bits 
UDRX(00:01)=3. 

At T I, w hen U 0 R K (00: 0 I ) = 3 (loa d 0 R), 
DRMXOO is clocked into the GRAB aBO (Odd­
Byte Destination) flip-flop. When set, this flip-flop 
indicates that the destination field contains an odd 
byte address. 

11-2-11 



·2.1.8 Shift Counter (SC) 
The Shift Counter [ORAJ SC(OO:OS)] is used to 
count the repetitive cycles of data manipulation in 
the multiply (MUL), divide (DIY), arithmetic shift 
(ASH), and arithmetic shift combined (ASHC) in­
structions. The SC can be loaded either with the six 
less-significant bits of the DR (for ASH or ASHC 
instructions) or with a constant, 17(8), (for MUL 
or DIY instructions). The SC is controlled by the 
RACC USHC(OO:OI) ROM bits. The outputs of the 
SC are used in the Branch Conditions logic on 
RACK. 

The SC consists of two 74191 counters and associ­
ated logic. They are loaded with the value present 
at the 0 inputs when the LOAD input is low. The 
74191 counts on the positive transition of the clock 
signal, if the ENABLE input is low. The counter 
counts down if the ON input is high, and counts 
up if DN is low. The MAX/MIN output goes high 
when the outputs are all high (= 1111), and the 
count direction is up (ON = low), or when the out­
puts are all low (= 0000) and the count direction is 
down (ON=high). The R/CLK (ripple clock) out­
put goes low when MAX/MIN is high and CLK is 
low. The R/CLK from the low order SC clocks the 
high order sc. If RACC USHC(OI :00)=0, the SC 
is inoperative. 

If USHC= I, the ENB input is low and one clock 
pulse is generated at 0 RAJ TP(3:S) H. 

If USHC=2, the complement of OR(OS:OO) is 
loaded with the sign extended to the two unused 
high order bits of the SC. 

If USHC= 3, the eight bits of the counter are 
loaded with I s. This is used to count to 16( 10) 
(= 17x) during MUL and DIY. In this case, only the 
four low order bits [SC(03:00)] are counted. 

Refer to Figure 2-S. When 178 is loaded, SCOSL is 
low, and the counter is made to count up, since 
SCOSL is input to both DN inputs. At the first 
clock pulse, SC(00:03) goes to all Os (J III +0001). 
Neither MIN/MAX nor R/CLK are generated at 
this time, and SC(04:0S) stay high. Each clock pulse 
increments the contents of SC(00:03) by I. When 
their value equals 1111, MIN/MAX goes high, and 
since SC(04:0S) are still high, ORAJ SC=O L is as­
serted. This occurs on the sixteenth clock pulse. 

SC9J5 

SC9J4 

SC9J3 

SC9J2 

SC9J1 

SC9J9J 

MINIMAX 

R/CLK 

ON 

SC=9J L 

2 3 4 5 6 

--------------------~ 

COUNT DOWN 

I L 
LJl.r 

11-3108 

Figure 2-S SC Loaded With 00101 

Refer to Figure 2-6. When an ASH or ASHC speci­
fies a right shift, bits (O:S) of the instruction word 
contain a negative value. This causes a positive 
value to be loaded into the SC (SCOS=O), and the 
counter will count down (0 RAJ SCOS L = ON are 
high). Assume that a 6-bit shift is desired: -6 in 
2's complement, or 11010, is entered into bits (S:O) 
of the instruction word and then loaded into the 
DR. The I's complement of this value, or 00101, is 
the numbeL loaded into SC(OS:OO). Since the ON in­
put is high, successive clock pulses cause the 
counter to count down to 00000. At this time, 
MIN/MAX goes high, but since SCOS is low, 
ORAJ SC 0 L is not asserted. At the next clock 
pulse, the sixth, R/CLK is asserted. Since the 
counter is still counting down, all five SC bits 
change from 00000 to 11111. 0 RAJ SCOS Land 
the ON input both go low, which defines count up. 
MIN/MAX stays high, SC04 and SCOS are high, 
causing 0 RAJ SC 0 L to be asserted, thus ending 
.the count. 

11-2-12 

( 

( 

( 

( 

( 



( 

( 

o 2 3 4 

NL 2.1.9 ALU Inputs 
The A multiplexer (AMX) is the "A" input to the 
ALU. It can select one of four signals: DR, SR, 
PCB, or the Bus Register (BR). --, 1 

SC~3 H 1 .... ________ --1/ 

L--__ ----I:1 1 SC~2Hl_ ! 
.... .....------1/1-1 ----

SC~I H I .... ___ ~ 

The B multiplexer (BMX) is the "B" input to the 
ALU. It can select the SR, the BR or one of two 
constant multiplexers, KOMX or KIMX. 

General information on these inputs is listed In 

Table 2-5. 

R/CLK /1-1 ---'L 
2.1.9.1 A Multiplexer (AMX) - The A mUltiplexer 
(DAPB AMXOO H - DAPD AMXl5 H) is con­
trolled by RACC UAMX(OI :00) and selects one of 
four registers for input to the A operand of the 
ALU. The values of RACC and the registers se­
lected are listed in the table on drawing DAPB. 

----------//11----­
SC~5 H 

-----------------I/I~----­
SCf/.I4 H 

MINIMAX r-
------;1 r----J 

11-3109 

Figure 2-6 SC Loaded With 178 

2.1.9.2 B Multiplexer (BMX) - The B multiplexer 
(DAPB BMXOO - DAPD BMXl5 H) selects the B 
input to the ALU. It is controlled by RACC 
UBMX(OI:OO) H. Table 2-6 shows the outputs of 
the BMX for the several values of UBMX. 

Table 2-5 
ALU Input Multiplexers 

Multiplexer Output To Input From Type of Input 

AMX A input of ALU source register variable operand 
destination register variable operand 
bus register variable operand 
program counter variable operand 

BMX B input of ALU source register variable operand 
bus register variable operand 
KOMX constants 
KIMX constants and sign-extended operands 

KOMX BMX 1 fIxed constant 
2 fIxed constant 
source constant generated constant 
destination constant generated constant 

KlMX BMX trap vector generated constant 
start vector fIXed constant 
BR (SOB & MARK) shifted and sign-extended operand 
BR(branch) shifted and sign-extended operand 

11-2-13 



Table 2-6 
BMX Output Selection 

BMX RACC UBMX(01:00) H 
00 01 10 11 

00 KOMXOO 0 SROO BROO 
01 01 KIMXOI 01 01 
02 02 02 02 02 
03 03 03 03 03 
04 0 04 04 04 
05 0 05 05 05 
06 0 06 06 06 
07 0 KIMX07 07 07 

*08 KOEX Kl EX*UKMXOO 08 08 
*09 KOEX KIEX 09 09 
*10 KOEX KIEX 10 10 
*11 KOEX KIEX*UKMXOO 11 11 
*12 KOEX KIEX 12 12 
*13 KOEX KIEX 13 13 
*14 KOEX KlEX 14 14 
*15 KOEX KlEX SR15 BR15 

*Note: If GRAA SGNEX MOVB L is asserted, KOEX H 
becomes the output ofBMX(15:08) H. 

Sign Extension - When RACC UALU(2:0) H = 7 
(ALU instruction dependent), and the instruction is 

'MOYB (IRCB MOYB H is high), GRAA SGNEX 
MOYB L is low. This forces the two signals that 
control BMX(l5:08) high (DAPD BMXS1 HIB L 
and BMX SO HIB L), thus putting DAPD KOEX 
H on the high order byte BMX output line. KOEX 
takes on the value of BR07 when the BR is selected 
(UBMX=3), or that of SR07 when the SR is se­
lected (U BMX =2). 

2.1.9.3 Constant Multiplexer 0 (KOMX) - Con­
stant MUltiplexer 0 [DAPD KOMX(03:00)] supplies 
values required for incrementation of ALU oper­
ands. The KOM X is controlled by RACC 
UKMX(OI:OO) H. 

When UKMX=O, a constant of 1 is generated. 
When UKMX=I, a constant of 2 is generated, ex­
cept in the case where FRMJ ADDR INC L 
(request by the FPII for an address increment) is 
not asserted and TMCE FC H is asserted. FC 
(Floating Point Condition) is asserted when the Bus 
Condition bits (BSC)=4, signifying that the pro­
cessor is executing a memory operation for the 
FPII. 

When UKMX=2, a constant of I is generated if 
IRCC SRCCON-I H is asserted. A constant of 2 is 
generated if IRCC SRCCON-l H is asserted. The 
conditions for these functions are shown on draw­
ing IRCC and are mutually exclusive. They nor­
mally indicate an auto-increment or auto-decrement 
addressing mode for the source register. 

When UKMX=3, constants of I, 2, 4, or 10 may 
be generated by IRCD DSTCON-1 (or 2, 4, or 10) 
H. Increments of 4 or 10 are only used for FPII in­
structions. The conditions for these functions are 
shown on drawing IRCD. 

DAPD KOEX H is described in Paragraph 2.1.9.2, 
B Multiplexer (Sign Extension). 

2.1.9.4 Constant Multiplexer 1 (KIMX) - Con­
stant Multiplexer I [DAPE KIMX(07:01) Hand 
K I EX H) generates vector addresses and program 
counter offsets. The K I MX is controlled by RACC 
UKMX(OI :00) H. 

Table 2-7 shows the output of the BMX for the sev­
eral values of UKMX when the K1MX is selected 
(UBMX=I). 

When UKMX=O, DAPE SY(07:02) H are selected. 
This is the start vector, which is selected in ROM 
state 100 (PU P.OO on Flows 12) during the power 
up sequence. The address may be selected either in 
the range of 000 000 to 000 174(8), or in that of 
173 200 to 173 374(8), depending on the jumper for 
SY07. This is due to the logic for DAPE BMX08 
and II combined with the K I MX circuitry, which 
extends the sign to all high order bits except bits 08 
and II. 

The trap vector (TY) is used to select a new PC 
and PS following a trap operation. The trap vectors 
for a variety of internal conditions are defined by 
the logic in the lower-left corner of the drawing. 
The chart on DAPE defines the specific vector for 
each condition. If none of these conditions is pre­
sent, but the processor is doing a trap operation, 
the trap vector is set to 4. This occurs for non-ex­
istent memory references, memory parity errors, 
odd address errors, fatal stack violation errors, and 
executing the Halt instruction in User or Supervisor 
modes of operation. The K1 MX constants for 
EMT and TRAP instructions are one-half their as­
signed values. This is because they are executed by 
the same machine states (Flows 12) that cause the 
vector for reserved instructions to be left shifted (so 
that vector 4 forms vector 10). 

11-2-14 

( 

( 

( 

( 

( 



( 

( 

( 

( 

Table 2-7 
BMX Output From KIMX 

Bit BMXRACC 
UBMX=1 00 

00 0 0 
01 KIMX01 0 
02 02 SV02 
03 03 

I~ 04 04 
05 05 05 
06 06 06 
07 KIMX07 SV07 
'08 KIEX*UKMXOO 0 
09 KIEX SV07 
10 KlEX SV07 
11 KIEX*UKMXOO 0 
12 KIEX SV07 
13 KIEX SV07 
14 KIEX SV07 
15 KIEX SV07 

The third input to K 1 MX, B R(07:00)H, is used for 
the offset in SUBTRACT 1 AND BRANCH 
(SOB), and MARK instructions. This offset is al­
ways in full words and is always a positive quantity 
that is subtracted from the PC in the ALU. Be­
cause all PDP-II Systems use byte addresses, the 
offset, as it appears in the instruction, must be mul­
tiplied by 2 to generate the proper value to be sub­
tracted from the PC. This is done by shifting the 6-
bit offset I bit to the left. For example, BROO is the 
input to the multiplexer for bit 01. The BR is used 
because it contains the same value as the Instruc­
tion Register (IR) at the time of the PC modifica­
tion, and is directly-accessible to the data path 
logic. 

The fourth input to K 1 MX is used for the offset in 
successful branch instructions. The branch offset 
can be either positive or negative; the value taken 
from the instruction is first multiplied by 2 (shifted 
left) and then sign-extended, and the resulting 16-
bit number is added to the PC. The branch offset 
can have values from + 12710 to -128 10 words; BR 
(07:00) provide the offset and the left shift provides 
word (rather than byte) addresses. 

RACC UKMX(01:00) H 
01 10 11 

0 0 
TV01 BROO 

t 02 r 03 02 
TV04 03 
TVOs*07 04 
TV06 BROS 
TVOs*07 0 BR06 

0 0 BR07 
0 0 BR07 
0 0 BR07 
0 0 BR07 
0 0 BR07 
0 0 BR07 
0 0 BR07 
0 0 BR07 

2.2 INPUTS TO PROCESSOR DATA PATHS 
The Processor Data Paths receive data through the· 
Bus Register Multiplexer (BRMX) from the Cache 
Memory, the Console (Switch Register), the Mem­
ory Management registers, the optional Floating 
Point Processor and the Unibus. The Unibus input 
is buffered by PDRJ 0(15:00) H, the Bus Buffer 
Register, which is clocked at every TJGD T3 L. 

The BRMX also has an input for internal data 
from the SHFR. The most generally used path 
from the SHFR to the ALU is through the BRMX 
and the BR. 

The BRMX is the input to the two Bus Registers 
(BR and BRA) and to the two Instruction Registers 
(IR and AFIR). 

2.2.1 Bus Register Multiplexer (BRMX) 
All data input to the processor is routed through 
PDRA BRMX(15:00) H; in addition to the external 
data from the Unibus, the BRMX also accepts in­
puts from the Cache Memory, the SHFR, and the 
I nternal Data Bus. 

11-2-15 



The four inputs to the BRMX are: 

I. PORJ 0(15:00) H (Bus Buffer Regis­
ter clocked each T3 from the Unibus 
lines); 

2. PORA INT 0(\5:00) H (Internal Data 
Bus) 

3. DTML CDM(\5:00) H (Cache Memory 
data) 

4. DAPF-DAPJ SHFR(l5:00) H (Shifter 
output): 

Refer to Figure 2-7. These signals are selected by 
PDRA BRMX S(\:O) H. The SHFR is selected 
when RACA UBRX H is low, making SI and SO 
both high. 

The other three inputs can only be selected when 
UBRX is high. 

The Cache is selected when TMCF SEL MEM L is 
low; the address is a Cache address, an interrupt 
pause is not in progress, and the Internal Data Bus 
is not selected. 

SI SQJ BRMX OUT 

L L UNIBUS 

L H 
H L 
H H 

BCTQJf/J H 

BCT(lJ1L 

BCT(lJ2 L 

INT D 

CACHE 
SHFR 

SCCD INT REG (0 L 

IBSQJf/J L 

SAPN NOT CACHE ADR H 

BSD(IJ(IJ H 

BSD(lJI L 

TMCF SEL 
INTL 

The Internal Data Bus is selected if TMCF SEL 
INT L is low. One of three conditions may cause 
this: an internal register is being addressed, or the 
I BSOO ROM bit is asserted (read Switch Register or 
read PS), or the BCT(02:00) ROM bits = 1 (read 
Floating Point data). 

The Unibus is selected when UBRX, TMCF SEL 
MEM L, and TMCF SEL INT L are all high. 

The BRMX is the input to both Bus Registers (BR 
and BRA) and to both Instruction Registers (IR 
and AFIR). 

2.2.2 Internal Data Bus (INTO) 
The Internal Data Bus [PDRA INT 0(15:00) H) is 
a wired-OR bus that transmits the following data 
to the BRMX: 

I. Switch Register (from Console) 

2. Memory Management Registers (MMR3 
to MMRO and APR, which is a multi­
plexer that can select either a PAR or a 
PDR) 

3. System 10 and System Size Registers 

RACA UBRX H 

TMCE INTR PAUSE L 

PDRA 
BRMX 

SHFR D 

CACHE 

INT D 

UNIBUS 

PDRA BRMX Sf/J H 

PDRA BRMX SI H 

C 

B 

A 
Sf/J SI 

11-3110 

, Figure 2-7 BRMX Selection, Simplified Schematic 

11-2-16 

( 

( 

( 

( 

( 



( 

( 

( 

4. Processor Error Register (TMCD 
TRAPS TO 4) 

When IBS= I, 2 or 3, the Memory Management in­
puts are also disabled. IBS= 1 selects the Switch 
Register. IBS= 3 selects the PS. 

5. Processor Status Word (PS) 

6. Floating Point Processor Data [FXPC 
BO(15:00) H]. 

Figure 2-8 is a block diagram of the Internal Data 
Bus. The data put on the bus is a function of the 
I8S (Internal Bus) and BCT (Bus Control) ROM 
bits. Refer to schematic TMCF. TMCF GET OFF 
H is asserted when the IBS field equals I (Read 
Switches), 2 (Load PS) or 3 (Read PS), or when the 
BCT field equals I (Read Floating Point Processor 
Data). TMCF GET OFF H is inverted on SSRJ 
and becomes SSRJ GET OFF L. 

When I8S=O and BCT is not equal to I, the Mem­
ory Management inputs are enabled. The selection 
of the register that is to be put on the INT 0 bus is 
made by register address decoding in Memory Man­
agement. Four schematic drawings (SSRJ, SCCH, 
SCCM and SCCN) show the Memory Management 
inputs to the Internal Bus. These inputs are: 

I. MMRO - MMR3 
2. APR (PAR/POR multiplexer) 
3. System Size and ID registers 
4. TMCO traps to 4 error register 
5. Switch Register 

When BCT= I, data from the FPll is enabled onto 
the bus and all the Memory Management inputs 
are disabled by TMCF GET OFF. 

One of these inputs "is "put on the Internal Bus if 
SSRJ GET OFF L is high, and if the operation is a 
read (SSRJ CI B L not asserted). 

r,.~F- -- -- - -, r------, 
I SCCH I 

I 
I 
I 
I 
I 
I 
I 
I 

RACC 1BS-I 
<01:00> 

I 
I 

RACC BCT --..I 
<02:00> I 

I 
I 
I 
I 
I 
I 
I 

READ SW 

SWITCH REG -t----------j 

SCCL MMR3 I 

ADDRESS DECODE :I} I 
_____ -.J 

r------
SSRJ 

SAPM APR_L--------! ..... 

SSRH MMR2-i----------1 
SSRI MMR1 ___ >-----_ 

SSRC MMRI1!---i----------1 

ADDRESS DECODE --11---1 

TMCD 
TRAPS TO 4 

------' 

SVS ID (00:07) 

SVS SIZE LO 

SVS SIZE HI I SVS SIZE (07-00> I 
ADDRESS)+ SVS ID (15:0B> I 
DECODE } ____ ~----' 

>-='-.:.:..c....L--'-------<+- ______ J 
JPoRD - - - -- --"1 

PS <15:00> 10 H BUS INT D 

I <15:00> I 
IBS I 

L _______ -.l 

BCT=1 I--,---..:...FP:.....:.:.:RE:::::A=-D --+------t-~-'.:.--r--..... 

L _____ -.1 

Figure 2-8 Internal Data Bus Block Diagram 

11-2-17 

BUS INT D 
<15:00> L 

r;~-----, 

INT D I 
<15:00> H 

UNIBUS BRMX I 
I CACHE I 

SHIFTER L _____ ~ 



Address decode determines which one of the inputs 
goes onto the bus. 

2.2.2.1 SSRJ Multiplexer - The inputs to the mul­
tiplexer on SSRJ are MMRO, MMRI, MMR2 and 
the APR multiplexer (PAR or POR). This multi­
plexer is enabled when SCCC INT REG B H is as­
serted and SCCC MMR3 is cleared in addition to 
GET OFF and Cl. 

Input select signals are SCCC MMR REG (l) H 
(MMRO, 1,2), SSRH VA(02:01) L (virtual address 
bits 02:01) and SCCO APR REG L. V A(02:01) de­
fine which MM R is being addressed. 

2.2.2.2 SeeH Bus Output - The Switch Register 
[SCCJ SWR( IS:00) H] is transmitted from the Con­
sole to Connector J2 on SCCJ. It is multiplexed 
with M M R3 to make up the second Memory Man­
agement input to the Internal Data Bus. 

Since MMR3 consists of only five bits (00, 01, 02, 
04 and OS), only these bits need be multiplexed. 

The MMR3 input is selected when SCCC READ 
MMR3 L is asserted. 

The Switch Register is selected by SCCC SW REG 
(0) H when the reference is an explicit one and by 
TMCF READ SW L if the reference is implicit. 
This last signal is asserted when the ROM IBS field 
is equal to I. 

2.2.2.3 SeeM Multiplexer - The Multiplexer on 
SCCM transmits the following data on BUS 
INTO(07:00) L: 

I. The System 10 Register, bits (07:00), 

2. The CPU Error Register (refer to Chap­
ter 3), which consists of TMCO ILL 
HALT H, ODD AORS H, CACHE 
NXM H, UBUS TIMEOUT H, YEL 
TRAP Hand SL RED ERR H, and 

3. The two System Size Register low-order 
bytes. 

The Multiplexer is enabled by SCCO INTO REG 
L. Address decode signals select the output signal 
and, in conjunction with SCCC C1 BLand SSR] 
GET OFF L, enable the output drivers. 

2.2.2.4 SeeN Multiplexer - The high corder bytes 
of the System 10 Register [SCCN SYS 10(1S:08) 
H] and the System Size Register are gated onto the 
I nternal Bus on SCCN by their respective address 
decode signals and by GET OFF and the negation 
of CI. 

2.2.3 Bus Registers (BR and BRA) 
The Bus register consists of two slightly different 
registers, the BR and the BRA. 

The BRMX is the input to both BR and BRA. 
This last register, however, also accepts the parity 
bits from Cache Memory (OTML HI BYTE PAR 
Hand LO BYTE PAR H). These bits appear on 
the BRA outputs as PORB HI PAR Hand LO 
PAR H and are used only to generate PORH INO 
HI PAR Hand INO LO PAR H, which transmit 
byte parity information to the Console indicators. 

The BR outputs are designated OAPA BR(lS:OO) 
Hand OAPA BRI4 L. The high outputs are the in­
puts to the AMX, the BMX and the KIMX. 
OAPA BRI4 L is an input to RACK BRCAB OS 
L. 

The BRA outputs are called PORB BR(1S:00) A 
H. They are also inverted as PORB BR(lS:OO) B L. 
They are the inputs to the Control Registers (LR, 
PS, PIRQ, SL, PB), the OMX, the ~isplay Multi­
plexer, Cache Memory, Memory Management and 
the FPP. 

The BR and the BRA are clocked by TIGA CLK 
BR Hand CLK BRA H, during the IS ns of the 
duration of TIGC TPB L, when RACA UBRK H 
(load BR) is high and TIGA GATE BR (I) L is 
low. This last flip-flop is set at the rising edge of 
TPB L when the output of the OR gate is high. 
This always occurs at Tl (refer to Chapter 4). 

2.2.4 Instruction Registers (IR and AFIR) 
When an instruction is fetched from an external 
data storage location, the data word enters the pro­
cessor through the Bus Register Multiplexer 
(BRMX), and is loaded into the BR. To retain the 
instruction word for decoding during the execution 
of the instruction, while releasing the BR for other 
data transfers that may be required during the exe­
cution of the instruction, the outputs of the BRMX 
are simultaneously loaded into the instruction regis­
ter [IRCA IR(IS:OO)] and into the A Fork Instruc­
tion Register [RAC] AFIR(lS:OO)]. 

11-2-18 

( 

( 

\ 



( 

( 

( 

The IR and AFIR are clocked only during data 
transfers that fetch instructions. The BR is clocked 
during every external data transfer that brings data 
into the processor. Both IR and AFIR are clocked 
by TIGC TI or TIB if RACA UIRK H is asserted 
(Load IR). 

The IR is used for decoding circuits which operate 
_ the subsidiary ROMs, the program ROM Band C 
Forks, and a variety of instruction class selectors. 
The instruction decoding logic is shown on the con­
trol section block diagram, Chapter I. The AFIR is 
used only by the program ROM A Fork. 

2.3 PROCESSOR DATA PATHS OUTPUTS 
The output of the Data Paths is routed through 
one of four logic units: 

a. The Bus Address Multiplexer (BAMX) 
selects the source of the Unibus address 

b. The Display Multiplexer selects the 
source of the console data display 

c. The Data Multiplexer selects the source 
of Unibus data 

d.The Bus Register (BRA) supplies data 
directly to the Cache Memory, the Mem­
ory Management registers and the op­
tional Floating Point Processor. 

2.3.1 Bus.<Address Multiplexer (BAMX) 
The Bus Address MUltiplexer (DAPB BAMXOO H 
to DAPD BAMXI5 H) accepts as inputs the DR, 
PCB and SR registers, as well as an input, used for 
maintenance purposes only, from the FPll Float­
ing Point Processor. Its output is the program vir­
tual address, which is the input to Memory 
Manag$!ment, which in turn generates the physical 
add-tess for the Cache and the Unibus. 

The BAMX output is selected by RACB 
U BAX(O I :00), as shown on the table on drawing 
DAPB. 

2.3.2 Unibus Data Multiplexer (DMX) 
Refer to drawing PORE. The Processor data out­
put to the Unibus is BUS 0(15:00) L, which con­
sists of DEC 8881 bus drivers. The input to these 
drivers are the Data Multiplexer (DMX), and 
UBCA CPBSY B H, which gates the DMX outputs 
onto the Unibus. CPBSY generates BUS BBSY L 
during a Unibus transaction (refer to Chapter 5). 

The inputs to the DMX (data outputs to the 
Unibus) are: 

a. The Bus Register (BRA), which is used 
as the data output of the processor to 
Unibus devices. BRA is always selected 
during a processor DATa. 

b. The Control Registers: PS (Processor 
Status word), SL (Stack Limit), PIR and 
PIA (Program Interrupt), PB (Program 
Break). When explicitly addressed (by 
Unibus address), these registers are read 
by the program from the Unibus during 
a processor DATI. 

c. During any DATI other than those dur­
ing which the processor reads the Con­
trol Registers, the output of the DMX is 
O. This is because the data is coming 
from a Unibus device and the processor 
data lines must not be asserted. 

The high order byte of the DMX corresponds to 
BUS 0(\5:08) and is enabled by TMCD HI BYTE 
EN H; the low order byte corresponds to BUS 
0(07:00) and is enabled by TMCD La BYTE EN 
H. When these signals are not asserted, the corre­
sponding outputs of the DMX are not asserted 
(low). I n the case of the Control Registers (PS, SL, 
PIR and PIA, PB), one or the other, or both, of 
these signals are asserted when an internal address 
is decoded (SCCE INTERNAL ADRS H) by Mem­
ory Management and a Unibus transaction has 
been started (UBCA MSYN SET H). Both signals 
are asserted in the case of the BR (DATa = 
TMCD CI B L). 

The select signals (TMCD DMX Sl H and SO H) 
are enabled by UBCA MSYN SET H and the nega­
tion ofTMCD CI B L (=DATI). The combination 
of select signals for each register is determined by 
register address decoding on drawing SCCE. If 
none of the Control Registers are selected, both se­
lect signals are low and the BR is selected. 

During a DATa, both DMX SI H and SO Hare 
low (CI L is low) and the BR is selected. 

Table 2-8 shows the selection of data outputs to the 
Unibus. 

11-2-19 



2.3.3 Bus Register A (BRA) 
PDRA BR(15:00) A H transmits data to the Cache 
Memory write multiplexer CDPE WRITE 
MUX(15:00) H, to which the other input is Unibus 
data from the Unibus map [MAPA DATA(15:00) 
HJ. 

The BR is also the input to the Memory Manage­
ment registers, and the data input to the Floating 
Point Processor. 

2.3.4 Display Multiplexer 
The Display Multiplexer [PDRF DISP(15:00) H] se­
lects the input to the Console data display [KNLA 
DISP(15:00) H]. 

The multiplexer select signals (PDRF DISPSI L 
and SO L) are the inversion of PDRH DISP DATA 
SELl Hand SELO H, which in turn are the en­
coded outputs of the Cortsole Data Display switch 
(KNLD DISP DATA SELl Hand SELO H). 

Table 2-9 shows the register displayed for each 
switch position. 

Table 2-8 
Data Output tf) Unibus 

Unibus SCCE UBCE TMCD PDREDMX 
Output INT MSYN Cl* HI LO DMX DMX Input Byte 

ADRSH SETH BYTE BYTE SI H SOH 
ENH ENH 

PS H H DATI H H H H A HI,LO 

SL H H DATI H L L H C HI 

PIR H H DATI H H H L B HI,LO 
PIA 

PB H H DATI L H L H C LO 

BR L H DATO H H L L D HI,LO 

NONE L H DATI L L L L None None 

*NOTE: TMCD Cl B L low = DATO, high = DATI. 

Table 2-9 
Display Register Selection 

Switch Position KNLDDISP Register Displayed 
DATASEL 
IH OH 

BUS REGISTER L L BR(15:00) 
DATA PATHS L H SHFR(15:00) 
DISPLAY REGISTER H L LR(15:00) 
tLAJ)RS FPP/ H H FRMA/B CRAR(7: 1) 

CPU H H RACD RAR(7: 1) 

11-2-20 

( 

( 

( 

( 

t· 



( 

( 

" 

CHAPTER 3 
PROCESSOR CONTROL REGISTERS 

The KBII-B Processor contains registers which con­
trol processor operations or provide information rel­
ative to these operations. These registers, which are 
listed below, are described in this chapter (in order 
of ascending addresses): 

Address 
17777 570 
17777760 
17777762 
17777764 
17777 766 
17777 770 
17777 772 
17777774 
17777776 

Register 
Switch and Light Registers 
Lower Size Register 
Upper Size Register 
System I D Register 
CPU Error Register 
Microprogram Break Register 
Program Interrrupt Request Register 
Stack Limit Register 
Processor Status Word 

Information on Memory Management, Unibus 
Map and Cache Registers are contained in Sections 
IV through VI of this manual. 

3.1 SWITCH REGISTER (SWR) AND LIGHT 
REGISTER (LR) 
The Switch Register is the output of the Console 
switches. It shares address 17 ·777 570 with the 
Light Register, whose input is the BR and whose 
only output is the Console Display indicators 
through the Display Multiplexer when the Console 
Data display switch is in the DISPLAY REGIS­
TER position. 

The SWR is read-only and the LR [PDRB 
tR(15:00)] is write-only. They are both described in 
Section III of this manual. 

3.2 LOWER SIZE REGISTER 
This read-only register [SCCN SYS SIZE(21: 14), 
bits 13:06 are all 1 s] specifies the memory size of 
the system. It indicates the last addressable block of 
32 words in memory (the high order byte indicates 
the number of 8K blocks of available memory 
minus I). It is used by Memory Management to de­
termine the validity of an address. It is read on the 
internal Data Bus (INTD) at address 17 777 760 
(bit 0 is equivalent to bit 6 of the Physical Ad­
dress). Refer to Section IV, Memory Management. 

3.3 UPPER SIZE REGISTER 
This register is an extension of the system size, 
which is reserved for future use. It is read-only and 
its contents are always read as zero. Its address is 
17 777 762. It is read on the Internal Data Bus 
(lNTD). 

3.4 SYSTEM ID REGISTER 
This read· on Iy register [SCCN SYS ID(l5:08), 
SCCM SYS ID(07:00)] contains information 
uniquely identifying each system. Its address is 17 
777 764. It is read on the Internal Data Bus 
(lNTD). 



3.5 CPU ERROR REGISTER 
The CPU Error Register (Figure 3-1) is a read-only 
register, consisting of six bits which identify the 
source of the abort or trap that used the vector at 
location 4. These bits, which are set when the error 
occurs, are: 

Bit 

7 

6 

5 

4 

3 

Name 

Illegal Halt 

Odd Address 
Error 

Non-existent 
Memory 

Unibus 
Timeout 

Yellow Zone 
Stack Limit 

Red Zone 
Stack Limit 

Function 

Set when trying to execute a 
HALT instruction when the 
CPU is in User or Supervisor 
mode (TMCD ILL HALT). 

Set when a program attempts 
to do a word reference to an 
odd address (TMCD ODD 
ADRS). 

Set when the CPU attempts to 
read a word from a location 
higher than indicated by the 
System Size register. This 
does not include Unibus ad­
dresses (TMCD CACHE 
NEXM). 

Set when there is no response 
on the Unibus within approxi­
rna tely 10 microseconds 
(TMCD UBUS TIMEOUT). 

Set when a yellow zone trap 
occurs (TMCD YEL TRAP). 

Set when a red zone trap 
occurs (TMCD SL RED ERR). 

15 8 7 6 5 4 J 2 1 0 

~IIIII~ 
~~~G~~D~~kl~RROR ~~~t ! ~l III NON-EXISTENT MEMORY (CACHE) 
UNIBUS TIME-OUT
YELl,OW ZONE STACK LIMIT
RED ZONE STACK LIMIT

Figure 3-1 CPU Error Register

11-3100

11-3-2

The CPU Error Register cannot be loaded by the
program. It IS read via the Internal Data Bus
(INTO) at address 17 777 766. The individual bits
of this register remain set until they are cleared by
a DATO. The several bits of this register are de­
scribed in Chapter 6.

3.6 MICROPROGRAM BREAK REGISTER
(PB)
The Microprogram Break Register (PB) is intended
for use as a maintenance tool. When the processor
is being operated under the control of the mainte­
nance card, the processor can be halted during any
specific microprogram state by loading the address
of that state in the PB and setting the switches on
the card to the proper positions. A sync point that
generates a pulse at Tl (when the microprogram ad­
dress matches the contents of the PB) is provided
on TIOB. During normal operation of the pro­
cessor, any value can be loaded into the PB without
affecting operation of the processor.

The PB is loaded directly from the BR whenever
the PB address is generated during an external data
transfer; refer to Chapter 5. The PB is an 8-bit regis­
ter that is loaded from the eight least-significant
bits of the BR. When the PB is read, the data must
be transferred through the DMX to the BR by a
Unibus data transfer operation. The PB is selected
by physical address 17 777 770.

The PB [PDRC PB(07:00)] and its use are de­
scribed in detail in Chapter 4 of this manual.

3.7 PROGRAM INTERRUPT REQUEST REGIS­
TER (PIRQ)
The Programmed Interrupt Request register (PIRQ)
allows a program to schedule the execution of vari­
ous subprograms according to a priority scheme,
and at the same time, allowing various levels of
hardware interrupt priority to interact with the soft­
ware priority levels. The register stores interrupt
requests set by transferring request data to the
PI RQ, and provides information about the requests
through encoded data transferred from the PIRQ.
Refer to Figure 3-2.

(

(

(

(

(

98754310

PIRI ~ P , I , A ~ P I A ~

Figure 3-2 Program Interrupt Register

Data is transferred to the PIRQ through the BR
whenever the processor recognizes that the physical
address is the address assigned to the PIRQ (ad­
dress 17 777 772). The contents of the PIRQ are
then input to the priority arbitration logic of the
processor, which uses the information from the
PI RQ with information from the Unibus and the
PS priority level to determine when requests should
be honored.

The data in the PIRQ can be transferred to other
devices or to other registers in the processor by ad­
dressing the PIRQ during an external data transfer.
Because the only outputs from the PIRQ are to the
DMX (Unibus Data Multiplexer), all transfers
which access the PIRQ are Unibus data transfers;
Refer to Chapter 5.

PI RQ [PDRD PIR(15:09)] and PIA [PDRD
PIA(02:00)] are described in Chapter 6 of this
manual.

3.8 STACK LIMIT REGISTER (SL)
Because the number of locations occupied by a
stack is unpredictable, some form of protection
against the stack expanding into locations contain­
ing other information must be provided. If the pro­
cessor is operating in Kernel mode, the processor
provides for stack overflow detection through the
use of the Stack Limit register (SL). Refer to Fig­
ure 3-3.

15 8 7 0

~

Figure 3-3 Stack Limit Register

The SL is an 8-bit register that is loaded from the
eight most-significant bits of the BR whenever the
SL is selected by the physical address generated in
an external data transfer. This requires address 17
777 775 during a byte transfer, or address 17 777 '
774 during a word transfer. The data is transferred
directly from the BR to the SL; refer to Chapter 5.
To read the contents of the SL, however, the SL
must be selected by the DMX and the data trans­
ferred from the Unibus to the BR. This requires a
Unibus data transfer operation. Although the SL
and the PB registers share a common DMX input,
each register uses a differen t byte, and only one set
is selected at a time. Therefore, when the SL is
transmitted on the eight most-significant data lines,
all Os are transmitted on the eight least-significant
data lines.

The SL [PDRC SL(07:00)] and the stack limit
check operations are described in detail in Chapter
6.

3.9 PROCESSOR STATUS WORD (PS, PSW)
The Processor Status Word [PDRD PS(l5:00), Fig­
ure 3-4] contains information regarding the pro­
cessor mode (both current and previous), the
register set currently in use, the processor priority,
the Trace bit and the Condition Codes. Table 3-1
lists the fields of the PSW. The address of the PS is
17777776.

15 14 13 12 11 10 8 7 5 4 3 2 1 0

~

CURRENT MODE ,,----.J i
PREVIOUS MODE "' __ ----..J_
GENERAL REGISTriR
SET (0,1)---------'

.. MODE: 00 "KERNEL
01 "SUPERVISOR
11 ~USER

I NOT USED I PRIORITY I T I N I z I v I c I

Figure 3-4 Processor Status Word

Refer to drawing PDRD. The PS stores several
types of data that are dependent on the process
being performed. This data must be stored when­
ever the processor changes processes; typically, this
occurs every time there is an interrupt or a trap. Be­
cause the contents of the PS control many parts of
the operation of the processor, modifications of the
contents are carefully controlled.

11-3-3

Bit Name

15-14 Current Mode

13-12 Previous Mode

11 Register Set

10-08 Unused

07-05 Priority

04 Trace

Condition Codes:

03 N

02 z

01 V

00 C

Table 3·1
Processor Statu!i Word Bit Assignments

Utilization

Specifies the current processor mode as follows:

1. When PS(15:14)::;: 00, the processor is in Kernel mode; all opera­
tions are legal.

2. When PS(15:14)::;: 01, the processor is in Supervisor mode; HALT,
RESET, and SPL instructions are illegal; SUPER address space is
used if Memory Management is enabled.

(

3. PS(15:14)::;: 10 is an illegal mode; if Memory Management is
enabled, a Memory Management abort occurs (refer to Section IV
of this manual). (

4. When PS(15: 14) ::;: 11, the processor is in User mode ; HALT,
RESET, and SPL instructions are illegal; USER address space is
used if Memory Management is enabled.

Specifies the processor mode prior to the last trap, interrupt, or loading of the
PS.

Specifies which General Register set is used; ifPSl1 ::;: 0, register set 0 is
selected; if PSII ::;: 1, register set 1 is used.

Unused

Sets the prOcessor priority; this priority qeterrnines which levels of programmed
and external device interrupt requests are honored.

When PS04 ::;: 1, the processor traps to the trace trap vector address after each
instruction fetch; this facility is used for debugging programs.

This bit is set when the result of the last data manipulation is negative.

This bit is set when the result of the last data manipulation is O.

This bit is set when the result of the last data manipulation is incorrect because
of an arithmetic overflow.

This bit is set when a carry occurs during data manipulation.

11-3-4

(

(

The four fields of information in the PS are:

I. Processor condition codes

2. Trace (T) bit

3. Processor priority

4. Processor mode control and register set
selection bits

Some of the PS bits control the operation of the
processor, while others indicate the value of the re­
sult of the last data manipulation operation.

I n addition to accepting inputs from the BR, the
PS receives inputs from the condition-code gener­
ation logic. In certain circumstances (the current
mode field replaces the previous mode field), some
bits of the PS also receive inputs from other bits of
the PS. The outputs from the PS during data trans­
fers can be directed to the processor data paths
through the B R [by selecting the PS inputs to the
internal bus (lBS) and the IBS inputs to the
BRMX], or directed to the Unibus through the PS
inputs to the Data MUltiplexer (DMX). The IBS
path is used only for data transfers that implicitly
select the PS, such as the stacking operations dur­
ing interrupt and trap service sequences. When the
PS is addressed explicitly, the data is transferred on
the Unibus, even if the transfer is to the processor
data paths (through the BR).

3.9.1 Reading the PS

I. Implicit reference - The PS word can be
gated to the Internal Data Bus by
PDRD READ PS H, which is generated
by a microprogram IBS field value of 3.
This value is used in microstates
RSD.OO, RSD.O I, RSD.02, BRK.20,
BRK.80, TRP.OO, TRP.OI, TRP.02, and
HlT.OO to get the current PS into the
BR. This is shown on the Flows by
BR-PS.

2. Explicit reference - The PS word can be
read by the program with a reference to
address 17 777 776. In this case, the
PSW is gated onto the Unibus, from
where it is read during a DATI by the
processor.

3.9.2 Loading the PS
All used PS bits, with the exception of bit 04, (the
T bit) can be written by the program when the PS
address (17 777776) is used (SCCE PS ADRS H is
asserted). In this case, the input is BR(lS:OO) and
the clock is a function of MSYN and of UBCB HI
BYTE and la BYTE. These signals are both as­
serted if the PS is referenced as a word.

I. The Control Codes (bits 03:00) are
shown on IRCH and are clocked by
UBCB CC DATA.

2. The Priority bits (07:0S) are clocked by
TMCE ClK la PS.

3. The Processor Mode bits and the Regis­
ter Set bit (lS:II) are clocked by TMCF
ClK HI PS.

The PS may also be loaded under microprogram
control (implicit reference). Since the loading logic
varies from bit to bit, it is explained with each bit
group.

3.9.3 Processor Mode Bits [PS(15:12)]
The current processor mode is stored in PS(lS: 14)
and the processor mode previous to the current one
is stored in PS(l3:12).

I f the current mode is other than Kernel, the
HALT, RESET and SPl instructions are illegal: A
HALT in Supervisor or User modes causes a trap
to 4; RESET or SPl in these modes are Naps.

When Memory Management is enabled, the mode
bits affect PAR/PDR selection, and thus the phys­
ical address generated from the virtual address. Re­
fer to Section IV, Memory Management.

II-3-S

3.9.4 Current Processor Mode [PS(15:14)]
The Current Processor Mode bits determine
whether certain instructions are allowed or prohib­
ited. The processor mode can be set by moving a
data word to the PS at its Unibus address, or
through a trap or interrupt service function (which
loads a new PS value from the trap or interrupt vec­
tor), or through an RTI or RTT instruction (which
restores an old PS from the hardware stack). In this
last case, PS(IS:14) can only be changed to a higher
value (i.e., these bits can only be set and not
cleared). This allows a Kernel mode program to re­
turn to Kernel, Supervisor, or User mode; a Super­
visor mode program to return to Supervisor or
User mode; and a User mode program only to re­
turn to User mode. A User or Supervisor mode pro­
gram cannot use the RTI instruction to enter the
Kernel mode. When a new PS is loaded from the
trap or interrupt vector, the old contents of PS IS
and PSI4are loaded into PS13 and PSI2.

When Memory Management is enabled, the current
processor mode selects the mapping for the virtual
machine, except for trap and interrupt processing.
Supervisor and User programs should not be al­
lowed to change the contents of this field. If the cur­
rent processor mode is changed, the mapping
registers in Memory Management are selected by
the set for the new mode. The result of attempting
to continue with the same PC value in the new vir­
tual address space is unpredictable.

The entire PS word can be protected from direct
transfers by being mapped only into Kernel address
space. Refer to Section IV.

PS bits PSIS and PSI4 control and indicate the cur­
rent processor mode. The source of input data is al­
ways BR ISA and BRI4A, whether the PS is loaded
by an RTT or RTI instruction, or if a new PS is
loaded from a trap or interrupt vector, or explicitly
referenced.

3.9.5 Previous Processor Mode [PS(13:12)]
The previous processor mode is used primarily by
the MFP and MTP instructions to define which ad­
dress space to communicate with. During User
mode operation, these bits are set to reflect User
mode, so that the User program cannot move data

11-3-6

into or out of any other address space. During trap
or interrupt service, these bits are set to reflect the
value contained in the current mode bits prior to
the interrupt or trap. In this case, a KERNEL
DATI data transfer is used to fetch the new PS
val ue from the vector address; this causes bits 13
and 12 of the PS to be loaded from the old value of
bits IS and 14 instead of from BR(l3:12).

During the return from a trap or interrupt service
program (via an RTI or RTT instruction), the old
PS value is restored from the stacked value. The
previous mode bits are protected in the same way
as the current mode bits.

3.9.6 PS(15:12) Implicit Write
Refer to Figure 3-S. PS(1S:12) can only be set, and
not cleared, by their direct-set inputs; they can be
both set and cleared when they are clocked. They
are clocked only in three machine states (RTI.SO,
SVC.30 and ZAP.30) when appropriate conditions
exist.

When IBS = 2 (LOAD PS) bits IS - 12 are direct­
set if the BSC bits do not require a KERNEL
DA TI and if the corresponding DATA input is
high. These bits cannot be cleared in this manner.

I BS = 2 clocks PS(lS: 12), thus allowing bits to be
cleared, when one of three conditions are present:

1.

2.

3.

PS 14 = 0, or the mode is Kernel. This is
used during RTI and RTT instructions
when IBS = 2 in RTI.SO.

TMCE KERNEL DATI, which is as­
serted during the service flows (abort,
trap and interrupt service, see Chapter
6). IBS = 2 is asserted during SVC.30,
when the PS is loaded from the BR.

SSRA PS RESTORE is asserted when a
Memory Management abort occurs dur­
ing the service flows. When this hap­
pens, the PC and PS of the instruction
that caused the abort are restored before
servicing the Memory Management
abort. In ZAP.30, IBS = 2 and the old
PS value is loaded back into the PS.

(

(

(

(

RACB UIBSfIll H----,--.,

PDRB IBSfIlfll B L--t----r----I

PDRD LOAD PS H

*CLOCK-SEE TIMING
DIAGRAM BELOW --+-+----1

PDRD PS14 (fill L RTI. 50

TMCE KERNEL DATI L SVC. 30

SSRA PS RESTORE H

UBCB HI BYTE H-----,

SCCE PS ADRS H-----I

1111 DATA- REFER TO TEXT -.--l

EXPLICIT
REFERENCE

'---------10

PDRD PS CLK H PS
.... (15:11)

}--'-----! ::.~I'-----_IC
!.--~PS14 ONLY PDRD

UBCB MSYN SET H----J
TMCF CLK HI PS L T4H~

T5H~

11 t DIRECT-SET PSl4

CLOCK PS14

(DIRECT-SET PSI5, 13,12
CLOCK PSI5, 13, 12

11-3112

Figure 3-5 PSW Clock and Direct Set Simplified Schematic

Refer to drawing PDRD. Figure 3-5 shows the
DATA input to PS(l5:12). This input is BR(l5:I2),
except in the case of KERNEL DATI. When KER­
NEL DATI is asserted, bits 15: 14 are clocked from
BR(l5:14) and bits 13: 12 are clocked from
PS(15: 14). The new processor mode is thus loaded
into PS(15:14) and the old processor mode into
PS{l3: 12).

3.9.7 General Register Set Bit (PSll)
PS II indicates that General Register Set 0 is in use
(when cleared), or that General Register Set I is in
use (when set).

The input to PSI I is BRIIA. This bit is loaded in
the same manner as PSI5 (Paragraph 3.9.6).

3.9.8 Priority [PS(07:05)]
The processor priority is stored in PS(07:05). The 3-
bit priority field is interpreted as one of eight prior­
ity levels. This level is compared with other
requests for control of the system. These requests

can be external to the processor, in the case of
Unibus requests (BR), or internal, in the case of
Program I nterrupt Requests (PIR). In general, the
purpose of requesting control of the system is to in­
terrupt the current processor program and to run a
service routine or higher priority program before re­
turning control to the interrupted program. Refer
to Chapter 6 for a description of the priority
scheme.

The processor priority level may be set by directly
transferring data to the PS, by popping a new PS
from the hardware stack, or by loading the PS
from an interrupt or trap vector. In addition, the
processor priority may be explicitly set by the set
priority level (SPL) instruction.

Refer to drawing PDRD. PS(07:05) are clocked in
a manner similar to the mode bits (Paragraph
3.9.6), but are not direct-set. The 74S157 multi­
plexer selects the input: in all cases, except during
an SPL instruction, the input is BR(07:05),while

11-3-7

during the SPL the input is BR(02:00) A, which cor­
responds to the position of the new priority bits in
the instruction word. TMCE SET PRIORITY H
(MSC = 4) controls the multiplexer and gates the
clock.

In User or Supervisor modes, the processor priority
can on ly be changed by a transfer to the explicit ad­
dress of the PS (17 777 776). This is possible only if
Memory Management mapping allows it.

3.9.9 Trace Bit (T Bit, PS04)
The Trace (T) bit is provided as a software diagnos­
tic aid. When this bit is set, a processor trap will be
vectored through location 14. This trap occurs at
the end of the instruction that is being performed
when the T bit is being set, unless:

I. The instruction is a Return From Trap
(RTT) instruction. In this case, the trap
is delayed until the end of the following
instruction.

2. The instruction IS a Set Priority Level
(SPL) instruction. No BRQ STROBE is
generated during the execution of an
SPL.

3. Some other trap or interrupt condition is
honored. In this case, the PS containing
the T bit is pushed onto the stack and
all Trace operations are deferred until
the PS word is popped off the stack at
the end of the trap or interrupt service
routine.

The T bit cannot be set by moving data to the PS;
the only way the T bit can be set is by popping a
word off the hardware stack with bit 4 set. This can
be done with an RTf, an RTT, or any trap instruc­
tion (TRAP, lOT, BPT or EMT), even when the
processor is not in Kernel mode. The purpose of in­
hibiting other methods of loading the T bit is to
protect the user from inadvertently setting the T bit
while changing the processor priority or condition
codes.

The presence of the T bit precludes the use of
EXC.80 by E/class*DMO instructions, since the T
bit is a trap request. EXC.90 is executed in this
case.

3.9.10 Condition Codes
The four least-significant bits of the PS word con­
tain the processor condition codes. These bits store
information about the value resulting from any
data manipulation during an instruction. The condi­
tion codes are not altered to reflect the results of ad­
dress calculations, but are changed only when an
instruction explicitly operates on an explicit unit of
data.

The condition codes can also be set to any specific
value by transferring a word containing that value
to the PS address. The value of the condition codes
are altered by every interrupt or trap response func­
tion, and by every RTf and RTT instruction. In ad­
dition, individual condition-code bits may be
manipulated directly, with the condition-code oper­
ate instructions. These instructions provide a means
to set anyone, or more, of the condition codes
with a single instruction that requires only one
memory reference; a similar set of instructions can
clear anyone or more bits. The condition codes are
used in conditional branch instructions, so the vari­
ous means of manipulating the condition codes are
useful because they permit setting up the PS word
to respond in a particular way to various branch
instructions.

The logic that senses data conditions and stores the
selected indications is on the IRC module and is de­
scribed in Chapter I; the gates that control the read­
ing of the condition codes onto the internal data
bus are shown on drawing PDRD. When the PS is
explicitly addressed at physical address 17 777 776,
the data transfer is on the Unibus; the internal bus
is used only under direct microprogram control.

The condition codes are loaded automatically with
the results of most data manipulations. In addition,
the codes can be manipulated by a microcoded in­
struction that can set or clear individual condition
code bits. Any operation that transmits data
directly to the processor status word inhibits the set­
ting of the condition codes, because the data trans­
mitted is loaded into PS(03:00) directly. This is
done for move instructions that address the PS,
RTI instructions that pop a value off the hardware
stack into the PS, or interrupt service sequences
that load the PS from the interrupt vector.

11-3-8

(

(

(

The Timing Generator supplies the clock signals
which control the various operations of the KBII-B
Processor System. The M8139 module contains all
the components of the Timing Generator.

Refer to Figure 4-1. The synchronizer selects one of
three clock sources: A 33 MHz crystal clock, an
RIC maintenance clock (variable) or a pulse gener­
ated by a manual stepper switch. The selected clock
signal is routed through a phase splitter Ibuffer, the
output of which consists of two 1800 out-of-phase
clock signals. These two signals are buffered again
and a~e called TIGC TPB H, TPB L, TF Hand TF
L. TPB Hand TF H are identical and are 1800 out
of phase with TPB Land TF L, which are also
identical.

Separate TPB and TF pulses are provided to sepa­
rate the timing source required by the TIG module

PAR. 4.1

I PAR.4.2 84.3 PAR~4'
SOURCE '\ CLOCKS

XTAL CLOCK r---- SYNCHRONIZER

33 MHz AND PHASE
SPLITTER

CHAPTER 4
TIMING GENERATOR

(TPB) from that required by the other modules. A
TF failure does not stop the clock.

The TPB pulses drive a five-stage ring counter, the
output of which generates gates to generators for
time pulses T I - T5 and for time states TS I - TS5.

The ring counter is generally stopped during a
pulse cycle to allow the data transfer operation in
progress to accept the data. It is stopped in T2 for
Unibus, Internal Data Bus, interrupt and mainte­
nance operations, and in T5 for Cache operations.
The ring counter is also stopped during mainte­
nance operations such as single cycle.

4.1 CLOCK SOURCES
The three sources of timing are the crystal clock,
the RIC clock, and the MAINT STPR switch SO
(on the maintenance card). These timing sources
are shown on drawing TIGB.

STOP CLOCK
~PAR. 4 •. 8 84.9 CIRCUITRY.

PAUSE CYCLES
;/4.5

TlGA L
RING COUNTER

BUFFERED TIGA

1 TIMING
PAR. 4,\ PULSES

r----
(SELECTS ONE

f----RIC CLOCK OF THREE TIME PULSES
PiA .7

SOURCE CLOCKS) TPB H
TPB L T1-T5

TF H
TF L T1GC. TIGD TIME STATES

MAINTENANCE TS1-TS5
STEPPER SW. r----

XMAA S4 TIGE

TIGB TIGB TIGC
11-3116

Figure 4-1 Timing Generator Block Diagram

11-4-1

4.1.1 Crystal Clock
The crystal clock provides a constant square wave
output of 33 MHz. The oscillator frequency is deter­
mined by the LC tuned-collector network and is
stabilized by the crystal connected 'between emit­
ters. The bias network in the base circuits ensures
that the oscillator will start when +5 V is applied
to the module. The amplified output, TIGB XTAL
H, is a +3.5 to 0 V square wave with a 30-ns
period.

4.1.2 Rj C Clock
The RIC clock is provided for maintenance pur­
poses and can be enabled only when the mainte­
nance card is plugged into the CPU backplane. The
frequency of the square wave output, TIGB RC H,
can be adjusted as high as 37 MHz by varying po­
tentiometer R 104 in the RC feedback network.
Thus, the clock pulse period can be narrowed to ap­
proximately 27 ns to test for race conditions in the
logic.

4.1.3 MAINT STPR Switch
The third source of timing is the manually-oper­
ated, single-step MAINT STPR switch S4, located
on the maintenance card. This switch is only en­
abled when maintenance card switches S2 and S3
are both set to I. Each operation of S4 creates one
transition of a given timing pulse. It therefore re­
quires two actuations of S4 to complete a given
time pulse.

4.2 SOURCE SYNCHRONIZER
The timing source synchronizer is shown on draw­
ing TIGB. The purpose of the source synchronizer
is to select only one timing source at any time and
to inhibit the two remaining sources. The synchro­
nizer prevents cycles of improper length and en­
sures that TIGB SOURCE CLOCK L is in the
high (non-asserted) state when switching between
sources. Timing source selection is determined by
the setting of switches S I, S2, and S3 when the
maintenance card is plugged in. If the maintenance
card is not installed, the crystal clock is the only
source of timing. The following paragraphs describe
timing source selection when the maintenance card
is plugged in.

4.2.1 Crystal Clock Selection
When maintenance card switch S3 is not set,
XMAA S3 L is high. When the RC EN and MS

EN flip-flops are not set, the XT AL SYNC flip­
flop is set. With maintenance card switches S 1 and
S2 equal to 0, MS EN will be cleared, as will RC
SYNC and RC EN, Therefore, XTAL SYNC is set
and the source multiplexer output, TIGB SOURCE
CLOCK L, will follow the XTAL H input.

Note that the XT AL EN flip-flop inhibits the
maintenance module switch S3 inputs to the RC
EN flip-flop. Therefore, the XT AL SYNC flip-flop
must be cleared before a timing source change can
be accomplished. The RC EN and MS EN gating
input to the XT AL SYNC flip-flop ensures that
these sources have been. disabled before XT AL EN
is allowed to gate the XT AL H pulse through the
source multiplexer.

4.2.2 RC Clock Selection
The RC clock is selected as the timing source when
maintenance card CLK switch S3 is on RC, and S2
and S I are both set to O. When the XMAA S3 L in­
put is low, the RC SYNC flip-flop will be set. As a
result, the RC EN flip-flop will be set and the
source multiplexer output, TIGB SOURCE
CLOCK L, will then follow the TIG B RC H input.
TIGB XTAL EN (0) Hand TIGB MS EN (0) H
are fed back to inhibit TIGB RC SYNC 0 inputs
-to ensure that the enable flip-flops are cleared be­
fore the timing source can be changed.

4.2.3 MAINT STPR Selection
The maintenance card S2 and SI switches are both
set to I to allow single timing pulses to be gener­
ated by MAINT STPR switch S4. The XMAA SI
Land XMAA S2 L inputs are both low. The result­
ant input to the MS EN flip-flop 0 input causes
the flip-flop to be set. On the following TIGB
XTAL Hand TIGB RC H clock pulses, the XTAL
SYNC and RC SYNC flip-flops will be reset. Suc­
ceeding clock pulses will then reset the XT AL EN
and RC EN flip-flops. MS EN (I) H is ANDed
with STEP (I) H to assert the TIGB SOURCE
CLOCK L output of the source multiplexer. Each
time the MAINT STPR switch S4 is operated, the
STEP flip-flop toggles.' The MAINT STPR switch
must be actuated twice to complete a single TIG B
SOURCE LOCK L output pulse. Removing the S2
or S I input conditions the MS EN flip-flop to be
cleared. MS EN (0) L direct-clears STEP to condi­
tion it for the next time the ING TP function is
selected.

11-4-2

(

(

(

4.2.4 Synchronization
A feature of the source synchronizer is that the out-­
put level is maintained high (non-asserted) while
the timing source is being changed. The timing dia­
gram in Figure 4-2 shows the TIGB SOURCE
CLOCK L output as the maintenance card CLK
switch is changed from XT AL to RC. With the
XMAA S3 L input low (RC clock selected), the
XT AL SYNC flip-flop is cleared on the next TIGB
XT ALL clock pulse going low.

One XT AL H clock pulse later, XT AL EN will be
cleared, enabling the 0 input to the RC SYNC
flip-flop. The next time TIGB RC H goes low, RC
SYNC will be set. The difference in XT AL Hand
RC H pulse widths is exaggerated in Figure 4-2 to
indicate that the clock pulses are completely
independent.

Note that the SYNC and EN flip-flops are clocked
on the trailing edge of the source locks so that the
gating level to the source multiplexer is always re­
moved as the clock input is non-asserted. This pro­
vides a clean leading edge for TIGB SOURCE
CLOCK L. Note also that only half a clock period

TIGB XTAL H

TIGB XMAA S3 L

TIGB XTAL SYNC

TIGB XTAL EN

TIGB RC H

TIGB RC SYNC _____________ ;:;;J

is available for the enable flip-flop to change states
and gate the associated clock source through the
multiplexer.

4.3 PHASE SPLITTER/BUFFER
The Phase Splitter/Buffer, shown on drawing
TIGB, is driven by TIGB SOURCE CLOCK L
from the source synchronizer to produce timing
pulse outputs TIGB CLOCK Land TIGB CLOCK
H. The TIGB CLOCK L output pulses are In

phase with TIGB SOURCE CLOCK L.

4.3.1 Level Converter
Transistors Q65 and Q66 convert the TIB
SOURCE CLOCK L output to the level required
at the phase splitter inputs. A low logic input at the
base of Q65 causes this transistor to conduct, thus
grounding the common emitter of Q65 and Q66.
The + V2 reference voltage applied at the base of
Q66 cuts this transistor off, causing no current to
flow through Q66 and R 122. Thus, a low input pro­
vides a low output. When TIG B SOURCE
CLOCK L goes high, Q65 cuts off, and the + V2
reference at the base of Q66 allows current to flow
through Q66 and R 122 to provide a high output.

TIGB RC EN _____________________ --'

TIGB SOURCE
CLOCK L

Figure 4-2 Timing Source Synchronization

11-4-3

11-0788

4.3.2 Phase Splitter
The phase splitter consists of two emitter-coupled
2N3009 transistors, Q61 and Q62. When TIGB
SOURCE CLOCK L is not asserted (high), Q61
turns on. A fixed bias at the Q62 base holds that
transistor cut off. Under these conditions, the
TIGB CLOCK H output provided by buffer Q53
and Q54 is low because Q61 is conducting. Q54 is
on.

When TIGB SOURCE CLOCK L starts to go low,
as the result of a clock pulse, the base of Q61 goes
negative with respect to the Q62 base. More current
flows through Q62, causing a greater voltage drop
across the Q62 collector resistor, R 109-R Ill. Less
voltage is developed across common emitter resist­
ors R89-R96, increasing the forward bias on Q62.
As a result, when Q62 starts to conduct more cur­
rent, Q61 starts to cut off. This circuit is a differen­
tial amplifier that responds to slight changes of the
input signal at high speed. When TIGB SOURCE
CLOCK L starts to go positive, Q61 turns on and
Q62 cuts off in the same manner. The switching ac­
tion of Q61 and Q62 follows the TIGB SOURCE
CLOCK L signal with about a I ns difference be­
tween TIGB CLOCK Hand TIGB CLOCK L.

4.3.3 Buffers
Each buffer stage consists of a 2N3009 and a
2N4258 transistor. When Q61 turns off as a result
of a low source synchronizer output, Q53 is turned
on and Q54 is cut off. Thus, the TIGB CLOCK H
output goes high, 1800 out-of-phase with the TIG B
SOURCE CLOCK L input. At the same time, Q62
turns on and the positive collector cuts off Q5 and
forward-biases Q56. Therefore, rIGB CLOCK L
goes low in phase with the TIGB SOURCE
CLOCK L input from the source synchronizer.

4.4 TIGC TPB AND TF
The outputs of the Phase Splitter/Buffer, TIGB
CLOCK H and CLOCK L, are buffered to gener­
ate the Time Pulses Buffered, TPB Hand TPB L
and the Free Clock pulses, TF Hand TF L. TPB
Hand TF H are in phase with TIGB CLOCK H,
and are the complement of TPB Land TF L.

The TF pulses are used throughout the KBll-B for
synchronization. The TPB pulses are used only on
the M8139 module.

TPB Hand TF H are driven from CLOCK H;
TPB Land TF L are driven from CLOCK L. With
this exception, the circuits that generate these four
pulses are identical: when TIGB CLOCK is high,
the NPN transistors conduct, the PNPs are cut off,
and the output is high. When TIGB CLOCK is
low, the NPNs are cut off, the PNPs conduct, and
the output is low.

4.5 RING COUNTER
The Ring Counter is shown on drawing TIGA. It
consists of the two edge-triggered D flip-flops, T1
and TIA, of the six J-K flip-flops T2 - T5, T2A
and T5A, and their associated circuitry. Refer to
Figure 4-7 for the description that follows.

Start-Up and Normal Cycle
The ring counter is cleared by ROM IN IT, which is
asserted on power-up, power-down, and when the
Console START switch is depressed while the
HALT /ENABLE switch is in the HALT position.
T4 is not cleared by ROM INIT directly, but by a
flip-flop that is set by ROM INIT. When ROM
INIT is negated, the trailing edge of the next TPB
L clears this flip-flop.

When the ring counter has been cleared, the J input
of T4 is high [TS (0) H, T2 (0) Hand TIA (0) H
are all high] and the next TPB sets T4.

It should be noted that the D flip-flops (T1 and
T I A) are clocked by the trailing edge of TPB L,
while the J-Ks are clocked by the trailing edge of
TPB H. Both of these trailing edges occur at the
same time.

The next TPB after the one that sets T4, sets T5
and T4 complements (both J and K high) and is re­
set. If TIGA STOP TI L is high, the next TPB com­
plements T5 (resets it) and sets Tl. T5 (0) H is now
high and asserts STOP TI L. The TPB that follows
clears TI and sets T2 but, since the common input
to T2-K and T3-J is low at this time [due to T2 (0)
H] T3 is not set. T2 (0) H is now low, and the next
TPB toggles T2 (clears it) and sets T3. T5 (0) H, T2
(0) Hand T IA (0) H are all high, thus allowing T4
to be set as T3 toggles.

11-4-4

(

(

(

(

(

(

(

(

The ring counter flip-flops are used to gate the tim­
ing pulses T I - T5. Note that there are two T2 and
two T5 flip-flops. In both cases, the second flip-flop
(T2A and T5A) is used to generate its correspond­
ing timing pulse. These flip-flops are used to pre­
vent the generation of more than one timing pulse
(T2 or T5) during Pause cycles: T2A and T5A are
reset by the TPB H following the one that sets
them, while T2 and T5 remain on for the duration
of the Pause.

4.6 TIMING PULSES, Tl-T5
The switching times of the flip-flops used in the
ring counter are not very precise; therefore, the flip­
flop states are not used directly for processor tim­
ing. I nstead, high-speed transistors are used to gen­
erate the timing pulses. The timing pulse generator
schematics are shown on drawing TIGC and
TIGD.

Each of the timing pulse generators gates the Phase
Splitter/Buffer clock output, TIG B CLOCK H or
L, with a ring counter output to generate the tim­
ing pulse associated with that state. Figure 4-3
shows how TSA (I) Hand T5A (1) L are gated
with CLOCK H and CLOCK L to provide the T5
Hand TS L timing pulses.

Note on drawing TIGC that the TIGB CLOCK H
and L signals are carried by two separate lines to
the timing pulse drivers; these lines are terminated
at the TIGD T5 L circuits by diode terminators

TIGB CLOCK L

TIGB CLOCK H

TIGA T5A (1IH ____ ...I:mLl

and at T5 H by a 33 ohm resistor to ground. These
lines are transmission lines, designed to guarantee
the integrity of the CLOCK H and CLOCK L sig­
nals from the phase splitter to the intended pulse
generator.

The + V and -V voltages shown on the schematics
are taken from diode dividers shown on TIGB for
+V5 to +Vl and on TIGE for V3 to -VI.

Since the circuits for T(I:5) H are identical, as are
those for T(I :5) L, only the T5 schematics are ex­
plained below.

Figures 4-4 and 4-5 are simplified schematics of
TIGD T5 Hand L, respectively. Q53 and Q54 on
the first figure and Q55 and Q56 on the second, are
the output of the Phase Splitter/Buffer, TIGB
CLOCK Hand L. The diode terminators are se­
lected to produce a pulse amplitude of approx­
imately 0 to +3.0 V for T5 H and of approximately
+ 3.0 to 0 V for T5 L. Q32 and Q50 are not shown
on Figures 4-4 and 4-5. These transistors are turned
off when TIGA T5A is asserted, thus allowing Q31
and Q49 to conduct. Q32 and Q50 conduct when
TIGA T5A is negated and turn Q31 and Q49 off.

NOTE
The voltages shown on Figures 4-4 and 4-5 are ap­
proximate. They are based on a diode voltage drop of
0.7 V.

L TYPICALLY-!
I" 30n5 """1

TIGD T5 H ______ ---!

TIGD T5 L

11-0786

Figure 4-3 Timing Pulse Generation

11-4-5

4.6.1 T5 H
Refer to TIGD and to Figure 4-4(a). The output
transistor pair, Q I and Q2, is arranged to give a
push-pull type output. Diode 02 between the two
bases, along with the resistor network consisting of
RI2 (15K to +15 V) and RIO (3K to -15 V), biases
the transistor pair Q I and Q2 so that a small volt­
age change at the base input turns one transistor on
and the other off. This arrangement has the effect
of reducing the propagation time from the CLOCK
H signal to the output time pulse TIGD T5 H.
Diode Dl clamps the bias at a level such that T5H
is at approximately 0 V when either CLOCK H is
low or the gate transistor Q31 is off. Diode D3 pre­
vents the bias circuit from saturating Q2 by clam­
ping the signal to + V5, or approximately 4 V.

When TlGA TSA (I) H is low, Q32 conducts and
Q31 is cut off. When T5A (1) H goes high, Q32
cuts off. Q31 can not turn on at this time, since its
emitter is negative (CLOCK H at approximately 0
V, determined by the base voltage of Q54) with re­
spect to its base (-15 V - 036 to + V2 = approx­
imately +0.7 V). The voltage at the base of QI is
approximately -0.7 V and that at the base of Q2 is
one diode drop more positive, Q2 is off and QI con­
ducts; T5 H is low.

Figure 4-4(b) shows the circuit when TIGB
CLOCK H goes high. Q54 is now off and Q53 is
on. The emitter of Q54 is now positive with respect
to its base and it conducts. The voltage at the base
of QI and Q2 becomes more positive; QI conducts
and Q2 is turned off. T5 H goes high.

11-4-6

+5V

0V

+5V

+4.2V

-V3A

100

TIGB CLOCK H

-15V
TIGB CLOCK H

+
TIGAT5(1)H~

flGB CLOCK H ~

TIGDT5H~

Figure 4-4a

TIGB CLOCK H

100

-15V
TlGB CLOCK H

+
TlGA T5 (1) H SL

TIGB CLOCK H ---uL
TIGOT5H~

Figure 4-4b

+V5

0V

r
(

33

11-3113

+V5

(

+3.0v

33

11-3114

(

(

Figure 4-4(c) shows the end of the T5 H pulse.
TIGB CLOCK H goes low: Q53 turns off and Q54
turns on. TIGA T5A (I) H goes low and turns Q31
off. Q21 turns on and the voltage at the base of Q I
and Q2 goes negative, turning Q2 off and QI on,
thus making TIGD T5 H low. Q21 speeds this tran­
sition by providing a discharge path for the charge
left in the base bias circuit.

4.6.2 T5 L
Refer to TIG 0 and to Figure 4-5(a). The output
transistor pair, Q 19 and Q20, is arranged to give a
push-pull type output. Diode 029 between the two
bases, along with the resistor network consisting of
R61 (IK to +15 V) and RIO (4.7K to -15 V),
biases the transistor pair Q19 and Q20 so that a
small voltage change at the base input turns one
transistor on and the other off. This arrangement
has the effect of reducing the propagation time
from the CLOCK L signal to the output time pulse
TIGD T5 L. Diode 030 clamps the bias at a level
such that T5 L is at approximately +3 V when ei­
ther CLOCK L is high or the gate transistor Q49 is
off. Diode 028 prevents the bias circuit from satu­
rating Q 19 by clamping the signal to ground.

When TIGA T5 (I) L is high Q50 conducts and
Q49 is cut off. When T5 (I) L goes low Q50 cuts
off. Q49 can not turn on at this time, since its emit­
ter is positive (CLOCK L at approximately +3.5 V,
determined by the base voltage of Q55) with respect
to its base (15 V - 049 to + V3 = approximately
+ 2.8 V). The voltage at the base of Q20 is approx­
imately +3.5 V and that at the base of Q19 is one
diode drop more negative. Q20 is conducting and
QI9 is off; T5 L is high.

11-4-7

+5V

+V5

100

Q2

¢v i1JV

r
-V3B

-15V
TIG B CLOCK H

33 r--------· -
Q54 TIGA T5 (I) H-IL

-V3A

+5V

Q55

+3.5V

100

TIG B CLOCK H LJL
TIGDT5H~

Figure 4-4c

TIGB CLOCK L

-15V
TIGB CLOCK L

+
TIGA T5 (I) L LJ

TIGB CLOCK L ~

TIGDT5L -U

Figure 4-5a

11-3115

+V4

-VIA

L
+2.BV

-VIA

11- 3117

Figure 4-5(b) shows the circuit when TIGB
CLOCK L goes low. Q55 is now off and Q56 is on.
the emitter of Q49 is now negative with respect to
its base and it conducts. The voltage at the base of
Q20 and Q19 becomes more negative; Q19 con­
ducts and Q20 is turned off. T5 L goes low.

Figure 4-5(c) shows the end of the T5 L pulse.
TlG B CLOCK L goes high; Q56 turns off and Q55
turns on. TlGA T5A 1 L goes high and turns Q49
off. 030 turns on and the voltage at the base of
019 and 020 goes positive, thus making TIGD T5
L high. Q30 speeds this transition by providing a
discharge path for the charge left in the base bias
circuit.

11-4-8

+5V

-0.7V

+SV

+3.SV

I

+V4

TIGB CLOCK L

100
-VIA

029
r---

~V

I r -0.7V I
I

028 I
t
-ISV

TlGB CLOCK L

~
TIGA TS (1) L LI -VIA

TlGB CLOCK L -1LJ
TIGOTSL~

Figure 4-5b

11-3118

+V4

l __________
TIGB CLOCK L

100
Q30 -VIA

L
+2.BV

TIGB CLOCK L

'------------
~

TIGATS(I)LLI

TIGB CLOCK L JLJ
TIGOTSL~

Figure 4-5c

-VIA

11- 3119

(

(

(

(

(

(

!

(

4.7 TIME STATES (TIGE TSI L-TS5 L)
Refer to Figure 4-6. The Time State pulses, TIGE
TS I L through TS5 L are generated from the ring
counter flip-flops and TIGB TPB H. The leading
edge of these pulses corresponds to that of the tim­
ing pulse of the same number (e.g., TSI to TI).

The time states are used throughout the KB II-B
and are on for two time pulse durations (e.g., TSI
is on from the leading edge of TI to the leading
edge of T3).

These time state pulses are provided for use in
areas where timing is not critical, in order to reduce
the load requirement of the timing pulses.

TIGA T1 (I)H r: n .J I ___ -,----J L-__

TIGA T2A (n H

TIGA T3 (n H n r----_~~ L-___ ~I

TlGA T4 (1) H __ ---! __ m'--_____ _
lL-__ ~ ____ ~',~r-IL_ __ __ TIGA T5A (n H ! !

TIGB TPB H

TIGE T52 L

TIGE T53 L

TIGE T54 L -.J
TIGE T55 L I

TPX H

11-3120

Figure 4-6 Time States

4.8 PAUSE CYCLES AND CLOCK BR
The ring counter is stopped during Pause cycles, ex­
cept in the case of a Cache read hit cycle. The stop
occurs during T5 for Cache Pause cycles and dur­
ing T2 for Unibus, Interrupt (lNTR) or Internal
Data Bus (INT D) cycles. The INTR Pause cycle is
one where UBSO=I; for all other Pauses,
UBSO=2 or 3 [TIGA PAUSE H=ROM 40 as­
serted (UBSOOI=I)].

Table 4-1 is a summary of Stop and Pause
conditions.

4.8.1 Synchronous Pauses

4.8.1.1 Internal Bus (INT D) Pause (T2) - Refer to
Figure 4-7. During a Pause for an INT 0 read, a
90-ns delay is inserted between T2 and T3 by the
SO and S I flip-flops.

The ring counter is stopped by the low output of
the 74S65 gates which cause a low input to the K
input of the T2 flip-flop. The flip-flop cannot be re­
set until this input becomes high. The low is caused
by the two gates that have SAPN NOT CACHE
AORS H as inputs. Since the INT 0 registers have
Unibus addresses, this signal is high. SI (0) Hand
SO (0) H are also high, as well as TIGA PAUSE H
(UBSO=2 or 3, Bus Pause). SI and SO are clocked
by TPB H and count up to 3. At this time, both S I
(0) H and SO (0) H are low, the output of the
74S65 gates goes high, and on the net TPB pulse,
T2 (I) H is cleared, T3 (I) H is set, and the ring
counter is restarted.

4.8.1.2 Cache Pause (5) - Refer to Figure 4-7. The
ring counter stops in T5 during a Pause for a
Cache cycle. A read hit Cache Pause cycle is the
only Pause cycle in which the ring counter is gener­
ally not stopped; all other Cache cycles stop the
counter. CCBC MEMSYNC H is asserted by the
Cache when it has completed a memory cycle.

TMCF CACHE AORS H is asserted during a
pause for a Cache cycle and, in conjunction with
TIGA PAUSE; if there is no abort pending, and if
TIGA MEMSYNC is not asserted, then TIGA
STOP TI L is asserted and prevents TI from being
set until CCBC MEMSYNC H is asserted by the
Cache. When this occurs, TIGA MEMSYNC (0) H
goes low. The next TPB sets TI, clears T5 and res­
tarts the ring counter.

4.8.2 Asynchronous Pauses
Synchronizing flip-flops are required during asynch­
ronous Pause cycles in order to minimize the pos­
sible instability of flip-flops when clocked at the
same time that their data input is changing.

4.8.2.1 Unibus Pause (T2) - Refer to Figure 4-7.
During a Unibus Pause cycle, the ring counter is
stopped during T2, as for the INT 0 Pause.

START-UP r-- NORMAL CYCLE ,---++---
TlGC TPB L

TIGC TPB H
1 I I

TlGA T1 (1) H ____ ~n ----_+__!nL---...,....._-----~~-I~
I I

TIGA T2 (II H ------+1_ ... 11 __ -'_:--..... I I ,
I I

TIGA S~ (I I H?7ZZJ I n --:--r---rTLlI----r----'I""I,
1 I

TIGA Sl(O H 7ZZ2l n I 1 1-1 ---+---11""11
1

TIGA 13 (1) H 1--_+--......-___ +-: ___ r1I-_:-~1
TIGA T4 (1) H I

~IT n'l I I
TIGA T5111H !! _ . r--1 ---..... ~-----..... ~, ---...;-------1 t""'
TIGC:D Tx H __ --' ~

;----------i' 1

~ TIGA PSEUDO 13
------~----~~I-·--~

UNIBUS OR INTR PA,USE ICYCLEI

*NOTE:

UNIBUS OR
INTR PAUSE

CACHE PAUSE

Refer to figure 4-8

TlGA TI I1l:H~ I II I 1 I
: I r---;-----""III I, I

TIGA T2 (l)iH ~ '---+1 _---Io_~
· I I

FOR INTR ! ~ : L-...J ~I
NOT USED{TlGA S~ (1) H i, i"i"""1 I ,--, I

PAUSE TIGA SI (IIIH I I I II
· I . - ~!~--r-r--~--+'-~

UBCB TIG RESTART IH I : Z~ 1 :

TIGA 1ST SYNC F+ I : n---lL-----L..._......;....I:: Z

I Z~I-~-~ I ~
TIGA 2ND SYNC F/F 1 ~--;.I---!I i

I I 1 I
TlGA 13 (OIH I I Z ~I _---'_-:--..II1L__--'-' _+1 -lZ

TlGA T4 (OiH 1 I
i I I ~,--~

TlGAT5 (IIIHI I II-I _~~--i-----!1 .
I 1 I"

TIGC:D Tx H I ITi1 Ii2I I ~
! ""t-' _.., I I I

TlGA PSEU DO ~3!: 't11Atjh.+ !.All ;:;ft-kr-A"""'l~r--'I-'"!""· --:~~=\ h---;~

: r--- CACHE PAUSE CYCLE ---T.:..J :
TlGA TI (1l iH .r II r1 __ --7-_-""I

TIGA T2 (II!H~! n' __ -:--_-l
· I I

TIGA 13 (11iH I n n'-_-""I i I I II "I
TIGAT4 (OIIH~! \L
TIGA T5 (I) H1 r---""'l I r

I I I
TIGA MEM SYNC (~IIH! I I~ I

*FLIP-FLOP #\2! : II r
I ! I II

*FLIP-FLOP #\1 LJ I
I I I I

TIGA CLK BRIH! I II In:
I I

TIGC:DTXiH~ ~5

I

11-3121

Figure 4-7 Timing Generator and Pauses
(Figure repeated on next page)

11-4-9

START-UP r-- NORMAL CYCLE ~14---

TIGC TPB l

TlGC TPB H
I I I

TIGA TI (1) H ____ ---'rlL.. _____ ~rlL..--..;....------;......~1 !
I . 1

TIGA T2 (1) H ____ ---t:_..JrlL.. ____ ;......-I I 1 !

1 I
TIGA Sill (1) H ?22ZI : nL.. __ -:--_---'rTl.......Jl~ _ __i_---"IL..z!

TIGA SI (1l H '-7ZZZJ"-'-........ __ -+: ___ ---'nL--_--i-___ ...;.:-I1 IL.._ __ i-_Il-il !

TIGA n (1) H _____ --+-1 __Inl ___ -i-___ 'i"I ___ ...JI1I __ :-~IH
I I

TIGA T4 (1) H

TlGAT5 (1)H ___ ...J

TIGC:D Tx H __ ~

*NOTE:

UNIBUS OR
INTR PAUSE

CACHE PAUSE

Refer to figure 4-8

I I

UBCB TIG RESTART Hz

TlGA 1ST SYNC F/F 1

*FlIP-FlOP # ,1 I !l U I
I 1 I

TIGA ClK BR HI I II I nL.. __ --+-1_-----t
I

TIGC:DTXH~

Figure 4-7 Timing Generator
and Pauses

Table 4-1
Ring Counter Stop and Pause Conditions

STOPINT2

Internal Bus Pause Stop:

Restart:

Unibus Pause CPU Control Registers Stop:

Restart:

Interrupt Pause Stop:

Restart:

Single ROM Cycle Stop:

Restart:

STOPINTS

Cache Pause Stop:

Restart:

Single Bus Cycle Stop:

Restart:

11-4-10

SAPN NOT CACHE ADRS H
TIGA PAUSE H (UBSD = 2 or 3)
TIGA SO (0) H or TIGA SI (0) H

SO and SI count to 3 (90 ns).

Same as Internal Bus Pause

Same as Internal Bus AND
UBCB TIG RESTART H
(BUS SSYN)

UBSD = 1 (INTR Pause)
UBCD EXT BRQ H

UBCB TIG RESTART H
(passive Release or BUS INTR)

TIGB ROM+UPB (1) H

CONTINUE or MAINTENANCE
(XMAA S4) switches

TMCF CACHE ADRS H
TIGA PAUSE H (UBSD = 2 or 3)
No Aborts (not TMCC ABORT H)

TIGA MEMSYNC (1) H

TIGB SINGLE CY L
TIGAPAUSEH

CONTINUE or MAINTENANCE
(XMAA S4) switches

(

(

(

(

(

(

(

The Unibus Pause is started by the same two gates
that start the INT 0 Pause, in addition to the gate
that has UBCA UNIBUS ADRS H as an input.
SCCD INTO REG (I) L is high, since the address
does not refer to an Internal Bus register.

There are two synchronizing flip-flops for this gate:
the first rank flip-flop is the one that has UBCB
T1G REST ART L as its input; the second rank
flip-flop has the output of the first rank flip-flop as
its input. The output of the second rank synchro­
nizing flip-flop is high at this time. The output of
the 74S65 gates is low, T2 (I) H is not cleared, and
T3 (I) H is not set. The SO and S I flip-flops count
to 3, at which time the NOT CACHE ADRS gates
are disabled. When BUS SSYN is received, UBCB
TIG RESTART is asserted. The first rank synchro­
nizing flip-flop is set by the next TPB L, and the
second rank flip-flop by the TPB after that. This
disables the UNIBUS ADRS gate, and the output
of the 74S65S goes high, allowing the ring counter
to restart.

When reading the Control Registers (PS, SL, PIR,
PIA and PB - see Chapter 2, Paragraph 2.3.2)
SSYN is generated by the processor; in this case
the 90 ns SO-S I delay and the synchronizing flip­
flop delays may be concurrent.

4.8.2.2 INTR Pause (T2) - Refer to Figure 4-7.
The interrupt (INTR) Pause cycle is similar to the
Unibus Pause cycle.

The ring counter is stopped in T2 by the UBCD
EXT BRQ H gate on the lower 74S65. This gate is

asserted during an INTR Pause cycle (UBSD= I);
the output of the second rank synchronizing flip­
flop is high at this time. UBCD EXT BRQ H is as­
serted when any of TMCA HONOR BR(4:7) are as­
serted. The T2 flip-flop remains set and the T3 flip­
flop cleared until the second rank synchronizing
flip-flop is set. S I and SO count up but have no ef­
fect, since they are ANDed with TIGA PAUSE H
(UBSD= 2 or 3), which is low. UBCB TIG RES­
T ART H is asserted either by the receipt of INTR
or by a passive release of the Unibus (UBCA PAS­
SIVE L). The first rank synchronizing flip-flop is
set by the next TPB L, and the second rank flip­
flop by the TPB after that. This disables the EXT
BRQ gate, and the output of the 74S65 goes high,

. allowing the ring counter to restart.

4.8.3 CLK BR, BRA
During any cycle during which UBRK (load BR) is
asserted, the BR is loaded at the proper time. Dur­
ing a Cache Pause cycle, the data is loaded into the
BR at MEMSYNC+30 ns. During any other type
of cycle, the B R is loaded at T5+ 30 ns. These oper­
atiolls are independent of when TI occurs.

4.8.3.1 Non-Cache Cycles - Refer to Figures 4-8
and 4-9. TMCF CACHE ADRS H is asserted dur­
ing all Cache cycles. RACB ROM 40 L is asserted
and TIGA PAUSE H is high during all Bus Pause
cycles (UBSD=2 or 3). When either CACHE
ADRS or PAUSE are low, gate 2 is high, T5A(I) is
gated through gate 3 and the OR gate and sets flip­
flop lone clock period later. The following TPB L,
which occurs at n, asserts TIGA CLK BR (and
BRA) if RACA UBRK H is asserted.

T/GA TI (I) J.I ----,---=-cr-,-- TI6A M€M 5VNCf¢)JI

TIGC 7P8 L ----,------+-+--,----"-<t-1

11-3122

Figure 4-8 'Clock BR Circuit (Part of D-CS-M8139-0-1, Sheet 3)

11-4-11

/

fA
,i I

, ,

ClK BR, NOT CACHE PAUSE ClK BR,CACHE PAUSE

13 14 T5 T1 T2 T3 T4 T5 T2 T3 T4

~I~I~~I~I~I~H~I--~I~I--~~~~~I~I--~I
I

TIGC TPB H

I
I

TIGA Tl (1) H r-""TI ___ -.-_.....11 i IL-____ ------r------l...---+--'

TIGA T5 (1) H

*FLlP- FLOP # 1

TIGA ClK BR H

___ -..J

I
I

CCBC MEMSYNC H ~ ______________ -..J

TlGA MEMSYNC (1) H

* NOTE: ~------------------~

Refer 10 figure 4-8 TIGA STOP Tl l

*FLlP-FlOP # 2

Figure 4-9

4.8.3.2 Cache Cycles - Refer to Figures 4-8 and 4-
9. MEMSYNC gates the data from the Cache into
the BR during a Cache DATI or DA TIP. Flip-flop
:2 is set prior to the Pause cycle by T3.

Upon entering a Cache Pause cycle, gate I is en­
abled. When CCBC MEMSYNC H causes TIGA
MEMSYNC to set, the output of gate I goes low,
the output of the OR gate goes high, and flip-flop I
is set at the same time as TI (I) H (the ring counter
is restarted by TIGA MEMSYNC). Since RACA
UBRK is asserted, ClK BR is asserted 15 ns later
by TPB l, which occurs at the same time as Tl.

Flip-Ilop I is on for only one clock period to en­
sllre that only one BR clock pulse is generated.

4.9 MAINTENANCE STOPS

4.9.1 Single Cycle Mode
When t he processor is halted and placed in the S
BUS CYCLE mode of operation from the console,
the TIGA SNGCY flip-flop is direct-set to assert
TIGA STOP TI and cause the processor to halt af-

11-3123

Clock BR Timing

ter each single bus cycle is completed (TIGA
PAUSE). When the CONT switch is pressed, TIGB
CONT is asserted and clocks the J-K flip-flop that
sets TIGA CONT (I) on the next TIGB TPB pulse
going high. This enables the K input to the
S NGCY flip-flop so it will reset on the next TPB
pulse going high.

The processor enters T I and proceeds through an­
other bus cycle. As soon as T I is entered, the flip­
nop controlled by the CONT switch is reset. The
CONT flip-flop resets on the next clock pulse and
the SNGCY flip-flop is again set on the trailing
edgc of that clock pulse. As a result, STOP TI is
again asserted to stop the processor after a single
bus cycle.

Since T1GA ClK BR is generated by either MEM­
SYNC or T5A (I), independently of T I, the data is
loaded into the BR 30 ns after T5. During Single
Cycle. the clock is stopped in T5, and the data
frol11 the current cycle could not be displayed if the
BR were clocked by Tl (after the clock has been
restarted).

11-4-12

(

(

4.9.2 ROM+UPB
SINGLE ROM CYCLE operation (Sl=O, S2=1)
stops the clock in T5 of every ROM cycle.

The UPB STOP (SI=I, S2=0) operation stops the
clock in T5 when PORC PB CaMP H is high. This
signal is asserted when the microprogram ROM ad­
dress equals the contents of the Program Break Reg­
ister [PORC PB(07:00)]. This read/write register is
accessed at address 17 777 770.

Maintenance module switch inputs XMAA Sl and
S2 are decoded, ORed and input to the TIGB
ROM+UPB (I) H flip-flop, which is cleared by T:
(1) L and clocked by the following TPB L (at the
trailing edge of Tt (I) H). Since the CaNT flip­
flop is cleared, the clock is stopped in T2.

4.9.3 TIGB CONT L
It should be noted that, except for single clock
cycle operation, either the Console CaNT switch
or the maintenance stepper XMAA S4 can be used.
X M AA S4 must be used for single clock cycling.

11-4-13

(

(

This chapter examines the types of processor data
transfers (Paragraph 5.1), discusses the Unibus inter­
face, in general terms (Paragraph 5.2).. and de­
scribes processor data exchange with the Unibus
(Paragraph 5.3).

In order to execute instructions, the processor ex­
changes data with the Cache and with Unibus de­
vices; it contains the Unibus arbitrator, which
decides which device obtains the use of the Data
Section of the Unibus. The Unibus arbitrator is a
part of the processor priority network, which is de­
scribed in Chapter 6.

I n order to exchange data with either the Cache or
with a Unibus device, the processor must supply
the following information:

I. An Address, which defines the device or
the location in memory with which the
data exchange is to take place; address
generation is described in Section IV of
this manual.

2. Control information, which specifies the
direction of the data transfer; the C bits
determine the type of transfer and are de­
scribed in this chapter.

3. Data, in the case of a transfer from the
processor to the Cache or to the Unibus;
data is supplied to the Cache by the BR
and to the Unibus by the Data Multi­
plexer (D MX), both of which are de­
scribed in Chapter 2.

5.1 PROCESSOR DATA TRANSFERS
The processor requires two ROM states to execute
a data transfer; a BUST (BUs STart) cycle and a
Bus Pause cycle, during which the transfer of data

CHAPTER 5
DATA TRANSFERS

takes place. A BEND (Bus END) cycle may replace
the Pause cycle if the transaction is not to be com­
pleted (either due to error or to the microprogram).
Stack and Address errors (aborts, refer to Chapter
6) are detected prior to the completion of a Bus
cycle and cause a BEND. Conditions in the micro­
program which can cause a BEND are those where
Bus cycles are started in anticipation of certain
forks or branches. If the fork or branch results in a
condition which does not require the Bus cycle to
be completed, it is stopped by a BEND. An ex­
ample of this is found on Flows 5: 012.00, 012.80
and 012.90 all do a BUST and branch to one of
three cycles; one of these, 012.70, does not require
a Bus cycle and does a BEND.

Refer to Figure 5-1. During the BUST cycle, the vir­
tual address is generated from the BAMX; Memory
Management in turn generates the physical address.
RACH BUST H is received by the Cache, which
starts a CPU cycle if it is idle. During the BUST
cycle, the type of transaction is determined by de­
coding the BSC ROM field (refer to Paragraph
5.1.1).

Cache Address
If the physical address is a Cache reference, SAPN
NOT CACHE ADRS is negated and TMCE CON­
TROL OK is sent to the Cache, which allows the
data cycle to start. The clock is stopped in T5 and
is restarted upon receipt of the assertion of CCBC
M EM SYNC H, by which the Cache indicates com­
pletion of its data cycle, i.e., data is ready on read,
or taken in on write (refer to Section VI, Cache).
At TI, the data from the Cache is strobed into the
BR (refer to Chapter 4). In the case of a read-hit
(i.e., the word is in the Cache and a Main Memory
cycle is not necessary) the clock generally does not
stop, because the data is ready and MEMSYNC is
asserted before T5.

11-5-1

Bl,IST ______________ ,.._-----_

T1
VIRTUAL ADDRESS
SELECTED FROM
BAMX

T3--- __ ~ ________ ,..-__ -...... 1 __
CACHE CONTROL
BEGINS CP CYCLE
IF lOLl'

PAUSE I BEND
T1 - - - - - - - - - ,.....------------'------------------.....:::::.::!::.."
T2-----

PHYSICAL ADDRE'SS
IS FORMED. ADDRESS
DECODE IS COMPLETE.
TIMING GENERATOR
IS STOPPED FOR 90 ns
IF NOT CACHE

CACHE
ADDRESS = 1

UNIBUS
ADDRESS I ADDRESS

T2 + 30- - _______ , ____ L-__ --.

CP BUSY IS SI'T IF
-(NPR + NPG + SACK
+ DSACK + ABORT).
ISSUE BEND TO
CACHE

INTD(I)

CLEAR CP BUSY.
DISABLE SETTING
MSYN. COMPLETE
90 ns DELAY.

INTD(O)

KEEP TIMING
GENERATOR
STOPPED. DESKEW
ADDRESS AND
DATA 150 ns AND
ASSERT MSYN

ODD ADDRESS
SL ERROR
NEXM

TIMEOUT

RESTART TIMING
GENERATOR.
DESKEW DATA
75 ns VIA
SYNCHRONIZER.

T3- - - , ___ .L... __ '"I_ I- - - - ,...-_---11..-__
ISSUE CONTROL
OK TO CACHE

T5---,---....... --'"1

WAIT FOR MEMSYNC
IF MISS + WRITE +
PARITY ERROR

LOAD DATA TO
BUFFER. CLEAR
MSYN. DESKEW
ADDRESS FROM
T3-Tl.

ABORT CONDITION.
ZAPROMTO~.

VECTOR THRU 4.
ISSUE BEND TO
CAC,",E.

MEMORY
MANAGEMENT
VIOLATION

ABORT CONDITION.
ZAP ROM TO 200.
VECTOR THRU 250.
ISSUE BEND TO
CACHI'.

f ISSUE BEND TO I
CACHE CONTROl..

Tl--- - ____ , __ ---ll...,._ -, ___ L-__ • ____ L.. ___ -_

LOAD DATA TO CLEAR CP BUSY
BR IF READ IF -DATIP, SHIFT
CYCLE BUFFER TO BR

CLEAR CP BUSY
IF UNIBUS
TIMEOUT

Figure 5-1 Processor Data Transfers

11-5-2

11·3134

(

{

(

(

(

Unibus Address
If the physical address is a Unibus reference, SAPN
UNIBUS ADRS Land SAPN NOT CACHE
ADRS H are both asserted and the clock is
stopped for a minimum of 90 ns in T2. TMCE
CACHE BEND H is asserted and causes the Cache
to stop its CPU data cycle. Refer to Section VI.

Thirty ns after the assertion of T2, UBCA CPBSY
is set, if all NPRs have been serviced and if no
abort is pending.

SCCD INTD REG (I) L is asserted if the Unibus
address is a reference to one of the registers that
are read on the Internal Data Bus (refer to Chapter
2, Paragraph 2.2.2). If this is the case, CPBSY is re­
set, MSYN is disabled, the 90 ns SO-Sldelay is
completed, the clock is restarted, and the contents
of the register that is being referenced is clocked
into the BR at the end of the PAUSE ROM state.

If the Unibus reference is not to an INTD register,
a Unibus data cycle is executed. The TIG clock is
stopped and stays stopped past the 90 ns SO-S 1 de­
lay. Address, type of transaction (CI, CO) and, if re­
quired, data are put onto their respective Unibus
lines and deskewed. MSYN is asserted. The Unibus
device that is being addressed executes the transac­
tion and responds by asserting SSYN. The clock is
restarted 75 ns after receipt of this signal.

At T3, MSYN is negated and the data is clocked
into the PDRJ buffer. At T I of the next cycle, ex­
cept in the case of a DATIP, the Unibus lines are
cleared by negating CPBSY. If the transaction was
a DATIP, CPBSY is not negated, the address lines
are not changed (except if the data-out is to be a
DA TO B, in which case, AOO is changed from 0 to I
for an odd byte address), the C lines are adjusted,
and the data is put on the D lines.

I n the case of a DATI or DA TIP, the data is
clocked into the BRat TI.

Aborts
I f an abort occurs, the microprogram forces the
ROM address to 200 (ZAP.OO). This occurs at T2
of PA USE for all aborts except parity aborts,
which ZAP at T2 of the cycle following the

PA USE. A Memory Management abort vectors
through address 250. A parity error abort vectors
through address 114. All other aborts vector
through address 4. (Refer to Chapter 6.)

5.1.1 Types of Data Transfers
F our types of data transfers are used by the KB 11-
B. These types are defined by the condition of the
Control bits CI and CO (TMCE CI Hand TMCE
CO H):

CI =0, CO=O - Data-in or DATI. One word
of data is transferred to the processor from
memory or from the Unibus.

CI=O, CO=I - Data-in, PAUSE or DATIP.
Same as DATI, but a data-out must be exe­
cuted to the same address immediately follow­
ing the DA TIP. This type of data transfer
may be considered as the first part of a
read/modify/write operation.

CI = I, CO=O - Data-out or DATO. One
word of data is transferred from the processor
to memory or to the Unibus.

C I = I, CO:;:: I - Data-out, byte or DA TOB.
One byte of data is transferred from the pro­
cessor to memory or to the Unibus. The high
order byte address is odd and its data is
stored in bits 15:08 of a word; the low order
byte address is even and its data is stored in
bits 07:00 of a word.

The C I and CO signals are obtained by decoding
the BSC bits as shown on drawing TMCE.

I. When RACC UBSC02 H is negated
(low or BSC = 0 - 3) the 74S 153 multi­
plexer is disabled, and both of its out­
puts are low. Thus, TMCE CI Hand
CO H are low and call for a DATI.

2. When RACC UBSC02 H is asserted
(high or BSC = 4 - 7), the BUS COND
multiplexer is enabled and its output is a
function of RACC UBSCO I and
UBSCOO, as defined by the table on
TMCE.

II-5-3

The BUS CONDITION (BSC) bits of the micro­
program ROM determine the type of data transfer
by its control of the Clines [TMCE CI (and CO)
H]. The significance of the BSC bits is defined
below:

BSC=OOO - DATI (data-in), a transfer of one
word of data from a slave to the processor.

BSC=OOI - SRCI DATI (SouRCe I DATI),
a DATI used in odd address error detection
to distinguish the first bus operation of source
calculation. During a byte instruction, this
transaction cannot use an odd address if the
source mode is 3, S or 7. These are deferred
addressing modes and this transaction reads a
word containing the address of the operand;
this word cannot be odd.

BSC=OIO - KERNEL DATI; a DATI is exe­
cuted, and Memory Management selects the
KERNEL PAR/PDR set (refer to Section IV,
Memory Management) used in the Trap and
I nterrupt Service routines to obtain vectored
PC and PS from Kernel PAR O. KERNEL
DA TI also affects the processor mode bits
[PS(lS:I2)] as explained in Chapter 3.

BSC=OII - SRC2 DATI (SouRCe 2 DATI),
a DATI used in odd error detection to dis­
tinguish the second bus operation of a source
calculation. During a byte instruction, this
transaction may use an odd address.

BSC= 100 - FC (Floating Point Processor
Conditions). Used during FPP Unibus transac­
tion: TMCE CI H follows the FPP CI line
(FRMJ FP CI H) and CO is always negated,
since the FPP does only word operations.

BSC= 101 - DATO (data-out), a transfer of
one word of data from the processor to a
slave.

BSC= 110 - BSOPI (BuS OPeration I): In­
struction-dependent bus transaction, specified
in execute ROM cycles, common to several in­
structions that require different types of bus
operations. An O/class instruction calls for a
DATO, a P/class instruction for a DATIP,
and one that is neither 0/ nor P/class for a
DATI. No instructions are both 0/ and
P /class. I nstruction classes are defined in
Chapter I and on Flows 3 and S.

II-S-4

BSC= III - BSOP2 (BuS OPeration 2). In­
struction-dependent bus transaction. If the in­
struction is a byte instruction, a DATOB
(data-out, byte) is executed; if it is not a byte
instruction, a DATO is executed.

5.1.2 Types of BUST Cycles
There are two types of BUST cycles: conditional
and unconditional, which are described in Chapter
I (Paragraph 1.2.S.I).

A BUST cycle is one in which the MiSCellaneous
(M SC) bits of the microprogram ROM equal S or
7:

MSC=S - CONDITIONAL BUST. This
value occurs only in IRD.OO (Flows I), which
generates the A Fork. RACH BUST H is as­
serted during this cycle, except when the cycle
that follows is also a BUST cycle.

MSC=7 - BUST, unconditional.

5.1.3 Types of Pause Cycles
The BUS DELAY (BSD) bits of the microprogram
ROM determine the type of Pause cycle to be exe­
cuted, if any. The significance of the BSD bits is de­
fined below:

BSD=OO - No Pause.

BSD=OI - Interrupt Pause or INTR PAUSE.
The Timing Generator is stopped in T2. A
Bus Grant is issued. The Timing Generator is
restarted by INTR, NO SACK or Passive Re­
lease of the Unibus.

BSD= 10, BSD= II - Bus Pause. Used for In­
ternal Data Bus (INTO), Unibus and Cache
transactions:

INTO - The Timing Generator is
stopped in T2 for 90 ns.

UNIBUS - The Timing Generator is
stopped in T2 and restarted after a min­
imum 90-ns delay by SSYN, Timeout or
TMCC ABORT.

CACHE - The Timing Generator is
stopped in TS and restarted by MEM­
SYNC or TMCC ABORT.

(

(

(

(

(

(

(

5.1.4 BEND Cycle
Refer to drawing TMCE. When the ROM BCT
(Bus Control) field equals 7, TMCE ROM BEND
L is asserted. This condition is indicated by
"BEND" on the Flows.

TMCE CACHE BEND H causes the Cache to stop
a data cycle. It is asserted by a ROM BEND, when
the physical address does not indicate a memory ref­
erence (TMCF CACHE ADRS not asserted), by a
Memory Management abort (SSRC KT ABORT
FLG), by a fatal stack violation (TMCD SL RED)
or by an odd address error (TMCC ODD ADRS
ERR).

TMCE KT BEND L, when asserted, prevents the
modification of the contents of some Memory Man­
agement registers and the setting of the KT
ABORT FLAG.

5.2 UNIBUS INTERFACE
The Unibus is the transmission medium that inter­
connects the various components of the PDP-Ilj70
system, such as peripheral devices, the KBII-B Pro­
cessor and the Cache Memory via the Unibus Map.
The principal connection between the processor and
the Cache, however, is direct and does not use the
Unibus. Main Memory can only be accessed
through the Cache.

The Data Section of the Unibus is used for data
transfers between a master device, which controls
the transaction, and a slave device, which responds
to the master. A master asserts BBSY (Bus Busy);
it determines the type of data transfer and is the
only device that may assert MSYN (Master SYNc);
a slave executes the transaction requested by the
master and asserts SSYN (Slave SYNc). The pro­
cessor is generally a master during Unibus transac­
tions, but in the special case of interrupts, it acts as
a slave device.

Only one data transfer may occur at a time on the
Unibus, and the priority arbitration logic decides
which device may use the data transfer lines on the
Unibus. (Refer to Chapter 6, Paragraph 6.3).

5.3 UNIBUS DATA INTERFACE
The K B Il-B uses the Data Section of the Unibus
for the following types of data transfer:

I. To transmit or to receive data from
Unibus devices such as peripheral con­
troller control registers.

2. To access memory via the Unibus Map
and then through the Cache; this path is
used mainly for diagnostic purposes.

3. To read (only) its control registers (PS,
SL, PIR, PIA and PB).

4. To receive a vector during an interrupt
transaction.

The transactions listed in (1) and (2) above are iden­
tical, and (3) is very similar. These operations are
described in this paragraph. The interrupt transac­
tion is explained as part of the Unibus arbitration
interface in Chapter 6, Paragraph 6.4.

5.3.1 Unibus Data Transfer Protocol
In order to execute a data transfer on the Unibus,
the processor must obey the Unibus protocol:

I. The processor obtains the use of the
Unibus from the Unibus priority arbi­
tration logic (refer to Chapter 6).

2. The processor asserts BBSY, thus becom­
ing bus master.

3. The processor defines the slave device
with which it wants to communicate. To
do this, the processor puts a Unibus ad­
dress on the A lines [BUS A(17:00) L on
SCCL]. Memory Management generates
this address (refer to Section IV of this
manual).

4. The processor defines the type of data
transfer to be execuuted, which is deter­
mined by the C lines (BUS CO Land
BUS Cl L on UBCC). Data transfers
may be either from the processor to a
slave (data-out: DATO or DATOB) or
from a slave to the processor (data-in:
DATI or DATIP).

11-5-5

5. If the intended data transfer is a DATa
or a DATOB, the processor puts the
data word or byte on the Unibus 0 lines
[BUS 0(15:00) L on PORE]. Data selec­
tion is described in Chapter 2, Para­
graph 2.3.2.

6. When these bits (Unibus A, C and 0
lines) become valid, they are deskewed
for 150 ns to allow for decoding in the
slave and for variations in bus driver
and receiver characteristics (address
deskew).

7. The processor then asserts MSYN:

a. If it is executing a DATI or a DA­
TIP, when the, negation of SSYN
from the previous Unibus transac­
tion has been received,

b. If it is executing a DATa or a DA­
Ta B, 150 ns after receipt of the ne­
gation of SSYN from the previous
transaction.

8. The slave receives the assertion of
MSYN and either accepts the data from
the 0 lines (DATa or DATOB), or puts
the data requested by the processor on
the 0 lines (DATI or DATIP). The
slave then asserts SSYN.

9a. DATI or DATIP - Upon receipt of the
assertion of SSYN, the master deskews
the data received for a minimum of 75
ns. The master then strobes the data and
negates MSYN.

9b. DATa or DATOB - The master may ne­
gate MSYN upon receipt of the asser­
tion of SSYN. The KBII-B, however,
waits 75 ns before negating MSYN.

10. The master waits a minimum of 75 ns af­
ter negating MSYN, then removes the
address and control bits from the A and
C lines. The master then negates BBSY,
except in the case of a DATIP, where
this signal must remain asserted during
the DATa or DATOB that follows the
DATIP.

11-5-6

II. The slave typically negates SSYN upon
receipt of the negation of MSYN.

12. If the assertion of SSYN is not received
within a specified amount of time (Time­
out Delay), the instruction is aborted.

5.3.2 Unibus Data Interface
The Unibus data interface is shown on drawings
UBCA, UBCB and UBCC. This interface imple­
ments the Unibus data transfer protocol.

The description that follows refers to processor
Unibus device references, which include the Mem­
ory via the Unibus Map. Processor Control Regis­
ter references differ in some details from these
transactIOns. These differences are described at the
end of this paragraph.

5.3.2.1 Unibus Device References

1. During the BUST state, Memory Man­
agement generates the Unibus address,
which becomes valid by TI of the
PAUSE state. SAPN UNIBUS ADRS
L, when asserted, informs the processor
that a Unibus transaction is required.
The Bus Condition (BSC) ROM bits are
asserted during the BUST and during
the PAUSE states.

2. During T1 and T2 of the PAUSE state,
the Unibus Data Multiplexer (PORE
DMX) selects the input to the Unibus
data drivers [BUS 0(15:00) L]. Refer to
Chapter 2, Paragraph 2.3.2).

3. Refer to drawing UBCA and to Figure
5-2. SAPN UNIBUS ADRS L enables
the gate that clocks the UBCA CPBSY
flip-flop.

The TIG clock is stopped in T2 of the
PAUSE state (refer to Chapter 4). TIGA
PSEUDO T3 H is asserted 30 ns after
T2.

When all NPRs have been serviced, and
if no abort is present, and when the pre­
vious master has negated BBSY, UBCE
CPBSY is clocked and the processor be­
comes master by asserting BUS BBSY
L.

(

(

(

(

(

(

(

(

BUST I T2 T2 T2 PAUSE
+ + +

Tl T2 T3 T4 T5 TI T2 30 60 90 T3 T4 T5 TI T2

DATI-DATIP-DATO I I I I I I I I I I :tt I I I I I I
I I I
I fa I I L VIRTUAL ADDRESS W I I I
I I I

f! I

~ I L PHYSICAL ADDRESS I
I

/ I [1

"-SAPN NOT CACHE ADRS H I
I

I
I lZ L SAPN UNIBUS ADRS H I
I
r

[1

TIGA PSEUDO T3 H

CP BUSY CLOCK H

~----~~----------------~--------~ SEE
t=.illE #2 UBCA CP BUSY H __________ -+---'

UBCA START BUS (1) H

UBCA MSYN (11 H

SEE NOTE #3

--------------------~
150 NS ADRS
DESKEW

------------------~----~

BUS SSYN H _______________ --; l------'

TIGC T3 H _______ --------....... 1-____ SE_E __ N_0_T_E_#_4 __ --'

TIGA BR ClK H --------------------------........ ll

I

SEENOTE#5~

NOTES:

1. Set CP BUSY if -(NPR + NPG + SACK
+DSACK + ABORT + BBUSY).

2. CP BUSY Is not cleared if DATIP cycle.
It is cleared on DATO portion of DATIPI
DATO.

3. Used to slart DATO address deskew on
DATIP/DATO operation.

4. 75 ns data deskew is obtained by 2 slage
synchronizer on TWA. _ Unibus data is
loaded into PDR H buffer register at T3.

5. Address & control are deskewed from
T3 to Tl. PDRH buffer register loaded
to BR at n.

Figure 5-2 Unibus Data Transfers

11-5-7

11-3124

UBCE CPBSY B H gates the address
[BUS A(l7:00) on SCCL], the data
[BUS 0(15:00) on PORE] and the Con­
trol bits (BUS Cl and BUS CO on
U BCC), onto the Unibus.

4. TIOA PSEUDO T3 also clocks and sets
UBCE START BUS. If the transaction
is a OATO ora OAiOB (UBCC Cl B
H asserted) and SSYN is negated, the
150 ns address deskew is started. If the
transaction is a DATI or a OATIP, the
deskew is started without regard to the
state of SSYN.

5. Upon completion of the delay, if SSYN
is negated, BUS MSYN is asserted by
UBCA MSYN.

6. U pon ~eceipt of the assertion of (UBCB)
BOS'SSYN from the slave, and since
MSYN IS being asserted by the pro­
cessor [UBCE MSYN (1) H], UBCB CP
SSYN IS asserted. This signal clears
UBCA START BUS and thus disables
the direct-set input to UBCA MSYN (1)
H.

7. UBCB CP SSYN L also causes UBCB
TIO RESTART to be asserted. This sig­
nal causes the clock to be restarted. T3
is asserted 75 ns (minimum) after TIO
REST ART is asserted (refer to Chapter
4). T3 clocks the UBCA MSYN flip-flop
off and negates BUS MSYN.

If the transaction is a DATI or a OA­
TIP, the data is clocked into the Bus Buf­
fer Register [PORJ 0(15:00) H] at T3.
The 75-ns delay between the assertion of
TIO RESTART and that of T3 is the re­
quired data deskew.

8. At T1 of the microprogram state that fol­
lows the Pause cycle, in the case of a
OA TI or of OA TIP, the data from
PORJ 0(5:00) H is clocked into the BR.
This is shown as "T6 BR +- BUS" of
PAUSE on the Flows.

11-5-8

At the same time (Tl) CPBSY is direct­
cleated and BUS BBSY L is negated, ex­
cept in the case of ~ OA TIP, when
BBSY must remain asserted until the
end of the OA TO or OATOB that fol­
lows the OA TIP. This is controlled by
the 74S74 flip-flop on UBCA whose 0
input is UBCC OATIP L; UBCE
MSYN (1) H clocks this flip-flop, which
controls the direct-clear input to UBCE
CPBSY.

When UBCA CPBSY B H is negated,
the address, data and control bits are re­
moved from the Unibus.

5.3.2.2 Unibus Timeout - If SSYN is not received
in- response to the assertion of MSYN by the pro­
cessor within 10 /-LS a Unibus Timeout occurs.

I. Refer to drawing UBCA. The 74193
binary counter is kept cleared by UBCA
MSYN (0) H. When the MSYN flip-flop
is set, the counter is free to count up. It
is clocked by UBCO FREE CLK (0) H
(30 ns pulse every 90 ns) refer to Para­
graph 6.4.1). On the 16th clock pulse, a
carry is generated which sets the UBCA
START TIMEOUT L latch. This
counter allows single clock cycle mainte­
nance module operations when referen­
cing Cache registers (or the Cache via
the Unibus Map). If the Timeout one­
shot was started immediately upon the
assertion of MSYN, the Cache, which
uses the processor time pulses, could not
complete the transaction and Timeout
would always occur.

2. Refer to drawing UBCB. The latch
starts the timeout 74123 one-shot (10
/-Ls).

If the assertion of BUS SSYN L is re­
ceived before the end of the 10 /-LS, the
one-shot is cleared.

(

(

(

(

(

(

3.

I f the assertion of BUS SSYN L is not
received by the end of the 10 fJ,S the one­
shot times out, UBCB TIMEOUT is set
and disables the direct-set gate to UBCA
MSYN (I) H. TMCC BUS ERROR L
and TMCC ABORT H are asserted.

Since the clock is stopped in T2 of the
Pause cycle (RACB UBSDOI H as­
serted), TMCC ABORT H asserts
UBCB ABORT RESTART H. This sig­
nal restarts the TIG clock as in (7)
above. The microprogram goes to
ZAP.OO, thus ending the data transfer
cycle.

UBCB TIMEOUT B H sets TMCD
UBUS TIMEOUT H (bit 04 of the CPU
Error Register) when TMCC ABORT
CLK L is assertt;:d at T3 of PAUSE. The
CPU Error Register may be read from
address 17777 766.

5,3.2.3 Control Register Reference - The processor
Control Registers (PS, SL, PIR, PIA and PB) are
described in Chapter 3. They present a special case
of data transfers:

11-5-9

I. They are written directly from the BR,
whether they are referenced by· Unibus
address or by the microprogram. A
Unibus cycle is performed as described
below when the reference is by Unibus
address.

2. The PS can be read either via the Inter­
nal Bus (Chapter 2, Paragraph 2.2.2) or
via the Unibus. The SL, PIR, PIA and
PB can only be read via the Unibus, and
not via the Internal Bus.

When referenced by its Unibus address, the register
to be read is selected by the DMX. Refer to Chap­
ter 2, Paragraph 2.3.2.

The logic sequence is the same as that for Unibus
device references, with the exception that the pro­
cessor itself must generate SSYN.

Refer to drawing UBCC. SCC.E INTERNAL
ADRS H is asserted when anyone of the addresses
in the range of 17 777 770 - 17 777 776 is decoded
by Memory Management. These addresses are
those of the Control Registers.

Fifty nanoseconds after UBCA MSYN (1) is as­
serted, BUS SSYN L (UBCC) is asserted. This sig­
nal is received by the bus receiver on UBCB and
.asserts UBCB TIG RESTART H, which restarts
the TIG clock.

\

(

(

(

An Abort is the non-completion or interruption of
a data cycle due to error. This may be a non-recov­
erable error or, if Memory Management is enabled,
a prohibited transaction. Aborts are serviced imme­
diately, prior to the completion of the instruction
during which they occur.

A Trap is an interruption of the normal program
flow by internal machine conditions. These condi­
tions can be, but are not necessarily errors. A Trap
is executed after the instruction during which it oc­
curs is completed.

An Interrupt is similar to a Trap, but is caused by
conditions external to the machine. These condi­
tions may be program action (PIR) or external de­
vice service requests (BR). I nterrupts are controlled
by bits 7 - 5 of the Processor Status Word (PSW).

All of the above use the microprogram Service
Flows, which are described in Paragraph 6.1.
Aborts are explained in Paragraph 6.2, traps and
processor interrupts in Paragraph 6.3, and external
(Unibus) interrupts in Paragraph 6.4.

6.1 SERVICE FLOWS AND VECTORS
The microprogram Service Flows (Flows 12 and 13)
are used during all aborts, traps and interrupts.
During these cycles, the PC and PS of the sub­
routine that is required by the abort, trap, or inter­
rupt are read from memory and the PC and PS of
the instruction that caused the entry into the Ser­
vice Flows are pushed onto the new stack, as deter­
mined by the processor mode bits of the new PSW
[PS(15: 14)].

CHAPTER 6
ABORTS, TRAPS AND INTERRUPTS

6.1.1 Vectors
During all aborts, traps and interrupts a Vector is
obtained. The vector is the address of the location
where the PC for the required subroutine is stored.
The vector+2 is the address of the location that
contains the new PSW.

During an external interrupt, the vector is provided
by the device causing the interrupt, and is read
from the Unibus. Refer to Paragraph 6.4. During a
power-up, it is read from the Start Vector (SV).
During all aborts, internal traps and processor PIR
interrupts, it is read from the Trap Vector (TV)
logic.

Refer to drawing DAPE. The SV (power-up) is gen­
erated by jumpers and is input to the ALU by the
BMX. The jumpers may be cut to provide a SV be­
tween 00 000 000 and 00 000 174 or between 17 i 73
200 and 17 173 374.

The TV bits [DAPE TV(OI:04) H, TV06 Hand
TV05*07 H] are controlled by functions generated
on TMCB and IRCD. The vectors generated for
each function are listed on DAPE. If none of these
is asserted, the vector is 4 (TV02).

IRCD decodes the operation code of the lOT, BPT
(OPCODE3), EMT and TRAP instructions, which
do nothing but generate an interrupt. They are
shown on Flows 3, on the A Fork.

II-6-1

6.1.2 CPU Error Register
The CPU Error Register allows the program to de­
termine which abort or trap to location 4 caused en­
try into the Service Flows. It contains the following
bits:

Bit Name

7 Illegal Halt (trap)

6 Odd Address
Error (abort)

5 Non-existent
Memory (abort)

4 Unibus Timeout
(abort)

3 Yellow Zone
Stack Limit (trap)

2 Red Zone
Stack limit (abort)

Function

Set when trying to execute
a HALT instruction when
the CPU is in User or
Supervisor mode (not
Kernel).

Set when a program
attempts to do a word
reference to an odd ad­
dress.

Set when the CPU at­
tempts to read a word
from a memory location
higher than system size
register. This does not in­
clude Unibus addresses.

Set when there is no
response on the Unibus
within approximately 10
microseconds.

Set when a yellow zone
trap occurs.

Set when a red zone abort
occurs.

The CPU Error Register is read on the internal
data bus (INTD) at address 17 777 766.

6.1.3 Service Flows

6.1.3.1 Entry into the Service Flows - Aborts and
Power-up enter the Service Flows through ZAP.OO;
traps and interrupts enter through BRK.90. The
EMT, TRAP and reserved operation codes (from
the A Fork, Flows 3) enter through RSD.OO. The
BPT (OP3) and lOT (also from the A Fork), and
the illegal HALT, enter through TR.OO.

11-6-2

RSD.OO and RSD.IO generate a trap vector (TV) of
4 and shift it left to obtain the correct vector,
which IS 10. TRP.OO generates the correct TV.
These cycles all enter SVC.OO through TRP.lO.

6.1.3.2 BRK.90 and ZAP.OO - These two cycles do
a BEND, which ends any bus operation that may
have been started during the previous cycle.

In addition, ZAP.OO does a BRQ STROBE, which
allows setting the CONF after BRK.OO if the
HALT switch is down and the S BUS CYCLES
INST switch is in S INST.

The BEN06 branch after ZAP.OO checks SSRA PS
RESTORE (I) H (Memory Management abort dur­
ing SVC.70 or SVC.90). Refer to Paragraph 6.2.1.3.

6.1.3.3 BRK.OO and BRK.I0 - The INTR PAUSE,
during which the vector is read from the Unibus
during an external interrupt, occurs during
BRK.OO. INTR PAUSE is described in Paragraph
6.4. The PC of the instruction preceding the service
sequence is stored in the SR.

During BRK.IO, the INTR vector is moved into
the DR.

6.1.3.4 Branch Enable 13 - The logic that controls
Branch Enable 13 (BEN \3) is shown on TMCB.
All the errors and requests that might be honored
to cause an internal trap are ORed to provide an
output called TF (and its complement, -TF). The
74H50 gates provide the following two outputs:
TMCB PF (O)*(SF+TF) Hand TMCB PF (O)*(SF+­
TF) H. These outputs control which of four micro­
branch paths will be followed:

I. PUPF (0) L - If the Power-up flag is set,
neither output will be asserted. Micro­
state PUP.OO (100) will be entered.

2. TF - When the Power-up and Stack Er­
ror flags are both cleared [PUPF (0) L
and -SERF (I) L] and a trap condition
exists, only the TMCB PF (O)*(SF+TF)
H output will be asserted. This output
causes microstate BRK.80 (140) to be
entered.

(

(

(

(

(

(

(

3. -TF - When the Power-up and Stack Er­
ror flags are both cleared and no inter­
nal trap conditions are present (-TF),
only the TMCB PF (O)*(SF+-TF) H out­
put will be asserted. This causes micro­
state BRK.20 (120) to be entered.

4. SF - If the Stack Error flag is set and
the Power-up flag is not, SERF (1) L
will assert both outputs. This will cause
the SER.OO microstate (160) to be
entered.

The Power-up sequence is described In Paragraph
6.5 and the INTR in Paragraph 6.4.

6.1.3.5 Red Stack Error (SER.OO and SER.I0) -
The PC and PS pushes in SVC.60 - SVC.80 must
be made to locations 0 and 2 of the stack. For this
reason, SER.OO and SER.lO set the stack pointer,
GR(6), to 4.

After this cycle, the Red Stack Error flows rejoin
the flows for all other internal traps by entering
BRK.80.

6.1.3.6 BRK.80 and BRK.20 - During BRK.80 the
trap vector is read into the DR. The PS is loaded
into the BR in both cycles.

The ACKN in BRK.20 clears the INTR flag.

6.1.3.7 BK.30 - This cycle is followed by SVC.OO
- SVC.90, which are common to all aborts, traps
and interrupts. The ACKN in this cycle sets and
clears several functions related to the service flows.

6.1.3.8 Entry into SVC.OO - SVC.OO is entered
from either TRP. \0 or from BRK.30. At this time,
the vector (address of the new PC, which is read
first) is in the DR, the old PC is in PCB and in the
SR, and the old PS is in the PSW and in the BR.

6.1.3.9 SVC~OO - SV.90 - During these cycles, the
PC and PS for the software service routine are read
from the Kernel stack during SVC.OO - SVC.20.
KERNEL DATI forces Kernel mode but does not
change the status bits in the PSW [PS(15: 14)]. Re­
fer to Chapter 3.

The new PS is loaded into the PSW during SVC.30.
SVC.40 loads the SP into the DR and SVC.50 decr­
ements the SP.

SVC.60 - SVC.90 push the old PS and PC onto the
,current mode stack as determined by the new PS. If
a Memory Management abort occurs during these
cycles, the PS RESTORE branch is taken after
ZAP.OO. Refer to Paragraph 6.2.1.3.

SVC.90 does a BRQ STROBE. It is followed by
FET.OO.

Table 6-1 shows in detail the movement of data in
the processor registers during these cycles.

6.2 ABORTS
Aborts are grouped under three headings in this
paragraph: Address, Stack and Parity. The several
errors, and their timing, are described under these
headings in this paragraph.

6.2.1 Address Errors
An address error causes the Address Error flag
(TM CC AERF (1) H) to be set. An address error
may be one of the following:

I. Odd Address error,
2. Non-Existent Memory error,
3. Memory Management abort,
4. (U nib us) Timeout error,

provided the bus cycle during which the error oc­
curs is not a push to the Kernel stack.

6.2.1.1 Odd Address Error - An odd address is per­
missible only during a byte instruction, and then
only when the transaction is a SRCI DATI and the
source mode is not 3, 5 or 7, a SRC2 DATI, a
BSOPI or a BSOP2. TMCC ODD ADRS ERR L
is asserted when the address is odd (BAMXOO= I)
and these conditions are not met. The bus cycle is
aborted and a trap to 4 is executed.

SRC 1 DATI is the first bus operation of source cal­
culation: if the source mode is 3, 5 or 7 (all de­
ferred modes), this transaction reads the address of
the operand, which cannot be odd. SRC2 DATI
reads the operand, whose address during a byte in­
struction may be odd.

BSOPI generates DATIP for a P/class instruction,
a DATI for an instruction that is neither P / class
nor O/class and a DATO for O/class instructions;
no byte instructions are 0/ class.

BSOP2 generates aDA TO B for byte instructions
and a DATO for all others.

11-6-3

.....
I

9'
"""

.~,

Ilcyc1e Type of DR .SR
Ilcycle

Initial Conditions Vector old PC

BRK.30 ~
TRP.IO .

BUST

SVC.OO PAUSE

SVC.10 BUST VEC+2*

SVC.20 PAUSE oldPC*

SVC.30 old PS*

SVC.40

SVC.50 newSP*

SVC.60 BUST new SP-2

SVC.70 PAUSE

SVC.80 BUST new SP-4

SVC.90 PAUSE

FET.OO

FET.IO or ~
BRK.90

·Occurs at Tl, shown as T6 on Flows.

~,
. ~

BR

oldPS

newPC*

newPS*

oldPS*

old PC*

Table 6-1
Service Flows

PCA PCB

old PC

oldPS

new PC oldPS*

oldPS newPC*

~ .

BAMX PS

oldPS

Vector

VEC+2

newPS

new SP-2

new SP-4

,~

GR(6] Comments

{ ACKN new PC to BR from
Kernel space.

{ New PS to BR from Kernel
space.

NewPStoPSW

New SP (GD[6]) to DR

new SP-2 Decrement SP

l First Push:
new SP-4 . old PS to new Stack;

decrement SP

{ Second Push:
old PC to new Stack

~ BRQ STROBE if not SERF
orPWRF

l CLEAR FLAGS
(SERF or BLOCK STROBE)

~

(

(

TMCD ODD ADRS ERR L is asserted under the
following conditions:

I. The address is odd (BAMXOO::= \) and
the instruction is not a byte instruction
(IRCD BY IN H negated). The thir,d
gate from the top is asserted in this case.

2. If the address is odd and this gate is not
asserted, the instruction is a byte instruc­
tion, and either the top or the bottom
gate can cause ODD ADRS ERR to be
asserted:

a. If the BSC field calls for a DATI,
a KERNEL DATI, a Floating
Point Bus Operation or a DATO
(BSC=O, 2, 4, or 5), the top gate is
asserted;

b. If the BS field calls for a SRCI
DATI or a DATI (BSC=O or I)
and a source mode of 3, 5 or 7, the
bottom gate is asserted. Note that
a DA II causes the top gate to be
asserted without regard to the
source mode.

6.2.1.2 Non-Existent Memory Error - TMCC
NEXM L is asserted when an address is neither a
Unibus nor a Cache address. This is determined by
ANDing SAPN NOT CACHE ADRS Hand
SAPN UNIBUS ADRS L. Refer to Section IV of
this manual for a description of these functions.

The bus cycle is aborted when reference is made to
an address larger than that specified by the System
Size Register. The Trap ,vector is 4 for an NEXM
error.

6.2.1.3 Memory Management Aborts - Memory
Management aborts are described in Section IV of
this manual. SSRC KT ABORT FLG L informs
the TMCC logic of such an abort condition. This
signal is inhibited when a Stack Limit Red, Odd
Address or Non-Existent Memory error is asserted
(TMCE KT BEND L). In other words, a Memory
Management abort is allowed if no Stack or Ad­
dress abort is flagged.

KT ABORT asserts TMCC ABORT H and, at T3
of the Pause cycle, sets TMCC SEG ABORTED
(I) H, except in the case of a Console operation
(UBCF CNSL ACT (0) H).

The SEG ABORTED flip-flop generates the Trap
vector for a Memory Management abort. This TV
is 250 unless the bus cycle during which the error
occurs is a push to the Kernel stack; in this case,
the vector is 4 (Stack error, see Paragraph 6.2.2).
Refer to TMCB: TMCB SEGT L, when asserted,
generates vector 250 on DAPE. SEGT is asserted
for an abort when TMCC SEG ABORTED and
AERF are both asserted. AERF, however, cannot
be asserted when the error is a Stack error (i.e.,
when TMCC KERNEL R6 is asserted). In this last
case, the vector is 4 instead of 25.

PS RESTORE
The Service Flows first fetch the new PC and PS
from the vector address; the Kernel stack is used
for this operation (SVC.OO ~ SVC.50). The old PS
and PC are then pushed onto the new stack
(SVC.60 - SVC.90).

If the new stack is not the Kernel stack, and if
Memory Management is enabled and causes an
aboft during the pushes in SVC.70 or SVC.90, this
abort may be a length error, which in this case is a
non-Kernel stack error. (A Red Stack error would
have occured if the Kernel stack was being used).

I. The microprogram goes to ZAP.OO.
SSRA PS RESTORE (I) H has been as­
serted during the push cycle that causes
the abort and the microprogram
branches to ZAP.lO. At this time, the
PC and PS of the instruction that caused
entry into the Service Flows are in the
SR and PCA. PCB and PSW contain the
values for the abort, trap or interrupt
that was being serviced.

2. ZAP.IO - ZAP.30 restore the PC and PS
of the instruction that caused entry into
the service routine. The Service Flows
are now reentered via B RK.OO, BRK.W,
and BRK.80. This last cycle fetches the
trap vector, which is 250 (Memory
Management).

3. BRK.30 - SVC.30 get the Memory Man­
agement subroutine PC and PS. This sub­
routine is typically a Kernel subroutine,
and the pushes in SVC.70 and SVC.90
are then to the Kernel stack, and no er­
ror should occur.

11-6-5

4. At the end of the Service Flows, control
is transferred to the Memory Manage­
ment software subroutine. This sub­
routine typically finds the error that
caused the abort and corrects the error.
I n this case, it may allocate more space
for the stack.

5. When the software subroutine returns
control to the main program, the instruc­
tion that originally caused entry into the
Service Flows is executed again and
causes a new entry into the Service
Flows. Since more stack space has been
allocated by the software subroutine, the
pushes are not successfully executed.

Refer to Section IV of this manual for a description
of Memory Management aborts.

6.2.1.4 Timeout Error - UBCB TIMEOUTB L is
asserted when a processor Unibus cycle cannot be
completed because no device responds to MSYN

within approximately 10 fJ,S. The bus cycle is
aborted in this case. Refer to Chapter 5, Paragraph
5.3.2. The Trap vector is 4 for a Unibus Timeout
error.

A Main Memory timeout on a processor (not a
Unibus) cycle is flagged by CCBO CP TIMEOUT
L. This signal direct-sets PORH CACHE PERF L,
the Cache parity abort flag, and a Main Memory
timeout is processed as a fatal parity error. Refer to
Paragraph 6.2.3, Parity Errors. The Trap vector is
114 for a Main Memory timeout error.

6.2.1.5 Timing of Address Error Aborts - Refer to
Figure 6-1. The timing diagram shows the approx­
imate time at which TMCC ABORT H is asserted
and negated by the several errors. It should be
noted that NEXM is derived from the BAMX and
is not gated: the times shown in this case indicate
the time during which NEXM is valid, i.e., during
a Pause cycle.

TMCC ABORT asserts RACA ZAP L at TS2 of
the Pause cycle (UBS001).

BUST PAUSE ZAP. 00 BRK.30 SVC.91il FET.1il1il .. ---.. • • • •
Tl T5 Tl T5 Tl T5 T1 T1 T5 Tl Tl T5 Tl

1111111111111111 .. 111111. .. 111111
ODD ADRS ODD ADRS

NEXM NEXM

~RT TIMEOUT

!
TMCC ABORT H

----''-'-'~~

TMCC AERF (0 H ~ !
TMCC SEG ABORTED (0 H

----f.+-----J ~!
~! TMCC BLOCK STROBE (1) H

---+--.....;..!

UBCB ABORT ACKN L ~!

Ii
TMCC PRIORITY CLR L

~ Inhibited by
, BLOCK STROBE

• •
Tl T5 Tl

I I I I I I

Z!

[i

Zl

! 1

ZI

21

TMCE BRQ STROBE H 1--1 rI
--------------------~I--~~!! !~ ~~I-----------

RACA ZAP L
2J .. ------------~I~! ----~I~I ----~I ~I -----------

11- 3126

Figure 6-1 Address Error Aborts

11-6-6

(

(

(

(

(

(

TMCC AERF (I) H is set during TS2 of a Pause
cycle by any of the address error conditions, if the
reference is not to the Kernel stack (KERNEL R6
is negated) and if the bus cycle is not generated by

Console action (UBCF CNSL ACT (0) H).

TMCC ABORT direct-sets BLOCK STROBE and
asserts PRIORITY CLR during TS3 of the Pause
cycle. BLOCK STROBE, while asserted, inhibits
BRQ STROBE by asserting TMCC STROBE INH.
BLOCK STROBE and PRIORITY CLR prevent
any requests previously strobed in from generating
vectors during an INTR PAUSE. In this case, since
BLOCK STROBE is cleared by its ACKN clock in­
put during BRK.30, the BRQ STROBE during
ZAP.ao is inhibited. TMCC PRIORITY CLR
clears the request register on TMCA. This allows
new requests to be clocked in SYC.90, and a new
bran ... l to BRK.90 after FET.OO.

AERF and BLOCK STROBE are cleared by
ACKN in BRK.30.

6.2.2 Stack Errors
A Stack is an area of memory set aside for tempo­
rary storage. Data is added to a stack ("pushed"
onto the stack) in sequential order and is retrieved
from the stack ("popped" from the stack) in re­
verse order. A stack starts at its highest address
and expands toward its lowest address as data is
added to it.

The address of the last valid item pushed onto the
stack is stored in a general register which is called
the Stack Pointer (SP). When an item is pushed
onto a stack, the SP is first decremented to the next
lower address, then the item is written using the SP
as the address. When an item is popped from a
stack, the item is read using the SP as the address,
then the SP is incremented to the next higher ad­
dress. Further details on stacks and their use are in­
cluded in Chapter 9 of the PDP-II/70 Processor
Handhook.

There are three Hardware Stacks, one each for Ker­
nel, Supervisor and User modes. The particular reg­
ister (R6) for each mode is the SP for that mode's

hardware stack. These stacks are word-oriented and
the SPs can only be incremented or decremented by
2.

The Kernel stack differs from the other two in that
it is hardware-protected.

The Supervisor and User stacks are not protected
by hardware, but may be checked by Memory Man­
agement and appropriate software. Refer to Para­
graph 6.2.1.3 (PS Restore).

A stack error is one which occurs during a push to
the Kernel stack. When such a push occurs, TMCC
KERNEL R6 (I) H is asserted. If an error occurs
during this push, TMC SERF (\) H (the Stack Er­
ror flag) is set.

A stack error may be any of the address errors
listed in Paragraph 6.2.1 or a Stack Limit Red
error.

The above errors all cause aborts. Stack Limit Yel­
low is a stack error, but traps instead of aborting.
Refer to Paragraph 6.2.2.2.

Both SL YEL and SL RED vector to 4, with the ex­
ception of an SL RED that occurs during a power
fail. Refer to Paragraph 6.5.1.

6.2.2.1 Kernel R6 - TMCC KERNEL R6 (I) H is
a J-K flip-flop that is clocked at T4. It is set during
a data-out (including DATIP) BUST cycle if the ref­
erence is to the Kernel stack. It is reset during the
Pause cycle that follows the BUST.

The J input to the flip-flop is a 74S64 gate. All the
OR inputs to this gate must be asserted if the out­
put of the gate is to be high (asserted).

I . The second gate from the top is asserted
during a BUST cycle that calls for any
type of data transfer except a DATI.

2. The third gate is asserted when General
Destination Register Set 0 is addressed
(GRAC GRA3 L is asserted when GO
Set I is addressed).

11-6-7

3. The top and bottom gates are asserted in
two cases:

a. When BAX = 0 or 2 and the
BAMX selects the contents of ei­
ther the DR or the SR (RACB
UBAXOO H is negated) and Gen­
eral Destination Register 6 is se­
lected (G RAC G 06 L is asserted).
I n this case, GO register 6, Set 0,
is used as the address for a data­
out operation: this is a push onto
the Kernel stack. During these cy­
cles, the General Registers are ad­
dressed using the destination field
(GD[DF]) on the Flows, and the
description of the cycle includes
the sentence: "Check Stack Limit."

b. During a JSR, the contents of the
source field register are pushed
onto the stack. This is done during
JSR.30 (Flows II) where BCT = 5
(STACK REFerence). If PDRD
PS 14 (0) H is asserted, the pro­
cessor is in Kernel mode, and the
push is to the Kernel stack. The
74S20 NAND gate is asserted, as
are the top and bottom gates of
the 74S64.

The K input to KERNEL R6 (I)
H is TMCE PAUSES H, which is
asserted during Bus Pauses (BSD
= 2 or 3) to clear the flip-flop.

6.2.2.2 Stack Limit Errors - The lower limit of the
Kernel stack is set by program control of the Stack
Limit Register (SL). Any bus cycle that does a push
beyond this lower limit is aborted (Stack Limit
RED or SL RED). A warning zone of 16 words ex­
ists where any push causes a trap (Stack Limit YEL­
low or SL YEL).

The default boundary for stack addresses is 400.
This is the case when the SL contains O. The Stack
Limit Register allows this lower limit to be raised,
providing more address space for interrupt vectors
or other data that should not be destroyed by the
program. This limit may be varied in increments of
400H w'ords, up to a maximum virtual address of
177 400 by modifying the content of the Stack
Limit Register (SL). This register contains eight bits

11-6-8

and can be addressed as a word at location 17 777
774, or as a byte at location 17 777 775. The regis­
ter is accessible to the processor and Console, but
not to any Unibus device. The 8 bits, PDRC
SL(07:00), contain the stack limit information and
are compared with BAMX(l5:08). These bits are
cleared by System Reset, Console Start, or the RE­
SET instruction. The lower 8 bits are not used. Bit
8 corresponds to a value of (400)8 or (256)10.

Stack Limit Violations
When instructions cause a stack address to exceed
(to go lower than) a limit set by the programmable
Stack Limit Register, a Stack Violation occurs.
There is a Yellow Zone (grace area) of 16 words be­
low the Stack Limit which provides a warning to
the program so that corrective steps can be taken.
Operations that cause a Yellow Zone Violation are
completed, then a bus error trap is executed. The er­
ror trap, which itself uses the stack, executes with­
out causing an additional violation, unless the stack
has entered the Red Zone.

A Red Zone Violation is a Fatal Stack error. (Odd
stack or non-existent stack are the other Fatal
Stack errors). When detected, the operation causing
the error is aborted, the SP is set to point to ad­
dress 4, and a bus error occurs. The old PC and PS
are pushed into location 0 and 2, and the new PC
and PS are taken from locations 4 and 6.

Stack Limit Addresses
The contents of the SL are compared to the stack
address during a push to determine if a violation
has occurred.

I f the contents of the SL are zero:

Yellow Zone = 340 - 376: execute, then trap;

Red Zone = 000 - 336: abort, then trap.

I f the contents of the SL are greater than zero:

Yellow Zone = (SL)+(340 - 376): execute,
then trap;

Red Zone =(SL)+(336): abort, then trap.

Stack Limit Yellow
Refer to Figure 6-2. PDRC STACK LIMIT H is as­
serted when the high order eight bits of the virtual
address [BAMX(15:08») equal the contents of the
Stack Limit Register [PDRC SL(07:00»).

(

(

(

(

(

(

(

When bits 7 - 5 of the virtual address are all ones,
the value of bits 7 - 0 of the address is between 377
and 340. TMCO YEL ZONE H is asserted.

Thus, when PORC STACK LIMIT Hand TMCO
YEL ZONE are both asserted, a Yellow Zone stack
violation exists.

TMCO SL YEL (\) H is then set at T2 + 15 ris of
a Pause cycle (UBSOOI H) that is pushing onto the
Kernel stack (KERNEL R6).

SL YEL is cleared by setting the SERF flip-flop
(ACKN in BRK.30); SERF inhibits the BRQ
STROBE in SVC.90.

Stack Limit Red
Refer to Figure 6-2. I f a Yellow Zone condition ex­
ists and the address is further decremented, TMCO
YEL ZONE goes low and the bottom gate of

STACK LIMIT
REGISTER

=000(000)
............ """'-"- i

TMCO SL RED is asserted. SL RED is a latch,
and is set by this gate at T5 of the BUST cycle.

T5 is gated with KERNEL R6. This gate is dis­
abled if BLOCK STROBE and SERF are both as­
serted, i.e., SL RED cannot be asserted again
during the pushes to 0 and 2 in SVC.60 and
SVC.80.

SCCE STACK OVERFLOW H is asserted if the
virtual address equals 177 776. This gate asserts SL
RED in the case that the SP is decremented from 0
to protect the Processor Status word.

PORC RED ZONE H is asserted wheri the virtual
address is less than the SL.

SL RED is cleared by ABORT ACKN in BRKJO.
Figure 6-2 is a summary of the conditions that
cause a Stack Limit error.

STACK LIMIT
REGISTER
=001(000)
-.

000400
LEGAL

001400

TMCD SL YEL '" H{

PORC STACK LIMIT H {
11" -TMCO YEL ZONE H

SCCE STACK OVERFLOW H {

000376

.-
--- ""'"

000340

000336

~ :-.......;....,;;::.
000000

177776

-- -

STACK

t
YELLOW

ZONE

l __
t

RED
ZONE

j

DD"T' }
'"""""--
~~

001340 .

00133. }

~
001000

000776

,....

000000

177776

......

TMCO SL YEL (1) H

PORC STACK LIMIT H *
-TMCO YEL ZONE H

PORC RED ZONE H

SCCE STACK OVERFLOW H

"-3125

Figure 6-2 Examples of Stack Limit

11-6-9

6.2.2.3 Timing of Stack Error Aborts - Refer to
Figure 6-3. The timing for stack errors is similar to
that for address errors, with the following
exceptions:

I. TMCC KERNEL R6 (I) H is asserted
at T4 + 15 ns of BUST and cleared at
T4 + 15 ns of PAUSE.

2. KERNEL R6 causes TMCC SERF (I)
H to be set (instead of AERF).

3. Since SERF is asserted, BLOCK
STROBE and therefore PRIORITY
CLR are asserted until TS3 of FET.OO,
when SERF and BLOCK STROBE are
cleared by CLEAR FLAGS (BCT=3,
TMCC).

BRQ STROBE is thus inhibited, not only during
ZAP.OO, but also during SVC.90, thus guaranteeing
the execution of the first instruction of the error
subroutine before any other error can be processed.

6.2.3 Parity Errors

6.2.3.1 Description - A parity error may be de­
tected either by the Cache or by a Unibus device.

Cache parity errors are either "hard", if bad parity
is detected in the word requested by the processor,
or "soft", if the Cache can recover without pro­
cessor intervention. Hard errors are signalled by the
assertion of CCBJ PARITY ABORT H and cause
the processor to abort; soft errors are signalled by
CCBJ PARITY TRAP H and cause a trap.

It should be noted that Main Memory Timeout is
included in the Cache parity error logic: CCBD CP
TIMEOUT L direct-sets the flip-flop (PDRH
CACH E PERF) that stores CCBJ PA RITY
ABORT.

All Unibus parity errors are hard and cause an
abort; a device asserts BS PB L (UBCB) when it
senses a parity error (BUS PA is never asserted).

BUST PAUSE ZAP. 111111
..... ---•• 'II II.. II

BRK. 31/1 .. . FET.!/JI/l .. .
T1 T5 T1 T5TI T5Tr TI T5TI TI T5T1

1111111111111111 .. 111111 .. 111111
ODD ADRS

SL RED
NEXM

KT ABORT
TIMEOUT

ODD ADRS

NEXM SL RED
KT ABORT
TIMEOUT

T M CC ABORT H __ "-"-"-"-"-"-""-

TMCC KERNEL R6 (I) H
-----' ~-----~~----~i~!---------

TMCC SERF (I) H

TMCC BLOCK STROBE (I) H

UBCB ACKN B H
--------~----------------i~--~

TMCC PRIORITY CLR L --------~l~----~I~
!~ [1

(TMCC) CLEAR FLAGS L (UBCT=3 (Q) T53)

RACA ZAP L
~~------------Illl--------~I~I---------

11- 3127

Figure 6-3 Stack Error Aborts

11-6-10

(

(

(

(

(

(

(

(
\

The vector for both parity aborts and parity traps
is 114. UBCB PARITY ERR L enables the Trap
Vector on DAPE.

6.2.3.2 Timing of Parity Error Aborts - Refer to
Figure 6-4.

Unibus Parity Error

I. BUS PA L and BUS PB L are clocked
into the 74S 175 flip-flop (UBCB) at T3
of a Unibus Pause cycle (MSYN ne­
gated). At T 1 of the cycle following the
PAUSE, the 74SIO NAND gate is en­
abled by the negation of TMCE
PAUSES L. The output of the NAND
gate is asserted if PB is asserted and PA
negated (parity error), and if TMCE
PAUSEs is negated. PAUSES prevents
the assertion of the NAND gate and of
PE ABORT during the PAUSE state.

)

PAUSE • ZAP.~~~ . ~

UBCB UBUS PAR ERR H resets trap
request flip-flop on CCBK (Refer to Sec­
tion VI, Chapter 4).

2. This Unibus parity error signal is ORed
with the Cache parity error signal and in­
put to UBCB PE ABORT L. This
NAND gate is enabled by the' 74S74
flip-flop, which is set during all cycles
that follow a Pause.

3. PE ABO R T then asserts TM CC
ABORT H, BLOCK STROBE (I) H
and PRIORITY CLR L, as in other
aborts. RACA ZAP L is then asserted
by PE ABORT at TS2 of the micro­
program state following the PA USE
cycle.

4. BLOCK STROBE is cleared by UBCB
ACKN during BRK.30, which allows a
BRQ STROBE in FET.OO.

BRK.30 . ~
SVC.90 . ~

• FET.fijfij ~

T1 T5 TI T5 TI T5 TI Tl T5 Tl Tl T5 Tl Tl T5 TI

1111111111111111 .. 1111I1 •. 111111 .. 111111

(UBCB) PA, PB FLIP-FLOP
~-~~----~!~!---------

~--~~--------~l~!----------PDRH CACHE PERF L

TMCC ABORT H
--+-+-+-' ~------~~------~!~!--------~I~l---------

~------~~------~~--------~I~!---------UBCB PE ABORT L

TMCC BLOCK STROBE (I) H
-----I--~ w-_~~--------~I~!----__ ---

~--------~.--~----~~--------~!~l----------
TMCC PRIORITY CLR L

~~.--------~I~!----------
UBCB ABORT ACKN L

~ Inhibited by

TMCE BRQ STROBE H r -, ~ BLOCK STROBE rI
------------------~I--~I~~!I I~ ~~!---------

RACA ZAP L
~~-----~I~I----~I!.I----~I~I----------

11-3128

Figure 6-4 Parity Abort

11-6-11

Cache Parity Error

I. CCBJ PARITY ABORT H is clocked
into PDRH CACHE PERF L by TIGA
CLK BRA H, which occurs at TI of the
cycle following a Pause. (CCBJ CP
TIMEOUT direct-sets CACHE PERF,
thus combining the Cache Parity and
Timeout errors).

2. This Cache parity error signal is ORed
with the Unibus parity error signed and
input to UBCB PE ABORT L. This
NAND gate is enabled by the 74S74
flip-flop, which is set during all cycles
that follow a Pause.

3. PE ABORT then asserts TMCC
ABORT H, BLOCK STROBE (I) H
and PRIORITY CLR L, as in other
aborts. RACA ZAP L is then asserted
by PE ABORT at TS2 of the micro­
program state following the Pause cycle.

4. BLOCK STROBE is cleared by UBCB
ACKN during BRK.30, which allows a
BRQ STROBE in FET.OO.

6.3 TRAPS AND INTERRUPTS
Trap and interrupt requests are clocked into the
request storage (or "Q") register on TMCA and
TMCB. TMCE BRQ CLK H clocks these requests
into the register at least once during the execution
of each instruction (with the exception of SPL).
BRQ CLK may be inhibited by an abort which
may also clear the Q register in order to give high­
est priority to the abort (refer to Paragraph 6.2).

The requests are examined by the priority arbi­
tration network (TMCA, TMCB), which allows
on ly the highest priority request to be honored.
One of the signals in the Output column of Table
6-2 is then asserted.

If the request is not an external interrupt (UBCD
EXT BRQ L) the ENB VEC flip-flop is set and en­
ables the gates that generate the vector addresses
for the requests. Table 6-3 lists the requests, the
gates enabled and the vectors that are generated.

All instructions except SPL end with a BENI2
branch to microaddress 240. If TMCB BRQ TRUE
L is asserted, BRK.90 is entered instead of a Fetch
cycle, and the Service Flows are executed, followed
by the subroutine determined by the new PC.

6.3.1 Illegal Halt
A trap to 4 is executed, instead of a HALT at the
end of a HALT instruction, if the processor is not
in Kernel mode, as determined by PSI4. If the
mode is Kernel, the Console Flag is set and a
branch to CON.OO is executed.

Refer to drawing TMCE. During HL T.1O (Flows
3), MSC=3, SET CONF if Kernel mode; TMCE
SET HALT H is asserted. At TS3, if the processor
is in Kernel mode [PDRD PSI4 (0) H], the Con­
sole Flag is set and the processor halts. This is
shown on Flows 3 as CONF+-l IF PSI4(0).

If, on the other hand, PSI4= 1 (Supervisor or User
modes), BEN06, which examines BRI4, causes a
branch to TRPOO. (The PS is stored in the BR dur­
ing HL T.OO.)

6.3.2 Console Flag
TMCA CONF (I) H causes a processor HALT by
causing it to branch to CON.OO (Flows 14). Refer
to Section III (Console) of this manual.

6.3.3 Cache Parity Trap
CCBJ PARITY TRAP H is asserted by the Cache
if it detects a non-fatal parity error, i.e., one which
does not affect the processor bus cycle in progress.
Refer to Section VI of this manual for a complete
description.

6.3.4 Memory Management Traps
Refer to Section IV (Memory Management) of this
manual.

6.3.5 Yellow Zone Trap (SL YEL)
Refer to Paragraph 6.2.2.

6.3.6 Power Down Trap (PDNF)
Refer to Paragraph 6.5.

6.3.7 FP Exception Trap
Refer to Floating Point Processor Manual.

11-6-12

(

(

(

Table 6-2

Processor Service in Order of Priority

Order Condition Input Output* Result*

I console flag UBCF STOP L TMCA CONF (1) H do console control
function

2 cache parity CCBJ PARITY TMCB PART L ""-- trap (114)
TRAPH

3 memory management SSRD MEM MGMT TMCB SEGT L trap (250)
traps TRAPL TMCA HONOR SEGT H

4 warning stack TMCD SL YEL TMCA HONOR SLY H trap (4)
violation

5 power fail UBCE PDNF (I) H TMCA HONOR PWRF L trap (24)

6 floating-point FRHH TMCA HONOR FPTRAP L trap (224)

exception trap FP EXCTRAP L

(CP LEV 7

7 priority interrupt PDRO PIRI5 (1) H TMCA HONOR PIR7 L trap (240)
request PIRQ7

8 bus request, level 7 BUS BR7 L TMCA HONOR BR7 L interrupt
interrupt

CP LEV 6

9 priority interrupt POROPIRI4(1)H TMCA HONOR PIR6 L trap (240)
request PIRQ6

10 bus request, level 6 BUS BR6 L TMCA HONOR BR6 L interrupt
interrupt

CP LEV 5

11 priority interrupt PORO PIRI3 (I) H TMCA HONOR PIR5 L trap (240)
request PIRQ5

12 bus request, levelS BUS BR5 L TMCA HONOR BR5 L interrupt
interrupt

CP LEV 4

13 priority interrupt PORD PIRI2 (I) H TMCA HONOR PIR4 L trap (240)
request PIRQ4

14 bus req uest, level 4 BUS BR4 L TMCB HONOR BR4 L interrupt
interrupt

CP LEV 3

15 priority interrupt PORD PIRII (I) H TMCB HONOR PIR3 L trap (240)

request PIRQ3

CP LEV 2

16 priority request PDRD PIRI 0 (I) H TMCB HONOR PIR2 L trap (240)

PIRQ2

CPLEV I

17 priority request PDRD PIR09 (I) H TMCB HONOR PIRI L trap (240)

PIRQI

18 T bit set and not RTf PDRD PS04 (I) H TMCB HONOR T L trap (14)

and -(lRCD RTf L)

* Only if no higher priority request has been received.

II-6-13

Table 6-3

Trap Vectors Enabled

Trap Request Honored Output Trap Vector*

TMCB PART L UBCB PARITY ERR L 114

TMCA HONOR FPTRAP H TMCB FPTRAP L 244
TMCA HONOR SEGT H TMCB SEGTL 250
TMCA HONOR PWRF H TMCBPWRF L 24
TMCB HONOR T H TMCBTOKL 14
TMCB HONOR PIRQ H TMCBPIRQL 240

(OR ofPIR (7:1»

* Trap vector generator is shown on drawing DAPE.

6.3.8 Program Interrupt Request
The Program Interrupt Request (PIRQ) Register al­
lows a program to schedule the execution of vari­
ous subprograms, according to a priority scheme,
at the same time allowing various levels of hard­
ware interrupt priority to interact with the software
priority levels. The register stores interrupt requests
set by transferring request data to the PIRQ, and
provides information about the requests through en­
coded data transferred from the PIRQ.

A request is booked by setting one of the bits 15 -
9 (for PIR 7 - PIR I) in the Program Interrupt Reg­
ister at location 17 777 772. The hardware sets bits
7-5 and 3-1 to the encoded value of the highest
PIR bit set. This Program Interrupt Active (PIA) is
used to set the Processor Level and also to index
th rough a table of interrupt service routines for the
seven software priority levels. Figure 6-5 shows the
layout of the PIR.

9 B 7 5 4 3 1 0

PIR1 [§§1 p , I , A fJ23 P I, A ~

Figure 6-5 Program Interrupt
Request Register

11-3097

When the PIR is granted, the processor traps to lo­
cation 240 and picks up the PC in 240 and the
PSW in 242. It is the interrupt service routine's re­
sponsibility to queue requests within a priority level
and to clear the PIR bit before the interrupt is
dismissed.

Refer to drawing PDRD. PIR(l5:09) (1) H is
loaded from BR(15:09) when MSYN is set and if
the PIR address is decoded (SCCE PIR ADRS H).
The clock signal is TMCF CLK PIR H. The PIR
bits are encoded by t,he 9318, which generates
PDRD PIA(02:00).

Both PIR and PIA are read on the Internal Data
Bus (INTD). The PIR is read as bits 15:09, and the
PIA is repeated in bits 07:05 and 03:01. Bits 7 - 5 al­
low the program to move the PIA into the pro­
cessor status register and thus set the processor
priority to the level of the request honored, if de­
sired. This locks out all requests on the same level
or below. Bits 3 - I can be used as an index con­
stant in dispatching to an interrupt service routine
for the appropriate priority level request.

6.3.9 External Interrupt (BUS BR)
Refer to Paragraph 6.4.

6.3.10 T Bit Trap
When the T bit is set (refer to Chapter 3), and if
there are no higher priorities, a trap to 14 occurs
through RSD.OO.

Detailed information on the execution of the T bit
trap is contained in the PDP-Il /70 Processor
H lim/hook.

6.4 UNIBUS ARBITRATION AND INTER­
RUPTINTERFACE
An NPR transfer is a data transfer between a
Unibus device and memory; the processor is not in­
volved in this transfer except to the extent that it
cannot use the Unibus or memory during its execu­
tion. AN NPR transfer can be executed at any time
tha t the processor is not using the Unibus.

11-6-14

(

(

(

(

(
\

A BR transfer is a data transfer during which a vec­
tor is transmitted to the processor by a Unibus de­
vice, which requires the execution of a service
routine by the processor. The vector is the address
of the PC that is to be used for this subroutine. A
BR can only be executed at the end of an
instruction.

The priority arbitration network (Paragraph 6.3) ex­
amines the requests received from the Unibus, com­
pares their priorities against that of the processor,
and decides which device may become master when
the Unibus is released by the current master.

The Unibus Request signals received by the KBll­
B are listed below:

NON-PROCESSOR REQUEST, BUS NPR L
(U BCD): A signal from an asynchronous
running device requesting the use of the data
section of the bus, sent to arbitrator by a de­
vice that requires the use of the Unibus in or­
der to execute data transfers. These transfers
are made without active participation by the
processor. They do not affect processor oper­
ations, except to the extent that Unibus de­
vices usi ng the bus for a data transfer can
force the processor to wait in the PAUSE
state until all NPRs have been serviced.

NPR transfers are executed between processor
Unibus cycles (i.e., when the processor is not
using the Unibus), and not necessarily after
completion of an instruction. NPRs may be as­
serted at any time that the device is ready to
start a data transfer. NPRs have a higher pri­
ority than processor data transfers or than
any of the BR lines.

BUS REQUEST, BUS BR7 L - BUS B4 L
(TMCA, TMCB); A signal from an asynch­
ronous running device, requesting the use of
the data section of the bus. Typically, one of
these signals is sent to the arbitrator by a de­
vice that requires the use of the Unibus to
transmit an interrupt vector to the processor.

An interrupt is a transfer of control to a sub­
program that handles device or task servicing,
An interrupt vector points to the address of
this subprogram; the vector is transmitted to
the processor during an interrupt (INTR)
transaction.

Interrupt transactions require processor ac­
tion, and can only be executed after the cur­
rent instruction is completed.

A BR may be asserted at any time that the de­
vice is ready to interrupt the processor, but
cannot be serviced until the processor is ready
to do so. B Rs have lower priority than NPRs
and than a processor priority of the same
level (7 - 4).

Priorities permitting, the KB II-B responds to these
requests by asserting one of the following GRANT
signals:

NON-PROCESSOR GRANT, UBCD PROC
N PG H - unless INIT, RESET or ACLO are
asserted, or during a read/modify/write
(UBCC DATIP L), or if the Console
HALT/ENABLE switch is in HALT and the
S INST /S BUS CYCLE switch is in S BUS
CYCLE. During a DATIP, no grants are is­
sued in order to minimize NPR latency.

BUS GRANT, UBCD PROC BG7 - BG4 H­
if the priority arbitration network has asserted
the corresponding TMCA HONOR BR7 -
BRS L.

Only one grant (NPG or BG) may be asserted at a
time.

The requesting device, upon receipt of a grant, as­
serts BUS SACK L, then negates its request. When
the assertion of SACK is sensed (UBCD), the grant
is negated. No grants may be asserted while SACK
is asserted. When the requesting device negates
SACK, a new grant may be issued.

If no device responds to a grant by asserting SACK
within 10 j.1S, UBCD NO SACK (I) H is asserted,
forces SACK, thus allowing the assertion of a new
grant. A NO SACK timeout does not cause a trap
or abort. It should be noted that some Unibus ter­
minators (e.g., 9302), when used at the end of the
Unibus that is opposite to the processor, receive
NPR (if no device has accepted it), and assert
SACK. The Timeout delay is thus not used.

An NPG may only be used by a device for data
transfer. No interrupts are allowed on an NPG,
and the processor is not affected by an NPR
transaction.

11-6-15

-(BR4 + BR5 + BR6 + BR7)

T3

T1_

}
INTRPAUSE
RACBUBSD
<00:01> = 1

BR4 + BR5 + BR6 + BR7

-(NPR + SACK + NPG)

I
GRANTBR~1

DISABLE NPG'S

ASSERT BUS
GRANTON
APPROPRIATE
LEVEL

WAIT FOR BUS
SACK FROM
DEVICE

10jJS:

SACr(1)

WAIT 90 ns AND
THEN CLEAR
GRANT

WAIT FOR BUS
INTR AND VECTOR
OR BUS BBSY TO
GO AWAY; SERVICE
NPR'SWHEN
-(SACK + GRANT
BR)

BUSlfTR

RESTART TIMING
AND DESKEW
VECTOR

I
STROBE VECTOR
TO PDRH BUFFER
REG

L
CLOCK VECTOR
INTO BR

NPR + SACK + NPG

-SACK(1)

NO SACK TIME OUT

USE NO SACK(1)
TO FORCE BUS

1
SACK

-BBSY

RESTART TIMING;
IF NO SACK TIME
OUT OR PASSIVE
RELEASE

------ --~- -

Figure 6-6 BR -Interrupt Sequence

11-6-16

--41 ENTER NEXT
ROM STATE

11-3136

(

(

(

(

(

A BG, on the other hand, is used for an interrupt.
Refer to Figure 6-6. When an interrupt is sensed,
the microprogram branches to the BRK sequence
(Flows 12). BRK.OO is the INTR PAUSE cycle
(BSD = I) in this sequence. A similar cycle,
WA T.20, is part of the WAIT instruction. The
I NTR PA USE cycle is the only condition in which
the processor acts as a Unibus slave (i.e., asserts
SSYN).

During the INTR PA USE cycle, the clock is
stopped in T2 if an external interrupt is to be ser­
viced (BR4+BRS+BR6+BR7). After all pending
N PRs have been serviced, the Bus Grant (BG) is as­
serted on the level corresponding to the level of the
request that is to be serviced.

When the requesting Unibus device receives the BG
it acknowledges this by asserting SACK and then
negating its BR. The device that asserts SACK as­
serts BBSY when the previous master negates it.

The processor negates the BG 90 ns after receiving
the assertion of SACK; typically, a device asserts
INTR and the vector just before it negates SACK.

Two parallel and generally unrelated sequences now
occur:

I. The assertion of INTR is received from
the Unibus. The clock is restarted at T3,
the vector is strobed, and SSYN is as­
serted. The Unibus device negates INTR
when it receives the assertion of SSYN.
The processor negates SSYN when it re­
ceives the negation of INTR.

2. The negation of SACK is received and.,
after a minimum wait of 90 ns, allows
NPRs to be processed.

6.4.1 Unibus Arbitration Interface Logic
The Unibus arbitration interface logic is controlled
by U BCD FREE ClK which consists of the two
74S 112 J-K flip-flops clocked by TIGC TF L. The
FREE Cl K generates a 30-ns wide pulse within a
period of 90 ns. The 0 flip-flops (74S74S) on
UBCD use the inverted output of this clock, while
the J-K flip-flops (74SI12s) other than those that
make up the clock use the non-inverted output.
Thus, the two sets of tlip-flops are clocked at the
same time. Figure 6-7 shows the output of the
FREE ClK.

I-- I+-- 90 ns ----I
TIGC TF L

FIRST FLIP-FLOP

USCD FREE CLK (1) H

L UBCD FLIP-FLOPS CLOCKED
11-!129

Figure 6-7 UBCD Free Clock

The relationship between the FREE ClK and the
TI G ti ming pulses (T 1 ~ TS) and time states (TS 1-
TSS) is such that the leading or trailing edge of the
FREE ClK and the first FREE ClK flip-flop out­
puts always coincide with the leading edge of TI-TS
and TS l-TSS. There is no other relationship to the
TIG clock.

6.4.2 NPR-NPG Sequence
Refer to drawing UBCD and to Figure 6-8.

1. When BUS NPR l is asserted, and if
none of the disabling conditions are pre­
sent, the 0 input to UBCD NPR (I) H
becomes high and this flip-flop is set by
the first FREE ClK pulse to occur.
UBCD NPR (0) H disables the input to
UBCD GRANT BR (I) H: no BRs may
be granted while an NPR is present. The
next clock pulse, 90 ns later, sets UBCD
NPG (I) H, which asserts UBCD PROC
NPG H on the Unibus, starts the IO-,us
NO SACK timeout one-shot and negates
UBCD ENAB BR H, which also dis­
ables UBCD GRANT BR.

2. When a device receives and accept this
NPG, it asserts BUS SACK l and ne­
gates BUS NPR L. The first clock pulse
to occur after receipt of these signals sets
the SACK and clears the NPR flip-flops.
The clock pulse after that sets UBCD
DSACK (I) H (delayed SACK, 90-ns de­
skew) and clears NPG. The only arbi­
tration signal now asserted on the
Unibus is SACK.

11-6-17

UBCDFREECLKH~~~
I 1 I I I

BUS NPR L * I I :=2: I I

I I I I I I I -8 :1 I I

UBCD NPR (tl H I I I
---.... I I 1 I

UBCD NPG (tl H I I
UBCD PROC NPG H _____ I

I
BUS SACK L *

SACK F-F (0 H

UBCD DSACK (1) H _____ ---11-------'

* ASYNCHRONOUS SIGNALS FROM UNIBUS
1'-3130

Figure6-8 NPR-NPG Sequen<;e

3. The device asserts BBSY when 'the
Unibus is free (BBSY negated by pre­
vious master), executes its data trans­
fer(s) and negates SACK. The SACK
and DSACK flip-flops are cleared by the
first and second FREE CLK pulses after
receipt of the negation of SACK. If an­
other N PR is pending, PROC NPG H
may be asserted 90 ns after DSACK is
cleared.

4. If the assertion of BUS SACK L is not
received 10 f.lS after UBCD NPG (I) H
is set, UBCD NO SACK (1) H is as­
serted. This signal forces a sequence sim­
ilar to that described in (2) above. When
UBCD NPG (0) H goes high, UBCD
NO SACK (1) H is negated and the
SACK and DSACK flip-flops are
cleared as in (3) above.

When the assertion of BUS SACK L is
received before the end of the 10 f.lS time­
out, the 74S123 one shot is reset.

6.4.3 BR-BG Interrupt Sequence and Passive
Release
The processor checks for both internal and external

traps (or interrupts) toward the end of every instruc­
tion. This is done by clocking all request lines into
the priority flip-flops on TMCA and TMCB
[TMCE BRQ STROBE H when RACC
UMSC(02:00)=6, at TS3]. If a Unibus request
(BUS BR7 L - BUS BR4 L) is asserted, and if its
priority is higher than that of any other request pre­
sent, TMCA HONOR BRn L is asserted (n is the
same number as that of the request line being
serviced).

The BEN bits of the microprogram cycle, immedi­
ately precedirig FET.IO, always equal 12 and its
UADR field, 240. If TMCB BRQ TRUE L is not
asserted (no interrupt request), the microprogram
branches to FET.I0 (instruction fetch). If TMCB
BRQ TRUE L is asserted, the microprogram does
not branch, but goes to BRK.90 (Flows 12). This
cycle does a BEND to cancel the BUST in the pre­
vious cycle.

BRK.90 is now entered. If UBCD EXT BRQ H is
asserted (= anyone of TMCA HONOR BR7 - R4
L asserted) the clock stops in T2, since this is an
INTR PA USE cycle (BSD= 1) and UBCD EXT
BRQ H is asserted. Refer to drawing TMCA and
to Chapter 4, Timing Generator.

11-6-18

(

(

(

(

(

(

(

(,

Refer to UBCD and to Figure 6-9.

I. TS2 and TMCE INTR PAUSE H gate
UBCD EXT BRQ H to the input of
UBCD BRQ (I) H. This flip-flop is
clocked by FREE CLOCK and its out­
put goes high.

When all NPRs have been serviced and
when all grant service is completed,
GRANT BR (I) H is set by the first
FREE CLK pulse following the one that
set BRQ (I) H. This signal gates the
TMCA HONOR BRn L signal that is as­
serted onto the Unibus as UBCD PROC
BGn H.

I- INTR PAUSE BRK: ~~ or WAT. 2!1l------Ioj+-

Tl - T2--------+

UBCD FREE ClK Hn.JLrLRnn

: I I I I I

INPUT TO UBCD BRQ (1) ~ ,..: __ +: -I II : :_-T_S_4_J:J-+-
1

1

_-+;:-;1
UBCD BRQ (1) H q

I I ·~I-----

13~:='
UBCD ENAB BR H

UBCD ClR BG (1) H
-----+-.......-1

UBCD GRANT BR{l) H
UBCD PROC BGn H ______1

** BUS SACK l

SACK F-F (l) H

UBCD DSACK (1) H

--------1

--------1

I I

(UBCC) BUS SSYN l*
---------I!~!--------II~I------,

UBCC INTR B. H**
UBCB TlG RESTART H ________ I ~I ______ __1

1ST TIGA RESYNC F-F*----------II~I--------I

2ND TlGA RESYNC F-F*--------II ~I -------~-+...,
L7--~----I

TlGA T3 (1) H*
------_I~I ------__I! _-----I

* NOT CLOCKED BY UBCD FREE ClK.

** ASYNCHRONOUS SIGNALS FROM UNIBUS.

VECTOR CLOCKED INTO J
PDRJ BUS BUFFER REG (T3)

Figure 6-9 INTR Sequence

NPG MAY BE GRANTED
AT THIS TIME.

11-3131

All NPRs have been serviced if no NPR
is pending [NPR (0) H high]. All grant
service has been completed if ENAB BR
H is high; this is the case when the lasrt
NPG is done [NPG (0) H high], the last
BG is done and no new grant has been
issued [CLR BG (0) H], and DSAK (0)
H is high.

2. When the assertion of BUS SACK is reL
ceived, the SACK flip-flop is set at th~
first FREE CLK pulse. The next clock
pulse sets DSACK (I) H. Since GRANT
B R (I) H is high, the same pulse sets
CLR BG (I) H, which causes ENAB BR
H to be negated. The same clock pulse
also clears GRANT BR (I) H by com,.
plementing it (J-K flip-flop with both in~
puts high).

3. The Unibus device now puts the vector
on the 0 lines, asserts INTR and ne,
gates SACK.

The first FREE CLK pulse after receipt
of the negation of SACK clears the
SACK flip-flop; the second clear$
DSACK.

The assertion of INTR causes UBCB
TIG REST ART to be asserted. This sig­
nal causes the main clock to be restarted
(refer to Chapter 4). A minimum of 75
ns after the assertion of TIO RES­
TART, T3 is asserted. At this time, the
vector is clocked into PDRJ 0(15:00)
from BUS 0(15:00) L. At T4, the BRQ
flip-flop is cleared (-TS2 and FREE
CLOCK); the next clock pulse clears
CLR BG (I) H. ENAB BR H is ast
serted, and the NPR input to NPG (I)
H is enabled. An NPR can now bt
serviced.

At TI of the next cycle (=T6 on Flows
12) this data is clocked into the B~
(BR.-BUS). BUS· SSYN L (UBCC) is
also asserted by the processor at T3. ThJ
device responds to the assertion of
SSYN by negating INTR. This, in turn~
causes SSYN to be negated, thus ending
the INTR Unibus transaction.

4. BUS INTR L also sets UBCC INTRF
(I) H. After BRK.OO, BRK.lO is exe­
cuted. TMCB PF(O)*(SF+-TF) H is as­
serted and TMCB PF(O)*(SF+TF) H is
negated at this time, and the branch is
to BRK.20(l20). Since INTRF is set,
TMCB PWRF+INTRF L is asserted
and BRK.20 branches to BRK.30 and
the Service Flows (SVC.OO - SVC.90) be­
fore fetching the first instruction of the
subroutine pointed to by the vector.

5. The above is the general case. Passive
Release is said to occur when a device
that becomes master, by asserting a BR
and obtaining a BG, releases the Unibus
without doing an INTR. UBCA PAS­
SIVE flags this condition: after a min­
imumdelay of 90 ns, following the
receipt by the processor of the negation
of SACK, the UBCA flip-flop, whose 0
input is UBCD CLR BG (I) H, is
clocked by the trailing edge of UBCD
DSACK; when the device negates
BBSY, UBCA PASSIVE L is asserted
and restarts the clock via UBCB TIO
RESTART H.

BRK.OO is followed as in (4) above by
BRK.lO and BRK.20. UBCC INTRF
(I) H is not set in this case because BUS
INTR L was not received. TMCB
PWRF + INTRF L is thus not asserted,
BRK.20 branches to RTI.60, and the
program resumes at the instruction fol­
lowing that from which the INTR se­
quence (described above) was entered.

6. The NO SACK logic is the same as that
for the NPR-NPG sequence. The nega­
tion of DSACK clocks the PASSIVE
flip-flop and the sequence in (5) above is
followed.

6.5 UNIBUS POWER MONITOR
The processor monitors the condition of all power
supplies in the system.

I. Two Unibus signals, BUS ACLO Land
BUS DCLO L, inform the processor of
the state of the Unibus power supplies:
The assertion of BUS ACLO L informs

11-6-19

2.

the processor that the ac power input to
a power supply, whose failure might
make the bus inoperable, has ceased to
be within specifications. The negation of
BUS ACLO L informs the processor
that all power supplies, whose failure
might make the bus inoperable, can
maintain dc power within specifications
long enough for a complete power­
up/power-down sequence.

The assertion of BUS DCLO .L informs
the procesor that dc power to any bus
drivers, receivers or terminators, whose
failure would make the system inoper­
able, is about to fail. The negation of
BUS DCLO L informs the processor
that dc power to all bus drivers, receiv­
ers and terminators, whose failure would
make the Unibus inoperable, is within
specifications.

Two signals from the Cache, ADML
MAIN ACLO L and MAIN DCLO L,
monitor the Main Memory power sup­
plies. These signals have the same signifi­
cance and effect as the BUS ACLO and
DCLO signals, but are input only to the
processor power-up /power-fail circuits,
and not to BUS ACLO and BUS
DCLO.

These bus signals are input to the Cache,
which performs its power-up in­
itialization sequence upon receipt of the
negation of both BUS ACLO and BUS
DCLO.

ACLO is always asserted before DCLO; DCLO is
always negated before ACLO. Whenever ACLO is
asserted, the power supplies must be capable of sup­
plying enough dc power for 5 ms of system oper­
ation: this time allows for a 2-ms power-down
sequence, plus a 2-ms power-up sequence.

During the power-down sequence, the program
stores the contents of volatile registers into core

'memory; this information is thus preserved during
. .

a power failure or power down. It can bJ retrieved
by the power-up sequence, and the program res-
tarted where it was interrupted. '

ACLO and DCLO control the pow<;r-up and
power-down logic shown on drawing UBqE.

6.5.1 Power-Down
Refer to UBCE and to the timing diagr~m shown
in Figure 6-10. When BUS ACLO L is ass,erted dur­
ing normal operation, the Power-Down flag, UBCE
PDNF (I) H, is set, because UBCEI BLOCK
DOWN (I) H has been reset at the end M the pre­
vious power-up sequence. PDNF is applied to the
priority arbitration logic on TMCE; the first BRQ
strobe generates TMCE BRQ CLK H, which
clocks the interrupt flags into the priorit~ logic. If
no higher priority flag is up (CCB] I PARITY
TRAP, Memory Management Trap or SL YEL),
TMCE HONOR PWRF L is asserted. At the end

i
of the current instruction, the ROM branches to
the Service Flows (BR~.90). I

i
,

At microstate BRK.20, UBCB ACKN ~ H goes
high at TS3 and sets TMCC BLOCK STROBE (I)
H. At microstate SYC.90, if no aborts arty pending,
this signal and TMCE CLK CONF H (BRQ
STROBE at T3) generate TMCC AC C;LEAR L,
which clocks the UBCE PF CLR (I) Hi flip-flop.
This flip-flop is set at this time, since TMCA
HONOR PWRF L is asserted. The Q register is
cleared to ensure that the first instruction of the
power fail routine is executed, in case a request of
lower priority than power fail is present.

PF CLR does the following:

I. It asserts TMCA BRQ CLR L,iwhich re­
sets the TM CE priority flip-flows.

I
I

2. It resets UBCE PDNF.

3. It starts the 2-ms timer which, at the end
of its delay, fires the I-MS on~-shot; the
pulse thus generated goes oJt on the
Unibus as BUS DCLO L. .

I
4. It sets UBCE BLOCK DOW:~ (I) H,

which disables the set input to PDNF.

BUS ACLO L

UBCE PDNF (1) H

UBCB ACKN B H

TMCC BLOCK STROBE (I) H

TMCE CLK CONF H

TMCC AC CLEAR L

UBCE PF C LR (1) H

UBC E BLOCK DOWN (1) H

(UBCE)2ms ONE-SHOT

(TMCC) CLR FLAGS L

BRQ STROBEl

Tl T3

I I I

BRK.3f/l FET. ~f/l SVC.9f/l . TlG CLOCK

rSTOPS

i

.. ------------.....
T1 T5 T1

I I I I I I
Tl T5 TI T5 T1

I I I I I I I I I I I
I

~I~------------~~--------------------~I~I------------------------------------~I~~ I'
I

L..------------------------i ~~
I

~------------------------~~~
I
I

~------------~l~~r_-----------------------------~~~ I
-----tl

~-------------I! ~I --------..... -----tl

~------------_I! ~l --------------------~ ~+--' -----tl

-----tl ~-------------I! ~I -----------------~ ~___,O;"+1

~------------_I! ~l --------------~ ~---' -----tl

I

L.....-_~~~
I
I

L..,I-+-------------_I~ ~
~r_---------------i~~

I
I

~~
I

~--------+_--------------i~~
I
I

-----tl ~------------_!II~---------------U-----+--'

~------------~! I_------------------n--~., -----tl
'*"~-----\- -

-----tl ~------------_!IIr_--------------~ _------------------------., ~

------t I II t r_l ---------------------------------~
BUS DCLO L (UBCE) (GENERATED BY PROCESSOR)

-UBCE PUPF (1) H
~ I_-------------I! ~I -----------------~II_--------------------------------------i
-----t ~I ---------___I! 1-1 -----------~! r_I ------------------------------------~ !-L_ (uBCE) INIT L (all)

*NOTE: Power-Down subroutine execuled during this time.
11-3132

Figure 6-10 Power-Down

By this time, all the internal traps and service rou­
tines should have been executed; no further bus
transactions can occur, because DCLO asserts the
initializing signals:

I. UBCE INT BUS INIT L - clears inter­
nal registers PIR, SL, the priority arbi­
tration flip-flops (TMC) and Memory
Management.

2. UBCE ROM INIT H - forces the ROM
to ZAP.OO (200), and stops and clears
the Timing Generator and the Cache
timing.

Il-6-20

3. UBCE INIT - clears processor, Floating
Point Processor, and Cache registers.

4. BUS INIT L - initiaizes Unibus.

I n addition, the DCLO generated by the processor
sets the U BCE PUPF (power-up) flip-flop, which
set,s ,up the power-up sequence, should the DCLO
signal not be gene(ated by the power supply, or
should ACLO be negated before DCLO is asserted
'by the power supply.

(

(

(

(

(

(

(

SL RED During Power Fail
An SL RED abort can only occur during a push to
the Kernel stack. Two such pushes are executed dur­
ing the power fail service routine, in SVC.70 and
SVC.90.

If an SL RED error is flagged during one of these
pushes, the trap vector is 24 (power fail) but the
pushes are made to locations 2 and 0 of the stack,
where no SL RED can occur (refer to Paragraph
6.2.2.4, Stack Limit Red). This allows the power
fail subroutine to proceed.

I. BLOCK STROBE, STROBE INH, and
HONOR PRF are asserted when the
abort occurs.

2. TMCC PRIORITYCLR is not asserted
because both HONOR PWRF and SL
RED are asserted.

3. SL RED sets SERF, which, together
with HONOR PWRF, asserts TMCB
PWRF L. This signal generates the
power-fail vector (24).

4. Since SERF is asserted, SER.OO is en­
tered instead of BRK.80. SER.OO and
SER.IO set the Kernel SP to 4.

5. The Service Flows can now be com­
pleted by doing the pushes to 2 and 0
without stack error.

6.5.2 Power-Up
Refer to UBCE and to Figure 6-11. When DC
power reaches a level at which the logic can oper­
ate, but before BUS DCLO L is negated, both
UBCE PUPF (1) Hand UBCE BLOCK DOWN
(I) H are direct-set by DCLO. All INIT signals are
asserted by both DCLO and ACLO. While INIT is
asserted, the ROM address is forced to 200
(ZAP.OO) and the clock is cleared.

PUP. f6f6 RTl.6¢ TIG CLOCK STARTS 1 ZAP ~~
• • • • • •

T4T5Tl T5Tl Tl T5 Tl Tl T5 T1

....... I
~---------l! ~! ------~! 1_1 -----~! ~

BUS ACLO L (uBCE)
~!-----l

BUS DCLO L (UBCE)----.!S

UBCE BLOCK DOWN (11 H~!-----l

~---------l!! ! I_! -----~! I---

UBCE PUPF (11 H~

(UBCE) INIT L (Oll)~

-~ (uBCE) 70ms ONE-SHOT L

(RECEIVED FROM UNIBUS OR CACHE)

I---------~!~!------~!I-!-----~

~~!-------~~--~

j+=70ms

----.! ~ ~~! -------..... a---~
UBCB ABORT ACKN L

----.! ~ ~~! -------..... a---4-_ *NOTE
(UBCE) 2ms ONE-SHOT L 14-------2ms----_oI.I

* NOTE: Power - up subroutine executed during this time.
UBCE PDNF (0 H cannot be set

~ DC power coming up.
'1-3133

Figure 6-11 Power-Up,

As the ac power level rises, BUS DCLO L is ne·
gated. When ac power reaches its specified levell,
BUS ACLO L is negated, UBCE ACLO L goes
high and, in conjunction with the assertion of
PU PF (I) H, starts the 70-ms timer. During this in­
terval, all INIT signals are asserted and the Cachy
initializes its tag and,data stores.

IN IT is negated at the end of the 70-ms delay, the
TIG clock is started in T4 (refer to Chapter 4) and
the ROM cycles from ZAP.OO - BRK.IO to PUP.O~
are executed.

At T3 of PUP.OO, UBCB ABORT ACKN L is asl
serted; this clears PUPF. When PUPF is cleared,
U BCE PUPF (0) L initiates a 2-ms delay by trigger­
ing the 74123 one-shot. For this period of time,
BLOCK DOWN remains set and prevents any
BUS ACLO L assertion from setting PDNF. This
ensures that the processor will complete the power­
up sequence before another power-down is in~

itiated. BLOCK DOWN is reset at the end of the
2-ms delay. I

I

The power-up microprogram sequence (PUP.OO t
PU P.40) gets a new PC and PS from the locatioq
specified by the start vector (SV). Refer to Para~
graph 6.1. '

6.5.3 PDP-llj70 System Power Control I.

Each Main Memory drawer power supply and bot~
processor cabinet power supplies contain an 11086
Power Control Card. The ac power monitor circuit~ -
(ACLO and DCLO) are on this card. ACLO and
DCLO both have two independent open collector
output drivers on each 11086. Refer to the Engineert
ing Print Set for a schematic of this circuit.

i
Table 6-4 lists the processor cabinet and Main
Memory cabinet ACLO and DCLO signals. I

I

6.5.3.1 ACLO Connections..,. Refer to Figure 6-12J
The AC LOW signal from all Main Memory power
supplies are wire-ORed and transmitted to th~

Cache (ADML) on the Main Memory Bus cable~
The signal is buffered, renamed (ADML ACLO H)
and is one of two inputs to the processor power~

I

up/power-down circuits on UBCE. '

Table 6-4
ACLO and DCLO Driver Outputs

Signal Name

AC LO 1
AC LO 2
AC LO 3
AC L04
AC LOW
AC LOW

DC LO 1
DC L02
DC LOX
DC LOY
DC LOW
DC LOW

Unit

ACLO

Upper processor H7420
Lower processor H7420
Lower processor H7420
Upper processor H7420
Main Memory P /S
Main Memory P / A

DCLO

Upper processor H7420
Lower processor H7420
Lower processor H7420
Upper processor H7420
Main Memory PIS
Main Memory P /S

Connector
& Pin

P/JlS-8
P/J22-8
P/J22-1O
P/JlS-1O
P/J6-3
P/J6-8

P/JlS-12
P/J22-9
P/J22-12
P/J1S-9
P/J6-1
P/J6-2

The processor power supply AC LO I, AC LO 2,
AC LO 3 and AC LO 4 signals are connected to
the Unibus AC LO line (BUS AC LO L) at the
backplane. This signal is the other input to the pro­
cessor power-up/power-down circuits on UBCE,
where it is ORed with ADML ACLO;

The output of the OR, UBCE ACLO L, is also in­
put to the Cache power-up circuits (ADMJ).

6.5.3.2 DCLO Connections - Refer to Figure 6-12.
There are two separate DCLO lines in the PDP-
11/70: BUS DCLO (Unibus) and MAIN DCLO
(M ain Memory). Two signal lines are required
because:

I. The signal level on the Unibus (0 V - S
V) is different from that on the Main
Memory Bus (0 V - 3.S V), and

2. The impedance of the Unibus (120
ohms) is different from that of the Main
Memory Bus (75 ohms).

11-6-21

"' ..J

~ 5
::E II)

::l
III

r---------.
II r~--~ II

~ - I
I III I 1 I
~~ L_~J ~~ ______ J

..J r-----l s ,----- ---,
o I r- -, I

r-7""-l 0; " :::; I ~ ~o- j'

l:j ... I ~~51 Ir- 1---..., I
II ~ ~05 ~I --=-1--<...-...::::....-.0-1-1----.-----..; z 1

: ~ I L_ _J I
I ~ ~

o I N 9-1 I L ___ -1 ~ gill I
'" ...

I ~ I ~~ ~ 11 I
I i5 ~~:::; 1:>:1 I

I ~ ~~ ~ I 7 I
II 0 ~~ ~ II (J I I' II ~ ~ ~g ~ n.,1' -

(

I -,'"
::o! ,[I
COO ~I ::: ~

I <_:I L.. _____ --1
..J ..J

~ ~
g 9
o 0
<> '" z z
;;t <i
~ ~

L __ ._~ _____ --.J

N
II)

e!
o

0:

..J

0
..J
0

'" II)
:::>
III

..J

S
0
<>
z
<i
~

..J

o
II)..J
:::>0 Ill'"

N ...
".
".
III

..J

0
..J
0
c
II)
:::>
III

;;: N ... ". .. ".
III ...

..J
..J ..J gd s o c 0

'" <>
II) :!O II)

:::> '" :::>
III ::E III

~
III

'" !!

.;
0:

.;
~
·u
0-

~

I ,
c

~
t

!
!
11 e,

..J

0
..J
0
<>
II)
:::> .,

'" "
., .. ~{ \"\,,.\ ! t '" -

~ ~ ~ ~
000 0
..J.J..J ...J

U (,,) U (J
cO c(c[

~r

- >-
0 S ..J

0 0
c c

-
0

Ii ..J
0

'" 1., ~ "'ll~
>­
..J
::>
II)

0: ...
~ ..

N N
o 0
..J ..J

o 0

'" c

'" g
". 0

'" 0

~I ..J 1"'1"'121 0

'"
o
N

1!
0: ...
~
g

x

S
o
c

c

! 0

~
!! ::

· :0
8 · ~

III

~

0
E
~

~ c .;; ,g
~ · ~ 0

~ ~ E

:!;
. .
c

0'0 :;.,
.". c_
c.,
8~
N

I

..J ..J

0 0
..J ..J
0 0

'" c
II) II)
:::> :::>
III III

'" s::
.9
u
Q)

s::
s::
0
U
0
....l
U
Cl
't)
s::
'" 0

....l
U «
0
r-

---......
I

~
Cl
~

N
I

\0
Q)
=' eo
ti:

BUS DCLO L is the wire-OR of DC LO Y (upper
processor H7420 power supply), DC LO X (lower
processor H7420) and the DCLO signals from all
devices on the Unibus. It is one of two inputs to
the processor power-up /power-down circuits on
UBCE.

MAIN DCLO is the wire-OR of DC LO J (upper
processor H7420), DC LO 2 (lower processor
H7420) and both DC LOW outputs from all Main
Memory drawers (via the ,Main Memory Bus
cable). MAIN DCLO is buffered in the Cache, re­
named (ADML MAIN DCLO H), and is the sec­
ond input to the processor power-up/power-down
circuits.

BUS DCLO and MAIN DCLO are ORed (UBCE)
and input to both the Cache power-up and to the
processor power-up/power-down circuits. MAIN
DClO. however. is the only input to the Main
Memory protection circuitry (MCTH). This circui-

11-6-22

try inhibits the memory write operations on power
down 3 ILS after receipt of DClO.

6.5.3.3 Power Down - In the PDP-II/70, these in­
terconnections are such that a power failure from
any device (U nibus device, processor or Main
Memory)

I. Causes the processor to trap to location
24 and t6 perform the power-down sub­
routine, and

2. Causes the Cache to prevent all access to
Main Memory when DCLO is asserted
at the end of the 2-ms power-down sub­
routine time allotment.

In addition, when the power failure is a processor
or a Main Meinory failure, the Main Memory pro­
tection circuits are activated when MAIN DC
LOW is asserted by either the processor or the
Main Memory power supplies.

I
.1

(

(

SECTION III

CONSOLE

Unless otherwise indicated, references within thi s sec­
tion pertai n to th is section only.

CHAPTER 1

1.1
1.1.1
1.1.2
1.1.3
1.1,4
1.1.5
1.1.6
1.1.7
1.1.8
1.1.9
1.1.10
1.2
1.2.1
1.2.2
1.2.3
1.2,4
1.2.5
1.3
1.3.1
1.3.2

(1.3.3
1.3.4
1.3.5
1.3.6
1.3.7
1.3.8
1,4
1,4.1
1.4.1.1
1.4.1.2
1.4.2

CHAPTER 2

2.1
2.2
2.3
2,4
2.5
2.5.1
2.5.2
2.5.3
2.5,4
2.5.5
2.6
2.6.1
2.6.2
2.6.3
2.6,4

SECTION III CONSOLE
CONTENTS

Page

SWITCHES, INDICATORS AND OPERATION

OPERATIONAL SWITCHES
Power and Lamp Test Switches
LOAD ADRS Switch

· 1II-1-1
· 1II-1-1
· 1II-1-1

EXAM Switch III -1-1
DEP Switch I1I-1-1
Step Operations I1I-I-1
CONT Switch 1II-1-3
ENABLE/flALT Switch I1I-1-3
S INST/S BUS CYCLE Switch 1II-1-3
START Switch I1I-1-3
Switch Register III-1-3

ADDRESSING AND DATA DISPLAY 1II-1-3
ADDRESS SELECT Switch III-1-3
ADDRESS Display Indicators III-lA
DATA SELECT Switch " III-lA
DATA Display Indicators III-lA
PARITY Indicators III-1A

EXECUTION INDICATORS III-lA
PAR ERR Indicator III-1A
ADRS ERR Indicator ~. III-lA
RUN Indicator III-lA
PAUSE Indicator III-lA
MASTER Indicator .. I1I-1-4
KERNEL, SUPER, USER, Indicators III-1A
ADDRESSING (Mapping) Indicators III-1-S
DATA (Space) Indicator III-1-S

USAGE III-1-S
Memory Reference · .. III-l-S

Unmapped Reference · .. III-l-S
Mapped Reference · .. III-l-S

General Register Reference · .. III-1-6

LOGIC DESCRIPTION

POWER CONNECTOR J 4 (KNLA)
POWER SWITCH S31 (KNLA)
Sl - S22: SWITCH REGISTER ...
S24 - S30 ("LOAD ADRS" - "START")

· 111-2-1
· 111-2-1
· 111-2-1
· 111-2-1

CONSOLE BRANCH · III-2-2
Idle State
LOADADRS
RACK BRCAB(02:00) L .
START and CONT

· III-2-2
· III-2-2

......... III-2-2
. I1I-2-2

EXAM and DEP Switches III-2-2
.... III-2-3 ENABLE/HALT SWITCH IN HALT POSITION

Single Instruction
Continue
Single Bus Cycle "
Console Reset

III-iii

...................... III-2-3
. 111-2-4
. 111-2-4

....................... 111-2-4

CONTENTS (Cont)

Page

2.7 ENABLE/HALT SWITCH IN ENABLE POSITION•............ III-2-4
2 .. 7.1 Continue 111-2-4
2.1.2 Single Bus Cycle III-24
2.1.3 Console Start III-2-4
2.8 LOAD ADDRESS•............................ III-2-S
2.9 EXAM AND DEP OPERATIONS•................... III-2-S
2.10 ADDRESS DISPLAY ,•............................. III-2-S
2.10.1 General Register (GR) Address III-2-S
2.10.2 Memory Address•......................... III-2-S
2.11 DATA DISPLAY , , III-2-6
2.12 MISCELLANEOUS INDICATOR LOGIC III-2·6

Figure No.

1-1
2·1

Table Nt),

1·1
2·1

ILLUSTRATIONS

Title Page

PDP· 1 1/70 Console III·l·2
Step Branch Address Modification III-2-3

TABLES

Title Page

General Register Addresses I1I-1-6
Address Display III-2-S

III-iv

(

(

(

(

(

(

(

INTRODUCTION
The PDP-Ilj70 Console, drawing D-CS-54-11294-
0- I, allows direct control of the KBII-B computer
system. The Console is used for starting, stopping,
resetting and debugging. Its power switch may be
used as the master switch for a system. Indicator
lights and the other switches provide facilities for
monitoring, system control and maintenance oper­
ations, during which the KBI I-B can be made to ex-

III-I-l

INTRODUCTION

ecute single instructions or single Unibus or
Memory cycles. The contents of any memory loca­
tion or of any register can be examined, and data
can be entered manually from the switches.

Chapter I describes the various components of the
Console and their use; Chapter 2 describes the logic
that controls Console operations.

(

(

(

CHAPTER 1
SWITCHES, INDICATORS AND OPERATION

Refer to Figure I-I.

1.1 OPERA TIONAL SWITCHES

1.1.1 Power and Lamp Test Switches
The POWER switch is a three-position, key-oper­
ated switch.

OFF - Causes power to be removed from the
switched outlets of the Power Controller. Ren­
ders the system inoperative.

POWER - Power is applied to the system. All
switches are operational.

LOCK - Same as POWER, except that the
LOAD ADRS, EXAM, DEP, CONT, EN­
ABLE/HALT, S INST /S BUS CYCLE and
ST ART switches are disabled. All other
switches are operational.

The LAMP TEST switch is the white switch be­
tween Switch Register 0 and LOAD ADRS. When
raised, it turns all the indicators on. It is used for
maintenance.

1.1.2 LOAD ADRS Switch
The LOAD ADRS switch is a momentary action
switch. When this switch is depressed, bits 21 - 16
of the Switch Register are loaded into SCCK
SWR(21:16) B (I) H, and bits 15 - 00 into the PCA
and the SR. The address displayed in the AD­
DRESS display indicators is a function of the AD­
DRESS SELECT switch (Paragraph 1.2.1 below).

1.1.3 EXAM Switch
The EXAM(ine) switch is a momentary action
switch. When it is depressed, the contents of the lo­
cation specified by the ADDRESS display is shown
by the DATA indicators, if the DATA SELECT
switch is in the DATA PATHS position.

The ADDRESS display shows either a virtual or a
physical address, as determined by the ADDRESS
SELECT switch. Refer to Paragtaph 1.2.1.

1.1.4 0 EP Switch
The DEP(osit) switch is a momentary action
switch. When it is raised, the contents of bits 15 -
00 of the Switch Register are written into the loca­
tion specified by the physical address generated by
the last LOAD ADRS operation. The data written
is shown by the DATA indicators if the DATA SE­
LECT switch is in the DATA PATHS position.

The ADDRESS display shows either a virtual or a
physical address, as determined by the ADDRESS
SELECT switch. Refer to Paragraph 1.2.1.

1.1.5 Step Operations
If several consecutive EXAM operations are per­
formed, the address is incremented by 2 for each op­
eration after the first one. Thus, it is possible to
examine a series of consecutive word addresses with­
out doing a LOAD ADRS for each EXAM.

In the same manner, it is possible to execute a
series of DEp operations without doing a LOAD
ADRS for each one.

The following sequence illustrates these operations:

Operation
(Activate Switch)

Location Shown in
ADDRESS Display

LOAD ADRS X
EXAM X
DEP X

. EXAM X
EXAM X+2

(Result is EXAM - STEP)
DEP X+2
EXAM X+2

III-I-I

III-I-2

Q)

"0 a o
u
o
t-

-I

(

(

(

(

(

(

1.1.6 CONT Switch
The CONT(inue) switch is a momentary action
switch whose action depends upon the position of
the HALT/ENABLE switch:

EN ABLE - Resumes program execution at
the point where it was stopped by the HALT
switch or by a HALT instruction.

HAL T - Used in conjunction with the S
INST /S BUS CYCLE switch. See Paragraph
1.1.8.

The CONT switch has the same effect as the
Maintenance Module Stepper Switch, XMAA S4,
when executing single ROM cycles or UPB stops,
but not when executing single clock cycles.

1.1.7 ENABLE/HALT Switch
The ENABLE/HALT switch IS a two-position
switch:

ENABLE - Used in conjunction with the
STAR T or CaNT switches, allows program
execution.

HAL T - Stops program execution.

1.1.8 S INST /S BUS CYCLE Switch
The S(ingle) INST(ruction)/S(ingle) BUS CYCLE
switch is used in conjunction with the CONT
switch when the HALT/ENABLE switch is in the
HALT position:

S INST - When CaNT is depressed, a single
instruction is executed and the processor stops
in CON.OO. EXAM and DEP operations may
then be executed. TheconteI1ts of the DATA
Display indicators may only be determined by
examination of the microprogram Flows for
the instruction that has just been executed.

S BUS CYCLE - When CaNT is depressed,
execution is resumed but stops in T5 of
PAUSE of the first Unibus or Memory cycle
to be executed.

The A DDRESS display then contains the ad­
dress of the location at which the bus cycle
was performed (virtual or physical, depending
on the position of the ADDRESS SELECT
switch).

If the DATA SELECT switch is s.electing
BUS REG (Bus Register), the DATA display
lights, on a read operation, will contain the
data that was read (this could bean instruc­
tion or data). During a write operation, the
lights will contain the data just written (except
during a stack operation or Floating Point in­
struction). LOAD ADRS, EXAM and DEP
are disabled in this mode. If an EXAM or
DEP operation is desired, the S INST /S BUS
CYCLE switch should be changed to S INST
and the CaNT switch should be depressed
Once. (This will cause execution until the end
of the current instruction). The system will
then be ready to perform an EXAM or DEP.

The switch has no effect when the
HALT/ENABLE switch is set to ENABLE,

1.1.9 START Switch
The START switch is a momentary action switch
whose action depends upon the setting of the
HALT/ENABLE switch:

ENABLE - Starts program execution at the
address previously loaded by a LOAD ADRS,
after resetting the system (INIT).

HAL T - Resets the system.

The START switch has no effect when the pro­
cessor is in the R UN state.

1.1.10 Switch Register
The Switch Register consists of the 22 switches Ia­
beledO through 21. These numbers correspond to
the bit positions of their r~ive switches. The
Switch Register is used to manuaNyenter both ad­
dresses and data into the KBll-B, 'and its bits, 15-
00, may be read under program control; its address
is 17 777 570, which is the same as that of the Dis­
play Register.

1.2 ADDRESSING AND DATA DISPLAY

1.2.1 ADDRESS SELECT Switch
The ADDRESS SELECT switch is an eight-posi­
tion rotary switch:

VIRTUAL - Six positions: KERNEL, SU.
PER and USER I space and KERNEL, SU­
PER and USER 0 space. The address
displayed is a 16-bit virtual address; bits 21 -
16 are always off.

III-I-3

During Console DEP or EXAM operations,
bits 15:00 of the Switch Register are consid­
ered to be a Virtual Address. If Memory Man­
agement is enabled, this Virtual Address is
relocated. The set of PARjPDRs indicated by
the switch position is used.

CONS PHY - (Console Physical). The 22-bit
address entered by a LOAD ADRS is the
physical address of the Console operation.

PROG PHY - (Program Physical). Displays
the 22-bit physical address generated by Mem­
ory Management for the current Unibus or
Memory cycle.

The ADDRESS SELECT switch indicator lights
are driven directly by the switch.

Refer to Paragraph 1.4 which explains the use of
the ADDRESS SELECT switch.

1.2.2 ADDRESS Display Indicators
The ADDRESS display indicators show the address
of the data deposited or being examined. The ad­
dress is interpreted as a virtual or physical address
in accordance with the position of the ADDRESS
SELECT switch. (Paragraph 1.2.1 below).

1.2.3 DATA SELECT Switch
The DATA SELECT switch is a four-position
rotary switch:

DA TAPA THS - Displays the output of the
Shifter. This position is the normal display
mode, and is used to show the data examined
or deposited by Console operations.

BUS REG - Displays the output of the Bus
Register (BR).

f.1ADRS FPP/CPU - Bits 15 - 08 display the
current address of the Floating Point Pro­
cessor microprogram ROM.

Bits 07 - 00 display the current address of the
processor microprogram ROM.

DISPLA Y REGISTER - Displays the con­
tents of the Light Register. The LR may be
written into by using address 17 777 570,
which is the same as that of the Switch
Register.

1.2.4 DATA Display Indicators
The DATA indicators display the output of the
Data Display Multiplexer. The output of the multi­
plexer is selected by the DATA SELECT switch.
Refer to Paragraph 1.2.3.

.1.2.5 PARITY Indicators
The PARITY indicators display the parity bits asso­
ciated with the HIGH and LOW bytes of the word
read from Cache Memory. These indicators are off
during a write operation.

1.3 EXECUTION INDICATORS

1.3.1 PAR ERR Indicator
The PAR(ity) ERR(or) indicator is on when a Un­
ibus or a memory parity error is flagged.

1.3.2 AD RS ERR Indicator
The ADRS (Address) ERR (Error) indicator is on
when an addressing error occurs. Address errors
are: non-existent memory, access control violation,
page length error, Stack Limit Red, odd address er­
ror and Unibus Timeout. This is a dynamic in­
dication of address errors that occur during
program execution. It is a static indication during
Console functions (i.e., EXAM or DEP).

1.3.3 RUN Indicator
The RUN indicator is on when the processor is ex­
ecuting instructions, but is off during Pause cycles.
The RUN indicator is on during a WAIT
instruction.

1.3.4 PAUSE Indicator
The PAUSE indicator is on during all Bus Pause
and Interrupt Pause cycles, indicating that the pro­
cessor is waiting for either Memory or a Unibus
device.

1.3.5 MASTER Indicator
The MASTER indicator is on either when the pro­
cessor is Unibus master (U BCA CPBSY) or during
Console operations [TMCA CONF (1) L asserted].

1.3.6 KERNEL, SUPER, USER, Indicators
The KERNEL, SUPER and USER indicators show
the actual mode in which the processor is operating
during each cycle. Refer to Section IV of this man­
ual (Memory Management).

III-I-4

(

(

(

(

(

(

(

(

1.3.7 ADDRESSING (Mapping) Indicators
The 16-, 18-, and 22-bit indicators show the Mem­
ory Management mapping that is being used during
each cycle.

1.3.8 D A T A (Space) Indicator
The OAT A indicator shows whether I or 0 space
is used during each cycle. It is on when 0 space is
used and off when I space is used.

1.4 USAGE

1.4.1 Memory Reference
Memory references from the Console may be either
mapped (i.e., using a virtual address) or unmapped
(using a physical address), when Memory Manage­
ment is enabled. Mapped references are possible
only when Memory Management is enabled.

1.4.1.1 Unmapped Reference

I. Set the ADDRESS SELECT switch to
CONS PHYS.

2. Enter the 22-bit physical address into the
Switch Register.

3. Depress the LOAD ADRS switch. The
physical address in shown by the AD­
DRESS display.

4. Set the OAT A SELECT switch to
DATA PATHS.

Sa. If the EXAM switch is depressed, the
contents of the physical memory loca­
tion entered by the LOAD ADRS oper­
ation is displayed by the DATA
indicators.

5b. If the DEP switch is raised, the contents
of bits 15 - 00 of the Switch Register are
written into the physical memory loca­
tion entered by the LOAD ADRS oper­
ation.. This same data is displayed by
the DATA indicators.

111-1-5

1.4.1.2 Mapped Reference

I. Set the ADDRESS SELECT switch to
one of the virtual positions (refer to Par­
agraph 1.2.1).

2. Enter the 16-bit virtual address into the
Switch Register.

3. Depress the LOAD ADRS switch. The
virtual address is shown by the A 0-
DRESS display. Bits 21 - 16 are off.

4. Set the DATA SELECT switch to
DATA PATHS.

Sa. If the EXAM switch is depressed, the vir­
tual address loaded by the LOAD
ADRS operation is relocated by Mem­
ory Management. Memory Management
(if it is enabled) uses the mapping shown
by the ADDRESSING indicators (Para­
graph 1.3.8) and the PARjPDR pair is
selected by the ADDRESS SELECT
switch. The contents of this address are
read and displayed by the OAT A
indicators.

5b. If the DEP switch is raised, the virtual
address is relocated as in the EXAM op­
eration. The contents of the Switch Reg­
ister are written into the physical
memory location pointed to by the phys­
ical address. The new contents of this lo­
cation are displayed by the DATA
indicators.

6. If the ADDRESS SELECT switch is
now turned to PROG PHY, the physical
address corresponding to the virtual ad­
dress used during the EXAM or DEP op­
eration is displayed by the ADDRESS
indicators.

1.4.2 . General Register Reference
EXAM and DEP references to the processor Gen­
eral Registers may be executed by entering the ad­
dress of the register (see Table I-I) into the
SWITCH REGISTER, depressing LOAD ADRS,
and then EXAM or DEP, as required. The AD­
DRESS SELECT switch setting is ignored; map­
ping to a General Register is not possible.

EXAM-STEP and DEP-STEP operations can be
performed on the General Registers, in a manner
similar to that for memory locations, except that:

I. ADDRESS display is incremented by
(instead of 2).

2. The STEP after address 17 777 717 is 17
777 700, such that the addresses are
looped.

3. It is not possible to STEP up to the first
General Register (17 777 700) from 17
777 676.

111-1-6

Table 1-1
General Register Addresses

SET 0

Register 0 17 777 700

Register 5
Register, 6 Kernel
Program Counter

Register 0

Register 5
Register 6, Super
Register 6, User

SET 1

17777705
17777 707
17777 707

17777 710

17777715
17777716
17 777 717

(

.,

(

(

(

(

(

(

(

(

The Console assembly consists of a printed circuit
board, drawing D-CS-5411294-0-1 (KNLA -
KNLD), an indicator panel, drawing D-IA-
7413126-0-0, and a bezel, E-IA-7409306-0-0. This as­
sembly is mounted on the front of the processor
mounting box. It is connected to the PDP-II /70 by
the power harness, whose PI plug connects to the
Console J4 connector, and by three flat ribbon cab­
les. One of these connects J\ on the Console to JI
on the M8134 module (PDRH). Another connects
12 on the Console to JI on the M8140 module
(SCCJ). The third cable connects 13 on the Console
to 12 on the M8140.

This chapter describes the Console Power Con­
nector and the logic that controls the Console
Switches (Paragraphs 2.2 through 2.9) and the Dis­
plays (Paragraphs 2.10 through 2.12), in that order.

2.1 POWER CONNECTOR J4 (KNLA)
J4 connects to the Power Harness. It consists of the
following lines: +5 VA, which powers the light
emitting diode (LED) indicators: GND A which is
the return for the LAMP TEST switch (KNLD
LAM P TEST L); and with the Power Controller
GND IN and GND OUT (refer to Paragraph 2.2).

2.2 POWER SWITCH S31 (KNLA)
The Power Switch controls power to the system
through the GND OUT /GND IN connections to
the Power Controller, and enables/disables switches
S24 - S30 (LOAD ADRS, EXAM, DEP, CONT,
ENABLE/HALT, S INST /S BUS CYCLE and
START).

Power Controller - Pins 3 and 4 of J4, GND IN
and GND OUT go to the Power Controller by way
of the power harness. When there is no connection
between these two pins, power is removed from the

CHAPTER 2
LOGIC DESCRIPTION

switched outlets of the controller. When the pins
are connected, power is applied to these outlets.
GND IN and GND OUT are not connected when
the power switch is in the OFF position; they are
connected when the switch is in the ON (terminals
9 and 10) or in the LOCK positions (terminals II
and 12).

S24 - S30 (KNLC) use the KNLA SWITCHED
GROUND from the power switch; there is no
ground connection in the LOCK position, and
these switches are then disabled. In addition,
K N LA PN L LOCK L is also generated in this posi­
tion, and forces the HALT/ENABLE switch out­
put to the ENABLE logic value (low). Thus, when
the power switch is in the LOCK position, the pro­
cessor is enabled, the HALT switch is inoperative,
and the other switches are disabled, since they can­
not be used when the KBII.-B is running. KNLA
SWITCHED GROUND is connected to GND B
when S31 is in the OFF position (terminals 2 and
3) and in the ON position (terminals 4 and 5).
KNLA PNL LOCK H is brought out to the KBII­
B back plane by the SCC module, but is not used
by any other part of the processor.

2.3 SI - S22: SWITCH REGISTER
The Switch Register, S I - S22 [KNLC SWR(21 :00)
H], is transmitted from KNLC 13 to J2 of the
M8140 module (SCCJ), where it becomes SCCJ
SWR(21:00) H. It is read by the processor on the
Internal Bus from the multiplexer on SCCH.

2.4 S24 - S30 ("LOAD ADRS" - "START")
S24 - S30 are input to latches (KNLC) for bounce
suppression and transmitted from 13 of the Console
to J2 of SCCJ (SCCJ CONT SW H - SCCJ HALT
SW H). CONT, SINGLE CYCLE, LOAD ADRS,
START and HALT are buffered on SCCJ.

111-2-1

SCC] EXAM SW Hand DEP SW H are gated
with SCCF GEN RG (I) Hand (0) H to generate
SCCF REG EXAM H and REG DEP H when a
General Register address has been decoded during
a LOAD ADRS operation. When any address
other than a General Register address is detected,
SCCF G EN REG (0) H is high and SCCF EXAM
H or DEP H are generated.

The signals derived from S24 - S30, with the excep­
tion of EN ABLE/HALT (S28), clock the flip-flop
shown on UBCF. When any of these switches is ac­
tuated, and if the Console Flag is asserted, UBCF
CNSL ACT is set at TS3.

These flip-flops are reset at T4 when BCT=2
(CNSL ACKN), at T2 when BSD= I (ITR
PAUSE), or by INIT.

When the processor is halted, it cycles In the
CON.OO microprogram state.

When any of the LOAD ADRS, EXAM, DEP,
CaNT or START switches are activated, a micro­
program branch from CON.OO occurs.

2.5 CONSOLE BRANCH
The Console microprogram flows are shown on
Flows 14.

2.5.1 Idle State
CON.OO is the KBII-B idle state which is entered
upon a HALT. This cycle loops upon itself until
one of the Console switches sets UBCF CNSL
ACT (I) H. This function is low during the idle
state; the Branch Enable field of CON.OO is 14,
making both RACK BEF(3:2)3 H and RACK
BEF(I:O)O H high. RACK BRCAB06 L is thus as­
serted. Since the UADR field of CON.OO is 070, bit
6 is forced to I, the ROM address [RACL
RA DR(07:00) H] becomes 10, the address of
CON .00, which thus succeeds itself. RACK
BRCAB06 L is not used by any other microstate.

2.5.2 LOAD ADRS
If the LOAD ADRS switch is now depressed,
UBCF CNSL07 (I) Hand UBCF CNSL ACT (I)
H are both asserted; this causes RACK BRCAB07
to be asserted, thus generating a ROM address of
270 (ADR.OO). [UBCF CNSL07 (0) H forces
UBCH CNS(02:00) H low]. RACK BRCAB07 L is
used only by LOAD ADDRESS.

2.5.3 RACK BRCAB(02:00) L
These bits determine the branch required by the
eight. remaining functions: START, CaNT,
EXAM, DEP, STEP EXAM, STEP DEP, REG
EXAM/DEP and REG EXAM/DEP STEP. The
bits are shown on UBCH.

2.5.4 ST ART and CONT
START and CaNT are encoded on UBCH. Since
BCF CNSL07 (0) H is high (LOAD ADRS is not
depressed), UBCH CNSL(02:00) equals 6 for
ST ART and 7 for CaNT. Since the processor is in
the idle state, RACK BRCAB(02:00) L force the
next cycle microaddress respectively to 076 or 077.

2.5.5 EXAM and DEP Switches
As described in Chapter I, every successive depres­
sion of the EXAM switch after the first one causes
the address to be incremented, thus making it pos­
sible to examine successive locations without reload­
ing the address. This same procedure is followed
for DEP, or when operating on General Registers.
Operations following the first one are called STEP
operations. Refer to Flows 14.

The logic shown on UBCH stores UBCH
CNSL(02:00) Hand UBCH MSB DATA L, in the
74S 175 register, the output of which is decoded by
the 7442S. The functions generated by the outputs
of these decoders are gated with the outputs of the
U BCH switch flip-flops and thus generate a modi­
fied UBCH CNSL(02:00) H value, which in turn
causes a different branch address to be generated
when EXAM or DEP are depressed more than
once. Note that when R3(1) of the 74S 175 is high,
the lower 7442 decoder is disabled (no outputs fO -
f7 can be true), while the upper 7442 is enabled,
since R3(0) is low; if R3 is 'reset, the opposite is
true.

Register operations are similar to Memory oper­
ations. The branch after CON.OO determines
whether the operation is or is not a STEP oper­
ation. A second branch after this executes either an
EXAM or a DEP.

Figure 2-1 shows a sequence of operations, shown
above the waveshapes, the condition of the various
modifying functions, and the inputs to the RACK
logic.

III-2-2

(

(

(

(

(

REG REG
LOAD EXAM DEP LOAD REG EXAM REG DEP
ADRS EXAM STEP DEP STEP ADRS EXAM STEP DEP STEP

I I I I I
I I I I I

I I I I I I I

ItlHn

I n I I
0 I 0 0 0 0 I 0 0 I 0

UBCF CONS07 I
I
I

I I I I I
I I I I I

IUBCHI R3 II I H

UBCH CONS!1l2 H
0 0 0 0

0 0 0
UBCH CONSlllt H

I I
I I I I I
I I I I I

0 0 I 0 0
I

0 ~ I
UBCH CONS00 H I

i
I

UBCH REG EXAM+STEP H
,
I
I

UBCH REG EXAM+STEP L I
UBCH REG DEP+STEP H -;....--+-----+-----1--------1

UBCH REG DEP+ STEP L

UBCH STEP DEP + DEP H -r--+------i

UBCH STEP DEP+DEP L

UBCH EXAM+STEP EXAM H ---1._---'

Figure 2-1 Step Branch Address Modification

2.6 ENABLE/HALT SWITCH IN HALT
POSITION
Paragraphs 2.6.1 through 2.6.4 describe the effect
of the operational switches when the EN­
ABLE/HALT switch is in HALT. When this is the
case, KNLC HALT SW Hand SCF HALT Hare
high.

2.6.1 Single Instruction
If the S INST /S BUS CYCLE switch is in the S
INST position, KNLC SINGLE BUS CYCLE SW
Hand SCCF SINGLE CYCLE H are low, and

UBCF STOP L is asserted. At the next BRQ strobe
(MSC=6), TCE CLK CONF H is asserted at T3
and sets the Console Flag [TMCA CONF (1) H].
TMCB BRQ TRUE is then asserted and the instruc­
tion currently being executed branches (when com­
pleted) to BRK.90 (refer to Flows 12) on a
microprogram cycle where BEN = 12 and
UAD=240. BRK.OO follows BRK.90, and its BEN
bits= 12, with UAD= 130. Since the Console Flag is
set (CON F), the next microprogram state is
CON.OO (Flows 14), in which the processor cycles
until Console action is initiated by the operator.

III-2-3

2.6.2 Continue
If the CaNT switch is now depressed, CON.IO is
entered, followed by BRK.IO and BRK.20 (Flows
12). Since neither BUS INTR nor power-down
(TMCA HONOR PWRF L), nor an internal trap
has caused entry into the BRK sequence, UBCC
(PWRF+INTR) L is not asserted and a branch is
made to R T1.60 (Flows 2). During this cycle, the
Console Flag is cleared during TS3 by UBCH CLR
CONF L [BCT=2, or CONS.ACKN and UBCF
CaNT (I) H]. The CaNT switch flip-flop [UBCF
CaNT (I) H] is cleared at T4 by UBCF ACKN T4
(BCT=2 and TS4).

The instruction following the one at which the pro­
cessor stopped is now fetched (FET.OO) and exe­
cuted: since the ENABLE/HALT switch is still in
the HALT position, the Console Flag is again set
by the BRQ strobe and the processor stops after ex­
ecuting one instruction.

2.6.3 Single Bus Cycle
If the S INST /S BUS CYCLE switch is in the S
BUS CYCLE position, the processor stops in TS of
the current Unibus or Cache cycle. Refer to Section
II, Chapter 4 (Paragraph 4.9) of this manual. NPRs
are not allowed when the switch is in this position
(UBCF DISABLE NPR L).

2.6.4 Console Reset
If the START switch is depressed when the EN­
ABLE/HALT switch is in the HALT position,
UBCF CNSL RESET L is asserted. This signal gen­
erates all three INIT signals and sets the Console
Flag.

2.7 ENABLE/HALT SWITCH IN ENABLE
POSITION
Paragraphs 2.7.1 through 2.7.3 describe the effect
of the operational switches if the ENABLE/HALT
switch is put into the ENABLE position. When this
is the case, KNLC HALT SW Hand SCCF HALT
H go low.

2.7.1 Continue
When the processor is halted and the CaNT switch
depressed, the sequence is similar to that described
in Paragraph 2.6.2. The Console Flag, however, is

not set at the end of the first instruction, and pro­
gram execution continues instead of stopping.

2.7.2 Single Bus Cycle
The SINGLE BUS CYCLE switch is disabled when
the HALT/ENABLE switch is in the ENABLE
position.

2.7.3 Console Start
UBCF STA RT (I) H can only be set if the Console
Flag has previously been set. START asserts U BCF
ST A TUS CL R L which sets the processor mode
bits [PS(IS:14)] to 00 or Kernel. The START
switch signal, U BCF START L, clocks SCCF
HALT H into a flip-flop on UBCE; this flip-flop
sets if the HALT/ENABLE switch is in the EN­
ABLE position.

The KST.OO (Flows 14), RES.OO and RES.10
(Flows 3) cycles are then executed.

In RES.IO, BCT=4 (INIT if Kernel Mode). Since
PS(IS:14) have been set to 00 by UBCF STATUS
CLR L, UBCC START INIT (I) H is set at T3.
This function:

I. direct-sets UBCC RIP+ FPSYNC Hand

2. starts the 100 f.LS UBCC RESET WAIT
one-shot.

RES.20 is now executed, and the microprogram cy­
cles in this state until RIP+ FPSYNC H is negated.

I. RESET WAIT is still on. When it goes
off, at the end of the 100 f.LS, the RESET
ABORT (I f.Ls) and UBCC RESET (I) H
(10 ms) one-shots are started.

2. RESET (I) H clears UBCC START
INIT (I) H and keeps RIP+FPSYNC H
asserted.

3. RESET (I) H is ANDed with the flip­
flop on UBCE that was set by the
START switch. This asserts UBCE
ST ART INIT L, which in turn asserts
all the INIT signals with the exception
of ROM INIT.

III-2-4

(

(

(

4. At the end of 10 ms, RESET (1) H goes
low and INIT is negated. RESET (0) H
goes high and a T3 RIP+ FPSYNC H is
also negated. This causes a branch to
FET.03 instead of to RES.20 at the end
of the cycle (BEN= 10, UADR=334),
and the instruction whose address is dis­
played is fetched and executed.

5. The BUST in FET.03 clears (at T3) the
flip-flop on UBCE that was set by the
START switch.

2.8 LOAD ADDRESS
During CON .00, bits 15 - 00 of the Switch Register
are loaded into the BR. During ADR.OO (LOAD
ADDRESS), the contents of the BR are loaded
into the SR and into the PCA. These bits are used
in any subsequent Console operation other than a
LOAD ADRS.

The actual physical address used during these oper­
ations is determined by Memory Management from
the position of the ADDRESS SELECT switch.

2.9 EXAM AND DEP OPERATIONS
EXAM, DEP, REG EXAM/DEP and their respec­
tive STEP operations are described by Flows 14.

2.10 ADDRESS DISPLAY
The ADDRESS DISPLAY indicators are driven by
KNLB VA(03:00) and KNLB DISP ADRS(21:04)
H. These signals are received on }2 by the Console.
They originate on the M8140 module (SCC}) con­
nector } I. SCCA VA(03:00) H, SCCF DISP
ADRS(05:04) Hand SCCK DISP ADRS(21 :06) H
are the sources for the KNLB signals.

Refer to Table 2-1. The address displayed depends
on whether or not it is a General Register (G R) ad­
dress (17777700 - 17777 717).

2.10.1 General Register (GR) Address
I f the address is a G R address, bits 00:03 display
the register number (0 to 17), bits 4 and 5 are Os
(off), and bits 06:21 are Is (on).

SCCF GEN REG ADRS is asserted (Switch Regis­
ter bits 21 - 06 high, bits 05 and 04 low) and SCCF
GEN REG (I) H is set when the LOAD AD­
DRESS switch is depressed. This forces SCCF
DISP ADRS(05:04) low and their corresponding in­
dicators off, and also forces low both select inputs
to the SCCK DISP ADRS(21:16) H multiplexer,
thus selecting its A inputs (+ 3 V) and forcing the
corresponding indicators on. The SCCK DISP
A DRS(l5:06) H multiplexer is disabled by SCCF
GEN REG (I) H and its outputs are high, thus
forcing their corresponding indicators on.
V A(03:00) determine the state of address indicators
03-00.

2.10.2 Memory Address
I f the address is not a G R address, the address dis­
play is a function of the ADDRESS SELECT
switch, described in Paragraph 1.12. The output of
this switch is encoded on the Console board. Three
signals, NLD DISP ADRS SEL(2:0) H are thus
generated. They are decoded on SSRK and used in
the Memory Management logic. Two of these sig­
nals control the multiplexers on SCCK and deter­
mine the source of the address display, as shown in
Table 2-1. V A(05:00) are used for all three map­
pings. since these bits never change (they are not
relocated). VA(l5:06) is used for the VIRTUAL

Table 2-1
Address Display

Address Select Switch General
Display Virtual CONS PROG Register

Indicators (6 positions) PHY PHY Address

00-03 VA(00:03) VA(00:03) VA(00:03) VA(00:03)

04,05 VA04,05 VA04,05 VA04,05 OFF

06-15 VA(06:15) VA(06:15) VA(06:15) ON

16-21 OFF SWR(16:21) PA(16:21) ON

III-2-5

and CONS PHYS positions (the Switch Register is
loaded into the SR after a LOAD ADRS and read
from the BAMX). In VIRTUAL, bits 21:16 are
forced off. In CONS PHY, SCCK SWR(21 :16) H
are read. I PROG PHY, PA(21:06) are displayed.

2.11 DATA DISPLAY
The DATA indicators [KNLA DISP D(15:00) H
and DISP PAR HI (and LO) H] receive their input
from the Data Display multiplexer, PDRF DISP
D(15:00) H, and from two flip-flops, PDRH IND
HI (or LO) PAR H.

PDRF DISP D(15:00) H selects one of four inputs.
(Refer to Paragraph l.20.) The select inputs to this
multiplexer are encoded from the DATA SELECT
switch [KNLD DISP DATA SELL (or SELO) H]
and input to SI and SO of the multiplexer (PDRF
D ISPS I Land DISPSO L) after being inverted.

The PARITY indicators receive their input from
the parity flip-flops on PDRH. The Cache parity
bits, DTML HI (or LO) BYTE PAR H are clocked
into the same flip-flop IC as PDRB BR(15:12)A H.
The output of these flip-flops, PDRB HI (or LO)
PAR H are clocked into PDRH DISP HI (or LO)
PAR by UBCA IND CLK H. This signal is as­
serted at T4 during the ROM state following the
Pause cycle of all Cache DATI/P cycles. The in­
dicators are cleared at T4 of PAUSE of all Unibus
cycles or Cache DATO/B cycles by UBCB CLR
IND (0) H.

2.12 MISCELLANEOUS INDICATOR LOGIC
The Console indicators not described in Paragraphs
2.10 and 2.11 are driven by the logic signals listed
below (in the same order as they appear in Chapter
I).

ADDRESS SELECT SWITCH (l.2.1) - The
indicators are driven directly by the switch.

DATA SELECT SWITCH (l.2.3) - The In­

dicators are driven directly by the switch.

PARITY (1.2.5) - PDRH IND HI PAR H
and LO PAR H.

PAR ERR (1.3.1) - UBCB IND PAR ERR
H

ADRS ERR (1.3.2) - SCCF IND ADRS
ERR H

RUN (1.3.3) - TMCF IND RUN H.

PAUSE (1.3.4) - TMC IND PAUSE H.

MASTER (1.3.5) - UBCF IND MASTER H.

KERNEL, SUPER, USER (1.3.6) - Driven
by a decode (on the Console board) of SSRB
MMRO MODE 0 Hand MMRO MODE I H.

ADDRESSING (Mapping) (1.3.7) - SCCF
IND 16 (or 18 or 22) BIT MODE H.

DATA (Space) (1.3.8) - SAPK IND DATA
H.

III-2-6

(

(

(

SECTION IV

MEMORY MANAGEMENT

Unless otherwise indicated, references within this sec­
tion pertain to this section only .

SECTION IV MEMORY MANAGEMENT
CONTENTS

INTRODUCTION - PDP-ll/70 ADDRESS SPACE

CHAPTER 1 GENERAL DESCRIPTION

CHAPTER 2 MEMORY MANAGEMENT MAPPING FUNCTION

Page

2.1 CONSTRUCTION OF A PHYSICAL ADDRESS IV-2-1
2.2 MANAGEMENT REGSITERS . IV-2-2

CHAPTER 3 PAR AND PDR ADDRESSING DURING RELOCATION

3.1 MEMORY MANAGEMENT ROM (SSRA) IV-3-l
3.2 ROM OUTPUTS, 04 - 16 IV-3-l
3.3 K,S, OR U MODE SELECTION (SSRB) IV-3-3
3.4 lOR D SPACE SELECTION [SAPK ADDR 3 (K, S OR U) L] IV-3-4
3.5 REGISTER SELECTION [SAPKADDR(2:0) L] IV-3-5

CHAPTER 4 GENERATION OF THE PHYSICAL ADDRESS

4.1 l6-BIT MAPPING ... , IV-4-l
4.2 VIRTUAL ADDRESS IV-4-2
4.3 l8-BIT MAPPING IV-4-2
4.4 22-BIT MAPPING IV-4-4
4.5 RELOCATION LOGIC IV-4-7

CHAPTER S ADDRESS VALIDITY

5.1 UNIBUS ADDRESS IV-5-l
5.2 NOT CACHE ADDRESS IV-5-1
5.2.1 18-Bit Mapping IV-5-4
5.2.2 22-Bit Mapping IV-5-4
5.2.3 Console Mapping IV-5-4

CHAPTER 6 DESCRIPTION OF PDR

6.1 ACCESS CONTROL FIELD (ACF) IV-6-l
6.2 ACCESS INFORMATION BITS (A and W) IV-6-2
6.3 EXPANSION DIRECTION BIT (ED) _ IV-6-3
6.4 PAGE LENGTH FIELD (PLF) ., IV-6-3
6.4.1 Example of Upward Expansion IV-6-3
6.4.2 Example of Downward Expansion IV-6-4

CHAPTER 7 ADDRESS DECODERS AND READING/WRITING OF PAR/PDR REGISTERS

7.1 REGISTER ADDRESS DECODING IV-7-l
7.2 ADDRESSING OF PAR AND PDR REGISTERS FROM THE UNIBUS IV-7-3
7.2.1 PAR/pDRAddresses IV-7-3
7.2.2 Addressing IV-7-3
7.2.3 PAR/PDR Read IV-7-3
7.2.4 PAR Write IV-7-3
7.2.5 PDR Write IV-7-3

IV-iii

CHAPTERS

S.l
S.1.1
S.1.2
S.2
S.2.1
S.2.2
S.2.3
8.3

CHAPTER 9

9.1
9.1.1
9.1.2
9.1.3
9.1.4
9.1.5
9.1.6
9.1.7
9.1.S
9.1.9
9.2
9.3
9.4
9.5
9.6

Figure No.

1-1
1-2
1-3
1-4
2-1
2-2
2-3
2-4
2-5
3.1
4-1
4-2
4-3
4-4

SECTION IV MEMORY MANAGEMENT
CONTENTS (Cont)

MEMORY MANAGEMENT ERROR HANDLING

PAGE LENGTH ABORTS ..
Length Fault
Illegal Processor Mode

ACCESS CONTROL FIELD ABORTS AND TRAPS
Non-Resident and Read-Only Protection
Access Faults (Aborts)
Abort Flag

MEMORY MANAGEMENT TRAPS

MEMORY MANAGEMENT REGISTERS (MMRO, 1,2, and 3)

MMRO
Aborts
Traps and Trap Enable
Maintenance/Destination Mode
Instruction Complete
Processor Mode
Address Space and Page Number . .
Enable Relocation
Read/Write Under Program Control
Bits Controlled by Memory Management

MMR1
MMR2
CLEARING STATUS REGISTERS FOLLOWING TRAP/ABORT
MULTIPLE FAULTS
MMR3

ILLUSTRATIONS

Title

Example of Physical Memory Page
Construction of PA
Relocation . . · ..
Block Diagram · ..
Interpretation of VA ·
Displacement Field ...
Construction of PA
MM Relocation Function
PAR/pDR Read/Write
Addressing of PAR/PDR
16-Bit Mapping
16-Bit Mapping: Generation ofPA ... · ..
18-Bit Mapping ·
18-Bit Mapping: Cache Address ... ·

IV-iv

. .

..

Page

· IV-8·2
· IV-S-2
· IV-S-2
· IV-S-2
· IV-S-2
· IV-B-3
· IV-8-3
· IV-8-3

· IV·9-1
· IV-9-2
· IV-9-2

· .. IV-9-2
.. IV-9-2

· .. IV-9-3
· .. IV-9-3

· IV-9-3
· IV-9-3
· IV-9-S
· IV-9-S
· IV-9-7
· IV-9-7
· IV-9-7
· IV-9-7

Page

· IV-1-3
· .. IV-1-3
· . · IV-14
· .. IV-l-4

· IV-2-t
· IV-2-1
· IV-2-2
· IV-2-3
· IV-24
· IV-3-2

.. IV4-1
· .. IV-4-2
· .. IV-4-2
· .. IV4·3

(

(

(

(

(

4-5
4-6
4-7
4-8
4-9
4-10
5-1
5-2
5-3
6-1
6-2
6-3
6-4
8-1
8-2
9-1
9-2
9-3
94
9-5
9-6

Table No.

7-1
7-2

SECTION IV MEMORY MANAGEMENT
ILLUSTRATIONS (Cont)

18-Bit Mapping: Unibus Address
22-Bit Mapping
22-Bit Mapping
Physical Address Generation: Example 1
Physical Address Generation: Example 2
Generation of Physical Address
Wraparound
18- and 22-Bit Overflow
Console Overflow
Page Descriptor Register (PDR)
A and W Bit Timing
Upward Expansion .
Downward ExpanSion
Traps and Aborts
Trap Timing
MMRO
Clocking of MMRO .
MMRO Write Timing
MMRI
MMR2
MMR3

Register Address Decode Signals
P ARjPDR Unibus Addresses ..

TABLES

Title

IV-v

Page

· IY-4-3
· IY4-4
· IY-4-4
· IY4-5
· IY4-6

· . IY4-8
· . IY-5-2

· IY-5-3
· IY-5-4
· IY-6-1
· IY-6-2
· IY-6-3
· IY-64
· IY-8-1
· IY-8-5
· IY-9-1
· IY-9-4

· . IY-9-5
... IV-9-6

· IY-9-7
... IY-9-7

Page

· IY-7-2
· IY-74

(

(

Processor-generated addresses differ from those
that address memory; thus, the processor addresses
are termed Virtual Addresses (VA), and the mem­
ory addresses are termed Physical Addresses (PA).

The V A is that generated by the program. It con­
sists of 16 bits. The PA is the result of modifying
the VA in 18- or 22-bit mapping. It is the address
sent to the Cache (22 bits) or to the Unibus (18
bits). Three separate address spaces are used:

I. 16 bits, program virtual space

2. 18 bits, Unibus space

3. 22 bits, physical space

The K B 11-B Processor System generates a 22-bit ad­
dress, which allows a possible address space of
2048K words (221 = 2,097,152). Addresses 00 000
000 - 17 777 777 can be used; they are called Phys­
ical Addresses.

Refer to Figure I-I, which shows the components
of the PA Space.

I. Unibus Reference includes 128K PAs, 17
000 000 - 17 777 777, which correspond
to Unibus addresses 000 000 - 777 777.
The Unibus reference in turn includes
the following:

a. The Peripheral Page, which is re­
served for Unibus device registers;
it consists of 4K PAs, 17760000-
17 777 777 (Unibus addresses 760
000 - 777 777).

b. The remaining 124K addresses, 17
000 000 - 17 757 777 (Unibus ad­
dresses 000 000 - 757 777) may be
used by Unibus devices to access
memory.

N-I-l

INTRODUCTION
PDP-ll/70 ADDRESS SPACE

117) 777777 }

f-- J!7J !~~ ~OE ___
(17) 757777

(17) 000 000

16 777 777

SYSTEM SIZE
BOUNDARY

00000000

PERIPHERAL
PAGE (4K)

UNIBUS
REFERENCE
(128K)

NON-EXISTENT
MEMORY OR NXM

MEMORY
REFERENCE

11-4002

Figure 1-1 Physical Address Space

2. Memory Reference includes PAs from
00 000 000 through the system size
boundary, which is the highest address
available in the system Main Memory.
There may be no discontinuity in Main
Memory, i.e., available memory loca­
tions must be numbered sequentially -
from 00 000 000 through the system size
boundary. The highest possible address
is 16 777 777. Maximum possible mem­
ory is 1920K words (221 - 217 =
1,966,080, or 2048K - 128K = 1920K).

3. N on-Existent Memory or NXM includes
the PAs from the system size boundary
plus I - 16777777.

ADDRESS RELOCA nON
The PDP-Ilj70, like all other PDP-IIs, generates a
16-bit Virtual Address in the range of 000 000 -
177 777. In order to access the Unibus, which re­
quires an 18-bit address, and Main Memory, which
uses a 22-bit address, the VA must be relocated. In
the same manner, Unibus devices generate an 18-bit
address, which must be expanded to 22-bits in or­
der to access Main Memory.

Refer to Figure 1-2. The 16-bit V A is expanded to a
22-bit PA by Memory Management. If the four
high-order bits of this PA are all Is (bits 21:18), the
Unibus is referenced. If these four bits are not all
Is (addresses 00 000 000 - 16 777 777), Main Mem­
ory is referenced.

The Unibus Map performs a function similar to
that of Memory Management: it expands Unibus
addresses from 18 to 22 bits. This function is also
caIled "mapping." The Map accepts Unibus ad­
dresses 000000 - 757 777 and relocates them to the
P A space (00 000 000 - 16 777 777).

777777-760 000= PERIPHERAL PAGE

UNIBUS

lB

16777 777

UNIBUS MAP I
00 000 000

22

777 777 - 000 000

18

UNIBUS
ADDRESS SPACE

22

[17] 777 777

[17] 000 000

16777 777

00 000 000

MEMORY ADDRESS

! SPACE!

16777 777
00 000 000

CACHE M EMORY a
MAIN MEMORY

Relocation is controIled by the program, which can
enable or disable the Unibus Map and/or Memory
Management. The program also specifies the man­
ner in which the addresses are modified when these
devices are enabled.

MEMORY MANAGEMENT MAPPING
Three methods of mapping are available to Mem­
ory Management:

1. 16-bit mapping, when MMRO is cleared.
(Refer to Figure 1-3.)

2. 18-bit mapping, when bit 4 of MMR3 is
cleared arid bit 0 of MMRO is set. (Refer
to Figure 1-4.)

3. 22~bit mapping, when both bit 4 of
MMR3 and bit 0 of MMRO are set. (Re­
fer to Figure 1-5.)

M M RO responds to Unibus address 17 777 572,
MMR3 to address 17772 516.

17 777 777

VIRTUAL ADDRESS
SPACE

177 777

I MEM MGMT. I PROCESSOR
16

00 000 000 000 000

11-4019

Figure 1-2 11/70 Address Space

IV-I-2

(

(

(

(

(

(

(

777777

UNIBUS
(18 BITS)

fLOW

~~~--,----------~~;---. 

l#iiff.'f.i----{.;;:-- - - - - - - - - - - "'-=='----' , , 
000000 17000000 ~~~S 16777777 1 
177777 

160000 

VIRTUAL 
(16 BITS) 

M~ , 
" "" ·t;;0"'07::C57""77:::7---t 1920K 

~00~0~00~0~ __ ~ ____________ ~~~ __ ~ 

'===:---I'" 1 
INCOMING 
ADDRESS 

---... =RELOCATION 
----- =NOADDRESS 

RELOCATION 

PHYSICAL 
ADDRESS SPACE 
(22 BITS) 

AODRESS 
LOCATIONS 
(MAX. AVAILABlE 
MEMORY l024K) 

11-3196 

In I6-bit mapping, only addresses in the ranges of 17 760 000 - 17 777 777 (Per­
ipheral Page) and of 00 000 000 - 00 157 777 (Main Memory) may be generated. 
In 16-bit mapping, the PDP-llj70 operates as the PDP-II/20, or as the PDP-
11/45 with Memory Management disabled. 

777777 

UNIBUS 
(18 BITS) 

000000 

Figure 1-3 16-Bit Mapping 

FLOW 

r.===~-.----------~~,-~ 

124K 

~----

'-""==-_J, UNIBUS "'r.:lO"",77;"O;7",n;"O;7---'1 
MAP, 

\'" , 
" - - -- - - - ""00"'7""57;;"77"'7'----; 19 20K 

177777 124K 124K 1 
~~J~~f -----:J::T-

"'00"'0"'00"'0'--__ -' ____________ ,_"0"'0"'00"'0"'000"'----' ___________ "0",0",00",00",0,,,-o_-, 

INCOMING PHYSICAL ADDRESS 
ADDRESS ADDRESS SPACE LOCATIONS 

---.. =RELOCATION 
---- ....... ::NO ADDRESS 

RELOCATION 

(22 BITS) (MAX. AVAILABLE 
MEMORY l024K) 

11-3197 

In I8-bit mapping, only addresses in the ranges of 17 760000 - 17777777 (Per­
ipheral Page) and of 00 000 000 - 00 757 777 (Main Memory) may be generated. 
In 18-bit mapping, the PDP-l1/70 operates as the PDP-ll/45, with Memory 
Management enabled. 

Figure 1-4 I8-Bit Mapping 

IV-I-3 



FLOW 

-----------
777777 

~ 
UNIBUS \ 

(18 BITS) 124K 

~S----000000 17000000 
16777777 16777777 

MAP 

~ 
1.20K \ 

/r:;,/ 
ADDRESS \ 

\ 
\ 

177777 \ 
\ 

000000 .. 00000000 

INCOMING PHYSICAL ADDRESS 
ADDRESS ADDRESS SPACE LOCATIONS 

(22 BITS) (MAX. AVAILABLE 
MEMORY 1024K) 

------.. = RELOCATION 
- ---- 'NO AOORE5S 

RELOCATION 
\1-3198 

In 22-bit mapping, the VA may be relocated to any address in the PA space (00 
000 000 - 17 777 777). This is the only mapping in which PAs 17 000 000 - 17 
757 777 can be generated; they correspond to Unibus addresses 000 000 - 757 
777, or the 124K Unibus locations which are not reserved for the Peripheral 
Page. The addresses in this range can be used by the program to access Main 
Memory via the Unibus Map. 

Figure 1-5 22-Bit Mapping 

~77=7=77~7--~---------

UNIBUS 
(18 BITS) 

000000 

INCOMING 
ADDRESS 

------+ = RELOCATION 

FLOW 

~17~77=77=7~7---r----------~==~-' 

4K 

~\~~~g)~~!¥~~~~!---k--- -- ----- - -=="'----' 

" 
.L1""70"'0~~:"':~:_-~~,;us 16777777 1 

M~ 

" , 
"" 'f,OO::07;;:S7"'77""7---l1.20K 

PHYSICAL 
ADDRESS SPACE 
(22 BITS) 

f--------1'24K 1 
00000000 

ADDRESS 
lOCATK)NS 

----- =NQADDRESS 11-4050 
RELOCATION 

Figure 1-6 Unibus Map Address Space 

IV-14 

( 

( 

( 

( 

( 



( 
\ 

Software written for the PDP-II/20 or 
11/45 runs without modification on the 
PDP-1Ij70 because the Unibus Map 
should not be enabled by this software, 
and because Memory Management will 
be enabled as required, i.e., the IS-bit 
mode enabled or disabled, and the 22-bit 
mode disabled. This does not take into 
account the difference in speed between 
these processors. 

UNIBUS MAP ADDRESSING MODES 
The Map is enabled when bit 5 of the Memory 
Management Register #3 (MMR3) is set .. MMR3 re­
sponds to PA 17772 516. Refer to Figure 1-6. 

I. The Unibus Map never responds to the 
Peripheral Page addresses (17 760 000 ~ 
17777 777). 

2. When the Map is disabled, Unibus ad­
dresses 000 000 - 757 777 reference. 
Main Memory addresses 00 000 000 - 00 
757777, i.e., they are not modified. 

3. When the Map is enabled, a Unibus ad­
dress in the range of 000 000 - 757 777 
is relocated by adding to it the contents 
of a Mapping Register. 

It should be noted that the operations mentioned in 
2 and 3 above are subject to fixed upper and lower 
address limits. These limits may be changed by add­
ing or removing jumpers in the Unibus Map. 

The Unibus Map is described in Section V of this 
manual. 

N-I-S 





{ 
\ 

Memory Management receives all Virtual Ad­
dresses generated by the program, relocates them if 
necessary and then transmits the physical addresses 
to the Cache or to the Unibus. Address modifica­
tion is the main function of Memory Management. 
This modification of addresses is called Relocation 
because it consists of adding a fixed constant to 
every virtual address (Refer to Chapters 2 through 
4). 

Memory Management also allows the user to pro­
tect one section of memory from access by pro­
grams located in another section. It divides the 
memory into sections - called pages (Chapter 8). 
Each individual page has a protection or access key 
associated with it that defines access to the page. 
With the Memory Management unit, a page can be 
keyed non-resident (memory neither readable nor 
writable) or read-only (no write operations to mem­
ory). These two types of protection, in association 
with other features, enable the user to develop a se­
cure computer operating system. With the non-resi­
dent key, memory not specifically assigned to a 
program can be made unavailable to it (Chapter 9). 

It is often desirable to load a program into one 
area of physical memory and then execute it as if it 
were located in another area of memory, e.g., when 
several user programs are simultaneously stored in 
memory. When anyone program is running, it 
must be accessed by the processor as if it were lo­
cated in the set of addresses beginning at O. This 
process is called Relocation. When the processor ac­
cesses virtual address 0, a base address is added to 
the address; thus, the relocated 0 location of the 
program is accessed. Typically, this same base ad­
dress is added to all references while the program is 
running. A different base address is used for each 
of the other programs in memory. 

CHAPTER 1 
GENERAL DESCRIPTION 

Memory Management specifies relocation on a 
page basis, which allows a large program to be 
loaded into discontiguous pages in memory. This 
ability eliminates the need to shuffle programs to ac­
commodate a new one. It also minimizes unusable 
memory fragments, allowing more users to be 
loaded in a specific memory size. 

A program and its data may occupy as many as 16 
pages in the memory. The size of each page may 
vary and can be any multiple of 32 words, up to 
4096 words in length. This feature allows small 
areas in memory to be protected, i.e., stacks, buf­
fers, etc., and also allows the last page of a pro­
gram, exceeding 4K words, to be of adequate 
length to protect and relocate the remainder of the 
program (Chapter 8). As a result, the memory frag­
mentation problem inherent with fixed-length pages 
is eliminated. The base address of each page can be 
any multiple of 32 words in the Physical Address 
space, thus ensuring compacted core. Finally, the 
variable page size enables pages to be dynamically 
changed at run time. 

The Memory Management unit provides two bits 
of active page status information: an "accessed" bit 
and a "written into" bit. These bits can be used by 
the operating system program to determine whether 
the page has been accessed and, if so, whether it 
was written into. The accessed bit can be used by 
operating system programs to determine which 
page should be overlaid with the new program page 
in systems that swap programs back and forth from 
a disk. The written into bit can be used to deter­
mine whether the page to be overlaid must be 
swapped back to the disk or whether it is identi­
caito a copy already there. 

IV -1-1 



Memory Management provides three separate sets 
of pages for use in the processor's Kernel, Super­
visor, and User modes. These sets of pages increase 
system protection by physically isolating User pro­
grams from service Supervisor programs and the 
Kernel program. The service programs (compilers, 
editors, file system, assemblers, etc.) are also sepa­
rated from the Kernel program (exception han­
dling, I/O, memory management, etc.). Separate 
relocation register sets greatly reduce the time neces­
sary to switch context between mapping. The three 
sets also aid the user in designing an operating sys­
tem that has clearly defined communications, is 
modular, and is more easily debugged and main­
tained. During development cycles, these features re­
sult in time and cost savings; in the final system 
design, they result in an efficient and reliable 
system. 

The Virtual Address space is further divided, within 
each of the Kernel, Supervisor and User pages, into 
Instruction Space and Data Space (I and 0 space). 
I space contains code, i.e., any word that is part of 
the program, such as instructions, index words and 
immediate operands. D space contains information 
that can be modified, such as data buffers. 

By using this feature, Memory Management can 
relocate data and instruction references with sepa­
rate base address values; thus, it is possible to have 
a user program of 64K words consisting of 32K of 
instructions and 32K of data. Moreover, a conven­
ient means of building reentrant shared programs is 
provided (these programs keep a separate data area 
for each user). The ability to relocate data with sep­
arate base address values enables shared compilers, 
assemblers, editors, and supervisors to be 
developed. 

PDP-II stacks expand by pushing words into lower 
addresses and thus growing downward; procedure 
sections increase by growing into higher addresses. 
All memory pages can be expanded downward or 
upward by adding lower addresses (stack) or higher 
address (procedure, data). As a result, it is easy to 
expand both stack and program pages. 

An Abort is the non-completion or interruption of 
a data cycle due to an error. Aborts are serviced im­
mediately, prior to the completion of the instruc­
tion during which they occur. A Trap is an 
interruption of the normal program flow by inter­
nal machine conditions. These conditions can be, 

but are not necessarily, errors. A trap is executed af­
ter the instruction during which it occurs is com­
pleted. Both aborts and traps generated by Memory 
Management transfer control to location 250. Three 
status registers (Chapter 9) record all information 
necessary to recover from a Memory Management 
abort. This information includes the page number 
that faulted, the type of violation that caused the 
fault (exceeded length, read-only violation, etc.), 
and all information needed to easily restart the 
aborted instruction once the Virtual Address has 
been corrected. 

Three protection keys cause a trap, i.e., an auto­
matic transfer of program control to location 250 
at the end of the current instruction. The trap fea­
ture is useful for gathering "frequency of page use" 
statistics. 

DEFINITION OF PAGE 
A "Page" is a collection of contiguous addresses. 
Memory Management divides the 32K Virtual Ad­
dress space into eight 4K sections called Virtual 
Pages. The lowest Virtual Address in each page is a 
whole multiple of 4096. The three high order bits of 
the VA [VA(l5: 13)] are the page number (0-7) and 
select a PAR/PDR pair within the current mode 
(Kernel, Super or User) and space (I or D). 

ThisPAR/PDR pair in turn defines the Physical 
Page. The PAR contains the base address of this 
page, which may be on any whole multiple of 32 
words. A block consists of 32 words, and a physical 
memory page may consist of up to 128 blocks. The 
Page Length Field (PLF) of the PDR (bits 14:08) 
determines the allowable length of the page. A page 
may expand upward (from lower to higher ad­
dresses) or downward. Expansion direction is deter­
mined by bit 3 of the PDR (ED). 

PHYSICAL MEMORY PAGE 
Refer to Figure I-I. A block consists of 64 10 = 100s 
bytes or 3210 = 408 words. The 6-bit word number 
(bits 05:00) field of the VA specifies an address (00 
- 77) within the block (refer to Chapter 4). 

A page consists of a maximum of 200s blocks (000 
- 177), or 2008 X 1008 bytes = 20,000 bytes or 
10,000 words. Thus, a page starting at PA = 00000 
000 has a maximum possible PA of 00 17 777. A 
block starting at 00 000 000 ends at 00000077. 

IV-1-2 

( 

( 

( 

( 

( 



( 

( 

PHYSICAL 
MEMORY 

00017 777 

BLOCK 177 

00017700 

00017677 

BLOCK 176 

00017600 

00017577 

00000200 

00 000 177 

BLOCK I 

00000100 

00000077 

BLOCK 0 

00000000 

} 
1 BLOCK 

=100 BYTES 
= 40 WORDS 

BASE 
-ADDRESS 

ALL NUMBERS IN OCTAL 

1 PAGE = 
20000 BYTES MAX. 
= 10000 WORD MAX. 

A Physical Address is constructed as follows (refer 
to Figure 1-2): the base address of the page is con­
tained in the selected PAR. The block number field 
of the VA (bits 12:06) is added to this base address 
to give the base address of the block. The word 
number field of the VA specifies the Displacement 
In the Block (DIB). 

The relocation example shown in Figure 1-3 illus­
trates several points about memory relocation: 

Figure 1-1 Example of Physical 
Memory Page 

I. Although the PAs appear to the pro­
gram to be in contiguous address space, 
the 32K-word VA space is actually relo­
cated to several separate areas of phys­
ical memory. As long as the total 
available physical memory space is ade­
quate, a program can be loaded. The 
physical memory space need not be 
contiguous. 

15 1312 0605 00 

VI RTUAL ADDRESS = 157 746 LI_I..J... __ °-LI_....1,.. ____ . .l..1 ____ -L-I_l __ 0 __ 0 __ L---...:. __ 0-J1 

ACTIVE PAGE FIELD 
SELECTS PAF = 

PAGE BASE ADDRESS 

PAR 6 = 13 546 000 

21 

1 I 0 1 1 1 0 

I 
\ 

~'-\ _____ ~,...----Jo .. ~-_-~,...---~ 
APF: BLOCK NUMBER : 

I 
I 
I 
I 
I 
I 
I 
I 
112 

1 I I 0 o I 1 I 0 

+ 

0 0 

I 

I 
I 
I 
I 
I 
I 
I 

061 

o I 
I 

DISPLACEMENT 
IN BLOCK 

..... 

i, __________________ I_A~Dt~E_R_I ____________ ------~ i 
IZI Oo! 

22-BIT RELOCATED I I 
ADDRESS = 1 0 0 0 0 0 0 0 

13 565 746 L--.l.. ________ ~I ________ -L---------L-__ ----~--------~--------~-------J. 
'--------------~,...-------_____ ~/~\ ___ ~-----~ 

BASE ADDRESS OF BLOCK 

Figure 1-2 Construction of PA 

IV-1-3 

DISPLACEMENT 
IN BLOCK (DIBI 

11-4082 



2. 

3. 

PROGRAM 
MEMORY 

MANAGEMENT 
PHYSICAL 
MEMORY 

PHYSICAL VIRTUAL ADDRESS PAGE l J PAGE BASE ADDRESSES 
RANGES NO. 

000000 - 017776 0 104000XX 110417776 }PAGE 0 
l.!0400000 

020000 - 037776 1 003200XX t---i 00337776 }PAGE 1 
040000 - 057776 2 012500XX ~OO320000 
060000 - 077776 3 000600XX 01267776} PAGE 2 

100000 - 117776 4 000200XX 
01250000 

120000 - 137776 5 071000XX 00167776 } PAGE 7 
00150000 

140000 - 157776 6 000200XX 

160000 -177776 7 001500XX 
07117776 } PAGE 5 
07100000 

00077776} PAGE 3 
00060000 

00037776} PAGES 
00020000 4 a 6 

loooo~ 
11-4016 

Figure 1-3 Relocation 

Pages may be relocated to higher or 
lower PAs, with respect to their V A 
ranges. I n the example, Page I is relo­
cated to a higher range of PAs, Page 4 is 
relocated to a lower range, and Page 3 is 
not relocated at all, since the Page Base 
(= PA F) restores to the V A the three bits 
(15: 13) which are stripped during 
relocation. 

Each page is relocated independently. 
Two or more pages can be relocated to 
the same physical memory space. Using 
more than one page address register in 
the set to access the same space is one 
way of providing different memory ac­
cess rights to the same data, depending 
on which part of a program was referen­
cing that data. In Figure 1-3, note that 
the same relocation constant is assigned 
to Pages 4 and 6. As a result, VAs 
within both address ranges access the 
same PAs in memory, using different 
page address registers. 

IV -1-4 

BLOCK DIAGRAM 
Refer to Figure 1-4. Memory Management receives 
the VA from the processor. It generates the PA, 
which is received by the Cache or by the Unibus. 
As a result of its management functions, Memory 
Management informs the processor of traps and 
aborts. 

Chapters 2 through 5 of this section describe the 
generation of the Physical Address. Chapters 6 
through 9 explain the address checking and error re­
porting functions of Memory Management. 

11-4015 

Figure 1-4 Block Diagram 

( 

( 



CHAPTER 2 
MEMORY MANAGEMENT MAPPING FUNCTION 

When Memory Management is enabled, the normal 
16-bit, direct-byte address is no longer interpreted 
as a direct Physical Address (PA) but as a Virtual 
Address (V A) containing information to be used in 
constructing a new 22-bit P A. The information con­
tained in the V A is combined with relocation infor­
mation contained in the Page Address Register 
(PAR) to yield a 22-bit PA. Using the Memory 
Management Unit, memory can be dynamically al­
located in pages each composed of from 1 to 128 in­
tegral blocks of 32 words. 

The starting PA for each page is an integer multiple 
of 32 words, and each page has a maximum size of 
4096 words. Pages may be located anywhere within 
the PA space. The determination of which set of 16 
page registers is used to form a PA is made by the 
current mode of operation of the CPU, i.e., Kernel, 
Supervisor or User mode. 

2.1 CONSTRUCTION OF A PHYSICAL 
ADDRESS 
All addresses with memory relocation enabled refer­
ence information in either Instruction (I) space or 
Data (D) space. I space is used for all instruction 
fetches, index words, absolute addresses and imme­
diate operands. 0 space is used for all other refer­
ences. I space and 0 space each have 8 PARs in 
each mode of CPU operation, Kernel, Supervisor, 
and User. Using Memory Management Register #3, 

15 13 12 

APF 

the operating system may select to disable 0 space 
and map all references (I nstructions and Data) 
through I space, or to use both I and 0 space. 

The basic information needed for the construction 
of a PA comes from the VA, which is illustrated in 
Figure 2-1, and the appropriate PAR set. 

The Virtual Address consists of: 

12 

DF 

I. The Active Page Field (APF). This 3-bit 
field determines which of eight Page Ad­
dress Registers (PARa-PAR 7) will be 
used to form the PA. 

2. The Displacement Field (OF). This 13-
bit field contains an address relative to 
the beginning of a page. This permits 
page lengths up to 4K words (2 13 = 8K 
bytes). The OF is further subdivided 
into two fields as showri in Figure 2-2. 

6 5 0 

BN DIB 
! , , , , , , 

BLOCK NUMBER DISPLACEMENT IN BLOCK 

11-4045 

Figure 2-2 Displacement Field 

o 

ACTIVE PAGE 
FIELD 

DISPLACEMENT FIELD 

11-4044 

Figure 2-1 Interpretation of VA 

IV-2-1 



The Displacement Field (OF) consists of: 

I. The Block Number (BN). This 7-bit field 
is interpreted as the block number 
within the current page. 

2. The Displacement in Block (DIB). This 
6-bit field contains the displacement 
within the block referred to by the Block 
Number (BN). 

The remainder of the information needed to con­
struct the PA comes from the 16-bit Page Address 
Field (PAF), the Page Address Register (PAR) that 
specifies the starting address of the memory page 
which that PAR describes. The PAF is actually a 
block number in the physical memory, e.g. PAF=3 
indicates a starting address of 96 (3 X 32) words in 
physical memory. 

The formation of the PA is illustrated in Figure 2-
3. The logical sequence involved in constructing a 
PA is as follows: 

I. Select a set of PARs, depending on the 
space being referenced. 

2. The APF of the V A IS used to select a 
PAR (PARO-PAR 7). 

15 13 12 

VIRTUAL ADDRESS (VA) APF I 
15 13 

SELECT PAR (VA < 15: 13») APF 

12 

OFFSET INTO PAGE (VA < 12: 00) ) 

121 

PAR + I \ { PAF 

21 

PHYSICAL ADDRESS I \ 1 

l 

3. 

4. 

The PAF of the selected PAR contains 
the starting address of the currently ac­
tive page as a block number in physical 
memory. 

The Block Number (BN) from the VA is 
added to the PAF to yield the number 
of the physical block in memory which 
will contain the P A being constructed. 

5. The Displacement in Block (DIB) from 
the Displacement Field (OF) of the VA 
is joined to the physical block number to 
yield a 22-bit PA. 

2.2 MANAGEMENT REGISTERS 
Memory Management implements three sets of 32 
16-bit registers. One set of registers is used in Ker­
nel mode, another in Supervisor, and the other in 
User mode. The choice of which set is to be used is 
determined by the current CPU mode contained in 
the Processor Status word. Each set is subdivided 
into two groups of 16 registers. One group is used 
for references to Instruction (I) space, and one to 
Data (D) space. The I space group is used for all in­
struction fetches, index words, absolute addresses 
and immediate operands. The 0 space group is 
used for all other references, providing it has not 
been disabled by Memory Management Register 

00 

DF 

0605 00 

BN I DIB 

i 

6 

00 

PA 

11-4043 

Figure 2-3 Construction of P A 

1V-2-2 

( 

( 

( 

I , , 
\ 



( 

#3. Each group is further subdivided into two parts 
of eight registers. One part is the PAR, whose func­
tion has been described in previous paragraphs. 
The other part is the Page Descriptor Register 
(PDR). PARs and PDRs are always selected in 
pairs by the top three bits of the VA. A PAR/PDR 
pair contain all the information needed to describe 
and locate a currently-active memory page. 

The various Memory Management Registers are lo­
cated in the uppermost 4K of PO P-ll PA space 
along with the Unibus I/O device registers. 

This chapter and Chapters 3 through 6 describe the 
address relocation function of Memory Manage­
ment, and the reading and writing of relocation reg­
isters by the program. 

Refer to Figure 2-4. Relocation is essentially the 
process of adding the contents (PAF) of a register 
(PAR) to the program or VA. This sum is then 
modified, depending on the mapping selected, and 
becomes the P A. 

CHAPTER 3 

VA __________ r--,~ 

P sw ----------t----,~ 

PROCESSOR ------" 
ROM ADDRESS ----./1 

BR 

Chapter 3 describes the selection of the PDR and 
PAR. The VA, the Processor Status Word (PSW or 
PS), the processor ROM address, and Memory 
Management Register #3 (MMR3) bits 2 - 0 (en­
able data space for User, Supervisor, or Kernel 
modes) make this selection. 

Chapter 4 describes the generation of the PA. The 
PAF and the VA are summed (except in 16-bit 
mode), examined by the PA generation circuits, and 
output to the Unibus or to Memory. 

Chapter 5 describes the generation of two func­
tions: SAPN NOT CACHE ADRS and SAPN 
UNIBUS ADRS, which are used by other parts of 
the K B 11-B for purposes of address checking for 
non-existent memory (NEXM) or control of the 
Timing Generator during bus cycles. 

The contents of the PARs and PDRs are controlled 
by the program, which can load or read them. 

ADDER 

CHAPTER 4 

r------v 

ADDRESS 
LIMI T 

CHECK 

PHYSICAL ADDRESS 
1---><-1'\. TO CACHE 

8 UNIBUS 

SAPN NOT 
CACHE ADRS 

SAPN UNIBUS 

ADRS 

11-4009 

Figure 2-4 MM Relocation Function 

IV-2-3 



Refer to Figure 2-5. Chapter 7 describes these 
read/write operations. The address decoders on the 
SCC module, which are also explained in this chap­
ter, decode the incoming PA and select the PAR or 

VA 

READ 

WRITE 

ADDRESS 
DECODERS 

SCCC 
INT 

REG 

SAPK 1--_-".1 
APR 
ADR 

PAR/PDR 

SELECTION 

BR ____________________ -, 

C1 

PARs 

PDRs 

PDR indicated by this address. The outputs of 
PARs and PDRs are driven onto the Internal Data 
Bus. 

VAg5 

SAPM 
APR 

BIT<15:00> 
MUX. 

BUS INTO L 

READ 

WRITE 

11-4010 

Figure 2-5 PAR/PDR Read/Write 

IV-2-4 

( 

( 

( 

( 



( 

( 

( 

NOTE 
A working knowledge of the processor microprogram 
ROM (Section II, Chapter I) is required for the un­
derstanding of this chapter. 

Refer to Figure 3-\. There are 48 PARs and 48 
PDRs, which are arranged in PAR-PDR pairs. The 
outputs of all PARs are wired-O Red [SAPA+B+C 
PA F(21 :06)]. as are those of the PDRs. Both the 
PAR and the PDR, in a pair, are selected and read 
at the same time. 

Each mode (Kernel, Supervisor and User) has 16 
PAR/PDR pairs available, eight for I space and 
eight for D space. 

One of the Kernel, Supervisor or User PAR/PDR 
sets is selected by the PSW current mode bits 
[PS( 15: 14)] in conjunction with its previous mode 
bits [PS(13:12)] and the K, S, U space logic on 
drawing SSRB. 

Either the I space set or the D space set for the cur­
rent mode is selected by Memory Management Reg­
ister #3, bits 2 - 0 (Enable K, S or U D space) in 
conjunction with the I space enable logic, which is 
also shown on drawing SSRB. 

One of the eight PAR/PDR pairs in the selected set 
is then chosen by bits 15 - 13 of the Virtual 
Address. 

3.1 MEMORY MANAGEMENT ROM (SSRA) 
The Memory Management ROM shown on draw­
ing SSRA controls many Memory Management 
functions. This ROM uses the same address 
[RACD RAR(07:00) H] as the processor micro-

CHAPTER 3 
PAR AND PDR ADDRESSING 

DURING RELOCATION 

program ROM, and thus reflects the current state 
of the processor. 

Drawing SSRL is a truth table of the output of the 
Memory Management ROM. The column headed 
Octal Location refers to the address of the pro­
cessor ROM state listed in the second column. 
Truth Value ROMOUT columns I - 16 show, for 
each processor ROM state, the bits that are as­
serted by the Memory Management ROM. These 
bits are called SSRA ROM OUT(16:01) H. Refer 
to Section II, Chapter I of this manual for a de­
tailed explanation of the processor ROM. 

The two 74S157 multiplexers on SSRA are used as 
decoders for ROM OUT(03:01). Their output is 
clocked into the 74S174 flip-flops by SSRK 
PULSE23 H, which is a buffered TIGE TS2 L. 

The functions generated by Memory Management 
ROM outputs I - 3 are discussed as required where 
they are used. ROM outputs 4 - 16 are used indi­
vidually and are explained in the following 
paragraphs. 

3.2 ROM OUTPUTS, 04 - 16 
SSRA ROM OUT(04:16) inform the Memory Man­
agement logic of the occurrence of certain condi­
tions in the processor. The significance of these 
outputs is described below. 

ROM OUT04 (Destination Mode) is used during 
maintenance mode only; this bit is asserted during 
certain Destination Mode memory cycles. It is used 
in conjunction with bit 08 of MMRO (Maintenance 
Mode) to enable relocation during the execution 
cycle of the instruction. 

IV-3-! 



Selected by 
SSRB KERNEL SPACE, 

SSRB SUPER SPACE and 
SSRB USER SPACE logic 

.---------------------------------------------SAPE KERNEL PAR L 

KERNEL 

000 PAR 

001 

010 

011 

100 

101 

10 

11 

000 PAR 

001 

010 

011 

100 

101 

1 10 

1 11 

~:::: 

.--------------------------,--------------S APE KERN E L CS L 

PDR 

PDR 

ADDR0 L 

ADDRI L 

ADDR2 L 

]
..---1..----------------------------------rr=========:S:A:P· ~E : ~:~: ~~R L L 

USER PAR L 

jSAPE USER CS L 

SUPERVISOR USER 

PAR PDR PAR PDR 

I SPACE 

PAR PDR PAR PDR 

D SPACE 

Figure 3-1 Addressing of PAR/POR 

IV-3-2 

{
SA.PK ADDR 3K L 
SAPK ADDR 3S L 
SAPK ADDR 3U L 

I or D SPACE selected 
by MMR3 (2:0> and 
by SSRB I SPACE A 
and SSRB I SPACE B. 
When SAPK ADDR 3 K, 
3 Sand 3 U are high, 
I space is selected; 
when they are low, D 
space is selected. 

11-4012 

( 

( 

( 



( 

( 

( 

ROM aUTOS [CLOCK PREY MODE (MT /FP)] 
is asserted during ROM cycles that assert BSOPI. 
This is shown on the Flows as BC~BSOPI. BSOPI 
is normally called for in an execute cycle that is 
common to several instructions which have differ­
ent bus operation requirements. Thus, BSOPI is a 
DA TI for MFP instructions and a DATa for MTP 
instructions. ROM aUTOS is used to clock the pre­
vious mode [PS(\ 3: 12)] into the K, S, U flip-flops 
during M FP and MTP instructions. 

ROM OUT 06 (KERN DATI) is asserted when the 
BSC ROM bits=2 and forces Kernel mode during 
the Service Flows (Section II, Chapter 6). During 
these cycles, the new PC and PS are loaded from 
Kernel space. This condition appears on the Flows 
as BC-KERN DATI and occurs only in ROM cy­
cles SVC.OO - SVC.30, BRK.30 and TRP.IO. These 
cycles all force Kernel mode but do not change 
PS( IS: 14). BR K.30 and TRP.IO are followed by 
SVC.OO, 10, 20 and 30. In this last cycle, the cur­
rent mode bits, PS(lS:14) are stored in the previous 
mode bits, PS( 13: 12), and the new current mode 
bits are loaded into PS(IS:14) from BR(IS:14) 
(lBS=2). 

ROM OUT07 (BUST) is asserted during all BUST 
cycles. AN Oed with T I, this bit is used as a clock 
in several places in Memory Management. 

ROM OUT08 (I SPACE IF MT /FPI) is asserted 
during destination cycles that are used by MFP and 
MTP instructions, along with other instructions. I 
space is forced when this bit is asserted if the in­
struction is an M FPI or an MTPI [(IR IS=O)*(IRCC 
MFP+MTP)]. See ROM OUTI4. 

ROM OUT09 (I SPACE ON IND WORD 
FETC H) is asserted during all fetch cycles and dur­
ing cycles that read index words. Since these are all 
in I space, I space is unconditionally forced when 
this bit is asserted. ROM OUTIO is not used. 

ROM OUTIO is not used. 

ROM OUTII (I IF INST START IN I) is asserted 
during the EXC.OO, EXC.IO, NEG.20 and SHR.IO 
microprogram cycles (Flows II). These cycles exe­
cute the DATO/B portion of a DATIP/DATO 
transaction and thus must be executed in the same 
space as the previous DA TIP data transfer cycle. _ 

ROM OUTI2 (DEPOSIT+EXAMINE) is asserted 
only during Console EXAM or DEp cycles 
(DEP.IO, DEP.20, EXM.IO, EXM.20, Flows 14). 

These cycles are executed in the space designated 
hy the Console A DDRESS SELECT switch. 

ROM OUTI3 (SRCM= I +2+3+4+S) is asserted 
during cycles that fetch the source operand for 
binary instructions with source modes I - S. If the 
sou rce register field is 7, this operand is the second 
word of the instruction and as such is in I space. 
These cycles are SI3.00, SI3.01, SI3.1O and S4S.10 
on Flows I. 

ROM OUTI4 (DSTM=I+2) is asserted during 
Destination Mode I or 2 cycles that are common to 
MTP lind MFP and to other DAC or a/class in­
structions. If the destination register field is 7, the 
operand is in I space. ROM OUT08 is also asserted 
when ROM OUTI4 is asserted (012.00, 012.01, 
012.10, 012.60, 012.80 and 012.90, Flows S), so 
that I space is addressed when ROM OUTI4 is 
asserted 

I. If the instruction is either MFPI or 
MTPI (I space is accessed, by defini­
tion), or 

2. The Destination Mode of the instruction 
(not MFPI or MTPI) is 7 (the word ac­
cessed is in I space). See ROM OUT08. 

ROM OUTIS (DSTM =3) is asserted during Desti­
nation Mode 3 cycles (030.10, 030.80 and 
030.90). If the destination register field is 7 during 
these cycles, the addressing mode is Absolute and 
the address word should come from I space. 

ROM OUTI6 (FLOATING POINT INST) is as­
serted for FPP Immediate Mode bus operations 
(FSV.OO and FSV.IO, Flows 12). It is used to en­
sure that the immediate operand comes from I 
space if DM2 and DF7. 

3.3 K, S, OR U MODE SELECTION (SSRB) 
The chip select signals for PARs are SAPE KER­
NEL (or SUPER/USER) PAR l; for PDRs, these 
signals are SAPE KERNEL (or SUPER/USER) 
CS L. Because SCCC INT REG H is low during re­
location and the B inputs to the multiplexers are se­
lected, both the PAR and PDR chip select signals 
have the same source: SSRB KERNEL (or SU­
PER/USER) SPACE (I) L. These signals are the 
outputs of three flip-flops on SSRB that are 
clocked on the trailing edge of T I of all BUST cy­
cles (SSRB ClK SPACE H). The input to these 
flip-flops are the AND-OR-invert gates SSRB KS 
(or SS/US) L. 

IV-3-3 



I. During a Console cycle (ROM OUTI2), 
the Console ADDRESS SELECT switch 
determines the mode [SSRK CNSL 
KERNEL (or SUPER/USER) H]. 

., A KERNEL DATI (ROM OUT06) un­
conditionally forces Kernel Mode during 
the Service Flows. 

3. During the BSOPI (execute) cycle 
(ROM OUT05) of an MFP or MTP in­
struction, the mode is forced to the pre­
vious mode, as determined by PS(l3: 12). 
Note that MFP instructions are 
1/c1ass*DAC*BSOPI, which causes their 
destination cycle to be a DATI, and that 
MTP instructions are 0 /c1ass*BSOPI, 
which causes their output cycle to be a 
DATO. IRCC MFP+MTP H is asserted 
during the execution of all MFPI, 
M FPD, MTPI and MTPD instructions. 

4. K, S, or D space is selected by the cur­
rent mode PS bits [PS{15: 14)], if the cur­
rent cycle is not the BSOPI cycle (ROM 
OUT05) of an MFP or MTP instruction 
(SSRB MF/TP SPACE L), and if the 
current cycle is not a Console cycle 
(ROM OUTI2). An additional condition 
that applies only to Super or User 
modes is that the current cycle not be a 
Kernel DATI (ROM OUT06). 

3.4 I OR D SPACE SELECTION [SAPK ADDR 
3 (K, S OR U) L] 
SAPK APR ADDR3 K L, APR ADDR3 S L, and 
APR ADDR3 U L determine whether the I space 
or the D space PAR/PDR set is selected; when 
they are high, I space is addressed, when they are 
low, D space is addressed. The state of these bits is 
determined by bits 0, I, 2 of MMR3 and by the I 
space logic on SS RB. During address relocation, 
SCCC INT REG A L is high, and the B inputs to 
the SAPK APR ADDR3 multiplexer are selected. 
An input to this multiplexer is high (thus selecting 
D space) if its corresponding MMR3 bit [SCCL 
INBL D K (or S/U) (I) H] is high and if I space is 
not required by the logic on SSRB. 

IV-3-4 

MMR3 is controlled by the program [BR{02:00)]. 
The output of the I space logic (SSRB I SPACEA 
Land SS RBI SP ACEB L) is clocked on the trail­
ing edge of TI of BUST cycles (SSRA ROM 
OUT07 H) into the SAPK I SPACE flip-flops, 
which in turn are gated with the MMR3 outputs to 
generate the SAPK APR ADDR bits. 

I space is forced whenever the output of either of 
the SSRB I SPACE gates is asserted (=Iow). 

SSRB I SPACEA L is asserted under the following 
conditions: 

I. During a Console DEP or EXAM 
(ROM OUTI2) if the ADDRESS SE­
LECT switch is in any of the I space po­
sitions (Kernel, Super or User) as 
indicated by SSRK CNSL I SPACE H. 

2. During all instruction and index word 
fetch cycles (ROM OUT09). 

3. During FPP Immediate Mode bus oper­
a tiuns (RO M OUTI6 and I RCC 
DSTM2 and SSRB DSTF7). 

4. During Absolute Mode address word cy­
cles (ROM OUTI5 and SSRB DSTF7). 

SSRB I SPACEB L is asserted under the following 
conditions: 

I. During cycles that fetch the source oper­
and for binary instructions in source 
modes I - 5 (ROM OUTI3) when the 
source field is 7 (IRCB SRCF7). This in­
cludes Immediate and Absolute Modes. 

2. During DATO or DATOB cycles that 
complete a DATIP operation (ROM 
OUT II), if the previous mode was I 
(SSR B PR EV= I). This ensures that the 
DATIP-DATO/B operation is per­
formed to the same memory location. 

( 

., 

( 

( 

( 

( 



( 

( 

( 

( 

3. During destination cycles (ROM 
OUT08) when the instruction is either 
MFPI or MTPI [IRCC MFP+MTP and 
not IRCA IRI5 (I) H], unless both cur­
rent and previous modes are User and 
the instruction is an MFPI(lR07=0). In 
other words, the Destination Mode of 
MFPI and MTPI is executed in I space, 
except that the MFPI is executed in D 
space if both previous and current 
modes are User. This prevents a pro­
gram from using MFPI to read from a 
read-only page in his I space, thus pre­
serving the integrity of proprietary pro­
grams (Execute-Only=1 space and read­
only). 

For example - assume that a User pro­
gram req uests service from the Kernel 
program by doing an EMT. After this in­
struction, the mode bits in the PSW are: 

current [PS(l5: 14)] = Kernel 
previous [PS(l3: 12)] = User 

After executing the User program's 
req uest, the Kernel program returns con­
trol to the User program by an RTI. Be­
fore doing this, the Kernel program 

ensures that both current and previous 
mode bits are set to User. If this were 
not done, the User program could read 
the Kernel proprietary code via the 
MFPI. 

4. During Destination Mode I or 2 cycles 
(ROM OUT 14), and if the destination 
field is 7 (Immediate Mode) and the in­
struction is not MFP or MTP. 

3.5 REGISTER SELECTION [SAPK ADDR(2:0) 
L] 
The select bits for a PARjPDR pair [SAPK APR 
ADDR(2:0) L] are common to all PARs and 
PDRs. SCCC INT REG A L is high because a 
PAR or a PDR is not directly referenced, and the 
B inputs to the multiplexers on SAPK are selected. 
SAPK APR ADDR(2:0) and APR ADDRA(2:0) 
are the same as BAMX(15:13) H. ADDRA(2:0), 
which are identical to ADDR(2:0), are used only 
for the 310IAs that contain PAF(09:06), and are 
110t buffered (as are the ADDR bits). The address 
is implemented in this manner to speed up the gen­
eration of bits 09 - 06 of the PA. These bits, to­
gether with V A(05:00) are the index field of the 
address input to the Cache. 

IV-3-5 





( 

( 

CHAPTER 4 
GENERATION OF THE PHYSICAL ADDRESS 

In 16-bit mapping, the Virtual Address (VA) is not 
modified, and the relocated address is the same as 
the VA. 

In 18- and 22-bit mapping, the VA is added to the 
contents of the selected PAR. This sum is the relo­
cated address. [The contents of the selected PAR 
are also referred to as the Page Address Field 
(pA F)]. The logic that executes this operation is 
shown on drawing SAPJ. 

In 16- and 18-bit mapping, the relocated address is 
examined to determine whether it is a Unibus ad­
dress. If it is, the high order .bits are set to Is; if it 

FLOW 

is not, these bits are set to 0 to form the Physical 
Address (PA). 

In 22-bit mapping, the PAis the same as the relo­
cated address. 

4.1 16-BIT MAPPING 
Refer to Figure 4-1. In 16-bit mapping, the PA 
space consists of 28K memory locations (PA=OO 
000 000 - 00 157 777) and the 4K Peripheral Page 
(PA= 17760000 - 17777777). 

Physical Addresses 00 160000 - 17 577 777 cannot 
be generated by the processor when using this 
mapping. 

.. 
r.=~~-r----------~~--, 

16777777 

1 
1920K 

r:"":""~'--~I¥"-S~-+ ____________ ==----, ________ -_. -~:""O:;7.:"":","~---i 1 
INCOMING PHYSICAL ADDRESS 
ADDRESS ADDRESS SPACE LOCATIONS 

(22 BITS) 

---.. =RELOCATION 
----- =NO ADDRESS 

RELOCATION 

Figure 4-1 16-Bit Mapping 

IV-4-1 

11-4049 



VIRTUAL ADDRESS- 157 74611; ,I I: I t 00 
I I a a I t a I 

21 16 15 13 00 
t a a I I a I 16-BIT MAPPING I I 

PHYSICAL ADDA. 0 0 0 0 0 0 1 I I a I 
-00157746,. I .. 

~===N=O=T=U=NI~BU~S=A=OO=RE=S=S====~~----~------~----~-----" 

15 13 00 
I a a I I a I VI RTUAL ADDRESS: 167 746 1::1 ::1 ::!::I :::;1 =1=,1,-0-,-, _I ____ I...,J,L...I ____ ---' ______ -'--____ -' 

21 16 15 \3 00 
I a a I I 01 

IS-BIT MAPPING I I 
PHYSiCAL ADDR. I I 1 

; 17 761 7461:. =======:::;=====.:::::====::---'-____ --'-______ L-____ ...l...-____ -' 

UN I BUS ADDRESS 

I 0 1 I 

Figure 4-2 16-Bit Mapping: Generation of PA 

Refer to Figure 4-2. A 16-bit VA is a PA if bits 
15:13 are not equal to Ill. In this case, bits 21:16 
of the PA are made Os, and bits 15:00 are the same 
as in the VA. If bits IS: 13 of the VA are equal to 
III, a Unibus address is intended by the program, 
bits 21: 16 of the PA are made I s, and bits 15:00 are 
unchanged from the VA. 

2. 

3. 

Bits 12:06, the Block Number (BN). 
These bits are added to the PAF to form 
bits 21 - 06 of the PA. 

Bits 05:00, the Displacement in Block 
(DIB). These bits are not altered and be­
come bits 05 - 00 of the PA. 

4.2 VIRTUAL ADDRESS 
The V A consists of three fields: 4.3 I8-BIT MAPPING 

I. Bits 15: 13, the Active Page Field (APF). 
These bits select one of PARs 0 - 7 
within the mode and space selected. 

Refer to Figure 4-3. In 18-bit mapping, the VA is 
added to the selected PAF to generate the PA. This 
address has a range of 128K, from address 00 000 
000 - 17777777. 

FLOW 

~~~-,----------~~.--, 

~==~~-----------~~~~

00757777

16777777 1
----------'0""0"'75"'"77'"'7"""7 ---1,920K

177777 124K 124K 1 VIRTUAL ~MEM_
(l6BIT5) MGMT

000000

INCOMING
ADDRESS

~ =RELOCATION

• 00000000

PHYSICAL
ADDRESS SPACE
122 BITS)

___________ 00000000

ADDRESS
LOCATIONS

---- =NO ADDRESS 11-4048
RELOCATION

Figure 4-3 18-Bit Mapping

IV-4-2

(

(

(

(

If bits 17:00 of the PA are 000000 - 757 777, it is a
Memory reference and PA(2I:I8) are forced to ze­
roes. If PA(17:00) are 760 000 - 777 777, it is a
Unibus reference and PA(2I :18) are forced to ones.

Physical Addresses 00 760 000 - 17 757 777 cannot
be generated when using this mapping. Refer to Fig­
ures 4-4 and 4-5, which show examples of I8-bit
PA generation.

Figure 4-4 shows the case of an 18-bit PA that is
not a Unibus reference, i.e., bits 17: 13 are not all
Is. In this case, bits 21:16 of the PA are modified
to zeroes, which causes a memory reference.

Figure 4-5 shows the case of an 18-bit relocated ad­
dress that is a Unibus reference, i.e., bits 17: 13 are
all I s. I n this case, bits 21: 16 of the PA are changed
to I s, which causes a Unibus reference.

15 1312 06 05 00

V,RTUAL ADDRESS· '57 7461, I' ° I, , ° ° , , ° I
=~==~, ==~==~~~

ACTIVE PAGE FIELD
SELECTS PAR 6

PAR 6 ,,'13546 000

, , , , , ,
12, ,7

INPUT TO I
° , , MULTIPLEXERS" I

13 565 746

2' '7
IS-BIT MODE I

° ° ° I, PHYSICAL ADDR 0
=00 565 746 I

°

° ,

NOT UNIBUS ADDRESS

APF :

I ,
: ,
I
I ,
112

~
13

, °

" , , °

, °

, °

, ,

, ,

DISPLACEMENT
IN BLOCK

, ° °

, °

Figure 4-4 I8-Bit Mapping: Cache Address

00

V,RTUAL ADDRESS. '57 746 1'"' I' ~3f2, ~61°: ° ° , , :°1
~~::A=P:F:::~' ::::::::~::::~:::D:'S:P:LA~C:EM:E:N:T~

ACTIVE PAGE FIELD

SELECTS PAR 6

PAR 6" 13 746 000

I IN BLOCK
, ,
I ,
I
I ,
112

(21 17 00

INPUT TO I I'
I~U~~~~~~ERS " c._' -'-0_'_--' ___ -'-__ ' _0-1._'_0_--,_' __ ' _....1....' __ 0 _0-'-___ 0

2' '7 00

IS-BIT MODE 1 I 1
~~7Y~~C5A;4A~DR ~=' ='='==' :::,::'====' -::::;-' _0 -'-'_0_--'_'_'_---''--' _0 __ ,--_'_0

UNIBUS ADDRESS

Figure 4-5 I8-Bit Mapping: Unibus Address

IV-4-3

4.4 22-BIT MAPPING
Refer to Figures 4-6 and 4-7. In 22-bit mapping,
the V A is relocated in the same manner as in I8-bit
mapping, but the relocated address becomes the PA
without modification. Thus, all PAs from 00 000
000 - 17 777 777 can be generated.

Addresses 17 760000 - 17 777777 are Unibus I/O
Page references. Addresses 00 000 000 - 16 777 777
are memory references. The I24K of addresses
from 17 000 000 - 17 757 777 may be used to ac­
cess memory via the Unibus Map (dotted lines on
drawing).

fLOW

I,~n~n=7~77~-'-----------~~~--'

4K

17760000
17757777

124K

17000000
\6777777

'"17""77"'7"-7 -----{/:;,:, /

1920K
ADDRESS 1920K

"'00""0""00""0'--_-' ______ ",o",o",oo""o",-oo,,-....J _______ ~ ____ 00000000
INCOMING PHYSICAL ADDRESS
ADDRESS ADDRESS SPACE LOCATIONS

122 BITS)

------ "RELOCATION
- ---- "NO AOORESS

RELOCATION 11-4041

Figure 4-6 22-Bit Mapping

VIRTUAL ADDRESS- 157 7461'~ I 1 ~3f~ ~61°~ ° ° 1 1 :01

~~====~,======~====~====~====~i

ACTIVE PAGE FIELD

SELECTS PAR 6

PAR 6 z 13 746 000

APF : D1SPL.ACEMENT I
I IN BLOCK I
I I
I I
I 1
I 1
I I
: I
112 1

I
I
I

i I

1 ~ i
:';;c2,;--'-----;,:;-7------'-;c13;--~------~1 00'

Figure 4-7 22-Bit Mapping

IV-4-4

(

(

(

00

VIRTUAL ADDRESS-l.7 746 1" I 1 ~3j'~, D6i"~ 0 0 1 1

~~==,~==~==~~~
APF :

ACTIVE PAGE FIEl,.D

SEl-E;CTS PAR 6

PARS"13 ~46 000

I
I
I
I
I
I
1~1 17

22~BIT MAPPING I
0 1 1 PHYSICAL ADDR" 1

13 565 746

~1 17

18-BIT MAPPING I
0 0 l' PHYSICAL ADOR" 0 0

00 565 746 I

0 1

0 1

I
I
I
I
I
I
I
I
11~

$
13

1 0

13

1 1 0

NOT l,INIBUS ADD~ESS

~1

" 16-BIT MAPPING I
0 0 0

o l' 1 0 1 PHYSICAL ADORe 0 I 0
00 151 746

1 0

1 0

1 1

1 1

1 1

1 1

DISPL.ACEMENT
IN BLOCK

1 0 0

1 0

1 0 0

Figure 4-8 Physical Address Generation: Example 1

Refer to Figures 4-8 and 4-9. It should be noted
that if the mapping is changed, the PA may also be
changed. I n Figure 4-8, three different PAs are gen­
erated from the same V A and PAF:

I. In 22-bit mapping: 13 565 746

2. In 18-bit mapping: 00 565 746

3. In 16-bit mapping: 00 157746

These PAs are all memory references.

IV-4-5

oo!

15 1312 0605 00

I I VIRTUAL ADDRESSo 157 7461' 0 I' I I'
=~==~, ==~==~~~

APF :

o I
i

I
I
I
I
I

ACTIVE PAGE FIELD

SELECTS PAR 6

PAR 6 = 13 746 000

I
I
I
I
I
I
I
I
112

:~21~------~17~------~~--------------~

21 17

PHYSICAL ADOR = 1 1 1

DISPLACEMENT
IN BLOCK

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

OO!

o I
00

o I 16- BIT MAPPING I I
17 165 746 ~" =====" :::=====-;---' ___ --'-___ --1... ___ .1.-__ --'

UNIBUS ADDRESS

IS-BIT MAPPING 121 115
00

1 PHYSICAL ADDR= 0 a 0 0 a 1 1 0 1 1 a I a
00157 746 ~"~I ___ ~ __ ~"~ ___ ~ ___ .!_ ___ ~ __ ~ ___ ~"

Figure 4-9 Physical Address Generation: Example 2

In Figure 4-9, also using the same V A, three differ­
ent addresses are generated, two of which are mem­
ory references and one a Unibus reference:

I. In 22-bit mapping: 13 765 746

2. In 18-bit mapping: 17 765 746

3. In 16-bit mapping: 00 157746

IV-4-6

li-4039

(

(
\

(

(

(

4.5 RELOCATION LOGIC
The relocation logic shown on schematic SAP] is
controlled by three functions:

I. SSRA KY PH MEM AC (I) H, which
is a flip-flop that is set during all ROM
Console EXAM or DEP cycles if the
ADDRESS SWITCH is in PROG PHY
or CONS PHY.

2. SCCL ENAB 22BIT MODE H, or bit
04 of MMR3 (address 17 772 516),
which is controlled by the program.

3. SSRE RELOC L, which is controlled by
bits 00 and 08 of MMRO (address 17
777 572). These bits are also generated
by the program. Bit 00 causes RELOC
to be asserted when SSRA KY PH
MEM AC (refer to I below) is cleared.
Bit 08 allows one additional condition to
assert RELOC: SSRA DST (I) H set;
this flip-flop is set on the trailing edge of
TI of bus cycles that write into a destina­
tion address. (See 5 below.)

RELOC controls the ALU function, as
it is the SO and S3 control input to the
74S181 ALU ICs. The three functions
are combined to generate SAP] SELO
and SEll H, which control the four PA
multiplexers.

Refer to Figure 4-10.

I. Console Mapping

2.

If SSRA KY PH MEM AC (I) H is set,
both SEll and SELO are high and Mem­
ory Management is in Console Mapping.
The D inputs to the 74S153 mUltiplexers
and the B inputs to the 74S 157 are se­
lected. SAP] PA(21:16) equal SCCK
SWR(21:16), PA(l5:13) equal VA(15:13)
[SWR(l5:00) are stored in the SR during
a LOAD ADRS and read back via the
BAMX]. Since RELOC is negated in
Console mapping, PA(l2:00) also equal
VA(12:00).

16-BIT Mapping
If KY PH MEM AC is cleared and RE­
LOC is not asserted, SEll is high and

IV-4-7

SELO is low. The C inputs to the
74S 153s are selected. If SAPH EX MEM
FLAG H is high, a Unibus address is re­
quired [VA(l5:13)=III], and PA(21:16)
become all Is; if VA(l5:13) are not all
Is, EX MEM FLAG is low, PA(21:16)
become all Os. In both cases, PA(l5:00)
equal V A(15:00), since the B inputs to
the 74S157 are selected and the ALU
function is A (RELOC not asserted).

3. 18-BIT Mapping
If RELOC is now asserted and SCCL
ENAB 22BIT MAPPING H is not (I8-
bit mode), the ALU mode becomes
A + B and all addresses are relocated.
SEll and SELO are both low, the B in­
puts to the 74S 153s are selected, and the
ALU function is A+B. If PA(l7:13) are
all Is (Unibus address), PA(21:18) also
become all Is. If PA(l7:13) are not all
Is, PA(21:18) become all Os (memory ref­
erence). In both cases, the remainder of
the PA equals the output of the ALU
(bits 15: 13 are selected through the
74S157 multiplexer).

4. 22-BIT Mapping
If ENAB 22BIT MAPPING is now as­
serted, SEL I is low and SELO becomes
high, thus selecting the A inputs to the
74S153s. The ALU function is A+B.
The output of the ALU becomes the PA
without modification.

5. Destination or Maintenance Mapping
If M M RO bit 00 is cleared and bit 08 is
set, Memory Management operates in
16-bit mapping, except during certain
destination mode ROM cycles, which it
executes in either 18-bit or 22-bit map­
ping (depending on the state of SCCL
ENAB 22BIT MAPPING). The ROM
,cycles during which this occurs are those
for which the Memory Management
sub-ROM bit 04 is asserted.

This mapping should only be used for di­
agnostic purposes.

PA

SELO H = H
SEL 1 H = L

22-BITMOOE

SELO H= L
SELl H = L

YES

YES

NO

SELO H = L
SELl H=H

YES

Figure 4-10 Generation of Physical Address

SELOH = H
SELl H=H

CNSL PHYS.

--.... PA

PA

__ ----.!PA

11 ·4011

ROUTING OF PHYSICAL ADDRESS fore the processor MSYN. The output
of the drivers is BUS A(l7:00) L.

I. Unibus Drivers - SAP] PA(17:12),
SCCA PA(II:06), and SCCA VA(05:00)
are input to the Unibus drivers on
SCCL. The gating function is UBCA
CPBSY B H, which is asserted ISO ns be-

IV-4-8

2. Cache - SAP] PA(21:06) are an input to
the Cache address multiplexer, ADME
AMX(21 :06). The Cache receives address
bits 05 - 00 directly from the BAMX.

(

(

(

(

(

(

(
\

Memory Management examines an address for the
purpose of determining whether it is a Unibus ad­
dress, or a valid Cache address. The signals gener­
ated as a result of this examination are used by the
TMC and UBC modules during data transfer
operations

5.1 UNIBUS ADDRESS
SAPN UNIBUS ADRS L is asserted whenever the
PA points to a Unibus reference.

The four AND inputs to SAPN UB ADRS Leach
decode the Unibus address for the four mapping
modes:

I. In 18-bit mapping, when PA bits (17:13)
are all Is;

2. In 22-bit mapping, when PA(21:18) are
all Is;

3. In 16-bit mapping, when SAPH EX
MEM FLAG H is high. [i.e., when
V A(15: 13) are all asserted]

4. In Console mapping, when switch regis­
ter bits (21: 18) are all Is.

The output of SAPN UB ADRS L is ORed with
SCCC INT REG B L, which decodes PAR and
PO R addresses. These are Unibus addresses and as
such are decoded by SAPN UB ADRS L; SCCC
INT REG B L, however, is stable until T I of the
next BUST cycle, and keeps SAPN UNIBUS
ADRS L asserted if the reference was to a Memory
Management register.

CHAPTER 5
ADDRESS VALIDITY

5.2 NOT CACHE ADDRESS
SAPN NOT CACHE ADRS is used to notify the
CP that the address generated by Memory Manage­
ment does not exist in the Cache. This signal is the
result of a comparison between the PA and the Size
Register.

I. 16-bit Mapping - All 16 bit mapping ref­
erences are legal memory references or
Unibus addresses; therefore no com­
parisons are necessary.

2. 18-bit Mapping - If there is more than
128K of memory on the system, then all
addresses that can be generated are valid
addresses. If, however, there is less than
128K of memory, invalid addresses are
possible and must be tested for.

3. 22-bit Mapping - The PA is checked
against the Size Register.

Two arithmetic signals are used to generate NOT
CACHE ADRS: OVERFLOW and
WRAPAROUND.

WRAPAROUND is asserted and disables NOT
CACHE ADRS if there is a carry out of the MSB
of the PA being generated.

e.g., 18-bit mapping:

If the PAR contains 007 777 and the VA is 000
100, the address generated is 00 000 000 (a valid
memory reference) and 18 BIT WRAPAROUND L
is true.

e.g., 22-bit mapping:

IV-5-1

If the PAR contains 177 777 and the VA is 000
100, the address generated is 00 000 000 (a valid
memory reference) and 22 BIT WRAPAROUND L
is true.

OVERFLOW H is asserted when the PA is greater
than the highest legal address in memory.

The first time OVERFLOW H is asserted is when
the PA is greater than the value in the Size Regis­
ter, i.e., the PAR is equal to the Size Register and a
VA of 000 100 is used. For instance, if the Size Reg­
ister contains 5777, there is 96K of memory. If the
PAR contains 5777 and the VA equals 000 100, the
P A generated is 00 600 000, which is the first non­
existent memory address.

SAPN NOT CACHE ADRS H is asserted when ei­
ther SAPN UB ADRS L or the AND-OR-invert
gates are asserted. This last gate is asserted if the
PA is above the size boundary.

This is checked by the WRAPAROUND and
OVERFLOW functions, except in the case of
SCCC INT REG H.

WRAPAROUND is generated by the relocation
logic on SAP] for 18-bit and for 22-bit mapping.

21 rCI
PAF I
+ +

12

VA 11

= rCI =

ADRS 1 I 0 0 0 0 0 0 0 0 0

LSAPJ 22BIT WRAPAROUND L

SAP] 18-BIT WRAPAROUND L is the carry out­
put of bit 17 of the adder; 22 BIT
WRAPAROUND is the carry output of bit 21. Re­
fer to Figure 5-1. A carry can only be generated at
bit 21 when the PAF bits (21:13) are all Is and a
carry is generated by the sum of bits 12 of the PAF
and the VA. Figure 5-1 shows the generation of the
greatest PA possible with WRAPAROUND: 00
017 6(77). This is a Cache address. The 18-bit
WRAPAROUND also generates the same max­
imum address, which is also a Cache address in 18-
bit mapping.

OVERFLOW is generated on SAPN for 18- and
22-bit mapping and on SCCN for Console mode to
determine if the address is greater than the System
Size Boundary. In both cases, the adders are used
as comparators and only the carry output is used.
A I's complement subtraction is implemented in
both cases. A number Q is subtracted from another
number P by adding the I's complement of Q to P.
A carry is generated only when Q<P, as illustrated
by the following examples:

Q<P Q=P Q>P

p 5 101 5 101 5 101
Q -3 +100 -5 +010 -6 +001 --

I 001 o 111 o 110

carry no carry no carry

06

I

06 05 00

1 I

0
I.

11-4036

Figure 5-1 Wraparound

IV-5-2

(

(

(

(

(

(
\

(

The carry therefore flags a Q<P condition which in­
dicates a legal memory reference.

Overflow is generated for 18- and 22-bit mapping
on SAPN. There is an overflow if the PA is greater
than the system size: PA>SIZ. Refer to Figure 5-2.
This is tested by the fUl)ction

PA-SIZ

But

PA = (PAF+VA)

therefore

PA-SIZ=(PAF+VA)-SIZ or PA+(VA-SIZ)

Since the subtraction is done by adding the com­
plement of the subtrahend to the minuend,

PA-SIZ= PAF+[VA+(notSIZ)]

This is the function implemented by the adder on
SAPN:

I. PAF(l2:06) are added to VA(l2:06). The
ALU function is A plus B.

21 14

VA +<-SIZll -SIZ I + I I
+

21

PAF I PAF

,

21 17

PA-SIZI
I

12

2. PAFI3 is added to O. The ALU function
is A plus B.

3. SCCN SYS SIZ(21: 14) is subtracted
from PAF(21:14). The ALU function for
these bits is A minus B, which is accom­
plished internally by adding A to the 1 's
complement of B.

For Console mapping, overflow is generated on
SCCN. SCCN CONS OVERFLOW H is the in­
verted carry output of an 8-bit adder, the inputs to
which are the System Size Register and the nega­
tion of the Console switch address. Bits (15:14) of
the Switch Register are read from SCCA V A(l5: 14)
C L, while bits (2\: \6) are read directly from the
switches; this is because bits (2\: 16) of the Switch
Register are loaded into the SR during a LOAD
ADRS cycle, and read from the BAMX.

Refer to Figure 5-3. The arithmetic operation con­
sists of summing the System Size Register with the
negation of the switch address, and taking the nega­
tion of the final carry (= borrow) as the indication
of an OVERFLOW. This operation gives the same
result as would subtracting the System Size Register
from the Switch Register and taking the non-in­
verted carry as the indication of an OVERFLOW.

00

VA I I

+
06

I
00

I

~ ~ : SAPN IS BIT OVERFLOW H

SAPN ADRS OVERFLOW H
11-4034

Figure 5-2 18- and 22-Bit Overflow

IV-5-3

21 14

SIZ

+

21 16

-SWR

15 14

EJ
= r 141

~seeN eNSL OVERFLOW H

11-4035

Figure 5-3 Console Overflow

5.2.1 18-Bit Mapping
The logic for 18-bit mapping, SAPN NOT CACHE
A DRS, is the same as that for 22-bit mode with the
exception of the added wired-OR gate; the output
oJ this gate is high only when in 18-bit mode (SAP]
SELO and SEL I H both low) and when the System
Size Boundary is less than or equal to 00 777 777

[SYS SIZ(21:18) are all Os]. If this is true, there is
less than I28K of memory in the system. In this
case, the I8-bit input AND gate to the AND-OR­
invert gate is enabled, and an OVERFLOW with
no WRAPAROUND means that the address is too
high, and thus not a Cache address. The output of
the gate is low either when not in I8-bit mapping,
or if the System Size is greater than 00 777 777.
Since this address i~ the greatest that can be gener­
ated in I8-bit mapping, OVERFLOW is mean­
ingless and the I8-bit mapping gate is disabled.

5.2.2 22-Bit Mapping
If there is a 22-bit OVERFLOW (SAPN ADRS
OVERFLOW H asserted), and if there is no
WRAPAROUND (SAP] 22-BIT WRAPAROUND
L is high), then the address is not a Cache address
in 22-bit mode.

5.2.3 Console Mapping
The PA is not a Cache address if, during a Console
DEP or EXAM operation with the address switch
in either of the PHYSICAL positions, the Switch
Register contains an address greater than the Sys­
tem Size Boundary (SCCN CNSL OVERFLOW
H).

SSRA KY PH MEM ACC is the output of a flip­
flop, clocked at every T I, whose input is the AND
of SSRA ROM OUT 12 and SSRK CNSL PHY
AD RS H. The first function is asserted only during
EXM or DEP ROM cycles; the second when the
ADDRESS SELECT switch is in either PROG
PHY or CONS PHY positions. Note that PROG
PHY is used only for readout and is meaningless
during a DEP (write) Console operation. Refer to
Section III, Chapter I.

IV-5-4

(

(

(

(

(

(

(

(

CHAPTER 6
DESCRIPTION OF PDR

In addition to its relocation function, Memory Man­
agement has supervisory or memory protection
functions.

The keys of access control are as follows:

000 non-resident abort all accesses

The Page Description Register (PDR) is read at the
same time as its corresponding PAR during reloca­
tion and contains all the information required for
the supervisory functions. Figure 6-1 shows the
PDR bit pattern.

6.1 ACCESS CONTROL FIELD (ACF)
This three-bit field, occupying bits 2-0 of the PDR
contains the access rights to a particular page. The
keys specify the manner in which a page may be ac­
cessed and whether or not a given access should re­
sult in a trap or an abort of the current operation.
A memory reference which causes an abort is not
completed while a reference causing a trap is com­
pleted. I n the context of access control, the term
"write" is used to indicate the action of any instruc­
tion which modifies the contents of any addressable
word.

001 read-only

010 read-only

011 unused

100 read/write

101 read/write

110 read/write

III unused

8 7 6 5 4

abort on write attempt
memory management trap on
read

abort on write attempt

abort all accesses;
reserved for future use

Memory Management trap
upon completion of
a read or write

Memory Management trap
upon completion of a write

no system trap/abort action

abort all accesses;
reserved for future use

3 2 0

IA IwBEDI N:.F PLF
, ! ,

I) PAGE LENGTH FIELD ~
A BIT (TRAP)--------..I

PAGE WRITTEN INTO (TRAP)------------'

EXPANSION DIRECTION} ______________ ...J
(0 = UP, 1 = DOWN)

ACCESS CONTROL FIELD-----------------...J
11-4033

Figure 6-1 Page Descriptor Register (PDR)

IV-6-1

It should be noted that the use of I Space in con­
junction with read-only access, provides the user
with a further form of protection, Execute Only.

6.2 ACCESS INFORMATION BITS (A and W)
A bit (bit 7) - This bit is used by software to deter­
mine whether or not any accesses to this page met
the trap condition specified by the Access Control
Field (ACF). (A = I is affirmative). The A bit is
used in the process of gathering Memory Manage­
ment statistics.

W Bit (bit 6) - This bit indicates whether or not
this page has been modified (i.e., written into) since
either the PAR or POR was loaded (W = I is af­
firmative). The W bit is useful in applications
which involve disk swapping and memory overlays.
It is used to determine which pages have been modi­
fied and hence must be saved in their new form,
and which pages have not been modified and can
simply be overlaid.

The A and W bits are reset to 0 whenever either
the PAR or the POR associated with it is modified
(written into) by the program, as described in Chap­
ter 7 (Paragraph 7.2).

When the POR (or its corresponding PAR) has just
been loaded by the program, the A and W bits are
O. Refer to Figure 6-2. When the POR is next used
during relocation, its output becomes available dur­
ing the BUST cycle. At T5 of this cycle (ROM

OUT07=BUST) the contents of the A and W bits
(SAPO+ E+ F RAM ATTN Hand SAPO+ E+ F
RAM WR TN INTO H) are clocked into the SAPO
A TTN and SAPO WR TN INTO flip-flops. This
saves the previous contents of these bits.

At T40f the pause cycle that follows (SAPC
PU LSE BC90 H), if RELOC is asserted, and if the
POR is not being read or written (SCCC INT REG
B L is high or not asserted) and if Memory Man­
agement is enabled (RELOC asserted), the write en­
able (W) input of the 3101A is enabled (SAPO WR
A + W L asserted), and SAPO ATTN DATA Land
SAPO WRTN DATA L are written, respectively,
into the A and W bits of the selected POR. These
two gates are enabled during relocation by SCCC
INT REG B L, which is high at this time.

If there is no abort condition (SSRC KT ABORT
FLG L = high), and if there is a trap condition
(SAPL MEM MGMT H), or if the previous con­
tents of the A bit = I, then SAPO ATT DATA L
is asserted, and a I is written into the A bit of the
POR (SAPO+E+F RAM ATTN H).

Similar logic is used for SAPO WRTN DATA L,
which is loaded into the W bit: if there is no
abort condition, and if the cycle is a OATO,
OATOB or OATIP (SAPL WRITE CYCLE H), or
if the W bit was previously a I [SAPO WRTN
INTO (I) L], then WRTN DATA is asserted.

~I·-----------BUST----------~-~I·~-----PAUSE -I

(

(

(

L0LFL (
SAPO BUST C (1) H ~ L~!---

SAPE KERNEL (SUPER, USER) CS L
L-______________________ ~!~!---------------

(CLOCK ATTN and WRTN INTO) n
--------------------------~ ~----~I~l---------------

,-------.1! ~! ---------------
SAPL MEM MGMT H

SAPO WR A+W L

11-4023

Figure 6-2 A and W Bit Timing (

IV-6-2

(

(

(

6.3 EXPANSION DIRECTION BIT (ED)
Bit 3 of the PDR specifies the direction in which
the page is to expand. If ED = 0, the page expands
upward from block number a to include blocks
with higher addresses. If ED = I, the page expands
downward from block number 1778 to include
blocks with lower addresses.

Upward expansion is typically used for program
space, and downward expansion for stack space.

6.4 PAGE LENGTH FIELD (PLF)
The seven-bit field occupying bits 14:08 of the PDR
specifies the block number (BN) which defines the
boundary of that page. The BN of the VA is com­
pared against the PLF to detect length errors.

An error occurs when expanding upward if the BN
is greater than the PLF, and when expanding down­
ward if the BN is less than the PLF.

A page length error causes an' abort.

6.4.1 Example of Upward Expansion
A page starting at location 00 017 000 and contain­
ing 52x blocks is to be defined. The page is to ex­
pand upward.

Refer to Figure 6-3. When the page expands up­
ward, ED = 0, and the PLF is set to the number of
blocks authorized for page, minus l. As shown in
the Figure:

PLF = 51 x, which authorizes 528 blocks
(0-51) for the page.

PA F = 1708, which establishes the physical
base address = 00 017 000.

PLF + PAF = 170 + 51 = 24lg, which is the
PA of the last block that may be used.

Any block number [VA(12:06)] greater than 518
will cause an abort.

The last legal PA in this example is 00 024 176.

O'1J.tfl.¢ 0 ~ 1~,ruU4 fG ~.
iflCf~iAA

------------ACTIVE PAGE REGISTER (APRI •

21

PAR

000 1

I
PAF

t
PAF - 000 170.

APDRESS RANGE
OF POTENTIAL PAGE

EXPANSION BY
CHANGING THE PLF

06

PDR

14 08 07 06 03 02 00

PLF .

t
PLF= 52 8-1 "51 8 "

LARGEST BLOCK NO.

ANY BLOCK NUMBER
GREATER THAN 518

A W ED ACF

t
ED-O­

UPWARD EXPANSION

(VA(12:06) GREATER THAN 51.1

WILL CAUSE A PAGE
LENGTH ABORT.

0170XX START OF PAGE

1-------'==-"'-"--1 O~;; xx ~~~~K:LOCK

AUTHORIZED PAGE
LENGTH - 52. BLOCKS

(0-51.1

00017276
BLOCK 2

00017200

00017176
BLOCK 1 L 00017100

00017076
BLOCK 0

00017000
L..---...--...J

SE ADDRESS OF PAGE

11-4026

Figure 6-3 Upward Expansion

IV-6-3

6.4.2 Example of Downward Expansion
A page whose base address is 00 017 000 is to con­
tain a 52x hlock stack (downward expansion).

3678 - 528 (or + 1268) = 3158 , which defines the
first illegal address as 00 031 576.

Refer to Figure 6-4. When the page expands down­
ward, ED = 1, and the PLF is set to the 2's com­
plement of the number of blocks authorized for the
page. As shown in the Figure:

A nother method for calculating downward expan­
sIon follows:

PLF = 126K, which is the 2's complement of 528,

the number of blllcks authorized for the page.

P A F = 1708, which establishes the physical base ad­
dress of 00 017 000.

PAF + 1778 (Maximum number of blocks per
page) = 361x, thus making the starting word ad­
dress 00 036 776, and the initial setting of the stack
pointer 00 037 000.

PLF = 1268, which is the 2's complement of
52x, the number of blocks authorized for the
page.

PAF = 1701, which establishes the physical
base address of 00 017 000.

PLF+ PAF = 126+ 170 = 3168, the last legal
block address.

3168 +528 = 3708 , which is the highest legal ad­
dress +2, and gives the initial setting of the
stack pointers, or 00 037 000.

<�_------------ ACTIVE PAGE REGISTER (APRI ------------_+
PAR ~

2' 06 '4 08 07 06 03 02 00

ho
0 0 0 0 0 0 0 , 1 , 1 0 0

01 ~1 0 , 0 1 101010~11' 01 I I I I
PAF PLF A W ED ACF

t t t
PAF = 000170 a PAF 0 2'S COMPLEM ENT" ED o i o

OF 528 = 1268 = DOWNWARD EXPANSION

* 2'$ COMPLEMENT = ,'S COMPLEMENT + 1:

52. 0 0'0'0'0
,·S COMP 0'0'0'01

--+-'
1010110= 1268

AUTHORIZED PAGE
LENGTH= 528 BLOCKS

(177s -1268)

ADDRESS RANGE

00036776
BLOCK 1778

00036700

00036676
BLOCK 1768

00036600

00036576
BLOCK 175 8

00036500

00031676
BLOCK 1268

00031600

OF POTENTIAL PAGE f'L"'''''''''=4<
EXPANSIONBY ~@';W4~~

CHANG'NG THE PLF 1'7

LOWEST BLOCK NO.

} FIRST BLOCK OF DOWNWARD
EXPANDABLE PAGE

170 PAGE BASE ADDRESS
+'77 MAX. BLOCKS / PAGE

367 FIRST BLOCK ADDRESS
-52 BLOCKS

315 FIRST ILLEGAL ADDRESS

OR
126PLF

+170 MAX. BLOCKS/PAGE

3i"6 LAST LEGAL BLOCK
+ 52 NO. OF BLOCKS

37000 0 STACK POINTER

A BLOCK NUMBER
REFERENCE LESS
THAN 126 B

(VA <12 .06> LESS THAN 12681
WILL CAUSE A PAGE
LENGTH ABORT.
(00017000-00031576)

__ BASE ADDRESS OF PAGE

11-4027

Figure 6-4 Downward Expansion

IV-6-4

(

(

(

(

(

(

CHAPTER 7
ADDRESS DECODERS AND READING/WRITING

Register addresses are decoded; the decoded signals
are used as addresses in the processor as well as in
Memory Management.

This chapter contains a description of the Memory
Management register address decoders and of the
reading and writing of the PARjPDRs.

PARs and PDRs are loaded (written into) only un­
der program control (with the exception of the W
and A bits in the PDRs). The program may also
read these registers. Both accesses are accomplished
by using appropriate Unibus addresses.

7.1 REGISTER ADDRESS DECODING
Register address decoders are shown on drawings
SCCB, SCCC, SCCD, SCCE, and SCCF. Ad­
dresses are buffered for various purposes on
SAPH.SSRH and SCCA.

Most of the decode signals refer to the Memory
Management registers, but other signals decode the
address of processor registers.

Table 7-1, at the end of this paragraph, lists the sig­
nals that refer to more than one register address.

The logic on SCCB decodes all the Memory Man­
agement register addresses plus the Switch Register
address:

SCCB KERNEL PDR ADRS L
17 772 300-17 772 136

SCCB KERNEL PAR ADRS L
17 772 340-17 772 376

SCCB SUPER PDR ADRS L
17 772 200-17 772 236

OF PAR/PDR REGISTERS

SCCB SUPER PAR ADRS L
17 772 240-17 772 276

SCCB USER PDR ADRS L
17 777 600-17 777 636

SCCB USER PAR ADRS L
17 777 640-17 777 676

SCCB MMR3 ADRS L
17 772 516

SCCB MMR ADRS L (MMRO,I,2)
17 777 572-17 777 576

SCCB SW REG ADRS L
17777 570

SCCB SWR+MMR ADRS L
17 777 570-17 777 576

All these address decode signals are clocked into
the flip-flops on SCCC by TIGA PSEUDO T3,
which occurs approximately 30 ns after T2 of
PA USE; they are cleared by SCCD INT CLR (TI
of BUST). The Memory Management re~ister ad­
dress flip-flops are ORed to generate SCCC INT
REG H.

The PAR and PDR flip-flop outputs are ORed on
SCCD; SCCD APR REG H is asserted when any
PAR or PDR is addressed. The unlatched version
of these same signals, plus SCCB MMR3 ADRS L,
SCCB SWR + MMR ADRS Land SCCE SYS INT
REG L are ORed to generate SCCD INT REG
ADRS H. This signal is stored in a flip-flop whose
output is SCCD INTO REG (I) L. It is asserted
when anyone of the registers that are read out on
the I nternal Data B us (INTO) is addressed.

IV-7-1

The logic on SCCE decodes the addresses of the sys­
tem registers that are located on, or read from, the
SCC module (the two size registers, the ID and the
Trap to 4 Error register) and the addresses of the
processor Control registers (PB, PIR, SL, PS):

SCCE PIR ADRS H
17777 772

SCCE SL ADRS H
17777774

SCCE SYS INT REG L
17 777 760-17 777 766

SCCE SYS SIZL ADRS L
17777760

SCCE SYS SIZH ADRS L
17777762

SCCE SYS ID ADRS L
17777764

SCCE ERR REG ADRS L
17777766

SCCE INTERNAL ADRS L
17 777 770-17 777 776

SCCE PB ADRS L
17777 770

Module

SCCB

SCCC

SCCD

SCCE

Signal

MMRADRSL

SWR+MMR ADRS L

INTREGH

APR REG H

INT REG ADRS H
INTD REG (1) L

SYSINTREGL

SCCE PS ADRS H
17777776

It should be noted that PSE UDO T3 is inhibited by
SSRC INH PSEUDO T3 L. This signal is asserted
when Memory Management is enabled and a condi­
tion exists that causes a Memory Management
abort condition. INH PSEUDO T3 thus prevents
changing the contents of the Memory Management
registers during an abort condition caused by a ref­
erence to a Memory Management register.

SCCF GEN REG ADRS is asserted for Switch reg­
ister addresses 17 777 700-17 777 717 (Console G R
addresses). This signal is clocked into the SCCF
GEN REG (I) H flip-flop by the LOAD ADRS
switch. The flip-flop is cleared by INIT, by the
CONT switch or by a LOAD AORS to an address
other than a G R address.

Table 7-1
Register Address Decode Signals

Addresses Decoded

MMRO, MMRl, MMR2

MMRO through 2, Switch Register

MMRO through 3, PARs and PDRs

PARs and PDRs

All registers read on Internal Data Bus: MMRO through
MMR3, PARs and PDRs, Switch Register, System Size Land
H Registers, System ID Register, Traps to 4 Error Register

System Size Land H, System ID, and Traps to 4 Error
Registers

INTERNAL ADDRS H PB, PIR, SL and PS Registers

SCCF GEN REG ADRS H
GEN REG (1) H

General Register addresses from Switch Register (22-bit
address).

IV-7-2

(

(

(

(

(

(

7.2 ADDRESSING OF PAR AND PDR REGIS­
TERS FROM THE UNIBUS

7.2.1 PARjPDR Addresses
The Unibus addresses for the PARs and PDRs are
listed in Table 7-2. The address bit configuration se­
lects a PAR/PDR register as follows:

1. Bits (17-06) of a PAR/PDR address de­
termine the set desired:

KERNEL:
SUPER:
USER:

177723xx
17772 2xx
17 777 6xx

2. Bit OS of the address distinguishes be­
tween a PAR and a PDR:

PO R: bit OS =0
PAR: bit OS= 1

3. Bit 04 defines I and 0 space:

I SPACE: bit 04=0
o SPACE: bit 04= 1

4. Bits (03:01) select one of eight registers.

7.2.2 Addressing
Address Bits 0-3 - Since SCCC INT REG A L is
low, the A inputs to the multiplexers on SAPK are
selected. SAPK APR ADDR(3:0) and APR AD­
DRA(3:0) are the same as SAPH VA(04:01) B H.

PAR CHIP SELECT - The Kernel, Super and
User PAR address decode signals [SCCC KER­
NEL PAR (I) L, SUPER (1) L and USER (1) L]
are selected by the multiplexer and become the CS
inputs to their respective PARs.

PDR CHIP SELECT - SCCC INT REG H is high
whenever a PAR or a PDR address is decoded, and
selects the A inputs to the SAPE KERNEL (or SU­
PER/USER) CS L multiplexer. These three signals
are the chip select signals for the PDRs. A PDR is

selected whenever its own address, or that of the
corresponding PAR are decoded.

7.2.3 PARjPDR Read
The outputs of the selected PAR [SAPA+B+C
PA F(21 :06) H] and/or PDR are input to the multi­
plexer on SAPM [SAPM APR BIT(lS:OO) H]. The
PAR is selected if SAPH V AOS is high, and the
PDR if VAOS is low.

SAPM APR BIT(IS:OO) H is in turn input to the In­
ternal Bus data multiplexer on SSRJ.

7.2.4 PAR Write
A PAR is written at T4 of DATO or DATOB
Pause cycle if TMCE KT BEND L is not asserted.

There are WRITE LOBYTE and WRITE HIBYTE
write signals for each of the modes (Kernel, Super
and User). Each is gated by an address decode sig­
nal [SCCC KERNEL (or SUPER/USER) PAR (I)
H], by SAPK WR OK (CI=DATO or DATOB
and not KT BEND), and timed by SAPC PULSE
BC9B H (T4 of Pause cycle). Byte information is
supplied by SAPK LO and HI BYTE B H, which
are derived from the UBCB functions of the same
name, which decode VAOO, DATO and DATOB.
The WRITE LOBYTE and WRITE HIBYTE sig­
nals are low when asserted and enable the W inputs
to the 3 IOIAs.

7.2.5 PDR Write
All PDR bits, with the exception of the A and W
bits (bits 07 and 06), are loaded in almost the same
manner as the PAR bits. The only difference is that
the gating signals include a PDR instead of a PAR
address decode signal. These signals are SCCC
KERNEL (or SUPER/USER) PDR (I) H.

Refer to Chapter 6 for a description of the several
PDR fields. During a write operation, BR(lS:08)
are loaded into the Page Length Field (PLF), BR03
is loaded into the Expansion Direction Bit (ED),
and BR(02:00) are loaded into the Access Control
Field (ACF).

IV-7-3

I Space

No. PAR

0 17772 340
1 17772 342
2 17772 344
3 17772 346
4 17772 350
5 17772 352
6 17772 354
7 17772 356

I Space

No. PAR

0 17772 240
1 17772 242
2 17772 244
3 17772 246
4 17772 250
5 17772 252
6 17772 254
7 17772 256

I Space

No. PAR

0 17777640
1 17777642
2 17777 644
3 17777646
4 17777650
5 17777 652
6 17777654
7 17777656

Table 7-2
PAR/pDR Unibus Addresses

Kernel

PDR No.

17772 300 0
17772 302 1
17772 304 2
17772 306 3
17772 310 4
17772 312 5
17772 314 6
17772 316 7

Supervisor

PDR No.

17772 200 0
17772 202 1
17772 204 2
17772 206 3
17772 210 4
17772212 5
17772214 6
17772 216 7

User

PDR No.

17777600 0
17777 602 1
17777604 2
17777606 3
17777610 4
17777612 5
17777614 6
17777 616 7

IV-7-4

DSpace

PAR PDR

17772 360 17772 320
17772 362 17772322
17772 364 17772 324
17772 366 17772 326
17772 370 17772 330
17772372 17772 332
17772 374 17772 334
17772 376 17772 336 (

D Space

PAR PDR

17772 260 17772 220
17772 262 17772 222
17772 264 17772 224
17772 266 17772 226

(
17772 270 17772 230
17772 272 17772232
17772 274 17772 234
17772 276 17772 236

D Space

PAR PDR
(

17777660 17777620
17777662 17777 622
17777 664 17777624
17777666 17777626
17777670 17777630
17777672 17777 632
17777674 17777634
17777676 17777636

(

(

(

(

The A and W bits are written when SAPD WR
A + W L is asserted. The upper gate causes this sig­
nal to be asserted when Memory Management is en­
abled (RELOC) and an address other than a PAR,
a PDR or MMRO - MMR3 is being referenced.
The lower gate causes WR A + W to be asserted dur­
ing a write to a PAR or to a PDR.

The A and W bits are set to 0 whenever a PD R or
the PAR that corresponds to it is written into:

I. seee INT REG B L is low during both
of the above conditions. This causes
SAPD ATTN DATA L (A bit) and
SAPD WRTN DATA L (W bit) to be
negated when the PDR or the corre­
sponding PAR is addressed.

IV-7-5

2.

3.

The A and W bits are written when
SAPD WR A + W L is asserted. This sig­
nal is similar to the PAR and PDR write
pulses, the difference being the omission
of byte information and of the address
decode function. SeeD APR REG H
(=all PARs and PDRs) is the address de­
code signal in this case.

Thus, the A and W bits of a PDR are
cleared whenever a PDR or its corre­
sponding PAR are loaded.

(

CHAPTER 8
MEMORY MANAGEMENT ERROR HANDLING

Illegal memory references cause an immediate
abort, i.e., the memory reference is not completed
and an interrupt is sent to the processor. It should
be noted that the instruction containing the aborted
memory reference is not completed.

Refer to Figure S-I. Three kinds of faults cause an
abort: page length violation, non-resident memory
and read only violation.

A length fault is caused by a memory reference out­
side the limits set by the Page Length Field and ED
bit of the PO R. It is explained in Paragraph S.l.

A non-resident fault is caused by an attempted ac­
cess to a prohibited page. A read-only fault is
caused by an attempted write to a page for which
only read accesses are allowed. The Access Control
Field (ACF) of the POR determines the allowable

BR(14: 08) ~ ~ BR¢3 BR(02:00) {PROGRAM WRITE TO PDR
ADDRESS (CHAPTER 7).

SAPL
WRITE

CYCLE H

CHAPTER 6

VA (12:06) ---I

PDR

KEY 1 a READ
KEY 5 a WRITE
KEY 4

KEY 1 a WRITE

KEY 2 a WRITE

KEY 0
KEY 3
KEY 7

SAPL
LENGTH

FAULT L

PAR. 8.1

SAPL
MEM MGMT H

PAR.8.3

SSRD
MEM MGMT

DET (1) H

BR~9

SSRD
ENABLE

MGMT (1) H

TMCA

CHAPTER 6

CHAPTER 9 __ ~~~rL,-~~~~~--,--.---,--,---~~

MMRO

{

NON RESIDENT

ABORT PAGE LENGTH ERROR------'

READ ONLY ---------'

11-4020

Figure S-l Traps and Aborts

IV-S-l

TMCE

access modes of a given page. These two faults are
described in Paragraph 8.2.

Paragraph 8.3 explains the Memory Management
traps. Certain access keys in the ACF cause a trap
instead of an abort. A trap is only executed at the
end of the instruction, and the memory reference
causing the trap is executed.

Finally, the A and W bits are set in the PDR to aid
in statistics gathering by the executive program.
The A bit is set every time that access to the se­
lected page results in a trap condition; the W bit is
set if the page is written into (modified). This mech­
anism is explained in Chapter 6.

Information on aborts and traps is stored in bits
15:09 of MMRO. Additional information, to help
the program determine the origins of aborts and
traps, is stored in the remaining bits of MMRO as
well as in MMRI, MMR2, and MMR3. Chapter 9
describes these registers.

All aborts and traps generated by Memory Manage­
ment are vectored through Kernel space address
250.

8.1 PAGE LENGTH ABORTS
When Memory Management is enabled, i.e., in 18-
or 22-bit mapping, the VA is examined to deter­
mine whether it falls within the selected page. If it
does not, the V A is illegal and the instruction is
aborted. An illegal processor mode [PS(15:14)= 10]
also causes a page length abort.

8.1.1 Length Fault
SAPL LENGTH FAULT Land MM LENGTH
FAULT H are asserted when VA(12:06) (block
number) is greater than the PLF and the expansion
is upward (SAPL PGE EXPN DOWN L is not as­
serted, or ED = 0), or when V A(12:00) (block num­
ber) is less than the PLF and the expansion is
downward (SAPD+ E+ F PGE EXPN DOWN H is
asserted, or ED =1).

SAPL LENGTH FAULT L is stored in bit 14 of
MMRO (SSRC MMRO BIT 14). (Refer to Chapter
9).

LENGTH FAULT is also ORed with the read-only
and non-resident faults to generate SAPL ABORT
COND H. This function in turn generates SSRC
KTABORT FLAG L, which notifies the processor
abort logic of the abort condition. (Refer to Para­
graph 8.2).

8.1.2 Illegal Processor Mode
A length fault occurs if the PSW contains an illegal
processor mode [PS(15:14) == 10].

If this is the case, none of the mode flip-flops on
SSRB are selected, and no PAR/PDR set is se­
lected, since the mode generates the Chip Select in­
put to these registers (refer to Chapter 3). This
causes the output of the PAR to be all ones, SAPO
PGE EXPN DOWN H to be high, and LENGTH
FAULT to be asserted.

8.2 ACCESS CONTROL FIELD ABORTS AND
TRAPS

8.2.1 Non-Resident and Read-Only Protection
A Page Descriptor Register (PDR) is selected in the
same manner as a Page Address Register (PAR).
After the selection occurs, three bits from the POR
are decoded as an access key. If the access rights
designated by the key are inconsistent with the cur­
rent memory reference, the memory reference is not
completed and an abort to Kernel space 250.
occurs.

When the access key is set to 0, the page is defined
as non-resident, and an abort prevents any attempt
by a program to access a non-resident page. Using
this feature to provide memory protection, only
those pages associated with the current program are
set to legal access keys. The access control keys of
all other program pages are set to 0, which prevents
illegal memory references.

The access control key for a page can be set to 2, al­
lowing read memory references to the page, but
aborting any attempt to write into the page. This
read-only type of memory protection can be given
to pages that contain common data, subroutines, or
shaded algorithms. This type of memory protection

IV-8-2

(

(

(

(

(

c

(

makes certain that access rights to a given informa­
tion module are user-dependent, i.e., the access
right to a given information module may be varied
for different users by altering the access control
key.

A PAR in each of the sets (Kernel, User, and Su­
pervisor modes) may be set up to reference the
same physical page in memory and each may be
keyed for different access rights. For example, the
User access control key might be 2 (read-only ac­
cess), the Supervisor access control key might be 0
(non-resident), and the Kernel access control key
might be 6 (allowing completer read/write access).

8.2.2 Access Faults (Aborts)
The Access Fault (ACF) is decoded on SAPL to de­
tect abort and trap conditions.

N on-resident (key = 0) and unused keys (3 or 7)
cause SAPL NON RES FAULT L to be asserted
and stored in bit 15 of MMRO (SSRC MMRO BIT
\5).

If PS(15: 14) contain 10 (illegal mode), none of the
mode flip-flops on SSRB are selected, and no
PAR/PDR set is selected, since the mode generates
the Chip Select input to these registers (refer to
Chapter 3). This causes the output of the PDR to
be all Is. The ACF is thus 7 andSAPL NON RES
FAULT L is asserted.

SAPL WRITE CYCLE H is asserted when the bus
cycle is either a DATa, a DATOB, or a DATIP. It
is used to detect all write or read/modify/write
(DATIP followed by DATa or DATOB) cycles.

WRITE CYCLE is ANDed with both abort-on­
write keys (I and 2) to generate SAPL READ
ONLY FAULT, which is stored in bit 13 of
MMRO (SSRC MMRO BIT 13).

The non-resident and read-only fault decoders are
ORed with SAPL LENGTH FAULT (refer to Para­
graph 8.1) to generate SAPL ABORT COND H.

8.2.3 Abort Flag
SAPL ABORT COND H asserts SSRC KT
ABORT FLG L (which informs the abort logic on
TMCE that a Memory Management abort condi­
tion has been detected) if RELOC is asserted, and
if the cycle is not a BEND.

KT ABORT FLG is the input to the SSRC ABT
FLG flip-flop, which is clocked by SSRK PULSE
BC89 H (=TS3 of Pause cycle) and latches SSRC
KT ABORT FLG L. The flip-flop is cleared by
UBCB ABORT ACKN H.

8.3 MEMORY MANAGEMENT TRAPS
A timeshared system swaps programs, or parts of
programs, in and out of memory using secondary
storage facilities such as disk systems. In a swap­
Iping environment, the operating system must provide
the software routines that decide which programs
should be swapped and when and how these pro­
grams can be swapped between memory and second­
ary storage.

The operating system routines can be simple or
complex depending on system requirements, e.g.,
the amount of overhead time that can be tolerated.
The operating system may also have to decide
which active page is least likely to be required in
the immediate future and may therefore be
swapped out to make memory space available for a
new program.

To make such a Memory Management decision,
the operating system requires statistics on the use
of active pages. Some indication of whether a pro­
gram has been modified during its residence in
memory is also desirable. If it has been modified,
the program must be swapped (rewritten) into sec­
ondary storage. If no modification has been made,
and the program can always be recalled from sec­
ondary storage, the space it occupies in memory
can be overlayed, thus eliminating the swapping
delay.

The logic provides the kind of information required
by an operating system to gather Memory Manage­
ment statistics on the use of active pages. The avail­
ability of this information in the hardware reduces
the overhead time of any routine, simple or com­
plex, in the efficient management of memory.

The Page Descriptor Register associated with each
active page includes a W (written into) and an A
(attention) bit. When any active page is written
into, the W bit is set by the logic; therefore, by test­
ing the W bit, the Memory Management software
routine can decide whether a page can be overlayed
or if it needs to be swapped out (e.g., copied onto a
disk).

IV-8-3

The A bit has several uses. To use this feature, the
system programmer may enable the Memory Man­
agement trap logic. He then sets the access control
keys of the active pages of interest for special trap
conditions. Access control keys are provided to
cause:

1.

2.

3.

Memory Management trap on read (in­
cluding instruction fetch)

Memory Management trap on write

Memory Management trap on read or
on write.

The A bit for the active page is then set when the
page is accessed and a Memory Management trap
condition occurs. The vector at trap location 250
Kernel address space causes the operating system
routine to service the Memory Management trap.
The routine can test the A bit to accumulate statis­
tics on the use of that page. When a swapping deci­
sion is required of the operating system, these
statistics can be examined to determine the more ac­
tive pages (which might therefore be retained in
memory).

Access Control Traps
Keys 1, 4, and 5 of the A CF are examined to deter­
mine whether a trap condition exists .. The follow­
ing functions are generated:

SAPL KEY= I.WRI L= key I during a write
cycle (DATO, DATOB or DATIP).

SAPL KEY =4 L = key 4 on read or write.

SAPL KEY=$WR L = key 5 during a write
cycle.

These three functions are ORed to generate SAPL
MEM MGMT H which is stable by the end of T5
of a BUST cycle. If Memory Management is en­
abled (SSRE RELOC H) and if the address is not a
Memory Management register (SCCC INT REG
L), then SSRD CLK TRAP H is asserted.

Refer to Figure 8-2. If bit 9 of MMRO [SSRD EN­
ABLE MGMT (I) H] is set, and if the abort flag is
not set, and if SSRD MGT TP DET DLY L is not
asserted (see below), SSRD MEM MGMT TRAP
L is asserted via its "pre-Mem Management Trap"
gate. This occurs during a Pause cycle, and if
TMCE BRQ CLK H is asserted (at TS3) during
this cycle, MEM MGMT TRAP is clocked into the
priority flip-flop on TMCA.

At SSRK PULSE BC89 H (which occurs at TS3 of
every Pause cycle), and if there are no abort condi­
tions, SSRD MEM MGMT B L is asserted and
sets SSRD MEM MGMT DET (I) H, which is bit
12 of MMRO. At the same time, if MMRO bit 9 is
set, and if SSRD MGT TP DET DLY L is not as­
serted, SSRD MGMT HOLD L sets the latch flip­
flop. This flip"flop keeps SSRD MEM MGMT
TRAP L asserted; it is cleared when the trap is ac­
knowledged by the processor trap logic or until a
Memory Management abort is detected.

This hold flip-flop is necessary because, 50 ns after
SSRD MEM MGMT DET is set, SSRD MGT TP
DET DL Y L is asserted and disables the "pre-Mem
Managment Trap" input gate to SSRD MEM
M G MT TRAP L. This gate stays disabled until the
program clears the MEM MGMT DET flip-flop
(M M RO bit 12) by writing a 0 into it. The A and
W bits are clocked at T4 of Pause (PULSE BC9D).

The logic thus ensures that only one trap can be
sensed per instruction, and that no subsequent trap
can be clocked by the TMCA logic until the pro­
gram has reset bit 12 of MMRO.

IV-8-4

(

(

(

~1 PAUSE----------------------~~I

Tl+120ns +150ns

SSRK PULSE Bea9 H

SSRD MEM MGMT TRAP L

SSRD MEM MGMT B L

SSRD MEM MGMT DET (1) L

SSRD MGT TP DET DLY L

;
(PRE-MEM MGMT TRAP) /

(/

)

SSRD MGMT HOLD (1) H /
/

(

SAPD WR A+W L

11-4022

Figure 8-2 Trap Timing

IV-8-5

(
\

CHAPTER 9
MEMORY MANAGEMENT REGISTERS

(MMRO, 1, 2, AND 3)

A borts and traps generated by the Memory Man­
agement hardware are vectored through Kernel vir­
tual location 250. Memory Management Registers
0, I, 2, 3 are used in order to distinguish an abort
from a .trap, to determine why the abort or trap oc­
curred, and to allow for easy program restarting.
Note that an abort or trap to a location which is it­
self an invalid address will cause an-other abort or
trap. Thus, the Kernel program must ensure that
Kernel V A 250 is mapped into a valid address, or a
loop will occur which will require console
intervention.

9.1 MMRO
MMRO contains error flags, the page number
whose reference caused the abort, and various other
status flags. The register is organized as shown in
Figure 9-1. Its address is 17 777 572.

SIDENT ABORT-NON RE
ABORT- PAGE
LENGTH ERRO R)

NLY}
ION

SSRC .

ABORT-READ 0
ACCESS VIOLAT
TRAP-MEMORY
NOT USED­
NOT USED-

MANAGEMENT

, (!)tviu dtJI t-e f~~NABLE MEMO RY MANAGEMENT TRAP
. 7 ' - MAINTENANCE

pt.. Ik(uJ fk.ociL· INSTRUCTION C
PAGE MODE­
PAGE ADDRESS
PAGE NUMBER

MODE
OMPLETED

SPACE I/O

This paragraph first defines the meaning of the vari­
ous bits in M M RO, then the logic that controls
these bits.

Setting bit 0 of this register enables address reloca­
tion and error detection. This means that the bits in
M M RO become meaningful.

Bits 15-12 are the error flags. They may be consid­
ered to be in a "priority queue" in that "flags to
the right" are less significant and should be ignored
if more than one of them is set; i.e., a "non-resi­
dent" fault service routine would ignore length, ac­
cess control, and Memory Management flags. A
"page length" service routine would ignore access
control and Memory Management faults, etc.

~~~ ~ ~ ~ct Mj{I\.4~ sr ¢~ 1 Sr-- ~;~ ~ 

It;; blf l1Jll:)~f ENABLE Rf;I...OCATION---------------------------' 

11-4046 

Figure 9-1 MMRO 

IV-9-1 



Bits 15-13 when set (error conditions) cause Mem­
ory Management to freeze the contents of bits 1-7 
and of Registers I and 2. This is done to facilitate 
erro r recovery. 

These bits may also be written under program con­
trol. No abort will occur, but the contents of the 
Memory Management registers will be locked up as 
in an abort. 

Bits 15-12 are enabled by SSRE RELOC. RELOC 
is true when· an address is being relocated by the 
Memory Management unit. This implies that either 
MMRO, bit ° is equal to I (Relocation operating) 
or that MMRO, bit 8 (Maintenance) is equal to 1 
and the memory reference is the final one of a desti­
nation calculation (Maintenance/Destination 
mode). 

9.1.1 Aborts 
Bit 15 is the "Abort-Non-Resident" bit. It is set by 
attempting to access a page with an Access Control 
Field (ACF) key equal to 0, 3,or 7. It is also set by 
attempting to use Memory Relocation with a pro­
cessor mode of 2. [PS(l5: 14)= 10]. 

Bit 14 is the "Abort-Page-Length" bit. It is set by 
attempting to access a location in a page with a 
block number (VA bits, 12-6) that is outside the 
area authorized by the Page Length Field (PLF) of 
the Page Descriptor Register (PDR) for that page. 
Bit 14 is also set by attempting to use Memory Re­
location with a processor mode of 2. 

Bit 13 is the "Abort-Read-Only" bit. It is set by at­
tempting to write in a "Read-Only" page. "Read­
Only" pages have access keys of I or2. 

The logic that generates these aborts is explained in 
Chapters 8 and 9. 

9,1.2 Traps and Trap Enable 
Bit 12 is the "Trap-Memory Management" bit. It is 
set whenever a Memory Management trap occurs; 
that is, a read operation which references a page 
with an Access Control Field (ACF) of I or 4, or 
by a write operation to a page with an ACF key of 
4 or 5. 

Bits II and 10 are spares. They are always read as 
0, and should never be written. They are unused 
and reserved for possible future expansion. 

Bit 9 is the "Enable Memory Management Traps" 
bit. It is set or cleared by doing a direct-write into 
MMRO. If bit 9 is 0, no Memory Management 
traps will occur. The A and W bits will, however, 
continue to log potential Memory Management 
trap conditions. When bit 9 is set to I, the next 
Memory Management trap condition wiIl cause a 
trap, vectored through Kernel VA 250. 

Note that if an instruction which sets bit 9 to ° (dis­
able Memory Management Trap) causes a Memory 
Management trap condition in any of its memory 
references, prior to and including the one actually 
changing M M RO, then the trap will occur at the 
end of the instruction. 

The trap logic is described in Chapter 8. 

9.1.3 Maintenance/Destination Mode 
Bit 8 specifies that only Destination mode refer­
ences will be relocated using Memory Management. 
This mode is only used for maintenance purposes. 
Refer to Chapter 4, 

9,1.4 Instruction Complete 
Bit 7 indicates that the current instruction has been 
completed. It will be set to I during T bit, Parity, 
Odd Address, and Time Out traps and interrupts. 
This provides error-handling routines with a way of 
determining whether the last instruction will have 
to be repeated in the course of an error recovery at­
tempt (after an abort). Bit 7 is Read-Only (it can­
not be written). Note that EMT, TRAP, BPT, and 
lOT do not set bit 7. 

Bit 7 [SSRE INSTR COMP (1) H] is set by SSRA 
BRK.30 (I) H if there has been no previous Mem­
ory Management abort condition. [SSRC ND ER­
ROR (I) H = none of bits 15:13], BRK.30 is 
asserted at SSRK PULSE23 H (TS2) when the out­
put of the Memory Management ROM bits 03:00 
equal 100; this occurs during the BRK.30 cycle 
(Flows 12). 

IV-9-2 

( 

( 

( 

( 

( 



( 

( 
\ 

( 

Bit 7 is cleared, if there is no abort, at TS3, when a 
new instruction is fetched (SSRH LOAD IR H = 
UIRK asserted). 

The following conditions may occur during the 
course of program execution: 

I. If the first abort is a Memory Manage­
ment abort, NO ERROR clears at T4 of 
PA USE, before entry into the Service 
Flows. Therefore, INSTRUCTION 
COMPLETE is not set by BRK.30. 

2. If the first (and only) abort is not a 
Memory Management abort,INSTR UC­
TION COMPLETE is set by BRKJO, 
but is cleared by FET.OO (217) at the be­
ginning of the instruction fetch sequence 
(after the pushes to the stack have been 
successfully executed). 

3. If the first abort is not a Memory Man­
agement abort, then INSTRUCTION 
COMPLETE is set at BRK.30 (because 
NO ERROR is set). If a Memory Man­
agement abort then occurs during the 
Service Flows, NO ERROR is cleared at 
T4 of PAUSE. This prevents INSTRUC­
TION COMPLETE from being cleared 
until the abort condition bits in MM RO 
are cleared. In this case, MMR2 con­
tains either a vector address or the stack 
pointer, and not a program address. 

9.1.5 Processor Mode 
Bits S, 6 indicate the CPU mode 
(U ser /Supervisor /Kernel) associated with the page 
causing the abort. (Kernel = 00, Supervisor = 01, 
User = II.) If an illegal mode (10) is specified, bits 
IS and 14 will be set and an abort occurs. 

Bits OS and 06 of MMRO show the actual Processor 
mode [as decoded by SSRB MMRO MOOEO (and 
I) H from the mode flip-flops]. The actual mode 
may not be the same as that shown by PS(lS:14). 
Refer to Chapter 3. 

9.1.6 Address Space and Page Number 
Bit 4 indicates the type of address space (lor D) 
the unit was in when an abort occurred (0 = I 
Space, I = 0 Space). It is used in conjunction with 
bits 3-1, Page Number. 

Bits 3: I contain the page number of a reference 
causing a Memory Management fault. Note that 
pages, like blocks, are numbered from 0 upwards. 

SAPK INO DATA H is stored in bit 4 of MMRO. 
The SSRB space flip-flop that is asserted during a 
given cycle gates the I or 0 Space information 
from MMR3 [SAPK 0 S K (or S/U), H] to gener­
ate this signal. The SAPK 0 S signals are described 
in Chapter 3. 

Bits 03:01 of MMRO are loaded with VA(lS: 13), 
which give the address of the selected PAR/POR 
set. 

9.1.7 Enable Relocation 
Bit 0 is the "Enable Relocation" bit. When it is set 
to I, all addresses are relocated by the unit. When 
bit 0 is set to 0, the Memory Management Unit is 
inoperative and addresses are not relocated or pro­
tected. Chapter 4 explains the logic associated with 
th is bit. 

9.1.8 Read/Write Under Program Control 
M M RO is read by the processor on the Internal 
Data Bus through the multiplexer on SSRJ. Refer 
to Section II, Chapter 2. 

Bits 00, 08, 09, and 12: IS can be written into by the 
program from the B R. 

Refer to Figures 9-2 and 9-3. SCCB MMR AORS 
L decodes the addresses of M M RO - M M R2. At 
TIGA PSEUDO T3 H, it is clocked into the SCCC 
SSR REG flip-flop, whose output is ANOed with 
TMCE CI H to generate SCCC WRITE MMRO 
REG H [MMRO is the only writable register of the 
three (MMRO-2)]. Since the address of MMRO -
M M R2 differ only by bits 02 and 0 I of the V A, 
this signal, when NANOed with VA(02:01), in­
dicates a write to MMRO, and selects the A inputs 
[BR( IS: 13)] to the multiplexer input to the SSRC 
M M RO BIT( IS: 13) flip-flop. 

IV-9-3 



MMRGI 

SCCC MMR REG (11 H 
SAPL ABORT LOGIC 

SSRH VA!1J1C H BR(15:13) 

SCCB MMR ADRS L SSRH VA!1J2C L 

SCCC WRITE MMR!1J REG H 
TIGA PSEUDO T3 H 

SSRS MMRGI MODEl H 

SSRH VAGl2 C L 
SSRE WRITE 

SSRH VA~1 C H 
MMR~ H 

SSRB MMRGI MODEGI H 
C 

WRITE MMR!1J HIBL 

SAPK IND DATA H 

UBCB HI BYTE H 
SSRH VA(15:13) H{ 

SSRC CLK MMR!1J HIB H C 

TMCE KT BEND L 

SSRE RELOC H 
BRI2 

SSRC NO ERROR (I) H 

SCCC INT REG B L 
SSRE STROBE OK L 

C 

BRGl9 

BRGl8 

SSRD MMRGI HIB CLK L 

UBCBHI BYTE H-.~.~~~--L---------------------------------~L---------~c 
SSRK TS3 H 

TMCE PAUSES B H 

UBCB LO BYTE H----, 1 

SSRK PULSI;: 23 H 

TMCE PAUSES B H 

BRGlGI 

SSRE MMR!1J LOB CLK L 

Figure 9-2 Clocking of MMRO 

IV-9-4 

( 

15 

14 

13 

06 

05 

04 
03 

( 02 
01 

12 

09 ( 

08 

00 ( 

11- 4014 

( 



( 

( 

( 

I~.-------------------- PAUSE--------------------~·I 

TIGA PSEUDO T3 

TIGE TS3 
SSRK PULSE BCS9 H 

SSRK PULSE 23 H 

SCCC INT REG H -------.... 

SCCC WRITE MMR~ REG H} 
SSRE WRITE MMRI/J H 

CLOCK BITS 15:13~ 1 I 
CLOCK BIT !1l!1l-------'-

CLOCK BITS OS, 09,12,06: 01-----------------' 
11-4021 

Figure 9-3 MMRO Write Timing 

SSRE WRITE MMRO H is the same as the multi­
plexer select signal, but not inverted. 

I. Gated with UBCB HI BYTE Hand 
SSRK PULSE BC89 H (TS3 of 
PA USE), it clocks the output of the mul­
tiplexer [SSRC PRE MMRO BIT(l5:13) 
H] into MMRO bit 15:13 at T3. 

2. NANDed with UBCB HI BYTE H, 
TMCE PAUSES B Hand SSRK TS3 
H, it clocks BRI2, 09 and 08 into the 
corresponding bits of MMRO at T5. 

3. NANDed with UBCB LO BYTE H, 
TMCE PAUSES B Hand SSRK 
PULSE 23 H (TS2), it clocks BROO into 
bit 00 of MMRO at T4. 

9.1.9 Bits Controlled by Memory Management 
Bits IS: 13 are also clocked automatically on abort 
conditions. Bits 06:01 are clocked on every memory 
reference, but cannot be changed once an abort bit 
(15:13) is set. 

SSRE STROBE OK is asserted when Memory Man­
agement is enabled (SSRE RELOC is asserted), if 

there has been no previous Memory Management 
abort condition (SSRC NO ERROR), if no Mem­
ory Management register is being read or written 
(SCCC INT REG B L not asserted), and if TMCE 
KT BEND is not asserted. 

SSRE STROBE OK is gated with SSRK PULSE 
BC89 H (TS3). 

I. On the leading edge of the pulse, at T3, 
the abort bits from SAPL are gated into 
bits IS: 13 of MMRO (since the register is 
not being read or written, the multi­
plexer select signal is high, and the B in­
puts are selected). 

2. On the trailing edge of the pulse, at T5, 
bits 06 - 01 are clocked into MMRO. 

9.2 MMRI ,111) ~tt 
MMR I records any autoincrement/decrement of 
the general-purpose registers. MMRI is cleared at 
the beginning of each instruction fetch if no abort 
condition is present. Whenever a general-purpose 
register is either autoincremented or autodecre­
mented, the register number and the amount (in 2's 
complement notation) by which the register was 
modified, is written into MMRI. 

IV-9-5 



The information contained in MMRI is necessary 
to accomplish an effective recovery from an error 
resulting in an abort. The low order byte is written 
first and it is not possible for a PDP- II instruction 
to autoincrement/decrement more than two gen­
end-purpose registers per instruction (refer to Sec­
tion II, Chapter I). Only three bits are available to 
record the register number; thus, it is up to the soft­
ware to determine which set of registers 
(U ser /S upervisor /Kernel-General Set O/General 
Set I) was modified, by determining the CPU and 
Register modes at the time of the abort. The 6-bit 
displacement on R6 (SP) that can be caused by the 
M ARK instruction cannot occur if the instruction 
is aborted. 

M M R I is read on the I nternal Data Bus through 
the multiplexer on SSRJ. Its address is 17 777 574. 
Refer to Section II, Chapter 2. 

Figure 9-4 shows the format of MMRI. Its logic is 
on drawing SSRF. 

I. 

2. 

The register number is taken from the 
General Register address bits, GRAC 
G RA(3:0) L and are encoded to fall in 
the range of 0 - 7. Refer to Section II, 
Chapter.2 of this manual (Data Paths). 

The amount of the increment or decr­
ement is that shown by the KOMX multi­
plexer input to the ALU. This logic is 
described in the same chapter as the Gen­
eral Register address bits. The multi­
plexer to which they are input selects the 
complement of the KOMX if the cycle 
calls for a decrement. 

;J.~ 9J~t- . 

3. 

4. 

Bits 03:00 of the Memory Management 
ROM informs the MMRI logic of the 
autoincrement or decrement. A decr­
ement causes a ROM output of 01 I, an 
increment an output of 010. SSRA ONE 
CHANGED (1) H is asserted when the 
ROM output is either 010 or 01 I. SSRA 
AUTO DEC is asserted when the output 
is 0 I I. This signal supplies the sign bit 
to the increment/decrement value. 

A Memory Management abort [SSRC 
NO ERROR (I) H not asserted], latches 
the contents of MMRI. 

MMRI and ONE AUTOED are both cleared, ifno 
previous Memory Management aborts have oc­
curred (NO ERROR), 

I. 

2. 

3. 

during an instruction fetch (SSRH 
LOAD IR), or 

during the Service Flows (SSRA 
BRK.30), or 

if INIT is asserted. 

For the first increment or decrement, SSRF ONE 
AUTOED (0) H is high (the flip-flop is cleared). At 
T5B, if there is a change to the register, and if 
SSRA ONE CHANGED (I) H is asserted, the 
change to the register and the register number are 
written into the low order byte of MMRI (bits 
07:00). 

The ONE A UTOED flip-flop is then clocked by 
the trailing edge of T5 and its (I) output goes high. 

2d~ 
11 10 

I~f ~~ C~~Gb e&c& tsw ,fPlr' w~~ct-
8 r" --!'~2 ~=-j0l'f""'\ /1 M (. d r. f Po. 

r ~ I Y"~ 0 ~ 
15 

AMOUNT CHANGED 
(2'S COMPLEMENT) 

REGISTER AMOUNT CHANGED \ REGISTER 
NUMBER (2'S COMPLEMENT) \\\ NUMBER 

11-4042 

~. to "C- or Figure 9-4 MMRI riJLv v~ 

IV-9-6 

( 

( 

( 



( 

( 

Thus, if there is a change to another register during 
the same instruction, it will be stored into the high 
order byte (bits 15:08) of MMRI. 

9.3 MMR2 ,\111110710 
M M R2 is the V A Program Co un ter. (Refer to Fig­
ure 9-5.) It is loaded with the 16-bit VA at the be­
ginning of each instruction fetch, or with the 
address Trap Vector at the beginning of an inter­
rupt, "T" Bit trap, Parity, Odd Address, and Time­
out traps. Note that MMR2 does not get the Trap 
Vector on EMT, tRAP, BPT and lOT instructions. 
M M R2 is Read-Only; it .cannot be written. 

M M R2 is loaded at TS4, if there has been no pre­
vious Memory Management abort, when the IR is 
loaded during instruction fetch, or during the 
BRK.30 cycle. Note that the EMT, TRAP, BPT 
and lOT instructions do not use the BRK.30 cycle. 

MMR2 is shown on drawing SSRH. Its address is 
17 777 576. It is read on the Internal Data Bus 
through the multiplexer on SSRJ. Refer to Section 
II, Chapter 2. 

9.4 CLEARING STATUS REGISTERS FOL­
LOWING TRAP/ABORT 
At the end of a fault, service routine bits 15-12 of 
MMRO must be cleared (set to 0) to resume error 
checking. On the next memory reference following 
the clearing of these bits, the various registers will 
resume monitoring the status of the addressing oper­
ations. M M R2 will be loaded with the next instruc­
tion address. M M R I will store register change 
information and MMRO will log Memory Manage­
ment status information. 

IS 

.. 

9.5 MULTIPLE FAULTS 
Once an abort has occured, any subsequent errors 
that occur will not affect the state of the machine. 
The information saved in MMRO - MMR2 will al­
ways refer to the first abort that it detected. How­
ever, when mUltiple traps occur, the information 
saved will refer to the most recent trap that 
occurred. 

In the case that an abort occurs after a trap, but in 
the same instruction, only one stack operation will 
occur; and the PC and PS at the time of the abort 
will be saved. 

9.6 MMR3 \1')11~ l ~ 
Refer to Figure 9-6. MMR3 enables or disables: 

I. The use of the D space PARs and 
PDRs, 

2. 22-bit ,mapping, 

3. Unibus Map mapping. 

When 0 space is disabled, all references use the I 
space registers; when D space is enabled, both the I 
space and D space registers are used. Bit 0 refers to 
the User's Registers, bit I to the Supervisor's and 
bit 2 to the Kernel's. When the appropriate bits are 
set, D space is enabled; when cleared, it is disabled. 
Bit 03 is read as zero and never written; it is re­
served for future use. Bit 04 enables 22-bit map­
ping,. If Memory Management is not enabled, bit 
04 is ignored and 16-bit mapping is used. 

00 

11-4041 

Figure 9-5 MMR2 

5 

~~ODE. 11~~~i516 
ENABLE UNIBUS MAP t t f r 
ENABLE 22-BIT MAPPING --------------' . 
KERNEL--------------------'- _ 
SUPERVlSOR--------------------' 
USER------------------------' 

Figure 9-6 MMR3 

IV-9-7 

11-4040 



If bit 4 is clear and Memory Management is en­
abled (bit 0 of MMRO is set), the computer uses 
18-bit mapping. If bit 4 is set and Memory Manage­
ment is enabled, the computer uses 22-bit mapping. 
Bit 5 is set to enab,le relocation in the Unibus Map; 
the bit is cleared to disable relocation. Bits 6-15 are 

, unused. On initialization this register is set to 0 and 
only I space is in use. 

The following table is a summary of these 
conditions: 

Bit State Operation 

5 0 Unibus Map relocation disabled 

I Unibus Map relocation enabled 

4 0 Enable I8-bit mapping if bit 0 of 
MMRO is set 

I Enable 22-bit mapping if bit 0 of 
MMRO is set 

2 Enable Kernel D Space 

I I Enable Supervisor D Space 

0 1 Enable User D Space 

MMR3 is loaded from BR(05:00) by SCCL MMR3 
CLK L [=T4+ 15 ns of PAUSE during a write 
cycle and the address decode, SCCC MMR3 (I) 
H]. 

MMR3 is shown on drawing SCCL. Its address is 
17 772 516. It is read on the Internal Data Bus 
through the multiplexer on SCCH. Refer to Section 
II, Chapter 2. 

IV-9-8 

( 

( 

( 

II 



SECTION V 

UNIBUS MAP 

Unless otherwise ind ica ted, references within th is sec­
ti on perta in to this section only. 





( 

( 

( 

CHAPTER 1 

1.1 
1.2 
1.3 
1.4 

CHAPTER 2 

2.1 
2.2 
2.3 
2.4 
2.5 
2.6 

CHAPTER 3 

3.1 
3.2 
3.3 
3.4 
3.S 

Figure No. 

1-1 
2-1 
2-2 
2-3 
2-4 
3-1 
3·2 

Table No. 

3-1 
3-2 

SECTION V UNIBUS MAP 
CONTENTS 

GENERATION OF THE PHYSICAL ADDRESS 

Page 

CONSTRUCTION OF A PHYSICAL ADDRESS ..•.................. V-1-1 
REGISTER SELECTION .............. ,.................. V-1-2 
ADDER ............ ,............................. V-1-2 
ADDRESSING LIMITS ..... , ............................ V-1·2 

UNIBUS/CACHE INTERFACE 

UNIBUS DATA CYCLE .................................. V.2-1 
DATO OR DATOB ....... , .......................... ,. V·2-S 
DATI OR DATIP ..................................... V-2-S 
ENDOFDATACYCLE .................................. V-2-6 
PARITY ERROR .............. , ...... , ............... V-2-6 
CACHE TIMEOUT . . , . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . .. V-2-6 

READING AND WRIUNG THE MAPPING REGISTERS 

READING AND WRITING MAPPING REGISTERS ....... ,............ V-3-1 
REGISTER SELECTION •................................ V-3-2 
DATO ........................................... V-3-2 
DATI ............................ , . . . . . . . . . . . . . . . V-3-3 
REGISTER ACCESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. V-3.3 

ILLUSTRATIONS 

Title Page 

Construction of the PA ................................. , V-1-1 
Unibus Map Flowchart ............................ , .. , . . . V.2-2 
Unibus Map Block Diagram ..........,..................... V-2-3 
Unibus Map Interface ......................... ,......... V-2-4 
Cache/Unibus Transactions .......,..................,..... V·2-S 
Addressing ofUB Map Register ...... , ....................... V-3-1 
UB Map Register Read/Write . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . V-3-2 

TABLES 

Title Page 

Unibus Data Selection ................................... V-3-3 
Access to Unibus Map Regist~rs .............................. V-3-4 

V-iii 





( 

INTRODUCTION 
The Unibus Map is the interface between the 
Unibus and Cache. It responds as a slave device to 
Unibus signals and converts I8-bit Unibus ad­
dresses to 22-bit Cache addresses. 

The reader of this section should be familiar with 
the concepts related to PDP-I 1/70 Address Space. 
The I ntroduction to Section IV of this manual 
(M emory Management) describes PDP-II/70 Ad­
dress Space in detail. 

The top 4K word addresses of the I28K Unibus ad­
dresses are reserved for CPU and I/O registers and 
are called the Peripherals Page (see Figure 1-1). The 
lower 124K addresses are used by the Unibus Map 
to reference physical memory. 

17 777 777 
PERIPHERAL 

PAGE 

1--_(4_K_W_O_R_DS_)_--I 17 760 000 
17 757 777 

124K 

(TO UNIBUS MAP) 

17000 000 

11-4051 

Figure 1-1 Unibus Address Space 

V-I-! 

INTRODUCTION 

The Unibus Map is the interface to memory from 
the Unibus. The operation is transparent to the 
user, if it is disabled. 

Relocation Disabled 
If the Unibus Map relocation is not enabled, an in­
coming 18-bit Unibus address has 4 leading zeros 
added for referencing a 22-bit Physical Address 
(PA). The lower 18 bits are the same. No relocation 
is performed. 

Relocation Enabled 
There are a total of 31 mapping registers for ad­
dress relocation. Each register is composed of a 
double 16-bit PDP-II word (in consecutive loca­
tions) that holds the 22-bit base address. These reg­
isters have Unibus addresses in the range 17 770 
200-\7 770 372. 

If Unibus Map relocation is enabled, the 5 high or­
der bits of the Unibus address are used to select 
one of 31 mapping registers. The low order 13 bits 
of the incoming address are used as an offset from 
the base address contained in the 22-bit mapping 
register. To form the PA, the 13 low order bits of 
the Unibus address are added to 22 bits of the se­
lected mapping register to produce the 22-bit PA. 
The lowest order bit of all mapping registers is al­
ways a zero, since relocation is always on word 
boundaries. 



The Unibus Map is disabled upon the occurrence 
of any of the following: 

I. Power-up 

2. Depressing the START switch on the 
Console, and 

3. The execution of a RESET instruction. 

These all cause the assertion of INIT, which clears 
M M R3. It should be noted that after a power-up 
the contents of the mapping registers are not 
defined. 

V-J-2 

There an:: 32 mapping registers which may be writ­
ten and read. These registers are 21 bits wide, and 
require two Unibus transactions for each read or 
write; 64 addresses on the I Page (17 770 200 - 17 
770 376) are thus allotted to them. The contents of 
the mapping registers are added to the Unibus ad­
dress during the relocation process. It should be 
noted that the last mapping register (addresses 17 
770 374 and 17 770 376) can be read and written, 
but cannot be used to map Unibus addresses be­
cause it would be used by addresses in the range of 
17 760 000 - 17 777 777; the upper limit jumpers 
cannot recognize these as valid Cache Unibus ad­
dresses. Refer to Chapter 4. 

( 

( 

( 



CHAPTER 1 
GENERATION OF THE PHYSICAL ADDRESS 

Relocation expands the 18-bit Unibus address to 
the 22-bit Main Memory address. This allows the 
Unibus to access any location in Main Memory. 
This relocation, or mapping of addresses, is done 
by adding the contents of one of the mapping regis­
ters to bits (12:0 I) of the incoming Unibus address. 

1.1 CONSTRUCTION OF A PHYSICAL 
ADDRESS 
All mapping registers in the Unibus Map are 21 
bits wide. A "22nd" bit, which is not writable and 
is always read as a zero, acts as the lowest order bit 
for each register. Each register specifies the 21-bit 
Physical Address (PA) of a 4K page residing on 
any word boundary in memory. The reason for us­
ing word boundaries in the mapping registers is 

slls A (17:00) I 
sus A (17:13> select 
one of 32 Mapping 
Registers, 00-378 

21 

001 MAPH 

III: 
MAPL I I{ I I I ! 

I 
11 I 

I 
37 '1 I 

I I I 

i 

17 

that the mapping box does not know if a byte oper­
ation is being executed, and if so, what byte is 
required. 

Refer to Figure I-I. Bits (17:13) of the 18-bit 
Unibus address select which register a device is us­
ing. The remaining bits (12:00) of the Unibus ad­
dress act as an offset into the page to which the 
mapping register is pointing. 

When an address is taken off the Unibus, the map­
ping register is automatically selected and the con­
tents read out. That 21-bit address is added to the 
13-bit offset in the Un ibus address to form the PA. 
This mapping function is very similar to that per­
formed by Memory Management. 

13 12 01 00 

I I I I 

i 
. 

01 

I 

~ . 
+ 1 

.--

\1iJ MAPE 

21 U 0100 

CACHE ADDRESS 1L.. . ..J1 __ --I. ....... _...J...--:'--....,..J.1_.,.--_J..1 ___ -..J....---'---J...I ..... 1 
MAPE CA (21 :01) H. MAPA CAOO H 

11-4029 

Figure 1-1 Construction of the PA 

V-l-l 



The program controls this process both by selecting 
the contents of the mapping registers and by its abil­
ity to enable and disable the Unibus Map reloca­
tion function. 

The Unibus address lines, BUS A(l7:00) L are re­
ceived by the Map. The output of their bus receiv­
ers is labeled MAPA ADRS(l7:01) Hand MAPA 
CAOO H. Address bit 0 is always transmitted, un­
modified, to the Cache, since the Map ignores byte 
instructions. 

The address used by the Cache during a data trans­
action consists of MAPA CAOO H, the output of 
the Map receiver for BUS AOO L, and of MAPE 
CA(21:01) H. These bits are the output of a 21-bit 
adder which is enabled when MAPD ENAB MAP 
is asserted, and disabled when ENAB MAP is ne­
gated. The state of this signal. reflects that of SCCL 
ENAB MAP H (bit 5 of Memory Management 
Register 3). 

When the adder is disabled, its output is the same 
as the incoming Unibus address, with bits 18- 21 
equal to o. 

Refer to Figure I-I. When the adder is enabled, 
bits 17 - 13 of the Ullibus address-select one of the 
mapping registers [MAPC+D RA(21:01) H]. The 
contents of this ,register are summed with bits 12 to 
I of the Unibus address [MAPA ADRS(l2:01) H] 
to generate the Cache address [MAPE CA(l2:01) 
H]. 

The mapping registers consist of the 12 310IA 16-
word by 4-bit scratch pad memories, shown on 
drawings MAPC and MAPD. 

1.2 REGISTER SELECTION 
During a Cache Unibus cycle, MAPB REG OP L 
is high (i.e., the address does not point to a map 
register). MAPA ADRSI7 H then causes either 
MAPC EN LO REG L or EN HI REG L to be as­
serted. These signals enable, respectively, the regis­
ters on MAPC (addresses 17 770 200 - 17770276) 
or those on M APD (addresses 17 770 300 - 17 770 
376) through their CS inputs. 

V-1-2 

One of 16 registers is selected by MAPA 
ADRS(l6:13) H via the multiplexer on MAPC. 
MAPC INDA(4:1) H address the mapping register 
that is being selected. 

1.3 ADDER 
The Adder consists of the five 74S181 ALU ICs, 
and the full adder circuit for bit 21 shown on 
MAPE. 

When MAPD ENAB MAP H is hegated, the in­
coming Unibus address is transmitted, unmodified, 
through the Adder. 

When MAPD ENAB MAP H is asserted, the Ad­
der is enabled. I n this case, bits 01 - 12 of the ad­
dress are added to bits 0 I - 21 of the selected 
mapping register (adder function A plus B). The 
output of the Adder then goes to the Cache as the 
PA. 

1.4 ADDRESSING LIMITS 
Refer to schematic MAPF. There are 31 mapping 
registers which can be accessed by the Unibus for 
relocation. The actual number is determined by two 
sets of five jumpers which set the upper and lower 
address limits to which the Unibus Map will re­
spond. The jumpers for the lower limit can be cut 
so thattheMapwill start to respond at Unibus ad­
dress OK; 4K, up to 124K on 4K boundaries. Sim­
ilarly, the jumpers for the upper limit can be set so 
that the Map will stop responding at Unibus ad­
dress 124K, 120K, and down to OK on 4K bound­
aries. The Map will not respond to the uppermost 
4K of Unibus address space. The maximum range 
of Unibus addresses that the Map can accept is 000 
000 - 757 777. 

Bils( 17: 13) of an incoming Unibus address are 
checked against the jumpers to ensure that the ad­
dress lies inside these limits. If the address is 
greater than or equal to the upper limit, or less 
than the lower limit" it is assumed that some other 
device is being addressed and no request is made to 
the Cache. The Unibus Map can be bypassed alto­
gether by cutting both sets of jumpers to all zeroes. 
This would mean that Main Memory cannot be ac­
cessed from the Unibus. 

( 

( 

( 

( 



( 

( 

( 

This chapter describes the Unibus/Cache interface, 
excluding address relocation, which is explained in 
Chapter I. 

Figure 2-1 outlines this interface function of the 
Map, and Figure 2-2 is a functional block diagram. 
OAT A exchanged between the Unibus [BUS 
D( 15:(0)] and the Cache is buffered by the Unibus 
Map and transmitted, without modification, in 
both directions. The Unibus Control bits (BUS CO 
and C I) are received by the Unibus Map and trans­
mitted directly to the Cache. BUS MSYN is sent to 
the Cache as MAPF UB REQUEST (I) b if the 
Unibus'address [BUS A(17:01) L] is recognized as 
a valid Cache data or register address. A parity er­
ror in the Cache causes BUS PB L to be asserted 
by the Unibus Map. BUS SSYN L is asserted by 
the Unibus Map when. it is ,informed by the Cache 
that the data cycle is finished (CCBC UB DONE 
H). 

The Unibus address is decoded by the Unibus 
Map. If it is a Cache register address (17 777 740 -
17 777 752), MA PB CACHE REG Lis sent to the 
Cache; this signal, in. addition to Unibus address 
bits MAPA ADRS(03:01) H allows the Cache to se­
lect the register required for the current data 
transaction. 

If the address is a valid Cache address (as deter­
mined by the limit jumpers), it is either sent to the 
Cache unmodified (if the Map is not enabled), or 
relocated (if the Map is enabled). The Map is en- -
abled if bit 5 of Memory Management Register 3 is 
set (Unibus address 17 772 516). Figure 2-3 shows 
the signals exchanged between the Unibus, the 
Map, and the Cache. 

The Map responds as a slave to the two major 
types of Unibus transactions: DATI (or DATIP) 

V~2-1 

CHAPTER 2 
UNIBUS/CACHE INTERFACE 

which requires a read from memory, and DATa 
(or DATOB), which requires a write into memory. 
The Map does not distinguish between DATI 
(data-in) and DA TIP (data-in, pause), nor between 
DATa (data-out) and DATOB (data-out, byte): it 
transmits Unibus control bit CO, which dis­
tinguishes DATI from DATIP and DATa from 
DATOB, to the Cache. 

2.1 UNIBUS DATA CYCLE 
The Unibus address lines, BUS A(l7:00) L are re­
cei"ved by the Map. The output of their bus receiv­
ers is labeled MAPA ADRS(l7:01) H and MAPA 
CAOO H. Address bit 0 is always transmitted, un­
modified, to the Cache, since the Map ignores byte 
instructions. 

MAPA ADRS(l7:02) are decoded and MAPB 
CACHE REG is asserted if a Cache register ad­
dress is sensed [( 17) 777 740 - (17) 777 752]. This 
signal and MAPA ADRS(03:0J) H constitute a 
Cache register address. 

MAPA ADRS(l7:13) H are compared with the up­
per and lower limit jumpers shown on schematic 
MAPF. If the address falls within the limits set by 
the jumpers, or if a Cache register address has been 
decoded (MAPB CACHE REG L), MAPF 
CACHE BUS ADRS L is asserted. 

Refer to Figure 2-4. Upon receipt of the assertion 
of BUS MSYN L, the flip-flop MAPF UB 
REQUEST (I) L is set; its output starts a Cache 
read or write sequence. The UB REQUEST flip­
flop is reset by CCBC UB ACKN L, which is as­
serted by the Cache when the Unibus memory cycle 
is initiated. MAP] ENBUS H is asserted at the 
same time as UB REQUEST H. It gates SSYN and 
the data onto the Unibus lines. 



MAPB 
CACHE REG. L 
So MAPA 
ADRS (03:01) 

YES 

UNIBUS 
ADDRESS 
UNMODIFIED 

CACHE 

UNIBUS 

NO ACTION 

UNIBUS 
ADDRESS 
RELOCA'rED 

r--
I 
I 
I 
I 
I 

_J 

Figure 2-1 Unibus Map Flowchart 

V-2-2 

YES 

YES 

MAPI=UB 
REQUEST 
(1) L 

SSYN 

( 

( 

( 

11 ·4013 

( 



-R - MSYN MAPF UB REQUEST (1) L 
UPPER a LOWER FF 

MAPB LIMIT JUMPERS 

1 1 ~~ 

LIMIT 
NOT PERIPHERAL 

( 17:13) PAGE 
COMPARATOR 

MAPF 

CCBC UB ACKN L 

SCCL ENAB MAP H MAPD ENAB MAP 

~ 
UB MAPA DATA(15:00) H -- DATA 

D(05:00) D(15:01 ) 

~ 
A(17:13) 

~ 
MAP REGS. RA(21:01) -~--A (06:02) MAPHI~ MAPL ADDER 

~ MAPC, MAPD MAPE CA(21:01> H 

~ RA(17;01) 
MAPE 

UB -- ADDRS I-r-

~ 
MAPA CA!2i!2i H 

I......,. MAPA ADRS (03: 01) H 

'----+ 
ADDRS 

R DECODE CACHE REG L MAPB CACHE REG L 

( - C1, CO 
MAP REG OP 

MAPB 
MAPB DLY )-

MAPB C1H, C!2i H 

r------o 
CCBD UB TIMEOUT L 

~~ 
BUS SSYN 

CCBC UB DONE H V 

(15:01) Jo../---o 
DTML CDMX D(15:00) H (05 :00) J5> BUS D 

..f'..; 
~ 

BUFFER 
CCBF REG D(15:00) H REG MAPJ y 

( 

-MAPH 
MAPB PB DATA H 

r---''-- r-----o 
DTML BAD PARITY H BUS PB 

FF 

MAPH MAPB 
'--- L......--

NOTE: 11-4018 

D = UNIBUS DRIVER, R = UNIBUS RECEIVER 

Figure 2-2 Unibus Map Block Diagram 

V-2-3 



UNI BUS UNIBUS MAP 

MAPF UB REQUEST (1) L 

MAPB CIJ H 

MAPB C1 H 

{"" CAIJ~ H 

MAPE CA < 21 : 1J1 > H 

MAPA ADRS <03:01> H 

MAPB CACHE REG L 

MAPJ DATA <15:00> H 

(MAPJ) BUS D<15:00> L 

(MAPB) BUS PB L 

MAPB PB DATA H 

(MAPB) BUS SSYN L 

MAPD ENAB MAP L 

CACH E 

( 
CCBB PRE UBUS F/F 

CCBC UB ACKN L 

ADMJ CIJ H 

ADMJ READ L 

} ADME AMX <21:00> H 

} CCBH. CCBJ (REG. LOGIC) 

CDPE WRITE MUX <15:00> H 

DTML CDMX D< 15:00> H 

CCBF REG D<15:00> H 

DT ML BAD PARITY 

C C B J (R E G. LO G I C ) 

CCBC UB DONE H 

CCBD UB TIMEOUT L 

SCCL ENAB MAP H 

" ., "("frI'r,. ~ ~. 11-4052 

Figure 2-3 Unibus Map Interface 

V-2-4 

( 

( 

( 

( 



( 

( 

( 

MAPA ADRS<17:00)H ~ 
**MAPA DATA<15:00) H 

MAPB MSYN H 

MAPB CACHE REG H 

MAPF CACHE BUS ADRS L 

ZI lZ Zl 

~ 
l Z . I 

Z J 

~~~~~~~~~~~~~~~~~~I~l~--~~~~~~~~~~~ 

..--~ !-------..oil ~l ~----~l_..,

MAPJ ENBUS H

MAPF UB REQUEST (1) L ~l

CCBC UB ACKN L
------------~I~~!----~~~~----

< 60ns)

CCBC UB DONE H

------------~I~!----~
------------~I ~! ----~ ~--r----''''

BUS SSYN L

*MAPH CA DATA<15:01) H -----------....,1 ~! ------; !---.....

------------....,!~!----~!~l-~
*BUS D<15:00)L, PB L

*NOTE: DATI or DATIP only.

** NOTE: DATO or DATOB only.
11-4025

Figure 2-4 Cache/Unibus Transactions

Along with the Control bits CI and CO, the Cache
receives the address MAPE CA(21:01) Hand
MAPA CAOO H for memory references, or MAPA
ADRS(03:01) Hand MAPB CACHE REG L for a
Cache register reference. When UB REQUEST is
received, it executes the write (D A TO /B) or read
(DATI /P) operation required of it.

2.2 DATO OR DATOB
In the case of a data-out, the Cache accepts the
data, MAPA DATA(l5:07) H. It then asserts
CCBC UB DONE H.

2.3 DA TI OR DA TIP
I f the transaction is a data-in, the Cache puts the re­
quested data on DTML CDMX D(l5:00) H, in the

V-2-5

case of a memory reference; if the operation refers
to a Cache register, the data is transmitted on
CCBF REG D(l5:oo) H. One of these two sets of
data is selected by MAPB CACHE REG L via the
multiplexer shown on drawing MAPH.

The output of this multiplexer is clocked into the
MAPH CA DATA(l5:00) (I) H flip-flops by the ris­
ing edge of CCBC UB DONE H. (UB DONE is as­
serted by the Cache when its data operation is
completed.) MAPH CA DATA is then multiplexed
with the map register data (MAPl); since MAPB
REG OP H is low (not a map register operation),
the Cache data is the input to the Unibus data driv­
ers [BU~ D(15:00) L], which are enabled by MAPl
ENBUS H.

2.4 END OF DATA CYCLE
The falling edge of CCBC UB DONE H, which oc­
curS 60 ns after its rising edge, sets a flip-flop on
MAPB which in turn causes BUS SSYN L to be as­
serted. When the negation of MSYN is received at
the Map, MAP] ENBUS H is negated. This causes
SSYN and, in the case of a DATI or DATIP, the
data and PB, to be removed from the Unibus.

2.5 PARITY ERRO R
BUS PB L is asserted when a parity error is de­
tected by the Cache. DTML BAD PARITY H is
clocked into a latch on MAPH at the same time as
the Cache data. The output of this latch is MAPH

PAR ERR (I) H; it is gated with CI and MAPF
PAR AORS OK H to generate MAPB PB DATA
H, which is input to· the Cache error registers.
MAPB PB DATA H is also ANDed with ENBUS
to generate BUS PB L. MAPF PAR ADRS OK H,
when asserted, signifies that the address of the cur­
rent transaction lies within the limits of the upper
and lower limit jumpers.

2.6 CACHE TIMEOUT
CCBD UB TIMEOUT L is asserted by the Cache
when a timeout has occurred on the Main Memory
Bus during a Unibus transaction. When asserted, it
sets a flip-flop on MAPB which prevents the asser­
tion of BUS SSYN L.

V-2-6

(

(

(

(

(

(

The mapping registers are loaded and read by the
program via the Unibus. These registers are 21 bits
wide; two Unibus cycles are required to read them
or to write into them. There are 32 mapping regis­
ters which require the 64 I/O Page addresses in the
range of 770200 - 770376. Each of the registers con­
sists of two parts (for the purposes of reading and
writing): a high word, MAPH (bits 21 - 16) and a
low word, MAPL (bits 15 - 01). Bit 0 does not ex­
ist, since the Map ignores byte operations.

CHAPTER 3
READING AND WRITING

THE MAPPING REGISTERS

3.1 READING AND WRITING MAPPING
REGISTERS
Refer to Figure 3-1. The Unibus Map responds to
64 Unibus Addresses [(17) 770 200 - (17) 770 376].
This allows reading and writing of the mapping reg­
isters. Once the Map has recognized one of these
addresses, it uses bits (06:02) to select the correct
register [as opposed to bits (17: 13) for a mapping
operation]. Sixty-four addresses are needed due to
the 22-bit register width.

11 1 1 1 1 1 I 0 0 0 I 0 1 I I I 0 I BUS A <17:00)
~--~--~--~-t.==~~7.~

17 07 06 02 01 00

BUS A (06:02) select
one of 32 Mapping
Registers, 00-378

Bit A01 ; 0 enables
,----....1.--_--_____ .1 data transfer between

Bit A01 ; 1 enables
transfer between
BUS D (05: 00) and
bits (21:16) Of a
register.

15

BUS D (15:01) and
bits (15:01) of a
register.

BUS D (15:01)

Figure 3-1 Addressing of UB Map Register

V-3-I

01 00

tf-4030

Also as a result of this, two Unibus cycles are re­
quired to complete a read or write operation to a
mapping register. The bit assignment in the regis­
ters is divided so that Unibus address (17) 770
XXX will access bits (15:01) of the register and ad­
dress (17)770 XXX+2 will access bits (21:16).

3.2 REGISTER SELECTION
MAPB REG OP is asserted when an Unibus ad­
dress in the range of 770 200 - 770 376 is decoded.

Refer to Figure 3-2. MAPB REG OP H is gated
with MAPA ADRS06 H to select either registers 00
- 17M onMAPC(MAPC EN La REG L), or regis­
ters 20M - 37M on MAPD (MAPC EN HI ~EG L)
by enabling the 3101s via the enable (CS) input.

MAPB REG OP L gates MAPA ADRS(05:02) H
to MAPC INDA(4:1), which in turn select one of
16 registers (either one of 00-178 or 20 ... 378, depend­
ing on which set of CS inputs is low).

MAPB REG OP L gated with MSYN causes
MAP] ENBUS H to be asserted. ENBUS gates
SSYN and, during a DATI, the register data onto
the Unibus.

3.3 DATO
A DATa is a write to a register. MAPB Cl H is as­
serted and, when MSYNis received, either MAPB
WRITE HI WORD L or WRITE La WORD L is
asserted, depending upon the state of MAPA
ADRSOI. WRITE HI WORD gates bits 05 - 00 of
Unibus data into bits 21 - 16 of the selected regis­
ter; WRITE La WORD gates bits 15 - 01 into bits
15 - 0 I of the register.

The receipt of MSYN also starts a 70-ns delay,
which allows for the write propagation tiPle of the
3101As. At the end of the delay, MAPB REG
SSYN L turns off the write pulse and causes BUS
SSYN L to be asserted. When BUS MSYN is ne­
gated, SSYN is negated.

~~~------------------------~I~l------------------~~rr~ MAPA ADRS <17:00)H'i'///: ////// 
**MAPA DATA <15:00) H ~ j////,,/: 

MAPB MSYN H 

MAPB REG OP H 

MAPJ ENBUS H 

MAPB REG SSYN L 

**MAPB WRITE HI WORD L}· 
**MAPB WRITE LO WORD L 

BUS SSYN L 

*BUS D<15:00) L 

* NOTE: DATI only 

**NOTE: DATO only 
11-4024 

Figure 3-2 UB Map Register Read/Write 

V-3-2 

( 

( 

( 

( 

( 



( 

3.4 DATI 
When a register has been selected, the output of the 
selected register [MAPC+O RA(21:01) H] is read. 
and input to the data multiplexer shown on draw­
ing MAPl. Since MAPB REG OP H is high, 
MAPA AORSOI selects (via the multiplexer) either 
the low word (MAPL) or the high word (MAPH) 
of the register that is being addressed, as shown in 
Table 3-1. When the MAPH part of a register is se­
lected [RA(21:16)] the A inputs to the 74S157 multi­
plexers are selected. This is the Cache data input 
[MAPH CA OATA(15:06) H], but it is 0, since the 
flip-flops on drawing MAPH were cleared by the 
negation of MSYN on the previous reference. 
Thus,bits 15 - 06 of BUS 0 are all 0, and BUS 
0(05:00) contain the high order bits (21: 16) of the 
selected register. 

The multiplexer is enabled if the operation is a 
OA TI (MAPB CI H is low). The 8881 bus drivers 
[BUS 0(15:00) L] are enabled by MAPl ENBUS 

H, thus putting the contents of the selected register 
on the Unibus 0 lines. 

When MSYN is received, the 70-ns delay is in­
itiated to allow for the access propagation times of 
the 3101As. When MAPB REG SSYN L is as­
serted after the delay, BUS SSYN L is asserted on 
the Unibus. SSYN is negated upon receipt of the 
negation of MSYN. 

3.5 REGISTER ACCESS 
Table 3-2 shows the correspondence between the 
Unibus addresses that select each mapping register 
and the two addresses used for reading or writing 
the same register. 

Note that register 37 is selected by Unibus ad­
dresses (17) 760 000 - (17) 777 777. Since these ad­
dresses are higher than the maximum allowed by 
the upper limit jumpers, register 37 cannot be used 
as a mapping register. It can, however be read and 
written into by using addresses (17) 770 374 and 
(17) 770 376. 

Table 3-1 
Unibus Data Selection 

MAPB MAPA Bus D(1S:06) Bus D(OS:OI) BusDOO 
REGOPH ADRSOI 

L H 

H L H 0 MAPC+D MAPC+D 
RA(21:17) RA16 

H H L MAPC+D MAPC+D 0 
RA(15:06) RA(15:01) 

V-3-3 



Table 3-2 
Access to Unibus Map Registers 

Register No. Unibus Address Unibus Address for 
Read or Write Memory Reference 

MAPL MAPH 

a 17770 200, 02 17000 000 - 17 017 777 
1 17770 204, 06 17 020 000 -17 037 777 
2 17770 210, 12 17 040 000 - 17 057 777 
3 17770 214, 16 17 060 000 - 17 077 777 

4 17770 220, 22 17 100 000 - 17 117 777 
5 17770 224, 26 17120 000 - 17 137777 
6 17770 230, 32 17140000-17157777 
7 17770234, 36 17 160 000 - 17 177 777 ( 

10 17770 240, 42 17 200 000 - 17 217 777 
11 17770 244, 46 17220 000 - 17237777 
12 17770 250, 52 17 240 000 - 17 257 777 
13 17770 254, 56 17260 000 - 17277777 

14 17770 260, 62 17 300 000 - 17 317 777 
15 17770264, 66 17320 000 - 17337777 
16 17770 270, n 17 340 000 - 17 357 777 
17 17770 274, 76 17 360 000 - 17 377 777 ( 
20 17770300, 02 17400 000 - 17417 777 
21 17770304, 06 17 420 000 - 17 437 777 
22 17770 310, 12 17 440 000 - 17 457 777 
23 17770314, 16 17 460 000 - 17 477 777 

24 17770.320, 22 17500 000 -17517777 
25 17770 324, 26 17 520 000 - 17 537 777 
26 17770 330, 32 17 540 000 - 17 557 777 
27 17770 334, 36 17 560 000 - 17 577 777 ( 
30 17770 340, 42 17600 000 - 17617777 
31 17770 344, 46 17620 000 - 17637777 
32 17770 350, 52 17 640 000 - 17 657 777 
33 17770 354, 56 17 660 000 - 17 677 777 

34 17770 360, 62 17700 000 - 17717777· 
35 17770 364, 66 17 no 000 - 17 737 777 
36 17770 370, n 17 740 000 - 17 757 777 

*37 17770 374, 76 17 760 000 - 17 777 777 

*Note: Can be read or written into, but not used for mapping. 

( 

V-3-4 



SECTION VI 

CACHE 

Unless otherwise ind icated, references within this sec­
tion pertain to this section only . 





( 

( 

CHAPTER 1 

1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 

CHAPTER 2 

2.1 
2.2 
2.2.1 
2.2.2 
2.2.3 
2.2.3.1 
2.2.3.2 
2.2.3.3 
2.2.3.4 
2.2.3.5 
2.2.3.6 
2.3 

CHAPTER 3 

3.1 
3.2 
3.2.1 
3.2.2 
3.3 
3.3.1 
3.3.2 
3.3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.8.1 
3.8.2 
3.8.3 
3.8.4 
3.8.5 
3.8.6 
3.8.7 
3.8.8 
3.8.9 
3.8.10 

CACHE CONCEPTS 

SECTION VI CACHE 
CONTENTS 

Page 

SCOPE ........................................... VI-l-l 
OVERALL ORGANIZATION OF A CACHE MEMORY SYSTEM ............ VI-I-l 
PROGRAM LOCALITY .................................. VI-l-l 
BLOCK FETCH ...................................... VI-1-2 
FULLY ASSOCIATIVE CACHE ......... , .......... ' .......... VI-1-2 
DIRECT MAPPING CACHE ................................ VI·l·3 
SET ASSOCIATIVE CACHE ............................... VI-loS 
WRITE.THROUGH AND WRITE·BACK ......................... VI·l·6 

PDP·ll/70 CACHE 

SCOPE ........................................... VI·2·l 
PDP·lI/70 CACHE .................................... VI·2-l 

Data Memory Organization .............. ~ . . . . . . . . . . . . . . VI·2·2 
Address Memory Organization ............................ VI·2·2 
Cache Operation ................................... VI·2-4 

Read Hit .................................... VI·24 
Read Miss ................................... VI·2·4 
Write Hit .................................... VI·2·4 
Write Miss .................................. ~ VI·2·6 
Power·Up Initialization ............................ VI·2·6 
Overview .................................... VI·2-6 

EXAMPLE OF PDp· 1 1/70 CACHE OPERATION ..................... VI·2·6 

THEORY OF OPERATION 

SCOPE ........................................... VI-3-l 
PDP.lI/70 SYSTEM .................................... VI·3-l 

Data Parity ...................................... VI·3·3 
Address Parity ..... , .............................. VI·3·3 

CACHE DATA PATHS .................................. VI·3·3 
Address Paths .................................... VI·3·3 
Read Data Path ................................... VI·3·4 
Write Data Paths ................................... VI·3·4 

PROCESSOR·CACHE INTERFACE ...... . . . . . . . . . . . . . . . . . . . . . . VI·3·4 
UNIBUS MAP·CACHE INTERFACE ........................... VI·3·9 
RH70·CACHE INTERFACE ................................ VI·3-9 
MAIN MEMORY BUS ................... '.' .............. VI·3·lS 
OPERATIONAL FLOWS ................................ VI·3·19 

Processor Read Hit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI·3·20 
Processor Read Miss ................................ VI·3·20 
Processor Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI·3·23 
Processor BUST·BEND Cycle ........................... VI·3·24 
Unibus Map Read Hit ............................... VI·3-27 
Unibus Map Read Mjss ............................... VI·3-29 
Unibus Map Write ................................. VI·3·30 
Cache Register Read/Write ............................. VI·3-32 
MBC Read From Memory ............................. VI-3·32 
MBC Write to Memory ........,...................... VI·3·37 

VI-iii 



CHAPTER 4 

4.1 
4.2 
4.2.1 
4.2.2 
4.2.3 
4.2.4 
4.2.5 
4.2.6 
4.2.7 
4.2.8 
4.2.9 
4.2.10 
4.2.11 
4.2.12 
4.2.13 
4.2.14 
4.2.15 
4.2.16 
4.2.17 
4.2.18 
4.2.19 
4.2.20 
4.2.21 
4.2.22 
4.2.23 
4.2.24 
4.3 
4.3.1 
4.3.2 
4.3.3 
4.3.4 
4.4 
4.5 
4.6 
4.6.1 
4.6.2 
4.6.2.1 
4.6.2.2 
4.6.3 
4.7 
4.8 
4.8.1 
4.8.2 
4.8.3 
4.8.4 
4.8.5 
4.8.6 
4.8.7 
4.8.8 

CONTENTS (Cont) ( 
Page 

DETAILED LOGIC 

SCOPE ........................................... VI-4-1 
BLOCK DIAGRAM DESCRIPTION ............................ VI-4-1 

MBC Address Latch ............ . . . . . . . VI-4-1 
Address Multiplexer ............. . .................. VI-4-1 
Main Memory Bus Control Generator . . . . . . . . . ....... VI-4-2 
Main Memory Bus Address Drivers .... .. . .................. VI-4-3 
Address Field Inverter ... .. . . . .. ..... . .......... VI-4-3 
Index Field Inverter-Drivers ...... . . . . . . . . . . . . . . VI-4-3 
Address Memory ...... ............................ VI-4-3 
Valid Bit Generator ................... -.- ............. VI-4-4 
Address Memory Parity Generator .......................... VI-4-4 
Tag 0 and Tag 1 Parity, Address, and Validity Checker .. VI-4-4 
Write Data Multiplexer .... .... . . . . . . . VI-4-5 

( 
Data Parity Generator ..... ............ . . VI-4-5 
Main Memory Bus Data Drivers . . • . . . . . .... VI-4-5 
Main Memory MBC Data Drivers ........ VI-4-5 
Main Memory Bus Data Receivers . . . . . . . . . . . . VI-4-5 
Bus Data Register ............ . . . . . . . .. VI-4-6 
Even Multiplexer and Odd Multiplexer . . . . . . . . . . . . . . VI-4-6 
Main Memory Data Parity Check . . . ............ VI-4-6 
FDM Index Field Drivers . . . . . . . . . . . . VI-4-6 
Fast Data Memory (FDM) ..... . .. VI-4-7 ( 
FDM Data Parity Check ...... . .. VI-4-8 
Even and Odd Multiplex Inverters . . . . . . . . . . VI-4-8 
Cache Data Multiplexer . . . . . . . .. VI-4-8 
Register Logic . . . . . . . . . VI-4-9 

CACHE TIMING .. . . .. . . . .. .......... . ...... VI-4-9 
Cache Timing Sequence . . . . . . . ..... VI-4-9 
Read Hit Timing ................ . . . . . . . . . . . VI-4-10 
Main Memory Bus (Slow Cycle) Timing . . . . . . ..... VI-4-10 
Timing Restart After Main Memory Cycle .... . . . .. .. . . . . . . VI-4-11 

POWER-UP LOGIC ........ . . . . . . .... VI-4-11 
REQUEST ARBITRATOR LOGIC ..... . . . . . . . VI-4-12 

( 
MBC ARBITRATION LOGIC . . . . . . . . . . . VI4-13 

Request Block Logic (Drawing CDPH) . VI-4-13 
Address and Data Select Logic ......... VI-4-13 

Single Request Operation . . . . . . . . .. .. . . . . VI-4-13 
Multiple Request Operation ........................ VI-4-15 

Data Ready Logic ................................. VI-4-16 
GROUP SELECTION AND VALID BIT LOGIC .. . .. . . . . . . . . . VI-4-17 
CACHE REGISTERS AND REGISTER LOGIC ........ VI-4-17 

Low Error Address Register (17777740) .......... VI-4-18 
High Error Address Register (17 777 742) . . . . . . . . . . . . VI-4-18 
Memory System Error Register (17 777 744) .......... ..... Vl4-19 
Control Register (17 777 746) ........ . . . . . . .. . . . . . . VI-4-19 
Maintenance Register (17 777 750) ........................ VI-4-21 
Hit/Miss Register (17777752) . . . . . . . . . . . . . . . . . . . . . . . . . VI-4-21 
Use of Cache Registers ..... . . . . . . . . . . . . . . . . . . . . VI-4-22 
Register Logic ......... ......................... VI-4-24 

VI-iv 



( 

Figure No. 

1-1 
1-2 
1-3 
1-4 
1-5 
2-1 
2-2 
2-3 
2-4 
3-1 
3-2 
3-3 
34 
3-5 
3-6 
3-7 
3-8 
3-9 
3-10 
3-11 
3-12 
3-13 
3-14 
3-15 
3-16 
3-17 
4-1 
4-2 
4-3 
44 
4-5 
4-6 
4-7 
4-8 
4-9 
4-10 
4-11 
4-12 
4-13 
4-14 

Table No. 

2-1 
2-2 
3-1 
3-2 
3-3 

ILLUSTRATIONS 

Title 

Relationship of Cache to Processor and Main Memory 
Fully Associative Cache Memory System ..... . 
Direct Mapping Cache Memory System ...... . 
18-Bit Byte Address Breakdown (4 Words per Block, 64 Blocks) 
Set Associative Cache Memory System (Two-Way) ..... . 
22-Bit Byte Address Breakdown (2 Words per Block, 256 Sets of Blocks) 
Fast Data Memory Organization ....... . 
Address Memory Organization ......... . 
PDP-1I/70 Cache Simplified Data Path Diagram 
PDP-11/70 System ...... . 
Cache Data Paths Block Diagram 
Processor - Cache Protocol 
Unibus Map - Cache Protocol . 
RH70 - Cache Protocol .... 
Cache - Main Memory Protocol 
Flowchart Symbol Definitions 
Processor Read Hit . 
Processor Read Miss 
Processor Write . . . 
Processor Bust-Bend Cycle 
Unibus Map Read Hit 
Unibus Map Read Miss . 
Unibus Map Write 
Register Read and Write 
MBC Read From Memory 
MBC Write to Memory . 
Cache Clock Waveforms 
Cache Timing Sequence 
Power-Up Sequence Timing Diagram 
Relationship of the MBC Arbitrator to the Cache 
MBC Arbitrator Block Diagram ........ . 
MBC Request Timing (MBC A Requesting) 
MBC Address and Data Select Timing (Multiple Requests - Straight Priority) 
Low Error Address Register 
High Error Address Register 
Memory System Error Register 
Control Register 
Maintenance Register 
Hit/Miss Register . . . 
Register Logic Block Diagram 

TABLES 

Title 

Example Program ....... . 
Summary of Cache Operations Example . 
Master Timing and Initialization Control Lines 
Processor-Cache Data Transfer Control 
Unibus Map-Cache Interface Signals ..... 

VI-v 

Page 

· VI-1-1 
· VI-1-3 
· VI-l-4 
· VI-1-4 

. . VI-I-5 

.. VI-2-1 
· VI-2-2 
· VI-2-3 
· VI-2-5 
· VI-3-2 
· VI-3-5 
· VI-3-8 
· VI-3-9 
VI-3-12 
VI-3-16 
VI-3-19 
VI-3·21 
VI·3·22 
VI-3·25 
VI·3·26 
VI·3·27 
VI·3-28 
VI·3·31 
VI·3·33 
VI·3·35 
VI-3·36 
· VI·4·9 
VI4·10 
VI4·12 
VI4·13 
VI4·14 
VI4·14 
VI4·15 
VI4·18 
VI4·18 
VI4·19 
VI4-21 
VI4·22 
VI4·25 
VI4·25 

Page 

· VI·2·9 
· VI·2·9 
· VI·3·6 
· VI·3·6 
VI·3·1Q 



Table No. 

34 
3-5 
3-6 
4.1 
4-2 
4-3 
44 
4-5 
4-6 
4·7 

TABLES (Cont) 

Title 

RH70-Cache Interface Signals . . , . . . . . . . . . . . . . . . . . . 
Main Memory Bus Signals . . . . . . . . . . . . . . . . . . . . . 
Memory Bus Signal Pin Connections . . . . . . . . . . 
MBC Selection Priorities .......•. .. . . . . . . . . . . . . . . . . . . . . 
Cache Registers ....... ..... . . . . . . . . . . . . . . . . . . 
High Error Address Register . ..... ... . . . . . . . . . . . . . . . 
Memory System Error Register ..... . . . . . . . . . 
Control Register •...... ...,...,..................... 
Control Register Bits 5:2 . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . 
Maintenance Register ......•........................... 

VI-vi 

( 

Page 

VI-3-13 
VI-3-17 
VI-3-18 
VI4-13 
VI4-17 
VI4-18 
VI-4-20 
VI4-21 
VI4-22 
VI4-23 

( 

( 

( 

( 



( 
\ 

1.1 SCOPE 
This chapter explains the purpose of cache memory 
systems and describes various methods used to im­
plement such systems. Parameters and strategies in­
volved in cache memory design are introduced, 
described, and analyzed in order to facilitate the 
reader's understanding of the specific Cache imple­
mented in the PDP-Ilj70 system. 

1.2 OVERALL ORGANIZATION OF A CACHE 
MEMORY SYSTEM 
The cache memory system is intended to simulate a 
system having a large amount of fast memory. To 
do this, the cache system relies on a small amount 
of very fast memory (the cache), a large amount of 
slower memory (the Main Memory), and the statis­
tics of program behavior. 

The basic idea is to store some data in the fast 
memory and some in the slow memory. If it can 
somehow be arranged that data is in the fast mem­
ory when the processor needs it, the program will 
execute quickly, slowing down only occasionally for 
Main Memory operations. Conventional mixed 
MOS-Core systems attempt to achieve this goal by 
having the programmer guess beforehand which sec­
tions of his program should go in each memory. 
This is often awkward, and usually only moderately 
successful. The cache memory system tries to 
achieve the same goal by automatically, dynam­
ically shuffling data between the two memory types 
in a way which gives a high probability that useful 
data will be in the fast memory. All of the follow­
ing discussions of cache organizations and strate­
gies are intended to show implementable methods 
of shuffling data so that the data most likely to be 
needed next will be in the fast memory instead of 
the slower Main Memory. 

CHAPTER 1 
CACHE CONCEPTS 

Figure I-I illustrates the relationship of a cache to 
the processor and Main Memory. 

Figure I-I Relationship of Cache 
to Processor and Main Memory 

1.3 PROGRAM LOCALITY 
A cache memory works because it can usually pre­
dict successfully which words a program will re­
quire soon. If programs used words completely at 
random from all of memory, it would be impossible 
to predict which words would most likely be 
needed next. Under these circumstances, a cache 
memory system could perform no better than a con­
ventional mixed memory system with a small 
amount of bipolar memory. 

Fortunately, programs do not generate random ad­
dresses. Instead, programs have a tendency to make 
most accesses in the neighborhood of locations ac­
cessed in the recent past. This is the basis of the 
principle of program locality. The fact that pro­
grams display this type of behavior makes cache 
memory systems possible. 

VI -1-1 



An understanding of why the principle of program 
locality is true can be obtained by examining the 
small scale behavior of typical program data struc­
tures. Code execution itself generally proceeds in 
straight lines or small loops; the next few accesses 
are most likely to be within a few words ahead or 
behind. Stacks grow and shrink from one end, with 
the next few accesses near the current top. Charac­
ter strings and vectors are often scanned through 
sequentially. 

The principle of program locality is a statement of 
how most programs tend to behave, not a law 
which all programs always obey. Jumps in code se­
quences, seemingly random access of symbol tables 
by assemblers, and context switching between pro­
grams are examples of behavior which can ad­
versely affect the locality of addresses generated by 
a processor. The process of guessing which words a 
program will reference next .can never be com­
pletely successful. The percentage of. correct guesses 
is a statistical measure affected by the size and or­
ganization of the cache, the algorithms it uses, and 
the behavior of the program driving it. 

1.4 BLOCK FETCH 
The principle of program locality states that for the 
cache to have the best chance of having the word 
the program needs next, the cache should have 
words near those recently used. The basic method 
of accomplishing this is the block fetch. When the 
cache controller finds it necessary to move a word 
of data ftom 'slow memory to fast memory because 
the data was not in the fast memory when needed, 
the controller will move not just the word required, 
but a block of several adjacent words at once. Typi­
cally, the block will contain one (degenerate case), 
two, four, or eight words starting on an even block 
boundary. 

The block fetch can provide either look-behind, 
look-ahead, or both, depending on the position of 
the originally requested word within the block. 
Since many important generated address sequences 
(e.g., most code) tend to move in increasing order, 
the originaIly requested word is usuaIly the first in 
the block, so the block fetch generally provides 
look-ahead. 

The block size is one of the most important parame­
ters in the design of a cache memory system. If the 
block size is too small, the system will have in­
sufficient look-ahead and performance will suffer 
slightly, particularly for programs which do not con­
tain many loops. Also, as will be discussed later, 
smaIl block sizes require the system to store more 
addresses than large blocks, for the same total mem­
ory size. 

If the block is too large, there may not be room for 
enough blocks in the cache to provide for adequate 
look-behind. Large blocks also tend to mean more 
memories operating in parallel within the slow mem­
ory, and therefore wider buses between slow and 
fast memory, resulting in increased cost. As the 
block gets larger, each additional word in the block 
is less likely to be useful, since it is further from the 
originally requested word and less likely to be 
needed soon by the program. It has been found em­
pirically that while a block size of two words in­
creases memory system performance dramatically, 
further increases in block size produce much 
smaIler improvements which are seldom worth 
implementing. 

1.5 FULLY ASSOCIATIVE CACHE 
I f a cache memory system was designed so that the 
fast memory held one contiguous block of 1000 
words, it would fail miserably. Most programs 
make, reference to code segments, subroutines, 
stacks, lists, and buffers located in scattered parts 
of the whole address space. Ideally, a 1000-word 
cache would hold the 1000 words the controller esti­
mated as most likely to be needed, no matter how 
scattered these words were throughout the address 
space of Main Memory. 

Since there would be no relation of all the ad­
dresses of these thousand words to each other or to 
any single register or mapping function, each of the 
1000 data words in the fast memory would have to 
carry its address with it. Then, when the processor 
requested a word from memory, the cache would 
simply compare (associate) the address from the 
processor with each of the thousand addresses of 
words in the fast memory. If a match were found, 
the data for that address would be sent to the proc­
essor. This is the principle of an associative mem­
ory (Figure 1-2). 

VI-I-2 

( 

( 

( 

( 

.. 

( 



( 

( 

( 

( 

BLOCK 

3 

2 

o 

CACHE 

MAIN 
MEMORY 

,.-----,ADDRESS 

.. --.::;;;.-.t=====l623124 -. ... ~ ., 

--- 44322 

2214 

1736 

Figure 1-2 Fully Associative Cache Memory System 

This system, called fully associative because the in­
coming address must be compared (associated) with 
all the stored addresses, gives the cache controller 
maximum flexibility in deciding which words ,it 
wants in fast memory, Le., any words at all until 
the memory is full. Unfortunately, 1000 address 
comparisons would be unacceptably slow and/or ex­
pensive. One of the basic issues of cache organiza­
tion is how to provide minimum restrictions on 
what groups of words may be present in fast mem­
ory, while limiting the number of address com­
parisons required. 

1.6 DIRECT MAPPING CACHE 
At the opposite extreme from the fully associative 
cache is the direct mapping cache. Instead of one 
address comparison on every block, the direct map­
ping cache requires only one address comparison. 

The many address comparisons of the fullyassoci­
ative cache are necessary because any block from 
Main Memory can be placed in any block of fast 
memory. Thus, every block of fast memory must be 
checked to see if it has each requested address. The 
direct mapping cache allows each block from Main 

Memory only one possible location in fast memory 
(Figure 1-3). Consider each incoming address as 
being made up of three parts. The first part starts 
at bit 0 and contains enough bits to specify which 
byte out of a block is being requested. The next 
field, called the index field, starts where the first 
field leaves off and contains enough bits to specify 
any block in fast memory. The third field, called 
the address field, contains the rest of the bits. 

As an example, consider an 18-bit PDP-II byte ad­
dress as input to a 256-word, 4 word per block di­
rect mapping cache. (This cache would thus be 4 
words wide and 64 blocks deep. Assuming four 
words per block allows us to break down the ad­
dress conveniently, using octal notation.) As illus­
trated in Figure 1-4, the word field in this case 
comprises bits 2, I, and 0, where bit 0 indicates the. 
byte, and bits 2 and I indicate the word. The index 
field comprises bits 8 through 3, and indicates the 
block. The address field comprises bits 17 through 
9. 

If the processor requests word 274356, the cache 
controller looks at the address which goes with the 
information currently in block number 35 in fast 

VI-I-3 



BLOCK CACHE 

7 

S 

5 

4 

3 

2 

0 

MAIN 
MEMORY 

AODRESS 

....1=======1 2 874~0 

.-.J===:::::j 257 4 ~O 

A======l20ISg0 

13Q2 

tt-2835 

Figure 1·3 Direct Mapping Cache Memory System 

11 16 15 14 13 12 11 10 09 OB 07 06 05 04 03 02 01' 00 

~--______________ ~. __________________ -J. ____________ ~. ____________ J~ __ -v. __ -J'~ 

ADDRESS FIELD INDEX FIELD WORD BYTE . 
INDICATE WORDS 

AND BYTES 
WITHIN A BLOCK 

11-2836 

Figure 14 I8·Bit Byte Address Breakdown (4 Words per Block, 64 Blocks) 

memory. If this address field is 274, the controller 
sends the third word in that block to the processor. 
If the stored address field is not 274, the controller 
must fetch block 27435 from Main Memory, trans­
mit the third word in the block to the processor, 
load the block into block 35 of fast memory, replac­
ing whatever was there previously, and change the 
address field stored with block 35 to 274. 

Any address whose index field is 35 will be loaded 
into block 35 of fast memory, and therefore this is 
the only place the cache controller has to look if 
the processor requests the data from an address 
whose index field is 35. 

Notice also that only the address field of the ad­
dress need be stored with each block, because only 
the address field of the address is required for com­
parison. The index field need not be compared be­
cause anything stored in fast memory block 35 has 

VI-J-4 

an index field of 35. The word field need not be 
compared because if the block is there, every word 
in the block is there. 

This is how the direct mapping cache uses in­
expensive direct addressing of fast memory to elimi­
nate almost all comparison operations. 

Of course there are disadvantages to this simple 
scheme. If the processor in the example above 
makes frequent references to both location 274356 
and location 6352, there will be frequent references 
to slow memory, because only one of these loca­
tions can be in the cache at one time. Fortunately, 
this sort of program behavior is infrequent, so that 
the direct mapping cache, although offering signifi­
cantly poorer performance than fully associative, is 
adequate for some applications. Usually the system 
of choice is a compromise between a direct map­
ping cache and fully associative cache, called the set 
associative cache. 

( 

( 

( 

( 

( 



( 

( 

( 

( 

( 

1.7 SET ASSOCIATIVE CACHE 
The set associative organization is a compromise be­
tween the extremes of fully associative and direct 
mapping. This type of cache has several directly 
mapped groups (Figure 1-5). For each index posi­
tion in fast memory there is not one block, but a 
set of several, one in each group. (The set of blocks 
corresponding to an index position is called a 
"set.") A block of data arriving from Main Mem­
ory can go into any group at its proper index 
position. 

Since there are several places for data with the 
same index field in their addresses to be stored, the 
type of excessive Main Memory traffic possible in a 
direct mapping organization is less likely to occur. 
This gives a set associative cache higher perform­
ance. I n fact, a four-way set associative cache (four 
groups) will normally perform very nearly as well 
as a fully associative cache. 

The price that is paid for higher performance is 
some increase in complexity. There are several 
places in fast memory where any given piece of 
data can be stored, so the controller must do sev­
eral compares (i.e., must associate) to determine in 

CACHE 
INDEX 
FIELD BLOCK GROUP 0 GROUP 1 

Y 
3 

2 

0 

which place (if any) the requested data is located. 
The number of times it must compare (associate) is 
of course equal to the number of groups, usually 
two, three, or four. A set associative cache can be 
classified as an noway set associative cache, where n 
is the number of compares performed (i.e., the num­
ber of groups). 

Another aspect of the increased complexity be­
comes apparent when a block of fast memory must 
be overwritten. There are now several locations in 
fast memory where the new data from Main Mem­
ory may be written (one in each group), so the con­
troller must have some means of deciding which 
block will be overwritten. The decision could be 
made using any of the following considerations: 

Least Recently Used (LR U) - The block least re­
cently used is replaced. 

First In-First Out (FIFO) - The block which has 
been stored the longest time is replaced. 

Random - Blocks are replaced in a random 
manner. 

MAIN 
MEMORY 

...----, ADDRESS 

_l========1 4 253~2 
_-1========1 42 53g0 

1410 
14Q6 

204 

H-2837 

Figure 1-5 Set Associative Cache Memory System (Two-Way) 

VI-lOS 



A replacement strategy based on LRU or FIFO in­
formation requires the storage' of LRU or FIFO 
bits, along with the address fields in the address 
memory, and the logic necessary to generate and de­
code these bits. The random strategy is far easier 
and cheaper to implement, yet provides perform­
ance only slightly lower than that obtainable by the 
other strategies. 

The extra performance of a set associative cache 
usually justifies the slightly extra complexity of at 
least two-way associativity in all but low perform­
ance applications. 

1.8 WRITE-THROUGH AND WRITE-BACK 
Assume that the following sequence of events oc­
cur. First, the processor does a read of location 
200, resulting in the block containing this address 
being copied into fast memory. Then the processor 
writes new data into location 200, updating this lo­
cation in fast memory. Next the processor does a 
reference which causes the cache controller to over­
write the block in fast memory containing location 
200. If the processor reads location 200 again, the 
obsolete data in Main Memory will be loaded into 
fast memory. This is unacceptable, and two meth­
ods have been devised to deal with the problem. 
The methods are called write-through and write­
back. 

With write-through, whenever a write reference oc­
curs, the data is not only stored in fast memory, 
but is also immediately copied into Main Memory. 
This means that the Main Memory always contains 
a valid copy of all data. If the controller wants to 
overwrite a block in fast memory, this can be done 
immediately, without losing any data. 

The advantages of write-through are its relative sim­
plicity and the fact that the Main Memory always 
has correct data. The primary disadvantage is some 
reduction of speed due to the need to access the 
slow memory on every write reference. This is off­
set somewhat by the fact that write references are a 
small fraction of all references to memory. In addi­
tion the cache does not have to wait for the Main 
Memory to finish before starting the next cycle. 

Since a reasonable design would only cycle the 
memory being written into and not all the parallel 
memories in Main Memory, the system should not 
even be held up by multiple sequential writes. How­
ever, some fraction of the time, the system will 
have a read miss following a write, or two writes to 
the same memory stack within Main Memory, and 
then the system must wait. This causes the system 
to run slightly slower than first-order estimates 
would indicate. 

The other method of handling the stale data prob­
lem in a cache system is called write-back. Under 
this method, data written by the processor is only 
stored in the fast memory, leaving the Main Mem­
ory unaltered and obsolete. A bit in the address 
field of the block in fast memory, called the altered 

. bit, is set to indicate that this block contains new in­
formation. When the controller wants to overwrite 
a block of fast memory, the ~ltered bit is inspected 
first. If this bit is set, the controller must write the 
block into Main Memory before overwriting it. 

The primary advantage of write-back is higher per­
formance. For almost any program, the number of 
times an altered block must be copied into Main 
Memory is less than the number of write references, 
so write-back is noticeably faster than write­
through. One disadvantage of write-back is in­
creased complexity. A write-back system must have 
the ability to regenerate addresses from tags and 
the extra sequencing logic to do double cycles. 

Another disadvantage of write-back is the power 
fail problem. When power fails, fast memory will 
be holding the only valid copies of some arbitrary 
set of locations. If these are not copied into Main 
Memory, they will be lost. Since there is no way of 
knowing which locations were lost, the entire mem­
ory must be considered volatile. If Main Memory is 
volatile anyway, there is no problem; otherwise, 
steps must be taken. One possibility is to require 
the power fail program to do a sequence of reads 
calculated to ensure that every block in the cache 
has been overwritten. A more reliable, but more ex­
pensive system would automatically ensure that all 
altered blocks are copied into Main Memory, after 
the program halts, but before power disappears. 

VI-I-6 . 

( 

( 

( 

( 

( 



( 

( 

( 

" 

2.1 SCOPE 
This chapter describes the specific Cache which has 
been implemented in the PDP-II/70 system. The 
reader should be familiar with the cache concepts, 
classifications, and definitions described in the pre­
vious chapter. 

2.2 PDP-Uj70 CACHE 
The Cache useo in the PDP-II /70 is two-way set as­
sociative. It consists of two groups of 256 blocks 
each. Each block consists of two words; therefore, 
the total data storage capacity of the fast memory 
is I K words. The 11/70 Cache is implemented us­
ing a random replacement strategy and write­
through. 

Since the PDP-I 1/70 system uses a 22-bit address 
space, the address is broken down into address 
field, index field, and word field as illustrated in 
Figure 2-1 and outlined below. 

I. Bits 21-10 comprise the address field 
used to identify a block of data in fast 
memory. 

CHAPTER 2 
PDP-ll/70 CACHE 

2. Bits 9-2 comprise the index field used to 
designate a set. A set consists of two 
blocks, one in each group, located at the 
index position designated by the index 
field. 

3. Bit I designates the word (one of two in 
the block). 

4. Bit 0 indicates the byte, as in all PDP-II 
addresses. 

NOTE 
This manual uses the term "address 
field" to designate that part of an 
address which is stored in the Ad­
dress Memory. The term "address 
tag" designates the tag used to iden­
tify data stored in the Cache. The 
address tag thus consists of an ad­
dress field, a Valid bit, and two par­
ity bits. 

21 20 19 18 17 16 15 14 13 12 11 to 09 08 01 06 05 04 03 02 ot 00 

I I 
~-------------------r,--------------------/II~-------------y,------------~I~~ 

ADDRESS FIELD I NDEX FIELD WORD BYTE 
INDICATES A SET OF 

BLOCKS "WORD'" FIELD 
INDICATES WORD 

AND/OR 
BYTE WITHIN 

A BLOCK 

Figure 2-1 22-Bit Byte Address Breakdown (2 
Words per Block, 256 Sets of Blocks) 

~N'-"~''Jd 

VI-2-1 



72 BITS 

36 BITS 

·~18BITS 
36 BITS 

-+- 18 BIT5-4 
ADDRESS BIT 1 

(WORD FIELD) I ~ EACH 18BIT WORD 

GROUP 0 GROUP 1 CONSISTS OF 

BLOCK/SET EVEN 1000 lEVEN 1000 I 
16 DATA BITS PLUS 
2 PARITY BITS. 

000 SET 

BLOCK BLOCK 

j+-WORD WORD---.. 

9:2) ADDRESS BITS ( 
(INDEX FI ELD) 

256 
INDEX 

POSITIONS 

37718 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

DATA OUT 1 1 DATA OUT 1 _ ..... _--
-------~ - - ----

~ 
(FOR REFERENCE) 

HIT ON GROUP 0 

HI T ON GROUP 1 
11-2839 

Figure 2-2 Fast Data Memory Organization 

2.2.1 Data Memory Organization 
Figure 2-2 illustrates the organization of the PDP-
11/70 Cache Fast Data Memory (FDM). Note that 
the FDM consists of 256 sets = 512 blocks = 1024 
words, and is subdivided into two equal groups 
(Group 0 and Group 1). Bits (9:2) of the incoming 
address index into the FDM and select one of the 
256 sets. (A set consists of two blocks, one in each 
group.) Bit I of the incoming address enables either 
the low (even) word or the high (odd) word within 
the blocks that comprise the selected set to be gated 
out of the FDM to a Cache Data Multiplexer. One 
of these words will be selected if a hit is detected 
upon address field comparison. The word selected 
will be from the group upon which the hit occurs. 

VI-2-2 

2.2.2 Address Memory Organization 
The organization of the Address Memory, illus­
trated in Figure 2-3, is determined by the Fast Data 
Memory organization. The Address Memory is di­
vided into two equal parts: the Tag 0 Address Mem­
ory and Tag 1 Address Memory, corresponding to 
Group 0 and Group 1 of the Fast Data Memory. 
Since an address tag field must be stored to identify 
each block in the FDM, 512 locations are required 
for address tag fields; 256 of these locations are in 
Tag 0 Address Memory, while the remaining 256 lo­
cations are in Tag 1 Address Memory. Each ad­
dress tag consists of 15 bits. Therefore, the total 
width of Address Memory is 15 X 2 = 30 bits. 

( 

( 

( 



( 

( 

( 

ADDRESS BITS (9:2) 
(INDEX FIELD) 

1 BIT 

VALID BIT 

000 

256 
INDEX 

POSITIONS 

377 

ADDRESS BITS (21: 
(A DDRESS FI E 

~------------------30BITS----------------------~ 

15 BITS 15 BITS 

· ["BLTS 1 -2BITS 

PARITY r VALID BIT 

n ADDRESS FIELD· 'n ADDRESS FIELD 
rlPARITY 

-- ADDRESS TAG FIELD 

I I 
I I 
I I 
I I 
I 

I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

I I I 
10) 
LD) 

~PARITY I 
CHECK 

-==:;! PARITY I 
CHECK 

I A - B I PAR I A = B 
PAR 

COMPARATOR OK COMPARATOR OK 

A-B A=B 

MATeH 09 
HIT 0 

"ATCH19 
HIT1 

11-2840 

Figure 2-3 Address Memory Organization 

VJ-2-3 



The address tag is organized as follows: 

I. Twelve bits are required to store the ad­
dress field. 

2. One bit is used to store a Valid bit; this 
bit indicates whether the address tag 
(and therefore the FDM data corre­
sponding to the tag) is valid. 

3. The remaining two bits are used to store 
the address tag parity bits which verify 
that the address tag has been properly 
loaded into the Address Memory. 

When a memory cycle is performed, bits (9:2) of an 
incoming address index into the Address Memory 
and select an address tag in Tag 0 Address Memory 
and Tag I Address Memory. The two address fields 
are read from the Address Memory and compared 
with the address field (bits 21: 10) of the incoming 
address. If either comparison results in a match, if 
the corresponding Valid bit is set, and if no address 
tag parity error is detected, HIT 0 or HIT 1 is as­
serted. These signals perform the final selection of 
the words output from the FDM, as illustrated in 
Figure 2-4. 

2.2.3 Cache Operation 
When a 22-bit address arrives from the processor 
or Unibus, bits (9:2) (the index field) are immedi­
ately used as an index into the 256 by 30 bit Ad­
dress Memory, which contains the high order bits 
(address field) of the addresses presently stored in 
the Cache and their Valid bits. At the end of the 
Address Memory access time, two tags are avail­
able for use. Each tag consists of a 12-bit address 
field, a Valid bit, and two parity bits. The two ad­
dress fields go directly to two comparators, where 
they are compared with the 12 high order bits of 
the incoming address. (The stored address tags are 
checked for correct parity while the address fields 
are compared. The following discussion assumes 
that no address tag parity errors are detected.) 

2.2.3.1 Read Hit - Assume that one of the address 
comparisons results in a match and that the corre­
sponding Valid bit is set. This condition is called a 
"hit" and means that the word requested is in the 
Fast Data Memory. The appropriate select signal is 
therefore sent to the Fast Data Memory. 

VI-2-4 

Ten bits are required to select one of the 1024 
words in Fast Data Memory. Eight of these bits are 
the same index bits used to index into the Address 
Memory. These bits select a set of two blocks, one 
block in each group. Also required is bit 1 of the in­
coming address, which selects either the high or low 
word of the blocks within the set. The last selection 
is provided by the comparison signal from the ad­
dress field comparators, which determine which of 
the two groups (or equivalently, which of the two 
blocks within the set) has the desired data. After 
this last signal arrives, the data is available from 
the data memory and will be sent to the processor 
or Unibus as required. 

2.2.3.2 Read Miss - If neither address field from 
the Address Memory matches the address field of 
the incoming address, then the requested data is 
not in fast memory. This is called a miss condition. 
When the Cache controller determines that there is 
no match, it must start a Main Memory cycle to 
fetch the required block. The block address will be 
the 20 high order bits of the incoming address. 

During the Main Memory access time, the Cache 
controller can decide where to put the incoming 
data when it arrives. The index field determines 
which block within a group is replaced. The con­
troller determines in which group the new block 
will be placed by examining an internally generated 
Random bit. When the data block arrives from 
Main Memory, it is written into the selected block 
of fast memory, while the requested word is passed 
along to the processor or Unibus. At the same 
time, the address field of the block is loaded into 
the corresponding location in Address Memory 
along with a set Valid bit. (A set Valid bit is loaded 
into Address Memory whenever the Fast Data 
Memory is loaded as a result of a read miss.) 

2.2.3.3 Write Hit - During a write cycle initiated 
from the processor or Unibus, the initial sequence 
of events in the Cache is the same as during a read 
cycle; the address comes in, the Address Memory is 
accessed, and the address fields are compared. If 
the address fields match and the corresponding 
Valid bit is set, a hit is indicated and the new data 
is written into the appropriate word or byte of fast 
memory, as selected by the index, word, and byte 
fields of the address and the comparator outputs. 
Si nce the PO P-II /70 Cache is implemented using 
write-through, the data is also written into Main 
Memory. This ensures that the data in the Main 
Memory and in the Cache are never different. 

( 

( , 



ADDRESS BITS (9'2) 
(INDEX FIELD) 

( 
ADDRESS BITS (21:10) 

(ADDRESS FIELD) 

ADDRESS BITS 1.0 

( 
(WORD/BYTE SELECT) 

ADDRESS BITS (9:2) 
(I NDEX FIELD) 

( 

VALID BIT ~ 

000 -

256 
INDEX 

POSITIONS 

377 

I 

TAG 0 
ADDRESS MEMORY 

PAfllTY '1 ADDRESS FIELD 

~ADDRESS TAG FIELD 

I 
I 
I 
I 
I 
I 

, I 
I 

TAG 1 
ADDRESS MEMORY 

AL 0 B T rv I I 

ADDRESS FIELD 

I 
I 
I 
I 
I 
I 
I 
I 

I 

rPARITY 

~PARITY I 
CHECK 

----=3 PARITY I 
CHECK 

PAR A - B 
COMPARATOR I A - B I OK COMPARATOR 

A-B A-B 

MATCH 01 MATCH 1 
...--

1 
--, "\ HITO 

-L-I 

Lc> GROUP 0 GROUP 1 

EVEN ODD ~EVEN 
000 SET 

BLOCK BLOCK 

-WORD WORD-

I I I 

256 I I 
I 

INDEX I I 
POSITIONS I I I 

I I 
I I I 
I I I 
I I I 
I I I 
I I 

377 

L DATA OUT L L DATA OUT 

OUT~ DATA 

7i 
Figure 2-4 PDP-II/70 Cache Simplified Data 

Path Diagram 

VI-2-5 

I 
I 
I 
I 
I 
I 
1 

I 
I 

L 

ODD 

PAR 
OK 

~ 

U-2953 



2.2.3.4 Write Miss - If, during a write operation 
from the processor or Unibus, a miss is indicated 
by the address comparison in the Cache, a write 
cycle is performed to the specified address in Main 
Memory. The contents of the Address Memory and 
the Fast Data Memory are left unaltered. 

2.2.3.5 Power-Up Initialization - On power-up, the 
Cache performs a power-up sequence during which 
all of the Valid bits in the Address Memory are 
cleared. This is done because anything stored in the 
Cache immediately after a power-up must not be 
construed as valid data. As program execution be­
gins, the density of read misses is high (because of all 
the negated Valid bits), and data must be fetched 
from Main Memory. As a result, the FDM gets filled 
and Valid bits get asserted. This in turn results in 
fewer misses, i.e., a higher hit rate and greater speed 
as program execution continues. The time interval 
required for the memory system to achieve nominal 
speed is only on the order of I ms. 

At the same time that the Address Memory Valid 
bits are negated, all the remaining bits in the Ad­
dress Memory and FDM are loaded with bit pat­
terns having correct parity. This is to ensure that 
the bit patterns resident in the Address Memory 
and FDM upon power-up will not generate parity 
errors when program execution begins. 

2.2.3.6 Overview - It should be apparent to the 
reader that the mechanisms described in the preced­
ing paragraphs ensure that: 

I. The recently used data tends to be in 
fast memory. 

2. The Main Memory always has a correct 
copy of all data. 

3. The same Main Memory location never 
ends up in two different Fast Data Mem­
ory locations at the same time. * 

2.3 EXAMPLE OF PDP-11j70 CACHE 
OPERATION 
The following is an example illustrating Cache oper­
ations. Assume that the following sequence of 
events has occurred. The system was powered up, 
and the machine code listed in Table 2-1 was man­
ually loaded into core memory at the locations spec­
ified. Assume that the code was properly loaded 

*This condition can occur, however, if the Control Register Force 
Replacement bits are manipulated. 

VI-2-6 

and that no verification (read operation) was per­
formed. At this point, none of the Valid bits in the 
Address Memory of the Cache are asserted. Ad­
dress 1000 is now loaded into the processor PC, the 
ENABLE/HALT switch is set to ENABLE, and 
the START switch is depressed. Program execution, 
summarized in Table 2-2, begins as follows: 

NOTE 
The program used in this example is designed to illus­
trate Cache operations, not a typical use. 

I. The processor initiates a fetch of the con­
tents of address 1000. 

a. This results in a miss, because the 
corresponding Valid bits are 
unasserted. 

b. The contents of addresses 1000 and 
1002 are fetched from Main Mem­
ory and loaded into block (index 
position) 200 of Group 0 of the 
FDM, as determined by the Ran­
dom bit. 

c. The address field (0000) is loaded 
at index position 200 of the corre­
sponding Address Memory along 
with an asserted Valid bit. At the 
same time, the contents of address 
1000 are sent to the processor. 

2. The processor initiates a fetch of the con­
tents of address 1002. 

a. The address field (0000) is com­
pared with the contents of the Ad­
dress Memory at index position 
200. This results in a hit on Group 
o of the FDM. (The match occurs 
with the tag field loaded at step 
Ie.) 

b. The requested word is sent to the 
processor. 

3. The processor initiates a fetch of the con­
tents of address location 5000. 

a. The address field (0002) is com­
pared with the contents of Address 
Memory at index position 200. 
this results in a miss. 

( 

( 

( 

( 

( 



( 

( 

( 

b. The contents of addresses 5000 and 
5002 are fetched from Main Mem­
ory and loaded into block (index 
position) 200 of Group 0 of the 
FD M as determined by the Ran­
dom bit. The previous contents of 
block 200 of Group 0, loaded at 
step Ic, are overwritten. This is be­
cause of the random nature of 
group selection; the Random bit, 
as assumed in Table 2-2, happens 
to be in the same state as it was 
when the FDM was previously 
loaded. The corresponding position 
in Address Memory is also over­
written with the new address field 
(0002). At the same time, the con­
tents of location 5000 are sent to 
the processor. 

4. The processor initiates a fetch of the con­
tents of location 1004. 

a. The address field (0000) is com­
pared with the contents of the Ad­
dress Memory at index position 
201. Since the Valid bits at this in­
dex position are unasserted, this re­
sults in a miss. 

b. The contents of address 1004 and 
1006 are fetched from Main Mem­
ory and loaded into block (index 
position) 201 of Group 0 of the 
FDM, as determined by the Ran­
dom bit. 

c. The address field (0000) is loaded 
at index position 201 of the corre­
sponding Address Memory along 
with an asserted Valid bit. At the 
same time, the contents of address 
1004 are sent to the processor. 

5. The processor now initiates a write to lo­
cation 3000. (The data being written was 
previously fetched from location 5000.) 

a. The address field (0001) is com­
pared with the contents of Address 
Memory at index position 200. 
This results in a miss. 

VI-2-7 

b. The Cache therefore writes the 
data from the processor into the 
specified location (3000) in Main 
Memory. (This illustrates write­
through.) The contents of the 
FDM and Address Memory are 
left unaltered. 

6. The processor initiates a fetch of the con­
tents of location 1006. 

a. The address field (0000) is com­
pared with the contents of the Ad­
dress Memory at index position 
201. 

b. This results in a hit on Group 0 of 
the FDM. (The match occurs with 
the address field loaded at step 4c.) 

c. The requested word is sent to the 
processor. 

7. The processor initiates a fetch of the con­
tents of location 1010. 

a. The address field (0000) is com­
pared with the contents of the Ad­
dress Memory at index position 
202. This results in a miss. 

b. The contents of addresses 1010 and 
1012 are fetched from Main Mem­
ory and loaded into block (index 
position) 202 of Group 0 of the 
FDM, as determined by the Ran­
dom bit. 

c. The address field (0000) is loaded 
at index position 202 of the corre­
sponding Address Memory along 
with an asserted Valid bit. At the 
same time, the contents of address 
1010 are sent to the processor. 

8. The processor now initiates a fetch of 
the contents of address location 3000. 

a. The address field (0001) is com­
pared with the contents of Address 
Memory at index position 100. 
This results in a miss. 



b. The contents of addresses 3000 and 
3002 are fetched from Main Mem­
ory and loaded into block (index 
position) 200 of Group 1 of the 
FDM, as determined by the Ran­
dom bit. 

c. The address field (0001) is loaded 
at index position 100 of the corre­
sponding Address Memory, along 
with an asserted Valid bit. At the 
same time, the contents of address 
3000 are sent to the processor. 

9. The processor now initiates a fetch of 
the contents of address location 3002. 

a. The address field (0001) is com­
pared with the contents of the Ad­
dress Memory at index position 
200. 

b. This results in a hit on Group I of 
the FDM. (The match occurs with 
the tag field loaded at step 8c.) 

c. The requested word is sent to the 
processor. 

10. The processor now initiates a DA TIP 
type fetch of the contents of address loca­
tion 1012. 

a. The address field (0000) is com­
pared with the contents of Address 
Memory at index position 202. 

VI-2-8 

b. This results in a hit on Group 0 of 
the FDM. (The match occurs with 
the tag field loaded at step 7c.) 

c. The requested word is sent to the 
processor. 

11. The processor increments the received 
word and then initiates a DA TO to 
write it back into address location 1012. 

a. The address field (0000) is com­
pared with the contents of Address 
Memory at index position 202. 

b. This results In a write hit on 
Group 0 of the FDM. (The match 
occurs with the tag field loaded at 
step 7c.) 

c. The Cache performs a write cycle 
to Main Memory. (This is an illus­
tration of write-through.) It also 
updates the high word at index po­
sition (block) 202 of Group 0 of 
the FD M. If the write operation 
had been a DATOB, only the speci­
fied byte in the FDM (and Main 
Memory) would be altered. 

12. The processor would now fetch the 
HAL T instruction at address 3004 (read 
miss), execute it, and halt. It should be 
clear that if the Random bit is asserted, 
the contents of locations 3004 and 3006 
will be loaded into block 201 of Group 1 
of the FDM. 

( 

( 

( 



Table 2-1 
Example Program 

(all numbers in octal notation) 

Address Machine Index Address 
Loaded Code Field Field Mnemonics Remarks 

001000 013737 [ ] MOV @#5000@#3000 This program 
001002 005000 200 5000 moves the INC 
001004 003000 [ 201 ] 0000 3000 instruction at 
001006 000137 . JMP@#3000 address 5000 
001010 003000 [ 202 ] 3000 to address 3000, 
001012 177776 then jumps to 

address 3000, 
performs the 
INC instruction, 
and HALTS 

003000 DONTCARE [ 200 ] 003002 001012 
003004 000000 [ 201 ] HALT 

0001 

( 

005000 005237 [ 200 ] INC@# 

0002 

( 

Table 2-2 
Summary of Cache Operations Exmriple 

Fast Data Memorv I Address Memory 
Processor Random GROUPO GROUP I 

! 
TAG 0 TAG I 

Bit Hit I Contents Contents Address Mem()ry AddreSli Memory 
REF PC Operation Assumed) Miss Block Low Word High Word Block Low Word High Word Address Field Loaded Address Field Loaded Remarks 

( 
1 1000 Fetch (1000) ~ 013737 0 Read 200 (1000) ~ (1002) ~ 

I 
0000 Fetch MOV instruction 

Miss 013737 005000 I 

2 1002 Fetch (1002)"' 005000 I Hit 200 f f Hit Fetch source address 
on i 

3 1004 Fetch (5000) ~ 005237 0 Read 200 (5000) '" (5002) '" 0002 Fetch contents at source address 
Miss 005237 xxx.xxx 

4 1004 Fetch (1004) ~ 003000 1 Read 201 (1004) " (l006)~ 0000 Fetch destination address 
Miss 003000 000137 

5 1006 Write 005237 into 3000 0 Write 
, 

MOV contents of source to 

Miss destination address 
6 1006 Fetch (1006) ~ 000137 I Hit 201 , , Hit Fetch JMP instruction 

on 
7 1010 Fetch (1010) ~ 003000 0 Read 202 (1010) ~ (1012) ~ 0000 Fetch destination address 

Miss 003000 177776 
8 3000 Fetch (3000) ~ 005237 I Read 200 (3000) ~ (3002) ~ 0001 JUMP; Fetch INC instruction 

Miss 005237 001012 
9 3002 Fetch (3002) ~ 001012 0 Hit 200 , f Hit Fetch destination address 

on 
10 3004 Fetch (001012) ~ 177776 I Hit 202 , Hit Fetch contents of destination 

on t i address (DA TIP) 

11 3004 Write 177777 into 001012 0 Hit 202 (1010) ~ I f Hit INC and restore (DATO) 
I 

on unaltered (1012) " 
! 177777 

12 3004 Fetch (3004) ~ 000000 I Read 201 (3004) ~ (3006) ~ , Fetch and execute HALT 

( Miss 000000 xxxxxx instruction 

VI-2-9 





3.1 SCOPE 
This chapter provides a detailed explanation of 
Cache operation within the PDP-llj70 system. 
A reas covered i ncl ude PO P-ll 170 data paths, 
Cache data paths, Cache interfaces,and operational 
flows for the various operations that the Cache can 
perform. The latter is the key to a full under­
standing of the PDP-II /70 Cache. 

3.2 PDP-llj70 SYSTEM 
Figure 3-1 is a block diagram of the PDP-II /70 
System showing the address and data lines which in­
terconnect the functional components of the sys­
tem. The data lines connecting the Cache to the 
Main Memory and to the Massbus Controllers are 
36 bits wide, and comprise 32 bits of data plus 4 
parity bits. The remaining data lines are 16 bits 
wide. 

The Cache, because of its function and position rel­
ative to the other functional components of the sys­
tem, acts as a clearing house for all accesses to 
Main Memory. Requests for Main Memory access 
come from three sources: processor, Unibus Map, 
and Massbus Controllers. When more than one of 
the above require memory access concurrently, pri­
ority is given according to the following structure: 

I st Priority: Unibus Map 
2nd Priority: Massbus Controllers 
3rd Priority: Processor 

I n addition, concurrent requests for memory access 
by M assbus Controllers are arbitrated in the Cache. 

CHAPTER 3 
THEORY OF OPERATION 

The address inputs to the Cache are 22 bits wide. 
The 22-bit address from the processor is derived by 
mapping the processor's 16-bit virtual address. The 
22-bit address from the Unibus Map is derived by 
mapping the IS-bit Unibus address. The 22-bit ad­
dress from an MBC is the contents of a Memory 
Address Register (MAR). (The MAR is an ex­
tended register, and requires two Unibus DATO op­
erations by the processor to specify a complete 22-
bit address.) 

Data can be read from the Cache Fast Data Mem­
ory (FDM) only during processor and Unibus Map 
memory accesses. During MBC memory accesses, 
the Cache merely performs the required data trans­
fers from the Main Memory Bus to the MBCs and 
vice versa. It can therefore be said that MBC cycles 
are not "cached." The reason for this is expained in 
Paragraph 3.6. Note that because the data lines be­
tween the MBCs and the Cache are 36 bits wide, 
two 16-bit words (plus their associated byte parity 
bits) can be transferred simultaneously. 

A 22-bit address input to the Cache is converted 
into a Main Memory Bus address by stripping off 
the two least significant bits of the address. This is 
done because Main Memory is organized into two 
word (i.e., double word) blocks. Each double word 
consists of two 16-bit data words plus their associ­
ated parity bits. When data is read from Main 
Memory, a 36-bit double word is transferred via 
the Main Memory Bus. However, when data is writ­
ten into Main Memory, it is written on a byte-by­
byte basis. There are lines on the Main Memory 
Bus which determine which bytes will be operated 
on. During a read operation, these lines are 
ignored. 

VI-3-1 



<! ...... 
I 

W 
I 

tv 

... .... 

/----

UNIBUS 
PERIPHERAL 

DEVICE (S)· 

Al cl 01 
UNI BUS 

A _s ~!. A I KBll-S PRoCESSo~ - -
- -- _. 

~-----, 
SYSTEM I 

UNIBUS MAP ! ~ I I C 

I 0 I PROCESSOR 0 0 C A RD 

I AND 0 I 
MEMORY 

0 I 
I MANAGEMENT .--

tL-- I 
I A I 
I 1 I 
I I 

A 

I C I 

I CACHE o I 

I o I 
I I L-_________ ~ C 0 +- ____ ..J +--+- • 

--I> <I--- MAIN MEMORY 
LEGEND BUS I MAIN I 

MEMORY 

RD: REGISTER DATA 

Figure 3-1 PDP-llj70 System 

,-------- --" 

UNIBUS 

TERMINAL (S) 

~ ct Dt 

C 0 A C 0 

C ------
MBC C MBC 

A 

~ 1 
0 

r-l 
! MASSBUS 1! DEVICE(S) 

! MASSBUS1! DEVICE(S) 

11- 4 007 

~, 
--------



( 

( 

( 

( 

3.2.1 Data Parity 
During processor and Unibus Map write oper­
ations, data parity bits are generated in the Cache. 
The parity bits are written into Main Memory 
along with the data. During a write hit, the data 
and parity bits are also written into the Fast Data 
Memory. Parity bits stored in memory (FDM or 
Main Memory) are treated as data within the mem­
ory system. The Cache checks for correct parity 
when the data is read from memory by the pro­
cessor or Unibus Map. If a parity error is detected 
by the Cache, a corresponding bit in the Memory 
System Error Register is set. If, during a processor 
read, a parity error is detected on the word re­
quested by the processor, an abort results. How­
ever, a parity error on the non-requested word 
results in a trap (unless traps are disabled). Parity 
errors during Unibus Map read operations result in 
a trap. If the parity error is on the requested word, 
the Unibus parity error line (PB) is asserted. 

NOTE 
An abort occurs if the processor cannot be supplied 
with valid data. If a requested word stored in the 
FDM is found to have bad parity, the Cache fetches 
the backup copy of the word from Main Memory. If 
the requested word fetched from Main Memory has 
incorrect parity, an abort results. 

During an MBC cycle, data parity generation and 
checking is performed in the MBC. MBC parity er­
ror handling is thus performed by the MBC's ser­
vice routine. 

3.2.2 Address Parity 
The Cache generates parity bits for the address 
fields which are stored in the Address Memory as a 
result of a read miss. When the Address Memory is 
accessed to determine whether a memory cycle is a 
hit or a miss, the contents of the Address Memory 
are checked. Detection of a parity error in the Ad­
dress Memory results in a trap. 

The Cache also generates a parity bit for the ad­
dress and control lines of the Main Memory Bus. 
The Main Memory checks for correct parity on 
these lines; if incorrect parity is detected, a parity er­
ror line on the Main Memory Bus is asserted. Fur­
thermore, the addressed memory controller will not 
respond, and a time-out will occur. 

3.3 CACHE DATA PATHS 
Figure 3-2 is a detailed block diagram of the data 
paths in the Cache. Each block in the diagram refer­
ences the location in the engineering drawings 
where the logic schematics can be found. A detailed 
description of the block diagram is given in Para­
graph 4.2. 

3.3.1 Address Paths 
Based on arbitration among its three ports, the 
Cache gates in address and control bits from the se­
lected source. This function is performed by the Ad­
dress Multiplexer. The incoming address is 
processed as described below. 

Address bits (9:2) index into the Address Memory 
to select two address tags (one from Tag 0 Address 
Memory and one from Tag I Address Memory). 
The two tags are checked for correct parity and, at 
the same time, compared against bits (21: 10) of the 
incoming address. If either address field com­
parison results in a match, if the corresponding 
Valid bit is set, and if correct parity is determined, 
a hit has been detected. This means that the data 
referenced by the incoming address is currently 
stored in the FDM. 

The address and operation control bits selected by 
the Address Multiplexer are also used to generate 
address and control for the Main Memory Bus. 
Bits (21 :02) of the incoming address are driven onto 
the Main Memory Bus directly. Incoming address 
bits AOI and AOO are used along with operation 
control bits CI and CO to generate Main Memory 
Bus control lines MAIN BYTE MASK 3:0 and 
MAIN CI :0. (Note that the MAIN CI:O lines are 
coded differently from the Unibus CI :CO lines.) In 
addition, a parity bit is generated for the address 
and control lines of the Main Memory Bus. 

Bits (21: 10) of the incoming address are applied to 
a parity generator along with the internally gener­
ated Valid bit. The parity bits generated are applied 
to the inputs of the Address Memory along with 
bits (21: 10) of the incoming address for possible 
loading. The Address Memory will be written if ei­
ther a read miss or a write hit occurs. 

VI-3-3 



3.3.2 Read Data Path 
Data is read from Main Memory as 36-bit double 
words when a read miss is detected. The 36-bit 
double word is received by Main Memory Bus data 
receivers and loaded into the Bus Data Register. 
The even addressed word within the 36~bit double 
word is gated by the Even Multiplexer to the Cache 
Data Multiplexer and to the FDM. The Odd Multi­
plexer performs the same function for the odd ad­
dressed word within the 36-bit double word. The 
data fetched from Main Memory is checked for cor­
rect parity at the outputs of the Odd and Even M ul­
tiplexers. The Cache Data Multiplexer gates out the 
word requested to the device that initiated the read. 
At the same time, the double word is written into 
FDM Group 0 or Group I as selected by the 
Cache control logic. The index position which· is 
written is determined by bits A09:02 (the index 
field) of the incoming address. 

During a read hit, data is read directly from the 
FDM. Bits A09:02 of the incoming address index 
into the FDM. Bit AOI of the incoming address en­
ables either the odd or even word at the indexed lo­
cation to be output from Group 0 and I of the 
FDM. (Note that the odd and even word outputs 
of each FDM group are common collectored.) The 
two words (both odd or even addressed) are 
checked for correct parity and applied to the Cache 
Data MUltiplexer. The Cache Data Multiplexer se­
lects the word from the group on which the hit oc­
curred and routes it to the device which initiated 
the read operation. 

During an MBC read operation, a 36-bit double 
word is received in the Cache by Main Memory 
Bus data receivers and routed to the Massbus 
Controllers. 

3.3.3 Write Data Paths 
The data to be written into memory is selected by 
the write multiplexer, based on whether a processor 
or Unibus Map cycle is being performed. 

NOTE 
Processor data is selected by default if a Unibus 
Map cycle, MBC cycle, or power-up sequence is not 
being executed. During an MBC cycle or power-up 
sequence, the write multiplexer outputs are forced to 
all high. This keeps the data lines stable while data 
parity is generated. 

The outputs of the write multiplexer are applied to 
the data parity generator, which generates byte par. 
ity bits for the 16 bits of data. The data and parity 

VI-3-4 

bits are then driven onto the Main Memory Bus 
data lines. The d;lta is driven on both the low word 
(MAIN DATA BYTE 1:0) and high word (MAIN 
DA T A BYTE 3:2) lines of the Main Memory Bus. 
The data can thus be written into eitl}er the low 
word or high word locations in Main Memory. 

The output of the write multiplexer and the gener­
ated data parity bits are also applied to both the 
Odd and Even Multiplexers. During a write oper­
ation, the Odd and Even Multiplexers select write 
data as input to the FDM. When a write hit is de­
tected, the write data is therefore available to up­
date the FDM group on which the hit occurred. 
The FD M is written on a byte-by-byte basis; only 
the byte(s) referenced by the write operation are 
altered. 

During an MBC write to memory the Cache drives 
the data from the Massbus Controller onto the 
Main Memory Bus data lines. The MBCs can trans­
fer single bytes, single words, or double words. If 
the Cache detects a hit during an MBC write oper­
ation, the FDM data on which the hit occurred is 
invalidated. This is accomplished by negating the 
Address Memory Valid bit which corresponds to 
the FDM block on which the hit occurred. The en­
tire FDM block (i.e., four bytes) is thereby 
invalidated. 

3.4 PROCESSOR-CACHE INTERFACE 
The signal lines routed between the processor and 
the Cache may be categorized into two types: 

I. Master Timing and Initialization 
Control 

2. Data Transfer Control 

The master timing and initialization control lines, 
originating in the processor, are required by the 
Cache for its overall operation. These lines route 
system failure signals, initialization signals, and pro­
cessor clock signals to which Cache operation is 
synchronized. For reference, the signals which 
make up the master timing and initialization con­
trol lines are listed in Table 3-1, along with the 
functions they perform. 

The data transfer control lines are active in the 
transfer of data between the processor and Cache 
memory. For reference, the signals are listed in 
Table 3-2, along with their functions. 

( 

( 

( 

( 





I 
I 

Signal 

UBCEACLOH 

UBCEDCLOH 

UBCE ROM INIT H 

UBCE INITH 

TIGC TF H 

TIGC T2B H 
TIGC T3B H 

Signal 

DAPB BAMX 05-00 H 

SAPJ PA 21-06 H 

Table 3-1 
Master Timing and Initialization Control Lines 

Function 

This signal is transmitted from the processor to the Cache to notify it 
that ac input power to one of the power supplies in the system is 
failing. 

This signal is transmitted to the Cache to notify it that ac input power 
to one of the power supplies in the system is below the point that 
guarantees dc outputs to be in regulation. 

Upon the negation of both of the above signals, the Cache performs its 
power-up initialization sequence, clearing all the Valid bits in its Address 
Memory. 

This signal is asserted by the processor when it receives DC LO, AC LO, 
or when a console reset (START switch depressed while in HALT) is 
performed; it causes the initialization of all the timing state flip-flops 
in the Cache. 

Asserted by the processor upon receipt of AC LO or DC LO or when 
the console START switch is depressed while the ENABLE/HALT 
switch is in the ENABLE position. This signal clears the Cache registers. 

This is the processor free running clock to which Cache operations are 
synchronized. 

These are the processor T2 and T3 ROM time states (buffered) used 
in the Cache to synchronize several particularly critical (timewise) 
operations. [Examples are generation of CCBC MEM SYNC Hand 
generation ofCCBC T2 DLY (1) H.] 

Table 3-2 
Processor-Cache Data Transfer Control 

Function 

These are the six low order bits of the physical address, gated directly 
from the Bus Address Multiplexer (BAMX) in the processor. (The six 
low order bits of the processor-generated virtual address are unaltered 
in generating the 22-bit physical address.) Bit 00 is used to address the 
FDM during DATOB operations. Bit 01 addresses the FDM to select 
the desired word within a two-word block. 

Bits 05 through 02 are part of the index field, and are used to index 
into the FDM and Address Memory. 

These are the 16 high order bits of the physical address, generated from 
the virtual address by the Memory Management. Bits P A09-P A06 are 
part of the index field, and are used to index into the FDM and Address 
Memory. 

VI-3-6 

( 

( 

( 



Signal 

SAPJ PA 21-06 H (cont) 

PDRB BR 15-00 B L 

UBCC C1 B H 
UBCC CO B H 

RACH BUSTH 

TMCE CACHE BEND H 

TMCE CONTROL OK H 

CCBC MEM SYNC H 

DTMMCDMX 
D1S-DOO H 

DTMM HI BYTE PAR H 
DTMM La BYTE PAR H 

DTMM BAD PARITY H 

CCBD CP TIMEOUT L 

CCBJ PARITY ABORT H 

Table 3-2 (Cont) 
Processor-Cache Data Transfer Control 

Function 

Bits PA21-PAlO comprise the address field, and are compared with the 
address fields stored at a selected Address Memory index position. They 
will be loaded into the Address Memory should a read miss occur. 

These are the outputs of the processor Bus Register (BR), and comprise 
a 16-bit data word to be stored in memory. 

These are the operation control lines, and indicate the type of operation 
to be performed, as follows: 

C1 CO Operation 

0 0 DATI 
0 1 DATIP 

0 DATa 
DATOB 

Asserted by the processor during the "BUST" ROM state to initiate the 
operation indicated by the C 1, CO bits. 

Asserted by the processor to abort a memory operation initiated by 
BUSTH. 

Asserted by the processor during the "PAUSE" ROM state if it desires 
to continue with the memory access operation initiated by BUST H. 

Asserted by the Cache and transmitted to the processor at the conclusion 
of a memory access operation. This signal allows the processor to pro­
ceed past TS of the PAUSE ROM state. Dl.lring a DATI/DATIP, it also 
causes the read data to be loaded into the prqcessor's BR register. 

These 16 lines comprise the data word requested by the processor (or 
Unibus Map) during a DATI/DATIP operation. 

These signals are the parity bits for the low and high bytes of a requested 
data word. They are loaded into the processor along with the data word, 
and are used for console display purposes only. 

Transmitted by the Cache to the processor when a parity error has been 
detected on a requested data word which has been fetched from Main 
Memory. 

Transmitted by the Cache to the processor when a Main Memory Bus 
time-out occurs during a CP cycle. 

Aborts the processor cycle when good data cannot be given to the 
processor. 

VI-3-7 



Signal 

Table 3-2 (Cont) 
Processor-Cache Data Transfer Control 

J1unction 

CCBJ PARITY TRAP H Transmitted to the processor by the Cache to indicate a soft* parity 
error during a CP cycle or Unibus Map memory (i.e., nonregister) cycle. 

PDRH CACHE PERF L 

TMCA PERF ACKN L 

UBCB UBUS PAR ERR H 

Parity Error flag; this signal is transmitted by the processor to the 
Cache upon receipt of CCBJ PARITY ABORT H or CCBD CP 
TIMEOUT, and sets bit 15 (CPU ABORT) or bit 14 (CPU ABORT 
AFTER LOCK) of the Cache Error Register. 

Transmitted by the processor to the Cache in response to CCBJ 
PARITY TRAP H; causes its negation. 

Negates CCBJ PARITY TRAP H when processor performs Unibus 
parity error trap. Sets Error Register bit 09. . 

*A soft parity error is one which the Cache can recover from without processor intervention and still provide correct data, e.g., 
parity error in the nonrequested word; parity erro): in the Address Memory or FDM (if the copy of the requested word in Main Mem-
ory is fetched without error). ' 

Processor Cache Protocol 
To initiate a data transfer, the processor asserts 
BUST, and generates an address, operation control 
bits C I :0, and (if a write is being performed) data. 
BUST initiates Cache timing. If the processor is per­
forming a BUST-BEND sequence, or if the address 
generated by the processor is a Unibus address, 
CACHE BEND is transmitted to the Cache, and 
brings it to its quiescent state. If the processor is 
performing a memory access, the Cache receives 
CONTROL OK from the processor. CONTROL 
OK indicates that the processor-generated address, 
control, and data bits are stable and valid, and is 
treated as a "go ahead" signal by .the Cache. 

The processor must receive MEM SYNC in order' 
to proceed past T5 of the "PAUSE" ROM state. 

Figure 3-3 illustrates the processor-Cache protocol. 

BUST ~" I 
ADDRESS •. CONTROL '~ AND DATA I 

CONTROL OK r~ 
MEM SYNC ,fl j 

a.WRITE 

BUST ~\ 
If the processor is performing a read and the Cache 
detects a hit, the read data is accessed from the 
FD M. The data is routed to the processor and the 
Cache asserts MEM SYNC, which causes the data 
to be loaded into the processor's BR register. 

ADDRESS AND CONTROL I' j L 

If a read miss is detected, the Cache fetches the 
data from Main Memory. The Cache routes the re­
quested word to the processor and then asserts 
MEM SYNC. (Main Memory Bus protocol is de­
scribed in Paragraph 3.7) 

During a write operaJion, the Cache writes the data 
into Main Memory and then notifies the processor 
by asserting MEM SYNC. 

VI-3-8 

CONTROL OK r'l L 

I~ DATA L j 

MEM SYNC ,r--IL-I 

b. READ 

11-4003 

Figure 3-3 Processor - Cache Protocol 

( 
\----

( 

( 

( 



(,-- -

( 

( 

3.5 UNIBUS MAP-CACHE INTERFACE 
Memory references by Unibus devices are inter­
faced by the Unibus Map to the Cache. The pro­
cessor can also access memory via the Unibus and 
Unibus Map; this is normally done only for mainte­
nance and diagnostic purposes. However, in order 
to read or write any of the device registers located 
in the Cache, the processor must do so via the 
Unibus Map. 

For reference, the signals which make up the 
Unibus Map-Cache interface are listed in Table 3-3 
along with their fum;tions. 

Unibus Map-Cache Protocol 
The Unibus Map interfaces the Unibus data trans­
fer lines to the Cache. When a Unibus device per­
forms a data transfer to or from memory, the 
device, asserts an 18-bit address, operation control 
bits, and (if performing a write) data on the 
Unibus. After a deskew delay, the device asserts 
MSYN. 

The Unibus Map generates a 22-bit address from 
the 18-bit Unibus address and gates the operation 
control bits and (if performing a write) data to the 
Cache. When the Unibus Map receives MSYN on 
the Unibus, it asserts UB REQUEST. UB 
REQUEST initiates Cache timing. The Cache re­
sponds by asserting UB ACKN; this negates UB 
REQUEST in the Unibus Map. As Cache timing 
progresses, the address from the Unibus Map is 
used to access into the FDM and Address Memory. 

I f the operation is a read and a hit is detected, the 
requested word is routed from the FDM to the 
Unibus Map, and the Cache asserts UB DONE. 
This latches the data in the Unibus Map. If a read 
miss is. detected, the Cache must fetch the data 
from Main Memory. The Cache routes the re­
quested word to the Unibus Map and then asserts 
U B DONE. During a write operation, the Cache 
writes the data into Main Memory and then no­
tifies the Unibus Map by asserting UB DONE. 
When the Unibus Map receives UB DONE, it ter­
minates its transaction on the Unibus by issuing 
SSYN. Figure 3-4 illustrates Unibus Map-Cache 
protocol during read and write operations. 

Cache Register Accesses 
Unibus Map-Cache protocol during register ac­
cesses is similar to normal protocol except for the 
following points: 

I. When the Unibus Map detects that the 
Unibus address references a Cache de­
vice register, it asserts CACHE REG. 

2. 

3. 

4. 

When CACHE REG is asserted, the 
Cache uses bits (03:01) of the Unibus ad­
dress (gated by the Unibus Map) to ac­
cess the desired register. 

The data in the accessed register is gated 
to the Unibus Map, where it is latched 
by UB DONE if a register read oper­
ation is being performed. 

"'''' If a register write operation is being per-
formed, the Unibus data (gated by the 
Unibus Map) is written into the speci­
fied register, and then the Cache asserts 
UB DONE. 

3.6 RH70-CACHE INTERFACE 
The Cache handles memory accesses by RH70 
Massbus Controllers (MBCs) very differently than 
proct:ssor or Unibus Map memory accesses. MBC 

ADDRESS .CONTROL ~ 
AND DATA 

UB REQUEST ~'r-'j----

UB ACKN r-l. 
___ ---l' I..\'r-'j --

UB DONE r-l 
-----1',1---1 L...-­

a. WRITE 

ADDRESS AND CONTROL ~ 
, \-----, 
I L-

UB REQUEST ~I-\ ___ _ 

UB ACKN r-l. 
___ ---l' I..\'r-'j --

DATA ______ ~\~ L 
UB DONE . r-l ___ ----I\~ L..--

b. READ 

11-4004 

Figure 3-4 Unibus Map - Cache Protocol 

VI-3-9 



Signal 

MAPA CA 21-00 H 

MAPA DATA IS-00H 

MAPAADRS03-01 H 

MAPB C1 H 
MAPBCOH 

MAPF UB REQUEST (1) L 

MAPB CACHE REG H 

CCBC UB ACKNL 

Table 3·3 
Unibus Map-Cache Interface Signals 

Function 

These 22 lines are the physical address generated by the Unibus Map 
from the i8-bit Unibus address. 

Bit 00 is used to address the FDM during DATOB operations. 

Bit 01 addresses the FDM to select the desired word within a two-word 
block. 

Bits 09 through 02 comprise the index field used to index into the FDM 
and Address Memory. 

Bits 21 through 10 comprise the address field, and are compared with ( 
the address field stored at a selected Address Memory index position. 
They will be loaded into the Address Memory should a read miss occur. 

Bits 21 through 02 are also gated onto the Main Memory Bus in case a 
cycle to Main Memory should be required. 

These are the Unibus data lines gated by the Unibus Map, and comprise 
a 16-bit data word to be stored in memory (or written into a Cache de­
vice register). 

These three address bits are gated from the Unibus by the Unibus Map 
to access a Cache register. 

These are the operation cbntrollines gated from the Unibus by the 
Unibus Map. They indicate the type of operation to be performed, as 
follows: 

Cl CO Operation 

0 0 DATI 
0 1 DATIP 
1 0 DATO 

DATOB 

Asserted by the Unibus Map to initiate the operation indicated by the 
Cl, CO bits. This occurs after receipt of an address within the Unibus 
Map response range, and MSYN, on the Unibus. 

Asserted by the Unibus Map to indicate that a Cache device register, 
rather than memory, is being accessed. When a Cache device register 
is accessed, the Cache utilizes only bits 03 to 01 of the nonrelocated 
Unibus address gated by the Unibus Map (MAPA ADRS 03-01 H). 

Asserted by the Cache when the Unibus cycle has been initiated, to 
negate UB REQUEST (1) L. 

VJ-3-10 

( 

( 



( 
\ 

( 

Signal 

CCBC UB DONE 

CCBF REG DIS-~O 

DTMM CDMX DIS-DO~ H 

DTMM BAD PARITY H 

CCBD UB TIMEOUT L 

MAPBPBDATAH 

Table 3-3 (Cont) 
Unibus Map-Cache Interface Signals 

Function 

Asserted by the Cache to indicate that the Unibus Map memory 
cycle (or Cache device register access) has been performed. This 
causes the Unibus Map to accept read data from the Cache and to 
complete the transaction on the Unibus. 

These lines transmit read data from the Cache device registers to the 
Unibus Map. 

These 16 lines comprise the data word requested from memory by the 
Unibus Map during a DATI/DATlP operation. 

Asserted by the Cache when a parity error has been detected on a re­
quested data word which has been fetched from Main Memory. 

Asserted by the Cache when a time-out has occurred on the Main Mem­
ory Bus during a Unibus Map memory access cycle. 

Transmitted by the Unibus Map to the Cache in response to DTMM 
BAD PARITY H if the parity error occurred on a valid access, i.e., on 
an address within the Unibus Map's response range. MAPB PB DATA H 
inhibits clocking of the Cache Error Address register .and sets various 
bits in the Cache Error Register. 

memory accesses always require cycles on the Main 
Memory Bus, whether or not the operation per­
formed is a read or a write, a hit or a miss. The 
MBCs never read from or write into the FOM. 
They only require the Cache to perform the Main 
Memory Bus protocol needed to access Main Mem­
ory. Because the MBCs never read or write into the 
FOM, it can be said that the MBCs are not 
cached." The MBCs are handled this way for the 
following reasons: 

For reference, Table 3-4 lists all the signals which 
comprise the RH70-Cache interface, along with 
their functions. 

MBC-Cache Protocol 
To initiate a data transfer to or from Main Mem­
ory an MBC asserts its request signal (Figure 3-5) 
CTRLA (or B, or C, or 0) REQ. 

The Cache arbitrates the simultaneous requests 
from possibly four MBCs. The protocol proceeds 
as follows if the request from MBC A is recognized I . MBC <;lata transfers differ in their statis­

tical behavior from processor data trans­
fers for which the Cache was designed. 
If the MBCs "cached," data and codes 
required by the processor would be 
swept out of the Cache. 

2. Only single words can be output from 
the FOM, whereas the MBCs are ca­
pable of transferring double words. 

The Cache transmits SELAORS A to the selected 
MBC, which responds by gating out address and 
control lines to the Cache. When the Cache begins 
executing the MBC cycle, the address and control 
lines are latched in the Cache. As Cache timing pro­
ceeds, the Cache transmits SEL OAT A CTRL A to 
the selected MBC. If the MBC is performing a 
write operation, this enables it to gate out write 

VI-3-11 



data. The Cache then asserts MBC REQ ACKN, 
which negates the selected MBC's request signal 
and allows the M BC to alter the address and con­
trol bits transmitted to the Cache. The Cache now 
performs a cycle on the Main Memory Bus. When 
Main Memory responds with MAIN ACK, the 
r'::ache transmits ADRS ACK to the MBC. 

If a write to memory is being performed, this termi­
nates the M BC-Cache transaction. 

CTRL REO ~ 
SEL ADRS 

ADDRESS AND CONTROL 

SELDATA 

DATA 

MBC REO ACKN 

ADRS ACKN 

CTRL REO ~ 
SE L ADRS 

ADDRESS AND CONTROL 

SELDATA 

MBC REO ACKN 

ADRS ACKN 

DATA 

DATA ROY 

If a read operation is being performed, the Cache 
routes the double word received from Main Mem­
ory to the MBC. When Main Memory asserts 
MAIN DATA READY, the Cache transmits 
DA TARDY CNTL "X" to the appropriate MBC. 
(Although the Cache may be executing some other 
cycle, it keeps track of which MBC is performing 
the read operation.) 

~I , 
II 
j I 

I( 
II 

"1 
~I I 

l{l , 
o. WRITE 

~ \------1 I, 

'~I I , 

I, r------\ ~ L 
I,r------\~ 

b. READ 

11-4005 

Figure 3-5 RH70 - Cache Protocol 

VI-3-12 

( 

( 

( 
, 

( 



( 

Signal 

CSTC CTRLA REQ L 
CSTC CTRLB REQ L 
CSTC CTRLC REQ L 
CSTC CTRLD REQ L 

CDPJ SELADRS CTRLA H 
CDPJ SELADRS CTRLB H 
CDPJ SELADRS CTRLC H 
CDPJ SELADRS CTRLD H 

MBCBUS A21-AOO L 

MBC BUS Cl, CO, CX L 

CDPJ SEL DATA CTRL A H 
CDPJ SEL DATA CTRL B H 
CDPJ SEL DATA CTRL C H 
CDPJ SEL DATA CTRL D H 

Table 3-4 
RH70-Cache Interface Signals 

Function 

These are the memory access request signals generated by MBC A, B, C, 
or D, respectively, and transmitted to the Cache Massbus Arbitrator. 

One of these signals is asserted by the Cache Massbus Arbitrator to 
select an MBC requesting memory access. The MBC which receives an 
asserted SELADRS CTRL X signal is enabled to gate out a memory 
address and control signals. 

These lines transmit a memory address from a selected MBC to the 
Cache. The address is latched in the Cache MBC Address Register prior 
to the start of the MBC Main Memory cycle. 

Bits 09 through 02 of the address index into the Cache Address Memory 
(and FDM). Bits 21 through 10 are compared with the address field 
stored in the Address Memory to determine whether a hit or miss con­
dition exists. (On a write hit, the corresponding data stored in the FDM 
must be invalidated.) 

Bits 21-02 of the address are also gated onto the address lines of the 
Main Memory Bus in order to perform the required Main Memory Bus 
operation. 

These are the operation control lines transmitted from the selected MBC 
to the Cache. They are latched in the Cache along with the MBC 
address. Cl, CO, and CX determine the type of operation to be per­
formed, as follows: 

Cl CO CX Operation 

a a a Read double word 
a a Read double word 

1 a Write byte 
a a Write single word 
a Write double word 

One of these signals is transmitted by the Cayhe to the corresponding 
selected MBC. The selected MBC is thereby enabled to gate out data 
and parity bits to the Cache, if it is performing a write to memory. If 
it is performing a read, it ignores the SEL DATA signal. 

VI-3-13 



Signal 

MBCBUS D3I-D24 L 
MBCBUS B3 PA L 
MBCBUS D23-DI6 L 
MBCBUS B2 PA L 
MBCBUS DI5-D08 L 
MBCBUS BI PA L 
MBCBUS D07-DOO L 
MBCBUS BO PA L 

CCBE MBC REQ ACKN L 

ADML ADRS ACKN L 

CDPD MEM D3I-D24 H 
. CDPD MEM BYTE 3 PAR H 
CDPD MEM.D23-DI6 H 
CDPD MEM BYTE 2 PAR H 
CDPC MEM DI5-D08 H 
CDPC MEM BYTE 1 PAR H 
CDPC MEM D07-DOO H 
CDPC MEM BYTE 0 PAR H 

CDPK DATA ROY CNTL A H 
CDPK DATA ROY CNTL B H 
CDPK DATA ROY CNTL C H 
CDPK DATA ROY CNTL D H 

CCBD MBC TIMEOUT L 

Table 3-4 (Cont) 
RH70-Cache Interface Signals 

Fnnction 

These are the byte data lines and their corresponding parity bits. An 
MBC performing a write operation gates out data and parity bits onto 
these lines when it receives a SEL DATA signal. 

Asserted by the Cache as it begins servicing an MBC request. This signal 
is transmitted to all MBCs, and notifies the selected MBC to remove its 
request and enables it to alter the current memory address. 

This signal (received by the Cache from Main Memory as MAIN ACK L) 
is transmitted to all MBCs. The MBC which last received a SEL DATA 
signal from the Cache is thereby notified that: 

1. Main Memory is responding. 

2. If a write to memory is being performed, the current MBC­
Cache write data transaction is now terminated. 

These are the data lines and their corresponding parity bits received 
from the Main Memory Bus in the Cache, and then transmitted to the 
MBCs. 

When the Cache receives DATA READY from Main Memory during an 
MBC memory (read) access operation, it transmits DATA RDY CNTL 
"X" H to the MBC which initiated the read. DATA ROY CNTL X 
loads the Main Memory data into MBC X and terminates the MBC 
Cache transaction. 

Asserted by the Cache when an MBC cycle results in a time-out on the 
Main Memory Bus. 

VI-3-14 

( 

( 

( 

( 



( 

( 

3.7 MAIN MEMORY BUS 
The Main Memory Bus interfaces the Cache with 
the Main Memory. The Main Memory Bus is a de­
fined bus with bidirl;:ctional data lines. The address 
and control lines of the bus are unidirectional and 
can only be asserted by the Cache. The Cache is 
thus the sole master of the Main Memory Bus; only 
the Cache can initiate data transfers on the Main 
Memory Bus. 

The Cache can perform two types of memory oper­
ations: a read and a write. When a read operation 
is performed, the Main Memory transmits a 36-bit 
double word to the Cache. A write operation, how­
ever, can be performed on specified bytes or words 
within an addressed double word. 

The Main Memory Bus is made up of four type 
BC06R cables. Two cables carry the Main Memory 
Bus data lines, while the other two carry the Main 
Memory Bus address and control lines. Each cable 
contains 40 conductors. Alternating conductors and 
the cable shield are grounded to reduce crosstalk; 
this leaves 20 conductors in each cable to carry the 
Main Memory Bus interface signals. The Main 
Memory Bus signals are asserted low (~0.4 V), and 
are high (~3.2 V) when negated. 

For reference, Table 3-5 lists all the Main Memory 
Bus signals and their corresponding cable con-· 
ductor number and connector pin number, while 
Table 3-6 describes the functions of these signals. 

Main Memory Bus Protocol 
To initiate a memory operation, the Cache per­
forms the following steps (refer to Figure 3-6): 

1. The Cache places the address of the de­
sired double word on the Main Memory 
Bus address lines (MAIN A24:02) 

VI-3-15 

2. 

3. 

4. 

5. 

The Cache places six control bits 
(MAIN Cl:O and BYTE MASK 3:0) de­
fining the operation to be performed on 
the Main Memory Bus. 

The Cache places a parity bit correspond­
ing to the above address and control 
lines on the Main Memory Bus. 

NOTE 
Address lines MAIN A24:22 and 
MAIN CO are always maintained in 
the negated state in the PDP-llj70. 
The Cache selects a read operation 
by negating MAIN Cl and selects a 
write operation by asserting MAIN 
Cl. During a write operation, the 
four Byte Mask bits determine 
which of the four bytes within the ad­
dressed double word will be operated 
on. If BYTE MASK "X" is as­
serted, byte "X" of the double word 
will be written. The Byte Mask bits 
are negated by the Cache during a 
read operation; this is done only to 
ensure that the lines remain stable 
while Main Memory checks for cor­
rect parity for the address and con­
trol lines. The Byte Mask bits are 
otherwise ignored by the Main Mem­
ory during a read operation. 

If a write operation is to be performed, 
the Cache gates out data onto the Main 
Memory Bus data lines (MAIN DATA 
BYTE 3-8:0-0). The Cache must wait un­
til the bus data lines become unoccupied 
(MAIN BaCC negated) before it can 
gate out the data. 

After an access and deskew delay for the 
address, control, parity, and data lines, 
the Cache issues MAIN START. 



ADDRESS m 
AND CONTROL -

BYTE MASK_ -SIGNALS FROM AD~ARR~~~ ~ -CACHE TO 
MAIN MEMORY 

DATA_ -
START .... -

ACKNOWLEDGE 
-------' 

SIGNALS TO BUS OCCUPIED -------------­
CACHE FROM 

MAIN MEMORY 

SIGNALS FROM 
CACHE TO 

MAIN MEMORY 

DATA--------------

DATA READY --------------

ADDRESS ~ 
AND CONTROL_ 

BYTE MASK 

AODRESS 
PARITY 

DATA~~ 

START __ -J 

ACKNOWLEDGE 

o. WRITE 

1 MINIMUM ACCESS TIME ---.t 

SIGNALS TO BUS OCCUPIED ____ --' 

CACHE FROM 
MAIN MEMORY 

DATA ____ .2I.~~ .. ~357~nS===::!I~ 

DATA READY __________ ~nL---
---t ..... 50ns 

b. REA 0 

11-4006 

Figure 3-6 Cache - Main Memory Protocol 

i 

t-

( 

( 

( 

( 



( 

( 

Signal 

MAIN A (21 ;02) L 

MAIN BYTE MASK 3 L 
MAIN BYTE MASK 2 L 
MAIN BYTE MASK 1 L 
MAIN BYTE MASK 0 L 

MAIN C (1 :0) L 

MAIN APARL 

MAIN START L 

MAIN PAR ERR L 

MAIN ACKL 

Table 3-5 
Main Memory Bus Signals 

Function 

This is the 20-bit address of a 2-word block located in Main Memory. 
They are the high order bits of a 22-bit physical address gated onto the 
Main Memory Bus by the Cache. (Main Memory Bus address lines 
MAIN A24:22 are not used by the Cache, and are always maintained 
in the negated state.) 

These bits define which of the 4 bytes within the block addressed by 
MAIN A (21 :02) will be operated on. There is a one-to-one correspond­
ence between bytes 3 to 0 and byte mask 3 to O. If MAIN BYTE 
MASK "X" is asserted, byte "X" will be operated on. The byte mask 
signals are derived by the Cache from the two low order bits of an in­
coming address, operation control bits CI and CO, and the CX bit if an 
MBC operation is being performed. The Main Memory ignores the mask 
bits on all DATI/DATIP operations. 

These bits, gated from the Cache, determine which operation is to be 
performed by Main Memory. They are decoded as follows: 

CI CO Operation 

0 0 Read 
0 1 Not used 
1 0 Write 
I 1 Exchange (not used by PDP-1 1/70 Cache) 

This is an odd parity bit generated by the Cache (on drawing ADMJ) 
for the 26-bit control word consisting of MAIN A (21 :02), MAIN C(1 :0) 
and MAIN BYTE MASK (3:0). This bit is received and checked by the 
Main Memory. 

Asserted by the Cache to initiate the Main Memory cycle designated by 
the MAIN C (1 :0) bits on the Main Memory address locations designated 
by the address and Byte Mask bits. 

Asserted by the Main Memory if it detects a parity error in the 26-bit 
address and control word described above when START is asserted. 

This signal is asserted by the addressed memory controller within 
Main Memory when it has actually started execution of the commanded 
memory cycle. Receipt of MAIN ACK in the Cache allows it to alter 
MAIN A (21 :02), MAIN C (1 :0), MAIN BYTE MASK (3 :0), and 
MAIN ADDR PAR lines on the Main Memory Bus, and to negate MAIN 
START. If a write operation was just initiated, MAIN ACK indicates 
that the Main Memory Bus transaction is now terminated. 

Signal 

MAIN BOCC L 

MAIN DATA BYTE (0-0:0-8) L 
MAIN DATA BYTE (1-0:1-9) L 
MAIN DATA BYTE (2-0:2-8) L 
MAIN DATA BYTE (3-0:3-9) L 

MAIN DATA READY L 

MAIN ACLOWL 

MAIN DC LOW L 

Function 

DUring a read operation, this signal is asserted coincidentally with MAIN 
ACK by the active memory controller within Main Memory, and is kept 
asserted until the data is removed from the Main Memory Bus data lines 
[MAIN DATA BYTE (0-0:0-8; 1-0:1-8; 2-0:2·8; 3-0:3-8)]. The Cache 
may gate data onto the Main Memory Bus data lines only when MAIN 
BOCC is not ,asserted. 

! 

These are the data and data parity lines of the Main Memory Bus. Odd 
parity is utilized. MAIN DATA BYTE 1-9 and 3-9 L are not used in the 
PDP-11/70 implementation. The MAIN DATA BYTE lines are organ­
ized as follows: 

MAIN DATA BYTE (0-0:0-7) 
MAIN DATA BYTE 0-8 
MAIN DATA BYTE (1-0:1-7) 
MAIN DATA BYTE 1-8 
MAIN :DATA BYTE (2-0:2-7) 
MAIN DATA BYTE 2-8 
MAIN DATA BYTE (3-0:3-7) 
MAIN DATA BYTE 3-8 

- Byte 0 data 
- Byte 0 parity 
- Byte 1 data 
- Byte 1 parity 
- Byte 2 data 
- Byte 2 parity 
- Byte 3 data 
- Byte 3 parity 

During a write operation, the Cache gates out data and data parity bits 
onto these li.\1es while MAIN BOCC is negated, and then asserts MAIN 
START. Bytes are written into memory along with their parity bits. 
Which bytes ~re written is determined by the MAIN BYTE MASK bits. 
The parity bits are generated in the Cache if a processor or Unibus Map 
write cycle is performed. The parity bits are received from an MBC if 
an MBC write to memory operation is being performed. During a read 
operation, Main Memory brings up all four bytes and their correspond­
ing parity bits and places the information on the MAIN DATA BYTE 
lines. 

This signal is asserted by Main Memory during a read operation, after it 
has placed data on the MAIN DATA BYTE lines, to indicate to the 
Cache that the requested data is available. 

Asserted by jvtain Memory to inform the processor that the ac power 
input to a Main Memory power supply is failing. 

Asserted by the Cache or Main Memory to inform the rest of the system 
that input power to a power supply somewhere in the system is below 
the point th~t guarantees dc outputs to be in regulation. 

VI-3-17 



;5 
o ..-
00 

Memory Bus Cable 
Conductor No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

- - -1j- ---- --

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40* 

*(Cable Shield) 

~ 

Table 3-6-
Memory Bus Signal Pin Connections 

Bus Master or 
Memory Controller 

"OUT" Connector Pin Data Cable A Data Cable B 

B MAIN DATA BYTE 0-0 L MAIN DATA BYTE 2-0 L 

A Gnd Gnd 

D MAIN DATA BYTE 0-1 L MAIN DATA BYTE 2-1 L 

C Gnd Gnd 

F MAIN DATA BYTE 0-2 L MAIN DATA BYTE 2-2 L 

E Gnd Gnd 

J MAIN DATA BYTE 0-3 L MAIN DATA BYTE 2-3 L 

H Gnd Gnd 

L MAIN DATA BYTE 0-4 L MAIN DATA BYTE 2-4 L 

K Gnd Gnd 

N MAIN DATA BYTE 0-5 L MAIN DATA BYTE 2-5 L 

M Gnd Gnd 

R MAIN DATA BYTE 0-6 L MAIN DATA BYTE 2-6 L 

P Gnd Gnd 

T MAIN DATA BYTE 0-7 L MAIN DATA BYTE 2-7 L 

S Gnd Gnd 

V MAIN DATA BYTE 0-8 L MAIN DATA BYTE 2-8 L 

U Gnd Gnd 

X MAIN DATA BYTE 1-0 L MAIN DATA BYTE 3-0 L 

W Gnd Gnd 

Z MAIN DATA BYTE 1-1 L MAIN DATA BYTE 3-1 L 

Y Gnd Gnd 

BB MAIN DATA BYTE 1-2 L MAIN DATA BYTE 3-2 L 

AA Gnd Gnd 

---- --- DD-----I----MAtN DATABY'fE1=3L-- -- MAIN DATA BYTE 3'-'--3L-

CC Gnd Gnd 

FF MAIN DATA BYTE 1-4 L MAIN DATA BYTE 3-4 L 

EE Gnd Gnd 

11 MAIN DATA BYTE 1-5 L MAIN DATA BYTE 3-5 L 

HH Gnd Gnd 

LL MAIN DATA BYTE 1-6 L MAIN DATA BYTE 3-6 L 

KK Gnd Gnd 

NN MAIN DATA BYTE 1-7 L MAIN DATA BYTE 3-7 L 

MM Gnd Gnd 

RR MAIN DATA BYTE ]-8 L MAIN DATA BYTE 3-8 L 

PP Gnd Gnd 

TT MAIN DATA BYTE 1-9 L MAIN DATA BYTE 3-9 L 

SS Gnd Gnd 

VV MAIN DATA READY L SPARE 

UU Gnd Gnd 

~ ~ ~ 

Address Cable A Address Cable B 

MAIN A02 L MAIN A22 L 

Gnd Gnd 

MAIN A03 L MAIN A23 L 

Gnd Gnd 

MAIN A04 L MAIN A24 L 

Gnd Gnd 

MAIN A05 L MAINAPARL 

Gnd Gnd 

MAIN A06L MAINCOL 

Gnd Gnd 

MAINA07 L MAINel L 

Gnd Gnd 

MAIN A08 L MAIN BYTE 
MASKOOL 

Gnd Gnd 

MAIN A09 L MAIN BYTE 
MASK 01 L 

Gnd Gnd 

MAIN AlO L MAIN BYTE 
MASK 02 L 

Gnd Gnd 

MAIN All L MAIN BYTE 
MASK 03 L 

Gnd Gnd 

MAIN A12 L MAINACKL 

Gnd Gnd 

MAIN A13 L MAIN PAR ERR L 

Gnd Gnd 

-MAIN A 14L -- i--M-kIN-S'rART t; 

Gnd Gnd 

MAIN A15 L MAIN BOCC L 

Gnd Gnd 

MAIN A16 L MAIN MARGIN 0 L 

Gnd Gnd 

MAIN A17 L MAIN MARGIN 1 L 

Gnd Gnd 

MAIN A18 L MAIN MARGIN 2 L 

Gnd Gnd 

MAIN A19 L MAIN ACLOWL 

Gnd Gnd 

MAIN A20L MAIN DC LOWL 

Gnd Gnd 

MAIN A21 L SPARE 

Gnd Gnd 

~-



( 

( 

Response of Main Memory 
Each memory controller in Main Memory checks 
for correct parity in the address and control lines. 
If a parity error is detected when MAIN START is 
received, MAIN PAR ERR is asserted on the bus. 
I f the addressed memory controller detects a parity 
error. execution of the memory cycle is inhibited 
and a time-out results. 

Write Operation - When Main Memory begins exe­
cuting the requested memory cycle, it latches Main 
Memory Bus address, control, and data lines, and 
asserts MAIN ACK on the bus. With the required 
information latched in Main Memory, active partici­
pation by the Cache is no longer necessary. When 
the Cache receives MAIN ACK, it is notified that 
the Main Memory transaction is terminated. 
MAIN ACK negates MAIN START in the Cache. 
When MAIN ACK becomes negated, the Cache 
can again assert MAIN START if address, control, 
and data (if applicable) have been sufficiently 
deskewed. 

Read Operation - When Main Memory begins exe­
cuting thecequested memory cycle, it latches Main 
Memory Bus address and control lines, and asserts 
MAIN ACK and MAIN BOCC. After the Main 
Memory access delay, read data is placed on the 
bus. After a data deskew delay, the Main Memory 
asserts MAIN DATA READY for approximately 
50 ns. The Main Memory then removes the read 
data from the bus, and simultaneously negates 
MAIN BOCC. 

If the Cache is performing a processor or Unibus 
Map cycle, the DATA READY signal latches the 
Main Memory Bus data in the Bus Data Register 
of the Cache. If the Cache is performing an MBC 
cycle, the Main Memory Bus data and a data ready 
signal are routed by the Cache to the MBC per­
forming the read from memory. 

Initiation of Overlapped Cycles 
When performing an MBC read operation, the 
Cache does not need to wait for the assertion of 
DAT A READY before it can initiate the next 
Main Memory cycle. 

If the next cycle is a read operation, the Cache can 
assert MAIN START as soon as MAIN ACK is ne­
gated, providing that the Main Memory Bus ad­
dress and control lines have been stable for the 
required time period. Thus, two MBC read oper­
ations may be performed back to back; this is 

termed "stacking MBC reads." When MBC reads 
are stacked, the Cache routes the DATA READY 
signals from Main Memory to the appropriate 
MBC. 

If the next cycle is a write operation, the Cache 
must also wait for MAIN BOCC to become unas­
serted, indicating that Main Memory is no longer 
driving the bidirectional data lines of the Main 
Memory Bus. The Cache may then assert write 
data on the bus, wait the required data deskew de­
lay, and issue MAIN START. 

3.8 OPERATIONAL FLOWS 
This paragraph provides a dynamic description of 
Cache operations. Flowcharts and flowchart descrip­
tions are provided for each type of operation that 
the PDP-II /70 Cache can perform. The flowcharts 
illustrate the relationships and interdependence of 
the various Cache functions. Specific references to 
the Cache schematic diagrams are made for each 
discrete function, allowing direct use of the flow­
charts, along with the schematics, in trouble­
shooting the Cache hardware. 

Only five different symbols are used in the flow­
charts; these are defined in Figure 3-7. 

OPERATION OR PROCESS 

OPERATION OR PROCESS REQUIRING TWO 
OR MORE CONDITIONS TO BE MET 

FIXED DELAY 

~ CONDITIONAL BRANCH 
NO (ALSO USED TO IMPLEMENT 

? UNFIXED DELAYS) 
YES 

PARALLEL FLOW 
(FOLLOW BOTH PATHS) 

,,·2BS7 

Figure 3-7 Flowchart Symbol Definitions 

VI-3-19 



3.8.1 Processor Read Hit 
Figure 3-8 is a flowchart illustrating Cache oper­
ation during a processor read hit. The processor 
may initiate a data transfer only when it is in a 
"BUST" ROM state. When the processor performs 
a read operation, it generates a 16-bit virtual ad­
dress and control bits CI and CO. Memory Manage­
ment converts the virtual address to a 22-bit 
physical address which is routed to the Cache. Dur­
ing the BUST ROM state, the processor asserts 
BUST; this causes "BUST" HOLD to be asserted 
in the Cache. A CP cycle will be initiated by the 
Cache !f 

I. The Cache is not presently servicing the 
request of some other device. 

2. The Cache is not presently waiting to ex­
ecute the write portion of a DA TIP in­
itiated by some other device. 

3. There are no other requests pending 
(Le., PRE UBUS or PRE MBC is not 
asserted). 

If the above conditions are satisfied when (or while) 
BU ST is asserted, or even if the above conditions 
are satisfied when only BUST HOLD is asserted, 
the Cache asserts CP CYCLE and LOCK. LOCK 
indicates that the Cache is presently "locked" into 
an operating cycle (CP CYCLE in this case) and 
that no other requests will be serviced until the 
present cycle is completed. CP CYCLE causes the 
address generated by the Memory Management to 
be gated into the Cache by the Address Multi­
plexer. This address is processed in the Cache and, 
at the same time, gated to the Main Memory Bus 
(along with control bits), in case a slow cycle to 
Main Memory will be required. Incoming address 
bits (9:2) address the FDM to select data to be 
read. Incoming address bits (9:2) also address the 
Address Memory. Incoming address bits (21: 10) are 
checked against the contents of the Address Mem­
ory to determine whether the contents of the ad­
dress referenced are currently stored in the Cache. 
HIT 0 or HIT I will be asserted if the data being re­
quested is in the FDM. Since this paragraph dis­
cusses processor read hits, assume HIT 0 is asserted 
and that an odd word address (XXXXXX2 or 
XXXXXX6) is being read. Address bit I = I (odd 
word address) causes the odd areas of the FDM to 
be enabled; therefore, an odd addressed word is out­
put from each group of the FDM. HIT 0 asserted 

causes the Cache Data Multiplexer to gate out only 
the odd addressed word from Group 0 of the 
FDM; this word is routed to the processor. 

When LOCK is asserted, a timing sequence is in­
itiated in the Cache. If the processor does not wish 
to abort the read operation, it asserts CONTROL 
OK, which, when received by the Cache, allows the 
generation of MEM SYNC and the negation of 
BUST HOLD at TI80 of the Cache timing se­
quence. BUST HOLD negated prevents the Cache 
from responding twice to the same processor BUST 
cycle. M EM SYNC is routed to the processor; 
receipt of MEM SYNC allows the processor to con­
tinue past time state T5 of the "PAUSE" ROM 
state. MEM SYNC also causes the data from the 
Cache to be loaded into the processor's BR. 

At TI80 of the Cache timing sequence, DONE is as­
serted in the Cache. This negates LOCK and 
thereby brings the Cache to its quiescent state. 
With LOCK negated, the Cache can begin servicing 
other requests for memory access. 

3.8.2 Processor Read Miss 
Figure 3-9 is a flowchart illustrating Cache oper­
ation during a processor read miss cycle. The pro­
cessor may initiate a data transfer only when it is in 
a "BUST" ROM state. When the processor per­
forms a read operation, it generates a 16-bit virtual 
address and control bits CI and CO. Memory Man­
agement converts the virtual address to a 22-bit 
physical address which is routed to the Cache. Dur­
ing the "BUST" ROM state, the processor asserts 
BUST; this causes BUST HOLD to be asserted in 
the Cache. A CP cycle will be initiated by the 
Cache !f 

I. The Cache is not presently servicing the 
request of some other device (i.e" 
LOCK is not asserted). 

2. The Cache is not presently waiting to ex­
ecute the write portion of a DA TIP in­
itiated by some other device. 

3. There are no other requests pending 
(i.e., PRE UBUS or PRE MBC is not 
asserted). 

If the above conditions are satisfied when (or while) 
BUST is asserted, or even if the above conditions 
are satisfied when only BUST HOLD is asserted, 

VI-3-20 

( 

( 

( 

( 



( 

CPU 

TIME 

STATE' 

Tl 

T2 

T3 

T4 

T5 

T3 

T4 

T5 

T1 

PROCESSOR 

CPU RECEIVES 
MEMSVNC 
(TIGCI 

*The processor time states are Intended 
as a frame of reference only for events 
which occur in the processor. 

CACHE 

T90 

T120 

11·2830 

Figure 3-8 Processor Read Hit 

VI-3-21 



CPU 

~ ~~~h* PROCESSOR CACHE MAIN MEMORY 
(JQ 

~ T1 I 
I 
\0 

< ~ n 1 
~ g 1 I (l) 

N '" 
N '" o .... 

~ n I 
0-

~ n I 
'" I 

1 I 
I m I 

H I 
---~-- - -~----- -I- 1------

Tl I 

/------

tNlnATE CACHE I I TIMING SEQUENCE 
leeBE) 

~ I OPERATION 
CONTROL BITS 

T2 I GATED INTO 
CACHE I T60 IAOME.F~I I 

T3 I T90 I 
I I 

n !T1~ I 
-I-

T150 START: 
HOLD ICCBOI I -'Ed I 

I I ASSERT DATA DESKEW 
T5 1 SLOW CYCLE I 100 NS (CCBO) 

leesD) 

I 

~~~ I 
IH~8t LO'
REGISTER

- r I
GENERATE J I
WRITE PULSES
(CCBE,DTMal

f I I I
1 HI &. LO WORDS TAG LOADED I I

LOADED INTO INTO ADDRESS
FDM MEMORY
(DTMB·L) IADMA-DI

I
l ~~~ I T5 MEMSYNC

-~ I
8 1 1

*The processor time states are intended 11-2825
as a frame of reference only for events

which occu.r in the processor.

~ ~ ~

1--

~ ~ CftCr1pZJ

~

(

(

the Cache asserts CP CYCLE and LOCK. LOCK
indicates that the Cache is presently "locked" into
an operating cycle (CP CYCLE in this case) and
that no other requests will be serviced until the
[present cycle is completed. \CP CYCLE causes the
address generated by the Memory Management to
be gated into the Cache by the Address Multi­
plexer. This address is processed in the Cache and,
at the same time, gated to the Main Memory Bus
(along with the control bits), in case a slow cycle to
Main Memory will be required. Incoming address
bits (9:2) address the FDM to select data to be read
if a hit occurs. Bits (9:2) of the incoming address
also address the Address Memory. Bits (21:10) of
the incoming address are checked against the con­
tents of the Address Memory to determine whether
the contents of the address referenced are currently
stored in the Cache. HIT 0 or HIT 1 will be as­
serted if the data being requested is in the FDM.
Since this paragraph discusses processor read
misses, assume that neither HIT 0 nor HIT 1 is as­
serted. Assume also that an odd address
(XXXXXX2 or XXXXXX6) is being read. Address
bit I = I (odd word address) causes the odd areas
of the FDM to be enabled and therefore an odd ad­
dressed word is output from each group of the
FDM. However, because SLOW CYCLE is as­
serted during this cycle (see below), the Cache Data
Multiplexer ignores the outputs from the FDM.

When LOCK is asserted, a timing seqUence is in­
itiated in the Cache. While this sequence is occur­
ring, the processor may abort the read operation by
issuing a BEND during T2 of the ROM state fol­
lowing the "BUST" ROM state. However, if the
processor does not wish to abort the read oper~

ation, it asserts CONTROL OK at T3 of the
"PAUSE" ROM state following the "BUST"
ROM state.

CONTROL OK, when received by the Cache, al­
lows the generation of START SLOW and the nega­
tion of BUST HOLD at TI80 of the Cache timing
sequence. BUST HOLD negated prevents the
Cache from responding twice to the same processor
BUST cycle. START SLOW generates SLOW
CYCLE and, after a 100 ns deskew delay, START
is asserted on the Main Memory Bus. START
causes the address and control bits presently on the
Main Memory Bus to be loaded into Main Mem­
ory. A memory cycle is then started, and MAIN
ACK is transmitted from the Main Memory to the
Cache. The memory cycle results in two 18-bit
words being placed on the data lines of the Main

Memory Bus and, after a data deskew delay, the as­
sertion of DATA READY. DATA READY, when
received in the Cache, loads the data on the Main
Memory Bus into the Bus Data Registers. The out­
puts of the Bus Data Registers are gated to the
FDM and also to the Cache Data Multiplexer.
Since we have assumed that the processor is request­
ing an odd word, ADRS bit I is asserted, and i
causes the Cache Data Multiplexer to select the
data stored in the B Us Data (High Word) Register
and gate it to the processor.

The receipt of both MAIN ACK and DATA
READY in the Cache indicates that the Main Mem­
ory has responded properly. Therefore, these sig­
nals inhibit the generation of a Main Memory Bus
time-out by negating CCBE ALLOW TIMEOUT
L. When the time-out is inhibited, write pulses are
generated. The write pulses load the two words
(block) brought from Main Memory into the FDM .
and their address tag into the Address Memory.
Whether Group 0 or Group I of the FDM (and
corresponding Tag 0 Address Memory or Tag 1 Ad­
dress Memory) is loaded is determined as described
in Paragraph 4.7. When time-out is inhibited,
MEM SYNC SLOW is asserted and causes the as­
sertion of MEM SYNC. MEM SYNC is routed to
the processor. Receipt of MEM SYNC allows the
processor to proceed past T5 of the PAUSE ROM
state, and also causes the data from the Cache to
be loaded into the processor's BR. When time-out
is inhibited, RESTART is also asserted in the
Cache. This asserts DONE, which negates LOCK
and brings the Cache to its quiescent state. With
LOCK negated, the Cache can begin servicing
other requests for memory access.

3.8.3 Processor Write
Figure 3-10 is a flowchart illustrating Cache oper­
ation during a processor write cycle. The processor
may initiate a data transfer only when it is in a
"BUST" ROM state. When performing a write to
memory, the processor/Memory Management trans­
mits data gated from the BR, a 22-bit physical ad­
dress, and operation control bits C I, CO to the
Cache. During the "BUST" ROM state, the pro­
cessor asserts BUST; this causes BUST HOLD to
be asserted in the Cache. A CP cycle will be in­
itiated by the Cache if:

I. The Cache is not presently servicing the
request of sOme other device (i.e.,
LOCK is not asserted).

VI-3-23

2. The Cache is not presently waiting to ex­
ecute the write portion of a DA TIP in­
itiated by some other device.

3. There are no other requests pending
(i.e., PRE UBUS or PRE MBC is not
asserted).

If the above conditions are satisfied when (or while)
BUST is asserted, or even if the above conditions are
satisfied when only BUST HOLD is asserted, the
Cache asserts CP CYCLE and LOCK. LOCK in­
dicates that the Cache is presently "locked" into an
operating cycle (CP CYCLE in this case) and that no
other requests will be serviced until the present cycle
is completed.

CP CYCLE causes the Cache Write Multiplexer to
select the processor data, thereby routing it to the
FD M and the high and low word Main Memory
Bus Data Drivers. When the Main Memory Bus
data lines become free (MAIN BOCC L negated),
the Cache enables the data word onto the Main
Memory Bus.

CP CYCLE also causes the address generated by
the processor and Memory Management to be
gated into the Cache by the Address Multiplexer.
This address is processed in the Cache and, at the
same time, gated to the Main Memory Bus (along
with the control bits). Incoming address bits (9:2)
address the FDM to select a block in Group 0 and
Group I which will be updated in case a hit occurs.
Bits 0 and I of the incoming address select the
word or byte in the selected blocks which will be
updated in case a hit occurs. Bits (9:2) of the in­
coming address also address the Address Memory.
Bits (21: 10) of the incoming address are checked
against the contents of the Address Memory to de­
termine whether the contents of the address refer­
enced are currently stored in the Cache. HIT 0 or
HIT I will be asserted if the data being referenced
is in the FDM.

When LOCK is asserted, a timing sequence is in­
itiated in the Cache. While this sequence is occur­
ring, the processor may abort the read operation by
issuing a BEND during T2 of the ROM state fol­
lowing the "BUST" ROM state. However, if the
processor does not wish to abort the read oper­
ation, it asserts CONTROL OK at T3 of the

"PAUSE" ROM state following the "BUST"
ROM state. CONTROL OK, when received by the
Cache, allows the generation of StART SLOW
and the negation of BUST HOLD at Tl80 of the
Cache timing sequence. BUST HOLD negated pre­
vents the Cache from responding twice to the same
processor BUST cycle. START SLOW generates
SLOW CYCLE and enables the assertion of
ST ART on the Main Memory Bus 100 ns after the
bus becomes unoccupied (START WRITE as­
serted). START causes the address, data, and con­
trol bits presently on the Main Memory Bus to be
loaded into Main Memory. A memory cycle is then
started, and MAIN ACK is transmitted back to the
Cache.

The receipt of MAIN ACK in the Cache indicates
that Main Memory has responded properly, and
therefore inhibits generation of a Main Memory
Bus time-out by negating CCBE ALLOW TIME­
OUT L. When the time-out is disabled, write pulses
are generated if a hit has been detected. The write
pulses (DTMA LO BYTE WP 0*1 L, HI BYTE WP
0* I t, LO BYTE WP 2*3 L, and/or HI BYTE WP
2*3 L) load the word or byte being written into the
FD M group on which the hit occurred at its proper
position within the currently indexed block.

When time-out is inhibited, MEM SYNC SLOW is
asserted and causes the assertion of MEM SYNC,
which is routed to the processor. Receipt of MEM
SYNC allows the processor to proceed past T5 of
the PAUSE ROM state.

When time-out is inhibited, REST ART is also as­
serted in the Cache. This asserts DONE, which ne­
gates LOCK and brings the Cache to its quiescent
state. With LOCK negated, the Cache can begin
servicing other requests for memory access.

3.8.4 Processor BUST -BEND Cycle
Figure 3-11 is a flowchart illustrating Cache oper­
ation during a processor BUST-BEND cycle. The
processor often initiates a data transfer (by assert­
ing BUST) that is immediately aborted in the next
ROM state (by asserting BEND). This allows the
processor to operate more quickly; data transfers
can be initiated earlier than otherwise possible and,
if they are not required, they are then aborted.

VI-3-24

(

(

(

'"Il
o:Q'
s::
(l)

W
I

<: 0 -I w '"t:I
I

N 0
VI ()

(l)

'" '" 0
~
:l
(l)

~

CPU
TIME
STATE'

T1

T2

T3

T4

T5

T1

T2

T3

T4

T5

T5

Tl

.~

~.

PROCESSOR

t'A~t: I - INITIATEC
TIMING ACHE
leeSE) SEQUENCE

I
I TOO

I T90

I _.:no
.............. "' ~ T120

~
I

T150 I ASSERT

(eCSO)
II HOLD START SLOW

I
I
I
I
I
I
I
I
I
I
I

*The processor time states are intended
as a frame of reference only for events
which occur in the processor .

.~,

CACHE

I :~RESS. DATA &
RATION

CONTROL BITS
GATED IN
(ACME F.JTOCACHE

• ,CePE)

:= OPERATION
CONTROL BITS
GATED ONTO

=~NMEMORY

(ADML)

I GENERATE
WRITE PULSES.
UPDATE FOM
IF HIT)
ICCBE,DTMA-L)

.~

I
I
I
I
I
I
I
I
I

MAIN MEMORY

LATCH ADDRESS,
DATA &
OP.ERATION
CONTROL BITS

11-2826

CPU

TIME

STATE"

T1

T2

T3

T4

T5

T1

T2

T3

T4

T5

PROCESSOR

"'The processor time states are intended
as a frame of reference only for events
which occur in the processor.

Figure 3-11

CACHE

INITIATE CACHE
TIMING SeQUENCE
(eeBE)

T3D

T6D

T9D

T12D

T15D

T1BD ASSERT DONE

leeBe)

Processor Bust-Bend Cycle

VI-3-26

ADDRESS, DATA 8<
OPERATION
CONTROL LINES
GATED INTO CACHE
& PROCESSED IN
NORMAL MANNER

, '·2831

(

(

(

(

Cache timing during a BUST-BEND cycle is sim­
ilar to that of a processor read hit, as illustrated in
Figure 3-S. During the "BUST" ROM state, the
processor asserts BUST; this causes BUST HOLD
to be asserted in the Cache. A CP cycle will be in­
itiated by the Cache if

I. The Cache is not presently servicing the
request of some other device.

2. The Cache is not presently waiting to ex­
ecute the write portion of a DATIP in­
itiated by some other device.

3. There are no other requests pending
(i.e., PRE UBUS or PRE MBC are not
asserted).

If the above conditions are satisfied when (or while)
BUST is asserted, or even if the above conditions
are satisfied when only BUST HOLD is asserted,
the Cache asserts CP CYCLE and LOCK. (The pro­
cessor could assert BEND prior to the assertion of
LOCK, in which case BUST HOLD is immediately
negated and the cycle is aborted before the Cache
actually begins executing the cycle.) LOCK in­
dicates that the Cache is presently "locked" into an
operating cycle (CP CYCLE in this case) and that
no other requests will be serviced until the present
cycle is completed. CP CYCLE causes the address,
control, and data bits currently being output from
the processor/Memory Management to be gated
and processed in the Cache, in the same manner
they normally would be for a read or write
operation.

When LOCK is asserted, a timing sequence IS tn­

itiated in the Cache. While this sequence is occur­
ring, the processor may abort the operation by
issuing a BEND during T2 of the ROM state fol­
lowing the BUST ROM state. When it does so,
BUST HOLD is negated in the Cache and BEND
HOLD is asserted. BEND HOLD asserted causes
the assertion of DONE at T ISO of the Cache tim­
ing sequence. This negates LOCK and thereby
brings the Cache to its quiescent state. With LOCK
negated, the Cache· can begin servicing other
requests for memory access.

Note that during a BUST-BEND cycle, the pro­
cessordoes not issue CONTROL OK. This pre­
vents the Cache from starting a slow cycle or
asserting MEM SYNC.

3.8.5 Unibus Map Read Hit
Figure 3-12 is a flowchart illustrating Cache oper­
ation during a Unibus Map read hit cycle. When
performing a read operation via the Cache, the
Unibus Map transmits a 22-bit address (generated
from the IS-bit Unibus address) and Control bits
C I, CO to the Cache, and asserts UB REQUEST.
UB REQUEST, delayed and synchronized by a
Cache internal clock (SYNC CLK), generates PRE
UBUS (Pre Unibus Cycle), which will initiate
Cache operation to service the Unibus request if

I. The Cache is not presently servicing the
request of some other device.

2. The Cache is not waiting to execute the
write portion of a DATIP initiated by
some other device.

If the above conditions are satisfied, the Cache as­
serts UB CYCLE and LOCK. LOCK indicates that
the Cache is presently "locked" into an operating
cycle (U B CYCLE in this case) and that no other
requests will be serviced until the present cycle is
completed. U B CYCLE causes the address gener­
ated by the Unibus Map to be gated into the Cache
by the Address Multiplexer. This address is pro­
cessed in the Cache and, at the same time, gated to
the Main Memory Bus (along with control bits), in
case a slow cycle to Main Memory will be required.
I ncoming address bits (9:2) address the FDM to se­
lect data to be read in case a hit occurs. Bits (9:2)
of the incoming address also address the Address
Memory. Bits (21:10) of the incoming address are
checked against the contents of the Address Mem­
ory to determine whether the contents of the ad­
dress referenced are currently stored in the Cache.
HIT 0 or H IT I will be asserted if the data being re­
quested is in the FDM. Since this paragraph dis­
cusses Unibus Map read hits, assume that HIT 0 is
asserted and that an odd address (XXXXXX2 or
XXXXXX6) is being read. Address bit I = I (odd
address) causes the odd areas of the FDM to be en­
abled and therefore an odd addressed word is out­
put from each group of the FDM. HIT 0 asserted
causes the Cache Data Multiplexer to gate out only
the odd addressed word from Group 0 of the
FDM: this word is routed to the Unibus Map.

When LOCK is asserted, a timing sequence is in­
itiated in the Cache. At T30, UB ACKN is asserted
and transmitted to the Unibus Map. This signal ne­
gates the Unibus Map request, thereby preventing

UNIBUS MAP

UNIBUS MAP
GENERATES
ADDRESS &
OPERATION

.CONTROL BITS

DATA LOADED

I
I
I
I
I
I
I
I

INITIATE CACHE
TIMING SEQUENCE
leeSE)

T30

TOO

T90

T120

T150

T180

CACHE

AOoRESSBi
OPERATION
CONTROL BITS
GATED INTO
CACHE
(ADME.F,J)

ADDRESS&.
OPERATION
toNTROL BITS
GAtED ONTO
MAIN MEMORY
BUS
IADM~t

Figure 3-12 Unibus Map Read Hit

"Tl
ciCio
C ..,
(1)

w
I

W

< c - ::s
I CT w
I C

N '" 00
3::
!»
"0

ttl
(1)
!»
0..

3::
00"
'"

~

UNIBUS MAP

UNIBUS MAP
GENERATES
ADDRESS &
OPERATION
CONTROL BITS

NEGATE
UB ReQuesT

I
I
I
I
I
I
I

INITIATE CACHE
TIMING SEQUENCE
(CeBE)

T30

Teo

T90

T120

T150

Tl50
HOLD

ASSERT
START SLOW
(ecao)

LOAD BUS DATA
(HI & LO)
REGISTER
(COPA)

FOM
(OTMB·L)

~

CACHE

YES

MEMORY
{ADMA-ol

OPERATION
CONTROL BITS
GATED INTO
CACHE
IADME,F.J'

~

GATED ONTO
MAIN
MEMQRYBUS
(ADML)

~

I
I
I
I

I
I
I
I
I
I
I
I
I
I

MAIN MEMORY

11-2828

c- -

(

(

the same request from being serviced twice. At
T180, DONE is asserted in the Cache. This signal
generates UB DONE, which loads the FDM data
gated out of the Cache into the Unibus Map, and
causes the Unibus Map to terminate its transaction
on the Unibus by issuing SSYN. DONE also brings
the Cache into its quiescent state by negating
LOCK, which in turn negates UB CYCLE. With
LOCK negated, the Cache can begin servicing
other requests for memory access.

3.8.6 Unibus Map Read Miss
Figure 3-13 is a flowchart illustrating Cache oper­
ation during a Unibus Map read miss cycle. When
performing a read operation via the Cache, the
Unibus Map transmits a 22-bit address (generated
from the 18-bit Unibus address) and control bits
CI, CO to the Cache, and asserts UB REQUEST.
UB REQUEST, delayed and synchronized by a
Cache internal clock (SYNC CLK), generates PRE
UBUS (Pre Unibus Cycle), which will initiate
Cache operation to service the Unibus request if.

I. The Cache is not presently servicing the
request of some other device (i.e.,
LOCK not asserted).

2. The Cache is not waiting to execute the
write portion of a DA TIP initiated by
some other device.

If the above conditions are satisfied, the Cache as­
serts UB CYCLE and LOCK. LOCK indicates that
the Cache is presently "locked" into an operating
cycle (U B CYCLE in this case) and that no other
requests will be serviced until the present cycle is
completed. U B CYCLE causes the address gener­
ated by the Unibus Map to be gated into the Cache
by the Address Multiplexer. This address is pro­
cessed in the Cache and, at the same time, gated to
the Main Memory Bus (along with the control
bits), in case a slow cycle to Main Memory will be
required. Incoming address bits (9:2) address the
FDM to select data to be read in case a hit occurs.
Bits (9:2) of the incoming address also address the
Address Memory. Bits (21:10) of the incoming ad­
dress are checked against the contents of the Ad­
dress Memory to determine whether the contents of
the address referenced are currently stored in the
Cache. Since this paragraph discusses Unibus Map
read misses, assume that neither HIT 0 nor HIT I
is asserted. Assume also that an odd address
(XXXXXX2 or XXXXXX6) is being read. Address
bit I = I (odd address) causes the odd areas of the
FDM to be enabled and therefore an odd ad-

dressed word is output from each group of the
FDM. However, because SLOW CYCLE is as­
serted during this cycle (see below), the Cache Data
Multiplexer ignores the outputs from the FDM.

When LOCK is asserted, a timing sequence is in­
itiated in the Cache. At T30,UB ACKN is asserted
and transmitted to the Unibus Map. This signal ne­
gates the Unibus Map request, thereby preventing
the same request from being serviced twice. At
T180, START SLOW is asserted in the Cache. This
asserts SLOW CYCLE and, after a 100 ns skew de­
lay, START is asserted on the Main Memory Bus.
ST A RT causes the address and control bits pres­
ently on the Main Memory Bus to be loaded into
Main Memory. A memory cycle is then started,
and MAIN ACK is transmitted back to the Cache.
The memory cycle results in two I8-bit words being
placed on the data lines of the Main Memory Bus
and, after a data deskew delay, the assertion of
DATA READY. DATA READY, when received
in the Cache, loads the data on the Main Memory
Bus into the Bus Data Registers. The outputs of
the Bus Data Registers are gated to the FDM and
also to the Cache Data Multiplexer. Since we have
assumed that the Unibus Map is requesting an odd
word, ADRS bit I is asserted, and causes the
Cache Data Multiplexer to select the data stored in
the Bus Data (High Word) Register and gate it to
the Unibus Map.

The receipt of both MAIN ACK and DATA
READY in the Cache indicates that the Main Mem­
ory has responded properly. Therefore, these sig­
nals inhibit the generation of a Main Memory Bus
time-out by negating CCBE ALLOW TIMEOUT
L. When the time-out is inhibi'ted, write pulses are
generated. The write pulses load the two I8-bit
words (i.e., the block) brought from Main Memory
into the FDM and their identification bits into the
Address Memory. Whether Group 0 or Group I of
the FDM (and corresponding Tag 0 Address Mem­
ory or Tag I Address Memory) is loaded is deter­
mined as described in Paragraph 4.7.

When time-out is inhibited, REST ART is asserted,
which in turn asserts DONE. DONE generates UB
DONE, which loads the data word gated out of the
Cache into the Unibus Map. The Unibus Map will
place the data word on the Unibus and then com­
plete its Unibus transaction. DONE also brings the
Cache into its quiescent state by negating LOCK,
which in turn negates UB CYCLE. With LOCK ne­
gated, the Cache can begin servicing other requests
for memory access.

VI-3-29

3.8.7 Unibus Map Write
Figure 3-14 is a flowchart illustrating Cache oper­
ation during a Unibus Map write cycle. When per­
forming a write to memory, the Unibus Map
transmits data gated from the Unibus, a 22-bit phys­
ical address (generated from the 18-bit Unibus Ad­
dress), and operation control bits CI and CO to the
Cache, and then asserts UB REQUEST. UB
R EQU EST, delayed and synchronized by a Cache
internal clock (SYNC CLK), generates PRE UBUS
(Pre Unibus Cycle), which will initiate Cache oper­
ation to service the Unibus request if:

I. The Cache is not presently servicing the
request of some other device (i.e.,
LOCK not asserted).

2. The Cache is not waiting to execute the
write portion of a DA TIP initiated by
some other device.

If the above conditions are satisfied, the Cache as­
serts U B CYCLE and LOCK. LOCK indicates that
the Cache is presently "locked" into an operating
cycle (UB CYCLE in this case) and that no other
requests will be serviced until the present cycle is
completed.

U B CYCLE causes the Cache Write Multiplexer to
select the Unibus data, thereby routing it to the
FDM and the (high and low word) Main Memory
Bus Data Drivers. When the Main Memory Bus
data lines become free (MAIN BOCC L negated),
the Cache enables the data word onto the Main
Memory Bus.

U B CYCLE also causes the address generated by
the Unibus Map to be gated into the Cache by the
Address Multiplexer. This address is processed in
the Cache and, at the same time, gated to the Main
Memory Bus (along with control bits). Incoming ad­
dress bits (9:2) address the FDM to select a block
in Group 0 and Group I which will be updated in
,case u hit occurs. Bits I and 0 of the incoming ad­
dress select a word or byte in the selected blocks

which will be updated in case a hit occurs. Bits
(9:2) of the incoming address also address the Ad­
dress Memory. Bits (21: 10) of the incoming address
are checked against the contents of the Address
Memory to determine whether the contents of the
address referenced are currently stored in the
Cache. HIT 0 or HIT I will be asserted if the data
being referenced is in the FDM.

When LOCK is asserted, a timing sequence is in­
itiated in the Cache. At T30, UB ACKN is asserted
and transmitted to the Unibus Map. This signal ne­
gates the Unibus Map request, thereby preventing
the same req uest from being serviced twice. At
T 180, START SLOW is asserted in the Cache. This
asserts SLOW CYCLE and enables the assertion of
ST ART on the Main Memory Bus 100 ns after the
bus becomes unoccupied (START WRITE as­
serted). START causes the address, data, and con­
trol bits presently on the Main Memory Bus to be
loaded into Main Memory. A memory cycle is then
started, and MAIN ACK is transmitted back to the.
Cache.

The receipt of MAIN ACK in the Cache indicates
that Main Memory has responded properly, and
therefore inhibits generation of a Main Memory
Bus time-out. When the time-out is inhibited, write
pulses are generated if a hit has been detected. The
write pulses (DTM B La BYTE WP 0* I L, i-II
BYTE WP 0*1 L, La BYTE WP 2*3 L, and/or HI
BYTE WP 2*3 L) load the word or byte being writ­
ten into the FDM group on which the hit occurred
at its proper position within the currently indexed
block. When time-out is inhibited, RESTART is as­
serted, which in turn causes the assertion of
DONE; DONE generates UB DONE, which is
tnmsmitted to the Unibus Map and informs it that
the write operation has been executed; this allows
the Unibus Map to terminate its transaction on the
Unibus by issuing SSYN. DONE also brings the
Cache into its quiescent state by negating LOCK,
which in turn negates UB CYCLE. With LOCK ne­
gated, the Cache can begin servicing other requests
for memory access.

VI-3-30

(

(

(

(

UNIBUS MAP

UNIBUS MAP
GATES DATA
& OPERATION
CONTROL BITS
&.GENERATES
ADDRESS

'T] oq.
~
(1)

W
J

.j:>.

<: c -. w :l . 0: w
~

'"
3::
!I'
'0

~
;:;:
(1)

I

I
I

I
I
I
I
1
I

--1

I
I
I

!N1TIATE CACHE
TIMING SEQUENCE
(CeSE)

Tl50
HOLD

T30

TOO

T90

T120

T150

~.

~
~ ~l::nll::LI

ASSERT
START SLOW
(ecsol

~,

CACHE

......... YES

OPERATION
CONTROL BITS
GATEDtNTO
-CACHE

DATA DESKEW
(eeBD)

UPDATE FDM
IFHIT
(CCBE,DTMA.L)

IADME,.F,JI

GATED ONTO
MAIN

.~,

MAIN MEMORY

I
I
I
I
I
1

I
I
I
I

11-2827

3.8.8 Cache Register Read/Write
Figure 3-15 is a flowchart illustrating Cache oper­
ation during a Cache register read or write. A
Cache register read or write operation is quite sim­
ilar to a Unibus Map read hit. When the Unibus
Map decodes a Cache register address on the
Unibus, it gates bits (03:01) (MAPA ADRS 03:01)
of the Unibus address and transmits MAPB
CACHE REG L to the Cache. When the Unibus
Map receives MSYN on the Unibus, it asserts UB
REQUEST. ua REQUEST, delayed and synchro­
nized by a 'Cache internal clock (SYNC CLK) gen­
erates PRE UBUS (Pre Unibus Cycle), which will
initiate Cache operation to service the Unibus
request if:

I.

2.

The Cache is not presently servicing the
request of some other device.

The Cache is not waiting to execute the
write portion of a DATIP initiated by
some other device.

If the above conditions are satisfied, the Cache as­
serts UB CYCLE and LOCK. LOCK indicates that
the Cache is presently "locked" into an operating
cycle (UB CYCLE in this case) and that no other
requests will be serviced until the present cycle is
completed. UB CYCLE causes the 22 physical ad­
dress bits and the operation control bits (Cl and
CO) to be gated into the Cache by the Address Mul­
tiplexer. The 22-bit physical address gated out of
the Unibus during a Cache register operation is not
a valid address. It is gated into the Cache, indexes
into the FDM and Address Memory, and may
cause HIT 0 or HIT I to be asserted; however, be­
cause MAPB CACHE REG L is asserted, assertion
of CCBD START SLOW (1) H is inhibited; there­
fore, reading or writing into the FDM or Main
Memory is also inhibited. Address bits MAPA
ADRS (03:01) select the desired Cache register. The
selected register data is gated out of the Cache to
the Unibus Map on the CCB REG 0 15:00 lines
(whether or not a read or a write is being
performed).

When LOCK is asserted, a timing sequence is in­
itiated in the Cache. At T30, UB ACKN is asserted
and transmitted to the Unibus Map. This signal ne­
gates the Unibus Map request, thereby preventing
the same request from being serviced twice.

If a register write operation is being performed, a
register write pulse is generated (CCBH WRITE
ERR REG L, CCBH CLK MAINT REG L, or
CCBH CLK CONTROL REG L) at T60 of the
Cache timing sequence.

At T180, DONE is asserted in the Cache. This sig­
nal generates UB DONE, which enables the Unibus
Map to accept register data (if it is performing a
read) and to terminate its transaction on the
Unibus. DONE also brings the Cache into its quies­
cent state by negating LOCK, which in turn ne­
gates UB CYCLE. With LOCK negated, the Cache
can begin servicing other requests for memory
access.

3.8.9 MBC Read From Memory
The flowchart in Figure 3-16 shows a single MBC
(MBC A) requesting memory access. If two or
more MBCs request memory access concurrently,
Cache operation is similar. Multiple MBC requests
are discussed in Paragraph 4.6, which describes the
Massbus arbitrator.

M BCs requesting memory access assert their respec­
tive request signals [CSTC CTRLA (B, C, or D)
REQ L]. The Cache MBC arbitrator receives these
requests and arbitrates among the requesting
MBCs. The MBC arbitration logic asserts MBC
REQ and transmits SEL ADRS CTRL "X" H to
the selected MBC (MBC A in this case). Receipt of
the SEL ADRS signal enables MBC A to gate out
an address and operation control lines Cl, CO, and
CX to the Cache. MBC REQ, delayed and synchro­
nized by a Cache internal clock (SYNC CLK), gen­
erates PRE MBC (Pre MBC Cycle), which causes
the address and control bits gated out by the se­
lected M BC to be loaded into the MBC Address
Latch. PRE MBC will initiate Cache operation to
service the MBC request if:

I. The Cache is not presently servicing the
request of some other device (i.e.,
LOCK not asserted).

2. The Cache is not waiting to execute the
write portion of a DATIP initiated by
some other device.

3. There are no Unibus Map requests cur­
rently pending (i.e., PRE UBUS is not
asserted).

VI-3-32

(

(

(

(

(

UNIBUS MAP CACHe

UNIBUS MAP
GATES ADDRESS,

I &. OPERATION
CONTROL BITS &.
UF WRITE) DATA

I FROM UNIBUS

I I ADDRESS
BllSSELECT ASSERT

REOISTER CACHE REG

I REAQDATA (MAPB)
(CCBFI

I I
ASSERT
UB REQUEST I (MAPFI

(

I
I I ASSERT

J PRE·UB

I ICC!!BI

~-

I 0/ ASSERTliiD YES

I QR
NON..lJB
OATIP

•
I NQ

I I
I I ASSERT LOCK I

ASSERT lIB
INITIATE CACHE CYCLE
TiMING SEQUENCE ICCBBI

(CCBEjI)

I
leeBE)

I ASSERT UB

I ADDRESS" DATA OPERATION I 130 ACKN LlHEI!GATED CONTROL BITS ICC;ec;1 IHTOCACHE&. GATED INTO
PROCESSE;D IN CACHE IADMJI I NO.,MAL R/!ANNER

(
I I

l NEGATE UB J I <b .ES REQUEST

OPER~T'ON

I WRITE
NO SELECTED T60

R'EGISTIER

I (CCBH.J,KI

I T90

I Tl;!o

I T160

I I ASSERT DOHE J I
T160 ICCIIC!

J

I r I

I ASSERTUB

J I NE~ATE LOCK J I
DONE lcese)
ICCBC)

I

I I I
NEGATI;:

I CACHE I UBCVCLE
QUI~ENT

l I tCCBBI
DATA LOADED I UF READI

I I
l UNIBUS

I 11·2832 TRANSACTION

I COMPLETED

Figure 3-15 Register Read and Write

VI-3-33

If the above conditions are satisfied, the Cache as­
serts MBC CYCLE and LOCK. LOCK indicates
that the Cache is presently "locked" into an oper­
ating cycle (MBC CYCLE in this case) and that no
other requests will be serviced until the present
cycle is completed. MBC CYCLE causes the ad­
dress generated by the selected MBC to be gated
into the Cache by the Address Multiplexer. This ad­
dress is processed in the Cache and, at the same
time, gated to the Main Memory Bus along with
control bits CI and CO. Incoming address bits (9:2)
address the FDM and the Address Memory. Bits
(21: 10) of the incoming address are checked against
the contents of the Address Memory to determine
whether the contents of the address referenced are
currently stored in the Cache. HIT 0 or HIT I will
be asserted if the data being requested is in the
FDM; however, since data is not read from the
FDM during MBC cycles, these signals are not
used.

When LOCK is asserted, a timing sequence is in­
itiated in the Cache. At T30 of the timing sequence,
DISABLE REQ is asserted. DISABLE REQ clocks
the M BC arbitration logic and causes SEL DATA
CTRL A to be transmitted to the selected MBC;
the M BC ignores this signal during a read from
memory. While DISABLE REQ is asserted, the
M BC arbitrator is prevented from arbitrating new
incoming requests.

At T60, MBC REQ ACKN is asserted. MBC REQ
ACKN is transmitted to all the MBCs and notifies
the selected MBC that it can negate its request and
alter the address and operation control bits.

At TI20 of the Cache timing sequence, CLK PRJ
H (Clock Priority) is generated, and clocks the
M BC priority arbitration logic; this records that
M BC "A" is currently selected and will influence fu­
ture selections.

At T 150 of the Cache timing sequence, DISABLE
REQ is negated. DISABLE REQ negated enables
clocking the MBC priority arbitration logic, caus­
ing selection of the next MBC if an MBC request is
pending.

At T180, START SLOW is asserted in the Cache.
This asserts SLOW CYCLE and, after a 100 ns
skew delay, START is asserted on the Memory
Bus. START causes the address and control bits
presently on the Main Memory Bus to be loaded
into Main Memory. A memory cycle is then
started, and MAIN ACK is transmitted back to the
Cache.

The receipt of MAIN ACK in the Cache indicates
that the Main Memory is responding properly;
therefore, this signal inhibits the generation of a
Main Memory Bus time-out by negating CCBE AL­
LOW TIMEOUT L. Also in response to MAIN
ACK, the Cache transmits ADRS ACKN to the
MBCs. Time-out inhibited causes the assertion of
RESTART, and this in turn causes the assertion of
DONE. DONE brings the Cache into its quiescent
state by negating LOCK. With LOCK negated, the
Cache can begin servicing other requests for mem­
oryaccess.

The memory cycle just initiated results in two 18-
bit words being placed on the data lines of the
Main Memory Bus and, after a data deskew delay,
the assertion of OAT A READY. The Main Mem­
ory Bus data is received in the Cache and routed to
the MBCs. The MBC Arbitration Logic in the
Cache routes DATA READY to the MBC per­
forming the read operation (MBC A in this case)
by asserting CDPK OAT A ROY CNTL A H. This
causes M BC A to accept the read data. Note that
while the Cache is routing the MBC data and
DATA ROY signals, it may already be in the midst
of servicing some other request for memory access.

VJ-3-34

(

(

(

-,

'T] oqO
s:: ..,
(1)

w
I

0"1

~
<: txl - n ,
w w ;:0

(1)
Vl j:»

0..

'T] ..,
0
3
~
(1)

3
0 ..,
'<

-"

MBCA

TOALL MBCs

--'-- - - .. -~---

I DOCCUR. PRIOR]
TO ASSERTION
OFPRE MBC

I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~-r

I
I
I
I
f
I
I
I

I
1

T30

CACHE

NO

'".

T120

T150

~,

SELECTMBC
ADDRESS

(ADME,F.JI

~, ~,

MAIN MEMORY

LATCH ADDRESS &
OPERATION CON-
TROL LINES

I
I

~I~~----
DATA DESKEW

I
I
I
I

I
I
I
I 11-2923

'T]
ciCio
C
n
w
I

-.J

<: 3:: - 0;; I
W n I
W

~ 0\
....
;:;:
n
.....
0

3::
n
S
0

<...<:

~~

MBCA

GATE OUT DATA

[
OCCURS PRIO~
TO ASSERTION
OF PRE MBC

T30

m ALLMBCS44.---,---------t-------------------------------~

MBC MAY ALTER
ADDRESS &
OPERATION
CONTROL LINES

TOO

T120

T150

NO

\ut:~"'t:vv

100 NS

I
I
I
I
I
I

~

CACHE

~

LOAD MBC
ADDRESS
LATCH

(ADMH)

SELECT MBC
ADDRESS

GENERATE WRITE
PULSES/INVALI­
DATE FOM DATA
IF HIT ICCBE,
DTMB ADMA-O)

NO

IADML)

,~

MAIN MEMORY

I
---+-

I
I
I
I
I
I I ~~"" ... ADDRESS&

OPERATION I CONTROL

(

3.8.10 MBC Write to Memory
The flowchart in Figure 3-17 shows a single MBC
(M BC A) requesting memory access. If two or
more MBCs request memory access concurrently,
Cache operation is similar. Multiple MBC requests
are discussed in Paragraph 4.6, where Massbus arbi­
tration is described.

M BCs requesting memory access assert their respec­
tive request signals [CSTC CTRL A (B, C, or D)
REQ L]. The Cache MBC arbitrator receives these
requests and arbitrates among the requesting
MBCs. The MBC arbitration logic asserts MBC
REQ and transmits SEL ADRS CTRL "X" H to
the selected M BC (M BC A in this case). Receipt of
the SEL ADRS signal enables MBC A to gate out
an address and operation control lines CI, CO, and
CX to the Cache. MBC REQ, delayed and synchro­
nized by a Cache internal clock (SYNC CLK), gen­
erates PRE M BC (Pre MBC Cycle), which causes
the address and control bits gated out by the se­
lected M BC to be loaded into the MBC Address
Latch. PRE MBC will initiate Cache operation to
service the M BC request if

I. The Cache is not presently servicing the
request of some other device (i.e.,
LOCK not asserted).

2. The Cache is not waiting to execute the
write portion of a DA TIP initiated by
some other device.

3. There are no Unibus Map requests cur­
rently pending (i.e., PRE UBUS is not
asserted).

I r the above conditions are satisfied, the Cache as­
serts MBC CYCLE and LOCK. LOCK indicates
that the Cache is presently "locked" into an oper­
ating cycle (M BC CYCLE in this case) and that no
other requests will be serviced until the present
cycle is completed. MBC CYCLE causes the ad­
dress generated by the selected MBC to be gated
into the Cache by the Address Multiplexer. This ad­
dress is processed in the Cache, and, at the same
time, gated to the Main Memory Bus along with
control bits C I and CO. Incoming address bits (9:2)
address the FD M and the Address Memory. Bits
(21: 10) of the incoming address are checked against
the contents of the Address Memory to determine
whether the contents of the address referenced are
currently stored in the Cache. HIT 0 or HIT I will

be asserted if the data being requested is in the
FD M. If HIT 0 or H IT I is asserted, the corre­
sponding data in the FDM will have to be in­
validated by loading a negated Valid bit into the
Tag 0 Address Memory or Tag I Address Memory,
respectively.

When LOCK is asserted, a timIng sequence IS in­

itiated in the Cache. At T30 of the timing sequence,
DISABLE REQ is asserted. DISABLE REQ clocks
the MBC arbitration logic and causes SEL DATA
CTRL A to be transmitted to the selected MBC;
this enables the selected MBC to gate write data to
the Cache. The write data is gated onto the Main
Memory Bus by the Cache when MAIN BOCC be­
comes unasserted. While DISABLE REQ is as­
serted, the M BC arbitrator is prevented from
arbitrating new incoming requests.

At T60, MBC REQ ACKN is asserted. MBC REQ
ACKN is transmitted to all the MBCs and notifies
the selected M BC that it can negate its request and
alter the address and operation control bits.

At Tl20 of the Cache timing sequence, CLK PRI
H is generated and clocks the MBC priority arbi­
tration logic; this records that MBC A is currently
selected and will influence future selections.

At Tl50 of the Cache timing sequence, DISABLE
REQ is negated. DISABLE REQ negated enables
clocking the MBC priority arbitration logic, caus­
ing selection of the next MBC if an MBC request is
pending.

At T180, START SLOW is asserted in the Cache.
This asserts SLOW CYCLE and enables the asser­
tion of START on the Main Memory Bus 100 ns af­
ter the bus becomes unoccupied (START WRITE
asserted). START causes the data, address, and con­
trol bits presently on the Main Memory Bus to be
loaded into Main Memory. A memory cycle is then
started, and MAIN ACK is transmitted back to the
Cache. The memory cycle results in the data being
written into Main Memory. In response to MAIN
ACK, the Cache transmits ADRS ACK to the
M BCs; the M BC which initiated the write to mem­
ory is thereby notified that the Main Memory oper­
ation has been executed.

The receipt of MAIN ACK in the Cache indicates
that the Main Memory has responded properly.
Therefore, this signal inhibits the generation of a
Main Memory Bus time-out.

VI-3-37

When time-out is inhibited, a write pulse is gener­
ated if a hit has occurred quring the cycle. The
write pulse loads a negated Valid bit into the Ad­
dress Memory (Tag 0 or Tag I), thereby in­
validating the FDM data words on which the hit
occurred.

VI-3·38

When time-out is inhibited, RESTART is asserted,
which in turn causes the assertion of DONE.
DONE brings the Cache into its quiescent state by
negating LOCK, which in turn negates MBC
CYCLE. With LOCK negated, the Cache Can begin
servicing other requests for memory access.

(

(

(

F

(

4.1 SCOPE
This chapter provides detailed descriptions of
Cache logic functions. Paragraph 4.2 provides a de­
tailed description of the Cache data paths. Para­
graphs 4.3 through 4.7 describe Cache timing and
control logic. Paragraph 4.8 provides Cache register
definitions and describes the register logic.

4.2 BLOCK DIAGRAM DESCRIPTION
Figure 3-2 is a block diagram of the Cache, show­
ing the major functional areas of the data paths.
Each block on the diagram references the location
of the represented logic in the schematics of the en­
gineering print set.

The Cache is implemented on four hex-height
modules:

M8142 CCB (Cache Control Board)
M8143 ADM (Address Memory)
M8144 DTM (Data Memory)
M8145 COP (Cache Data Paths)

The ADM, DTM, and COP modules contain al­
most all of the data path logic illustrated in the
block diagram. The CCB module contains the regis­
ter data paths and almost all the timing and control
logic in the Cache.

4.2.1 MBC Address Latch
The MBC Address Latch (Drawing ADMH) is
clocked by CCBB CLK MBC ADRS L and loaded
with an address (MBCBUS A21-AOO L) and oper­
ation control bits (MBCBUS CI, CO, CX L) gener­
ated by a selected MBC. CCBB CLK MBC ADRS
is asserted just prior to the execution of an MBC
cycle by the Cache. With the address and operation
control bits latched in the Cache, the MBC may
unassert or alter these lines upon receipt of CCBE
MBC REQ ACKN L from the Cache. The outputs
of the MBC Address Latch are routed to the Ad­
dress Multiplexer.

CHAPTER 4
DETAILED LOGIC

4.2.2 Address Multiplexer
The Address Multiplexer (Drawings ADME, F, J)
multiplexes address and operation control bits from
one of four sources to various logic in the Cache.
The four sources are:

1. Unibus Map - A 22-bit physical address
and C 1, CO operation control lines are
selected when a Unibus Map cycle is
being executed by the Cache.

2. Processor/Memory Management - A 22-
bit physical address and Cl, CO oper­
ation control lines are selected when a
processor cycle is being executed by the
Cache.

3. MBC Address Latch - A 22-bit address
and Cl, CO, CX operation control lines,
generated by a selected MBC and pres­
ently stored in the MBC Address Latch,
are selected when an MBC cycle is being
executed by the Cache.

4. Power-Up Address Logic - An 8-bit ad­
dress generated by a counter within the
Cache (Drawing ADMJ) is selected dur­
ing the Cache power-up initialization se­
quence. During the power-up sequence,
this address is incremented from 0 to
255 while, at the same time, it is used to
index into the Address Memory. At each
address, both Tag 0 Address Memory
and Tag I Address Memory are loaded
with negated Valid bits and correct par­
ity. The negated Valid bits indicate that
the address tag fields (and therefore the
corresponding data in the FDM) are in­
valid. This is equivalent to the FDM
being empty.

VI-4-1

Selection is based on the state of signals CCBB
A.MS SO Hand CCBB AMXSI H, which are as­
'serted as follows:

Operation SI SO

CP Cycle 0 0
Power-Up 0 I
MBC Cycle I 0
UB Cycle I I

The outputs of the Address Multiplexer are used as
follows.

Address Bits (21:10)

Address Bits (09:02)

Address Bit 01

Address Bit 00

Cl, CO

Used for comparison
with the address fields
at the selected Address
Memory index position.

Used to index into the
FDM and Address
Memory.

U sed to select a desired
word in the FDM dur­
ing read or write oper­
ations. Also used to
select the desired word
in Main Memory during
write operations.

Used to select a desired
byte in the FDM and
Main Memory during
DATOB operations.

Determine the operation
to be performed. Used
to generate the Main
Memory Bus operation
control bits MAIN
CO:Cl L. Also used to
generate the Main Mem­
ory Bus Byte Mask bits
and address bits AOI
and AOO.

NOTE
Operation control bits Cl, CO are multiplexed by an
extension of the Address Multiplexer, located on
Drawing ADMJ.

CX

Address Bits (21:02)

Used to generate Main
Memory Bus Byte Mask
bits (during MBC cycles
only).

The Main Memory Bus
operation control bits
and Byte Mask bits are
gated onto the Main
Memory Bus along with
a parity bit correspond­
ing to these lines.

4.2.3 Main Memory Bus Control· Generator
This circuitry (Drawing ADMJ) generates the Main
Memory Bus Byte Mask bits (BYTE MASK 3:0),
operation control bit MAIN CO, and the address
and control parity bit (ADMJ ADRS PARITY H).

Main Memory Bus operation control bit MAIN CI
is always maintained in the negated state, as illus­
trated on Drawing ADML. The state of MAIN CO
therefore solely determines whether the Main Mem­
ory operation will be a read or a write. MAIN CO
is derived from the CI operation control bit that is
selected as input to the Cache by the Address Multi­
plexer. If the selected Cl input is negated, ADMJ
READ L is asserted, and in turn negates MAIN CO
L on the Main Memory Bus. The MAIN CI:O sig­
nals are thereby encoded for a read operation.

The Byte Mask bits are generated by decoding oper­
ation control bits Cl:0 (and CX during MBC cy­
cles) and address bits A01:00, which are selected by
the Address Multiplexer. The decoding is per­
formed by a pair of type 74S 153 dual 4 to I multi­
plexers. If a read operation is to be performed on
the Main Memory Bus, ADMJ READ L is as­
serted. This negates the multiplexer strobe inputs
and forces all the multiplexer outputs (ADMJ
BYTE MASK 3:0 H) low. During a write oper­
ation (ADMJ READ L negated), the multiplexers
are strobed and cause Byte Mask bits to be gener­
ated as listed in the table on drawing ADMJ.

An address and control parity bit (ADMJ ADRS
PARITY H) is generated for the address and con­
trol lines of the Main Memory Bus. The parity bit
is generated in a slightly unconventional manner, in
order to minimize the required logic.

VI-4-2

(

(

(

(

(

(

The following signals are input to the final parity
generator chip:

I. ADMJ PARA GEN H - This signal is a
I parity bit for address lines 21: 15.
I

2. ADMJ PARB GENO H - This is a Tag
o Address Memory parity bit for bits
14: 10 of the address and the Tag 0 Valid
bit (CCBM VALID 0 INPUT L).

3. CCBM VALID 0 INPUT L - This sig­
nal counteracts for CCBM VALID 0 IN­
PUT L used in generating ADMJ PARB
GENO H.

4. ADMJ DATOB H - This signal repre­
sents parity for the Byte Mask bits. An
odd number (actually one) of Byte Mask
bits will be asserted only if this signal is
asserted.

5. ADMJ READ H - This signal, used to
generate MAIN CO, represents parity for
MAIN CI :0, since MAIN CI is always
negated.

6. The remaining input represents parity
for bits (09:02) of the Main Memory Bus
address.

Main Memory address bits (24:22) are always main­
tained in the negated state, and therefore are not
used in generating the parity bit.

4.2.4 Main Memory Bus Address Drivers
These drivers (Drawing ADML) drive bits (21:2) of
the address selected by the Address Multiplexer
(along with operation control lines MAIN CI :0)
onto the Main Memory Bus. The Cache thus antici­
pates a cycle to Main Memory whenever the Ad­
dress Multiplexer makes an address selection. Note
that signal MAIN CI is always maintained in the
negated state.

4.2.5 Address Field Inverter
The Address Field Inverters (Drawings ADME, F)
perform a simple inversion of bits 21 through 10 to
allow for comparison in the parity, address, and
validity check circuitry. The inverters compensate
for the inversion performed by the Address
Memory.

VI-4-3

4.2.6 Index Field Inverter-Drivers
The Index Field Inverter-Drivers (Drawings
ADMA, C) are used to invert bits (9:2) (index field)
of the incoming address, and simultaneously to pro­
vide sufficient drive to allow these signals to ad­
dress all the chips that comprise the Address
Memory. The Index Field Inverter-Drivers consist
of two sets, as illustrated in the block diagram. One
set supplies drive for the Tag 0 Address Memory'
address inputs (Drawings ADMA, B). The other set
performs the same function for the Tag I Address
Memory (Drawings ADMC, D).

4.2.7 Address Memory
The Address Memory (Drawings ADMA, B, C, D)
is comprised of the Tag 0 Address Memory and
Tag I Address Memory, each containing 256 15-bit
address tags. The tags consist of a 12-bit address
field, a Valid bit, and two parity bits. The Tag 0
Address Memory (Drawings ADMA, B) contains
the address tags for data stored in Group 0 of the
FDM, while the Tag 1 Address Memory (Drawings
ADMC, D) contains address tags for data stored in
Group 1.

The Tag 0 Address Memory consists of 15 type 19-
12069 random access memory chips. Each chip
stores 1 bit position of the 15-bit address tag. Eight
address inputs provide 256 address locations. Data
being accessed is available at the Y (pin 6) output.
Data to be stort'd is applied to the DI input (pin
13), and is written by a low pulse at pin 12.

The Tag I Address Memory is structured in an
identical manner.

The index field of an incoming address (bits 09:02)
is used to index into the Tag 0 and Tag I Address
Memory. The address tags thus accessed are then
checked against the address field of the incoming
address (bits 21: 10) by the Tag 0 and Tag 1 Ad­
dress, Parity, and Validity Checkers (Drawing
ADMK) to determine whether the contents of the
incoming address are presently stored in the Cache.

The address memory is written with a new address
tag whenever new data is loaded into the FDM as
a result of a read miss. Also, whenever an MBC
write hit occurs, the Valid bit of the address tag on
which the hit occurred is negated; this invalidates
the corresponding block in the FDM. (When a
non-MBC write hit occurs, the Address Memory is
written, but its contents do not change; the address
tag written is the same as the old address tag.)

Note that the Tag 0 Address Memory is written
whenever data in Group 0 of the FDM is modified
or invalidated (ADMJ WP Hand CCBM WRITE
SEL 0 H is asserted), while the Tag 1 Address
Memory is loaded whenever data in Group 1 of the
FDM is modified or invalidated (ADMJ WP H
and CCBM WRITE SEL 0 H asserted).

4.2.8 Valid Bit Generator
The Valid Bit Generator (Drawing CCBM) gener­
ates the Valid bits to be stored in the Address Mem­
ory. If data is loaded into the Fast Data Memory
as a result of a read miss, the Valid bit associated
with the corresponding location in Address Mem­
ory is asserted. Two Valid bits are generated by this
circuitry: CCBM VALID 0 INPUT Land CCBM
VALID I INPUT L. They are generated as inputs
for the Tag 0 Address Memory and Tag 1 Address
Memory, respectively. The circuit used to generate
these signals is discussed in detail in Paragraph 4.7.

4.2.9 Address Memory Parity Generator
The Address Memory Parity Generator logic gener­
ates the following odd parity bits (Drawings
ADMF, J) for loading into the Address Memory:

1. One parity bit (ADMF PARA GEN L)
is generated for bits (21: 15) of the in­
coming address, and can be loaded into
either the Tag 0 Address Memory or
Tag 1 Address Memory:

2. One parity bit (ADMJ PARB GEN 0
H) is generated for bits (14: 10) of the in­
coming address plus the VALID 0 IN­
PUT bit, for loading into the Tag 0
Address Memory.

3. One parity bit (ADMF PARB GEN
H) is generated for bits (14: 10) of the in­
coming address plus the VALID 1 IN­
PUT bit, for loading into the Tag 1
Address Memory.

4.2.10 Tag 0 and Tag 1 Parity, Address, and Valid­
ity Checker
This logic, represented by two blocks on the block
diagram, is located on Drawing ADMK. The Tag 0
Parity, Address, and Validity Checker determines
whether valid data, corresponding to the incoming
address selected by the Address Multiplexer, is
stored in Group 0 of the Fast Data Memory
(FDM). The Tag 1 Parity, Address, and Validity

VI-4-4

Checker performs a parallel check to determine
whether valid data corresponding to the same ad­
dress is stored in Group 1.

The Tag 0 check is performed by comparing ad­
dress bits (21: 10) coming from the Address M uIti­
plexer with address bits (21: 10) stored in the Tag 0
Address Memory location selected by incoming ad­
dress bits (9:2). If bits (21: 10) of the incoming and
stored addresses match and the Valid bit in the ad­
dressed location of the Tag 0 Address Memory is
asserted, the Tag 0 Parity, Address, and Validity
Checker asserts ADMK GROUP 0 AMATCH H.
If no parity errors were detected on the address tag
ADMK GROUP 0 PARA OK Hand ADMK
GROUP 0 PARB OK H are asserted), ADMK
GROUP 0 HIT L is asserted. This indicates that
the content of the memory address being accessed
is presently in Group 0 of the FDM. A hit on
Group 0 results in the foIlowing:

I. During a non-MBC read, data will be
fetched from the FDM at high speed
without requiring a slow cycle to Main
Memory (unless an FDM parity error is
detected on the requested word).

2. During a non-MBC write, the data word
in Group 0 of the FDM on which the
hit was made will be updated.

3. During an MBC write, the data word in
Group 0 of the FDM on which the hit
was made will be invalidated by negating
the Valid bit stored in the Tag 0 Address
Memory location selected by bits (9:2) of
the incoming address. Negating this
Valid bit invalidates both the odd and
even words in Group 0 addressed by bits
(9:2) of the incoming address.

Detection of a hit on Group 0 and/or Group 1 can
be inhibited by setting bits 4 and/or 5 of the Con­
trol Register (17 777 746). This asserts CCBH
FORCE MISS GPO and/or CCBH FORCE MISS
G PI, thereby preventing detection of address equal­
ity by the comparators.

Setting bits (11:08) of the Maintenance Register (ad­
dress 17 777 750) forces detection of parity errors
by the parity checkers.

(

(

(

4.2.11 Write Data Multiplexer
The Write Data Multiplexer (Drawing COPE) se­
lects write data from either the BR of the processor
or from the Unibus Map, depending on whether a
memory access is being performed from the pro­
cessor or the Unibus Map.

The output of the Write Data Multiplexer is fed to
the Main Memory Drivers to be driven across the
Main Memory Bus to Main Memory. The data is
placed on the Main Memory Bus as soon as the
bus becomes vacant (BOCC not asserted and MBC
read cycle not being performed).

The write data output of the Write Multiplexer is
also applied to the A inputs of the Even Multi­
plexer and the Odd Multiplexer. During a write op­
eration, the A input is selected by the Even
Multiplexer and the Odd Multiplexer, and switched
to the Fast Data Memory. The write data thus be­
comes available to update the data memory if a hit
occurs. The output of the Write Data Multiplexer
is also applied to the Data Parity Generator, which
generates data parity for the word being written,
for use on the Main Memory Bus and possible stor­
age in the Fast Data Memory.

During an MBC cycle (CCBB MBC CYCLE L as­
serted) and during the power-up sequence (CDPJ
INIT A L asserted), the select inputs to the Write
Data MUltiplexer are both high. This forces all Is
to be output from the mUltiplexer and ensures that
the data lines are stable while data parity bits are
generated. The all 1 s pattern thus generated is writ­
ten into the FDM during the power-up sequence,
and also when an FDM location is invalidated as a
result of an MBC write hit.

4.2.12 Data Parity Generator
The Data Parity Generator (lower left of Drawing
CDPF) generates odd parity bits (CDPF WRITE
MUX La GEN Hand CDPF WRITE MUX HI
GEN H) for the two 8-bit bytes gated by the Write
Multiplexer. WRITE MUX La GEN H corre­
sponds to the high byte (WRITE MUX 15:08 H).

The two parity bits are routed to the Main Mem­
ory Bus Data Drivers and will be gated onto the
Main Memory Bus along with the data from the
Write Multiplexer when the write-through oper­
ation is performed.

The two parity bits are also routed, along with the
data from the Write Multiplexer, to the Even Multi­
plexer and Odd Multiplexer to allow updating of
the Fast Data Memory if a write hit occurs.

4.2.13 Main Memory Bus Data Drivers
These drivers (Drawings CDPC, D) drive the data
selected by the Write Data Multiplexer (i.e., pro­
cessor or Unibus Map data) and the corresponding
byte parity bits (generated by the Data Parity Gen­
erator from the selected data) onto the data lines of
the Main Memory Bus. The 18 bits of data and
data parity are driven concurrently on the MAIN
DATA BYTE (0-0:0-8) (1-0:1-8) and MAIN DATA
BYTE (2-0:2-8) (3-0:3-8) data lines of the Main
Memory Bus. Since the processor and Unibus Map
are capable of only single word or byte transfers,
this arrangement allows writing into either
word/byte within a Main Memory block.

Data is gated onto the Main Memory Bus when
CDPC CACHE DATA EN H is asserted. This oc­
curs when the Main Memory Bus data lines be­
come unoccupied (CDPD OCC L negated), while a
non-MBC write to memory operation is being exe­
cuted by the Cache.

4.2.14 Main Memory MBC Data Drivers
These drivers (Drawings CDPC, D) drive data
(M BCBUS D31-DOO L) and associated byte parity
bits (MBCBUS B3PA-BOPA L) from the Massbus
Controllers onto the data lines of the Main Mem­
ory Bus during a write Cache MBC cycle, when
MAIN BOCC becomes unasserted (i.e., when the
Main Memory Bus data lines become unoccupied).

Note that the 36 MBCBUS data and data parity
lines allow the MBCs to perform double word trans­
fers to and from Main Memory.

4.2.15 Main Memory Bus Data Receivers
The Main Memory Bus Data Receivers (Drawings
CDPC, D) are represented by two blocks in the
block diagram. One group of receivers receives the
low (even addressed) word (i.e., bytes 0 and 1) and
the associated byte parity bits that are asserted on
the Main Memory Bus. The other group of receiv­
ers receives the high (odd addressed) word (i.e.,
bytes 2 and 3) and the associated byte parity bits·
that are asserted on the Main Memory Bus. The
outputs of the receivers, only used when data is

VI-4-5

being read directly from Main Memory, are routed
directly to the MBCs (for MBC reads) and to the
Bus Data (Low Word and High Word) Registers
(for non-MBC reads).

4.2.16 Bus Data Register
The Bus Data Register (Drawing CDPA) is active
during a non-MBC read miss cycle. The Bus Data
Register is loaded with the 36-bit double word
being read from the Main Memory when the Cache
receives DATA READY asserted on the Main
Memory Bus. The Bus Data Register is clocked by
CDPA BD CLK H. This signal is asserted in re­
sponse to DATA READY (CDPC DATA ROY H
asserted) provided that an MBC read is not in prog­
ress (CDPK RIP L negated).

Data read from Main Memory is always read in
two-word pairs by the Cache. Each double word
consists of an even word (ADRS BIT 1 = 0) and
the next higher odd word (ADRS BIT 1 = 1).
These words are stored in the Bus Data (Low
Word) Register and the Bus Data (High Word)
Register, respectively.

The output of the Bus Data (Low Word) Register
is applied to the B inputs of the Even Multiplexer.
The output of the Bus Data (High Word) Register
is applied to the B inputs of the Odd Multiplexer.

4.2.17 Even Multiplexer and Odd Multiplexer
This logic, located on Drawings CDPB, F, is repre­
sented by two blocks on the block diagram. The
Even Multiplexer switches data to the even word
Fast Data Memory and to the Cache Data
M Ultip lexer.

During a read operation in which a cycle to Main
Memory occurred, the Even Multiplexer selects the
even word which was brought from Main Memory
and is presently stored in the Bus Data (Low
Word) Register. This data word is applied to the in­
puts of the even word Fast Data Memory and will
be stored in one of the memory locations. The data
word is also applied to the Cache Data Multiplexer
(DTMM), and will be transmitted to the device in­
itiating the read operation if the even word was the
one requested by the device.

During a write operation, the Even Multiplexer
switches the 16 bits of write data from the Write
Data MUltiplexer, plus two data parity bits, to the

even word sections of the Fast. Data Memory for
possible use in updating the Fast Data Memory. If
the write operation is to an address presently stored
in the Cache (write hit), the data in the correspond­
ing Fast Data Memory location must be updated if
it is to remain valid. If the write operation is to an
address not stored in the Cache (write miss), the
Fast Data Memory is not updated, and the. output
of the Even Multiplexer is not used.

The Odd Multiplexer operates in a manner similar
to the Even Multiplexer, switching data from the
Bus Data (High Word) Register to the Fast Data
Memory and Cache Data Multiplexer during a read
operation, and switching write data to the odd
word sections of the Fast Data Memory during a
write operation.

An extension of the Even and Odd Multiplexers, lo­
cated at the lower right of Drawing CDPF,
switches the byte parity bits.

During the power-up sequence, CDP] INIT A L is
asserted, and causes the Even and Odd Multi­
plexers to select the all Is pattern generated by the
Write Data Multiplexer.

4.2.18 Main Memory Data Parity Check
This circuitry (Drawing CDPF), represented by two
blocks in the block diagram, checks for correct par­
ity on data words brought from Main Memory.
The checks are made at the outputs of the Even
Multiplexer and Odd Multiplexer, i.e., on the low
word and the high word brought from Main Mem­
ory. If a parity error is detected, CDPF MAIN LO
PAR OK L or CDPF MAIN HI PAR OK L are
negated, and the corresponding bits in the Memory
System Error Register are caused to set.

Setting bits (15: 12) of the Maintenance Register (ad­
dress 17 777 750), causes byte parity bits to be
checked as 1 s. This will cause parity errors to be de­
tected on bytes having negated parity bits.

4.2.19 FDM Index Field Drivers
The FDM Index Field Drivers (Drawing DTMA)
provide the drive necessary to allow bits (9:2) (in­
dex field) of the incoming address to address all the
chips that comprise the FDM. The drivers have
four sets of outputs (DTMA WRD 0 A09-02 H,
DTMA WRD 1 A09-02 H, DTMA WRD 2

VI-4-6

(

(

(

(

(

(

A09-02 H, and DTMA WRD 3 A09-02 H). Each
set of outputs addresses the chips in the FDM that
store a particular word, as listed below.

WRD 0 A09-02 address The even addressed
words in Group O.

WRD I A09-02 address The odd addressed
words in Group O.

WRD 2 A09-02 address The even addressed
words in Group 1.

WRD 3 A09-02 address The odd addressed
words in Group 1.

4.2.20 Fast Data Memory (FDM)
The 1024 data words that the Cache is capable of
storing are stored in the FDM (Figure 2-2). The
FDM is divided into two sections or groups
(Group 0 and Group 1), each capable of storing
512 18-bit words. The words comprise an eight-bit
.low byte, a low byte parity bit, an eight-bit high
'Pyte, and a high byte parity bit.

Each group is divided into two equal areas (256
words each). In one of the areas, the contents of
even addresses (address bit 1 = 0) are stored; the
contents of odd addresses (address bit 1 = 1) are
stored in the other.

The FDM is implemented using type 19-12069 256
X I bit random access memory chips. Nine chips
(as shown on Drawing DTMC) can therefore store
256 nine-bit bytes (eight data bits plus one parity
bit). The organization on Drawing DTMC is dupli­
cated on Drawings DTMD through DTML. Draw­
ings DTMC-F illustrate Group 0 of the FDM;
Drawing DTMH-L illustrate Group 1.

FDM chip select signals DTMB CS3:0L (Drawing
DTMB) enable the FDM chips to be written and to
output data. The FDM is enabled on a word-by­
word basis. DTMB CSO and CS 1 enable the even
and odd words (respectively) in Group 0 of the
FDM. Similarly, CS2 and CS3 enable the even and
odd words (respectively) of Group 1.

During the power-up sequence [ADMJ POWER
UP (1) H asserted], all four chip selects are
asserted.

During a write cycle (DTMB WRITE H asserted),
either DTMB CSO Land DTMB CS2 Lor DTMB
CS 1 Land DTMB CS3 L are asserted, depending
on whether the address being referenced is odd or
even (as determined by signal ADME AMX 01 H).
Thus, the even word in each FDM group or the
odd word in each FDM group will be enabled. If a
hit is detected, write pulses will be generated only
for the byte/word in the group on which the hit
occurred.

During a read hit cycle (CCBD SLOW CYCLE L
negated), chip selection is performed in the same
manner as during a write cycle.

During a read miss cycle, (ADMJ READ Land
CCBD SLOW CYCLE H asserted), either DTMB
CSO Land DTMB CSI L or DTMB CS2 Land
DTMB CS3 L are asserted, as determined by sig­
nals CCBM WRITE SEL 0 Hand CCBM WRITE
SEL I H. The CCBM WRITE SEL 1:0 signals are
generated by the Group Selection circuitry (Para­
graph 4.7) .

DTMB LO BYTE WP 0* I L, DTMB HI BYTE WP
0*1 L, DTMB LO BYTE WP 2*3 L, and DTMB HI
BYTE WP 2*3 L are the FDM write pulses. The
first pair of signals writes the low and ,high bytes
within Group 0 of the FDM. The second pair
writes the low and high bytes in Group 1. FDM
chips enabled by a chip select signal are written
when the write pulse is low.

NOTE
The chip select signals and the write pulses operate
together to write the desired byte, word, or double
word into the FDM. the chip select signal must be as­
serted and the corresponding write pulse must be
generated.

During the power-up sequence, CCBM WRITE
SEL 1:0 H are asserted; this enables all four write
pulses to be generated.

During a read miss, only one of the WRITE SEL
signals is asserted; therefore, only the pulses which
write into the selected group will be generated.

During a write hit, write pulses are generated for
the word/byte in the group on which the hit oc­
curred, as determined by the WRITE SEL signals,
ADME AMXOO Hand ADMJ DATOB H.

VI-4-7

During a write miss, the WRItE SEL signals are
negated j and no write pulses are generated.

The contents of a Main Memory location (Le., a
two-word block) is loaded into the FDM whenever
a non-MBC read miss occurs. The block is loaded
into either Group 0 or Group 1 (depending on the
state of an internally generated Random bit; refer
to Paragraph 4.7) at an index position determined
by the index field (bits 09:02) of the incoming ad­
dress. The words within the block become available
for future reference by either the processor or
Unibus Map. When one of these words is read in
the near future (assuming that they are not over­
written by another pair bf words having an address
with an identical index field), it will be fetched at
high speed because a Main Memory Bus cycle will
not be required.

During a non-MBC write hit, the data word (or
byte) written into Main Memory is also written
into the FDM. If the word to be written into the
FDM has an even address, it is applied via the
Even Multiplexer to the even word storage areas of
both Group 0 and Group 1 of the FDM. It thus be­
comes available to replace the obsolete even ad­
dress word in the group on which the hit occurs.

MBC read hit, read miss, and write miss operations
do not affect the FDM. However, when an MBC
write hit occurs, the FDM location on which the
hit occurred is loaded with all Is (i.e., correct data
parity). At the same time, the corresponding Ad­
dress Memory location is loaded with a negated
Valid bit, invalidating the block.

Within each group of the FDM, the odd word and
even word outputs are common collectored. When
data is read from the FDM, only the even or odd
word in each group is read out. The two words
(both odd or both even) are checked for correct par­
ity, and also applied to the Cache Data Multi­
plexer. During a non-MBC read hit, the Cache
Data Multiplexer selects the word from the FDM
group (Group 0 or Group 1) on which the hit
occurred.

4;2.21 FDM Data Parity Check·
This logic (Drawing DTMN), represented by two
blocks in the block diagram, checks for correct par­
ity on the data output from Group 0 and Group I
of the FDM. One parity check is performed on
data output from Group 0; the other check is per­
formed on the data output from Group 1. If a par­
ity error is detected on data output from Group 0

VI-4-8

or Group I, DTMN DATA PARO OK L or
DTMN DATA PARI OK L are negated, respec­
tively, and the corresponding bits in the Error Reg­
ister are set.

If, during a read hit operation, the requested word
stored in the FDM is found to have bad parity, the
Cache initiates a cycle to Main Memory to fetch
the (hopefully error-free) backup copy of the word.
The newly fetched word will be loaded into the
FDM, replacing the word on which the error
occurred.

Setting bits (7:4) of the Maintenance Register (ad­
dress 17 777 750) causes the FDM data byte parity
bits to be checked as Os. Thus, an FDM data parity
error will be detected on bytes having asserted par­
ity bits.

4.2.22 Even and Odd Multiplex Inverters
These inverters (Drawing DTMP) invert the data
and data parity bits being read from Main Memory
during a non-MBC read miss cycle. The inversion
is performed so that all inputs to the Cache Data
Multiplexer are at a true high when asserted. The
inversion is required to compensate for the extra in­
version performed on data being read directly from
the Fast Data Memory.

4.2.23 Cache Data Multiplexer
The Cache Data Multiplexer (Drawing DTMM)
switches data being read out of the Cache to the
BRof the processor and to the Unibus Map. The
data switched may be from one of four sources, de­
pending on the memory address requested (odd or
even address), and whether a hit occurred on FDM
Group 0, Group I, or neither group.

I. Input A to the Cache Data Multiplexer
is the output of Group I of the FDM.
An odd or even word is ·gated out of
Group 1 of the FDM, depending on
whether the address input to the Cache
is odd or even. If a hit on Group I oc­
curs, this input is selected by the Cache
Data Multiplexer.

2. Input B to the Cache Data Multiplexer
is the output of Group 0 of the FDM.
An odd or even word is gated out of
Group 0 of the FDM, depending on
whether the address input to the Cache
is odd or even. If a hit on Group 0 oc­
curs, this input is selected by the Cache
Data Multiplexer.

(

(

(

I~

(

(

(

(

3. Input C is the even word received by the
Cache from Main Memory. If the ad­
dress input to the Cache is an even ad­
dress (AD RS BIT 1 = 0) and a read
miss occurs, this input is selected by the
Cache Data Multiplexer.

4. Input D is the odd word received by the
Cache from Main Memory. If the ad­
dress input to the Cache is an odd ad
dress (ADRS BIT 1 = 1) and a read
miss occurs, this input is selected by the
Cache Data Multiplexer.

The output of the Cache Data Multiplexer becomes
available to both the processor and the Unibus
Map. If the processor initiated the read operation,
the Cache will respond with MEM SYNC to the
processor when the data is ready; this will cause the
transfer of the data to the BR of the processor.

If the Unibus Map initiated the read operation, the
Cache will respond with CCBC UB DONE
(Unibus Done) when the data is ready. This will
cause the transfer of the data to the data latch in
the Unibus Map.

4.2.24 Register Logic
The register logic shown on the Cache data paths
block diagram is described in Paragraph 4.8

[4.3 CA CUE TIMIN G
The PDP-llj70 Cache operates synchronously with
the processor. This synchronous operation aids in
achieving overall high operating speeds.

The Cache is synchronized to clock signals gener­
ated on the TIG module (M8139). The processor
free clock, TIGC TF H, is buffered to generate
CCBA ARB CLK H. The buffering circuitry, com­
prising discrete components (located on Drawing
CCBA) is designed for minimal propagation delays
and rise and fall times. This is achieved by oper­
ating the transistors at or near their active region.
CCBA ARB CLK H is inverted by a 74S140 gate
to generate CCBA SYNC CLK H. Figure 4-1 illus­
trates these two· waveforms, and emphasizes the
6-10 ns delay introduced by the inversion. Only the
negative-going edge of CCBA ARB CLK H is used
for clocking purposes. Likewise, only the positive­
going edge of CCBA SYNC CLK H is used. Thus
the active edges of these two clocks are separated
by the 6-10 ns inversion delay.

--'- ---------..-,--~'-'~.""-'~-;-.~ .. ,

CCBA ARB eLK H

CCBA SYNC CLK H

-.I k- 6 -10 ns

Figure 4-1 Cache Clock Waveforms

The operating speed of the PDP-ll/70 Cache is
achieved by using fast logic and running the Cache
synchronously with the processor. The short time
between clock pulses makes Cache timing very criti­
cal. To speed up signal processing, a parallel imple­
mentation is generally used in place of a serial
implementation: For this reason, type 74S64 2-2·3-4
AND-OR-INVERT gates are often used in the de­
sign wherever signal delays must be minimized.

4.3.1 Cache Timing Sequence
::rhe cache timing sequence is generated using
CCBA ARB CLK H. (Refer to Drawing CCBE.)

The Cache timing sequence is a series of time states
generated whenever the Cache begins executing a
memory access cycle. These time states are used to
synchronize various Cache functions as indicated in
Paragraphs 3.8.1 through 3.8.10.

The timing sequence is initiated (Figure 4-2) as a re­
sult of the assertion of LOCK. Generation of more
than one timing sequence during any Cache cycle is
inhibited by gating LOCK with signals CCBD
ST ART SLOW (0) H, CCBE T60 (0) H, CCBE

- TI20 (0) H, and CCBE T150 HOLD (0) H.

When LOCK is asserted, the T30 flip-flop is
clocked set by the falling edge of ARB CLK. The
T60 flip-flop is then clocked set on the next falling
edge of ARB CLK. With T60 (1) H asserted, the
T30 flip-flop is cleared on the next negative-going
ARB CLK pulse. This in turn causes CCBE T90 H
to be asserted. On the next negative-going ARB
CLK pulse, the T120 flip-flop is set. At the same
time, the T60 flip-flop is cleared and CCBE T60 (1)
Hand CBE T90 H are negated. The Tl50 HOLD
flip-flop is clocked set at the next ARB CLK pulse,
while at the same time the T120 flip-flop is cleared.
The T150 HOLD flip-flop remains set until either
CCBD START SLOW (1) L or CCBC DONE (1)
L is asserted. During T150 HOLD, the Cache de­
cides whether or not to assert CCBD' START

VI-4-9

ARB ClK

lOCK r=
_----'�

1- - - - - ~r- - - "1- __ _

T 30
~------------------~Ir\-----------

T 60 --------1 ~--------------~I~I-----------

T90 ______________ ~r__l~ ________________ ~\\Ir-----------

T 120 r----1
----------------~I I~ __________ ~I~\---------

T 150 HOLD

----------------------~ II
START SLOW r - - - - - ~~ - --, ______________ .J L __ _

DONE

------------------------------~
Dashed lines indicate timing during
write and read miss cycles.

11-2844

Figure 4-2 Cache Timing Sequence

SLOW (I) H and thereby initiate a cycle to Main
Memory. Thus if a processor cycle is being per­
formed, the Cache must receive CONTROL OK
from the processor during or prior to the assertion
of TI50 HOLD.

4.3.2 Read Hit Timing
If a read hit is detected during the Cache timing se­
quence, the Done flip-flop is clocked set (by the
first CCBA ARB CLK H pulse during T150
HOLD) and asserts CCBC DONE (1) H. CCBC
DONE (I) H resets much of the Cache logic, includ­
ing the Lock flip-flop. With CCBB LOCK (1) H ne­
gated, the Cache is in its quiescent state and may
begin executing the next cycle.

I f a processor cycle is being executed, CCBC MEM
SYNC H is asserted synchronously with processor
timing. CCBC MEM SYNC H is asserted at the
start of TI50 HOLD if the Cache has already re­
ceived TMCE CONTROL OK H, or during T150
HOLD when the Cache receives TMCE CON­
TROL OK H.

4.3.3 Main Memory Bus (Slow Cycle) Timing
When the Cache begins executing a processor,
Unibus Map, or MBC cycle, bits (21:02) of the in­
coming address are placed on the Main Memory
bus, along with Main Memory control bits (MAIN
BYTE MASK J:O and MAIN Cl:0) and an address
parity bit. While the Cache timing sequence is pro­
gressing, these signals are deskewed on the Main
Memory Bus. During T150 HOLD of the timing se­
quence, the Cache decides whether or not to per­
form a Main Memory Bus cycle. If a cycle to Main
Memory is required, the Cache asserts CCBD
ST ART SLOW. If a write operation is being per­
formed, COPC START WRITE is asserted when
the Main Memory data lines become unoccupied
(MAIN BOCC negated). At the same time, write
data is gated onto the Main Memory Bus by the
Cache. START WRITE asserted enables START
SLOW to generate CCBO START H after a 100 ns
data deskew delay. CCBO START H is driven
onto the Main Memory Bus as MAIN START,
and initiates the Main Memory cycle. In response
to MAIN ACK from Main Memory, AOML
AORS ACKN H is asserted in the Cache and ne­
gates CCBO START H.

VT-4-10

(

(

(

(

(

During a read operation, CDPC START WRITE is
asserted throughout the Cache cycle. This allows
CCBD START H to be asserted 100 ns after the as­
sertion of START SLOW.

NOTE
During Main Memory read cycles, the 100 ns delay
is still necessary in order to ensure sufficient deskew
for the address and control lines of the Main Mem­
ory Bus. This is required because the high order bits
of the 22-bit physical address generated by Memory
Management may not be valid until the Cache is in
the midst of its operation cycle.

4.3.4 Timing Restart After Main Memory Cycle
Cache timing is restarted when proper Main Mem­
ory response causes the negation of CCBE AL­
LOW TIMEOUT L. CCBE ALLOW TIMEOUT L
is negated when the Cache receives MAIN ACK
from Main Memory after initiating a write oper­
ation or an MBC read operation. If a non-MBC
read operation is being performed, the Cache must
also receive MAIN DATA READY. The Cache
write pulses (CCBE WP L), which write the Ad­
dress are generated upon negation of CCBE AL­
LOW TIMEOUT L.

The negation of CCBE ALLOW TIMEOUT L is
synchronized by CCBA SYNC CLK H, CCBA
ARB CLK H, and TIGC TF H to generate CCBE
MEM SYNC SLOW (I) Hand CCBE RESTART
(I) H. CCBE MEM SYNC SLOW (I) H causes the
assertion of CCBC MEM SYNC H during pro­
cessor cycles which result in Main Memory oper­
ations. CCBE REST ART (1) H enables the
assertion of CCBC DONE (I) H. CCBC DONE (I)
H resets much of the Cache logic, including the
Lock flip-flop. With CCBB LOCK (1) H negated,
the Cache is in its quiescent state, and may begin
executing the next cycle.

4.4 POWER-UP LOGIC
On power-up, the Cache performs a power-up se­
quence during which all of the Valid bits in the Ad­
dress Memory are cleared. This is done because
anything stored in the Cache immediately after a
power-up must not be construed as valid data. At
the same time that the Address Memory Valid bits
are negated, all the remaining bits in the Address
Memory and FDM are loaded with bit patterns
having correct parity. This is to ensure that the bit
patterns resident in the Address Memory and FDM
upon power-up will not generate parity errors when
program e'xecution begins.

The power-up control logic is located on Drawing
ADMJ. The circuitry consists of a pulse generator,
a counter, and the PUP (Power-Up) flip-flop.

The following discussion describes operation of the
power-up circuitry upon initial power turn on. It
should, however, be kept in mind that the same se­
quence of events occurs when power returns after a
momentary failure.

Figure 4-3 is a timing diagram illustrating the
power-up circuitry operation.

As ac power is appearing at the power supply in­
puts, AC LO L is asserted and clears the eight-bit
Power-Up Address Counter. When DC LO L is as­
serted, the Power-Up flip-flop is direct set; this en­
ables the Power-Up Pulse generating oscillator to
begin operation when power has reached normal
levels (i.e., when AC LO L is negated).

When POWER UP (I) H is asserted, the following
events occur:

I. CCBB AMX SO H is asserted, causing
the Address Multiplexer to select the
power-up address generated by the
Power-Up Address Counter. (During
power-up, CCBB AMX SIH is unas­
serted due to INIT.)

2. CCBM VALID 0 INPUT Land CCBM
VALID ! INPUT L are negated, and
CCBM WR OK H, CCBM WRITE
SEL 0 H, and CCBM WRITE SEL ! H
are asserted.

3. DTM B GROUP 0 Hand DTMB
GROUP! H are asserted and, in turn,

enable assertion of DTMB LO BYTE
WPO*! L, DTMB HI BYTE WPO*I L,
DTMB LO BYTE WP2*3 L, and DTMB
HI BYTE WP2*3 L when write pulses are
generated.

4. The FD M chip selects (DTMA CS 0 L,
DTMA CS I L, DTMA CS 2 L, and
DTMA CS 3 L) are asserted.

5. The output of the Write Multiplexer
(COPE) is forced to all ones.

6. The Even Multiplexer and Odd Multi­
plexer (CDPB,F) select the outputs of
the Write Multiplexer.

VI-4-II

--, ~--------------~~~\-------
AC LO L L.. ____ -----\\ ~I __ ----J

DC LO L ~ ____ ~\~~----~--------~B

POWER UP (1) H ~.r-------\~\-I ---------------(\!

COUNT CLK L

--------------------~
POWER UP ADDRESS • o

ALLOW WP H

--------------------~

PUP WP L

• • 2

r1l---
OFLO

.3\\ 37718 •

11-2 B 45

Figure 4·3 Power~Up Sequence Timing Diagram

When AC La L is negated, the oscillator begins
generating pulses. The pulses produced clock the
FDM and Address Memory (causing the locations
indexed by the Power.Up Address Counter to be
loaded) and increment the Power-Up Address
Counter. Each FDM word position indexed by the
Power-Up Address Counter is loaded with all ones.
The Address Memory word locations are loaded
with negated Valid bits and correct address parity.
As the Power-Up Address Counter is clocked from
000 to 3778, all the locations in the FDM and Ad­
dress Memory are loaded, and the contents of the
Cache are thereby invalidated.

When the Power-Up Address Counter is clocked to
overflow, the Power-Up flip-flop is clocked clear;
this inhibits further PUP WP L pulses and termi­
nates the power-up sequence.

4.5 REQUEST ARBITRATOR LOGIC
The Request Arbitrator (Drawing~CCBB) deter­
mines whether the Cache will perform a processor,
Unibus Map, or MBC memory access.

Two request signals are input to the Request
Arbitnitor:

I. MAPF UB REQUEST (I) L from the
Unibus Map.

2. CDP] MBC REQ L from the MBC Ar­
bitration Logic.

The request signals are synchronized and delayed
(90 ns and 180 ns, respectively) and then assert
PRE UBUS and/or PRE MBC. PRE UBUS causes

the USUS flip-flop to be set when LOCK is ne­
gated, provided that no non-Unibus DATIPs are in
progress. PRE MBC causes the MBC flip-flop to
tie set when LOCK is negated, provided that no
non-MBC DATIPs are in progress.

If the UBUS flip-flop is set, CCBB UB CYCLE H
is asserted; the Cache will perform a Unibus Map
memory access cycle. If the MBC flip-flop and the
UBUS flip-flop are set, CCBB UB CYCLE H is as­
serted, and the Cache will perform a Unibus Map
memory access cycle; this is what gives Unibus
Map requests priority over MBC requests. CCBB
MBC CYCLE is asserted when the MBC flip-flop
is set and the UBUS flip-flop is not; the Cache
would then perform art MBC memory access cycle.

Processor memory access cycles are performed only
when neither the Unibus Map nor the MBCs are re­
questing memory access. When neither the UBUS
flip-flop nor the MBC flip-flop is set, CCBB CP
CYCLE H is asserted. This is a default condition,
and therefore gives the processor the lowest priority
status. The priority structure is thus:

1 st priority: Unibus Map
2nd priority: MBCs
3rd priority: Processor

Whenever a memory access cycle is performed, the
CCSB AMX SI, SO H signals are generated to en­
able the Address Multiplexer (ADMH) to select ad­
dress and operation control bits from the correct
source.

(

(

(

(,

~ _ 4.6 MBC ARBITRATION LOGIC

(

(

(

(

The MBC Arbitration Logic, located on the CDP
module (Drawings CDPH through CDPK), selects
one of four possible Massbus Controllers and per­
forms with it the protocol required to transfer data
on the RH70-Cache Interface.

As illustrated in Figure 4-4, the MBC Arbitrator
can be considered a discrete device which just hap­
pens to be located on the Cache modules.

fCACHE - --)
I Ir::-::~::-J.-l-~~~~------,

I
I
I
I MBC I ARBIT- ~++I ______ ---I

I RATOR I I I

L I I., MBC REQUEST Ii
_____ J SELECTION LINES

11- 2846

Figure 4-4 Relationship of the MBC Arbitrator
to the Cache

The selection of an MBC is based on a number of
criteria:

I. If an MBC DA TIP /DATO memory
cycle is not in proggress and no MBC
requests are pending or being executed,
thhe first request received will be granted.

2. If an MBC is performing a DA­
TIP /DATO memory cycle, requests
from other MBCs are not recognized un­

til the DA TO portion of the DA­
TIP/DATO cyycle has been initiated.

3. Jumpers (WI, W2, W3) on the CDP
module allow MBC selection to be based
on the history of the most recent selec­
tions. Table 4-1 lists the selection pat­
terns obtainable for the different jumper
configurations. If two or more MBCs
request memory access concurrently, se­
lection will be based on the pattern of
previous selections, in a manner deter.
mined by the jumper configuration.

Table 4-1
MBC Selection Priorities

Jumper Configuration Priority Structure *
WI W2 W3

OUT OUT OUT (A ~ B)~ (C~D)

OUT OUT IN (A ~ B)~ (C~ D)

OUT IN OUT (A~B) ~(C~D)

OUT IN IN (A~ B)~(C ~ D)

IN OUT OUT (A~B) ~(C~D)

IN OUT IN (A~ B)~ (C ~D)

IN IN OUT (A ~B)~ (C~ D)

IN IN IN (A ~ B) ~ (C ~ D)

*SYMBOLS~, ~ are defined in the text.

Figure 4-5 is a block diagram showing the three ma­
jor sections of the MBC Arbitration Logic: Request
Block Logic, Address and Data Select Logic, and
Data Ready Logic.

4.6.1 Request Block Logic (Drawing CDPH)
Requests from the RH70s are input to the Request
Block Logic. If one of the MBCs is currently per­
forming a DATIP, this circuitry inhibits requests of
other MBCs from being processed by the Cache. Al­
though none of the Massbus devices presently man­
ufactured by DEC utilize DATIP cycles, the
Request Block circuitry has been implemented to
cover their utilization in the future.

4.6.2 Address and Data Select Logic
Refer to Drawing CDPJ and Figure 4-6.

4.6.2.1 Single Request Operation - The Address
and Data Select Logic input latch (consisting of the
four D-type flip-flops at the left-hand side of Draw­
ing CDPJ) is clocked when MBC REQ L is as­
serted. This causes SEL ADRS CTRL X H (where
X is A, S, C, or D) to be transmitted to the request­
ing MBC. At T30 of the Cache MBC cycle, the Ad­
dress and Data Select output latch (a type 74S 175
data latch at the center of Drawing CDPJ) is
clocked by DISABLE REQ H asserted, and SEL
DA TAX H is transmitted to the selected MBC

"1-4- 13

4 REOUEST{
LINES

(ONE FROM
EACH MBCI

REO A
B
C
0

REOUEST
BLOCK
LOGIC

(CDPHI

,

ADDRESS
AND

DATA
SELECT
LOGIC

(CDPJI

} SELECT DATA LI NES
BCI lONE TO EACH M

~}SELECT ADORES r- (ONE TO EACH M
S LINES
BCI

DATA
READY
LOGIC

(CDPKI

I--r---
I--
r--

}
DATA READY
LINES
(ONE TO EACH
MBCI

DISABLE l READ IN
REO MBC REO PROGRESS .

TO AND FROM CACHE CONTROL
(CCBI

,

Figure 4-5 MBC Arbitrator'Block Diagram

I CSTC CTRA REO L --, ('---------')
CDPJ MBC REO L --, ('----------'

CDPJ SELADRS CTRLA H ~
.. 180ns •

CCBB PRE MBC H

CCBB CLK MBC ADRS L -------(-1

CCBB LOCK (11 H ,PREVIOUS CYCLE

CCBB MBC CYCLE H

T30

CCBE DISABLE REO H T60

-------~

CDPJ SEL DATA CTRLA H ~

II

II

1\

~\

1
I~

TI50

1* 1\

I' j

CCBE MBC REO ACKN L __________ nL. _______ ~I\-I-----
* CDPJ SELADRS CTRL "x" sent to

next MBC if request is pending.

Figure 4-6 MBC Request Timing (MBC A Requesting)

VI-4-14

1f-2848

(

(

(

(

(

(

(

When CCBE CLK PRI H is asserted at T120, the
Priority Generator (upper-right of Drawing CDPJ)
is clocked and records the current MBC selection.
Future selections are based on the output of the Pri­
ority Generator.

4.6.2.2 Multiple Request Operation - Multiple
MBC requests are handled in a manner similar to a
single request. In fact, the first of the multiple
requests to arrive is always serviced first, and is han­
dled in the same way as a single request. The re­
maining requests are handled slightly differently
because CDPJ MBC REQ L remains asserted; this
enables the Address and Data Select Logic input
latch to be clocked by the trailing edge of DIS­
ABLE REQ H at Tl50 of the MBC cycle. The in­
put latch is thus loaded with any MBC requests
still pending.

Figure 4-7 is a timing diagram of the Address and
Data Select Logic during multiple request oper­
ation. It is assumed that a straight priority struc-

MBC A REQUEST ~

MBC C REQUEST

MBC REQ

ture (A over B ovver C over D) has been selected via
the priority jumpers, and that the MBC requests ar­
rive in the following sequence: B, C, A. The MBC
B request, first to arrive, asserts MBC REQ, which
in turn asserts SEL ADRS CNTR B. Therefore, the
MBC B request is serviced first. The MBC A
request is serviced next because of the straight prior­
ity struucture, and finally the MBC C request is
serviced.

The Priority Generator determines which request
will be granted when more than one MBC request
is pending. Jumpers WI, W2, and W3 allow control
of the priority structure. When all jumpers are out,
a pseudo round-robin priority structure results as
follows:

The symbol H indicates that selection alternates be­
tween the expressions on either side of the symbol.

{POSSIBLE UB CYCLES 1
LOCK MBC CYCLE ~~~ MBC CYCLE ~~~J MBC CYCLE L

SEL ADR B

DISABLE REQ

SEL DATA B

SEL ADR A

SEL DATA A

SEL ADR C

SEL DATA C
11-2849

Figure 4-7 MBC Address and Data Select Timing (Multiple Requests - Straight Priority) .

VI-4-15

With all three jumpers out, the signals output by
the Priority Generator indicate the true history of
past MBC selections, as follows:

'--COPJ BLAST (I)H

COPJ 0 LAST (I) H

COPJ C OR 0 LAST
(I) H

MBC A has not been se­
lected since MBC B was
last selected.

MBC C has not been se­
lected since MBC 0 was
last selected.

MBC A or B have not
been selected since
MBC C or 0 was last
selected.

Each of the above signals can be forced to assertion
by installing jumpers WI, W2, or W3, respectively.
When jumpers are installed, MBC selection is based
on a distorted view of past history, and therefore,
some MBCs ccan be given priority over others. For
example, if all the jumpers are installed, a straight
priority structure results:

(A-+B) -+ (C-+O)

where the symbol -+ indicates that the expression on
the left is given priority over the expression on the
right.

Table 4-1 lists the MBC! selection priorities result­
ing from the eight jumper configurations.

4.6.3 Data Ready Logic
The Data Ready Logic (located on Drawing.
COPK) keeps trackk of which MBCs are currently
performing read operations and routes the DATA
ROY signal originating in Main Memory to the cor-

. rect MBC. A read operation can be initiated on the
Main Memory Bus before a previous read oper­
ation has been completed. This is termed "stack­
ing" operations on the Main Memory Bus. The
Data Ready Logic can keep track of two con·
current reads, thereby allowing two MBC read oper­
atiions to be stacked on the Main Memory Bus.

Refer to Drawing COPK. When an MBC read
cycle is perfbrmed by the Cache, one of the flip­
flops at the left-hand side of the drawing is direct
set at T300 of the Cache timing sequence. If no
other MBC is currently performing a read from
memory (i.e., waiting for data ready), COPK RIP
H (Read In Progress) is in the negated state. This
allows one of the flip-flops in the center of the
drawing to be direct set, causing the assertion of
COPK RIP H.

As a specific example, assumme that MBC A per­
forms a read from memory. When the Cache as­
serts CCBE MBC REQ ACKN L at T30 of the
Cache timing sequence, the flip-flop at the top left
of COPK is direct set. If no other MBC read is in
progress (RIP negated), the top center O-type flip­
flop is also set. This enables the top 74S11 to gate
OA TARDY originating in Main Memory control
to MBC A. Assume, however, that before Main
Memory responds with DATA ROY, the Cache be­
gins executing a read from memory initiated by
MBC o. When thhe Cache asserts CCBE MBC
REQ ACKN at T30 of the current Cache timing se­
quence, the O-type flip-flop at the lower left of
COPK is direct set. The flip-flop at the lower cen­
ter is not direct set at this time because COPPK RIP
H is asserted; the Cache is waiting for Main Mem­
ory to respond with DATA ROY to a read in­
itiated by MBC A. When DATA ROY is received
in the Cache, COPK DATA ROY CNTL A is as­
serted and routed to MBC A. At the trailing edge
of DATA ROY, the RIPP A flip-flop is clocked
clear. This negates RIP H momentarily, and allows
the RIP 0 flip-flop to be direct set. RIP H is
thereby reasserted, and the transmission of COPK
DATA ROY CNTL 0 is enabled.

The Cache thus keeps track of two concurrent
MBC reads, and remembers for which MBC a
DATA ROY response from Main Memory is
intended .

A third MBC read cycle is inhibited by the asser­
tion of CCBO READ IN PROG (1) H. This signal
is asserted during the second of two stacked MBC
reads and inhibbits negation of CCBE ALLOW
TIMEOUT L until the ffirst MBC read is
terminated.

VI-4-16

(

(

(

(

(

4.7 GROUP SELECTION AND VALID BIT
LOGIC
The Group Selection and VValid Bit Logic is located
on Drawing CCBM. The group selection circuitry
produces outputs CCBM WRITE SEL 0 Hand
CCBM WRITE SEL I H. These signals enable
Group 0 and Group I of the FDM and correspond­
ing Tag 0 or Tag I Address Memory to be written.

The Valid Bit Logic asserts CCBBM VALID 0 IN­
PUT Land CCBM VALID I INPUT L, the Valid
bit inputs to the Tag 0 and Tag I Address
Memoryy.

The heart of the circuitry is the D-type flip-flop at
the lower left of Drawing CCBM. This is the Ran­
dom bit generator. At T60 of every Cache timing se­
quence, the Random flip-flop is clocked and causes
the Random bit to change state. During normal er­
ror-free operation, the state of the Random bit de­
termines which group of the FDM is loaded when
a non-MBC read miss occurs. If CCBM RAN­
DOM (1) H is asserted during a non-MBCC read
miss cycle, CCBM WRITE SEL I Hand CCBM
VALID I INPUT L are asserted. Likewise, if
CCBBM RANDOM (1) H is negated during a non­
MBC read miss cycle, CCBM WRITE SEL 0 H
and CCBM VALID 0 INPUT L are asserted.

A four-bit latch (type 74175) is clocked by CCBD
ST AR T SLOW (1) H just prior to the initiation of
a slow cycle on the Main Memory Bus. The out­
puts of this latch represent conditions detected in
the FDM and Address Memory during the Cache
timing sequence. The R3(1) output will be high if a

parity error has been detected in either Group 1 of
the FDM or Tag I Address Memory. The R2(1)
output will be high if a parity error has been de­
tected in either Group 0 of the FDM or Tag 0 Ad­
dress Memory. The RI(1) output will be low if a
write hit on Group 0 has been detected. The RO(I)
outpput will be low if a write hit on Group I has
been detected. If any of the above conditions is de­
tected, the Random bit is overridden. If a parity er­
ror is detected, the group in which the error,
occurred is selected for replacement. On a write hit,
the group on which the hit occurs is selected for
replacement.

The Random bit is also overridden during the
power-up sequence and during MBC cycles. During
a power-up, ADM] POWER UP (1) L asserted
causes the assertion of CCBM WRITE SEL 0 H
and CCBM WRITE SEL 1 H, and the negation of
CCCBM VALID 0 INPUT Land CCBM VALID I
INPUT 1. During an MBC cycle, the Valid bits are
also negated, while the assertion of CCBM WRITE
SEL 0 H and WRITE SEL 1 H is inhibited if the
cycle is a read from memory.

4.8 CACHE REGISTERS AND REGISTER
LOGIC
Th is section defines the Cache registers and the bits
they contain; a description of the actual implemen­
tation is also provided.

Table4-2 lists the six registers located in the Cache,
along with their addresses. The following para­
graphs describe each register.

Table 4-2
Cache Registers

Register Address Access

Low Error Address 17777 740 Read only

ijigh Error Address 17777742 Read only

Memory System Error 17777744 Read/selective clear

Control 17777 746 Read/write

Maintenance 17777 750 Read/write

Hit/Miss 17777752 Read only

VI-4-17

4.8.1 Low Error Address Register (17 777 740)
This register, illustrated in Figure 4-8, contains the
166 low order bits of the 22-bit physical address
being accessed when an error occurred. The least
significant bit is bit O. The high order bits of the ad­
dresses are contained in the High Error Address
Register.

All bits are read only. The bits are undetermined af­
ter a power-up. They are not affected by a Console
S tart or RESET instruction.

15

4.8.2 High Error Address Register (17777742)
This register, illustrated in Figure 4-9, ccontains the
six high order bits of the 22-bit physical address
being accessed when an error occurred. The type or
memory cycle being performed when the error oc­
curred is indicated by register bits 15 and 14, which
store the operation control bits (Cl and CO) of the
memory cycle. Table 4-3 lists the register bits.

All the bits are read only. The bits are undeter­
mined after a power-up. They are unaffected by a
Console Start or RESET instruction.

o
LOW ADDRESS 116 alTS)

Bit

15-14

5-0

Figure 4·8 Low Error Address Register

Name

Cycle Type

Address

o

Figure 4-9 High Error Address Register

Table 4-3
High Error Address Register

Function

These bits are used to encode the type of memory cycle which
was being requested when the parity error occurred.

Bit 15 Bit 14 Cycle Type

0 0 Data In (read)

0 1 Data In Pause

1 0 Data Out

1 1 Data Out Byte

These bits contain the highest 6 bits of the 22-bit address of
the first error. The most significant bit is bit 5.

(

(

(

(
\

(

4.8.3 Memory System Error Register (17771 744)
The Memory System Error Register, illustrated in
Figure 4-10, keeps track of hard and soft errors
within the memory system.

A soft error is an error which does not result in the
processor receiving erroneous data; a soft error
causes a trap .. An error which causes the processor
to receive erroneous data is a hard error; this type
of error causes an abort.

Table 4-4 defines the bits in the Memory System Er­
ror Register. All the bits are read/write. The bits
are cleared on power-up or by Console Start. They
are unaffected by a RESET instruction.

When writing to the Memory System Error Regis­
ter, a bit is unchanged if a 0 is written to it, and it
is cleared if a I is written to it. Thus, the register is
cleared by writing the same data back to the regis­
ter. This guarantees that if additional error bits
were set between the read and the write, they will
not be inadvertently cleared.

4.8.4 Control Register (17777746)
This six-bit register, illustrated in Figure 4-11, con­
trols several important internal functions; these are
outlined in Table 4-5. The Control Register allows
running thhe PDP-ll/70 in a degraded mode; this
may be desirable if parts of the Cache are malfunc­
tioning. If Group 0 of the Cache is malfunctioning,
it is possible to force all operations through Group
I. Setting bit 4 or bit 5 allows the internally gener­
ated Random bit to be overridden and causes data,
fetched from Main Memory as a result of a read
miss, to be replaced in the specified group. If bits 5
and 2 of the Control Register are set and bits 4 and
3 are cleared, the CPU will not be able to read data
from Group 0, and all Main Memory data replace­
ments will occur within Group 1. In this manner,

half the Cache will be operating. Bus system
throughput will not decrease by 50 percent, since
the statistics of read hit probability will still provide
reasonably fast operation. If Group 1 is malfunc­
tioning, bits 4 and 3 should be set and bits 5 and 2
cleared so that only Group 0 is operating. If all of
the Cache is malfunctioning, bits 3 and 2 should be
set. The Cache will be bypassed, and all references
will be to Main Memory.

Control Register bits 5 and 4 can also be used to
keep a desired routine in the Fast Data Memory.
For example, if bit 5 is cleared and bit 4 is set prior
to execution of a desired routine, the routine will
be loaded into Group O. If bit 5 is cleared and bit 4
is set when the desired routine is not being exe­
cuted, the routine will remain protected in Group 0
for future reference. The routine can be protected
in Group 0 while it is being executed if bit 5 is set
and bit 4 is cleared.

Table 4-6 summarizes the uses of Control Register
bits (5:2).

Bits I and 0 can be set to disable trapping. With
these bits set, the processor will not spend time per­
forming trap service routines each time a non-fatal
error occurs. Overall system operation will produce
correct results; however, more Main Memory Bus
cycles may be performed.

The Control Register can also be used in trouble­
shooting. For example, by setting register bits 3
and 2, the Cache is effectively disabled. If the sys­
tem operates with these bits set and does not oper­
ate if they are cleared, a malfunction in the Cache
is indicated.

Bits (5:0) are read/write. The bits are cleared on
power-up or by Console Start. They are unaffected
by a RESET instruction.

5 _FLOW
o

Figure 4-10 M, WAry Syst~,Q{ Register

~ 111 miss

VI-4-19

Table 4-4 '-Memory System Error Register

Bit Name Function

15 CPU Abort Set if an error occurs which causes the Cache to abort a
" processor cycle.

14 CPU Abort After Set if an abort occurs with the Error Address Register
Error locked by a previous error.

13 Unibus Parity Set if an error occurs which results in the Unibus Map
Error asserting the parity error signal on the Unibus.

12 Unibus Multiple Set if an error occurs which causes the parity error signal
Parity Error to be asserted on the Unibus with the Error Address

Register locked by a previous error. (
11 CPU Error Set if any memory error occurs during.a Cache cycle

from the processor.

10 Unibus Error Set if any memory error occurs during a Cache cycle
from the Unibus.

9 CPU Unibus Abort Set if the processor traps to vector 114 because of a
Unibus parity error on a DATI or DATlP cycle by the
processor on the Unibus. (

8 Error in Maintenance Set if an error occurs when any bit in the Maintenance
Register is set. The Maintenance Register will then be
cleared.

7-6 Data Memory These bits are set if a parity error is detected in the Fast
Data Memory in the Cache. Bit 7 is set if there is an
error in Group 1, bit 6 for Group O.

5-4 Address Memory These bits are set if a parity error is detected in the Address (
Memory in the Cache. Bit 5 is set if there is an error in
Group' 1 , bit 4 for Group O.

3-2 Main Memory These bits are set if a parity error is detected on data from
Main Memory. Bit 3 is set if there is an error in either byte
of the odd word, bit 2 for the even word. An abort occurs
if the error is in the word needed by a CPU reference. A
trap occurs if the error is in the other word, or if it is a
Unibus reference.

Main Address Set if there is a parity error detected on the address and
Parity Error cont~ollines on the Main Memory Bus.

0 Main Memory Set if there is no response from Main Memory. For CPU
Time-out cycles, this error causes"im abort. When a Unibus device re-

(quests a non-existent location, this bit will not set.

Vl-4-20

(

(

CPU ABORT
CPU ABORT
UNIBUS PA
UNIBUS Mu
CPU ERROR
UNIBUS ERR
CPU UNIBU
ERROR IN M
DATA MEM
DATAMEM
ADDRESS M
ADDRESS M
MAIN MEM
MAIN MEM
MAIN MEM
MAIN MEM

AFTER ER!OR J ! J
RITY ERROR
LTiPLE PARITY ERROR

OR
S ABORT
AINTENANCE
ORY GROUP I
ORY GROUP 0

EMORY GROUP 1
EMORY GROUP 0
ORY ODD WORD
ORY EVEN WORD
ORY ADDRESS PARITY ERROR
ORY TIMEOUT

654 o
DATA ERRORS

, , , ,

1 I

Figure 4-11 ..csfd:rol Register

~1t1f11ti ~(<:nt;"" E.~~f)k Rfi.G\

Table 4-5
Control Register

Bit Name

5-4 Force Replacement

3-2 Force Miss

1 Disable Unibus Trap

o Disable Traps

4.8.5 Maintenance Register (17 777 750)
This register, illustrated in Figure 4-12, is used for
memory system maintenance. Table 4-7 lists the
functions of the register bits.

The Maintenance Register is read/write. It is
cleared on power-up or by Console Start. It is also
cleared whenever any memory system error is
detected.

This register is for maintenance use only.

Function

Setting these bits forces data replacement within a group
in the Cache by Main Memory data on a read miss. Bit 5
selects Group 1 for replacement; bit 4 selects Group O.

Setting these bits forces misses on reads to the Cache. Bit 3
forces misses on Group 1; bit 2 forces misses on Group O.
Setting both bits forces all cycles to Main Memory.

Set to disable traps to vector 114 when the parity error
signal is placed on the Unibus.

Set to disable traps from soft errors.

4.8.6 Hit/Miss Register (17 777 752)
The Hit/Miss Register, illustrated in Figure 4-13, in­
dicates whether the six most recent references by
the CPU were flits or misses. A one indicates a
read hit; a zero indicates a read miss or a write.
The lower numbered bits are for the more recent
cycles.

All the bits are read only. The bits are undeter­
mined after a power-up. They are not affected by a
RESET instruction.

This register is for maintenance use only.

VI-4-21

Table 4-6
Control Register Bits 5: 2

Control Register Bits Bit Patterns

5 Force Replacement to Group 1 1 0 X 1 0

4 Force Replacement to Group 0 0 1 X 0 1

3 Force Miss on Group 1 0 1 1 0 0

2 Force Miss on Group 0 1 0 1 0 0

F Disables Group 0

U

N Disables Group 1

C

T
Disables Cache (Group 0 and 1)

I Protects and maintains code in Group 0 while it is executed
0
N Protects and maintains code in Group 1 while it is executed

o

FORCE REPLACEMENT G_RO_U_P_l ______________ -.-Jf r) FORCE REPLACEMENT GROUPO--------------->.-l
FORCE MISS GROUP 1
FORCE MISS GROUP 0

DISABLE UNIBUS; lT~RA~P====================~J DISABLE TRAPS -

(DN-1(lOL
Figure 4-12 Maint 1111 Ilt» Register

4.8.7 Use of Cache Registers
When a memory system error is detected, the pro­
cessor traps to location 114. If location 114 is used
as a trap catcher, the operator can examine the
Memory System Error Register to determine the
type of error which has occurred. The Low Error
Address and High Error Address Registers can
then be examined to determine where in the pro­
gram, and during what type of cycle, the error oc­
curred. If statistics on the hit ratio are desired, the
Hit/Miss Register can be read. The Control Regis­
ter can be read to determine what the control condi­
tions were at the time the error occurred.

If location 114 is not used as a trap catcher, the
above tasks must be performed by the trap service
routine.

If bit 14 (CPU Abort After Error) or bit 12
(Unibus Multiple Parity Error) of the Memory Sys­
tem Error Register is set, the address stored in the
Low Error Address and High Error Address Regis­
ters is the address of the first error and not the ad­
dress at which the most recent error occurred. The
address at which the most recent error occurred
must be reconstructed from the contents of the SP
(which points to the virtual address incremented by
2) and the appropriate Memory Management PAR.

The contents of the Memory System Error Register
and the High and Low Error Address Registers in­
dicate the failing section of the memory system.

For example, if type MJlI 16K core memory is
used in the system, and a Main Memory parity er­
ror bit is set in the Error Register, all the informa­
tion req uired to determine the failing 16K section

VI-4-22

(

(

L-

Bit Name

15-12 Main Memory Parity

(
11-8 Fast Address Parity

7-4 Fast Data Parity

(

3-1 Memory Margins

(

Table 4-7
Maintenance Register

Function

Setting these bits causes the four Main Memory parity bits
to be checked as Is.

There is one bit per byte; there are four bytes in the data
block.

Bit Set Byte
15 Odd word, high byte

14 Odd word, low byte

13 Even word, high byte

12 Even word, low byte

Setting these bits causes the four parity bits for fast address
memory to be wrong.

Bits 11 and 10 affect Group 1; bits 9 and 8 affect Group O.

Setting these bits causes the four parity bits to be checked
as Os.

Bit Set Byte
7 Group 1, high byte

6 Group 1, low byte

5 Group 0, high byte

4 Group 0, low byte

These bits are encoded to do maintenance checks on Main
Memory.

Bit 3 Bit 2 Bit 1

0 0 0 Normal operation

0 0 1 Check wrong addtess
parity

0 1 0 Early strobe margin

0 1 1 Late strobe margin

1 0 0 Low current margin

1 0 1 High current margin

1 1 0 Reserved

1 1 1 Reserved
All of Main Memory is margined simultaneously.

VI-4-23

of memory is present. The Low and High Error Ad­
dress Registers indicate the 32K section of memory
in which the error occurred. The Error Register in­
dicates whether the error occurred on the odd or
even addressed word. If, for instance, the error oc­
curred in the odd addressed .word, the 16K section
containing odd addressed words should be
replaced.

If an FDM parity error bit is set in the Error Regis­
ter, the bad chip is on the M8144 (DTM) module.
Knowing which group failed and the state of ad­
dress bit AOI (from the Low Error Address Regis­
ter), it can be determined which of the four word
sections of the FD M (Group 0 even and odd,
Group 1 even and odd) has failed.

If an Address Memory parity bit is set in the Error
Register, the problem is on the M8143 (ADM) mod­
ule. The Error Register indicates whether the error
occurred in the Tag 0 or Tag 1 Address Memory.

If the Main Memory Address Parity bit is set, there
may be a problem in the parity generator (Drawing
ADMJ) or in a memory controller parity checker.
A failure in the Main Memory Bus address and con­
trol lines is the most likely cause for this error.

If the Main Memory time-out bit is set, the most
probable cause is a memory controller failure. An­
other possible cause is a misconfiguration of the
System Size Register in the processor.

4.8.8 Register Logic
The Cache device registers and their associated
logic are located on Drawings CCBF, H, J, K, and
L. Figure 4-14 is a block diagram showing the
Cache device registers and associated logic. Each
block in the figure references the page of the engi­
neering schematics on which the logic is located.

Read Multiplexer - The Read Multiplexer gates the
contents of one of the Cache registers onto the
REG 015-00 H lines. Register bits 15, 14, and
05:00 are multiplexed by 8-line to 1~line multi­
plexers on Drawing CCBF. These multiplexers are
controlled by a decode of Unibus address bits
MAPA ADRS 03:01 H (gated by the Unibus Map).

The remaining register bits are multiplexed by dual
4: 1 line multiplexers shown on Drawing CCBF.
These multiplexers are controlled by an independ­
ent decode of the Unibus address bits.

Register Write Select Logic - The Register Write Se­
lect Logic consists of a BCD to one of ten decoder
(type 7442) and some gating. The A, B, and C in­
puts of the decoder are bits (03:01) of the Unibus
address. When input 0 of the decoder goes low,
one of the three writable Cache registers may be
written. Input 0 goes low at T60 of the Cache tim­
ing sequence when the Cache is performing a
Unibus Map write operation during which MAPB
CACHE REG H is asserted. If the A, B, and C in­
puts indicate a binary 2, 3, or 4, the "2," "3," or
"4" output of the decoder goes low when input 0
goes low; this causes the assertion of CCBH CLK
CONTROL REG L, CCBH CLK MAINT
REGL,or CCBH WRITE ERR REG L.

CCBH CLK CONTROL REG L clocks the Con­
trol Register and loads it with the data gated from
the Unibus. CCBH CLK MAINT REG L clocks
the Maintenance Register (Drawing CCBL) and
loads it with the data gated from the Unibus.

CCBH WRITE ERR REG L is input to a set of
four type 8266 multiplexers (Drawings CCBJ and
CCBK), selecting the data gated from the Unibus.
This data is inverted and applied to the clear inputs
of the Error Register flip-flops. Thus a 1 bit is in­
verted to a low level which clears the corresponding
Error Register bit.

Trap and A bort Logic - The Cache asserts CCBJ
PARITY TRAP H when one of the two trap
request flip-flops is set. One of the flip-flops is set
when the Unibus Map asserts PB on the Unibus
(MAPB PB DATA H asserted). The other flip-flop
is set when CCBK ANY ERR (1) H is asserted dur­
ing a valid processor cycle (CCBJ VALID CP CYC
H asserted) or a Unibus Map memory (Le., non­
register) cycle.

CCBK ANY ERR (1) H is asserted as a result of:

1. A time-out on the Main Memory Bus
during a non-MBC cycle.

2. A parity error on data read from the
FDM.

3. A parity error on address tags read from
the Address Memory.

4. A parity error on data read from Main
Memory during a non-MBC cycle.

VI-4-24

,.

(

(

(

'.

r·

(

(

(

15 12 11 8 7 4 3 0

I. , ~
MAIN MEMORY PARITY--,,-J t ~l
FAST ADDRESS PARITY'~, ---:----'-------'

FAST DATA PARITY-================~ ____ .J ' MEMORY MARGINS·

Figure 4-13 ntt/Miss Register

MI11N1eN IWcE

I HITI MISS I
REGISTER II

(CCBlI

11·2856

UNIBUS MAP DATA MAl NTENANCE I
J REGISTER II

(CCBlI

REGISTER H ERROR I WRITE
SELECT REGISTER II
lOGIC (CCBJ,KI

REGISTER

(CCBHI r-- READ
MULTI PlEXER

J CONTROL I
REGISTER II

(CCBHI

n lOW ERROR I ADDRESS
REGISTER II (CCBHI

FROM J Hll~D~~~gR I ADRS
MUX -l REGISTER II

(CCBHI (CCBFI

{CACHE REG 1 FROM
UNIBUS ADDRESS BITS 3:0

REGISTER
SELECT MAP CONTROL

(CCBF,HI

Figure 4-14 Register Logic Block Diagram

VI-4-25

....

..

[

REGISTER
DATA

TO] UNIBUS
MAP

11-2850

If traps are disabled (CCBH DIS TRAPS Land
CCBH DIS UNI TRAPS L asserted), assertion of
CCBH PARITY TRAP H is inhibited.

The trap request flip-flops are cleared upon in­
itialization (CCBA INIT 0 L asserted) or when the
processor acknowledges receipt of a trap request
(TMCA PERF ACKN L asserted) or abort ac­
knowledge (PORH CACHE PERF L asserted).
The trap request flip-flops are also cleared when
the processor traps due to a Unibus parity error
(UBCB UBUS PAR ERR H asserted); this is done
because the Unibus parity error trap routine will
also handle other concurrent trap conditions.

The Cache asserts CCBJ PARITY ABORT H to
abort the processor. This Occurs if the Cache can­
not supply good data (OTMM BAD PARITY H
asserted) to' the processor, or when a Main Mem­
ory Bus timeout occurs during a processor cycle
(CCBO CP TIMEOUT L asserted).

The processor acknowledges receipt of CCBJ PAR­
ITY ABORT H by asserting PORH CACHE
PERF L. In an abort due to a timeout, the pro­
cessor asserts PORH CACHE PERF L in response
to CCBO CP TIMEOUT L; PORH CACHE
PERF L then asserts CCBJ PARITY ABORT H.

Error Address Register Logic - The Error Address
Register (Drawing CCBH) is in an undetermined
state at power-up, and is loaded with a 22-bit phys­
ical address and operation control bits at T60 of
each Cache cycle. If any error is detected, further
clock ing of this register is inhibited by the negation
of CCBJ CLK AORS H. Thus, the address at
which the error occurred is maintained in the Error
Address Register.

CCBJ CLK ADRS H is negated when one of the
trap request flip-flops is set.

Clocking of the Error Address Register may again
be enabled by servicing the error condition that
caused CCBJ CLK ADRS H to be negated. Note
that CCBJ CLK ADRS H can be immediately as­
serted by simultaneously clearing Error Register
bits 15 and 13.

Negation of CCBJ CLK ADRS H causes the asser­
tion of CCBJ AOK (0) H. Therefore, if another er­
ror occurs after the error that caused the Error
Address Register to lock, bit 14 or 12 of the Error
Register is set.

VI-4-26

I

(

(

I

\

(

(

(

(

(

ADM (M8143)
VI 4.2, 4.S.7

ADMA
VI 4.2.6, 4.2.7

ADMB
VI 4.2.6, 4.2.7

ADMC
VI 4.2.6, 4.2.7

ADMD
VI 4.2.7

ADME

INDEX

This Index lists the principal references to the CPU
modules (slots 6 through 22 of the processor back
plane). Each module sch~matic sheet is listed sepa­
rately. Roman numerals indicate the SectiOn of this
manual which contains the reference; arabic numer­
als indicate the Chapter and the Paragraph within
the Section.

CCBA
VI 3.8.5, 3.S.6, 3.S.7, 3.S.S, 3.S.9, 3.S.1O, 4.3,
4.3.1, 4.3.2, 4.3.4

CCBB
VI 3.S.1, 3.S.2, 3.S.3, 3.S.4, 3.S.5, 3.S.6, 3.S.7,
3.S.S, 3.S.9, 3.S.1O, 4.2.1, 4.2.2, 4.2.11, 4.3.2,
4.3.4, 4.4, 4.5

CCBC
II 4.S.1.2, 4.S.3.2, 5.1, V 2.0-2.4, VI 3.4, 3.5,
3.S.1, 3.S.2, 3.S.3, 3.S.4, 3.S.5 3.S.6, 3.S.7,
3.S.S, 4.2.23, 4.3.2, 4.3.4, Table 3-2, Table 3-3

CCBD

IV 4.5, VI 4.2.2, 4.2.5, 4.2.20
II 6.2.1.4, 6.2.3.1, V 2.6 VI 3.S.2, 3.S.3, 3.S.6,
3,S.7, 3.S.S, 3.S.9, 3.S.1O, 4.2.20, 4.3.1, 4.3.3,
4.6.3, 4.7, 4.S.S, Table 3-2, Table 3-3, Table 3-
4 ADMF

VI 4.2.2, 4.2.5, 4.2.9

ADMH
VI 4.2.1, 4.5

ADMJ
II 6.5.3.1, VI 3.7, 4.2.2, 4.2.3. 4.2.7 4.2.9,
4.2.20, 4.4,4.7, 4.S.7

ADMK
VI 3.S.5, 3.S.6, 3.S.7, 3.S.S, 4.2.7, 4.2.10

ADML
II 6.5, 6.5.3.1, 6.5.3.2, VI 3.6, 4.2.3, 4.2.4,
4.3.3, Table 3-4

CCB (M8142)
VI 3.S.S, 4.2

CCBE
VI 3.6, 3.S.2, 3.S.3, 3.S.6, 3.S.7, 3.S.9, 3.S,1O,
4.2.1,4.3.1,4.3.4,4,6.2.1,4.6.3 Table 3-4

CCBF
V 2.3, VI 4.S.S, Table 3-3

CCBH
VI 3.S.S, 4.2.10, 4.S.S

CCBJ
II 6.2.3.1-6.2.3.2, 6.3.3, VI 4.S.S, Table 3-2

CCBK
II 6.2.3.2, VI 4.S.S

CCBL
VI4.S.S

INDEX-l

CCBM
VI 4.2.3, 4.2.7, 4.2.8, 4.2.20, 4.4, 4.7

COP (M8145)
VI 4.2

CDPA
VI 4.2.16

CDPB
VI 4.2.17, 4.4

CDPC
VI 3.8.2, 3.8.3, 3.8.6, 3.8.7, 3.8.9, 4.2.14,
4.2.15,4.2.16,4.3.3,4.3.13 Table 3-4

CDPD
VI 4.2.13, 4.2.14, 4.2.15, TABLE 3-4

CDPE
II 2.3.3, VI 4.2.11, 4.2.12, 4.4

CDPF
VI 4.2.12, 4.2.17, 4.2.18, 4.4

CDPH
VI 4.6

CDPJ
VI 3.6, 3.8.9, 3.8.10, 4.2.11, 4.2.17, 4.5, 4.6,
4.6.2,4.6.2.1,4.6.2.2, Table 3-4

CDPK
VI 3.6, 3.8.9, 4.2.16, 4.6, 4.6.3, Table 3-4

DAP (M8130)

DAPA
II 2.2.3

DAPB
II 2.1.9.1-2.1.9.2, 2.3.1, VI Table 3-2

DAPC
II 2.1.9.1-2.1.9.2

DAPD
112.1.9.1-2.1.9.3,2.3.1

DAPE
II 2.1.9.4, 6.1.1, 6.2.1.3

DAPF
II 2.1.1.1-2.1.2.2, 2.1.7, 2.2.1

DAPH
II 2.1.1.1-2.1.1.2, 2.1.2.1

DAPJ
II 1.2.6.2, 2.1.1.1,2,.1.2.1, 2.1.3, 2.1.7, 2.2.1

OTM (M8144)
VI 4.2, 4.8.7

DTMA
VI 3.8.3, 4.2.19, 4.4

DTMB
VI 3.8.7,4.2.20,4.4

DTMC
VI 4.2.20

DTMD
VI 4.2.20

DTME
VI 4.2.20

DTMF
VI 4.2.20

DTMH
VI 4.2.20

DTMJ
VI 4.2.20

DTMK
VI 4.2.20

DTML
II 2.2.1, 2.2.3, III 2.11, V 2.3, 2.5, VI 4.2.20

DTMM
VI 4.2.17, 4.2.23, 4.8.8, Table3-2, Table 3-3

DTMN.
VI 4.2.21

DTMP
VI 4.2.22

GRA (M8131)
II 2.1.1.2

INOEX·2

(

(

(

(

(

(

(

GRAA
II 1.5.4, 2.1.1.1-2.1.1.2, 2.1.2.2, 2.1.9.2

GRAB
. II 1.4.2, 1.5.7,2.1.2.1,2.1.4,2.1.7

GRAC
II 2.1.4, 6.2.2.1 IV 9.2

GRAD
II 2.1.4-2.1.7

GRAE
II 2.1.6

GRAH
II 2.1.4,2.1.6-2.1.7

GRAJ
II 2.1.2.1, 2.1.5, 2.1.8

GRAK

IN IT

II 1.2.6.2

II 1.2.2, 1.4.1, 4.5, 6.5.1-6.5.2, III 1.1.9, 2.4 j

2.6.4, 2.7.3, IV 7.1, 9.2, V 1.0, VI 4.2.11,
4.2.17

IRC (M8132)
II 1.2.3, 1.4.7,2.1.6, 3.9.10

IRCA
II 1.4.5, 1.5.4, 2.2.4, IV 3.4

IRCB
II 1.4.8, 2.1.5, 2.1.9.2, VI 3.4

IRCC
II 1.4.7,2.1.9.3, VI 3.2-3.4

IRCD
II 1.5.8, 2.1.9.3, 6.1.1, 6.2.1.1

IRCE
II 1.2.6.2, 1.5.1, 1.5.5, 1.5.7-1.5.8

IRCF
II 1.2.6.2, 1.5.1-1.5.2, 1.5.5-1.5.7,2.1.2.1

IRCH
II 1.5.1, 1.5.3-1.5.4, 1.5.6, 1.5.8, 2.1.1.2, 3.9.2

IRCJ
II 1.2.6.2, 2.1.3

MAP (M8141)

MAPA
II 2.3.3, V 1.1-1.2, 2.0-2.2, 3.2-3.4, VI 3.8.6,
3.8.8, 4.8.8, Table 3-3

MAPB
V 1.2, 2.0-2.1, 2.3-2.6, 3.2-3.4, VI 3.5, 3.8.8,
4.8.8, Table 3-3

MAPC
V 1.1-1.2, 3.2, 3.4

MAPD
V 1.1-1.3,3.2,3.4

MAPE
V 1.1, 1.3,2.1

MAPF
V 1.4, 2.0-2.1, 2.5 VI 3.5, 3.8.5, 3.8.6, 3.8.7,
3.8.8, 4.5, Table 3-3

MAPH
V 2.3, 2.5, 3.0, 3.4-3.)

MAPJ
V 2.1, 2.3-2.4, 3.2, 3.4

MAPL
V 3.0, 3.4, 3.5

PDR (M8134)

PDRA
II 2.2.1-2.2.2, 2.3.3

PDRB
II 2.2.3, 3.1, III 2.11, VI Table 3-2

PDRC
II 3.6, 3.8, 4.9.2, 6.2.2.2

PDRD
II 1.5.1, 3.7, 3.9-3.9.1, 3.9.6, 3.9.8, 3.9.10,
6.2.2.1, 6.3.1, 6.3.8

PDRE
II 2.3.2, 5.3.1, 5.3.2.1

lNOEX-3

PDRF
II 2.3.4, III 2.11

PDRH
II 2.2.3, 2.3.4, 6.2.1.4, 6.2.3.1-6.2.3.2, III 2.0,
2.11-2.12, VI 4.8.8, Table 3-2

PDRJ
112.2-2.2.1, 5.1, 5.3.2.1, 6.4.3

RAC (M8133)
II 1.2.3

RACA
II 1.1, 1.4.1, 2.1.6-2.1.7, 2.2.1, 2.2.3-2.2.4,
4.8.3.1-4.8.3.2, 6.2.1.5, 6.2.3.2

RACB
II 1.1, 1.4.1, 2.3.1, 4.8.3.1, 5.3.2.2, 6.2.2.1

RACC
II 1.1, 2.1.1.2, 2.1.8, 2.1.9.1-2.1.9.4, 5.1.1,
6.4.3

RACD
II 1.4.1-1.4.2,2.3.4, IV 3.1

RACE
II 1.4.6.1-1.4.6.4

RACF
II 1.4.6.3-1.4.6.4

RACH
II 1.2.5.1, 1.2.6.2, 1.4.5, 1.4.6.3-1.4.6.4, 5.1,
5.1.2 VI 3.4, 3.8.1, 3.8.2, 3.8.3, 3.8.4, Table 3-
2

R,ACJ
II 1.4.5, 2.2.4

RACK
II 1.4.4, 2.1.8, 2.2.3, III 2.5.1-2.5.5

RACL
II 1.2.1, 1.4-1.4.2, 1.4.4, 1.4.6.2, 1.4.6.4, 1.4.7
III 2.5.1

SAP (M8137)

SAPA.B.C
IV 3.0, 7.2.3

SAPC
IV 6.2, 7.2.4

SAPD
IV 6.2, 7.2.5, 8.1.2

SAPD.E.F
IV 6.2, 8.1.1

SAPE
IV 3.3, 7.2.2

SAPH
IV 4.5, 5.1, 7.1, 7.2.2-7.2.3

SAPJ
IV 4.0, 4.5, 5.2-5.2.2, VI Table 3-2

SAPK
III 2.1.2, IV 3.4, 3.5, 7.2.2, 7.2.4, 9.1.6

SAPL
IV 6.2, 8.1.1, 8.2.2-8.3, 9.1.9

SAPM
IV 7.2.3

SAPN
. II 4.8.1.1, 4.8.3.2, 5.1, 5.3.2.1, 6.2.1.2, IV 2.2,

5.1-5.2.2

scc (M8140)
III 2.2, IV 2.2, 7.1

SCCA
III 2.10, IV 4.5, 5.2, 7.1

SCCB
IV 7.1,9.1.8

SCCC
II 2.2.2.1-2.2.2.3, IV 3.3-3.5, 5.1-5.2, 6.2, 7.1,
7.2.2, 7.2.4-7.2.5, 8.3, 9.1.8-9.1.9, 9.6

SCCD
II 2.2.2.1, 2.2.2.3,4.8.2.1,5.1, IV 7.1,7.2.5

SCCE
II 2.3.2, 3.9.2, 5.3.2.3, 6.2.2.2, 6.3.8, IV 7.1

SCCF
III 2.4, 2.6-2.6.1, 2.7, 2.7.3, 2.10-2.10.1, 2.12,
7.1

INDEX-4

(

(

(

(

L

1/

(

(

(

(

SCCH
II 2.2.2, III 2.3, I" 9.6

SCCJ
II 2.2.2.2, III 2.0, 2.3-2.4, 2.10

SCCK
III 1.1.2, 2.10-2.10.2, 4.5

SCCL
II 5.3.1, 5.3.2.1, 3.4,4.5,9.6, " 1.1

SCCM
II 2.2.2, 2.2.2.3, 3.4

SCCN
II 2.2.2, 2.2.2.4, 3.2, 3.4, I" 5.2, 5.2.3

SSR (M8138)
I" 9.1.8

SSRA
II 3.9.6, 6.1.3.2, 6.2.1.3, I" 3.1-3.2, 3.4, 4.5,
5.2.3, 9.1.4, 9.2

SSRB

SSRL
I" 3.1

TIG (M8139)
"14.3

TIGA
II 2.2.3, 4.5-4.6.2, 4.8, 4.8.1.1, 4.8.1.2, 4.8.2.2,
4.8.3.1-4.8.3.2, 4.9.1, 5.3.2.1, 6.2.3.2, I" 7.1,
9.1.8

TIGB
II 3.6, 4.1-4.1.2, 4.2-4.4, 4.6-4.7, 4.8.3.2, 4.9.1-
4.9.3

TIGC
II 1.4.1, 2.2.3-2.2.4, 4.0, 4.4, 4.6, 6.4.1, "I 4.3,
Table 3-1

TIGD
II 1.4.1, 2.2, 4.6-4.6.2

TIGE
II 4.7, I" 3.1

III 2.12, I" 3.0, 3.3-3.4, 8.1.2, 8.2.2, 9.1.5- TMC (M8135)
9.1.6 I" 5.0

SSRC
II 5.1.4, 6.2.1.3, I" 6.2, 7.1, 8.1.1, 8.2.2-8.2.3,
9.1.4,9.1.8-9.2

SSRD
I" 8.3

SSRE
I" 4.5,8.3,9.1,9.1.4,9.1.8-9.1.9

SSRF
I" 9.2

SSRH
II 2.2.2.1, I" 7.1,9.1.4,9.2-9.3

SSRJ
II 2.2.2-2.2.2.1, 2.2.2.3, I" 7.2.3, 9.1.8, 9.2-9.3

SSRK
III 2.10.2, I" 3.1, 3.3-3.4, 5.2.3, 8.2.3-8.3,
9.1.4, 9.1.8-9.1.9

TMCA
II 4.8.2.2, 6.2.1.5, 6.3, 6.3.2, 6.4, 6.4.3, 6.5.1,
III 1.3.5, 2.6.1-2.6.2, I" 8.3, "I 4.8.8, Table 3-
2

TMCB
II 6.1.1, 6.1.3.4, 6.2.1.3, 6.3, 6.4, 6.4.3, 6.5.1,
III 2.6.1

TMCC
II 1.4.1, 4.8.3.2, 5.1.3-5.1.4, 5.3.2.2, 6.2.1-
6.2.1.3,6.2.1.5-6.2.2.1,6.2.2.3,6.2.3.2,6.5.1

TMCD
II 2.2.2, 2.2.2.3, 2.3.2, 3.5, 5.1.4, 5.3.2.2,
6.2.1.1, 6.2.2.2

TMCE
II 2.1.9.3, 3.9.2, 3.9.6, 3.9.8, 5.1-5.1.1, 5.1.4,
6.2.1.3, 6.2.2.1, 6.2.3.2-6.3.1, 6.4.3, 6.5.1, III
2.6.1, 2.12, I" 7.2.4, 8.2.3-8.3, 9.1.8-9.1.9, "I
3.4, 3.8.2, 3.8.3, 3.8.4, 4.3.1, 4.3.2, Table 3-2

INDEX-5

TMCF
II 2.2.1-2.2.2, 2.2.2.2, 3.9.2, 4.8.1.2, 4.8.3.1-
4.8.3.2, 5.1.4, 6.3.8, 1112.12

UBe (M8136)

UBeA
II 2.3.2, 4.8.2.1-4.8.2.2, 5.1, 5.3.2-5.3.2.3,
6.4.3, III 1.3.5, 2.11, IV 4.5

UBeB
II 1.4.1, 1.5.1, 3.9.2, 4.8.2,1-4.8.2.2, 4.8.3.2,
5.3.2-5.3.2.3, 6.2.1.4, 6.2.3.1-6.2.3.2, 6.4.3,
6.5.1-6.5.2, III 2.11-2.12, IV 7.2.4, 8.2.3,9.1.8,
VI 4.8.8, Table 3-2

UBee
II 5.3.1-5.3.2.1, 5.3.2.3, 6.4, 6.4.3, III 2.6.2,
2.7.3 IV Table 3-2

UBCD
II 4.8.2.2, 4.8,3.2, 5.3.2.2, 6.3, 6.4-6.4.3

UBCE
II 2.3.2, 5.3.2.1, 6.5-6.5.2, 6.5.3.1, III 2.7.3, VI
Table 3-1

UBCF
II 6.2.1.3, 6.2.1.5, III 2.4, 2.5.1-2.5.2, 2.5.4,
2.6.1-2.6.4, 2.7.3, 2.12

UBCH
III 2.5.2-2.5.5, 2.6.2

INDEX-6

/\

(

(

(

(

t

I
L I

I
1\

I
,) f

I
(I

I
I

IJ.l

(I~
I~

0

I~
0

IU

(I
I

Ij

I
I
I
I
I

KBll-B PROCESSOR (pDP-ll/70)
EK-KBIIB-TM-OOI

Reader's Comments

Your comments and suggestions will help Us in our continuous effort to improve the quality and usefulness of

our publications.

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well

written, etc.? Is it easy to use?

What features are most useful?
--~--

What faults do you find with the manual? _____________________________________ _

Does this manual satisfy the need you think it was intended to satisfy?

Odes it satisfy your needs? ___________ --__ Why? ________________________________ _

Would you please indicate any factual errors you have found.

Please describe your position.

Name _________________--_________ Organization

Street _________ --_______________ - Department

City _______________ ___ State ______________ __ Zip or Country

- - - - - - - - - - - FoldHere - - - - - - - - - - _

- - - - - - - - Do Not Tear-Fold Here and Staple - - - - - - --

BUSINESS REPLY MAIL
NO POST AGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

"oslage will be paid by:

Digital E'luipmcnt Corporation
Technical Documcntation Department
146 Mllill Stn'l't
M:tynard, Mass:tchuseus 01754

FIRST CLASS
PERMIT NO. 33

MAYNARD, MASS.

\--

(

(

(

(

digital equipment corporation

PRINTED IN U.S.A.

