
SLD™

Source Level Debugger
for the

PowerPack® Entulator

User's Manual

MICROTEK
Microtek International, Inc.

Doc. No. 149-001015
Part No. 14913-000

Trademark Acknowledgments

PowerPack is a registered trademark and SLD is a trademark of Microtek
International.

IBM, PS/2, LAN, and OS/2 are trademarks of IBM.

Microsoft is a registered trademark and MS, MS-DOS, and Windows are
trademarks of Microsoft Corporation.

Intel is a registered trademark and Intel386SX is a trademark of Intel
Corporation.

Motorola is a registered trademark of Motorola, Inc.

UNIX is a trademark of AT&T.

PC-NFS is a registered trademark of Sun Microsystems.

©1992, 1994, 1995 MICROTEKINTERNATIONAL
All Rights Reserved
Printed in the U.S.A

The material in this manual is subject to change without notice. Microtek International assumes no
responsibility for errors that may appear in this manual. Microtek makes no commitment to update,
nor to keep current, the information contained in this manual. The software described in this
manual is furnished under a license or nondisclosure agreement, and may be used or copied only in
accordance with the terms of the agreement. No part of this manual may be reproduced or
transmitted in any form or by any means without the express written permission of Microtek.

MICROTEK INTERNATIONAL INC
6, Industry East Road 3
Science-based Industry Park
Hsinchu 30077
Taiwan, ROC
Tel: +886 35 772155
Fax: +886 35 772598

Development Systems Division
3300 N.W. 21 lth Terrace
Hillsboro, OR 97124-7136
USA
Tel: (503) 645-7333
Fax: (503) 629-8460

Table of Contents

Getting Started

Documentation
Related Publications
How to Contact Microtek
Emulator Parts
Emulator Power Requirements
Emulator Features
Host System Requirements and Recommendations
Starting an Emulator Session
Ending an Emulator Session
Getting Online Help
Compiling for Intel Processor Emulation
Compiling for Motorola Processor Emulation

MRI
Intermetrics
Sierra
lntrol
Whitesmiths
HiWare

Defining the Debug Environment

Selecting Intel386 CX/SX and A-Step or B-Step Operation
Leveraging Previous Emulation Sessions
Starting a Log File
Mapping and Initializing Memory
Loading a Loadfile
Enabling Memory Access
Enabling Intel386 EX Expanded Memory
Managing Intel386 EX Signals
Turning Off a Motorola Watchdog Timer
Enabling Motorola Show Cycles
Programming Motorola Chip Selects
Using a Script
Keyboard Shortcuts

1

1
2
3
4
5
5
8
8

10
10
10
11
12
13
13
14
14
15

17

17
18
19
20
23
28
28
29
30
30
31
36
38

Table of Contents v SLD User's Manual

Debugging in Source and Stack

Viewing Source
Managing Breakpoints
Starting and Stopping Emulation
Examining Source After Emulating

Scrolling Trace With Source
Examining and Editing Variables

Viewing and Modifying the Stack
Configuring the Stack Window
Setting the Stack Base Address and Size

Debugging in Registers and Memory

Viewing and Modifying the CPU Registers
Editing the CPU Registers
Resetting the CPU Registers
Enabling the Target Signals

Viewing and Modifying Memory
Changing the Memory Window Display
Changing the Memory Contents

Viewing and Modifying the Internal Peripheral Registers
Changing the Peripheral Window Display
Changing the Peripheral Register Values

Debugging With Triggers and Trace

Address Formats

Events
Trace

Symbolic Addresses
Line Numbers
Intel Numeric Addresses

Controlling Trace Collection
Displaying the Collected Trace

Trace and Event Window Signals
Intel386EX Signals
Intel386CX Signals
Intel386SX Signals
MC68332/333 Signals

Table of Contents

MC6833 l/MC68HC16Zl Signals
MC68330 Signals
MC68340 Signals
MC68360 Signals

vi

39

39
41
45
48
49
49
51
51
53

55
55
56
56
56
57
58
59
61
62
63

65

65
65
67
68
70
73
73
74
75
75
76
77
78
79
81
81
83

SW User's Manual

Triggers 84
Defining a Trigger 84
Examples of Triggering 86
Summary of Ways to Trigger 92

powerpak.ini File Reference 95

Tool bar Reference 109

Toolbar Menus l 09
File Menu 109
Configure Menu 110
Layout Menu 113

Toolbar Buttons 113
Map Dialog Boxes 115

Map Dialog Box Buttons 116
Map Dialog Box Field Values 118

Load Dialog Boxes 119

Shell Window Reference 123

Shell Window Menus 124
File Menu 124
Edit Menu 125
View Menu 125
Options Menu 125

Entering Commands in the Shell Window 127
Shell Window Commands 128

Notational Conventions 128
Commands and System Variables Grouped by Functionality 129
Command Dictionary 133

Source Window Reference 183

Source Window Menus 183
File Menu 184
Edit Menu 185
View Menu 188
Run Menu 189
Breakpoints Menu 190
Options Menu 193

Source Window Buttons 197
Function Popup Menu 198

Table of Contents vii SW User's Manual

Variable Popup Menu

Variable Window Reference

Variable Window Contents
Variable Window Menus

Edit Menu
View Menu
Variable Menu

Breakpoint Window Reference

Breakpoint Window Menus
File Menu
Breakpoints Menu

Breakpoint Window Buttons

Stack Window Reference

Stack Window Menus
File Menu
Options Menu

CPU Window Reference

Options Menu

Memory Window Reference

Memory Window Menus
Edit Menu
View Menu
Options Menu

Single-Line Assembler Dialog Box

Peripheral Window Reference

Peripheral Window Menus
Edit Menu
View Menu

Register Edit Dialog Boxes

Event Window Reference

Event Window Contents

Table of Contents viii

199

201
201
202
202
203
204

205
205
205
206
208

209
210
210
210

213
214

217
218
218
220
222
223

225
225
226
227
227

229
230

SLD User's Manual

Event Window Menus 230
File Menu 231
Edit Menu 232

Trigger Window Reference 233
Trigger Condition Fields 234
Trigger Action Fields 235
Trigger Window Menus 236

Edit Menu 236
Options Menu 236
Level Menu 237

Trace Window Reference 239
Trace Window Menus 240

File Menu 240
Edit Menu 241
View Menu 242
Trace Menu 243
Timestamp Menu 244
Goto Menu 245

Glossary 247

Index 259

Table of Contents ix SW User's Manual

Getting Started
The terms "PowerPack emulator" and "emulator" refer to the PowerPack® in-circuit
emulator for embedded system development. The terms "SW'', "emulator software", and
"debugger software" refer to the SW™ source-level debugger for the PowerPack® emulator
and PowerScope™ hardware-assisted debugger.

SW runs under Windows 3.1 and Windows for Workgroups 3.11.

This chapter describes the parts, features, and documentation of the emulator and tells you
how to contact Microtek International for information and technical support. This chapter
also briefly describes how to start and end an emulator session and considerations for
various compiler toolchains.

Documentation

Up And Running
In 30 Minutes

User's Manual

SW User's Manual

Chapter

Getting Started

Contents

Parts; features; documentation; support

Software Installation Configuring your PC or workstation and
installing the SLD software

Hardware Installation Installing the hardware and running the
confidence tests

Tutorial Practicing basic emulator commands and tasks

Emulator Architecture Schematics; physical dimensions; pinouts

Chapter

Getting Started

Defining the Debug
Environment

Debugging in Source

Debugging in
Registers and Memory

Contents

Parts; features; documentation; contacting
Microtek; starting and ending an emulator
session; compiling a program for emulation

Configuring memory and registers; arranging
your desktop; using an initialization file

Viewing source code, disassembly, and stack;
editing variables; controlling emulation

Accessing CPU and peripheral signals and
numeric or disassembled memory contents

I Getting Started

Debugging with
Triggers and Trace

powerpak.ini File
Reference

Toolbar Reference

Shell Window
Reference

Source Window
Reference

Variable Window
Reference

Breakpoint Window
Reference

CPU Window
Reference

Stack Window
Reference

Memory Window
Reference

Peripheral Window
Reference

Event Window
Reference

Trigger Window
Reference

Trace Window
Reference

Related Publications

Getting Started

For information on

Windows 3.1; Windows
for Workgroups 3.11

Your target processor

Your toolchain

Controlling emulation and trace collection
with triggers; numeric and symbolic addresses

powerpak.ini file contents

Toolbar menus, buttons, and dialog boxes

Shell window contents, menus, dialog boxes,
and commands

Source window contents, menus, buttons, and
dialog boxes

Variable window contents, menus, and dialog
boxes

Breakpoint window contents, menus, buttons,
and dialog boxes

CPU window contents, menu, and dialog boxes

Stack window contents, menus, and dialog
boxes

Memory window contents, menus, and dialog
boxes

Peripheral window contents, menus, and
dialog boxes

Event window fields, menus, and dialog boxes

Trigger window fields, menus, and dialog
boxes

Trace window contents, menus, and dialog
boxes

2

See

Documentation from Microsoft

Intel or Motorola chipset documentation

Documentation that came with the compiler,
assembler, and linker you are using

SW User's Manual

IEEE-695 format

S-record format

OMF86 or OMF386

C++ name mangling

IEEE Standard 695, Trial Use for
Microprocessor Universal Format for
Object Modules, Microtec Research Inc.,
revision 4.1, Dec. 21, 1992

Documentation that came with the compiler,
assembler, and linker you are using

Documentation from Intel

The Annotated C++ Reference Manual,
Margaret Ellis and Bjarne Stroustrup
(Addison-Wesley, 1990)

How to Contact Microtek

To register for technical support and to automatically receive product update information,
complete and mail the registration card enclosed with the emulator.

Contact Microtek/DSD (see the number below) to purchase an Extended System Warranty
(ESW). An ESW provides firmware, software, and hardware updates and priority service, in
addition to all repairs.

SLD User's Manual

As a Microtek customer, you can contact Microtek technical support for
help with an emulator problem during your warranty period. The email
and fax contacts are available 24 hours a day, 7 days a week. The voice
phone numbers are available as listed below.

Internet email

Microtek/DSD,
Western USA

Microtek,
Eastern USA

Microtek,
Hsinchu, Taiwan

Adara International,
Taipei, Taiwan

csupport@microtekintl.com

(503) 645-7333 voice; (503) 629-8460 fax
(voice contact available Monday through
Friday, 8:00 am to 5:00 pm USA Pacific Time)

(610) 783-6366 voice; (610) 783-6360 fax
(voice contact available Monday through Friday,
8:00 am to 5:00 pm USA Eastern Time)

+886-35-77-2155 voice; +886-35-77-2598 fax
(voice contact available Monday through Friday,
8:00 am to 5:00 pm Taiwan Time)

+886-2-501-6699 voice; +886-2-505-0137 fax
(voice contact available Monday through Friday,
8:00 am to 5:00 pm Taiwan Time)

Before you call, please read the PowerPack® Emulator Problem Report
Form that came with the emulator. The form is also in the problem.bet

3 Getting Started

file, in your SLD installation directory (e.g. c:\powerpak) with the
emulator software.

When you call, please be at your computer with SLD running and have
the emulator documentation and filled-out problem report form nearby.

Emulator Parts

Getting Started

When you take the emulator out of its shipping package, check to be
sure all the following are present (see the figure following this list):

• the main chassis

• anEPOD

• a processor-specific probe for real-time emulation (yours may look
different from the one in the picture)

• cables to connect the probe to the EPOD and the EPOD to the
chassis

• a stand-alone self-test (SAST) or null target board (yours may look
different from the one in the picture) for running emulator system
diagnostics and code without your target system

• an RS-232C cable for communication between the chassis and your
PC or workstation

• two BNC cables for trigger-out and trigger-in signals

• a power cord

• three SLD software program disks

4 SW User's Manual

BNC-To-Hook Coaxial Cable

Main Chassis BNC-To-BNC Coaxial Cable

Serial Adapter

EPOD-Probe-Cable Assembly
with SAST or Null Target Board

RS-232 Cable

Program Disks

Power Cord

Emulator Power Requirements

llcAUTION

SW User's Manual

Ensure the target is powered off before you connect or disconnect the
PowerPack emulator. Otherwise, both units will be severely damaged.

Turn off the target system before turning off the emulator. Power must
be applied and removed in the correct sequence. Failure to follow this
sequence will severely damage your target system and the emulator.
Turn power on and off in the following sequence:

1. Apply power to the emulator.

2. Apply power to the target system.

3. Remove power from the target system.

4. Remove power from the emulator.

Ensure the line voltage selector is correctly set before applying power
to the emulator.

The emulator chassis arrives from the factory configured to accept 115
V AC. For 220 V AC, be sure the emulator is powered off, then use a
pen to change the line voltage switch to 220 V AC. The switch is

5 Getting Started

located above the power cord input jack on the rear of the main chassis.
The following figure shows the rear of the emulator main chassis.

Voltage Selector

ETHERNET

0 RS-232

Power Switch Power Connector J2 J1

Emulator Features

Getting Started

The emulator main chassis, emulation pod, and probe module are
connected by ribbon cables. A variety of adapters are available to
connect the probe module to the target system. Contact Microtek for
the appropriate adapter for your target processor package type.
Connectors are provided for state probe clock and multiprocessor
synchronization.

Communication between the main chassis and the PC host is via RS-
232C (57600 bps) communications. Optionally, you can configure the
emulator for an ethemet TCP/IP network for Sun Microsystems PC
NFS or for an IBM OS/2 LAN Server.

The emulator automatically configures itself for SV or 3V operation.

You can substitute emulator-controlled overlay memory for your target
RAM or ROM memory. Overlay memory allows zero wait states.

• For Intel processors, you can map lM to 4M bytes of overlay RAM
as target system memory, with up to 16 regions aligned on 4K-byte
boundaries. The region sizes are multiples of 4K bytes.

• For Motorola processors, you can map 256K to lM bytes of overlay
RAM as target system memory, in two segments aligned on 64K
byte boundaries. The segment sizes are multiples of 64K bytes.

6 SW User's Manual

SW User's Manual

The PP SLD (PowerPack Source Language Debugger) software runs as
a Microsoft Windows 3.1 or Windows for Workgroups 3.11 application
with context-sensitive online help. Besides using a mouse or Windows
style keyboard entry with menus and buttons, you can enter commands
via the SLD Shell window command line.

You can open several SLD windows at once. For example, you can
monitor variables and view the trace while debugging at the source
level. You can view two sections of source code simultaneously in the
Source window. You can have up to 20 different Memory windows
open simultaneously with various numeric, ASCII, and disassembly
views of memory.

You can monitor the stack, the CPU registers, the peripheral registers
(as appropriate for your processor), and memory contents during
emulation.

A single-line assembler is available for patching loaded code.

You can debug from the vantage of your C and assembly language
source:

• All symbol types are supported, including static variables, stack
based local variables, register-based variables, structures, arrays,
and pointers.

• You can selectively load object code and symbolic information into
target or overlay memory and into the symbol table, for load
formats including OMF86 and OMF386 for Intel targets and
IEEE-695 and S-record for Motorola targets.

• Source display formats include C and assembly language from your
source files, disassembly from memory when the source files are
unavailable, and disassembly from memory interleaved with the
corresponding lines from your source files.

• Emulation control includes Go and Step operations of specifiable
granularity relative to lines, statements, and function calls, with
breakpoints settable on a source line, on a statement within a line,
and on the address of a particular instruction.

Real-time, full-speed tracing is available:

• You can configure a single buffer to capture 256K bytes of trace; or
256 buffers to capture 1 K bytes each, or various intermediate
combinations of buffer size and number of buffers.

• You can collect trace before, after, or centered around a specified
event or sequence of events.

• You can search the collected trace to find a specific event.

7 Getting Started

• You can display trace as instructions, bus cycles, or clock cycles.

• Trace information can include signals, addresses, and data, at each
bus or clock cycle, and timestamps for each trace frame relative to
a specific event or relative to the preceding trace frame.

• You can link the Trace and Source windows to scroll together.

Trace control and emulation control are independent of each other.
During emulation, you can start and stop trace collection and view trace
without affecting emulation.

Besides manually starting and stopping trace and emulation, you can
define up to four sequential triggers to conditionally control emulation
and trace collection. Each trigger is a logical combination of up to
eight events, with optional counter and timer dependencies:

• An event is defined as inclusive, exclusive, and masked address
and data ranges or patterns and various signal values.

• With multiple buffers specified, a triggered action can capture one
buffer and start filling the next. You can break emulation when all
the trace buffers are full.

• You can control triggering relative to events by programming two
10-bit counters or one 20-bit timer.

You can set breakpoints by clicking on a source line or from the menus:

• 256 software breakpoints are available.

• For Intel emulation, up to four hardware breakpoints and for
Motorola emulation, two hardware breakpoints are available.

• The emulator automatically chooses whether a breakpoint is set in
hardware or in software; for Intel emulation, you can access the
debug registers to explicitly specify a hardware data or execution
breakpoint.

Host System Requirements and Recommendations

Getting Started

• An lntel486 or Pentium based PC or 100% compatible system

• MS-DOS 5.0 or 6.x with Windows 3.1 or Windows for
Workgr~mps 3.11runningin386-enhanced mode

• At least 6M bytes of RAM

• At least 5M bytes of free memory after you have loaded Windows
or Windows for W orkgroups and any other applications besides
SLD.

8 SW User'sManual

• At least SM bytes of available disk space

• A VGA or Super VGA graphics card and color monitor (a graphics
accelerator card recommended to boost performance; a monitor
capable of at least 640x480 operation recommended)

• Amouse

• A serial port for connection to the emulator (16550 UART
recommended for operation at 57 .6K baud)

• At least 4M bytes for a swap file (permanent swap file
recommended, with a disk cache such as smartdrive for improved
Windows performance)

• Config.sys entries of at least Files=30 and Buffers=30

Starting an Emulator Session

11 I~ Turn on the emulator before turning on your target system. Power
CAUTION must be applied and removed in the correct sequence. Failure to

Liiiiiiiiiiiil follow this sequence will severely damage your target system and the
emulator. Turn power on and off in the following sequence:

PowerPack
SLD

SW User's Manual

1. Apply power to the emulator.

2. Apply power to the target system.

3. Remove power from the target system.

4. Remove power from the emulator.

Once the software is installed on your host computer, the firmware is
loaded into your emulator, and your target system and the emulator are
powered-on, start an emulation session from the PowerPack SLD icon
(see figure at left).

The Toolbar is the first window open when you invoke SLD and must
remain open throughout your emulation session. Closing the Toolbar
exits SLD. Minimizing the Toolbar hides any other open (including
minimized) SLD windows; restoring the Toolbar redisplays (with the
same screen layout) any SLD windows that were open when you
minimized the Toolbar.

The following figure shows the Toolbar. For some emulators, the
buttons for unavailable operations are grayed-out; for example, the
Periph button is nonfunctional on the Intel386 CX/SX emulator because
no peripheral registers are available.

9 Getting Started

= PowerPac:k SLD Toolbar a
file ~onfigure

Setup

II CAUTION

Layout Windows .!:::!.elp
Target E111ulation Trace Misc:

Buttons and menus on the Toolbar provide quick access to the most
frequently used commands and other SLD windows. When you start an
emulator session, use the Toolbar to map overlay memory, load code
and symbols, and open the Source, Memory, and Shell windows for
further work. Also, you can use the Toolbar to conveniently open the
Peripheral, CPU, Trigger, and Trace windows, start and stop emulation,
and start and stop tracing.

Before loading your program, map any overlay memory you need.
Also, you may want to preconfigure your processor chip selects or other
registers as described in the "Defining the Debug Environment"
chapter.

Be sure your loadfile is in OMF86 or OMF386 for an Intel emulator or
in IEEE-695 or S-record format for a Motorola emulator. Intel
compatible toolchains generally provide options for generating the
appropriate OMF. Many Motorola-compatible toolchains include a
converter for turning the toolchain vendor's proprietary format into
IEEE-695 format. Contact your software development toolchain vendor
for information on generating the appropriate loadfile format.

To debug at the source level (i.e. with source code and symbolic names
for functions and variables), you must retain symbolic debugging
information in your loadfile. Use compiler, assembler, and linker
switches to suppress optimization and to add symbolic information. See
your toolchain documentation.

You can load files while the emulator is running. Be sure loading is at
a location other than where the program is running. Loading at a
location that is in use can halt emulation in an unpredictable state.

Ending an Emulator Session

To end an emulator session, do one of:

• Choose the Exit command from the file menu on the Toolbar.

• Double-click the system box in the upper left comer of the Toolbar.

• With focus on the Toolbar, press <Alt><F4>.

Getting Started 10 SW User's Manual

llcAUTION ~
Turn off your target system before turning off the emulator. Power
must be applied and removed in the correct sequence. Failure to
follow this sequence will severely damage your target system and the
emulator. Turn power on and off in the following sequence:

1. Apply power to the emulator.

2. Apply power to the target system.

3. Remove power from the target system.

4. Remove power from the emulator.

Getting Online Help

PowerPack
SLD Help

Whether or not SLD is active, you can invoke the SLD online help
directly from Windows Program Manager. From the PowerPack SLD
group, choose the Help icon (see figure at left).

SLD online help conforms to the standard Windows help interface, as
described in your Microsoft Windows documentation. From any SLD
window, open the Help menu and choose a Help category; or, press
<Fl> at any time. In most SLD dialog and message boxes, you can
choose a Help button for context-sensitive help.

If this is the first time you are using Help, you may want to choose
"How to Use Help" from the Help menu. (Or, press <Fl> twice.)

Compiling for Intel Processor Emulation

SW User's Manual

Because of standards developed for Intel OMF86 and OMF386 loadfile
formats, there is little difference in the output formats of most Intel
development toolchains.

When using the Metaware HC toolchain, compile with the switch
Optimize_for_Space (-Os) OFF and the switch Align_Routines ON.
This combination aligns the line number information for function entry
points on the actual function execution addresses. This alignment is
necessary for SLD to set source line breakpoints on the start addresses
of the function entries and to successfully display local symbols for
inspection.

When using the Borland C compiler, before loading your OMF386
loadfile, set the emulator's maximum bitfield size to 16 bits. On the
SLD Shell command line enter:

maxBitFieldSize 16

11 Getting Started

When using PharLap Link:Loc 7 .1, you can include symbolic
information for register variables with Link:Loc's -regvars switch. The
emulator supports register variable extensions to the Intel symbol table.

Compiling for Motorola Processor Emulation

Because of implementation-dependent variations in IEEE-695 loadfile
formats, the PowerPack emulator supports different Motorola
development toolchains differently. This section describes
considerations for using the supported toolchains. For a list of currently
supported toolchains, see the readme file installed with SLD.

You must specify the compiler before loading your first file. Once you
have specified a compiler, you need not specify it again unless you
change compilers. The first time you load a file using the Toolbar Load
button or the Source window File menu Load item, the emulator
displays the Compiler Used dialog box. Select one of the listed
compilers.

If you load the file using a Load command on the Shell command line,
the Compiler Used dialog box does not appear. Before loading, enter a
CompilerUsed Shell command to specify the compiler as Hiware,
Intermetrics, Introl, MRI, SDS CrossCode, Sierra, or Whitesmiths. Or,
in the Source window, open the Options menu, choose Compiler Used,
and select the appropriate compiler. (For the most current list of
supported toolchains, immediately after installing SLD look in your
windows/powerpak.ini file [ToolChain] section.) If your toolchain is
unsupported, specify it as Unknown.

If the code and data section names in your loadfile are not the default
section names generated by your compiler, edit the [ToolChain] section
to describe the section names in your loadfile. For example, if you
generate a loadfile using the MRI compiler but with section names
mycode and mydata, change the MRI= line in [ToolChain] as follows:

[ToolChain]
Compilers=Unknown,MRI , ...
CompilerUsed=MRI
MRl=mycode,mydata

For more information on compiler support in powerpak.ini, see the
"powerpak.ini File Reference" chapter.

I I~ The PawerPack emulator and SW wfiware are not guarante<d to I CAUTION ~ work properly with unsupported too/chains.

Getting Started 12 SW User's Manual

SW User's Manual

MRI

Use the following switches:

-g compiles with debug symbols.

-Gf

-0<.x>

embeds the source path in the loadfile during
compilation.

(where xis a letter designating an optimization) is
optional. Supported optimizations include
algebraic simplification, constant folding, strength
reduction, redundant code elimination, unreachable
code elimination, local optimizations performed
globally and loop optimization (-01), and register
coloring (-OR). Register coloring uses one register
for multiple variables each of which has its own
lifetime information. This includes factorization,
dead code elimination, unused definition
elimination, global constant propagation, global
copy propagation, and branch merging.

Avoid using -Oc, -Og, or -Oi.

-Wa, -f"NOPCR" prevents the assembler from generating PC-relative
jumps.

The MRI compiler truncates long variable names to 125 characters.
Also, SLD recognizes only the first 125 characters of such names.

For bit fields, only some type information is preserved. The compiler
uses a default unsigned type for all types of declared bit fields.

Before modifying an unused local or parameter variable, verify its
storage location with a DisplaySymbols Shell command. The MRI
compiler optimizes storage allocation by placing such variables into a
scratch register, usually AO for pointers and DO for other types.

Variables in previous stack frames unused after a function call may be
assigned to a scratch register which may, in turn, be used by a
subsequent function. Unused parameters can also remain on the stack
after function entry. If that occurs, the values displayed for such
variables in the Variable window may be incorrect. To discover
whether the compiler added housekeeping code to ensure such variables
are popped off the stack, in the Source window open the View menu
and check Mixed Source And Assembly.

If you use a tool (such as Cfront) to generate C source from C++ source,
then use the MRI C compiler and linker to generate an IEEE-695
loadfile from the C source, the line number records in the loadfile will

13 Getting Started

Getting Started

match the C++ source lines not the C source lines. The C++
preprocessing puts #line directives in the C source corresponding to the
original C++ source line numbers. Use a text editor to delete these
directives before compiling the C source, to ensure the line numbers in
your load.file match the C source text in the SLD Source window. This
match is necessary for tasks such as setting breakpoints interactively
and selecting symbols in the Source window.

Besides the line number information, the C source contains information
about the original C++ source file. To use the C source, you must
delete the C++ information. For example, from a C++ source file
named file.cc, the name file_ cc will appear in the C source. Change
all such occurrences to the name of your C source file (e.g. file_c for a
C source file named file.c).

Intermetrics

Use the following compiler switches:

-d generates debug information.

-do turns off optimization

-nr is optional. This switch optimizes for algebraic simplification,
constant folding, strength reduction, redundant code
elimination, and unreachable code elimination.

-np is optional. This switch optimizes for register coloring, which
uses one register for multiple variables each of which has its
own lifetime information. This includes factorization, dead
code elimination, unused definition elimination, global
constant propagation, global copy propagation, and branch
merging.

Avoid using -nl, -nal, or -n7<}'>.

Use the following converter (FORM695) switches:

-d generates debug information

abs generates absolute code

Sierra
Although the Sierra compiler supports the Motorola fast-float type, the
SLD Variable window does not. The value is displayed incorrectly for
this type. Standard float and double types are displayed correctly.

Use the following compiler switches:

CFLAGS-q compiler flag.

14 SW User's Manual

SLD User's Manual

CAFLAGS -6 compiler-generated-assembly-code assembler flags

AFLAGS -6 -L -S1 programmer-generated code assembler flag

LFLAGS -P linker flag

Use the -m converter (Conv68) switch to generate IEEE-695 load
format.

You must specify the stack base and size in powerpak.ini or after
starting SLD; the Sierra compiler does not put this stack information in
the loadfile.

Intro I

Use the -gg compiler switch to generate symbolic information.

For the 1695.EXE converter, use -s_start (note the double underbar)
to specify _start as the starting label to generate the starting PC
loader record. Avoid deleting _start, which initializes the Source
window display and sets up the program counter. (With no starting PC,
the Source window displays memory starting at OxO.) The compiler
puts _stext in the startup code.

If you get unexplained errors on loading, tum-off On Demand symbol
loading.

Whitesmiths
Use the following compiler switches:

-dxdebug turns on debug symbols.

-dmod<m> specifies the memory model, where m is one of:

c compact

s small

d data

p program

f far

+o compiles and assembles, but does not link.

To create a stack segment at <location> with <Size>, use the following
linker directive last:

+bss -n stack -b <location> +spbss <size>

Use the following converter switches:

-mod<m> specifies the memory model, where mis one of:

15 Getting Started

Getting Started

-p6816

c compact

s small

d data

p program

f far

specifies the HC16 processor.

The stack frame for a function is invalid until the first 2 or 3 assembly
instructions, generated by the compiler, have executed. Step one source
statement into the function to display a valid stack.

Avoid deleting _stext (note the double underline), which initializes
the Source window display and sets up the program counter (PC).
When there is no starting PC, the Source window displays memory
starting at OxO. The compiler puts _stext in the startup code.

HiWare
To support bitfields properly, add the following to powerpak.ini:

[Variablelnfo]
AutoCalcBitfieldOffsets=1

(For other Motorola compilers, this value must be 0.)

16 SW User's Manual

Defining the Debug Environment
This chapter describes:

• Configuring SW for your target processor and for your personal working style

• Running command scripts and specifying a script to run automatically when you start
SW

Before starting emulation, initialize the emulator for the modules you
are debugging and arrange the desktop for your own convenience. Such
preliminary tasks can include:

• Start a record of your Shell window activities.

• Map memory, put default values in memory, and specify some
aspects of how your loadfile will be loaded.

• Enable display updates to occur during emulation.

• Enable signals and set CPU and peripheral register values specific
to your processor or to your loadfile. (See the Intel and Motorola
processor examples at the end of this section.)

You can do many of these tasks with the SLD menus and buttons or
from the Shell window command line. Or, you can put Shell
commands in a script file, then run the script with an Include
command in the Shell window. For some setup, you may need to edit
your powerpak.ini file (which the PowerPack installation procedure
puts in your Windows directory) with a text editor.

Selecting lntel386 CX/SX and A-Step or B-Step Operation

SW User's Manual

When you are emulating an Intel386 CX or SX processor, a CPU
Configuration dialog box appears the first time you start SLD. (If you
first see a message box asking you to remove a jumper, ensure there is
no jumper on the emulator processor's SEL3V and SELWV pins.) To
configure the emulator for CX vs SX and A-step vs B-step operation,
SLD uses information from powerpak.ini instead of the physical
jumper used by earlier versions of the emulator.

The following figure shows the CPU Configuration dialog box.

17 Defining the Debug Environment

CPU Configuration

E_mula.tor CPU: Ia.rget CPU:

11um;nm•11 13assx II

In the Target CPU field, select the processor in your target design. In
the Emulator CPU field, select the stepping of the bondout processor in
the emulator probe head. To discover the processor stepping, look on
the processor chip for:

Stepping

A-step

B-step

Distinguishing Mark

The number Q8543 appears on the processor.

The lot number (which starts with L) ends with B.

Leveraging Previous Emulation Sessions

After setting-up, you can shorten your setup time in subsequent
emulation sessions by saving map, chip select, event, and log files.

You can save the map information to a file. In the Shell window enter
a MapSave command, specifying a path and filename; or, in the Map
dialog box, choose the Save button and fill-in the pathname dialog box.
Later, you can restore the saved map with a Shell window MapRestore
command or the Map dialog box Restore button.

You can save chip select information. In the Shell window enter the
SaveCS command, specifying a path and filename; or, in the Toolbar
Configure menu, choose Save Chip Selects and fill-in the pathname
dialog box. Later, you can restore the saved registers with the Shell
window RestoreCS command or the Toolbar Configure menu Restore
Chip Selects item. See the "Shell Window Reference" chapter for a list
of the registers saved for each processor.

You can save event definitions. In the Shell window enter the
EventSave command, specifying a path and filename; or, in the Event
window open the File menu, choose Save Events As, and fill-in the
pathname dialog box. Later, you can restore the saved events with the

Defining the Debug Environment 18 SW User's Manual

Shell window EventRestore command or the Event window File menu
Restore Events item.

Instead of retyping command sequences, you can save the sequence to
be made into a script file that you can run with a single Include
command or from the initialization script. During an early emulation
session, even if you usually use the SLD menus, open a log file and
record lengthy or frequently repeated tasks by entering the commands
in the Shell window. Edit the log file with a text editor, creating a
script file of commands to be run in future emulation sessions. By
logging these commands during an emulation session, you can test and
record error-free procedures.

Starting a Log File

SW User's Manual

A log file records all that appears in the Transcript pane of the Shell
window. The following sample sequence of commands sets up the
Transcript pane and opens a log file to record any commands you enter
in the Shell window and their results.

Echo On; II Commands you enter appear
II in the Transcript pane.

Results On; II Results of the commands appear
II in the Transcript pane.

DasmSym On; II Disassembly in the Transcript
II pane uses symbol names.

Overwrite; II Specifying an existing filename for the log file will
II overwrite the file's prior contents. The alternative

II command is Append, which would add the new
II log to the end of any existing file contents.

Log "emu1 .log"; II The log filename is emu1 .log.

Logging On; II Start writing to emu1 .log. The emulator
II puts the date and time in the log file

II when you start and stop logging.

Version; II Display and log version information for
II the emulator, DOS, and Windows.

II... II Your emulation session activities

Logging Off; II Stop writing to emu1 .log. A subsequent
II Logging On command will overwrite emu1 .log.

You can do some of the above commands in the Shell window menus:

19 Defining the Debug Environment

• To toggle command-echoing in the Transcript pane, open the View
menu and check or uncheck Echo Command.

• To toggle the results display in the Transcript pane, open the View
menu and check or uncheck Show Results.

The following figure shows a View menu with Echo Command and
Show Results enabled.

Qptions Windows
.,/.Echo Command
.,/Show Be suits

.C.lear Transcript

• To specify whether to overwrite or append new information to an
existing log file, open the Options menu and check Overwrite Log
File or Append To Log File, respectively.

• To specify the log filename, open the Options menu, choose Log
File Name, and fill-in the dialog box.

• To start and stop logging, open the Options menu and check or
uncheck Log Results.

The following figure shows an Options menu with Overwrite Log File
enabled. The next log file opened will be overwritten with the new log
information, destroying its previous contents.

Mapping and Initializing Memory

Windows
Log Results
Log file Name ...

Append To Log File
../ Qverwrite Log File

Set .t!.istory Size ...

Set Iran script Size ...

Before loading your code or symbols, you must map memory. You can
use a memory map saved from a previous emulation session or specify a
new configuration.

Defining the Debug Environment 20 SW User's Manual

SW User's Manual

Open the Map dialog box from the Toolbar either with the Map button
or by opening the Configure menu and choosing Map. The following
figure shows a Map dialog box with no memory mapped.

S!art Addr End Addr Size [KB) Type Access Space

I Add 11 f;dit 11 Qelete I I 1lave 11 Bestore I I ~lose 11)jelp I

The Map dialog box lists any already configured sections of memory.
Use the buttons along the bottom of the Map dialog box to:

Add

Edit

Delete

Save

Configure a new section of memory.

Reconfigure the selected section. Use the mouse or
arrow keys to select from the list in the dialog box.

Revert the selected section to unconfigured memory.

Save to a map file the memory configuration listed in
the dialog box.

Restore Configure memory from a previously saved map file.

The Add and Edit buttons pop-up a dialog box. For each section
configured, you can specify:

• A hexadecimal starting address, on:

• a 4K-byte boundary for Intel processor emulators

• a 64K or 128K -byte boundary for Motorola processor
emulators with 256K bytes of overlay memory

• a 64K, 128K, 256K, or 512K -byte boundary for Motorola
processor emulators with lM byte of overlay memory

• The size, either as a hexadecimal number of bytes (with the Length
button selected) or by a hexadecimal ending address (with the End
Addr button selected). For Motorola emulators the size and
starting address must correspond; for example, a 128K-byte region
must start on a 128K-byte boundary.

• Overlay or Target memory, as listed in the Type column of the Map
dialog box.

• For Intel processors, User or SMM (system management mode)
space, as shown in the Edit dialog box below, as listed in the Space
column of the Map dialog box.

21 Defining the Debug Environment

• For Motorola processors, UP (user program), UD (user data), SP
(supervisor program), or SD (supervisor data) space, as shown in
the Add dialog box below and as listed in the Space column of the
Map dialog box.

• How the emulator treats memory accesses (as listed in the Access
column of the Map dialog box):

RAM allows reads and writes without breaking.

ROM break allows reads; disallows writes; an attempted write
causes a break. For Intel emulators with memory
mapped to Target, writes are allowed but break
emulation.

ROM nobreak allows reads; disallows writes; does not break on
any access. For Intel emulators with memory
mapped to Target, writes are allowed and do not
break emulation.

NONE disallows reads and writes; breaks on any access.
For Intel emulators with memory mapped to
Target, accesses are allowed but break emulation.

The following figure shows an Intel map Edit dialog box followed by a
Motorola map Add dialog box. For Motorola, the emulator
automatically apportions the mapped regions between the two mappable
segments.

Edit

_start Addr: Im [fl Iype: I overlay w
rLength/End Addr Access: IRAM w
® .Length: I Ox2000
0 J;nd Addr: ~ [Space Mode

[gJ !,!ser 0SMM

.QK .C.ancel Help

Defining the Debug Environment 22 SW User's Manual

Start Addr: c.::I !iZ!l]=1 ___ ____._~.... Iype: l._o_v_e_rla_y __ __..[!J_

Length/End Addr

~) Length: I w: A · 1 Lli_. ~ - Oxl 0000 l"'i"I _ccess. RAM i-=J
(/ f:_nd Addr: .___ ____ _........ '--· ____ __.._

_QK !;_an eel Help

OuQ
Dse
lZl .s_o

You can also use the Shell window to map memory. The following
sample sequence of commands prepares the emulator and memory for
loading code or symbols:

Map Clear; II Maps all memory to target, removing
II any existing map configuration.

RestoreMap "emu1 .map"; II Maps memory according to a map
II saved from a previous emulation session. In this case,

II the emu1 .map file contains the line: map OxO Oxffff ram.

Map Ox10000 RomBrk; II Emu1 .map maps only part of memory,
II not including the 4K-byte block starting at address Ox10000.

II This Map command configures memory from Ox10000 to
II Ox1ffff as ROM and specifies that any attempt to access

II this space will break emulation.

Loading a Loadfile

SW User's Manual

Once memory is configured, you can load the file to be debugged.

SLD supports the following loadfile formats:

• OMF86 (Intel)

• OMF386 (Intel)

• IEEE-695 (Motorola)

• S-record (Motorola)

For Intel loadfiles generated with the Borland C compiler, before
loading enter MaxBitFieldSize 16 on the Shell command line.

For Motorola loadfiles, the first time you load a file you must specify
the compiler you used. On the Shell command line, enter a
CompilerUsed command. Or, in the Source window, open the Options
menu, choose Compiler Used, and choose one of the compilers listed in
the dialog box. The following figure shows a Source window Options

23 Defining the Debug Environment

menu (Compiler Used is at the end of the menu) and a Motorola
emulator Compiler Used dialog box.

0 !,!nknown

0 Intermetrics

®fi;;ii=fr
~"."-':':': ;

0 Si~rra

Source Eath ...
Iab Width ...

Source Step _Granularity ~

Step .Count. ..

f!.rowser History Depth ...

Source Line Qelimiter ~

Set Go Buttons ~

Compiler .!J.sed ...

Compiler Used

0 H!ware

0 ln!rol

Return o To

0 .S.DS CrossCode

0 Whitesmiths

.QK I ~ancel I I !:!.elp I

For Motorola loadfiles with more than 32 sections, you can shorten the
load time by entering a MergeSections On Shell command before
starting the load.

You can load a file during emulation. Be sure the file's load addresses
do not overlap the memory occupied by the running program. Loading
a file at a location in use stops the emulator in an unpredictable state.

The following sample sequence of commands initializes memory with
Ox55aa values, then loads code and symbols:

Fill OxO Oxffff Ox55aa Word; II Fills the first 64K bytes of memory
II with repeating 55aa values.

Loadsize Long;

Verify On;

Defining the Debug Environment 24

II The loadfile will be written to memory in
II double-word accesses, which is the

II fastest way to load code.

II Each write will be followed by a
II read to verify the value written.

SW User's Manual

SW User's Manual

Load "myfile.obx" code symbols nodemand nowarn status;
II Load code and symbols from the myfile.obx loadfile.

You can do the above operations using various SLD window menus.
To initialize memory in the Memory window, open the Edit menu,
choose Fill Memory, and fill-in the dialog box. The following figure
shows an Edit menu and an Intel emulator Fill Memory dialog box.

S~arch Memory ...
.Eill Memory ...
.C.opy Memory •..

To verify values written to memory, in the Memory window open the
Options menu and check Write Verify .

../ 6.yte Access
Word Access
QWord Access

./Write ~erify

Bead Ahead

R~read On Write

To load code and symbols, open the Load dialog box from the Toolbar
with the Load button or from the Source window by opening the File
menu and choosing Load File. If you are reloading one of the last four
files that were previously loaded, you can open the Source window File
menu and choose the loadfile pathname from the bottom of the menu.

In the Load dialog box, the name of the previous file that was loaded is
automatically filled-in. Or, you can browse the directory and file lists to
specify a different loadfile.

25 Defining the Debug Environment

Before choosing the OK button to load the file, you can choose the
Options button in the Load dialog box to open the Load Options dialog
box. If you have already loaded a file, the options you specified
previously are preserved.

The following figure shows two sample Load Options dialog boxes.
The first is for the lntel386 EX processor; the second is for the
Motorola 68332 processor. Different options are available for different
processors.

Load Options

0 SMM

0 Load Code
0 Load ivmbols

D On !lemand Symbol Loading

D Demangle C++ Hames

D Update Symbol .!!.ases

D Load !nitial Register Values

0 fteport Status

D Report ~arnings

Load Options

tZ1 ih~~~I~ifo]
tZI Load fu!mbols

0 On !!.emand Symbol Loading

D Demangle C++ .t!ames

0 Load ~ssembly Modules

tZI Report Status

tZI Report ~arnings

OK j J;;.ancel I Help

For Intel loadfiles, be sure the space option (User or SMM) you select is
compatible with the address space you configured in the Map dialog
box.

You can load code, symbols, or both from any loadfile. For example,
load only code if symbols are already loaded; load only symbols for
debugging ROM code. To load code, check the Load Code box. To
load symbols, check the Load Symbols box and any combination of
boxes under Load Symbols:

Defining the Debug Environment 26 SW User's Manual

SLD User's Manual

• On-demand symbol loading defers loading local symbol and line
number information for each module until it is needed; i.e. until
either the module is displayed in the Source window or a
breakpoint is set in the module. Advantages of on-demand symbol
loading include faster initial loading, faster lookup for the symbols
that are demanded, and less memory occupied by the loaded file
because only the fewest required symbols are loaded.

• For overloaded C++ functions, the emulator can demangle the
symbolic name of the first mangled version it encounters of each
function.

• For OMF386 load.files, the symbol server base addresses can be
updated after loading, in conjunction with initializing the Intel386
registers.

For OMF386 loadfiles, you can load the processor registers with initial
values.

For Motorola load.files, you can load symbolic information for modules
whose source files are assembly language.

You can request or suppress information about the load process and
results. For a dynamic report of the loading process, check Report
Status. A bar graph fills to indicate the percent loading complete;
loading statistics are updated continuously during the load process.

Load Complete

Loadfile: C:\POWRPAKl\SAMP386\DEM0386.0MF
Module:

Bytes: 1963 Lines: 148
Modules: 4
Symbols: 60 PC: 0018:FFFFE3E4

Types: 358 Stack Base: 0020:000005EO
Functions: 5 Stack Size: Unknown

rc1~: I I !!.elp I

Suppress warning me$sages during loading by un-checking Report
Warnings.

If you are loading a Motorola loadfile with the Load dialog box, and
you have not already specified a compiler, SLD displays a Compiler
Used dialog box; choose one of the listed compilers.

For C++ code containing virtual functions, overloaded functions, and
some other symbol types, the emulator can demangle the first instance
of each such symbol. Subsequent instances remain mangled in the

27 Defining the Debug Environment

emulator symbol table rather than duplicated, so you can access all
symbols in your program. However, the names do not appear mangled
in your source. The warning message C++ duplicate name detected
alerts you to the presence of mangled names.

The emulator handles mangled names based on the Microtec Research
Inc. (MRI) C++ version 1.1 name mangling algorithm. For other C++
compiler output, specify mangle with the Load command or uncheck
Demangle C++ Names in the Load Options dialog box. This retains all
mangled symbols.

Enabling Memory Access

You can access memory during emulation, to read or write the current
values in target memory and on-chip peripheral registers (but not CPU
registers). Such reads and writes take a small, additional amount of
processor time.

When you invoke SLD, such memory access is disabled by default. To
enable memory access, either:

• On the Shell command line, enter RunAccess On.

• Open the Toolbar Configure menu and toggle Run Access.

Run Access does not allow CPU register access. The CPU registers
cannot be accessed during emulation; their display is updated only
when emulation halts.

Enabling lntel386 EX Expanded Memory

You can read and write any peripheral register by editing the field
values in the Peripheral window or by entering Dump, Fill, and Write
commands on the Shell window command line.

To access some of the peripheral registers with the Shell commands,
you must first enable expanded 1/0 space. Once expanded 1/0 space is
enabled, you can use both the Peripheral window and the Shell
command line to access timers, DMA, interrupt controllers, serial
communications channels, and other internal peripheral registers such
as chip selects, power management, and watchdog timer.

When expanded 1/0 space is disabled, the affected registers appear in
the Peripheral window with question marks (?) in their address fields.
A question rnark indicates you can access the register via the Peripheral
window but not frorn the Shell command line.

Defining the Debug Environment 28 SW User's Manual

To enable expanded I/O space, close (not minimize) the Peripheral
window, then set the ESE bit in the REMAPCFG register by three
sequential writes to I/O addresses Ox22 and Ox23. (The sequence must
write twice to each address.) For example, enter the following Size
and Fill commands on the Shell command line:

Size Byte;
Fill 23p 23p OxOO Byte 10;
Fill 22p 22p Ox80 Byte 10;
Size Word;
Fill 22p 23p Ox0080 Word 10;

The Size command specifies the physical size of the data access. The
Byte and Word specifiers in the Fill commands inform SLD of the
supplied data format.

Managing lntel386 EX Signals

RESET

RDY#

NA#

BS8#

SW User's Manual

Active high synchronized to CLK2. This signal can
be pulled high or low during use as long as it remains
stable during initialization. The signal can be
disabled in the CPU window to be driven by the
emulator.

Must be synchronized to CLK2 with the proper setup
time according to Intel specifications for any cycles
for which the 386EX is not programmed. After the
chip select unit is programmed, such signals would
include any unmapped memory or I/O space, any
disabled on-chip expanded I/O space, and halt or
shutdown cycles. (The power-up condition for chip
select and ready generation allows upper-chip-select
memory accesses to the entire 64M byte address
range.) RDY# should be tri-stated when the 386EX
CPU is providing the ready due to LBA# cycles.
RDY# should have a resistor pull-up to VCC or be
pulled low with resistor of 600-820 ohm for full time
zero wait states.

should be synchronized to CLK2 and driven
according to the need for pipelining. Do not float the
signal. NA# can be disabled in the CPU window.

should be synchronized to CLK2 and driven
according to the actual bus size. Do not float the
signal.

29 Defining the Debug Environment

NMI

SMI#

FLT#

HLDA

should be driven as needed. When NMI is floated it
must be disabled in the CPU window.

should be driven as needed. When SMI# is floated it
must be disabled in the CPU window.

must have a resistor pull-up to VCC or be floated
when the emulator is attached.

if HLDA is configured as an output port, enter Config
lgnoreHLDA On in the Shell window command line,
to inform the SLD software that the CPU has not
granted the bus to another master.

Turning Off a Motorola Watchdog Timer

In Motorola processors, the software watchdog timer is controlled by
the software watchdog enable (SWE) bit in the SYPCR register. When
enabled, the watchdog timer requires that a service sequence be
periodically written to the software service register (SWSR). If these
writes do not occur, the watchdog timer times out and asserts RESET.
This protects the system against, for example, infinitely looping code.

For the 6833 l/332/F333 processors, turn off the watchdog timer:

Write fffa21 O;

For the HC 16 processors, turn off the watchdog timer:

Write ffa21 O;

Enabling Motorola Show Cycles

In Motorola processors, you can enable or disable the show-cycle mode
of the processor. The 683xx and HC16 have internal peripherals.
Normally, when the CPU accesses these peripherals, the bus cycle is
invisible outside the chip. With Show Cycles enabled, the internal
cycles are visible in the trace buffer and can be used for triggering.

On the Toolbar, open the Configure menu and toggle Show Cycles.

Enabling Show Cycles sets the SHEN[O: 1] bits in the SIM module
control register to 1, 1. Disabling Show Cycles sets these bits to 0,0
(the default). To see this in the Peripheral window (as shown in the
following figure), expand the SIM peripheral and open the MCR
register. Select the SHEN field. You can use the Field Value spin box
to enable or disable Show Cycles. To write new values, choose Write;
to close the dialog box without changing the MCR, chose Close.

Defining the Debug Environment 30 SW User's Manual

= ..
' . ~J_&

file _Edit ~iew Windows t!elp

II SIM +
•II .1 ll!L' " ' ' ' .. '

15: 0 EXOFF CLKOUT driven from internal source
14: 1 FRZSW SW watchdog and counters disabled during FREEZE
13: 1 FRZBM Bus Monitor disabled during FREEZE
11: 0 SLVEN Slave mode not used with emulator
9: 0 SHEN Show cycles disabled. arbitration enabled
7: 1 SUPV Register access restricted to supervisor
6: 1 MM Modules addressed FFFOOO - FFFFFF
3: F IARB Interrupt value from F(highest priority] to 1 (lowest priori\) •

+J..

SIM MCR - SIM Module Configuration Register

Begister Value: 1 o_x_6_o_c_F ___ ~
fields:

EXOFF
FRZSW
FRZBM
SLVEN

SUPV
MM
IARB

CLKOUT driven from internal source
SW watchdog and counters disabled during FREEZE
Bus Monitor disabled during FREEZE
Slave mode not used with emulator

. I

Register access restricted to supervisor
Modules addressed FFFOOO - FFFFFF
lnterru

Field Value: 9: Show cycles
._I o_x_o ___ _.~.. Show cycles disabled, arbitration enabled

Write 11 !;_lose I I « _E!rev 11 Next» I I .!:!.elp

..

Programming Motorola Chip Selects

SW User's Manual

The Motorola processors provide several independently programmable
signals that you can configure as chip selects, output pins, or function
codes. The number of signals and their possible configurations are
different for different processors. The 68331, 68332, 68F333, and
68HC16Zl provide 12 independently programmable chip select signals
with programmable block sizes from 2K to lM bytes. Of these 12
signals, 11 are shared with other processor signals. The 68330 and
68340 provide four independently programmable chip select signals
with programmable block sizes from 256 to 4G bytes. For the 330, one
is shared with another processor signals; for the 340, all four are
shared.

31 Defining the Debug Environment

You can configure these signals in various ways:

• Design your target hardware to configure the signals at reset.

• Design your target startup code to configure the signals. This code
must be in the CSO (for 330/340) or CSBOOT (for other
processors) area of memory. Execute the initialization code.

• In the Peripheral window, use the Register Edit dialog boxes to
write to the peripheral registers.

• In the Shell window, enter Write commands to the peripheral
register addresses.

• Create a chip select configuration file, either from the Shell
window with a SaveCS command; from the Toolbar by opening
the Configure menu, choosing Save Chip Selects, and filling-in the
dialog box; or with a text editor such as Windows Notepad. To
program the chip selects from the file, use a Shell RestoreCS or
ConfigCS command; or open the Toolbar Configure menu, choose
Restore Chip Selects, and fill-in the dialog box.

For the emulator to correctly process memory mapping, execution
breakpoints, triggers, and trace, the emulator's programmable hardware
must be configured to match the processor's chip select configuration.
Once you have configured the processor signals, either enter ConfigCS
on the Shell command line or open the Toolbar Configure menu and
choose Configure Chip Selects. With a chip select configuration file,
you can configure the processor and emulator hardware from the Shell
window with a single ConfigCS command. Entering:

RestoreCS config1 .cs;
ConfigCS;

is the same as entering:

ConfigCS config1 .cs;

Different signals are available in the Event and Trace windows
depending on how the shared signals are configured. The following
example demonstrates how various configurations of the 68332 chip
selects are reflected in the Event window.

If the Event window is open when you reconfigure the registers, you
must close (not minimize) and re-open it to see the changes.

In the SIM (system integration module) peripheral, CSP ARO (Chip
Select Pin Assignment Register 0) controls the use of the chip selects 0
through 5.

Defining the Debug Environment 32 SW User's Manual

The following chart shows how the value of the bit fields
CSPARO:CS[0:5] specifies the use of these chip selects:

3 2 1 0

CSO BR#

CS1 BG#

CS2 BG ACK#

SW User's Manual

Eile J;dit ~indows J:!elp

Active Event: I evl l!I
not start ®End Addr 0 Length mask

addr: D [JI 11

start end mask
data: D [J [JI

0 1 x 0 1 x 0 1 x 0 1 x 0 1 x
0 0 ® as- 0 0 ® berr- 0 0 ® pcsl- 0 0 ® t2 0 0 ® t12
0 0 ® ds- 0 0 ® halt- 0 0 ® pcs2- 0 0 ® t3 0 0 ® t13
0 0 ® r/w- 0 0 ® irql- 0 0 ® pcs3- 0 0 ® t4 0 0 ® t14
0 0 ® sizO 0 0 ® irq2- 0 0 ® sck 0 0 ® t5 0 0 ® t15
0 0 ® sizl 0 0 ® irq3- 0 0 ® rxd 0 0 ® t6 0 0 ® bgack-
0 0 ® dsackO- 0 0 ® irq4- 0 0 ® txd 0 0 ® t7 0 0 ® bg-
0 0 ® dsackl- 0 0 ® irq5- 0 0 ® mosi 0 0 ® tB 0 0 ® br-
0 0 ® avec- 0 0 ® irq6- 0 0 ® miso 0 0 ® t9
0 0 ® rmc- 0 0 ® irq7- 0 0 ® to 0 0 ® t1 O
0 0 ® reset- 0 0 ® peso- 0 0 ® t1 0 0 ® tl 1

33 Defining the Debug Environment

The following figure shows the CSPARO Register Edit dialog box for
the above Event window, with CS[0:2] each set to Oxl (BR#, BG#, and
BGACK#, respectively) and CS[3:5] each Ox3 (16-bit chip selects).

SIM CSPARO - Chip Select Pin Assignment Register 0

Register Value: ~I o_x_J_F5_7 ___ ~
fields:

CS5
CS.!l
CSJ

CS5 is a 16 bit chip select
CS.!l is a 16 bit chip select
CSJ is a 16 bit chip __ select

; .
CS1 CS1 is BG-
CSO CSO is BR-
CSBOOT CSBOOT is a 16 bit chip select

Field Value: 7: CS2 Pin Assignment

~I o_x_1 ___ ~_ CS2 is BGACK-

Write 11 ~lose I I « erev 11 Next» I I tlelp

The following example configures a 68332 chip select and its memory
block. The following figure shows the registers for this example
(CSPARO, CSBARO, and CSORO) expanded in the Peripheral window.

Eile £dit '.lliew ~indows):!elp

13:
11:
9:
7:
5:
3:
1:

(+) FFFA46
(+) FFFA48
(+) FFFA4A
(-) FFFA4C

15:
2:

(-) FFFA4E
15:
14:
12:
10:
9:
5:
3:
0:

+I

Defining the Debug Environment

1
1
1
3
3
3
3

03FF
0007
7B70
1005

200
5

7820
0
3
3
0
0
2
0
0

•. :n
CS5
CS.of
CS3
CS2
CS1
cso
CSBOOT
CSPAR1
CSBARBT
CSORBT
CS BARO
Address
BLKSZ
CS ORO
MODE
BYTE
RfW
STAB
DSACK
SPACE
IPL
AVEC

34

CS5 is FC2
CS.of is FC1
CS3 is FCO
CS2 is a 16 bit chip select
CS1 is a 16 bit chip select

• . I

CSO is a 16 bit chip select
CSBOOT is a 16 bit chip select

J
!11.:J

Chip Select Pin Assignment Register 1
Chip Select Boot Base Address Register
Chip Select Option Register, Boot ROM
Chip Select 0 Base Address Register
Chip Select base address
256 KB block
Chip Select 0 Option Register
Asynchronous
Both bytes
Read/'Write
Synchronize CS assertion with AS
no wait states
Supervisor space
Any level
Disabled

SW User's Manual

SW User's Manual

For this example, CSPARO:CSO is set to Ox3. The following figure
shows the CSP ARO Register Edit dialog box.

SIM CSPARO - Chip Select Pin Assignment Register 0

.Begister Value: l~o_x_JF_F_F ___ ~
fields:
CS5 CS5 is a 16 bit chip select
CS4 CS4 is a 16 bit chip select
CSJ CSJ is a 16 bit chip select
CS2 CS2 is a 16 bit chip select
CS1 CS1 is a 16 bit ch!P_ select

••"'II I • I Illi I - "

CSBOOT CSBOOT is a 16 bit chip select

Field Value: 3: CSO Pin Assignment I OxJ ~ CSO is a 16 bit chip select

Write 11 !;,lose I I « Erev 11 Next» I I .!::!.elp

A pair of internal registers controls the memory block for each chip
select. The Chip Select Base Address Register specifies the starting
address and size; the Chip Select Option Register configures the access.
For this example, CSO controls a 256K byte memory block starting at
Ox200. The following figure shows the CSBARO Register Edit dialog
box with Address = Ox200 and BLKSZ = Ox5 (the Field Value for a
256K byte block).

SIM CSBARO - Chip Select 0 Base Address Register

.Begister Value: ~ln_O_l_m_bi ___ ~
fields:
Address Chi Select base address
BLKSZ 256 KB block

Field Value: 15: Address I Ox200 ~ Chip Select base address

Write 11 !;,lose I I « Erev 11 Next » I I tlelp

35 Defining the Debug Environment

The following figure shows the CSORO Register Edit dialog box for this
example, with:

MODE=O

BYTE=3

RIW=3

STRB =0

DSACK=O

SPACE=2

IPL=O

AVEC = 0

Memory access (relative to ECLK) is asynchronous.

Both bytes of a word are accessed.

Both read and write are possible.

The chip select synchronizes with the address strobe.

There are no wait states.

This block is supervisor space.

Any interrupt has priority.

Auto vectoring is disabled.

Sllvl CSORO - Chip Select 0 Option Register

Register Value: j,_o_x_10_2_0 ___ ~
Eields:
MODE Asynchronous
BYTE
R/W
STRB
DSACK
SPACE
IPL
AVEC

Both bytes
Read/'Write
Synchronize CS assertion with AS
no wait states
Supervisor space
Any level
Disabled

Field Value: 15: Timing Mode

~I o_x_o __ ~~- Asynchronous

Write 11 ~lose I I < < erev 11 Next > > I I tlelp

Using a Script

A script is a text file of Shell commands. At any time during an
emulator session, you can use the Include Shell command (or, in the
Shell window, open the File menu, choose Include File, and fill-in the
dialog box) to execute a script.

In the powerpak.ini file [lnitScript] section, you can specify a script to
be executed automatically as an initialization script when you start
SLD. A sample initialization script, include.me, is installed with
SLD.

Defining the Debug Environment 36 SW User's Manual

SW User's Manual

To create your own script for SLD initialization:

1. Use a text editor, such as Windows Notepad, to create a file of
Shell commands. End each command with a semicolon.

2. Edit the line script = <pathname> in powerpak.ini:

• <pathname> is the pathname of the script. For example:
script = c:\sld\user\myscript

• The only filename restrictions are any imposed by your DOS or
Windows.

• If you specify no pathname (for example, script = myscript),
be sure your script is in the directory with the SLD files.

The following figure shows the Shell window after include.me has
executed. An Include command to execute custom.inc is ready to be
entered on the Shell window command line.

'include "'include.111e"';
II

'II Here is an exa111ple of a start up script:
II
II
II
II

·II
, II
II
II
II
II
II

uersion;
alias "'uer"' "'uersion"';
111ap o fffffp;

II get uersion infor111ation abou
II exa111ple of aliasing a co111111an
II set up ouerlay 111e111ory 111ap

This file, include.Ille, is run each ti111e PowerUiews
is brought up. Edit this file with co111111ands to set
up your enuiron111ent. The [InitScript] section of
the file pwruiews.ini (in your Windows directory)
can be edited to eli111inate this feature or to
change the name of the initial script file.

"'custo111.inc"' ;I

37 Defining the Debug Environment

Keyboard Shortcuts

You can use these function keys as shortcuts instead of window
commands.

Press this Key

Fl

F2

F3

F4

F5

F6

F7

F8

F9

FlO

Defining the Debug Environment

To Do This

Open a window for SLD on-line help.

Halt emulation.

Start trace.

Stop trace.

Set focus to the Toolbar window.

Set focus to the next open SLD window.

Step Into.

Step Over.

Start emulation (Go).

Activate the menu bar for keyboard use.

38 SW User's Manual

Debugging in Source and Stack
This chapter describes how to:

• Set, view, and clear breakpoints.

• Control program execution.

• Examine and modify variables and the stack.

Viewing Source

SLD User's Manual

After loading an executable file, you can view modules in the Source
window. The Source window initially displays code starting at the
current program counter (CS:EIP for Intel; PC for Motorola). The
instruction pointed to by the program counter is marked by>>.

When you open the Source window after loading but before executing
code, the program counter may be in the assembly startup code. In
general, embedded programs start in startup code and not in main().
You or the compiler can insert initialization code to set up the processor
environment. The Source window displays either the assembly source
or the disassembly from memory.

To view a different module, open the File menu and choose Browse
Modules. All loaded modules are listed. If a module's source has been
modified more recently than the loadfile, a warning message appears
and an asterisk marks the source filename in the Source window title.

If the emulator cannot find the source file corresponding to the module
you are browsing, you may need to modify the source search path list.
In the Source window, open the Options menu, choose Source Path, and
modify the list. The following figure shows a Source Path dialog box.

Source Path

C: POWRPAKI SAMP386

Add... 11 fdit... I I Qelete 11 Cl_qse 11 ~ancel 11 .!:!elp

39 Debugging in Source and Stack

To add a path, choose the Add button and choose a source file in the
dialog box. The following figure shows the Open dialog box that
appears in response to the Source Path dialog box Add button.

File M_ame:

Open

!1i1ectories:

c:\pow1pakm

l27 c:\
~ pow1pakm
D samp332
D samp360
D sampcp32
D samphc16
D teknotes

List Files ol !vpe: D1iyes:

~I C_F_il_es_("_.C_J ___ ~l!J-:!: I liiiil c: ms-dos_6

OK

Cancel

!::!_elp

D !!ead Only

liJ

To edit a path, select a path in the Source Path dialog box; choose the
Edit button; and edit the path string. To select a path from the list,
move the highlight with the mouse or the <Up Arrow> and <Down
Arrow> keys. The following figure shows the Edit Path dialog box.

Edit Path

.E!ath:

C:\POWRPAKl\SAMP386

I OK I .!;,anc:el I !:ielp

The emulator searches the paths in the order they are listed in the
Source Path dialog box, stopping at the first file that matches the source
filename in the loadfile. If you have duplicate filenames in different
directories, order the source path search list so the emulator finds the
correct one first. For example, in the following figure, the emulator
searches first samp386, then build-a, build-b, and finally build-c.

C: POWERPAK SAMP386
c::\powerpak\samp386\build-a\
c::\powerpak\samp386\build-b\
c::\powerpak\samp386\build-c:\

Source Path

Md... 11 fdit... 11 Qelete 11 Clg_se 11 .!;,ancel 11 !:ielp I

Debugging in Source and Stack 40 SW User's Manual

When full symbolic information (including the source file pathname) is
available for a module, you can view the module as source code with or
without interleaved disassembly. Use the View menu to toggle between
Source Only and Mixed Source And Assembly. (Modules with no
source information appear as disassembly only, regardless of the view.)
To see symbols in the disassembly, on the Toolbar open the Configure
menu and check Symbolic Disassembly.

You can split the Source window into two panes by clicking and
dragging on the split box at the top of the vertical scroll bar. A split-box
cursor appears at the right of the split bar (see figure at left). To resize
the panes, point the mouse to the split box and drag the split box.

With two Source window panes, you can work in two different modules
or two areas of the same module independently. To move between
panes, click in the inactive pane to make it active.

Managing Breakpoints

SW User's Manual

At a breakpoint, emulation halts before executing the instructfon at the
breakpoint address. A temporary breakpoint is then cleared; a
permanent breakpoint remains.

You can set 256 software breakpoints; in addition, for Motorola
processors you can set two hardware breakpoints and for Intel
processors you can set up to four hardware breakpoints. The choice of
hardware or software breakpoint is automatic.

For Intel processors, you can configure the debug registers DR[0:3] to
specify a hardware data or execution breakpoint. See the DR command
description in the "Shell Window Reference" chapter.

If you try to set a breakpoint on a non-executable source statement, a
breakpoint is set on the first subsequent executable source statement.

You can set breakpoints from:

• the Source window, using the mouse in the source display or using
the Breakpoints menu

• the Breakpoint window Breakpoints menu

• the Breakpoint window Set button

• the Bkpt command in the Shell window

41 Debugging in Source and Stack

In the Source window, using the mouse:

1. Move the mouse pointer to the left of the source line where you
want to set a breakpoint.

2. When the mouse pointer changes shape to a cross-hair cursor (see
figure at left), click on the primary mouse button to set a
permanent breakpoint or on the secondary button to set a
temporary breakpoint. (On a mouse configured for right-handed
use, the primary is the left button and the secondary is the right
button.) The line with the breakpoint is highlighted in red.

In the Source or Breakpoint window, open the Breakpoints menu. In
the Source window, to set a breakpoint on the line where the Source
cursor is positioned, select Set Permanent Breakpoint or Set Temporary
Breakpoint. To set a breakpoint elsewhere, choose Set Breakpoint and
fill-in the Set Breakpoint dialog box.

The following figure shows a Source window Breakpoints menu and a
Breakpoint window Breakpoints menu. In the Source window, the
Show All item opens the Breakpoint window listing all current
breakpoints; in the Breakpoint window, the Go To Source item opens
the Source window showing the line where the selected breakpoint is
set.

l.;flilll.J' WJ

Set Eermanent Breakpoint
Set Iemporary Breakpoint
Set Breakpoint ...

... ~.~--
Set Breakpoint. ..

~I ear ~I ear

.Enable .Enable

Qi sable Qisable

Clear All Clear All

Enable All Enable All
Disable All Disable All

~how All ... _Go To Source

In the Breakpoint window, you can also choose the Set button to pop-up
the Set Breakpoint dialog box.

In the Set Breakpoint dialog box, you can enter a numeric or symbolic
address in the Breakpoint At field. For a symbolic address, you can
browse the Modules and Functions drop-down lists. The following
figure shows a sample Set Breakpoint dialog box.

Debugging in Source and Stack 42 SW User's Manual

Set a breakpoint:
multiple statements
per line

SID User's Manual

Set Breakpoint

B.reakpoint at: ltt332qsm#Blank_CmdBuf

Modules functions

1332qsm

St.!!_te------,

® J;nable

0 Qisable 0 Iemporary

For C++ source, mangled names (which do not appear in the Source
window display) are listed in the Set Breakpoint dialog box and can be
listed with a DisplaySymbols Shell command. These include member
functions from all classes defined in a source module and its header
files, compiler-provided default constructors and destructors, and global
(non-class related) functions. For information on the C++ mangling
algorithm, see The Annotated C++ Reference Manual by Margaret
Ellis and Bjarne Stroustrup.

A void setting breakpoints on inline functions. The Set Breakpoint
dialog box does not flag inline functions. If you have set a breakpoint
on a function and stepping does not advance the Source window cursor,
it is an inline function. Stepping through instructions contained in your
class definition will advance the program counter but not the Source
window cursor. Remove the breakpoint on the function and restart
emulation.

With the Source window view set to Mixed Source And Assembly, the
assembly instructions for all inline functions appear after the last source
line of the module.

Some toolchains allow more than one source statement per line. You
can set a breakpoint on any statement in a line. For example:

If (errorNumber) errorHandler(errorNumber);

To set a breakpoint on the errorHandler call, when errorNumber is
nonzero:

1. From the Source window Options menu, set the level of step
granularity by toggling Step Execution Granularity to Statement.

2. Click on errorHandler(errorNumber), open the Breakpoint menu,
and choose Set Permanent Breakpoint. Or, double-click on
errorHandler(errorNumber) and choose Permanent Breakpoint.

3. The entire line is highlighted as a breakpoint, with the actual

43 Debugging in Source and Stack

Tab width: effect on
setting breakpoints at
statement level

breakpoint set on the second statement. From the View menu,
choose Mixed Source And Assembly to see the breakpoint on the
second statement.

To set a breakpoint at the statement level, you must know how many
spaces your compiler uses for a tab character. For example, when the
following line containing three statements is compiled with MRI:

<tab><tab>for (j = O; j < max_num; j++) {

the MRI default tab width of eight characters produces the following
column ranges for the three statements:

j = O; columns 0 through 26

j < max_num; columns 27 through 39

j++ columns 40 through 45

Setting the Source window tab width to four instead of eight would put
the first j (in j = O;) at column 13 and the second j (in j < max_num;)
at column 20. It is then difficult to set a breakpoint on the correct
statement.

Symbols must be loaded before you can set breakpoints on line numbers
or functions. If you chose On Demand Symbol Loading when loading
your program, the symbols needed for a breakpoint are loaded either
when you set the breakpoint or when you display the source for the
module containing them.

To list breakpoints in a separate Breakpoint window, in the Source
window open the Breakpoints menu and choose Show All; or in any
SLD window open the Windows menu and choose Breakpoint. (In the
CPU window, where there is no Windows menu, use the Options
menu.) The Breakpoint window shows the state (enabled or disabled),
type (permanent or temporary), and location in source of each currently
defined breakpoint. The following figure shows a sample Breakpoint
window .

.Eile f!.reakpoints Windows !:!elp

Set Enable Disable

000400 entry,line32,col1-1
00049E main,main,line28,col1-22

Enable All Disable All

The Breakpoint window button operations are duplicated in the
Breakpoints menus of the Source and Breakpoint windows. In the

Debugging in Source and Stack 44 SW User's Manual

List breakpoints in
Shell windowl

Disabled and enabled
breakpoints

SW User's Manual

Breakpoint window, click on a breakpoint or use the arrow keys to
select it. In the Source window, select a breakpoint by moving the
Source cursor to the statement where the breakpoint is set.

To list breakpoints in the Shell window, enter Bkpt. For example:

bkpt;
II SRC bkpt: Ena Perm 470 (@O)
D:\TBIRD\M332\SAMPLES\SAMP332\main.c,main,Line21
11 SRC bkpt: Ena Perm 486 (@ 1)
D:\TBIRD\M332\SAMPLES\SAMP332\main.c,main,Line24
II SRC bkpt: Ena Perm 492 (@2)
D:\TBIRD\M332\SAMPLES\SAMP332\main.c,main,Line26
II SRC bkpt: Ena Perm 49E (@3)
D:\TBIRD\M332\SAMPLES\SAMP332\main.c,main,Line28

You can enable and disable all or individual breakpoints. An enabled
breakpoint is defined and active; emulation breaks when the breakpoint
is reached. A disabled breakpoint is defined but inactive; emulation
does not break when the breakpoint is reached.

For example, an interrupt handler named Myintr (in a module named
ModB) might be started at any time. To discover whether Mylntr is
starting during execution of another function named Atomic (in a
module named ModA), the designer does the following:

1. Set a breakpoint, enabled, at the beginning of #ModA#Atomic.

2. Set a breakpoint, enabled, at the end of #ModA#Atomic.

3. Set a temporary breakpoint, disabled, at #ModB#Myintr.

4. Go. The Myintr interrupt handler can execute without causing a
break.

5. When the emulator halts at the first Atomic breakpoint, enable the
Mylntr breakpoint. If Mylntr is called during Atomic execution, a
break occurs and the Myintr breakpoint is cleared. Otherwise,
when the emulator halts at the second Atomic breakpoint, re
disable the Mylntr breakpoint.

You can change the Source window display to view the line containing
any listed breakpoint. Select the breakpoint and choose Go To Source.

You can remove all or individual breakpoints by any of:

• In the Source or Breakpoint window, open the Breakpoints menu
and select Clear All.

• In the Breakpoint window, select a breakpoint and choose Clear
from either the buttons or the Breakpoints menu.

45 Debugging in Source and Stack

• In the Source window, click in the left margin of the red
highlighted line containing the breakpoint; or, move the cursor to
the breakpoint, open the Breakpoints menu, and choose Clear.

• On the Shell command line, enter BkptClear.

Starting and Stopping Emulation

The following figure shows the Source window Run and Options menus
and button bar. On the Options menu, the items involved in emulation
control are Source Step Granularity, Step Count, and Set Go Buttons.

Y.o
.!:!.alt
litep Into
Step Q.ver

Go Until .C.all
Go Until Retyrn
Go Into Call
Go Into Beturn

Go!o Cursor
Go Erom Cursor

Ste!!. Into Continuously
Step Oy:er Continuously

Rkset
Reset And Go

F9
F2
F7
FB

Source fath ...
lab Width ...

Source Step §ranularity ~

Step !;.ount. ..

f!.rowser History Depth ...

Source Line Q.elimiter

,Set Go Buttons

Compiler .!J.sed ...

With the Source window buttons and menus, you can emulate one or
more instructions at a time or as a free-running program:

Step breaks after executing one to 100 instructions or
statements, according to how you set Step Count and
Source Step Granularity in the Options menu. The
Shell Step and StepSrc commands can do the same.

Into

Debugging in Source and Stack 46

when encountering a function call
instruction, executes the jump and
breaks at the first instruction or
statement inside the function.

SW User's Manual

SW User's Manual

Go

Reset And Go

Halt

Over when encountering a function call
instruction,executes the function and
breaks at the first instruction or
statement after returning.

Continuously repeatedly Steps until you halt the
emulation.

executes your program to the next enabled breakpoint
or until Halted. The Toolbar Go button and the Shell
Go, Golnto, and GoUntil commands do the same.

From Cursor moves the program counter to the

To Cursor

Into Call

Into Return

instruction where the Source cursor is,
then starts emulation.

emulates until the program counter
reaches the Source cursor.

breaks on the first instruction or
statement inside the next called
function.

breaks on the first instruction or
statement after the next return.

Until Call breaks on the next call instruction.

Until Return breaks on the next return instruction.

To change the Into Call and Into Return buttons to
Until Call/Return buttons, open the Options menu;
choose Set Go Buttons; and select Until Call/Return.

Resets your target system, then operates as Go. The
Shell ResetAndGo command does the same.

Stops emulation during a Step Continuously or a Go
operation. The Toolbar Halt button and the Shell
Halt command do the same.

How fast a Step operation executes depends on the number of SLD
windows open. Each window must be updated after each step. You can
close any open SLD window (except the Toolbar) to improve
performance. Speeding up stepping can be useful when you use long or
frequent Step Continuously operations.

In C++, stepping into a declaration can call a constructor with
initialization parameters, if any, and its base class constructors.

47 Debugging in Source and Stack

To mask interrupts during Step operations, enter a StepMask Shell
command. For Motorola emulation, masking interrupts can have the
following effects:

• With mask on, a single step restores the original contents of the SR
(CPU32) or CCR (CPU16) register when complete. If the stepped
instruction modifies this register, the modification can be lost. The
following instructions can cause this problem:

CPU32 CPU16

ANDI <ea>,SR ANDP <ea>

ORI <ea>,SR ORP <ea>

EORI <ea>,SR TPD

MOVE <ea>,SR TOP

MOVE SR,<ea> RTI

LPSTOP STOP RTE LP STOP

• Most instructions that access memory can generate exceptions or
traps due to bus or address errors or as an expected result of the
instruction. In such cases the following sequence occurs:

1. The value of SR or CCR saved on the stack for the exception is
incorrect.

2. When the exception returns, the incorrect stack value is
restored into SR or CCR.

The following instructions can generate a trap:

CPU32 CPU16

TRAP CHK DIVUL SWI

TRAP cc DIVS LINEA EDIV

TRAPV DIVSL LINE G EDIVS

BKPT DIVU

To discover whether emulating or halted, look in the Status window or
icon or enter EmuStatus on the Shell command line. When emulation
has halted, to discover the cause of the break, look in the Status window
or enter Cause on the Shell command line.

Examining Source After Emulating

The Source window display shows the statement or instruction next to
be executed:

Debugging in Source and Stack 48 SLD User's Manual

SW User's Manual

• When emulation is halted by a breakpoint, the program counter
stops at the instruction containing the breakpoint.

• When emulation is halted after a Step Into or Go Into Call, the
program counter points to the first instruction in the function.

• When emulation is halted after a Step Over or Go Into Return, the
program counter points to the first instruction after the return.

• When emulation is halted after a Go Until Call or Go Until Return,
the program counter points to the call or return instruction.

In Source Only view, a function with no associated source is not
displayed after a Step Into, although the program counter points to the
first instruction in the function. To display such a function, toggle the
view to Mixed Source And Assembly.

You can also view disassembled instructions in the Memory window, or
by entering a Dasm command on the Shell command line.

To modify instructions, use the Memory or Shell window as described
in the chapter on debugging in registers and memory. Such code
patching is reflected in the disassembly shown in the Source window in
Mixed Source and Assembly view. Note that the disassembly at the
patched addresses no longer matches the source.

For C++, you can select the following symbols in the Source window:

• Function symbols

• Global variables (which can be edited in the Variable window)

• Global class objects (which can be edited in the Variable window as
structs)

• Local variables and class objects

You cannot select class.memberFunction type objects.

The scope-resolution operator(::) is interpreted as a token separator,
not recognized as part of a symbolic address.

Scrolling Trace With Source

You can link the Source and Trace window displays. When the
windows are linked, you can scroll through the Trace window and view
the corresponding code scrolling synchronously in the Source window.
To link the Source window to the Trace window:

1. In the Trace window, open the View menu and choose Instruction.

2. Re-open the View menu and choose Linked Cursor.

49 Debugging in Source and Stack

Examining and Editing Variables

You can examine and edit global, static, and local variables in the
Variable window by either:

• In the Source window, double-click on the name of the variable you
want to view. In the pop-up menu, choose Inspect Variable. The
following figure shows a Variable pop-up menu.

Im Variable: MsgTx
Inspect Variable
Set Eerm. Breakpoint

• In any SLD window, open the Windows menu and choose
Variable. (In the CPU window, where there is no Windows menu,
use the Options menu.) In the Variable window, open the Variable
menu, choose Add, and enter the name of the variable you want to
view. Specify a fully qualified symbol name, as described in the
section on symbolic addresses in the "Debugging with Triggers and
Trace" chapter.

For local variables outside of the current stack context, the value
unknown is displayed.

To select a variable or its value, click on it. Yellow indicates that you
have selected the variable or its value. Unless currently selected
(yellow), variable symbolic information appears in the following colors:

Red indicates an editable value. Integer variables can be edited
in hexadecimal or decimal, floating point variables in
floating point format, and characters in their hexadecimal
ASCII equivalent. To edit a value, either double-click on
the value; or single-click on the value, open the Edit menu,
and choose Edit. Press <Enter> to end editing.

Blue indicates a pointer variable you can dereference by double
clicking. For example, DS:OOOE is the address of the
variable pointed to by cellPtr:

Debugging in Source and Stack

CELL_ TYPE *printall#cellPtr = DS:OOOE

To dereference a pointer, either double click on the pointer
name or open the View menu and choose Show. A new
entry is added to the Variable window showing the variable
that was pointed to. For example:

CELL_ TYPE printall#*cellPtr{
struct LINKS *next= DS:0014;

50 SW User's Manual

char *StringPtr = DS:OOOO;
short int length = 2 = 2;}

Magenta indicates a non-pointer variable. For enum type variables,
the enumerated name follows the hexadecimal value. For
example:

enum color c = Ox2 = lavender

To remove a variable from the display, in the Variable window click on
the variable name; then either open the Variable menu and choose
Delete or press the <Delete> key. (This does not delete the variable
from your program, only from the current variable inspection list.) To
retrieve the variable to the display, open the Variable menu and choose
Undelete.

You can also examine program symbolic information using the Shell
AddressOf, NameOf, ConfigSymbols, DisplaySymbols, GetBase,
SetBase, and RemoveSymbols commands.

Viewing and Modifying the Stack

SLD User's Manual

The Stack window contains a stack list pane, a variables list pane, and a
stack meter. (You can also list the stack information in the Shell
window using Stacklnfo and DisplayStack commands.) The
following figure shows a sample Stack window.

file Qptions Windows !:felp

Stack Return 36. 7%
OOOEF2 000874 main(...)

Parameters & Local Uariables
char *mainBHsgTx = OxFFFFFFFF; •

+
• +

51 Debugging in Source and Stack

Configuring the Stack Window

Once a program has executed into one or more functions, the stack list
contains frames representing the nested calls. Frame information can
include the stack and return addresses of the functions, the function
names, and the parameters and local variables associated with the
function calls. The top frame represents the function currently in scope.

When symbolic information is available for a function, you can display
the parameters and local variables in the variables list pane by selecting
the frame in the stack list pane. Variables appear in the same format as
in the Variable window.

Stack usage is described by the stack meter. The percent of stack area
currently in use is shown in blue. Yellow indicates stack underflow.
Purple indicates stack overflow. The following figure shows the Stack
window Options menu.

b!li llJ.UI

.Stack Area ...
Alarm Limit ...

.,/Include Stack Address

.,/Include Return .Code Address

.,/Enable !!igh-Water Mark

.,/Enable Alarm Limit

!nspect Source

You can configure the stack list to display stack and return addresses
for each frame. Open the Options menu and toggle Include Stack
Address and Include Return Code Address. The stack address is the
address of the frame on the stack. The code address is the return
address to the calling function in memory. Frames for functions with
no symbolic information show addresses only, without function names.

To view the source of a function on the stack, select the frame; open the
Options menu and choose Inspect Source. The Source window changes
to show the function.

You can configure the stack meter to show the highest level the stack
has reached since initialization (the high-water mark). The high-water
mark is an arrow on the left side of the stack meter. Open the Options
menu and toggle Enable High-Water Mark; or enter
EnableHighWaterMark or DisableHighWaterMark on the Shell
command line.

You can set an alarm on the stack meter to notify you when stack usage
exceeds a percentage of the stack area. If the alarm limit is exceeded

Debugging in Source and Stack 52 SW User's Manual

Monitor multiple
stacks

SW User's Manual

when emulation halts, a warning message appears. Open the Options
menu, choose Alarm Limit, and specify a percent value from 1 to 100.
Then, open the Options menu again and toggle Enable Alarm Limit on.
Alternatively, in the Shell window you can set an alarm limit and
enable or disable the alarm message with SetStackAlarm,
EnableAlarmLimit, and DisableAlarmLimit commands. The alarm
limit is marked as a red line across the stack meter.

The alarm message does not appear until emulation halts. During
emulation, the stack can exceed the alarm limit without displaying the
warning message. To monitor the amount of memory used by the stack
while emulation continues, emulate by stepping continuously. In the
Source window, open the Run menu and choose Step Over
Continuously or Step Into Continuously.

When emulation halts, the stack information is updated with:

• the current function and variable information

• the percentage of the stack in use

• the High-Water Mark, if enabled

• the alarm, if enabled

If, after emulation halts, the stack area is discovered to be invalid, some
Stack window features are invalidated and grayed-out in the menus.
For example, the alarm, high-water mark, and stack meter become
unavailable.

For system using multiple stacks, you can track the stack in use at any
given time. Create Shell aliases to define the base and size of each
stack. For example:

alias "s1" "SetStackArea 4000 100";
alias "s2" "SetStackArea 3000 100";

When emulation halts, switch to the current stack area by entering one
of the aliases on the Shell command line.

Setting the Stack Base Address and Size

The stack base address and the stack size are typically put into the
loadfile by your compiler. Otherwise, the emulator looks for a default
stack base address in the powerpak.ini file. If powerpak.ini also
specifies no base address, the current stack pointer value is used. If the
stack size is undefined, the size defaults to 4K bytes.

To discover the current stack base and size, either enter Stacklnfo on
the Shell command line, or in the Stack windowopen the Options menu
and choose Stack Area. The values in the dialog box describe the

53 Debugging in Source and Stack

current stack allocation. The following figure shows a Stack Area
dialog box.

Stack Area

Base Address:

Number of Bytes:

i 1 so4

OK I tancel tlelp

If you edit these values, ensure the Base Address matches the CPU
stack pointer initialized by your startup code and the Number of Bytes
matches the stack size allocated for your target. Choose OK to set the
stack base and size to new values, or Cancel to close the Stack Area
dialog box without changing the stack area.

You can also change the stack area by a SetStackArea Shell command
or by SetStackBase and SetStackSize Shell commands.

Determine how large a SLD can help you determine the minimum amount of memory to
stack area to allocate allocate for the stack. To discover the amount of memory used by the

stack:

1. Open the Options menu and choose Enable High-Water Mark.

2. Execute your program for maximum code coverage.

3. Halt execution.

4. Note the high-water mark (maximum stack usage as a percentage
of the allocated stack area) on the stack meter.

5. Increase or decrease the amount of memory allocated for the stack,
allowing enough memory to accommodate the maximum stack
usage without waste.

Debugging in Source and Stack 54 SW User's Manual

Debugging in Registers and Memory
This chapter describes how to access the CPU registers, the peripheral registers, and
memory.

Viewing and Modifying the CPU Registers

SW User's Manual

You can view and change CPU registers and control signals from the
CPU window, the Toolbar, the Source window, and the Shell command
line.

To open the CPU window, on the Toolbar choose the CPU button, or in
any SLD window open the Windows menu and choose CPU. The
following figure shows CPU windows for the Motorola 68332 and
Intel386EX processors:

Qptions
SR 2704 +

OS7xn2uc
PC 00000470
DO 00000020
D1 00000020
D2 00000000
D3 FFFFFFFF
D4 FFFFFFFF
D5 FFFFFFFF
D6 FFFFFFFF
D7 FFFFFFFF
flO OOFFFDOO
fl1 OOFFFDOO
fl2 OOOOODFE
fl3 OOOOODDE
fl4 FFFFFFFF
fl5 FFFFFFFF
fl6 00000000
fl7 OOOOOEEE

USP 499F03C2
SSP OOOOOEEE
SFC 5
DFC 5
UDR 00000000

+

55

Qptions
EFLflGS 00000002 +

urn Oodi tszapc
EIP FFFFE3E4
EflX 00000080
EDX 00000000
ECX 00000000
EDX 00000000
EDP 000005E 0
ESP 000005E 0
EDI 00000000
ESI 00000000
cs 0018
DS 0026
ES 0026
FS 0026
GS 0020
SS 0020

GDTDflSE FFFFEOOO
GDTLI MIT 003F

GDTflR FFFFE 000
IDTDflSE 000005EO

IDTLIMIT OOFF
IDTflR FFFFFFFF

LDTR 0000
LDTDflSE 00000000

LDTLIMIT FFFF
LDTflR FFFF7FFF +

Debugging in Registers and Memory

The CPU window is updated when emulation halts. A highlight
indicates a register value has changed. Selecting a register also
highlights it.

Editing the CPU Registers

To edit a CPU register, you can either:

• In the CPU window, double-click on the register, or select the
register and press <Enter>. Enter the new value in the dialog box.

• Enter a Register command on the Shell command line.

Resetting the CPU Registers

When you reset and reinitialize the processor:

• The processor RESET pin is asserted.

• The program counter and stack pointer are read from memory.

• All SLD windows are updated. The Stack window display is
invalid because the stack is reset. The Source window displays the
beginning of your startup code, at the program counter.

You can reset the processor from the Toolbar' s Configure menu, from
the Source window's Run menu, from the CPU window's Options
menu, or by entering Reset on the Shell command line.

If the reset fails:

1. Open the Toolbar' s Configure menu or the CPU window's Options
menu and choose Reset CPU Only; or enter Reset CPUonly on
the Shell command line. This resets the processor without
updating the SLD windows.

2. Reset your target.

3. Reset the processor again, without specifying CPU only, to update
the SLD windows.

Enabling the Target Signals
Enabling a signal uses that signal from your target system rather than
from the emulator. To enable or disable the target signals, in the CPU
window open the Options menu, choose Signals, and individually
toggle each signal. The signals valid for your microprocessor are
shown. The following figure shows the signals for an Intel386EX
processor and for a Motorola 68332 processor.

Debugging in Registers and Memory 56 SW User's Manual

Ri;_set
Reset CPU Qnly

../ Rf_ADY# Enable

Windows .,/BESET Enable
1--------1../ !:!OLD Enable _!;_lock Enable

Help Index .,; NMI Enable Windows .,/Beset Enable

!::!elp With Help .,; INT0_3 Enable
Help Index
!::!elp With Help
Help With !;_PU

Help With !;_PU .,; INI 4_ 7 Enable

E~it .,/NB# Enable
.,/~Ml# Enable
../ !;_oprocess Enable E~it

For a list of the signals available for your processor, see the Signal
command description in the "Shell Window Reference" chapter.

Disabling a signal disconnects it from the target and puts it under the
emulator's control. For example, the emulator drives the Intel signals
as:

READY# asserted

RESET negated

NMI negated

INTO-INT3 (Intel386 EX processor) negated

INT4-INT7 (Intel386 EX processor) negated

NA# negated

SMI# (Intel386 ex and EX processors) negated

HOLD negated

INTR negated

A20M# (Intel386 ex processor) negated

ERROR#, PEREQ, BUSY# (coprocessor) negated

You can also enable and disable signals with the Shell Signal
command.

Viewing and Modifying Memory

SLD User's Manual

You can view and edit memory from the Memory window and by
entering Dump, Write, Fill, Copy, and Search Shell commands.

Because reading and writing memory takes a small amount of processor
time, memory access is initially disabled during emulation. Such access
includes scrolling and refreshing the Memory and Peripheral windows
and reading and writing memory from the Memory, Peripheral, and

57 Debugging in Registers and Memory

Shell windows. You can enable memory to be accessible during
emulation; however, any such access can degrade your program
execution. Before starting emulation, either:

• On the Toolbar open the Configure menu and check Run Access.

• Enter RunAccess ON on the Shell command line.

Changing the Memory Window Display
You can view memory as disassembly, hexadecimal, or decimal values.
Open the View menu and choose the desired format. Up to 20 Memory
windows with independent displays can be active simultaneously.

The following figure shows a sample Intel386 processor Memory
window. This is the first-opened of the currently active Memory
windows, as indicated by Memory 0 in the title bar. The View menu is
open with disassembly format chosen .

.Eile fdit Windows tlelp

0000:00 0
0000: 02 00.--------1
0000:04 0
0000:06 0
0000:08 3
0000: 09 0 Decimal B)lles
oooo: OB 0 Decimal W.Q.rds
OOOO:OD 9
0000 : OE 0J-_D_e_ci_m_a_I _D_W_o_rd_?.--1
0000:10 F
0000:12 E
0000:14 0
0000:18 F
0000:19 F_J--------1
0000:18 0
0000:1D 9

Refresh Display

[BX+Sl],AL
[BX+SI],AL
[BX+Sl],AL
[BX+Sl],AL

[BX+SI],AL
[BX+SI],AL
DX,AX
[BX+SI],AL
WORD PTR [BX+SI]
SHORT 0019
[BP+SI+OOOO],DL
FF
WORD PTR [BX+SI]
[BX+SI],AL

+

..
•

When memory is displayed as disassembly, you can specify whether the
disassembly uses your code symbols or the numeric addresses. On the
Toolbar, open the Configure menu and toggle Symbolic Disassembly.

In a numeric view, memory is displayed as hexadecimal or decimal
bytes, words, or double words followed by the ASCil equivalent, with
periods representing non-printable characters. The following figure
shows a sample Intel emulator Memory window displaying
hexadecimal words. The address formats (in the left column) are
different for Motorola emulators.

Debugging in Registers and Memory 58 SW User's Manual

SLD User's Manual

Eile J;;dit "Liew Qptions
DS:OOOO BB~3 CD5B BE2D F200 BB39 7A3A C47B 33FC '»[i-%.b9.:z{ •
DS:0010 F9FB BFEE 8790 5FA4 5FD5 E9F6 FCC3 8DFD uuii•·~_o_oe
DS: 002 0 71BF FEBB E332 9940 AF77 FFBF 67FF 37BF lq»ji2al!!l!JJ ;,JT
DS:0030 FFFF FFEA FEB5 9AA5 CB6E DEEE BBBF FF33 yyeyµji¥1~Ei~·

To view another area of memory, double-click in the address column of
the Memory window; or open the Edit menu and choose Go To
Address. Enter a numeric or symbolic address in the Go To Address
dialog box. Any symbol you enter must have a fixed address, i.e., not a
local variable or a stack-resident parameter.

If you are unsure of a symbol name or an address, you can research it
from the Shell command line:

DisplaySymbols lists module, variable, and function names with line
number and address information.

AddressOf lists the address of a specified symbol.

NameOf lists the symbol closest to a specified address.

You can speed-up scrolling in the Memory window by enabling the
Memory window cache. Open the Options menu and choose Read
Ahead. When the Memory window cache is enabled near a non
existent memory region, the read ahead can cause a memory access
failure.

Changing the Memory Contents

To change memory, you can:

• Edit the hexadecimal, decimal, or ASCII values in the Memory
window. Position the cursor (a vertical bar) with the mouse, then
overtype the memory display.

• Assemble code and data into memory using the Single-line
Assembler dialog box in the Memory window.

• On the Shell command line, enter AsmAddr and Asm commands
or Write, Fill, or Copy commands.

The following figure shows a sample Single-line Assembler dialog box
for a Motorola emulator. The addresses, assembler syntax, Space, and
Operand/ Address Size options have different values for Intel processors.

59 Debugging in Registers and Memory

Single-Line Assembly

.S.ource Line: 00001 A

DC.W 0000

Spac_e.: Onernnd/Address Size:

lsd Iii

I t_ancel I Assem I) S.!:;ip I I tlelp

To close the dialog box without assembling anything, choose Cancel.
Once you have assembled a line, the Cancel button changes to a Close
button.

To change a line in the Memory window:

1. In the Memory window, open the View menu and choose
Disassembly, displaying disassembled lines of code.

2. On the line you want to change, anywhere except in the address
column, double-click. The Source Line field in the Single-line
Assembler dialog box shows the address and initial value of the
line to be changed.

3. Type a line of assembly code in the dialog box.

4. Select the space (user or SMM for Intel processors; SP, SD, UP, or
UD for Motorola processors) and the operand/address size.

5. Choose Assem to write the code to memory and update the Memory
window. The Single-line Assembler checks your assembly syntax;
any error is reported and the erroneous line is not written.

6. Repeat steps 3 through 5 to assemble subsequent lines. Choose
Skip to leave a line unchanged.

7. Choose Close to close the dialog box.

When the Memory window shows any view other than disassembly, you
can edit the numeric and ASCII values. Position the cursor on the first
value you want to change and type the new value. A value must fall
within the range of the displayed radix. For example, in decimal byte
radix the maximum value in a field is 255; if you try to replace 199
with 299, it is truncated to 200. An illegal entry causes a beep:

• Non-numeric values in Decimal display

• Non-hexadecimal values in Hexadecimal display

Debugging in Registers and Memory 60 SW User's Manual

When more than one Memory window display the same area of
memory, changes to that memory are reflected in all such Memory
windows.

The size of values displayed in the Memory window does not affect how
memory is accessed. Memory access is set by the Size command or the
Options menu, not by the View menu. For example, if Size=byte,
memory accesses are byte-sized even when the Memory window display
is Hex Words. The following figure shows the Options menu.

Windows
../ I!yte Access

Word Access
])_Word Access

.,/Write '{erify

Bead Ahead

R~read On Write

Viewing and Modifying the Internal Peripheral Registers

SW User's Manual

You can view and modify the internal registers for each peripheral from
the Peripheral window or from the Shell command line with a Register
command. Note that your processor may require setup before some
peripheral registers are accessible. See your Intel or Motorola processor
documentation.

To open the Peripheral window, either open an SLD window Windows
menu and choose Peripheral, or on the Toolbar choose the Periph
button.

To display a specific peripheral group, register, or address in the
Peripheral window, open the Edit menu and choose Go To Peripheral,
Go To Register, or Go To Address, respectively.

The Intel processor registers have addresses in 1/0 space. In the Shell
window, you can display such a register with a Dump 10 command.

Because reading and writing memory takes a small amount of processor
time, memory access is initially disabled during emulation. Such access
includes scrolling and refreshing the Memory and Peripheral windows
and reading and writing memory from the Memory, Peripheral, and
Shell windows. You can enable memory to be accessible during
emulation; however, any such access can degrade your program
execution. Before starting emulation, either:

61 Debugging in Registers and Memory

• On the Toolbar open the Configure menu and check Run Access.

• On the Shell command line, enter RunAccess ON.

Changing the Peripheral Window Display

Registers are displayed hierarchically. At the top level are the
peripheral mnemonics; then the registers for each peripheral; then the
bit fields for each register. You can expand or compress each level.
When the Peripheral window display is fully compressed, only the
peripherals appear. The columns in the Peripheral window are:

• A(+) symbol

• The peripheral mnemonic

The following figure shows the compressed display of peripherals for an
Intel386EX processor and for a Motorola 68332 processor.

• ·WJJm · .,.l ... J
Eile J;dit Y:iew Windows t!_elp J
n•O:m
(-t) MST
[-t) TMR
(-t) SLV
(-t) COM1
(-t) COM2
(-t) PORT92
(-t) CSU
(-t) SSIO
(-t) RFSH
(-t) WOT
[-tJ CLK
(-t) CCR
(-tJ PIO

D• a --
Expand a peripheral by clicking on the(+). The(+) changes to a(-)
indicating the peripheral is expanded and a list of the peripheral' s
registers appears. Registers marked with(+) can be further expanded;
to show a register's bit fields, click on the(+).

The register and bit field display columns are:

• A(+) or(-) symbol

• The register address; or, for a bit field, the bit number

• The field value

• The register or field mnemonic

• A description of the register or field

Debugging in Registers and Memory 62 SW User's Manual

Click on the (-) to recompress the register or peripheral display.

To display all peripherals and registers in expanded format, open the
View menu and choose Expand All. The following figure shows a
View menu.

~ompress All

Refresh Display

The following figure shows part of the expanded display for the
Motorola 68332 peripheral registers.

file .E_dit :>{iew ~indows .!:!elp

(-) FFFAOO
15:
14:
13:
11:
9:
7:
6:
3:

(+) FFFA04
[+) FFFA07

FFFA11
FFFA15

+J.

SW User's Manual

60CF
0
1
1
0
0
1
1
F

3F08
80
FF
00

MCR
EXOFF
FRZSW
FRZBM
SLVEN
SHEN
SUPV
MM
IARB
SYN CR
RSR
PORTE
DORE

SIM Module Configuration Register
CLKOUT driven from internal source
SW watchdog and counters disabled during FREEZE
Bus Monitor disabled during FREEZE
Slave mode not used with emulator
Show cycles disabled, arbitration enabled
Register access restricted to supervisor
Modules addressed FFFOOO - FFFFFF
Interrupt value from F[highest priority] to 1 (lowest priority)
Clock Synthesizer Control Register
Reset Status Register
Port E Data Register

+

Port E Data Direction Register +
+

To navigate in the Peripheral window, open the Edit menu, choose one
of the Go To ... items, and enter the peripheral or register name or
address in the dialog box. The following figure shows an Edit menu.

I - . .,... A

:!{iew Windows !::felp

Register ..•

Go To feripheral •..

Go To Register •••

Go To Address .•.

Changing the Peripheral Register Values

Double-click anywhere on a register line; or select the register, open the
Edit menu, and choose Register. You can edit the register value or the
individual register fields in the Register Edit dialog box. In the Shell
window, you can use a Register command or Write, Copy, or Fill (for
Intel, Write 10, Copy 10, or Fill 10) command to write to the register.

63 Debugging in Registers and Memory

The following figure shows a sample Register Edit dialog box. This is
the edit box for the Motorola 68332 CCR peripheral SIOCFG register.
The register field values and descriptions are different for each register,
although the layout and operation of the dialog box is consistent across
registers and across processors.

CCR SIOCFG - Serial 1/0 Interconnect Register

Begister Value: l~amD_1 ____ _

fields:
1 M SIOl modem si nals are connected to in muxes

SOM SIOO modem signals are connected to pin muxes
reserve reserved bits 5:2
SSBSRC internal PSCLK clock is connected to SSIO BCLKIN
Sl BSRC COMCLK (pin] is connected to SI01 BCLKIN
SOBSRC COMCLK (pin] is connected to SIOO BCLKIN

Field Value: 7: SI01 Modem Signal Connections
~f o_x_o __ ~~- SI01 modem signals are connected to pin muxes

't[rite 11 ~lose I I « erev 11 Next » I I !:!elp

Debugging in Registers and Memory 64 SW User's Manual

Debugging With Triggers and Trace
Use events to define triggers for controlling emulation and collecting trace. Search the trace
buffers for specific events to reconstruct your program activity.

An event is a combination of addresses, data, and signals occurring during emulation.

A trigger uses an event as a catalyst or condition for an action. When an event specified in a
trigger occurs, the associated action is peiformed.

An action can control trace, emulation, and subsequent triggering.

Address Formats

SW User's Manual

This section describes the symbolic and numeric address formats you
need to know for defining events and interpreting trace information.

Symbolic Addresses

Symbols, interpreted as a symbolic segment:offset, are virtual
addresses. You can specify a symbolic reference in a command, dialog
box, or expression. You can simplify access to program symbols by
taking advantage of the way symbol names are resolved by the
emulator. For example, when looking up a symbol in the current
module, you need not specify the module and function.

A symbol table contains the names of all modules, functions, variables,
and line numbers that were compiled into the loadfile. The loader reads
information about the program symbols, including the line numbers,
from the loadfile to create the symbol table.

The symbol information is hierarchical, with each symbol represented
as a range of addresses:

At the top of the hierarchy are modules, public labels, and public
variables.

Modules

Functions

contain functions, static variables, and line and
column numbers.

contain parameters, local variables, static variables,
line numbers, and blocks.

65 Debugging With Triggers and Trace

One-name smbols

Blocks are handled as if they were unnamed functions.
Nested blocks can also contain local and static
variables defined in their scope.

Using this symbol hierarchy, you can uniquely specify a symbol. A
fully qualified symbol has one, two, or three names (a name can be a
number) beginning with #. If a symbol is not fully qualified, it defaults
to the current module and function, that is, the scope of the current
program counter.

The rules for symbol look-up are:

1. Attempt to match the symbol at the lowest level of the hierarchy.

2. If a match is not found, attempt to match the symbol at the next
outer level.

3. If no match is found, attempt to match the symbol at the global
level.

4. If no match is found, the symbol name does not exist and a symbol
not-found error is returned.

To find symbolic variables with one name:

• If the module and function are defined by the context, look up the
name as a variable within the scope of the function.

• If the module is defined by the current context but the function is
not defined by the context (e.g., you have stepped from the module
into a called assembly routine), look up the name within the scope
of the module.

• If no module or function is defined by the current context, look up
the name as a module, or look up the name as public variable or
label.

• If the name is a number, look up the number as a module name or a
line number within the current module.

#module1

#function1

#variable1

#55

Returns the beginning address of module1.

Is the function in the current module? If so, its address
is returned. If not, the function must be in the global
table (all functions are in the global table unless they
are prefixed by static.)

Is the variable in the current program? The variable
can be inside a nested block, function, module, or it can
be a global or public variable.

Looks up the starting address of line 55 in the current
module.

Debugging With Triggers and Trace 66 SW User's Manual

Two-name smbols

Three-name smbols

SW User's Manual

To find symbolic variables with two names:

• If a module is defined by the current context, look up the first name
as a function contained within the module. If a module context
does not exist, first look up the first name as a module, then look it
up as a global function.

• If the module and function are defined by the context, look up the
second name as a variable within the scope of the function.

• If the module is defined by the current context but the function is
not defined by the current context, look up the second name as a
variable within the scope of the module.

• If no module or function are defined by the current context, look up
the second name as public variable or label.

• If the first name is a number, look up the first name as a module
name or a line number within the current module. If the second
name is a number, look up the second name as a line number if the
first name is a module or function, otherwise as a column number.

#55#15 Look up the address in the current module on line
55, column 15.

#module1#100 Address of line 100 in module1.

#module1 #func1 Address of func1 in module1.

#module1#var1 Address of static var1 in module1.

#func1 #var1 Is func1 in the current module? If not, is func1
global? Then, find var1 in scope of func1.

To find symbolic variables with three names:

• The first name is always a module. The second and third can be
line and column numbers. If the second and third are not line and
column numbers, then the second is a function within the module
and the third is a variable or line number within the function scope.

• If the third name is a variable it is first looked up within the
module/function context. If not found, it is looked up as a global
variable or label. This symbol's address is returned even if that
symbol is not in the scope of the entered module.

#mod 1 #25#1 Address of start of code column 1, line 25
of module mod 1 .

#mod1#func1#100

#module 1 #func1 #var1

67

Address of line 100 in module1.

Address ofvar1 in func1 in module1.

Debugging With Triggers and Trace

Line Numbers

To display line numbers in the Source window, open the View menu
and check Line Number. In the Shell window, you can list all line
number records for the current module with displaySymbols lines.

Some line numbers are comment lines and have no compiled code.

Intel Numeric Addresses

The Intel386 processors operate in different processor modes (pmodes):
real, virtual-86 (V86), protected, and (for the CX and EX) System
Management Mode (SMM). Protected mode is further divided into 16-
bit and 32-bit modes.

These processors have a segmented architecture, i.e. addresses consist
of a segment and an offset. The segment determines the base address of
an addressable region, and the offset is added to that base to arrive at
the final linear address. In some modes, the linear address may be
further processed by the paging unit to construct the physical address
seen on the processor pins.

The segment registers consist of a 16-bit user-visible register (CS, DS,
ES, FS, GS, or SS) and 3 hidden components (the segment base, limit,
and access rights). The pmode affects how the processor loads the
hidden portion of the segment registers.

When the 16-bit visible segment register is loaded by the user program,
the processor automatically loads the hidden portion based on rules
determined by the pmode. In real and V86 mode, the base is the
segment multiplied by 16, the limit is always 64K bytes, and the access
rights allow execution, read, and write. In protected mode, the base,
limit and access rights are extracted from the segment descriptor
indicated by the segment register value. The descriptor is an 8-byte
data structure in one of two arrays called the global descriptor table
(GDT) and local descriptor table (LDT). Bit 2 of the segment register
selects which table is used. In SMM, the base and access rights are as
in real mode, but the limit is always 4 gigabytes (4G bytes).

Pmode also affects whether the paging unit can be used. In real and
SMM modes, the paging unit is not used, so the physical address is
always the same as the linear address. In V86 and protected modes,
paging is active if the PG bit in the CRO register is set.

Finally, pmode affects the processor instruction set. The Intel386
processor has two sets of addressing modes: 16-bit and 32-bit; and two
default data sizes: 16-bit and 32-bit. The default address and data sizes

Debugging With Triggers and Trace 68 SW User's Manual

SW User's Manual

are determined by the pmode and the D bit in the code segment
descriptor.

In real, V86, and SMM modes, 16-bit is the default. In protected mode,
the D bit determines the default address size (the difference between 16-
bit and 32-bit protected modes). An address size override prefix byte
can be added to any instruction to switch to the opposite (non-default)
address size, so even in real mode the 32-bit addressing modes can be
used. Similarly, a data size override can be used to select the opposite
data size. Thus, even in real mode, a program can directly use 32-bit
data quantities.

For example, the instruction 89 00 is:

addr size data size instruction

16 16 mov [bx+si],ax

32

16

32

16

32

32

mov [eax],ax

mov [bx+si],eax

mov [eax],eax

Specify numeric addresses as:

Format Address Type

<offset>L Linear Address

<Offset>P Physical Address

[(#module)]#symbol Symbolic segment:offset interpreted
as a virtual address

<ldt>:<segment>:<offset Virtual address with specified LDT
>

<segment>:<offset>

<offset>

Virtual address using current LDT

Virtual address assuming current LDT
andDS

To find the linear or physical equivalent of an address, use an Xlt Shell
command.

The emulator checks address limits:

Type Pmode Processor Limits

Virtual SMM all 0:0 to FFFF:FFFFFFFF

Real all 0:0 to FFFF:FFFF

Virtual-86 all 0:0 to FFFF:FFFF

Protect16, 32 all selector ::;; table limit; offset
within segment limit

69 Debugging With Triggers and Trace

Events

Linear

Physical

all

all

all

all

all

all

386DX

386SX

386CX

386EX

0 to FFFFFFFF

0 to FFFFFFFF

OtoFFFFFF

Oto 3FFFFFF

Oto 3FFFFFF

An event definition is used:

• In a trigger, to control emulation and trace collection. When the
event occurs, the emulator performs the specified actions.

• To find specific activity recorded in trace. In a trace buffer, search
for a named event.

An event is a combination of:

Addresses

Data

Reading or writing to a specific address, set of
addresses, inside an address range, or "not" the
described addresses. You can specify symbolic or
numeric addresses.

Reading or writing a specific value, set of values,
range of values, or "not" the described values. You
can specify symbolic or numeric data.

Signals High or low logic levels on various processor signals.
You can also specify don't-care for signals.

Define an event in the Event edit box, also called the Event window.
Editing the Event edit box differs from editing a dialog box. The
<Enter> key has no effect on the field that you are editing. To ensure a
field accepts an entry, move the cursor by clicking on another field or
button. Pressing the <Delete> key to delete a highlighted value has no
effect; press the space-bar instead.

You can open the Event edit box from the Trigger or Trace window, by
opening the Edit menu and choosing Events, or from the Windows
menu of any SLD window.

If no events are defined, the Add Event dialog box appears. Otherwise,
to add a new event, in the Event edit box open the Edit menu, choose
Add Event, and enter the new Event name. The following figure shows
an Add Event dialog box.

Debugging With Triggers and Trace 70 SLD User's Manual

SW User's Manual

Add Event

Name:

levl

.QK !;.ancel .t!.elp

The following figure shows the Event edit box for a Motorola 68332
processor. The available signals differ for different processors and, for
Motorola processors, can vary according to the chip select register
configurations.

file .!;_dit Windows J:!.elp

Active Event: lev1 II
not start ®End Addr 0 Length mask

addr: D l JI 11

start end mask
data: D l J l JI

0 1 x 0 1 x 0 1 x 0 1 x 0 1 x
0 0 ® as- 0 0 ® reset- 0 0 ® irq7- 0 0 ® miso 0 0 ® t8
0 0 ® ds- 0 0 ® berr- 0 0 ® peso- 0 0 ® tO 0 0 ® t9
0 0 ® rfw- 0 0 ® halt- 0 0 ® pcs1- 0 0 ® t1 0 0 ®no
0 0 ® sizO 0 0 ® irq1- 0 0 ® pcs2- 0 0 ® t2 0 0 ® t11
0 0 ® siz1 0 0 ® irq2- 0 0 ® pcs3- 0 0 ® t3 0 0 ® t12
0 0 ® dsackO- 0 0 ® irq3- 0 0 ® sck 0 0 ® t4 0 0 ® t13
0 0 ® dsack1- 0 0 ® irq4- 0 0 ® rxd 0 0 ® t5 0 0 ® t14
0 0 ® avec- 0 0 ® irq5- 0 0 ® txd 0 0 ® t6 0 0 ® t15
0 0 ® rmc- 0 0 ® irq6- 0 0 ® mosi 0 0 ® t7

To define the address of an event: (If you don't care what addresses are
accessed, leave all the Addr fields blank.)

1. Enter a symbolic or hexadecimal numeric address in the Addr Start
field. This is the first address in the region where the event can
occur.

2. Select End Addr or Length. Enter either the last address in the
memory region where the event can occur, or the length in bytes of
the region.

If you are unsure of an address or address range, you can use the
Shell window AddressOf and NameOf commands or the Source
window Function pop-up menu. For example, with the following
information you can define an event relative to addresses occupied
by the Load_CmdBuf function or the MsgRx variable:

71 Debugging With Triggers and Trace

>nameof 680 II Find what function this address is in
II #332qsm#432#1 (function Load_CmdBuf+Ox30 (48))

>addressof #Load_CmdBuf
II 650 .. 685 II Address range occupied by the function

>nameof e?O II Find the closest symbol to this address
II #main#MsgRx+Ox8 [8]

>addressof #MsgRx
II E68 .. E87 (32] II Address range occupied by the variable

Another way to find the memory region of a function is via the
Function pop-up menu. In the Source window, double-click on the
function name and choose Show Load Address. The following
figure shows a Function pop-up menu and the Load Address
information box.

Ill Function: Unload_RxBuf
Eo To Source
.S.how Load Address
Set Eerm. Breakpoint
Set Iemp. Breakpoint
~lear Breakpoint

PowerPack SLD

Function Unload_RxBuf: Address
starts at: 000686..0006A5.

I [QK! I I tlelp I

3. Optinally, you can enter a binary-AND mask value. The mask
dictates which bits of the address are don't-care's (0) and which
must match (1).

4. To match only addresses outside of the range or set you specified,
check the Not box.

To define the data of an event: (If you don't care what data is read or
written, leave all the Data fields blank.)

1. Enter numeric values in the Data Start and Data End fields. The
emulator interprets the numbers as decimal unless you use the Ox
prefix. For example, 10 is translated to OxOOOA, and Ox10 is
accepted as OxOO 1 0.

2. Enter a binary-AND mask, using all 1 's to match the described
data exactly.

Debugging With Triggers and Trace 72 SLD User's Manual

Trace

SW User's Manual

3. To match only data outside of the range or set you specified, check
the Not box.

Specify signal states for the event by toggling the low (0), high (1) or
don't care (X) buttons next to each signal mnemonic. Active-low
signals are shown with a hash mark (#) for Intel emulators or minus
sign (-) for Motorola emulators. The signals available depend on the
target processor. For some Motorola processors, the signals available
can also depend on your chip select register configurations.

You can define events in one emulator session and save them for reuse
in another session. To save events to a file, in the Event window open
the File menu and choose Save Events As. To retrieve saved events,
choose Restore Events. Or, enter EventSave and EventRestore
commands on the Shell command line.

For Motorola emulation, you can specify the address space for an event
as UD, UP, SD, or SP. To make the space selection available in the
Event edit box, you must program the processor to output the three
function codes FCO, FC1, and FC2.

Trace is a record of the processor bus events occurring each clock cycle
during emulation. With the trace information, you can find specific
events and reconstruct a history of the executed instructions and the
resulting data transfers to and from the processor.

Controlling Trace Collection

You can interactively control trace collection with the Toolbar Start and
Stop buttons or automate trace collection with triggers based on events
in your program execution. The Status window or icon message shows
whether the emulator is tracing. You need not halt emulation to
examine the collected trace.

To configure trace collection, in the Trace window open the Trace
menu (in the Trigger window, open the Options menu); choose Trace
Control. The following figure shows a Trace Control dialog box.

73 Debugging With Triggers and Trace

Trace Control

D HAit When Last Trace Buffer Full

IIrigger Position

L @ere 0 Center

rNymber of Trace Buffers [x Size)

@l 1 [x256K) 0 B [x32K)

0 2 [x12BK) 0 16 [x16K]
0 4 [x64K) 0 32 [xBK]

I !;.ancel

In the Trace Control dialog box:

0 64 [x4K)
0 128 (x2K)
0 256 [xlK)

.!::!.elp

• Specify the number and sizes of trace buffers to be filled. With
multiple buffers, you can collect several sections of code execution.

• Locate where the triggering event occurs in the collected trace in
any buffer. Unless you halt emulation, trace .collection in the buffer
continues after the triggering event until the buffer is full.

Pre collects cycles before the trigger. The triggering event
appears near the end of the buffer.

Center collects cycles before and after the trigger. The triggering
event appears in the middle of the buffer.

Post collects cycles after the trigger. The triggering event
appears near the beginning of the buffer.

• When you are filling four or more trace buffers, you can halt
emulation when all the buffers are full. This operation overwrites
the first buffer with several cycles after the end of the last buffer.

Displaying the Collected Trace
To display a trace buffer, open the Trace window. Move between
multiple trace buffers by opening the Goto menu and choosing Previous
Buffer, Next Buffer, or Buffer.

Each time emulation halts or you turn trace off, the Trace window is
updated. The trace information includes:

• The timestamp of the clock cycle

• The values on the address and data pins during the clock cycle

• Various signal values at the time of the clock cycle

Debugging With Triggers and Trace 74 SW User's Manual

Read the abbreviated signal mnemonics vertically. The following
figure shows a Trace window. The available signals differ for different
processors and, for Motorola processors, can vary according to the chip
select register configurations.

Iii ii
Eile Edit 1,r'.iew Irace Timestamp .Goto ~indows !:!elp

ad r ss dd ar rbh iiiiiii pppp s rtmm tttt tttt tttt t~
timestamp address data ss w zz kk um sel rrrrrrr cccc c xxoi 0123 4567 8911 1

[+JI

01 01 cc trt 1234567 0123 k ddss 111 ~ ..
I-

I--

f-.-1
+

From the View menu, you can display trace as:

Clock mode

Bus mode

Instruction mode

processor pin states at each clock

processor bus cycle activity

disassembly of instructions executed by the
processor and memory accesses associated with
the executed instructions

You can link the Source and Trace window displays. When the
windows are linked, you can scroll through the Trace window and view
the corresponding code scrolling synchronously in the Source window.
To link the Source window to the Trace window:

1. In the Trace window, open the View menu and choose Instruction.

2. Re-open the View menu and choose Linked Cursor.

With Linked Cursor, you can view the history of executed source lines
in instruction mode. Linked Cursor is disabled in clock and bus modes.

Trace and Event Window Signals

SW User's Manual

The Trace and Event windows display signal name mnemonics
corresponding to the Intel or Motorola mnemonics, as listed
(alphabetically) in the tables in this section for each microprocessor.

You can configure some pins as secondary 1/0 signals. You must keep
track of how your signals are configured, since the Trace and Event
windows identify the signals only by their primary use.

In these tables, # (for example, ADS#) and - (for example, r/w-)
indicate active-low.

75 Debugging With Triggers and Trace

lntel386EX Signals

Trace Event

ads ADS#

bhe BHE#

bs8 BS8#

bsy BUSY#

cs6 CS6#

de DIC#

err ERROR#

in4 INT4

in5 INT5

in6 INT6

in7 INT7

mio M/IO#

na NA#

nmi NMI

p15 Pl.5

p16 Pl.6

p17 Pl.7

p20 - p24 P2.0 -
P2.4

p25 P2.5

p26 P2.6

p27 P2.7

p30 - p31 P3.0-
P3.1

p32 -p35 P3.2 - p3.5

p36 P3.6

p37 P3.7

per PEREQ

Debugging With Triggers and Trace 76

Signal

Address Status

Byte High Enable

Bus Size Control

Busy

Chip Select 6; Muxed with REFRESH#

Data/Control Status

Error

Interrupt Request 4; Muxed with
TMRCLKO

Interrupt Request 5: Muxed with
TMRGATEO

Interrupt Request 6; Muxed with
TMRCLKl

Interrupt Request 7; Muxed with
TMRGATEI

Memory/IO Status

Next Address

Non-maskable Interrupt Request

Port 1Pin5; Muxed with LOCK#

Port 1 Pin 6; Muxed with HOLD

Port 1 Pin 7; Muxed with HLDA

Port 2 Pins 0 - 4; Muxed with CSO# - CS4#

Port 2 Pin 5; Muxed with RXDO

Port 2 Pin 6; Muxed with TXDO

Port 2 Pin 7; Muxed with CTSO#

Port 3 Pins 0 - 1; Muxed with TMROUTO -
TMROUTl

Port 3 Pins 2 - 5; Muxed with INTO - INT3

Port 3 Pin 6; Muxed with PWRDOWN

Port 3 Pin 7; Muxed with COMCLK

Processor Extension Request

SW User's Manual

rdy READY# Ready

rst RESET Reset

sma SMIACT# System Management Interrupt Active

smi SMI# System Management Interrupt

wr W/R# Write/Read

lntel386CX Signals

Trace Event Signal

a20 A20M# Address 20 Mask

ads ADS# Address Status

bhe BHE# Byte High Enable

bsy BUSY# Busy

de DIC# Data/Control Status

err ERROR# Error

hla HLDA Hold Acknowledge

hld HOLD Hold Request

int INTR Interrupt Request

lck LOCK# Bus Lock

mio M/10# Memory/IO Status

na NA# Next Address

nmi NMI Non-maskable Interrupt Request

per PEREQ Processor Extension Request

rdy READY# Ready

rst RESET Reset

sma SMIACT# System Management Interrupt Active

smi SMI# System Management Interrupt

wr W/R# Write/Read

lntel386SX Signals

Trace Event Signal

ads ADS# Address Status

bhe BHE# Byte High Enable

bsy BUSY# Busy

SW User's Manual 77 Debugging With Triggers and Trace

de DIC# Data/Control Status

err ERROR# Error

hla HLDA Hold Acknowledge

hld HOLD Hold Request

int INTR Interrupt Request

lck LOCK# Bus Lock

mio M/IO# Memory/IO Status

na NA# Next Address

nmi NMI Non-maskable Interrupt Request

per PEREQ Processor Extension Request

rdy READY# Ready

rst RESET Reset

wr W/R# Write/Read

MC68332/333 Signals

Trace Event Signal

as as- AS# Address Strobe

ds ds- DS# Data Strobe

rw r/w- R/W# Read/Write

szO sizO SIZO Transfer Size

szl sizl SIZl Transfer Size

dkO dsackO- DSACKO# Data and Size Acknowledge

dkl dsackl- DSACKl# Data and Size Acknowledge

ave avec- A VEC# Autovector

rmc rmc- RMC# Read-Modify-Write Cycle

rst reset- RESET# Reset

ber berr- BERR# Bus Error

hit halt- HALT#Halt

irl irql- IRQl# Interrupt Request Level 1

ir2 irq2- IRQ2# Interrupt Request Level 2

ir3 irq3- IRQ3# Interrupt Request Level 3

ir4 irq4- IRQ4# Interrupt Request Level 4

Debugging With Triggers and Trace 78 SW User's Manual

SW User's Manual

ir5 irq5- IRQ5# Interrupt Request Level 5

ir6 irq6- IRQ6# Interrupt Request Level 6

ir7 irq7- IRQ7# Interrupt Request Level 7

pcO peso- PCSO#/SS QSPI Peripheral Chip Selects/Slave
Select

pcl pcsl- PCS 1 # QSPI Peripheral Chip Selects

pc2 pcs2- PCS2# QSPI Peripheral Chip Selects

pc3 pcs3- PCS3# QSPI Peripheral Chip Selects

sck sck SCK QSPI Serial Clock

rxd rxd RXD SCI Receive Data

txd txd TXD SCI Transmit Data

mos mosi MOSI Master-Out Slave-In

mis mi so MISO Master-In Slave-Out

tO to tO to t15 TP[O: 15] TPU Channel Input/Output
t15

You can program the SIM (system integration module) peripheral
CSP ARO (chip select pin assignment register 0) to make the following
signals also available. For an example, see the section on programming
the Motorola chip selects in the "Defining the Debug Environment"
chapter.

bgack

bg

br

portc.2

portc.1

portc.O

bgack

bg-

br-

portc2

port cl

portcO

Bus Grant Acknowledge

Bus Grant

Bus Request

User-configurable 1/0 Port 2

User-configurable 1/0 Port 1

User-configurable 1/0 Port 0

MC68331/MC68HC16Z1 Signals

Trace Event Signal

as as- AS# Address Strobe

ds ds- DS# Data Strobe

rw r/w- R/W# Read/Write

szO sizO SIZO Transfer Size

szl sizl SIZl Transfer Size

79 Debugging With Triggers and Trace

dkO dsackO- DSACKO# Data and Size Acknowledge

dkl dsackl- DSACKl# Data and Size Acknowledge

ave avec- A VEC# Autovector

rmc rmc- RMC# Read-Modify-Write Cycle (MC68331
only)

rst reset- RESET# Reset

ber berr- BERR# Bus Error

hit halt- HALT#Halt

irl irql- IRQl# Interrupt Request Level 1

ir2 irq2- IRQ2# Interrupt Request Level 2

ir3 irq3- IRQ3# Interrupt Request Level 3

ir4 irq4- IRQ4# Interrupt Request Level 4

ir5 irq5- IRQ5# Interrupt Request Level 5

ir6 irq6- IRQ6# Interrupt Request Level 6

ir7 irq7- IRQ7# Interrupt Request Level 7

pcO peso- PCSO#/SS QSPI Peripheral Chip Selects/Slave
Select

pcl pcsl- PCS 1 # QSPI Peripheral Chip Selects

pc2 pcs2- PCS2# QSPI Peripheral Chip Selects

pc3 pcs3- PCS3# QSPI Peripheral Chip Selects

sck sck SCK QSPI Serial Clock

rxd rxd RXD SCI Receive Data

txd txd TXD SCI Transmit Data

mos mosi MOSI Master-Out Slave-In

mis mi so MISO Master-In Slave-Out

icl icl ICI GPT Input Capture 1

ic2 ic2 IC2 GPT Input Capture 2

ic3 ic3 IC3 GPT Input Capture 3

ic4 ic4 IC4/0C5 GPT Input Capture 4 I Output Cmpr 5

ocl ocl OCI GPT Output Compare 1

oc2 oc2 OC2 GPT Output Compare 2

oc3 oc3 OC3 GPT Output Compare 3

oc4 oc4 OC4 GPT Output Compare 4

Debugging With Triggers and Trace 80 SW User's Manual

SW User's Manual

pai

pwa

pwb

pai

pwma

pwmb

PAI Pulse Accumulator Intpu

PWMA GPT Pulse Width Modulation A

PWMB GPT Pulse Width Modulation B

You can program the SIM (system integration module) peripheral
CSPARO (chip select pin assignment register 0) to make the following
signals also available. For an example, see the section on programming
Motorola chip selects in the "Defining the Debug Environment"
chapter.

bgack

bg

br

portc.2

portc.1

portc.O

bgack

bg-

br-

portc2

portcl

portcO

Bus Grant Acknowledge

Bus Grant

Bus Request

User-configurable I/O Port 2

User-configurable I/O Port 1

User-configurable I/O Port 0

MC68330 Signals

Trace Event Signal

as as- AS# Address Strobe

ds ds- DS# Data Strobe

rw r/w- R/W# Read/Write

uwe uwe- UWE# Upper Write Enable

lwe lwe- L WE# Lower Write Enable

szO sizO SIZO Transfer Size

szl sizl SIZl Transfer Size

dkO dsackO- DSACKO# Data and Size Acknowledge

dkl dsackl- DSACKl# Data and Size Acknowledge

ave avec- A VEC# Autovector

rmc rmc- RMC# Read-Modify-Write Cycle

rst reset- RESET# Reset

ber berr- BERR# Bus Error

hlt halt- HALT#Halt

irl irql- IRQl# Interrupt Request Level 1

ir2 irq2- IRQ2# Interrupt Request Level 2

81 Debugging With Triggers and Trace

ir3 irq3- IRQ3# Interrupt Request Level 3

ir4 irq4- IRQ4# Interrupt Request Level 4

ir5 irq5- IRQ5# Interrupt Request Level 5

ir6 irq6- IRQ6# Interrupt Request Level 6

ir7 irq7- IRQ7# Interrupt Request Level 7

MC68340 Signals

Trace Event Signal

as as- AS# Address Strobe

ds ds- DS# Data Strobe

rw r/w- R/W# Read/Write

szO sizO SIZO Transfer Size

szl sizl SIZl Transfer Size

dkO dsackO- DSACKO# Data and Size Acknowledge

dkl dsackl- DSACKl # Data and Size Acknowledge

ave avec- A VEC# Autovector

rmc rmc- RMC# Read-Modify-Write Cycle

rst reset- RESET# Reset

ber berr- BERR# Bus Error

hlt halt- HALT#Halt

fc3 fc3 Function Code 3

irl irql- IRQl# Interrupt Request Level 1

ir2 irq2- IRQ2# Interrupt Request Level 2

ir3 irq3- IRQ3# Interrupt Request Level 3

ir4 irq4- IRQ4# Interrupt Request Level 4

ir5 irq5- IRQ5# Interrupt Request Level 5

ir6 irq6- IRQ6# Interrupt Request Level 6

ir7 irq7- IRQ7# Interrupt Request Level 7

rxa rxda RxDA Receive Data Channel A

txa txda TxDA Transmit Data Channel A

rda rxrdya- RxRDYA Receiver Ready

tda txrdya- TxRDY A Transmitter Ready

Debugging With Triggers and Trace 82 SW User's Manual

rxb rxdb- RXDB Receive Data Channel B

txb txdb- TXDB Transmit Data Channel B

til tinl TINI Timer Input 1

tol tout I TOUTI Timer Out 1

tgl tgatel- TGATEI# Timer Gate 1

ti2 tin2 TIN2 Timer Input 2

to2 tout2 TOUT2 Timer Out 2

tg2 tgate2- TGATE2# Timer Gate 2

drl dreql- DREQI# DMA Request 1

dal dackl- DACK I# Data Acknowledge 1

dol done I- DONEi# Data Done 1

dr2 dreq2- DREQ2# DMA Request 2

da2 dack2- DACK2# Data Acknowledge 2

do2 done2- DONE2# Data Done 2

br br- BR# Bus Request

bg bg- BG# Bus Grant

bga bgack- BGACK# Bus Grant Acknowledge

MC68360 Signals

Trace Event Signal

as as- AS# Address Strobe

ds ds- DS# Data Strobe

rw r/w- R/W# Read/Write

szO sizO SIZO Transfer Size

szl sizl SIZl Transfer Size

dkO dsackO- DSACKO# Data and Size Acknowledge

dkl dsackl- DSACKI# Data and Size Acknowledge

rmc rmc- RMC# Read-Modify-Write Cycle

rsh reseth- RESETH# Hard Reset

rss resets- RESETS# Soft Reset

ber berr- BERR# Bus Error

hit halt- HALT#Halt

SLD User's Manual 83 Debugging With Triggers and Trace

fc3 fc3 FC3 Function Code 3

irl irql- IRQl# Interrupt Request Level 1

ir2 irq2- IRQ2# Interrupt Request Level 2

ir3 irq3- IRQ3# Interrupt Request Level 3

ir4 irq4- IRQ4# Interrupt Request Level 4

ir5 irq5- IRQ5# Interrupt Request Level 5

ir6 irq6- IRQ6# Interrupt Request Level 6

ir7 irq7- IRQ7# Interrupt Request Level 7

br br- BR# Bus Request

bg bg- BG# Bus Grant

bga bgack- BGACK# Bus Grant Acknowledge

Debugging With Triggers and Trace 84 SW User's Manual

Triggers

SW User's Manual

A trigger performs one or more actions when a condition occurs. The
condition can be a combination of events, timer or counter values, and
an active-low external signal. The action can be starting or stopping
trace, stopping emulation, starting or stopping a counter or timer, or
arming another trigger.

Defining a Trigger
To define a trigger, on the Toolbar select the Trigger button (in any
SLD Windows menu select Trigger). The Condition pane of the
Trigger window specifies the events, timer or counter values, or active
low external signal on which to trigger; the Actions pane describes the
emulation actions to be taken when the conditions are met.

To specify whether the trigger occurs on a bus or clock cycle, open the
Options menu and choose:

Bus automatically samples processor pins at the proper time in a
bus cycle. The trigger is based on aligned samples.

Clock triggers on any cycle coming from the processor, regardless of
whether it is a valid bus cycle. Use clock triggering to trigger
on an 1/0 signal or on an interrupt input that can occur on any
clock cycle.

The Trigger window provides up to four levels of triggers: Level 0, 1, 2,
or 3 appears in the Trigger window title bar. Levels are processed
sequentially. A sequencing (seq) action disables the set of conditions
defined in the current level and enables the set of conditions in the next
level.

All conditions on a level are processed in parallel. That is, if two or
more conditions are true simultaneously, all associated actions occur.

The following figure shows a Trigger window at Level 0.

85 Debugging With Triggers and Trace

= Trigger - Level 0 a
Eile _Edit Qptions .Level Windows .!:!elp

Condition Actions
event name enable ext se_g_ rst brk toff next incO rstO incl tstl ext lo exthi
evl :! lZl D D D D D D D D D D D D

:! D

:! D

:! D

:! D

:! D

:! D

:! D

cntoBo
cnt1 1 D
ext D

In the Condition pane, specify a previously defined event name. Click
on an event name list box. In the drop-down list box, click on the event
that you want to use as a trigger condition. Check the Enable box to the
right of the event name. Click in the row of boxes to specify the actions
to be taken if the trigger .condition is met. The conditions and actions
are described in detail in the "Trigger Window Reference" chapter.

The timer increments at the clock rate of the emulation processor and
wraps to 0 after reaching its maximum value. To calculate the
milliseconds (ms) for a complete timer cycle:

wrap time = (220) I (clock period)

For example, at 25 MHz, the timer wraps in about 42 ms; at 16 MHz,
the timer wraps in about 65.5 ms.

For counter conditions and actions, open the Options menu and check
Counter. For the timer, check Timer. The following figure shows an
Options menu.

Debugging With Triggers and Trace

Irace Control ...

./ !;.ounter
Timer

./§.us
Clock

86 SW User's Manual

Break Emulation

Stop Trace Without
Breaking Emulation

SW User's Manual

Examples of Triggering

This section demonstrates various trigger window configurations and
describes their effects on emulation control.

If Evntl occurs, emulation breaks.

= Trigger - Level 0

.Eile _Edit Qptions .!,,eve I Windows !::!.elp

Condition Actions

a

event name ena.ble e:.1 s~ rst brk toff ne:.1 incO rstO incl rstl e:icilo ext hi]

IEvntl l~I~ D D D [SJ D D D D D D D 01
1. Enable Evntl and choose the brk action.

2. Start emulation.

3. Tracing starts.

4. Emulation stops when the trigger occurs.

If Evntl occurs, trace collection stops. = Trigger - Level 0 D
.Eile _Edit Qptions .Level Windows !::!.elp

Condition Actions
event name enable ext se rst brk toff next incO rstO incl rstl ext lo ext hi

IEvntl l~I ~ D D D D [SJ D D D D D D D

1. Enable Evntl and choose the toff action.

2. Start emulation.

3. When the trigger occurs, the trace buffer fills according to Trace
Control; tracing stops; emulation continues.

87 Debugging With Triggers and Trace

Act On Multiple Events Enable up to eight global events. Enabled events are logically ANDed.
For this example, multiple trace buffers must be defined in the Options
menu Trace Control dialog box and Counters must be selected in the
Options menu.

= Trigger - Level 0 a
file f.dit Qptions .level Windows .!::!elp

Condition Actions
event name enable ext se_g_ rst brk toff ne}.1 incO r stO incl rstl ext lo ext hi
Evntl ! [Z] D D D [ZJ D D D r:ZJ DD [ZJ D
Ev'Tl12 ! [ZJ D D D [ZJ D D D r:ZJ DD [ZJ D
Evnt3 ! [ZJ D DD [ZJ D D DD D r:ZJ [ZJ D
Evnt4 ! [ZJ D D D [Z] D D DD D r:ZJ [ZJ D
Evnt5 ! [ZJ D DD D D [Z] r:ZJ D DD D [ZJ

Evnt6 ! [ZJ D DD D [ZJ D r:ZJ D DD D [ZJ

Evnt7 ! [ZJ D DD D D [ZJ DD r:ZJ D D [ZJ

Evnt8 ! [ZJ D D D D [ZJ D DD r:ZJ D D [ZJ

cnto!Er:ZJ D D D [ZJ D D D D DD [Z] D
cnt! 100 r:Zl D D D [ZJ D 0 D 0 DO [ZJ 0
8}.1 D

1. Enable the Event names in the eight drop-down list boxes.

2. Specify the actions to be taken when each event occurs:

3. When each event occurs, the associated actions are taken. If
multiple events occur simultaneously, all associated actions are
taken.

• Evntl, Evnt2, Evnt3, and Evnt4 break emulation, reset one of
the counters, and write 0 to the external trigger-out signal.

• Evnt5 and Evnt7 fill the current trace buffer according to
Trace Control and start collecting trace into the next trace
buffer; increment one of the counters; and write 1 to the
external trigger-out signal.

• Evnt6 and Evnt8 stop tracing, increment one of the counters,
and write 1 to the external trigger-out signal.

• If Evnt5 and Evnt6 together occur 50 times without Evntl or
Evnt2 occurring, cntO reaches 50, breaks emulation, and
writes 0 to the external trigger-out signal.

• If Evnt7 and Evnt8 together occur 100 times without Evnt3 or
Evnt4 occurring, cntl reaches 100, breaks emulation, and
writes 0 to the external trigger-out signal.

Debugging With Triggers and Trace 88 SW User's Manual

Break On Interrupt
Latency

AND an Event With an
External Input

SW User's Manual

Using the number of elapsed clock cycles, you can discover whether an
interrupt is serviced in a timely manner.

= Trigger - Level 0
Elle fdit Qptions .bevel Windows t!.elp

Condition Actions
event name enable ext se_o_ rst brk toff next start stQll_ reset ext lo ext hi
Intl ! [2] D D D D D D [2] D D D D
Evtl ! [2] D D D D D D D [2] !Zl D D

! D
! D
! D
! D
! D
! D

ltmr I 1000 I r2l D D D [2] D D D D D D D

ext D

1. Define an interrupt event, Intl. Enable Intl and choose start
(starting the timer).

a

2. Define an event based on the code address of the entrance or exit
from the interrupt handler, Evtl. Enable Evtl and choose rst and
stop (resetting and stopping the tmr).

3. Enable tmr and specify 1000 in the tmr edit field. Choose brk.

4. Reduce the timer value until the specified action occurs, to get the
actual number of clock cycles between the two events.

Logically AND the condition with an external trigger input low signal
by checking the ext box (ext is to the right of enable).

= Trigger - Level 0 a
Elle f.dit Qptions .bevel Windows t!.elp

Condition Actions
event name enable ext se_o_ rst brk toff next start stQll_ reset ext lo ext hi

IEWLtl l~I~ !Zl D D [2] D D D D D D D

89 Debugging With Triggers and Trace

Trigger on External
Input Alone

Define Sequential
Triggers For Capturing
Trace

Enable ext on the last line of the Condition pane to set a trigger on an
external signal alone (ext is located at the bottom of the left column).

= Trigger - Level 0
file fdit Qptions .bevel Windows !::!.elp

Condition Actions
event name enable e:i.1 s~ rst btk toff next sta1t stQll_ 1 es et ext lo ext hi

± D
± D
± D
± D
± D
± D
± D
± D

ltmt I 1 ID

ext l2J D D l2J D D D D D D D

Capture trace following each of three events in three separate trace
buffers. This example uses an Intel386 CX emulator running the
demo386.omf sample program installed with SLD.

a

Define buffers SK bytes long. Position the trigger so the event appears
near the beginning of the buffer (Post). The following figure shows the
Trace Control dialog box for this buffer configuration.

Trace Control

D H~lt When Last Trace Buffer Full

jirigger Position

L 0 Pre 0 Center

Nymber of Trace Buffers (x Size)

0 1 (x256K) 0 8 (x32K)
0 2 (x128K) 016 (x16K)

0 4 (x64KJ ®fifi~~·~j:

.Q.K I ~ancel I

® Po.:?.t

0 64 (x4K)

0 128 (x2KJ
0 256 (xlK)

I Help

Define an event at the first code location inside each of three function
calls: insert, printall, and remove. To find the addresses, use Xlt:

Xlt #insert;
II 0018:FFFFE41C = FFFFE41CL = 3FFE41CP

Debugging With Triggers and Trace 90 SW User's Manual

SW User's Manual

The following figure shows the three event definitions.

= Event: in_insert a
file J;;dit 'tlindows J::!elp

Active Event: ._lin-"_'-in_s_ert ______ _.liJ_.!

not start ® End Addr 0 Length ~m_a_sk __

addr: D I 3tte41 cP I I 3tte41 cP 11 Ox3FFFFFF I
start end mask

data: D [.____ ___ ~] [.____ ____] c=J

0 1 x 0 1 x 0 1 x 0 1 x 0 1 x
0 0 ~· BHE# 0 0 @.> LOCK# 0 0 @> HOLD 0 0 @ INTR 0 0 @l ERROR#
0 @ 0 M/10# @ 0 0 ADS# 0 0 @ HLDA 0 0 @ SMI# 0 0 ~· PEREQ
@> 0 0 D/C# 0 0 @ READY# 0 0 @) RESET 0 0 @ SMIACT# 0 0 @ A20M#
@ 0 0 W/R# 0 0 <..~ NAii 0 0 @ NMI 0 0 @ BUSY#

Eile J;;dit 'tlindows J::!elp

Active Event: ._lin ___ pr_in_ta_ll _____ __..liJ_

not start ® End Addr 0 Length r'm=a=s"'-k -~
addr: D I 3tte4cOP I I 3tte4cOPj 11 Ox3FFFFFF I

start end mask

data: D l~ ____ J l~ ____ J c=J

OlX OlX OlX OlX OlX

0 0 @ BHEll 0 0 @ LOCK# 0 0 @ HOLD 0 0 @ INTR 0 0 @ ERROR#
0 @ 0 M/1011 @ 0 0 ADS# 0 0 @ HLDA 0 0 @ SMI# 0 0 @ PEREQ
@ 0 0 D/C# 0 0 @ READY# 0 0 @ RESET 0 0 @ SMIACTll 0 0 @ A20M#
@ 0 0 W/R# 0 0 @ NAii 0 0 @ NMI 0 0 @ BUSY#

= Event: in_remove II
Eile J;;dit 'tlindows J::!elp

Active Event: I in ___ re_m_o_ve ________ L!J_
not start ® End Addr 0 Length ~m_a_s_k -~

addr: D I 3tte470P I I 3tte470P 11 Ox3FFFFFF l
start end mask

data: D [.____ ___ ___,] [.____ ___ -] c=J

OlX OlX OlX OlX OlX

0 0 @ BHE# 0 0 @ LOCK# 0 0 @ HOLD 0 0 @ INTR 0 0 @ ERROR#
0 @ 0 M/1011 @ 0 0 ADS# 0 0 @ HLDA 0 0 @ SMI# 0 0 @ PEREQ
@ 0 0 D/C# 0 0 @ READY# 0 0 @ RESET 0 0 @ SMIACT# 0 0 @ A20M#
@ 0 0 W/R# 0 0 @ NAii 0 0 @ NMI 0 0 @ BUSY#

Enable the trigger timer and set it to count by clock cycles. The timer
lets 8200 clock cycles elapse between triggers. This demo program is
so small that the events defined for the triggers occur multiple times in
the trace captured to post-fill an SK-byte trace buffer. Since only one

91 Debugging With Triggers and Trace

trace-control action (toff, next) can occur in each buffer, the timer
ensures that tracing moves to the next buffer before sequencing to the
next trigger.

The following figure shows the Options menu with Timer and Clock.

Irace Control ...

!;.ounter
.,/Timer

J;!us
.,/ C!ock

Each of the first two triggers captures trace following its event and
starts a timer to run while the buffer fills. When the buffer is full,
tracing begins in the next buffer. When the timer finishes, it stops,
resets itself, and arms (sequences to) the next trigger.

The final trigger turns trace off, filling the current buffer. Emulation
continues but trace does not.

The following figure shows the three levels of triggers.

= Trigger - Level 0 a
Eile f.dit Qptions Level Windows !:!.elp

Condition Actions
event name enable ext se_g_ rst brk toff next start stQI,l_ res et ext lo ext hi
in_insert :!:: [SJ D D D D D IZl IZl D D D D
in _printall :!:: D
in_removE :!:: D

:!:: D
:!:: D
:!:: D
:!:: D
:!:: D

ltmr i 0200 i IZl D IZl D D D D D IZl IZl D D

ext D

Debugging With Triggers and Trace 92 SW User's Manual

SW User's Manual

= Trigger - Level 1 a
.Eile .Edit Q.ptions .!.eve I Windows !:!.elp

Condition Actions
event name enable ext se_g_ rst brk toff next start s\Qil_ reset ext lo exthi
in insert :f D
in _printa\\ :f l'Zl D D D D D l'Zl l'Zl D D D D
in_remove :f D

:f D
:f D
:f D
:f D
:f D

ltnn I mo I l'Zl D (gJ D D D D D l'Zl (gJ D D

ext D

= Trigger - Level 2 a
.Eile f.dit Q.ptions .Level Windows !:!.elp

Condition Actions
event name enable ext se_g_ rst brk toff next start stllll_ res et ext lo exthi
in_insert :f D
in _printa\\ :f D
in_remove :f l'Zl D D D D l'Zl D D D D D D

:f D
:f D
:f D
:f D
:f D

ltmr I a200 ID

ext D

Summary of Ways to Trigger

The following steps summarize defining a trace buffer using a trigger:

1. In the Trace window, open the Trace menu (or in the Trigger
window open the Options menu) and choose Trace Control to
configure trace. Set the number of trace buffers in the resulting a
dialog box. Set the triggers as pre, post or center and toggle
whether to break from emulation when all trace buffers are full.

93 Debugging With Triggers and Trace

2. Define the events on which to trigger using the Event window.
The Event window contains different choices for different versions
of the microprocessor. You can define a bus event based on an
address, a data value, or a processor signal. You can include the
address space. Defined events can be saved and reloaded.

3. In the Trigger window, open the Options menu and choose the Bus
toggle to select bus cycle triggers. The hardware automatically
samples processor pins at the proper time in a bus cycle, and
triggers based on aligned samples. Or, choose the Clock toggle to
enable a trigger when the trigger source is not associated with a bus
cycle.

4. In the Trigger window, open the Options menu and choose the
Counter toggle to select two 10-bit counters; or choose the Timer
toggle to select one 20-bit timer. The counters or the timer can be
used to define a trigger. For example, if you are using two
counters, you can enter a value for the terminal count (cntO, cntl).
When the counter reaches the terminal count, the actions you
specified for that trigger will be executed.

5. In the Trigger window, set up the triggering hardware to capture
the sequence you are interested in by doing the following steps for
each event:

a) On the left side of the Trigger window, enter the name of an
event you defined in step 2. If you click on an Event selection,
a drop-down list of defined events is displayed. Click on the
event you want to trigger on.

b) Select Enable to display the toggle boxes for the actions to be
taken when the Event occurs.

c) The counters or the timer can be used to define a trigger. For
example, if you are using two counters, you can enter a value
for the terminal count (cntO, cntl). When the counter reaches
the terminal count, the actions you specified for that trigger
will be executed.

d) You can specify on the bottom row that the action is taken
based on the external signal alone (ext).

e) You can define up to four sets of actions, each set on its own trigger
level. You can specify the action of sequencing to the next trigger
level. You can specify the action of resetting to trigger level 0.

Debugging With Triggers and Trace 94 SW User's Manual

powerpak.ini File Ref ere nee
This chapter describes the contents of the powerpak.ini file.

SLD installation creates the powerpak.ini file in your Windows
directory. This file contains information used when you invoke SLD
and when you open each SLD window.

11 I ~ Alway' back up powerpak.ini Ona you have modified powerpak.ini,
CAUTION ~ the only way to restore the default contents is to reinstall SLD.

SW User's Manual

The following sections can appear in powerpak.ini:

Section Purpose

[Comm]

[CPUinfo]

[DefaultLayout]

[InitScript]

[LoadOptions]

[Network]

[Serial]

[Sourcelnfo]

[Stacklnfo]

[Statuslnfo]

[Systemlnfo]

[ToolBarlnfo]

[ToolChain]

[Tracelnfo]

[Triglnfo]

Host-to-emulator communication

Intel debug register allocation

Window screen locations

Script file to run on invocation

Load options

Network information

Host PC COM port number

Source window Go, Step, and View options

Stack window options

Status window options

Intel386 CX/SX A-step/B-step support

Save settings from the Toolbar

Compiler information for Motorola loadfiles

Trace Control and Trigger window options

Trigger window options

[Variablelnfo] HiWare compiler support

The following pages describe the powerpak.ini entries and how to
change them. Whenever possible, change entries using menus or Shell
commands rather than modifying powerpak.ini in a text editor. Avoid
modifying any entry not documented in this chapter.

95 powerpak.ini File Reference

Many entries are toggle settings with possible values of 1 or 0. For
such entries, 1 is enable and 0 is disable.

powerpak.ini File Reference 96 SW User's Manual

[Comm]

Describes
host/emulator
communication

[CPUlnfo]

Allocates debug
register use

type=[serial I pents I lanserver] describes how the emulator
communicates with your host PC. This entry is set to serial by the
SLD installation and changed by the network installation. If your
network configuration changes in a way that affects communication
between the host PC running SLD and the emulator, you must edit
powerpak.ini to switch networks or return to serial communication.

serial specifies serial communication.

pents defines the emulator as a node on a PC-NFS network.

lanserver defines the emulator as a node on an OS/2 LAN server.

For example:

[Comm]
type=serial

dr [<num>]=[user I system] specifies whether the <num> debug
register is reserved for use by your program or by the emulator for
breakpoints.

<num> specifies the debug register as 0, 1, 2, or 3.

user enables access to the debug register for your program.

system reserves the debug register for use by the emulator, blocking
your program's access to the register.

For example:

[CPU Info]
dr O=system
dr 1=user
dr 2=system
dr 3=system

[Defaultlayout]

Specifies Window
screen locations

SW User's Manual

The<PVWindow>Presenter=[<Dimensions>] defines whether
each SLD window is displayed when you invoke SLD and the screen
locations and sizes for the initially displayed windows.

Move and resize the SLD windows using the Windows mouse or cursor.

97 powerpak. ini File Reference

[lnitScript]

Defines which Shell
script file executes
when you invoke
SLD

Then, to save the layout without exiting SLD, on the Toolbar open the
Layout menu and choose Save Layout Now. If you are likely to change
the layout again before exiting SLD but want the same initial layout the
next time you invoke SLD, be sure Save Layout On Exit (also in the
Layout menu) is unchecked.

script=[<scriptFile>] sets <scriptFile> as the filename or pathname
of the initialization script (the file of Shell commands run each time you
start SLD. Unless you specify a full pathname, SLD looks only in the
SLD directory (e.g., c:/powerpak). When no <SCriptFile> is specified,
none is read.

To change this entry, edit powerpak.ini.

For example, when you install SLD, the initialization script file is
include.me:

[lnitScript]
script=include.me

[Load Options]

Specifies load options [LoadOptions] entries can be changed in the Load Options dialog box.
To open the Load Options dialog box, from the Toolbar choose Load; or
in the Source window, open the File menu and choose Load Code. In
the Load dialog box, after browsing the filename to be loaded, choose
the Options button. Shell Load command arguments override the
[LoadOptions] entries.

AddressSpace=[user I smm] specifies Intel SMM or User address
space when the file is loaded. In the Load Options dialog box, choose
the User or SMM button.

LoadCode=[1 I O] specifies whether to load code. For example, when
debugging in ROM, tum off code loading and load only symbols. In the
Load Options dialog box, toggle Load Code.

LoadSymbol=[1 I O] specifies whether symbols are loaded. For
example, when symbols are already loaded, tum off symbol loading and
load only code. In the Load Options dialog box, toggle Load Symbols.

LoadOnDemand=[1 I O] specifies whether symbolic information is
loaded for all modules immediately or not until needed. Symbolic
information includes local symbol and line-number information for a

powerpak.ini File Reference 98 SW User's Manual

SW User's Manual

module. Such information is needed when either the module is
displayed in the Source window or a breakpoint is set in the module.
Advantages of on-demand symbol loading include faster initial loading,
faster lookup for the symbols that are demanded, and less memory
occupied by the loaded file since only the required symbols are loaded.
In the Load Options dialog box, toggle On Demand Symbol Loading.

LoadDemangle=[1 I O] specifies whether symbols are demangled for
the first instance of each overloaded function in a C++ program. In the
Load Options dialog box, toggle Demangle C++ Names.

LoadUpdateBase=[1 I O] specifies whether Intel386 symbol base
addresses are updated. For example, if your descriptor table bases are
nonzero, you can save time by having the load process update your
symbol base addresses from the descriptor table information. In the
Load Options dialog box, toggle Update Symbol Bases. This option
must be used in conjunction with Load Register (in the Load Options
dialog box, the Load Initial Registers option).

LoadRegister=[1 I O] specifies whether Intel386 initial register values
are loaded. For example, if your initialization code does nothing but
initialize the registers, you can save time by having the load process
extract the register information from your initialization code. Then, you
need not execute the initialization code. In the Load Options dialog box,
toggle Load Initial Register Values.

LoadReportStatus=[1 I O] specifies whether the load progress
indicator appears during loading. In the Load Options dialog box,
toggle Report Status.

LoadReportWarnings=[1 I O] specifies whether warning messages
can appear during loading. In the Load Options dialog box, toggle
Report Warnings.

For example:

[Load Options]
II 1 =enable, O = disable
LoadSymbol=1
LoadCode=1
LoadReportStatus=1
LoadReportWarning=O
LoadOnDemand=O
LoadDemangle=O
LoadAsmModules=O
LoadUpdateBase=O
LoadRegister=O

99 powerpak.ini File Reference

[Network]

Lists available
emulators

[Serial]

Defines the COM
port attached to the
PowerPack hardware

[Sourcelnfo]

Controls the Source
window display and
options

emulators=<name>[,<name> ...] specifies one or more emulators
that SLD can communicate with on the network. When more than one
<name> appears in the list, SLD displays a dialog box for you to choose
one. Change this entry by editing powerpak.ini directly.

comport=com[1 I 2 I 3 I 4] sets the COM port. The first time you
start SLD, you must set the COM port number. To use a different COM
port, you must edit powerpak.ini. The following figure shows the
Select COM Port dialog box that appears when you first start SLD.

For example:

[Serial]
comport=com2

Select COM Port

Com Ports

0COM1

® COMZ.

0COM1

OcoM~

IIQ!iiii~lil

liiiu~1:1

, .••• il~~p\ ii

DisplayLineNum=[O I 1] specifies whether source line numbers are
displayed in the Source window. In the Source window, open the View
menu; toggle Line Number.

StepCount=<num> specifies how many steps (1 to Ox7FFFFFFF)
are executed per Step command. In the Source window, open the
Options menu; choose Step Count; fill-in the dialog box. Or, enter a
Step or StepSrc Shell command.

ViewSource=[1 I O] specifies the Source window display either as
source from the source file (1) or as a combination of source and
disassembly (0). In the Source window, open the View menu and
choose Source Only or Mixed Source And Assembly.

powerpak.ini File Reference 100 SW User's Manual

SW User's Manual

UseGolnto=[1 I O] specifies whether the Call and Return buttons in
the Source window perform Go Into (1) or Go Until (0) emulation. In
the Source window, open the Options menu, choose Set Go Buttons, and
choose Until Call/Return or Into Call/Return.

UseLineExecGranularity=[1 I O] specifies whether a step executes
an entire source line (1) or a single source statement (0). In the Source
window, open the Options menu; choose Set Step Granularity; choose
Source Line or Source Statement. Or, enter a StepSrc Line or StepSrc
Statement Shell command.

HistoryDepth=<num> specifies how many source browsing locations
(5 to 100) are saved. In the Source window, open the Options menu,
choose Browser History Depth, and fill-in the dialog box.

TabWidth=<num> specifies the number of spaces (1 to 32) that
replace a tab character in the Source display. When SLD is installed,
powerpak.ini contains TabWidth=8. In the Source window, open the
Options menu; choose Tab Width; fill-in the dialog box.

SourceDelimiterUseCRLF=[1 I O] specifies the source delimiter (the
ASCII character string used by the debugger to delimit a source line) as
carriage return/linefeed (1), the DOS newline string or as linefeed only
(0), the UNIX newline string. When SLD is installed, the delimiter is
carriage return/linefeed. In the Source window, open the Options menu;
choose Source Line Delimiter; choose Carriage Return/Linefeed or
Linefeed Only.

OperandAddressSize=[O I 1 I 2] specifies the Intel address mode for
viewing disassembly in the Source window as:

0 derives the address mode based on the pmode.

1 uses 16-bit address mode.

2 uses 32-bit address mode.

In the Source window, open the View menu; choose Operand/Address
Size; choose Auto, Use16, or Use32.

DefaultModuleExtensions=[C, ASM, CPP, CXX, S] specifies the
default source file extensions. To change this entry, edit powerpak.ini.
When the source filename is stripped of its extension, the emulator
searches for the filename with the default module extension.

Loadfile0-3=<pathname> specifies the pathnames of the last four
source files you have loaded. This entry is updated automatically when
you load a module with associated source.

NumAliasPath=<number> specifies how many directories are listed
as source paths. This entry is updated automatically when you add or

101 powerpak. ini File Reference

[Stacklnfo]

Controls the display
and other options in
the Stack window.

delete a source path.

SourcePathAlias<num>=<path> specifies a source path. There are
as many of these entries as are counted in NumAliasPath. A
SourcePathAlias<num>=<path> entry is added, changed, or deleted
each time you add, change, or delete a source path. In the Source
window, open the Options menu; choose Source Path. In the Source
Path dialog box, to add a new path, choose Add and fill-in the dialog
box; to change a path, select the path, choose Edit, and fill-in the dialog
box; to delete an existing path, select the path and choose Delete.

For example:

[Sourcelnfo]
DisplayLineNum=1
StepCount=1
ViewSource=1
UseGolnto=O
UseLineExecGranularity=1
HistoryDepth=50
TabWidth=8
SourceDelimiterUseCRLF=1
II O=auto, 1 = use16, 2 = use32
OperandAddressSize=O
II default source module extensions
DefaultModuleExtensions=C,ASM,CPP,CXX,S
LoadFile0=C:\POWERPAK\SAMP386\DEMO.OMF,9, 13
LoadFile1=C:\POWERPAK\SAMP386\DEM0386.0MF,9,13
LoadFile2=
LoadFile3=
NumAliasPath=1
SourcePathAlias0=C:\PV241 \SAM P386\

StackSize=<num> specifies the stack size and must match the target's
allocated stack size. Unless specified in the load file, the stack size
defaults to 4K bytes. In the Stack window open the Options menu,
choose Stack Area, and fill-in the dialog box; or in the Shell window
enter a SetStackArea or SetStackSize command.

StackBaseAddr=<hex_addr> specifies the stack base address, as
defined in the load file. In the Stack window open the Options menu,
choose Stack Area, and fill-in the dialog box; or in the Shell window
enter a SetStackArea or SetStackBase command.

powerpak.ini File Reference 102 SW User's Manual

[Statuslnfo]

Specifies whether the
Status window
appears on top of
other windows

SW User's Manual

PercentAlarmLimit=<num> specifies the alarm limit as a percentage
of the stack size, from 1 to 100. In the Stack window open the Options
menu, choose Alarm Limit, and fill-in the dialog box; or in the Shell
window enter a SetStackAlarm command.

EnableAlarmLimit=[1 I O] specifies whether the emulator displays a
warning message when stack usage reaches the percentage of the stack
area specified by PercentAlarmlimit. In the Stack window open the
Options menu and toggle Enable Alarm Limit; or in the Shell window
enter EnableAlarmlimit or DisableAlarmlimit.

EnableHWM=[1 I O] enables or disables the high water mark. In the
Stack window open the Options menu and toggle Enable High-Water
Mark; or in the Shell window enter EnableHighWaterMark or
DisableHighWaterMark.

ViewStackAddr=[1 I O] enables or disables displaying the Stack
window stack address (the location of the frame on the stack). In the
Stack window, open the Options menu; toggle Include Stack Address.

ViewCodeAddr=[1 I O] enables or disables displaying the Stack
window code address (the called function's return destination). In the
Stack window, open the Options menu; toggle Include Code Address.

For example:

[Stacklnfo]
StackSize=100
StackBaseAddr=OxOOOD82
PercentAlarmlimit=95
EnableAlarmlimit=1
EnableHWM=1
ViewStackAddr=1
ViewCodeAddr=1

Topmost=[1 IO] specifies whether the Status window (or icon, when
minimized) appears on top of other SLD windows. With Topmost= 1,
the Status window or icon cannot be hidden behind any other
overlapping SLD window, regardless of which window is in focus. In
the Status window, open the Control menu and toggle Always on Top.

For example:

[Status Info]
Topmost=O

103 powerpak.ini File Reference

[System Info]

Supports lntel386
CXISX and A-step/B
step emulation

386EmulatorCPU=[386CX A-step I 386CX B-step I none]
describes the Intel386 CX/SX bondout processor in the emulator probe
head.

386TargetCPU=[386SX I 386CXSA I 386CXSB] describes the
Intel386 CX/SX processor in your target design.

The first time you start SLD for lntel386 CX/SX emulation, a dialog box
appears wherein you can set 386EmulatorCPU and 386TargetCPU.
If you ever need to change these settings, you must either edit
powerpak.ini directly or reinstall SLD to see the dialog box again.

386EmulatorCPUs=386CX A-step,386CX B-step lists the lntel386
CXISX bondout processors recognized by SLD as emulator processors.

386TargetCPUs:386SX,386CXSA,386CXSB lists the Intel386
CXISX processors recognized by SLD as target processors.

[ToolBarlnfo]

Saves the window
layout and masks
interrupts during
single stepping.

[ToolChain] ·

Specifies which
software tools were
used to generate the
loadfile. (Motorolla
processors only)

SaveLayoutOnExit=[1 I O] specifies whether the SLD window layout
(the SLD windows as you have opened, positioned, and sized them) is
saved when you exit SLD. If the layout is not saved, the next SLD
invocation reverts to the previously saved or default layout. On the
Toolbar, open the Layout menu and toggle Save Layout On Exit.

stepMask=[1 I O] masks interrupts during single stepping. To toggle
interrupt masking, in the Shell window enter a StepMask command.

For example:

[ToolBarlnfo]
SaveLayoutOn Exit=1
stepMask=O

Compilers=Unknown,Hiware,lntermetrics,lntrol,MRl,SDS
CrossCode,Sierra,Whitesmiths[,<others>] lists the compilers
recognized by SLD. This list can change when you install a new version
of SLD. Or, if you are using an unsupported toolchain, you can, instead
of specifying an Unknown compiler, edit powerpak.ini to add your
compiler and its section names. However, the recommended procedure

powerpak.ini File Reference 104 SW User's Manual

SW User's Manual

for unsupported toolchains is to specify Unknown. (SLD is not
guaranteed to work correctly with unsupported toolchains. Adding your
compiler name to powerpak.ini does not add support for that compiler.)

<Compiler>=<Code_section>,<data_section> specifies the default
names of the code and data sections in your loadfile. If your loadfile
contains section names other than the default sections generated by your
compiler, edit powerpak.ini to change this entry. If you add an
unsupported compiler to the Compilers entry, add a corresponding
section name entry. (SLD is not guaranteed to work correctly with
unsupported toolchains. Adding an unsupported compiler's section
names to powerpak.ini does not add support for that compiler.)

OMFBaseTypeNames=CODE,DATA specifies the names of the
code and data sections in your OMF86 loadfile. If your loadfile contains
section names other than the default sections generated by your
compiler, edit powerpak.ini to change this entry.

CompilerUsed=[Unknown I Hiware I Intermetrics I lntrol I MRI
I SOS CrossCode I Sierra I Whitesmiths I <Others>] describes
the compiler used to generate the loadfile. In the Source window, open
the Options menu, choose Compiler Used, and select the appropriate
compiler; or enter a CompilerUsed command on the Shell command
line. The compiler you specify must be named in the Compilers entry.
If you are using an unsupported toolchain, specify Unknown. (SLD is
not guaranteed to work correctly with unsupported toolchains.)

If you have not specified the compiler you are using, a dialog box
appears the first time you load a file using a button or a menu item.
Choose a supported complier in this dialog box.

MergeSections=[1 I O] specifies whether to merge all your loadfile' s
code and data sections into two default sections. This can save memory
for loadfiles with more than 32 sections. On the Shell command line,
enter a MergeSections command.

varlndexCpu16Reg=[none I xk:ix I yk:iy I zk:iz] specifies which
Motorola CPU16 register to use for loadfiles with 20-bit addressing.

maxBitFieldSize=[16 I 32] specifies the bitfield size in your OMF386
loadfile. Set this entry to 16 for loadfiles generated with the Borland C
compiler and to 32 for other toolchains.

For example:

[ToolChain]
MergeSections=O
Compilers=Unknown,Hiware,lntermetrics,lntrol,MRI
CompilerUsed=MRI

105 powerpak.ini File Reference

[Tracelnfo]

Sets the Trace
window options

linkedCursor=[on I off] turns on or off the code address link between
the Trace and Source windows. The link is valid only when the Trace
window displays instructions (see viewType in this section) and the
Source window displays mixed source and disassembly (see viewSource
in the [Sourcelnfo] section).

When cursors are linked, the Source window scrolls automatically to
match the Trace display.

To tum linkedCursor on:

1. In the Source window open the View menu; check Mixed Source
And Assembly.

2. In the Trace window open the View menu; check Instruction
Cycles.

3. In the Trace window re-open the View menu; check Linked Cursor.

To tum linkedCursor off, in the Trace window open the View menu;
uncheck Linked Cursor.

viewType=[bus I clock I instruction] sets the trace view as:

clock displays the processor signals at each clock cycle.

bus displays the processor signals at each bus cycle.

instruction displays the instructions executed by the processor (and
some prefetched instructions) and the resulting data cycles.

In the Trace window open the View menu; choose Clock, Bus, or
Instruction Cycles.

timestamp=[on I off] turns on or off the trace timestamp display. In
the Trace window open the View menu; toggle Timestamp.

systemFrequency=<frequency> specifies the target system clock
frequency; 0.01 Hz::;; <frequency>::;; 40 MHz. In the Trace window
open the Timestamp menu; choose Setup, and fill-in the dialog box.

tsmode=[relative I delta] specifies the timestamp mode as:

relative calculates timestamps relative to a specified base frame.

delta calculates each timestamp relative to the previous frame.

In the Trace window, open the Timestamp menu; choose Relative To
Frame or Delta.

btmCycles=[enabled I disabled] specifies whether BTM (branch
taken message) cycles are collected and shown. A BTM cycle indicates

powerpak.ini File Reference 106 SW User's Manual

[Trig Info]

Sets the Trace
Control and Trigger
window options

SW User's Manual

a change in execution flow, such as a jump. The emulator must collect
BTM cycles to display trace as instructions. In the Trace window, open
the View menu; toggle BTM Cycles.

For example:

[Tracelnfo]
linkedCursor=on
viewType=instruction
timestamp=on
system Frequency=25MHz
ts mode= relative
btmCycles=enabled

numTraceBuffers=[1 I 2 I 4 I 16 I 32 I 64 I 128 I 256] specifies the
number of trace buffers. Specifying the number of trace buffers also
specifies the size of each trace buffer, from one 256K-byte buffer to 256
lK-byte buffers.

In the Trace window open the Trace menu, or in the Trigger window
open the Options menu; choose Trace Control; fill-in the Number Of
Trace Buffers (X Size) frame of the dialog box.

traceAlignment=[center I pre I post] specifies where relative to the
trigger the trace buffers fill: event

center

pre

post

Trace buffers fill before and after the trigger. The trigger
appears in the center of the trace display.

Trace buffers fill up to the trigger. The trigger appears near
the end of the display.

Trace buffers fill up after the trigger. The trigger appears
near the beginning of the display.

In the Trace window open the Trace menu, or in the Trigger window
open the Options menu; choose Trace Control; fill-in the Trigger
Position frame of the dialog box.

breakOnFull=[on I off] specifies whether the emulator breaks when
all trace buffers become full. In the Trace window open the Trace menu,
or in the Trigger window open the Options menu; choose Trace Control;
in the dialog box toggle the Halt When Last Trace Buffer Full check
box ..

counterTimer=[counter I timer] specifies whether the two 10-bit
counters or the 20-bit timer can be used to specify triggers. In the

107 powerpak. ini File Reference

Trigger window open the Options menu; choose Counter or Timer.

trigMode=[bus I clock] specifies the type of cycle used for triggering:

bus automatically samples processor pins at the proper time in a
bus cycle. The trigger is based on aligned samples.

clock triggers on any cycle coming from the processor, regardless
of whether it is a valid bus cycle. Use clock triggering to
trigger on an 1/0 signal or on an interrupt input that can
occur on any clock cycle.

In the Trigger window, open the Options menu; choose Bus or Clock.

For example:

[Trig Info]
numTraceBuffers=1
traceAlignment=pre
breakOnFull=off
counterTimer=counter
trigMode=bus

[Variablelnfo]

Supports HiWare
bitfield types

AutoCalcBitfieldOffsets=[1 I O] specifies whether to calculate
bitfield offsets as generated by the HiW are compiler. Set this entry to 1
for loadfiles compiled with HiW are and to 0 for other toolchains.

powerpak.ini File Reference 108 SW User's Manual

Toolbar Ref ere nee
The following figure shows the Toolbar. = PowerPack SLD Toolbar a

tile ~onfigure .Layout Windows .!:::!.elp
Setup Target E111ulation Trace Misc

This chapter describes the too/bar menus, buttons, and dialog boxes.

The Too/bar is the first window opened when you start SLD and is always available during
your debugging session. Closing the Toolbar exits SW, ending your emulator session.
Minimizing the Too/bar hides all other SW windows and icons.

Toolbar Menus

SW User's Manual

Menu

File

Configure

Layout

Windows

Help

File Menu

Use To:

Exit SLD.

Configure and initialize the debugging environment.

Save your screen layout of SLD windows.

Select a closed or iconized SLD window to open.

Open a window for help with SLD.

You can exit SLD as you would exit any Windows application; or you
can open the File menu and choose Exit. The emulator asks you to
confirm exiting. The following figure shows an Exit dialog box.

PowerPack SLD

@ Exit PowerPack SLD?

109 Toolbar Reference

Too/bar Reference

In any SLD window other than the Toolbar, choosing Exit closes only
that window. Exit is on every SLD window File menu except in the
CPU window, where Exit is on the Options menu.

Configure Menu
The following figure shows two sample Configure menus. The first is
for the Intel386 EX processor; the second is for the Motorola 68332
processor. Different menu items are available for different processors.

Map ...

"," I Run Access
-=:J .,/ S¥mbolic Disassembly

Sa"t:e Chip Selects ...
Bestore Chip Selects ...

Configure Symbols

!CECFGO Register ...

R~set

Reset CPU Qnly

Map ...

"," I Run Access
-=:J]ihow Cycles

.,/ S¥mbolic Disassembly

.,/Mask Interrupts For Step

Sa"t:e Chip Selects ...
Bestore Chip Selects ...
!;.onfigure Chip Selects

R~set

Reset CPU Qnly

t Ernula

Map ... opens the Map dialog box for examining and modifying your
memory map. Choosing this menu item has the same effect as choosing
the Map button. The Map dialog box is described in the "Map Dialog
Boxes" section later in this chapter. You can also configure memory
with Map and RestoreMap Shell commands.

Run Access, when checked, enables memory access during emulation.
Memory access is used to scroll and refresh the Peripheral and Memory
windows and to read or write peripheral registers and memory.
Because such memory accesses take a small amount of processor time,
doing these operations during emulation can degrade your program
performance.

110 SW User's Manual

SW User's Manual

When you start SLD, run access is disabled (unchecked) and memory
access is available only when emulation is halted.

Run access does not affect the access of CPU registers. The CPU
registers are inaccessible during emulation.

You can also enable and disable run access with the RunAccess Shell
command.

Show Cycles, when checked, makes the Motorola processor internal
cycles visible for tracing.

Symbolic Disassembly, when checked, uses symbolic addresses in the
disassembly displayed in the Source and Memory windows.

Mask Interrupts For Step, when checked, prevents interrupts from
pre-empting a Step operation in a Motorola emulator. You can also
enable and disable interrupt masking with the StepMask Shell
command.

Save Chip Selects •.• records the chip-select registers in an ASCII file.
The registers can be restored from the file using the Restore Chip
Selects command.

You can also save the chip select registers with the SaveCS Shell
command. For a list of which registers are saved for each processor,
see the SaveCS description in the "Shell Window Reference" chapter.

The following figure shows a sample Save As dialog box for saving
chip select information to a chip select (*.cs) file.

Save As

File Name: !!_;rectories: OK

In c:\powrpakm

oc:\
Cancel

f.L ~
~ powrpakm

!::!_elp LJ samp332
LJ samp360

D !!_ead Only LJ sampcp32
1--c LJ samphc16

'+' ..,
LJ leknoles

5 ave File as l.Jlpe: Driyes:

lcs Files(".CSJ L!I I la c: ms-dos_6 l.!I

Restore Chip Selects ••• restores the chip-select registers to the values
specified in an ASCII file. You can create this file with the Save Chip
Selects item, with a SaveCS Shell command, or with a text editor such
as Windows Notepad.

111 Toolbar Reference

Toolbar Reference

You can also restore the chip select registers with the RestoreCS Shell
command (or, for Motorola targets, restore the target chip selects and
configure the emulator chip selects at the same time with a single
ConfigCS command). For a list of which registers are saved for each
processor, see the SaveCS description in the "Shell Window
Reference" chapter.

The following figure shows a sample Open dialog box for restoring chip
select values from a saved chip select (*.cs) file.

File.H.ame:

In

Open

Q.irectories:

c: \powrpakm

e:. c:\
~ powrpakm
L:J samp332
LJ samp360
LJ sampcp32
LJ samphc16
LJ teknotes

List Files of Jype: Driyes:

...... lc_s_F_ile_s_r._c_s'-J __ ____..[!)_ I li5il c: ms-dos_6

OK

Cancel
~
~---~

!:!_elp

0 .!lead Only

w
Configure Chip Selects configures the emulator hardware to match the
chip select values in the Motorola target processor.

You can also configure the emulator chip selects with the ConfigCS
Shell command.

Configure Symbols updates the loaded symbols with the base address
from the Intel processor descriptor table (GDT or LDT). Your
program must provide the GDTR and LDTR values and GDT and LDT
contents.

ICECFGO Register .•• opens the ICE Peripheral Disable Register dialog
box for setting bits in the Intel386 EX processor ICECFGO register. To
enable or disable specific peripherals on ICE break, check or uncheck
each option. The following figure shows the ICE Peripheral Disable
Register dialog box with all peripherals disabled on ICE break.

112 SW User's Manual

SW User's Manual

ICE Peripheral Disable Register

D [$.I2I~i~~~i~:~ ~:P.~n.1¢g:::~i~~~)
D SIO l disabled upon ICE break

D .S.SIO disabled upon ICE break

D QMA disabled upon ICE break

D .!l254 Timer disabled upon ICE break

D ~DT disabled upon ICE break

QK I I ~ancel I ~
Reset resets and reinitializes the target processor:

• The processor reset pin is asserted.

• The program counter is read from memory; the Source window is
scrolled to the beginning of code.

• The stack pointer is read from memory, resetting the stack; the
Stack window display becomes invalid.

• All SLD windows are updated.

You can also reset the processor with the Source window Run menu
Reset item, the CPU window Options menu Reset item, or the Reset
Shell command.

Reset CPU Only resets only the processor and does not update the
windows. Use Reset CPU Only if Reset fails to reset the processor.

You can also reset only the the processor with the CPU window Options
menu Reset CPU Only item or the Reset Shell command.

Layout Menu

Save Settings Now saves the current coordinates of the SLD windows
and icons.

Save Settings On Exit saves the coordinates of the SLD windows and
icons when you exit from SLD.

113 Too/bar Reference

Toolbar Buttons

Too/bar Reference

Button Use To:

Map Open the Map dialog box (described later in this chapter) to
examine or change the memory configuration. This button
has the same effect as the Configure menu Map item.

You can also configure memory with the Map and
RestoreMap Shell commands.

Load Open the Load dialog box (described later in this chapter)
to load code and/or symbols.

You can also load code and symbols with the Load Shell
command or the Source window File menu Load Code item.

Trigger Open the Trigger window to define triggers and events for
controlling emulation and trace collection. This button has
the same effect as the Windows menu Trigger item.

Source Open the Source window to examine source and
disassembly, control emulation with breakpoints and
stepping, and find source corresponding to trace displayed
in the Trace window. This button has the same effect as the
Windows menu Source item.

Stack Open the Stack window to view the current nested calls,
associated parameters and variables, and stack usage
statistics. This button has the same effect as the Windows
menu Stack item.

You can also examine the stack with the Stackl nfo and
StackArea Shell commands, or modify the stack with the
StackArea, StackBase, and StackSize Shell commands.

CPU Open the CPU window to view and change processor
registers. This button has the same effect as the Windows
menu CPU item.

You can also display and edit the CPU registers with the
Register Shell command.

114 SW User's Manual

SW User's Manual

Mem Open or change focus to one of up to 20 Memory windows
to view and change memory. This button has the same
effect as the Windows menu Memory item. If more than
one Memory window (including minimized windows) is
open, a dialog box appears in which you can choose an
existing Memory window or open a new one. The
following figure shows a sample Memory dialog box.

Periph

Go

Memory

.S.elect Memory Window New
0 : Hex Words OxO

(1): Disassembly OxO _QK

!;_an eel

J::!.elp

You can also view and change memory with the Dump,
Write, Fill, Search, and Copy Shell commands. ···

Open the Peripheral window to view and change peripheral
register values. This button has the same effect as the
Windows menu Peripheral item.

Start emulation from the current program counter, subject
to control by previously defined breakpoints and triggers.
This button has the same effect as pressing the <F9> key.
You can also start emulation with the Source window
buttons and Run menu items and with various Shell
commands.

Halt Stop emulation. This button has the same effect as pressing
the <F2> key. You can also stop emulation with the Source
window buttons and Run menu Halt item and with various
Shell commands.

Start Begin collecting trace. Tracing starts automatically when
emulation starts. You can start and stop trace collection
during emulation without affecting emulation. You can
also start trace with the Trace window Trace menu Start
item.

Stop Stop collecting trace. You can also stop trace with the
Trace window Trace menu Stop item.

115 Toolbar Reference

Show

Shell

Open the Trace window to display collected trace. You can
examine trace during emulation. This button has the same
effect as the Windows menu Trace item.

Open the Shell window for command-line entry. This
button has the same effect as the Windows menu Shell item.

Map Dialog Boxes

Too/bar Reference

The following figure shows a Map dialog box with no memory mapped.
When memory has been mapped, the configuration of each mapped
region is listed in the central panel. To select a listed region, click on it
or use the <Up Arrow> and <Down Arrow> keys to move the highlight.

S!art Addr End Addr Size (KB) Type Access Space

Add 11 J;dit 11 Qelete J;!ave 11 Bestore I !;.lose 11 !:!elp

Map Dialog Box Buttons

Button

Add

Use To:

Open a dialog box to configure unmapped memory.

The following figure shows two sample Map Add/Edit
dialog boxes. The first is an Edit box for the Intel386 EX
processor; the second is an Add box for the Motorola 68332
processor. The Space choices depend on whether you have
an Intel or a Motorola processor. Valid Start Addr and
Length/End Addr values also depend on which processor
and on how much memory you have configured.

Edit

Jitart Addr: j ti!li] f;t Iype: \overlay 13
Length/End Addr

Access: j RAM 13
@ Length: I Ox2000
0 .End Addr: f!I [Space Mode

IZI]J.ser OS.MM I
QK !;an eel !:!elp

116 SW User's Manual

SW User's Manual

Edit

Delete

Save

start Addr: Im Jype: !overlay

Length/End Addr DUQ

® _length: / Oxl 0000 lo:t Access: I RAM liJ Dse
0 f_nd Addr:: iZJ .SD

QK _!;_ancel !ielp

For more information on the Start Addr, Length/End Addr,
and Access field values, see the list of Map dialog box field
contents below.

Open a dialog box (see the Add button description above) to
reconfigure a mapped region. This button is available when
a listed region is selected.

Revert a mapped region to unmapped memory. This button
is available when a listed region is selected.

Open a dialog box to save the listed configuration to a map
(*.map) file. The following figure shows a sample Save
Map File dialog box.

File!!.ame:

liii!rm

Save Map File

Qirectories:

c: \powrpakm

l27 c:\
~powrpakm

tJ •amp332
tJ •amp360
tJ sampcp32
tJ samphc16
tJ teknote•

5 ave File as Jype: D ri~es:

~/M_a_p_fil_e•_(_•.m_a_p_) -~Iii- I ia c: ms-dos_6

OK

Cancel

Help

You can also use the SaveMap Shell command to save the
map configuration.

Restore Open a dialog box (see the Save button description above)
to configure regions from a previously saved map (*.map)
file. The following figure shows a sample Restore Map File
dialog box.

117 Toolbar Reference

Toolbar Reference

File Harne:

lll!!'Eli:

Restore Map File

D_irectories:

c: \powrpaki

127 c:\
~ powrpaki
D samp386
D scrcaps

Lisi Files of :Upe: Dri:!es:

j~M_a_p _fil_e•~(_•_m_a_p_J -~Iii- I la c: ms-dos_6

OK

Cancel

!:!.elp

You can also use the Restore Map Shell command to
restore a previously saved map configuration.

Close Close the Map dialog box.

Help Open a window for help on mapping.

You can also use the Map Shell command to examine your memory
map and for the same effect as the Add, Edit, and Delete buttons.

Map Dialog Box Field Values
Field

Start Addr

EndAddr

Contents

Where the region begins:

For Intel emulators, the region must start on a 4K
boundary.

For Motorola, the starting address must match the
region size. The emulator automatically configures
memory into two regions, depending on whether you
have 256K or lM bytes of overlay memory. For
256K bytes:

• 64K-byte region must start on 64K boundary.

• 128K-byte region must start on 128K boundary.

For Motorola with lM bytes of overlay memory:

• 64K-byte region must start on 64K boundary.

• 128K-byte region must start on 128K boundary.

• 256K-byte region must start on 256K boundary.

• 512K-byte region must start on 512K boundary.

Where the region ends.

118 SW User's Manual

Size

Type

Access Rights

Space

SW User's Manual

For Intel, 4K, 8K, 12K, 16K, etc. bytes.

For Motorola with 256K bytes of overlay memory,
64K or 128K bytes.

For Motorola with lM bytes of overlay memory,
64K, 128K, 256K, or 512K bytes of memory.

Specify a region size instead of an end address by
choosing the Length rather than the End Addr button
in the Map Add/Edit dialog box, then filling-in an
appropriate value in the Length/End Addr field.

Overlay or Target.

RAM allows read and write access.

ROM BREAK allows read access; prevents write
access; breaks on attempted write access. (For Intel
emulators, with Target memory, write access is
allowed but causes emulation to break.)

ROM NOBREAK allows read access; prevents write
access; does not break on attempted write access.
(For Intel emulators, with Target memory, write
access is allowed.)

NONE prevents any access; breaks on attempted
access. (For Intel emulators, with Target memory,
read and write accesses are allowed but cause
emulation to break.)

For Intel, User or SMM (system management mode)

For Motorola, UP (user program), UD (user data), SP
(supervisor program), or SD (supervisor data)

119 Toolbar Reference

Load Dialog Boxes

Toolbar Reference

To open a dialog box for loading code and symbols, choose the Toolbar
Load button. The following figure shows a sample Load dialog box.

Load

File.f!ame:

ldemo_omf

demo_omf

J!irectories: I OK
c: \powrpaki\samp386

I G:::- c:\ • kancel

demo386_omf G:::- powrpaki I O]!lions ___
f5- samp386

I !!_elp

Lisi Files of I.lope: Dri:'!".es:

I OMFx86 Files("_OMF) l!J j ii51 c: ms-dos_ 6 liJ

When you select a loadfile, the Options button in the Load dialog box
becomes available. Choosing this button opens the Load Options dialog
box for specifying how to load code and/or symbols from the loadfile.

When you are ready to load, choose the OK button. To exit the Load
dialog box without loading, choose the Cancel button. To open a
window with help on loading, choose the Help button.

The following figure shows two sample Load Options dialog boxes.
The first is for the Intel386 EX processor; the second is for the
Motorola 68332 processor. Different options are available for different
processors.

Load Options

0 SM_M

IZJ _Load Code

IZJ Load fuombols

D On J!emand Symbol Loading

D Demangle C++ Hames

D Update Symbol !!_ases

D Load Initial Regisler Values

IZJ fieporl Stalus

D Reporl lflamings

120 SW User's Manual

SW User's Manual

Load Options

[2J :b.~~~ ¢~~~)
l2J Load fuombols

D On !lemand Symbol Loading

D Demangle C++ N_ames

D Load Assembly Modules

l2J fteport S talus

l2J Report '!'larnings

OK I .C.ancel I !:!elp

For Intel loadfiles, be sure the space option (User or SMM) you select is
compatible with the address space configured in the Map dialog box.

To enable an option, check the box beside the option. To disable an
option, uncheck the corresponding box. The options are:

Option

Load Code

Load Symbols

On Demand
Symbol Loading

Demangle C++
Names

Update Symbol
Bases

Load Assembly
Modules

Load Initial
Register Values

Report Status

Report Warnings

Effect

loads executable code sections from your loadfile.

loads data sections and relevant symbolic
information from your loadfile. When this option
is enabled, several sub-options are available.

waits to load symbolic information for each
module until it is needed, for example when you
display the module in the Source window.

uses an MRI algorithm to demangle some C++
symbols, for example overloaded function names.

reads base addresses for symbol tables, once the
Intel386 registers are initialized.

loads symbolic information for modules whose
source files are assembly language.

initializes Intel386 EX processor registers from
loadfile information.

displays an information box showing the load
operation progress.

displays information boxes with non-fatal
anomolies encountered during loading.

You can load a file during emulation. Be sure the file's load addresses
do not overlap the memory occupied by the running program. Loading
a file at a location in use stops the emulator in an unpredictable state.

You can specify equivalent load options with the Load Shell command.

121 Toolbar Reference

Toolbar Reference 122 SW User's Manual

Shell Window Ref ere nee
The following figure shows a sample Shell window.

= TI•
file _Edit ~iew Qptions ~indows f:!.elp

include "include.roe"; ~ II
II Here is an exa111ple of a stal't up script:
II
II uel'sion; II get uersion infor111ation about
II alias "uer" "uersion"; II exa111ple of aliasing a co111111and
II 111ap 0 fffffp; II set up ouerlay 111e111ory 111ap
II
II This file, include.Ille, is run each ti111e PowerPack SLD
II is brought up. Edit this file with co111111ands to set
II up your enuiron111ent. The [InitScript] section of
II the file powerpak.ini (in your Windows directory)
II can be edited to eli111inate this feature or to
II change the na111e of the initial script file.

+ ·i
> I ~ •

tl ••
This chapter describes the the Shell window contents, menus, dialog boxes, and commands;
and how to execute commands in the Shell window.

SW User's Manual

The Shell window contains two panes:

Transcript in the top part of the window, echoes commands and
command output.

Command Entry in the bottom part of the window, is where you enter
commands.

You can change the relative sizes of the Shell window panes. A split
box between the vertical scroll bars defines the edge between the
Transcript and Command Entry panes. When the mouse is pointing to
the split box, SLD displays a split-box cursor (see figure at left). Then
you can drag the split box to resize the panes as you wish.

To change focus from one pane to the other, click in the inactive pane
or press the <Tab> key.

123 Shell Window Reference

Shell Window Menus

Use To:

Run a script; close the Shell window.

Menu

File

Edit Cut and paste text in the Command Entry pane and copy
text from the Transcript pane, using Windows Clipboard.

View

Options

Display commands and/or output in the Transcript pane.

Manage a log file and the command history buffer.

File Menu

The following figure shows a File menu.

Include File ...

E~it

Include File ••• opens a dialog box wherein you can select a script (a text
file containing Shell commands) to be run immediately. The following
figure shows the Include dialog box with the include.me sample script
(provided with SLD) selected.

Open

I!_irectories: I OK I c:\powrpakm

I Cancel I 127 c:\ *

File t!ame:

I include. me

-include_ me :

~ powrpakm
LJ samp332 .!:!elp I
LJ samp360

D ftead OnlJI LJ sampcp32
LJ samphc16
LJ teknotes %

Lisi Files of IJ/pe: Driyes:

I All Files('.") Li) I ia c: ms-dos_6 Iii

Exit closes the Shell window without exiting SLD.

Shell Window Reference 124 SW User's Manual

SW User's Manual

Edit Menu

The following figure shows an Edit menu.

Cu!
.G_opy
easte

Cut moves highlighted strings from the Command Entry pane to the
Windows Clipboard, deleting the strings from the Command Entry
pane.

Copy copies highlighted strings from the Command Entry or
Transcript pane to the Windows Clipboard, leaving the original strings
unaffected.

Paste copies strings from the Clipboard to the Command Entry pane.

View Menu

The following figure shows a View menu .

.,/Show Besults

.C.lear Transcript

Echo Command, when checked, displays in the Transcript pane all text
you enter in the Command Entry pane.

Show Results, when checked, displays in the Transcript pane the
results of any text you enter in the Command Entry pane.

Clear Transcript blanks the Transcript pane.

125 Shell Window Reference

Options Menu

The following figure shows an Options menu.

fdit ~iew ~indows Jjelp
.!.og Results
Log file Name ...

Append To Log File
.,/ Qverwrite Log File

Set History Size ...

Set Iranscript Size ...

Log Results starts recording into a text file all that appears in the
Transcript pane. If you have not previously specified a log filename,
the emulator uses shell.log in your SLD directory (e.g. c:\powerpak).

Log File Name ••• opens a dialog box for specifying the log file path and
name. The following figure shows a sample Log Filename dialog box,
creating a file named emu003.log.

FileJiame:

I emu003.log

shell.log

Save As

Jlireclories:

c:\powrpakm

127 c:\
f5. powrpakm
L:J samp332
L:J samp360
LJ sampcp32
LJ samphc16
L:J teknoles

Save File as IJlpe: Dril!_es:

'-I L-'og=---Fi_le_s(=--z·_L_O_G:.._) __ .._W.. I liiiil c: ms-dos_6

OK

Cancel

.!ielp

0 f!.ead Only

Append To Log File, when checked, ensures that text recorded into an
existing file is added to the end of the file and does not destroy any
prior contents of the file.

Overwrite Log File, when checked, ensures that text recorded into an
existing file is written starting at the beginning of the file, destroying
any prior contents of the file.

Set History Size ••• opens a dialog box to specify the maximum number
of commands to be retained in the history buffer. Use the <Up Arrow>
and <Down Arrow> keys to recall previously entered text from the

Shell Window Reference 126 SW User's Manual

history buffer into the Command Entry pane. The following figure
shows a sample History Size dialog box.

History Size

_saved Commands (0-50):

QK I ~ancel !!elp

Set Transcript Size ... opens a dialog box to specify the maximum
number of lines to be retained in the scrollable Transcript pane. The
following figure shows a sample Transcript Size dialog box.

Transcript Size

Iranscript Size (0-1000):

OK .Cancel !:!_elp

Entering Commands in the Shell Window

SW User's Manual

Enter commands in the Shell window by one of:

• Type one command. Press <Enter> to execute it.

• Type a sequence of commands. Follow each command with a
semicolon(;). Press <Ctrl><Enter> to start a new line without
executing the already typed commands. Press <Enter> to execute
the sequence of commands.

• Execute a script, that is, a file containing multiple commands
separated by semicolons. For example, you can create a script by
logging a series of commands and editing the log file with a text
editor. To execute a script at any time during an emulator session,
use the Include command (described later in this chapter). In the
powerpak.ini file, you can specify a script to be executed
automatically when you invoke SLD. The default script specified
in powerpak.ini is include.me.

• Recall a previously entered command from the history buffer by
entering <Ctrl><Up Arrow> or <Ctrl><Down Arrow> to scroll

127 Shell Window Reference

through saved commands, edit the command as needed, then press
<Enter> to execute the command. To specify the number of
commands to be saved, open the Options menu, choose Set History
Size, and fill-in the dialog box.

To cancel a command line without executing it, press <Esc> instead of
<Enter>. To interrupt command execution, press <Esc>.

Enter addresses as hexadecimal values. Enter data values in either
decimal or hexadecimal radix, with the Ox prefix to indicate any
hexadecimal value. For example:

Reg PC 55; II Set register PC to 55 decimal.

Dump 400; II Dump memory at address 400 hexadecimal.

Write 10:50 Ox33; II Write 33 hexadecimal to segment 10
II hexadecimal, offset 50 hexadecimal.

Shell Window Reference 128 SW User's Manual

Shell Window Commands

SID User's Manual

Notational Conventions

The following notational conventions are used in the following pages:

Notation Meaning

COMMAND NAME
commandname
CommandName

<placeholder>

[option]

Case is not significant in command names and
aliases.

Indicates an argument. Substitute a value or a
symbol for the place holder.

Brackets delimit an item that can be repeated
no more than once. The brackets are not to be
entered as part of the command, unless
otherwise noted.

{<many_ values>} Braces delimit an item that can be repeated
zero or more times. The braces are not to be
entered as part of the command, unless
otherwise noted.

<series>... Ellipsis indicate a series ofrepeating items.

option_l I option_2 A vertical line separates options, one of which
can be selected.

(option_l I option_2) Parentheses around an options list indicates
that one of the options must be selected. Do
not enter the parentheses.

"<string_constant>" String constants must be surrounded by double
quotation marks.

!*comment*/ Comments are delimited C-style.

//command output Command output is preceded by forward
slashes.

<address> A linear, physical, virtual, or symbolic
address, as described in the Address Formats
chapter.

129 Shell Window Reference

Commands and System Variables Grouped by
Functionality
The following table groups the commands and system variables by
functionality:

To Do For Processor Use

Address translation Intel Xlt

Assembly/disassembly Any Asm

Any AsmAddr

Any Dasm

Any DasmSym

Breakpoints Any Bkpt

Any BkptClear

Any DR

Bus Any BusRetry

Compiler setup Motorola CompilerUsed

Intel386 MaxBitFieldSize

Motorola CPU16 V arlndexCPUl 6Reg

Chip Select setup Motorola ConfigCS

Intel386 EX; RestoreCS
Motorola

Intel386 EX; SaveCS
Motorola

Emulation Any Go

Any Go Into

Any Go Until

Any Halt

Any ResetAndGo

Any Step

Motorola StepMask

Any StepSrc

Events Any EventRestore

Any EventSave

Shell Window Reference 130 SW User's Manual

Help Any Help

Load Code Motorola BDMspeed

Any Load

Any LoadSize

Motorola MergeSections

Any ResetLoaders

Map memory Any Map

Motorola 68360 Map Ranges

Any RestoreMap

Any SaveMap

Memory Any Copy

Any Dump

Any Fill

Any RunAccess

Any Search

Any Size

Any Verify

Any Write

Register Intel386 EX Config

Any Register

Reset Any Reset

Any ResetAndGo

Shell Any Alias

Any Append

Any Clear

Any Delete

Any Echo

Any Exit

Any History

Any If

Any Include

Any Integer

SW User's Manual 131 Shell Window Reference

Any List

Any Log

Any Logging

Any Overwrite

Any Print

Any String

Any Results

Any Transcript

Any While

Stack Any DisableAlarmLimit

Any DisableHigh W aterMark

Any Display Stack

Any EnableAlarmLimit

Any EnableHigh WaterMark

Any FillStackPattern

Any SetStackAlarm

Any SetStackArea

Any SetStackBase

Any SetStackSize

Any Stacklnfo

Status Any $BREAK.CAUSE

Any $EMULATING

Any $SHELL_STATUS

Any Cause

Any EmuStatus

Any lsEmuHalted

Any Signal

Any Time

Any Version

Symbols Any Address Of

Any ConfigSymbols

Any DisplaySymbols

Shell Window Reference 132 SLD User's Manual

Intel DT

Intel GDT

Any GetBase

Intel IDT

Intel LDT

Any NameOf

Intel PM ode

Any RemoveSymbols

Any SetBase

Any SymbolCloseFile

Any SymbolOpenFile

Intel TSS

Test Hardware Any RAMtst

Any Test

Timing Any Lap Timer

Any StartTimer

Any Stop Timer

Trace Motorola 68360 Aux Trace

SW User's Manual 133 Shell Window Reference

Command Dictionary

$BREAKCAUSE
System Variable:
Discovers what
caused emulation to
break.

Related topics:
$EMULATING,
Cause, Go, Golnto,
GoUntil, Halt,
ResetAndGo, Step,
StepSrc

$BREAKCAUSE

Case is significant. Enter this variable in upper case.

Knowing what caused emulation to break can be useful, for example, to
abort script execution because of a certain reason for the break.

$BREAKCAUSE is updated when emulation breaks. Its value
indicates the cause of the break:

0 No cause (for example, emulation not yet started)

1 Target processor was reset

2 Emulator was halted

4 Processor single step

5 Execution breakpoint reached

7 Processor received a double bus fault

8 External break request

9 Unknown cause

/* Following is part of an include file that aborts execution only
when an execution breakpoint occurs. $Z is an undeclared Shell
variable that will halt the script. */

go;
while ($EMULATING){;}; /*loop until emulator halts*/
if ($BREAKCAUSE==5) {$Z;}; /* test for execution breakpoint */

$EMULATING
System Variable:
Discovers whether the
emulator is running.

Related topics:
$BREAKCAUSE,
Cause, Go, Golnto,
GoUntil, Halt,
ResetAndGo, Step,
StepSrc

$EMULATING

Case is significant. Enter this variable in upper case.

Knowing whether the emulator is running can be useful, for example,
to control script execution flow based on emulation status.
$EMULATING has the value:

1 The emulator is running.

0 The emulator is halted.

Shell Window Reference 134 SW User's Manual

bkpt #main;
ResetAndGo;
while ($EMULATING){;};

/* stop after registers initialized *I
/* start from the power-on level *I

/* loop until emulator halts *I

$SHELL_STATUS

System Variable:
Discovers whether the
last shell command
completed
successfully.

AddressOf

Returns the numeric
address of a module,
function, line, or
variable.

Related topics:
DisplaySymbols,
GetBase, NameOf,
Remove Symbols,
Set Base

SW User's Manual

$SHELL_ STATUS

Case is significant. Enter this variable in upper case.

Knowing whether a Shell command completed successfully can be
useful, for example, if you want to control the execution flow of a script
based on whether earlier commands executed as expected.
$SHELL_STATUS has the value:

0

nonzero

The command completed normally.

An error occurred.

bkpt #main; /* stop after registers initialized *I
Reset; I* try to reset processor and update SLD windows *I
If ($SHELL_STATUS) {

Print "Didn't Reset";
Reset CPUonly}; I* Reset without updating SLD windows *I

AddressOf <address>

<address> is a partly or fully qualified symbol name.

The associated numeric address is returned.

You cannot use AddressOf to obtain the address of a local variable,
because the local variable has no fixed location. Instead, use
DisplaySymbols to find the stack offset of a local variable.

addressof #Blank_ TxBuf; II address range of a function
II 6A6 .. 6BF

addressof #MsgRx;
II E68 .. E87 [32]

II address range of an array variable

For function names, you can obtain the same information in the Source
window by double-clicking on the function name to display the
Function pop-up menu, then choosing Show Load Address.

135 Shell Window Reference

Alias

Define orlistanalias. Alias ["<name>" ["<value>"]]

Append

Appends to log file.

Related topics:
Log, Logging,
Overwrite, Echo,
Results

Asm

Write assembly to
memory.

Related topics:
AsmAddr, Dasm,
DasmSym

<name> is the alias. The quotation marks are required.

<Value> assigns a value to the specified name. The quotation marks
are required. Inside <Value>, replace double quotation
marks with single quotation marks.

Entering alias with no parameters lists all currently defined aliases.
Entering alias ''<name>" displays the value of <name>.

Use alias to shorten or change commonly used command strings.

alias "s1" "include 's1 .inc"';

Alias "increment" "$a = $a+ 1; $a;"
$a=O;
increment;
II Ox1 1
increment;
II Ox2 2

Append

When Append has been specified, opening a log file adds text to the
end of the file, preserving the file's prior contents.

You can also configure logging to append to a file by opening the Shell
window Options menu and choosing Append To Log File.

Asm <string>

<String> is an assembly language statement.

Check the syntax of <String> and write the instruction bytes to memory
at the current assembly address. (Determine the current assembly
address with AsmAddr.)

Symbolic assembly is not supported.

Asm nap;
~ 000000 4E71 nap

Shell Window Reference 136 SW User's Manual

AsmAddr

Set the address where
the Asm command will
write.

Related topics:
Asm, Dasm,
DasmSym

AuxTrace

Control Motorola
68360 port A and C
multiplexing.

SW User's Manual

II Number of bytes: 2

You can also assemble new instructions and data into memory with the
single-line assembler. In the Memory window, display memory as
instructions. Double-click on a line to open the single-line assembler
dialog box.

AsmAddr [<mode>] [<address>] [<space>]

<mode>

<address>

<space>

Specifies the Intel addressing mode:

Auto derives the addressing mode based on
the pmode.

Use16 uses 16-bit operands and addresses.

Use32 uses 32-bit operands and addresses.

is a numeric or symbolic address of the location
where the next Asm command will write.

Specifies the Intel address space as user, smm, or
io.

With no <address>, AsmAddr displays the current assembly address.

AsmAddr 2000;
II Asm address offset: 2000

AuxTrace [portA I portC]

portA Puts the Port A signals onto the most significant word of the
auxiliary trace connector (ATC).

portC Puts the Port C signals onto the most significant word of the
ATC.

With no parameters, AuxTrace displays the current port.

AuxTrace is saved and restored when SLD is exited and restarted.

The least significant word of the ATC always provides Port B [O: 15].

137 Shell Window Reference

BDMspeed

Examine or set the
BDMspeed.

Bkpt

Display, set, or modify
breakpoints.

Related topics:
BkptClear, DR

BDMspeed [slow I fast]

slow specifies a system clock slower than 1 MHz.

fast (default) specifies a clock equal to or faster than 1 MHz.

With no parameters, BDMspeed displays its current setting.

Use this command for processors with system clocks slower than 1
MHz. The downloading speed with BDMspeed fast is about five
times the downloading speed with BDMspeed slow.

Bkpt [enable I disable] [temporary I permanent] [<address>]
[@<ID>] [<space>]

enable

disable

temporary

permanent

<address>

<ID>

<space>

with @<ID> specified, enables the breakpoint;
otherwise enables all breakpoints.

with @<ID> specified, disables the breakpoint;
otherwise disables all breakpoints.

removes the breakpoint when it halts emulation.

retains the breakpoint when it halts emulation. To
remove the breakpoint, explicitly delete it.

a numeric or symbolic address. When this
address is accessed, the breakpoint (if enabled)
halts execution.

an integer from 0 to 65534. When you do not
specify an ID for a breakpoint entry, the system
assigns one. When the specified ID matches an
existing breakpoint, the existing breakpoint is
modified. The at (@) is required.

For an Intel emulator, smm or user. smm sets a
breakpoint in SMM address space. user sets a
breakpoint in user address space (the default).

For a Motorola emulator, sp, sd, up, or ud.

With no parameters, Bkpt displays all permanent and temporary
breakpoints. Source information is also displayed whenever a match
exists with the symbol table.

Shell Window Reference 138 SW User's Manual

BkptClear

bkpt disable temporary @ 12
/* disable the temporary breakpoint with ID 12 */

You can also set breakpoints using the Source window mouse or
Breakpoints menu, or the Breakpoint window Set button or Breakpoints
menu.

Remove breakpoints. BkptClear [@<ID> I <address> [<Space>] I all]

Related topics:
Bkpt

BusRetry

Asserts bus error
after timeout.

SW User's Manual

<ID> removes the breakpoint with the specified ID number.
The at (@) is required.

<address> removes the breakpoint at the specified code address.

<Space> used with <address>, optionally specifies the Intel
address space (user or smm) of the breakpoint.

all removes all temporary and permanent breakpoints.

Use BkptClear to remove a specified breakpoint or all temporary and
permanent breakpoints.

BkptClear @ 1 ;

BkptClear all;

/* remove breakpoint with id 1 */

/*remove all breakpoints*/

You can also clear breakpoints using the Source window mouse or
Breakpoints menu, or the Breakpoint window Clear button or
Breakpoints menu.

BusRetry [on I off]

on turn retry on.

off tum retry off.

With no parameters, BusRetry displays its current setting.

Disable retry when contention exists with another driver or when a slow
device takes longer than the time out.

139 Shell Window Reference

Cause

Display the cause of
the last break in
emulation.

Related topics:
$BREAKCAUSE

Clear

Clear the Shell
window Transcript
pane.

Cause

Use this command when emulation is halted to discover the reason for the
most recent halt. Possible Cause responses are:

• No cause is recorded.

• The target processor was reset.

• You entered a Halt command.

• The emulator completed a Step.

• Emulation encountered an execution breakpoint.

• The emulator detected a double bus fault.

• The emulator received an external break request.

• The cause is unknown.

The break cause also appears in the Status window.

Clear

Use Clear to remove all text from the Shell window Transcript pane.
The Shell window View menu Clear Transcript item does the same.

CompilerUsed

Specify the too/chain
used for a Motorola
loadfile.

Related topics:
MergeSections

CompilerUsed [<compiler>]

<compiler> is a supported compiler for Motorola processors.
Look in the powerpak.ini file, in your windows
directory, for a list of the supported compilers.

This command specifies your toolchain (compiler, linker, translator,
and loader). Specify the toolchain before the first time you load code or
symbols; and thereafter only when you change compilers.

CompilerUsed MRI; II Using the MRI toolchain.

You can also specify a compiler with the Source window Options menu
Compiler Used item.

Shell Window Reference 140 SW User's Manual

Config

Defines lntel386 EX
HLDA pin function.

ConfigCS

Sets up the
emulator hardware
to match the target
Motorola processor
chip selects.

Related topics:
RestoreCS,
SaveCS

Config ignoreHLDA [on I off]

on causes the emulator to ignore the HLDA pin state. Set config
ignoreHlda on when HLDA is programmed as an I/Obit.

off (initial default) causes the emulator to examine the HLDA pin
state before generating overlay RAM or trace/trigger strobe.

With no parameters, Config displays its current setting.

On the 386EX, you can program the HLDA pin to function either as
HLDA function or as an I/O bit. The emulator hardware must know
when the bus has been granted to an external master so that overlay RAM
cycles are disabled to prevent corruption. If the HLDA pin is visible, the
emulator disables overlay RAM cycles. Otherwise, the emulator assumes
that no external masters exist.

When using the Intel Evaluation Board, which programs the HLDA pin
to be an I/Obit, set config ignoreHlda on.

ConfigCS ["<filename>"]

<filename> is a file containing chip select register value
specifications. The quotation marks are required.

This command uses the CS registers in the system integration module
(SIM) to program the emulator trace, trigger, and overlay hardware. The
emulator reads the chip select signal mapping and matches the hardware
to these programmed pins and operation modes of the target.

Entering ConfigCS with a filename is the same as entering RestoreCS
with the filename followed by ConfigCS with no filename.

You can also configure chip selects, after programming the processor
SIM peripheral, with the Toolbar Configure menu Configure Chip Selects
item.

ConfigSymbols

Updates symbol
base address from
the Intel descriptor
table.

SW User's Manual

ConfigSymbols [<base name>]

<basename> is the base name for a specific group of symbols.

Updates the symbols with the base address obtained from the descriptor

141 Shell Window Reference

Copy

Copies one region
of target or overlay
memory to another.

Related topics:
Dump, Fill,
RunAccess,
Search, Size,
Verify, Write

table (either GDT or LDT). To get the correct symbol base, the target
program must set up the correct values of GDTR and LDTR and the
contents of those tables.

With no parameters, all symbols are reconfigured. To update a specific
group of symbols, specify the base name for the symbols.

Copy <start> [<end> I Length <len>] [<space>] [Target] to [<dest>]
[<space>] [Target]

<Start>

<end>

length <len>

<space>

Target

to [<dest>]

specifies the starting address of the region to be
copied.

specifies the ending address of the region to be
copied.

specifies the number of bytes to be copied.

for Intel emulators specifies smm or user (the
default) address space.

for Motorola CPU16 emulators specifies data (the
default) or program address space.

for Motorola CPU32 emulators specifies sp, sd (the
default), up, ud, cpu, sO, s3, or s4 address space.

Use this parameter to override the mapping of the
region. If specified, target memory is used as the
source or destination.

Specifies the starting address that will be copied
into.

Because reading and writing memory takes a small amount of processor
time, memory access (such as copying) is initially disabled during
emulation. Use RunAccess to enable memory copying during
emulation; however, such copying can degrade your program execution.

·/*Copy 64 KB from address OxO to overlay at the same address:*/
map O 10000;
copy 0 length 1000 target to O;

I* To copy from overlay to target, the commands are*/
copy O length 1000 to O target;

/*To copy from overlay to overlay*/
copy 1000 length 1000 to 4000;

I* Using symbolic addresses*/

Shell Window Reference 142 SW User's Manual

Dasm

Disassemble
memory.

DasmSym

Control symbolic
disassembly in the
Shell window.

Related topics:
Asm, AsmAddr,
Dasm

copy #func1 #func2 to #ram_area target;

You can also copy memory with the Memory window Edit menu Copy
Memory item.

Dasm [<mode>] [<start> [<end>] [<space.)]

<mode> Specifies the Intel addressing mode:

Auto derives the addressing mode based on the pmode.

Use16 uses 16-bit operands and addresses.

Use32 uses 32-bit operands and addresses.

<Start> is the first address of the region to disassemble.

<end> is the last address of the region to disassemble.

<Space> for Intel emulators specifies smm or user (the default)
address space.

When no addresses are specified, 10 instructions are disassembled
beginning at the previous last address. When only <Start> is specified,
10 instructions starting at that address are disassembled.

You can also view disassembled memory with the Memory window View
menu Disassembly item., or interleaved in your source text with the
Source window View menu Mixed Source And Asm item.

DasmSym [on I off]

on (default) turns on symbolic disassembly.

off turns off symbolic disassembly.

With no parameters, DasmSym displays the current status of symbolic
disassembly.

Symbolic disassembly displays symbols in the disassembly shown in the
Memory window in Disassembly view, the Source window Mixed Source
And Asm view, and the Trace window Instruction view.

You can also toggle symbolic disassembly with the Toolbar Configure
menu Symbolic Disassembly item.

SW User's Manual 143 Shell Window Reference

Delete

Delete a Shell
variable or alias

Delete (Alias "<name>" I <Variable>)

<name> is the alias to be deleted. The Alias keyword and the
quotation marks are required.

<Variable> is the Shell variable to be deleted.

$a= $b = O;

list;
II $a= O
II $b = O

Delete $a

list
II $b = O

Alias "a" "$a;" ;

Alias;
II a: "$a;"

Delete Alias "a";

Alias;

DisableAlarm Lim it

Disable the warning
message for
excessive stack
usage.

Related topics:
DisableHighWater-

Mark,
DisplayStack,
EnableAlarmlimit,
EnableHighWater-

Mark,
FillStackPattem,
SetStackAlarm,
SetStackBase,
SetStackSize,
Stacklnfo,
SetStackArea

DisableAlarmlimit

You can set an alarm (using EnableAlarmlimit) to notify you when
stack usage exceeds a specified percentage of the stack.
DisableAlarmlimit turns off this alarm.

You can also disable the alarm by un-checking the Stack window
Options menu Enable Alarm Limit item.

Shell Window Reference 144 SW User's Manual

DisableH ighWaterMark

Disable keeping
track of the stack
maximum usage.

Related topics:
DisableAlarmLimit,
Displays tack,
EnableAlarmLimit,
EnableHighWater-

Mark,
FillStackPattern,
SetStackAlarm,
SetStackArea,
SetStackBase,
SetStackSize,
Stacklnfo

DisableHighWaterMark

You can set an indicator in the Stack window to keep track of the stack
high-water mark, that is, the maximum stack usage.
DisableHighWaterMark turns off this indicator.

You can also disable the high-water mark by un-checking the Stack
window Options menu Enable High-Water Mark item.

DisplayStack

Display the stack
frames.

Related topics:
DisableAlarmLimit,
DisableHighWater-

Mark,
EnableAlarmLimit,
EnableHighWater-

Mark,
FillStackPattern,
SetStackAlarm,
SetStackBase,
SetStackSize,
Stack Info,
SetStackArea

DisplayStack [locals I hex]

locals includes symbols for automatic variables.

hex displays the stack in the hexadecimal radix of 16 bytes per line.

When you specify no parameters, the display defaults to:

• Addresses only if no symbolic information is available

• Addresses and function names if symbolic information is available

You can also view the stack frames, with stack and return addresses,
parameters, and local variables, in the Stack window.

DisplaySymbols

Display all symbols
or display one of the
following: modules,
functions, public
symbols, or lines.

Related topics:
AddressOf,
GetBase, NameOf,
RemoveSymbols,

SID User's Manual

DisplaySymbols [modules I functions I publics I lines I sorted I
#<module name>]

modules displays modules only.

functions

publics

displays modules, global variables, functions, and
blocks.

displays all printable symbols including publics
(those code labels and variables defined publicly for

145 Shell Window Reference

SetBase

DR

lines

sorted

the purpose of linking modules together). For
example, libraries normally do not contain local
symbols but any accessible global variables are
displayed as public symbols.

displays each module followed by the line numbers
loaded for that module. The information for each
line includes the line number, its ending column,
and its start address.

displays the modules sorted alphanumerically.

#<module name> displays all symbols for the specified module.

With no parameters, DisplaySymbols displays modules, global
variables, functions, and local variables, but not publics nor individual
line numbers.

If you have previously issued a SymbolOpenFile command, the
DisplaySymbols output is directed to the symbol file.

The output is displayed in four columns:

• The first column contains the symbol type (MODULE, VARIABLE,
FUNCTION, BLOCK, PUBLIC VAR, PUBLIC LABEL). Each
line is indented to show the level or scope of the symbol in the
symbol hierarchy. Modules and publics are at the root level.
Functions defined in a module are indented one level. Variables
local to a function are indented under that function. Blocks are
treated as unnamed functions and indented for each nesting level.

• The second column contains the symbol name.

• The third column contains the symbol type for a variable, the return
type for a function, and the range of source line numbers for a
module. For local variables and parameters allocated as registers,
the register name and type are displayed in the third column.

• The fourth column shows the symbol's address information. For
static (fixed) address symbols, the fourth column shows the address
range followed by the size of the range in decimal in square
brackets ([<size>]). The end address points to the last byte of the
range. For local variables allocated on the stack, the address is a
signed offset from the stack frame pointer.

controt tntet386 DR <num> [bkpt I user I [data <mode> <address> <size> [exact]]]
debug register use.

Shell Window Reference 146 SW User's Manual

SW User's Manual

<num> identifies the debug register as 0, 1, 2, or 3.

bkpt makes the register available for execution breakpoints.

user reserves the register for use by your program. The emulator
avoids using this register for execution breakpoints and
modifies DR7, allowing user access to any debug register.

data configures the register as a data read/write breakpoint.

<mode> is one of:

x sets the register to instruction execution mode.
Emulation breaks on execution of the instruction
whose first byte is at <address>.

w sets the register to data write mode. Emulation breaks
on a write to <address> in user, SMM, or I/O space.

rw sets the register to data read/write mode. Emulation
breaks on a read or write to <address> in user, SMM,
or I/O space.

<address> specifies the virtual or linear base address of the breakpoint.

<size>

exact

specifies the 1, 2, or 4 bytes starting with <address> as the
address range of the data breakpoint. Emulation breaks on
any data access completely or partly overlapping this range.

ensures the processor waits after each instruction for all data
cycles to complete. Any data breakpoint thus occurs
immediately after the instruction that caused the breakpoint
data cycle. (Execution breakpoints always occur exactly.)
With exact not specified, several instructions can execute
beyond the one that caused the breakpoint data cycle. Using
exact can degrade your program's performance.

With no parameters, DR lists all four debug register allocations.

Use DR to allocate the four Intel386 debug registers for use by the
emulator as execution or data breakpoints or for use by your target
system. When you install SLD, all four debug registers are configured
for execution (hardware) breakpoints. Changing this configuration
reduces the number of execution breakpoints available.

Reserving a debug register for use by your program also allows
undetected program access to system registers and to DR 7. Your
program can thus make changes to DR7 that can cause the emulator to
behave unpredictably.

dr 0 user; /* Reserve drO for the target system. */

dr 1 bkpt; I* Allow dr1 to be used as an execution breakpoint. */

147 Shell Window Reference

DT
Displays the
descriptor table.

Related topics:
gdt, idt, ldt, tss

Dump

Dumps memory
contents to the
screen, formatted.

Related topics:
Copy, Fill,
RunAccess,
Search, Size,
Verify, Write

dr 2; /*Show the current configuration of dr2. */

dr; /*Show the current configuration of dr1, dr2, dr3, and dr4. */

dr 3 w 1 OOOp dword; /* Define a dword sized, data write */
/* breakpoint at physical address 1000. */

DT (<selector_range> I <register> I base <address> [limit
<bytes>]) [all]

<selector_range> specifies either a single value (e.g., 0 or Ox08) or
two values to specify a range (e.g., 4 14 or Ox10
Ox400).

<register> specifies a register.

base <address> specifies the descriptor table base address.

[limit <bytes>] If a base address is specified, you must also specify
either <selector_range> or limit <bytes> to
define the range to be displayed.

all displays all entries, including invalid or reserved.

Use DT to display the descriptor table entries for a single selector or
range of selectors. The selector displayed is determined by <selector
range>, <register>, or base <address>, one of which must be
specified. Specifying <register> uses the register value for the selector.

You need not specify which descriptor table. The table is determined by
bit 2 (Tl) of the selector.

dt Ox08 Ox48 all; /*displays all descriptor entries*/
/*from selector Ox08 to Ox48 */

dt ds; /*displays just the current ds descriptor entry */

Dump [loop] <address1> [<address2>] [byte I word I long I
dword] [<space>]

<address1>

<address2>

specifies the frist address to be displayed.

specifies the last address to be displayed. If
<address2> is not specified, 16 bytes (one line) is
displayed. An address can be symbolic or numeric.

Shell Window Reference 148 SLD User's Manual

Echo

Display or toggle
command echo.

Related topics:
Append, Echo, Log,
Logging, Overwrite,
Results

SW User's Manual

byte

word

long, dword

<space>

displays the values as bytes.

displays the values as words.

displays the values as double words.

for Intel emulators specifies smm, user (the
default), or io address space.

for Motorola CPU16 emulators specifies data (the
default) or program.

for Motorola CPU32 emulators specifies sp, sd (the
default), up, ud, or cpu address space.

loop repeatedly preforms the operation but prints no
output to the screen, even if errors occur.

The physical read of memory uses the Size command settings rather
than the format size set by Dump. For example, if size=byte, Dump
reads byte-sized memory accesses regardless of how the data is to be
displayed.

Because reading and writing memory takes a small amount of processor
time, memory access (such as dumping to the screen) is initially disabled
during emulation. Use RunAccess to enable Dump during emulation;
however, such access can degrade your program execution.

You can also view memory contents in up to 20 simultaneously active
Memory windows as hexadecimal or decimal bytes, words, or dwords
with equivalent ASCII characters; or as disassembled instructions.

Echo [on I off]

on enable command echo.

off disable command echo.

When no options are entered, Echo displays the current setting.

With command echo enabled, commands entered in the Command Entry
pane are echoed to the Transcript pane before command execution. This
Echo command is the same as the Echo in the Options menu of the
Shell window.

You can also toggle the Shell command echo with the View menu Echo
item.

149 Shell Window Reference

EmuStatus

Report the current
emulation status.

Related topics:
ls Emu Halted,
$EMULATING

EmuStatus

Use EmuStatus to discover whether the processor is halted after
lsEmuHalted returns no result.

isemuhalted;

emustatus;
II Processor is running.

halt;
ll961C60 0000 0000 ORl.B

isemuhalted;
II The emulator is halted.

#00,DO

The emulation status (halted or running) also appears in the Status
window or icon title. You can also use $EMULATING to discover the
emulation status.

EnableAlarmLimit

Enable a stack
alarm limit.

Related topics:
DisableAlarmLimit,
DisableHighWater-

Mark,
DisplayStack,
EnableHighWater-

Mark,
FillStackPattem,
SetStackAlarm,
SetStackArea,
SetStackBase,
SetStackSize,
Stacklnfo

EnableAlarmLimit

If, when emulation halts, the stack usage is exceeding the alarm limit set
by SetStackAlarm, you are notified.

You can also enable the alarm limitby checking the Stack window
Options menu Enable Alarm Limit item.

EnableHighWaterMark

Track maximum
stack usage.

Related topics:
DisableAlarmLimit,
DlsableHighWater-

Mark,

EnableHighWaterMark

This command turns on a graphical indicator (an arrow on the stack
meter) in the Stack window that keeps track of the maximum amount of
memory used by the stack. The indicator is the stack high-water mark.

Shell Window Reference 150 SW User's Manual

DisplayStack,
EnableAlarmLimit,
FillStackPattern,
SetStackAlarm,
SetStackArea,
SetStackBase,
SetStackSize,
Stack Info

You can also enable the high-water mark by checking the Stack window
Options menu Enable High-Water Mark item.

EventRestore

Restore saved
Events.

EventSave

Save Events to a
file.

Exit

EventRestore "<filename>"

"<filename>" specifies the file where the event definitions are to
be stored. The quotation marks are required.

You can also restore events from a file with the Event window File menu
Restore Events item.

EventSave "<filename>"

"<filename>" specifies the file in which to store the event
definitions. The quotation marks are required.

You can also save events to a file with the Event window File menu
Save Events item.

Exit the Shell exit
window.

Fill

Fill memory with
data.

Related topics:
Copy, Dump,

SW User's Manual

This command closes the Shell window. To exit from SLD, on the
Toolbar open the File menu and choose Exit.

You can also close the Shell window with the Shell window File menu
Exit item.

Fill <address1 > <address2> <data> [byte I word I long I dword]
[<space>]

<address1> is the first address in the region to be filled.
Addresses can be symbolic or numeric.

151 Shell Window Reference

RunAccess,
Search, Size,
Verify, Write

<address2>

data

byte

word

long, dword

<space>

is the last address in the region to be filled.

is the data top be written.

specifies the data is a byte value.

specifies the data is a word value.

specifies the data is a double word value.

for Intel emulators specifies smm or user (the
default) address space.

for Motorola CPU16 emulators specifies data (the
default) or program.

for Motorola CPU32 emulators specifies sp, sd (the
default), up, ud, or cpu address space.

Fill fills memory from <address1 >to <address2> with one or more
repetitions of <data>. When the number of data bytes is less than the
address range, the data is repeated enough times to fill the address
range. Up to 256 bytes of data can be specified.

The physical write to memory uses the Size command settings rather
than the format size set by the fill command. For example, if
size=byte, any fill command fills memory by byte-sized memory
accesses.

Because reading and writing memory takes a small amount of processor
time, memory access (such as filling memory) is initially disabled during
emulation. Use RunAccess to enable Fill during emulation; however,
such access can degrade your program execution.

Fill O 1234 OxO dword; /*Fills memory from Oto 64K with OxO */
II Fill successful.

You can also fill memory with the Memory window Edit menu Fill
Memory item.

FillStackPattern

Initialize the stack.

Related topics:
DisableAlarmLimit,
DisableHighWater-

Mark,
DisplayStack,
EnableAlarmLimit,
EnableHighWater-

Mark,

FillStackPattern

With FillStackPattern, you can initialize the stack with a special
pattern to enable the tracking of the stack usage.

Other commands can also initialize the stack:

• If you specify the stack base and size with FillStackArea, you can
also initialize the stack in the single FillStackArea command.

Shell Window Reference 152 SW User's Manual

SetStackAlarm,
SetStackArea,
SetStackBase,
SetStackSize,
Stacklnfo

GOT

Displays the global
descriptor table.

Related topics:
dt, idt, ldt, tss

GetBase

Get one or all base
names and their
address offsets.

Related topics:
AddressOf,
DisplaySymbols,
NameOf,
RemoveSymbols,
Set Base

SW User's Manual

• Enabling the high-water mark automatically fills the stack with a
pattern.

GDT [<selector_range> I <register> I base <address> [limit
<bytes>]] [all]

Use GDT to display the global descriptor table entries for a single
selector or a range of selectors. Which selectors are displayed is
determined by <selector range>, <register>, base <address>, or the
current gdt_base and gdt_limit.

With no parameters, GDT shows all valid entries in the range gdt_base
to gdt_base+gdt_limit.

<Selector _range> specifies a single value (0 or Ox08) or a range
between two values (4 14 or Ox10 Ox400).

<register> specifies a register to be used for the selector.

base <address> specifies the descriptor table base address.

[limit <bytes>] Ha base address is specified, you must also specify
either <Selector_range> or limit <bytes> to
define the range to be displayed.

all displays all entries, including invalid or reserved.

gdt OxOO Ox18 base 501010L; /*Displays global descriptor*/
/*table entries. The table base is 501010L. */
/*This command displays global descriptor*/

/*table entries from 501018L (selector Ox08) */
/*to 501028L (selector Ox18). */

GetBase [<basename>]

<basename> displays only the specified base.

With no parameters, all bases loaded into the symbol table are displayed
along with their offset values.

Compilers and linkers place symbols into groups called bases, assigning
names to the groups. GetBase displays these symbol bases.

153 Shell Window Reference

Go
Start emulation.

Related topics:
$BREAKCAUSE
System Variable,
$EMULATING
System Variable,
Cause, Golnto,
GoUntil, Halt,
ResetAndGo, Step,
StepSrc

Golnto

Emulate toa
stepped-into or
returned-into
function.

Related topics:
$BREAKCAUSE
System Variable,
$EMULATING
System Variable,
Cause, Go, GoUntil,
Halt, ResetAndGo,
Step, StepSrc

Go

Emulation does not start unless a function can be found in the symbol
table that includes the current program counter address.

Other ways to start emulation include:

• On the Toolbar, choose the Go button.

• In the Source window, choose the Go button.

• In the Source window, open the Run menu and choose Go.

• Press the <F9> key.

Golnto [call I return] [line I statement]

Golnto emulates until a call or return is executed, steps into the call or
return, and stops at a line or statement of the entered function.

With no parameters specified, the first Golnto you use defaults to
Golnto call statement. If you have previously used Golnto with
parameters, any Golnto without parameters defaults to the parameters
you used before.

call If a call is executed within the current function, emulation
continues through the call and into the called function.
Emulation halts on the beginning of a line or statement of
that function. This line or statement may be the first
instruction of the function or later, depending on how the
compiler generates code and line-number start addresses.

return

line

If a return instruction is executed within the current
function, emulation continues through the return and stops
on the beginning of the next line or statement of the
function that was returned into.

The break is on a source line.

statement The break is on a C statement.

call and return are mutually exclusive; statement and line are mutually
exclusive.

You can also do these variations of "Go Into" with the Source window
buttons (as configured by the Source window Options menu Set Go
Buttons item) and the Source window Run menu.

Shell Window Reference 154 SW User's Manual

GoUntil

Emulate until a call
or return.

Related topics:
$BREAKCAUSE
System Variable,
$EMULATING
System Variable,
Cause, Go, Golnto,
Halt, ResetAndGo,
Step, StepSrc

Halt

GoUntil [call I return] [line I statement]

call

return

within the current function, emulates until a call or return is
executed.

within the current function, emulates until a return
instruction is executed.

line breaks on a source line.

statement breaks on a C statement.

call and return are mutually exclusive; statement and line are mutually
exclusive.

With no parameters specified, the first GoUntil you use defaults to
GoUntil call statement. If you have previously used GoUntil with
parameters, any GoUntil without parameters defaults to the parameters
you used before.

GoUntil emulates until a call or return is executed, then stops.

Because of how call and return work, some assembly instructions prior
to the call or return are not necessarily executed.

You can also do these variations of "Go Until" with the Source window
buttons (as configured by the Source window Options menu Set Go
Buttons item) and the Source window Run menu.

Halt emulation. Halt

SW User's Manual

Use Halt to stop emulation with no dependence on breakpoints or
triggers.

Other ways to manually stop emulation include:

• On the Toolbar, choose the Halt button.

• In the Source window, choose the Halt button.

• In the Source window, open the Run menu and choose Halt.

• Press the <F2> key.

155 Shell Window Reference

Help

Invoke on-line help. Help [<Command>]

History

Control number of
saved commands.

IDT

Use Help to display the command syntax for one or more Shell window
commands. When you specify no <Command>, Help displays an
alphabetical list of all commands.

You can also get on-line help from any SLD window Help menu (or the
CPU window Options menu) or by pressing the <Fl> key.

History [<size>]

<Size> specifies the number of commands to save in the Shell
command history buffer.

With no parameters, History reports the number of previously entered
commands that are saved in the history buffer. To change the size of the
list, specify a <size>.

Press <Ctrl><Up Arrow> or <Ctrl><Down Arrow> to recall commands
from the history buffer to the Command Entry pane.

You can also set the history size with the Shell window Options menu
History Size item.

Displaytheinterrupt IDT [<index_range> I <register> I base <address> [limit <bytes>]]
descriptor table. [all]

Related topics:
dt, gdt, ldt, tss

<index_range> specifies either a single value (e.g., 0 or Ox08) or
two values to specify a range (e.g., 4 14 or Ox10
Ox400).

<register> specifies a register; the selector for the specified
register is used.

base <address> specifies the descriptor table base address.

[limit <bytes>] If a base address is specified, you must also specify
either <selector_range> or limit <bytes> to
define the range to be displayed.

all displays all entries, including invalid or reserved.

With no parameters, IDT shows all valid entries in the range idt_base

Shell Window Reference 156 SW User's Manual

lf..Else

Conditionally
execute Shell

to idt_base+idt_limit.

Use IDT to display the interrupt descriptor table entries for a single
index or a range of indices. Which selectors are displayed is determined
by <index range>, <register>, base <address>, or the current
idt_base and idt_limit.

idt OxOO Ox18 base 501010L /* Displays interrupt descriptor*/
/*tables. The table base is 501010L. */

/*This command displays interrupt descriptor*/
I* tables from 501018L (selector Ox08} */

/*to 501028L (selector Ox18}. */

If (<condition>) {<block> } [else {<block>}]

window commands. <Condition> evaluates to nonzero (true) or zero (false). The
parentheses are required.

SW User's Manual

<block> is a list of Shell commands delimited with
semicolons. The braces are required.

If <Condition> is true, the first block of statements executes. Otherwise,
if the else block is present, the second block of statements executes.

$a=O;
If ($a} {

"true";
}
else {

"false";
};
II false

$a= 1;
If ($a} {

"true";
}
else {

"false";
};
II true

157 Shell Window Reference

Include

Read commands
from a file.

Integer

Identifies an integer.

Related topics:
String

include "<filename>"

<filename> is the name of a file containing Shell commands (a
script). The quotation marks are required.

The commands are executed as if entered in the Command Entry pane.

include "d:\shell.cmd"; /* executes d:\shell.cmd *I

You can also run a script with the Shell window File menu Include item.

Integer (<variable>)

<variable> is the name of a Shell variable.

Use Integer to discover whether a variable value is an integer. Integer
returns true (1) if <variable> is an integer and false (0) otherwise.

$a=O;
lnteger($a);
II 1 1

If (integer($a)) {"it is an integer"; }
II it is an integer

lsEmuHalted

Discover whether
emulator is halted.

Related topics:
EmuStatus,
$EMULATING

lsEmuHalted

Use lsEmuHalted to discover whether the emulator is halted. No
response indicates the emulator is not halted. If you get no response,
also use EmuStatus or $EMULATING.

isemuhalted;

halt;
II 961 C60 0000 0000

isemuhalted;
II The emulator is halted.

ORl.B #00,DO

The emulation status (halted or running) also appears in the Status
window or icon title. You can also use $EMULATING to discover the
emulation status.

Shell Window Reference 158 SW User's Manual

LapTimer

Takes a snapshot of Lap Timer
the timer.

Related topics:
StartTimer,
Stop Timer

LDT

Displays the local
descriptor table.

Related topics:
dt, gdt, idt, tss

Returns the number of milliseconds elapsed since the timer was started,
but does not stop the timer.

Lap Timer;
while {laptimer < 5000) {};

LDT [<selector_range> I <register> I base <address> [limit
<bytes>]] [all]

<Selector_range> specifies either a single value (e.g., 0 or Ox08) or
two values to specify a range (e.g., 4 14 or Ox10
Ox400). when a single value is specified, it is used
as the selector from the GDT to specify the LDT
base and limit.

<register> specifies a register; the selector for the specified
register is used.

base <address> specifies the descriptor table base address.

[limit <bytes>] If a base address is specified, you must also specify
either <selector_range> or limit <bytes> to
define the range to be displayed.

all displays all entries, including invalid or reserved.

With no parameters, LDT shows all valid entries in the range ldt_base
to ldt_base+ldt_limit.

Use LDT to display the interrupt descriptor table entries for a single
index or a range of indices. Which selectors are displayed is determined
by <Selector_range>, <register>, base <address>, or the current
ldt_base and ldt_limit.

ldt OxOO Ox18 base 501010L; /*Displays local descriptor tables.*/
/* The table base is 50101 OL. This command displays */
/* local descriptor tables from 50101 SL {selector Ox08) */

I* to 501028L {selector Ox18). */

SW User's Manual 159 Shell Window Reference

List

List Shell variables. List [<variable>]

Load

Load code and
symbols to mapped
or target memory.

Related topics:
LoadSize

With no parameters, List displays all the Shell variables and their
values. To list the value of a single variable, specify the variable name.

List;
II (system) $SHELL_STATUS = 262158

Load "<filename>" [user I smm] [[no]code] [[no]symbols] [[no]asm]
[[no]demand] [[no]demangle] [[no]updatebase] [module
<name>] [reload] [[no]loadregister] [[no]warn] [[no]status]

"<filename>"

user

smm

[no]code

[no]symbols

[No]asm

[no]demand

[no]demangle

is the pathname of the file to be loaded. The quotes
are required.

For Intel emulators, loads code into user memory
(default).

For Intel emulators, loads code into system
management mode memory.

loads (default) or does not load code.

loads (default) or does not load symbols.

loads or does not load (default) Motorola assembly
module names.

loads symbolic information only on demand
(default) or loads all symbols (globals, locals, line
numbers) for all modules in the program initially.
On-demand loading initially loads just global
symbols (variables, module names, global function
names, type definitions). Local variables and line
numbers are not loaded until needed.

demangles or does not demangle (default) C++
names.

[no]updatebase updates symbol bases or does not update symbol
bases, for Intel emulators. This parameter is valid
for OMF386 loadfiles only. Use updatebase in
conjunction with loadregister.

module <name> After an initial on-demand load, load symbols for

Shell Window Reference 160 SW User's Manual

SW User's Manual

the specified module Use in a script if you know
you will be debugging a specified module or
modules. If you load symbols with this option,
there is no delay when you view one of these
modules.

reload To purge old symbols and load new ones with one
command, use the reload option.

[no]loadregister loads or does not load (default) initial register
values from OMF386 loadfiles.

[no]warn displays or does not display (default) warnings
from the loader.

[no]status displays (default) or does not display load statistics.

You can load code and symbols during emulation. A void loading into
an area of memory occupied by the executing code. Loading into
memory that is being executed can stop the emulator in an unpredictable
state.

This command is the same as the Load button on the Toolbar.

/*on-demand symbol loading*/
Load demo.abs;
II 1986 bytes code loaded.
II 2 module(s) loaded.
II Load complete.

/* load module */
Load demo.abs module dm_main;

/*load symbols only, on demand (no code)*/
load demo.abs nocode;

/*load code only (don't load symbols)*/
Load demo.abs nosym;

/*code and all symbols are loaded*/
load demo.abs nodemand;

/*load a new file, do not display warnings*/
load sample.abs reload nowarn;

You can also load files with the Toolbar Load button or from the Source
window File menu.

161 Shell Window Reference

Load Size

Set the memory
write-access size
for the toad
command.

Related topics:
Load, Size

Log

Display or set the
name of the log file.

Related topics:
Logging, Append,
Overwrite, Echo,
Results

Logging

Display or toggle the
logging setting.

Related topics:
Log, Append,
Overwrite, Echo,
Results

LoadSize [byte I word I long I dword]

byte writes memory by bytes.

word writes memory by words.

long (default) writes memory by longs. Writing in long is the fastest
way to load code.

dword is the same as long.

Log ["<filename>"]

<filename> is the name of the log file to be opened or created.
The quotation marks are required.

With no parameters, Log displays the name of the current log file.

To start recording into the logfile, use Logging.

Logfile "c:\shell.log";
Log;
II log file name: c:\shell.log

You can also open a log file with the Options menu Log File Name item.

Logging [on I off]

With no parameters, Logging reports whether logging is on.

on

off

turns logging on.

turns logging off.

When logging is on, the lines that are written to the transcript window
are also written to the log file.

When you turn logging on, if overwrite mode is in effect, previously
logged information is destroyed. To preserve information recorded
earlier to the same file, enter Append before Logging on.

You can also toggle logging with the Options menu Log Results item.

Shell Window Reference 162 SW User's Manual

Map

Replaces all or part
of the target system
memory with
emulator memory.

Related topics:
SaveMap,
RestoreMap,
MapRanges

SW User's Manual

map [clear I <base> [<end>] [target] [<access>]] [<space>]

clear clears all map blocks.

<base> is the address to start an overlay memory range. The
address is rounded down to the nearest boundary block
equal to the amount of memory mapped. In an Intel
emulator, you can start a region on any 4K boundary. In a
Motorola emulator, you must start a region on a boundary
corresponding to the size of the region. (For example, 64K
byte regions must start on a 64K boundary; I28K-byte
regions must start on a I28K boundary.)

<end>

target

is the last address of the range. If no <end> is specified:

Intel emulators map a 4K-byte region. The end address is
rounded up to the top of the 4K-byte region containing the
end address. With options for IM bytes or 4M bytes of
overlay, you can map up to I6 regions.

Motorola emulators map a 64K-byte region. The end
address is rounded up to the top of the 64K-byte region
containing the end address. With 256M bytes of overlay,
you can map 64K-byte and I28K-byte regions. With IM
bytes of overlay, you can also map 256K-byte and 5I2K-byte
regions.

map memory range to the target.

<access> specifies access permissions:

ram

rom

rombrk

allows read and write access (the default).

allows read access; prevents write access; does
not break on attempted write access. (For
lntel386 emulation in overlay memory, writes
are allowed.)

allows read access; prevents write access; breaks
on attempted write access. (For Intel386
emulation in overlay memory, writes are
allowed but break emulation.)

none prevents any access; breaks on attempted access.
(For lntel386 emulation in overlay memory,
access is allowed but breaks emulation.)

<space> for Intel emulators specifies smm, user (the default), or io
address space.

163 Shell Window Reference

MapRanges

Configure overlay
memory fora
Motorola 68360
emulator.

Related topics:
SaveMap, Map,
RestoreMap

for Motorola CPU16 emulators specifies data (the default)
or program.

for Motorola CPU32 emulators specifies sp, sd (the
default), up, ud, or cpu address space.

With no parameters, map displays the current map settings.

map Oram;
II Mapped block starting at address 00000000 to OOOOFFFF RAM

You can also map memory with the Toolbar Map button.

MapRanges [0 I 2 I 4]

0 No map ranges; four hardware breakpoints are available.

2 Two map ranges; two hardware breakpoints are availble.

4 Four map ranges; no hardware breakpoints are available.

With MapRanges you can configure zero, two, or four blocks of overlay
memory and a corresponding (four, two, or zero) number of hardware
breakpoints.

When you use MapRanges, the map is reset to target RAM. Use the
Toolbar Map button or the Map command to reconfigure memory.

MaxBitFieldSize

Set the maximum bit
field size for
OMF386 loadfi/es.

MaxBitFieldSize [16 I 32]

16 Sets the maximum bit field size to 16 bits.

32 Sets the maximum bit field size to 32 bits (default).

If you use the Borland C compiler in generating your OMF386 loadfile,
set the maximum bit field size to 16 bits.

MergeSections

Merge setions from MergeSections [on I off]
a Motorola loadfile.

on merges the loadfile into two default sections.
Related topics:
CompilerUsed off loads the sections as they appear in the loadfile (default).

Shell Window Reference 164 SW User's Manual

NameOf

Find the symbol
representing an
address.

Related topics:
AddressOf,
DisplaySymbols,
GetBase,
RemoveSymbols,
Set Base

Overwrite

Overwrites the log
file.

Related topics:
Append, Log,
Logging, Echo,
Results

Pm ode

Returns the
processor mode.

SW User's Manual

For Motorola loadfiles containing more than 32 sections, merging
sections can save memory.

NameOf <address>

<address> is a numeric address.

Use NameOf to look up a specified address and display the symbol that
most closely matches the address.

NameOf Ox0900;
II #main#14#1 (function main)

Overwrite

When Overwrite has been specified, opening a log file (Log) or starting
to log (Logging On) destroys the file's prior contents.

You can also configure logging to overwrite a file by opening the Shell
window Options menu and choosing Overwrite Log File.

Pmode

The 386 processors operate in various pmodes. These are real, virtual-
86 (V86), protected, and System Management Mode (SMM).

Protected mode is further divided into 16-bit protected mode and 32-bit
protected mode. The Intel386 DX and Intel386 SX processors do not
have System Management Mode. The Intel386 CX and Intel386 EX
haveSMM.

pmode;
II Processor mode= Prot32

The pmode also appears at the bottom of the Status window icon.

165 Shell Window Reference

Print

Print a value.

RamTst

Run the memory
hardware
confidence tests.

Related topics:
Test

Register

Display or set
register values.

Print (<variable> I "<string>")

<variable> is the name of a Shell variable.

<String> is a string constant. The quotation marks are
required.

Use Print to display the value of variables and strings.

Print("abc");
II abc

$a= 5;
Print($a);
II Ox5 5

RamTst [loop] <address1 > <address2> [<space>]

loop repeats the low-level operations in the specified test
so the operation can be observed on an
oscilloscope. Press <Esc> to stop looping. An
error does not halt the test loop.

<address1>

<address2>

<space>

starting address to test.

last address to test.

for Intel emulators specifies smm, user (the
default), or io address space.

for Motorola CPU16 emulators specifies data (the
default) or program.

for Motorola CPU32 emulators specifies sp, sd (the
default), up, ud, or cpu address space.

ramtst OxOOOO OxFFFF; /*Test memory from OxO to Oxffff. *I

Register [<name> [value]] [...]

<name> is an Intel or Motorola register mnemonic.

<value> is the value to be put into the register.

Shell Window Reference 166 SW User's Manual

With no parameters, Register displays all the registers. A <name>
without a <Value> displays the value of the specified register; with a
<value> sets the register to <value>.

You can also view and edit the registers in the CPU window.

RemoveSymbols

Remove symbols
and clear symbol
tables.

Related topics:
AddressOf,
DisplaySymbols,
GetBase, Load,
NameOf, SetBase

Reset

Reset the
processor.

Related topics:
ResetAndGo

SID User's Manual

RemoveSymbols

Use this command to remove all loaded symbols and clear all allocated
symbol tables.

Reset [cpuonly]

Reset sends a RESET signal to the processor. All CPU register
contents are lost on reset:

• The processor RESET pin is asserted.

• The program counter and stack pointer are read fro,m memory.

• All SLD windows are updated. The Stack window display is
invalid because the stack is reset. The Source window displays the
beginning of your startup code, at the program counter.

With cpuonly specified, Reset resets only the processor and does not
update the SLD windows. Use this parameter only if Reset without
cpuonly fails to reset the processor:

1. Enter Reset CPU only, resetting the processor without updating the
SLD windows.

2. Reset your target.

3. Enter Reset again, without CPUonly, to update the SLD windows.

You can also reset the processor and optionally update the SLD windows
from the Toolbar Configure menu, the Source window Run menu, or the
CPU window Options menu.

167 Shell Window Reference

ResetAndGo

Assert and release
the target reset line.

Related topics:
Reset

ResetAndGo

This operation is required to start some target systems. For example,
targets that use an external watchdog timer or power-saver hardware
may require that you use ResetAndGo ..

You can also reset the processor and start emulation with the Source
window Run menu Reset And Go item.

Reset loaders

Reinitialize the
loaders.

RestoreCS

Restores the chip
select register
values.

Related topics:
SaveCS, ConfigCS

ResetLoaders "<pathname>"

<pathname> is the path to the directory containing the
loaders.ini file. The quotation marks are
required.

If you do not specify the pathname, the emulator looks for loaders.ini
in the current SLD directory (e.g. c:\powerpak).

ResetLoaders causes SLD to reinitialize loaders. Use this command
when you get an error message telling you to do so.

RestoreCS "<filename>"

<filename> is an ASCII file containing chip select values.
The quotation marks are required.

This command restores the chip-select registers to the values specified
in the ASCII file saved with SaveCS. This file contains a line for
each of up to 30 chip select registers. Each line can be up to 80
characters long, containing the following sequential fields:

<CHIP SELECT REGISTER NAME>
<space(s) (20)>
<hex value>
<new line or optional white space>
<anything other than OA and 0>
<new line>

The register name must be in upper case and must match a valid chip
register name. Only values different from the default values need be
entered. The <anything other than ... > field is for a short comment.

Shell Window Reference 168 SW User's Manual

RestoreMap

Restores a saved
map configuration.

Related topics:
SaveMap, Map,
MapRanges

Results

Set the Transcript
window results
display.

Related topics:
Log, Logging,
Append, Overwrite,
Echo, Results

RunAccess

Set the target
processor access
mode during
emulation.

Related topics:
Copy, Dump, Fill,
Search, Size,
Verify, Write

For Motorola emulators, use RestoreCS "<filename>" to restore chip
selects if you don't want to configure the emulator hardware to match;
otherwise, use ConfigCS "<filename>" to restore chip selects and
configure the emulator hardware.

You can also restore the chip selects from a file with the Toolbar
Configure menu Restore Chip Selects item.

RestoreMap "<filename>"

<filename> contains the map configuration to restore. The
quotation marks are required.

You can also restore the map from a file with Map dialog box Restore
button, accessible via the Toolbar Map button.

Results [on I off]

on enable command results echo.

off disable command results echo.

Without parameters, Results displays the current setting.

Use this command to toggle whether the transcript window displays the
Shell command results.

You can also toggle the echo with the View menu Show Results item.

RunAccess [on I off]

off (default) disables reading and writing memory during
emulation.

on enables reading and writing memory during emulation.

Without parameters, RunAccess shows whether run access is on or
off.

Because reading and writing memory takes a small amount of
processor time, memory access is initially disabled during emulation.
Such access includes scrolling and refreshing the Memory and

SLD User's Manual 169 Shell Window Reference

SaveCS

Saves the chip
select registers.

Related topics:
RestoreCS,
ConfigCS

Peripheral windows and reading and writing memory from the
Memory, Peripheral, and Shell windows. Use RunAccess to make
memory accessible during emulation; however, such access can degrade
your program execution.

You can also toggle run access with the Toolbar Configure menu Run
Access item.

SaveCS "<filename>"

<filename> creates or overwrites a file with an ASCII
description of the chip select register values. The
quotation marks are required.

Use SaveCS to record the chip select values. The values can be
restored from the file using RestoreCS.

Different chip select registers are saved for different processors. The
following lists the registers saved for each processor.

Motorola 68330 and 68340:

MBAR
CSOMASK
CSOBASE
CSlMASK
CSlBASE

CS2MASK
CS2BASE
CS3MASK
CS3BASE

Motorola 68331, 68332, 68333, and 68HC16:

CSPARO CSOR2
CSPARl CSBAR3
CSBARBT CSOR3
CSORBT CSBAR4
CSBARO
CSORO
CSBARl
CSORl
CSBAR2

Motorola 68360:

MBAR
GMR
MST AT
BRO
ORO

CSOR4
CSBARS
CSORS
CSBAR6
CSOR6

BR2
OR2
BR3
OR3
BR4

MCR
PPARB
PPARAl
PPARA2

CSBAR7
CSOR7
CSBAR8
CSOR8
CSBAR9
CSOR9
CSBARlO
CSORlO

BRS
ORS
BR6
OR6
BR7

Shell Window Reference 170 SW User's Manual

SaveMap

Saves a map
configuration.

Related topics:
RestoreMap

Search

Find the address of
a pattern.

Related topics:

BRl OR4 OR7
ORI

Intel386 EX:

PlCFG DMACFG PlLTC
P2CFG INTCFG PlDIR
P3CFG TMRCFG P2LTC
PINCFG SIOCFG P2DIR
CSOADL CS3ADL P3LTC
CSOADH CS3ADH P3DIR
CSOMSKL CS3MSKL CS6ADL
CSOMSKH CS3MSKH CS6ADH
CSlADL CS4ADL CS6MSKL
CSlADH CS4ADH CS6MSKH
CSlMSKL CS4MSKL UCSADL
CSlMSKH CS4MSKH UCSADH
CS2ADL CS5ADL UCSMSKL
CS2ADH CS5ADH UCSMSKH
CS2MSKL CS5MSKL
CS2MSKH CS5MSKH

Since no peripheral registers are available in the Intel386 CX/SX, none
are saved.

You can also save the chip selects with the Toolbar Configure menu
Save Chip Selects item.

SaveMap "<filename>"

<filename> specifies the drive, directory, and name of the file
where the map configuration is saved. The
quotation marks are required.

You can later restore the map configuration with RestoreMap.

You can also save the map from the Map dialog box, accessible from
the Toolbar Map button.

Search <start> <end> [not] <data> [byte I word I long I dword]
[<space>]

SLD User's Manual 171 Shell Window Reference

Copy, Dump, Fill,
RunAccess, Size,
Verify, Write

Set Base

Relocate symbols.

Related topics:

<Start>

<end>

not

<data>

byte

word

long, dword

<space>

is the first address in the range of addresses to
search. Addresses can be symbolic or numeric.

is the last address in the range to search.

searches for the first pattern mismatch rather than
the first pattern match.

specifies a pattern for which to search, up to 256
bytes long.

specifies the data is a byte value.

specifies the data is a word value.

specifies the data is a double word value.

for Intel emulators specifies smm, user (the
default), or io address space.

for Motorola CPU16 emulators specifies data (the
default) or program.

for Motorola CPU32 emulators specifies sp, sd
(the default), up, ud, or cpu address space.

Search searches the specified address range for the described data
pattern and returns the address of the match.

The physical read of memory uses the Size command settings rather
than the format size set by the Search command. For example, if
size=byte, Search reads memory in byte-sized memory accesses.

Because reading and writing memory takes a small amount of
processor time, memory access (such as searching memory) is initially
disabled during emulation. Use RunAccess to enable Search during
emulation; however, such access can degrade your program execution.

Fill O ffff OxO user;
Write 400 Ox1234 user;

Search O ffff Ox1234 user;
II pattern found at 400

You can also search for a pattern in memory with the Memory window
Edit menu Search Memory item.

SetBase <base name> <address>

<base name> is the base name for the symbols to be relocated.

Shell Window Reference 172 SW User's Manual

AddressOf,
DisplaySymbols,
GetBase, NameOf,
RemoveSymbols

<address>

Case is significant in specifying this parameter.

numeric or symbolic address. This is an offset
that is added to the address of each symbol
contained in the base.

SetBase relocates the symbols in the specified <base name> to their
offset address plus the specified <address>.

Each base has a base address; each symbol in a base is assigned an
offset from the base address. Adding an amount to the base address
increases the symbol addresses by that amount. Use SetBase to
change the base address. The default base address is 0.

You can use SetBase to quickly relocate all symbols in a base. For
example, if code is loaded by the target program into memory other
than where it was linked, you can set the base address to the new load
address using SetBase, thus matching the code symbol addresses to
the memory where the code is loaded.

To discover the base names and their address offsets, use GetBase.

SetStackAlarm

Set the stack alarm
limit.

Related topics:
DisableAlarmLimit,
DisableHighWater-

Mark,
DisplayStack,
EnableAlarmLimit,
EnableHighWater-

Mark,
FillStackPattern,
SetStackArea,
SetStackBase,
SetStackSize,
Stacklnfo

SetStackAlarm <percent>

<percent> is a percentage of the stack area, from 1 to 99.

Use SetStackAlarm to set the stack alarm limit as a percentage of the
stack. The alarm appears as a red line on the stack meter in the Stack
window.

With the stack alarm enabled, SLD notifies you when the stack usage is
exceeding the stack alarm limit at the time the emulator halts.

You can also set the stack alarm with the Stack window Options menu
Alarm Limit item.

SetStackArea

Redefine the stack
location and size.

Related topics:
DisableAlarmLimit,
DisableHighWater-

Mark,

SW User's Manual

SetStackArea <address> <stack size> [fillArea]

<address>

<stack size>

is the numeric or symbolic address for the base of
the stack.

is the stack size.

173 Shell Window Reference

DisplayStack,
EnableAlarmLimit,
EnableHighWater-

Mark,
FillStackPattern,
SetStackAlarm,
SetStackBase,
SetStackSize,
Stacklnfo

fill Area Initializes the stack area.

There are separate Shell commands to set the stack base and size.
Since there is a delay between command executions, invoking the first
command to change the value of the stack base or size can
inadvertently define an invalid stack area. To avoid this problem, use
SetStackArea to set both the stack base and the stack size with one
command.

To show the current stack settings, use Stacklnfo. To fill the stack
area with a pattern without changing the stack base and size, use
FillStackPattern.

setstackarea Ox1000 Ox500 fillarea;

You can also set the stack base and size with the Stack window Options
menu Stack Area item.

SetStackBase

Set the stack base SetStackBase <address>
address.

Related topics:
DisableAlarmLimit,
DisableHighWater-

Mark,
DisplayStack,
EnableAlarmLimit,
EnableHighWater-

Mark,
FillStackPattern,
SetStackAlarm,
SetStackArea,
SetStackSize,
Stacklnfo

<address> is the numeric or symbolic address for the base of
the stack.

You can set the stack base address separately from setting the stack size
with SetStackBase.

There are separate Shell commands to set the stack base and size.
Since there is a delay between command executions, invoking the first
command to change the value of the stack base or size can
inadvertently define an invalid stack area. To avoid this problem, use
SetStackArea to set both the stack base and the stack size with one
command.

To show the current stack settings, use Stacklnfo.

SetStackBase FOOO;

You can also set the stack base with the Stack window Options menu
Stack Area item.

SetStackSize

Set the stack size. SetStackSize <stack size>

Related topics: <Stack size> is the stack size.
DisableAlarmLimit,

Shell Window Reference 174 SW User's Manual

DisableHighWater-
Mark,

DisplayStack,
EnableAlarmLimit,
EnableHighWater-

Mark,
FillStackPattern,
SetStackAlarm,
SetStackArea,
SetStackBase,
Stacklnfo

Signal

Display or set the
signal-enabled
status.

You can set the amount of memory used by the stack separately from
setting the stack base address with SetStackSize.

There are separate Shell commands to set the stack base and size.
Since there is a delay between command executions, invoking the first
command to change the value of the stack base or size can
inadvertently define an invalid stack area. To avoid this problem, use
SetStackArea to set both the stack base and the stack size with one
command.

To show the current stack settings, use Stacklnfo.

SetStackSize 200;

You can also set the stack size with the Stack window Options menu
Stack Area item.

Signal [[<signal name> [enable I disable]] I [all enable I all
disable]]

Enabling or disabling a signal connects or disconnects, respectively, the
signal between the CPU and the rest of the system. With no parameters
are specified, Signal displays the status of all signals. To display the
status of a particular signal, specify only <Signal name>.

enable connects the specified signal.

disable

all enable

all disable

signal name

disconnects the specified signal.

connects all signals.

disconnects all signals.

The signal name from the following list:

386DX, SX RESET, READY#, NMI, INTR,

386CX

386EX

HOLD, NA#, coprocessor signals

RESET, READY#, NMI, INTR,
HOLD, NA#, SMI#, A20M#,
coprocessor signals

RESET, READY#, NMI, INT0_3,
INT4_7, HOLD, NA#, SMI#,
coprocessor signals

Motorola 68360

Other Motorola

RESET

RESET, CLK

SW User's Manual 175 Shell Window Reference

Size

Selects memory
access size.

Related topics:
Copy, Dump, Fill,
RunAccess,
Search, Verify,
Write

Stacklnfo

Display the stack
information.

Related topics:
DisableAlarmLimit,
DisableHighWater-

Mark,
DisplayStack,
EnableAlarmLimit,
EnableHighWater-

Mark,
FillStackPattern,
SetStackAlarm,
SetStackArea,
SetStackBase,
SetStackSize

StartTimer

Start the timer.

Related topics:
Lap Timer,
Stop Timer

signal;
II CLK DISABLE
II RESET DISABLE

signal reset enable;
II RESET ENABLE

You can also toggle the signal connections with the CPU window
Options menu Signals item.

Size [byte I word I long I dword]

Byte, word, long, and dword specify the size of subsequent memory
accesses. The memory access size is independent of the display size.

You can also specify the memory access size from the Memory window
Options menu.

Stacklnfo

This command displays the current calling stack information. The
number of frames shows the call nesting level.

Stacklnfo;
II stack base = 12345678
II size= 0
II current stack pointer= 87654321
II frames= O
II alarm limit = 0%, DISABLED
II high water mark= 00000000
II stack type= high to low

The same information appears in the Stack window.

StartTimer

This command resets the elapsed time to zero and starts the timer.

Shell Window Reference 176 SW User's Manual

Step

Step emulation.

Related topics:
$BREAKCAUSE
System Variable,
$EMULATING
System Variable,
Cause, Go, Golnto,
GoUntil, Halt,
ResetAndGo,
StepSrc

StepMask

Mask interrupts
during single
stepping in a
Motorola emulator.

StepSrc

Step emulation by
source lines or
statements.

Related topics:
$BREAKCAUSE
System Variable,
$EMULATING
System Variable,
Cause, Go, Golnto,
GoUntil, Halt,

SLD User's Manual

Step [into I over] [<count>]

Step emulates one or more instructions in the target.

into if a function call is encountered, steps into the function.

over if a function call is encountered, the step executes the
entire function (and any functions it calls) and stops on the
instruction after the call.

<Count> specifies how many instructions to step. A large <Count>
can cause stepping to go for a long time. Press <ESC> to
break out of stepping before the step count is finished.

The Source window Options menu Source Step Granularity item affects
the Step operation. The <count> overrides the Source window Options
menu Step Count specification.

You can also do these variations of "Step" with the Toolbar Step
button, the Source window buttons, and the Source window Run menu.

StepMask [on I off]

on masks interrupts.

off allows interrupts.

Use StepMask in a Motorola emulator to prevent interrupts from
interfering when you single-step through your code.

You can also mask interrupts with the Toolbar Configure menu Mask
Interrupts For Step item.

StepSrc [into I over] [1ine I statement] [<count>]

into

over

line

if a function call is encountered, steps into the function.

if a function call is encountered, executes the entire
function (and any functions it calls) and stops on the
instruction after the call.

the step granularity is one source line. There can be more
than one statement per source line. Lines can be out-of-

177 Shell Window Reference

ResetAndGo, Step

Stop Timer

Stop and report on
the timer.

Related topics:
Lap Timer,
Start Timer

String

Discover whether a
variable is a string.

Related topics:
Integer

order relative to the sequence of instructions the compiler
generates. For example, an execution sequence can be
lines 33, 34, 31, 35.

statement the step granularity is one statement.

<count> specifies how many steps to go. A large <count> can
cause stepping to go for a long time. Press <Esc> to stop
stepping before the step count is finished.

Line or statement overrides the Source window Options menu Source
Step Granularity specification .. The <Count> overrides the Source
window Options menu Step Count specification.

You can also do these variations of "Step" with the Toolbar Step
button, the Source window buttons, and the Source window Run menu.

Stop Timer

Stop the timer and return the number of milliseconds elapsed since the
timer was started.

String (<variable>)

<Variable> is the name of a Shell variable. The parentheses
are required.

String returns true (1) if the variable is a string and false (0) otherwise.

$a= "qrs";

String($a);
II Ox1 1

if (string($a)) { "it is a string"; }
II it is a string

SymbolCloseFile

Close the symbol
text fife.

SymbolCloseFile

Closes the previously opened text file created by SymbolOpenFile.

Shell Window Reference 178 SW User's Manual

SymbolOpenFile

Open a text file.

Test

Run the hardware
confidence tests.

Related topics:
Ramtst

Time

SymbolOpenFile <filename>

<filename> is the name of a file.

Opens a text file with the specified filename. Subsequent output from
DisplaySymbols is directed to the specified file. The file can be
viewed with an editor or file browser.

test [loop] [repeat I continue] [brief I verbose] [<test name> I
<test number>]

loop repeats the low-level operations in the specified
test so the operation can be observed on an
oscilloscope. Press <Esc> to stop looping.

repeat

continue

brief

verbose

<test name>

repeats the specified test until you press <Esc>.

continues through all tests, even if one fails.

displays only the final test result.

displays every test result and progress report.

runs the test specified by name.

<test number> runs the test specified by number.

With no parameters, Test runs all tests and displays the results.

The confidence tests are designed to run with the Stand-Alone Self
Test (SAST) board as the target.

Display the date and time
time.

Transcript

Set the number of
lines saved in the
transcript pane.

Related topics:

SW User's Manual

This command displays the date and time.

Transcript [<size>]

<size> is the number of transcript lines to be saved, from 0 to 1000.

You can scroll the transcript pane of the Shell window.

179 Shell Window Reference

History

TSS

Displays task state
segments.

Related topics:
dt, gdt, idt, ldt

You can also set the transcript size with the Options menu Set
Transcript Size item.

TSS [<selector> I <register> I base <address> [limit <bytes>]
[tss286 I tss386]] [all]

TSS displays the task state segments for any selector or base address.
If you specify <register>, the selector for that register is used.

<selector> specifies a single value (e.g., 0 or Ox08) used as
the selector, referenced from the GDT. When no
selector is specified, the tss_base and tss_limit are
used.

<register> specifies a register; the selector for the specified
register is used.

base <address> specifies the descriptor table base address.

[limit <bytes>] If a base address is specified, you must also
specify either <Selector_range> or limit <bytes>
to define the range to be displayed.

all displays all task state segments plus the 1/0 bit
map. Displays all entries, including invalid or
reserved entries.

tss286 specifies Intel286 processor segmentation.

tss386 specifies Intel386 processor segmentation.

VarlndexCPU16Reg

Specify the registers VarlndexCPU16Reg [none I xk:ix I yk:iy I zk:iz].
used for index
variables in
Motorola CPU16
loadfiles.

Related topics:
CompilerUsed

none uses no register.

·xk:ix uses the xk:ix register.

yk:iy uses the yk:iy register.

zk:iz uses the zk:iz register.

The maximum address size for CPU16 is 16 bits. Some toolchains
support 20-bit addressing for large memory model programs. For such
programs, the additional four bits are assigned to a special register.
Use VarlndexCPU16Reg before loading to inform the emulator which

Shell Window Reference 180 SW User's Manual

register is used for 20-bit addressing in your loadfile.

Verify

Toggles on and off a Verify [on I off]
read-after-write.

Related topics:
Copy, Dump, Fill,
RunAccess,
Search, Size, Write

Version

Report the version
of the emulator.

While

on turns verify on (default).

off turns verify off.

With Verify on, write integrity is checked. If the byte read back does
not match the byte written, an error is returned. Verification can
happen after a Write, Fill, or Load. Verification does not affect the
target processor during emulation.

You can also toggle write verification with the Memory window
Options menu Write Verify item.

version

Use version when logging an emulator session to record which version
of the emulator hardware, software, and firmware is in use. The
information from this command is also needed when you contact
Microtek for technical support.

You can also view some version information from any SLD window
Help menu About item.

Repeatedly execute While (<condition>) { <Statements> }
statements while the
condition is true.

SW User's Manual

<condition>

<statements>

evaluates to true (non-zero) or false (zero). The
parentheses are required.

is one or more Shell commands. The braces are
required. Delimit commands with semicolons.

While <Condition> is true, the <Statement list> executes.

$a = O; While ($a < 500) {$a = $a + 1 ;}

181 Shell Window Reference

Write

Write to an address.

Related topics:
Copy, Dump, Fill,
RunAccess,
Search, Size, Verify

Xlt

Translates an Intel
numeric address.

Related topics:
AddressOf,
NameOf

Write [loop] <address> <data> [byte I word I long I dword]
[<space>]

loop

<address>

<data>

byte

word

long, dword

<space>

repeatedly preforms the operation but prints no
output to the screen, even if errors occur.

specifies a numeric or symbolic address.

specifies up to 256 data values to write to
memory starting at <address>.

specifies the data is a byte value.

specifies the data is a word value.

specifies the data is a double word value.

for Intel emulators specifies smm, user (the
default), or io address space.

for Motorola CPU16 emulators specifies data
(the default) or program.

for Motorola CPU32 emulators specifies sp, sd
(the default), up, ud, or cpu address space.

The physical write to memory uses the Size command settings rather
than the format size specified in the Write command. For example, if
size=byte, Write commands write by byte-sized memory accesses.

Because reading and writing memory takes a small amount of
processor time, memory access is initially disabled during emulation.
Use RunAccess to enable Write during emulation; however, such
access can degrade your program execution.

You can also edit memory in the Memory windows.

Xlt <address>

<address> is a numeric or symbolic address.

Xlt translates any numeric or symbolic address to its equivalent linear
or physical form, according to Intel numeric addressing rules. For a
virtual <address>, Xlt displays the linear and physical equivalents.
For a linear or physical <address>, Xlt displays the physical
equivalent.

Shell Window Reference 182 SW User's Manual

Source Window Ref ere nee
The following figure shows a sample Source window .

.Eile J;dit

+

Go
[000401]
[000402)
[000402]

000403

~iew Bun f!_reakpoints

Halt Ste Into Into Return

int i;
char *TXBuffer = (char *)OxFFFD20;

000632 227C OOFF FD20 MOUEA.L #OOFFFD20,A1

This chapter describes the Source window contents, menus, buttons, and dialog boxes.

The Source window displays:

• When enabled, the source line numbers

• When available, the source (e.g. C or Assembly) from the source
file

• When enabled, the disassembly corresponding to each source line,
including the load address, hexadecimal code, and instruction

You can display two independently scrolling Source window panes.
To reveal the second pane, drag the split box above the top arrow of
the vertical scroll bar. When the mouse points to the split box, a split
box cursor (see figure at left) appears.

To change focus to a pane, click in the inactive pane or press <Tab>.

Source Window Menus

SW User's Manual

Menu

File

Edit

View

Run

Breakpoint

Options

Use To:

Load; view loadfile information; display another
module; close the Source window.

Navigate through source.

Configure the source and disassembly display.

Start or stop emulation; step; reset.

Define and manage breakpoints.

Manage source display options and emulation
controls.

183 Source Window Reference

Open another SLD window. Windows

Help Open a window for help on SLD commands.

File Menu

The following figure shows a sample Source window File menu.

Load Information ...

.6.rowse Modules ...
Erevious Browsed Module
Next Browsed Module

E~it

1 ... WRPAKM\SAMP332\332QSM.ABS
Z. ... RPAKl\SAMP386\DEM0386.0MF

Into Call

Load Code ••• opens the Load dialog box to load code or symbols from a
loadfile. This has the same effect as choosing the Toolbar Load button,
as described in the "Toolbar Reference" chapter. To reload a file,
choose from the (up to four) files listed at the bottom of the Source
window File menu.loading:Source window

Load Information ••• opens an information box describing the loadfile
and what has been loaded into the emulator. The following figure
shows a sample Load Information box for the Motorola 68332
emulator.

Load Information

Loadlile: C: \PO\l/RPAKM\SAMP332\332QSM.ABS

Byles: 2094 Lines: 185
Modules: 3
Symbols: 114 PC: Ox400

Types: 301 Slack Base: OxF12
Functions: 20 Slack Size: Ox80

!~K1 I I !ielp

Browse Modules ••• opens a dialog box to change the module (source,
disassembly, and symbols) displayed in the Source window. The
following figure shows a sample Browse Modules dialog box.

Source Window Reference 184 SW User's Manual

SW User's Manual

entry
main

Browse Modules

Load File: C :\POWRPAKM\SAMP332\332QSM.ABS
Language: C
Time: 11 /111/1994 - 113: 58: 114
Address: 1111114AA •• 1111116F3
Path: D :\ TBIRD\M332\SAMPLES\SAMP332\

~+[:Jllllllllllllll::I• l.._ Q•K~ !;_anc:el .!::!elp

To select a module, click on the module name or use the <Up Arrow>
and <Down Arrow> keys to scroll the cursor. For the selected module,
the dialog box displays:

Load File: The loadfile path and filename

Language: The language (e.g. C or Assembly) of the source file

Time:

Address:

The date and time the loadfile was created

Where in memory the module is loaded

Path: The source file path and filename

Choose OK to browse to the selected module or Cancel to exit the
dialog box without changing the Source window display.

Previous Browsed Module changes the Source window display back to
the module you last viewed. SLD maintains a history list of which
modules you have browsed and in what order you browsed them.

Next Browsed Module changes the Source window display to the next
module in the browse history list.

Exit closes the Source window. To exit SLD, use Exit from the Toolbar
File menu.

1, 2, 3, 4 lists the last four files you loaded. Reload a file by choosing it
from this list. This method of reloading a file bypasses the Load and
Load Options dialog boxes.

185 Source Window Reference

Edit Menu

The following figure shows two sample Edit menus. The first is for the
Intel386 EX processor; the second is for the Motorola 68332 processor.
Different menu items are available for different processors.

Go To .Line ...
Go To Address •.•
Go To CS:Elf

Go To .Line •••
Go To Address •.•
Go To .ec

Search opens a dialog box for searching the Source window text for a
specific string. Case is significant in the search string. The search
starts from the Source cursor and stops at the first instance of the string
found. If the string is not found, the search stops at the end of the
module. To search the entire module, position the Source cursor at the
beginning of the module before starting the search.

The following figure shows a Search dialog box.

Search

,S.earch for:

OK .Cancel !::!.elp

Search Next searches again for the last string you entered in the Search
dialog box. The search starts from the cursor and stops at the first
match or the end of the module.

Go To Line ... opens a dialog box to move the Source cursor to a
specific line. If you specify a line number beyond the last line in the
current module, the Source cursor moves to the end of the module. The
following figure shows a Go To Line dialog box.

Source Window Reference 186 SLD User's Manual

SW User's Manual

Go To Line

Line Number:

I~

OK I ~ancel I !:::!.el11

Go To Address ••• opens a dialog box to move the Source cursor to a
specific address. If no source is available for the address you specify,
the Source window shows disassembled code beginning at that address.

The following figure shows two sample Go To Address dialog boxes.
The first is for the Intel386 EX processor; the second is for the
Motorola 68332 processor. Different fields are available for different
processors.

Go To Address

Address:

I CS:FFFFEJE.11

Spac~: OJ!.erand/Address Size:

!Auto

__ Q_K __ I [~ancel I [,___.!::!_e_IP _ _.

Go To Address

Address:

Ima
OK I ~ancel .!::!elp

For Intel processors, you can specify:

Space: as User or SMM (system management mode)

Operand/Address Size: as Use16 (16-bit addressing mode), Use32
(32-bit addressing mode), or Auto
(addressing mode derived from the pmode).

Go To CS:EIP (for Intel processors) or Go To PC (for Motorola
processors) moves the Source cursor to the current program counter.

187 Source Window Reference

View Menu

The following figure shows two sample View menus. The first is for
the Intel386 EX processor; the second is for the Motorola 68332
processor. Different menu items are available for different processors.

Bun .6.reakpoints
Go ~ource Only

,/Mixed Source and Asm

,/Line Numbers

Source Only, when checked, displays only your source code.

Mixed Source and Asm, when checked, displays lines of disassembly
from memory interleaved with the corresponding source code lines.

Line Numbers, when checked, displays your source file line numbers

Operand/Address Size, for Intel processors, opens a sub-menu with
the following choices to display disassembly text:

Auto Operand/address size is 16-bit or 32-bit, depending on the
pmode.

Use16 Operand/address size is 16-bit.

Use32 Operand/address size is 32-bit.

Source Window Reference 188 SW User's Manual

SW User's Manual

Run Menu

The following figure shows a sample Run menu .

.S.tep Into
Step Qver

Go Until .Qall
Go Until Retyrn
Go Into Call
Go Into Return

Go!o Cursor
Go Erom Cursor

SteJ! Into Continuously
Step Oyer Continuously

R~set

Reset And Go

Go or pressing <F9> starts emulation.

Halt or pressing <F2> stops emulation.

F7
FB

Step Into or pressing <F7>, when the program counter is on a function
call, executes the call to the function and stops before the first
instruction in the function. The Source window displays the beginning
of the function.

To step into a function with no associated source, before stepping open
the View menu and check Mixed Source and Asm. Otherwise, Step
Into operates the same as Step Over for that function.

Step Into and Step Over are indistinguishable from each other when the
program counter is not on a function call.

Step Over or pressing <F8>, when the program counter is on a
function call, executes the call as a single step. This step executes the
function, returns, and stops before the first instruction following the
return. (However, encountering a breakpoint in the stepped-over
function stops emulation at the breakpoint.) The Source window
continues to display the calling function.

Go Until Call executes from the program counter to the beginning of a
statement or line (depending on the granularity) containing a function
call.

189 Source Window Reference

Go Until Return executes from the program counter to the beginning
of a statement or line (depending on the granularity) containing a
return.

Go Into Call executes from the program counter and stops before the
first instruction in the next called function.

Go Into Return execute from the program counter through the first
return instruction, and stops before the first instruction after the return.

Go To Cursor executes from the program counter and stops before the
selected (highlighted) line or statement in the Source window.

Go From Cursor moves the program counter to the selected
(highlighted) line or statement in the Source window, then starts
emulation.

Step Into Continuously does Step Into operations until you halt it.

Step Over Continuously does Step Over operations until you halt it.

Reset asserts the RESET pin of the target processor, causing the CPU
to reset its internal registers and to load the program counter and stack
pointer from the reset vector locations. The RESET pin is then
released. All SLD windows are updated; the Source window displays
the beginning of code (where the program counter points) and the Stack
window display is invalid.

Reset And Go does a Reset, as above, and starts emulation from the
power-up reset vectors. To use Reset And Go, you must have the reset
vectors set.

Breakpoints Menu

The following figure shows a sample Breakpoints menu. Set
Permanent Breakpoint, Set Temporary Breakpoint, Set Breakpoint...,
and Show All ... are always available; Clear, Enable, and Disable are
available when you have selected a breakpoint from those listed in the
Breakpoint window; Clear All, Enable All, and Disable All are
available when one or more breakpoints are listed. To select a
breakpoint, click on it or use the <Up Arrow> and <Down Arrow> keys
to move the highlight.

Source Window Reference 190 SW User's Manual

SW User's Manual

Set eermanent Breakpoint
Set Iemporary Breakpoint
Set .!;!reakpoint...

!;.I ear
.Enable
Qisable

Clear All
Enable All
Disable All

.S.how All ...

Set Permanent Breakpoint sets a permanent breakpoint at the Source
cursor.

Set Temporary Breakpoint sets a temporary breakpoint at the Source
cursor.

Set Breakpoint .•• opens a dialog box to set a breakpoint at a specific
address. The following figure shows two sample Set Breakpoint dialog
boxes. The first is for the lntel386 EX processor; the second is for the
Motorola 68332 processor. Different fields are available for different
processors.

Set Breakpoint

.Hreakpoint at: !ox73 I
Modules functions

ldm_main I~ I main l!I
St_!!te rT~pe Spac!;.:
@Enable @ E!ermanent !user 0
0 Qisable 0 Iemporary

I !Se(I I CIQse I I t!.elp I

191 Source Window Reference

Set Breakpoint

.6.reakpoint at: I #332qsm#Unload_RxBuf I

.Modules functions

1332qsm 0 lunLoad_RxBuf 13
St.!l.te T¥pe
® J;nable ® eermanent

0 Qisable 0 Iemporary

I Set I I Cl.Qse I I t!elp I
Fill-in the dialog box as follows:

Breakpoint at: can be a numeric or symbolic address. For symbolic
addresses, choose a module and a function from the
drop-down list boxes.

State can be toggled to Enable or Disable. The emulator
ignores a disabled breakpoint.

Type can be permanent or temporary. A temporary
breakpoint is removed after it causes the break.

Space: for Intel processors, can be User or SMM.

Choose the Set button to define the breakpoint or the Close button to
close the dialog box without defining a new breakpoint.

Clear removes a breakpoint at the Source cursor.

Disable marks the breakpoint at the Source cursor to be ignored when
emulation executes through the code where the breakpoint is located. A
disabled breakpoint highlight in the Source window is grey.

Enable marks the breakpoint at the Source cursor to cause a break
when emulation executes through the code where the breakpoint is
located. An enabled breakpoint highlight in the Source window is red.

Disable All disables all currently defined breakpoints. The breakpoints
remain defined.

Enable All enables all currently defined breakpoints.

Clear All removes all breakpoints. No breakpoints remain defined.

Show All ••• opens the Breakpoint window, described in the Breakpoint
Window Reference chapter.

Source Window Reference 192 SW User's Manual

SW User's Manual

Options Menu

The following figure shows a sample Options menu for the Motorola
68332 processor. Different menu items are available for different
processors.

Return ,o To

Source Step _Granularity ~

Step .C.ount. ..

f!_rowser History Depth ...

Source Line Qelimiter ~

.S.et Go Buttons ~

Compiler !,lsed ...

Source Path opens a dialog box to add, delete, or change the paths to
the source files used in generating your loadfile. You can define up to
50 source paths. The paths are saved in powerpak.ini for the next time
you run SLD.

When you browse a module in the Source window, the emulator
searches the source paths for the corresponding source file in the order
they appear in the dialog box, from top to bottom.

The following figure shows a sample Source Path dialog box.

Source Path

r••Mdl!lili!!llGl'I!

I Add... 11 Edit... 11 Delete 11 Close 11 .Cancel 11 !:!elp

To select a source path for editing or deleting, click on it or use the <Up
Arrow> and <Down Arrow> keys to move the highlight.

The Source Path dialog box buttons are:

Add... opens a dialog box for adding a new source path to the
emulator's list of source paths. The following figure shows a
sample Open dialog box. Select a source file; choose OK to

193 Source Window Reference

add the directory to the source path list or Cancel to close the
dialog box without adding the path.

--~-----~~~

File.fiame:

IE

Open

.!lireclories:

c:\powrpakm

125- c:\
f5. powrpakm
LJ samp332
LJ samp360
L:J sampcp32
LJ samphc16
LJ leknoles

Lisi Files of J.Jpe: Driyes:

'-lc_F_ile_s..:..(•_.C..:..) ___ __..liJ.. I !Eil c: ms-dos_G

OK

Cancel t-2.. ____ ..

!:!.elp

D Read Only

Iii

Edit... opens a dialog box for editing the selected source path. The
following figure shows a sample Edit Path dialog box.

Edit Path

fath:

. ' ... ' • ; I

QK I .Qancel tlelp

Delete removes the selected path from the emulator's list of source
paths.

Close closes the Source Path dialog box, automatically keeping all
Add, Edit, and Delete changes you have made.

Cancel closes the Source Path dialog box, first asking you to confirm
whether to keep or abandon the Add, Edit, and Delete changes
you have made.

Tab Width ••• opens a dialog box to specify the number of spaces the
Source window uses to replace a tab character in your source file. The
default tab width is eight spaces. The following figure shows a sample
Tab Width dialog box.

Source Window Reference 194 SLD User's Manual

Tab Width And
Statement-Level
Breakpoints

SW User's Manual

Tab Width

Iab Width (1-32):

Im
.Q.K J .C.ancel I .!::!elp

To set a breakpoint at the statement level, you must know how many
spaces your compiler uses for a tab character. For example:

<tab><tab>for(i = O; i < MAX_NUM; I++){ /*source line*/

The compiler generates column range information for the three
statements in this line, using a tab width of 8:

i = 0 columns 0 to 26

i < MAX_NUM columns 27 to 39

i++ columns 40 to 45

If you set the Source window Tab Width to 4, then use the Source
cursor to set a breakpoint on the first i (column 13) or the second i
(column 20), the breakpoint is within the first statement's column
range. The third i is within the second statement's range.

Source Step Granularity opens a sub-menu to specify whether a Step
command steps by source lines (the default) or by source statements.
Some C compilers allow more than one statement per line, separated by
semicolons. You can step through such a source line by statements.
The following figure shows a sample Source Step Granularity sub
menu, with stepping by line specified.

- I .J Source Line

Step !;_ount ••. Source .Statement

Step Count opens a dialog box to set how many steps (1 to 100) are
executed per Step command. The following figure shows a sample Step
Count dialog box.

Step Count

.Step Count:

lo
OK !;_ancel !:!_elp

195 Source Window Reference

Browser History Depth opens a dialog box to set the maximum
number of modules that can be recalled. SLD remembers the sequence
of modules and functions you have browsed. The following figure
shows a sample Browser History Depth dialog box.

Browser History Depth

Max Depth (5-100):

l'11D

I QK I ~ancel I I t!elp

Previous Browsed Module displays the next earlier module in your
browse history.

Next Browsed Module displays the next later module in your browse
history.

Source Line Delimiter opens a sub-menu to set the ASCII string used
by the compiler to delimit a source line. The following figure shows a
sample Source Line Delimiter sub-menu toggled for displaying a DOS
source file.

Source Line !2elimiter ../ ~arriage Return/Linefeed
r--S-e_t_G_o_B_u_tt_o_n_s ___ -----1 Linefeed Only

Carriage Return/Linefeed (the default) recognizes a carriage return
followed by a linefeed as the string
indicating the end of a line. This is the DOS
standard line delimiter. If you display a
UNIX file with Carriage Return/Linefeed,
the entire source file appears as a single line
in the Source window.

Linefeed Only recognizes a linefeed as the end-of-line
indicator. This is the UNIX standard line
delimiter. If you display a DOS source file
with Linefeed Only, a black dot appears at
the end of each line.

Set Go Buttons opens a sub-menu to toggle the operation of the Call
and Return buttons (described later in this chapter) between Go Until
and Go Into. The following figure shows a sample Set Go Buttons sub
menu, followed by the two possible button combinations. The check on
Into Call/Return in the sub-menu corresponds to the Into Call and Into
Return buttons shown in the first button bar configuration.

Source Window Reference 196 SW User's Manual

.S.et Go Buttons

Into Call II Into Return I

.!lntil Call/Return
.,/Into Call/Return

I Until Call II Until Return I
Compiler Used ••. opens a dialog box to identify the toolchain you used
in generating your loadfile. The following figure shows a Compiler
Used dialog box.

0 Unknown

0 Intermetrics

®!M@
0 Si~rra

Compiler Used

0 Hiware

0 ln!rol

0 .s_os CrossCode

0 Whitesrniths

QK I !;.ancel I I .t!elp I

If your compiler is not listed in the dialog box, choose Unknown. The
emulator is not guaranteed to work with unsupported toolchains.

Source Window Buttons

Go II

Go II

These buttons provide quick access to commonly used Run menu items,
described earlier in this chapter.

The Source window button bar has two possible configurations. To
toggle between them, open the Options menu, choose Set Go Buttons,
and choose Until Call/Return or Into Call/Return. The following figure
shows the two possible button bar configurations.

Halt II Step Into I/ Step Over II Into Call I! Into Return !po To Cursol

Halt Ii Step Into II Step Over II Until Call l!until Return !po To Cursol

Button

Go

Halt

Step Into

Use To:

Start emulation from the program counter, the same as
the Run menu Go.

Stop emulation, the same as the Run menu Halt.

Step into a function call at the program counter, the

SW User's Manual 197 Source Window Reference

Step Over

Until Call

Into Call

Until
Return

Into Return

Function Popup Menu

same as the Run menu Step Into.

Step over a function at the program counter, the same
as the Run menu Step Over.

Go from the program counter and break before the next
function call, the same as the Run menu Go Until Call.

Go from the program counter and break after the next
function call, before executing the function, the same as
the Run menu Go Into Call.

Go from the program counter and break before the next
return instruction, the same as the Run menu Go Until
Return.

Go from the program counter and break after the next
return instruction, the same as the Run menu Go Into
Return.

To pop-up the Function menu, select (double-click on) a function name
in the source. The selected function name is highlighted. The
following figure shows a sample Function menu.

II Function: Unload_RxBuf
,Go To Source
,S.how Load Address
Set Eerm. Breakpoint
Set Iemp. Breakpoint
!;,lear Breakpoint

Go To Source puts the Source cursor at the beginning of the function
source code. If no source is available, the Source window can display
the function in disassembly. To enable the disassembly display, open
the View menu and choose Mixed Source and Asm.

Show Load Address opens an information box listing the memory
address range occupied by the function. The following figure shows a
sample load address information box.

Source Window Reference 198 SW User's Manual

0
PowerPack SLD

Function Unload_RxBuf: Address
starts at: 000686 .. 0006A5.

Set Perm. Breakpoint sets a permanent breakpoint at the highlight.

Set Temp. Breakpoint sets a temporary breakpoint at the highlight.

Clear Breakpoint clears the breakpoint at the highlight.

Variable Popup Menu

SW User's Manual

To pop-up the Variable menu, select (double-click on) a variable name
in the source. The selected variable name is highlighted. The
following figure shows a sample Variable menu.

Im Variable: MsgTx
Inspect Variable
Set Eerm. Breakpoint

Inspect Variable adds the variable to the Variable window, described
in the Variable Window Reference chapter. If the Variable window is
not already open, this opens it.

Set Perm. Breakpoint sets a permanent breakpoint on the highlight.

Set Temp. Breakpoint sets a temporary breakpoint on the highlight.

199 Source Window Reference

Source Window Reference 200 SW User's Manual

Variable Window Reference
The following figure shows a sample Variable window.

char *Blank TxBufttlxBuf Ptr m OxFFFFFFFF;
int Blank TxBuf#i m OxEEfi m 3818;
char MsgRx[32] m {

[CJOx29 ,
[1] 0x65 'e' ,
[2] 0x2§ m ••

This chapter describes the Variable window contents, menus, and dialog boxes.

Variable Window Contents

SW User's Manual

The Variable window displays the types, symbolic names, and values of
global and local variables. Variable symbolic information appears in
the following colors:

Red indicates an editable value. Integer variables can be edited
in hexadecimal or decimal, floating point variables in
floating point format, and characters in their hexadecimal
ASCII equivalent. To edit a value, either double-click on
the value; or single-click on the value, open the Edit menu,
and choose Edit. Press <Enter> to end editing.

Blue indicates a pointer variable you can dereference by double
clicking. To dereference a pointer, either double click on the
pointer name or open the View menu and choose Show. A
new entry is added to the Variable window, showing the
variable that was pointed to.

Magenta indicates a non-pointer variable. For enum type variables,
the enumerated name follows the hexadecimal value.

201 Variable Window Reference

Variable Window Menus

Menu Use To:

File Close the Variable window.

Edit Find and edit a listed variable.

View Reorganize or refresh the display.

Variable Add or remove variables from the display.

Windows Open another SLD window.

Help Open a window for help with SLD.

Edit Menu
The following shows the Edit menu .

.Search ...
Search Next

f.dit

Search ••• opens a dialog box to find any variable listed in the Variable
window. The search is case sensitive and stops at the first occurrence
or at the end of the Variable window. The following figure shows a
sample Search dialog box.

Search

.S.ea rch for:

.QK l I .C.ancel .!:!.elp

Search Next finds the next occurrence of the last variable searched for.

Edit positions an edit field on the selected value. This item is available
when you put the Variable cursor on an editable (red) value. Type the
new value in the edit field and press <Enter>. Floating-point numbers
use floating-point format. Characters use hexadecimal or ASCII
format. Integers use decimal or hexadecimal. The following shows an
edit field.

Variable Window Reference 202 SW User's Manual

SW User's Manual

View Menu

The following shows the View menu .

.,/ £ompress
Refresh Display

../By .!::!.istory
By Name

Show adds a line to the Variable window dereferencing the selected
variable. This item is available when you have put the Variable cursor
on a dereferenceable (blue) symbol, such as a pointer. The following
figure shows a pointer and its dereferenced equivalent.

Compress collapses multi-line variables, such as an array or structure,
to show only the first line of the variable. The following shows an
array, first in expanded (only the first four of the 32 array elements
appear in this picture) then in compressed display.

203 Variable Window Reference

Refresh Display updates the displayed symbols and values.

Sort opens a sub-menu to arrange the variables:

By History in the order they were added to the display.

By Variable Name alphabetically.

Variable Menu

The following shows a Variable menu:

Qelete
J,!ndelete

Add ••• opens a dialog box to add a variable to the window. You can
specify a partly or fully qualified variable name.

Delete removes the selected variable from the display.

Undelete restores to the display the last variable removed.

Variable Window Reference 204 SW User's Manual

Breakpoint Window Ref ere nee
The following figure shows a sample Breakpoint window for a Motorola emulator. The
address format is different for Intel emulators; however, the window layout is consistent.

Ii iii
Eile J;lreakpoints Windows .t!.elp

Set

State
Enable Per Pl.
Enable Per Pl.

Enable Disable Enable All

000005AA 332qsPJ,SPCRO_Config,line256,col0-22
00000486 P1ain,P1ain,line24,col0-23

Enable Per Pl. 00000492 Plain ,Plain, line26 ,col 0-22

This chapter describes the Breakpoint window contents, menus, buttons, and dialog boxes.

The Breakpoint window displays the following information about each
breakpoint:

State

Type

Breakpoints

Whether the breakpoint will cause a break (Enable) or
not (Disable) when emulation executes through the
code where the breakpoint is located.

Whether the breakpoint will remain defined (Perm.)
or be removed (Temp.) after causing a break.

The load address, module name, function name,
source line number, and source column number where
the breakpoint is located. (The column number can
be affected by the number of spaces your compiler
uses to replace a tab character.)tab width

Breakpoint Window Menus

Menu Use To:

File Exit the Breakpoint window.

Breakpoints Define, remove, enable, and disable breakpoints.

Windows Open another SLD window.

Help Open a window for help with SLD.

SW User's Manual 205 Breakpoint Window Reference

File Menu

Exit closes the Breakpoint window.

Breakpoints Menu

The items available in the Breakpoints menu depend on whether
breakpoints are defined and selected. Set Breakpoint ... and Go To
Source are always available; Clear, Enable, and Disable are available
when you have selected a breakpoint from those listed in the Breakpoint
window; Clear All, Enable All, and Disable All are available when one
or more breakpoints are listed. To select a breakpoint, click on it or use
the <Up Arrow> and <Down Arrow> keys to move the highlight.

The following shows a breakpoint menu.

.C.lear

.Enable
Qi sable

Clear All
Enable All
Disable All

yo To Source

o To Sourc Enable

Set Breakpoint opens a dialog box to define a new breakpoint. The
following figure shows two sample Set Breakpoint dialog boxes. The
first is for an Intel emulator; the second is for a Motorola emulator.
Different fields are available for different processors.

Set Breakpoint

.!lreakpoint at: I #dm_func#printall

.Modules Eunctions

...... ld_m __ f_u_nc ________ l 11 printall

St!!_te
@Enable

0 Qisable

Breakpoint Window Reference

T:?lpe
@ E!ermanent

0 Iemporary

206 SW User's Manual

SW User's Manual

Set Breakpoint

Breakpoint at: I #332qsm#Blank _ T xBuf I
Modules functions

1332qsm l!J IBl11nk_TxBuf l!J
rSt_!!_te rType

®.Enable <!l Eermanent

0 Qisable 0 Iemporary

I ~et I I CIQse I I !:!elp I
Fill-in the dialog box as follows:

Breakpoint at: can be a numeric or symbolic address. For symbolic
addresses, you can choose a module and a function
from the drop-down list boxes.

State can be toggled to Enable or Disable. The emulator
ignores a disabled breakpoint.

Type can be permanent or temporary. A temporary
breakpoint is removed after it causes the break.

Space: for Intel processors, can be User or SMM.

Choose the Set button to define the breakpoint or the Close button to
close the dialog box without defining a new breakpoint.

Clear removes the selected breakpoint.

Disable marks the selected breakpoint to be ignored when emulation
executes through the code where the breakpoint is located.

Enable marks the selected breakpoint to cause a break when emulation
executes through the code where the breakpoint is located.

Disable All disables all currently defined breakpoints. The breakpoints
remain defined.

Enable All enables all currently defined breakpoints.

Clear All removes all breakpoints. No breakpoints remain defined.

Go to Source opens the Source window, described in the "Source
Window Reference" chapter, and positions the source cursor at the
specified breakpoint.

207 Breakpoint Window Reference

Breakpoint Window Buttons

These buttons provide quick access to commonly used Breakpoints
menu items, described earlier in this chapter.

Set II Clear mo To Sourcdl Enable II Disable II Enable All II Disable All II
Button

Set

Clear

Go To Source

Enable

Disable

Enable All

Disable All

Breakpoint Window Reference

Use To:

Open a dialog box to set a breakpoint, the same as the
Breakpoints menu Set Breakpoint...

Remove a selected breakpoint, the same as the
Breakpoints menu Clear.

Open the Source window to show the specified
breakpoint in source or disassembly, the same as the
Breakpoints menu Go To Source.

Define that the specified breakpoint will cause a
break next time it is encountered in emulation, the
same as the Breakpoints menu Enable.

Define that the specified breakpoint will cause no
break next time it is encountered in emulation, the
same as the Breakpoints menu Disable.

Enable all breakpoints, the same as the Breakpoints
menu Enable All.

Disable all breakpoints, the same as the Breakpoints
menu Disable All.

208 SW User's Manual

Stack Window Ref ere nee
The following figure shows a sample Stack window for a Motorola emulator. The address
formats are different for Intel emulators; however, the window layout is consistent ..

.Eile Qptions Windows .!:!.elp

Stack Return 40.8%
OOOEEA 0004A4 Blank RxBuf(...)
OOOEF2 000874 main(...)

Parameters & Local Uariables
int Blank_RxBuf#i = OxEEA = 3818;
char *Blank_RxBuf#RxBuf_Ptr = OxFFFFFFFF;

This chapter describes the Stack window contents, menus, and dialog boxes.

SW User's Manual

The Stack window has three panes:

The top pane lists the stack address, the return address, and the
(Frame List) name of each function on the current call stack.

Parameters and
Local Variables

Stack Meter

Each such item is a stack frame.

lists the type, name, and value of each parameter
and local variable in the selected stack frame. The
format and colors are the same as in the Variable
window.

shows the stack usage statistics, including the
percent of the stack area currently in use, an alarm
marker at a specified usage level, and a mark at the
highest percent usage for the current emulation

209 Stack Window Reference

Stack Window Menus

Menu

File

Options

Windows

Help

File Menu

session. Yellow indicates stack underflow. Purple
indicates stack overflow.

Use To:

Close the Stack window; refresh the stack display.

Configure the stack area; toggle the Frame List address
display; manage stack usage statistics; inspect the
source.

Open another SLD window.

Open a window for help on SLD.

Refresh Display reads memory and updates the displayed information.

Exit closes the Stack window.

Options Menu

The following shows a sample Options menu.

Kmll.m.J.1-..
.:itack Area ...
Alarm Limit...

,/Include S!ack Address
,/Include Return !;_ode Address

,/Enable l:!igh-Water Mark
,/Enable Alarm Limit

Inspect Source

Stack Area ... opens a dialog box to set the stack base address and size.
The following shows a sample Stack Area dialog box.

Stack Window Reference 210 SW User's Manual

SW User's Manual

Stack Area

Base Address:

I imfl1Rmtmrn•1:t1J

Number of Bytes:

I 1504

QK I ~ancel I .t!elp

Alarm Limit ... opens a dialog box to define the alarm limit as a
percentage (1 to 100) of the Stack Meter. The following shows a
sample Alarm Limit dialog box.

Alarm Limit

Eercent of Size (1 - 100%):

lml
Q.K I !;.an eel .!::!.elp

Include Stack Address, when checked, displays stack addresses in the
Frame List, in a column labeled Stack. The stack address is the address
of the frame in the stack area.

Include Return Code Address, when checked, displays code addresses
in the Frame List, in a column labeled Return. The code address is the
return address to the calling function.

Enable High Water Mark, when checked, displays the high-water
mark on the Stack Meter. The high-water mark indicates the highest
percentage that has been used of the stack area.

Enable Alarm Limit displays a warning message each time emulation
stops while the alarm limit is exceeded.

Inspect Source opens the Source window, described in the "Source
Window Reference" chapter, and positions the Source cursor to show
the selected function's source. To select a function, in the Frame List
click on the frame or use the <Up Arrow> and <Down Arrow> keys to
move the highlight.

211 Stack Window Reference

Stack Window Reference 212 SW User's Manual

CPU Window Reference
The following figure shows two sample CPU windows. The first is for an Intel386 EX
processor; the second is for a Motorola 68332 processor. Different registers are shown for
different processors.

= . ~

!lll
Qptions B

Qptions
EFLACS 00000002 i.l v1·noodi tszapc

EIP FFFFE3E4

SR 2704 i..! OS7xnzvc

EA;>; 00000000 PC 00000470

EB;>; 00000000 DO 00000020

ECli: 00000000 D1 00000020
EDX 00000000 D2 00000000
EBP 000005EO D3 FFFFFFFF
ESP 000005EO 04 FFFFFFFF
EDI 00000000 05 FFFFFFFF
ESI 00000000 06 FFFFFFFF
cs 0018 07 FFFFFFFF
DS 0020 AO OOFFFOOO
ES 0020 A1 OOFFFOOll
FS 0020 A2 OOOOOBFE
cs 0020 A3 OOOOOBBE
SS 0020 A4 FFFFFFFF

CD TB ASE FFFFEOOO A5 FFFFFFFF
CDTLIHIT 003F

GD TAR FFFFEOOO
ID TB ASE 000005EO

IDTLIMIT DOFF
ID TAR FFFFFFFF

LDTR 0000
LDTBASE 00000000

LDTLIMIT FFFF

A6 00000000
Al OOOOOEEE

USP 499F 03C2
SSP OOOOOEEE
SFC 5
OFC 5
UBR 000001100

LDTAR FFFF7FFF + +

This chapter describes the CPU window contents, menu, and Register Edit dialog box.

SW User's Manual

The CPU window lists the processor registers. The register mnemonics
conform to the Intel or Motorola mnemonics. The register values are
updated and the changed values highlighted each time emulation halts.

To edit the register values, double-click on a register value; or use the
<Up Arrow> and <Down Arrow> to move the highlight then press
<Enter>. The following is a sample Register Edit dialog box.

Register: PC

Hex: 000006A2, Decimal: 1698

I U01IUUHU«·t4

OK !;an eel)ielp

213 CPU Window Reference

Options Menu

The following is a sample Options menu.

R~set

Reset CPU Qnly
~ignals ~

Windows ~

Help lndex
.t!.elp With Help
Help With !;PU

E~it

Reset resets and reinitializes the target processor:

• The processor RESET pin is asserted.

• The program counter is read from memory; the Source window is
scrolled to the beginning of code.

• The stack pointer is read from memory, resetting the stack; the
Stack window display becomes invalid.

• All SLD windows are updated.

Reset CPU Only resets only the processor and does not update the
windows. Use Reset CPU Only if Reset fails to reset the processor.

Signals opens a sub-menu to specify whether certain signals are
controlled by the target (unchecked) or by the emulator (checked). The
following figure shows two Signals sub-menus. The first is for an
lntel386 EX processor; the second is for a Motorola 68332 processor.
Different signals can be enabled for different processors .

CPU Window Reference

../Rf.ADY# Enable

Windows ../BESET Enable
1--------1../ tlOLD Enable

Help lndex .,/ .!l!MI Enable
.!jelp With Help .,/ 1NT0_3 Enable
Help With !;.PU ../INI4_7 Enable

E~it ../NA# Enable
1--------;.,; ~Ml# Enable

../ !;.oprocess Enable

214 SW User's Manual

SW User's Manual

~indows

Help Index
!:!_elp With Help
Help With ~PU

E)'.l;it

~lock Enable
../Beset Enable

Windows opens a sub-menu to open another SLD window. This item
is equivalent to the Windows menu in other SLD windows.

Help Index opens a window with the table of contents for SLD help.

Help With Help opens a window on using a Windows help facility.

Help With CPU opens a window with SLD CPU window help.

Exit closes the CPU window.

215 CPU Window Reference

CPU Window Reference 216 SW User's Manual

Memory Window Reference
The following figure shows two sample Memory windows. The first is for an lntel386 EX
processor; the second is for a Motorola 68332 processor. Different addresses and
disassembly mnemonics are shown for different processors.

Eile f dit :'{iew tlelp

000706 5251 #1,(A1)
000708 207C 0000 ODCO
00070E 21AF 0004 0400
000714 7000

ADDQ.W
HOUEA.L
HOUE.L
HOUEQ.L

#OOOOODCO,AO
(0004,A7),(00,AO,DO.W*4)
#00,DO

+

This chapter describes the Memory window contents, menus, and dialog boxes.

The Memory window shows the contents of memory:

• The window title lists which of up to 20 Memory windows you are
viewing; the format of the display; and (for Intel processors)
whether the display is of User or SMM space. Different Memory
windows can display different areas or formats of memory.

• The leftmost column is the address. Address formats differ for
different processors. To view another area of memory, double-click
in the address column of the Memory window. Enter a numeric or
symbolic address in the Go To Address dialog box. Any symbol
you enter must have a fixed address, i.e., not a local variable or a
stack-resident parameter.

• The memory contents can be in disassembly or numeric format.
Numeric format shows the hexadecimal or decimal values and, in
the rightmost column, the equivalent ASCII values. You can edit
memory contents directly in the numeric and ASCII formats by
positioning the cursor (a vertical bar) with the mouse, then
overtyping the memory display. Disassembly format can include

Memory Window Reference 217 SW User's Manual

symbols; on the Toolbar open the Configure menu and check or
uncheck Symbolic Disassembly.

Memory Window Menus

Menu Use To:

File Exit the Memory window.

Edit Edit memory; navigate the memory display.

View Choose numeric or disassembly display formats.

Options Manage memory access options.

Windows Open another SLD window.

Help Open a window for help with SLD.

Edit Menu

The following is a sample Edit menu.

Yiew .Qptions ~indows .!::!elp
Go To Address ...
Si;tarch Memory ...
fill Memory ...
!;.opy Memory ...

Go To Address ••• opens a dialog box to change the Memory window
display to a specified numeric or symbolic address. The following
figure shows two sample Go To Address dialog boxes. The first is for
an Intel386 EX processor; the second is for a Motorola 68332
processor. Different fields are available for different processors.

Go To Address

~ddress:

Im
Spaci;t: OJ!_erand/Address Size:

I user w
.__.Q_K __ I [!;.ancel I ._[__ .!::!_el_P _ _.

Memory Window Reference 218 SW User's Manual

Go To Address

!l,ddress:

Ira
I OK [!;_ancel I .!:!_elp

You can fill-in a numeric or symbolic address. For Intel processors,
you can also specify User or SMM space and what addressing mode to
use.

Search Memory .•• opens a dialog to search a specified address range
for a specified pattern. The search stops at the first occurrence of the
pattern in the range. If the pattern is not found, the Memory cursor
does not move. The following figure shows a sample Search Memory
dialog box.

Search Memory

from

lo

f'.attem

OK I J;;_ancel I !!elp

Fill Memory ••• opens a dialog box to fill an address range with a
specified pattern. The following figure shows two sample Fill Memory
dialog boxes. The first is for an Intel386 EX processor; the second for a
Motorola 68332 processor. The Space field values vary.

Memory Window Reference 219 SW User's Manual

~ace jsd liJ
I OK I I Cancel I ~j -H-e-lp~

Copy Memory ••• opens a dialog box to copy one address range to
another or to copy target memory to overlay memory. The following
figure shows two sample Copy Memory dialog boxes. The first is for an
Intel386 EX processor; the second is for a Motorola 68332 processor.
Different space field values are available for different processors.

From:

lilart:

® f.nd

0 .length

® .!!!.ap

0 I_arget

lilart:

® f.nd

0 .length

® .!!!.ap

0 I_argel

l

[

View Menu

Copy Memory

•To:

J Start: [

JI
@Mal!_

0 Tar.!let

S Pi!. Ce I user L!.I OK

Copy Memory

To:

Start:

@Mal!_

0 Tar.!lel

w Sp;!ce Ljs_d __ __.. .. I!.K

J
Space luser l_!J

smm }

I hancel I I !:!_elp

Space jsd j_!)

J hancel I I tlelp

The following figure shows two sample View menus. The first is for an
Intel386 EX processor; the second is for a Motorola 68332 processor.
Different items are available for different processors.

Memory Window Reference 220 SW User's Manual

../ Dis~ssembly

Hex f!_ytes
Hex Words
Hex D.Words
Decimal B~es
Decimal WQrds
Decimal DWord2

.,/Auto
Usel6
Use.12

../ !l_ser
SMM

Re!resh Display

.Qptions
Dis~ssembly

Hex f!_ytes
../Hex Words

Hex D.Words
Decimal B~es
Decimal WQrds
Decimal DWord2

Refresh Display

Disassembly displays memory disassembled. In Disassembly view, you
can double-click on a disassembled line to open the Single Line
Assembler dialog box (described later in this chapter).

Hex Bytes displays memory as hexadecimal 8-bit integers with values
fromOtoFF.

Hex Words displays memory as hexadecimal 16-bit integers with
values from 0 to FFFF.

Hex Dwords displays memory as hexadecimal 32-bit integers with
values from 0 to FFFFFFFF.

Decimal Bytes displays memory as decimal 8-bit integers with values
from 0 to 255.

Memory Window Reference 221 SW User's Manual

Decimal Words displays memory as decimal 16-bit integers with
values from 0 to 65,535.

Decimal DWords displays memory as decimal 32-bit integers with
values from 0 to 4,294,967,295.

Auto uses the lntel386 processor pmode to determine whether operands
and addresses are interpreted as 16-bit or 32-bit values. For a
description of the pmodes, see the section on Intel numeric addresses in
the "Debugging with Triggers and Trace" chapter.

Use16 interprets lntel386 operands and addresses as 16-bit values.

Use32 interprets Intel386 operands and addresses as 32-bit values.

User displays Intel processor user memory.

SMM displays Intel processor system management mode memory.

Refresh Display re-reads memory and refreshes the screen. This
happens automatically when emulation halts.

To update or scroll the Memory window during emulation, you must
enable Run Access before starting emulation. On the Toolbar, open the
configure menu and check Enable Run Access; or enter a RunAccess
Shell command.

Any memory access, such as that used to update the Memory window,
takes a small amount of time from the processor and thus can degrade
your program performance.

Options Menu

The following shows a sample Options menu.

Word Access
QWord Access

,/Write ~erify

Bead Ahead

R.i;.read On Write

Byte Access specifies 8-bit cycles for memory access.

Word Access specifies 16-bit cycles for memory access. For writing a
byte, the word containing the byte is read, the appropriate byte replaced,
and the word re-written. Words at even addresses are read and written

Memory Window Reference 222 SW User's Manual

as words. Words at odd addresses are read and written as two words.
For example, for writing a word of data at an odd address:

I. The word containing the first byte (odd address minus 1) is read.

2. The lower byte of the data is put into the upper byte of the word.

3. The word is re-written at odd address minus I.

4. The word containing the second byte (odd address plus 1) is read.

5. The upper byte of the data is put into the lower byte of the word.

6. The word is re-written at odd address plus 1.

DWord Access specifies two 16-bit cycles for memory access. Long
word memory writes act as follows:

1. Long-word writes on long-word boundaries use long accesses.

2. Word writes and byte writes read long words, replace the byte or
word, and write back as long words.

For Motorola, memory reads and writes always use supervisor data
(SD) space. To access any other space, use Shell commands.

Set the memory access size to long (dword) for faster loading.

Write Verify, when checked, compares any value written with write or
fill with the expected value and reports discrepancies.

Toggling write verify does not affect load verification. Use the verify
Shell command to toggle load verification. With verify=on, a byte read
back that does not match the byte written returns an error.

Read Ahead, when checked, reads ahead and caches more data than is
displayed in the Memory window screen, for faster scrolling.

With read-ahead enabled, scrolling through peripheral registers or near
invalid memory regions can cause Unterminated Memory Access
errors.

Reread On Write, when checked, refreshes the memory display when
you edit the numeric or ASCII fields in the display. Toggling Reread
On Write does not affect Memory window refreshing for memory
changes done outside of the memory display. For example, load, fill,
and copy operations always refresh the memory display.

Single-Line Assembler Dialog Box

You can patch code into memory an assembly-line at a time with the
single-line assembler. With the Memory window in Disassembly view,
double-click on the line you want to replace.

Memory Window Reference 223 SW User's Manual

The following figure shows two sample Single-Line Assembler dialog
boxes. The first is for an Intel386 EX processor; the second is for a
Motorola 68332 processor. Different space field values are available for
different processors.

Single-Line Assembly

Source Line: CS:FFF3

I•
Spac~: Op_erand/Address Size:

I user Iii Iii

~ancel I I Assem Skip I I !:!.elp

Single-Line Assembly

Source Line: 000000

ORl.B #00,DO

Spac~: Op_erand/Address Size:

jsd Lff
I ~ancel I Assem I Skip I I !:!.elp

Type a line of assembly language in the text box.

Source Line: shows the address where the line will be assembled.

Space: for Intel, can be User or SMM; for Motorola, can be
SP, SD, UP, or UD.

Operand/ is unavailable.
Address Size:

Cancel closes the single-line assembler dialog box without
assembling. Once you have assembled a line, this
button changes to Done. Choosing Done closes the
dialog box; your assembled changes remain in
memory.

Assem

Skip

Help

Memory Window Reference

assembles the line into memory; advances the address.

advances the address without assembling the line.

opens a window for help on the single-line assembler.

224 SW User's Manual

Peripheral Window Ref ere nee
The following figure shows two sample Peripheral windows. The first is for an Intel386 EX
processor; the second is for a Motorola 68332 processor. Different peripherals are available
for different registers. The Peripheral window is unavailable in Intel386 CXISX emulators.

file _Edit ';r'.iew Windows !:!elp
m•ll;t;I• !iii Peripheral

(+) MST
(+) TMR
(+) SLV
(+) COM1
(+) COM2
(+) PORT92
(+) CSU
(+) SSIO
(+) RFSH
(+) WOT
(+) CLK
(+) CCR
(+) PIO

+J

file
(+]
(•)
(•)

(•)
+ ..

J;_dit
SIM
QSM
RAM
TPU

11

15:
14:
12:
10:
9:
8:
7:
6:
3:
FFFE04

'iiew Windows !::!elp

11: I

0 STOP Internal clocks r
0 TCRlP Clock divisor is
0 TCR2P Clock divisor is
0 EMU TPU/RAM not in
0 T2CG TCR2 pin clocks
0 STF TPU running
1 SUPV restricted acces
0 PSCK System clock/32
0 IARB arbitration disah

0000 DSCR Development Sl

This chapter describes the Peripheral window contents, menus, and dialog boxes.

The Peripheral window shows the peripheral register information
heirarchically. Click on the (+) or (-) at the left of a line to expand or
collapse the hierarchy. At the top level (the only level visible when the
heirarchy is fully collapsed) are the peripherals. Expanding a
peripheral shows its registers. Expanding a register shows its bit fields.
Full expansion lists, the register address, bit field bit position, value,
name, and description. The peripheral, register, and bit field names
conform to the Intel and Motorola mnemonics.

Peripheral Window Menus

Menu Use To:

File Exit from the Peripheral window.

Edit Edit a register; navigate the Peripheral display.

View Refresh, expand, or compress the display.

Windows Open another SLD window.

Help Open a window for help with SLD.

Peripheral Window Reference 225 SW User's Manual

Edit Menu

The following shows an Edit menu.

Yiew Windows !::!.elp
Register ...
Go To Eeripheral...
Go To .Begister ...
Go To Address •••

Register ••• opens a Register Edit dialog box (described later in this
chapter) to edit the selected register. To select a register or bit field, use
the mouse or <Up Arrow> and <Down Arrow> keys to move the
highlight. Selecting a peripheral selects its the first register.

Go To Peripheral ••. opens a dialog box to scroll to the peripheral
specified by name. The following is a Go To Peripheral dialog box.

Go To Peripheral

Eeripheral Name:

11

I .QK I ~ancel 11 !::!.elp I

Go To Register ••• opens a dialog box to scroll to the register specified
by name. The following is a Go To Register dialog box.

Go To Register

.Begister Name:

11

I .QK I I ~ancel 11 !::!.elp I

Go To Address ••• opens a dialog box to scroll to the register specifed by
address. The following is a Go To Address dialog box.

Go To Address

Address:

.QK ~an eel !::lelp

Peripheral Window Reference 226 SW User's Manual

View Menu

Following is a sample View menu.

Refresh Display

Expand All expands the hierarchy completely, showing all peripheral,
register, and bit field mnemonics, with the addresses or bit positions,
values, and descriptions of the registers and bit fields.

Compress All collapses the hierarchy completely, showing only the
peripheral mnemonics.

Refresh Display re-reads the register contents (except write-only
registers) and refreshes the screen. This occurs automatically when
emulation halts.

To update or scroll the Peripheral window during emulation, you must
enable Run Access before starting emulation. On the Toolbar, open the
configure menu and check Enable Run Access; or enter a RunAccess
Shell command.

Any memory access, such as that used to update the Peripheral window,
takes a small amount of time from the processor and thus can degrade
your program performance.

For write-only registers, SLD reports the most recent value you entered
using the Peripheral or Shell window interface. Values written by the
execution of your program are not captured in SLD.

Register Edit Dialog Boxes

The following shows a sample Register Edit dialog box. This example
is for a register in the Motorola 68332 processor. Different registers
have different fields ~d values; however, the layout of the Register Edit
dialog box is consistent.

Peripheral Window Reference 227 SLD User's Manual

TPU TMCR - TPU Module Configuration Register

Register Value:\ ~n_l_a_n ____ ~
Eields:
i..'t1R•

TCRlP
TCR2P
EMU
T2CG
STF
SUPV
PSCK

Clock divisor is 1
Clock divisor is 1
TPU/RAM not in emulation mode
TCR2 pin clocks TCR2 prescaler
TPU running
restricted access [supv mode only)
System clock/32 is in_llut to TCRl _JJrescaler

+

+

Field Value: 15: Stop Mode enable

~' o_x_o __ ~ffi- Internal clocks running

Write 11 ~lose I \ « Erev I \ Next» I \ tlelp

Register Value shows the register contents in hexadecimal. You can
edit this field.

Fields lists each bit field mnemonic in the register and its
effect on the processor. To select a bit field, click or
use the <Up Arrow> and <Down Arrow> keys to
move the highlight.

Field Value is a spin box showing the value of the bit field
selected in the Fields box. You can edit this field. To
ensure you enter an acceptable value for the bit field,
click on the spin arrows or use the <Up Arrow> and
<Down Arrow> keys to change the value. Editing the
Field Value changes the Register Value.

The selected bit field position and a description of the bit field
according to its current value are listed under the Fields box, to the
right of the Field Value spin box. This description changes when you
change the bit field value.

Write

Close

<<Prev

Next>>

Help

Peripheral Window Reference

writes the value shown in Register Value:.

closes the Register Edit dialog box.

displays the Register Edit dialog box for the previous
register in the Peripheral window list.

displays the Register Edit dialog box for the next
register in the Peripheral window list.

opens a help window on the Register Edit dialog box.

228 SW User's Manual

Event Window Ref ere nee
The following figure shows two sample Event windows (also called Event edit boxes). The
first is for an Intel386 EX processor; the second is for a Motorola 68332 processor.
Different signals and address formats are available for different processors. For some
Motorola processors, the signals available also depend on the chip selects.

Eile _Edit ::llindows !::!elJI

Active Event: levl li.J
~-------~-

not start r-"@~.J =En=d~A=d=dr~_(~)~L=e=ng~th"-, mask
addr: 0 ~I o_xo~l ______ ~11 OxFF 11 Ox3FFFFFF I

start .-----en_d ______ _, mask
data: 0 ~I o_xo_o_55 _____ ~1 I OxOOM 11 OxFFFF I

OlX OlX OlX OlX OlX

0 0@ BHE# 0 0@ RESET 0 0@ BUSY# 0 0@ P2.1 0 0@ P3.1
0 0 ® M/10# 0 0 ® NMI 0 0 @ ERROR# 0 0 ® P2.2 0 0 ® P3.2
0 0 ® DIC# 0 0 ® INT4 0 0 ® PEREO 0 0 ® P2.3 0 0 @ P3.3
0 0 (!i W/R# 0 0 @ INT5 0 0 @ CS6# 0 0 @ P2.4 0 0 @ P3.4
0 0 @ ADS# 0 0 @ INT6 0 0 @ Pl .5 0 0 ® P2.5 0 0 ® P3.5
0 0@ READY# 0 0@ INT7 0 0@ Pl.6 0 0@ P2.6 0 0@ P3.6
0 0@ NA# 0 0@ St.ti# 0 0@ Pl.7 0 0@ P2.7 0 0 @.' P3.7
0 0 ® BS8# 0 0 ® SMIACT# 0 0 ® P2.0 0 0 ® P3.0

.Eile J;:dit ~indows !!elJI

Active Event: levl l.!1
not start @End Addr 0 Length mask

addr: D [JI 11

start end mask
data: D l J l JI

0 1 x 0 1 x 0 1 x 0 1 x 0 1 x
0 0 @ as- 0 0 @ reset- 0 0 @ irq7- 0 0 @ miso 0 0 @ t8
0 0 @ ds- 0 0 @ berr- 0 0 @ 11csO- 0 0 @ to 0 0 @ t9
0 0@ rfw- 0 0@ halt- 0 0@ JICSl- 0 0@ 11 0 0@ 110
0 0 @;· sizO 0 0 @ irql- 0 0 @ pcs2- 0 0 @ t2 0 0 ® 111
0 0 @ siz1 0 0 @ irq2- 0 0 @ 11cs3- 0 0 @ t3 0 0 ® 112
0 0 @ dsackO- 0 0 @ irq3- 0 0 @ sck 0 0 @ t4 0 0 ® t1 3
0 0@ dsackl- 0 0@ irq4- 0 0@ rxd 0 0@ t5 0 0 ® t14
0 0 @l avec- 0 0 @ irq5- 0 0 @ txd 0 0 @ t6 0 0 ® t15
0 0 @ rmc- 0 0 @ irq6- 0 0 @ mosi 0 0 @ t7

This chapter describes the Event window fields, menus, and dialog boxes.

Event Window Reference 229 SW User's Manual

Event Window Contents

The Event window defines an event to be used as a condition for
triggering. The fields are:

Active Event

addr:

data:

mask

not

01 x

is the name of the event described in the Event
window. (This name also identifies the event in the
Trigger and Trace windows.)

describes a single address or range of addresses.
Select End Addr to specify the last location in a range
or Length to specify the number of bytes in the range.

describes a data value or range of data values.

is a hexadecimal value to be bitwise-ANDed with the
described addresses or data. Use all F's to include all
contiguous values in the described range. Vary the
mask to describe a discontinuous pattern of values.

when checked, defines the event as any memory
access that does not match the described range or
pattern.

specifies each signal value as low (0), high (1), or
don't-care (X). Active-low signals are shown with a
hash mark(#) for Intel emulators or minus sign(-) for
Motorola emulators. The signals available depend on
the target processor. For some Motorola processors,
the signals available can also depend on your chip
select register configurations.

For Motorola emulation, you can specify the address space for an event
as UD, UP, SD, or SP. To make the space selection available in the
Event edit box, you must program the processor to output the three
function codes FCO, FC1, and FC2.

Event Window Menus

Menu Use To:

File Save and restore events in files; close the Event window.

Edit Add, delete, and redefine events.

Windows Open another SLD window.

Help Open a window for help with SLD.

Event Window Reference 230 SW User's Manual

File Menu

The following is a sample File menu.

fdit Windows .!::!elp
S.ave Events As ...
Bestore Events ...
E~it

Save Events As ••• opens a dialog box to save the events to a file. The
following figure shows an event Save As dialog box. Select a path and
filename, then choose OK to save.

Save As

Q.irectories: OK
c:\powrpaki

File t!ame:

Im
Cancel

t" e-c:\ r!. F'-'
~ powrpaki
Li samp386 .!ielp

Li scrcaps
D fl.ead Only

t-:
+ t-:

+
Save File as IJope: Driyes:

!Event Files('.EVT) w I lac: ms-dos_6 l.!1

Restore Events ••• opens a dialog box to add events from a previously
saved file. Currently defined events are not deleted; but events. with
duplicate names are overwritten from the file. The following figure
shows an event Open dialog box.

Open

File H.ame: Q.i1ecto1ies: OK
l•.ev~ c: \powrpaki

123 c:\
Cancel

r!. ~
~ powrpaki

.!ielp Li samp386
L::J scrcaps

D fl.ead Only

t-:
+ t-:

+
List Files of lJope: Driyes:

I Event Files(".EVT) l!I I lac: ms-dos_6 l!J

Event Window Reference 231 SW User's Manual

Exit closes the Event window.

Edit Menu

The following is a sample Edit menu.

Qelete Event
.Clear Event
D.e.lete All Events

Add Event. .. opens a dialog box to create a new event. Enter the name
of a new event in the box and choose OK. The new event then appears
as the Active Event, with all fields cleared, in the Event window. The
following figure shows an Add Event dialog box.

Add Event

Name:

.QK I !;.ancel I Help

Delete Event deletes the currently displayed event.

Clear clears the event definition fields without deleting the event name.

Delete All Events deletes all currently defined events.

Event Window Reference 232 SW User's Manual

Trigger Window Ref ere nee
The following shows a sample Trigger window.

= Trigger - Level 0 a
Eile .E_ d it Qptions .Level Windows .!:!.elp

Condition Actions
event name enable ext se_g_ rst brk toff next incO rstO incl rstl ext lo exthi
evl :!:: 0 D D D D D D D D D D D D

:!:: D

:!:: D

:!:: D

:!:: D

:!:: D

:!:: D

:!:: D

cntoBo
cntl I D
ext D

This chapter describes the Trigger window fields, menus, and dialog boxes.

The Trigger window has two panes:

Condition

Actions

describes one or more conditions, including events, an
external trigger-low signal, and either two counter
values or a timer value.

specifies one or more actions to be taken for each
condition met during emulation. When multiple
conditions are met simultaneously, all associated
actions are taken.

The title bar displays a level number from 0 to 3. The level 0 trigger is
enabled when you start emulation. Each trigger can, as one of its
actions, disable itself and enable the next level trigger. Thus you can
define up to four sequential triggers.

Trigger Window Reference 233 SW User's Manual

Trigger Condition Fields

At the bottom of the Condition pane is either a pair of counters (cntO
and cntl) or a timer (tmr). To choose the counters or the timer, open
the Options menu (described later in this chapter) and check Counter or
Timer. This toggle also configures the Actions pane for resetting and
incrementing the counter or for starting, stopping, and resetting the
timer. The following figure shows sample counter and timer
configurations.

cntO ~ IZI DD I
cntt~IZI

Field Use To

event name Select an event by the name defined in the Event
window. You can use up to 8 events per trigger. If no
event is defined when you click on an event name
condition, the Event Name dialog box appears for
defining a new event.

enable Activate a condition. You can define several conditions
and actions, then vary your triggering .scheme by
enabling them in different combinations.

ext (This is the ext that appears when a condition is
enabled.) Specify that the condition must occur at the
same time as an active-low external trigger signal.

cntO/l Count from 1to1023. Type a target value in a counter
field and enable the counter. Trigger actions can reset
(to 1) or increment (by 1) the counter. When the count
caused by the trigger actions matches the target count
you specified, the counter condition is met and the
associated actions occur.

tmr Time from 1 to 1048575 clock cycles. Type a target
value in the timer field and enable the timer. Trigger
actions can start counting clock cycles from the current
number; stop counting without resetting the timer; or
reset the timer to 1. You can pair resetting with either
starting or stopping the timer. When the timer count
caused by the trigger actions matches the target time you
specified, the counter condition is met and the associated
actions occur.

The timer increments at the clock rate of the emulation

Trigger Window Reference 234 SW User's Manual

processor and wraps to 0 after reaching its maximum
value. To calculate how much time is represented by a
complete cycle of the timer, use:

wrap time= (220) I (clock period)

For example, at 25 MHz, the timer wraps in about 42
ms; at 16 MHz, in about 65.5 ms.

ext (This is the ext in the lower left comer of the Trigger
window.) Detect an active-low external trigger signal.

Trigger Action Fields

The fourth column of the Actions pane contains actions to reset or
increment the counters (incO, rstO, incl, rstl) or to start, stop, or reset
the timer (start, stop, reset). To choose the counter or timer actions,
open the Options menu and check Counter or Timer. This toggle also
configures the Condition pane with a pair of counters or a timer. The
following figure shows sample counter and timer configurations.

incO r stO inc 1 rstl start ston reset
DODD [2J D D
D r2J r2J D DD D

Field Use To

seq Disable the current trigger and enable the next level
trigger.

rst Disable the current trigger and enable the level 0 trigger.

brk Halt emulation.

toff Tum trace off.

next Fills the current buffer according to the Trace Control
dialog box settings, then starts collecting trace in the next
buffer. Available when multiple trace buffers are defined.

incO/l Increment the specified counter (ctrO or ctrl) by 1.

rstO/l Reset ctrO or ctrl to 1.

start Start the timer (tmr) from its current value.

stop Stop tmr at its current value.

reset Reset tmr to 1.

ext lo/hi Put a low or high value on the external trigger signal.

Trigger Window Reference 235 SW User's Manual

Trigger Window Menus

Menu Use To:

File Exit the Trigger window.

Edit Specify an event using the Event window.

Options Configure the trace buffers; toggle counter/timer
conditions and actions; toggle bus/clock cycle triggering.

Level View a specified trigger level.

Windows Open another SLD window.

Help Open a window for help with SLD.

Edit Menu

Events ••• opens the Event window

Options Menu
Following is a sample Options menu.

Irace Control ...

.,/ !;.ounter
Timer

../flus
Clock

Trace Control ... opens the Trace Control dialog box, described in the
"Trace Window Reference" chapter.

Counter configures two 10-bit counters for use in trigger conditions
and actions.

Timer configures a 20-bit timer for use in trigger conditions and
actions.

Bus lets the trigger recognizes conditions on valid bus cycles only.
Choose Bus mode except when:

• tracking hardware bus problems possibly caused by processor
cycles between valid address, data, or status cycles

• triggering on the initial transition of a hardware signal

Trigger Window Reference 236 SW User's Manual

Clock uses clock cycles as trigger conditions. Address, data, and status
events occur at different clocks. Chose Clock mode for a single event
that tests conditions including address, data, and status.

Level Menu

Choosing a level displays the conditions and actions for that trigger.
Following is a sample Level menu.

Trigger Window Reference 237

Show Level 1
Show Levell
Show Level J

SW User's Manual

Trigger Window Reference 238 SW User's Manual

Trace Window Ref ere nee
The following figure shows two sample Trace windows. The first is for an Inte/386 EX
processor; the second is for a Motorola 68332 processor. Different signals, address formats,
and instruction formats are available for different processors. For some Motorola
processors, the available signals also depend on your chip select configurations

I! il
Eile f_dit ';l:iew Irace Timestamp !!oto ".a'indows !::!elp

b111dw arnb rniiii ss bep c PPP PPPPPPPP PPPPPPPP
ti111esta111p address data hicr ddas s111nnnn 111111 sre s 111 22222222 33333333

eo sy 8 ti4567 ia yrr 6 567 01234567 01234567
-622 -24.880 us 3FFE4FA BFHF 010il ll111 llOllllllO 11 11 ll 1 11lll 11111001 00000000
-605 -24.200 us 3FFE4FC 0849 0100 0111 000000 11 11 ll 1 100 11111001 llOllllllOOO
-588 -23.5211 us ll001l5C8 017[01111 0111 01101100 11 11 ll 1 11111 1111111111 0001100011

= iii Eile J;_dit 1,,'iew Irace Tjmestamp §oto ::6'.indows !!elp
ad r ss dd ar rbh iiiiiii pppp s rtmm tttt tttt tttt tttt

ti111esta111p address data ss w zz kk v111 sel rrrrrrr cccc c xxoi 0123 4567 8911 1111
01 01 cc trt 1234567 11123 k ddss 01 2345

-1117 -4.280 us 0006BR 8081 110 1 01 10 11 111 1111111 1111 1 0111 1100 0000 0000 OOOOj:ii
-104 -4.160 us 0006BC 6EF2 00 1 01 10 11 111 1111111 1111 1 0111 1000 0000 0000 0000
-101 -4.040 us 0006BE 4E75 00 1 01 10 11 111 1111111 1111 1 0111 1100 0000 0000 0000~

[tl ..
This chapter describes the Trace window contents, menus, and dialog boxes.

The Trace window has three view modes:

Bus

Clock

Instruction

displays every cycle of bus activity.

displays address, data, and processor status signals
aligned on clock cycles.

displays disassembled instructions. To find the
beginning of the first instruction to display, SLD
looks for a discontinuity caused by a change in
execution flow (a branch trace message). No
instructions can be disassembled before such a
discontinuity is found.

Each trace frame (one line in the Trace window) contains the following
information, in columns from left to right:

Cycle number The clock cycle number of the trace frame relative to
the cycle of the triggering event. In instruction and
bus view modes, the frame numbers are discontinuous
because multiple clock frames make up a single bus or
instruction frame.

Trace Window Reference 239 SW User's Manual

Times tamp

Address

The time the trace frame occurred, relative either to
the beginning of trace or to the previous frame.

The value on the address bus.

In bus or clock view mode:

Data

Signals

The value on the data bus

The values of processor-specific signals. The signal
mnemonic labels are formatted vertically.

In instruction view mode, disassembly is shown instead of data and
signals. Also, the number of clock cycles between instruction frames
describes how many cycles have elapsed between signals appearing on
the target processor external pins (for example, the number of cycles
between successive prefetches); this number does not, for example,
report how many clocks the processor used to execute an instruction.

Trace Window Menus

Menu

File

Edit

View

Trace

Times tam
p

Goto

Windows

Help

File Menu

Use To:

Save trace to a buffer; close the Trace window.

Open the Event window; search for an event; clear trace.

Configure the trace display; link the Source window
display to scroll with the Trace window cursor.

Start and stop trace; configure Trace Control.

Configure the timestamp and the system clock
frequency.

Navigate through the Trace buffer.

Open another SLD window.

Open a window for help on SLD.

The following is a sample File menu.

Trace Window Reference 240 SW User's Manual

Save As ••• opens a dialog box to save the trace buffer to a file. Enter
the filename. If a file with the specified name already exists, it will be
overwritten. A Trace Save As dialog box appears:

File Name:

Save Format

Buffer

Frame

is the drive, directory, and filename you specified in
the first dialog box. You can edit this string.

saves the trace in bus, clock, or instruction format.

saves a specified range of buffers.

saves a specified range of frames.

Trace Save As

file Name: I RPAKM\SAMP332\1.TRC I
~Save Format
@ flus 0 Clock

Buffer
St~rt: I 0

:====~
fnd: l._o __ __.

0 Instruction
Frame

1-105

lo

OK 11 !;.ancel 11 tlelp

Exit closes the Trace window.

Edit Menu

The following shows a sample Edit menu.

~iew Irace
E~ents .. .
S.i;.arch .. .

!;.lear Trace

Events ••• opens the Event window.

Search ••• opens a dialog box to find an event in the currently displayed
trace buffer. The following figure shows a Search Buffer dialog box.

Trace Window Reference 241 SW User's Manual

Search Buffer: 0

S.earch Event: levl liJ

Start frame: 1-105 I

OK I I ~ancel I I !:!elp

Search Event select an event from the list of defined events.

Start Frame select the frame to start searching.

Clear Trace clears all trace buffers and resets the buffer pointer to
zero. (The current trace buffer is automatically cleared and reset when
you start emulating or tracing.)

View Menu

The following figure shows two sample View menus. The first is for an
Intel386 EX processor; the second is for a Motorola 68332 processor.
Different processors have different signals and address formats.

I!_us
.,/Instruction

.Linked Cursor

vBTM Cycles

viimestamp

.,JA,uto
Usel6
UseJ.2

I!_us
.,/Instruction

.Linked Cursor

../Iimestamp

Clock displays trace as clock cycles.

Trace Window Reference 242 SW User's Manual

Bus displays trace as bus cycles.

Instruction displays trace as disassembly (instruction cycles). In
instruction mode, a branch trace message (BTM) must be collected
before disassembly can be constructed. Instructions in the trace before
any such execution flow change cannot be displayed.

Linked Cursor to link the cursors in the Source and Trace windows, so
when you scroll through the Trace window the Source window scrolls
synchronously. This item is available only in instruction view mode.

BTM Cycles, when checked, generates BTM cycles and collects them
in trace. A BTM cycle is a special bus cycle executed by the bondout
processor when execution is discontinuous (e.g., at a jump, call,
interrupt, return, etc.). Their occurrence degrades real-time execution
slightly. For trace to be displayed as instructions, BTM cycles must be
collected. Toggling BTM Cycles clears the trace buffer.

Timestamp displays the timestamps.

Auto uses the Intel386 processor pmode to determine whether operands
and addresses are interpreted as 16-bit or 32-bit values.

Use16 interprets Intel386 operands and addresses as 16-bit values.

Use32 interprets Intel386 operands and addresses as 32-bit values.

Trace Menu

The following shows a sample Trace menu.

~tart

Ston

Irace Control ...

Fil

Start (or pressing the F3 key) starts trace collection. This occurs
automatically when emulation begins.

Stop (or pressing the F4 key) stops trace collection.

Trace Control ••• opens a dialog box to configure the number of buffers,
the trigger location, or a breakpoint on a full buffer.

Trace Window Reference 243 SW User's Manual

Trace Control

D H.!!.lt When Last Trace Buffer Full

ririgger Position

L @ere 0 Center 0Po_!!t

r-Nymber of Trace Buffers (x Size1------.
@ 1 (x256K) 0 8 (x32K]

0 2 (x128K) 0 16 (x16K]
0 4 (x64K] 0 32 (x8K)

LQK) I I ~ancel I

0 64 (x4K]
0128 (x2K]
0 256 (xlK)

I !:!.elp

Halt When Last stops emulation after the last trace buffer has been
Trace Buffer Full filled. This overwrites the first trace buffer.

Trigger Position specifies whether the triggering event will be
recorded in the trace buffer:

Number of Trace
Buffers (x Size)

Pre collects cycles before the trigger. The
event appears near the end of the buffer.

Center collects cycles before and after the trigger.
The event appears in the middle of the
buffer.

Post collects cycles after the trigger. The event
appears near the beginning of the buffer.

configures a single trace buffer 256K bytes long,
or 256 trace buffers each of which is lK byte long,
or any of various combinations in between.

Timestamp Menu

The following shows a sample timestamp menu.

Trace - Buffer: 0
Tlmestamp
../Relative To Frame

Q.elta

Zero At Frame ...

.S.etup ...

Relative To Frame computes each frame's timestamp relative to the
beginning of trace.

Trace Window Reference 244 SW User's Manual

Delta computes each frame's timestamp relative to the previous frame's
timestamp.

Zero At Frame sets the base frame for calculating the Relative To
Frame timestamp. The zero frame is marked with dashes(--).

Setup ••. opens a Setup dialog box to set the system clock frequency.
Enter a floating-point value from 0.01 Hz to 40 MHz.

Goto Menu

Setup

System Clock .Erequency: !!nits

IBmil

QK I .C.ancel

~!.MHz

0 KHz

OH£

.t!_elp

The following shows a sample Goto menu .

.$_tart Frame
Irigger Frame
f.nd Frame
.Erame ...
Next Buffer
frevious Buffer
ftuffer ...

Start Frame scrolls to the first trace frame in the displayed trace
buffer.

Trigger Frame scrolls to the trigger frame in the displayed trace
buffer.

End Frame scrolls to the last frame in the displayed trace buffer.

Frame .•• opens a dialog box to scroll to a specified frame in the
displayed trace buffer. The following shows a Frame dialog box.

Trace Window Reference 245 SLD User's Manual

Frame

.Erame Number:
OK

(-2 to 26315)
!;.ancel

I tD .t!.elp

With multiple buffers, the following Goto menu items are also
available:

Previous Buffer displays the next lower numbered buffer.

Next Buffer displays the next higher numbered buffer.

Buffer ... opens a dialog box to display the specified buffer. The
following shows a Buffer dialog box.

Buffer

Irace Buffer:
.Q.K I

(0 to 3)
.Qancel I

Im .t!.elp I

Trace Window Reference 246 SW User's Manual

Glossary

address

Unsigned value identifying a location in memory. An address can be a hexadecimal number
or a symbol (if symbols have been loaded). See the Address Formats section in the
"Debugging with Triggers and Trace" chapter.

alarm limit

User-specified percentage of the stack area. If the stack usage exceeds the alarm limit when
emulation halts, a message appears.

alias
Symbol defined in the Shell window to represent a character string. For example, used to
shorten long commands.

alignment

See trace alignment.

BDM

Background Debug Mode available in Motorola CPU32 processors.

branch trace message (BTM)

Trace information recording a change in execution flow.

break cause

Why emulation is halted.

breakpoint

Location where emulation halts. Also see: software breakpoint, hardware breakpoint,
permanent breakpoint, temporary breakpoint.

browse
Select a module to view in the Source window.

SW User's Manual 247 Glossary

browser history
In the Source window, you can view up to two modules simultaneously. When you browse
more than two modules, the emulator keeps a chronological list in a browser history buffer of
the modules you have browsed. You can specify a buffer depth of the number of entries to
save. To review a sequence of modules, use the File menu Previous Browsed Module and
Next Browsed Module entries.

buffer
See browser history, command history, loadfile history, trace buffer.

bus event
One or more data, address, or status signals occurring during a single target bus cycle.

bus mode
Displays trace aligned in frames by the bus-cycle termination signals; or, collects trace for
each target bus cycle. The display mode and the collection mode are set separately using the
Trace window View and Options menus. Also see clock mode, instruction mode.

call stack
Current nesting of calls in the executing program, including information about each
function's name, stack address, return address, local variables, and parameters.

case sensitive
Distinguishes lower-case letters from upper-case letters.

cause

See break cause.

clock mode
Displays trace aligned in frames by clock cycle; or, collects trace for each target clock cycle.
Clock cycles are based on the external speed of the processor. The display mode and the
collection mode are set separately using the Trace window View and Options menus. Also
see bus mode.

Glossary 248 SW User's Manual

command entry pane
Bottom part of the Shell window. Type Shell commands on the command entry pane
command lines; press <Enter> to execute the commands. Separate multiple commands with
semicolons. Also see transcript pane.

command history

As you enter Shell commands, the emulator keeps a chronological list in a command history
buffer of all your entries. You can specify a buffer depth of the number of entries to save. To
recall commands from the buffer to the command entry pane, use the <Ctrl><Up Arrow> and
<Ctrl><Down Arrow> key combinations.

command script

See script.

compress display

Display only the first line of a variable, peripheral register, or peripheral group.

control processor

Located in the main chassis; controls emulation processing. Also see emulation processor,
target processor.

current module and function

Code location where the emulator has most recently halted.

cursor

Highlight, vertical or horizontal bar, or other symbol showing the current focus point in a
window display. Move the cursor with the <Up Arrow> and <Down Arrow> keys or by
pointing and clicking with the mouse.

data breakpoint

Hardware breakpoint causing a break when a specified address is read or written.

debug environment

The debug environment includes the control options (such as overlay memory), user-defined
aliases or debug variables, and the SLD desktop.

SID User's Manual 249 Glossary

demangle

To demangle is to strip C++ mangling from symbol names during load.

disabled breakpoint

Encountering a disabled breakpoint does not halt emulation. The disabled breakpoint is
ignored. Also see enabled breakpoint, temporary breakpoint, permanent breakpoint.

disassembly

Memory contents or trace information interpreted by the emulator as assembly language
instructions.

double word
32 bits (four bytes).

emulation breakpoint

See hardware breakpoint.

emulation pod (EPOD)

Contains emulation and overlay circuits; attached by cables to the emulator chassis and probe
head.

emulation processor

Located in the Probe, the emulation processor replaces the processor in the target system,
providing the emulator with information about the program execution. Also see control
processor, target processor.

emulation status
Whether the emulator is running or halted. This information appears in the Status window or
icon. Also see break cause.

emulator
Uses a special version of the processor to monitor and control your target's software and
hardware activity involving the processor. In the PowerPack™ emulator documentation,
emulator refers to the PowerPack emulator and SLD software.

Glossary 250 SW User's Manual

enabled breakpoint

Encountering an enabled breakpoint halts emulation. Also see disabled breakpoint,
temporary breakpoint, permanent breakpoint.

event

Condition arising in program execution that can be used to trigger an emulator action during
emulation or to find specified activity in the trace buffer.

execution breakpoint

Hardware breakpoint causing a break when an instruction at a particular address is executed.

frame

See trace frame, stack frame.

go
Emulate until halted by a predefined condition or by a halt request.

granularity

In the Source and Shell windows, the step granularity can be set to source line or source
statement. With the granularity set to line, stepping emulates one or more source lines. With
the granularity set to statement, stepping emulates one or more source statements.

hardware breakpoint

Breakpoint using a processor register rather than a software interrupt. Also see software
breakpoint.

high-water mark
The greatest percentage of the stack area used during program execution.

history buffer

See command history, browser history, loadfile history.

host

Your workstation or PC, where you run SLD.

SW User's Manual 251 Glossary

include file

See script.

initialization code

See startup code.

initialization script

The script run automatically when you start SLD, to configure the emulator. Also see script.

initialization file

File named powerpak.ini, which is placed in your Windows directory by the SLD installation.

instruction mode

Displays trace as disassembly instructions. Also see clock mode, bus mode. A branch trace
message must be collected for the emulator to disassemble the instructions.

line numbers
Sequential source line numbers in each independently compiled high-level language module.

linked cursor

You can link the Source and Trace displays so that, when you scroll or browse in the Trace
window in instruction mode, the Source window scrolls automatically to display the
corresponding source.

load
Write executable code and/or symbolic information from your host system to target or
emulator memory.

load status
Optional dynamic display of loading progress. The final status can be redisplayed with the
Source window File menu Load Information item. Load information includes: the loadfile
pathname; the module source file pathname; the number of bytes, modules, symbols, types,
functions, and lines loaded; the program counter; and the stack base and size. The load status
information box also displays a bar graph that fills to indicate the percent of loading
complete.

Glossary 252 SW User's Manual

loadfile

File containing executable code and/or symbolic information in OMF86, OMF386, IEEE-695,
or S-record format.

loadfile history

When you load a file, the emulator keeps a chronological list in a loadfile history buffer of the
most recent four loadfiles. To load one of these files, in the Source window File menu choose
one of the last entries numbered from 1 to 4.

log file

You can record Shell commands and their results to a file called a logfile.

long

See double word.

main chassis

Houses the PowerPack emulator motherboard, trace and communications modules, and power
supply.

mangle

A compiler mangles C++ overloaded names by adding a prefix or suffix to uniquely identify
the names for type-safe linkage.

map

Configure overlay and target memory to control access and emulation response to memory
accesses.

map file
File containing a saved map configuration.

memory access size
Number of memory locations read or written in a single access: byte, word, or double word.

module

Independently compiled source file.

SW User's Manual 253 Glossary

motherboard
Circuit board, in the PowerPack emulator main chassis, containing the system processor,
memory, communications, and analysis circuits.

null target

Board supplied with your Motorola PowerPack emulator for use as a target board when you
run the emulator startup tests. If you have code ready to test but no hardware (and no special
hardware needed to run the code), you can run the code with the emulator attached to the null
target instead of to your target hardware. For Intel emulators, see SAST board.

on-demand loading

Defers loading symbolic information for an individual module until either the module is
displayed in the Source window or a breakpoint is set in the module. On-demand loading
saves time when the file is loaded and saves space if some symbols are never needed.

overlay memory
RAM used and controlled by the emulator in place of your target system memory. Also see
target memory.

permanent breakpoint

A breakpoint which remains defined after causing emulation to halt. Also see temporary
breakpoint, enabled breakpoint, disabled breakpoint.

probe
Plugs into the target system, replacing the target processor, and provides the hardware
interface between the EPOD and the target.

program counter
Register used by the processor to find the next instruction to be executed. On Intel, this
register is CS:EIP (code segment extended instruction pointer); on Motorola, PC (program
counter).

SAST board
Board supplied with your Intel emulator for use as a target board when you run the emulator
stand-alone self-tests. If you have code ready to test but no hardware (and no special
hardware needed to run the code), you can run the code with the emulator attached to the
SAST board instead of to your target hardware. For Motorola emulators, see null target.

Glossary 254 SW User's Manual

script

Text file of Shell commands separated by semicolons. Execute a script with the Include Shell
command.

shell variable

Symbol starting with $, defined in the Shell window or in a script for use with Shell
commands.

SLD

Source Level Debugger, the PowerPack and PowerScope user interface.

software breakpoint

Breakpoint using a software interrupt inserted as the instruction at the address where you set
the breakpoint. Also see hardware breakpoint.

source line

Single line of executable code in a source file.

source statement
Single statement of executable code in a source file. Some C compilers allow multiple
statements per line, separated by semicolons.

split box
Windows object that you can drag to split a window into two panes. In SLD, such a box is
located above the top arrow of the Shell and Source window vertical scroll bars.

stack frame
When a function is called, information about the call (return address, parameters, local
variables) is stored in a record on the stack. One such record is a stack frame. The frames on
the stack change as calls and returns execute.

startup code
Executable code that runs before main() to set up the processor registers for your target
system. The startup code is usually written in assembly language. Some compilers
automatically add startup code; for some target designs, you may need to write the startup
code.

SW User's Manual 255 Glossary

status

See load status, emulation status, tracing status.

step
Execute a line, statement, or instruction; then break.

system clock (CLKOUT)
Internal system clock signal used as the bus timing reference by external devices.

system processor

See control processor.

tab

Single character interpreted as a specified number of spaces.

tab width

Number of spaces replacing a tab character. Ensure your emulator tab width matches your
compiler tab width.

target memory

RAM or ROM available on your target system.

target processor
The processor in your target system. When the emulator is attached to your target system, the
emulation processor in the emulator probe head replaces the target processor. Physically, this
replacement is done either by removing your target processor and plugging the probe head
into the socket on your target board, or by using a clip-over adapter to attach the probe head
on top of your target processor, tri-stating your target processor.

target system

Hardware of your design to which you connect the emulator. Also see SAST board, null
target.

temporary breakpoint

A breakpoint which is removed after it causes emulation to halt. Also see permanent
breakpoint, enabled breakpoint, disabled breakpoint.

Glossary 256 SW User's Manual

timestamp
Number associated with each trace frame indicating how many clock cycles have elapsed
since a specified frame or since the previous frame. Clock cycles are based on the external
speed of the processor.

toggle
Specify or choose one of a set of two or more mutually exclusive values or items.

toolchain
The compiler, assembler, linker/locator, and translator you use to generate a loadfile from
your source code. A supported toolchain is one Microtek International has tested and
approved for generating emulator-loadable files. The emulator is not guaranteed to work with
unsupported toolchains.

trace
Record of the emulation processor activity and signals collected at the emulation processor
clock rate. These signals can be displayed in frames based on clock cycles, bus cycles, or as
disassembled instructions.

trace buffer
Buffer containing a snapshot of the collected trace. The snapshot can be taken relative to a
specified event occurring during emulation. You can partition trace into one or more buffers;
the size of each buffer depends on the number of buffers.

trace frame
A trace frame is one line of information in the trace buffer. Each frame starts at a consistent
point relative to a bus cycle, clock cycle, or instruction fetch.

tracing status
Whether tracing is on or off; if on, which trace buffer is active. This information appears in
the Status window and icon.

transcript pane
Top pane of the Shell window. Optionally, you can configure the transcript pane to display
commands entered in the command entry pane and the associated emulator responses. Also
see command entry pane.

SW User's Manual 257 Glossary

trigger

Defines the action taken by the emulator in response to the occurrence of one or more events.

trigger frame

First frame collected after a trigger is reached.

word
16 bits (two bytes).

Glossary 258 SW User's Manual

Index

A

$BREAKCAUSE system variable, 133
$EMULATING system variable, 133
$SHELL_STATUS, 159
$SHELL_STATUS system variable, 134
*.cs, 111
*.map, 116
; (semicolon) 127
<<Prev, 228
>>, 39
@,137
115 VAC, 5
16-bit address mode, 68, 99, 100
220 VAC, 5
32-bit address mode, 68, 99, 100
5V or 3V operation, 6

Active Event, 230, 232
adapters, 5
Add, 204
Add Event dialog box, 70, 232
address

code patching, 136, 224
find closest symbol, 59
in trace, 240
Intel addressing modes, 68
module load address, 185
number base, 127
numeric,58, 134,218
of function, 134
of symbol, 134
return, 51, 211
stack, 51, 211
symbol at address, 164
view in Memory window, 59, 217,

218
view in Source window, 187
Xltcommand, 182

address bus, 240
AddressOf command, 134
alarm limit, 52, 101, 102, 209, 211
Alarm Limit dialog box, 211

SW User's Manual

B

259

alias
deleting, 143

Alias command, 135
Always On Top, 102
Append command, 135
Asm command, 135
AsmAddr command, 136
Assem, 224
assembly address, 136

see address: code patching
Auto, 222, 243
automatic variables, 144
auxiliary trace connector, 136
AuxTrace command, 136

BDMspeed command, 137
bit field

MaxBitFieldSize command, 163
peripheral register, 228

Bkptcommand, 137
BkptClear command, 138
BNC cables, 4
break

$BREAKCAUSE system variable,
133

Cause command, 139
during script execution, 133, 139
memory access, 22, 118, 162, 163

Breakpoint window
list breakpoints, 44, 205
remove breakpoints, 45
set breakpoints, 41, 207

breakpoints
address, 192,205,207
address space, 137, 192
Bkpt command, 137
BkptClear command, 138
break cause, 133, 139
C++ symbols, 42
cursor in Source window, 41
data, 146

Index

debug registers, 7, 96, 146
disabled,44, 137, 192,205, 207,208
DR command, 146
enabled,44, 137, 192,205,207,208
execution, 146
features, 7
find in Source window, 45, 207, 208
granularity, 7
hardware, 7, 41, 146, 163
ID, 137
inline functions, 43
Intel, 7, 41, 146, 207
list in Breakpoint window, 44, 192,

205
list in Shell window, 44, 137
modifying, 137
Motorola, 7, 41
non-executable source statement, 41
numeric address, 192
permanent, 41, 137, 192, 199, 205,

207
powerpak.ini, 96
removing, 41, 45, 138, 192, 199,

207,208
setting,41, 137, 146, 191, 199,207,

208
software, 7, 41
source line, 43
source statement, 43
symbolic address, 192
symbolic information, 137, 205, 207
tab width, 43
temporary, 41, 137, 192, 199, 205,

207
Browse Modules, 39, 99, 100
Browse Modules dialog box, 184
Browser History Depth dialog box, 196
BTM cycles, 105, 242
Buffer dialog box, 245
bus,236,242

address, 240
break cause, 133, 139
BusRetry command, 138
Config ignoreHLDA command, 140
external master, 140
Trace window, 75, 239, 242
Trigger window, 84, 236

bus contention, 138

Index

c

260

bus cycle triggering, 106, 107
BusRetry command, 138
buttons

grayed-out, 9
Byte Access, 222

C++
demangling symbols, 26, 27, 97, 98,

120, 159, 160
loading,26,27,97,98, 120, 159,

160
powerpak.ini, 97, 98
preprocessing, 13
setting breakpoints, 42
stepping into a declaration, 47
symbols in Source window, 49

cables, 4
call instruction

emulation control, 46, 47, 153, 154,
176, 177, 189, 190, 197, 198

source display, 48
Cancel, 224
carriage return/linefeed, 99, 100, 196
Cause command, 139
center, 74, 106, 243, 244
chip selects

ConfigCScommand,140
configuring the emulator, 32, 112,

140, 167, 169
configuring the processor, 31, 112
Event edit box, 71, 229, 230
file, 31, 167, 169
Intel processors, 169, 170
Motorola processors, 31, 71, 74, 79,

80, 112, 140, 169,229,230,239
RestoreCS command, 167
SaveCS command, 169
saving and restoring, 18, 111, 167,

169
trace and event signals, 32, 79, 80
Trace window, 74, 239

Clear, 192, 207, 208, 232
Clear All, 192, 207
Clear Breakpoint, 199
Clear command, 139
Clear Trace, 242

SW User's Manual

Clipboard, 124
clock, 236, 242

BDMspeed command, 137
frequency, 105,244
Trace window, 74, 239, 242
Trigger window, 84, 236

clock cycle triggering, 106, 107
Close, 228
cnt0/1, 234
code address, 51, 211
code patching, 7

address, 136, 224
Asm command, 135
AsmAddr command, 136
displayed in Source window, 49
processor space, 224
single-line assembler, 59, 223

colors
Source window, 41
Stack window, 51, 209
Variable window, 201

COM port, 99
Command Entry pane

including a script, 157
use, 123

command line
see Command Entry pane
see Shell commands

communications, 4, 6, 96, 99
Compiler Used dialog box, 197
compilers

Borland, 11, 23, 103, 104, 163
CompilerUsed command, 139
Hi\Vare, 15, 103, 104, 107, 180
Intermetrics, 13
Introl, 14
MaxBitFieldSize command, 163
Metaware, 10
MRI, 12
powerpak.ini, 103, 107
see toolchains, 11
Sierra, 13
specifying, 11, 23, 27, 103, 139
supported, 11, 103
Whitesmiths, 14

CompilerUsed command, 139
compiling

Intel, 10, 23

SW User's Manual

D

Motorola, 11
Compress, 203
Compress All, 227
confidence tests, 165, 178
Configcommand, 140
ConfigCS command, 140
ConfigSymbols command, 140
contention, 138
Copy command, 141
Copy Memory dialog box, 220
Counter, 236
CPU Configuration dialog box, 17
CPU registers

editing, 56, 213
reset, 166, 190

CPU window
configure signals, 56
edit register, 56, 213
opening, 114
reset the processor, 56, 113, 214

CPU16
20-bit addressing, 103, 104, 180

cursor
cross-hair in Source window, 41
linked Source and Trace windows,

49, 75, 105,242
linked Trace and Source windows, 7
Memory window, 59, 217
position in Source window, 186, 187
Source window emulation control,

47, 190
split-box in Shell window, 123
split-box in Source window, 41, 183

Dasm command, 142
DasmSym command, 142
data bus, 240
data number base, 127
date, 179
debug registers

breakpoints, 7, 96, 146
DR command, 146
powerpak.ini, 96
program access, 146

Decimal Bytes, 221
Decimal DWords, 222

261 Index

E

Decimal Words, 222
Delete, 204
Delete All Events, 232
Delete command, 143
Delete Event, 232
Delta, 244
descriptor table, 14 7

ConfigSymbols command, 140
display in Shell window, 147
DT command, 147
GDT command, 152
IDT command, 156
LDT command, 158, 159
update symbol base addresses, 97,

98, 112, 140
device, 138
diagnostics, 4
Disable, 192, 207, 208
Disable All, 192, 207, 208
DisableAlarmLimit command, 143
DisableHighWaterMark command, 144
disassembly, 221

after code patching, 49
Dasm command, 142
DasmSym command, 142
inline functions, 43
Intel address mode, 99, 100, 188
Memory window, 58, 218, 221
powerpak.ini, 99
Shell window, 142
Source window, 40, 48, 99, 188
symbols, 40, 58, ll l, 142, 218
Trace window, 75, 105, 239, 242

DisplayStack command, 144
DisplaySymbols command, 144
Done, 224
DOS newline, 99, 100, 196
double bus fault, 133, 139
DR command, 146
driver, 138
DT command, 147
Dump command, 148
DWord Access, 223

Echo command, 148
edit field, 202

Index 262

Edit Path dialog box, 40
email, 3
emulating, 38
emulation control

$EMULATING system variable, 133
break cause, 133
call instruction, 46, 47, 153, 154,

176, 177, 189, 190, 197, 198
defining a trigger, 84
emulation status, 48
example of breakpoint, 44
examples of triggering, 86
function call, 46, 47, 153, 154, 176,

177, 189, 190, 197, 198
Go,46
Go command, 153
Go From Cursor, 47, 190
Go Into Call, 47, 190, 198
Go Into Return, 47, 198

Source window Run
menu, 190

Go options, 196, 197
Go To Cursor, 47, 190
Go Until Call, 47, 189, 198
Go Until Return, 47, 190, 198
Gointo command, 153
Go Until command, 154
Halt, 47, 189
Halt command, 155
masking interrupts, 47, 103, l ll, 176
overview, 7
Reset And Go, 47, 190
ResetAndGo command, 167
return instruction, 46, 47, 153, 154,

176, 177, 189, 190, 198
setting breakpoints, 41, 207
Shell window, 153, 154
source line, 153, 154, 177
source statement, 153, 154, 177
Source window cursor, 47, 190
Source window options, 45, 99, 100,

176, 177, 196, 197
status, 133
Step, 46, 176, 177
Steplnto,46, 176, 177, 189, 197,

198
Step options, 45, 99, 100, 176, 177
Step Over, 46, 189, 198

SW User's Manual

StepMask command, 176
stepping speed, 4 7
Toolbar buttons, 115
trigger actions, 84, 233, 234, 235
trigger conditions, 84, 233, 234

emulator, 1
EmuStatus command, 149
Enable, 192,207,208,234
Enable Alarm Limit, 211
Enable All, 192, 207, 208
Enable High Water Mark, 211
EnableAlarmLimit command, 149
EnableHighWaterMark command, 150
EPOD,4
event, 7

address, 70, 71, 230
data, 70, 72, 230
defining, 70,230,232
EventRestore command, 150
EventSave command, 150
find in trace, 241
Motorola address space, 73, 230
removing, 232
restore from file, 18, 73, 150, 231
save to file, 18, 73, 150, 231
search in trace, 7
Shell window, 150
signals, 70, 72, 230
trace buffer position, 7
trigger condition, 85, 234
trigger position, 74, 106, 243, 244
uses, 70

Event edit box
also see Event window
enabling Motorola address space

selection, 73, 230
save/restore events, 73, 231
signal display formats, 72, 230
signals, 71, 229, 230
specify address, 71, 230
specify data, 72, 230
specify signal states, 72, 230

event name, 234
Event window

also see Event edit box
clearing,232
open from Trigger window, 236
signal mnemonics, 75

SW User's Manual

F

G

signals, 32
EventRestore command, 150
Events, 236
EventSave command, 150
Exit command, 150
Exit dialog box, 109
exiting SLD, 10, 109, 150
Expand All, 227
ext, 234, 235
external break, 133, 139
external trigger, 235

fax, 3
Field Value, 228
Fields, 228
Fill command, 151
Fill Memory dialog box, 219
FillStackPattern command, 152
Frame dialog box, 245
function

display in Shell window, 144, 145
display source from Stack window,

52, 211
load address, 72, 134, 198
return address, 51, 101, 102, 144,

211
source display, 48, 198
stack address, 51, 101, 102, 144, 211

function calls
emulation control, 46, 47, 153, 154,

176, 177, 189, 190, 197, 198
on the stack, 51, 101, 102
source display, 48

function keys, 38
Function pop-up menu, 72, 198

GDT
ConfigSymbols command, 140
display in Shell window, 152
Intel numeric addresses, 68
update symbol base addresses, 112,

140
GDT command, 152
Get symbol address, 134

263 Index

H

GetBase command, 153
global descriptor table

seeGDT
global variables, 49, 144, 145
go

Source window buttons, 46, 197
Source window configuration, 45, 99,

100
Source window Run menu, 189

Go command, 153
Go From Cursor, 47, 190
Go Into Call

program counter, 48
Source window button, 47
Source window buttons, 198
Source window Run menu, 190

Go Into Return, 190
program counter, 48
Source window button, 47
Source window buttons, 198

Go key, 38
Go To Address dialog box, 187, 218, 226
Go To Cursor, 47, 190
Go To Line dialog box, 186
Go To Peripheral dialog box, 226
Go To Register dialog box, 226
Go To Source, 198, 207, 208
Go Until Call

program counter, 48
Source window button, 47
Source window buttons, 198
Source window Run menu, 189

Go Until Return
program counter, 48
Source window button, 47
Source window buttons, 198
Source window Run menu, 190

Go Until/Into, 196, 197
Golnto command, 153
GoUntil command, 154
Granularity, 195

halt break cause, 133, 139
Halt command, 155
halt emulation, 47, 189
Halt key, 38

Index 264

Halt When Last Trace Buffer Full, 74,
106,243

halting emulation, 38, 155
hardware breakpoints, 7
hardware confidence tests, 165, 178
Help command, 155
Hex Bytes, 221
Hex Dwords, 221
Hex Words, 221
highlight

CPU window, 55, 213
Map dialog box, 115
Peripheral window, 226
red in Source window, 41, 45

high-water mark, 52, 101, 102, 209, 211
History command, 155
History Size dialog box, 126

ICE Peripheral Disable Register dialog
box, 112

IDT command, 156
IDT displayed in Shell window, 156
If..Else command, 156
Include command, 157
Include dialog box, 124
Include Return Code Address, 211
Include Stack Address, 211
include.me, 36, 97, 127
initialization script, 36, 97, 127
inline functions

breakpoints, 43
disassembly in Source window, 43
stepping, 43

Inspect Source, 211
Inspect Variable, 199
Instruction, 242
Integer command, 157
Intel address space, 21, 119, 162, 163
Intel addressing mode, 243

pmode, 68
Pmode command, 164
powerpak.ini, 99, 100

Intel Evaluation Board, 140
Intel numeric addressing, 182
Intel386 CX/SX A/B-Step, 17, 103
Intel386 debug registers, 146

SLD User's Manual

J

L

Intel386 EX HLDA pin, 140
Intel386 loadfile bitfield size, 103, 104
Intel386 register initialization, 27, 97, 98,

121, 159, 160
Intel386 symbol base addresses, 27, 97,

98, 112, 120, 121, 159, 160
Intel386EX ICECFGO register, 112
Intel86 code and data sections, 103, 104
Internet, 3
interrupt descriptor table

see IDT command
interrupts

masked for stepping, 4 7, 103, 111,
176

Motorola, 47, 103, 111, 176
StepMask command, 176

Into Call/Return, 196, 197
IsEmuHalted command, 158

jumper, 17

LapTimer command, 158
layout, 9, 96, 97, 102, 103, 109, 113
LDT

ConfigSymbols command, 140
display in Shell window, 158, 159
Intel numeric addresses, 68
update symbol base addresses, 112,

140
LDT command, 158
line numbers

breakpoint, 205
comment lines, 68
list in Shell window, 67, 144, 145
powerpak.ini, 99
view in Source window, 67, 99, 186

line voltage, 5
linear address, 68, 182
linefeed, 99, 100, 196
linked cursor, 7, 49, 75, 105, 242
List command, 159
Load Address information box, 72
Load command, 159
Load dialog box, 119

SW User's Manual 265

opening, 113
Load Information box, 184
Load Options dialog box, 25, 119
loaders.ini, 167
loadfile

creation date/time, 185
default sections, 103, 104
formats, 6, 9, 23
Intel formats, 10, 97, 98
Motorola compilers, 11, 139
Motorola formats, 27
older than source file, 39
path/filename, 185
preparing, 9
specifying a compiler, 23, 27
stack area, 53

loading
C++,26,27,97,98, 120, 159, 160
code,26,97, 120, 159
during emulation, 24, 121, 159, 160
Intel address space, 26, 97, 120, 159
Intel register initialization, 121, 159,

160
Load command, 159
LoadSize command, 161
memory access size, 161, 223
MergeSections command, 164
merging sections, 24, 103, 104
options, 25, 97, 119, 159
powerpak.ini, 97
reinitialize loaders error message,

167
reloading, 25, 159, 160, 185
ResetLoaders command, 167
Source window, 184
Source window:, 25
specify loadfile, 25, 119, 159
specifying a compiler, 11
status, 27, 97, 98, 121, 159, 160
symbols, 26, 27, 97, 120, 159
symbols in Motorola assembly, 121,

159
Toolbar, 25, 119
update Intel symbol bases, 120, 121,

159, 160
warnings, 27, 97, 98, 121, 159, 160

LoadSize command, 161
local descriptor table

Index

M

see LDT
local variables, 49, 51, 134, 144, 145, 209
Log command, 161
log file, 126

Append command, 135
configuring,20
filename, 161
Log command, 161
Logging command, 161
opening, 19
Overwrite command, 164
preserving contents, 19, 135, 161
start/stop logging, 161

Logging command, 161

main chassis, 4
map

file,21, 168, 170
saving and restoring, 18, 21, 117,

168, 170
Map Add/Edit dialog boxes, 116
Map command, 162
Map dialog box, 115

opening, 113
mapping memory

access rights, 22, 118, 162
address space, 21, 116, 162, 163
Intel Target memory, 22, 118, 162
Map command, 162
Map dialog box, 21, 115
MapRanges command, 163
Overlayffarget, 21, 118, 162, 163
remapping a region, 116
removing a region, 21, 116, 162, 163
saving and restoring, 116
Shell window, 22
Toolbar, 20, 110, 115

MapRanges command, 163
mask, 230
MaxBitFieldSize command, 163
memory

access during emulation, 28, 58, 61,
110, 168,169,222,227

access from Shell window, 57
access rights, 22, 118, 162

Index 266

access size, 61, 148, 151, 161, 171,
175, 181,222

code patching, 59, 223
Copy command, 141
copying, 141, 220
display in Shell window, 148
Dump command, 148
editing,59,219,220
Fill command, 151
Map command, 162
mapping,21, 115, 162, 168, 170
Memory window display formats, 58,

217
RestoreMap command, 168
RunAccess command, 168, 169
SaveMap command, 170
Search command, 171
searching, 171, 219
section boundaries, 21, 118, 162
section sizes, 21, 118, 162
Size command, 175
Verify command, 180
Write command, 181
write verification, 180, 223
writing, 151, 181, 219

Memory window
cache to speed scrolling, 59, 223
disassembly, 58, 111, 218, 221
display formats, 58, 111, 217
edit numeric values, 59, 60
memory access failure, 59, 223
multiple windows, 58, 61, 217
opening, 114
patch code, 223
scroll and refresh, 58, 61, 222, 223
single-line assembler, 59, 223
symbols, 58, 111, 218
view a symbol, 59, 217, 218
view an address, 59, 217, 218

Menu Bar key, 38
MergeSections, 164
Microtek, 3
module

breakpoint, 205
display in Shell window, 144, 145
load address, 185

Motorola 68360 port A and C
multiplexing, 136

SW User's Manual

N

0

p

Motorola address space, 21, 119, 162,
163

multiple trace buffers, 235

NameOf command, 164
network, 6, 96, 99
newline, 99, 100
Next Browsed Module, 185, 196
Next Window key, 38
Next>>, 228
not, 230
notational conventions, 128
null target board, 4
Number of Trace Buffers (x Size), 244

on-demand symbol loading, 26, 43, 97,
120, 159, 160

online help, 6, 10
Online Help key, 38
Open dialog box, 40, 112, 231
operand/address size, 68, 99, 100
optimization, 9
OS/2 LAN server, 96
oscilloscope, 165, 178
overlay

features, 6
overlay memory

MapRanges command, 163
RAM cycles disabled, 140

Overwrite command, 164

package,6
paging, 68
parameters, 51, 144, 209
patching

see code patching
PC-NFS network, 96
Periph button, 9
peripheral registers

bit fields, 228
contents, 228
edit, 63

SW User's Manual 267

editing, 227
Intel386 EX expanded memory, 28
Motorola internal cycles, 30, 111
Peripheral window, 61, 225
Peripheral window display formats,

62,225
Shell window access for Intel 1/0

space, 61
Variable window display formats,

203
Peripheral window

compressed display, 62, 225, 227
configure chip selects, 31
display formats, 62, 225
edit register, 63
expanded display, 62, 225, 227
opening, 114
scroll and refresh, 58, 61, 227
view a register, 61, 63, 225, 226

phone,3
physical address, 68, 182
pmode,99, 100, 164

Intel addressing mode, 68
Pmode command, 164
post, 74, 106, 243, 244
power

line voltage, 5
power-on sequence, 5

power cord, 4
powerpak.ini

alarm limit, 101, 102
BTM cycles, 105
bus or clock cycle triggering, 106
clock frequency, 105
compilers, 11, 103, 107
debug register breakpoints, 96
high-water mark, 101, 102
host-emulator communications, 96,

99
initialization script, 36, 97, 127
Intel386 CX/SX A/B-Step, 17, 103
line numbers, 99
loadfile sections, 103, 104
loading

options, 97
masking interrupts, 103
operand/address size, 99, 100
overview of sections, 95

Index

R

screen layout, 96, 102, 103
source filename extension, 99, 100
source path, 99, 101
Source window, 99
stack area, 53, 101
Stack window options, 101
Status window position, 102
tab width, 99, 100
trace buffers, 106
trace display formats, 105
trace timestamp, 105
trigger counter/timer, 106
trigger position, 106
Windows interface, 96, 102, 103

pre, 74, 106,243,244
Previous Browsed Module, 185, 196
Print command, 165
printable symbols, 144, 145
probe, 4
problem.txt, 3
program counter

after reset, 56, 214
after Step Into/Over or Go Into/Until,

48
mnemonic, 39
Source window, 39, 187

program variables
address, 134
colors in Variable window, 50, 201
dereferencing pointers, 50, 201, 203
display in Variable window, 204
editing values, 50, 201, 202
global, static, and local, 49
on the stack, 51, 209
parameters and local, 51, 209
set breakpoint, 199
Variable pop-up menu, 199
viewing, 49, 51, 199, 209

protected mode, 68
public symbols, 144, 145

RamTstcommand, 165
Read Ahead, 223
Read-after-write, 180
real mode, 68
Refresh Display, 204, 210, 222, 227

Index 268

Register command, 166
Register Edit dialog box, 63, 226, 227
Register Value, 228
registers

also see CPU registers
also see peripheral registers
initializing, 27, 97, 98, 121, 159, 160
listing in Shell window, 166
local variables/parameters, 144, 145
Register command, 166
setting, 166, 227

reinitialize loaders error message, 167
Relative To Frame, 244
relocating symbols, 172
RemoveSymbols command, 166
Reread On Write, 223
Reset, 214
Reset And Go, 47, 190
Reset command, 166
Reset CPU Only, 214
ResetAndGo command, 167
ResetLoaders command, 167
resetting the processor

CPU window, 56, 113, 214
effect on SLD windows, 56, 113,

166, 190,214
emulation control, 47, 167, 190
if reset fails, 56, 113, 166, 214
program counter, 56, 113, 166, 190,

214
Reset command, 166
ResetAndGo command, 167
Shell window, 47, 56, 113, 166, 167,

190
Source window, 47, 56, 113, 190
stack pointer, 56, 113, 166, 190, 214
Toolbar window, 56, 113

Restore Events, 231
Restore Map File dialog box, 117
RestoreCS command, 167
RestoreMap command, 168
Results command, 168
return address, 51, 211
return instruction

emnlation control, 47, 153, 154, 190,
198

source display, 48
Return symbol address, 134

SW User's Manual

s

RS-232C cable, 4
run access, 28, 58, 61, 110, 168, 169,

222,227
RunAccess command, 168

SAST board, 4, 178
Save As, 240
Save As dialog box, 111, 231
Save Events As, 231
Save Map File dialog box, 116
SaveCS command, 169
SaveMap command, 170
scope,65, 144, 145
screen layout, 9, 96, 102, 103, 109, 113
script, 36

command completion status, 134
conditional statements, 156, 181
creating, 19
emulation status, 133
If .. Else command, 156
Include command, 157
initialization, 36, 97, 127
reacting to break, 133
running/including, 124, 127, 157
While command, 181

Search, 186
Source window, 186

Search Buffer dialog box, 241
Search command, 1 71
Search dialog box, 186, 202
Search Event, 241
Search Memory dialog box, 219
Search Next, 202
sections in Motorola loadfiles, 24, 103,

104, 164
segmented architecture, 68
self-test, 4
serial communication, 96
serial communications, 99
Set, 208
Set Breakpoint dialog box, 42, 191, 206
Set Go Buttons, 196, 197
Set Perm. Breakpoint, 199
Set Permanent Breakpoint, 191
Set Temp. Breakpoint, 199
Set Temporary Breakpoint, 191

SW User's Manual 269

SetBase command, 172
SetStackAlarm command, 172
SetStackArea command, 173
SetStackBase command, 173
SetStackSize command, 174
Setup dialog box, 244
Shell commands

$SHELL_STATUS system variable,
134

aborting, 127
AddressOf, 134
Alias, 135
Append, 135
Asm, 135
AsmAddr, 136
AuxTrace, 136
BDMspeed, 137
Bkpt, 137
BkptClear, 138
BusRetry, 138
Cause, 139
Clear, 139
command history, 127
CompilerUsed, 139
completion status, 134
Config, 140
ConfigCS, 140
ConfigSymbols, 140
Copy, 141
Dasm, 142
DasmSym, 142
Delete, 143
DisableAlarmLimit, 143
DisableHighWaterMark, 144
display results, 125, 168
DisplayStack, 144
DisplaySymbols, 144
DR, 146
DT, 147
Dump, 148
echo, 125, 148
EmuStatus, 149
EnableAlarmLimit, 149
EnableHighWaterMark, 150
entering, 127
EventRestore, 150
EventSave, 150
Exit, 150

Index

Index

Fill, 151
FillStackPattem, 152
functionality, 129
GDT, 152
GetBase, 153
Go, 153
Gointo, 153
GoUntil, 154
Halt, 155
Help, 155
History, 155
history of commands, 126
IDT, 156
If..Else, 156
Include, 157
Integer, 157
IsEmuHalted, 158
LapTimer, 158
LDT, 158
List, 159
Load, 159
LoadSize, 161
Log, 161
Logging, 161
Map, 162
MapRanges, 163
MaxBitFieldSize, 163
MergeSections, 164
NameOf, 164
Overwrite, 164
Pmode, 164
Print, 165
RamTst, 165
Register, 166
RemoveSymbols, 166
Reset, 166
ResetAndGo, 167
ResetLoaders, 167
RestoreCS, 167
RestoreMap, 168
Results, 168
RunAccess, 168
SaveCS, 169
SaveMap, 170
Search, 171
SetBase, 172
SetStackAlarm, 172
SetStackArea, 173

270

SetStackBase, 173
SetStackSize, 174
Signal, 174
Size, 175
Stackinfo, 175
StartTimer, 176
Step, 176
StepMask, 176
StepSrc, 177
StopTimer, 177
String, 177
SymbolCloseFile, 178
SymbolOpenFile, 178
syntax, 128
Test, 178
Time, 179
Transcript, 179
TSS, 179
VarindexCPU16Reg, 180
Verify, 180
Version, 180
While, 181
Write, 181
Xlt, 69, 182

Shell variables
deleting, 143
Integer command, 157
listing, 159, 165
Print command, 165
String command, 177

Shell window
address of symbol, 134
allocate stack area, 54, 173
break cause, 48, 133, 139
closing, 124, 150
command completion status, 134
command history, 127, 155
configure auxiliary trace connector,

136
configure chip selects, 31, 140, 167,

169
configure debug registers, 146
configure signals, 174
configuring,19,125
copy memory, 141
disassemble memory, 142
display descriptor table, 147
display global descriptor table, 152

SLD User's Manual

display interrupt descriptor table,
156

display local descriptor table, 158,
159

display memory, 148
edit CPU register, 56
edit memory contents, 59
edit peripheral register, 63
emulation control, 153, 154
emulation status, 48, 133, 149, 158
entering commands, 127
find address of function, 71
find address of symbol, 71
find symbol near address, 71
go,46
Go command, 153
halt emulation, 47, 155
initialize stack, 152
Intel addressing mode, 164
Intel peripheral registers, 61
list breakpoints, 44, 137
list line numbers, 67
list registers, 166
list symbolic information, 59, 144,

145
load, 159, 164
log file, 19, 126, 135, 161, 164
map memory, 162, 168, 170
mapping memory, 22
opening, 115
patch code, 59, 135
remove breakpoints, 45, 138
Reset And Go, 47, 167
reset the processor, 56, 113, 166
restore events from file, 150
save events to file, 150
save/restore events, 73
script, 36, 156, 157, 181
search memory, 1 71
set breakpoints, 41, 137
set registers, 166
set stack base, 173
set stack size, 174
specify compiler, 139
stack information, 51, 144, 17 5
stack usage, 143, 144, 149, 150, 172
step, 46, 176, 177
symbol at address, 164

SW User's Manual 271

timer, 158, 176, 177
write memory, 151, 181

Shell window panes
clear Transcript pane, 139
configure, 19, 148, 149, 168, 179

Show, 203
Show All, 192
Show Level 0..4, 237
Show Load Address, 198
Signal command, 174
signals, 214

configured in chip selects, 32, 79, 80,
230

configuring in CPU window, 56
configuring in Shell window, 17 4
emulator trigger-out, trigger-in, 4
Event window, 32, 75, 230
from target or emulator, 56
Intel386CX, 76
Intel386EX, 75
Intel386SX, 77
MC68330, 81
MC68332/333, 78
MC68340, 81
MC68360, 83
RESET, 56, 166, 190, 214
Trace window, 32, 74, 75, 239, 240

single-line assembler, 135, 136
Single-line Assembler dialog box, 59,

221,223
Size command, 175
Skip, 224
SLD

features, 6
program disks, 4
runs under, 1

slow clock, 137
slow device, 138
SMM,68,222
software breakpoints, 7
Sort, 204
source column number

breakpoints, 205
source delimiter, 99, 100, 196
source file

language, 185
path/filename, 185
unable to open, 39

Index

source filename extension, 99, 100
source level debugging

preparing loadfile, 9
source line

breakpoints, 43
code patching, 224
stepping, 99, 100, 195

Source Line Delimiter, 196
source module

newer than loadfile, 39
search for string, 186

source path, 39, 99, 101
Source Path dialog box, 39, 193
source statement

breakpoints, 41, 43
multiple per line, 43
stepping, 99, 100, 195

Source Step Granularity, 195
Source window

Index

address of function, 134
after code patching, 49
after reset, 56, 214
C++ symbols, 49
configuring step and go options, 45,

99, 100
cross-hair cursor, 41
disassembly, 39, 40, 48, 99, 100,

111, 188
display formats, 6, 40, 99, 111, 188
displaying functions, 48, 52, 211
Function menu, 71
go,46
Go To/From Cursor, 47, 190
linked cursor, 7
list breakpoints, 44
loading, 25
newline, 99, 100
opening, 114
powerpak.ini, 99
program counter, 39
program variables, 49
red highlight, 41, 45
remove breakpoints, 45
Reset And Go, 47, 190
reset the processor, 56, 113
scroll with Trace window, 49, 75,

105, 242
set breakpoints, 41

272

startup code, 39
step, 46
tab width, 43, 99, 100
Variable menu, 49
view breakpoint, 45, 207, 208
view line numbers, 67, 99

source-level debugging, 6
Space, 224
stack

FillStackPattem command, 152
Information, 175
initializing, 152
monitoring, 52
SetStackArea command, 173
SetStackBase command, 173
SetStackSize command, 174

stack address, 51, 211
stack area

specifying, 53, 101, 210
specifying base and size, 173
specifying size, 174

Stack Area dialog box, 53, 210
stack base

specifying, 173
stack frame, 51
stack information

DisplayStack command, 144
Shell window, 51, 144
Stack window, 51, 209
Stacklnfo command, 175

stack meter, 51, 209
stack pointer after reset, 56, 214
stack usage

alarm limit, 52, 101, 102, 143, 149,
172,209,211

DisableAlarmLimit command, 143
DisableHigh WaterMark command,

144
EnableAlarmLimit command, 149
EnableHigh Water Mark command,

150
high-water mark, 52, 101, 102, 144,

150,209,211
SetStackAlarm command, 172
stack meter, 51, 209

Stack window
after reset, 56, 214
allocate stack area, 53, 210

SW User's Manual

colors, 51, 52, 209
features availability, 53
monitor stack usage, 52
opening, 114
view function source, 52, 211

Stack window panes
configuring, 211
contents, 51, 209

Stacklnfo command, 175
Start, 243
Start Frame, 241
Start Trace key, 38
StartTimer command, 176
startup code

configure chip selects, 31
Source window, 39

static variables, 49
status

$BREAKCAUSE system variable,
133

$EMULATING system variable, 133
$SHELL_STATUS system variable,

134
break cause, 48, 133, 139
Cause command, 139
emulating, 48, 133, 149, 158
EmuStatus command, 149
IsEmuHalted command, 158
load progress, 27, 97, 98, 121, 159,

160
Shell command completion, 134
show in Shell window, 48
tracing, 73

Step, 46
masking interrupts, 47, 103, 111, 176

Step command, 176
Step Continuously, 46, 47, 190

monitoring stack, 52
Step Count dialog box, 195
Step Into, 46, 189, 197, 198

program counter, 48
source display, 48

Step Into key, 38
Step Over, 46, 189, 198

program counter, 48
Step Over key, 38
StepMask command, 176
stepping

SW User's Manual 273

break cause, 133, 139
inline functions, 43
Source window configuration, 45, 99,

100, 176, 177, 195
Step command, 176
StepSrc command, 177

StepSrc command, 177
Stop, 243
Stop Trace key, 38
StopTimer command, 177
String command, 177
string constant, 165
Support, 3
supported compilers, 139
symbol table, 65, 153, 166
SymbolCloseFile command, 178
symbolic assembly, 135
symbolic debugging, 6

preparing loadfile, 9
symbolic disassembly, 142
symbolic information

functions, 51, 209
list in Shell window, 59, 144, 145
stack information in Shell window,

144
Stack window, 51, 209
Variable window, 50, 201

SymbolOpenFile command, 178
symbols

address, 144, 145
AddressOf command, 134
assembly modules, 27
at address, 164
base address, 140
C++,26,97,98, 120, 159, 160
ConfigSymbols command, 140
DasmSym command, 142
disassembly, 40, 58, 111, 218
DisplaySymbols command, 144, 145
file, 144, 145, 178
find address, 59, 134
GetBase command, 153
loading,26,97, 120, 159
Memory window, 58, 111, 218
Motorola assembly modules, 121,

159
name resolution, 65
NameOf command, 164

Index

T

on-demand loading, 26, 43, 97, 120,
159, 160

powerpak.ini, 97, 98
qualifying, 66
relocating, 172
RemoveSymbols command, 166
scope,65, 144, 145
SetBase command, 172
setting breakpoints, 43
Shell window, 144, 145
SymbolCloseFile command, 178
SymbolOpenFile command, 178
type, 144, 145
unloading, 166
view in Memory window, 59, 217,

218
virtual addresses, 65

system clock, 137
system variables

$BREAKCAUSE, 133
$EMULATING, 133
$SHELL_STATUS, 134
functionality, 129

tab width
powerpak.ini, 99, 100
setting breakpoints, 43, 205
specifying, 99, 100

Tab Width dialog box, 194
Taiwan, 3
task state segments, 179
Technical support, 3
telephone, 3
test, 165, 178
Test command, 178
time, 179
Time command, 179
time out, 138
timer

LapTimercommand, 158
Shell window, 158, 176, 177
StartTimer command, 176
StopTimer command, 177
Trigger window, 85, 234, 236
Trigger window Options menu, 236

Timestamp, 240, 243

Index 274

timestamp menu, 244
tmr, 234
Toolbar

buttons grayed-out, 9
closing, 109
configure chip selects, 31
go,46
halt emulation, 47
loading, 25, 119
mapping memory, 20, 110, 115
minimizing, 109
overview, 8
reset the processor, 56, 113
step, 46

Toolbar key, 38
toolchains

also see compilers
Cfront, 13
FORM695, 13
PharLap LinkLoc, 11

trace
BTM cycles, 105, 242
bus cycles, 75, 239, 242
clock cycles, 74, 239, 242
configuring buffers, 7, 74, 106
controlling, 7
display a buffer, 245
display a frame, 245
features, 7
halt when buffers full, 74, 106, 243
Intel addressing mode, 243
multiple buffers, 7, 244
save to file, 240
search for event, 7, 241
timestamp, 105, 243, 244
Trace window display formats, 7, 74,

105,239,242
trigger position in buffer, 74, 106
viewing, 73, 74,239,242

trace collection
automate with triggers, 73, 235
Toolbar, 73, 115
Trace window, 243

Trace Control dialog box, 73, 235, 236,
243

trace frame, 239
trace information, 7

address, 240

SW User's Manual

format, 239
signals, 240
timestamp, 240

Trace Save As dialog box, 240
Trace window

bus, 239
clock, 239
configure trace collection, 73, 243
configure view, 242
define event, 70
disassembly, 105, 239
display formats, 74, 105, 239, 242
find a buffer, 245
find a frame, 245
linked cursor, 7
opening, 115
signal mnemonics, 75
signals, 32, 74, 239
synchronize Source window, 49, 75,

105, 242
view trace, 74, 239, 242

trademarks, iii
Transcript command, 179
Transcript pane

capacity, 126, 179
clear, 125, 139
display commands, 19, 125, 148, 149
display emulator responses, 20
display results, 125, 168
Echo command, 148, 149
Results command, 168
Transcript command, 179
use, 123

Transcript Size dialog box, 126
trigger, 86

bus or clock cycle, 84, 106, 236
counter actions, 85, 106, 235, 236
counter condition, 85, 106, 234, 236
event condition, 85, 234
external action, 235
external condition, 234
features, 7
find in trace buffer, 245
multiple conditions, 84, 234
position in trace, 74, 106, 243, 244
sequencing, 84, 233, 235, 237
summary of defining triggers, 92
timer actions, 85, 106, 235, 236

SW User's Manual 275

u

v

timer condition, 85, 106, 234, 236
trigger examples

act on multiple events, 87
AND an event with an external input,

88
break on interrupt latency, 88
define sequential triggers for

capturing trace, 89
on external input alone, 89
stop trace without breaking

emulation, 86
Trigger Position, 243
Trigger window

bus trigger, 236
clock trigger, 236
configure trace collection, 73, 235
define event, 70, 236
define trigger, 84, 235
opening, 113
sequencing triggers, 84, 233, 235,

237
show sequence, 84, 233, 237

Trigger window panes, 233
trigger-in, 4, 235
trigger-out, 4, 235
TSS command, 179

Undelete, 204
UNIX newline, 99, 100, 196
Unterminated Memory Access error, 223
USA,3
Usel6, 222, 243
Use32,222,243
User, 222

Variable pop-up menu, 49, 199
Variable window

colors, 50, 201
compressed display, 203
display formats, 203
displaying program variables, 204
expanded display, 203

variables
see Shell variables

Index

w

x

z

see program variables
VarlndexCPU16Reg command, 180
Verify command, 180
Version command, 180
virtualaddress,69
virtual-86 mode, 68

While command, 181
Windows, 1
Windows interface, 6, 9, 10, 47, 96, 102,

103, 109, 113, 124
Word Access, 222
Write, 228
Write command, 181
write verification, 180, 223
Write Verify, 223

X,230
Xltcommand, 182

Zero At Frame, 244

Index 276 SW User's Manual

·MICROTEK.:INTERNATIONAL
·: " .. :l l i

Development Syste.ms Division
3300 N.W. 2l"lth Terrace

Hillsboro, OR 97124-7136
Phone: (503) 645-7333

Fax: (503) 6t9-8460

6~ Industry East Road 3
Science...;based Industry Park

Hsinchu ::30077
, •i

Taiwan, ROC
Tel: +886 35 772155

\1
,. :~ w

SLD User's M®ua1 Fgr lbe PowerPack™ Development Tool
' Part Number14913-000

