RT-11
System Reference Manual

Order No. DEC-11-ORUGA-C-D, DN1, DN2

dlilgliltlall

e

RT-11
System Reference Manual

Order No. DEC-11-ORUGA-C-D, DN1, DN2

digital equipment corporation - maynard. massachusetts

First Printing, September 1973
Revised: October 1974
June 1975

July 1975

January 1976

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or

reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright<:>1973,1974,1975,1976by[ﬂgital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP ' DIBOL . 0s/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10

DECCOMM DECsystem-20 TYPESET-11

 PREFACE

~CHAPTER

CHAPTER

NN Lol

NS\ O Ol Sl N N
e o o -

DN NDDNODN
.
wWwwww

NN

.
B

NN N
.

Ao O w

.

o« .

NN
P

B SN Y CE NN

~N
.

L3 . . .
Ul WD -

P
S w N

=

.
N

—

CONTENTS

RT-11'OVERVIEW

PROGRAM DEVELOPMENT

SYSTEM SOFTWARE COMPONENTS
SYSTEM HARDWAREYCOMPONENTS

USING THE RT-11 SYSTEM

RT-11 Single-Job Monitor

RT-11 Foreground/Background Monitor
Facilities Available Only in RT-11 F/B

SYSTEM COMMUNICATION

START PROCEDURE

SYSTEM CONVENTIONS

Data Formats

Prompting Characters
Physical Device Names
File Names and Exten51ons
Device Structures

MONITOR SOFTWARE COMPONENTS
Resident Monitor (RMON)
Keyboard Monitor (KMON)
User Service Routine (USR)
Device Handlers

GENERAL MEMORY LAYOUT
Component Sizes

ENTERING COMMAND INFORMATION

KEYBOARD COMMUNICATION (KMON)
Foreground/Background Termlnal 1/0
Type-Ahead

KEYBOARD COMMANDS ‘
Commands to Control Terminal I/0
(GT ON and GT OFF)

Commands to Allocate System Resources

DATE Command

TIME Command
INITIALIZE Command
ASSIGN Command

iii - January

Page
xxi
1-1
1-2

NN NDNDN [\
1
NSO s s wWwWw -

1 1
. ..
]

1

NDNDMDNDN
1
[c<RCNIENIEN N
.

N
1
O

N
1
[
o

2-18
2-18

‘197€

2.7.2.5
2.7.2.6
2.7.2.7
2.7.2.8
2.7.3
2.7.3.1
2.7.3.2
2.7.3.3
2.7.3.4
2.7.3.5
2.7.4
2.7.4.1
2.7.4.2
2.7.4.3
2.7.4.4
2.7.5
2.7.5.1
2.7.5.2
2.7.5.3
2.8
2.8.1
CHAPTER 3

3.1

3.2

3.3

3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.5

3.6
3.6.1
3.6.1.1
3.6.1.2
3.6.1.3
3.6.1.4
3.6.1.5
3.6.1.6
3.6.1.7
3.6.1.8
3.6.1.9
3.6.1.1
3.6.2
3.6.2
3.6.2
3.6.2
3.6.3
3.6.3.1
3.6.3.2

January 1976

o

« e e
wN -

CLOSE Command

LOAD Command

UNLOAD Command

SET Command

Commands to Manipulate Memory Images
GET Command

Base Command

Examine Command

Deposit Command

SAVE Command

Commands to Start a Program

RUN Command

R Command

START Command

REENTER Command

Commands Used Only in a
Foreground/Background Environment
FRUN Command

SUSPEND Command

RSUME -Command

MONITOR ERROR MESSAGES
Monitor HALTS

TEXT EDITOR‘

' CALLING AND USING EDIT

MODES OF OPERATION
SPECIAL KEY COMMANDS

COMMAND STRUCTURE

Arguments

Command Strings

The Current Location .Pointer
Character- and L1ne—0r1ented
Command Properties

Command Repetltlon

MEMORY USAGE

EDITING COMMANDS
Input/Output Commands
Edit Read

Edit Write

Edit Backup

Read

Write -

Next

List

~Verify

End File
Exit
Pointer Relocation Commands

- Beginning

Jump

Advance

Search Commands
Get

Find

iv

2-20
2-20
2-21
2-23
2-28
2-28
2-29
2-30
2-30
2-31
2-33
2-33
2-34

o 2=34

2-35
2-35

2-36"
2-37
2-38

2-38
2-41

3-10
3-10
3-10

3-17

3-18
3-19

\\.

3.6.3.3 Position 3-20
3.6.4 Text Modification Commands : 3-20
3.6.4.1 Insert 3-20
3.6.4.2 Delete i 3-21
3.6.4.3 Kill 3-22
3.6.4.4 Change - 3-22
3.6.4.5 Exchange » : 3-23
3.6.5 Utility Commands o 3-24
3.6.5.1 Save ‘ 3-24
3.6.5.2 Unsave 3-25
3.6.5.3 Macro 3-25
3.6.5.4 Execute Macro 3-26
3.6.5.5 Edit Version ' ' g 3-27
3.6.5.6 Upper- and Lower-=Case Commands v 3-27
3.7 THE DISPLAY EDITOR ’ ‘ 3-28
3.7.1 Using the Display Editor 3-29
3.7.2 Setting the Editor to Immediate Mode 3-30
3.8 EDIT EXAMPLE R , 3-32
3.9 EDIT ERROR MESSAGES 3-33
CHAPTER 4 PERIPHERAL INTERCHANGE PROGRAM (PIP) 4-1
4.1 CALLING AND USING PIP . . 4-1
4.1.1 Using the "wild Card" Constructlon 4-1
4.2 PIP SWITCHES 4-2
- 4.2.1 Operations Involving Magtape or Cassette 4-4
4.2.2 Copy Operations : 4-9
4.2.3 Multiple Copy Operations : 4-11
4.2.4 The Extend and Delete- Operatlons 4-13
4.2.5 The Rename Operation ‘ 4-15
4.2.6 Directory List Operations 4-15
4.2.7 The Directory In1t1allzat10n Operatlon 4-18
4.2.8 The Compress Operation 4-19
4.2.9 The Bootstrap Copy Operatlon 4-20
4.2.10 The Boot Operation - 4-20
4.2.11 The Version Switch : 4-21
4.2.12 Bad Block Scan (/K) ' 4-21
4.2.12.1 Recovery from Bad Blocks : 4-21
4.3 PIP ERROR MESSAGES R 4-24
CHAPTER 5 MACRO ASSEMBLER i : : 5-1
5.1. SOURCE PROGRAM FORMAT 5=2
5.1.1 Statement Format 5 2
5.1.1.1 Label Field 5-3
5.1.1.2 Operator Field 5-3
5.1.1.3 Operand Field 5-4
5.1.1.4 Comment Field 5-4
5.1.2 Format Control 5-5
5.2 SYMBOLS AND EXPRESSIONS 5-=5
5.2.1 Character Set 5-5
5.2.1.1 Separating and De11m1t1ng Characters 5-6
5.2.1.2 Illegal Characters: 5-7
5.2.1.3 Operator Characters 5-8
5.2.2 Symbols 5-9

v January 1976

« o o o
)
o« .
N =

NN PONODNDNDNNDN

o oot oot o
e o e o
LCoOJOULDd W N

(]
. .
w

e o ¢ o o s e s e s @
® o & & e e s e e & e e o o

(S RO, S, O, N, G C, N, NE NS, WO, N, N, NS,
S B D DR DD DD DD DD D
HHHHFHFRFROONOUIES WNDH
b WwWbhHO

e o o s o o & o o e s .« .
Uttt unotoToTuu Uttt otult ol v
.
e o o e « o o o e o
U WD - YU W N

« s e o

.
H\ooo\l\1\1mc\mmmmmpppwwwwwwwml—w—-lﬂv—u—u—'l—t‘

o

« & & o o o o o
« o o
o e
N =

* o o e o
.

e o o o s o
.
N WD

DR
« e e e .
Y
N =

(CLC, O, O, C, N E, I C, RO, NC, NC, N, C, WO C, I, 6, O, N, N, NE NS, N, NN N NS, WO, NC, NG, T, e,

January 1976

Permanent Symbols
User-Defined -and Macro Symbols
Direct Assignment

Register Symbols

Local Symbols

Assembly Location Counter
Numbers

Terms

Expressions

RELOCATION AND LINKING

ADDRESSING MODES

Register Mode .

Register Deferred Mode
Autoincrement Mode :
Autoincrement Deferred Mode
Autodecrement Mode
Autodecrement Deferred Mode
Index Mode L

Index Deferred Mode

Immediate Mode

Absolute Mode

Relative Mode

Relative Deferred Mode

Table of Mode Forms and Codes
Branch Instruction Addressing
EMT and TRAP Addressing

. ASSEMBLER DIRECTIVES

Listing Control Directives
.LIST and . NLIST
Page Headings.
+TITLE
+.SBTTL
. IDENT
Page Ejection
Functions: .ENABL. and DSABL D1rect1ves
Data Storage Directives
.BYTE
«WORD
ASCII Conversion of One or Two Characters
.ASCII
.ASCIZ
.RADS0
Radix Control
.RADIX
Temporary Radix Control:
Location Counter Control
. EVEN
.0ODD
.BLKB and .BLKW
Numeric Control
.FLT2 and .FLT4
Temporary Numeric Control: "F and °C
Terminating Directives .
. END

~ ~

D, "0, and "B

-« EOT -

Program Boundaries Directive: .LIMIT.
Program Section Directives
Symbol Control: .GLOBL

vi

5-24
5-24

-

5.5.11 Conditional Assembly Directives 5-55
5.5.11.1 Subconditionals 5-57
5.5.11.2 Immediate Conditionals 5-58
5.5.11.3 PAL-11R and PAL-11S Conditional 5-59
Assembly Directives
5.6 MACRO DIRECTIVES 5-60
5.6.1 Macro Definition 5-60
5.6.1.1 .MACRO = ~ 5-60
5.6.1.2 . ENDM _ 5-60
5.6.1.3 .MEXIT 5-61
5.6.1.4 MACRO Definition Formatting 5-61
5.6.2 Macro Calls : _ 5-62
5.6.3 Arguments to Macro Calls and Definitions 5-62
5.6.3.1 Macro Nesting 5-63
5.6.3.2 Special Characters 7 5-64
5.6.3.3 Numeric Arguments Passed as Symbols 5-64
5.6.3.4 Number of Arguments 5-66
5.6.3.5 Automatically Created Symbols Within 5-66
User-Defined Macros
5.6.3.6 Concatenation 5-67
5.6.4 .NARG, .NCHR, and .NTYPE 5-68
5.6.5 .ERROR and .PRINT _ 5-70
5.6.6 Indefinite Repeat Block: .IRP and .IRPC 5-71
5.6.7 Repeat Block: .REPT - 5-73
5.6.8 Macro Libraries: .MCALL 5-74
5.7 CALLING AND USING MACRO 5-74
5.7.1 Switches 5-76
5.7.1.1 Listing Control Switches 5-76
5.7.1.2 Function Switches _ 5-77
5.7.1.3 Cross Reference Table Generation (CREF) 5-78
5.8 MACRO ERROR MESSAGES 5-84
CHAPTER 6 LINKER 6-1
6.1 INTRODUCTION 6-1
6.2 CALLING AND USING THE LINKER 6-2
6.2.1 Command String » 6-2
6.2.2 Switches ' 6-3
6.3 ABSOLUTE AND RELOCATABLE PROGRAM SECTIONS 6-4
6.4 GLOBAL SYMBOLS ' 6-5
6.5 INPUT AND OUTPUT 6-5
6.5.1 Object Modules : 6-5
6.5.2 Load Module : 6-5
6.5.3 Load Map o : 6-7
6.5.4 Library Files 6-8
6.6 USING OVERLAYS 6-10
6.7 USING LIBRARIES ’ 6-15
6.7.1 User Library Searches : 6-16
6.8 SWITCH DESCRIPTION 6-18
6.8.1 Alphabetize Switch 6-18
6.8.2 Bottom Address Switch = 6-18

vii January 1976

HEHEOWOJOUILd W

AN OO YO
.
= o

CO 0O OO 0O 0O CO CO OO O

[«)}
.
(Ve

~

CHAPTER

~
.
« o o

NN NN NNNNNN

e o o o s o o e o o e o

NN NODNDNDNDNDNDN [l
« o o o o o s a

~
.
w
.
NN NDNDNDNDND
.

NN~ aa
WA

~

. o ..

IS NI
.

[oe]

CHAPTER

®wow 0w
o e .
T
. .
N

© o & s e o o e o
NN

® & o s o o e s o .
=

00 CO 00 CO 0O CO 0O CO OO CO CO O O
. .

. .

HEMFWOWONONU S WN -

LWWWLWWwwuwwwwwww
N O

~ .

January 1976

OWoOoOdOuUlL bk WwN -

Continue Switch .

Default FORTRAN Library Switch
Include Switch

LDA Format Switch

Modify Stack Address

Overlay Switch

REL Format Switch

Symbol Table Switch

Transfer Address Switch

LINKER ERROR HANDLING AND MESSAGES

LIBRARIAN

CALLING AND USING LIBR

USER SWITCH COMMANDS AND FUNCTIONS

Command Syntax

LIBR Switch Commands

Command Continuation Switch
Creating a Library File :
Inserting Modules Into a L1brary
Replace Switch

Delete Switch v

Delete Global Switch

Update. .Switch

Listing the Dlrectory of a Library File
Merging Library Files

COMBINING LIBRARY SWITCH FUNCTIONS

FORMAT OF LIBRARY FILES

Library Header -

Entry Point Table (Library Directory)
Object Modules

Library End Trailer

LIBR ERROR MESSAGES
ON-LINE DEBUGGING TECHNIQUE

CALLING AND USING ODT
Return to Monitor, CTRL C

.Terminate Search, CTRL:U

RELOCATION
Relocatable Expres51ons

COMMANDS AND FUNCTIONS

Printout Formats]

Opening, Changing and Closing Locations
Accessing General Registers (-7
Accessing Internal Registers

Radix 50 Mode, X

Breakpoints

Running the Program, r;G and r;P
Single Instruction Mode

Searches

The Constant Register, r;C :
Memory Block Initialization, ;F and ;I
Calculating Offsets, r;O :

viii

6-20

NN NNNNNNNNNa
[
HOUWOVWJIONULIUTEWNDNDN

o

~
I

-

-

7-12
7-12
7-13
7-14

- 7=14

7-14

8-16
8-16

8.3.13 Relocation Register Commands, r;nR, ;nR, ;R 8-17
8.3.14 The Relocation Calculators, nR and n! 8-18
8.3.15 ODT Priority Level, S$P 8-19
8.3.16 ASCII Input and Output, r;nA - 8-20
8.4 PROGRAMMING CONSIDERATIONS 8-20
8.4.1 Functional Organization 8-20
8.4.2 Breakpoints 8-21
8.4.3 Searches - : 8-24
8.4.4 Terminal Interrupt 8-24
8.5 ODT ERROR DETECTION i 8-25
CHAPTER 9 PROGRAMMED REQUESTS 9-1
9.1 FORMAT OF A PROGRAMMED REQUEST 9-2
9.2 SYSTEM CONCEPTS 9-5
9.2.1 Channel Number (chan) 9-5
9.2.2 Device Block (dblk) 9-5
9.2.3 "EMT Argument Blocks 9-5
9.2.4 Important Memory Areas 9-6
9.2.4.1 Vector Addresses 9-6
9.2.4.2 Resident Monitor 9-7
9.2.4.3 System Communication Area 9-7
9.2.5 Swapping Algorithm 9-9
9.2.6 Offset Words ‘ 9-11
9.2.7 File Structure : 9-13
9.2.8 Completion Routines’ 9-13
. 9.2.9 Using The System Macro L1brary 9-14
9.3 TYPES OF PROGRAMMED REQUESTS 9-14
9.3.1 System Macros ‘ 9-20
9.3.1.1 .DATE 9-20
9.3.1.2 . INTEN ' . 9-21
9.3.1.3 .MFPS/.MTPS 9-21.1
9.3.1.4 .REGDEF ' - 9-22
9.3.1.5 . SYNCH . 9-22
9.3.1.6 Vi..o/. V2., 9-24
9.4 PROGRAMMED REQUEST USAGE . 9-25
9.4.1 .CDFN ’ 9-26
9.4.2 .CHAIN = : 9-27 -
9.4.3 .CHCOPY 9-28
9.4.4 .CLOSE 9-30
9.4.5 .CMKT 9-31
9.4.6 .CNTXSW ' 9-32
9.4.7 .CSIGEN 9-33
9.4.8 .CSISPC 9-36
9.4.8.1 Passing Switch Information 9-38§
9.4.9 .CSTAT ‘ 9-41
9.4.10 .DELETE 9-42
9.4.11 .DEVICE - 9-44
9.4.12 .DSTATUS 9-45
9.4.13 .ENTER a 9-47
9.4.14 LEXIT o o 9-49
9.4.15 .FETCH o _ ' 9-50
9.4.16 .GTIM : ! 9-51
9.4.17 .GTJB : . 9-52
9.4.18 .HERR/.SERR o | 9-53
9.4.19 .HRESET 9-55
9.4.20 .LOCK/.UNLOCK 9-56

ix January 1976

e o o o o o o e

Lo N e i e el i s i Sl o S - A Y S T gt S A S N

« o o o
BB BRBREREBREPRLDLWWWWWWWWLWWNNDNDNDNDNDNDNDN
=3

WWOWWOWWYWWOVLWWOWWVWWOWWIWIWLWWIWL WL LWWWLILLWWLWWLILWYLLW

e & o o o e o o o e o & e s o s o o

CHAPTER

CHAPTER 11

CHAPTER 12

January 1976

. LOOKUP

« MRKT

«MWAIT

«.PRINT

. PROTECT

. PURGE

.QSET

.RCTRLO
«RCVD/.RCVDC/ . RCVDW
.READ/.READC/ .READW
.RELEAS

.RENAME

.REOPEN

.SAVESTATUS
.SDAT/.SDATC/ .SDATW
.SETTOP

.SFPA

.SPFUN

.SPND/.RSUM

.SRESET

. TLOCK

. TRPSET
.TTYIN/.TTINR

. TTYOUT/ .TTOUTR

. TWAIT

WAIT
.WRITE/.WRITC/ .WRITW

CONVERTING VERSION 1 MACRO CALLS
TO VERSION 2

Macro Calls Requiring No Conversion
Macro Calls Which May Be Converted
EXPAND UTILITY PROGRAM

LANGUAGE

RESTRICTIONS

CALLING AND USING EXPAND

EXPAND ERROR MESSAGES

ASEMBL, THE 8K ASSEMBLER

CALLING AND USING ASEMBL

ASEMBL ERROR MESSAGES

BATCH

INTRODUCTION TO RT-11 BATCH
Hardware Requirements to Run BATCH
Software Requirements to Run BATCH
BATCH CONTROL STATEMENT FORMAT
Command Fields

Command Names

Command Field Switches

Specification Fields
Physical Device Names

10-2
10-6
11-1

11-1
11-7
12-1

12-1
12-1
12-2

12-2
12-2
12-2
12-3
12-5
12-6

TN

12.4.21
12.4.22

12.4.23
12.5
12.5.1

12.5.2
12.5.2.

12.7.4
12.8

12.9

APPENDIX A

File Specifications

Wild Card Construction
Specification Field Sw1tches
Comment Fields:

BATCH Character Set
Temporary Files

GENERAL RULES AND CONVENTIONS

BATCH COMMANDS
$BASIC
$CALL
SCHAIN
$COPY
SCREATE
$DATA
$SDELETE
$DIRECTORY
$DISMOUNT
$EOD

$EOJ
SFORTRAN
$JOB
SLIBRARY
SLINK
$MACRO
$MESSAGE
$MOUNT
SPRINT
$RT11
$RUN

SSEQUENCE
Example BATCH Stream

RT-11 MODE

Running RT-11 System Programs
Creating RT-11] Mode BATCH Programs
Labels

Variables

Terminal I/0 Control

Other Control Characters

Comments

RT-11 Mode Examples

CREATING BATCH PROGRAMS ON PUNCHED CARDS
Terminating BATCH Jobs on Cards

OPERATING PROCEDURES

Loading BATCH

Running BATCH

Communicating with BATCH Jobs
Terminating BATCH

DIFFERENCES :BETWEEN RT -11 BATCH AND
RSX-11D BATCH

ERROR MESSAGES

ASSEMBLY, LINK, AND BUILD INSTRUCTIONS

12-6
12-7
12-7
12-8
12-8
12-10

12-11

12-12
12-13
12-14
12-15
12-16
12-18

12-19 -
12-20
12-20
12-21
12-22
12-23
12-23
12-25
12-27
12-27
12-29
12-31
12-32
12-34
12-35
12-35
12-36
12-36

12-38
12-39
12-39
12-39
12-40
12-42
12-42
12-43
12-43

12-44
12-45
12-45
12-45
12-47
12-49
12-52

12-52

12-53

A-1

xi January 1976

APPENDIX B

NDNNONMNNDNNDNDNDN

DD wwowwwww o ww
w w
[l O dOYUT WN

W w

w
S

APPENDIX C

January 1976

COMMAND AND SWITCH SUMMARIES

KEYBOARD MONITOR
Command Summary
Special Function Keys

EDITOR
Command Arguments
Input and Output Commands

Pointer Relocation Commands

Search Commands

Text Modification Commands
Utility Commands

Immediate Mode Commands
Key Commands

PIP
Switch Summary

MACRO/CREF

LINKER
Switch Summary

LIBRARIAN
Switch Summary

oDT
Command Summary

PROGRAMMED REQUESTS

BATCH

Switch Summary
Command Summary

DUMP
Switch Summary

FILEX .
Switch Summary

SRCCOM
SWITCH SUMMARY

PATCH
Command Summary -

PATCHO
Command Summary

‘MACRO ASSEMBLER, INSTRUCTION, AND

CHARACTER CODE SUMMARIES
ASCII CHARACTER SET
RADIX~-50 CHARACTER SET
MACRO SPECIAL CHARACTERS

ADDRESS MODE SYNTAX

xii

T
=

[I | [[|
[coleoBL NN N W \WE NS, N,] w =

wwwmwwtluww W w w

Cc.5 INSTRUCTIONS C-6
c.5.1 Double Operand Instructions Cc-8
C.5.2 Single Operand Instructions v Cc-8
C.5.3 Rotate/Shift ‘ c-9
C.5.4 Operate Instructions c-11
C.5.5 Trap Instructions c-12
C.5.6 Branch Instructions Cc-13
Cc.5.7 Register Destination Cc-14
Cc.5.8 Register-Offset Cc-14
Cc.5.9 Subroutine Return C-14
C.5.10 Source-Register c-15
c.5.11 Floating-Point Source Double Register Cc-15
C.5.12 Source-Double Register Cc-17
C.5.13 Double Register-Destination c-17
Cc.5.14 Number . Cc-18
c.5.15 Priority c-18
C.6 ASSEMBLER DIRECTIVES c-19
c.7 MACRO/CREF SWITCHES c-23
c.7.1 Listing Control Switches Cc-23
cC.7.2 Function Control Switches c-23
c.7.3 CREF Switches ' : - Cc-24
C.8 OCTAL/DECIMAL CONVERSIONS c-25
APPENDIX D SYSTEM MACRO FILE D-1
APPENDIX E PROGRAMMED REQUEST SUMMARY - E-1
E.1l PARAMETERS E-1
E.2 REQUEST SUMMARY ‘ E-1
APPENDIX F BASIC/RT-11 LANGUAGE SUMMARY F-1
F.l BASIC/RT-11 STATEMENTS F-1
F.2 BASIC/RT-11 COMMANDS : F-3
F.3 BASIC/RT-11 FUNCTIONS F-5
F.4 BASIC/RT-11 ERROR MESSAGES F-6
APEENDIX G FORTRAN LANGUAGE SUMMARY G-1
G.1 RUNNING A FORTRAN PROGRAM IN THE FOREGROUND G-1
G.2 FORTRAN CHARACTER SET . G-2
G.3 EXPRESSION OPERATORS G-3
G.4 SUMMARY OF FORTRAN STATEMENTS G-4
G.5 - COMPILER ERROR DIAGNOSTICS G-11
APPENDIX H F/B PROGRAMMING AND DEVICE HANDLERS H-1
H.1l F/B PROGRAMMING IN RT-11, VERSION 2 H-1
H.1.1 Interrupt Priorities H-1
H.1.2 Interrupt Service Routine - H-2
H.1.3 Return from Interrupt Service H-2
H.1l.4 Issuing Programmed Requests at the Interrupt
Level H-2

xiii . January ‘1976

oo

....... ..
e
.

DN DN
s e e s e e
G bW

(2= =~ R« o v a v =2l e e s e o a vl a e S = s a8
w

.
[N

APPENDIX

L]

APPENDIX J

APPENDIX K

APPENDIX L

January 1976

[e) W&, }

[eeBEN]

wN

Setting Up Interrupt Vectors

Using .ASECT Directives in Relocatable
Image Files

Using .SETTOP

Making Device - Handlers Re51dent

DEVICE HANDLERS

PR

TT

CR

MT/CT

General Characteristics

Handler Functions

Magtape and Cassette End-of-File Detectlon
DX

EXAMPLE DEVICE HANDLERS
DEC 026/DEC 029 CARD CODECCONVERSION TABLE
DUMP ’

CALLING AND USING DUMP
DUMP Switches
Examples

DUMP ERROR MESSAGES .
FILEX -

FILEX OVERVIEW
File Formats

CALLING AND USING FILEX

FILEX Switch Options

Transferring Files Between RT-11
and DOS/BATCH (or RSTS)

Transferring Files to RT-11 from
DECsystem-10.

Listing Directories

Deleting Files from DOS/BATCH (RSTS)
DECtapes

FILEX ERROR MESSAGES
SOURCE COMPARE (SRCCOM)
CALLING AND USING SRCCOM
Extensions

Switches

QUTPUT FORMAT

SRCCQM ERROR MESSAGES
PATCH o | ‘
CALLING AND USING PATCH
PATCH COMMANDS:

Patch: a New File
Exit from PATCH

* Examine, Change Locatlons in the Flle

xiv

u:m:::ng:m mimm o

1
w

1 L1
w ww
.

e

1 |
ooyt Ul Ww

oo
[]
o
w

H-13.2

H-14

[
1
—

RN
N

I
(=2} U w

SR
~

o
e]

e ~

e N\,

L.2.4 Set Bottom Address L-4
L.2.5 Set Relocation Registers L-4
L.3 EXAMPLES USING PATCH L-4
L.4 PATCH ERROR MESSAGES L-7
APPENDIX M PATCHO M-1
M.1 CALLING AND USING PATCHO M-1
M.2 PATCHO COMMANDS M-1
M.2.1 OPEN Command M-1
M.2.2 POINT Command M-2
M.2.3 WORD Command M-2
M.2.4 BYTE Command M-3
M.2.5 DUMP Command M-4
M.2.6 LIST Command M-4
M.2.7 EXIT Command M-4
M.2.8 DEC Command M-5
M.2.9 HELP Command M-5
M.3 PATCHO LIMITATIONS M-5
M. 4 EXAMPLES M-6
M.5 PATCHO ERROR MESSAGES M-7
M.5.1 Run-Time Error messages M-8
APPENDIX N DISPLAY FILE HANDLER N-1
N.1 DESCRIPTION | N-1
N.1l.1 Assembly Language Display- Support N-1
N.1.2 Monitor Display Support ' N-2
N.2 DESCRIPTION OF GRAPHICS MACROS N-3
N.2.1 .BLANK . - : N-3
N.2.2 .CLEAR ’ N-4
N.2.3 . INSRT N-5
N.2.4 - .LNKRT N-5
N.2.5 .LPEN N-7
N.2.6 .NAME N-9
N.2.7 . REMOV N-9
N.2.8 .RESTR N-9
N.2.9 .SCROL N-10
N.2.10 .START N-10
N.2.11 .STAT N-10
N.2.12 .STOP N-11
N.2.13 .SYNC/ .NOSYN N-11
N.2.14 . TRACK N-12
N.2.15 . UNLNK , N-13
N.3 EXTENDED DISPLAY INSTRUCTIONS N-13
N.3.1 DJSR Subroutine Call Instruction N-13
N.3.2 DRET Subroutine Return Instruction - N-14
N.3.3 DSTAT Display Status Instruction N-14
N.3.4 DHALT Display Halt Instruction N-14
N.3.5 DNAME Load Name Register Instruction . N-15
N.4 USING THE DISPLAY FILE HANDLER N-16
N.4.1 Assembling Graphics Programs : N-16
N.4.2 Linking Graphics Programs . . N-16

5474 January 1976

z2z2z2Z
(GG NTNE]

« o e
wN -

2
(<))

zz2z22=2 =2

o = =z
=
o

APPENDIX

.....
=
. . . .

.
(S0 O Sl

T AN
ISENINERECECECEN
e © e e s e e
BB S W N
e o
W N

® o o o s o © o e s e o & e o e s s .

OO WWLWWWWWWWWWwUWwWwwuwuwwwwwuwuwwwwww
6 o o e o e e & & o o e o e e o 8 e o = e @
NNMMMNMMNNNNVNHRFHFRFRFHERFEREREEREEEROONOOOD WNDH
ObwWwNhDHOOVWONOUIdWNDHO

-BNeclNeNoNoNoNoNoNoJoXoNoNoNoNoNoNeNoNoNeNoRoRoNoNoRoNo oo o NoNoNo e No N oNoNoNo No o

January 197

DISPLAY FILE STRUCTURE
Subroutine Calls

Main File/Subroutine Structure
BASIC/GT Subroutine Structure

SUMMARY OF GRAPHICS MACRO CALLS
DISPLAY PROCESSOR MNEMONICS

ASSEMBLY INSTRUCTIONS
General Instructions
VTBASE

VTCALl1 - VTCAL4
VTHDLR

Building VTLIB.OBJ

VTMAC

EXAMPLES USING GTON:

SYSTEM SUBROUTINE LIBRARY
INTRODUCTION

Conventions and Restrictions

Calling SYSLIB Subprograms
Using SYSLIB with MACRO

Running a FORTRAN Program in the Foreground

Linking with SYSLIB

TYPES OF SYSLIB SERVICES
Completion Routines
Channel-Oriented Operations
INTEGER*4 Support Functions
Character String Functions

Allocating Character String Variables

Passing Strings to Subprograms
Using Quoted-String Literals

LIBRARY FUNCTIONS AND SUBROUTINES

AJFLT
CHAIN
CLOSEC
CONCAT
CVTTIM
DEVICE
DJFLT
GETSTR
GTIM
GTJB
IADDR
IAJFLT
IASIGN
ICDFN
ICHCPY
ICMKT
ICSI
ICSTAT
IDELET
IDJFLT
IDSTAT
IENTER
IFETCH
IFREEC
IGETC

Xvi

"N-17

N-18
N-19
N-20

N-21

- N-23

N-24
N-24
N-24
N-25
N-25
N-25

N-25

? ¥
=N
o

|
AAUTW WNH

[eNeoNoNeoNe] ?)O(DCDC)O

1
NN
Howoma-aw

O(?O

e o e e o o © e e & e s & s e & o o ° e o
@ o o e s e e e e o e e e e s a2 & s e ° s s s e s e 8 s

COOWOWOWOWONNNNNNNNIJoooaooaoooaoaaoaauiuiutuitnuiiuTd e BEBEBBBEEBEBBRBRWWWWWWWWWWNDNDNDN

WWLWWWLWWLWWWWWLWLWWLWLWLWWUWWWLWWWWWLWWWWWWLWWWLWWWWWWWWWLWWLWUWLWwWwWLwWwWwuwwwWwuwwwwuwwuwwwwwww

[oXeNoRoNeoNoNoNeNooJoNoNoNo oo ojoooNo N o oo NoNojoNojoloNoNoNoNoNoNoRoNoXoNoNoXoNoNoNoNoNeJoNoNoNoNoNoNoNoNoNoNoNoNoNe)

.

IJCVT
ILUN
"INDEX
INSERT
INTSET
IPEEK
IPOKE
IQSET
IRADS50
IRCVD/IRCVDC/IRCVDF/IRCVDW
IREAD/IREADC/IREADF/IREADW
IREMAN
IREOPN
ISAVES
ISCHED
ISDAT/ISDAC/ISDATF/ISDATW
ISLEEP
ISPFN/ISPFNC/ISPFNF/ISPFNW
ISPY
ITIMER
ITLOCK
ITTINR
ITTOUR
ITWAIT
IUNITL
IWAIT
IWRITC/IWRITE/IWRITF/IWRITW
JADD
JAFIX
JCMP
JDFIX
JDIV
JICVT
JJCVT
JMOV
JMUL
JSUB
JTIME
LEN
LOCK
LOOKUP
MRKT
MWAIT
PRINT
PURGE
PUTSTR
R50ASC
RAD50
RCHAIN
RCTRLO
REPEAT
RESUME
SCOMP
SCOPY
SECNDS
STRPAD
SUBSTR
SUSPND
TIMASC
TIME
TRANSL

xXvii

January 1976

APPENDIX
GLOSSARY

INDEX

Number

1-1

12-1

12-5

12-7

0.3.87 TRIM

0.3.88 UNLOCK
0.3.89 VERIFY
P ERROR MESSAGE SUMMARY

TABLES

RT-11 Hardware Components

Prompting Characters
Permanent Device Names
File Name Extensions
Special Function Keys
SET Command Options

EDIT Key Commands
Command Arguments
Immediate Mode Commands

PIP Switches

Legal Separating Characters
Linker Switches

LIBR Switches

Forms of Relocatable Expressions
Internal Registers

Radix 50 Terminators

Summary of Programmed Requests
Requests Requiring the USR

Directives not Available in ASEMBL

Command Field Switches

File Name Extensions
Specification Field Switches
Character Interpretation
BATCH Commands

Operator Directives to BATCH Run-Time Handler

Differences Between RT-11 and RSX-11D BATCH
Card Code Conversions
DUMP Switches

FITEX Switch Options

January 1976 xviii

0-118
0-118
0-119
p-1
GLOSSARY-1

INDEX-1

e .

K-1 SRCCOM Switches

L-1 PATCH Commands

N-1 Description of Display Status Words
0-1 Summary of SYSLIB Subprograms

0-2 Special Function Codes

FIGURES
Number Page
2-1 RT-11 System Memory Maps
2-2 RT-11 Memory Map (GT40)
3-1 Display Editor Format
5-1 Assembly Source Listing of MACRO
Code Showing Local Symbol Blocks
5-2 Example of MACRO Line Printer
Listing (132-column Line Printer)
5-3 Example of Page Heading From

MACRO 80-column Line Printer

5-4 Symbol Table

5-5 Assembly Listing Table of Contents
5-6 .IRP and .IRPC Example

5-7 MACRO Source Code

5-8 CREF Listing Output

6-1 Linker Load Map for Background Job
6-2 Overlay Scheme
6-3 Memory Diagram Showing BASIC
Link with Overlay Regions
6-4 Run-Time Overlay Handler
6-5 Library Searches
6-6 Alphabetized Load Map for a Background Job

7-1 General Library File Format
7-2 Library Header Format

7-3 Format of Entry Point Table
7-4 Library End Trailer

12-1 EOF Card

xix

January 1976

PREFACE

This manual describes the use of the RT-11 Operating System. It
assumes the reader is familiar with computer software fundamentals and
has had some exposure to assembly language programs. The section
"Additional and Reference Material" later 1in this Preface lists
documents that may prove helpful in reviewing those areas. The
Glossary provides definitions of technical terms used in the manual.

The user who is unfamiliar with RT-11 should first read those chapters
of 1interest (see "Chapter Summary" below) to become familiar with
system conventions. Having gained familiarity with RT-11, the wuser
can then reread the manual for specific information.

Chapter Summary

Chapter 1 discusses system hardware and software requirements. It
describes general system operations and 1lists specific components
available under RT-11.)

Chapter 2 introduces the user to system conventions and monitor/memory
layout. It describes in detail the keyboard commands for controlling
jobs and implementing user programs.

Chapters 3 through 8 describe the system utility programs EDIT, PIP,
MACRO, LINK, LIBR, and ODT, respectively. These programs (a text
editor, file transfer program, assembler, 1linker, librarian, and
debugging program) aid the user in creating text files and producing
assembly-language programs.

Chapter 9, which describes programmed requests, 1is of particular
interest to the experienced programmer. It describes call sequences
that allow the user to access system monitor services from within
assembly-language programs.

Chapters 10 and 11 describe the 8K Assembler and EXPAND programs,
respectively. These programs are useful in RT-11 installations with
minimum memory configurations.

Chapter 12 describes the BATCH command language for RT-11. In BATCH
mode, the RT-11 system can be left to run unattended for long periods
of time.

The appendixes summarize the contents of the manual and describe
additional system utility programs that can be used for extended
system operations. These programs include SRCCOM (a source file
comparison program) ; FILEX (a file translation program that allows

xxi January 1976

Preface

transfer of files between RT-11 and other DIGITAL operating systems);
PATCH and PATCHO (patching programs); DUMP (a file dump program) ;
and SYSLIB (a library of programmed reguests for FORTRAN users).

{

Version History

The current RT-11 system (monitor) is Version 2C (V2C). Each system
component (monitors and utilities) is assigned a software
identification number in the form Vxx-xx. Current identification

numbers for V2C are 1listed in the RT-11 System Release Notes
(DEC-11-CRNRA-A-D). To determine whether the correct version of a
component is in use, examine its identification number and compare it

with the list. (The procedure for examining the version number
varies. Most system programs provide a special command; others print
the version number when an output listing is requested. Consult the

approiate chapter or appendix of this manual for each component.)

NOTE

Throughout this manual, any references
to V2 or V2B of RT-11 will pertain also
to V2C. The RT-11 System Release Notes
contain a comprehensive list of
differences between V2C and previous
versions of RT-11 (V2B, V2, V1).

Change bars and asterisks in the outermost margins of the manual are
used to denoteb'changes made to the text since the Version 2 release
(DEC-11-ORUGA-B-D). The date July 1975 in the lower outside corner of
a page 1indicates that the page was changed as a result of a
release-independent update that occurred in July, 1975. The date
January 1976 in the lower outside corner of the page indicates that
the page was changed specifically as a result of the V2C update.

The user who is already familiar with the Version 2B RT-11 System
Reference Manual (DEC-11-ORUGA-C-D,DN1) should first read the RT-11
System Release Notes document to note the major differences between
V2B and V2C, and then read those pages of the RT-11 System Reference
Manual that have changed as a result of the V2C update (identified by
the date January 1976) . The RT-11 System Generation Manual
(DEC-11-ORGMA-A-D) should also be read if customization. for . special
devices and features is required..) .

The user who is familiar with only the Version 2 RT-11 System
Reference Manual (DEC-11-ORUGA-B-D) should read the following in
addition to. those items mentioned in the preceding paragraph:

Chapter 2 (System Communication). - Tables 2-2, 2-3, and 2-5
Chapter 3 (Text Editor) - Section 3.6.5.6 ’
Chapter 9 (Programmed Requests) - Sections 9.1 and 9.1.3.6
Chapter 12 (BATCH) - Entire Chapter
Appendix H (F/B Programming

And Device Handlers) - Sections H.2.4 and H.2.5
Appendix O (SYSLIB) - Entire Appendix

Finally, the user familiar with only the Version 1 RT-11 System
Reference Manual (DEC-11-ORUGA-A-D) should read this entire manual
with these exceptions: ‘ ‘

January 1976 xxii

Preface

Chapter 3 (Text Editor) - note Section 3.7

Chapter 5 (MACRO Assembler) - note Section 5.7

Chapter 8 (0ODT) - note restrictions in Section
8.1

Chapter 10 (EXPAND) . -
Chapter 11 (ASEMBL)
Appendix L (PATCH)

While knowledge of Versions 2 and 2B is sufficient for wuse of V2C,

knowledge of Version 1 is not; the user with Version 1 knowledge only
should carefully read the manual.

Additional and Reference Material

" The following manuals provide an introduction to the PDP-11 computer
family and the basic PDP-11 instruction set:

PDP-11 Paper Tape Software Programming Handbook**
(DEC-11-XPTSA-B-D)

PDP-11 Processor Handbook*

PDP-11 Peripherals Handbook*

The following manual provides an introduction to the use of RT-11 by
presenting a simple demonstration of basic operating procedures:

RT-11 System Generation Manual* (DEC-11-ORGMA-A-D)

These manuals describe the capabilities of the optional high-level
language components:)

BASIC/RT-11 Lanquage Reference Manual** (DEC-11-LBACA-D-D)
PDP-11 FORTRAN Language Reference Manual** (DEC-11-LFLRA-B-D)
RT-11/RSTS/E FORTRAN IV User's Guide** (DEC-11-LRRUA-A-D)

Summaries of the features provided by each language appear in this
manual in Appendixes F and G respectively.

Two PDP-11 system manuals are helpful when using FILEX (Appendix J) to
convert programs between DOS, RSTS, and RT-11 formats:

PDP-11 Resource Sharing Time-Sharing System User's Guide**
(DEC-11-0ORSUA-D-D)
DOS/BATCH Handbook** (DEC-11-ODBHA-A-D)

Users of display hardware may wish to refer to the appropriate
hardware manual:

GT40/42 User's Guide*** (39H150)

GT44 User's Guide*** (39H250)

VT11l Graphic Display Processor Manual*** (79H650)
DECscope User's Manual*** (EK-VT50-0P)

The experienced programmer will want to read the following manual:

RT-11 Software Support Manual* (DEC-11-ORPGA-B-D)

*Included in the RT-11 Software Kit
**May be ordered from the DIGITAL Software Distribution Center
***May be ordered from DIGITAL Communication Services

xxiii January 1976

Preface

Consult the following for a list of all manuals available in the RT-11
software documentation set:

RT-11 Documentation Directory* (DEC-11-ORDDA-~A-D)

Documentation Conventions

Conventions used throughout this manual include the following:

1. Actual computer output is used in examples wherever possible.
When necessary, computer output is underlined to
differentiate from user responses.

2. A line feed (character or key) is represented in the text as
<LF>; a carriage return (character or key) is represented as
<CR>. Unless otherwise indicated, all commands and command
strings are terminated by a carriage return.

3. Terminal, console terminal, and teleprinter are general terms
used throughout all RT-11 documentation to represent any
terminal device, including DECwriters, displays, and
Teletypes****_, RP02 is a generic term used to represent both
the RP11C/RP02 and RP11E/RPR0O2 disks. '

4. Several characters in system commands are produced by typing
a combination of keys concurrently; for example, the CTRL
key is held down while typing an O to produce a command which
causes suppression of teleprinter output. Key combinations
such as this are documented as CTRL O, CTRL C, SHIFT N, and
so forth.

*Included in the RT-11 Software Kit
****Teletype is a registered trademark of the Teletype Corporation.

January 1976 xxiv

e N,

P

CHAPTER 1

RT-11 OVERVIEW

RT-11 is a single-user programming and operating system designed for
the PDP-1l1 series of computers. This system permits the use of a wide
range of peripherals and up to 28K of either solid state or core
memory (hereafter referred to as memory).

RT-11 provides two operating environments: Single-Job operation, and
a powerful Foreground/Background (F/B) capability(1l).

Single-~Job operation allows only one program to reside in memory at
any time; execution of the program continues until either it is
completed or it is physically interrupted by the user at the
console. i

In a Foreground/Background environment, two independent programs may
reside in memory. The foreground program is given priority and
executes until it relinquishes control to the background program; the
background program is allowed to execute until control is again
required by the foreground program, and so on. This sharing of system
resources greatly increases the efficiency of processor usage.

To handle both operating environments, RT-11 offers two completely
compatible and versatile monitors (Single-job and F/B); either monitor
provides complete user control of the system from the console terminal
keyboard. Monitor commands which allow the user to direct single-job,
foreground, and background operations are described in Chapter 2.

In addition to the monitor facilities, RT-11] offers a full complement
of system programs; these allow program development using high level
languages such as FORTRAN IV and BASIC or assembly language (MACRO or
EXPAND/ASEMBL) . System programs are summarized in Section 1.2 and are
discussed in detail in individual chapters and appendixes of this
manual. '

(1) The uses and advantages of each environment are outlined later in
this chapter.

RT-11 Overview

l.1 PROGRAM DEVELOPMENT

Computer systems such as RT-11 are often used extensively for program
development. The programmer makes use of the programming “tools"
available on his system to develop programs which will perform
functions specific to his needs. The number and type of "tools"
available on any given system depend on a good many factors--the size
of the system, its application and its cost, to name a few. Most
DIGITAL systems, however, provide several basic program development
aids: these generally include an editor, assembler, linker, debugger,
and often a librarian; a high level language (such as FORTRAN IV or
BASIC) is also usually available.

An editor is used to create and modify textual material. Text may be
the 1lines of code which make up a source program written in some
programming language, or it may be data; text may be reports, or
memos, or in fact may consist of any subject matter the user wishes.
In this respect using an editor is analogous to using a
typewriter--the wuser sits at a keyboard and types text. But the
advantages of an editor far exceed those of a typewriter because once
text has been created, it can be modified, relocated, replaced,
merged, or deleted--all by means of simple editing commands. When the
user is satisfied with his text, he can save it on a storage device
where it is available for later reference.

If the editor is used for the purpose of writing a source program, -

development does not stop with the creation of this program. Since
the computer cannot understand any language but machine language
(which is a set of binary command codes), an intermediary program is
necessary which will convert source code into the instructions the
computer can execute. This is the function of an assembler.

The assembler accepts alphanumeric representations of PDP-11 coding
instructions (i.e., mnemonics), interprets the code, and produces as

output the appropriate object code. The user can direct the assembler

to generate a listing of both the source code and binary output, as
well ‘as more specific listings which are helpful during the program
debugging process. In addition, the assembler is capable of detecting
certain common coding errors and of issuing appropriate warnings.

The output produced by the assembler is called object output because
it is composed of object (or binary) code. On PDP-11l systems, the
object output is called a module and contains the wuser's source
program- in the binary language which is acceptable to a PDP-1l
computer, :

Source programs may be complete and functional by themselves;
however, some programs are written in such a way that they must be
used in conjunction with other programs (or modules) in order to form
a complete and logical flow of instructions. For this reason the
object code produced by the assembler must be relocatable--that is,
assignment of memory locations must be deferred until the code is
combined with all other necessary object modules. It is the purpose
of linker to perform this relocation.

The linker combines and relocates separately assembled object
programs., The output produced by the linker consists of a load
module, which is the final linked program ready for execution. The
user can, at his option, request a load map which displays all
addresses assigned by the linker. '

e

RT=-11 Overview

Very rarely is a program created which does not contain at least one
unintentional error, either —in the logic of the program or in its
coding. Errors may be discovered by the programmer while he is
editing his program, or the assembler may find errors during the
assembly process and inform the programmer by means of error codes.
The 1linker may also catch certain errors and issue appropriate
messages. Often, however, it is not until execution that the wuser
discovers his program is not working properly. Programming errors may
be extremely difficult to find, and for this reason a debugging tool
is usually available to aid the programmer in determining the cause of
his error.

A debugging program allows the user to interactively control the
execution of his program. With it, he can examine the contents of
individual locations, search for specific bit patterns, set designated
stopping points during execution, change the contents of locations,
continue execution, and test the results, all without the need of
re-editing and re-assembling.

When programs are successfully written and executed, they may be
useful to other programmers. Often routines which are common to many
programs (such as I/O routines) or sections of code which are used
over and over again, are more useful if they are placed in a library
where they can be retrieved by - any interested user. A librarian
provides such a service by allowing creation of a library file. Once
created, the library can be expanded, updated, or listed.

High level languages simplify the programmer's work by providing an
alternate means of writing a source program other than assembly
language mnemonics. Generally, high 1level languages are easy to
learn--a single command may cause the computer to perform many machine
language instructions. The user does not need to know about the
mechanics of the computer to use a high level language. In addition,
some high level languages (like BASIC) offer a special immediate mode
which allows the wuser to solve equations and formulas as though he
were using a calculator. Assembling and linking are done
automatically so that the user can concentrate on solving the problem
rather than using the system,

These are a few of the programming tools offered by . most computer
systemns. The next section summarizes specific programming aids
available to the user of RT-11.

l.2 'SYSTEM SOFTWARE COMPONENTS
The following is a brief summary of the RT=-1ll system programs:

1. The Text Editor (EDIT, described in Chapter 3) is wused to
_create or modify source files for use as input to language
processing programs such as the assembler or FORTRAN, EDIT
contains powerful text manipulation commands for quick and
easy editing of a text file. EDIT also allows use of a VTI1l
display processor (such as the GT44), if one is part of the
hardware configuration (see Section 1.3).

2. The MACRO Assembler (Chapter 5) brings the capabilities of
macros to the RT-1l1l system with 12K (or more) memorye.
(Macros are instructions in a source or command language
which are equivalent to a specified sequence of machine

1-3

RT=11 Overview

3.

4.

5.

7.

8.

10.

instructions or commands.) The assembler accepts source files
written in the MACRO language and generates a relocatable
object module to be processed by the Linker before loading
and execution. Cross reference 1listings of assembled
programs may be produced using CREF in conjunction with the
MACRO Assembler, :

EXPAND (Chapter 10) is used in an 8K F/B job area or 8K
systems (or in larger systems with programs of great size) to
expand macros in an assembly language program into macro-free
source code, thus allowing the program to be assembled in 8K
using ASEMBL,

ASEMBL (Chapter 1l1l) is an assembler designed for use in an 8K
RT-11] system, an 8K F/B job area, or larger systems where
symbol table space is a factor., ASEMBL is a subset of
MACRO-11 with more limited features. (CREF is not available
under ASEMBL.)

The Linker (LINK, described in Chapter 6) fixes (i.e., makes
absolute) the values of relocatable symbols and converts the
relocatable object modules of compiled or assembled programs
and subroutines into a load module which can be loaded and
executed by RT-11l, LINK can automatically search 1library
files for specified modules and entry points; it can produce
a load map (which lists the assigned absolute addresses) and
can provide automatic overlay capabilities to very large
programs. The Linker can also produce files suitable for
running in the foreground.

The Librarian (LIBR, see Chapter 7) allows the user to create
and maintain his own 1library of functions and routines.
These routines are stored on a random access device as
library files, where they can be referenced by the Linker.

The Peripheral Interchange Program (PIP, see Chapter 4) is
the RT-11 file maintenance and utility program. It is used
to transfer files between all devices which are part of the
RT-11 system, to rename or delete files, and to obtain
directory listings.

SRCCOM (Source Compare, described in Appendix K) allows the
user to perform a character-by-character comparison of two or
more text files. Differences can be listed in an output file
or directly on the line printer or terminal, thus providing a
fast method of determining, for example, if all edits to a
file have been correctly made.

FILEX (Appendix J) allows file transfers to occur between
DECtapes used under the DECsystem-=10 or PDP-1ll1 RSTS system,
and DECtape and disk used under the DOS/BATCH system, and any
RT-11 device.

The PATCH utility program (Appendix L) is used to make minor
modifications to memory image files (output files produced by
the Linker); it is used on files which do or do not have
overlays. PATCHO (Appendix M) 1is used to make minor
modifications to files in object format (output files
produced by the FORTRAN compiler and the Librarian, or MACRO
and ASEMBL assemblers).

1-4

RT-11 Overview

11. ODT (On-line Debugging Technique, described in Chapter 8)
aids in debugging assembled and linked object programs. It
can print the contents of specified locations, execute all or
part of the object program, single step through the object
program, and search the object program for bit patterns.

12. DUMP (Appendix I) is used to print for examination all or any
part of a file in octal words, octal bytes, ASCII and/or
RAD50 characters (see Chapter 5).

13. BATCH (Chapter 12) is a complete Jjob control language that
allows RT-11 to operate unattended. The BATCH stream may be
composed of RT-11l monitor commands or system-independent
BATCH jobs (jobs that will run on any DIGITAL system
supporting the BATCH standard; currently RT-11 and RSX-11D).
BATCH streams can be executed under the Single-Job Monitor
or in the background under the F/B Monitor.

14. The RT-11 FORTRAN System Subroutine Library (SYSLIB, Appendix
0) is a collection of FORTRAN callable routines that make the
programmed requests and various utility functions available
to the FORTRAN programmer. SYSLIB also provides a complete
string manipulation package and two-word integer package for
RT~-11 FORTRAN.

BASIC and FORTRAN IV are two high level languages available under
RT-11., Summaries of their language features and commands are provided
in Appendixes F and G of this manual.

1.3 SYSTEM HARDWARE COMPONENTS

The minimum RT-11 system (that is, one that does not use the F/B
capability) requires a PDP-11 series computer with at least 8K of
memory, a random-access device, and a_console terminal. The F/B
capability requires at least 16K of memory and a line frequency clock.
For specific hardware/software interdependent requirements, refer to
the RT-11 System Release Notes.

Devices supported by RT-11 are listed in Table 1-1. The third
(middle) column lists devices for which support is initially provided
in the system as distributed; these devices can be used with no
modification (to either the monitor tables or the handlers) necessarv.
The devices in the fourth column are supported after simple
modifications to the monitor tables or handlers. The system
customization section of the RT-11 System Generation Manual describes
how to make these modifications. The fifth column lists devices for
which no support is provided, but which may be interfaced by the user.
Currently, the krS64 disk is the only device in this category, and
instructions for its interface are provided in the RT-11 Software
Support Manual.

Consult the RT-11 System Generation Manual for modifications that may
be made to existing system devices (for example, varying the baud rate
of a terminal).

1-5 January 1976

RT-11 Overview

Table 1-1

RT-11 Hardware Components

System-Installed

Devices Re-
quiring System

User-Installed

Category Cantroller Devices Modification Devices
DISK
DECpack RK11 . RKO5
Cartridge
Fixed-head RF11 RS11
RC11 RS64
RH11 RJISO3 RJIS04
Removable RP11 RP0O2 RPO3
Pack
Diskette RX11 RX01 RX01 (second
controller)
DECTAPE TCll TU56
MAGTAPE TM11/TMALL TUl0,TS03
RH11 TJUl6
CASSETTE TAll TU60
HIGH-SPEED PCl1 PCll (both)
PAPER TAPE PR11 PR11 (reader only)
READER/PUNCH
LINE PRINTER Ls1l LS1l, LA180
LV1l LV1l (printer only)
LP1ll all LP1l controiled
printers
CARD READER CR11l CR11
CM11 cM1l
TERMINAL DL11 LT33, LT35 ,
' LA30P, LA36, LA30S
vT50, VT52,
VTO05
DISPLAY VT1l1l VR14-L,VR17-L
PROCESSOR
CLOCK KW1ll-L
January 1976 1-6

RT=-11 Overview

RT-11 operates in environments ranging from 8K to 28K words of memory.
Reconfiguration for different memory sizes is unnecessary--the same
system device operates on any PDP-11 processor with 8K to 28K of
memory and makes use of all memory available.

1.4 USING THE RT-11 SYSTEM

As mentioned. earlier in the chapter, the RT-11 system offers two
complete operating environments. Each is controlled by a single user
from the console terminal keyboard by means of an appropriate
monitor--Single-Job or Foreground/Background, Both monitors are
completely compatible and allow full user interaction with all
features which are a part of the operating environment in use.

The choice of which environment to use, and, consequently, which
monitor to run, depends upon the needs of the user. The next two
sections provide information useful in determining which monitor is
more suitable for certain applications. '

1.4.1 RT-11 Single~-Job Monitor

The RT-11 Single-Job Monitor provides a single-user, single-program
system which can operate in as little as 8K of memory. Since the
Single-Job Monitor itself requires approximately one-half the memory
space needed by the Foreground/Background Monitor, this system is
ideal for extensive program development work; a much larger area of
memory is available for the user program and its buffers and tables.
Programs requiring extremely high data rates are best run in the
Single-Job environment, since interrupts can be serviced at a much
higher rate.

All system programs (listed in Section 1.2) can be wused under the

. Single-Job Monitor, and many of the features of the
Foreground/Background Monitor (i.e., KMON commands and programmed
requests not used to control foreground jobs) are supported.

In effect, the Single-Job Monitor is much smaller and slightly faster
than the Foreground/Background Monitor; it can best be used when
program size is the important factor.

1.4.2 RT-11 Foreground/Background Monitor

" Quite often the central processor of a computer system ,may spend a
large percentage of time waiting for some external event' to occur, the
most common event being the completion of an I/0 transfer (this is
particularly true of real time jobs). Many users would like to take
advantage of this unused capacity to accomplish other lower-priority
tasks such as further program development or complex data analysis.
The Foreground/Background system provides this capability.

In a Foreground/Background system the foreground job is the
time-critical, on-line job, and is given top priority; whenever
possible the processor runs the foreground job. However, when the
foreground job reaches a state in which no more processing can be done.

RT=11 Overview

until some external event occurs, the monitor will +try to run the
lower priority background job. The background job then runs until the
foreground job is again in a runnable state, at which point the
processor will interrupt the background job and resume the foreground
job.

In general, the RT-1ll Foreground/Background System is designed to
allow a time-critical 3job to run in the foreground, while the
background does non-time-critical jobs, such as program development.
(All RT-11 system programs run as the background job in a F/B system.)
Thus, the user can run FORTRAN, BASIC, MACRO, etc., in the background
while the foreground may be collecting data and storing and/or
analyzing it.

Most user programs written for an RT-11 System can be 1linked (using
the Linker described in Chapter 6) to run as the foreground job.
There are a few coding restrictions, and these are explained in
Appendix H, F/B Programming and Device Handlers. A foreground program
has access to all of the features available to the background job
(opening and closing files, reading and writing data, etc.). In
addition, the F/B System gives the user the ability to set timer
routines, suspend and resume F/B jobs, and send data and messages
between the two jobs.

l.4.,3 Facilities Available Only in RT-11 F/B

As mentioned previously, RT-11 F/B allows the user to write and
execute two independent programs. Some features which are available
only to the F/B user include: :

1. Mark Time--This facility allows user programs to set clock
timers to run for specified amounts of time. When the timer
runs out, a routine specified by the user is entered, There
may be as many mark time requests as desired, providing
system queue space is reserved (see ,QSET, Chapter 9).

2. Timed Wait--This feature allows the user program to "sleep"
until the specified time increment elapses., Typically, a
program may need to sample data every few seconds or even
minutes, While the program is idle, the other job can run.
The timed wait accomplishes this; when the time has elapsed,
the issuing job is again runnable (see .TWAIT, Chapter 9).

3. Send Data/Receive Data--It is possible, under RT-11 F/B, to
have the foreground and background programs communicate with
one another. This is accomplished with the send/receive data
functions. Using this facility, one program sends messages
(or data) in variable size blocks to the other job. This can
be wused, for example, to pass data from a foreground
collection program directly to a background analysis program
(see .SDAT/.RCVD, Chapter 9).

e ~

VR

CHAPTER 2

SYSTEM COMMUNICATION

The monitor is the hub of RT-11 system communications; it provides
access to system and user programs, performs input and output
functions, and enables control of background and foreground jobs.

The user communicates with the monitor through programmed requests and
keyboard commands. The keyboard commands (described in .Section 2.7)
are used to load and run programs, start or restart programs at
specific addresses, modify the contents of memory, and assign and
deassign alternate device names.

Programmed requests (described in detail in Chapter 9) are source
program -instructions which pass arguments to the monitor and request
monitor services, These instructions allow user assembly language
programs to utlllze the available monitor features.

2.1 START PROCEDURE

After the system has been built (see the RT-11 System Generation
Manual), the monltor can be loaded into memory from disk or DECtape as
follows:

l. Press HALT.

2. Mount the system device on unit 0 (or the appropriate unit if
a unit other than 0 is to be used). ‘

3. WRITE PROTECT the system unit.

If the hardware configuration includes a hardware bootstrap capable of
booting ‘the system device,

1. Set the switch register to the appropriate address and press
LOAD ADRS.

2. If a second address is required, set the switch register to
that address.

3. Press START.

2-1 January 1976

System Communication

If a hardware bootstrap is not available, or if an RK disk unit
other than 0 is to be used as the system device, one of the following
bootstraps must be entered manually using the Switch Register. First
set the Switch Register to 1000 and press the LOAD ADRS switch. Then
set the Switch Register to the first value shown for the appropriate
bootstrap and raise the DEPosit switch. Continue depositing the
values shown,

Disk
DECtape (RK Disk other

(RK11,RKO05) than Unit 0) (RF11) (RJS03/4) (RP11/RP02) (RX11/RX01)

12700 12700 12700 12700 12705 12705 12702
177344 177406 177406 177466 172044 176716 1002n7**
12710 12710 12760 5010 12745 12715 12701
177400 177400 XXXXXX * 5040 177400 177400 177170
12740 12740 4 12740 12745 12745 130211
4002 5 12700 177400 71 5 1776
5710 105710 177406 12740 32715 105715 112703
100376 100376 12710 5 100200 100376 7
12710 5007 177400 105710 1775 5007 10100
3 12740 100376 100762 10220
105710 ‘ 5 5007 5007 402
100376 : 105710 - 12710
12710 100376 1
5 . 5007 : 6203
105710 - 103402
100376 * xxxxxx = 20000 for unit 1 - 112711
5007 ‘ 40000 for unit 2 111023
60000 for unit 3 30211
100000 for unit 4| o 1776
120000 for unit 5 100756
140000 for unit 6 103766
160000 for unit 7 105711
100771
5000
22710
' 240
** n = 4 for unit 0 1347
6 for unit 1 122702
247
5500
5007

When all the values have been entered, set the switches to 1000 and
press the LOAD ADRS and START switches.

The mgn@tor. loads into memory and prints one of the following
identification messages followed by a dot (.) on the terminal:

RT-118J V02C-xx
RT-11FB V02C-xx

The message printed indicates which monitor (Single-Jdob or F/B) has

been 1loaded; the user may determine which is to be loaded during the
system build operation.

After the message has printed, the system device should be WRITE
ENABLED. The monitor is ready to accept keyboard commands.

January 1976 | : 2~-2

System Communication

To bring

up an alternate monitor while wunder control of the one

currently running (in this case, F/B), run PIP to perform the following
operations:

1.

Refer to
monitors.

Preserve the running monitor by renaming it to yyyyyy.S¥YS
(the actual name yyyyyy is not significant, although it is
suggested that yyMNSJ for Single-Job and yyMNFB for Fore-
ground/Background be used to be consistent with system con-
ventions; yy in this case represents the disk type):

,R PIF

FRKO RKMNFB. SYS=RKB:MONITR. SYS/R.Y
ZREBOOT?

Rename the desired monitor to MONITR.SYS:

ARKA:MONITR. SYS=RKO I RKMNSJ., SYSARSY
TREBOOGT?

Write the new bootstrap from the new MONITR.SYS file
(using the PIP /U option; A is a dummy filename, which
must be present in the command line):

ARKB:A=RKB :MONITR. 5¥5.U

Reboot the system.
*RKB -0

RT-1154J YBzC-82

the RT-11 System Generation Manual for an example of switching

2-2.1 January 1976

This page intentionally blank.

e

System Communication

2.2 SYSTEM CONVENTIONS

Special character commands, file naming procedures and other
conventions that are standard for the RT-1ll system are described in
this section. The user should be familiar with these conventions
before running the system,

1 2.2,1 Data Formats

The RT-11 system makes use of five types of data formats: ASCII,
object, memory image, relocatable image, and load image. - ’

Files in ASCII format conform to the American National Standard Code
for Information Interchange, in which each character is represented by
a 7-bit code. Files in ASCII format include program source files
created by the Editor, listing and map files created by various system
programs, and data files consisting of alphanumeric characters, A

chart containing ASCII character codes appears in Appendix C,

Files in object format consist of data and PDP-1ll1 machine language
code, Object files are those output by the assembler or FORTRAN
compiler and are used as input to the Linker,

The Linker can output files in memory image format (.SAV), relocatable
image format (.REL), or load image format (.LDA).

A memory image file (.SAV) is a 'picture' of what memory will look

‘like when a program is loaded. The file itself requires the same

number of disk blocks as the corresponding number of 256=-word memory
blocks. ' ' ‘ ‘

A relocatable image file (.REL) is one which can be run in the
foreground. It differs from a memory image file in that the file is
linked as though its bottom address were 0. When the program is called
(using the monitor FRUN command), the file is relocated as it is
loaded into memory. (A memory image file requires no such

.relocation.)

2-3 January 1976

System Communication

A load image (or ,LDA) file may be produced for compatibility with the
PDP-11 Paper Tape System and is loaded by the absolute binary loader.
'LDA files can be loaded and executed in stand-alone . _environments
without relocation. : ' ' '

2.2.2 Prompting Characters

The following table summarizes the characters typed by RT=1ll to
indicate to the user either that the system is awaiting user response
or to specify which job (foreground or background) is producing
output: : , _ :

Table 2-1 ,
‘ Promptlng Characters
' Character S ' Meaping)
. " The Keyboard Monitor is waiting for a command (see

Section 2.3.2).

Cx The Command String Interpreter is waiting for a
command string specification as explained in
Sections 2.3.3 and 2.5.

1 When the console terminal is being used as an
input file, the uparrow prompts the user to enter
information from the keyboard. If the input is
entered under EDIT or BASIC (or any program that
accepts input in special terminal mode . . as
described in Chapter 9), the characters entered
are not echoed., - Typing a CTRL Z marks the
end-of-file. T ~ o

> .The > character is. used (under the F/B Monltor and
only if a foreground job is active) to identify
which job, foreground or background, is = producing
the output currently appearing on the console
terminal. Each time output from the background
job is to appear, B> is printed first, followed by
the output., If the foreground job is to print
output, F> is typed first. B> and F)> are also
printed as a result of the CTRL B and CTRL F
commands described in Table 2-4.

2.2.3 Physical Device Names

Devices are referenced by means of a standard two-character device
name, Table 2-2 lists each name and its related device., If no unit
number is specified for devices which have more than one unit, unit 0
is assumed.

nN
1
g

System Communication

Table 2-2
Permanent Device Names
Permanent Name I/0 Device
CR: Card Reader (CR1l/CMll).
CTn: TAll cassette (n is the unit number, 0 or 1).
DK: ‘ The default logical storage devide for all files.

DK is initially the same as SY: (see below), but the
assignment (as a logical device name) can be changed-
with the ASSIGN Command (Section 2.7.2.4).

DKn: The specified unit of the same device type as DK.

DPn: RP02 disk (n is an integer in the range 0-7).

DSn: RJS03/4 fixed-head disks (n is in the range 0-7).

DTn: DECtape n, where n is a unit number (an integer in
the range 0 to 7, inclusive).

DXn: RX01 Floppy disk (n is 0 or 1).

LP: Line printer.

MMn : TJUl6 magtape (n is in the range 0-7).

MTn: TM11l (industry compatible) magtape (n is an integer
between 0 and 7, inclusive).

PP: High-speed paper tape punch.

PR: High-speed paper tape reader,

RF: ' RF1l fixed-head disk drive.

RKn: RK disk cartridge drive n (n is in the range 0 to
7 inclusive). '

SY: System device; the device and unit from which the
system is bootstrapped. (RT=-11 allows
bootstrapping from any RK unit; refer to Section
2.1.) The assignment as a logical device name car.

be changed with the ASSIGN command (Section 2.7.2.4).

S¥n: The specified unit of the same device type as that
from which the system was bootstrapped.

TT: B Terminal keyboard and'printer.

In addition to the fixed names shown in Table 2=~2, devices can be
assigned logical names. A logical name takes precedence over a
physical name and thus provides device independence., With this
feature a program that is coded to use a specific device does not need
to be rewritten if the device is unavailable. Refer to Section
2.7.2.4 for instructions on assigning logical names to devices.

2.,2,4 File Names and Extensions

Files are referenced symbolically by a name of one to six alphanumeric
characters followed, optionally, by a period and an extension of up to
three alphanumeric characters. (Excess characters in a filename may
cause an error message,) The extension to a filename generally
indicates the format of a file. It is a good practice to conform to

~

2-5 January 1976

System Communication

the standard filename extensions for RT-11l. If an extension is not
specified for an input or output file, most system programs assign
appropriate default . extensions., Table 2-3 1lists the standard
extensions used in RT-1l1l,

Table 2-3
File Name Extensions
~ Extension . v Meaning
.BAD Files with bad (unreadable) blocks; this

extension can be assigned by the user
whenever bad areas occur on a device, The
«BAD extension makes .the file permanent in
that area, preventing other files from using
it and consequently becoming unreadable.

«BAK Editor backup file.

«BAS | BASIC source file (BASIC input).

.BAT BATCH command file.

.CTL BATCH control file generated by the
BATCH compiler.

.CTT BATCH internal temporary file.

« DAT BASIC or FORTRAN data file.

.DIR Directory listing file:

+DMP DUMP output file.

«FOR FORTRAN IV source file (FORTRAN input).

.LDA Absolute binary file = (optional Linker
output) ., ‘ '

JLLD Library listing file, -

.LOG BATCH log file. ' ‘

LLST Listing file (MACRO or FORTRAN output).

JMAC MACRO or EXPAND source file (MACRO, EXPAND,
SRCCOM input).

«MAP Map file (Linker output) .

+OBJ Relocatable binary file (MACRO, ASEMBL,

FORTRAN IV -output, Llnker lnput, LIBR input
and output).

«PAL s Output file of EXPAND (the MACRO expander
: . program), input f11e of ASFMBL.

<REL '-Foreground job ‘relocatable image (Linker
— output, default for monitor FRUN command) .

+«SAV Memory image or SAVE file; default for R,
RUN, SAVE and GET Keyboard Monitor commands,
also default for output of Linker.

-S0u Temporary source file generated by BATCH.

- «SYS - System F1les and handlers.

System Communication

If a filename with a blank extension is to be used in a command 1line
in which a default extension is assumed (by either the monitor or a
system program), the user must insert a period after the filename to
indicate that there is no extension. For example, to run the file
TEST, type:

. RUN TEST.

If the period after the filename is not given, the monitor assumes the
.SAV extension and attempts to run a file named TEST,.SAV.

2.2.5 Device Struetufes

RT-11 devices are categorized by the physical structure of the device
and the way in which the device allows information to be processed.

All RT-11 devices are either random-access or sequential-access devices.
Random-access- devices allow blocks of data to be processed in a random
order —-- that is, independént of the data's physical location on the
device or its.location relative to any- other information. B All disks
and DECtape fall into this category. Random-access devices are some-
times also called block-replaceable devices, because individual data
blocks can be manipulated (rewritten) without affecting other data
blocks on the device. Sequential-access devices require that data be
processed sequentially; the order of processing data must be the same
as the physical order of the data. RT-11 devices that are considered
sequential devices are magtape, cassette, paper tape, card reader,
llne printer,- and terminal. ,

Flle—structured devlces are those devices that allow the storage of
data under assigned filenames. RT-11 devices that are file-structured
include all disks, DECtape, magtape, and cassette. Nonfile-structured
devices, on the other hand, are those used to contain a single logical
collection of data. These devices are used generally for reading and
listing information, and include line prlnter, card reader, terminal,
and paper tape devices.

Finally, file-structured devices are classified further as RT-11 direc-
tory-structured devices if they provide a standard RT-11 directory at
the beginning of the device .(the standard RT-11 directory is defined
in the RT-11 Software Support Manual). The directory contains informa-
tion about.all files stored on the device and is updated each time. a
file is moved, added, or deleted from the device. RT-11 directory-
structured devices include all disks and DECtapes. NonRT-11 directory-
structured devices are file-structured devices that do not have the
standard RT-11 directory structure at their beginning. For example,
some devices, such as magtape and cassette, have directory-type infor-
mation stored at the beginning of each file; the device must be read
sequentially to obtain all information about all files.

It is possible to interface a device to the RT-1ll system with a user-
defined directory structure; procedures are explained in the RT-11
Software Support Manual.

2-7 January 1976

System Communication

2.3 MONITOR SQFTWARE COMPONENTS
The main RT-11 monitor software components are:
Résident Monitor (RMON)
Keyboard Monitor (KMON)
User Service Routine (USR) and Command String Interpreter (CSI)
Device Handlers

The reader may find Figure 2-1 helpful while reading the following
descriptions.

2.3.1 Resident Monitor (RMON)

The Resident Monitor is the only permanently memory-resident part of
RT-11l. The programmed requests for all services of RT-ll are handled
by RMON, RMON also contains the console terminal service, error
processor, system device handler, EMT processor, and system tables.

2,3.2 Keybhoard Monitor (KMON)

The Keyboard Monitor provides communication between the wuser at the
console and the RT-11 system, Monitor commands allow the user to
assign logical names to devices, run programs, load device handlers,
and control F/B operations. A dot at the left margin of the console
terminal page indicates that the Keyboard Monitor is in memory and is
waiting for a user command.

2.3.3 User Service Routine (USR)

The User Service Routine provides support for the RT-1l1l file
structure, It 1loads device handlers, opens files for read or write
operations, deletes and renames files, and creates new files. The
Command String Interpreter (the use of which is described in Section
2,5) is part of the USR and can be accessed by any program to
interpret device and file I/O information.

January 1976 2-7.1

7 N\,

P

This page intentionally blank.

System Communication

2.3.4 Device Handlers

Device handlers for the RT-l1ll system perform the actual transfer of
data to and from peripheral devices. New handlers can be added to the
system as files on the system device and can be interfaced to the
system by modifying a few monitor tables (see the RT-11 Software

Support Manual, DEC-11-ORPGA-B-D for instructions on how to interface
a new handler to the RT-1l monitor).

2.4 GENERAL MEMORY LAYOUT

When the RT-11 System is first bootstrapped from the system device,
memory is arranged as shown in the left diagram of Figure 2-1 (this is
the case for either the Single-Job or Foreground/Background Monitor,
since no foreground job exists yet). The background job is the RT=-11
module KMON,

When an RT-11 foreground 3job is initiated (via the monitor FRUN
command, Section 2.7,5,1), room is created for the foreground job to
be loaded by decreasing the amount of space available to the
background job. The memory maps in Figure 2-1 illustrate the system
layout before and after a foreground job is loaded. (Refer also to
Chapter 6, Section 6.5.)

RMON , _ RMON
USR HANDLERS
KMON FJOB
BEFORE
LOADING USR AFTER
COREGR THE HIGH LOADING
OUND KMON THE
10 | ADDRESSES FOREGROUND
| JOB
| ! '
| | |
I ! I '
| ! |
0 0
Figure 2-1

RT=-11 System Memory Maps

As shown in the figures, the process of loading a foreground 3job
requires that the USR and KMON be physically moved. Once a foreground
job is running, it is possible to communicate with either the
background or foreground job via special commands (described in
Section 2.7). All of the terminal support functions described in
Section 2,6 are available under both the Single-job and F/B Monitors.

In addition to FRUN, other monitor commands can alter the memory map;
these are LOAD, UNLOAD, GT ON, and GT OFF, LOAD causes device
handlers to be made resident until an UNLOAD command is performed.
UNLOAD deletes handlers which have been loaded. GT ON and GT OFF
cause terminal service to utilize the VT-1ll display hardware. Figure
2-2 illustrates the placement of display modules and device handlers
in memory following the GT ON, LOAD, and FRUN commandss:

2-8

TN

System Communication

RMON

GT40 (GT ON GT OFF)

HANDLERS

FJOB
HIGH
USR ADDRESSES

KMON

I

0

Figure 2-2
RT-11 Memory Map (GT40)

RT-11 maintains a free memory list to manage K memory. Thus, when a

handler is unloaded, the space the handler occupied is returned to the
free memory list and is reclaimed by the background.

2.4.1 Component Sizes

Following are the approximate sizes (in words) of the components for
RT-11, Version 2C (sizes reflect RK).

F/B Single-job

RMON 3575(10) 1703 (10)
USR 2050(10) - : : 2050(10)
KMON 1800(10) 1540(10)

In the F/B system, the background area must always be large enough to
hold KMON and USR (3.9K words). The following list indicates the total
space available for the loaded device handlers, the foreground job,
and the display handler. Note that the low memory area from 0-477 is
never used for executable programs. (These sizes also allow room for
the 3.5K RMON) .)

,¥Mééhine size (words) Spéée available (words)
16k ' 8.5K
24K 16.5K
28K » . 20.5K -

With the Single-Job Monitor, RMON requires only 1.67K. The following
list shows the amount of space available to users with the Single-Job
Monitor: o : :

2-9 January 1976

System Communication

Machine size (words) Program space available (words)
8K 6K
16K 14K
24K 22K
28K 26K

2,5 ENTERING COMMAND INFORMATION

Once either monitor has been loaded and a system program started, the
user must enter the appropriate command information before any opera-
tion can be performed.

In most cases, the Command String Interpreter immediately prints an
asterisk at the left margin. The user must then type a command string
in the general format:

OUTPUT=INPUT/SWITCH

(A few system programs -- EDIT, PATCH, PATCHO -- require that this com-
mand information be entered in a slightly different format. Complete
instructions are provided in the appropriate chapter.)

In all cases, the format for OUTPUT is:

' dev:filnam.ext[n],...dev:filnam.ext[p]
INPUT is:
dev:filnam.ext,...dev:filnam.ext
and SWITCH is:
/s:oval or /s!tdval
where:s

dev: in each case is an optional two to three-character
name from Table 2-2 whose usage conforms to the
NOTE below, ’

filnam.ext in each case is the name of a file (consisting of

' one to six alphanumeric characters followed
optionally by a dot and a zero to three-character
extension). As many as three output and six input
files may be allowed. ' o

[n] is an optional declaration of the number of blocks
(n) desired for an output file. n is a decimal
number (<65,535) enclosed 1in square brackets
immediately following the output filnam.ext to
which it applies.

/s:oval or is one or more optional switches whose functions

/stdval vary according to the program in use (refer to the
switch ‘option table in the appropriate chapter).
oval is either an octal number or one to three
alphanumeric characters (the first of which must
be alphabetic) which will be converted to radix=50
(see Section 5.5.4 of the MACRO chapter). dval is
a decimal value preceded by an exclamation point.

. January 1976 2-10

System Communication

Throughout this manual, the /s:oval construction
is used; however, the /sldval format is always
valid. Generally, these switches and their
associated values, if any, should follow the
device and filename to which they apply.

If the same switch is to be repeated several times
with different values (e.g., /L:MEB/L:TTM/L:CND to
MACRO) the line may be abbreviated as
/L:MEB:TTM:CND; octal, RAD50, and decimal values
may be mixed.

= ~ if required, is a delimiter that separates the out-
put and input fields. The < sign may be used in
place of the = sign. The separator can be omitted
entirely if there are no output files.

NOTE

As illustrated in the general format of
a command line, the command 1line
consists of an output list, a separator
(= or <), and an input list.
Omission of a device specification in
either the input or output list is han-
dled as follows:

DK: is assumed if the first file in a
list has no explicit device. DK (or the
device associated with the first file)
is default until another device is
indicated; that device then becomes
default wuntil a new one is used, and so
on. If the - following command is
entered, for example, to MACRO:

#DTL FIRST. OBJ, LP:=TRSK. 1. RKL1:THRSK. 2. TRSK. =

it is interpreted as though all devices
had been indicated as follows:

*DTL FIRST. OBJ, LP: =0k TARSK. 1, RE1TASK. 2. REL: TASK. =

2.6 KEYBOARD COMMUNICATION (KMON)

Special function keys and keyboard commands ‘allow the user to
communicate with the RT-11 monitor and allocate system
resources, -manipulate memory images, start programs, and use
foreground/background services.

The special functions of certain terminal keys used for communication
with the Keyboard Monitor are explained in Table 2-4. Note that in the
F/B system, the Keyboard Monitor always runs as a background job.

CTRL commands are entered by holding the CTRL key down while typing
the appropriate letter.

2-11 January 1976

System Communication

, Table 2-4
Special Function Keys

Key

Function

CTRL A

CTRL B

CTRL E

_ CTRL F

Valid when the monitor GT ON command has been typed and
the display 4is in use. The command does not echo on
the terminal, It is used after a CTRL S has been typed

"to effectively page = output, Console output is

permitted to resume - until - the 'screen is completely
filled; text previously displayed is scrolled upward
off the screen. CTRL A has no special meaning if GT ON
is not in effect or if a SET TTY NOPAGE command has
been given (see Section 2.7.2.8).

Under the F/B Monitor echoes B> on the terminal (unless
output is already coming from the background job) and
causes all keyboard input to be directed to the
background job. At least one line of output will be
taken from the background job (the foreground Jjob has
priority, and . control will revert to it if it has
output). All typed input will be directed to the
background Jjob until control is redirected to the
foreground job (via CTRL F). CTRL B has no special
meaning when used under a Single-Job Monitor or when a
SET TTY NOFB .command has been issued (see Section
2,7.2.8). '

CTRL C echoes as "C on the terminal and 1is used to
interrupt program execution and return control to the
keyboard monitor. If the program to be interrupted is
waiting for terminal input,.or is using the TT handler
for input, typing one CTRL C is sufficient to interrupt
execution; in all .other cases, two CTRL Cs are neces-
sary. Note that under the F/B Monitor, the job which is
currently receiving input will be the job that is stopped
(determined by whether a CTRL:F or CTRL B was most re-
cently typed). To ensure that the command is directed
to the proper Jjob, type CTRL B or CTRL F before typing
CTRL C.

Valid when the monitor GT ON command has been typed and
the display is in use. The command does not echo on
the terminal, but causes all terminal output to appear
on both the display screen and the console terminal
simultaneously. A second CTRL E disables console
terminal output, CTRL E has no special meaning if
GT ON is not in effect.

Under the F/B Monitor echoes F> on the terminal and

instructs that all keyboard input be directed to ‘the
foreground job and all output be taken from the
foreground job. If no foreground job exists, F? is
printed and control is directed to the background job.
Otherwise, control remains with the foreground job
until redirected to the background job (via CTRL B) .or
until the foreground job terminates. CTRL F has no
special meaning when used under a : Single-Job Monitor,
or when a SET TTY NOFB command has - been used (see
Section 2.7.2.8). ‘

2~12

/ ~

System Communication

Table 2-4 (Cont.)
Special Function Keys

Key Function

CTRL O Echoes 10 on the terminal and causes suppression of
' teleprinter output while continuing program execution.
Teleprinter output is re-enabled when one of the
following occurs: *

1. A second CTRL O is typed,
2. A return to the monitor occurs, or

3. The running program issues a « RCTRLO
directive (see Chapter 9). (RT-11] system
programs reset CTRL O to the echoing state
each time a new command string is entered.)

CTRL Q Does not echo. Resumes printing characters on the
terminal from the point at which printing was
previously stopped (via CTRL S). CTRL Q has no special
meaning if a SET TTY NOPAGE command has been used (see
Section 2.7.2.8).

CTRL S Does not echo. Temporarily suspends output to the
terminal until a CTRL Q is typed. If GT ON is in
effect, each subsequent CTRL A causes output to proceed
until the screen has been refilled once. This feature
allows users with high-speed terminals to £fill the
display screen, stop output with CTRL S, read the
screen, and then <continue with CTRL Q or CTRL A.
(Typing CTRL C in this case also continues output.)
Under the F/B Monitor, CTRL S has no special meaning if
a SET TTY NOPAGE has been used,

CTRL U Deletes the current input 1line and echoes as 1{U

‘ followed by a carriage return at the terminal, (The
current line is defined to be all characters back to,
but not including, the most recent line feed, CTRL C or
CTRL Z,) . i

CTRL 2 Echoes tZ on the terminal and terminates input when

: used with the terminal device handler (TT). The CTRL Z
itself does not appear in the input buffer. If TT is
not being used, CTRL Z has no special meaning.

RUBOUT Deletes the last character from the current line and
echoes a backslash plus the character deleted. Each
succeeding RUBOUT deletes and echoes another character.
An -enclosing backslash is printed when a key other than
RUBOUT is typed. This erasure is done right to left up
to the beginning of the current line.

2.6.1 Foreground/Background Terminal I/O

It is important to note that console input and output under F/B are
independent functions; input can be typed to one job while output is
printed by another. The user may be in the process of typing input to
one job when the other job is ready to print on the terminal. In
this case, the job which is 'ready to print interrupts the user
and prints the message on the terminal; input control is not re-
directed to this job, however, unless a CTRL B or CTRL F is explicitly
typed. If input is typed to one job while the other has output
2-13

System Communication

control, echo of the input is suppressed until the job accepting input
gains output control; at this point all accumulated input is echoed.

If the foreground job and background 3job are both ready to print
output at the same time, the foreground job has priority. Output from
the foreground job prints until a line feed is encountered, at which
point output from the background job prints until a line feed is
encountered, and so forth. :

When the foreground job terminates, control reverts automatically to
the background job.

2.6.2 Type-Ahead

The monitor has a type-ahead feature which allows terminal input to be
entered while a program is executing. For example:

LR PIF

#D0T1: TAFE=FR:

DTi:-L

*1I-FEE-74

TAFE ' 78 13I-FEE-74
486 FREE BLOCES

While the first command line is executing, the second line (DT1l:/L) is
entered by the user. This terminal input is stored in a buffer and
used when the first operation has completed.

If a single CTRL C is typed while in this mode, it is put into the
buffer, The program currently executing exits when a terminal input
request needs to be satisfied. A double CTRL C returns control to the
monitor immediately. :

If type-ahead input exceeds 80 characters, the terminal bell rings and
no characters are accepted until part of the type~ahead buffer is used
by a program or characters are deleted. No input is lost. Type-ahead
is particularly useful in specifying multiple command lines to system
programs, as shown in the preceding example. If a job is terminated
by typing two CTRL C's, any unprocessed type-ahead is discarded.

NOTE

If type-ahead is wused in conjunction
with EDIT or BASIC, there is no terminal
echo of the characters but they are
stored in the buffer until a new command
is needed. The characters are echoed
onlv when actually used by the program.

2.7 KEYBOARD COMMANDS

Keyboard commands allow the user to communicate with the monitor.
Keyboard commands can be abbreviated; optional characters in a -
command are delimited (in this section .only) by braces. Keyboard
commands require at least one space between the command and the first
argument, All command lines are terminated by a carriage return.

2~-14

Feamn

System Communication

All commands, with the exception of those described in Section 2.7.5,
may be used under either the Single-Job or F/B Monitor. The commands
described in Section 2.7.5 apply only to the F/B Monitor.

NOTE

Any reference made to "the background
job" applies as well to the Single=Job
Monitor, since the background job in a
F/B system is equivalent to the
single-job environment in its - normal
state.

2.7.1 Commands to Control Terminal I/O (GT ON and GT OFF)

GT ON/GT OFF

The GT ON and GT OFF commands are used to enable and disable the
scroller (VT=11l display hardware). GT ON causes the display screen to
replace the console as the terminal output device. Switch options
allow the user to control the number of lines to appear on the screen
and to position the first line vertically. Output appears on - the
display in the same format as it would on the console (i.e., output,
text, and commands are displayed in the order in which they occur).
GT ON is not permitted in an 8K configuration,

The form of the GT ON command is:

GT ON{/LG}{/T:n}

where:

/L:n represents an optional switch setting indicating the
number of 1lines of text to display; the suggested
range is:

12" screen 1<{=n<=37 octal (31 decimal)
(GT40, DEClab) - :

17" screén 1<=n<{=50 octal (40 decimal)
(GT44) . :

/T:n represents an optional switch setting indicating the
top position of +the scroll display; the suggested
range is:

12" screen : 1<=n<=1350 octa1\(744 decimal)

(GT40, DEClab)

2-15

System Communication

17" screen 1<{=n<¢=1750 octal (1000
(GT44) decimal)

If no switches are specified, a test for the screen size is performed
and default values are automatically assigned as follows:

12" screen /L:37 (31 decimal)
(GT40, DEClab) /T:1350 (744 decimal)

17" screen /L:50 . (40 decimal)
(GT44) /T:1750 (1000 decimal)

Line length is always set to 72 for 12" screen and 80 for 17" screen.
Once the display has been activated with the GT ON command, CTRL A,
CTRL S, CTRL E and CTRL Q can be used to control scrolling behavior.
These commands are described in Section 2.6.

NOTE

ODT is one exception to the use of GT
ON. This system program has its own
terminal handler and cannot make use of
the display; output will appear only on
the console terminal whenever ODT is
running. .

The GT OFF. command clears the display and resumes output on the
teleprinter., The command format is:

GT OFF

If GT ON and GT OFF are used when no display hardware exists or when a
foreground job is active, the ?ILL CMD? message is printed. :

2.7.2 Commands to Allocate System Resources

DATE

2.7.2.1 DATE Command - The DATE command enters the indicated date to
the system, This date is then assigned to newly created files, new
device directory entries (which may be listed with PIP), and 1listing
output until a new DATE command is issued,

The form of the command is:
DAT{E} {dd—mmm—yy}

where dd-mmm-yy is the day, month and year to be entered. dd is a
decimal number in the range 1-=31; mmm is the first three characters of
the name of the month, and yy is a decimal number in the range 73-99.
If no argument is given, the current date is printed.

January 1976 2-16

System Communication

Examples:

.DARTE 21-FEEBE-F4 Enter the date 21-FEB-74 as the current
system date.

, DAT Print the current date.

21-FEE-74

If the date is entered in an incorrect format, the ?DAT? error
message is printed.

TIME

2.7.2,2 TIME Command - The TIME command allows the user to find out
the current time of day kept by RT=1ll or to enter a new time of day.
If no KW1ll-L clock is present on the system, the ?NO CLOCK? error
message is generated. If the time is entered in an incorrect format,
the ?TIM? message is printed.

The form of the command is:

TIM{E}' {hh:mm:ss}
where hh:mm:ss represents the hour, minute, and second. Time is
represented as hours, minutes, and seconds past midnight in 24-hour
format (e.g., 1:25:00 P,M, is entered as 13:25:00). If any of the
arguments are omitted, 0 1is assumed., If no argument is given, the
current time of day is output.
Examples:

LTIM 5:15:23 Sets the time of day to 8 hours, 15
minutes and 23 seconds,

LTIN Approximately 10 minutes later, the
BE:25:27 TIME command outputs this time.
LTIME 1&8:5 Sets the time of day to 18:05:00.

Under the F/B Monitor, after the time reaches 24:00, the time and date
will be reset when the user next issues a TIME command (or .GTIM pro-

‘grammed request). Time and date are not reset under the Single-Job

Monitor. Month and year are not updated under either monitor.

The clock rate is initially set to 60-cycle. Consult the RT-1l System
Generation Manual if conversion to a 50-cycle rate is necessary.

2-17 January 1976

System Communication

INITIALIZE

2.7.2.3 INITIALIZE Command - The INITIALIZE command is used to reset
several background system tables and do a general "clean-up" of the
background area; it has no effect on the foreground job. In
particular, this command makes non-resident those handlers which were
not loaded (via LOAD), purges the background's I/0 channels, disables
CTRL O, performs a hard reset, clears locations 40-53, resets the KMON
stack pointer, and under the F/B monitor performs an .UNLOCK.

Under the Single-Job Monitor a RESET instruction is done (see Chapter
9). Under the F/B Monitor, I/O is stopped by entering each busy de-
vice handler at a special abort entry point.

The form of the command is:

IN{ITIALIZE}
The INITIALIZE command can be used prior to running a user program, or
when the accumulated results of previously issued GET commands (see
Section 2,7.3.1) are to be discarded. \
Example:

JIN ' ‘Initializes system background job

~ ASSIGN

2.7.2.4 ASSIGN Command - The ASSIGN command assigns a user-defined
(logical) name as an alternate name for a physical device. This is
especially useful when a program refers to a device which is not
available on a certain system. Using the ASSIGN command, I/O can be
redirected to a device which is available. Only one logical name can
be assigned per ASSIGN command, but several ASSIGN commands (14
maximum) can be used to assign different names to the same device.
This command is also used to assign FORTRAN logical units to device
names.,

January 1976 ' 2-13

System Communication

The form of the command is:

ASS{IGN} {{dev}:udev}

where:

dev

udev

The placement of th
command; it must
examples:

is any standard RT-11 (physical) device name
(refer to Table 2-2) with the exception of DK and
5) 48 i

is a 1-3 character alphanumeric (logical) name to
be used in a program to represent dev (if more
than three characters are given, only the tirst
three are actually used). DK and SY may be wused
as logical device names.

is a delimiter character (can be a colon, equal
sign, and, if separating physical and logical
devices, space).

e delimiter is very important in the ASSIGN
be placed exactly as shown in the following

AS5IGHN DT1 IMP Physical device DT1 is assigned the

logical device name INP, Whenever a
reference to INP: is encountered,
device DTl: is used.

.ASSIGN DT3:DK Physical device name DT3 is assigried the

.ASSIGN L

default device name DK, Whenever DK is
reterenced or defaulted to, DT3 is used.
(Note that the initial assignment of DK
is thus changed.)

P=3 FORTRAN logical wunit 9 becomes the
physical device name LP. All references
to unit 9 use the 1line printer for
output. ‘

Assignment of logical names to logical names is not allowed.

If only a logical de
particular assignmen

vice name is indicated in the command line, that
t (only) is removed. Thus:

.ASSIGN 3 Deassigns the logical name 9 from its

. AS5IGN =

physical device (LP, in the case above).

DK Removes assignment of logical name DK
from its physical device (DT3, in the
case above).

If neither a physical device name nor a logical device name is
indicated, all assignments to all devices are removed.

. A551IGN

All previous logical device assignments
are removed.,

2-19 TJanuary 1976

System Communication

CLOSE

2.7.2.5 CLOSE Command - The CLOSE command causes all currently open
output files in the background job to become permanent files. If a
tentative open file is not made permanent, it will eventually be
deleted. The CLOSE command is most often used -after CTRL C has been
typed to abort a background job and to preserve any new files that job
had open prior to the CTRL C; it has no effect on a foreground job.

The form of the command is:
CLO{SE}

The CLOSE command makes temporary directory entries permanent.

Example:
R ECIT The Editor has a temporary
*EMTEXTS% file open (TEXT), which is
*ITRECDES preserved by .CLOSE.
7
CLOSE

LOAD

2.,7.2.6 LOAD Command - The LOAD command is wused to make a device
handler resident for wuse with background and foreground jobs.
Execution is faster when a handler is resident, although memory area
for the handler must be allocated. Any device handler to be used by a
foreground job must be loaded before it can be used.

The form of the command is:

LOA{D} dev{,dev=B}{;dev=F,...}

where:
dev represents any legal RT-11l device name.
= represents a delimiter, denoting device ownership.
B represents the background job.
F represents the foreground job.

The dev=F (and dev=B) construction is valid only under the
Foreground/Background system, When used under the Single-Job Monitor,
the ?ILL EV? error message OCCUrS.

2-20

(' System Communication

A device may be owned exclusively by either the foreground or
background job. This may be used, for example, to prevent the I/O of
two different jobs from being intermixed on the same non-file
structured device. For example:

oL DAY PR PR L The papertape punch belongs to the
background job while the paper tape
reader is available for wuse by
either the background or foreground
job; the line printer is owned by
the foreground job. All three
handlers are made resident in
Memory.

Different units of the same random-access device controller may be owned
by different jobs. Thus, for example, DTl may belong to the background

(while DT5 may belong to the foreground job. If no ownership is
indicated, the device is available for public use.

To change ownership of a device, another LOAD command may be used; it
is not necessary to first UNLOAD the device. For example, if RK1l has
been assigned to the foreground job as in the example above, the
command s

PO 1< T N L R
reassigns it to the background job.

(\ The system unit of the system device cannot be assigned ownership, and
attempts to do so will be ignored. Other units of the same type as
the system device, however, can be assigned ownership.

LOAD is valid for use with user-assigned names. For exémple:

SARETGN RRZIXY

oL XY =

If the Single-Job, DECtape-based Monitor is being used, loading the
necessary device handlers into memory can significantly improve the
throughput of the system, since no handlers need to be loaded
dynamically (in other words, they need not be loaded, as required,
from the DECtape).

UNLOAD

/ 2.7.2.7 UNLOAD Command - The UNLOAD command is used to make handlers
L that were previously LOADed non-resident, freeing the memory they were
using.

2-21 January 1976

System Communication

The form of the command is:
UNL{OAD} dev<bdev,...}
where:
dev represents any legal RT-1l1l device name.

UNLOAD clears ownership for all units of an indicated device type.
For example, typing:

_UNL EK2

clears all units of RK. (A request to unload the system device
handler clears ownership for any assigned units for that device, but
the handler remains resident.) S

Any memory freed is returned to a free memory 1list and eventually
reclaimed for the background job after the UNLOAD command is given.
UNLOAD is not permitted if the foreground job is running. Such an

action might cause a handler which is needed by the foreground job. to
become non-resident. '

Example:

. UNLORD LF, PP The lineprinter and paper tape
punch handlers are released and the
area which they used is freed.

A 'special function of this command is to remove a terminated
foreground job ~and ‘reclaim memory, since the space occupied by the
foreground job is not automatically returned to the free memory list
when it finishes. In this instance, the device name FG is used to
specify the foreground job. For example: ’

. UNL FG

FG can be mixed with other device names.

However, if, for example, DT2 has been assigned the name FG and loaded
into memory as follows:

L Ol FG
the command:
AINLDAD FG

causes the foreground job, not DT2, to be unloaded. To unload DT2,
this command must be typed:

. UNLORD DT2

System Communication

SET

2.7.2.8 SET Command - The SET command is used to change device
handler characteristics and certain system configuration parameters.

The form of the command is:

SET dev:{NO}option=va1ue{,{No}option=value,...}

where:
dev: represents any legal RT-11 physical device
name (and in addition, TTY and USR).
{No}option v is the feature or characteristic to be
altered.
=value is a decimal number required in some cases.

A space may be used in place of or in.addition to the colon, equal
sign, or comma. Note that the device indicated (with the exception of

TTY and USR) must be a physical device name and is not affected by logical
device name assignments which may be active. The name of the
characteristic or feature to be altered must be 1legal for the
indicated device (see Table 2-5) and may not be abbreviated.

The SET command locates the file SY:dev,SYS and permanently modifies
it. No modification is done if the command entered is not completely
valid. If a handler has already been loaded when a SET command is
issued for it, the modifications will not . take effect until the
handler is unloaded and a fresh copy called in from the system device.

Table 2-5 lists the system characteristics and parameters which may be
altered (those modes designated as "normal" are the modes as set in the
distribution copies of the drivers):

Table 2-5
SET Command Options
Device Option Alteration
LP CR _ Allows carriage returns to be sent to the

printer. The CR option should be set for any
FORTRAN program using formatted I/0O, to allow
the overstriking capability for any line print-
er, and when using the LS11 or LP05 line print-
ers (since the last line in the buffer may
otherwise be lost). This is the normal mode.

LP» NOCR Inhibits sending carriage returns to the line

' printer. The line printer controller causes a
line feed to perform the functions of a carriage
return, so using this option produces a signi-
ficant increase in printing speed on LP1l print-
ers.

LP CTRL ‘Causes all characters, including nonprinting con-
trol characters, to be passed to the line printer.
This mode may be used for LS1l line printers.
(Other line printers will print space for control

-characters.) .

(continued on next page)
2-23. January 1976

System Communication

Table 2-5 (Cont.)
SET Command Options

Device Option Alteration

LP NOCTRL Ignores nonprinting control characters. This is
the normal mode.

LP FORMO Causes a form feed to be issued before a
request to print block =zero. This is the
normal mode,

LP NOFORMO Turns off FORM0 mode.

LP HANG Causes the handler to wait for user
correction if the line printer is not ready:
or becomes not ready during printing. This
is the normal mode.

New users should note that when expecting
output from the line printer and it appears
as though the system is not responding or is
in an idle state, the line printer should be
checked to see if it is on and ready to
print.

LP NOHANG Generates an immediate error if the line
printer is not ready.

LP LC Allows lower case characters to be sent to
the printer. This option should be used if
the printer has a lower case character set.

LP NOLC Causes lower case characters to be translated
to upper case before printing., This is the
normal mode.

LP WIDTH=n Sets the line printer width to n, where n is

‘| a number between 30 and 255. Any characters
printed past column n are ignored. The NO
modifier is not permitted.

CR CODE=n Modifies the card reader handler to use
either the DEC 026 or the DEC 029 card codes
(refer to Appendix H). n must be either 26 or
29, The NO modifier is not permitted. :

CR CRLF Causes a carriage return/line feed to be
appended to each card image. This is the
normal mode.

CR NOCRLF Transfers each card image without appending a
carriage return/line feed.

CR HANG Causes the handler to wait for user

' correction if the reader is not ready at the
start of a transfer. This is the normal
mode,

CR NOHANG Generates an immediate error if the device is
not ready at the start of a transfer. Note
that the handler will wait regardless of how
the option is set if the reader becomes "not
ready" during a transfer (i.e., the input
hopper is empty, but an end-of-file card has
not yet been read). v

January 1976 2-24 (continued on next page)

L

e ,-\\

System Communication

rable 2-5 (Cont.)
SET Command Options

Device Option Alteration

CR IMAGE Causes each card column to be stored as a
. 12-bit binary number, one column per word.
The CODE option has no effect in IMAGE mode.
The format of the 12-bit binary number is:
PDP-11 WORD
15 14 13 12 11 10 9 8 7 6 S 4 3 2 1 0

UNUSED (ALWAYS 0) |ZONE [ZONE |ZONE [ZONE [ZONE|ZONE | ZONE|ZONE | ZONE| ZONE | ZONE| ZONE
o e njo v 2]3j4|sje]|7]8]°%

This format allows binary card images to be
read and is especially useful if a special
encoding of punch combinations is to be used.
Mark-sense cards may be read in IMAGE mode.

CR NOIMAGE Allows the normal translation (as specified
by the CODE option) to take place; data is

- packed one column per byte. Invalid punch
combinations are translated into the error
character, ASCII "\" (backslash), which is
octal code 134. This is the normal mode.

CR TRIM Causes trailing blanks to be removed from
each card read. It is not recommended that
TRIM and NOCRLF be used together since card
boundaries will be difficult to find. This
is the normal mode.

CR . ‘NOTRIM Transfers a full 80 characters per card.

cT | RAW | Causes the cassette handler to perform a
read-after-write check for every record
written, and retry if an output error
occurred, If three retries fail, an output
error is detected.

CcT NORAW Causes the cassette handler to write every
record directly without reading it back for
verification. This significantly increases
transfer rates at the risk of increased error
rates. Normal mode is NORAW.

- The - following options, with . the exception of HOLD/NOHOLD and
-.COPY/NOCOPY, are available in the Foreground/Background System only;

HOLD/NOHOLD and COPY/NOCOPY are available in both systems. These
options are not permanent, and must be reissued whenever the monitor
is re-bootstrapped. They can be made permanent by modifying the moni-
tor as described in Chapter 2 of the RT-11 Software Support Manual.
(Note that the device specification is TTY, not TT, because the hand-
ler itself is not changed.) :

TTY .| CoPY Enables use of the auto-print mode of the
VT50 copier option, if present. The com-
mand is a no-op for any terminal other than
the VT50, but a "]" character may be printed
on the terminal. Consult the VT50 Video Ter-
minal Programmer's Manual for more infor-
mation. '

TTY ‘| NOCOPY Disables use of the auto-print mode of the
VT50 copier option, if present. The command
is a no-op for any terminal other than the
VT50, but a " " character may be printed on
the terminal. This is the normal mode.

2-25 (continued on next page)
January 1976

System Communication

Table 2-5 (Cont.)
SET Command Options

Device

Option

Alteration

TTY

TTY

TTY

TTY

TTY

TTY

TTY

TTY

CRLF

NOCRLF

FB

NOFB

FORM

NOFORM

HOLD

NOHOLD

“ PAGE

Causes the monitor to issue a carriage
return/line feed on the console terminal
whenever it attempts to type past the rlght
margin (as set by the WIDTH option). This is
the normal mode.

Causes no special action to be taken at the
right margin.

Causes the monitor to treat CTRL B and CTRL F
characters as - background and foreground
program control characters and does not
transmit them to the user program, This is
the normal mode.

Causes CTRL B and CTRL F to have no special
meaning.

NOTE

SET TTY NOFB is issued to KMON,
(which runs as a background job)
and disables all communication with
the foreground job. To enable
communication with the foreground
job, issue the command SET TTY FB.

Indicates that the console terminal is
capable of executing hardware form feeds.

Causes the monitor to simulate form feeds by
typing - eight line feeds. This is the normal
mode.,

Enables wuse of the hold screen mode of op-
eration for the VT50 terminal. The command
is a no-op for any terminal other than the
VT50, but a "[*" character may be printed on
on the terminal. The command is valid for
F/B and Single-Job Monitors. = Consult the
VT50 Video Terminal Programmer's Manual for

- more information.

Disables use of the hold screen mode of op-
eration for the VT50 terminal. The command
is a no-op for any terminal other than the
VT50, but a "\" character may be printed on
the term1na1 This is the normal mode.

Causes the monitor to treat CTRL S and CTRL Q
characters as terminal output hold and unhold
flags, and does not transmit them to the user
program, This is the normal mode.

(continued on next page)

2-26

e

System Communication

Table 2-5 (Cont.)
SET Command Options

Device Option Alteration

TTY NOPAGE Causes CTRL S and CTRL Q to have no special
' ~ meaning.

TTY SCOPE Causes the monitor to echo RUBOUTSs as

backspace-space-backspace. This mode should
be used when the console is a VT05/VT50 or
when GT ON is in effect.

TTY NOSCOPE Causes the monitor to echo RUBOUTSs as
backslash followed by the character deleted.
This is the normal mode.

TTY TAB : Indicates that the console terminal is
capable of .executing hardware tabs.

TTY NOTAB Causes the monitor to simulate tab stops
' ' every eight positions. The normal mode is
NOTAB. VT05/VT50 terminals generally have
hardware tabs.

TTY WIDTH=n Sets the width of the console terminal to n
positions, for the use of the CRLF option. n
must be in the range 30-255 (decimal). The
width is initially set to 72.

The following variant of the SET command is wused to prevent the
background job from ever placing the USR in a swapping state (note
that USR replaces a device specification in the command line):

SET USR {NO}SWAP

This is useful when running on a DECtape based system, or when running
a foreground job which requires the USR but has no memory allocated
into which to read it. When the monitor is bootstrapped, it is in the
SWAP condltlon, i.e., the background may place the USR in a swapping
state via a SETTOP. :

The Single-Job Monitor behaves as though the following options are
set: NOTAB, NOFORM, PAGE, NOCRLF, NOSCOPE, NOHOLD.

2-27

system Communication

2,7.3 Commands to Manipulate Memory Images

GET

2,7.3.1 GET Command - The GET command (valid for use with a
background job only) loads the specified memory image file (not ASCII
or object) into memory from the indicated device.

The form of the GET command is:

GE{T} dev:filnam.ext

where:
dev: represents any legal RT-11 device name. If a
device is not specified, DK: is assumed. Note:
that devices MT and CT are not block-replaceable
devices and therefore cannot be used in a GET
command .
filnam.éxt represents a valid RT-11 filename and extension.

If an extension is not specified, the extension
«SAV is assumed.

The GET command is typically used to load a program into memory for
modification - and/or debugging. The GET command can also be used in
conjunction with the Base, Examine, Deposit, and START commands to
test patches, and can be used with SAVE to make patches permanent.
Multiple GETs can be used to combine programs. Thus:

Loads ODT into memory

. GET ODT. SAY)
. : Loads PROG,.SAV into
. GET PROG memory with ODT

. START (ODTs starting address) Starts execution with ODT
- S (see Chapter 8).

The GET command cannot be used to load overlay segmenté of programs;
it may only be used to load the root segment (that part Wthh will not
be overlaid; refer to Chapter 6, Linker).

Multiple GETs can be used to build a memory image of several programs.
If identical locations are required by any of the programs, the later
programs overlay the previous ones.

Examples:

GET LTZ:FILEL. SRY Loads the file FILEl.SAV into memory
from DECtape unit 3.

GET MNRME1 Loads the file NAMEl.SAV from device DK.

January 1976 2-28

SN

AT

System Communication

BASE

2.7.3.2 Base Command - The B command sets a relocation base. This
relocation base is added to the address specified in subsequent
Examine or Deposit commands to obtain the address of the location to
be referenced. This command is useful when referencing linked modules
with the Examine and Deposit commands. The base address can be set to
the address where the module of interest is loaded. The form of the
command is:

B {location}
where:

location represents an octal address used as a base address for
subsequent Examine and Deposit commands.

NOTE
A space must follow the B command
even if an address is not specified
(the B{space)> command is equivalent
to B 0).

Any non-octal digit terminates an address. If location
is odd, it is rounded down by one to an even address.

The base is cleared whenever user program execution is initiated.

Examples:
.BA' Sets base to 0 (A represents space).
. B Zoa Sets base to 200,
B 281 Sets base to 200,

2-29 January 1976

System Communication

- EXAMINE

2.7.3.3 Examine Command - The E command prints the contents of the
specified 1location(s) in octal on the console terminal. The form of
the Examine command is:

E location m{-location n}
where:

location represents an octal address which is added to the
relocation base value (the value set by the B Command)
to get the actual address examined. Any non-octal
digit terminates an address. An odd address 1is
truncated to become an even address.

If more than one location is specified (location m-location n), the
contents of location m through location n inclusive are printed. The
second location specified (location n) must not be less than the first
location specified, otherwise an error message is printed. If no
location is specified, the contents of location 0 are printed.
Examination of locations outside the background area is illegal.

Examples:

L E 1@8@ Prints contents of location 1000 (added
127461 to the base value if other than 0).

.E 18B1-181z
127481 BOAFEZ4 1274086 066000 BREARR BEAAQE
' Prints the contents of locations 1000
(plus the base value if other than 0)
through 1013.

DEPOSIT

2.7.3.4 Deposit Command - The Deposit command deposits the specified
value(s) starting at the location given,

The form of the command is:

D location=valuel{value2,...va1uen}

January 1976 2-30

System Communication

where:

location represents an octal address which is added to the
relocation base value to get the actual address where
the values are deposited. Any non-octal digit is
accepted as a terminator of an address.

value represents the new contents of the location. 0 is
assumed if a value is not indicated.

If multiple values are specified (valuel,...,valuen), they are
deposited beginning at the location specified. The DEPOSIT command
accepts word or byte addresses but executes the command as though a
word address was specified. An odd address is truncated by one to an
even address. All values are stored as word quantities.

Any character that is not an octal digit may be used to separate the

locations and values in a DEPOSIT command. However, two (or more)
non-octal separators cause 0's to be deposited at the location
specified (and those following). For example:

.D 56,,, Deposits 0's in locations 56, 60, and 62.
The user should be aware of situations like the above, which causes

system failure since the terminal vector (location 60) is zeroed.

An error results when the address specified references a location
outside the background job's area.

Examples:
. D 18@88=3785 Deposits 3705 into location 1000
. B 1p86 Sets relocation base to 1000
. D 15@88=2583 Puts 2503 into location 2500
. B @ Resets base to 0

SAVE

2.7.3.5 SAVE Command - The SAVE command writes specified user memory
areas to a named file and device in save image format. Memory is
written from location 0 to the highest memory address specified by the
parameter list or to the program high limit (location 50 in the system
communication area). -

The SAVE command does not write the overlay segments of programs; it
saves only the root segment (refer to Chapter 6, Linker).

The form of the command is:

SAV{E} dev:filnam.ext {parameters}

where:
dev: represents one of the standard RT-11 block-replaceable
device names, If no device is specified, DK is
assumed.,
2-31

January 1976

System Communication

file.ext represents the name to be assigned to the file being
saved. If the file name is omitted, an error message
is output. If no extension is specified, the extension
«SAV is used.

parameters represent memory locations to be saved. RT-11 transfers
memory in 256-word blocks beginning on boundaries that
are multiples of 256 (decimal). If the locations speci-
fied make a block of less than 256 words, enough addi-

tional locations are transferred to make a 256-word block.

Parameters can be specified in the following format:

areal ,area2-arean
where:
areal represent an octal number (or numbers
area2-arean separated by dashes). If more than one number

is specified, the second number must be
greater than the first,

The start address and the Job Status Word are given the default value
0 and the stack is set to 1000, If the user wants to change these or
any of the following addresses, he must first use the DEPOSIT command
to alter them and then SAVE the correct areas:

Area Location
Start address 40
Stack 42
JSW 44
USR address 46
High address 50
Fill characters 56

If the values of the addresses are changed, it is the user's
responsibility to reset them to their default values. See Chapter 9
for more information concerning these addresses.

Examples:

.SAVYE FILEL i1b8080-11i688, 14080-141048
Saves locations 10000 (8) through
11777(8) (11000 starts the first word of
a new block, therefore the whole block,
up to 12000, is stored) and 14000(8)
through 14777(8) on DK with the name
FILEl,SAV,

.SAVE DT1:NAM. NEK 1oe@a@ }
Saves locations 10000 through 10777 on
DT1l: with the name NAM.NEW,

SOOodd o 2RRon

. GAY SY . PRAM 18868-5S77F7
Sets the reenter bit in the JSW and
saves locations 1000 through 5777.

January 1976 2-32

TN

’/ A

System Communication

2.7.4 Commands to Start a Program

RUN

2.7.4.1 RUN Command - The RUN command (valid for wuse with a
background job only) loads the specified memory image file into memory
and starts execution at the start address specified in location 40.
Under the F/B system, 10 words of user stack area are required to
start a user program, and the stack address (location 42) must be
initialized to some part of memory where these 10 words will not
modify it.

The form of the command is:
RU{N} dev:filnam.ext

where:

dev: is any standard device name specifying a
block-replaceable device. If dev: is not specified,
the device is assumed to be DK. Note that devices MT
and CT are not block-replaceable devices and
therefore cannot be used in a RUN command.

filnam.ext is the file to be executed. If an extension is not
specified, the extension .SAV is assumed.

The RUN command is equivalent to a GET command followed by a START
command (with no address specified).

NOTE

If a file containing overlays is to be RUN from
a device other than the system device, the handler
for that device must be loaded (see Section 2.7.2.6)
before the RUN command is issued.

Examples:

_RUN DT1:SRCH. SAY Loads and executes the file SRCH,SAV

from DTI1.

. RUN FECG Loads PROG.SAV from DK and executes the
program.

. GET FROG1 Loads PROGl.SAV from device DK without
executing it. Then combines PROGl and

. RUN FROGEZ PROG2.SAV in memory and begins execution

at the starting address for PROG2.

2-33

System Communication

2,7.4.2 R Command - This command (valid for use with the background
job only) is similar to the RUN command except that the file specified
must be on the system device (SY:).
The form of the command is:

R filnam.ext

No device may be specified. If an extension is not given, the
extension .SAV is assumed.

Examples:
LROHYZ. sAY Loads and executes XYZ.SAV from SY,.

. R SRC Loads and executes SRC.SAV from SY.

START

2.7.4.3 START Command - The START command begins execution of the
program currently in memory (i.e., loaded via the GET command) at the
specified address. START does not clear or reset memory areas.

The form of the command is:
ST{ART} {address}
where:

address is an octal number representing any lé-bit
address. If the address is omitted, or if 0 is
given, the starting address in location 40 will be
used.

If the address given does not exist or is not an even address, a trap
to location 4 occurs, In this case a monitor error message appears.
If no address is given, the program's start address from location 40
‘is used.

July 1975 2-34

System Communication

Examples:

SEET FILE.L Loads FILE.l into memory and starts execution

SETART 1000 at location 1000.

SGET OFILEA Loads FILEA.SAV, then combines FILEA.SAV with
FILEB.SAV and starts execution at FILEB's

SEET O FILER start address.

BT

REENTER

2.,7.4.4 REENTER Command - The REENTER command starts the program at
its reentry address (the start address minus two). REENTER does not
clear or reset any memory areas and is generally used to avoid
reloading the same program for repetitive execution. It can be used
to return to a program whose execution was stopped with a CTRL C.

The form of the command is:
RE{ENTER}

If the reenter bit (bit 13) in the Job Status Word (location 44) . is
not set, the REENTER command is illegal. .

For most system programs, the REENTER command restarts the program at
the command level.

If desired, the reentry point in a user program can branch to a
routine which initializes the tables and stack, fetches device
handlers etc., and then continue normal operation.

Example:
. R FIF CTRL C interrupts the PIP
#/F directory listing and transfers
MONITE. SYS control to the monitor level.
[directory prints] REENTER returns control to PIP.

° tC

. (1C typed)
FEEEHTER

*

2.7.5 Commands Used Only in a Foreground/Background Environment
It is important to note that in order to control execution of a

foreground job, the commands in this section must be typed to KMON,
which is running as the background job. Thus, for example, to SUSPEND

2-35

System Communication

the foreground 3job, the user must be sure he is directing input to
KMON as follows:

F» Foreground job is running. Control

(1B typed) is redirected to the background job

B> : and PIP is called (the foreground

R PIF is still active). CTRL C stops PIP

#7C and starts KMON., The foreground

. SUSFEND job is suspended. (See Section
2.7.5.20)'

FRUN

2.,7.5.1 FRUN Command = The FRUN command is used to initiate
foreground jobs. FRUN will only run relocatable files produced with
the Linker /R switch (using the Linker supplied with RT-11, Version
2). Any handlers used by a foreground job must be in memory.

The form of the command is:

FRU{N} dev:file.ext {/N :n} {/s m} {/P}

where:
dev: represents a block replaceable RT-11 device, If
dev: is not specified, DK: is assumed.
file.ext represents the job to be executed. The default

extension for a foreground job is .REL.

/N:n or /Nln represents an optional switch used to allocate n
words (not bytes) over and above the actual
program size. (If running a FORTRAN program, a
special formula is used to determine n. Refer to
Appendix G for this information.)

/S:n or /Sln represents an optional switch used to allocate n
words (not bytes) for stack space. Normally,
stack space is set by default to 128 words and is
placed in memory below the program. To change the
stack size, use /S:n; the stack is still placed in
memory under the program. To relocate the stack
area, use an ,ASECT (see Chapter 5) to define the
start of the user stack in 1location 42, This
overrides the /S switch.

/P represents an optional switch (at the end of the
FRUN command) for debugging purposes., When the
carriage return is typed, FRUN prints the load
address of the program, but does not start the

2-36

System Communication

program., The foreground job must be explicitly
started with the RSUME command (see Section
2+7.5.3). For example:

. FRUM DARTRSF
LORDEDR AT 125444

If ODT is used with the foreground job, this
feature provides the means for determining where
the job actually was loaded.

The program is started when the RSUME command is
given, allowing the programmer +to examine or
modify the program before starting it,

If another foreground job is active when the FRUN command is given, an
error message is printed. If a terminated foreground job is occupying
memory, that region is first reclaimed., Then if the file indicated is
found and will fit in memory, the 3job is installed and started
immediately. FRUN destroys the background job's memory image,
Examples:

«FRUN F1 Runs program Fl,REL stored on device DK.

LFRU DT1:F2 Runs F2,.REL which is on DT1l.

SUSPEND

2,7.,5.2 SUSPEND Command - The SUSPEND command is wused to stop
execution of the foreground job,

The form of the command is:

sus {PEND}
No arguments are required. Foreground I/O transfers in progress will
be allowed to complete; however, no new I/0 requests will be issued
and no completion routines will be entered (see Chapter 9 for a
discussion of completion routines). Execution of the job can be
resumed only from the keyboard.

Example:

. SUSPEND Suspends execution of the foreground job currently
running, '

2-37

System Communication

RSUME

2.7.5.3 RSUME Command - The RSUME command is used to resume execution
of the foreground job where it was suspended. Any completion routines
which were scheduled while the foreground was suspended are entered at
this time,

The form of the command is:

RSU{ME}
No arguments are required.
Example:
. RSU Resumes execution of the foreground job currently
suspended.

2.8 MONITOR ERROR MESSAGES

The following error messages indicate fatal conditions that can occur
during system boot:

Message Meaning

?B-I/0 ERROR An I/0 error occurred during system boot.
?B-NO BOOT ON VOLUME No bootstrap has been written on volume.
?B-NO MONITR.SYS No monitor exists on volume being booted.
?B-NOT ENOUGH CORE There is not enough memory for the system

being booted (e.g., attempting to boot
F/B into 8K).

The following error messages are output by the Keyboard Monitor.

Message Meaning
¢ADDR? Address out of range in E or D command.
?DAT? The DATE command argument was illegal,

or no argument was given and the date
has not yet been set.

?ER RD OVLY? An I/0 error occurred while reading a
KMON overlay to process the current
command., This is a serious error,
indicating that the system file
MONITR.SYS is unreadable. ’

F? A CTRL F was typed under the F/B monitor
and no foreground job exists.

?F ACTIVE? Neither FRUN nor UNLOAD may be used when
a foreground job already exists and is
active,

?FIL NOT FND? File specified in R, RUN, GET, or FRUN

command not found.,

?FILE? No file named where one is expected.
January 1976 2-38

/\\

—

System Communication

Message Meaning
?2ILL CMD? Illegal Keyboard Monitor command or

command line too long.

?ILL DEV? Illegal or nonexistent device, or an
attempt was made to make a device
handler resident for use with a
foreground job (dev=F) when the
Single-Job Monitor was running.

?NO CLOCK? No KW1llL clock is available for the TIME
command.

?NO FG? A SUSPEND, RSUME, or UNLOAD FG command
was given, but no foreground job was in
memory.

?20VR COR? Attempt to GET or RUN a file that is too
big.

?PARAMS? Bad parameters were typed to the SAVE
command,

?REL FIL I/O ER? Either the program requested is not a

REL file or a hardware error was
encountered trying to read or write the
file.

?SV FIL I/O ER? I/0 error on .SAV file in SAVE (output)
or R, RUN, or GET (input) command. Pos-
sible errors include end-of-file, hard
error, and channel not open.

?SY I/0 ER? I/O error on system device (usually
reading or writing swap area).

2TIM? The TIME command argument was illegal,

The following messages are output by the RT-11l Resident Monitor when
an unrecoverable error has occurred. Control passes to the Keyboard
Monitor. The program in which the error occurred cannot be restarted
with the RE command. To execute the program again, use the R or RUN
command.

The format for fatal monitor error messages is:

?M=text PC where PC 1is the address+2 of the
location where the error occurred.

Note that ?M errors can be inhibited in' certain cases by the use of
the .SERR macro; see Chapter 9 for details.,

Message Meaning
?M=-BAD FETCH Either an error occurred while reading

in a device handler from SY, or the
address at which the handler was to be
loaded was illegal,

2-39 January 1976

System Communication

?M=-DIR IO ERR
?M=DIR OVFLO

?M-DIR UNSAFE

?M=FP TRAP

?M=-ILL ADDR

?M-ILL CHAN

?M=ILL EMT

?M-ILL USR

?M=-NO DEV

?M=-0OVLY ERR

2M-SWAP ERR

?M-SYS ERR

lfjt January 1976

An error occurred doing I/O in the
directory of a device (e.g., .ENTER on a
write~locked device).

No more directory segments were
available for expansion (occurs during
file creation (.ENTER)).

In F/B only, this message may appear in
addition to any of the other diagnostics
listed in this section, It indicates
that the error occurred while the USR
was updating a device directory. One or
more files on that device may be lost,

A floating=-point exception trap
occurred, and the wuser program had no
«SFPA exception routine active (see
Chapter 9).

Under the F/B Monitor, an address
specified in a monitor call was odd or
was not within the job's limits.

A channel number was specified which was
too large.

An EMT was executed which did not exist;
i.e., the function code was out of
bounds.

The USR was called from a completion
routine. This error does not have a
soft return (i.e., SERR will not
inhibit this message; see Chapter 9).

A READ/WRITE operation was tried but no
device handler was in memory for it.

A user program with overlays failed to
successfully read an overlay.

A hard I/O error occurred while the
system was attempting to write a user
program to the system swap blocks.

This is usually caused by a write-
locked system device. Under the Single-

- Job Monitor, this may cause the system

to halt.

An I/0 error occurred while trying to
read KMON/USR ' into memory, indicating
that the monitor file is situated on the
system device in an area that has

developed one or more bad blocks. The
monitor prints the message’and lqops
trying to read KMON. The message 1is a

warning that the system device is bad.

2-40

TN

System Communiéation

I1f, after several seconds, it is
apparent that attempts to read KMON are
failing, halt the processor. It may be
impossible to boot the volume because of
the bad area in the monitor file. Use
another system device to verify the bad
blocks and follow.the recovery procedures
described in section 4.2.12.1 of Chapter

4,
?M-TRAP TO 4 The job has referenced illegal memory
?M=-TRAP TO 10 or device registers, an illegal instruc-

tion was used, stack overflow occurred,

a word instruction was executed with an
odd address, or a hardware problem caused
bus time-out traps through location 4.

If CSI errors occur and input was from the console terminal, an error
message is printed on the terminal.

Message Meaning
?DEV FUL? Output file will not fit.
?FIL NOT FND? Input file was not found.
?ILL CMD? Syntax error.
?2ILL DEV? Device specified does not exist.

2,8.1 Monitor HALTS

There are two HALT instructions in the RT=1l V02 monitors, one each in
F/B and Single-Job, The Single-Job Monitor will halt only if I/O
errors occur during swap operations to the system device, If the S/J
Monitor halts, look for a write-locked system device,

The F/B Monitor will halt if a trap to location 4 occurs or if I/O
occurs while the system is performing critical operations from which
it cannot recover. If the F/B Monitor halts, look for use of
non-existent devices, traps from interrupt service routines, or
user-corrupted queue elements.

The monitor halts can be detected by their address, which is high in
memory, above the resident base address (location 54).

When a monitor halt occurs, do not attempt to restart the system by
pressing CONTinue on the processor; the system must be rebooted.

2-41 January 1976

CHAPTER 3

TEXT EDITOR

The Text Editor (EDIT) is used to create and modify ASCII source files
so that these files can be used as input to other system programs such
as the assembler or BASIC. Controlled by user -commands from the
keyboard, EDIT reads ASCII files from a storage device, makes
specified changes and writes ASCII files to a storage device or 1lists
them on the line printer or console terminal. EDIT allows efficient

use of VT-11 display hardware, if this is part of the system’

configuration.

The Editor considers a file to be divided into 1logical units called
pages. A page of text is generally 50-60 lines long (delimited by
form feed characters) and corresponds approximately to a physical page
of ‘a program listing. The Editor reads one page of text at a time
from the input file into its internal buffers where the page becomes
available for editing. Editing commands are then used to:

Locate text to be changed,
Execute and verify the changes,
Output a page of text to the output file,

List an edited page on the line printer or console terminal.

3.1 CALLING AND USING EDIT

To call EDIT from the system device type:
R EDIT

and the RETURN key in response to the dot (.) printed by the monitor.
EDIT responds with an asterisk (*) indicating it is in command mode
and awaiting a user command string.

Type CTRL C to halt the Editor at any time and return control to the
monitor., To restart the Editor type .R EDIT or the .REENTER command
in response to the monitor's dot. The contents of the buffers are
lost when the Editor is restarted.

Text Editor

3.2 MODES OF OPERATION

Under normal usage, the Editor operates in one of two different modes:
Command Mode or Text Mode. In Command Mode all input typed on the
keyboard is interpreted as commands instructing the Editor to perform
some operation. In Text Mode all typed input is interpreted as text
to replace, be inserted into, or be appended to the contents of the
Text Buffer.

Immediately after being loaded into memory and started, the Editor is
in Command Mode. An asterisk is printed at the left margin of the
console terminal page indicating that the Editor is waiting for the
user to type a command. All commands are terminated by pressing the
ALTMODE key twice in succession. Execution of commands proceeds from
left to right. Should an error be encountered during execution of a
command string, the Editor prints an error message followed by an
asterisk at the beginning of a new line indicating that it is still in
Command Mode and awaiting a legal command. The command in error (and
any succeeding commands) is not executed and must be corrected and
retyped.

Text mode is entered whenever the user types a command which must be
followed by a text string. These commands insert, replace, exchange,
or otherwise manipulate text; after such a command has been typed,
all succeeding characters are considered part of the text string until
an ALTMODE is typed. The ALTMODE terminates the text string and
causes the Editor to reenter Command Mode, at which point all
characters are considered commands again.

A special editing mode, called Immediate Mode, can be used whenever
the VT-11 display hardware is running. This mode is described in
Section 3.7.2.

3.3 SPECIAL KEY COMMANDS

The EDIT key commands are listed in Table 3-1. Control commaﬁds are
typed by holding down the CTRL key while typing the appropriate
character.

Table 3-1
EDIT Key Commands
Key Explanation
ALTMODE Echoes $. A single ALTMODE terminates a text

string. A double ALTMODE executes the command
string. For example,

#GHOY A, BE-10$$

CTRL C Echoes at the terminal as 1C and a carriage
return. Terminates execution of EDIT commands,
and returns to monitor Command Mode., A double
CTRL C is necessary when I/O is in progress. The
REENTER command may be used to restart the Editor,
but the contents of the text buffers are lost.

(continued on next page)

/’\\\

Text Editor

Table 3-1 (cont.)
EDIT Key Commands

Key

Explanation

CTRL O

CTRL U

RUBOUT

TAB

CTRL X

Echoes 10 and a carriage return. Inhibits
printing on the terminal until completion of the
current command string. Typing a second CTRL O
resumes output.

Echoes 1U and a carriage return., Deletes all the
characters on the current terminal input line.
(Equivalent to typing RUBOUT back to the beginning
of the line,)

Deletes character from the current line; echoes a
backslash followed by the character deleted. Each
succeeding RUBOUT typed by the user deletes and
echoes another character. An enclosing backslash
is printed when a key other than RUBOUT is typed.
This erasure is done right to left up to the last
carriage return/line feed combination. RUBOUT may

‘be used in both Command and Text Modes.

"Spaces to the next tab stop. Tab stops are

positioned every eight spaces on the terminal;
typing the TAB key causes the carriage to advance
to the next tab position.

Echoes 1X and a carriage return. CTRL X causes
the Editor to ignore the entire command string
currently being entered., The Editor prints a
{CR>{LF> and an asterisk to indicate that the user
may enter another command., For example:

*TRBCD
EFGH™X
*

A CTRL U would only cause deletion of EFGH;
CTRL X erases the entire command.

3.4 COMMAND STRUCTURE

EDIT commands fall into six general categories:

Category Commands Section

Input/Output Edit Backup 3.6.1.3
Edit Write 3.6.1.2
End File 3.6.1.9
Exit 3.6.1.10
List 3.6.1.7
Next 3.6.1.6
Read 3.6.1.4
Verify 3.6.1.8
Write - 3.6.1.5

Pointer location Advance 3.6.2.3
Beginning 3.6.2.1
Jump 3.6.2,2

3-3

Text Editor

Search Find
- Get
Position

e o o
[>2 W+ <)Y
o o o

Wk UN w =N

Text modification Change
Delete
eXchange
Insert
Kill

WWwwww www
BB B www

e o o o o
AN YO
e o o o o
e o o o o

Utility Edit Console
Edit Display
Edit Lower
Edit Upper
‘Edit Version
Execute Macro
Macro
Save
Unsave

NNNNN oo NN

NMNNNDNNNON (G5, NE RS NS NE NN

WWwWwwwwwww
e o o o o o

e © e o o o

e o o o o » o

N = Wb 1o o)

. ALTMODE
Immediate Mode CTRL D
CTRL G

CTRL N

CTRL V

RUBOUT

e & o o o o

WWwwwww

The general format for the first five categories of EDIT commands is:

nCtext$
or
ncC$

where n represents one of the legal arguments listed in Table 3-2, C
is a one- or two-letter command, and text is a string of successive
ASCII characters. =)

As a rule, commands are separated from one another by a single
ALTMODE; however, if the command requires no text, the separating
ALTMODE is not necessary. Commands are terminated by a single
ALTMODE; typing a second ALTMODE begins execution. (ALTMODE is used
differently when Immediate Mode is in effect; Section 3.7.2 details
its use in this case.)

The format of Display Editor commands is somewhat different from the
normal editing command format, and is described in Section 3.7.

3.4.1 Arguments

An argument is positioned before a command letter and is wused either
to specify the particular portion of text to be affected by the
command or to indicate the number of times the command should be
performed, With some commands, this specification is implicit and no
arguments are needed; other editing commands require an argument.
Table 3-2 lists the formats of arguments which are used by commands of
this second type.

N

Text Editor

Table 3=2
Command Arguments

Format Meaning

n n stands for any integer in the range =16383 to
+16383 and may, except where noted, be preceded by
a + or -, If no sign precedes n, it is assumed to
be a positive number. Whenever an argument is
acceptable in a command, its absence implies an
argument of 1 (or -1 if only the - is present),

"0 0 refers to the beginning of the current line.
/ / refers to the end of text in the current Text
Buffer.

= = is used with the J, D and C commands only and
-represents -n, where n is equal to the length of
the last text argument used. :

The roles of all arguments are explained more specifically in
following sections.

3.4.2 Command Strings

All EDIT command strings are terminated by two successive ALTMODE
characters. Spaces, carriage returns and line feeds within a command
string may be used freely to increase command readability but are
ignored unless they appear in a text string. Commands used to insert
text can contain text strings that are several lines long. Each line
is ~terminated with a <CR)>XLF)> and the entire command is terminated
with a double ALTMODE.,

Several commands can be strung together and executed in sequence. For
example,

text object text object
—

«BGHOV PC,E@$—2CR1$5KGCLR BFRZFF
second third fifth
command command command

first command fourth

command

Execution of a command string begins when the double ALTMODE is typed
and proceeds from left to right. Except when they are part of a text
string, spaces, carriage return, line feed, and single ALTMODES are
ignored. For example: '

*BEGHOV RB$=CCLE R1$RAVESF

Text Editor

may be typed as:

*B$ GHOYV RO¢
=CCLRE Ri#
RE Y44

with equivalent execution.

3.4.3 The Current Location Pointer

‘Most EDIT commands function with respect to a movable reference
pointer which is normally located between the most recent character
operated upon and the next character in the buffer., At any given time
during the editing procedure, this pointer can be thought of as
representing the current position of the Editor in the text. Most
commands use this pointer as an implied argument. Commands are
available for moving the pointer anywhere in the text, thereby
redefining the current location and allowing greater facility in the
use of other commands.

3.4.4 Character- and Line-Oriented Command Properties

Edit commands are line-oriented or character-oriented depending on the
arguments they accept. Line-oriented commands operate on entire lines
of text.. Character-oriented commands operate on individual characters
independent of what or where they are.

When using character-oriented commands, a numeric argument specifies
the number of characters that are involved in the operation. Positive
arguments represent the number of characters in a forward direction
(in relation to the pointer), negative arguments the number of
characters in a backward direction. Carriage return and 1line feed
characters are treated the same as any other character, For example,
assume the pointer is positioned as indicated in the following text (%
represents the current position of the pointer):

MOV #VECT , R2<CR><{LF >4
CLR @R2{CRY<LF>

The EDIT command =-2J backs the pointer by two characters.

MoV #VECT ,R2{CR><LF>
< CLR @R2<CRY><LF>

The command 10J advances the pointer forward by ten characters and
places it between the CR and LF characters at the end of the second
line.

MOV #VECT,R2{CR){LF>
CLR @R2{CR)LF>

Finally, to place the pointer after the "C" in the first line, a =-14J
command is used. The J (Jump) command is explained in Section 3.6.2.2.

MOV #VECT ,R2{CR><LF>
CLR @R2<CR><LF>

Text Editor

When using line-oriented commands, a numeric argument represents the
number of lines involved in the operation. The Editor recognizes a
line of text as a unit when it detects a <CR)>LF> combination in the
text. When the user types a carriage return, the Editor automatically
inserts a line feed., Positive arguments represent the number of lines
forward (in relation to the pointer); this is accomplished by counting
carriage return/line feed combi