dlifgliltlall

VAX-11 COBOL-74
User’s Guide
Order No. AA-C986A-TE

VAXII

B COBOL/C/7¢//L/57 At N
-~
¢ Ainvie e, SYS $LiprBRY 3 CIYEIB J013)7

January 1979

This document describes how to use the VAX-11 COBOL-74 compiler.

VAX-11 COBOL-74
User’s Guide
Order No. AA-C986A-TE

OPERATING SYSTEM AND VERSION: VAX/VMS V01.5
SOFTWARE VERSION: VAX-11 COBOL-74 V04

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document. ,

The software described in this document is furnished under a 1license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not supplied by
Digital.

Copyright() 1979 by Digital Equipment Corporation

{

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's «critical evaluation to assist us in
preparing future documentation. y

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC ’ DECtape OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI

DECnet IAS

5/79-14

CONTENTS

Page
PREFACE Xxiii
ACKNOWLEDGMENTS Xiv
CHAPTER 1 INTRODUCTION 1-1
CHAPTER 2 USING THE VAX-11 COBOL-74 SYSTEM 2-1
2.1 CREATING A SOURCE FILE 2-1
2.1.1 Choosing a Reference Format 2-1
2.1.2 Entering a Source Program 2-2
2.2 USING THE COMPILER 2-2
2.2.1 The Command Line Format 2-2
2.2.2 Command Qualifiers 2-3
2.2.3 Error Message Summary 2-6
2.2.4 Common COBOL-74 Command Line Errors 2-6
2.3 LINKING COBOL-74 PROGRAMS 2-6
2.4 EXECUTING A COBOL IMAGE 2-12
2.4.1 Setting and Resetting Program Switches 2-12
2.4.2 The RUN Command 2-13
CHAPTER 3 NON-NUMERIC DATA HANDLING 3-1
3.1 INTRODUCTION 3-1
3.2 DATA ORGANIZATION 3-2
3.2.1 Group Items - 3-2
3.2.2 Elementary Items 3-2
3.3 SPECIAL CHARACTERS 3-3
3.4 TESTING NON-NUMERIC FIELDS 3-4
3.4.1 Relation Tests 3-4
3.4.1.1 Classes of Data 3-5
3.4.1.2 The Comparison Operation 3-6
3.4.2 Class Tests 3-7
3.5 DATA MOVEMENT 3-7
3.6 THE MOVE STATEMENT 3-8
3.6.1 Group Moves 3-9
3.6.2 Elementary Moves 3-9
3.6.2.1 Edited Moves 3-10
3.6.2.2 Justified Moves 3-11
3.6.3 Multiple Receiving Fields 3-12
3.6.4 Subscripted Moves 3-12
3.6.5 Common Errors, MOVE Statement 3-13
3.6.6 Format 2, MOVE CORRESPONDING 3-13
3.7 THE STRING STATEMENT 3-14
3.7.1 Multiple Sending Fields 3-14
3.7.2 The POINTER Phrase 3-15
3.7.3 The DELIMITED BY Phrase 3-16
3.7.4 The OVERFLOW Phrase 3-18
3.7.5 Subscripted Fields in STRING Statements 3-20
3.7.6 Common Errors, STRING Statement 3-22
3.8 THE UNSTRING STATEMENT 3-22
3.8.1 Multiple Receiving Fields 3-23

iii

CONTENTS (Continued)

Page
3.8.2 The DELIMITED BY Phrase 3-25
3.8.2.1 Multiple Delimiters 3-29
3.8.3 The COUNT Phrase 3-30
3.8.4 The DELIMITER Phrase 3-31
3.8.5 The POINTER Phrase 3-32
©+3.8.6 The TALLYING Phrase 3-34
3.8.7 The OVERFLOW Phrase 3-36
3.8.8 Subscripted Fields in UNSTRING Statements 3-37
3.8.9 Common Errors, UNSTRING Statement 3-39
3.9 THE INSPECT STATEMENT 3-39
3.9.1 The BEFORE/AFTER Phrase 3-40
3.9.2 Implicit Redefinition 3-42
3.9.3 The INSPECT Operation .3-43
3.9.3.1 Setting the Scanner 3-45
3.9.3.2 Active/Inactive Arguments 3-45
3.9.3.3 Finding an Argument Match 3-46
3.9.4 Subscripted Fields in INSPECT Statements 3-47
3.9.5 The TALLYING Phrase 3-48
3.9.5.1 The Tally Counter 3-48
3.9.5.2 The Tally Argument 3-48
3.9.5.3 The Tally Argument List 3-50
3.9.5.4 Interference in Tally Argument Lists 3-51
3.9.6 The REPLACING Phrase 3-55
3.9.6.1 The Search Argument 3-56
3.9.6.2 The Replacement Value 3-57
3.9.6.3 The Replacement Argument 3-58
3.9.6.4 The Replacement Argument List 3-58
3.9.6.5 Interference in Replacement Argument Lists 3-60
3.9.7 Common Errors, INSPECT Statement 3-60
CHAPTER 4 NUMERIC CHARACTER HANDLING 4-1
4.1 USAGES "4-1
4.1.1 DISPLAY 4-1
4.1.2 COMPUTATIONAL 4-1
4.1.3 COMPUTATIONAL-3 4-2
4.2 DECIMAL SCALING POSITION 4-3
4.3 SIGN CONVENTIONS : 4-4
4.4 ILLEGAL VALUES IN NUMERIC FIELDS 4-5
4.5 TESTING NUMERIC FIELDS 4-6
4,5.1 Relation Tests 4-6
4.5.2 Sign Tests 4-7
4.5.3 Class Tests 4-7
4.6 THE MOVE STATEMENT 4-8
4,6.1 Group Moves 4-8
4.6.2 Elementary Numeric Moves 4-9
4.6.3 Elementary Numeric Edited Moves 4-10
4.6.4 Common Errors, Numeric MOVE Statements 4-12
4.7 THE ARITHMETIC STATEMENTS 4-13
4.7.1 Intermediate Results 4-13
4.7.2 The ROUNDED Phrase . 4-14
4.7.3 The SIZE ERROR Phrase 4-15

iv

TN

CONTENTS (Continued)

Page
4.7.4 The GIVING Phrase 4-16
4.7.5 Multiple Operands in ADD and SUBTRACT
Statements 4-16
4.7.6 The ADD Statement 4-17
4.7.7 The SUBTRACT Statement 4-18
4.7.8 The MULTIPLY Statement 4-18
4.7.9 The DIVIDE Statement 4-19
4.7.10 The COMPUTE Statement 4-20
4.7.11 Common Errors, Arithmetic Statements 4-20
4.8 ARITHMETIC EXPRESSION PROCESSING 4-21
CHAPTER 5 TABLE HANDLING 5-1
5.1 INTRODUCTION 5-1
5.2 DEFINING TABLES 5-1
5.2.1 The OCCURS Phrase - Format 1 5-2
5.2.2 The OCCURS Phrase - Format 2 5-3
5.3 MAPPING TABLE ELEMENTS 5-3
5.3.1 Initializing Tables 5-7
5.4 SUBSCRIPTING AND INDEXING 5-9
5.4.1 Subscripting with Literals 5-10
5.4.2 Operations Performed by the Software 5-11
5.4.3 Subscripting with Data-Names ' 5-12
5.4.4 Operations Performed by the RTS 5-12
5.4.5 Subscripting with Indexes 5-13
5.4.6 Operations Performed by the RTS 5-14
5.4.7 Relative Indexing 5-14
5.4.8 Index Data Items 5-15
5.4.9 The SET Statement 5-16
5.4.10 Referencing a Variable-Length Table
Element at RTS Time 5-17
5.4.11 Referencing a Dynamic Group at RTS Time 5-17
5.4.12 The SEARCH Verb 5-17
5.4.13 The SEARCH Verb - Format 1 : 5-18
5.4.14 The SEARCH Verb - Format 2 5-19
CHAPTER 6 INPUT-OUTPUT PROCESSING 6-1
6.1 RECORD FORMAT 6-2
6.1.1 Fixed-length 6-2
6.1.2 Variable-length 6-3
6.1.3 Variable with Fixed-length Control 6-3
6.2 RECORD SIZE 6-4
6.3 RECORD BLOCKING 6-5
6.3.1 Sequential Files on Magnetic Tape 6-6
6.3.2 Sequential Files on Disk 6-7
6.3.3 Relative Files 6-8
6.3.4 Indexed Files 6-9
‘6.4 CURRENT RECORD AREA 6-10
6.4.1 Effects on Output Operations 6-10
6.4.2 Effects of Input Operations 6-11
6.4.3 Sharing Record Areas 6-11

CONTENTS (Continued)

/ Page
6.5 I/0 BUFFERS 6-13
6.5.1 RMS Buffer Defaults 6-13
6.5.2 Multiple Buffers (RESERVE Clause) ‘ 6-13
6.5.3 Sharing Buffers (SAME AREA Clause) 6-14
6.6 OPENING FILES 6-14
6.6.1 I/0 Operations 6-14
6.6.2 OPEN Statement Execution 6-16
6.7 NAMING FILES 6-17
6.7.1 File Specifications , 6-17
6.7.2 Logical Names 6-19
6.7.3 ASSIGN and VALUE OF ID Clauses 6-20
6.7.4 File Switches (PDP-11 COBOL Compatibility) 6-22
6.8 FILE COMPATIBILITY 6-24
6.8.1 Data Type Differences 6-24
6.8.2 Data Record Formatting Differences 6-25
6.8.3 Special Control Characters 6-25
6.9 I/0 ERROR PROCESSING 6-25
6.10 LOW-VOLUME I/O (ACCEPT AND DISPLAY) 6-26
6.10.1 Mnemonic-Names (SPECIAL-NAMES Paragraph) 6-27
6.10.2 Logical Name "Devices" 6-27
6.10.3 ACCEPT Statement 6-28
6.10.4 DISPLAY Statement 6-29
CHAPTER 7 GOOD PROGRAMMING PRACTICES 7-1
7.1 FORMATTING THE SOURCE PROGRAM 7-1
7.2 USE OF PUNCTUATION 7-5
7.3 USE OF THE ALTER STATEMENT 7-5
7.4 USE OF THE PERFORM STATEMENT 7-6
7.5 USE OF LEVEL-88 CONDITION NAMES . 7-17
7.6 USE OF. QUALIFIED REFERENCES 7-9
7.6.1 Qualified Data References 7-9
7.6.2 Guideline 1 (Data Item Definition) 7-12
7.6.3 Guideline 2 (Reference Format) 7-12
7.6.4 Guideline 3 (Unigque Referability) 7-13
7.6.5 Qualified Procedure References 7-13
7.6.6 Qualification and Compiler Performance 7-13
CHAPTER 8 REFORMAT UTILITY PROGRAM 8-1
CHAPTER 9 DEBUGGING COBOL PROGRAMS 9-1
9.1 DEBUG CONCEPTS 9-1
9.2 PREPARING TO DEBUG A PROGRAM 9-2
9.2.1 SET LANGUAGE COBOL Command 9-2
9.2.2 MODULE Commands: SET, SHOW, and CANCEL 9-2
9.2.3 SCOPE Commands: SET, SHOW, and CANCEL 9-3
9.3 SPECIFYING LOCATIONS . 9-4
9.3.1 Location Types 9-4
9.3.2 9-5

Resolving Location Ambiguities

vi

7 /—\\

CHAPTER

CHAPTER

CHAPTER

U O U1 DD DD

e o
NSOk WwNH

WWWWLWOWWYWWYWWYWWY OO
e o o o o o

. L]

N -

10

10.1
10.1.1
10.1.2
10.1.3
10.2
10.2.1
10.2.2
10.2.2.1
10.2.2.2

11

11.1
11.2
11.2.1
11.2.2
11.3
11.4
11.5
11.5.1
11.5.2
11.5.3
11.5.4
11.5.5
11.5.6
11.6

12

12.1
12.2
12.3
12.4
12.5

CONTENTS (Continued)

CONTROLLING PROGRAM EXECUTION
BREAK Commands: SET, SHOW, and CANCEL
TRACE Commands: SET, SHOW, and CANCEL
WATCH Commands: SET, SHOW, and CANCEL
GO and STEP Commands
CTRL/Y Command (Interrupting the Image)
EXIT Command
SHOW CALLS Command

EXAMINING AND CHANGING DATA
EXAMINE Command
DEPOSIT Command

SAMPLE DEBUG SESSION

ERROR MESSAGES

COMPILE-TIME ERROR MESSAGES
Severity Levels
Error Message Printing
Internal Compiler Errors -- System Errors
SYSTEM MESSAGES ‘
Link-Time Error Messages
Run-Time Error Messages
Faulty Program Logic Error Procedures
File I/0 Error Procedures

SORTING IN A COBOL PROGRAM

VAX-11 SORT SUBROUTINE PACKAGE

I/0 INTERFACE METHODS
File I/0 Interface
Record I/0 Interface

KEY DATA AND RECORD AREAS

KEY BUFFER

SORT SUBROUTINES
SOR$PASS_FILES
SOR$INIT_SORT
SOR$RELEASE_REC
SOR$SORT _MERGE
SOR$RETURN_REC
SORSEND_SORT

PROGRAMMING EXAMPLE

USING THE LIBRARY FACILITY

Creating a COBOL Library File

The COPY Statement

The COPY REPLACING Statement

The Source Listing

Common Errors in Using the Library Facility

vii

Page

O 'O WO WO W W IWLWLW WL
1
HHHREFROWOVWVWOJ U WU

=
o o
| 1
H - moOoOo

10-2
10-3
10-3
10-4
10-5
10-5
10-5
10-7

11-1

11-1
11-2
11-2
11-2
11-3
11-4
11-6
11-6
11-7
11-8
11-9
11-10
11-11
11-12

12-1

12-2
12-2
12-4
12-6
12-7

CHAPTER

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

INDEX
FIGURES

FIGURE

13

13.1

13.1.1
13.1.2
13.1.3

=]

e]

o o o
w N -

SR BRWWWNDNDNDHREHEE
.
N =

NN NONARANINANO NN N PN RN
N

N =

ww
1
N

CONTENTS (Continued)

OPTIMIZATION

OPTIMIZING FILE DESIGN

Sequential Files

Relative Files

Indexed Files

General Rules for Indexed Files

Bucket Size

Index Depth

Overhead Accumulation
OPTIMIZING PROGRAM ORGANIZATION

Sequential Reading of Indexed Files

Caching Index Roots

Multi~-block Reading and Writing
OPTIMIZING COMPUTATION

THE COBOL FORMATS

COMPILER IMPLEMENTATION LIMITATIONS
SOURCE PROGRAM LISTINGS

DIAGNOSTIC ERROR MESSAGES

RUN-TIME ERROR MESSAGES

INTERNAL COMPILER ERRORS -- SYSTEM ERRORS

PROGRAMMING EXAMPLES

CALLING A FORTRAN SUBROUTINE
The COBOL Program, GETROOT
The FORTRAN Program, SQROOT
Sample Run of GETROOT

CALLING VAX-11 RUN-TIME PROCEDURES
The COBOL Program, RUNTIME
. Sample Run of RUNTIME

USING TERMINAL ESCAPE SEQUENCES
The COBOL Program, ESCAPE
Sample Run of ESCAPE

CALLING VAX/VMS SYSTEM SERVICES
The COBOL Program, SYSTSVC
Sample Run of SYSTSVC

Building a COBOL Task Image
Field Sizes
Redefining Special Characters

viii

Page
13-1

13-2
13-2
13-2
13-3
13-5

13-7

I
e

] I
HFHRFOOAUTOL S WWH -

oo

OG)G}G)OOOG?G)G)OG)O (9]

I
=
w

Index-1

wwH
|
>N

ST

TN

FIGURE

3-37

3-43

3-44
3-45
3-46
3-47

CONTENTS (Continued)

Relation Condition

The Meanings of Relational Operators
Class Condition, General Format

Data Movement with Editing Symbols
Data Movement with No Editing
Subscripted MOVE Statements

Sample STRING Statement
Concatenation with the STRING Statement
Literals as Sending Fields

Indexed Sending Fields

Sample POINTER Phrase

Delimiting with the Word SIZE

SPACE as a Delimiter

Repeating the DELIMITED BY Phrase

Delimiting with More Than One Space Character

The ON OVERFLOW Phrase

Various STRING Statements Illustrating the
Overflow Condition

STRING Statement with Pointer
Subscripting with the Pointer
Subscripting with the Delimiter

Sample UNSTRING Statement

Multiple Receiving Fields

Delimiting with a Space Character
Delimiting with Multiple Receiving Fields
Delimiting with an Identifier

Multiple Delimiters

The COUNT Phrase

The DELIMITER Phrase

The POINTER Phrase

Examining the Next Character by Using the
Pointer Data Item as a Subscript
Examining the Next Character by Placing
It Into a One-Character Field

The TALLYING Phrase

The POINTER and TALLYING Phrases Used
Together -
Subscripting the COUNT Phrase with the
TALLYING Data Item

Using the OVERFLOW Phrase

Sequence of Subscript Evaluation
Erroneously Repeating the Word INTO
Sample INSPECT...TALLYING Statement
Sample INSPECT...REPLACING Statement
Sample INSPECT...BEFORE Statement
Matching the Delimiter Characters to the
Characters in a Field

Sample INSPECT Statement

Sample REPLACING Argument

Sample AFTER Delimiter Phrase

Where Arguments Become Active in a Field

ix

CONTENTS (Continued)

FIGURE 3-48 Sample Subscripted Argument

3-49 Format of the Tally Argument

3-50 CHARACTERS Form of the Tally Argument

3-51 Results of Counting with the LEADING
Condition

3-52 Argument List Adding into One Tally Counter

3-53 Argument List Adding into Separate Tally
Counters .

3-54 Argument List (with Delimiters) Adding into

‘ Separate Tally Counters

3-55 Results of the Scan in Figure 3-55

3-56 Two Tallying Arguments that Do Not Interfere
with Each Other

3-57 Two Tallying Arguments that Do Interfere
with Each Other

3-58 Two Tallying Arguments that, Because of

Their Positioning, Only Partially Interfere
: with Each Other
3-59 An Attempt to Tally the Character B with

Two Arguments

3-60 Tallying Asterisk Groupings

3-61 Placing the LEADING Condition in the
Argument List '

3-62 Reversing the Argument List in Figure 3-62

3-63 An Argument List that Counts Words in a
Statement

3-64 Counting Leading Tab or Space Characters

3-65 Counting the Remaining Characters with the
CHARACTERS Argument

3-66 Format of the Search Argument

3-67 Format of the Replacement Value

3-68 The Replacement Argument

3-69 Replacement Argument List that is Active
Over the Entire Field

3-70 Replacement Argument List that "Swaps"
Ones for Zeroes and Zeroes for Ones

3-71 Replacement Argument List that Becomes
Inactive with the Occurrence of a Space
Character

3-72 Argument List with Three Arguments that
Become Inactive with the Occurrence of a
Space

4-1 Memory Storage of COMP Data Items

4-2 Memory Storage of COMP-3 Data Items

4-3 Truncation Caused by Decimal Point Alignment

4-4 Zero Filling Caused by Decimal Point
Alignment

4-5 Numeric Editing

4-6 Rounding Truncated Decimal Point Positions

4-7 Rounding Truncated Decimal Scaling Positions

TN

FIGURE

;

TABLES

TABLE

CONTENTS (Continued)

Explicit Programmer-Defined Temporary Work
Area

Arithmetic Statement Intermediate Result
Field Attributes Determined from Composite
of Operands

Arithmetic Expression Intermediate Result
Field Attributes Determined by Implementor-
Defined Rules

Defining a Table

Mapping a Table into Memory

Synchronized COMP Item in a Table

Adding a Field without Altering the Table
Size

Adding One Byte which Adds Two Bytes to
the Element Length

Forcing an 0dd Address by Adding a 1-Byte
FILLER Item to the Head of the Table

The Effect of a SYNCHRONIZED RIGHT Clause
Instead of a FILLER Item as Shown in
Figure 5-6

Initializing Tables

Initializing Mixed Usage Fields
Initializing Alphanumeric Fields

Literal Subscripting

Subscripting a Multi-Dimensional Table
Subscripting Rules for a Multi-Dimensional
Table

Subscripting with Data-Names

Index-Name Item

Subscripting with Index-Name Items
Relative Indexing

Index Data Item ~
Legal Data Movement with the SET Statement
Example of Using SEARCH to Search a Table
Unqualified Data Item Reference

Qualified Data Item Reference

General Format of a Qualified Data Reference
General Format of a Qualified Procedure
Reference

Merging Library Text

Three-Level Primary Key Index

Command Qualifiers

Legal Non-Numeric Elementary Moves

Results of the Preceding Sample Statements
Results of the Preceding Sample Statements
Values Moved into the Receiving Fields
Based on the Value in the Sending Field
Handling a Sending Field that is Too Short

Xi

5-15

5-21
7-10
7-11
7-12

7-13

CONTENTS (Continued)

Page
TABLE 3-6 Results of Delimiting with an Asterisk 3-26
3-7 Results of Delimiting Multiple Receiving
Fields 3-27
3-8 Results of Delimiting with Two Asterisks 3-27
3-9 Results of Delimiting with ALL Asterisks 3-28
3-10 Results of Delimiting with ALL Double
Asterisks 3-28
3-11 Results of the Multiple Delimiters Shown
in Figure 3-29 3-30
3-12 Original, Altered, and Restored Values
Resulting from Implicit Redefinition 3-43
4-1 'The -Resulting ASCII Character from a Sign
and Digit Sharing the Same Byte 4-5
4-2 The Sign Tests 4-7
6-1 I/0 Statements Grouped by File Organization,
Access Mode, and Open Mode 6-15
6-2 File Specification Switches for PDP-11
Compatibility 6-22

12-1 v COPY REPLACING Matches 12-6

Commercial Engineering Publications typeset this manual using DIGITAL’s
TMS-11 System.

956ALL

xii

)

PREFACE

MANUAL OBJECTIVES
This manual describes the VAX-11l COBOL-74 compiler. It discusses the
relationships between -the COBOL-74 language, the compiler, object
modules and executable images, and VAX/VMS and its utilities. The
User's Guide supplements the description of the COBOL-74 programming
language in the VAX-1ll COBOL-74 Language Reference Manual.
INTENDED AUDIENCE
This manual is designed for programmers who have a working knowledge
of the COBOL-74 language and who are familiar with the basic concepts
of VAX/VMS.
STRUCTURE OF THIS DOCUMENT
The User's Guide 1is organized into chapters .and appendixes that
describe functions, concepts, and features of the VAX-11l COBOL-74
language system.
ASSOCIATED DOCUMENTS
This manual refers to the following documents, which . contain
supplemental information that is relevant to VAX-1l1l COBOL-74
programming:

e VAX-11] COBOL-74 Language Reference Manual

e VAX/VMS Command Language User's Guide

e VAX-11l Linker Reference Manual

e Introduction To VAX-11l Record Management Services

e VAX-11 Symbolic Debugger Reference Manual

e VAX-1l Sort Reference Manual

® VAX/VMS Operator's Guide

CONVENTIONS USED IN THIS DOCUMENT
\
The syntactic conventions used 1in general format examples are

discussed in Chapter 1 of the VAX-11l COBOL-74 Language Reference
Manual. ‘

xiii

ACKNOWLEDGMENT

COBOL is an industry language and is not the property of any company
or group of companies, or of any organization or group of
organizations.

No warranty, expressed or implied, is made by any contributor or by
the CODASYL COBOL Committee as to the accuracy and functioning of the
programming system and language. Moreover, no responsibility is
assumed by any contributor, or by the committee, in connection
therewith.

The authors and copyright holders of the copyrighted material used
herein are: FLOW-MATIC (trademark of Sperry Rand Corporation),
Programming for the UNIVAC (R) I and 1II, Data Automation Systems
copyrighted 1958, 1959, by Sperry Rand Corporation; IBM Commercial
Translator Form No. F28-8013, copyrighted 1959 by IBM; FACT, DSI
27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell.

They have specifically authorized the use of this material, in whole
or in part, in the COBOL specifications. Such authorization extends
to the reproduction and use of COBOL specifications in programming
manuals or similar publications.

Procedures have been established for the maintenance of COBOL.
Inquiries concerning the procedures for proposing changes should be
directed to the Chairman of the CODASYL COBOL Committee, P.O. Box
1808, Washington, DC 20013. .

Xiv

N

VN

CHAPTER 1

INTRODUCTION

The VAX-11 COBOL-74 compiler translates ANS-74 COBOL source programs
into relocatable object modules; it runs under the supervision of
VAX/VMS. :

To run a COBOL program,‘you follow a four-step process:
® Prepare a source program
) Compile a source program
) Link object modules into an executable image file

® Execute the image

The VAX-11 COBOL-74 compiler accepts COBOL source statements from
source input files. This means that you must manually enter your
source statements onto an acceptable medium prior to the compilation
process.

Once you have decided upon an input medium and format for your source
input files and have created them, you compile the source program.
The VAX-11 COBOL-74 compiler reads source statements from the source
input file and translates them into an object module consisting of
program sections (PSECTs). It <can also produce a source program
listing with optional special-purpose 1listings, such as a map and
cross-reference. Chapter 2 describes the procedure for compiling
programs and specifying compiler options.

The compiler can compile only one source program or subprogram at a
time. Therefore, a program that consists of a main program and one or
more subprograms requires multiple executions of the compiler. Each
compilation generates a separate listing and object module.

The compiler produces an object module, which must be 1linked by the
VAX-11 Linker to produce an executable image file. The linker can
combine several independently compiled object modules into a single
executable image; the ability to compile COBOL subprograms to produce
linkable object modules enables you to create modular programs.

The image is an executable form of the declarations and instructions
in your COBOL source programs. It includes subprograms that were
included by the linker as a result of your commands. It also includes
routines from the COBOL run-time system (RTS), which is a library of
predefined generalized procedures that perform standard functions for
your program. ‘

Figure 1-1 shows the process of preparing a COBOL program for
execution.

CcoBOL

COBOL
SOURCE

SOURCE
PROGRAM

LIBRARY

VAX-11
COBOL-74
COMPILER
OTHER VAX-11
OBJECT OBJECT COBOL-74
MODULE
MODULES RUNTIME
VAX-11
LINKER

H-MK-00043-00

Figure 1-1
Building an Executable Image

1-2 INTRODUCTION

N

T

TN

CHAPTER 2

USING THE VAX-11] COBOL-74 SYSTEM

This chapter discusses the procedures for creating, compiling,
linking, and executing COBOL programs.

2.1 CREATING A SOURCE PROGRAM

Before you can compile a COBOL program, you must decide on the source
reference format and prepare your source program for input to the
compiler.

2.1.1 Choosing a Reference Format

The VAX-11 COBOL-74 compiler can accept source programs in either
conventional or terminal reference format (both are described in the
VAX-11 COBOL-74 Reference Manual). However, you cannot mix reference
formats in the same source program (including text copied from a COBOL
library).

Terminal format was designed to be easily used by programmers at
interactive terminals; therefore, the compiler accepts terminal
reference format as a default and allows you to use a command
qualifier to specify conventional format. The terminal format can
reduce the amount of file space needed to store source programs. In
addition, it is usually easier to edit source programs written in
terminal format, because spacing requirements are more flexible.

You may want to select the conventional reference format, however, 1if
your COBOL program was originally written that way for another
compiler.

You can convert a terminal format program to conventional format by
using the REFORMAT utility, which is described in Chapter 8. You can
also use REFORMAT to match the formats of source files and COBOL
library files if they are not the same.

2.1.2 Entering a Source Program

You can create a source program file by wusing the VAX/VMS CREATE
command or a text editor. CREATE can be used only for a new file;
you must use a text editor to change existing source files. Most
users rely on text editors for both creating and updating source
files.

Unless you specify a file type for the source program file in the
command 1line, which is described in the next section, the compiler
assumes COB as a default; therefore, you can simplify compiling by
naming source files with the default file type.

The CREATE command is described in the VAX/VMS Command Language User's
Guide; the VAX/VMS Text Editing Reference Manual discusses the SOS
and SLP text editors.

2.2 USING THE COMPILER

The VAX-11] COBOL-74 compiler translates source statements into object
modules that contain relocatable code. It can also produce a listing
of source statements and other information if you use the appropriate
command qualifiers. This section describes the procedure for
compiling your source program; it discusses the COBOL command line
and the error message summary. Finally, it lists some common errors
to avoid in entering compiler command lines. Appendix C discusses the
components of the source program listing.

2.2.1 Thé Command Line Format
The VAX-11 COBOL—74Vcommand line has the following format:
COBOL/C74 [/command-qualifiers] filé—spec
where:“‘l
COBOL/C74 J specifies tpe VAX-11] COBOL-74 compiler.
/comménd—qualifiers specify compiler options.
file-spec specifies the file that contains the COBOL
source program. If you do not supply a file
type in the file specification, the compiler

uses COB as the default.

Do not use wild cards in the file
specification.

2-2 USING THE VAX-11] COBOL-74 SYSTEM

N

SN

2.2.2 Command Qualifiers

VAX-11 COBOL-74 provides a series of command qualifiers that 'you

can

use to select or suppress compiler options. Table 2-1 summarizes the

qualifiers, which are then described in detail.

Table 2-1
Command Qualifiers

Qualifier Default

/ [NOJANSI_FORMAT : /NOANSI_FORMAT

/ [NO]COPY_ LIST /COPY_LIST

/ [NO]CROSS_REFERENCE /NOCROSS_REFERENCE
/ [NO]DEBUG /NODEBUG
/[NOJLIST[=file-spec]

/ [NO]MAP /NOMAP

/[NO]JOBJECT [=file-spec]

/ [NO]VERB_LOCATION /NOVERB_LOCATION

/ [NO]JWARNINGS /WARNINGS

/ANSI_FORMAT
/NOANSI_FORMAT

Indicates whether the source program is in ANSI (conventional)

format or in DIGITAL's terminal format.

For conventional format, the compiler expects 80-character images

with optional sequence numbers in character positions

1-6,

indicators in position 7, Area A beginning in position 8, Area B

beginning in position 12, and the identification area

positions 73-80.

By default, the compiler assumes that the source file 1is

in

in

terminal format; that is, Area A begins in record position 1.

/COPY_LIST

/NOCOPY LIST
Controls whether statements included by COPY statements in
source program are printed in the listing file.

the

/COPY_LIST is the default: the compiler includes all - source

statements in the source listing.

/NOCOPY LIST suppresses the listing of text copied from 1library

files; only the COPY statement appears in the listing file.

/CROSS_REFERENCE
/NOCROSS_REFERENCE

Controls whether the source program listing includes

cross-reference listing.

USING THE VAX-1ll COBOL-74 SYSTEM

a

2-3.

/CROSS_REFERENCE produces a cross-reference listing as part of
the listing file. The compiler sorts data-names and
procedure-names into ascending order and 1lists them with the
source program line numbers on which they appear. On the
listing, the symbol # indicates the source line on which the name
is defined. Note that the use of /CROSS_REFERENCE significantly
slows down the compilation of large programs.

By default, the compiler does not create a cross-reference
listing.

/DEBUG [=TRACEBACK]
/NODEBUG

Controls whether the compiler produces traceback information and
local symbol table information for the debugger.

/DEBUG allows you to refer to data items by data-name, and to
Procedure Division locations by line number; it generates both
traceback and symbol table information. /DEBUG=TRACEBACK
produces traceback information only; /NODEBUG generates neither.
The default is /NODEBUG. ‘

Chapter 9 discusses COBOL program debugging wusing the VAX/VMS
Symbolic Debugger.

/LIST[=fi1e—spec]
/NOLIST

Controls whether the compiler produces an output listing.

If you use the COBOL/C74 command in interactive mode, the
compiler, by default, does not create a listing file.

If the COBOL/C74 command is executed from a batch job, /LIST is
the default.

When you specify /LIST, you can control the defaults applied to
the output file specification by where you place the qualifier in
the command, as described in the VAX/VMS Command Language User's
Guide.

The output file type always defaults to LIS.

/MAP
/NOMAP
/MAP causes the compiler to produce the following reports in the
listing file:
e Data Division Map
® Procedure Map
® External Subprograms Referenced
® Data and Control PSECTs
® RTS Routines Referenced
® Segmentation Map
/NOMAP is the default.
2-4 USING THE VAX-11l COBOL-74 SYSTEM

TN

// ,-\\‘

//\\‘

/OBJECT [=file-spec]
/NOOBJECT
Controls whether the compiler produces an object file.

By default, the compiler produces an object file with the same
file name as the input file and a file type of OBJ. The compiler
also uses the default file type of OBJ when you include a file
specification with the /OBJECT qualifier that does not have a
file type.

/VERB_LOCATION

/NOVERB_LOCATION
Indicates whether the output listing produced by the compiler
shows the object location of each verb in the source program.

The location appears on the line before the source line in which
the verb is used.

The default is /NOVERB_LOCATION.

/WARNINGS

/NOWARNINGS
Controls whether the compiler prints informational diagnostic
messages as well as warning and fatal diagnostic messages. By
default, the compiler prints informational diagnostics; specify
/NOWARNINGS to suppress them.

Consider the following command line examples:
COBOL/C74/DEBUG PROGA

Produces an object module file PROGA.OBJ from the source
file PROGA.COB.

COBOL/C74/LIST/DEBUG/OBJECT=TESTB Al2

Uses the source file Al2.COB to produce object module
TESTB.OBJ and a source listing in file Al2.LIS.

COBOL/C74/LIST/CROSS_REFERENCE PAYROLL
Uses the source file PAYROLL.COB to produce object module
PAYROLL.OBJ and a source listing with cross reference in
file PAYROLL.LIS.

The debugger cannot reference data items by data-name 1in
this module because the /DEBUG qualifier is not specified.

COBOL/C74/LIST=RPTB.REP/DEBUG/MAP REPORTB.TXT

Uses the source file REPORTB.TXT to produce object module
REPORTB.OBJ and a source listing with map in file RPTB.REP.

USING THE VAX-11l COBOL-74 SYSTEM 2-5

2.2.3 Error Message Summary

If the compiler detects any errors during a compilation, it displays
an error message summary on the system output device. The error
message summary has the following format:

C74 -- nnnnn ERROR(S), nnnnn FATAL

NOTE

If any fatal errors occur, the compiler
does not generate an object file.

2.2.4 Common COBOL-74 Command Line Errors
Some commoﬁ errors to avoid when entering COBOL-74 command lines are:

|
‘e Omitting the /ANSI_ FORMAT qualifier for source programs that
are in conventional format.

° Including contradictory qualifiers, such as /MAP without
/LIST.

° Omitting version numbers from file specifications when you
want to compile other than the latest version of a source
file.

° Forgetting to use a file type in the file specification when
- you intend to wuse or «create a file with other than the
default file type.

2.3 LINKING COBOL-74 PROGRAMS

After you have compiled one or more source programs to produce object
modules, you must link the object module(s) to create a program image
that can then be executed. Linking resolves symbolic references in
the object code and establishes absolute addresses for them. This
section describes the procedure for creating executable images from
object modules using the VAX/VMS LINK command. You will find further
information in the VAX/VMS Command Language User's Guide and the
VAX-11 Linker Reference Manual.

To link object modules, enter a LINK command in the following format:

LINK [/command-qualifiers] file-spec(s) [/file-qualifiers]

2-6 USING THE VAX-11 COBOL-74 SYSTEM

where:
/command-qualifiers specify output file options.
file-spec specifies the input file(s) to be linked.’
/file-qualifiers specify input file options.

You can enter multiple file specifications separated from each other
by commas or plus signs (which are equivalent). Regardless of how
many file specifications you specify, the LINK command produces only
one executable image.

If you do not specify a file type in an input file specification, the
Linker assumes default file types, depending on the nature of the
file. For example, object files are assumed to have a file type of
OBJ. The VAX/VMS Command Language User's Guide discusses VAX-11
Linker default file types in detail. i}
Default file types for output files are discussed 1in the VAX/VMS
Command Language User's Guide. Consider the following command line:

LINK TESTA,TESTB,SYSSLIBRARY:C74LIB/LIB

This line causes the compiler to use two object modules (TESTA.OBJ and
TESTB.OBJ) to produce a single executable image (TESTA.EXE).

NOTE

The command line must specify the
library that contains the COBOL-74 RTS.
The examples in this chapter specify:

SYSSLIBRARY:C74LIB/LIB

You can also specify the optional
sharable RTS, which results in a smaller
image file and sharing of physical
memory when two or more COBOL images run
at the same time. Link with the
sharable RTS by specifying:

SYSSLIBRARY:C74LIB/OPT

Before you can use this option, your
system manager must install the sharable
image, SYSS$SSYSTEM:C74LIB.EXE, as SHARED.
The procedure is described 1in the
VAX/VMS Operator's Guide. -

USING THE VAX-1l1 COBOL-74 SYSTEM 2-7

The following discussion describes the command qualifiers and file
qualifiers that you are most likely to use for linking COBOL modules.
However, you will find complete discussions of all LINK command
qualifiers in the references already mentioned. The following
qualifiers are discussed:

Command qualifiers Default

/BRIEF

/[NO]CROSS_REFERENCE /NOCROSS_REFERENCE
/[NO]DEBUG[=file-spec] /NODEBUG

/ [NO]EXECUTABLE [=file~spec] /EXECUTABLE

/FULL

/[NOJMAP[=file-spec] /NOMAP

/ [NO] TRACEBACK /TRACEBACK

File qualifiers

/INCLUDE=module-name[,...]
/LIBRARY
/OPTIONS

Command Qualifiers:
/BRIEF
Produces a brief memory allocation map file. Use /BRIEF only if
you also specify /MAP; /BRIEF must fellow /MAP on the command
line.
The brief form of the map contains:
1. A summary of the image characteristics.
2. A list of all object modules included in the image.
3. A summary of link-time performance statistics.
Example
LINK/MAP/BRIEF PROGA,SYSSLIBRARY:C74LIB/LIB
' /CROSS_REFERENCE
/NOCROSS REFERENCE
Controls whether the Linker produces a symbol cross-reference on

the memory allocation map.

Use /CROSS_REFERENCE only if you also specify /MAP;
/CROSS_REFERENCE must follow /MAP on the command line.

2-8 USING THE VAX-1l COBOL-74 SYSTEM

,\4
,//

Example
LINK/MAP/CROSS_REFERENCE PROGA,SYSSLIBRARY:C74LIB/LIB

The symbol cross-reference lists each global symbol referenced in
the image, its value, and all modules in the image that refer to
it.

The default is /NOCROSS_REFERENCE.

/DEBUG[=file-spec]
/NODEBUG
Controls whether the Linker includes a debugger in the image.

If the object module contains local symbol table information for
the Debugger, specify /DEBUG to include the information in the
image as well.

You can include the optional file specification to specify a
user—-defined debugger; the default file type is OBJ. 1If you
specify /DEBUG without a file specification, the default VAX/VMS
Debugger is linked with the image. You will find more
information on using /DEBUG in the VAX/VMS Symbolic Debugger
Reference Manual.

The default is /NODEBUG.
Chapter 9 discusses COBOL program debugging.

/EXECUTABLE [=file-spec]

/NOEXECUTABLE
Controls whether the Linker <creates an executable image and
optionally supplies a file specification for the output image
file.

By‘default, the Linker creates an executable image with the same
file name as the first input file and a file type of EXE.

Use /NOEXECUTABLE to see the results of linking in less time than
the Linker would need to create an image file.

Examples:
LINK/EXECUTABLE=NEWPROG.IMG/MAP PROGA,SYSSLIBRARY:C74LIB/LIB
LINK/NOEXECUTABLE/MAP PROGA,SYSSLIBRARY:C74LIB/LIB
/FULL :
Produces a full memory allocation map listing. Use /FULL only if

you also specify /MAP; /FULL must follow /MAP on the command
line.

USING THE VAX-11l COBOL-74 SYSTEM 2-9

A full map listing contains:
1. All information contained in the brief listing.

2. Detailed descriptions of each program section and image
section in the image file.

3. Lists of global symbols by name and value.

Example

LINK/MAP/NOEXEC/FULL PROGA,SYSSLIBRARY:C74LIB/LIB

/MAP[=file-spec]

/NOMAP
Controls whether the Linker produces a memory allocation map
listing.

You can specify the file specification to name the map file;
otherwise, the name of the output file is the same as the name of
the first input file, with a file type of MAP.

When you specify /MAP, you can also specify /BRIEF, /FULL, or
/CROSS_REFERENCE to control the contents of the map. If you
specify none of these qualifiers, the map contains:

1. All the information contained in the brief listing.
2. A list of user-defined global symbols sorted by name.
3. A list of user-defined program sections.
The default is /NOMAP.
/TRACEBACK - : (
/NOTRACEBACK
Controls whether the Linker includes traceback information in the

image file.

By default, the Linker includes traceback information so the
system can trace the call stack when an error occurs. If you
specify /NOTRACEBACK, you will get no traceback reporting when
errors occur.

If you specify /DEBUG, the Linker also assumes /TRACEBACK.
{

File Qualifiers

/INCLUDE=module-name[, ...]
Indicates that the associated file specification refers to an
object module library (the default file type 1is OLB) ;

furthermore, it causes the Linker to unconditionally include only
the specified module(s).

2-10 USING THE VAX-11] COBOL-74 SYSTEM

s ~

T
i

You must specify at least one module-name. Specify more than one
by separating them with commas and enclosing the 1list in
parentheses.

You can also specify /LIBRARY when you specify /INCLUDE to cause
the Linker to search the library for unresolved references after
it unconditionally includes the specified module(s).

Examples:
LINK PROGA,LIBA/INCLUDE=MODA,SYSSLIBRARY:C74LIB/LIB

The Linker links PROGA.OBJ and the module
MODA from the 1library file LIBA.OLB to
produce PROGA.EXE.

LINK PROGA,LIBA/INC=(MODA,MODB)/LIB,SYSSLIBRARY:C74LIB/LIB

The Linker links PROGA.OBJ and the modules
MODA and MODB from the library file
LIBA.OLB. Because of the /LIBRARY file
qualifier, the Linker will also search
LIBA.OLB for any other unresolved references
in PROGA.OBJ, MODA, and MODB.

/LIBRARY

Indicates that the file specification refers to a library file to
be searched to resolve any undefined symbols in the input
file(s).

If the file specification does not include a file type, the
Linker assumes the default file type OLB. Do not specify a
library as the first input file wunless you also specify the
/INCLUDE qualifier to indicate which modules in the library are
to be unconditionally included in the image. You <can use both
/INCLUDE and /LIBRARY; this causes the Linker to include the
specified modules, then search the 1library for unresolved
references.

Examples
LINK PROGA,LIBA/LIBRARY,SYSSLIBRARY:C74LIB/LIB

The Linker searches LIBA.OLB for unresolved
references in PROGA.OBJ to create PROGA.EXE.

LINK LIBA/LIB/INCLUDE=MOD1/EXEC=PROG,SYSSLIBRARY:C74LIB/LIB
The Linker includes the module MODl1 from
LIBA.OLB, then searches LIBA.OLB for

unresolved references in MODl. The result
is an executable image PROG.EXE.

USING THE VAX-1l COBOL-74 SYSTEM 2-11

/OPTIONS
Indicates that the input file contains a 1list of options to
control 1linking. If the /OPTIONS file specification does not
include a file type, the Linker uses the default file type OPT.

The contents of the option file are described in the VAX-11
Linker Reference Manual.

2.4 EXECUTING A COBOL IMAGE

When the object modules have been 1linked to create an executable
image, you can use the RUN command to execute the image in the
process. If you specified SWITCH ON or OFF in the SPECIAL-NAMES
paragraph of the COBOL source program, you can specify the status of
switches before or during image execution.

2.4.1 Setting and Resetting Program Switches

COBOL program switches exist as the logical name COB$SWITCHES, which
can be defined for the process, group, or system. Use the DEFINE
command (you can also use the ASSIGN command) to change the status of
program switches:

DEFINE COBS$SWITCHES "switch-list"
where switch-list is a list of one or more program switch numbers
(1-16) separated by commas. The entire 1list must be enclosed in
quotes. A switch is set ON if its number appears in the switch-list;
otherwise, it is set OFF.
Examples
DEFINE COBSSWITCHES "1,5"
Sets switches 1 and 5 ON; sets all others OFF.
DEFINE COB$SWITCHES "4,5,6,7,8,9,10,11,12,13,14,15,16"
Sets all switches ON except 1, 2, and 3.
DEFINE COB$SWITCHES " "
Turns OFF all switches.
The order of evaluation of logical name assignments is: process,
group, system. System and group logical name assignments (including
COBOL program switch settings) continue until they are changed (or
deassigned). Process logical name assignments exist until either they
are changed (or deassigned) or until the process terminates.
Therefore, you should be aware of system and group assignments of

COBSSWITCHES before executing an image if you do not define it
yourself in your process.

2-12 USING THE VAX-11l COBOL-74 SYSTEM

/\\

You can guarantee the intended status of COBOL program switches by
setting switches just before executing an image that uses them. You
can confirm the switch settings by using the following command:

'~ SHOW LOGICAL COBSSWITCHES
You can use the DEASSIGN command to remove the switch-setting 1logical
name from your process; the group or system logical name (if any) is
then active:
DEASSIGN COBS$SWITCHES

You can also change the status of switches during execution:

1. 1Interrupt the image with CTRL/Y or a STOP 1literal COBOL
statement.

2. Use a DEFINE command to change switch settings.

3. ' Continue the image with a CONTINUE command. Be sure that you
do not force the interrupted image to exit by entering a
command that executes another image.

2.4.2 The RUN Command
Use the RUN command to execute an image:
RUN [/command-qualifier] file-spec

If you do not specify a file type in file specification, the RUN
command uses the default file type EXE.

The RUN command has two optional command qualifiers:

/DEBUG
Specify /DEBUG to request the debugger at execution time if the
image was not linked with the debugger. However, you cannot use
/DEBUG if /NOTRACEBACK was specified when the image was linked.

/NODEBUG
Specify /NODEBUG if you do not want the debugger at execution
time for an image that was linked with the /DEBUG qualifier.

Examples
RUN PROGA Executes PROGA.EXE.
RUN PROGB.ABC Executes the image named PROGB.ABC.
RUN/NODEBUG PROGA Executes PROGA.EXE without the debugger

that may have been linked with it.

You can also use the RUN (Process) command to execute the image as a
separate process. (See the VAX/VMS Command Language User's Guide.)

USING THE VAX-1l COBOL-74 SYSTEM 2-13

CHAPTER 3

NON-NUMERIC CHARACTER HANDLING

3.1 INTRODUCTION

COBOL programs hold their data in fields whose sizes are described in
their source programs. These - fields are thus "fixed" during
compilation to remain the same size throughout the 1lifespan of the
resulting object program.

The data descriptions of the fields in a COBOL program describe them
as belonging to any of three data classes -- alphanumeric, alphabetig,
or numeric class. Numeric class data items contain only numeric

values, alphabetic class
data items may contain values that

only A-Z and space, but alphanumeric class

are all alphabetic, all numeric, or

a mixture of alphabetic bytes, numeric bytes, or, in fact, any
character from the ASCII character set.)
Further, these three classes are subdivided into five categories:
alphabetic, numeric, numeric edited, alphanumeric edited, and
~alphanumeric. Every elementary item except for an index data item
belongs to one of the classes and further to one of the categories.
The class of a group item is treated at run time as alphanumeric
regardless of the classes of subordinate elementary items.
For alphabetic and numeric (data items) class and category are
synonymous.
L
An alphabetic field is a field declared to contain only alphabetic
(A-Z and space) characters.
An alphanumeric class field that is declared to contain any ASCII

character is called an alphanumeric category field.

If the data description of an alphanumeric class field specifies

certain editing operations will

moved into it, that field is called an alphanumeric or numeric

category field.

When reading the following sections of this chapter, this

between the class or category of a
the item contains should always be

that
performed on any value that is
edited

be

distinction
data item and the actual value that
kept in mind.

Sometimes the text refers to alphabetic, alphanumeric, and
alphanumeric edited data items as non-numeric data items. This is to
distinguish them from items that are specifically described as numeric
items.

Regardless of the class of an item, it is usually possible to store a
value in the item, at run time, that is "illegal". Thus, non-numeric
ASCII characters can be placed into a field described as numeric
class, and an alphabetic class field may be loaded with non-alphabetic
characters.

To increase readability, the following sections occasionally omit the
word "class" when describing an item; however, the reader should
regard the descriptive word, numeric, alphabetic, or alphanumeric, as
referring to the class of an item unless it applies specifically to
the value in the item.

This chapter discusses non-numeric class data and the non-arithmetic,
non-input-output operations that manipulate this type of data.

3.2 DATA ORGANIZATION

Usually, the data areas in a COBOL program are organized into group
items with subordinate elementary items. A group item is a data item
that is followed by one or more data items (elementary items) with
higher valued level numbers. An elementary item has no higher valued
subordinate level number.

All of the data areas used by COBOL programs (except for certain
registers and switches) must be described in the Data Division of the
source program. The compiler allocates memory space for these fields
and fixes them in size at compilation time.

The following sub-sections (3.2.1 and 3.2.2) discuss, on a gdeneral
level, how the compiler handles group and elementary data items.

3.2.1 Group Items

The size of a group item is the total size of the data area occupied
by 1its subordinate elementary items. The compiler considers group
items to be alphanumeric DISPLAY items. ' Thus, the software
manipulates group items as 1if they had been described as PIC X()
items, and ignores the structure of the data contained within them.

3.2.2 Elementary Items
The size of an elementary item 1is determined by the number of

allowable symbols it contains that represent character positions. For
example, consider figure 3-1.

3-2 NON-NUMERIC CHARACTER HANDLING

N

N

01 TRANREC.
03 FIELD-1 PIC X(7).
03 FIELD-2 PIC S9(5)V99.

Figure 3-1
Field Sizes

Both fields consume seven bytes of memory; however, FIELD-1 contains
seven alphanumeric bytes while FIELD-2 contains decimal digits and an
operational sign. Although certain verbs handle these two classes of
data differently, the data, in either case, occupies seven bytes of
VAX-11 memory. COBOL operations on such fields are independent of the
mapping of the field into VAX-1l memory words (l6-bit words that hold
two 8-bit bytes). Thus, a field may begin in the left or right-hand
byte of a word with no effect on the function of any operations that
may refer to that field.

In effect, the compiler sees memory as a continuous array of bytes,
not words. This becomes particularly important when declaring a table
with the OCCURS clause (see Chapter 5, Table Handling).

Records (a 01 level entry and all of its subordinate entries) and data
items that have a level number of 77 and all literal values given in
the Procedure Division automatically begin on even byte addresses.

I/0 verbs require that records be aligned on word boundaries because
the VAX-11 COBOL-74 file system reads and writes integral numbers of
words.

Non-input-output verbs do not require alignment of the data. However,

'when two fields are aligned identically, the processing verb can

sometimes increase its efficiency by processing them a word at a time
rather that a byte at a time.

In all cases, automatic word alignment of literals, records, and/or 77
items increase the opportunity for more efficient processing.

3.3 SPECIAL CHARACTERS

COBOL allows the user to manipulate any of the 128 characters of the
ASCII <character set as alphanumeric data even though many of the
characters are control characters, which usually control input/output
devices. Generally, alphanumeric data manipulations are performed in
a manner that attaches no "meaning" to an 8-bit byte. Thus, the user
can move and compare these control characters in the same manner as
alphabetic and numeric characters.

Although the object program can manipulate all ASCII characters,
certain control characters cannot appear in non-numeric literals since
the compiler uses them to delimit the source text. Further, the
keyboards of the console and keypunch devices have no convenient input
key for many of the special characters, thus making it difficult to
place them into non-numeric literals.

NON-NUMERIC CHARACTER HANDLING 3-3

Special characters may be placed into data fields of the object
program by placing the binary value of the special character into a
numeric COMP field and redefining that field as alphanumeric DISPLAY.
Consider the following example of redefinition. (Keep in mind that
the even byte of a word corresponds to the low-order bits of a binary
word.) ('
01 LF-COMP PIC 999 COMP VALUE 10.
01 LF REDEFINES LF-COMP PIC X.
01 HT-COMP PIC 999 COMP VALUE 9.
01 TAB REDEFINES HT-COMP PIC X.
01 CR-COMP PIC 999 COMP VALUE 13.
01 CR REDEFINES CR-COMP PIC X.

Figure 3-2
Redefining Special Characters

The sample coding in Figure 3-2 introduces each character as a 1l-word
COMP item with a decimal value, then redefines it as a single byte.
(The second byte of the redefinition need not be described at the 01
level, since redefinition at this level does not require identically
\sized fields.)

Use the Character Set table in Appendix B of the VAX-11l COBOL-74

Language Reference Manual to determine the decimal value for any ASCII
character.

3.4 TESTING NON-NUMERIC FIELDS

3.4.1 Relation Tests

An IF statement that contains a relation condition (greater-than,
less-than, equal-to, etc.) can compare the value in a non-numeric data
item with another value and use the result to alter the flow of
control in the program.

An IF statement with a relation condition compares two operands,

either of which may be an identifier or a literal, except that both

cannot be literals. If the relation exists between the two operands,
the relation condition has a truth value of true. '

Figure 3-3 illustrates the general format of a relation condition.
(The relational characters ">," "<," and "=," although required, are
not wunderlined to avoid confusion with other symbols such as
greater-than-or-equal-to.)

3-4 NON-NUMERIC CHARACTER HANDLING

~

\.

~

TN
% \

IS [NOT] GREATER THAN
IS [NOT] LESS THAN

identifier-1 IS [NOT} EQUAL TO identifier-2
literal-1 IS [NOT] > literal-2
arithmetic-expression-1 IS [NOT] < f arithmetic-expression-2
IS [NOT] =
Figure 3-3

Relation Condition

When coding a relational operator, leave a space before and after each
reserved word. When the reserved word NOT is present, the software
considers it and the next key word or relational character to be one
relational operator that defines the comparison. Figure 3-4 shows the
meanings of the relational operators.

OPERATOR MEANING
IS [NOT] GREATER THAN The first operand is greater than
IS [NOT] > (or not greater than) the second operand.
IS [NOT] LESS THAN The first operand is less than
IS [NOT] < (or not less than) the second operand.
IS [NOT] EQUAL TO The first operand is equal to
IS [NOT] = (or not equal to) the second operand.
Figure 3-4

The Meanings of the Relational Operators

3.4.1.1 C(Classes of Data - COBOL allows comparison of both numeric
class operands and non-numeric class operands; however, it handles
each class of data slightly differently. For example, it allows a
comparison of two numeric operands regardless of the formats specified
in their respective USAGE clauses, but requires that all other
comparisons (including comparisons of any group items) be between
operands with the same usage. It compares numeric class operands with
respect to their algebraic values and non-numeric (or a numeric and a
non-numeric) class operands with respect to a specified collating
sequence.

If only one of the operands is numeric, it must be an integer data
item or an integer literal and it must be DISPLAY usage; further, the
manner in which the software handles numeric operands depends on the
non-numeric operand. Consider the following two types of non-numeric
operands:

1. If the non-numeric operand 1is an elementary item or a

literal, the software treats the numeric operand as if it had
been moved into an alphanumeric data item (which is the same
size as the numeric operand) and then compared. This causes
any operational sign, whether carried as a separate character
or as an overpunch, to be stripped from the numeric item;

NON-NUMERIC CHARACTER HANDLING 3-5

thus, it appears to be an unsigned quantity. In addition, if
the picture-string of the numeric item contains trailing P
characters indicating that there are assumed integer
positions that are not actually present, these are filled
with zero digits during the operation of stripping any sign
that 1is present. Thus, an item with a picture-string of
S9999PPP is moved to a temporary location where it is
described with a picture-string of 9999999. 1If its value is
432J (-4321), the value in the temporary location will be
4321000. The numeric digits, stored as ASCII bytes, take
part in the comparison. '

2. If the non-numeric operand is a group item, the software
treats the numeric operand as if it had been moved into a
group item (which is the same size as the numeric operand)
and then compared. This is equivalent to a "group move".
The software ignores the description of the numeric field
(except for length) and, therefore, includes any operational
sign, whether carried as a separate character or as an
overpunch, in its length. (Overpunched characters are never
ASCII numeric digits, but characters in the range of from A
through R, , or .) Thus, the sign and the digits, stored as
ASCII bytes, take part in the comparison, and zeroes are not
supplied for P characters in the picture-string.

The compiler will not accept a comparison between a non-integer
numeric operand and a non-numeric operand, and any attempt to compare
these two items will cause a diagnostic message at compile time.

3.4.1.2 The Comparison Operation - If the two operands are
acceptable, the software compares them byte for byte starting at their
left-hand end. It proceeds from 1left to right, comparing the
characters in corresponding character positions until it either
encounters a pair of unequal characters or reaches the right-hand end
of the longer operand.

If the software encounters a pair of unequal characters, it considers
their relative position in the collating sequence. The operand with
the character that is positioned higher in the collating sequence is
the greater operand. ’

If the operands have different lengths, the comparison proceeds as
though the shorter operand were extended on the right by sufficient
ASCII spaces (hex 20) to make them both the same length.

If all of the pairs of characters compare equally, the operands are
equal.

3-6 NON-NUMERIC CHARACTER HANDLING

~

N

3.4.2 Class Tests

An 1IF statement that contains a class condition (NUMERIC or
ALPHABETIC) can test the value 1in a non-numeric data item (USAGE
DISPLAY only) to determine if it contains numeric or alphabetic data
and use the result to alter the flow of control in the program.

Figure 3-5 illustrates the general format of a class condition. If
the data item consists entirely of the ASCII characters 0123456789
with or without the operational sign, the <class condition would
determine that it is NUMERIC. If the item consists entirely of the
ASCII characters A through Z and space, the <class condition would
determine that it is ALPHABETIC.

NUMERIC
identifier IS [NOT]

ALPHABETIC

Figure 3-5
Class Condition, General Format

When the reserved word, NOT, is present, the software considers it and
the next key word as one class condition that defines the class test
to be executed; for example, NOT NUMERIC is a truth test for
determining if an operand contains at least one non-numeric byte.

If the item being tested was described as a numeric data item, it may
only be tested as NUMERIC or NOT NUMERIC. (For further information on
using class conditions with numeric items, see Chapter 4.) The NUMERIC
test cannot examine an item that was described either as alphabetic or
as a group item containing elementary items whose data descriptions
indicate the presence of operational signs.

3.5 DATA MOVEMENT

COBOL provides three statements (MOVE, STRING, and UNSTRING) that
perform most of the data movement operations required by
business-oriented programs. The MOVE statement simply moves data from
one field to another. The STRING statement concatenates a series of
sending fields into a single receiving field. The UNSTRING statement
disperses a single sending field into multiple receiving fields. Each
has its wuses and its limitations. This section discusses data
movement situations which take advantage of the versatility of these
statements.

The MOVE statement handles the majority of data movement operations on
character strings. However, the MOVE statement has limitations in its
ability to handle multiple fields; for example, it cannot, by itself,
concatenate a series of sending fields into a single receiving field
or disperse a single sending field into several receiving fields.

NON-NUMERIC CHARACTER HANDLING 3-7

Two MOVE statements will, however, bring the contents of two fields
together into a third (receiving) field if the receiving field has
been "subdivided" with subordinate elementary items that match the two
sending fields 1in size. 1If other fields are to be concatenated into
the third field and they differ in size from the first two fields,
then the receiving field will require additional subdivisions (through
redefinition).

Another method of concatenation with the MOVE statement 1is to
subdivide the receiving field into single character fields, creating a
"table" of a single character field that occurs as many times as there
are characters in the receiving field, and execute a data movement
loop which moves each sending field, a character at a time, using a
subscript that moves continuously across the receiving field.

Two MOVE statements can also be used to disperse the contents of one
sending field to several receiving fields. The first MOVE statement
can move the left-most end of the sending field to a receiving field;
then the second MOVE statement can move the right-most end of the
sending field to another receiving field. (The second receiving field
must first be described with the JUSTIFIED clause.) Characters from
the middle of the sending field cannot easily be moved to any
receiving field without extensive redefinitions of the sending field
or a character-by-character movement loop (as with concatenation).

The concatenation and dispersion limitations of the MOVE statement are
handled dquite easily by the STRING and UNSTRING statements. The
following sections (3.6, 3.7, and 3.8) discuss these three statements
in detail.

3.6 THE MOVE STATEMENT

The MOVE statement moves the contents of one field into another. The
following illustration shows the two formats of the MOVE statement.

Format 1
MOVE FIELDl1 TO FIELD2
Format 2

MOVE CORRESPONDING FIELD1 TO FIELD2

NOTE

Format 2 is discussed in Section 3.6.6.

FIELDl is the name of the sending field and FIELD2 is the name of the
receiving field. The statement causes the software to move the
contents of FIELDl into FIELD2. The two fields need not be the same
size, class, or usage; and they may be either group or elementary
items.

3-8 NON-NUMERIC CHARACTER HANDLING

N

If the two fields are not the same length, the software will align
them on one end or the other -- and will truncate or pad (with spaces)
the other end. The movement of group items and non-numeric elementary
items is discussed below.

A point to remember when using the MOVE statement is that it will
alter the contents of every character position in the receiving field.

3.6.1 Group Moves

If either the sending or receiving field is a group item, the software
considers the move to be a group move. It treats both the sending and
receiving fields in a group move as if they were alphanumeric class
fields. If the sending field is a group item and the receiving field
is an elementary item, the software ignores the receiving field
description (except for the size description, in bytes, and any
JUSTIFIED clause); therefore, the software conducts no conversion or
editing on the receiving field.

3.6.2 Elementary Moves

If both fields of a MOVE statement are elementary items, their data
description clauses control their data movement. (If the receiving
field was described as numeric or numeric edited, the rules for
numeric moves -- see Chapter 4, Numeric Character Handling -- control
the data movement.) \

The following table shows the 1legal (and 1illegal) non-numeric
elementary moves.

Table 3-1
Legal Non-Numeric Elementary Moves

SENDING FIELD CATEGORY RECEIVING FIELD CATEGORY
ALPHABETIC ALPHANUMERIC
ALPHANUMERIC EDITED
ALPHABETIC ‘ Legal Legal
ALPHANUMERIC Legal Legal
ALPHANUMERIC EDITED Legal Legal
NUMERIC INTEGER
(DISPLAY ONLY) Illegal Legal
NUMERIC EDITED Illegal Legal

NON-NUMERIC CHARACTER HANDLING 3-9

In all of the legal moves shown above, the software treats the sending
field as though it had been described as PIC X(). If the sending
field description contains a JUSTIFIED clause, the clause will have no
effect on the move. If the sending field picture-string contains
editing characters, the software uses them only to determine the
field's size.

Numeric class data must be in DISPLAY (byte) format and must be an
integer.

If the description of the numeric data item indicates the presence of
an operational sign (either as a character or an overpunch) or if
there are P characters in the picture-string of the numeric data item,
the software first moves the item to a temporary location. During
this move, it removes the sign and fills out any P character positions
with =zero digits. It then wuses the temporary value (which may be
shorter than the original if a separate sign were removed, or longer
if P character positions were filled in with zeroes) as the sending
field as if it had been described as PIC X(), that 1is, as if its
category were alphanumeric.

If the sending item is an unsigned numeric «class field with no P
characters in its picture-string, the software does not move the item
to a temporary location.

A numeric integer data item sending field has no effect on the
justification of the receiving field. If the numeric sending field is
shorter than the receiving field, the software fills the receiving
field with spaces.

In legal, non-numeric elementary moves, the receiving field actually
controls the movement of data. All of the following items, in the
receiving field, affect the move: (1) the size, (2) the presence of
editing characters in its description, and (3) the presence of the
JUSTIFIED RIGHT clause in its description. The JUSTIFIED clause and
editing characters are mutually exclusive; therefore, the two classes
are discussed separately below.

When a field that contains no editing characters or JUSTIFIED clause
in its description is wused as the receiving field of a non-numeric
elementary MOVE statement, the statement moves the characters by
starting at the left-hand end of the fields and scanning across,
character-by-character to the right. 1If the sending item is shorter
than the receiving item, the software fills the remaining character
positions with spaces.

3.6.2.1 Edited Moves - Alphabetic or alphanumeric fields may contain

\ editing characters. Consider the following insertion editing

characters. Alphabetic fields will accept only the B character;
however, alphanumeric fields will accept all three characters.

B -- blank insertion position
0 -- zero insertion position f
/ —=- slash insertion position.

3-10 NON-NUMERIC CHARACTER HANDLING

‘/N\\\

When a field that contains an insertion editing character in its

Ppicture-string is used as the receiving field of a non-numeric

elementary MOVE statement, each receiving character position that
corresponds to an editing character receives the insertion byte value.
Figure 3-6 illustrates the use of such symbols with the statement,
MOVE FIELDl TO FIELD2. (Assume that FIELDl was described as PIC
X(7).)

FIELD2
FIELD1 PICTURE-STRING CONTENTS AFTER MOVE
| —— — ——— M
070476 XX/99/XX 07/04/76
04JUL76 99BAAAB99 04 JUL 76
2351212 XXXBXXXX/XX/ 235 1212/ /
123456 0XBOXBOXBOX 01 02 03 04
Figure 3-6

Data Movement with Editing Symbols

Data movement always begins at the left end of the sending field, and
moves only to the byte positions described as A, 9, or X in the
receiving field picture-~string. When the sending field is exhausted,
the software supplies space characters to fill any remaining character
positions (not insertion positions) in the receiving field. If the
receiving field becomes exhausted before the last character is moved
from the sending field, the software ignores the remaining sending
field characters.

3.6.2.2 Justified Moves - A JUSTIFIED RIGHT clause in the data
description of the receiving field causes the software to reverse its
usual data movement conventions. (It starts with the right-hand
characters of both fields and proceeds from right to left.) If the
sending field is shorter than the receiving field, the software fills
the remaining 1left-hand character positions with spaces. Figure 3-7

- illustrates various data description situations for the statement,

MOVE FIELD1l TO FIELD2, with no editing.

FIELD1 FIELD2
PICTURE-STRING CONTENTS PICTURE-STRING | CONTENTS AFTER

’ (AND JUST CLAUSE) MOVE

XX AB

XXXXX ABC

XXX ABC XX JuUsT | BC
XXXXX JUSsT ABC

Figure 3-7

Data Movement with No Editing

NON-NUMERIC CHARACTER HANDLING 3-11

3.6.3 Multiple Receiving Fields

If a MOVE statement is written with more than one receiving field, it
moves the same sending field value to each of the receiving fields.
It has essentially the same effect as a series of separate MOVE
statements that all have the same sending field. (For information on
subscripted fields, see section 3.6.4.)

The receiving fields need have no relationship to each other. The
software checks the legality of each one independently, and performs
an independent move operation on each one.

Multiple receiving fields on MOVE statements provide a convenient way
to set many fields equal to the same value, such as during
initialization code at the beginning of a section of processing. For
example: :

MOVE SPACES TO LIST-LINE, EXCEPTION-LINE, NAME-FLD.
MOVE ZEROES TO EOL-FLAG, EXCEPT-FLAG, NAME-FLAG.

MOVE 1 TO COUNT-1, CHAR-PTR, CURSOR.

3.6.4 Subscripted Moves

Ahy field of a MOVE statement may be subscripted and the réferenced
field may also be used to subscript another name in the same
statement.

When more than one receiving field is named in the same MOVE
statement, the order in which the software evaluates the subscripts
affects the results of the move. Consider the following two
situations: '

Situation 1 MOVE FIELD1 (FIELD2) TO FIELD2 FIELD3.

Situation 2 MOVE FIELDl TO FIELD2 FIELD3(FIELD2).

Figure 3-8
Subscripted MOVE Statements

In situation 1, the software evaluates FIELDl(FIELD2) only once,
before it moves any data to the receiving fields. 1In effect it is as
if the statement were replaced with the following statements:

MOVE FIELDl (FIELD2) TO TEMP.

MOVE TEMP TO FIELD2.

MOVE TEMP TO FIELD3.

3-12 NON-NUMERIC CHARACTER HANDLING

ST

In situation 2, the software evaluates FIELD3(FIELD2) immediately
before moving the data into it (but after moving the data from FIELD1
to FIELD2). Thus, it uses the newly stored value of FIELD2 as ‘the
subscript = value. In effect, it is as if the statement were replaced
with the following statements:

MOVE FIELDl1 TO FIELD2.

MOVE FIELDl TO FIELD3(FIELD2).

3.6.5 Common Errors, MOVE Statement

A most important thing to remember when writing MOVE statements is
that the compiler considers any MOVE statement that contains a group
item to be a group move. It is easy to forget this fact when moving a
group item to an elementary item, and the elementary item contains
editing characters, or a numeric integer. These attributes of the
receiving field (which would determine the action of an elementary
move) have no effect on the action of a group move.

3.6.6 Format 2 - MOVE CORRESPONDING

Format 2 of the MOVE statement allows the programmer to move multiple
elementary items from one group item to another, by using a single
MOVE statement. When the corresponding phrase 1is wused, selected
elementary items in the sending field are moved to those elementary
items in the receiving field whose data-names are 1identical. For
example:

01 A-GROUP. 01 B-GROUP.
02 FIELDL. , 02 FIELD2.
03 A PIC X. 03 A PIC X.
03 B PIC 9. 03 C PIC XX.
03 C PIC XX. 03 E PIC XXX.

03 D PIC 99.
03 E PIC XXX.
MOVE CORRESPONDING A-GROUP TO B-GROUP
OR

MOVE CORRESPONDING FIELDl1 TO FIELD2

NON-NUMERIC CHARACTER HANDLING 3-13

The preceding examples are equivalent to the following series of MOVE
statements:

MOVE A OF FIELD1l TO A OF FIELD2
MOVE C OF FIELDl TO C OF FIELD2

MOVE E OF FIELDl TO E OF FIELD2

3.7 THE STRING STATEMENT

The STRING statement concatenates the contents of two or more sending

fields into a single field.

The statement has many forms; the simplest 1is equivalent, in
function, to a non-numeric MOVE statement. Consider the following
illustration; if the two fields are the same size, or if the sending
field (FIELD1) 1is larger, the statement 1is equivalent to the
statement, MOVE FIELD1 TO FIELD2.

STRING FIELD1l DELIMITED BY SIZE INTO FIELD2,

Figure 3-9
Sample STRING Statement

If the sending field is shorter than the receiving field, an important
difference between the STRING and MOVE statements emerges: the
software does not fill the receiving field with spaces. Thus, the
STRING statement may leave some portion of the receiving field
unchanged.

Additionally, the receiving field must be an elementary alphanumeric
field with no JUSTIFIED clause or editing characters in its
description. Thus, the data movement of the STRING statement always
fills the receiving field from left-to-right with no editing
insertions.

3.7.1 Multiple Sending Fields

An important characteristic of the STRING statement is its ability to
concatenate a series of sending fields into one receiving field.
Consider the following example of the STRING statement:

STRING FIELDl1A FIELD1B FIELD1C DELIMITED BY SIZE
INTO FIELD2.

Figure 3-10
Concatenation with the STRING Statement

3-14 NON-NUMERIC CHARACTER HANDLING

7N

TN
Id \

N

In this sample STRING statement, FIELD1A, FIELD1B, and FIELD1C are all
sending fields. The software moves them to the receiving field
(FIELD2) in the order in which they appear in the statement, from left
to right, resulting in the concatenation of their values.

If FIELD2 is not large enough to hold all three items, the operation
stops when it is full. 1If this occurs while moving one of the sending
fields, the software ignores the remaining characters of that field
and any other sending fields not yet processed. For example, if
FIELD2 became full while receiving FIELD1B, the software would ignore
the rest of FIELD1B and all of FIELDIC.

If the sending fields do not fill the receiving field, the operation
stops with the movement of the last character of the last sending item
(FIELD1C in Figure 3-10). The software does not alter the contents
nor space-fill the remaining character positions of the receiving
field.

The sending fields may be non-numeric 1literals and figurative
constants (except for ALL 1literal). For example, the following
statement sets up an address label with the literal period and space
between the STATE and ZIP fields:

STRING CITY SPACE STATE ". " ZIP

DELIMITED BY SIZE INTO ADDRESS-LINE.

Figure 3-11
Literals as Sending Fields

Sending fields may also be subscripted. For example, the following
statement uses subscripts to concatenate the elements of a table
(A-TABLE) into a single field (A-FOUR). (I, of course, must be a
subscript or an index-name.)

STRING A-TABLE(I) A-TABLE(I+1) A-TABLE(I+2) A-TABLE(I+3)
DELIMITED BY SIZE INTO A-FOUR.

Figure 3-12
Indexed Sending Fields

3.7.2 The POINTER Phrase

Although the STRING statement normally starts at the left-hand end of
the receiving field, with the POINTER phrase it is possible to start
it scanning at another point within the field. (The scanning,
however, remains left-to-right.)

NON-NUMERIC CHARACTER HANDLING 3-15

MOVE 5 TO P.
STRING FIELD1A FIELD1B DELIMITED BY SIZE
INTO FIELD2 WITH POINTER P.

Figure 3-13
Sample POINTER Phrase

When the POINTER phrase 1is used, the value of P determines the
starting character position in the receiving field. In Figure 3-13,
the 5 in P causes the software to move the first character of FIELDI1A
into character position 5 of FIELD2 (the left-most character position
of the receiving field is character position 1) and leave positions 1
through 4 unchanged.

When the STRING operation is complete, the software leaves P pointing
to one character position beyond the last character replaced in the
receiving field. 1If FIELD1A and FIELDIB in Figure 3-13 are both four
characters 1long, P will contain a value of 13 (5+4+4) when the
operation is complete (assuming that FIELD2 is at least 12 characters
long).

3.7.3 The DELIMITED BY Phrase

Although the sending fields of the STRING statement are fixed in size
at compile time, they frequently contain variable-length items that
are padded with spaces. For example, a 20-character city field may
contain only the word MAYNARD and 13 spaces. A valuable feature of
the STRING statement is that it may be used to move only the wuseful
data from the left-hand end of the sending field. The DELIMITED BY
phrase, written with a data-name or literal, instead of the word SIZE,
performs this operation. (The delimiter may be a literal, a data
item, a figurative constant, or the word SIZE. It may not be ALL
literal since ALL literal has an indefinite length. When the phrase
contains the word SIZE, the software moves each sending field, in
total, until it either exhausts the sending field, or fills the
receiving field.)

Consider the following example:

STRING CITY SPACE STATE ". " ZIP
DELIMITED BY SIZE INTO ADDRESS-LINE.

Figure 3-14
Delimiting with the Word SIZE

If CITY is a 20-character field, the result of the STRING operation
shown in Figure 3-14 might look like the following:

AYER MA. 01432

______16 spaces

3-16 NON-NUMERIC CHARACTER HANDLING

TN

A far more attractive printout can be produced by having the STRING
operation produce the following:

AYER, MA. 01432

To accomplish this, use the figurative constant SPACE as a delimiter
on the sending field; thus,

MOVE 1 TO P.
STRING CITY DELIMITED BY SPACE

INTO ADDRESS-LINE WITH POINTER P.
STRING ", " STATE ". " ZIP

DELIMITED BY SIZE

INTO ADDRESS-LINE WITH POINTER P.

Figure 3-15
SPACE as a Delimiter

This sample coding uses the pointer's characteristic of pointing to
one character position beyond the 1last character replaced in the
receiving field to enable the second STRING statement to begin at a
position one character past where the first STRING statement stopped.
(The first STRING statement moves data characters until it encounters
a space character -- a match of the delimiter SPACE. The second
STRING statement adds the 1literal, the 2-character STATE field,
another literal, and the 5-character ZIP field.) -

The delimiter can be varied for each field within a single STRING
statement by repeating the DELIMITED BY phrase after the sending field
names to which it applies. Thus, the following shorter statement has
the same effect as the preceding example. (Placing the operands on
separate source lines, as shown in this example, has no effect on the
operation of the statement, but improves program readability and
simplifies debugging.) '

STRING CITY DELIMITED BY SPACE
“’ n STATE ". "
ZIP DELIMITED BY SIZE
INTO ADDRESS-LINE.

Figure 3-16
Repeating the DELIMITED BY Phrase

The sample STRING statement in Figure 3-16 cannot handle 2-word city
names, such as New York, since the software would consider the space
between the two words as a match for the delimiter SPACE. A longer
delimiter, such as two or three spaces (non-numeric literal), can
solve this problem. Only when a sequence of characters matches the
delimiter will the movement stop for that data item.

NON-NUMERIC CHARACTER HANDLING 3-17

With a 2-byte delimiter, the same statement can be rewritten in a
simpler form: ’

STRING CITY ",‘ " STATE ". " ZIP
DELIMITED BY " " INTO ADDRESS-LINE.

Figure 3-17
Delimiting with More Than One Space Character

Since only the CITY field may contain two consecutive spaces (the
entire STATE field is only two bytes long), the delimiter's search of
the other fields will always be unsuccessful and the effect 1is the
same as moving the full field (delimiting by SIZE).

Data movement under control of a data-name or 1literal 1is generally
slower in execution speed than movement delimited by SIZE.

The example in Figure 3-17 illustrates a frequent source of error in
the wuse of STRING statements to concatenate fields. The remainder of
the receiving field is not space-filled as with a MOVE statement. If
ADDRESS-LINE is to be ©printed on a mailing label, for example, the
STRING statement should be preceded by the statement, MOVE SPACES TO
ADDRESS-LINE. This gquarantees a space fill to the right of the
concatenated result. Alternatively, the last £field concatenated by
the STRING statement can be a field previously set to SPACES. (This
sending field must be moved under control of a delimiter other than
SPACE, of course.)

3.7.4 The OVERFLOW Phrase

When the SIZE option of the DELIMITED BY phrase controls the STRING
operation and the pointer value is either known or the POINTER phrase
is not used, the programmer can tell, by simple addition, if the
receiving field is large enough to hold the sending fields. However,
if the DELIMITED BY phrase contains a literal or an identifier, or 1if
the pointer value 1is not predictable, it may be difficult to tell
whether the size of the receiving field is adequate, and an overflow
may occur.

The ON OVERFLOW phrase at the end of the STRING statement tests for an
overflow condition:

STRING FIELDl1A FIELD1B DELIMITED BY "C"
INTO FIELD2 WITH POINTER PNTR
ON OVERFLOW GO TO PN57.

Figure 3-18
The ON OVERFLOW Phrase

'3-18 NON-NUMERIC CHARACTER HANDLING

7N

N

P

Overflow occurs when the receiving field is full and the software is
either about to move a character from a sending field or is
considering a new sending field. Overflow may also occur if, during
the initialization of the statement, the pointer contains a value that
is either less than 1 or greater than the 1length of the receiving
field. In this case, the software moves no data to the receiving
field and terminates the operation immediately. '

The ON OVERFLOW phrase cannot distinguish the overflow caused by a bad
initial wvalue in pointer PNTR from the overflow caused by a receiving
field that is too short. Only a separate test, preceding the STRING
statement, can distinguish between the two.

The folloWing examples illustrate the overflow condition:

DATA DIVISION.
01 FIELD1A PIC XXX VALUE "ABC".
01 FIELD2 PIC XXXX.

PROCEDURE DIVISION.
1. STRING FIELD1A QUOTE DELIMITED BY SIZE INTO FIELD2..
2. STRING FIELDl1A FIELD1A DELIMITED BY SIZE INTO FIELD2.
3. STRING FIELDI1A FIELDIA DELIMITED BY "C" INTO FIELD2.
4. STRING FIELD1A FIELDIA FIELDIA FIELDIA -
DELIMITED BY "B" INTO FIELD2.
5. STRING FIELDIA FIELDIA "C" DELIMITED BY "C"
INTO FIELD2.
6. MOVE 2 TO P.
STRING FIELD1A "AC" DELIMITED BY "C"
INTO FIELD2 WITH POINTER P.

) Figure 3-19
Various STRING Statements
Illustrating the Overflow Condition

The results of executing the numbered statements follow:

Table 3-2
Results of the
Preceding Sample Statements

Value of FIELD2 after

the STRING operation Overflow? _ y
l. ABC" No

2. ABCA Yes

3. ABAB No

4., AAAA : No

5. ABAB Yes

6. AABA No

NON-NUMERIC CHARACTER HANDLING 3-19

3.7.5 Subscripted Fields in STRING Statements

All data-names used in the STRING statement may be subscripted, and
the pointer value may be used as a subscript.

Since the pointer value might be used as a subscript on one or more of
the. fields in the statement, it is important to understand the order
in which the software evaluates the subscripts and exactly when it
updates the pointer. (The use of the pointer as a subscript is not
specified by ANS-74 COBOL. Before using it, read the note at the end
of this subsection.)

The>56ftware updates the pointer after it moves the last character out
of each sending field. Consider the following sample coding:

MOVE 1 TO P.

STRING "ABC"
SPACE
"DEF" DELIMITED BY SIZE
INTO R WITH POINTER P.

Figure 3-20
STRING Statement with Pointer

During the movement of "ABC" into the receiving field (R), the pointer
value remains at 1. After the move, the software increases the
pointer value by 3 (the size of the sending field literal "ABC") and
it takes on the value 4. The software then moves the figurative
constant SPACE and increases the pointer value by 1 and it takes on
the wvalue 5. "DEF" is then moved and, on completion of the move, the
software increases the pointer to its final value for this operation,
8.

Now, consider the updating characteristics of the pointer when applied
to subscripting:

MOVE 1 TO P.
STRING CHAR(P)
CHAR(P)
CHAR (P)
CHAR(P) DELIMITED BY SIZE
INTO R WITH POINTER P.

Figure 3-21
Subscripting with the Pointer

If CHAR is a l-character field in a table, the pointer increases by
one after each field has been moved and the software will move them
into R as if they had been subscripted as CHAR(l), CHAR(2), CHAR(3),
and CHAR(4). If CHAR is a 2-character field, the pointer increases by
two after each field has been moved and the fields will move into R as
if they had been subscripted as CHAR(l), CHAR(3), CHAR(5), and
CHAR(7) .

3-20 NON-NUMERIC CHARACTER HANDLING

Thus, the software evaluates the subscript of a sending item once,
immediately before it considers the item as a sending item.

The software evaluates the subscript of a receiving item only once, at
the start of the STRING operation. Therefore, if the pointer is used
as a subscript on the receiving field, changes occurring to the
pointer during the execution of the STRING statement will not alter
the choice of which receiving string is altered.

Even the delimiter field can be subscripted, and it too <can be
subscripted with the pointer. The software re-evaluates the delimiter
subscript once for each sending field, immediately before it compares
the delimiter to the field. Thus, by subscripting it with the pointer
value, the delimiter can be changed for each sending field. This has
the peculiar effect of choosing the next sending field's delimiter
based on the position, in the receiving field, into which its first
character will fall. For example, consider the following sample
coding: :

'

01 DTABLE.
03 D PIC X OCCURS 7 TIMES.

MOVE 1 TO P.

STRING "ABC"
" ABC "
"ABC" DELIMITED BY D(P)
INTO R WITH POINTER P.

Figure 3-22
Subscripting the Delimiter

The following table shows the value that will arrive in the receiving
field (R) from the three "ABC" literals if DTABLE contains the values
shown in the left-hand column:

Table 3-3
Results of the
Preceding Sample Statements

DTABLE Value R Value
ABCDEFG (Unchanged)
BCDEFGH AABABC
CDEFGHI ABABCABC
CCccccecece ABABAB

NON-NUMERIC CHARACTER HANDLING 3-21

NOTE

The rules in this section, concerning
subscripts in the STRING statement, are
rules that are not specified by 1974
American National Standard COBOL.
Dependence on these rules, particularly
those involving the use of the pointer
field as a subscript, may produce
programs that will not perform the same
way on other COBOL compilers.

If the pointer field is not used as a
subscript on any of the fields in the
statement, the point at which the
software evaluates the subscripts is
immaterial to the execution of the
statement. Thus, by avoiding the use of
the pointer as a subscript, uniform
results can be expected from all COBOL
compilers that adhere to 1974 ANS COBOL.

3.7.6 Common Errors, STRING Statement
The most common errors made when writing STRING statements are:
) using the word "TO" instead of "INTO"
° forgetting to write "DELIMITED BY SIZE";
® forgetting to initialize the pointer;
° initializing the pointer to 0 instead of 1;

) forgetting to provide for space fill of the receiving field
when it is desirable.

3.8 THE UNSTRING STATEMENT

The UNSTRING statement disperses the contents of a single sending
field into multiple receiving fields.

The statement has many forms; the simplest is equivalent in function
to a non-numeric MOVE statement. Consider the following illustration;
the -sample statement is equivalent to MOVE FIELDl TO FIELD2,
regardless. of the relative sizes of the two fields.

UNSTRING FIELD1l INTO FIELD2.

Figure 3-23
Sample UNSTRING Statement

3-22 NON-NUMERIC CHARACTER HANDLING

AN

The sending field (FIELDl1l) may be either a group item or an
alphanumeric, or alphanumeric edited elementary item. The receiving
field (FIELD2) may be alphabetic, alphanumeric, or numeric, but it
cannot specify any type of editing.

If the receiving field is numeric, it must be DISPLAY usage. The
picture-string of a numeric receiving field may contain any of the
legal numeric description characters except for P and, of course, the
editing characters. The UNSTRING statement moves the sending field to
numeric receiving fields as if the sending field had been described as
an unsigned integer; further, it automatically truncates or zero
fills as required.

If the receiving field is not numeric, the software follows the rules
for elementary non-numeric MOVE statements. It left-justifies the
data in the receiving field, truncating or space-filling as required.
(If the data-description of the receiving field contains a JUSTIFIED
clause, the software right-justifies the data, truncating or
space-filling to the left as required.)

3.8.1 Multiple Receiving Fields

An important characteristic of the UNSTRING statement is its ability
to disperse one sending field into several receiving fields. Consider
the following example of the UNSTRING statement written with multiple
receiving fields:

UNSTRING FIELD1 INTO
FIELD2A FIELD2B FIELD2C.

Figure 3-24
Multiple Receiving Fields

In this sample statement, FIELDl is the sending field. The software
performs the UNSTRING operation by scanning across FIELDl1l from left to
right. When the number of characters scanned is equal to the number
of characters -in the receiving field, the software moves the scanned
characters into the receiving field and begins scanning the next group
of characters for the next receiving field.

Assume that each of the receiving fields in the preceding illustration
(FIELD2A, FIELD2B, and FIELD2C) 1is five characters long, and that
FIELDl is 15 characters long. The size of FIELD2A determines the
number of characters for the first move. The software scans across
FIELDl until the number of characters scanned equals the size of
FIELD2A (5). It then moves those first five characters to FIELD2A,
and sets the scanner to the next (sixth) character position in FIELDI1.
The size of FIELD2B determines the size of the next move. The
software begins this move by scanning across FIELDl from character
position six, until the number of scanned characters equals the size
of FIELD2B (5).

NON-NUMERIC CHARACTER HANDLING 3-23

The software then moves the sixth through the tenth characters to
FIELD2B, and sets the scanner to the next (eleventh) character
position-in FIELDl. FIELD2C determines the size of the last move (for
this example) and causes characters 11 through 15 of FIELDl to be
moved into FIELD2C, thus terminating this UNSTRING operation.

Each data movement acts as an individual MOVE statement, the sending
field of which is an alphanumeric field equal in size to the receiving
field. 1If the receiving field is numeric, the move operation will
convert the data to the numeric form.. For example, consider what
would happen if the fields under discussion had the data descriptions
and were manipulating the values shown in the following table:

Table 3-4 .
Values Moved Into the Receiving Fields
Based on the Value in the Sending Field

FIELD1 FIELD2A FIELDZé FIELD2C

PIC X(15). PIC X(5) PIC S9(5) - PIC S999v99
VALUE IS: LEADING SEPARATE

ABCDE1234512345 ABCDE +12345 3450
XXXXX0000100123 XXXXX +00001 1230

FIELD2A is an alphanumeric field and, therefore, the software simply
conducts an elementary non-numeric move with the first five
characters.

FIELDZB, however, has a leading separate sign that is not included in
its size. Thus, the software moves only five numeric characters and
generates a positive sign in the separate sign position.

FIELD2C has an implied decimal point with two character positions to-
the right of it, plus an overpunched sign on the low-order digit. The
sending field should supply five numeric digits; but, since the
sending field 1is alphanumeric, the software treats it as an unsigned
integer; it truncates the two high-order digits and supplies two zero
digits for the decimal positions. Further, it supplies a positive
overpunch sign, making the low-order digit a +0 (or the ASCII
character, {). (There is no simple way to have UNSTRING recognize a
sign character or a decimal point in the sending field.)

If the sending field is shorter than the sum of the sizes of the
receiving fields, the software ignores the remaining receiving fields.
If it reaches the end of the sending field before it reaches the end
of :one - of the receiving fields, the software moves the scanned
characters into that receiving field. It left-justifies and fills the
remaining character positions with spaces for alphanumeric data, or
decimal point aligns and zero fills the remaining character positions
for numeric data.

3-24 NON-NUMERIC CHARACTER HANDLING

,/,-\‘

Consider the following examples of a sending field that is too short.
(The statement is UNSTRING FIELD1l INTO FIELD2A FIELD2B. FIELD2A is a
3-character alphanumeric field, and receives the first three
characters of FIELDl1 (ABC) in every operation. FIELD2B, however, runs
out of characters every time before filling. Since FIELD2A always
contains the characters ABC, it is not shown.)

Table 3-5
Handling a Sending Field that is Too Short

FIELD1 FIELD2B FIELD2B
PIC X(6) PICTURE 1IS: Value after UNSTRING Operation
VALUE 1IS:
= — — —————————— |

ABCDEF XXXXX DEF

599999 0024F
ABC246 S9V999 600

59999 +0246

LEADING SEPARATE

3.8.2 The DELIMITED BY Phrase

The size of the data to be moved can be controlled by a delimiter,
rather than by the size of the receiving field. The DELIMITED BY
phrase supplies the delimiter characters.

UNSTRING delimiters are quite flexible; they can be 1literals,
figurative constants (including ALL literal), or identifiers
(identifiers may even be subscripted data-names). This sub-section
discusses the use of these three types of delimiters. Subsequent
sections cover multiple delimiters, the COUNT phrase, and the
DELIMITER phrase. Subscripting delimiters is discussed at the end of
this section under Subscripted Fields in UNSTRING Statements. ;

Consider the following sample UNSTRING statement; it wuses 'the
figurative constant, SPACE, as a delimiter:

UNSTRING FIELD1 DELIMITED BY SPACE INTO FIELD2.

Figure 3-25
Delimiting with a Space Character

In this example, the software scans the sending field (FIELD1l),
searching for a space character. If it encounters a space, it moves
all of the scanned (non-space) characters that precede that space to
the receiving field (FIELD2). If it finds no space character, it
moves the entire sending field. When it has determined the size of
the sending field, the software moves the contents of that field
following the rules for the MOVE Statement, truncating or zero filling
as required.

NON-NUMERIC CHARACTER HANDLING 3-25

The following table shows the results of an UNSTRING operation that
delimits with a 1literal asterisk (UNSTRING FIELDl DELIMITED BY "*"
INTO FIELD2).

Table 3-6
Results of Delimiting with an Asterisk
FIELD1 FIELD2 FIELD2
PIC X(6) PICTURE IS: VALUE AFTER
VALUE 1IS: UNSTRING
XXX ABC
ABCDEF X(7) ABCDEF
XXX JUSTIFIED DEF
*kkkkk XXX
* ABCDE XXX
A¥*xkk XXX JUSTIFIED A
246%** 59999 024F
12345% S9999 SEPARATE 2345+
TRAILING
2468** S999V9 SEPARATE +4680
LEADING
246% 9999 0000

If the delimiter matches the first character in the sending field, the
software considers the size of the sending field to be zero. The
movement operation still takes place, however, and fills the receiving
field with spaces or zeroes depending on its class.

A delimiter may also be applied to an UNSTRING statement that has
multiple receiving fields:

UNSTRING FIELD1l DELIMITED BY SPACE
INTO FIELD2A FIELD2B.

Figure 3-26
Delimiting with Multiple Receiving Fields

The sample instruction in Figure 3-26 causes the software to scan
FIELDl searching for a character that matches the delimiter. If it
finds a match, it moves the scanned characters to FIELD2A and sets the
scanner to the next character position to the right of the character
that matched. It then resumes scanning FIELD1 for a character that
matches the delimiter.

3-26 NON-NUMERIC CHARACTER HANDLING

e ~

TN

TN

TN

If the software finds a match, it moves all of the characters that lie
between the character that first matched the delimiter and the
character that matched on the second scan, and sets the scanner to the
next character position to the right of the character that matched.
(The DELIMITED BY phrase could handle additional receiving fields in
the same manner as it handled FIELD2B.)

The following table shows the results of an UNSTRING operation that
applies a delimiter to multiple receiving fields (UNSTRING FIELD1
DELIMITED BY "*" INTO FIELD2A FIELD2B).

Table 3-7
Results of Delimiting
Multiple Receiving Fields

FIELD1 VALUES AFTER UNSTRING OPERATION
PIC X(8) FIELD2A FIELD2B
VALUE IS: PIC X(3) PIC X(3)
- - e s

ABC*DEF* : DEF
ABCDE*FG ABC FG
A*Bx*kk% A B
*AB*CD** AB
**ABCDEF .
A*BCDEFG A BCD
ABC**DEF ABC

-~ AkkkkkkB A

The last two examples illustrate the limitations of a single character
delimiter. Accordingly, the delimiter may be 1longer than one
character and it may be preceded by the word ALL.

The following table shows the results of an UNSTRING operation that
uses a 2-character delimiter (UNSTRING FIELD1l DELIMITED BY "#**" INTO
FIELD2A FIELD2B): : '

Table 3-8
Results of Delimiting
with Two Asterisks

FIELD1 .“ VALUES AFTER UNSTRING OPERATION
PIC X(8) FIELDZ2A ' FIELD2B
VALUE IS: PIC XXX . PIC XXX

- JUSTIFIED
ABC**DEF ABC ‘ DEF
A*B*C*D* A*B
AB***C*D AB C*D
AB**C*D* AB *D*
AB**CD** AB CD
AB***CD* - __AB CD*
AB*****CD || AB

NON-NUMERIC CHARACTER HANDLING 3-27

Unlike the STRING statement, the UNSTRING statement accepts the ALL
literal as a delimiter. When the word ALL precedes the delimiter, the
action of the UNSTRING statement remains essentially the same as with
one delimiter wuntil the scanning operation finds a match. At this
point, the software scans farther, looking for additional consecutive
strings of characters that also match the delimiter item. It
considers the "ALL delimiter" to be one, two, three, or more adjacent
repetitions of the delimiter item.

The following table illustrates the results of an UNSTRING operation
that wuses an ALL delimiter (UNSTRING FIELDl DELIMITED BY ALL "*" INTO
FIELD2A FIELD2B).

Table 3-9
Results of Delimiting
with ALL Asterisks

FIELD1 VALUES AFTER UNSTRING OPERATION
PIC X(8) FIELD2A FIELD2B

VALUE IS: PIC XXX PIC XXX

) JUSTIFIED
_ —

ABC*DEF* ABC DEF

ABC**DEF ABC DEF

A**kkkk*F A F

A*Phkkkk A F

A*CDEFG " A EFG

The next table illustrates the results of an UNSTRING operation that
combines ALL with a 2-character delimiter (UNSTRING FIELD1 DELIMITED
BY ALL "*#*" INTO FIELD2A FIELD2B).

Table 3-10
Results of Delimiting with
ALL Double Asterisks

FIELD1 VALUES AFTER UNSTRING OPERATION
PIC X(8) PIC XXX PIC XXX
VALUE IS: JUSTIFIED
ABC**DEF ABC DEF
AB**DE** " AB DE
A**kDk%k A *D
Akkkkkkk ‘ A *

3-28 NON-NUMERIC CHARACTER HANDLING

P

TN

~

In addition to unchangeable delimiters, such as literals and
figurative constants, delimiters may be designated by identifiers.
Identifiers (which may even be subscripted data-names) permlt variable
delimiting. Con51der the following sample statement:

UNSTRING FIELD1 DELIMITED BY DEL1
INTO FIELD2A FIELD2B.

Figure 3-27
Delimiting with an Identifier

The data-name, DEL1l, must be alphanumeric. It may be a group or
elementary item, and it may be edited. (Since the delimiter is not a
receiving field, any editing characters will not effect its use, other
than contributing to the size of the item.)

If the delimiter contains a subscript, the subscript may be varied as
a side effect of the UNSTRING operation. The evaluation of subscripts
is discussed later in this section.

3.8.2.1 Multiple Delimiters - The UNSTRING statement has the ability
to scan a sending field, searching for a match from a list of
delimiters. This list may contain ALL delimiters and delimiters of
various sizes. The only requirement of the list is that delimiters
must be connected by the word OR.

The following sample statement separates a sending field into three
receiving fields. The sending field consists of three strings
separated by the following: (1) any number of spaces, or (2) a comma
followed by a single space, or (3) a single comma, or (4) a tab
character, or (5) a carriage return character. (The ", " must precede
the "," in the list if it is ever to be recognized.) f

UNSTRING FIELDl DELIMITED BY
ALL SPACE OR

" ’ " OR
" ’ " OR
TAB OR
CR

INTO FIELD2A FIELD2B FIELD2C.

Figure 3-28
Multiple Delimiters

Table 3-11 illustrates the potential of this statement. The tab
(represented by the letter t) and carriage return (represented by the
letter r) characters represent single character fields containing the
ASCII horizontal tab and carriage return characters.

NON-NUMERIC CHARACTER HANDLING 3-29

Table 3-11
Results of thée Multiple Delimiters
Shown in Figure 3-28

FIELD1 ” FIELD2A FIELD2B FIELD2C
PIC X(12) PIC XXX PIC 9999 PIC XXX
A,0,Cr A 0000 ‘ C
At456, E A 0456 _ E

A 3 9 A 0003 9

AttBr A 0000 B

a,,C A 0000 c

ABCD, 4321,% ABC 4321 Z
t--tab character, r--carriage return character

3.8.3 The COUNT Phrase

The COUNT phrase keeps track of the size of the sending string and
stores the length in a user-supplied data area.

The length of a delimited sending field may vary widely (from zero to
the full length of the field) and some programs may require knowledge
of this length. For example, if it exceeds the size of the receiving
field (which is fixed in size) some data may be truncated and. the
program's logic may require this information.

To use the phrase, simply follow the receiving field name with the
words COUNT IN and an identifier. Consider the following sample
statement:

UNSTRING FIELDl1 DELIMITED BY ALL "*"
INTO FIELD2A COUNT IN COUNT2A
FIELD2B COUNT IN COUNT2B
FIELD2C.

Figure 3-29
The COUNT Phrase

In this sample statement, the software will count the number of
characters between the left-hand end of FIELD]l and the first asterisk
in FIELDl and place that value into COUNT2A; thus, COUNT2A contains
the size of the first sending string. The software does not include
the delimiter in the count (as it is not a part of the string).

3-30 NON-NUMERIC CHARACTER HANDLING

TN

TN

TN

The software then counts the number of characters in the second
sending field and places that value into COUNT2B.

The phrase should be used only where needed; in this example the
length of the string moved to FIELD2C is not needed, so no COUNT
phrase follows it.

If the receiving field is shorter than the value placed in the count
field, the software truncates the sending string. (If the number of
integer positions in a numeric field is smaller than the value placed
into the count field, high-order numeric digits have been lost.) If
the software finds a delimiter match on the first character it
examines, it places a zero in the count field.

The count field must be described as a numeric integer, either COMP or
DISPLAY usage, with no editing symbols nor the character P in its
picture-string. The software moves the count value into the count
field according to the rules for an elementary numeric MOVE statement

The COUNT phrase may be used only in conjunction with the DELIMITED BY
phrase.

3.8.4 The DELIMITER Phrase

The DELIMITER phrase causes the actual character or characters that
delimited the sending field to be stored in a user-supplied data area.
This phrase is most useful when: (1) the statement contains a
delimiter 1list, (2) any one of the items in the list might have
delimited the field, and (3) program logic flow depends on which one
found a match. In fact, the DELIMITER and COUNT phrases could be used
together and program logic flow could depend on both the size of the
sending string and the delimiter character that terminated it.

To use the DELIMITER phrase, simply follow the receiving field name
with the words DELIMITER IN and an identifier. (The software places
the delimiter character in the area named by the identifier.) Consider
the following sample UNSTRING statement:

UNSTRING FIELDl1 DELIMITED BY "," OR TAB OR
ALL SPACE OR CR
INTO FIELD2A DELIMITER IN DELIMA
FIELD2B DELIMITER IN DELIMB
FIELD2C.

Figure 3-30
The DELIMITER Phrase

After moving the first sending string to FIELD2A, the software takes
the character (or characters) that delimited that string and places it
in DELIMA. DELIMA, then, contains a comma, or a tab, or a carriage
return, or any number of spaces. Since the delimiter string is moved
under the rules of the elementary non-numeric MOVE statement, the
software truncates or space fills with left or right justification
(depending on its data description).

NON-NUMERIC CHARACTER HANDLING 3-31

The software then moves the second sending string to FIELD2B and
places its delimiting character into DELIMB.

When a sending string is delimited by the end of the sending field
(rather than a match on a delimiter) the delimiter string is of zero
length. This causes the DELIMITER item to be space filled. The
phrase should be used only where needed; in this example, the
character that delimits the last sending string is not needed, so no
DELIMITER phrase follows FIELD2C.

The data item named in the DELIMITER phrase must be described as an
alphanumeric item. It may contain editing characters and it may even
be a group item.

When the DELIMITER and COUNT phrases are used together, they must
appear 1in the correct order (DELIMITER phrase preceding the COUNT
phrase). Both of the data items named in these phrases may be
subscripted or indexed. If they are subscripted, the subscript may be
varied as a side effect of the UNSTRING operation. (The evaluation of
subscripts is discussed in section 3.8.8.)

3.8.5 The POINTER Phrase

Although the UNSTRING statement normally starts at the left-hand end
of the sending field, the POINTER phrase permits the user to select a
character position in the sending field for the software to begin
scanning. (The scanning, however, remains left-to-right.)

When a sending field is to be dispersed into multiple receiving
fields, it often happens that the choice of delimiters, the size of
subsequent receiving fields, etc. depend on the value in the first
sending string or the character that delimited that string. Thus, the
program may need to move the first field, hold 1its place in the
sending field, and examine the results of the operation to determine
how to handle the sending items that follow. This is done by using an
UNSTRING statement with a POINTER phrase that fills only the first
receiving field. When the first string has been moved to a receiving
item, the software updates the pointer data item with a new position
(one character beyond the delimiter that caused the interruption) to
begin the next scanning operation. The program may then examine the
new position, the receiving field, the delimiter value, the sending
string size, and resume the scanning operation by executing another
UNSTRING statement with the same sending field and pointer data item.
Thus, the UNSTRING statement can move one sending string at a time,
with the form of each move being dependent on the context of the
preceding string of data. '

The POINTER phrase must follow the 1last receiving item in the

statement. Consider the following two UNSTRING statements with their
accompanying POINTER phrases and tests:

3-32 NON-NUMERIC CHARACTER HANDLING

” \\\

Py

—

MOVE 1 TO P.
UNSTRING FIELDl DELIMITED BY
":" OR TAB OR CR OR ALL SPACE
INTO FIELD2A
DELIMITER IN DELIMA
COUNT IN LSIZEA
WITH POINTER PNTR.
IF LSIZEA = 0 GO TO NO-LABEL-PROCESS.
IF DELIMA = ":"
IF PNTR > 8 GO TO BIG-LABEL-PROCESS
ELSE GO TO LABEL-PROCESS.
IF DELIMA = TAB GO TO BAD-LABEL PROCESS.

UNSTRING FIELDl1 DELIMITED BY ... WITH POINTER PNTR.

Figure 3-31
The POINTER Phrase

PNTR contains the current position of the scanner 1in the sending
field. The second UNSTRING statement uses PNTR to begin scanning the

~additional sending strings in FIELDI1.

Since the software considers the left-most character to be character
position one, the value returned by PNTR may be used to examine the
next character. To do this, simply use PNTR as a subscript on the
sending field (providing that the sending field is also described as a
table of characters). For example, consider the following sample
coding:

01 FIELDI.
02 FIELD1-CHAR OCCURS 40 TIMES.

UNSTRING FIELD1
WITH POINTER PNTR.
IF FIELD1-CHAR(PNTR) = "X" ...

Figure 3-32
Examining the Next Character
By Using the Pointer Data
Item as a Subscript

Another way to examine the next character of the sending field 1is to
use the UNSTRING statement to move it to a l-character receiving
field. Consider the sample coding in figure 3-33.

NON-NUMERIC CHARACTER HANDLING 3-33

UNSTRING FIELD1
WITH POINTER PNTR.
UNSTRING FIELDl1l INTO CHAR1 WITH POINTER PNTR.
SUBTRACT 1 FROM PNTR.
IF CHARL = "X" ...

Figure 3-33
Examining the Next Character
By Placing It Into a l-Character Field

The program must decrement PNTR in order for this case to work 1like
the one illustrated in Figure 3-32, since .the. second ' UNSTRING
statement will increment the pointer value by 1. -

The program must initialize the POINTER phrase data . item before the
UNSTRING statement uses it. The software will terminate the UNSTRING
operation if the initial value of the pointer is. less than one or
greater than the length of the sending field. . (A pointer value that
is less than one or greater than the 1length of the sending field
causes an overflow condition. Overflow conditions are discussed in
section 3.8.7.) :

The POINTER and TALLYING phrases may be used together - in the same
UNSTRING statement; but, when both are used, the POINTER phrase must
precede the TALLYING phrase. SIS «

3.8.6 The TALLYING Phrase

The TALLYING phrase counts the number of receiving fields that
received data from the sending field. : ‘

When an UNSTRING statement contains several ..receiving fields, the
possibility exists that there may not always - -be as many sending
strings as there are receiving fields. The TALLYING phrase provides a
convenient method for keeping a count of how many fields were acted
upon.

MOVE 0 TO RCOUNT.
UNSTRING FIELD1l DELIMITED BY "," OR ALL SPACE
INTO FIELD2A
FIELD2B
FIELD2C
FIELD2D
FIELD2E
TALLYING IN RCOUNT.

Figure 3-34
The TALLYING Phrase

3-34 NON-NUMERIC CHARACTER HANDLING

N

SN

e

If the software has moved only three sending strings when it reaches
the end of FIELDl, it adds 3 to RCOUNT. The first three fields
(FIELD2A, FIELD2B, and FIELD2C) contain data from the operation, and
the last two (FIELD2D and FIELD2E) do not.

The TALLYING data item always contains the sum of its initial contents
plus the number of sending strings acted upon by the UNSTRING command
just executed. Thus, the programmer may want to initialize the tally
count before each use.

When used in the same statement with a POINTER phrase, the TALLYING
phrase must follow the POINTER phrase and both phrases must follow all
of the field names, the DELIMITER and COUNT phrases. The data items
for both phrases must contain numeric integers, that is, be without
editing characters or the letter P in their picture-strings; both-
data items may be either COMP or DISPLAY usage. They may be signed or
unsigned and, if they are DISPLAY usage, they may contain any desired
sign option.

The data items for both phrases may be subscripted or indexed, or they
may be wused as subscripts on other fields in the statement. (The
evaluation of subscripts is discussed in section 3.8.8.) A convenient
use of the TALLYING phrase data item is as a subscript of a receiving
field. Consider the following sample coding, which causes program
control to execute the UNSTRING statement repeatedly until it exhausts
the sending field.

MOVE 1 TO PNTR, TLY.
PARl. UNSTRING FIELD1 DELIMITED BY "," OR CR
INTO FIELDZ2(TLY)
DELIMITER IN DEL2
WITH POINTER PNTR
TALLYING IN TLY.
IF DEL2 = "," GO TO PARIl.

Figure 3-35
The POINTER and TALLYING Phrases
Used Together

This sample coding causes program control to loop through the UNSTRING
statement, using the pointer, PNTR, to scan across FIELDl with
successive executions. Each comma isolates a sending string until
control reaches either a carriage return character or the end of
FIELDl. If it reaches the end of the field without encountering a
carriage return character, the software places a space into the
delimiter field, DEL2, and control falls through the IF statement and
out of the loop.

Since the TALLYING data item, TLY, is increased by 1 after each data
movement, it serves as a subscript on the receiving field. 1In effect
this causes the software to unpack the value in FIELDl into an array
of fixed-size fields. Further, an array of COUNT data items can be
supplied and loaded by the UNSTRING/TALLYING statement by adding: the
COUNT 1IN phrase to the coding in Fiqgure 3-35, as is shown in Figure
3-36.

NON-NUMERIC CHARACTER HANDLING 3-35

-

COUNT IN C(TLY)

Figure 3-36
Subscripting the COUNT Phrase
With the TALLYING Data Item

The TALLYING data item, in the above example, is one greater than the
number of receiving fields acted upon by the UNSTRING operation. This
is because the data item must be initialized to a value of one in
order to be used as a subscript for the first receiving item.

3.8.7 The OVERFLOW Phrase

The OVERFLOW phrase detects the overflow condition and provides an
imperative statement to be executed when it detects the condition. An
overflow condition exists when either of the following two situations
occurs:

1. The UNSTRING statement 1is about to be executed and its
pointer data item contains a value of 1less than one or
greater than the size of the sending field. When it detects
this situation, the software executes the OVERFLOW phrase
before it moves any data. Thus, the values of all of the
receiving fields remain unchanged.

2. The UNSTRING statement has filled all of the receiving fields
and data still remains in the sending field that has not been
matched as a delimiter or included in a sending string. When
it detects this situation, the software executes the OVERFLOW
phrase after it has executed the UNSTRING statement. Thus,
the values of all of the receiving fields are updated, but
some data has not been moved.

If the UNSTRING operation causes the scanner to move off the end of
the sending field (thus exhausting it), the software will not execute
the OVERFLOW phrase. :

Consider the following set of instructions, which cause program
control to execute the UNSTRING statement repeatedly until it exhausts
the sending field. The TALLYING data item is a subscript indexing the
receiving field. (Compare this loop with the one in Figure 3-35,
which accomplishes the same thing.)

v

MOVE 1 TO TLY PNTR.
PARl. UNSTRING FIELD1 DELIMITED BY "," OR CR
INTO FIELDZ2(TLY)
WITH POINTER PNTR
TALLYING IN TLY
ON OVERFLOW GO TO PARI.

Figure 3-37
Using the OVERFLOW Phrase

3-36 NON-NUMERIC CHARACTER HANDLING

7/

L~

NOTE

The overflow condition also occurs if
the value of a pointer data item lies
outside the sending field at the start
of execution of the UNSTRING statement.
(The pointer value must not be less than
1, nor greater than the length of the
sending field.) This type of overflow is
not distinguishable from the overflow
condition described at the start of this
section, except that this condition
causes the UNSTRING statement to
terminate before any data movement takes
place. Then, the values of all
receiving fields remain unchanged.

3.8.8 Subscripted Fields in UNSTRING Statements

Since the flexibility of the UNSTRING statement is enhanced by
subscripting and indexing and particularly by subscripting with other
fields within the statement (such as subscripting the receiving field
with the TALLYING data item as discussed above), it is important to
understand how often and exactly when the software evaluates these
subscripts and indexes. This sub-section discusses the frequency and
times of subscript evaluation.

The software evaluates subscripts and indexes on the following items
only once, at the initiation of the UNSTRING statement; thus, any
change in subscript values during the execution of the statement has
no effect on these fields:

1. Sending field,

2. POINTER data item,

3. TALLYING data item.
The software evaluates subscripts and indexes on the following items
immediately before it moves data into the item. It moves the data to
these items in the order in which they are 1listed in the statement
(which is the same order as below):

1. Receiving field,

2. DELIMITER data item,

3. COUNT data item.
The software evaluates any subscripts and indexes on the data-names in
the DELIMITED BY phrase (delimiters) immediately before it scans each

sending string looking for a delimiter match. Thus, it re-evaluates
these data-names once for each receiving field in the statement.

NON-NUMERIC CHARACTER HANDLING 3-37

If any of the following items are used as subscripts on any receiving
fields, the programmer must be aware of the point at which these items
are updated:

° POINTER data-item,

® TALLYING data-item,

) COUNT data-item,

° Another receiving field.

Figure 3-38 illustrates, with a flow chart, the sequence of evaluation
operations:

‘ ° START ’

m EVALUATE IF STORE
EVALUATE CONTINUE e DELIMITER POINTER SCANNER IN
ALL SCANNING FOR e RECEIVING v e
DELIMITER REPETITIVE w FIELD e o e
SUBSCRIPTS MATCHES < SUBSCRIPT
I
o
) £
£ STORE IF
SCAN PDATE = DELIMITER TALLYING ADD 170
SENDING v 5 STRING IN PHRASE TALLYING
FIELD FOR SCANNER 4 RECEIVING PRESENT DATA ITEM
DELIMITER w L FIELD
([evaLoATE
[
5!@5.%5 & COUNT SENDING YES
DELIMITER e 8 FIELD FIELD EXHAUSTED
AT
MATeH SUBSCRIPT g SUBSCRIPT ?
&
<
24
X
a
MOVE SENDING E STORE COUNT
ALL STRING TO 5 VALUE IN ORE
DELIMITER RECEIVING 8 COUNT FIELD R G
? FIEL =L FIELDS
?
END
H-MK-00046-00
Figure 3-38

Sequence of Subscript Evaluation

3-38 NON-NUMERIC CHARACTER HANDLING

e ~

NOTE

The rules in this section concerning the
exact point at which the software
evaluates the identifiers in the
DELIMITED BY phrase and the point at
which it updates the POINTER and
TALLYING data items, are rules that are
specified by 1974 American National
Standard COBOL, as opposed to the STRING
statement where these are not so
specified.

3.8.9 Common Errors, UNSTRING Statement
The most common errors made when writing UNSTRING statements are:
® Leaving the OR connector out of a delimiter list;

® Misspelling or interchanging the words, DELIMITED and
DELIMITER;

® Writing the DELIMITER and COUNT phrases in the wrong order
when both are present (DELIMITER must precede COUNT);

° Leaving out the word INTO or writing it as TO;

° Repeating the word INTO where it is not needed; thus:

UNSTRING FIELD1 DELIMITED BY SPACE OR TAB
INTO FIELD2A DELIMITER IN DELIMA
INTO FIELD2B DELIMITER IN DELIMB
INTO FIELD2C DELIMITER IN DELIMC.

Figure 3-39
Erroneously Repeating the Word INTO

® Writing the POINTER and TALLYING phrases in the wrong order
(POINTER must precede TALLYING).

3.9 THE INSPECT STATEMENT

The INSPECT statement examines the character positions in a field and
counts or replaces certain characters (or groups of characters) in
that field.

Like the STRING and UNSTRING operations, INSPECT operations scan
across the field from 1left to right; further, 1like those two
statements, the INSPECT statement features a phrase which allows it to
begin or terminate the scanning operation with a delimiter match.
(Thus, the operation can begin within the field instead of at the
left-hand end, or it may begin at the left-hand end and terminate
within the field.)

NON-NUMERIC CHARACTER HANDLING 3-39

The TALLYING operation (which counts certain characters in the field)
and the REPLACING operation (which replaces certain characters in the
field) are quite versatile and may be applied to all of the characters
in the delimited area of the field being inspected, or they may be
applied only to those characters that match a given character string
under stated conditions. Consider the following sample statements,
which both cause a scan of the complete field:

INSPECT FIELDl1 TALLYING TLY FOR ALL "B".

- Figure 3-40
Sample INSPECT...TALLYING Statement

This statement scans FIELD1l looking for the character B. Each time it
finds a B, it increments TLY by 1.

INSPECT FIELD1 REPLACING ALL SPACE BY ZERO.

Figure 3-41
Sample INSPECT...REPLACING Statement

This statement scans FIELDl1 looking for space characters. Wherever it
finds a space character, it replaces it with zero.

One INSPECT statement can contain both a TALLYING phrase and a
REPLACING phrase. However, when used together, the TALLYING phrase
must precede the REPLACING phrase. An INSPECT statement with both
phrases is equivalent to two separate INSPECT statements and, in fact,
the software compiles such a statement into two distinct INSPECT
statements. (To simplify debugging, therefore, it is best to
initially write the two phrases in separate INSPECT statements.)

3.9.1 The BEFORE/AFTER Phrase

The BEFORE/AFTER phrase acts as a delimiter and (possibly) restricts
the area of the field being inspected.

The following sample statement would count only the zeroes that
precede the percent sign (%) in FIELDl.

INSPECT FIELDl TALLYING TLY
FOR ALL ZEROES BEFORE "g&".

Figure 3-42
Sample INSPECT...BEFORE Statement

3-40 NON-NUMERIC CHARACTER HANDLING

TN

KN

TN

The delimiter (the percent sign in the preceding sample statement) can
be a single character, a string of characters, or any figurative
constant. Further, it can be either an identifier or a literal.

® If the delimiter is an identifier, it must be an elementary
data item of DISPLAY usage. It may be alphabetic,
alphanumeric, or numeric, and, it may contain editing
characters. The compiler always treats the item as if it had
been described as an alphanumeric string. (It does this by
implicit redefinition of the item, as described in Section
3.9.2.)

° If the delimiter is a literal, it must be non-numeric.

The software repeatedly compares the delimiter characters against an
equal number of characters in the field being inspected. If none of
the characters matches the delimiter, or if insufficient characters
remain in the field for a full comparison (at the right-hand end), the
software considers the comparison to be unequal.

The examples of the INSPECT statement in Figure 3-43, illustrate the
way the delimiter character finds a match in the field being
inspected. (The portion of the field the statement ignores as a
result of the BEFORE/AFTER phrase delimiters is crossed out with a
slash, and-the portion it inspects is underlined.)

INSTRUCTION _FIELDl1 VALUE
INSPECT FIELDl...BEFORE "E". ABCDRPBHZ
INSPECT FIELDl...AFTER "E". ZBZPERFGHI
INSPECT FIELDl...BEFORE "K". ABCDEFGHI
INSPECT FIELDl...AFTER "K". RBZPEYGHA
INSPECT FIELDl...BEFORE "AB". kBCPEFGHZ
INSPECT FIELDl...AFTER "AB". KBCDEFGHI
INSPECT FIELDl...BEFORE "HI". ABCDEFGHZ
INSPECT FIELDl...AFTER "HI". KBCDEPFGAY
INSPECT FIELDl...BEFORE "I ", ABCDEFGHI
INSPECT FIELDl...AFTER "I ". KBZDEFEAZ

The ellipsis represents the position of the TALLYING or REPLACING
phrase. :

Figure 3-43
Matching the Delimiter Characters
to the Characters in a Field

NON-NUMERIC CHARACTER HANDLING 3-41

The software scans the field for a delimiter match before it scans for
the inspection operation (TALLYING or REPLACING), thus establishing
the limits of the operation before beginning the actual inspection.
Section 3.9.3 further discusses the importance of the separate scan.

3.9.2 Implicit Redefinition

The software requires that certain fields referred to by the INSPECT
statement be alphanumeric fields. If one of these fields was
described as another data class, the compiler redefines that field so
the INSPECT statement can handle it as a simple alphanumeric string.
This implicit redefinition is conducted as follows:

° If the field was described as alphabetic, alphanumeric
edited, or unsigned numeric, the compiler simply redefines it
as alphanumeric. This is a compile-time operation; no data
movement occurs at run time.

) If the field was described as signed numeric, the compiler
first removes the sign and then redefines the field as
alphanumeric. If the sign is a separate character, the
compiler ignores that character, essentially shortening the
field, and that <character does not participate 'in the
implicit redefinition. 1If the sign is an "overpunch" on the
leading or trailing digit, the compiler actually removes the
sign value and 1leaves the character with only the numeric
value that was stored in it. The compiler alters the digit
position containing the sign before beginning the INSPECT
operation and restores it to its former value after the
operation. If the sign's digit position does not contain a
valid ASCII signed numeric digit, the action of the
redefinition causes the value to change. Table 3-12 shows
these original, altered, and restored values.

The compiler never moves an implicitly redefined item from its storage
: position. All redefinition occurs in place.

The position of an implied decimal point on numeric quantities does
not affect implicit redefinition.

3-42 NON-NUMERIC CHARACTER HANDLING

Ve

Table 3-12

Original, Altered, and Restored Values Resulting
from Implicit Redefinition

ORIGINAL VALUE ALTERED VALUE RESTORED VALUE
P————
{ (78) 0 (30) { (78)
A (41) 1 (31) A (41)
B (42) 2 (32) B (42)
C (43) 3 (33) C (43)
D (44) 4 (34) D (44)
E (45) 5 (35) E (45)
F (46) 6 (36) F (46)
G (47) 7 (37) G (47)
H (48) 8 (38) H (48)
I (49) 9 (39) I (49)
} (7D) 0 (30) } (7D)
J (4A) 1 (31) J (42)
K (4B) 2 (32) K (4B)
L (4C) 3 (33) L (4C)
M (4D) 4 (34) M (4D)
N (4E) 5 (35) N (4E)
O (4F) 6 (36) O (4F)
P (50) 7 (37) P (50)
0 (51) 8 (38) Q (51)
R (52) 9 (39)° R (52)
0 (30) 0 (30) { (78)
1 (31) 1 (31) A (41)
2 (32) 2 (32) B (42)
3 (33) 3 (33) C (43)
4 (34) 4 (34) D (44)
5 (35) 5 (35) E (45)
6 (36) 6 (36) F (46)
7 (37) 7 (37) G (47)
8 (38) 8 (38) H (48)
9 (39) 9 (39) I (49)
All other values 0 (30) { (7B)

3.9.3 The INSPECT Operation

Regardless of the type of inspection (TALLYING or REPLACING), the
INSPECT statement has only one method for inspecting the characters in
the field. This section describes this method.

NON-NUMERIC CHARACTER HANDLING 3-43

However, before discussing how the inspection operation is conducted,
let's analyze the INSPECT statement itself:

INSPECT FIELDl TALLYING TLY FOR ALL "B" BEFORE "A".

The field being——d/' , The afgﬁment
inspected

The operation The delimiter
phrase phrase
Figure 3-44

Sample INSPECT Statement

The format of the. INSPECT statement requires that a field be named
which is to be inspected (FIELD1 above); the field name must be
followed by an operation phrase (TALLYING TLY above); and, that
phrase must be followed by one or more identifiers or literals ("B"
dbove). These identifiers or literals comprise the "arguments" (items
to be compared to the field being inspected). More than one argument.
makes up the "argument list".

° TALLYING Arguments

Each argument in an argument 1list can have other fields
associated with it. Thus, each argument that is used in a
TALLYING operation must have a tally counter (TLY above)
associated with it. The software increments the tally
counter each time it matches the argument with a character or
group of characters in the field being inspected.

® REPLACING Arguments

INSPECT FIELDl1 REPLACING ALL "0" BY "S$".

replacing argument

Figure 3-45
Sample REPLACING Argument

Each argument in an argument list that is used in a REPLACING
operation must have a replacement item ($ above) associated
with it. The software uses the replacement item to replace
each string of characters in the field that matches the
argument.

Each argument in an argument list (that is used with either a TALLYING
or REPLACING operation) may have a delimiter field (BEFORE/AFTER
phrase) associated with it. If the delimiter field 1is not present,
the software applies the argument to the entire field. If the
delimiter field is present, the software applies the argument only to
that portion of the field specified by the BEFORE/AFTER phrase.

3-44 NON-NUMERIC CHARACTER HANDLING

/ TN

3.9.3.1 Setting the Scanner - The INSPECT operation begins by setting
the scanner to the leftmost character position of the field being
inspected. It remains on this character until an argument has been
matched with a character (or characters) or until all arguments have
failed to find a match at that position.

3.9.3.2 Active/Inactive Arguments - When an argument has a
BEFORE/AFTER phrase associated with it, that argument has a delimiter
and may not be eligible to participate in a comparison at every
position of the scanner. Thus, each argument in the argument list has
an active/inactive status at any given setting of the scanner.

For example, an argument that has an AFTER phrase associated with it
starts the INSPECT operation in an inactive state. The delimiter of
the AFTER phrase must find a match before the argument can participate
in the comparison. When the delimiter finds a match, the software
retains the character position beyond the matched character string;
then, when the scanner reaches or passes this position, the argument
becomes active. ‘

INSPECT FIELDl1 TALLYING TLY
FOR ALL "B" AFTER "X".

Figure 3-46
Sample AFTER Delimiter Phrase

If FIELDl in Figure 3-46 has a value of "ABABXZBA", the argument B
remains inactive until the scanner finds a match for the delimiter X.
Thus, argument B remains inactive while the software scans character
positions 1 through 5. At character position 5, the delimiter X finds
a match, and since the character position beyond the matched delimiter
character is the point at which the argument becomes active, argument
B is compared for the first time at character position 6. It finds a
successful match at character position 7 and this causes TLY to be
incremented by 1.

The examples in Figure 3-47 illustrate other situations where the
arguments and/or the delimiters are longer than one character.
(Consider the sample statement to be an INSPECT...TALLYING statement
that is scanning FIELDl, tallying in TLY, and 1looking for the
arguments and delimiters in the left-hand column. Assume that TLY is
initialized to 0.)

NON-NUMERIC CHARACTER HANDLING 3-45

ARGUMENT AND FIELD1 ARGUMENT CONTENTS OF
DELIMITER VALUE ACTIVE AT TLY AFTER SCAN
POSITION
BXBXXXXBB 6 2
"B" AFTER "XX" XXXXXXXX 3 0
BXBXBBBBXX never 0
BXBXXBXXB 6 2
"X" AFTER "XX" XXXXXXXX 3 6
BBBBBBXX never 0
BXYBXBXX 7 0
"B" AFTER "XB" XBXBXBXB 3 3
BBBBBBXB never 0
XXXXBXXXX 6 0
"BX" AFTER "XB" XXXXBBXXX 6 1
XXBXXXXBX 4 1

Figure 3-47
Where Arguments Become Active in a Field

When an argument has an associated BEFORE delimiter, the
inactive/active states reverse roles: the argument is in an active
state when the scanning begins, and becomes inactive at the character
position that matches the delimiter. Additionally, regardless of the
presence of the BEFORE delimiter, an argument becomes inactive when
the scanner approaches the right-hand end of the field and the
remaining characters are fewer in number than the characters in the
argument. (In such a case, the argument cannot possibly find a match
in the field so it becomes inactive.)

Since the BEFORE/AFTER delimiters are found on a separate scan of the
field, the software recognizes and sets up the delimiter boundaries
before it scans for an argument match; therefore, the same characters
can be used as arguments and delimiteérs in the same phrase.

3.9.3.3 Finding an Argument Match - The software selects arguments
from the argument list in the order in which they appear in the 1list.
If the first one it selects is an active argument and the conditions
stated in the INSPECT statement allow a comparison, the software
compares it to the character at the position of the scanner. If the
active argument does not find a match, the software takes the next
active argument from the list and compares that to the same character.
If none of the active arguments finds a match, the scanner moves one
position to the right and begins the inspection operation again with
the first active argument in the 1list. The inspection operation
terminates at the right-hand end of the field.

3-46 NON-NUMERIC CHARACTER HANDLING

N

N

N

When an active argument does find a match, the software ignores any
remaining arguments in the list and conducts the TALLYING or REPLACING
operation on the character. The scanner moves to a new position and
the next inspection operation begins with the first argument in the
list. (The INSPECT statement may contain additional conditions, which
are described 1later in this section; this discussion, however,
assumes that the argument match is allowed to take place and that
inspection is allowed to continue following the match.)

The software updates the scanner by adding the size of the matching
argument to it. This moves the scanner to the next character beyond
the string of characters that matched the argument. Thus, once an
active argument matches a string of characters, the statement does not
inspect those character positions again wunless program control
executes the entire statement again.

3.9.4 Subscripted Fields in INSPECT Statements

Any identifier named in an INSPECT statement may be subscripted or
indexed.

The software evaluates all subscripts in an INSPECT statement once,
before the inspection begins; therefore, if the action of the INSPECT
statement alters one of the subscripts, the new subscript value has no
effect on the selection of operands during that inspection operation.
For example, consider the following illustration:

MOVE 1 TO TLY.
INSPECT FIELD1 TALLYING TLY
FOR ALL X(TLY).

Figure 3-48
Sample Subscripted Argument

In this sample statement, the software evaluates the address of X(TLY)
only once, before it begins inspecting the field; hence, it will
evaluate X(TLY) as X(1). The alteration of TLY by the action of
inspecting and tallying has no effect on the choice of the X operand.
(X(1) will be used throughout the operation.)

NOTE

When subscripting an INSPECT statement
that contains both a TALLYING and a
REPLACING phrase, keep in mind that the
statement will be compiled into two
separate INSPECT statements. Therefore,
any field that is altered by the action
of the INSPECT...TALLYING statement will
be in 1its altered state if used as a
subscript by the INSPECT. . .REPLACING
statement.

NON-NUMERIC CHARACTER HANDLING 3-47

3.9.5 The TALLYING Phrase

An INSPECT statement that contains a TALLYING phrase counts the
occurrence of various character strings wunder certain stated
- conditions. It keeps the count in a user-designated field called,
here, a tally counter.

3.9.5.1 The Tally Counter - The identifier that follows the word
TALLYING designates the tally counter. The identifier may be
subscripted or indexed. The data item must be a numeric integer with
no editing or P characters; it may be COMP or DISPLAY usage, and it
may be signed (separate or overpunched).

Each time the tally argument matches the delimited stting being
inspected, the software adds 1 to the tally counter.

The programmer can initialize the tally counter to any numeric value.
(The INSPECT statement does not initialize it.)

3.9.5.2 The Tally Argument - The tally argument specifies a
character-string and a condition under which that string should be
compared to the delimited string being inspected. The following
figure shows the format of the tally argument:

ALL } identifier}
LEADING literal

CHARACTERS

Figure 3-49
Format of the Tally Argument

The CHARACTERS form of the tally argument specifies that every
character in the delimited string being inspected should be considered
to match an imaginary character that serves as the tally argument.
This increments the tally counter by a value that equals the size of
the delimited string. For example, the statement in the following
- illustration causes TLY to be incremented by the number of characters
that precede the first comma, regardless of what those characters
might be.

INSPECT FIELD1 TALLYING TLY FOR
CHARACTERS BEFORE ",".

Figure 3-50
CHARACTERS Form of the Tally Argument

3-48 NON-NUMERIC CHARACTER HANDLING

N

/ N \

When an active argument does find a match, the software ignores any
remaining arguments in the list and conducts the TALLYING or REPLACING
operation on the character. The scanner moves to a new position and
the next inspection operation begins with the first argument in the
list. (The INSPECT statement may contain additional conditions, which
are described 1later in this section; this discussion, however,
assumes that the argument match is allowed to take place and that
inspection is allowed to continue following the match.)

The software updates the scanner by adding the size of the matching
argument to it. This moves the scanner to the next character beyond
the string of characters that matched the argument. Thus, once an
active argument matches a string of characters, the statement does not
inspect those character positions again unless program control
executes the entire statement again.

3.9.4 Subscripted Fields in INSPECT Statements

Any identifier named in an INSPECT statement may be subscripted or
indexed.

The software evaluates all subscripts in an INSPECT statement once,
before the inspection begins; therefore, if the action of the INSPECT
statement alters one of the subscripts, the new subscript value has no
effect on the selection of operands during that inspection operation.
For example, consider the following illustration:

MOVE 1 TO TLY.
INSPECT FIELDl TALLYING TLY
FOR ALL X(TLY).

Figure 3-48
Sample Subscripted Argument

In this sample statement, the software evaluates the address of X(TLY)
only once, before it begins inspecting the field; hence, it will
evaluate X(TLY) as X(l). The alteration of TLY by the action of
inspecting and tallying has no effect on the choice of the X operand.
(X(1) will be used throughout the operation.)

NOTE

When subscripting an INSPECT statement
that contains both a TALLYING and a
REPLACING phrase, keep in mind that the
statement will be compiled into two
separate INSPECT statements. Therefore,
any field that is altered by the action
of the INSPECT...TALLYING statement will
be in its altered state if used as a
subscript by the INSPECT...REPLACING
statement.

NON-NUMERIC CHARACTER HANDLING 3-47

3.9.5 The TALLYING Phrase

An INSPECT statement that contains a TALLYING phrase counts the
occurrence of various character strings under certain stated
- conditions. It keeps the count in a user-designated field called,
here, a tally counter.

3.9.5.1 The Tally Counter - The identifier that follows the word
TALLYING designates the tally counter. The identifier may be
subscripted or indexed. The data item must be a numeric integer with
no editing or P characters; it may be COMP or DISPLAY usage, and it
may be signed (separate or overpunched).

Each time the tally argument matches the delimited string being
inspected, the software adds 1 to the tally counter.

The programmer can initialize the tally counter to any numeric value.
(The INSPECT statement does not initialize it.) :

3.9.5.2 The Tally Argument - The tally argument specifies a
character-string and a condition wunder which that string should be
compared to the delimited string being inspected. The following
figure shows the format of the tally argument:

CHARACTERS

ALL } identifier}
LEADING literal

Figure 3-49
Format of the Tally Argument

The CHARACTERS form of the tally argument specifies that every
character in the delimited string being inspected should be considered
to match an imaginary character that serves as the tally argument.
This increments the tally counter by a value that equals the size of
the delimited string. For example, the statement in the following
illustration causes TLY to be incremented by the number of characters
that precede the first comma, regardless of what those characters
might be.

INSPECT FIELD1 TALLYING TLY FOR
CHARACTERS BEFORE ",".

Figure 3-50
CHARACTERS Form of the Tally Argument

3-48 NON-NUMERIC CHARACTER HANDLING

//"\\

Thus, the first argument is initially inactive and becomes active only
after the scanner encounters an A; the second argument begins the
scan in the active state but becomes inactive after a B has been
encountered; and the third argument is active during the entire scan
of FIELDI.

Figure 3-55 shows various values of FIELDl and the contents of the
three tally counters after the scan. Assume that the counters are
initialized to 0 before the INSPECT statement. :

CONTENTS OF TALLY COUNTERS AFTER SCAN

FIELD1

VALUE Tl T2 T3

A.C;D.E,F 1 2 1

A.B.C.D 0 1 0

A,B,C,D 3 0 0

A;B;C;D 0 0 3

*,B,C,D 0 0 0

Figure 3-55
Results of the Scan in Figure 3-54

The BEFORE/AFTER phrase applies only to the argument that precedes it,
and delimits the field for that argument only. Each BEFORE/AFTER
phrase causes a separate scan of the field to determine the limits of
the field for its corresponding argument.

3.9.5.4 Interference in Tally Argument Lists - When several tally
arguments contain one or more identical characters that are active at
the same time, they may interfere with each other (i.e., when one of
the arguments finds a match, the scanner is stepped past the matching
character (s) which prevents those character(s) from being considered
for any other match).

The example in Figure 3-56 illustrates two identical tally arguments
that do not interfere with each other since they are not active at' the
same time. (The first A in FIELDl causes the first argument to become
inactive and the second argument to become active.)

MOVE 0 TO T1 T2.

INSPECT FIELD1 TALLYING :
Tl FOR ALL "," BEFORE "A"
T2 FOR ALL "," AFTER "A".

Figure 3-56
— Two Tallying Arguments that
Do Not Interfere with Each Other

The two identical tally arguments in Figure 3-57 will interfere with
each other since both ‘are active at the same time. (For any given
position of the scanner, the arguments are applied to FIELDl in the
order in which they appear in the statement. When one of them finds a
match, the scanner moves to the next position and ignores the

NON-NUMERIC CHARACTER HANDLING 3-51

remaining arguments in the argument list.) Each comma in FIELD1l causes
Tl to be incremented by 1 and the second argument to be ignored.
Thus, Tl will always contain an accurate count of all of the commas in
FIELDl, and T2 will always be unchanged.

INSPECT FIELD1l TALLYING
Tl FOR ALL ","
T2 FOR ALL "," AFTER "A".

Figure 3-57
Two Tallying Arguments that
Do Interfere with Each Other

The following statement achieves the same results as the statement in
Figure 3-56. The first argument does not become active until the
scanner encounters an A. The second argument tallies all commas that
precede the A. After the A, the first argument counts all commas and
causes the second argument to be ignored. Thus, Tl contains the
number of commas that precede the first A and T2 contains the number
of commas that follow the first A. This statement works well as
written, but could be more confusing to debug than the one in Figure
3-56.

INSPECT FIELD1 TALLYING
T2 FOR ALL "," AFTER "A"
Tl FOR ALL ",".

Figure 3-58
Two Tallying Arguments that,
Because of their Positioning,
Only Partially Interfere with
Each Other

The preceding three examples show that one INSPECT statement cannot
count any character more than once. Thus, when using the same
character in more than one argument of an argument list, consider the
nature of the interference and choose the order of the arguments very
carefully. The solution to the problem may require two or more
INSPECT statements. Consider the following problem:

INSPECT FIELD1 TALLYING
Tl FOR ALL "AB"
T2 FOR ALL "BC".

Figure 3-59
An Attempt to Tally the Character B
with Two Arguments

If FIELDl contains "ABCABC", after the scan Tl will be incremented by
a 2 and T2 will be unaltered. The successful matching of the argument
includes each B in the field. Each match resets the scanner to the
character position to the right of the B, and causes the second

3-52 NON-NUMERIC CHARACTER HANDLING

™

TN

,/-\\

argument to never be successfully matched. Reversing the order of the
arguments has no effect, the results remain the same. Only separate
INSPECT statements can develop the desired counts.

Sometimes the programmer can use the interference characteristics of
the INSPECT statement to good advantage. Consider the following
sample argument list:

MOVE 0 TO T4 T3 T2 Tl1.

INSPECT FIELD1 TALLYING
T4 FOR ALL "***%"
T3 FOR ALL "***"
T2 FOR ALL "**"
Tl FOR ALL "*",

Figure 3-60
Tallying Asterisk Groupings

The argument list in Figure 3-60 counts all of the asterisks in FIELD1
but in four different tally counters. T4 counts the number of times
that four asterisks occur together; T3 counts the number of times
three asterisks appear together; T2 counts double asterisks; and Tl
counts singles.

If FIELD]l contains a string of more than four consecutive asterisks,
the argument 1list breaks the string into groups of four, and counts
them in T4. It then counts the less-than-four remainder in T3, T2, or
T1.

Reversing the order of the arguments in this list causes Tl to count
all of the asterisks and T2, T3, and T4 to remain unchanged.

When the LEADING condition is used with an argument in the argument
list, that argument becomes inactive as soon as it fails to be matched
in the field being inspected. Therefore, when two arguments in an

"argument list contain one or more identical characters and one of the

arguments has a LEADING condition, the argument with the LEADING
condition should appear first. Consider the following sample
statement:

MOVE 0 TO T1 T2.

INSPECT FIELD1 TALLYING
Tl FOR LEADING "*"
T2 FOR ALL "*",

Figure 3-61
Placing the LEADING Condition
in the Argument List

The placement of the LEADING condition in this sample statement causes
Tl to count only leading asterisks in FIELDl; the occurrence of any
other character stops this counting and causes the first tally
argument to become inactive. T2 keeps a count of any remaining
asterisks in FIELD1.

NON-NUMERIC CHARACTER HANDLING 3-53

Reversing the order of the arguments in this statement results in an
argument list that can never increment Tl.

INSPECT FIELDl1 TALLYING
T2 FOR ALL "*"
Tl FOR LEADING "*",

Figure 3-62
Reversing the Argument
List in Figure 3-61

If the first character in FIELDl is not an asterisk, neither argument
can match it and the second argument becomes inactive. If the first
character in FIELDl is an asterisk, the first argument matches and
causes the second argument to be ignored. The first non-asterisk
character in FIELDl will fail to match the first argument and the
second argument will become inactive. (The second argument becomes
inactive because it has not found a match in all of the preceding
characters.)

An argument with both a LEADING condition and a BEFORE phrase can
sometimes sucessfully "delimit" the field being inspected:

MOVE 0 TO T1 T2.
INSPECT FIELDl1 TALLYING
Tl FOR LEADING SPACES

T2 FOR ALL " " BEFORE "."
T2 FOR ALL " " BEFORE "."
T2 FOR ALL " " BEFORE ".".

IF T2 > 0 ADD 1 TO T2.

Figure 3-63
An Argument List that Counts
Words in a Statement

The statements in Figure 3-63 count the number' of "words" in the
English statement in FIELDl. (This assumes that no more than three
spaces separate the words in the sentence and that the sentence ends
with a period.) When FIELD1l has been scanned, T2 contains the number
of gaps between the words. Since a count of the gaps. renders a number
that 1is one less than the number of words, the conditional statement
adds one to the count. ' \

The first argument removes any leading spaces, counting them in a
different. tally counter. This shortens FIELDl1 by preventing the
application of the second through the fourth arguments until the
scanner finds a non-space character. The BEFORE phrase on each of the
other arguments causes them to become inactive when the scanner
reaches the period at the end of the sentence. Thus, the BEFORE
phrases "shorten" FIELD1l by making the second through the fourth
arguments inactive before the scanner reaches the right-hand end of
FIELDl1. If the sentence in FIELDl is indented with tab characters
instead of spaces, a second LEADING argument can count the tab
characters. Figure 3-64 illustrates this technique:

3-54 NON-NUMERIC CHARACTER HANDLING

INSPECT FIELD1l TALLYING
Tl FOR LEADING SPACES
Tl FOR LEADING TAB
T2 FOR ALL " " etc.

Figure 3-64
Counting Leading Tab or Space Characters

When an argument list contains a CHARACTERS argument, it should be the
last argument in the list. Since the CHARACTERS argument always
matches the field, it prevents the application of any of the following
arguments in the list. However, as the last argument in an argument
list, it can count the remaining characters 1in the field being
inspected. Consider the following illustration.

MOVE 0 TO Tl T2 T3 T4 TS5.
INSPECT FIELD1 TALLYING
Tl FOR LEADING SPACES
T2 FOR ALL "." BEFORE ","
T3 FOR ALL "+" BEFORE ","
T4 FOR ALL "-" BEFORE ","
T5 FOR CHARACTERS BEFORE ",".

Figure 3-65
Counting the Remaining Characters
With the CHARACTERS Argument

If FIELD]l is known to contain a number in the form frequently used to
input data, it may contain a plus or minus sign, and a decimal point;
further, the number may possibly be preceded by spaces and terminated
by a comma. If this statement were compiled and executed, it would
deliver the following results:

Tl would contain the number of leading spaces,

T2 would contain the number of periods,

T3 would contain the number of plus signs,

T4 would contain the number of minus signs,

T5 would contain the number of remaining characters (assumed to
be numeric), and

the sum of Tl through T5 (plus 1) gives the character position
occupied by the terminating comma.

3.9.6 The REPLACING Phrase

When an INSPECT statement contains a REPLACING phrase, that statement
selectively replaces characters or groups of characters in the
designated field.

NON-NUMERIC CHARACTER HANDLING 3-55

The REPLACING phrase names a search argument consisting of a character
string of one or more characters and a condition under which the
string may be applied to the field being inspected. Associated with
the * search argument is the replacement value, which must be the same
length as the search argument. Each time the search argument finds a
match in the field being inspected, under the condition stated, the
replacement value replaces the matched characters.

A BEFORE/AFTER phrase may be used to delimit the area of the field
being inspected. A search argument applies only to the delimited area
of the field.

3.9.6.1 The Search Argument - The search argument of the REPLACING
phrase names a character string and a condition under which the
character string should be compared to the delimited string being
inspected. Figure 3-66 shows the format of the search argument:

ALL identifier
LEADING literal 7
FIRST

CHARACTERS

Figure 3-66
Format of the Search Argument

The CHARACTERS form of the search argument specifies that every
character in the delimited string being inspected should be considered
to match an imaginary character that serves as the search argument.
Thus, the replacement value replaces each character in the delimited
string. (The replacement value, in this case, must be one character
long.)

The ALL, LEADING, and FIRST forms of the search argument specify a
particular character string, which may be represented by a literal or
an identifier. The search argument character string may be any
length. However, each character of the argument must match a
character in the delimited string before the software considers the
argument matched.

° A literal character string must be either non-numeric or a
figurative constant (other than ALL literal). A figurative
constant, such as SPACE, ZERO, etc., represents a single
character and can be written as " ", "0", etc. with the same
effect. Since a figurative constant represents a single
character, the replacement value must be one character long.

° An identifier must represent an elementary item of DISPLAY
usage. It may be any class. However, if it is other than
alphabetic, the software performs an implicit redefinition of

the item. (This redefinition is identical to the
BEFORE/AFTER delimiter redefinition discussed in Section
3.9.1.)

3-56 NON-NUMERIC CHARACTER HANDLING

The words ALL, LEADING, and FIRST supply conditions which further
delimit the inspection operation: :

® The word ALL specifies that each match that the search
argument finds in the delimited string is to be replaced by
the replacement value. When a literal follows the word ALL,
it does not have the same meaning as the figurative constant,
ALL literal. (The figurative constant meaning of ALL "," is
a string of consecutive commas, as many as the context of the
statement requires.) ALL "," as a search argument of the
REPLACING phrase means, "replace each comma without regard to
adjacent characters."

° The word LEADING specifies that only adjacent matches of the
search argument at the 1left-hand end of the delimited
character string be replaced. At the first failure to match
the search argument, the software terminates the replacement
operation and causes the argument to become inactive.

e The word FIRST specifies that only the 1leftmost character
string that matches the search argument is to be replaced.
After the replacement operation, the search argument
containing this condition becomes inactive.

3.9.6.2 The Replacement Value - Whenever the search argument finds a
match in the field being inspected, the matched characters are
replaced by the replacement value. The word BY followed by an
identifier or literal specifies the replacement value.

identifier

literal

Figure 3-67
Format of the Replacement Value

The replacement value must always be the same size as its associated
search argument.

If the replacement value is-a literal character string, it must be
either a non-numeric literal or a figurative constant (other than ALL
literal). A figurative constant represents as many characters as the
length that the search argument requires.

If the replacement value is an identifier, it must be an elementary
item of DISPLAY usage. It may be any class. However, if it is other
than alphanumeric, the software conducts an implicit redefinition of
the item. (This redefinition 1is the same as the BEFORE/AFTER
redefinition discussed in Section 3.9.1.)

NON-NUMERIC CHARACTER HANDLING 3-57

3.9.6.3 The Replacement Argument - The replacement argument consists
of the search argument (with its condition and character string), the
replacement value, and an optional BEFORE/AFTER phrase.

ALL ";" BY SPACE BEFORE "."
search . BEFORE/AFTER
argument phrase (optional)
replacement
value
Figure 3-68

The Replacement Argument

3.9.6.4 The Replacement Argument List - One INSPECT...REPLACING
statement can contain more than one replacement argument. Several
replacement arguments form an argument list, and the manner in which
the 1list 1is processed affects the action of any given replacement
argument.

The following examples show INSPECT statements with replacement
argument lists. The text following each one tells how that list will
be processed. i

INSPECT FIELDl1 REPLACING
ALL "," BY SPACE

ALL "." BY SPACE

' ALL ";" BY SPACE.

Figure 3-69
Replacement Argument List that is
Active Over the Entire Field

These three replacement arguments all have the same replacement value,
SPACE, and are active over the entire field being inspected.

Thus, this statement replaces all commas, periods, and semicolons with
space characters; and leaves all other characters unchanged.

INSPECT FIELD1 REPLACING
ALL " 0 n BY L1} l "
ALL n l w BY " 0 " .

Figure 3-70
Replacement Argument List that
"Swaps" Ones for Zeroes and Zeroes for Ones

Each of these two replacement arguments has its own replacement value,
and is active over the entire field being inspected. This statement
exchanges zeros for ones and ones for zeroes, and leaves all other
characters unchanged.

3-58 NON-NUMERIC CHARACTER HANDLING

NOTE

When a search argument finds a match in
the field being inspected, the software
replaces that character string and scans
to the next position beyond the replaced
characters. It ignores the remaining
arguments and applies the first argument
in the list to the character string in
the new position. Thus, it never
inspects the new value that was supplied
by the replacement operation. Because
of this, the search arguments may have
the same values as the replacement
arguments with no chance of
interference.

INSPECT FIELD1 REPLACING
ALL "0" BY "1" BEFORE SPACE
ALL "1" BY "O" BEFORE SPACE.

Figure 3-71
Replacement Argument List that
Becomes Inactive with the
Occurrence of a Space Character

This sample statement is identical to the statement in Figure 3-70,
except that, here, the first occurrence of a space character in FIELD1
causes both arguments to become inactive.

INSPECT FIELD1 REPLACING
ALL "O" BY "1" BEFORE SPACE
ALL "1" BY "O" BEFORE SPACE
CHARACTERS BY "*" BEFORE SPACE.

Figure 3-72
Argument List with Three Arguments
That Become Inactive with the
Occurrence of a Space

Just as in the argument list in Figure 3-71, the first space character
causes all of these replacement arguments to become inactive. This
argument 1list exchanges =zeroes for ones, ones for zeroes, and
asterisks for all other characters that are in the delimited area.

If the BEFORE phrase is removed from the third argument, that argument
will remain active across all of FIELDl. Within the area delimited by
the first space character, the third argument replaces all characters
except ones and zeroes with asterisks. Beyond this area, it replaces
all characters (including the space that delimited FIELDl1 for the
first two arguments and any zeroes and ones) with asterisks. »

NON-NUMERIC CHARACTER HANDLING 3-59

3.9.6.5 Interference in Replacement Argument Lists - When several
search ‘arguments that are active at the same time contain one or more
identical characters, they may interfere with each other, and
consequently have an effect on the replacement operation. This
interference of one search argument with the matching of other search
arguments 1is similar to the interference that occurs between tally
arguments.

The action of a search argument is never affected by the BEFORE/AFTER
delimiters of other arguments, since the software scans for delimiter
matches before it scans for replacement operations.

The action of a search argument is never affected by the characters of

any replacement value, since the scanner does not inspect the replaced

characters again during execution of the INSPECT statement.

Interference between search arguments, therefore, depends on the order

of the arguments, the values of the arguments, and the active-inactive

status of the arguments. (The discussion in Section 3.9.5.4

Interference in Tally Argument Lists, applies, generally, to
replacement arguments as well.)

The following rules will help minimize interference in replacement
argument lists:

1. Place search arguments.-with LEADING or FIRST conditions at
the start of the list;

2. Place several arguments with the CHARACTERS condition at the
end of the list;

3. Consider, very carefully, the order of appearance of any

search arguments that contain one or more identical
characters.

3.9.7 Common Errors, INSPECT Statement
The most common errors made when writing INSPECT statements are:
e Leaving the FOR out of an INSPECT...TALLYING statement.

® Using the word "WITH" instead of "BY" in the REPLACING
phrase.

'@ Failing to initialize the tally counter.
) Omitting the word "ALL" e.g.:

INSPECT FIELD1l TALLYING TLY FOR SPACES.

3-60 NON-NUMERIC CHARACTER HANDLING

N

CHAPTER 4

NUMERIC CHARACTER HANDLING

This chapter discusses numeric class data and the COBOL operations
that can be performed on numeric data items. It is assumed that you
have read Chapter 3, and that you understand the concept of COBOL data

classes.

4.1 USAGES

The USAGE of a numeric class item specifies the form in which the data
is stored in memory. VAX-11 COBOL-74 has four formats for numeric
data storage: DISPLAY (which 1is equivalent to DISPLAY-6 and
DISPLAY-7), COMPUTATIONAL (abbreviated COMP), and COMPUTATIONAL-3
(abbreviated COMP-3).

4.1.1 DISPLAY

Items with DISPLAY usage are stored as strings of characters (bytes)
in decimal radix with an assumed decimal point and optional sign.

4.1.2 COMPUTATIONAL

COMPUTATIONAL usadge is the standard VAX-1ll binary format. A COMP item
is stored as a binary value with an assumed decimal scaling position;
it is automatically SYNCHRONIZED on a word boundary and stored in
memory (in one, two, or four words) as follows:

PICTURE RANGE STORAGE
S(9) to S9(4) 1 word (2 bytes)
S9(5) to s9(9) 1 longword (4 bytes)

S9(10) to S9(18) 1 quadword (8 bytes)

Figure 4-1 indicates the significance of each byte in a COMP data item
by the number in parentheses. For example, "(1)" indicates that the
byte contains the lowest-valued bits. Observe that the computer
address (the first-referenced byte) of each COBOL data item
corresponds to the low byte of the least significant word.

The number in parentheses also indicates the order of characters if
the data item is redefined as an alphanumeric item. Consider an
example of a two-word COMP item:

01 COMP-ITEM PIC 9(9) USAGE IS COMP;
01 GROUP-ITEM REDEFINES COMP-ITEM.
03 CHARACTER-ITEM PIC X OCCURS 4 TIMES.

The subscripts of CHARACTER-ITEM correspond to the numbers in
parentheses in Figure 4-1.

high | low high | low high | low
byte | byte byte | byte byte | byte
(2) (1) (2) (1) (2) (1) Addressed word
(4) (3) (4) (3) | Next word

(6) (5) Next word

(8) (7) Next word
One-word Two-word Four-word
COMP item COMP item COMP item

Figure 4-1

Memory Storage of COMP Data Items

4.1.3 COMPUTATIONAL-3

COMP-3 specifies packed-decimal data items. They are stored as two
decimal digits per byte (byte—-aligned) with an assumed decimal scaling
position. The sign is contained in the rightmost half (four bits) of
the rightmost byte.

The maximum size of a COMP-3 item is 18 decimal digits, regardless of
the decimal scaling position. 1In the following example, both NUM-1
and NUM-2 represent COMP-3 items of maximum size:

03 NUM-1 PIC S9(18) USAGE IS COMP-3.
03 NUM-2 PIC S9(6)V9(12) USAGE IS COMP-3.

The description of a COMP-3 data item must have a sign in its PICTURE
character-string.

4-2 NUMERIC CHARACTER HANDLING

When you specify an even number of digits, the value zero is stored in
the leftmost four bits of the leftmost byte.

Signs resulting from operations in which the receiving item is
specified as COMP-3 are:

nyw binary 1100 hexadecimal C
n-n binary 1101 hexadecimal F

The following signs are also recognized as valid, but they are not
generated as a result of program operations:

Positive signs- binary 1010, hexadecimal
binary 1100, hexadecimal
binary 1110, hexadecimal
binary 1111, hexadecimal

HmE QP

Negative signs- binary 1011, hexadecimal
binary 1101, hexadecimal

o w

Figure 4-2 represents the memory storage of COMP-3 data items of one,
two, and three digits:

1st byte ‘lst byte 2nd byte 1st byte 2nd byte
5 + 0 3 2 - 2 6 2 +
PICTURE S9 PICTURE S9(2) PICTURE S9(3)
value: +5 value: -32 value: +262
Figure 4-2

Memory Storage of COMP-3 Data Items

4.2 DECIMAL SCALING POSITION

The assumed decimal scaling position, or scaling factor, is not stored
as part of an actual numeric value. However, it is used by the RTS to
control operations on numeric data items. Consider the following
field description:

01 ORDER-PRICE PIC 99V99 COMP VALUE 12.34.

VAX-11 COBOL-74 stores this item as a l-word binary number. The word
contains the integer value 1234 and another location contains the
scaling factor. 1In this example, the scaling factor records the fact
that this integer has two decimal fractional positions. Thus, the
COBOL RTS knows that the stored binary integer is 100 times 1larger
than the programmer intends it to be.

NUMERIC CHARACTER HANDLING 4-3

If the compiler encounters the following statement:
ADD 1 TO ORDER-PRICE.

it generates instructions to add a 1 to the 1234 in ORDER-PRICE. The
RTS, however, scales the literal 1 up by two decimal places and adds
the resultant literal, 100, to the number in ORDER-PRICE. Thus, after
the ADD operation, ORDER-PRICE contains the new value 1334 (which is
actually 13.34 with the stored decimal scaling position).

Thus, the VAX-1l COBOL-74 compiler and RTS manipulate the data in
DISPLAY, COMP, and COMP-3 data items in much the same way. All four
usages have exactly the same accuracy and precision, and can be freely
mixed in a program. To illustrate, if a DISPLAY usage number and a
COMP usage number are both involved in the same arithmetic statement,
the RTS converts them to a common radix with no loss of information.
It also converts the result, if necessary, with no loss of
significance.

The only effect of specifying a binary or packed-decimal usage is that
it reduces the space required for most numbers and can speed up the
execution of arithmetic statements.

4.3 SIGN CONVENTIONS

COMP-3 data items must be signed; however, DISPLAY AND COMP numeric
items can be signed or unsigned. Unsigned numbers can contain values
that range from zero to the largest positive value allowed by their
declared precision. Negative values are not allowed. All VAX-1ll
COBOL-74 arithmetic operations yield signed results. When the RTS
must store such a result, whether positive or negative, in an unsigned
data item, it stores only the absolute value of the result. Thus,
unsigned items always contain zero or positive values.

This guide does not recommend unsigned numbers for general use. They
are wusually a source of programming errors, and are handled less
efficiently than signed quantities by the RTS.

Signed quantities always contain a numeric value and an operational
sign. The RTS stores the sign with the numeric value in a variety of
ways depending on the usage of the item and the presence of the SIGN
clause.

NOTE

If numeric data is read into a field
described using the picture character S,
then that data must include an
operational sign of the appropriate
format to pass the NUMERIC test.

4-4 NUMERIC CHARACTER HANDLING

TN

VAX-11 COBOL-74 always stores signed

COMP items in two's complement

binary form. Thus, the high-order bit indicates the sign of the item.

Sign representation for COMP-3 data
4.1.4.

VAX-11 COBOL-74 always stores signed
byte positions containing numeric
the sign in the high-order byte, the
extra, byte on either the high-order

items 1is described in Section

DISPLAY items as a sequence of
ASCII characters. It may include
low-order byte, or as a separate,
or low-order end of the item.

When the RTS stores the sign as part of a byte that also contains a
numeric digit, the sign causes a value change in that byte and, hence,
changes the value of the numeric digit. Table 4-1 shows the actual
ASCII character that results when a numeric value and a sign share the
same byte.

Table 4-1
The Resulting ASCII Character From a
Sign and Digit’ Sharing the Same Byte

DIGIT VALUE

 SIGN

A byte containing a +0 stores as hexadecimal 7B, which prints as
either a { or a [depending on the printing device.

A byte containing a -0 stores as hexadecimal 7D, which prints as

‘either a } or a] depending on the printing device.

When the RTS stores the sign as a separate distinct character, the
actual ASCII <character that it stores is the graphic plus sign (hex
2B) or the graphic minus sign (hex 2D).

4.4 ILLEGAL VALUES IN NUMERIC FIELDS

All VAX-1l1l COBOL-74 arithmetic operations store legal values in their
result fields. However, it is possible, by reading invalid data or
through redefinition and group moves, to store data in numeric fields
that do not obey the descriptions of those fields. (For example, it
is possible to place signed values into unsigned fields, and to place
non-numeric or improperly signed data into signed numeric DISPLAY

fields.)

The results of arithmetic opefations that use invalid data in numeric
fields are unpredictable.

NUMERIC CHARACTER HANDLING 4-5

4.5 TESTING NUMERIC FIELDS

COBOL provides the following three kinds of tests for evaluating
numeric fields:

1. Relation tests, that compare the field's contents to another
numeric value;

2. Sign tests, that examine the field's sign to see 1if it is
positive or negative; and,

3. Class tests, that inspect the field's digit positions for
legal numeric values.

The following sub-sections explain these tests in detail.

4.5.1 Relation Tests

A relation test compares two numeric quantities and determines if the
specified relation between them is true. For -example, the following
statement compares FIELDl1l to FIELD2 and determines if the numeric
value of FIELDl is greater than the numeric value of FIELD2. If so,
the relation condition is true and program control takes the True path
of the statement.

IF FIELDl > FIELD2 ...

- Either field in a relation test may be a numeric 1literal or the
figurative constant, ZERO. (The numeric literals 0, 00, 0.0, or ZERO
are all equivalent, both in meaning and in execution speed.)

The sizes of the fields in a numeric relation test do not have to be
the same (this includes the sizes of numeric 1literals). The
comparison operation aligns both fields -on their assumed decimal
positions (through actual scaling operations in:temporary locations or
by accessing the individual digits) and supplies leading or trailing
(as required) zeroes to either or both fields.

The comparison operation always compares the signs of non-zero fields
and considers positive fields to be greater than negative fields.
However, since it does not compare them, positive zeroes and negative
zeroes are equal. (A negative zero could arrive in a field through
redefinition of the field or a MOVE to a group item.) Further, the
operation considers unsigned numeric fields to be positive.

The form of representation of the number (COMP, COMP-3, or DISPLAY
usage) and the various methods of storing DISPLAY usage signs have no
effect on numeric relation tests.

For comparison purposes, the operation converts any illegal characters

stored in DISPLAY usage fields to zeroes. It does not, however, alter
the actual values in those fields.

4-6 NUMERIC CHARACTER HANDLING

7/ \

4.5.2 8Sign Tests

The sign test compares a numeric quantity to zero and determines if it
is greater (positive), less (negative), or equal (zero). Both the
relation test and the sign test can perform this function. For
example, consider the following relation test:

IF FIELDl > 0 ...
Now consider the following sign test:

IF FIELD1l POSITIVE ...
Both of these tests accompllsh the same thing and would always arrive
at the same result. The sign test, however, shortens the statement

and shows, at a glance, that it is testing the sign.

Table 4-2 shows the sign tests and their equivalent relatlon tests ' as
applied to FIELD1l.

Table 4-2
The Sign Tests
SIGN TEST EQUIVALENT RELATION TEST
E — — —
IF FIELDl1 POSITIVE ... IF FIELD1l > 0 ...
IF FIELD1 NOT POSITIVE ... IF FIELDl NOT > 0 ... C
IF FIELDl1 NEGATIVE ... IF FIELDl < 0 ... '
IF FIELD1 NOT NEGATIVE ... IF FIELDl NOT < 0 ...
IF FIELDl ZERO ... IF FIELDlI = 0 ...
IF FIELDl1 NOT ZERO ... : IF FIELDl NOT = 0 ...

Sign tests have no execution speed advantage over relation tests. The
compiler actually substitutes the equivalent relation test for every
correctly written sign test. (Sections 4.2.1 and 4.2.2 discuss the
acceptable sign values and the treatment of illegal sign values.)

4.5.3 Class Tests

The class test interrogates a numeric field to determine if it
contains numeric or alphabetic data, and uses the result to alter the:
flow of control in a program. For example, the following statement’
determines if FIELDl contains numeric data. If so, the test condition
is true and program control takes the true path of the statement.

IF FIELD1l IS NUMERIC ...

When reading in newly prepared data, it is often desirable to check
certain fields for wvalid values. Relation tests and sign tests can
only determine if the field's contents are within a certain range, and
these tests both treat illegal characters in DISPLAY usage items as
zeroes. Thus, some data preparation errors could pass both of these
tests. »

NUMERIC CHARACTER HANDLING 4-7

The NUMERIC class test checks numeric (or alphanumeric) DISPLAY usage
fields for valid numeric digits.

If the field being tested contains a sign (whether <carried as an
overpunch or as a separate character), the test checks it for a valid
sign value. <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>