
hyperSOURCE-386/386SX

User Manual

September 1991

MICROTEK INTERNATIONAL, INC.
Development Systems Division

3300 N.W. 211th Terrace
Hillsboro, OR 97124-7136

Fax (503) 629-8460
(503) 645-7333

Part Number 11831-006

hyperSOURCE-386/386SX

User Manual

September 1991

MICROTEK INTERNATIONAL, INC.
Development Systems Division

3300 N.W. 211th Terrace
Hillsboro, OR 97124-7136

Fax (503) 629-8460
(503) 645-7333

Part Number 11831-006

i7: E7:

Trademarks

MICE-V and hyperSOURCE-386 are trademarks of Microtek International, Inc.

IBM PC is a registered trademark of International Business Machines Corporation

XLINK is a registered trademark of Systems & Software, Inc.

CodeView is a registered trademark of Microsoft Corp.

80386 is a trademark of Intel Corporation

1991 MICROTEK INTERNATIONAL, INC.
All Rights Reserved

Printed in the U.S.A

The material in this manual is subject to change without notice. Microtek International assumes no
responsibility for errors which may appear in this manual. Microtek International makes no
commitment to update, nor to keep current, t

Trademarks

MICE-V and hyperSOURCE-386 are trademarks of Microtek International, Inc.

IBM PC is a registered trademark of International Business Machines Corporation

XLINK is a registered trademark of Systems & Software, Inc.

CodeView is a registered trademark of Microsoft Corp.

80386 is a trademark of Intel Corporation

1991 MICROTEK INTERNATIONAL, INC.
All Rights Reserved

Printed in the U.S.A

The material in this manual is subject to change without notice. Microtek International assumes no
responsibility for errors which may appear in this manual. Microtek International makes no
commitment to update, nor to keep current, t

Customer Support

Before calling our Customer Support Department with problems, questions, or suggestions on
hyperSOURCE-386, please read the Product Performance Report form found in the file
"pprform.ini" in the hyperSOURCE-386 installation subdirectory. Please be prepared to provide the
information requested on this form when you call. You can contact the Customer Support
Department Monday through Friday from 8 a.m. to 5 p.m. Pacific Time at:

Phone: (503) 645-7333

FAX: (503) 629-8460

Customer Support

Before calling our Customer Support Department with problems, questions, or suggestions on
hyperSOURCE-386, please read the Product Performance Report form found in the file
"pprform.ini" in the hyperSOURCE-386 installation subdirectory. Please be prepared to provide the
information requested on this form when you call. You can contact the Customer Support
Department Monday through Friday from 8 a.m. to 5 p.m. Pacific Time at:

Phone: (503) 645-7333

FAX: (503) 629-8460

Preface

Preface

hyperSOURCE-386 Overview

HyperSOURCE-386 is a windowed interface providing both assembly-level and source-level
debugging capability through the MICE-V 80386 emulator. HyperSOURCE-386 allows you
to debug embedded applications. HyperSOURCE-386 provides a user interface with multi-
window display areas as well as pop-up windows and pull-down menus. Commands can be
input with a mouse or through the keyboard.

Organization of the Manual

This manual describes the operation of the hyperSOURCE-386 interface. The manual is
divided into the following sections:

Chapter One, "Introduction," describes the hyperSOURCE-386 features, hardware and
software requirements, the installation procedure, how to modify the DOS and Environment
files, how to define key macros, what files are created and used in a debug session, how to
invoke hyperSOURCE-386, the Help command, and how to exit hyperSOURCE-386.

Chapter Two, "Window Layout," describes the hyperSOURCE-386 display areas called
windows. A sample screen display for each window is shown and a description of each
window is described. Also described are how to program function and control keys, and
how to use the mouse.

Chapter Three, "hyperSOURCE-386 Tutorials," describes how to execute hyperSOURCE-
386 and then takes you from the basic steps to the more advanced steps of operating
hyperS OURCE-386.

Chapter Four, "In-Circuit Considerations," describes how to execute hyperSOURCE-386,
lists a few hyperSOURCE-386 initialization problems with their solutions, describes how to
emulate ROM-based applications, RAM-based applications, and applications without target
memory. Also, a few possible operation problems with hyperSOURCE-386 are described.

Chapter Five, "Debug Environment," describes how to use the high-level language
debugging features supported by hyperSOURCE-386.

Chapter Six, "Command Reference," describes the hyperSOURCE-386 commands. The
syntax, a brief description, and some examples are given for each command.

Chapter Seven, "Macros," describes how to use the hyperSOURCE-386 macro facility.

Microtek International, DSD v hyperSOURCE-386 User Manual

Preface

Preface

hyperSOURCE-386 Overview

HyperSOURCE-386 is a windowed interface providing both assembly-level and source-level
debugging capability through the MICE-V 80386 emulator. HyperSOURCE-386 allows you
to debug embedded applications. HyperSOURCE-386 provides a user interface with multi-
window display areas as well as pop-up windows and pull-down menus. Commands can be
input with a mouse or through the keyboard.

Organization of the Manual

This manual describes the operation of the hyperSOURCE-386 interface. The manual is
divided into the following sections:

Chapter One, "Introduction," describes the hyperSOURCE-386 features, hardware and
software requirements, the installation procedure, how to modify the DOS and Environment
files, how to define key macros, what files are created and used in a debug session, how to
invoke hyperSOURCE-386, the Help command, and how to exit hyperSOURCE-386.

Chapter Two, "Window Layout," describes the hyperSOURCE-386 display areas called
windows. A sample screen display for each window is shown and a description of each
window is described. Also described are how to program function and control keys, and
how to use the mouse.

Chapter Three, "hyperSOURCE-386 Tutorials," describes how to execute hyperSOURCE-
386 and then takes you from the basic steps to the more advanced steps of operating
hyperSOURCE-386.

Chapter Four, "In-Circuit Considerations," describes how to execute hyperSOURCE-386,
lists a few hyperSOURCE-386 initialization problems with their solutions, describes how to
emulate ROM-based applications, RAM-based applications, and applications without target
memory. Also, a few possible operation problems with hyperSOURCE-386 are described.

Chapter Five, "Debug Environment," describes how to use the high-level language
debugging features supported by hyperSOURCE-386.

Chapter Six, "Command Reference," describes the hyperSOURCE-386 commands. The
syntax, a brief description, and some examples are given for each command.

Chapter Seven, "Macros," describes how to use the hyperSOURCE-386 macro facility.

Microtek International, DSD v hyperSOURCE-386 User Manual

Table of Contents

Preface v
hyperSOURCE-386 Overview v
Organization of the Manual v

Chapter One - Introduction 1
Feature Summary 1
Hardware Requirements 1
Software Requirements 1
Installation 2
Modifying the DOS Files 2

DOS Configuration File - config.sys 2
DOS Startup Batch File - autoexec.bat 3

Modifying the Environment File - hs386.env 3
Specifying MICE Communication Parameters 5

Serial Port Number (COM) 5
Baud Rate (BAUD) 5
Time Delay (TMDELAY) 5

Specifying Path Variables 6
Startup Command File (STARF) 6
Source Files (SPATH) 6

Specifying Data Buffer Sizes 6
History Window (HISTORY) 6
Dialog Window (DIALOG) 7

Specifying Source Window Display Formats 7
Object Code (CODE) 7
Line Number (NUMBER) 7
Tab Expansion (TAB) 8
Text Editor (EDITOR) 8

Specifying Audio-Visual Effects 8
Error Beep (BEEP) 8
Display Mode (EGA) 9

Specifying Debug Characteristics 9
Command Repeat (CRREPEAT) 9
Home Window (HOME) 9
Main Function (MAIN) 10
Display Macro Bodies (MUST) 10
Prolog Execution (PROLOG) 10
Number Base (RADIX) 11
Case Sensitivity (SENSITIVE) 11
Source File Extension (EXTENSION) 11

vii

Table of Contents

Preface v
hyperSOURCE-386 Overview v
Organization of the Manual v

Chapter One - Introduction 1
Feature Summary 1
Hardware Requirements 1
Software Requirements 1
Installation 2
Modifying the DOS Files 2

DOS Configuration File - config.sys 2
DOS Startup Batch File - autoexec.bat 3

Modifying the Environment File - hs386.env 3
Specifying MICE Communication Parameters 5

Serial Port Number (COM) 5
Baud Rate (BAUD) 5
Time Delay (TMDELAY) 5

Specifying Path Variables 6
Startup Command File (STARF) 6
Source Files (SPATH) 6

Specifying Data Buffer Sizes 6
History Window (HISTORY) 6
Dialog Window (DIALOG) 7

Specifying Source Window Display Formats 7
Object Code (CODE) 7
Line Number (NUMBER) 7
Tab Expansion (TAB) 8
Text Editor (EDITOR) 8

Specifying Audio-Visual Effects 8
Error Beep (BEEP) 8
Display Mode (EGA) 9

Specifying Debug Characteristics 9
Command Repeat (CRREPEAT) 9
Home Window (HOME) 9
Main Function (MAIN) 10
Display Macro Bodies (MLIST) 10
Prolog Execution (PROLOG) 10
Number Base (RADIX) 11
Case Sensitivity (SENSITIVE) 11
Source File Extension (EXTENSION) 11

vii

Specifying Window Size and Position 12
Dialog/Source Separator Bar (BARLINE) 12
REGWN, MEMWN, BREAKWN, RTRACEWN, CSTACKWN 12

Defining Key Macros 13
Files Used in a Debug Session 14

Environment File 14
Program File 14
Source Files 14
Help Files 14
Command Files 15

Files Created During a Debug Session 15
Temporary Files 15
List File 15
Journal File 15
Data Files 16

Invoking hyperSOURCE-386 16
Help 17
Exiting hyperS OURCE-386 17

Chapter Two - Window Layout 19
Menu Bar 19
Pull-Down Menus 20
Source Window 20

Source Window Size 20
Window Browse Mode 21
Foreground and Background Colors 21
Display Formats 22

Dialog Window 23
Dialog Window Size 23

Command Line 24
Recall a Previous Command 24

Pop-Up Windows 24
Register Window 25
Memory Window 26
Debug Windows 26

Breakpoints Window 27
CallStack Window 27

Symbol Windows 28
Examine Window 29
Module Window 29
Global Window 30
Local Window 31
Structure Window 32

viii

Specifying Window Size and Position 12
Dialog/Source Separator Bar (BARLINE) 12
REGWN, MEMWN, BREAKWN, RTRACEWN, CSTACKWN 12

Defining Key Macros 13
Files Used in a Debug Session 14

Environment File 14
Program File 14
Source Files 14
Help Files 14
Command Files 15

Files Created During a Debug Session 15
Temporary Files 15
List File 15
Journal File 15
Data Files 16

Invoking hyperSOURCE-386 16
Help 17
Exiting hyperSOURCE-386 17

Chapter Two - Window Layout 19
Menu Bar 19
Pull-Down Menus 20
Source Window 20

Source Window Size 20
Window Browse Mode 21
Foreground and Background Colors 21
Display Formats 22

Dialog Window 23
Dialog Window Size 23

Command Line 24
Recall a Previous Command 24

Pop-Up Windows 24
Register Window 25
Memory Window 26
Debug Windows 26

Breakpoints Window 27
CallStack Window 27

Symbol Windows 28
Examine Window 29
Module Window 29
Global Window 30
Local Window 31
Structure Window 32

viii

Function Keys 33
Control Keys 34
Using the Mouse 34

Selecting Help 35
Selecting Menu Options 35
Resizing Dialog and Source Window 35
Selecting Windows 36
Resizing and Repositioning Windows 36
Scrolling in Windows 37
Selecting Function Keys 37
The Source Window 37

Setting a Breakpoint 37
Deleting a Breakpoint 37
Copying Command to Command Line 38
Viewing Source Code of Symbols 38

Scrolling in the Dialog Window 38
Copying from the History Window 38
Editing in the Memory and Register Windows 38
Editing and Scrolling in the Symbol Menu 39
Defining Breakpoints 39
Displaying and Defining Macros in the Macro Menu 39

Chapter Three - hyperSOURCE-386 Tutorial 41
Preparing to Run hyperSOURCE-386 41
HyperSOURCE-386 Problems and Solutions 42
HyperSOURCE-386 Tutorial 43
Loading and Executing Code 44
Window Management 47
Viewing Source Files 49
Examining and Modifying Data 52
Breakpoints 56
Trace Analysis 58

Chapter Four - In-Circuit Considerations 61
Preparing to Run hyperSOURCE-386 61
Emulating ROM-based Applications 62
Emulating RAM-based Applications 63
Emulating without Target Memory 63
Possible Operation Problems with hyperSOURCE-386 64
Exiting hyperSOURCE-386 66

ix

Function Keys 33
Control Keys 34
Using the Mouse 34

Selecting Help 35
Selecting Menu Options 35
Resizing Dialog and Source Window 35
Selecting Windows 36
Resizing and Repositioning Windows 36
Scrolling in Windows 37
Selecting Function Keys 37
The Source Window 37

Setting a Breakpoint 37
Deleting a Breakpoint 37
Copying Command to Command Line 38
Viewing Source Code of Symbols 38

Scrolling in the Dialog Window 38
Copying from the History Window 38
Editing in the Memory and Register Windows 38
Editing and Scrolling in the Symbol Menu 39
Defining Breakpoints 39
Displaying and Defining Macros in the Macro Menu 39

Chapter Three - hyperSOURCE-386 Tutorial 41
Preparing to Run hyperSOURCE-386 41
HyperSOURCE-386 Problems and Solutions 42
HyperSOURCE-386 Tutorial 43
Loading and Executing Code 44
Window Management 47
Viewing Source Files 49
Examining and Modifying Data 52
Breakpoints 56
Trace Analysis 58

Chapter Four - In-Circuit Considerations 61
Preparing to Run hyperSOURCE-386 61
Emulating ROM-based Applications 62
Emulating RAM-based Applications 63
Emulating without Target Memory 63
Possible Operation Problems with hyperSOURCE-386 64
Exiting hyperSOURCE-386 66

ix

Chapter Five - Debug Environment 67
Symbolic Reference 67
Referencing Symbols 67
Compiling, Linking, and Locating a 80386 Program 67

Compiling with MASM 68
Compiling with Metaware High C 68

Character Set 68
Defining Symbols 68
Data Type 69
Specifying Symbols 70
Source Line Number Reference 72
Pointer Reference 72
Data Structure Reference 73
Radixes 73
Memory Object Reference 74
1/0 Port Reference 74
Register Reference 75
Status Flag Reference 76
Operands 76
Operators 77

Arithmetic Operators 77
Relational Operators 77
Logical Operators 77
Bitwise Logical Operators 77
Assignment Operators 78
Miscellaneous Operators 78
Type Operators 78

Operator Precedence 79
Expressions 80

Numerical Expressions 81
Address Expressions 81
Boolean Expressions 81
CPU Register Expressions 81

Chapter Six - Command Reference 83
 85

86
 87
 88
 89
 90
 91

= or EVAluate 92
9 93

Chapter Five - Debug Environment 67
Symbolic Reference 67
Referencing Symbols 67
Compiling, Linking, and Locating a 80386 Program 67

Compiling with MASM 68
Compiling with Metaware High C 68

Character Set 68
Defining Symbols 68
Data Type 69
Specifying Symbols 70
Source Line Number Reference 72
Pointer Reference 72
Data Structure Reference 73
Radixes 73
Memory Object Reference 74
1/O Port Reference 74
Register Reference 75
Status Flag Reference 76
Operands 76
Operators 77

Arithmetic Operators 77
Relational Operators 77
Logical Operators 77
Bitwise Logical Operators 77
Assignment Operators 78
Miscellaneous Operators 78
Type Operators 78

Operator Precedence 79
Expressions 80

Numerical Expressions 81
Address Expressions 81
Boolean Expressions 81
CPU Register Expressions 81

Chapter Six - Command Reference 83
 85

86
 87
 88
 89
 90
 91

= or EVAluate 92
9 93

@ or INClude 94
B (breakpoint) 95
BEEp 97
BINary 98
BREak 99
BRKgdt 100
BRkPidt 101
BRIcRidt 102
BYTe 103
CALlstack 104
CAUse 105
CHAr 106
CLOse 107
CODe 108
COMpare 109
CONtinue 110
COPy 111
CRRepeat 112
CW 113
DASm or U 114
DECimal 115
DIRectory MACro 116
DIRectory MODule 117
DIRectory STRucture 118
DISplay MACro 119
DISplay STRucture 120
DISplay TRAce or PRInt 121
DOUble 122
DOWn 123
DT 124
DWOrd 125
EDit 126
EDit MACro 127
EGA 128
ENV 129
ES Cape 132
EVALuate or = 133
EXAmine or E 134
EXIt 135
EXTension 136
FINd 137
FLAg 138
FLOat 139
FOR 140

xi

@ or INClude 94
B (breakpoint) 95
BEEp 97
BINary 98
BREak 99
BRKgdt 100
BRkPidt 101
BRIcRidt 102
BYTe 103
CALlstack 104
CAUse 105
CHAr 106
CLOse 107
CODe 108
COMpare 109
CONtinue 110
COPy 111
CRRepeat 112
CW 113
DASm or U 114
DECimal 115
DIRectory MACro 116
DIRectory MODule 117
DIRectory STRucture 118
DISplay MACro 119
DISplay STRucture 120
DISplay TRAce or PRInt 121
DOUble 122
DOWn 123
DT 124
DWOrd 125
EDit 126
EDit MACro 127
EGA 128
ENV 129
ES Cape 132
EVALuate or = 133
EXAmine or E 134
EXIt 135
EXTension 136
FINd 137
FLAg 138
FLOat 139
FOR 140

xi

FREe 141
GDT 142
GLObal 143
Go 144
GOTo 146
GR 147
HALt 148
HELp 149
HEX 150
HOLdtp 151
HOMe 152
HTRc 153
IDT 154
IF 155
INClude or @ 156
INPut 157
JOUrnal, NO JOUrnal 159
LDT 160
LiNEar 161
LISt, NO LISt 162
LOAd 163
LOCal 164
MACro 165
MAP 166
MEMory 167
MLIst 168
NUMber 169
OCTal 170
OPEn 171
OUTput 172
PAUse 173
PD 174
PHYsical 175
PMOde 176
POInter 177
PRInt or DISplay TRAce 178
PROlog 179
PUT 180
QUIt 181
QWOrd 182
RADix 183
RAMtst 184
RA mtstP 185
RBRk 186

xii

FREe 141
GDT 142
GLObal 143
Go 144
GOTo 146
GR 147
HALt 148
HELp 149
HEX 150
HOLdtp 151
HOMe 152
HTRc 153
IDT 154
IF 155
INClude or @ 156
INPut 157
JOUrnal, NO JOUrnal 159
LDT 160
LiNEar 161
LISt, NO LISt 162
LOAd 163
LOCal 164
MACro 165
MAP 166
MEMory 167
MLIst 168
NUMber 169
OCTal 170
OPEn 171
OUTput 172
PAUse 173
PD 174
PHYsical 175
PMOde 176
POlnter 177
PRInt or DISplay TRAce 178
PROlog 179
PUT 180
QUIt 181
QWOrd 182
RADix 183
RAMtst 184
RA mtstP 185
RBRk 186

xii

RDYbrk 187
RDyTo 188
REAd 189
REGister 190
REMove MACro 191
REPeat 192
RESet 193
RUNning 194
SENsitive 195
SET 196
SIG 197
SOUrce 198
SPAth 199
STO, ST1, ST2, ST3, ST4, STS, ST6, ST7 200
Step 201
STRucture 202
SW 203
SWItch 204
SYMbol 205
TIMe 206
TKB 207
TM 208
TRC mode 210
TREal 211
TSS 212
TW 213
TYPe 214
U or DASm 215
UP 216
USE 217
VeRiFy 218
VERsion 219
VIEw 220
WAIt 221
WHIle 222
WIDth 223
WORd 224
WRIte 225
WSTate 226
XLT 227

RDYbrk 187
RDyTo 188
REAd 189
REGister 190
REMove MACro 191
REPeat 192
RESet 193
RUNning 194
SENsitive 195
SET 196
SIG 197
SOUrce 198
SPAth 199
STO, ST1, ST2, ST3, ST4, STS, ST6, ST7 200
Step 201
STRucture 202
SW 203
SWItch 204
SYMbol 205
TIMe 206
TKB 207
TM 208
TRC mode 210
TREal 211
TSS 212
TW 213
TYPe 214
U or DASm 215
UP 216
USE 217
VeRiFy 218
VERsion 219
VIEw 220
WAIt 221
WHIle 222
WIDth 223
WORd 224
WRIte 225
WSTate 226
XLT 227

Chapter Seven - Macros 229
Using the Flow Control Commands 229

Defining Macros 229
Displaying Macros 231
Displaying Macro Directory 232
Deleting Macros 232
Invoking Macros 232
Saving Macros to a File 233
Loading Macros from a File 233
Debugging Macros 233

Tables

Table 2.1 - Pull-Down Menus 20
Table 2.2 - Window Browse Cursor Keys 21
Table 2.3 - Function Keys 34
Table 2.4 - Control Keys 34
Table 2.5 - Window Border Functions 36

Table 5.1 - Operator Precedence 79

figures

Figure 2.1 - hyperSOURCE-386 Window Layout 19
Figure 2.2 - Sample Display of Source Window 22
Figure 2.3 - Register Window 25

xiv

Chapter Seven - Macros 229
Using the Flow Control Commands 229

Defining Macros 229
Displaying Macros 231
Displaying Macro Directory 232
Deleting Macros 232
Invoking Macros 232
Saving Macros to a File 233
Loading Macros from a File 233
Debugging Macros 233

Tables

Table 2.1 - Pull-Down Menus 20
Table 2.2 - Window Browse Cursor Keys 21
Table 2.3 - Function Keys 34
Table 2.4 - Control Keys 34
Table 2.5 - Window Border Functions 36

Table 5.1 - Operator Precedence 79

figures

Figure 2.1 - hyperSOURCE-386 Window Layout 19
Figure 2.2 - Sample Display of Source Window 22
Figure 2.3 - Register Window 25

xiv

Chapter One Introduction

Chapter One - Introduction
HyperSOURCE-386 is a windowed interface providing both assembly-level and source-level
debugging capability through the MICE-V 80386 emulator. HyperSOURCE-386 allows you
to debug embedded applications. HyperSOURCE-386 provides a user interface with multi-
window display areas as well as pop-up windows and pull-down menus. Commands can be
input with a mouse or through the keyboard.

Feature Summary

• HyperSOURCE-386 operates with the MICE-V 80386 or 80386SX system.

• HyperSOURCE-386 can load linked and located C source code and provide complete
source-level support.

• HyperSOURCE-386 displays source code in high-level, assembly-level, or mixed-mode
formats. It provides a full-stack trace, has the ability to monitor variables continuously,
and executes breakpoints on source- or assembly-level information.

• HyperSOURCE-386 commands can be executed on the command line or with a mouse
through pull-down menus.

• HyperSOURCE-386 has a transparent mode so you can access the low-level features of
the standard command-line interface of the emulator.

• HyperSOURCE-386 provides in-depth on-line help.

Hardware Requirements

HyperSOURCE-386 requires an IBM PC AT, or compatible system with at least 2 MB of
RAM, a 1.2 MB floppy drive, a hard disk drive with 1 MB of free space, and one serial
port. A second port is required if you plan to use a serial mouse.

The following monitors are compatible with hyperSOURCE-386:

• Monochrome graphic display
• IBM CGA color graphic display or compatible
• IBM EGA color graphic display or compatible
• IBM VGA mono or color graphic display or compatible

Microtek International, DSD 1 hyperSOURCE-386 User Manual

Chapter One Introduction

Chapter One - Introduction
HyperSOURCE-386 is a windowed interface providing both assembly-level and source-level
debugging capability through the MICE-V 80386 emulator. HyperSOURCE-386 allows you
to debug embedded applications. HyperSOURCE-386 provides a user interface with multi-
window display areas as well as pop-up windows and pull-down menus. Commands can be
input with a mouse or through the keyboard.

Feature Summary

• HyperSOURCE-386 operates with the MICE-V 80386 or 80386SX system.

• HyperSOURCE-386 can load linked and located C source code and provide complete
source-level support.

• HyperSOURCE-386 displays source code in high-level, assembly-level, or mixed-mode
formats. It provides a full-stack trace, has the ability to monitor variables continuously,
and executes breakpoints on source- or assembly-level information.

• HyperSOURCE-386 commands can be executed on the command line or with a mouse
through pull-down menus.

• HyperSOURCE-386 has a transparent mode so you can access the low-level features of
the standard command-line interface of the emulator.

• HyperSOURCE-386 provides in-depth on-line help.

Hardware Requirements

HyperSOURCE-386 requires an IBM PC AT, or compatible system with at least 2 MB of
RAM, a 1.2 MB floppy drive, a hard disk drive with 1 MB of free space, and one serial
port. A second port is required if you plan to use a serial mouse.

The following monitors are compatible with hyperSOURCE-386:

• Monochrome graphic display
• IBM CGA color graphic display or compatible
• IBM EGA color graphic display or compatible
• IBM VGA mono or color graphic display or compatible

Microtek International, DSD 1 hyperSOURCE-386 User Manual

Introduction Chapter One

Software Requirements

HyperSOURCE-386 requires MS-DOS or PC-DOS version 3.1 or higher, an assembler
and/or a C compiler, and a linker capable of producing Intel OMF-386 object files.

Installation

To install hyperSOURCE-386, insert the hyperSOURCE-386 or the hyperSOURCE-386SX
distribution diskette into drive A and type the following:

> a:install

This installation procedure copies all files from the distribution diskette to a hyperSOURCE-
386 directory which was created during the installation procedure.

Note

The hyperSOURCE-386 product is used for both the 386 and 386SX emulators.
Select and use only the appropriate installation diskette.

Modifying the DOS Files

In order for hyperSOURCE-386 to operate properly, you may need to modify your config.sys
and autoexec.bat files.

DOS Configuration File - config.sys

The following commands should be included in the config.sys file. Refer to the file
config. new created during installation.

1. FILES =n

where n is 20 or greater. The FILES statement provides the number of
simultaneously opened files that are required by h rSOURCE-386.

2. DEVICE=MOUSE.SYS

Include this statement if a mouse is used. The file MOUSE.SYS is the mouse
device driver. The file name may vary but the device driver must be compatible
to that of the Microsoft mouse. Consult the installation menu for the particular
mouse that is installed in the system.

hyperSOURCE-386 User Manual 2 Microtek International, DSD

Introduction Chapter One

Software Requirements

HyperSOURCE-386 requires MS-DOS or PC-DOS version 3.1 or higher, an assembler
and/or a C compiler, and a linker capable of producing Intel OMF-386 object files.

Installation

To install hyperSOURCE-386, insert the hyperSOURCE-386 or the hyperSOURCE-386SX
distribution diskette into drive A and type the following:

> a:install

This installation procedure copies all files from the distribution diskette to a hyperSOURCE-
386 directory which was created during the installation procedure.

Note

The hyperSOURCE-386 product is used for both the 386 and 386SX emulators.
Select and use only the appropriate installation diskette.

Modifying the DOS Files

In order for hyperSOURCE-386 to operate properly, you may need to modify your config.sys
and autoexec.bat files.

DOS Configuration File - config.sys

The following commands should be included in the config.sys file. Refer to the file
config. new created during installation.

1. FILES =n

where n is 20 or greater. The FILES statement provides the number of

2.

simultaneously opened files that are required by h

DEVICE=MOUSE.SYS

rSOURCE-386.

Include this statement if a mouse is used. The file MOUSE.SYS is the mouse
device driver. The file name may vary but the device driver must be compatible
to that of the Microsoft mouse. Consult the installation menu for the particular
mouse that is installed in the system.

hyperSOURCE-386 User Manual 2 Microtek International, DSD

Chapter One Introduction

DOS Startup Batch File - autoexec.bat

The following commands should be included in the autoexec.bat file. Refer to the file
autoexec.new created during installation.

1. PATH=drive:pathname;

where drive:pathname is the drive and directory containing the hyperSOURCE-
386 program file.

Instead of adding the following variables, SET HS386HLP and HS386ENV, to your
autoexec.bat, you might choose to use the batch file hs.bat to invoke hyperSOURCE-386. If
you do, move hs.bat to a subdirectory which is in your path.

2. SET HS386HLP=drive:pathname

where drive:pathname is the drive and directory containing the help files for
hyperSOURCE-386. HS386HLP is hyperSOURCE-386's environment variable
for locating the directory of the help files. The help files are: hs386h1p.txt,
hs386h1p.bod, and hs386h1p.idx. When hyperSOURCE-386 is started, it will
search the current directory for the help files. If the help files cannot be found, it
will then search the subdirectory specified in the HS386HLP environment
variable.

3. SET HS386ENV =drive:pathname\filename

where drive.pathnamelfilename is the drive, directory and file name of
hyperSOURCE-386's environment file. You may specify environment variables
in the environment file to configure the operation of hyperSOURCE-386. The
default file name is hs386. env and the default directory is the current directory
from which hyperSOURCE-386 is started.

Modifying the Environment File - hs386.env

HyperSOURCE-386's environment file enables you to set up internal environment variables
that affect the operation of hyperSOURCE-386. The default file name of the environment
file is hs386.env. If the environment file is not found when hyperSOURCE-386 is started, it
will make use of internal defaults for configuration. You can specify environment variables
in the environment file to override the default settings.

You can use the ENV command during a debug session to display the environment settings.
The ENV command also allows you to save the settings to a file which can later be used as
an environment file to configure hyperSOURCE-386.

Microtek International, DSD 3 hyperSOURCE-386 User Manual

Chapter One Introduction

DOS Startup Batch File - autoexec.bat

The following commands should be included in the autoexec.bat file. Refer to the file
autoexec.new created during installation.

1. PATH=drive:pathname;

where drive:pathname is the drive and directory containing the hyperSOURCE-
386 program file.

Instead of adding the following variables, SET HS386HLP and HS386ENV, to your
autoexec.bat, you might choose to use the batch file hs.bat to invoke hyperSOURCE-386. If
you do, move hs.bat to a subdirectory which is in your path.

2. SET HS386HLP=drive:pathname

where drive:pathname is the drive and directory containing the help files for
hyperSOURCE-386. HS386HLP is hyperSOURCE-386's environment variable
for locating the directory of the help files. The help files are: hs386h1p.txt,
hs386h1p.bod, and hs386h1p.idx. When hyperSOURCE-386 is started, it will
search the current directory for the help files. If the help files cannot be found, it
will then search the subdirectory specified in the HS386HLP environment
variable.

3. SET HS386ENV =drive:pathname\filename

where drive.pathnamelfilename is the drive, directory and file name of
hyperSOURCE-386's environment file. You may specify environment variables
in the environment file to configure the operation of hyperSOURCE-386. The
default file name is hs386. env and the default directory is the current directory
from which hyperSOURCE-386 is started.

Modifying the Environment File - hs386.env

HyperSOURCE-386's environment file enables you to set up internal environment variables
that affect the operation of hyperSOURCE-386. The default file name of the environment
file is hs386.env. If the environment file is not found when hyperSOURCE-386 is started, it
will make use of internal defaults for configuration. You can specify environment variables
in the environment file to override the default settings.

You can use the ENV command during a debug session to display the environment settings.
The ENV command also allows you to save the settings to a file which can later be used as
an environment file to configure hyperSOURCE-386.

Microtek International, DSD 3 hyperSOURCE-386 User Manual

Introduction Chapter One

Each line in the environment file may contain a command, a comment or both. The "#"
character is used as the comment operator. Any text after the comment operator until the
end of a line is treated as comment.

The following is an example of an environment file:

IF YOU USE THE ENV COMMAND IN hS -386 TO SAVE THE ENVIRONMENT,
THE DEFAULT IS TO OVERWRITE THIS FILE, LOSING ALL COMMENTS

MICE COMMUNICATION PARAMETERS
COM = 1 Communications port, 1 or 2
BAUD = 57600 Baud rate select, 300 to 57600
TMDELAY = 0x3000 Transparent Mode data transfer rate delay

PATH VARIABLES
STARF = start.mac Macro file to execute on startup
SPATH = D:\hs386 Path to source code files

DATA BUFFER SIZES
HISTORY = 50 Number of command lines in history buffer
DIALOG = 200 Size of dialog window buffer in lines

SOURCE WINDOW DISPLAY
CODE ON Displays object code during disassembly
NUMBER ON Display source file with line numbers
TAB = 4 Size of tab expansion in source window
EDITOR = ed Program executed by EDIT command

AUDIO-VISUAL EFFECTS
BEEP OFF Beep on error detection
EGA OFF Use 43 lines on EGA; 50 lines on VGA

DEBUG CHARACTERISTICS
CRREPEAT OFF (Enter) repeats previous command
HOME COMMAND Cursor returns to COMMAND or SOURCE window
MAIN OFF On load, run, then stop execution at main
MLIST OFF Display macro bodies as they expand
PROLOG ON Auto execute function prolog code
RADIX HEX Input number base; HEX, DEC, OCT, BIN
SENSITIVE OFF Case sensitivity in matching symbol names
EXTENSION = C Change to LST if using Intel compilers

BARLINE = 18
REGWN = 1 60 23 19 CLOSE
MEMWN = 4 21 7 50 CLOSE
BREAKWN = 2 45 10 18 CLOSE
RTRACEWN = 3 19 13 60 CLOSE
CSTACKWN = 13 30 6 46 CLOSE

WINDOW SIZES AND POSITIONS
Position of dialog/source bar line
yxhws

where
y=y_coordinate from upper left, range 0-24
x=x_coordinate from upper left, 0-79
h=height of window, 1-24
w=width, 1-80
s=status, OPEN or CLOSE

FUNCTION KEY DEFINITIONS
F2 to F9 (Fl & F10 reserved)
alt-Fl to alt-F10, shf-F1 to shf-F10
max. 50 keystrokes per definition
Do not put comments on F-key defin. lines

<F2> = map Op to lffffp fast ram

hyperSOURCE-386 User Manual 4 Microtek International, DSD

Introduction Chapter One

Each line in the environment file may contain a command, a comment or both. The "#"
character is used as the comment operator. Any text after the comment operator until the
end of a line is treated as comment.

The following is an example of an environment file:

IF YOU USE THE ENV COMMAND IN hS -386 TO SAVE THE ENVIRONMENT,
THE DEFAULT IS TO OVERWRITE THIS FILE, LOSING ALL COMMENTS

MICE COMMUNICATION PARAMETERS
COM = 1 Communications port, 1 or 2
BAUD = 57600 Baud rate select, 300 to 57600
TMDELAY = 0x3000 Transparent Mode data transfer rate delay

PATH VARIABLES
STARF = start.mac Macro file to execute on startup
SPATH = D:\hs386 Path to source code files

DATA BUFFER SIZES
HISTORY = 50 Number of command lines in history buffer
DIALOG = 200 Size of dialog window buffer in lines

SOURCE WINDOW DISPLAY
CODE ON Displays object code during disassembly
NUMBER ON Display source file with line numbers
TAB = 4
EDITOR = ed

BEEP OFF
EGA OFF

CRREPEAT OFF
HOME COMMAND
MAIN OFF
MLIST OFF
PROLOG ON
RADIX HEX
SENSITIVE OFF
EXTENSION = C

Size of tab expansion in source window
Program executed by EDIT command

AUDIO-VISUAL EFFECTS
Beep on error detection
Use 43 lines on EGA; 50 lines on VGA

DEBUG CHARACTERISTICS
(Enter) repeats previous command
Cursor returns to COMMAND or SOURCE window
On load, run, then stop execution at main
Display macro bodies as they expand
Auto execute function prolog code
Input number base; HEX, DEC, OCT, BIN
Case sensitivity in matching symbol names
Change to LST if using Intel compilers

WINDOW SIZES AND POSITIONS
BARLINE = 18 Position of dialog/source bar line
REGWN = 1 60 23 19 CLOSE yxhws
MEMWN = 4 21 7 50 CLOSE where
BREAKWN = 2 45 10 18 CLOSE y=y_coordinate from upper left, range 0-24
RTRACEWN = 3 19 13 60 CLOSE x=x_coordinate from upper left, 0-79
CSTACKWN = 13 30 6 46 CLOSE h=height of window, 1-24

w=width, 1-80
s=status, OPEN or CLOSE

FUNCTION KEY DEFINITIONS
F2 to F9 (Fl & F10 reserved)
alt-Fl to alt-F10, shf-F1 to shf-F10
max. 50 keystrokes per definition
Do not put comments on F-key defin. lines

<F2> = map Op to lffffp fast ram

hyperSOURCE-386 User Manual 4 Microtek International, DSD

Chapter One Introduction

The hyperSOURCE-386's environment variables in the environment file (hs386.env) above,
are described in the following sections.

Specifying MICE Communication Parameters

Serial Port Number (COM)

The variable COM specifies the logical address of the serial port on the host computer for
communicating with the remote target. The command syntax is as follows:

COM = n

where n is 1 or 2. If COM=1, COM1 is the selected port. If COM=2, COM2 is
the selected port. The default is COM=1.

Baud Rate (BAUD)

The variable BAUD specifies the baud rate for the serial port on the host computer. The
command syntax is as follows:

BAUD = n

where n is 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, or 57600. The baud
rate in the hs386.env file is BAUD=57600. If your system cannot find the hs386.env
file, the default is BAUD=57600.

Time Delay (TMDELAY)

The variable TMDELAY specifies the rate at which data is transferred between the MICE-V
and hyperSOURCE when in Transparent Mode. You may need to alter this value if your PC
is unable to display all characters correctly. The syntax is as follows:

TMDELAY = n

where n is a 16-bit value between 0 and Oxffff. The optimum rate varies depending
on the speed of your PC. If the rate is too high, there will be a noticeable pause
between display updates; if the rate is too low, characters will be dropped. The value
of TMDELAY may also be changed by using the command while in Transparent
Mode.

Microtek International, DSD 5 hyperSOURCE-386 User Manual

Chapter One Introduction

The hyperSOURCE-386's environment variables in the environment file (hs386.env) above,
are described in the following sections.

Specifying MICE Communication Parameters

Serial Port Number (COM)

The variable COM specifies the logical address of the serial port on the host computer for
communicating with the remote target. The command syntax is as follows:

COM = n

where n is 1 or 2. If COM=1, COM1 is the selected port. If COM=2, COM2 is
the selected port. The default is COM=1.

Baud Rate (BAUD)

The variable BAUD specifies the baud rate for the serial port on the host computer. The
command syntax is as follows:

BAUD = n

where n is 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, or 57600. The baud
rate in the hs386.env file is BAUD=57600. If your system cannot find the hs386.env
file, the default is BAUD=57600.

Time Delay (TMDELAY)

The variable TMDELAY specifies the rate at which data is transferred between the MICE-V
and hyperSOURCE when in Transparent Mode. You may need to alter this value if your PC
is unable to display all characters correctly. The syntax is as follows:

TMDELAY = n

where n is a 16-bit value between 0 and Oxffff. The optimum rate varies depending
on the speed of your PC. If the rate is too high, there will be a noticeable pause
between display updates; if the rate is too low, characters will be dropped. The value
of TMDELAY may also be changed by using the command while in Transparent
Mode.

Microtek International, DSD 5 hyperSOURCE-386 User Manual

Introduction Chapter One

Specifying Path Variables

Startup Command File (STARF)

The variable STARF specifies the startup command file to be executed when hyperSOURCE-
386 is invoked. The command syntax is as follows:

STARF = drive:pathname\filename

where drive.pathnamelfilename is the drive, pathname, and filename of the startup
command file. The default is no startup command file.

Source Files (SPATH)

The variable SPATH specifies the directory path to be searched for the source files
associated with the program modules, if the source files cannot be located in the current
working directory. The command syntax is as follows:

SPATH [=] drive:pathname[,drive:pathname]...

where drive.pathname is the drive and pathname of the source files. HyperSOURCE-
386 will search this path to find a C source file with the same name as the current
module. It does not search SPATH for OMF files to load. These files must be in the
current directory or called by pathname. The default is no source path.

You can also use the SPATH command during a debug session to display or change the
search path.

Specifying Data Buffer Sizes

History Window (HISTORY)

The variable HISTORY specifies the number of command lines to be stored in the history
window buffer. The command syntax is as follows:

HISTORY = n

where n is from 1 to 512. The default is HISTORY =40.

hyperSOURCE-386 User Manual 6 Microtek International, DSD

Introduction Chapter One

Specifying Path Variables

Startup Command File (STARF)

The variable STARF specifies the startup command file to be executed when hyperSOURCE-
386 is invoked. The command syntax is as follows:

STARF = drive:pathname\filename

where drive.pathnamelfilename is the drive, pathname, and filename of the startup
command file. The default is no startup command file.

Source Files (SPATH)

The variable SPATH specifies the directory path to be searched for the source files
associated with the program modules, if the source files cannot be located in the current
working directory. The command syntax is as follows:

SPATH [=] drive:pathname[,drive:pathname]...

where drive.pathname is the drive and pathname of the source files. HyperSOURCE-
386 will search this path to find a C source file with the same name as the current
module. It does not search SPATH for OMF files to load. These files must be in the
current directory or called by pathname. The default is no source path.

You can also use the SPATH command during a debug session to display or change the
search path.

Specifying Data Buffer Sizes

History Window (HISTORY)

The variable HISTORY specifies the number of command lines to be stored in the history
window buffer. The command syntax is as follows:

HISTORY = n

where n is from 1 to 512. The default is HISTORY =40.

hyperSOURCE-386 User Manual 6 Microtek International, DSD

Chapter One Introduction

Dialog Window (DIALOG)

The variable DIALOG specifies the number of displayed lines to be stored in the dialog
window buffer. The command syntax is as follows:

DIALOG = n

where n is from 43 to 512. The default is DIALOG=80.

Specifying Source Window Display Formats

Object Code (CODE)

The variable CODE specifies whether object code is displayed in the Source window. This
variable applies to Assembly code only. The command syntax is as follows:

CODE boolean

where boolean is ON or OFF. Specifying CODE OFF allows more room on the
screen for pop-up windows. Specifying CODE ON displays code in the source
window. The default is CODE ON.

You can also use the CODE command during a debug session to display or change
the setting.

Line Number (NUMBER)

The variable NUMBER specifies whether line numbers are displayed in the Source window.
The command syntax is as follows:

NUMBER boolean

where boolean is ON or OFF. Specifying NUMBER ON, displays line numbers in
the Source window. Specifying NUMBER OFF, turns off line numbers in the Source
window. The default is NUMBER OFF.

You can also use the NUMBER command during a debug session to display or
change the setting.

Microtek International, DSD 7 hyperSOURCE-386 User Manual

Chapter One Introduction

Dialog Window (DIALOG)

The variable DIALOG specifies the number of displayed lines to be stored in the dialog
window buffer. The command syntax is as follows:

DIALOG = n

where n is from 43 to 512. The default is DIALOG=80.

Specifying Source Window Display Formats

Object Code (CODE)

The variable CODE specifies whether object code is displayed in the Source window. This
variable applies to Assembly code only. The command syntax is as follows:

CODE boolean

where boolean is ON or OFF. Specifying CODE OFF allows more room on the
screen for pop-up windows. Specifying CODE ON displays code in the source
window. The default is CODE ON.

You can also use the CODE command during a debug session to display or change
the setting.

Line Number (NUMBER)

The variable NUMBER specifies whether line numbers are displayed in the Source window.
The command syntax is as follows:

NUMBER boolean

where boolean is ON or OFF. Specifying NUMBER ON, displays line numbers in
the Source window. Specifying NUMBER OFF, turns off line numbers in the Source
window. The default is NUMBER OFF.

You can also use the NUMBER command during a debug session to display or
change the setting.

Microtek International, DSD 7 hyperSOURCE-386 User Manual

Introduction Chapter One

Tab Expansion (TAB)

The variable TAB specifies the number of spaces to be inserted when expanding a tab in the
source window. The command syntax is as follows:

TAB = n

where n is from 1 to 8. The default is TAB=8.

Text Editor (EDITOR)

The variable EDITOR specifies the path name and program file name of the text editor.
This editor will be invoked when the EDIT command is entered. The command syntax is as
follows:

EDITOR = drive:pathname\filename

where drive.pathnamelfilename is the drive, pathname, and filename of the editor. If
the drive:pathname portion has been specified in the DOS PATH variable, then you
need only specify the program file name. The default is no editor selected.

Specifying Audio-Visual Effects

Error Beep (BEEP)

The variable BEEP specifies whether a beep tone is generated when an error is detected.
The command syntax is as follows:

BEEP boolean

where boolean is ON or OFF. Specifying BEEP ON, generates a beep tone when an
error occurs. Specifying BEEP OFF, does not generate a beep tone when an error
occurs. The default is BEEP ON.

You can also use the BEEP command during a debug session to display or change the
setting.

hyperSOURCE-386 User Manual 8 Microtek International, DSD

Introduction Chapter One

Tab Expansion (TAB)

The variable TAB specifies the number of spaces to be inserted when expanding a tab in the
source window. The command syntax is as follows:

TAB = n

where n is from 1 to 8. The default is TAB=8.

Text Editor (EDITOR)

The variable EDITOR specifies the path name and program file name of the text editor.
This editor will be invoked when the EDIT command is entered. The command syntax is as
follows:

EDITOR = drive:pathname\filename

where drive.pathnamelfilename is the drive, pathname, and filename of the editor. If
the drive:pathname portion has been specified in the DOS PATH variable, then you
need only specify the program file name. The default is no editor selected.

Specifying Audio-Visual Effects

Error Beep (BEEP)

The variable BEEP specifies whether a beep tone is generated when an error is detected.
The command syntax is as follows:

BEEP boolean

where boolean is ON or OFF. Specifying BEEP ON, generates a beep tone when an
error occurs. Specifying BEEP OFF, does not generate a beep tone when an error
occurs. The default is BEEP ON.

You can also use the BEEP command during a debug session to display or change the
setting.

hyperSOURCE-386 User Manual 8 Microtek International, DSD

Chapter One Introduction

Display Mode (EGA)

The variable EGA specifies the line density of the display monitor. The command syntax is
as follows:

EGA boolean

where boolean is ON or OFF. Specifying EGA ON, displays 43 lines on a EGA
monitor and 50 lines on a VGA monitor. Specifying EGA OFF, displays 25 lines.
The default is EGA OFF.

You can also use the EGA command during a debug session to display or change the
setting.

Specifying Debug Characteristics

Command Repeat (CRREPEAT)

The variable CRREPEAT enables or disables the status of command repeating. The
command syntax is as follows:

CRREPEAT boolean

where boolean is ON or OFF. Specifying CRREPEAT ON, repeats the last
execution, disassembly, or memory display command when the <Enter> key is
pressed. Specifying CRREPEAT OFF, does nothing when the <Enter> key is
pressed. The default is CRREPEAT OFF.

Home Window (HOME)

The variable HOME specifies the home window. The command syntax is as follows:

HOME name

where name is COMMAND or SOURCE. Specifying HOME COMMAND, returns
the cursor to the command line once a command has been executed. Specifying
HOME SOURCE, returns the cursor to the source window once a command has been
executed. The default is HOME COMMAND.

You can also use the HOME command during a debug session to display or change
the setting.

Microtek International, DSD 9 hyperSOURCE-386 User Manual

Chapter One Introduction

Display Mode (EGA)

The variable EGA specifies the line density of the display monitor. The command syntax is
as follows:

EGA boolean

where boolean is ON or OFF. Specifying EGA ON, displays 43 lines on a EGA
monitor and 50 lines on a VGA monitor. Specifying EGA OFF, displays 25 lines.
The default is EGA OFF.

You can also use the EGA command during a debug session to display or change the
setting.

Specifying Debug Characteristics

Command Repeat (CRREPEAT)

The variable CRREPEAT enables or disables the status of command repeating. The
command syntax is as follows:

CRREPEAT boolean

where boolean is ON or OFF. Specifying CRREPEAT ON, repeats the last
execution, disassembly, or memory display command when the <Enter> key is
pressed. Specifying CRREPEAT OFF, does nothing when the <Enter> key is
pressed. The default is CRREPEAT OFF.

Home Window (HOME)

The variable HOME specifies the home window. The command syntax is as follows:

HOME name

where name is COMMAND or SOURCE. Specifying HOME COMMAND, returns
the cursor to the command line once a command has been executed. Specifying
HOME SOURCE, returns the cursor to the source window once a command has been
executed. The default is HOME COMMAND.

You can also use the HOME command during a debug session to display or change
the setting.

Microtek International, DSD 9 hyperSOURCE-386 User Manual

Introduction Chapter One

Main Function (MAIN)

The variable MAIN specifies whether or not the Source window will switch to the main()
function after a program file is loaded. The command syntax is as follows:

MAIN boolean

where boolean is ON or OFF. The default is MAIN OFF. With MAIN OFF, when
hyperSOURCE loads an OMF file, the emulator program counter is set to the
program's starting address, and hyperSOURCE displays code in the source file
corresponding to this starting address in the SOURCE window. With MAIN ON,
hyperSOURCE displays code in the source file containing main() regardless of the
initial program counter. Note that the emulator has not actually executed any code at
this time; to cause the emulator to execute from the program starting address to the
entry point of main°, use the STEp or LINe command. Using these commands in
this situation is equivalent to "go til main."

Display Macro Bodies (MUST)

The variable MUST specifies whether the macro bodies are to be expanded. The command
syntax is as follows:

MUST boolean

where boolean is ON or OFF. Specifying MUST ON, displays the macro bodies on
the console as macros are expanded. Specifying MUST OFF, will not display the
macro bodies. The default is MUST OFF.

Prolog Execution (PROLOG)

The PROLOG variable enables or disables the automatic prolog execution. The prolog of a
C function is the instructions at the beginning of the function that set up the local stack frame
for the C function when it is entered. The command syntax is as follows:

PROLOG boolean

where boolean is ON or OFF. Specifying PROLOG ON, executes function prolog
code automatically when the function is entered via GO or STEP. Specifying
PROLOG OFF does not execute function prolog code. The default is PROLOG ON.

hyperSOURCE-386 User Manual 10 Microtek International, DSD

Introduction Chapter One

Main Function (MAIN)

The variable MAIN specifies whether or not the Source window will switch to the main()
function after a program file is loaded. The command syntax is as follows:

MAIN boolean

where boolean is ON or OFF. The default is MAIN OFF. With MAIN OFF, when
hyperSOURCE loads an OMF file, the emulator program counter is set to the
program's starting address, and hyperSOURCE displays code in the source file
corresponding to this starting address in the SOURCE window. With MAIN ON,
hyperSOURCE displays code in the source file containing main() regardless of the
initial program counter. Note that the emulator has not actually executed any code at
this time; to cause the emulator to execute from the program starting address to the
entry point of main°, use the STEp or LINe command. Using these commands in
this situation is equivalent to "go til main."

Display Macro Bodies (MUST)

The variable MUST specifies whether the macro bodies are to be expanded. The command
syntax is as follows:

MUST boolean

where boolean is ON or OFF. Specifying MUST ON, displays the macro bodies on
the console as macros are expanded. Specifying MUST OFF, will not display the
macro bodies. The default is MUST OFF.

Prolog Execution (PROLOG)

The PROLOG variable enables or disables the automatic prolog execution. The prolog of a
C function is the instructions at the beginning of the function that set up the local stack frame
for the C function when it is entered. The command syntax is as follows:

PROLOG boolean

where boolean is ON or OFF. Specifying PROLOG ON, executes function prolog
code automatically when the function is entered via GO or STEP. Specifying
PROLOG OFF does not execute function prolog code. The default is PROLOG ON.

hyperSOURCE-386 User Manual 10 Microtek International, DSD

Chapter One Introduction

Number Base (RADIX)

The variable RADIX specifies the input number base (hexadecimal, decimal, octal, or
binary). The command syntax is as follows:

RADIX base

where base is HEX, DEC, OCT, or BIN. The default is RADIX DEC.

You can also use the RADIX command during a debug session to display or change
the setting. The base for output (display) is selected automatically, based on variable
type.

Case Sensitivity (SENSITIVE)

The variable SENSITIVE specifies case sensitivity in matching symbol names. The
command syntax is as follows:

SENSITIVE boolean

where boolean is ON or OFF. Specifying SENSITIVE ON, makes symbolic
references case sensitive. Specifying SENSITIVE OFF, makes symbolic references
case insensitive. The default is SENSITIVE OFF.

You can also use the SENSITIVE command during a debug session to display or
change the setting.

Source File Extension (EXTENSION)

The variable EXTENSION specifies the default extension of your source files. The
command syntax is as follows:

EXTENSION = extension

where extension is C or LST. The default is EXTENSION=C.

Note

Intel compilers generate include file line numbers differently from other
compilers. Therefore, if you are using Intel tools, you must set EXTENSION
to LST.

Microtek International, DSD 11 hyperSOURCE-386 User Manual

Chapter One Introduction

Number Base (RADIX)

The variable RADIX specifies the input number base (hexadecimal, decimal, octal, or
binary). The command syntax is as follows:

RADIX base

where base is HEX, DEC, OCT, or BIN. The default is RADIX DEC.

You can also use the RADIX command during a debug session to display or change
the setting. The base for output (display) is selected automatically, based on variable
type.

Case Sensitivity (SENSITIVE)

The variable SENSITIVE specifies case sensitivity in matching symbol names. The
command syntax is as follows:

SENSITIVE boolean

where boolean is ON or OFF. Specifying SENSITIVE ON, makes symbolic
references case sensitive. Specifying SENSITIVE OFF, makes symbolic references
case insensitive. The default is SENSITIVE OFF.

You can also use the SENSITIVE command during a debug session to display or
change the setting.

Source File Extension (EXTENSION)

The variable EXTENSION specifies the default extension of your source files. The
command syntax is as follows:

EXTENSION = extension

where extension is C or LST. The default is EXTENSION=C.

Note

Intel compilers generate include file line numbers differently from other
compilers. Therefore, if you are using Intel tools, you must set EXTENSION
to LST.

Microtek International, DSD 11 hyperSOURCE-386 User Manual

Introduction Chapter One

Specifying Window Size and Position

Dialog/Source Separator Bar (BARLINE)

The variable BARLINE allows you to specify the line number of the horizontal, 2-line
dialog/source bar from the top of the window. The command syntax is as follows:

BARLINE n

where n is from 2 and 20. The default is BARLINE=18.

REGWN, MEMWN, BREAKWN, RTRACEWN, CSTACKWN

You can specify the size, position, and status of the register, memory, breakpoint, run trace,
and call stack windows in the environment file. The command syntax is as follows:

variable = win

where variable is one of the window variables listed below:

REGWN register window
MEMWN memory window
BREAKWN breakpoint window
RTRACEWN run trace window
CSTACKWN call stack window

win is an argument list that describes the size and position of the window. The
arguments in the list are separated by spaces which are described as follows:

y is the y-coordinate (vertical-axis) with respect to the upper left hand corner of
the screen. Its range is from 0 to 23.

x is the x-coordinate (horizontal-axis) with respect to the upper left corner of the
screen. Its range is from 0 to 79.

h is the height of the window. Its range is from 1 to 24.
w is the width of the window. Its range is from 1 to 80.
s is the status of the window. It is either OPEN or CLOSE.

The following list the window defaults:

REGWN = 1 60 23 19 CLOSE
MEMWN = 2 10 10 50 CLOSE
BREAKWN = 2 41 10 26 CLOSE

hyperSOURCE-386 User Manual 12 Microtek International, DSD

Introduction Chapter One

Specifying Window Size and Position

Dialog/Source Separator Bar (BARLINE)

The variable BARLINE allows you to specify the line number of the horizontal, 2-line
dialog/source bar from the top of the window. The command syntax is as follows:

BARLINE n

where n is from 2 and 20. The default is BARLINE=18.

REGWN, MEMWN, BREAKWN, RTRACEWN, CSTACKWN

You can specify the size, position, and status of the register, memory, breakpoint, run trace,
and call stack windows in the environment file. The command syntax is as follows:

variable = win

where variable is one of the window variables listed below:

REGWN register window
MEMWN memory window
BREAKWN breakpoint window
RTRACEWN run trace window
CSTACKWN call stack window

win is an argument list that describes the size and position of the window. The
arguments in the list are separated by spaces which are described as follows:

y is the y-coordinate (vertical-axis) with respect to the upper left hand corner of
the screen. Its range is from 0 to 23.

x is the x-coordinate (horizontal-axis) with respect to the upper left corner of the
screen. Its range is from 0 to 79.

h is the height of the window. Its range is from 1 to 24.
w is the width of the window. Its range is from 1 to 80.
s is the status of the window. It is either OPEN or CLOSE.

The following list the window defaults:

REGWN = 1 60 23 19 CLOSE
MEMWN = 2 10 10 50 CLOSE
BREAKWN = 2 41 10 26 CLOSE

hyperSOURCE-386 User Manual 12 Microtek International, DASD

Chapter One Introduction

RTRACEWN = 2 30 8 48 CLOSE
CSTACKWN = 10 30 6 46 CLOSE

You can also change the size and position of the window during a debug session by pressing
< alt >1 in an active window.

Defining Key Macros

The key macro facility lets you associate a command line with a function key or a function
key combination. So you can press a function key to enter a command instead of typing in
the command.

The function keys and function key combinations that are programmable are F2 to F9,
<Alt > Fl to <Alt > F10 and <Shf> F 1 to <Shf> F10. The command that is associated
with a function key may contain up to 50 keystrokes. These function key bindings are called
key macros. Function keys F1 and F10 are reserved for hyperSOURCE-386. Fl is used to
invoke the menu help. F10 is used to select the menu bar.

You can define the key macros in the environment file or in the Key menu selection of the
mAcro menu. The command syntax for defining key macros in the environment file is as
follows:

<Fx > = text string
<Alt-Fn> = text string
<Shf-Fn> = text string

where x is from 2 to 9; n is from 1 to 10. For example:

<F5> = pline
<Alt-Fl > = time
< Shf-F2 > = map Op 0ffffp fast ram

Note

Function Key definition lines should not contain comments, as the # character
is not recognized because it may be part of the macro definition.

Once you have defined a key macro, you can save the definition in the hs386.env file using
the ENV command.

Micvotek International, DSD 13 hyperSOURCE-386 User Manual

Chapter One Introduction

RTRACEWN = 2 30 8 48 CLOSE
CSTACKWN = 10 30 6 46 CLOSE

You can also change the size and position of the window during a debug session by pressing
< alt >1 in an active window.

Defining Key Macros

The key macro facility lets you associate a command line with a function key or a function
key combination. So you can press a function key to enter a command instead of typing in
the command.

The function keys and function key combinations that are programmable are F2 to F9,
<Alt > Fl to <Alt > F10 and <Shf> F 1 to <Shf> F10. The command that is associated
with a function key may contain up to 50 keystrokes. These function key bindings are called
key macros. Function keys F1 and F10 are reserved for hyperSOURCE-386. Fl is used to
invoke the menu help. F10 is used to select the menu bar.

You can define the key macros in the environment file or in the Key menu selection of the
mAcro menu. The command syntax for defining key macros in the environment file is as
follows:

<Fx > = text string
<Alt-Fn> = text string
<Shf-Fn> = text string

where x is from 2 to 9; n is from 1 to 10. For example:

<F5> = pline
<Alt-Fl > = time
< Shf-F2 > = map Op 0ffffp fast ram

Note

Function Key definition lines should not contain comments, as the # character
is not recognized because it may be part of the macro definition.

Once you have defined a key macro, you can save the definition in the hs386.env file using
the ENV command.

Micvotek International, DSD 13 hyperSOURCE-386 User Manual

Introduction Chapter One

Files Used in a Debug Session

When hyperSOURCE-386 is started, it will make use of other files during the debug session.
These files are described in the following sections.

Environment File

HyperSOURCE-386 scans the environment file, hs386.env, for internal defaults before
starting its operations. Refer to the file hs386.env for how to configure your environment
(source path, baud rate, etc.).

Program File

The OMF-386 demo program file was produced by Link&Locate-386 by Systems &
Software, Inc. This OMF file is opened for reading upon execution of the LOAD command.
This file will be closed after the loading is completed. Refer to Linker/Locator in Chapter
Five.

Source Files

A program file may contain multiple object modules. An object module contains program
code that covers a range of addresses. If the program counter is within the range of
addresses of a particular object module, that object module will be called the active module.
If the source file for the current module is available in the current directory, it will be
opened for read access. However, if the source file resides in a directory not specified in
SPATH or has a file name that is different from the module name, the SET command may
be used to associate the object module with the source file. Moreover, the SPATH
environment variable and the SPATH command can also be used to specify the directory that
contains the source files.

Help Files

The help files contain on-line help information. The files hs386h1p.txt, hs386h1p. bod and
hs386h1p. idx are used for this purpose. The default directory of the help files is determined
by the value of the DOS environment variable HS386HLP. This variable can be defined by
the DOS command SET.

hyperSOURCE-386 User Manual 14 Microtek International, DSD

Introduction Chapter One

Files Used in a Debug Session

When hyperSOURCE-386 is started, it will make use of other files during the debug session.
These files are described in the following sections.

Environment File

HyperSOURCE-386 scans the environment file, hs386.env, for internal defaults before
starting its operations. Refer to the file hs386.env for how to configure your environment
(source path, baud rate, etc.).

Program File

The OMF-386 demo program file was produced by Link&Locate-386 by Systems &
Software, Inc. This OMF file is opened for reading upon execution of the LOAD command.
This file will be closed after the loading is completed. Refer to Linker/Locator in Chapter
Five.

Source Files

A program file may contain multiple object modules. An object module contains program
code that covers a range of addresses. If the program counter is within the range of
addresses of a particular object module, that object module will be called the active module.
If the source file for the current module is available in the current directory, it will be
opened for read access. However, if the source file resides in a directory not specified in
SPATH or has a file name that is different from the module name, the SET command may
be used to associate the object module with the source file. Moreover, the SPATH
environment variable and the SPATH command can also be used to specify the directory that
contains the source files.

Help Files

The help files contain on-line help information. The files hs386h1p.txt, hs386h1p. bod and
hs386h1p. idx are used for this purpose. The default directory of the help files is determined
by the value of the DOS environment variable HS386HLP. This variable can be defined by
the DOS command SET.

hyperSOURCE-386 User Manual 14 Microtek International, DSD

Chapter One Introduction

Command Files

The command inputs for controlling the operations of hyperSOURCE-386 may be
temporarily redirected from a command file. The command file is specified in the @ or
INCLUDE command.

Files Created During a Debug Session

When hyperSOURCE-386 is started, it may create other files during the debug session.
These files are described in the following sections.

Temporary Files

Up to six temporary files will be opened for hyperSOURCE-386 to use during the lifetime of
the debug session. The temporary files will be created in the current directory. They all
have "tmp" as file extension. These temporary files will be closed and deleted when the
debug session is terminated. However, if the debug session is terminated abnormally, these
temporary files will not be deleted from the current directory. Then you will have to delete
them yourself.

List File

The list file is used to capture commands and their results that are displayed'in the dialog
window. The LIST command opens a list file. If a list file already exists, the contents will
be erased and new data will be added to the beginning of the file. If the APPEND argument
is specified in the LIST command and the list file already exists, new data will be appended
to the end of the file. The NO LIST command closes a list file. The list file is also closed
when the debug session is terminated.

Journal File

The journal file is used to capture the input commands only. The JOURNAL command
opens a journal file. If a journal file already exists, the contents will be erased and new data
will be added to the beginning of the file. If the APPEND argument is specified in the
JOURNAL command and the journal file already exists, new data will be appended to the
end of the file. If the KEYBOARD argument is specified, the journal file will store all
entered keystrokes, including those entered in windows, rather than only the commands
entered on the command line. The NO JOURNAL command closes a journal file. The
journal file is also closed when the debug session is terminated.

Microtek International, DSD 15 hyperSOURCE-386 User Manual

Chapter One Introduction

Command Files

The command inputs for controlling the operations of hyperSOURCE-386 may be
temporarily redirected from a command file. The command file is specified in the @ or
INCLUDE command.

Files Created During a Debug Session

When hyperSOURCE-386 is started, it may create other files during the debug session.
These files are described in the following sections.

Temporary Files

Up to six temporary files will be opened for hyperSOURCE-386 to use during the lifetime of
the debug session. The temporary files will be created in the current directory. They all
have "tmp" as file extension. These temporary files will be closed and deleted when the
debug session is terminated. However, if the debug session is terminated abnormally, these
temporary files will not be deleted from the current directory. Then you will have to delete
them yourself.

List File

The list file is used to capture commands and their results that are displayed'in the dialog
window. The LIST command opens a list file. If a list file already exists, the contents will
be erased and new data will be added to the beginning of the file. If the APPEND argument
is specified in the LIST command and the list file already exists, new data will be appended
to the end of the file. The NO LIST command closes a list file. The list file is also closed
when the debug session is terminated.

Journal File

The journal file is used to capture the input commands only. The JOURNAL command
opens a journal file. If a journal file already exists, the contents will be erased and new data
will be added to the beginning of the file. If the APPEND argument is specified in the
JOURNAL command and the journal file already exists, new data will be appended to the
end of the file. If the KEYBOARD argument is specified, the journal file will store all
entered keystrokes, including those entered in windows, rather than only the commands
entered on the command line. The NO JOURNAL command closes a journal file. The
journal file is also closed when the debug session is terminated.

Microtek International, DSD 15 hyperSOURCE-386 User Manual

Introduction Chapter One

Data Files

Up to six data files can be opened or created by using the hyperSOURCE-386 OPEN
command. These files are general purpose and can be read and written using the READ and
WRITE commands, respectively. These files will be closed with the CLOSE command or
when the debug session is terminated.

Invoking hyperSOURCE-386

Before hyperSOURCE-386 can be started, the configuration must be set up as described in
the previous sections. Furthermore, the MICE-V 80386 must be started first and waiting for
the establishment of communication with hyperSOURCE-386.

The command to start hyperSOURCE-386 takes the following format:

-> hs386 [@command_file [list]] (n)

hs386 is the name of the hyperSOURCE-386 program with the file name hs386.exe.
The program file must be accessible through the DOS path or reside in the current
directory.

Up to three arguments can be supplied on the command line. The '[' and '1' used in
the above command line indicate that all three arguments, command file, list, and n
are optional.

If the command, le argument is supplied on the command line, hyperSOURCE-386
will take command line input from the specified file instead of the user keyboard
entries. HyperSOURCE-386 will execute one line at a time from the specified file
until it reaches the end of the file. At that time, hyperSOURCE-386 will switch to
command mode and start to execute commands entered from the user's keyboard.

The n argument is the communication port number. If n is not specified, the
communication port is specified by the value of the COM variable in the environment
file. If n is specified, it overrides the value of the COM variable in the environment
file. n = 1 specifies the COM1 port; n = 2 specifies the COM2 port. The default
baud rate is 57600 unless specified by the BAUD variable in the environment file.

Normally, hyperSOURCE-386 executes the command lines from the specified command file
in quiet mode. In other words, hyperSOURCE-386 does not echo the command line read
from the command file. However, if the list argument is also supplied, hyperSOURCE-386
will echo the command line obtained from the command file before executing the command
line.

hyperSOURCE-386 User Manual 16 Microtek International, DSD

Introduction Chapter One

Data Files

Up to six data files can be opened or created by using the hyperSOURCE-386 OPEN
command. These files are general purpose and can be read and written using the READ and
WRITE commands, respectively. These files will be closed with the CLOSE command or
when the debug session is terminated.

Invoking hyperSOURCE-386

Before hyperSOURCE-386 can be started, the configuration must be set up as described in
the previous sections. Furthermore, the MICE-V 80386 must be started first and waiting for
the establishment of communication with hyperSOURCE-386.

The command to start hyperSOURCE-386 takes the following format:

-> hs386 [@command_file [list]] (n)

hs386 is the name of the hyperSOURCE-386 program with the file name hs386.exe.
The program file must be accessible through the DOS path or reside in the current
directory.

Up to three arguments can be supplied on the command line. The '[' and '1' used in
the above command line indicate that all three arguments, command file, list, and n
are optional.

If the command, le argument is supplied on the command line, hyperSOURCE-386
will take command line input from the specified file instead of the user keyboard
entries. HyperSOURCE-386 will execute one line at a time from the specified file
until it reaches the end of the file. At that time, hyperSOURCE-386 will switch to
command mode and start to execute commands entered from the user's keyboard.

The n argument is the communication port number. If n is not specified, the
communication port is specified by the value of the COM variable in the environment
file. If n is specified, it overrides the value of the COM variable in the environment
file. n = 1 specifies the COM1 port; n = 2 specifies the COM2 port. The default
baud rate is 57600 unless specified by the BAUD variable in the environment file.

Normally, hyperSOURCE-386 executes the command lines from the specified command file
in quiet mode. In other words, hyperSOURCE-386 does not echo the command line read
from the command file. However, if the list argument is also supplied, hyperSOURCE-386
will echo the command line obtained from the command file before executing the command
line.

hyperSOURCE-386 User Manual 16 Microtek International, DSD

Chapter One Introduction

Help

To get help on an individual command, type HELP. To get help on the menu bar, press
F10, use the cursor keys to move to the desired field, then press Fl.

Exiting hyperSOURCE-386

The EXIT or QUIT command or <Alt> x may be used to end the hyperSOURCE-386
session. Before hyperSOURCE-386 terminates its operations and returns control to DOS, it
closes all the files and erases all the temporary files. Thus, if hyperSOURCE-386 is
terminated abnormally, it is your responsibility to remove the temporary files left behind by
hyperS OURCE-386.

Microtek International, DSD 17 hyperSOURCE-386 User Manual

Chapter One Introduction

Help

To get help on an individual command, type HELP. To get help on the menu bar, press
F10, use the cursor keys to move to the desired field, then press Fl.

Exiting hyperSOURCE-386

The EXIT or QUIT command or <Alt> x may be used to end the hyperSOURCE-386
session. Before hyperSOURCE-386 terminates its operations and returns control to DOS, it
closes all the files and erases all the temporary files. Thus, if hyperSOURCE-386 is
terminated abnormally, it is your responsibility to remove the temporary files left behind by
hyperSOURCE-386.

Microtek International, DSD 17 hyperSOURCE-386 User Manual

0/S Execute Memory Register Symbol Debug mAcro Window Config F1:HELP — Menu
Bar

Version
Time
OS Shell
Exit

Pull-Down Menu

— Source
Window

module name

— Dialog
Window

— Command
Line

Chapter Two Window Layout

Chapter Two - Window Layout
HyperSOURCE-386 information is presented in selected display areas called windows. A
graphic representation of the hyperSOURCE-386 window layout is shown in Figure 2.1.

Figure 2.1 - hyperSOURCE-386 Window Layout

Menu Bar

The Menu bar occupies the top-most line of the display screen. To access the pull-down
menus in the Menu bar, press the F10 function key or move the mouse to the Menu bar and
click.

You can access the individual fields in the menu bar in one of two ways; either press F10,
then use the left/right cursor keys, or press <Alt> and the appropriate letter key (the one
shown as a capital letter) simultaneously. For example, to access the Execute menu, press
< Alt> e; to access the Debug menu, press <Alt> d.

To exit from the menu bar, press the <Esc> key.

Microtek International, DSD 19 hyperSOURCE-386 User Manual

0/S Execute Memory Register Symbol Debug mAcro Window Config F1:HELP — Menu
Bar

Version
Time
OS Shell
Exit

Pull-Down Menu

— Source
Window

module name

— Dialog
Window

— Command
Line

Chapter Two Window Layout

Chapter Two - Window Layout
HyperSOURCE-386 information is presented in selected display areas called windows. A
graphic representation of the hyperSOURCE-386 window layout is shown in Figure 2.1.

Figure 2.1 - hyperSOURCE-386 Window Layout

Menu Bar

The Menu bar occupies the top-most line of the display screen. To access the pull-down
menus in the Menu bar, press the F10 function key or move the mouse to the Menu bar and
click.

You can access the individual fields in the menu bar in one of two ways; either press F10,
then use the left/right cursor keys, or press <Alt> and the appropriate letter key (the one
shown as a capital letter) simultaneously. For example, to access the Execute menu, press
< Alt> e; to access the Debug menu, press <Alt> d.

To exit from the menu bar, press the <Esc> key.

Microtek International, DSD 19 hyperSOURCE-386 User Manual

Window Layout Chapter Two

Pull-Down Menus

Pull-down menus are used to execute hyperSOURCE-386 commands. The following table
lists the available hyperSOURCE-386 pull-down menus.

Table 2.1 - Pull-Down Menus

Pull-down Menu Description

0/S Host related operations
Execute Target system functions
Memory Memory display
Register Register window
Symbol Symbol access
Debug Target execution control
mAcro Macro processing
Window Window display/control
Config hyperSOURCE configuration

Source Window

The Source window occupies the middle section of the screen display area. This window
displays the program source. The SPATH variable must be set to point to the subdirectory
containing the source files.

Source Window Size

The size of the Source window can be changed during the debugging session at the command
prompt. You can increase the Source window one display line with <Ctrl> g ("Grow") or
decrease it one display line with <Ctrl> t ("Tiny"). However, increasing or decreasing the
size of the Source window inversely affects the Dialog window since the combined size of
Source window and Dialog window is fixed.

The width of the Source window is 80 columns. However, the width of the display buffer
for the Source window is 132 columns. Therefore, when browsing in the Source window,
you can use the left/right cursor keys to move beyond the 80th column to achieve the
horizontal scroll effect.

hyperSOURCE-386 User Manual 20 Microtek International, DSD

Window Layout Chapter Two

Pull-Down Menus

Pull-down menus are used to execute hyperSOURCE-386 commands. The following table
lists the available hyperSOURCE-386 pull-down menus.

Table 2.1 - Pull-Down Menus

Pull-down Menu Description

O/S Host related operations
Execute Target system functions
Memory Memory display
Register Register window
Symbol Symbol access
Debug Target execution control
mAcro Macro processing
Window Window display/control
Config hyperSOURCE configuration

Source Window

The Source window occupies the middle section of the screen display area. This window
displays the program source. The SPATH variable must be set to point to the subdirectory
containing the source files.

Source Window Size

The size of the Source window can be changed during the debugging session at the command
prompt. You can increase the Source window one display line with <Ctrl> g ("Grow") or
decrease it one display line with <Ctrl> t ("Tiny"). However, increasing or decreasing the
size of the Source window inversely affects the Dialog window since the combined size of
Source window and Dialog window is fixed.

The width of the Source window is 80 columns. However, the width of the display buffer
for the Source window is 132 columns. Therefore, when browsing in the Source window,
you can use the left/right cursor keys to move beyond the 80th column to achieve the
horizontal scroll effect.

hyperSOURCE-386 User Manual 20 Microtek International, DSD

Chapter Two Window Layout

Window Browse Mode

You can enter Window browse mode in one of two ways. The first way is to select
Window/Select from the menu bar and move the cursor to the desired window. The second
way is to use < Alt> #, where # is the window number, located in the top left hand corner,
of the desired window. The Source window is always number 1 (e.g., 1:Source); the Dialog
window is always number 2 (e.g., 2:Dialog). The other open window numbers vary
depending on the sequence in which you opened the windows. Once in Window browse
mode, use the cursor keys described in the following table to move around within the display
buffer of the selected window.

Table 2.2 - Window Browse Cursor Keys

Cursor Key Function
< Home > Move the cursor to the beginning of the window
<End> Move the cursor to the end of the window
<PgUp> Move the display window up one page
<PgDn> Move the display window down one page

Move the cursor up one display line
Move the cursor down one display line
Move the cursor left one character
Move the cursor right one character

< Ctrl > g Increase Source window; decrease Dialog window
<Ctrl>t Increase Dialog window; decrease Source window

Foreground and Background Colors

The default background color of the Source window is either blue for the color display or
black for the monochrome display. The foreground color is white for both displays.

The Source window is surrounded with a frame in either green background and white
foreground for the color display or white background and black foreground for the
monochrome display system. If the Source window displays source in high-level language
statements, the module name of the source is shown on the bottom of the Source window
frame.

Microtek International, DSD 21 hyperSOURCE-386 User Manual

Chapter Two Window Layout

Window Browse Mode

You can enter Window browse mode in one of two ways. The first way is to select
Window/Select from the menu bar and move the cursor to the desired window. The second
way is to use < Alt> #, where # is the window number, located in the top left hand corner,
of the desired window. The Source window is always number 1 (e.g., 1:Source); the Dialog
window is always number 2 (e.g., 2:Dialog). The other open window numbers vary
depending on the sequence in which you opened the windows. Once in Window browse
mode, use the cursor keys described in the following table to move around within the display
buffer of the selected window.

Table 2.2 - Window Browse Cursor Keys

Cursor Key
<Home>
<End>
< PgUp >
< PgDn >

<Ctrl>g
<Ctrl>t

Function
Move the cursor to the beginning of the window
Move the cursor to the end of the window
Move the display window up one page
Move the display window down one page
Move the cursor up one display line
Move the cursor down one display line
Move the cursor left one character
Move the cursor right one character
Increase Source window; decrease Dialog window
Increase Dialog window; decrease Source window

Foreground and Background Colors

The default background color of the Source window is either blue for the color display or
black for the monochrome display. The foreground color is white for both displays.

The Source window is surrounded with a frame in either green background and white
foreground for the color display or white background and black foreground for the
monochrome display system. If the Source window displays source in high-level language
statements, the module name of the source is shown on the bottom of the Source window
frame.

Microtek International, DSD 21 hyperSOURCE-386 User Manual

Window Layout Chapter Two

Note

The source line in reverse video is the source line to be executed next, when
not in Window browse mode. This is illustrated in Figure 2.2.

D/S Execute Memory Register Symbol Debug mAcro Windom Config FI:HELP

Acell(3l, darray114) , 2,
NULL, Barrayll6l , 2,
NULL, array2, 2

1:Source
22:
23:
Z4:
25: }:
26:
27: struct links *top;
28:
29: main()

/* pointer to top cell x/

38: {
31: unsigned long i = 8;
3Z: /* initialize top pointer x/
33: ' top = AcellEfil;
34: for 0,0 {
35: /* insert one cell at specified place */
36: insert(Acell141 , 3);
2:Dialog boarara

->
->reg
EAX=88888888 EBX=88888888 ECX=88888888 EDX.88888888 EFG=88884282 CR8=7FFFFFE9
ESP.888888FC EBP.88888188 Esi=ee88e8e8 EDI430888888 CR2=88888888 CR348088888
EIP=88888888 CS=8814 TR=8838 LDT8048 DS=881C ES=881C FS=801C GS=881C SS=8824
->

Figure 2.2 - Sample Display of Source Window

Display Formats

The following information can be displayed in the Source window:

1. High-level language statements
2. Disassembled instructions
3. Mixed Language - High-level language statements mixed with disassembled instructions

The Source window always displays the source (whether it is in high-level language or in
assembly language) of the active program module. The active program module is either the
module which contains the current program counter or is the module you selected. The
default active module contains the current program counter.

hyperSOURCE-386 User Manual 22 Microtek International, DSD

Window Layout Chapter Two

Note

The source line in reverse video is the source line to be executed next, when
not in Window browse mode. This is illustrated in Figure 2.2.

D/S Execute Memory Register Symbol Debug mAcro Windom Config FI:HELP
1.Source
22:
23:
Z4:
25:}:
26:
27:struct links *top;
28:
29:main()

/* pointer to top cell x/

•

Acell(3l, darray114) , 2,
NULL, Barrayll6l , 2,
NULL, array2, 2

38: {
31: unsigned long i = 8;
3Z: /* initialize top pointer x/
33: ' top = AcellEfil;
34: for (;;) {
35: /* insert one cell at specified place */
36: insert(, 3);
2:Dialog bajiMrara

->
->reg
EAX=88888888 EBX=88888088 ECX=88888888 EDX.D8888888 EFG=88884282 CR8=7FFFFFES
ESP.B88888FC EDP...88888188 ESI=08888088 EDI430888888 CR248888888 CR348088888
EIP=88888888 CS=8814 TR=8838 LDT8048 DS=881C ES=881C FS=801C GS=881C SS=8824
->

Figure 2.2 - Sample Display of Source Window

Display Formats

The following information can be displayed in the Source window:

1. High-level language statements
2. Disassembled instructions
3. Mixed Language - High-level language statements mixed with disassembled instructions

The Source window always displays the source (whether it is in high-level language or in
assembly language) of the active program module. The active program module is either the
module which contains the current program counter or is the module you selected. The
default active module contains the current program counter.

hyperSOURCE-386 User Manual 22 Microtek International, DSD

Chapter Two Window Layout

The Source window will display the source in high-level language statements, if:

1. the active module has line number debugging records in the object file, and
2. the active module has a corresponding source file associated with it, and
3. the high-level language display type (VIEW command) is set for the Source window

(this is the default condition).

The Source window will display the source in mixed mode if conditions 1 and 2 above are
met and the mixed mode display for the Source window is set. Otherwise, the Source
window will display the source in disassembled instructions.

Since the default active module contains the current program counter, hyperSOURCE-386
displays the program containing the next instructions to be executed after a program
breakpoint. The Source window highlights the source of the active module with the next
instruction or program statement to be executed.

Dialog Window

The Dialog window occupies the bottom of the screen between the Source window and the
Command line. This window displays the results of the commands that were executed on the
command line.

Dialog Window Size

Since the size of the Dialog window is limited, the lines of information to be displayed will
easily fill up the entire Dialog window. For example, if the Dialog window contains only 10
display lines and the symbol table to be displayed contains 50 lines, then the first 40 lines of
the symbol table will scroll up the Dialog window and only the last 10 lines of the symbol
table will be visible. To resolve this problem, hyperSOURCE-386 stops the display process
once the Dialog window is filled and continues the display process when you press any key.
This feature can be disabled with the PAUSE command. Refer to the PAUse command in
Chapter Six for more details.

Since the display area may still be too small and you may want to review the lines that have
been scrolled up, hyperSOURCE-386 provides a display buffer for the Dialog window. Any
display lines that are scrolled out of the Dialog window during command execution are stored
in this display buffer. Consequently, the Dialog window actually holds more lines of display
than its window size. To scroll through the Dialog window, select the Dialog window with
< alt > 2, then use the up/down and <PgUp > / <PgDn> cursor keys.

The default window size for the Dialog window is nine lines and the default size of the
display buffer in the Dialog window is 80 lines. Default sizes can be changed with the
DIALOG environment parameter in the environment file, hs386.env (e.g., DIALOG =100).

Microtek International, DSD 23 hyperSOURCE-386 User Manual

Chapter Two Window Layout

The Source window will display the source in high-level language statements, if:

1. the active module has line number debugging records in the object file, and
2. the active module has a corresponding source file associated with it, and
3. the high-level language display type (VIEW command) is set for the Source window

(this is the default condition).

The Source window will display the source in mixed mode if conditions 1 and 2 above are
met and the mixed mode display for the Source window is set. Otherwise, the Source
window will display the source in disassembled instructions.

Since the default active module contains the current program counter, hyperSOURCE-386
displays the program containing the next instructions to be executed after a program
breakpoint. The Source window highlights the source of the active module with the next
instruction or program statement to be executed.

Dialog Window

The Dialog window occupies the bottom of the screen between the Source window and the
Command line. This window displays the results of the commands that were executed on the
command line.

Dialog Window Size

Since the size of the Dialog window is limited, the lines of information to be displayed will
easily fill up the entire Dialog window. For example, if the Dialog window contains only 10
display lines and the symbol table to be displayed contains 50 lines, then the first 40 lines of
the symbol table will scroll up the Dialog window and only the last 10 lines of the symbol
table will be visible. To resolve this problem, hyperSOURCE-386 stops the display process
once the Dialog window is filled and continues the display process when you press any key.
This feature can be disabled with the PAUSE command. Refer to the PAUse command in
Chapter Six for more details.

Since the display area may still be too small and you may want to review the lines that have
been scrolled up, hyperSOURCE-386 provides a display buffer for the Dialog window. Any
display lines that are scrolled out of the Dialog window during command execution are stored
in this display buffer. Consequently, the Dialog window actually holds more lines of display
than its window size. To scroll through the Dialog window, select the Dialog window with
< alt > 2, then use the up/down and <PgUp > / <PgDn> cursor keys.

The default window size for the Dialog window is nine lines and the default size of the
display buffer in the Dialog window is 80 lines. Default sizes can be changed with the
DIALOG environment parameter in the environment file, hs386.env (e.g., DIALOG =100).

Microtek International, DSD 23 hyperSOURCE-386 User Manual

Window Layout Chapter Two

The size of the Dialog window can also be changed during the debugging session. The
Dialog window can be increased one display line with <Ctrl> g at the command prompt or
decreased one display line with <Ctrl> t. However, increasing or decreasing the size of the
Dialog window inversely affects the Source window since the combined size of Source
window and Dialog window is fixed.

Command Line

The Command line is used to enter hyperSOURCE-386 commands. You can execute
hyperSOURCE-386 commands either by entering commands on the command line or through
pull-down menus. Each menu selection has one or more submenus to guide you in the
selection of appropriate commands.

When hyperSOURCE-386 is ready to accept user commands, it displays a -> prompt and a
cursor on the command line. HyperSOURCE-386 is said to be in the command state. There
are several options which control the hyperSOURCE-386 operations:

1. You can enter commands on the command line as follows:

- > command [paraml, [param2]...]

Where command is either a hyperSOURCE-386 command or the name of a user defined
macro. paraml and param2 are the parameters or options which complete the
command.

2. To access the hyperSOURCE-386 pull-down menus, use the F10 function key or
< alt> *, where * is the capital letter of the desired menu. HyperSOURCE-386 enters
the menu state after you press the F10 key.

Recall a Previous Command

To recall a previous command into the command line for editing and/or execution, press the
up cursor key at the command prompt. A list of the previous commands will be displayed in
the Dialog window. Use the cursor keys to select the desired command and press
<Enter > . The selected command will be recalled to the command line where it can be
edited. Once edited, press <cr> to execute the command.

Pop-Up Windows

HyperSOURCE-386 has several pop-up windows. They are the Register window, the
Memory window, the Debug windows, and the Symbol window.

hyperSOURCE-386 User Manual 24 Microtek International, DSD

Window Layout Chapter Two

The size of the Dialog window can also be changed during the debugging session. The
Dialog window can be increased one display line with <Ctrl> g at the command prompt or
decreased one display line with <Ctrl> t. However, increasing or decreasing the size of the
Dialog window inversely affects the Source window since the combined size of Source
window and Dialog window is fixed.

Command Line

The Command line is used to enter hyperSOURCE-386 commands. You can execute
hyperSOURCE-386 commands either by entering commands on the command line or through
pull-down menus. Each menu selection has one or more submenus to guide you in the
selection of appropriate commands.

When hyperSOURCE-386 is ready to accept user commands, it displays a -> prompt and a
cursor on the command line. HyperSOURCE-386 is said to be in the command state. There
are several options which control the hyperSOURCE-386 operations:

1. You can enter commands on the command line as follows:

- > command [paraml, [param2]...]

Where command is either a hyperSOURCE-386 command or the name of a user defined
macro. paraml and param2 are the parameters or options which complete the
command.

2. To access the hyperSOURCE-386 pull-down menus, use the F10 function key or
<alt> *, where * is the capital letter of the desired menu. HyperSOURCE-386 enters
the menu state after you press the F10 key.

Recall a Previous Command

To recall a previous command into the command line for editing and/or execution, press the
up cursor key at the command prompt. A list of the previous commands will be displayed in
the Dialog window. Use the cursor keys to select the desired command and press
<Enter > . The selected command will be recalled to the command line where it can be
edited. Once edited, press <cr> to execute the command.

Pop-Up Windows

HyperSOURCE-386 has several pop-up windows. They are the Register window, the
Memory window, the Debug windows, and the Symbol window.

hyperSOURCE-386 User Manual 24 Microtek International, DSD

Chapter Two Window Layout

HyperSOURCE-386 uses two types of pop-up windows; "sticky" and "transient." Sticky
windows are used to view and/or change data structures. They remain on-screen when
<Esc> is pressed, or can be closed by pressing the F2 function key. Transient windows
are used only for viewing, and are closed when <Esc> is pressed.

Register Window

The Register window displays the contents of all of the CPU registers. The Register pop-up
window can be accessed by <Alt> r. Registers can be changed in the window or on the
command line. The registers can be monitored during the debugging session by the use of
the register pop-up window. Once the register window has been selected, the F2 function
key will select the register window to remain on the screen and monitor the registers. A
sample Register window is shown in Figure 2.3. The Register window is "sticky."

0/S Execute Memory Register Symbol Debug
--- 1:Source

22: acell(31, Aarray1[41 , 2,
23: NULL, Aarray116/ , 2,
24: MULL, array2, 2
25: };
26:
27: struct links *top; /* pointer to top ce
28:
29: main()
38: f
31: unsigned long i = 8;
32: /* initialize top pointer */
33: top = Ace11101:
34: for (;;) f
35: /* insert one cell at specified place */
36: insert(

 2:Dialog
->
->reg
EAX438888888 EBX.88888088 ECX.410880880 EDX.08888888 EF8.880
ESP4i88088FC EBP.08880188 ESI.88888880 K01.88088888 CR2.888
EIP418888088 CS=8014 TR=8838 LDT=8848 DS=881C ES=881C FS=88
->

mAcro Window

AcellE41 , 3);
DM_MAINa29

Config Fl:HELP
, 3:Register

EAX
EBX
ECX
EDX
EDI
ESI
EDP
ESP
EFG
EIP

CS
DS
ES
FS
Os
SS
TN

LDT
CR8
CR2
CR3

00880888
88888808
80880088
80880808
88000888
88888108
808888FC
88884282
88888808
8814
881C
881C
881C
881C
8024
8838
8848
7FFFFFE9
80880888
00888808

MOM UM 81
RF 81
MT 1
10
OF 8
DF 8
IF 1
TF 8
SF 8
ZF 8 i
AF 8
PF 8
CF

387
Gdt
Idt
Ldt i
Pd
Tssl

Figure 2.3 - Register Window

Microtek International, DSD 25 hyperSOURCE-386 User Manual

0/S Execute Memory Register Symbol Debug
- -- 1:Source

mAcro Window Config Fl:HELP

22: lice11131, Aarray1[41 , 2,
23: HULL, Darray1161 , 2,
24: HULL, array2, 2
25: };
26:
27: struct links *top: /* pointer to top ce
28:
29: [min()

AcellE41 , 3);
DM_MAINU29

->
- >reg
BAX.88888888 EBX.88888088 ECX.198880860 EDX.08888888 EFG.-888
ESP=888888FC M31'418088188 ESI=88888808 EDI.618888088 CR2=888
EIP=8880800B CS=8814 TB=8838 LDT=8848 DS=881C ES=881C FS=88
->

EAX
EBX eomeoeo
ECX eoloom
EDX 88888088
EDI 88888888
ESI oseemee
EDP 88888108
ESP 888888FC
EFG 88884282
EIP 88888808
CS 8814
DS 881C
ES 881C
FS 881C
GS 881C
SS 8024 387
TR 8838 Gdt

LDT 8848 Idt!
C118 7FFFFFE9 Ldt i
CR2 80008880 Pd
CR3 oeseeme Tssl

30: f
31: unsigned long i = 8;
32: /* initialize top pointer */
33: top = Ace11181:
34: for (;;) f
35: /* insert one cell at specified place */
36: insert(
 2:Dialog

UM 81
BF HI
MT 1
I0
OF 8
DF 8
IF 1
TF 8
SF 8
ZF 8 i
AF 8
PF 8
CF

Chapter Two Window Layout

HyperSOURCE-386 uses two types of pop-up windows; "sticky" and "transient." Sticky
windows are used to view and/or change data structures. They remain on-screen when
<Esc> is pressed, or can be closed by pressing the F2 function key. Transient windows
are used only for viewing, and are closed when <Esc> is pressed.

Register Window

The Register window displays the contents of all of the CPU registers. The Register pop-up
window can be accessed by <Alt> r. Registers can be changed in the window or on the
command line. The registers can be monitored during the debugging session by the use of
the register pop-up window. Once the register window has been selected, the F2 function
key will select the register window to remain on the screen and monitor the registers. A
sample Register window is shown in Figure 2.3. The Register window is "sticky."

Figure 2.3 - Register Window

Microtek International, DSD 25 hyperSOURCE-386 User Manual

Window Layout Chapter Two

Memory Window

The Memory pop-up window will allow the user to display and/or change memory contents
inside the window. The Memory window can be accessed either by < Alt> m or by using
the MEMory command on the command line. The F2 function key will allow the memory
window to remain on the screen so the memory locations may be monitored during the debug
session. A sample Memory window is shown in Figure 2.4. The Memory window is
"sticky."

0/S Execute Memory Register Symbol Debug mAcro Window Config
--- 1:Source

22: ilarray1(4I , 2,
23: HULL, liarraylI6l , 2,
24: HULL, 3:Memory
25: }; FORMAT: Hex SIZE: Word
26: •

881C:80000100 BOZ 4674 F82C HUE I 27: struct links
28: 0010:08808108 F418 28FD 74F11 00E6
29: main() 0010:00000118 B105 823D F6DE ODB4 4
38: {
31: unsigned long i = 0;

/* initialize top pointer w/
top = acell(B]:

for (;;) {
/w insert one cell at specified place

insert(ficell[4] , 3);
DM_MAINuZ9

FZ:watch F3:format F4:size F9:search Alt-G:go to address

Figure 2.4 - Memory Window

Debug Windows

32:
33:
34:
35:
36:
 2:Dialog

F1:HELP

Two of the windows in the Debug menu can be left open to monitor debug activity. These
windows are the Breakpoints window and the Callstack window. The Runtrace, BusEvent,
Trigger, timebaSe, Qualify, Map, and Icemode windows are removed from the screen when
their use is finished. The Debug menu is invoked with < Alt> d. Fields in the menu are
selected with the up/down cursor keys and the corresponding window selected by pressing
<Enter > . The F2 function key will allow the Breakpoints and Callstack windows to be
monitored throughout the debugging session.

hyperSOURCE-386 User Manual 26 Microtek International, DSD

Window Layout Chapter Two

Memory Window

The Memory pop-up window will allow the user to display and/or change memory contents
inside the window. The Memory window can be accessed either by < Alt> m or by using
the MEMory command on the command line. The F2 function key will allow the memory
window to remain on the screen so the memory locations may be monitored during the debug
session. A sample Memory window is shown in Figure 2.4. The Memory window is
"sticky."

0/S Execute Memory Register Symbol Debug mAcro Window Config
--- 1:Source

22: AcellI3l,
23: HULL, Barray1I6l
24: HULL,

Darray1(4I , 2,
, 2,

— 3:Memory 0
25: }; FORMAT: Hex SIZE: Word

• 26:
27: struct links 881C:800043180 B02 4674 FO2C OFEE I
28: 001C:00000108 F418 28FD 74FB 0016
29: main() 001C:00000110 B105 823D F6DE ODB4 4
38; {
31: unsigned long i = 0;
32: /* initialize top pointer w/
33: top = fleeing];
34: for (::) {
35: /w insert one cell at specified place
36: insert(deell[4] , 3);

F1:HELP

2:Dialog DM_MAIMUZ9

F2:watch F3:format F4:size F9:search Alt-G:yo to address

Figure 2.4 - Memory Window

Debug Windows

Two of the windows in the Debug menu can be left open to monitor debug activity. These
windows are the Breakpoints window and the Callstack window. The Runtrace, BusEvent,
Trigger, timebaSe, Qualify, Map, and Icemode windows are removed from the screen when
their use is finished. The Debug menu is invoked with < Alt> d. Fields in the menu are
selected with the up/down cursor keys and the corresponding window selected by pressing
<Enter > . The F2 function key will allow the Breakpoints and Callstack windows to be
monitored throughout the debugging session.

hyperSOURCE-386 User Manual 26 Microtek International, DSD

0/S Execute Memory Register Symbol Debug mAcro Window Config F1:HELP
1:Source
27: struct links *top: 3:Breakpoints II e/
28: 0: 1436 on
29: main() 1:
38: {
31: unsigned long i = 8;
32:
33:
34:
35:
36:
37:
38:
39:
48:
41:
 2:Dialog

2:
3:

/* initialize top pointer 4:
top = AcellE01: 5:

for (::) { 6:
/m insert one cell at 7:

insert(Acellt4I ,
/* output all messages

printall():
/* remove one cell from linked list

remove(3);
/* output all messages

DM_MAINI129
(writing to 'outbuf)

(writing to 'outbuf')

OF/

et/

FZ:match F3:enable/disable Ins:insert Del:deIete Enter:edit

Chapter Tivo Window Layout

Breakpoints Window

The Breakpoints window is used to set and monitor the status of execution breakpoints used
in debugging. An example of the Breakpoints pop-up window is shown in Figure 2.5.

Figure 2.5 - Breakpoints Window

Microtek International, DSD 27 hyperSOURCE-386 User Manual

0/S Execute Memory Register Symbol Debug mAcro Window Config F1:HELP
1:Source

27: struct links *top: 11 */
28:

main() 1:
{ 2:
unsigned long i = 8; 3:

/* initialize top pointer 4:
top = AcellE01; 5:

for (::) { 6:
/m insert one cell at 7:

insert(Acellt41 ,
/* output all messages (writing to 'outbuf')

printall():
/* remove one cell from linked list .4/

remove(3);
/* output all messages (to 'outbuf') */

2:Dialog DM_MAIN1129

FZ:watch F3:enable/disable Ins:insert Del:deIete Enter:edit

29:
38:
31:
32:
33:
34:
35:
36:
37:
38:
39:
48:
41:

Chapter Tivo Window Layout

Breakpoints Window

The Breakpoints window is used to set and monitor the status of execution breakpoints used
in debugging. An example of the Breakpoints pop-up window is shown in Figure 2.5.

Figure 2.5 - Breakpoints Window

Microtek International, DSD 27 hyperSOURCE-386 User Manual

0 removetplace = 3) from DM MAIN.0440
main()

Window Layout Chapter Two

CallStack Window

The CallStack window is used to monitor the current chain of procedure calls in the program
being executed. An example of the CallStack window is shown in Figure 2.6.

OA Execute Memory Register Symbol Debug mAcro Window Config Fl:HELP
1:Source
39: }
48:
41: remove(place) /* remove one cell at place */
42: int place:
43: {
44: int
45: struct links *ptr,secur;
46: ptr = top:

->1

47:
48:
49:
58:
51:
52:
53: }
 2:Dialog

if (place){
for (i = 8; i< place ; i++){

1 cur = ptr;
p

}

cur->next

3:Call3tack

41: remove(place)
->1

46: ptr = top:
->UP 1
->DOLM 1

/* remove one cell at place */

F2:watch F3:local F9:search Enter:select scope

Figure 2.6 - CallStack Window

Symbol Windows

The Symbol windows are used to view and monitor program symbols, modules, structures,
and variables. The only Symbol window that can be left active on the screen during a
debugging session is the Examine window. The rest of the Symbol windows are closed when
work in the window is finished. The Symbol menu is accessed by <Alt> s. Fields in the
Symbol menu are selected with the up/down cursor keys and the associated windows are
selected with the <Enter> key. The F2 function key is used to open the Examine window
to monitor variables throughout the debugging session.

hyperSOURCE-386 User Manual 28 Microtek International, DSD

0/S Execute Memory Register Symbol Debug mAcro Window Config Fl:HELP
1:Source
39: }
48:
41:remove(place) /* remove one cell at place */
42:int place:
43:{
44:int
45:struct links *ptr,secur;
46: ptr = top:
47:
48:
49:
58:
51:
52:
53: }
 2:Dialog

f (place){
for (i = 8; i< place ; i++){

cur = ptr;
p

}

cur->next main()

>1
41: remove(place)

>1
46: ptr = top:

>UP 1
>DOWM 1

/* remove one cell at place */

F2:watch F3:local F9:search Enter:select scope

1

Window Layout Chapter Two

CallStack Window

The CallStack window is used to monitor the current chain of procedure calls in the program
being executed. An example of the CallStack window is shown in Figure 2.6.

Figure 2.6 - CallStack Window

Symbol Windows

The Symbol windows are used to view and monitor program symbols, modules, structures,
and variables. The only Symbol window that can be left active on the screen during a
debugging session is the Examine window. The rest of the Symbol windows are closed when
work in the window is finished. The Symbol menu is accessed by <Alt> s. Fields in the
Symbol menu are selected with the up/down cursor keys and the associated windows are
selected with the <Enter> key. The F2 function key is used to open the Examine window
to monitor variables throughout the debugging session.

hyperSOURCE-386 User Manual 28 Microtek International, DSD

Chapter Two Window Layout

Examine Window

The Examine window may be used to monitor and modify program variables. An example
of the Examine window is shown in Figure 2.7.

0/S Execute Memory Register Symbol Debug mAero Window Config Fl:HELP
--- 1:Source

33: top = AcellE0
34: for
35:
36:
37: /*
38:
39: /*

(;;) { (unsigned long) i = 1 Q 0824:888888F4
/* insert o

insert(Deell[41 , 3):
output all messages (writing to 'outbuf')

printall();
remove one cell from linked list */

remove(3): 11110:
41:
42:
43:
44:
45: }

/* output all messages (writing to 'outbuf') */
printall();

i++; /* number of iterations */

 2:Dialog
46:

-)UP 1
->DOWN 1
-)g

48:
->exa i

DM_MAIN448

ptr = top;

remove(3);

H.:watch F5:format Enter:edit

Figure 2.7 - Examine Window

Microtek International, DSD 29 hyperSOURCE-386 User Manual

Chapter Two Window Layout

Examine Window

The Examine window may be used to monitor and modify program variables. An example
of the Examine window is shown in Figure 2.7.

0/S Execute Memory Register Symbol Debug mAcro Window Config Fl:HELP
--- 1:Source

33: top = acell[0
34: for
35:
36:
37:
38:
39:

III40:
41: /* output all messages (writing to 'outbuf') */
42: printall();
43: i++; /* number of iterations */
44:
45:}

long) i = 1 Q 0824:080888F4 I (;;) (f (unsigned
/* insert o

insert(acell[41 , 3):
output all messages (

printall();
remove one

writing to 'outbuf') */ /*

cell from linked list */ /*
remove(3):

DM_MAIN440 2:Dialog
46:

-)UP 1
->D0WN 1
-)g

48:
->exa i

ptr = top;

relieve(3);

H.:watch F5:format Enter:edit

Figure 2.7 - Examine Window

Microtek International, DSD 29 hyperSOURCE-386 User Manual

0/S Execute Memory Register
1:Source

Debug mAcro Window Conflg F1:HELP I igmbtl

34: for 00 {
35:
36:
3?:
38:
39:

33: top = Acell(Fil: Evaluate
eXamine

/* insert one ce mom ied place */
insert(&cell(Globals

/* output all m Locals iting to 'outbuf') */

DM_MAINU40

Enter:select menu item Esc:close menu

48:
41:
42:
43:
44:
45:)

— Symbol:Modules
reset
'nit
$intr_hdr
$stup_dm
$DM_HAIH
$SUB_FUHC
$7DEBUG_INFO

0050:00000000
P 8014:88880008
P seweseemes
P 8814:80e0ee88

8814:e88e80e8 = DM_MAIti.c
8014:88808880 = SUB_FUHC. '

P 8888:80008888

Window Layout Chapter Two

Module Window

The Module window displays all modules associated with the current program. An example
of the module window is shown in Figure 2.8.

Figure 2.8 - Module Window

hyperSOURCE-386 User Manual 30 Microtek International, DSD

'nit
$intr_hdr
$stup_dm
$DM_HAIH
$SUB_FUHC
$7DEBUG_INFO

0 8814:88800808
8 soweseemes
8 8014:eeemeo
8 6014:90eamee = DM_MAIti.c I
O 8014:88808880 = SUB_FUHC.
O 8888:88000888

2:Dialog DM_MAINR40

0/S Execute Memory Register
1:Source

Debug mAcro Window Conflg F1:HELP

33: top = Acell(Fil; Evaluate
eXamine

/* insert one ce 132Eum ied place */
insert(&cell(Globals

/* output all m Locals iting to 'outbuf') */

34: for (.::) {
35:
36:
3?:
38:
39:
48:
41:
42:
43:
44:
45:)

Window Layout Chapter Two

Module Window

The Module window displays all modules associated with the current program. An example
of the module window is shown in Figure 2.8.

Enter:select menu item Esc:close menu

Figure 2.8 - Module Window

hyperSOURCE-386 User Manual 30 Microtek International, DSD

igmbol

Evaluate
eXamine
Modules
,Ioba ls
Locals

Symbol:Globals
unsigned long count = 8x0888888a O 8848:881C:88888148
unsigned char outbuf[18] 9 8848:881C:0888813C
long printall() P 8848:8814:888888E8
long remove() P 8848:0814:8888889C
long insert() P 8848:8014:88888848
struct links *top = 8x8888888c P 8848:801C:88888138
struct links cell[38] P 8848:881C:8888888C
nsigned char array2[3] P 8848:881C:80888889

4E1: re

0/S Execute Memory Register
1:Source
33: top = AcellE8l:
34: for (::)
35: /* insert one ce
36: insert(&cell(
37: /* out t all ■
38: pri
39: /*

Debug mAcro Window Config F1:HELP

41:
42:
43:
44: }
45: 1

/* a
pri
/*

led place */

iting to 'outbuf') */

2:Dialog

Chapter Two Window Layout

Global Window

The Global window displays all global symbols associated with the current program. An
example of the Global window is shown in Figure 2.9.

Figure 2.9 - Global Window

Microtek International, DSD 31 hyperSOURCE-386 User Manual

0/S Execute Memory Register igmbol Debug mAcro Window Config F1:HELP
1:Source

33: top = AcellE0l: Evaluate
34: for (::) eXamine
35: / n insert one ce Modules led place */
36: insert(&cell(,lobals
37: /e out t all n Locals sting to 'outbuf') */
38: pri
39: r unsigned long count = 8x8008888a Q 8848:881C:88888148

unsigned char outbuf[18] 9 8848:081C:0008813C
41: a long printall() P 8848:0814:808088EO
42: pri long remove() P 8048:0814:8888889C
43: /* long insert() P 8848:8014:88888848
44: } struct links *top = 8x8880088c P 8848:801C:08088138
45: 1 struct links cell[38] P 0848:081C:8008809C

nsigned char array2[3] P 8848:881C:80888809

2:Dialog

Chapter Two Window Layout

Global Window

The Global window displays all global symbols associated with the current program. An
example of the Global window is shown in Figure 2.9.

Figure 2.9 - Global Window

Microtek International, DSD 31 hyperSOURCE-386 User Manual

Window Layout Chapter Two

Local Window

The Local window displays all active local symbols. An example of the Local window is
shown in Figure 2.10.

0/S Execute Memory Register ymbol Debug mAcro Window Config F1:HELP
--- 1:Source

39: }
40:

Evaluate
eXamine

41: remove(place) Modules cell at place */
42: int place; Globals
43: 1 Lot a l
44: lilt i; Struc Stphol.Locals
45: struct links mptr,mcur struct links mcur 0 CEBP-8CHl t
46: ptr = top: struct links mptr 0 (EBP-88H1 Ill

long i 0 EEBP-84H] 47: if (place){
48: for (i = 8; 11 pla long place 9 IEDP.88H1
49: cur = ptr;
50: ptr = ptr->next;
51:
52: cur ->next = ptr->next;
53:
 2:Dialog

SUB U CB4

->
->
->1

41: remove(place) /* remove one cell at place */
->1

46: ptr = top;

Figure 2.10 - Local Window

hyperSOURCE-386 User Manual 32 Microtek International, DSD

0/S Execute Memory Register
1:Source
39: }
48:
41: remove(place)
42: int place;
43: 1
44: int i;
45: struct links

47:
48:
49:
58:
51:
52:
53:
 2:Dialog

ymbol Debug mAcro Window Config F1:HELP

Evaluate
eXamine

/N Modules cell at place */
Globals
Lot a F,
Struc

struct links *cur 0 CEBP-8CHl t
struct links *ptr 0 (EBP-BBH] 001
long i 0 EEBP-84H]
long place 9 IEDP.80H1

SUB_FUNCu46

*ptr,wcur;
46: ptr = top:

if (place){
for (i = 8; 11 pla

cur = ptr;
ptr = ptr->next;

}
cur->next = ptr->next;

->
->
->1

41: remove(place) /* remove one cell at place */
->1

46: ptr = top;

Window Layout Chapter Two

Local Window

The Local window displays all active local symbols. An example of the Local window is
shown in Figure 2.10.

Figure 2.10 - Local Window

hyperSOURCE-386 User Manual 32 Microtek International, DSD

e Memory Register 0/S FarPeu

46: ptr = top;
if (place){

for (i = 0; i< pla
cur = ptr;
ptr = ptr->

struct links
struct links *next;
unsigned char *string;
short length;

1:Source
39:)
48:
41: remove(place)
42: int place:
43:
44: int i;
45: struct links *ptr,secur;

Config Fl:HELP

47:
48:
49:
58:
51:
52: cur ->next = ptr->next;
53: }
2:Dialog

41: remove(place) /* remove one cell at place */

46: ptr = top;
->1

Debug mAcro Window

Evaluate
eXaMine
Modules cell at place */
Globals
Locals

Chapter Two Window Layout

Structure Window

The Structure window shows all structures in the current program. An example of the
Structure window is shown in Figure 2.11.

Figure 2.11 - Structure Window

Function Keys

The Fl and F10 function keys are defined by hyperSOURCE-386. You can program the F2-
F9, < Alt >F1-F10, and < Shf >F1-10 function keys to contain key input sequences up to 50
characters long. Function keys can replace commonly used command line inputs with a
single key stroke. To create or modify these function key definitions, either modify the
environment file (hs386.env) or enter the definitions via the mAcro/Key submenu.

Microtek International, DSD 33 hyperSOURCE-386 User Manual

Chapter Two Window Layout

Structure Window

The Structure window shows all structures in the current program. An example of the
Structure window is shown in Figure 2.11.

0/3 F. cute
1:Source

Memory Register iombol Debug mAcro Window Config Fl:HELP

39: 1
48:
41:remove(place)
42:int place:
43:{
44:int i;
45:struct links *ptr,*cur;

Evaluate
eXaMine
Modules
Globals
Locals

cell at place */

struct links
46: ptr = top; struct links *next;
47: if (place){ unsigned char *string;
48: for C i = 8; i< pla short length;
49: cur = ptr; }
50: ptr = ptr->
51: }
52: cur->next = ptr->next;
53: }
2:Dialog

->
->
->1

41: remove(place) /* remove one cell at place */
->1

46: ptr = top;
F9:search

Figure 2.11 - Structure Window

Function Keys

The Fl and F10 function keys are defined by hyperSOURCE-386. You can program the F2-
F9, < Alt >F1-F10, and < Shf >F1-10 function keys to contain key input sequences up to 50
characters long. Function keys can replace commonly used command line inputs with a
single key stroke. To create or modify these function key definitions, either modify the
environment file (hs386.env) or enter the definitions via the mAcro/Key submenu.

Microtek International, DSD 33 hyperSOURCE-386 User Manual

Window Layout Chapter Two

Table 2.3 - Function Keys

Key Function Description

Fl Help Invoke the on-line help facility
F2-F9 User definable
F10 MENU Activate the pull-down menus
<Alt>F1-<Alt>F10 User definable
<Shf>F1-<Shf>F10 User definable

Control Keys

The following table lists the available hyperSOURCE-386 control keys.

Table 2.4 - Control Keys

Control Key Description

<Esc> Abort operation
<Ctrl>g Increase size of Dialog window; decrease size of Source window
<Ctrl>t Increase size of Source window; decrease size of Dialog window

Note

Both < Ctrl > g and <Ctrl> t are only recognized on the command line.

Using the Mouse

This section describes the mouse functions of hyperSOURCE-386. HyperSOURCE-386
requires a Microsoft-compatible mouse. The two buttons on the mouse have these basic
functions:

• Left button: to select or accept
• Right button: to cancel

hyperSOURCE-386 User Manual 34 Microtek International, DSD

Window Layout Chapter Two

Table 2.3 - Function Keys

Key Function Description

Fl
F2-F9
F10
<Alt>F1-<Alt>F10
<Shf>F1-<Shf>F10

Help Invoke the on-line help facility
User definable

MENU Activate the pull-down menus
User definable
User definable

Control Keys

The following table lists the available hyperSOURCE-386 control keys.

Table 2.4 - Control Keys

Control Key Description

<Esc> Abort operation
<Ctrl>g Increase size of Dialog window; decrease size of Source window
<Ctrl>t Increase size of Source window; decrease size of Dialog window

Note

Both < Ctrl > g and <Ctrl> t are only recognized on the command line.

Using the Mouse

This section describes the mouse functions of hyperSOURCE-386. HyperSOURCE-386
requires a Microsoft-compatible mouse. The two buttons on the mouse have these basic
functions:

• Left button: to select or accept
• Right button: to cancel

hyperSOURCE-386 User Manual 34 Microtek International, DSD

Chapter Two Window Layout

Selecting Help

You can select the help option on the menu bar with the mouse by left-clicking the F1:Help
option on the menu bar.

For general help about hyperSOURCE-386, make sure that no other menu on the menu bar
is selected before you select F1:Help.

If you need help for a specific menu option, select the option from the menu and select
F1:Help. To do so, follow these steps:

1. Left-click the option you want on the menu bar.
You see a pull-down menu or a dialog box if you select the Register or Memory option.
For dialog boxes, go to step 3.

2. Double-click the left mouse button on the option you want from the pull-down menu.
You see a dialog box or a choice-list box.

3. Left-click F1:Help on the menu bar and the on-line help appears for the option you
selected.

Selecting Menu Options

To select an option from the menu bar, left-click the option. You see a pull-down menu for
all options except for the Memory and Register options.

To select a pull-down menu option, double-click the left mouse button on the option.

To select the Memory or Register option from the menu bar, double-click the left mouse
button on the option. These options do not have pull-down menus. When you choose the
Memory option, a dialog box pops up asking for the memory starting address. When you
select Register, the register window appears.

REMEMBER
To exit a menu, right-click!

Resizing Dialog and Source Window

To enlarge or shrink the Dialog and Source windows, left-click on the separator bar between
the windows and hold the button down. Now you can drag the bar up or down to change the
size of the windows.

Microtek International, DSD 35 hyperSOURCE-386 User Manual

Chapter Two Window Layout

Selecting Help

You can select the help option on the menu bar with the mouse by left-clicking the F1:Help
option on the menu bar.

For general help about hyperSOURCE-386, make sure that no other menu on the menu bar
is selected before you select F1:Help.

If you need help for a specific menu option, select the option from the menu and select
F1:Help. To do so, follow these steps:

1. Left-click the option you want on the menu bar.
You see a pull-down menu or a dialog box if you select the Register or Memory option.
For dialog boxes, go to step 3.

2. Double-click the left mouse button on the option you want from the pull-down menu.
You see a dialog box or a choice-list box.

3. Left-click F1:Help on the menu bar and the on-line help appears for the option you
selected.

Selecting Menu Options

To select an option from the menu bar, left-click the option. You see a pull-down menu for
all options except for the Memory and Register options.

To select a pull-down menu option, double-click the left mouse button on the option.

To select the Memory or Register option from the menu bar, double-click the left mouse
button on the option. These options do not have pull-down menus. When you choose the
Memory option, a dialog box pops up asking for the memory starting address. When you
select Register, the register window appears.

REMEMBER
To exit a menu, right-click!

Resizing Dialog and Source Window

To enlarge or shrink the Dialog and Source windows, left-click on the separator bar between
the windows and hold the button down. Now you can drag the bar up or down to change the
size of the windows.

Microtek International, DSD 35 hyperSOURCE-386 User Manual

Window Layout Chapter Two

Selecting Windows

To select a window, left-click on the window title. This highlights the window title to
indicate the window is active.

Note

You cannot select the History window with the mouse. Select the Dialog
window and press [t].

Resizing and Repositioning Windows

If the window you want to resize or reposition is a display window, double-click the left
mouse button on the window title. This marks the window's borders.

If you want to resize or reposition the active window, left-click the window title. This marks
the window's borders.

To move a border, left-click on it and hold the button down. Now you can drag the border
to another position.

The following table shows the functions of the borders in resizing or repositioning a marked
window.

Table 2.5 - Window Border Functions

USE TO
upper border move window up or down (works only with decreased window

height)
left border move window left or right
lower border resize window height
right border resize window width (works only if you moved window to the left)

To accept the size and position of the marked window, click on Enter/F10:accept.

To cancel your changes, click the right mouse button.

hyperSOURCE-386 User Manual 36 Microtek International, DSD

Window Layout Chapter Two

Selecting Windows

To select a window, left-click on the window title. This highlights the window title to
indicate the window is active.

Note

You cannot select the History window with the mouse. Select the Dialog
window and press [t].

Resizing and Repositioning Windows

If the window you want to resize or reposition is a display window, double-click the left
mouse button on the window title. This marks the window's borders.

If you want to resize or reposition the active window, left-click the window title. This marks
the window's borders.

To move a border, left-click on it and hold the button down. Now you can drag the border
to another position.

The following table shows the functions of the borders in resizing or repositioning a marked
window.

Table 2.5 - Window Border Functions

USE TO
upper border move window up or down (works only with decreased window

height)
left border move window left or right
lower border resize window height
right border resize window width (works only if you moved window to the left)

To accept the size and position of the marked window, click on Enter/F10:accept.

To cancel your changes, click the right mouse button.

hyperSOURCE-386 User Manual 36 Microtek International, DSD

Chapter Two Window Layout

Scrolling in Windows

To scroll up and down in windows, you use the scroll bar on the right-hand side of the
window.

To move up one line, left-click t ; to move down one line, left-click I .

To scroll continuously, left-click and hold the button on the arrow. The screen starts
scrolling after a short delay.

You can also use the scroll indicator to scroll continuously. If you left-click the scroll
indicator on the scroll bar, hold the button down, and drag the mouse, the window scrolls in
the direction of the drag.

To skip from one position to another, left-click anywhere on the scroll bar. This repositions
the cursor at the distance between the scroll indicator and where you clicked the scroll bar.

Selecting Function Keys

When you are in a window, you see a bar with function key options at the bottom screen.
To select these keys with a mouse, left-click the option on the function-key bar.

The Source Window

The following section describes how you can use the mouse in the Source window. These
mouse functions only work if you are on the command line. Do not select the Source
window.

Setting a Breakpoint

Left-click on the left-hand side of the screen, on the column with line numbers or addresses.
This leaves a highlight at the position where you set the breakpoint.

Deleting a Breakpoint

Left-click on the highlight indicating the breakpoint that you want to delete. The highlight
disappears from the screen.

Microtek International, DSD 37 hyperSOURCE-386 User Manual

Chapter Two Window Layout

Scrolling in Windows

To scroll up and down in windows, you use the scroll bar on the right-hand side of the
window.

To move up one line, left-click t ; to move down one line, left-click I .

To scroll continuously, left-click and hold the button on the arrow. The screen starts
scrolling after a short delay.

You can also use the scroll indicator to scroll continuously. If you left-click the scroll
indicator on the scroll bar, hold the button down, and drag the mouse, the window scrolls in
the direction of the drag.

To skip from one position to another, left-click anywhere on the scroll bar. This repositions
the cursor at the distance between the scroll indicator and where you clicked the scroll bar.

Selecting Function Keys

When you are in a window, you see a bar with function key options at the bottom screen.
To select these keys with a mouse, left-click the option on the function-key bar.

The Source Window

The following section describes how you can use the mouse in the Source window. These
mouse functions only work if you are on the command line. Do not select the Source
window.

Setting a Breakpoint

Left-click on the left-hand side of the screen, on the column with line numbers or addresses.
This leaves a highlight at the position where you set the breakpoint.

Deleting a Breakpoint

Left-click on the highlight indicating the breakpoint that you want to delete. The highlight
disappears from the screen.

Microtek International, DSD 37 hyperSOURCE-386 User Manual

Window Layout Chapter Two

Copying Command to Command Line

Double-clicking the left button on a command or variable name copies that command or
variable name to the command line. If you copy a word that is not a command, you see the
error message "illegal command keyword or undefined symbol."

Viewing Source Code of Symbols

Double-clicking the left mouse button on a symbol copies that symbol to the command line
with the SOUrce command. The Source window shows the source code where you defined
the symbol.

Scrolling in the Dialog Window

To scroll up and down in the Dialog window, left-click the arrows on the scroll bar.

Note

You cannot scroll up in a dialog window without a mouse. The t on your
keyboard has a different function from the upward arrow on the scroll bar. If
you press [t] on your keyboard, you select the history window. You cannot
select the history window with a mouse.

Copying from the History Window

To scroll up and down in the History window, left-click the arrows on the scroll bar.

To copy a line from the History window to the command line, double-click the left mouse
button on the line in the history window. You see the line appear in the command line. If
you want to execute the command, press <Enter > . If you want to cancel the procedure,
press <Esc > .

Editing in the Memory and Register Windows

To edit a memory location in a Memory window, left-click to select the location. You can
now edit the location.

To edit a field in the Register window, left-click to select the field. You can now edit the
field.

hyperSOURCE-386 User Manual 38 Microtek International, DSD

Window Layout Chapter Two

Copying Command to Command Line

Double-clicking the left button on a command or variable name copies that command or
variable name to the command line. If you copy a word that is not a command, you see the
error message "illegal command keyword or undefined symbol."

Viewing Source Code of Symbols

Double-clicking the left mouse button on a symbol copies that symbol to the command line
with the SOUrce command. The Source window shows the source code where you defined
the symbol.

Scrolling in the Dialog Window

To scroll up and down in the Dialog window, left-click the arrows on the scroll bar.

Note

You cannot scroll up in a dialog window without a mouse. The t on your
keyboard has a different function from the upward arrow on the scroll bar. If
you press [t] on your keyboard, you select the history window. You cannot
select the history window with a mouse.

Copying from the History Window

To scroll up and down in the History window, left-click the arrows on the scroll bar.

To copy a line from the History window to the command line, double-click the left mouse
button on the line in the history window. You see the line appear in the command line. If
you want to execute the command, press <Enter > . If you want to cancel the procedure,
press <Esc > .

Editing in the Memory and Register Windows

To edit a memory location in a Memory window, left-click to select the location. You can
now edit the location.

To edit a field in the Register window, left-click to select the field. You can now edit the
field.

hyperSOURCE-386 User Manual 38 Microtek International, DSD

Chapter Two Window Layout

Editing and Scrolling in the Symbol Menu

To edit the value of simple variables (single-line displays), left-click the variable. A dialog
box prompts you to enter the new value.

To edit structs and arrays, double-click the left mouse button on the struct or array.

To display the symbols for a module, double-click the left mouse button on the module.

To display a struct definition, double-click the struct.

Defining Breakpoints

To define a breakpoint, double-click the left mouse button on the breakpoint in the
breakpoint window. A choice list pops up for you to define the breakpoint.

Displaying and Defining Macros in the Macro Menu

To display a macro body, double-click the left mouse button on the macro.

To define or edit macro keys, left-click to select the function key you want to edit.

Microtek International, DSD 39 hyperSOURCE-386 User Manual

Chapter Two Window Layout

Editing and Scrolling in the Symbol Menu

To edit the value of simple variables (single-line displays), left-click the variable. A dialog
box prompts you to enter the new value.

To edit structs and arrays, double-click the left mouse button on the struct or array.

To display the symbols for a module, double-click the left mouse button on the module.

To display a struct definition, double-click the struct.

Defining Breakpoints

To define a breakpoint, double-click the left mouse button on the breakpoint in the
breakpoint window. A choice list pops up for you to define the breakpoint.

Displaying and Defining Macros in the Macro Menu

To display a macro body, double-click the left mouse button on the macro.

To define or edit macro keys, left-click to select the function key you want to edit.

Microtek International, DSD 39 hyperSOURCE-386 User Manual

Chapter Three hyperSOURCE-386 Tutorial

Chapter Three - hyperSOURCE-386 Tutorial
This chapter contains a tutorial for running hyperSOURCE-386. It is highly recommended
that you work through this tutorial, which will introduce you to the most frequently used
commands and allow you to experiment with them in a controlled environment.

Once you have completed the tutorial, you should be prepared to use the hyperSOURCE-386
and MICE-V combination in your target system.

Preparing to Run hyperSOURCE-386

To execute hyperSOURCE-386, do the following steps:

1. Connect the RS-232 cable from the COM1 or COM2 port on your PC to the TERMINAL
port on the back of the MICE-V chassis.

2. Power up your PC host.

3. If you have not already installed hyperSOURCE-386, do so at this time. Insert the
hyperSOURCE-386 distribution diskette into drive A and type a:install. If your RS-232
cable is connected to the COM2 port on your PC, then you must edit the environment
(*.env) file. Change COM=1 to COM=2. Make sure you do not use an editor that
embeds control characters.

4. Power up the MICE and invoke kermit. Verify that the emulator passes all power-up
diagnostics properly.

5. Exit kermit and move to the HS386 directory.

6. Invoke hyperSOURCE-386 as shown:

> hs386
Or
> hs386sx
or
> hs (use the supplied batch file)

Microtek International, DSD 41 hyperSOURCE-386 User Manual

Chapter Three hyperSOURCE-386 Tutorial

Chapter Three - hyperSOURCE-386 Tutorial
This chapter contains a tutorial for running hyperSOURCE-386. It is highly recommended
that you work through this tutorial, which will introduce you to the most frequently used
commands and allow you to experiment with them in a controlled environment.

Once you have completed the tutorial, you should be prepared to use the hyperSOURCE-386
and MICE-V combination in your target system.

Preparing to Run hyperSOURCE-386

To execute hyperSOURCE-386, do the following steps:

1. Connect the RS-232 cable from the COM1 or COM2 port on your PC to the TERMINAL
port on the back of the MICE-V chassis.

2. Power up your PC host.

3. If you have not already installed hyperSOURCE-386, do so at this time. Insert the
hyperSOURCE-386 distribution diskette into drive A and type a:install. If your RS-232
cable is connected to the COM2 port on your PC, then you must edit the environment
(*.env) file. Change COM=1 to COM=2. Make sure you do not use an editor that
embeds control characters.

4. Power up the MICE and invoke kermit. Verify that the emulator passes all power-up
diagnostics properly.

5. Exit kermit and move to the HS386 directory.

6. Invoke hyperSOURCE-386 as shown:

> hs386
or
> hs386sx
or
> hs (use the supplied batch file)

Microtek International, DSD 41 hyperSOURCE-386 User Manual

hyperSOURCE-386 Tutorial Chapter Three

Note

When you first power up the MICE-V, it executes self diagnostics which take
up to one minute to complete. HyperSOURCE-386 will connect when these
diagnostics complete. Subsequent connections will take only a few seconds to
complete.

HyperSOURCE-386 Problems and Solutions

Note

Skip ahead to "HyperSOURCE-386 Tutorial" unless you've encountered
problems loading hyperSOURCE-386.

The following describes a few problems you might encounter with hyperSOURCE-386. The
solutions to those problems are also described.

1. File Problems - HyperSOURCE-386 is unable to open the necessary files.

a) HyperSOURCE-386 will quit and return control to the host operating system.
This error can occur because:

• The disk is full.

• The maximum number of files that can be opened has been reached. You
must increase the number by adding FlLES=20 to your config.sys file.

• You do not have write privilege in the current directory.

b) HyperSOURCE-386 is unable to load your OMF file properly. If you are using
OMF files created with Intel development tools, modify the source file extension
parameter in the *. env file. Refer to "Specifying Debug Characteristics" in
Chapter One.

2. Host Memory Problems - The host system has insufficient or unusable memory.
Use a system information utility to verify the host memory configuration.

a) HyperSOURCE-386 requires extended RAM, not expanded.

b) HyperSOURCE-386 conflicts with himem.sys. HyperSOURCE-386 will initialize
and appear to work, but OMF loads and other communication-intensive operations
will fail.

hyperSOURCE-386 User Manual 42 Microtek International, DSD

hyperSOURCE-386 Tutorial Chapter Three

Note

When you first power up the MICE-V, it executes self diagnostics which take
up to one minute to complete. HyperSOURCE-386 will connect when these
diagnostics complete. Subsequent connections will take only a few seconds to
complete.

HyperSOURCE-386 Problems and Solutions

Note

Skip ahead to "HyperSOURCE-386 Tutorial" unless you've encountered
problems loading hyperSOURCE-386.

The following describes a few problems you might encounter with hyperSOURCE-386. The
solutions to those problems are also described.

1. File Problems - HyperSOURCE-386 is unable to open the necessary files.

a) HyperSOURCE-386 will quit and return control to the host operating system.
This error can occur because:

• The disk is full.

• The maximum number of files that can be opened has been reached. You
must increase the number by adding FlLES=20 to your config.sys file.

• You do not have write privilege in the current directory.

b) HyperSOURCE-386 is unable to load your OMF file properly. If you are using
OMF files created with Intel development tools, modify the source file extension
parameter in the *. env file. Refer to "Specifying Debug Characteristics" in
Chapter One.

2. Host Memory Problems - The host system has insufficient or unusable memory.
Use a system information utility to verify the host memory configuration.

a) HyperSOURCE-386 requires extended RAM, not expanded.

b) HyperSOURCE-386 conflicts with himem.sys. HyperSOURCE-386 will initialize
and appear to work, but OMF loads and other communication-intensive operations
will fail.

hyperSOURCE-386 User Manual 42 Microtek International, DSD

Chapter Three hyperSOURCE-386 Tutorial

c) Four megabytes of extended RAM should be sufficient for nearly all
configurations; however, very large OMF files containing large numbers of
symbols may require additional memory.

d) You may need to allocate more existing memory for h rSOURCE-386 (e.g., log
off network, remove resident (TSR) programs). Use the DOS "chkdsk" command
to display the amount of free memory.

3. Communications Link Problems - HyperSOURCE-386 cannot establish
communication with the MICE-V.

a) Make sure power is applied to the emulator. If not, turn the emulator on and
re-execute hyperSOURCE-386.

b) Make sure the RS-232 cable is connected to the serial port of the emulator.

c) Verify that COM = 1 or COM = 2 in the *.env file matches the serial
communications port on your PC.

d) Make sure that the MICE-V emulator is initializing properly. Use the terminal
port to establish communications with the emulator and verify power-up
diagnostics.

e) Make sure that target hardware is not introducing any problems. Bring
hyperSOURCE-386 up and verify operation prior to connecting to the target.

f) Try using a faster PC host. Some slow PC ATs can cause communication
problems with the MICE-V.

g) Try eliminating unnecessary memory resident programs and device drivers from
your autoexec.bat and config.sys files. For example, if you are not using a mouse
with hyperSOURCE-386, you should remove the device driver for the mouse from
your config.sys file.

HyperSOURCE-386 Tutorial

Once hyperSOURCE-386 has initialized with the MICE-V, you may continue with the
following tutorial. This tutorial requires that a "normal" installation has been completed;
i.e., the hyperSOURCE-386 executable, help files, *.env, and demo programs all reside in
the appropriate subdirectories.

If this setup has been changed, the tutorial may produce unpredictable results!

Microtek International, DSD 43 hyperSOURCE-386 User Manual

Chapter Three hyperSOURCE-386 Tutorial

c) Four megabytes of extended RAM should be sufficient for nearly all
configurations; however, very large OMF files containing large numbers of
symbols may require additional memory.

d) You may need to allocate more existing memory for h rSOURCE-386 (e.g., log
off network, remove resident (TSR) programs). Use the DOS "chkdsk" command
to display the amount of free memory.

3. Communications Link Problems - HyperSOURCE-386 cannot establish
communication with the MICE-V.

a) Make sure power is applied to the emulator. If not, turn the emulator on and
re-execute hyperSOURCE-386.

b) Make sure the RS-232 cable is connected to the serial port of the emulator.

c) Verify that COM = 1 or COM = 2 in the *.env file matches the serial
communications port on your PC.

d) Make sure that the MICE-V emulator is initializing properly. Use the terminal
port to establish communications with the emulator and verify power-up
diagnostics.

e) Make sure that target hardware is not introducing any problems. Bring
hyperSOURCE-386 up and verify operation prior to connecting to the target.

f) Try using a faster PC host. Some slow PC ATs can cause communication
problems with the MICE-V.

g) Try eliminating unnecessary memory resident programs and device drivers from
your autoexec.bat and config.sys files. For example, if you are not using a mouse
with hyperSOURCE-386, you should remove the device driver for the mouse from
your config.sys file.

HyperSOURCE-386 Tutorial

Once hyperSOURCE-386 has initialized with the MICE-V, you may continue with the
following tutorial. This tutorial requires that a "normal" installation has been completed;
i.e., the hyperSOURCE-386 executable, help files, *.env, and demo programs all reside in
the appropriate subdirectories.

If this setup has been changed, the tutorial may produce unpredictable results!

Microtek International, DSD 43 hyperSOURCE-386 User Manual

hyperSOURCE-386 Tutorial Chapter Three

This tutorial contains a C module which performs a continuous re-ordering of a linked list.
Essentially, it takes the fourth element of a linked list and substitutes another element into the
linked list. Then the program loops, where it once again deletes the fourth element of the
linked list and substitutes once again. In each one of the link list elements is an
area containing a number. These numbers begin in the sequence 1, 2, 3, 5, 5. Then after
the first substitution the sequence is 1, 2, 3, 4, 5. Then it changes back and forth between
the two sequences forever. It calls other procedures which are contained in the module
sub_func.

Let's begin.

-> hs Invoke hyperSOURCE-386 if you have not already done so.

Loading and Executing Code

This section of the tutorial demonstrates how to set up the emulator, load code for
debugging, and execute code in various ways.

- > reset
<Enter>

-> pause off
<Enter>

- > map clear
<Enter>

- > map Op to Offffhp
fast ram
<Enter >

Type reset unless you've just powered up the emulator.

Turn off screen pause.

This command maps all memory accesses to the target.

Map 64K of internal overlay RAM to low memory.

- > map Of0000 Offfffhp Map 64K of internal overlay RAM to high memory.
fast ram
<Enter >

- > map Ofe000hp Offffffhp For 386SX.
fast ram
<Enter >

-> load demo.omf Load the OMF86 realmode file.
<Enter>

-> go main Execute from the starting address to the main C function

hyperSOURCE-386 User Manual 44 Microtek International, DSD

hyperSOURCE-386 Tutorial Chapter Three

This tutorial contains a C module which performs a continuous re-ordering of a linked list.
Essentially, it takes the fourth element of a linked list and substitutes another element into the
linked list. Then the program loops, where it once again deletes the fourth element of the
linked list and substitutes once again. In each one of the link list elements is an
area containing a number. These numbers begin in the sequence 1, 2, 3, 5, 5. Then after
the first substitution the sequence is 1, 2, 3, 4, 5. Then it changes back and forth between
the two sequences forever. It calls other procedures which are contained in the module
sub_func.

Let's begin.

-> hs Invoke hyperSOURCE-386 if you have not already done so.

Loading and Executing Code

This section of the tutorial demonstrates how to set up the emulator, load code for
debugging, and execute code in various ways.

-> reset
<Enter >

-> pause off
<Enter>

-> map clear
<Enter>

- > map Op to Offffhp
fast ram
<Enter >

Type reset unless you've just powered up the emulator.

Turn off screen pause.

This command maps all memory accesses to the target.

Map 64K of internal overlay RAM to low memory.

-> map Of0000 Offfffhp Map 64K of internal overlay RAM to high memory.
fast ram
<Enter >

- > map Ofe000hp Offffffhp For 386SX.
fast ram
<Enter >

-> load demo.omf Load the OMF86 realmode file.
<Enter>

-> go main Execute from the starting address to the main C function

hyperSOURCE-386 User Manual 44 Microtek International, DSD

Chapter Three

<Enter>

-> <Alt> e

hyperSOURCE-386 Tutorial

main°. You'll return and take a look at some
assembly-level features later.

Pull down the Execution menu.

<F1> Press Fl to display the help screen for the execution menu.
<Esc> The 'S' or Step command is your main tool, used to perform
<Esc> high-level steps, one statement at a time, through your code.

'S IN' or Step INto, will step into statements instead of
through them. Later you will use the equivalent
instruction-level commands 'IS' (Instruction Step) and 'IS
IN' (Instruction Step INto).

-> s
<Enter >

-> s
<Enter >

Single-step through one statement.

Again.

-> s Again, executing the entire procedure insert().
<Enter > The highlight in the Source window should now be on line

#38, at the procedure printall. The highlight indicates that
the statement about to be executed.

- > s in Step INto printall. Note the source window automatically
<Enter > updates to show the source for printall, part of the file

sub_func. The file name appears on the barline separating
Source and Dialog windows.

-> s 3 Step three times. Line #67 in printall should be highlighted.
<Enter >

- > go til #72 Execute from the current PC to line #72 in the current
<Enter > module. The 'til' is optional.

- > go til ret Execute from the current PC until a Return from subroutine
<Enter> occurs, i.e., a stack pop returns you to the previous scope,

main°.

-> b #43 You'll do more with breakpoints in a later section, but for
<Enter> now you need to use one to show the function of 'Go

Forever.'

Microtek International, DSD 45 hyperSOURCE-386 User Manual

hyperSOURCE-386 Tutorial

main°. You'll return and take a look at some
assembly-level features later.

Pull down the Execution menu.

Press Fl to display the help screen for the execution menu.
The 'S' or Step command is your main tool, used to perform
high-level steps, one statement at a time, through your code.
'S IN' or Step INto, will step into statements instead of
through them. Later you will use the equivalent
instruction-level commands 'IS' (Instruction Step) and 'IS
IN' (Instruction Step INto).

Single-step through one statement.

Again.

Again, executing the entire procedure insert().
The highlight in the Source window should now be on line
#38, at the procedure printall. The highlight indicates that
the statement about to be executed.

Step INto printall. Note the source window automatically
updates to show the source for printall, part of the file
sub_func. The file name appears on the barline separating
Source and Dialog windows.

Step three times. Line #67 in printall should be highlighted.

Execute from the current PC to line #72 in the current
module. The 'til' is optional.

Execute from the current PC until a Return from subroutine
occurs, i.e., a stack pop returns you to the previous scope,
main°.

You'll do more with breakpoints in a later section, but for
now you need to use one to show the function of 'Go
Forever.'

Chapter Three

<Enter>

-> <Alt> e

<F1>
<Esc>
<Esc>

-> s
<Enter>

-> s
<Enter>

-> s
<Enter>

-> sin
<Enter >

-> s3
<Enter>

-> go til #72
<Enter >

- > go til ret
<Enter>

-> b #43
<Enter>

Microtek International, DSD 45 hyperSOURCE-386 User Manual

hyperSOURCE-386 Tutorial Chapter Three

- > go This causes the program to execute, stopping at the
<Enter> breakpoint on line 43.

- > g for Go Forever starts the emulator without installing any defined
<Enter> breakpoints.
<Esc>

- > running Check status.
<Enter>

- > mem 0 While the emulator is running, some operations are not
<Enter> permitted.

-> b 0 #44 Ditto.
<Enter>

-> pri However, you can dump the trace buffer.
<Enter >

- > htrc The trace buffer stops acquisition when you display it. The
<Enter> HTRC command restarts the acquisition.

- > macro snap
MD >pri 8188t
MD > htrc
MD > emac
- > : snap

You may skip this step, but this macro definition is
presented here to give you an idea of one useful way to use
the 'pri' and 'htrc' commands.

Next you'll take a look at the IS, 'Instruction Step' command. This can be used in
conjunction with 'View Mix' to step through code at the instruction level, but is more useful
when debugging assembly level code. You'll reset the emulator and step through the
assembly-level startup code.

-> reset
<Enter>

-> is
<Enter>

-> is 12t
<Enter>

-> u

You should see the code at the reset vector.

The emulator executes one instruction, the IMP to start_.

The emulator executes 12 instructions.

Disassemble, starting at current CS:IP. Note the <Enter>

hyperSOURCE-386 User Manual 46 Microtek International, DSD

hyperSOURCE-386 Tutorial Chapter Three

-> go This causes the program to execute, stopping at the
<Enter> breakpoint on line 43.

-> g for Go Forever starts the emulator without installing any defined
<Enter> breakpoints.
<Esc>

- > running Check status.
<Enter>

-> mem 0 While the emulator is running, some operations are not
<Enter> permitted.

-> b 0 #44 Ditto.
<Enter>

-> pri However, you can dump the trace buffer.
<Enter >

- > htrc The trace buffer stops acquisition when you display it. The
<Enter> HTRC command restarts the acquisition.

- > macro snap You may skip this step, but this macro definition is
MD >pri 8188t presented here to give you an idea of one useful way to use
MD > htrc the 'pri' and 'htrc' commands.
MD > emac
- > :snap

Next you'll take a look at the IS, 'Instruction Step' command. This can be used in
conjunction with 'View Mix' to step through code at the instruction level, but is more useful
when debugging assembly level code. You'll reset the emulator and step through the
assembly-level startup code.

-> reset
<Enter>

-> is
<Enter>

-> is 12t
<Enter>

-> u

hyperSOURCE-386 User Manual

You should see the code at the reset vector.

The emulator executes one instruction, the IMP to start_.

The emulator executes 12 instructions.

Disassemble, starting at current CS:IP. Note the <Enter>

46 Microtek International, DSD

Chapter Three hyperSOURCE-386 Tutorial

<Enter> REP instruction about to be executed.

-> is The IS command recognizes this as a "high-level" statement
<Enter> and stops on the other side, rather than stepping into it.

This completes the tutorial section on LOADING AND
EXECUTING CODE.

Window Management

This portion of the tutorial demonstrates the various hyperSOURCE-386 data windows and
pull-down menus, as well as their operation.

Choose the appropriate include file/command to set up your emulator for next portion of the
tutorial.

-> inc setupr.inc list
<Enter>

-> inc setuprx.inc list
<Enter>

-> <F1>
<Esc>

-> <alt>s
e

For 386.

For 386SX.

The Fl key is used to summon help. If a menu is being
displayed, Fl will display help text describing that menu.

Open the Symbols menu, and select Evaluate.

<F1> The help window describes the type of expressions which
can be entered for evaluation.

<Esc> To close the help windows.
<Esc>
<Esc>

-> help Open the main help menu. Scroll down and select a help
<Enter> item by pressing Enter. You may also go directly to the

help item by typing the command as an argument to help,
i.e., 'help tm'. The on-line help screens are virtually
identical to the command summary section of the user
manual.

<Esc> Return to the command line.

Microtek International, DSD 47 hyperSOURCE-386 User Manual

Chapter Three hyperSOURCE-386 Tutorial

<Enter> REP instruction about to be executed.

-> is The IS command recognizes this as a "high-level" statement
<Enter> and stops on the other side, rather than stepping into it.

This completes the tutorial section on LOADING AND
EXECUTING CODE.

Window Management

This portion of the tutorial demonstrates the various hyperSOURCE-386 data windows and
pull-down menus, as well as their operation.

Choose the appropriate include file/command to set up your emulator for next portion of the
tutorial.

-> inc setupr.inc list
<Enter>

-> inc setuprx.inc list
<Enter>

-> <F1>
<Esc>

-> <alt>s
e

For 386.

For 386SX.

The Fl key is used to summon help. If a menu is being
displayed, Fl will display help text describing that menu.

Open the Symbols menu, and select Evaluate.

<F1> The help window describes the type of expressions which
can be entered for evaluation.

<Esc>
<Esc>
<Esc>

-> help
<Enter>

To close the help windows.

Open the main help menu. Scroll down and select a help
item by pressing Enter. You may also go directly to the
help item by typing the command as an argument to help,
i.e., 'help tm'. The on-line help screens are virtually
identical to the command summary section of the user
manual.

<Esc> Return to the command line.

Microtek International, DSD 47 hyperSOURCE-386 User Manual

hyperSOURCE-386 Tutorial Chapter Three

-> <alt>r Open the Register menu.
(Select 386)
<Enter>

hyperSOURCE-386 offers two types of windows:

Data Windows are provided to monitor and/or modify data
or debug variables. Examples are the Register window, the
Memory window, the Breakpoints window, etc. These Data
windows are 'sticky'; that is, they remain on screen when
the <Esc> key is pressed. They can be identified by the
number assigned to them (i.e., 3:Register) and their contents
can be edited.

<Esc> The Register window stays on screen.

s 4 The open Register window is automatically updated.
<Enter>

<alt>3 This shortcut can be used to select any open window, i.e.,
<alt># will take you to the numbered window you select,
in this case the Register window, #3.

<F2> Close the Register window.

-> <alt>s Transient Windows are provided as temporary viewports to
g debug information. They pop up when selected, but close
<Esc> immediately with the <Esc> key. They are not assigned
<Esc> numbers and cannot be edited.

hyperSOURCE-386 User Manual 48 Microtek International, DSD

hyperSOURCE-386 Tutorial Chapter Three

-> <alt>r Open the Register menu.
(Select 386)
<Enter>

hyperSOURCE-386 offers two types of windows:

Data Windows are provided to monitor and/or modify data
or debug variables. Examples are the Register window, the
Memory window, the Breakpoints window, etc. These Data
windows are 'sticky'; that is, they remain on screen when
the <Esc> key is pressed. They can be identified by the
number assigned to them (i.e., 3:Register) and their contents
can be edited.

<Esc>

s4
<Enter>

<alt>3

The Register window stays on screen.

The open Register window is automatically updated.

This shortcut can be used to select any open window, i.e.,
<alt># will take you to the numbered window you select,
in this case the Register window, #3.

<F2> Close the Register window.

-> <alt>s Transient Windows are provided as temporary viewports to
g debug information. They pop up when selected, but close
<Esc> immediately with the <Esc> key. They are not assigned
<Esc> numbers and cannot be edited.

hyperSOURCE-386 User Manual 48 Microtek International, DSD

Chapter Three hyperSOURCE-386 Tutorial

Viewing Source Files

This section demonstrates the various ways you can use hyperSOURCE-386 to view source
files.

Choose the appropriate include file/command to set up your emulator for next portion of the
tutorial.

-> inc setupr.inc list
<Enter>

-> inc setuprx.inc list
<Enter>

- > reset
<Enter>

-> s
<Enter>

For 386.

For 386SX.

Reset the emulator, positioning the CS:IP at the restart
vector.

Single step the processor, jumping to the start of the
assembly level initialization code.

Even though the current module, $startup, is known by
hyperSOURCE-386, the source file is not displayed because
the source file extension is .ASM, not .C. To see the
assembly source file, you will manually associate the current
module with it.

-> <alt>c Using the hyperSOURCE-386 pull-down menus, SET the
current

m module $startup to point to the source file startup.asm.
startup As long as startup.asm is located in a subdirectory
<Enter> identified in SPATH, it will now be displayed in the Source
startup.asm window.
<Enter>

-> s If necessary, use the Step command to update the Source
<Enter> window.

- > go main Execute through the startup assembly code, to main°.
<Enter>

Microtek International, DSD 49 hyperSOURCE-386 User Manual

Chapter Three hyperSOURCE-386 Tutorial

Viewing Source Files

This section demonstrates the various ways you can use hyperSOURCE-386 to view source
files.

Choose the appropriate include file/command to set up your emulator for next portion of the
tutorial.

-> inc setupr.inc list
<Enter>

-> inc setuprx.inc list
<Enter>

- > reset
<Enter>

-> s
<Enter>

For 386.

For 386SX.

Reset the emulator, positioning the CS:IP at the restart
vector.

Single step the processor, jumping to the start of the
assembly level initialization code.

Even though the current module, $startup, is known by
hyperSOURCE-386, the source file is not displayed because
the source file extension is .ASM, not .C. To see the
assembly source file, you will manually associate the current
module with it.

-> <alt>c

m
startup
<Enter>
startup.asm
<Enter>

-> s
<Enter>

- > go main
<Enter>

Using the hyperSOURCE-386 pull-down menus, SET the
current
module $startup to point to the source file startup.asm.
As long as startup.asm is located in a subdirectory
identified in SPATH, it will now be displayed in the Source
window.

If necessary, use the Step command to update the Source
window.

Execute through the startup assembly code, to main°.

Microtek International, DSD 49 hyperSOURCE-386 User Manual

hyperSOURCE-386 Tutorial Chapter Three

-> <alt>1

-> <pgup> <pgup>

Move the hyperSOURCE-386 cursor into the Source
window.
The Source window is always #1, the Dialog window is
always #2. The HOME environment variable determines
whether the cursor will return to the Source window or to
the command line by default.

Use <PgUp> , <PgDn> , <Uparrow> , and
<Downarrow> keys to scroll in the source window.
Notice the current module name dm_main displayed on the
barline at midscreen.

<alt>g < alt > g is a shortcut key to Goto a new location. Pressing
<Enter> Enter accepts the offered default of current CS:IP, which is

currently line #31 of main°.

<alt>g Use delete to erase the default, then enter #43 and Enter to
#43 go to line number 43.
<Enter>

Now, using the cursor keys, position the cursor up one line,
on line #42, under the p in printall.

<F2> Press F2 to Follow, which switches the source window into
the procedure printa110. The CS:IP of the emulator has not
changed, only the source window view. Notice the module
name on the barline is now $sub func.

This procedure works when:

1. The procedure to be followed is part of a module with a
corresponding filename with .c extension. (Assuming EXT
is set to .c in the .env file.)

2. The source file is in a subdirectory which is named in the
SPATH variable.

<pgup> <pgdn> You can use the cursor keys to view sub_func. c.

<alt>g Go (back) to CS:IP. < alt> g, "main", would also work.
<Enter>

The cursor should still be in the Source window; if not, use
< alt> 1 to switch it there.

hyperSOURCE-386 User Manual 50 Microtek International, DSD

hyperSOURCE-386 Tutorial Chapter Three

-> <alt>1

-> <pgup> <pgup>

<alt>g
<Enter>

<alt>g
#43
<Enter>

Move the hyperSOURCE-386 cursor into the Source
window.
The Source window is always #1, the Dialog window is
always #2. The HOME environment variable determines
whether the cursor will return to the Source window or to
the command line by default.

Use <PgUp> , <PgDn> , <Uparrow> , and
<Downarrow> keys to scroll in the source window.
Notice the current module name dm_main displayed on the
barline at midscreen.

< alt > g is a shortcut key to Goto a new location. Pressing
Enter accepts the offered default of current CS:IP, which is
currently line #31 of main°.

Use delete to erase the default, then enter #43 and Enter to
go to line number 43.

Now, using the cursor keys, position the cursor up one line,
on line #42, under the p in printall.

<F2> Press F2 to Follow, which switches the source window into
the procedure printa110. The CS:IP of the emulator has not
changed, only the source window view. Notice the module
name on the barline is now $sub func.

This procedure works when:

1.The procedure to be followed is part of a module with a
corresponding filename with .c extension. (Assuming EXT
is set to .c in the .env file.)

<pgup> <pgdn>

<alt>g
<Enter>

2. The source file is in a subdirectory which is named in the
SPATH variable.

You can use the cursor keys to view sub_func.c.

Go (back) to CS:IP. < alt> g, "main", would also work.

The cursor should still be in the Source window; if not, use
< alt> 1 to switch it there.

hyperSOURCE-386 User Manual 50 Microtek International, DSD

Chapter Three hyperSOURCE-386 Tutorial

<F3>

<Enter>

<F3>
(select Assembly)
<Enter>

<F3>
(select Code display)
<Enter>
(select OFF)
<Enter>

<F3>
(select High Level)
<Enter>

<F8>

<F7>

<F9>
<Enter>

<Esc>

- > sou printall
<Enter>

- > sou insert
<Enter>

- > sou startup
<Enter>

Mixed mode shows both high-level statements and the (select
Mixed) corresponding assembly-level instructions.

This display is disassembled machine code.

Code On/Off controls the display of machine code in the
source window when in assembly-level display.

Turn off the code display in the source window.

Resume high-level display.

When the cursor is in the Source window, F8 is equivalent
to the S command.

F7 is equivalent to the S IN command. (But there is no
subroutine to step into at this point, so it acts like the S
command.)

F6, 'go here' causes the emulator to begin execution at its
current CS:IP, stopping on the line where the cursor is
located.

The Search key, F9, can be useful for finding an iteration
specific location, symbol, etc. in the Source window.

Return the cursor to the command line.

The source command can be used from the command line to
view any source file in SPATH.

Microtek International, DSD 51 hyperSOURCE-386 User Manual

Chapter Three hyperSOURCE-386 Tutorial

<F3> Mixed mode shows both high-level statements and the (select
Mixed) corresponding assembly-level instructions.

<Enter>

<F3>
(select Assembly)

This display is disassembled machine code.

<Enter>

<F3> Code On/Off controls the display of machine code in the
(select Code display) source window when in assembly-level display.
<Enter>
(select OFF) Turn off the code display in the source window.
<Enter>

<F3>
(select High Level)

Resume high-level display.

<Enter>

<F8> When the cursor is in the Source window, F8 is equivalent
to the S command.

<F7> F7 is equivalent to the S IN command. (But there is no
subroutine to step into at this point, so it acts like the S
command.)

F6, 'go here' causes the emulator to begin execution at its
current CS:IP, stopping on the line where the cursor is
located.

<F9> The Search key, F9, can be useful for finding an iteration
<Enter> specific location, symbol, etc. in the Source window.

<Esc> Return the cursor to the command line.

- > sou printall The source command can be used from the command line to
<Enter> view any source file in SPATH.

- > sou insert
<Enter>

- > sou startup
<Enter>

Microtek International, DSD 51 hyperSOURCE-386 User Manual

hyperSOURCE-386 Tutorial Chapter Three

-> <alt>g Return source window to CS:IP
<Enter>
<Esc> Return the cursor to the command line.

Examining and Modifying Data

This portion of the tutorial will demonstrate several ways in which you can view and modify
data, in low- to high-level constructs.

Choose the appropriate include file/command to set up your emulator for next portion of the
tutorial.

-> inc sample.inc list For 386.
<Enter>

,> inc samplex.inc list
<Enter>

-> pause on
<Enter>

For 386SX.
Use this include file to reset the emulator to a known state,
load the protected-mode demo program, and execute into
main°.

Turn on the pause feature in the Dialog window.

-> symb The Symbol command shows you all the symbols currently
<Enter> understood by hyperSOURCE-386. These were loaded from

the OMF file.

- > global
<Enter>

- > local
<Enter>

-> <alt>s
m
<Enter>
<Esc>
<Esc>
<Esc>

-> <alt>s

<Enter>
<Esc>

Show only the Global symbols.

Show Local symbols in the current module.

Display the modules currently loaded.

Display symbols in a module.

Display structure definitions.

hyperSOURCE-386 User Manual 52 Microtek International, DSD

hyperSOURCE-386 Tutorial Chapter Three

-> <alt>g Return source window to CS:IP
<Enter>
<Esc> Return the cursor to the command line.

Examining and Modifying Data

This portion of the tutorial will demonstrate several ways in which you can view and modify
data, in low- to high-level constructs.

Choose the appropriate include file/command to set up your emulator for next portion of the
tutorial.

-> inc sample.inc list For 386.
<Enter>

,> inc samplex.inc list For 386SX.
<Enter> Use this include file to reset the emulator to a known state,

load the protected-mode demo program, and execute into
main°.

-> pause on Turn on the pause feature in the Dialog window.
<Enter>

-> symb The Symbol command shows you all the symbols currently
<Enter> understood by hyperSOURCE-386. These were loaded from

the OMF file.

- > global Show only the Global symbols.
<Enter>

- > local Show Local symbols in the current module.
<Enter>

-> <alt>s
m

Display the modules currently loaded.

<Enter> Display symbols in a module.
<Esc>
<Esc>
<Esc>

-> <alt>s Display structure definitions.

<Enter>
<Esc>

hyperSOURCE-386 User Manual 52 Microtek International, DSD

Chapter Three hyperSOURCE-386 Tutorial

<Esc>
<Esc>

-> b #43
<Enter>

-> g
<Enter>

<Enter>

-> i=8
<Enter>

-> i++
<Enter >

- > ?i
<Enter>

-> eva i
<Enter>

-> eva i+4
<Enter>

- > eva i*i
<Enter>

- > char outbuf len
sizeof (outbuf)
<Enter>

- > local
<Enter>

- > exa top
<Enter>

Set a breakpoint,

initialize variables.

Query the value of a variable.

Assign i the value 8.

Auto-increment i.

Verify the new value. (Should be 9!)

Evaluate the current value of the variable i.

Various C expressions can be evaluated.

Evaluate a C expression.

i is the only local variable in this module.

Open an examine window for the variable 'top'.

<F4> Follow the linked list.

Microtek International, DSD 53 hyperSOURCE-386 User Manual

Chapter Three hyperSOURCE-386 Tutorial

<Esc>
<Esc>

-> b #43
<Enter>

-> g
<Enter>

<Enter>

-> i=8
<Enter>

-> i++
<Enter >

-> ?i
<Enter>

-> eva i
<Enter>

-> eva i+4
<Enter>

-> eva i*i
<Enter>

-> char outbuf len
sizeof (outbuf)
<Enter>

-> local
<Enter>

-> exa top
<Enter>

Set a breakpoint,

initialize variables.

Query the value of a variable.

Assign i the value 8.

Auto-increment i.

Verify the new value. (Should be 9!)

Evaluate the current value of the variable i.

Various C expressions can be evaluated.

Evaluate a C expression.

i is the only local variable in this module.

Open an examine window for the variable 'top'.

<F4> Follow the linked list.

Microtek International, DSD 53 hyperSOURCE-386 User Manual

hyperSOURCE-386 Tutorial Chapter Three

<downarrow> Select "struct links far *next".

Walk the linked list by continuing to press <F4> :Follow
and <downarrow> as desired.

<F2> Close all open variable windows.
<F2>
<F2>
<F2>

-> *top- > next- > next- > Display the value in the third element of the linked list.
string <Enter>

- > mem 100 View a specific address in memory.
<Enter>
<F2> Close the window.

-> mem outbuf View the output buffer used by the procedure printall().
<Enter>
2038 Enter the bytes shown into the memory assigned to outbuf.
<Enter>
2038

<F4> Change the memory display Size to byte.
<Enter>

<Esc> Return to the command line, leaving the memory window
open.

- > g Execute through the program loop one time. Notice that the
<Enter> memory window now contains different data (outbuf has

been written to) and that it is automatically updated at the
breakpoint.

-> exa i
<Enter>

<F5>d
<Esc>

-> g
<Enter>

Open a variable examine window to monitor the variable i,
the program loop counter.

Select Decimal format, then press Esc to keep it on-screen.

Notice i is incremented on each program loop.

hyperSOURCE-386 User Manual 54 Microtek International, DSD

hyperSOURCE-386 Tutorial Chapter Three

<downarrow> Select "struct links far *next".

Walk the linked list by continuing to press <F4> :Follow
and <downarrow> as desired.

<F2> Close all open variable windows.
<F2>
<F2>
<F2>

-> *top- > next- > next- > Display the value in the third element of the linked list.
string <Enter>

-> mem 100
<Enter>
<F2>

-> mem outbuf
<Enter>
2038
<Enter>
2038

<F4>
<Enter>

View a specific address in memory.

Close the window.

View the output buffer used by the procedure printall().

Enter the bytes shown into the memory assigned to outbuf.

Change the memory display Size to byte.

<Esc> Return to the command line, leaving the memory window
open.

-> g
<Enter>

-> exa i
<Enter>

<F5>d
<Esc>

-> g
<Enter>

Execute through the program loop one time. Notice that the
memory window now contains different data (outbuf has
been written to) and that it is automatically updated at the
breakpoint.

Open a variable examine window to monitor the variable i,
the program loop counter.

Select Decimal format, then press Esc to keep it on-screen.

Notice i is incremented on each program loop.

hyperSOURCE-386 User Manual 54 Microtek International, DSD

Chapter Three hyperSOURCE-386 Tutorial

-> <alt>4 Switch to window #4 and
<F2> close it.
< alt > 3 Switch to window #3 and
<F2> close it.

- > go til #36 The procedure insert() is about to be executed.
<Enter>

- > s in Step into insertO.
<Enter>

-> s Step again to validate current stack.
<Enter>

-> <alt>d Open the Callstack window. Note that the (current) scope of
c insert() is highlighted.

<F3> View local symbols in the scope of insert°. Note the value
of i.

<Esc>
<downarrow>
<Enter>

<F3>

Close the Callstack:Locals window, a transient window.
Select the scope of main().

View local symbols in main(). Notice the variable i in this
scope has a different value (this i is the main program loop
counter).

<Esc> <F2> Close both windows.

-> g hyperSOURCE-386 is aware that you've changed the
<Enter> program's scope. The go starts from the current CS:IP,

after restoring the proper scope. Program breaks at the
breakpoint set above on line #43 of mainO.

-> <alt>r Selects the Register window, and leave it open.
<Enter>
<Esc>

-> cx=5555 Change a register value from the command line. You can
<Enter> also do this directly in the Register window. Notice cx in

the Register window is updated.

Microtek International, DSD 55 hyperSOURCE-386 User Manual

hyperSOURCE-386 Tutorial

Switch to window #4 and
close it.
Switch to window #3 and
close it.

The procedure insert() is about to be executed.

Step into insert°.

Step again to validate current stack.

Open the Callstack window. Note that the (current) scope of
insert() is highlighted.

View local symbols in the scope of insert°. Note the value
of i.

Close the Callstack:Locals window, a transient window.
Select the scope of main°.

View local symbols in main(). Notice the variable i in this
scope has a different value (this i is the main program loop
counter).

Chapter Three

-> <alt>4
<F2>
<alt>3
<F2>

- > go til #36
<Enter>

-> sin
<Enter>

-> s
<Enter>

-> <alt>d
c

<F3>

<Esc>
<downarrow>
<Enter>

<F3>

<Esc> <F2> Close both windows.

-> g
<Enter>

-> <alt>r
<Enter>
<Esc>

-> cx=5555
<Enter>

hyperSOURCE-386 is aware that you've changed the
program's scope. The go starts from the current CS:IP,
after restoring the proper scope. Program breaks at the
breakpoint set above on line #43 of main°.

Selects the Register window, and leave it open.

Change a register value from the command line. You can
also do this directly in the Register window. Notice cx in
the Register window is updated.

Microtek International, DSD 55 hyperSOURCE-386 User Manual

hyperSOURCE-386 Tutorial Chapter Three

-> <alt>3 Place cursor in the Register window, select the CX
<down> <down> register field, 1234, and enter a new value for CX.
<Enter>

<F2> Close the Register window.

Breakpoints

This section will demonstrate how to access the various types of breakpoints in
hyperSOURCE-386.

Choose the appropriate include file/command to set up your emulator for next portion of the
tutorial.

- > inc sample. inc list
<Enter>

-> inc samplex.inc list
<Enter>

For 386.

For 386SX.
Use this include file to reset the emulator to a known state,
load the protected-mode demo program and execute into
main°.

-> b #33 Set a breakpoint on the statement on line #33. Notice the
<Enter> line number is highlighted, indicating the presence of a

breakpoint.

-> b By default, hyperSOURCE-386 uses a software breakpoint.
<Enter >

- > help b The help page on breakpoints will explain when and how
<Enter> hardware execution breakpoints are used.
<Esc>
<Esc>

- > b exe #36 Force a hardware execution breakpoint on line #36.
<Enter >

- > b Debug registers are used to implement hardware
<Enter > breakpoints. If hyperSOURCE-386 cannot set a software

breakpoint because the address is in ROM, it will
automatically set a hardware breakpoint.

hyperSOURCE-386 User Manual 56 Microtek International, DSD

hyperSOURCE-386 Tutorial Chapter Three

-> <alt>3
<down> <down>
<Enter>

<F2>

Breakpoints

Place cursor in the Register window, select the CX
register field, 1234, and enter a new value for CX.

Close the Register window.

This section will demonstrate how to access the various types of breakpoints in
hyperSOURCE-386.

Choose the appropriate include file/command to set up your emulator for next portion of the
tutorial.

For 386.

For 386SX.
Use this include file to reset the emulator to a known state,
load the protected-mode demo program and execute into
main°.

Set a breakpoint on the statement on line #33. Notice the
line number is highlighted, indicating the presence of a
breakpoint.

By default, hyperSOURCE-386 uses a software breakpoint.

The help page on breakpoints will explain when and how
hardware execution breakpoints are used.

Force a hardware execution breakpoint on line #36.

Debug registers are used to implement hardware
breakpoints. If hyperSOURCE-386 cannot set a software
breakpoint because the address is in ROM, it will
automatically set a hardware breakpoint.

-> inc sample. inc list
<Enter>

-> inc samplex.inc list
<Enter>

-> b #33
<Enter>

-> b
<Enter >

- > help b
<Enter>
<Esc>
<Esc>

- > b exe #36
<Enter >

-> b
<Enter >

hyperSOURCE-386 User Manual 56 Microtek International, DSD

Chapter Three hyperSOURCE-386 Tutorial

-> go Load software breakpoints into emulator memory, and start
<Enter> emulation, breaking on the software breakpoint on line #33.

- > view mix Software breakpoints are implemented by inserting INT3
<Enter> instructions in the code. They are inserted only when you

type go, and are removed after a breakpoint before the
prompt is displayed. Thus, you will never see INT3's
unless they are in your user code. If that happens,
h rSOURCE-386 will report a spurious breakpoint, i.e.,
one it did not place.

- > view hl Resume high-level display.
<Enter>

-> <alt>d Open the breakpoint window. HyperSOURCE-386 supports
b 32 software breakpoints, each of which can have a

conditional statement and/or count.

<Ins> Insert a new breakpoint,
#38 at line #38.
<F10> Accept the definition.

<downarrow>
<F3>

<downarrow>
<downarrow>
<Enter>

Highlight breakpoint 1: on line #36.
Disable it.

Highlight breakpoint 2: on line #38.

Edit it.

<down> <down> Move cursor to the CONDITION field.
i > 5 Type in the condition i > 5.
<F10> Accept it.

<F2> Close the breakpoint window.

-> i =2
<Enter>

-> g
<Enter>

Set i to 2 before running the test.

Start emulator. The program will run, stopping at line #38
each time it is encountered long enough to evaluate the
condition. If not true, emulation resumes. When the
condition evaluates true, emulation halts.

Microtek International, DSD 57 hyperSOURCE-386 User Manual

Chapter Three hyperSOURCE-386 Tutorial

-> go Load software breakpoints into emulator memory, and start
<Enter> emulation, breaking on the software breakpoint on line #33.

- > view mix Software breakpoints are implemented by inserting INT3
<Enter> instructions in the code. They are inserted only when you

type go, and are removed after a breakpoint before the
prompt is displayed. Thus, you will never see INT3's
unless they are in your user code. If that happens,
h rSOURCE-386 will report a spurious breakpoint, i.e.,
one it did not place.

- > view hl Resume high-level display.
<Enter>

-> <alt>d Open the breakpoint window. HyperSOURCE-386 supports
b 32 software breakpoints, each of which can have a

conditional statement and/or count.

<Ins> Insert a new breakpoint,
#38 at line #38.
<F10> Accept the definition.

<downarrow> Highlight breakpoint 1: on line #36.
<F3> Disable it.

<downarrow> Highlight breakpoint 2: on line #38.
<downarrow>
<Enter> Edit it.

<down> <down> Move cursor to the CONDITION field.
i>5 Type in the condition i>5.
<F10> Accept it.

<F2> Close the breakpoint window.

-> i =2 Set i to 2 before running the test.
<Enter>

-> g Start emulator. The program will run, stopping at line #38
<Enter> each time it is encountered long enough to evaluate the

condition. If not true, emulation resumes. When the
condition evaluates true, emulation halts.

Microtek International, DSD 57 hyperSOURCE-386 User Manual

hyperSOURCE-386 Tutorial Chapter Three

-> ?i Query the value of i (should be 6).
<Enter >

-> i=2 Reset the value of i to 2.
<Enter > These conditional breakpoints are powerful, but they require

stopping the emulator long enough to evaluate the condition.

Simple breaks can be defined and executed in realtime by
using the MICE TRIGx:WHEN command in transparent
mode.

Trace Analysis

In this section you will use the MICE RTA board to capture and analyze data which was
captured in the realtime trace buffer.

Choose the appropriate include file/command to set up your emulator for next portion of the
tutorial.

-> inc setupr.inc list For 386.
<Enter >

or

-> inc seiuprx.inc list For 386SX.
<Enter >

Use this include file to reset the emulator to a known state
and load the real-mode demo program.

- > go main
<Enter >

- > go #43
<Enter >

- > xlt &i
<Enter >

Execute to main°.

Execute through the program one time to initialize the
loop counter variable, i.

Note the physical address in memory where the variable i is
stored.

- > tm Enter transparent mode.

> trig0: when addr Replace the "nnn" in this command with the actual physical
OnnnP then brk address of i obtained above. This command sets a MICE-V
<Enter > complex breakpoint to break emulation whenever the address

hyperSOURCE-386 User Manual 58 Microtek International, DSD

hyperSOURCE-386 Tutorial Chapter Three

-> ?i
<Enter >

-> i=2
<Enter >

Query the value of i (should be 6).

Reset the value of i to 2.
These conditional breakpoints are powerful, but they require
stopping the emulator long enough to evaluate the condition.

Simple breaks can be defined and executed in realtime by
using the MICE TRIGx:WHEN command in transparent
mode.

Trace Analysis

In this section you will use the MICE RTA board to capture and analyze data which was
captured in the realtime trace buffer.

Choose the appropriate include file/command to set up your emulator for next portion of the
tutorial.

-> inc setupr.inc list For 386.
<Enter >

or

-> inc seiuprx.inc list For 386SX.
<Enter >

Use this include file to reset the emulator to a known state
and load the real-mode demo program.

- > go main Execute to main°.
<Enter >

- > go #43 Execute through the program one time to initialize the
<Enter > loop counter variable, i.

- > xlt &i Note the physical address in memory where the variable i is
<Enter > stored.

- > tm Enter transparent mode.

> trig0: when addr Replace the "nnn" in this command with the actual physical
OnnnP then brk address of i obtained above. This command sets a MICE-V
<Enter > complex breakpoint to break emulation whenever the address

hyperSOURCE-386 User Manual 58 Microtek International, DSD

Chapter Three hyperSOURCE-386 Tutorial

of the variable i is accessed.
> htrc trig°

<Enter> Make trig0 an active trigger.

AA End transparent mode and return to hyperSOURCE-386.

-> go
<Enter > Run the program. The program will break. Even though

hyperSOURCE-386 is not aware of any breakpoints, it will
sync to the program location of the current instruction
pointer.

Note that i has been incremented.
-> pri

<Enter > Display the last 10t cycles of the trace buffer in the dialog
window. The bus event which caused the break (access to
address nnn) is seen several cycles before the end of the
buffer. The additional cycles are due to emulator "skid" and
the process of coming-out-of-emulation.

A.GAGAG As needed to expand the Dialog window.

-> go Go one time around the program loop.
<Enter>

-> <alt>d
r Load the trace buffer into a hyperSOURCE-386 Runtrace

window. By default, only the last 100 frames are uploaded.
You can use the F3:SetMax key to change this value, up to a
maximum of 8192 frames.

<alt>1
<down>
<down>
<Enter>
<Esc>

-> go
<Enter>

- > tm
<Enter>

'L'ocate the Runtrace window down two lines to uncover the
variable window, #3.

Leave the Runtrace window open.

Run program, causing it to make one loop and break again.
The open Runtrace window will be automatically updated.

Enter transparent mode.

Microtek International, DSD 59 hyperSOURCE-386 User Manual

Chapter Three hyperSOURCE-386 Tutorial

of the variable i is accessed.

Make trig0 an active trigger.

End transparent mode and return to hyperSOURCE-386.

Run the program. The program will break. Even though
hyperSOURCE-386 is not aware of any breakpoints, it will
sync to the program location of the current instruction
pointer.

Note that i has been incremented.

Display the last 10t cycles of the trace buffer in the dialog
window. The bus event which caused the break (access to
address nnn) is seen several cycles before the end of the
buffer. The additional cycles are due to emulator "skid" and
the process of coming-out-of-emulation.

> htrc trig°
<Enter>

AA

-> go
<Enter>

-> pri
<Enter>

"'GAGAG As needed to expand the Dialog window.

-> go
<Enter>

-> <alt>d
r

<alt>1
<down>
<down>
<Enter>
<Esc>

-> go
<Enter>

-> tm
<Enter>

Go one time around the program loop.

Load the trace buffer into a hyperSOURCE-386 Runtrace
window. By default, only the last 100 frames are uploaded.
You can use the F3:SetMax key to change this value, up to a
maximum of 8192 frames.

'L'ocate the Runtrace window down two lines to uncover the
variable window, #3.

Leave the Runtrace window open.

Run program, causing it to make one loop and break again.
The open Runtrace window will be automatically updated.

Enter transparent mode.

Microtek International, DSD 59 hyperSOURCE-386 User Manual

hyperSOURCE-386 Tutorial Chapter Three

> trigO:when addr
OnnnP then trc or
when addr OnnnP
data 0xxxx1234
then brk
<Enter>

> htrc trig0
<Enter>

Substitute the actual physical address of i for the "nnn"
as above. This command sets up the trace to capture only
bus cycles with this address, and then causes a break when
when the data value xxxx1234 appears at that address.
(Enter the don't care x's as shown.) Omit xxxx for 386SX.

Make trig0 active.

^A Exit transparent mode.

-> go
<Enter >

- > 'reset

- > quit

Run the program. When the value xxxx1234 appears at the
address of i, the program will break and the Runtrace
window will be automatically updated with the last 100t
frames of the buffer. This time, the buffer contains only
actions involving the address of the variable i.

Reset the processor.

Terminate the debug session.

This completes the hyperSOURCE-386 tutorial. Refer to the MICE-V manual for additional
information about setting up complex triggers.

hyperSOURCE-386 User Manual 60 Microtek International, DSD

hyperSOURCE-386 Tutorial Chapter Three

> trigO:when addr
OnnnP then trc or
when addr OnnnP
data 0xxxx1234
then brk
<Enter>

> htrc trig0
<Enter>

Substitute the actual physical address of i for the "nnn"
as above. This command sets up the trace to capture only
bus cycles with this address, and then causes a break when
when the data value xxxx1234 appears at that address.
(Enter the don't care x's as shown.) Omit xxxx for 386SX.

Make trig0 active.

^A Exit transparent mode.

-> go
<Enter >

-> 'reset

- > quit

Run the program. When the value xxxx1234 appears at the
address of i, the program will break and the Runtrace
window will be automatically updated with the last 100t
frames of the buffer. This time, the buffer contains only
actions involving the address of the variable i.

Reset the processor.

Terminate the debug session.

This completes the hyperSOURCE-386 tutorial. Refer to the MICE-V manual for additional
information about setting up complex triggers.

hyperSOURCE-386 User Manual 60 Microtek International, DSD

Chapter Four In-Circuit Considerations

Chapter Four - In-Circuit Considerations
This section will cover how to:

• plug the MICE-V 80386 in-circuit probe into your 80386 target system

• get your 80386 target and MICE-V 80386 emulator up and running

• halt emulation

Preparing to Run hyperSOURCE-386

To execute hyperSOURCE-386, do the following steps:

1. Turn off the MICE-V 80386 emulator.

2. Turn off the target system.

3. Remove the 80386 microprocessor chip from the target.

4. Plug the 80386 in-circuit probe (ICP) module into your target board matching pin 1 of
the probe (pin 1 has been removed from probe) to pin 1 of your target board socket.

5. Connect your PC to the MICE-V 80386 emulator using either a RS-232 cable (Channel
A) or the parallel interface (Channel B). Refer to the MICE-V 80386 User's Manual
for details. If you are connecting to the emulator using either the COM2 port or the
parallel interface, you must modify the environment file. Refer to "Specifying MICE
Communication Parameters" in Chapter One.

6. Power up the PC host.

7. Install hyperSOURCE-386 if not already done.

8. Power up the MICE-V 80386 emulator.

9. Power up your target.

10. For hyperSOURCE-386 to support source-level debugging, it needs access to your
source files. If they are not in the current directory, then SPATH must be set in the
hs386.env file. Refer to "SPATH" in Chapter Two for further details.

Microtek International, DSD 61 hyperSOURCE-386 User Manual

Chapter Four In-Circuit Considerations

Chapter Four - In-Circuit Considerations
This section will cover how to:

• plug the MICE-V 80386 in-circuit probe into your 80386 target system

• get your 80386 target and MICE-V 80386 emulator up and running

• halt emulation

Preparing to Run hyperSOURCE-386

To execute hyperSOURCE-386, do the following steps:

1. Turn off the MICE-V 80386 emulator.

2. Turn off the target system.

3. Remove the 80386 microprocessor chip from the target.

4. Plug the 80386 in-circuit probe (ICP) module into your target board matching pin 1 of
the probe (pin 1 has been removed from probe) to pin 1 of your target board socket.

5. Connect your PC to the MICE-V 80386 emulator using either a RS-232 cable (Channel
A) or the parallel interface (Channel B). Refer to the MICE-V 80386 User's Manual
for details. If you are connecting to the emulator using either the COM2 port or the
parallel interface, you must modify the environment file. Refer to "Specifying MICE
Communication Parameters" in Chapter One.

6. Power up the PC host.

7. Install hyperSOURCE-386 if not already done.

8. Power up the MICE-V 80386 emulator.

9. Power up your target.

10. For hyperSOURCE-386 to support source-level debugging, it needs access to your
source files. If they are not in the current directory, then SPATH must be set in the
hs386.env file. Refer to "SPATH" in Chapter Two for further details.

Microtek International, DSD 61 hyperSOURCE-386 User Manual

In-Circuit Considerations Chapter Four

11. Invoke hyperSOURCE-386:

-> hs386

Note

When you first power up the MICE-V 80386, it executes self diagnostics which
take up to one minute to complete. HyperSOURCE-386 will connect when
these diagnostics complete. Subsequent connections will take only a few
seconds to complete.

If hyperSOURCE fails to initialize properly, refer to "HyperSOURCE Problems and
Solutions" in Chapter Three.

Emulating ROM-based Applications

A ROM-based application assumes that your target system can initialize itself from ROM-
based code. For applications that are ROM-based, you can begin immediately with the
following command sequence. If you need to load code to support your target, skip ahead to
"Emulating RAM-based Applications."

- > sig e //Enable all target signals
- > reset //Initialize the emulator to run target code as if the target
- > //was just powered up.
-> gr //Start emulation from reset.

Once you have determined that your target system has initialized correctly, continue with the
following:

-> <Esc> //Return to prompt.
-> halt //Halt emulation and automatically display registers and the

//next instruction.

If the system does not seem to be operating correctly, skip ahead to "Possible Operation
Problems with hyperSOURCE-386."

Once you have successfully halted, you can display registers, disassemble code, dump
memory, single step, and use execution breakpoints. Refer to Chapter Six for an in-depth
discussion on commands such as: DASM, GO, INPUT, OUTPUT, REGISTER, and STEP.

hyperSOURCE-386 User Manual 62 Microtek International, DSD

In-Circuit Considerations Chapter Four

11. Invoke hyperSOURCE-386:

-> hs386

Note

When you first power up the MICE-V 80386, it executes self diagnostics which
take up to one minute to complete. HyperSOURCE-386 will connect when
these diagnostics complete. Subsequent connections will take only a few
seconds to complete.

If hyperSOURCE fails to initialize properly, refer to "HyperSOURCE Problems and
Solutions" in Chapter Three.

Emulating ROM-based Applications

A ROM-based application assumes that your target system can initialize itself from ROM-
based code. For applications that are ROM-based, you can begin immediately with the
following command sequence. If you need to load code to support your target, skip ahead to
"Emulating RAM-based Applications."

-> sig e //Enable all target signals
-> reset //Initialize the emulator to run target code as if the target
-> //was just powered up.
-> gr //Start emulation from reset.

Once you have determined that your target system has initialized correctly, continue with the
following:

-> <Esc> //Return to prompt.
-> halt //Halt emulation and automatically display registers and the

//next instruction.

If the system does not seem to be operating correctly, skip ahead to "Possible Operation
Problems with hyperSOURCE-386."

Once you have successfully halted, you can display registers, disassemble code, dump
memory, single step, and use execution breakpoints. Refer to Chapter Six for an in-depth
discussion on commands such as: DASM, GO, INPUT, OUTPUT, REGISTER, and STEP.

hyperSOURCE-386 User Manual 62 Microtek International, DSD

Chapter Four In-Circuit Considerations

Emulating RAM-based Applications

In a RAM-based application you must load code through hyperSOURCE-386 in order for
your target system to be operational. You can load code with the following command
sequence.

- > sig e //Enable all target signals
- > reset //Cause the emulator to run target code as if the target was
-> //just powered up.
-> load " <file> " //Load either omf or boot format.

If the load is unsuccessful, make sure that your target was initialized so that code can be
loaded. Many targets have special initialization sequences before RAM is enabled. Often
this involves writing a certain value to an I/O port or booting with a ROM-based program.
Use the BYTE, WORD, or DWORD command to ensure that you can communicate with
the target memory that you are trying to load.

//Start emulation from the current cs:eip as initialized by the
//loaded file, or use the [from <address >] option to
//indicate the starting address.

- > reset
-> gr

//Reset the emulator.
//Go from reset.

Once you have determined that your target system has initialized correctly, continue with the
following command:

-> <Esc>
-> halt //Halt emulation and automatically display registers and the
-> //next instruction.

If the system does not seem to be operating correctly, skip ahead to "Possible Operation
Problems with hyperSOURCE-386."

Once you have successfully halted, you can display registers, disassemble code, dump
memory, single step, and use execution breakpoints. Refer to Chapter Six for an in-depth
discussion on commands such as: DASM, GO, INPUT, OUTPUT, REGISTER, and STEP.

Microtek International, DSD 63 hyperSOURCE-386 User Manual

Chapter Four In-Circuit Considerations

Emulating RAM-based Applications

In a RAM-based application you must load code through hyperSOURCE-386 in order for
your target system to be operational. You can load code with the following command
sequence.

-> sig e //Enable all target signals
- > reset //Cause the emulator to run target code as if the target was
-> //just powered up.
-> load " <file> " //Load either omf or boot format.

If the load is unsuccessful, make sure that your target was initialized so that code can be
loaded. Many targets have special initialization sequences before RAM is enabled. Often
this involves writing a certain value to an I/O port or booting with a ROM-based program.
Use the BYTE, WORD, or DWORD command to ensure that you can communicate with
the target memory that you are trying to load.

//Start emulation from the current cs:eip as initialized by the
//loaded file, or use the [from <address >] option to
//indicate the starting address.

-> reset
-> gr

//Reset the emulator.
//Go from reset.

Once you have determined that your target system has initialized correctly, continue with the
following command:

-> <Esc>
-> halt //Halt emulation and automatically display registers and the
-> //next instruction.

If the system does not seem to be operating correctly, skip ahead to "Possible Operation
Problems with hyperSOURCE-386."

Once you have successfully halted, you can display registers, disassemble code, dump
memory, single step, and use execution breakpoints. Refer to Chapter Six for an in-depth
discussion on commands such as: DASM, GO, INPUT, OUTPUT, REGISTER, and STEP.

Microtek International, DSD 63 hyperSOURCE-386 User Manual

In-Circuit Considerations Chapter Four

Emulating without Target Memory

In applications where no target memory is available or you wish to map emulator memory
over target memory, such as ROM, use the MAP command. To map memory and load
code, do the following command sequence.

- > map <start addr > p //Map a block of memory from
<end addr >p fast ram

->
->
-> sig e
-> reset
->
-> load " <file> "
-> go
->
->
-OR-
- > reset
-> gr

// < start addr> (physical) to <end addr> internal
//(emulator memory)
//Enable all target signals.
//Cause emulator to run code as if the target was just
//powered on.
//Load either OMF or boot format
//Start emulation from the current cs:eip as initialized by the
//loaded file, or use the [from <address>] option to
//indicate the starting address.

//Reset the emulator.
//Go from reset.

Once you have determined that your target system has initialized correctly, continue with the
following command:

-> <Esc>
- > halt //Halt emulation and automatically display registers and the
-> //next instruction.

If the system does not seem to be operating correctly, skip ahead to "Possible Operation
Problems with hyperSOURCE-386."

Once you have successfully halted, you can display registers, disassemble code, dump
memory, single step, and use execution breakpoints. Refer to Chapter Six for an in-depth
discussion on commands such as: DASM, GO, INPUT, OUTPUT, REGISTER, and STEP.

Possible Operation Problems with hyperSOURCE-386

If after attempting the previous emulation sessions, the hyperSOURCE-386 does not appear
to be operating correctly, it could be due to any of the following:

1. The signals are not enabled. Use the SIG command to display a list of the current target
signal settings.

hyperSOURCE-386 User Manual 64 Microtek International, DSD

In-Circuit Considerations Chapter Four

Emulating without Target Memory

In applications where no target memory is available or you wish to map emulator memory
over target memory, such as ROM, use the MAP command. To map memory and load
code, do the following command sequence.

-> map <start addr > p //Map a block of memory from
<end addr >p fast ram

->
->
-> sig e
-> reset
->
-> load " <file> "
-> go
->
->
-OR-
-> reset
-> gr

// < start addr> (physical) to <end addr> internal
//(emulator memory)
//Enable all target signals.
//Cause emulator to run code as if the target was just
//powered on.
//Load either OMF or boot format
//Start emulation from the current cs:eip as initialized by the
//loaded file, or use the [from <address>] option to
//indicate the starting address.

//Reset the emulator.
//Go from reset.

Once you have determined that your target system has initialized correctly, continue with the
following command:

-> <Esc>
-> halt //Halt emulation and automatically display registers and the
-> //next instruction.

If the system does not seem to be operating correctly, skip ahead to "Possible Operation
Problems with hyperSOURCE-386."

Once you have successfully halted, you can display registers, disassemble code, dump
memory, single step, and use execution breakpoints. Refer to Chapter Six for an in-depth
discussion on commands such as: DASM, GO, INPUT, OUTPUT, REGISTER, and STEP.

Possible Operation Problems with hyperSOURCE-386

If after attempting the previous emulation sessions, the hyperSOURCE-386 does not appear
to be operating correctly, it could be due to any of the following:

1. The signals are not enabled. Use the SIG command to display a list of the current target
signal settings.

hyperSOURCE-386 User Manual 64 Microtek International, DSD

Chapter Four In-Circuit Considerations

2. The MICE-V 80386 clock is not synchronized with your target system clock. Type the
following sequence to synchronize your target system clock and the hyperSOURCE-386
clock:

- > reset //Reset the h rSOURCE-386.
-> gr //Start emulation from reset.

If your target system still does not operate properly, turn your target system power off
and back on, or press the reset button on the target if one is available.

3. It is possible that unused hardware signals are floating. If the state of a hardware signal
is unknown, then turn off that signal not being used (e.g., if NMI is not used then set
NMI=OFF). Use the SIG command to display a list of the current target signal settings.

4. Your target system may have a watchdog timer in use. If you have a watchdog timer and
the 80386 does not respond in a certain amount of time, the watchdog timer may assert
reset, hold, or both of these signals. Normally the watchdog timer will have timed out
before the hyperSOURCE-386 initializes. Therefore, when you attempt to enable the
signals, the emulator will hang. To accommodate this type of target, do one of the
following steps:

a) Disable the watchdog timer.

b) Start emulation before the watchdog timer times out by doing the following:

• Turn your target system's power off and back on again.

• Next, type the following commands before the watchdog timer times out (i.e.,
type the commands at a rather quick pace):

-> sig e //Enable all target signals.
- > reset //Reset the hyperSOURCE-386.
-> gr //Start emulation from reset.

After the system initializes, you can halt the emulator with no further interferences
from the watchdog timer. In a RAM-based application with a watchdog timer,
you must proceed to this point before you can successfully load code.

5. The target system boots up correctly, but when you enter the HALT command,
hyperSOURCE-386 reports "Cannot Halt Target Processor." This error could be caused
by one of the following:

Microtek International, DSD 65 hyperSOURCE-386 User Manual

Chapter Four In-Circuit Considerations

2. The MICE-V 80386 clock is not synchronized with your target system clock. Type the
following sequence to synchronize your target system clock and the hyperSOURCE-386
clock:

- > reset //Reset the h rSOURCE-386.
-> gr //Start emulation from reset.

If your target system still does not operate properly, turn your target system power off
and back on, or press the reset button on the target if one is available.

3. It is possible that unused hardware signals are floating. If the state of a hardware signal
is unknown, then turn off that signal not being used (e.g., if NMI is not used then set
NMI=OFF). Use the SIG command to display a list of the current target signal settings.

4. Your target system may have a watchdog timer in use. If you have a watchdog timer and
the 80386 does not respond in a certain amount of time, the watchdog timer may assert
reset, hold, or both of these signals. Normally the watchdog timer will have timed out
before the hyperSOURCE-386 initializes. Therefore, when you attempt to enable the
signals, the emulator will hang. To accommodate this type of target, do one of the
following steps:

a) Disable the watchdog timer.

b) Start emulation before the watchdog timer times out by doing the following:

• Turn your target system's power off and back on again.

• Next, type the following commands before the watchdog timer times out (i.e.,
type the commands at a rather quick pace):

-> sig e //Enable all target signals.
- > reset //Reset the hyperSOURCE-386.
-> gr //Start emulation from reset.

After the system initializes, you can halt the emulator with no further interferences
from the watchdog timer. In a RAM-based application with a watchdog timer,
you must proceed to this point before you can successfully load code.

5. The target system boots up correctly, but when you enter the HALT command,
hyperSOURCE-386 reports "Cannot Halt Target Processor." This error could be caused
by one of the following:

Microtek International, DSD 65 hyperSOURCE-386 User Manual

In-Circuit Considerations Chapter Four

a. If you target is in protected mode: Confirm that you have set the correct IDT and
GDT values and BRkPidt and BRKgdt are enabled and BRkRidt is disabled.

b. If your target is in real mode: Confirm that you have BRkPidt and BRKgdt
disabled and BRkRidt enabled and set to Op.

Exiting hyperSOURCE-386

The EXIT or QUIT command or <Alt> x may be used to end the hyperSOURCE-386
session. Before hyperSOURCE-386 terminates its operations and returns the control to DOS,
it closes all the files and erases all the temporary files. Thus, if hyperSOURCE-386 is
terminated abnormally, it is your responsibility to remove the temporary files left behind by
hyperSOURCE-386.

hyperSOURCE-386 User Manual 66 Microtek International, DSD

In-Circuit Considerations Chapter Four

a. If you target is in protected mode: Confirm that you have set the correct IDT and
GDT values and BRkPidt and BRKgdt are enabled and BRkRidt is disabled.

b. If your target is in real mode: Confirm that you have BRkPidt and BRKgdt
disabled and BRkRidt enabled and set to Op.

Exiting hyperSOURCE-386

The EXIT or QUIT command or <Alt> x may be used to end the hyperSOURCE-386
session. Before hyperSOURCE-386 terminates its operations and returns the control to DOS,
it closes all the files and erases all the temporary files. Thus, if hyperSOURCE-386 is
terminated abnormally, it is your responsibility to remove the temporary files left behind by
hyperSOURCE-386.

hyperSOURCE-386 User Manual 66 Microtek International, DSD

Chapter Five Debug Environment

Chapter Five - Debug Environment
This chapter discusses the high-level language debugging features supported by
hyperSOURCE-386. HyperSOURCE-386 supports files which were compiled using the
Metaware High C compiler or the Intel C compiler. Detailed steps which are used to create
an 80386 demonstration debug program are described in this chapter.

Symbolic Reference

In hyperSOURCE-386, all variables and program objects can be referenced using the same
symbolic name and data type that are defined in the original source program. Furthermore,
hyperSOURCE-386 supports the same high-level language expression evaluation and
assignments. Thus, manipulations of program objects can be done in hyperSOURCE-386 to
verify program execution or to change program logic.

Referencing Symbols

If a program is written in C language and contains register variables, these variables cannot
be referenced in hyperSOURCE-386.

Compiling, Linking, and Locating a 80386 Program

The following sections describe how to create an 80386 demonstration debug program for
hyperSOURCE-386. There are six source files used to create the demonstration program:

init. asm
intr. hdrasm
reset. asm
stup_dm. asm

used to perform low-level
initialization of the environment
and put the 386 processor
in protected mode

dmmain.c the main portion of the program

sub_func.c contains routines used by the main program

There are three steps you must follow to recreate this demonstration program. First you
need to assemble the .asm source files using Microsoft's Assembler (MASM). Second, you
need to create the object modules using Metaware High C compiler. Finally, you need to
create the OMF-386 format file using Systems & Software's XLINK386. A batch file in the
hs directory, sample. bat, performs all the required steps in creating the demo. Refer to the
batch file and the following paragraphs for details.

Microtek International, DSD 67 hyperSOURCE-386 User Manual

Chapter Five Debug Environment

Chapter Five - Debug Environment
This chapter discusses the high-level language debugging features supported by
hyperSOURCE-386. HyperSOURCE-386 supports files which were compiled using the
Metaware High C compiler or the Intel C compiler. Detailed steps which are used to create
an 80386 demonstration debug program are described in this chapter.

Symbolic Reference

In hyperSOURCE-386, all variables and program objects can be referenced using the same
symbolic name and data type that are defined in the original source program. Furthermore,
hyperSOURCE-386 supports the same high-level language expression evaluation and
assignments. Thus, manipulations of program objects can be done in hyperSOURCE-386 to
verify program execution or to change program logic.

Referencing Symbols

If a program is written in C language and contains register variables, these variables cannot
be referenced in hyperSOURCE-386.

Compiling, Linking, and Locating a 80386 Program

The following sections describe how to create an 80386 demonstration debug program for
hyperSOURCE-386. There are six source files used to create the demonstration program:

init.asm used to perform low-level
intr. hdrasm initialization of the environment
reset. asm and put the 386 processor
stup_dm. asm in protected mode

dmmain.c the main portion of the program

sub_func.c contains routines used by the main program

There are three steps you must follow to recreate this demonstration program. First you
need to assemble the .asm source files using Microsoft's Assembler (MASM). Second, you
need to create the object modules using Metaware High C compiler. Finally, you need to
create the OMF-386 format file using Systems & Software's XLINK386. A batch file in the
hs directory, sample. bat, performs all the required steps in creating the demo. Refer to the
batch file and the following paragraphs for details.

Microtek International, DSD 67 hyperSOURCE-386 User Manual

Debug Environment Chapter Five

Compiling with MASM

To create a hyperSOURCE-386 object file from an assembler source file, use the following
Microsoft assembler (MASM) command syntax:

- > masm /Zi /Mx init.asm

/Zi tells the assembler to use the CodeView symbol format.

/Mx tells the assembler to make public and external names case sensitive.

The symbol record in the object file preserves the letter case of the symbol name in the
source file. For example, if the symbol is defined in lowercase, the symbol record will also
be in lowercase. An underscore is prefixed to all global (or extern) symbols; local (or auto)
symbols are not affected. To access an assembler symbol during a debug session, an
underscore must be prefixed to global symbols. Refer to the SENSITIVE command in
Chapter Six if using uppercase symbols.

Compiling with Metaware High C

To create the hyperSOURCE-386 object modules from the C source files, use the following
Metaware High C compiler (HC386) command syntax:

-> hc386 /g /c filename.obj filename.c

/g tells the compiler to include symbols.

/c specifies that the .obj file will be the output rather than an .exe file. This parameter is
required since XLINK386 will be used, not the Microsoft linker.

Character Set

The character set is used to create the command language vocabulary. Valid characters
include the alphabetic characters (A through Z, and a through z), three special characters
@, and ?), and the numeric characters (0 through 9).

Defining Symbols

A symbol is a user-defined name consisting of a string of alphanumeric characters. Symbols
are normally used in hyperSOURCE-386 to reference memory locations and can be created
in the original program or defined during a hyperSOURCE-386 session. If a symbol is
defined in the original program, the corresponding symbolic information must be included

hyperSOURCE-386 User Manual 68 Microtek International, DSD

Debug Environment Chapter Five

Compiling with MASM

To create a hyperSOURCE-386 object file from an assembler source file, use the following
Microsoft assembler (MASM) command syntax:

- > masm /Zi /Mx init.asm

/Zi tells the assembler to use the CodeView symbol format.

/Mx tells the assembler to make public and external names case sensitive.

The symbol record in the object file preserves the letter case of the symbol name in the
source file. For example, if the symbol is defined in lowercase, the symbol record will also
be in lowercase. An underscore is prefixed to all global (or extern) symbols; local (or auto)
symbols are not affected. To access an assembler symbol during a debug session, an
underscore must be prefixed to global symbols. Refer to the SENSITIVE command in
Chapter Six if using uppercase symbols.

Compiling with Metaware High C

To create the hyperSOURCE-386 object modules from the C source files, use the following
Metaware High C compiler (HC386) command syntax:

-> hc386 /g /c filename.obj filename.c

/g tells the compiler to include symbols.

/c specifies that the .obj file will be the output rather than an .exe file. This parameter is
required since XLINK386 will be used, not the Microsoft linker.

Character Set

The character set is used to create the command language vocabulary. Valid characters
include the alphabetic characters (A through Z, and a through z), three special characters
@, and ?), and the numeric characters (0 through 9).

Defining Symbols

A symbol is a user-defined name consisting of a string of alphanumeric characters. Symbols
are normally used in hyperSOURCE-386 to reference memory locations and can be created
in the original program or defined during a hyperSOURCE-386 session. If a symbol is
defined in the original program, the corresponding symbolic information must be included

hyperSOURCE-386 User Manual 68 Microtek International, DSD

Chapter Five Debug Environment

(using appropriate switches during compilation, linking, and locating) in the absolute object
file. When the object module in the absolute object file is loaded, the symbolic information
is automatically stored into hyperSOURCE-386's internal symbol table. To display the
symbol table, use the SYMBOL command.

To define a symbol during a hyperSOURCE-386 session, use the TYPE command. The
rules for defining a symbol are the same as the C conventions. Each symbol name is unique
up to the first 31 characters in length. The first character must be an alphabetic character or
one of the following three special characters: _, @, or ?. Character case sensitivity is
observed by default or when it is explicitly set with the SENsitive ON command.

Note

The ? character is treated as an operator instead of a character by the
EVALUATE command.

Data Type

Each program variable in hyperSOURCE-386 is referenced by a symbol name and is
associated with a data type specifying its intended usage and the operation(s) that may be
performed on it.

Primitive data types supported by hyperSOURCE-386 are listed below.

BYTE 8-bit unsigned integer
CHAR 8-bit signed integer
WORD 16-bit unsigned integer
DWORD 32-bit unsigned integer
QWORD 64-bit unsigned integer
SHORT 16-bit signed integer
LONG 32-bit signed integer
FLOAT 32-bit single-precision floating point number
DOUBLE 64-bit double-precision floating point number
TREAL 80-bit floating point number
POINTER 16-bit address object that can point to BYTE, WORD, DWORD, FLOAT,

DOUBLE, TREAL, CHAR, SHORT, LONG, and user-defined structures

Additional data types which are recognized by hyperSOURCE-386 but cannot be used
explicitly to access their memory contents are PROCEDURE, LABEL, and high-level
language statement numbers. A procedure is equivalent to a program function and is
referenced the same as the function name.

User-defined data types, such as structures, may further contain fields of primitive data types
or user-defined structures.

Microtek International, DSD 69 hyperSOURCE-386 User Manual

Chapter Five Debug Environment

(using appropriate switches during compilation, linking, and locating) in the absolute object
file. When the object module in the absolute object file is loaded, the symbolic information
is automatically stored into hyperSOURCE-386's internal symbol table. To display the
symbol table, use the SYMBOL command.

To define a symbol during a hyperSOURCE-386 session, use the TYPE command. The
rules for defining a symbol are the same as the C conventions. Each symbol name is unique
up to the first 31 characters in length. The first character must be an alphabetic character or
one of the following three special characters: _, @, or ?. Character case sensitivity is
observed by default or when it is explicitly set with the SENsitive ON command.

Note

The ? character is treated as an operator instead of a character by the
EVALUATE command.

Data Type

Each program variable in hyperSOURCE-386 is referenced by a symbol name and is
associated with a data type specifying its intended usage and the operation(s) that may be
performed on it.

Primitive data types supported by hyperSOURCE-386 are listed below.

BYTE 8-bit unsigned integer
CHAR 8-bit signed integer
WORD 16-bit unsigned integer
DWORD 32-bit unsigned integer
QWORD 64-bit unsigned integer
SHORT 16-bit signed integer
LONG 32-bit signed integer
FLOAT 32-bit single-precision floating point number
DOUBLE 64-bit double-precision floating point number
TREAL 80-bit floating point number
POINTER 16-bit address object that can point to BYTE, WORD, DWORD, FLOAT,

DOUBLE, TREAL, CHAR, SHORT, LONG, and user-defined structures

Additional data types which are recognized by hyperSOURCE-386 but cannot be used
explicitly to access their memory contents are PROCEDURE, LABEL, and high-level
language statement numbers. A procedure is equivalent to a program function and is
referenced the same as the function name.

User-defined data types, such as structures, may further contain fields of primitive data types
or user-defined structures.

Microtek International, DSD 69 hyperSOURCE-386 User Manual

Debug Environment Chapter Five

With the data type information, you can refer to the symbolic name and its qualifier to obtain
its value using the current type. For example, if the following structure is declared in a C
source program:

struct inpblk {
char iocmd;
char *iobuf;
int iosiz;

myblk;

then, the structure and each field can be referenced as follows:

-> myblk
- > myblk.iocmd

And, its value can be changed using direct assignment:

- > myblk.iocmd = 67

Specifying Symbols

If a symbol is encountered in the command line, hyperSOURCE-386 first determines whether
it is a hyperSOURCE-386 command keyword. If it is not, it will be treated as a program
variable. However, there are occasions when a program variable may have the same name
as a hyperSOURCE-386 command keyword. Furthermore, a program variable can be
defined in multiple C modules with the same name.

When this condition occurs, use one of the following symbols to resolve the symbol
reference conflicts.

module name prefix
function name prefix

symbol name or line number prefix

For example:

$M##F#S
$M##F#24

If a prefix is used in the symbol reference, the method of symbol search is from outer block
to inner block under the domain of module or function, if any.

hyperSOURCE-386 User Manual 70 Microtek International, DSD

Debug Environment Chapter Five

With the data type information, you can refer to the symbolic name and its qualifier to obtain
its value using the current type. For example, if the following structure is declared in a C
source program:

struct inpblk {
char iocmd;
char *iobuf;
int iosiz;

myblk;

then, the structure and each field can be referenced as follows:

-> myblk
-> myblk.iocmd

And, its value can be changed using direct assignment:

-> myblk.iocmd = 67

Specifying Symbols

If a symbol is encountered in the command line, hyperSOURCE-386 first determines whether
it is a hyperSOURCE-386 command keyword. If it is not, it will be treated as a program
variable. However, there are occasions when a program variable may have the same name
as a hyperSOURCE-386 command keyword. Furthermore, a program variable can be
defined in multiple C modules with the same name.

When this condition occurs, use one of the following symbols to resolve the symbol
reference conflicts.

module name prefix
function name prefix

symbol name or line number prefix

For example:

$M##F#S
$M##F#24

If a prefix is used in the symbol reference, the method of symbol search is from outer block
to inner block under the domain of module or function, if any.

hyperSOURCE-386 User Manual 70 Microtek International, DSD

Chapter Five Debug Environment

If no prefix is used, that is, only the symbol name is used, the method of symbol search is
from current active function to outer blocks. In other words, only active symbols are
referred to. This convention is like the one adopted by the C language.

Note that if symbols are referenced without specifying any prefix, the symbols may be
erroneously treated as hyperSOURCE-386 command keywords.

H rSOURCE-386 supports block-structured programming languages. Symbols can be
referenced in the same structure as the original program. To fully reference a symbol, the
module name and the name of the embedding block function must be specified. The syntax
is as follows:

[$module name] [##function name] [#] symbol name

For example, assume that the original program has the following block structure:

/* file M */
extern int G;

int A,C,D;
void B1 (void) {

int A,B,G;
{ /*unnamed block B2

int A,C,F,
}

void B3 (void) {
int A,B,E;

}

Variables A, C, and D are declared in module M, which has two functions B1 and B3.
Function B1 has an inner unnamed block B2 in which variables A, C, and F are declared. If
you are currently in function B1 (but not within the unnamed block B2), variable A can be
referenced by any one of the following forms:

$M##B1#A
##B1#A
#A

Microtek International, DSD 71 hyperSOURCE-386 User Manual

Chapter Five Debug Environment

If no prefix is used, that is, only the symbol name is used, the method of symbol search is
from current active function to outer blocks. In other words, only active symbols are
referred to. This convention is like the one adopted by the C language.

Note that if symbols are referenced without specifying any prefix, the symbols may be
erroneously treated as hyperSOURCE-386 command keywords.

H rSOURCE-386 supports block-structured programming languages. Symbols can be
referenced in the same structure as the original program. To fully reference a symbol, the
module name and the name of the embedding block function must be specified. The syntax
is as follows:

[$module name] [##function name] [#] symbol name

For example, assume that the original program has the following block structure:

/* file M */
extern int G;

int A,C,D;
void B1 (void) {

int A,B,G;
{ /*unnamed block B2

int A,C,F,
}

void B3 (void) {
int A,B,E;

}

Variables A, C, and D are declared in module M, which has two functions B1 and B3.
Function B1 has an inner unnamed block B2 in which variables A, C, and F are declared. If
you are currently in function B1 (but not within the unnamed block B2), variable A can be
referenced by any one of the following forms:

$M##B1#A
##B1#A
#A

Microtek International, DSD 71 hyperSOURCE-386 User Manual

Debug Environment Chapter Five

The only way to reference variables in unnamed blocks is to be in that block. If you are in
the unnamed block B2 above, A can be referenced the same way as the last example, since
the innermost A is currently active. There is no way to access A in block B1 while still in
B2.

If incomplete module or function names are used, hyperSOURCE-386 will search from the
current function outward and check the module that contains the global symbols last. For
example, if you are in function Bl, but not within the unnamed block B2:

• C will reference the symbol $M#C
• ##B2#F will reference the symbol $M##B1##B2#F
• B will reference the symbol $M##B1#B
• ##Bl#G will reference $M##Bl#G
• #G will reference $M##Bl#G (if you are outside Bl, in function B3 for example,

#G will reference the global #G)

Source Line Number Reference

Line numbers for source statements are generated by the high-level language compiler and
can be referenced by the following format:

[$module name]#line number

For example:

-> go til $INIT#24 //Break on line number 24 of the INIT module.

Pointer Reference

Since a pointer contains the address of an element, it is possible to access the element
indirectly with the unary operators "*" and "&". Thus, a variable of pointer type gives the
address of an object, "*" gives the value of that object, and "&" gives the address of that
object.

For example, BYTPTR is of type POINTER (located at address 40H:40H) to a variable with
type of CHAR (located at address 20H:53H and its content is 67):

-> bytptr
0040H:0040H POINTER TO CHAR (20H:53H)

- > &bytptr //Get the address of 40H:40H.
- > *bytptr

20H:53: CHAR (67T)

hyperSOURCE-386 User Manual 72 Microtek International, DSD

Debug Environment Chapter Five

The only way to reference variables in unnamed blocks is to be in that block. If you are in
the unnamed block B2 above, A can be referenced the same way as the last example, since
the innermost A is currently active. There is no way to access A in block B1 while still in
B2.

If incomplete module or function names are used, hyperSOURCE-386 will search from the
current function outward and check the module that contains the global symbols last. For
example, if you are in function Bl, but not within the unnamed block B2:

• C will reference the symbol $M#C
• ##B2#F will reference the symbol $M##B1##B2#F
• B will reference the symbol $M##B1#B
• ##Bl#G will reference $M##Bl#G
• #G will reference $M##Bl#G (if you are outside Bl, in function B3 for example,

#G will reference the global #G)

Source Line Number Reference

Line numbers for source statements are generated by the high-level language compiler and
can be referenced by the following format:

[$module name]#line number

For example:

-> go til $INIT#24 //Break on line number 24 of the INIT module.

Pointer Reference

Since a pointer contains the address of an element, it is possible to access the element
indirectly with the unary operators "*" and "&". Thus, a variable of pointer type gives the
address of an object, "*" gives the value of that object, and "&" gives the address of that
object.

For example, BYTPTR is of type POINTER (located at address 40H:40H) to a variable with
type of CHAR (located at address 20H:53H and its content is 67):

-> bytptr
0040H:0040H POINTER TO CHAR (20H:53H)

-> &bytptr //Get the address of 40H:40H.
- > *bytptr

20H:53: CHAR (67T)

hyperSOURCE-386 User Manual 72 Microtek International, DSD

Chapter Five Debug Environment

H rSOURCE-386 supports pointers with up to seven levels of indirection. For example:

-> *******sevenlevels_pointer
-> ***aaa[4][3][2][2]

h rSOURCE-386 supports multi-dimensional arrays with up to seven dimensions. For
example:

- > one_dim_array[4] //Access 5th element.
-> two_dim_array[2][3] //Access 3rd column, 4th row.
-> seven_dim_array[l][3][4][2][3][4][5]

Data Structure Reference

Structures are user-defined data types which may contain fields of primitive data types as
well as structures. Members of data structures can be referenced by the following format:

structure_name. member_name
-OR-

pointer_to_structure-> member name

For example:

-> parmblock.iobuf //iobuf is a structure member.
- > str_ptr- > iobug //str_ptr is a pointer to structure.
- > str_ptr- > i_link- >i_link->i_link //Nested reference.

Radixes

All numerical data entered as parameters, addresses, or data are assumed to be in decimal
integer format unless a radix suffix is specified. Permissible radixes and their corresponding
suffixes are as follows:

T - decimal (default suffix)
H - hexadecimal
Q - octal
Y - binary

Any hexadecimal number must be prefixed with a zero if the first digit is not a decimal digit.
For example, 7EH is a legal hexadecimal number; A5H is not. It must be entered as CASH.

Microtek International, DSD 73 hyperSOURCE-386 User Manual

Chapter Five Debug Environment

H rSOURCE-386 supports pointers with up to seven levels of indirection. For example:

-> *******seven levels_pointer
-> ***aaa[4][3][2][2]

h rSOURCE-386 supports multi-dimensional arrays with up to seven dimensions. For
example:

- > one_dim_array[4] //Access 5th element.
-> two_dim_array[2][3] //Access 3rd column, 4th row.
-> seven_dim_array[l][3][4][2][3][4][5]

Data Structure Reference

Structures are user-defined data types which may contain fields of primitive data types as
well as structures. Members of data structures can be referenced by the following format:

structure_name. member_name
-OR-

pointer_to_structure-> member name

For example:

-> parmblock.iobuf //iobuf is a structure member.
-> str_ptr- > iobug //str_ptr is a pointer to structure.
- > str_ptr- > i_link- >i_link->i_link //Nested reference.

Radixes

All numerical data entered as parameters, addresses, or data are assumed to be in decimal
integer format unless a radix suffix is specified. Permissible radixes and their corresponding
suffixes are as follows:

T - decimal (default suffix)
H - hexadecimal
Q - octal
Y - binary

Any hexadecimal number must be prefixed with a zero if the first digit is not a decimal digit.
For example, 7EH is a legal hexadecimal number; A5H is not. It must be entered as CASH.

Microtek International, DSD 73 hyperSOURCE-386 User Manual

Debug Environment Chapter Five

You can change the default radix with the RADIX command. For example:

- > radix h //Change to hexadecimal radix.
-> radix t //Change to decimal radix.
-> radix q //Change to octal radix.
- > radix y //Change to binary radix.

Memory Object Reference

The basic memory unit is a byte or an 8-bit unsigned number. Each memory object is
referenced with a unique address using a segment and offset construct. A range of memory
locations can be displayed or modified with the BYTE command. Memory objects are
normally referenced using their address in conjunction with a data type. The CHAR,
WORD, DWORD, DOUBLE, FLOAT, TREAL, and POINTER commands are used to
display or modify memory locations in terms of the corresponding data types. For example:

-> byte &my_data
- > word 2040h to 2080h
->
- > double &start=1.0, 2.0
->
-> dword &start len 8=2
- > byte &start = "THIS IS A TEST"
-> poi my_point
-> poi iopb.i_buff = &my_buffer
- > copy &loci =arrayl len 4

I/O Port Reference

//A byte at address &my_data.
//Display 16-bit memory objects from address 2040H
//to 2080H based on DS.
//Enter two double values starting at location
//&START.
//Fill 8 dwords from &START with 2.

//Display a pointer value.
//Load address of my_buffer.
//Copy memory.

The INPUT command reads from the input ports and the OUTPUT command writes to the
output ports. If the argument "D" is specified in the command, the size of the I/O port is
32-bit; if "W" is specified, the size is 16-bit; otherwise, it is 8-bit. For example:

- > input 20
-> input 20 w
- > input 20 d
-> input 20h:0=20
- > output 2Ah =11h
-> output 2Ah=1011h w

//Read from 8-bit port #20.
//Read from 16-bit port #20.
//Read from 32-bit port #20.
//Read byte value from port #20 and place it at location 20H:0.
//Write to 8-bit port #2AH.
//Write to 16-bit port.

hyperSOURCE-386 User Manual 74 Microtek International, DSD

Debug Environment Chapter Five

You can change the default radix with the RADIX command. For example:

-> radix h //Change to hexadecimal radix.
-> radix t //Change to decimal radix.
-> radix q //Change to octal radix.
-> radix y //Change to binary radix.

Memory Object Reference

The basic memory unit is a byte or an 8-bit unsigned number. Each memory object is
referenced with a unique address using a segment and offset construct. A range of memory
locations can be displayed or modified with the BYTE command. Memory objects are
normally referenced using their address in conjunction with a data type. The CHAR,
WORD, DWORD, DOUBLE, FLOAT, TREAL, and POINTER commands are used to
display or modify memory locations in terms of the corresponding data types. For example:

-> byte &my_data
-> word 2040h to 2080h
->
-> double &start=1.0, 2.0
->
-> dword &start len 8=2
- > byte &start = "THIS IS A TEST"
-> poi my_point
-> poi iopb.i_buff = &my_buffer
- > copy &loci =arrayl len 4

I/O Port Reference

//A byte at address &my_data.
//Display 16-bit memory objects from address 2040H
//to 2080H based on DS.
//Enter two double values starting at location
//&START.
//Fill 8 dwords from &START with 2.

//Display a pointer value.
//Load address of my_buffer.
//Copy memory.

The INPUT command reads from the input ports and the OUTPUT command writes to the
output ports. If the argument "D" is specified in the command, the size of the I/O port is
32-bit; if "W" is specified, the size is 16-bit; otherwise, it is 8-bit. For example:

-> input 20
-> input 20 w
-> input 20 d
-> input 20h:0=20
- > output 2Ah =11h
-> output 2Ah=1011h w

//Read from 8-bit port #20.
//Read from 16-bit port #20.
//Read from 32-bit port #20.
//Read byte value from port #20 and place it at location 20H:0.
//Write to 8-bit port #2AH.
//Write to 16-bit port.

hyperSOURCE-386 User Manual 74 Microtek International, DSD

Chapter Five Debug Environment

Register Reference

The REGISTER command is used to examine or change the values of the CPU registers.
The CPU registers can also be referenced with the following keywords:

Keyword Description
EAX Accumulator registers
EBX Base registers
ECX Count registers
EDX Data registers
ESP Stack pointer
EBP Base pointer
ESI Source index
EDI Destination index
EIP Instruction pointer
ES, FS, GS Extra segment registers
CS Code segment register
SS Stack segment register
DS Data segment register
EFG Flags register
TR Task register
LDT Local descriptor table register
CR0 Contains system control flags, which control modes or states of

the processor.
CR2 Page fault linear address
CR3 Page directory base register.

The following registers can be accessed from the Register window using the F3 function key:

387 387 co-processor registers
GDT Global descriptor table
IDT Interrupt descriptor table
LDT Local descriptor table
PD Page directory
TSS Task state segment

For example:

- > reg
- > reg eax =2
- > ea.x
-> eax=3
-> cs:eip

//Display all register values.
//Set EAX to 2.
//Display value of EAX.
//Set EAX to 3.
//Display program counter.

Microtek International, DSD 75 hyperSOURCE-386 User Manual

Chapter Five Debug Environment

Register Reference

The REGISTER command is used to examine or change the values of the CPU registers.
The CPU registers can also be referenced with the following keywords:

Keyword
EAX
EBX
ECX
EDX
ESP
EBP
ESI
EDI
EIP
ES, FS, GS
CS
SS
DS
EFG
TR
LDT
CR0

CR2
CR3

Description
Accumulator registers
Base registers
Count registers
Data registers
Stack pointer
Base pointer
Source index
Destination index
Instruction pointer
Extra segment registers
Code segment register
Stack segment register
Data segment register
Flags register
Task register
Local descriptor table register
Contains system control flags, which control modes or states of
the processor.
Page fault linear address
Page directory base register.

The following registers can be accessed from the Register window using the F3 function key:

387 387 co-processor registers
GDT Global descriptor table
IDT Interrupt descriptor table
LDT Local descriptor table
PD Page directory
TSS Task state segment

For example:

- > reg //Display all register values.
- > reg eax =2 //Set EAX to 2.
-> ea.x //Display value of EAX.
-> eax=3 //Set EAX to 3.
-> cs:eip //Display program counter.

Microtek International, DSD 75 hyperSOURCE-386 User Manual

Debug Environment Chapter Five

Status Flag Reference

The FLAG command is used to display or change the values of the CPU status flags. The
status flags can also be referenced with the following keywords:

Keyword Description
AF Auxiliary carry flag
CF Carry flag
DF Direction flag
IF Interrupt enable flag
IOPL I/O privilege level
NT Nested task flag
OF Overflow flag
PF Parity flag
RF Resume flag
SF Sign flag
TF Trap flag
VM Virtual 8086 mode
ZF Zero flag

For example:

- > flag //Display all status flags.
-> flag if=1 //Set IF flag.
- > if //Display value of IF.
-> df=1 //Set DF.

Operands

Operands can be numerical constants, variable references, location references, or CPU
registers. Their values in expressions are as follows:

• Numerical constant - depends on the data type
• Variable reference - depends on the type of the variable
• Location reference - a 32-bit value
• CPU register - depends on the register. For example, CF has a binary value of 0 or

1.

hyperSOURCE-386 User Manual 76 Microtek International, DSD

Debug Environment Chapter Five

Status Flag Reference

The FLAG command is used to display or change the values of the CPU status flags. The
status flags can also be referenced with the following keywords:

Keyword
AF
CF
DF
IF
IOPL
NT
OF
PF
RF
SF
TF
VM
ZF

For example:

-> flag
-> flag if=1
-> if
-> df=1

Operands

Description
Auxiliary carry flag
Carry flag
Direction flag
Interrupt enable flag
I/O privilege level
Nested task flag
Overflow flag
Parity flag
Resume flag
Sign flag
Trap flag
Virtual 8086 mode
Zero flag

//Display all status flags.
//Set IF flag.
//Display value of IF.
//Set DF.

Operands can be numerical constants, variable references, location references, or CPU
registers. Their values in expressions are as follows:

• Numerical constant - depends on the data type
• Variable reference - depends on the type of the variable
• Location reference - a 32-bit value
• CPU register - depends on the register. For example, CF has a binary value of 0 or

1.

hyperSOURCE-386 User Manual 76 Microtek International, DSD

Chapter Five Debug Environment

Operators

There are two types of operators: unary operators and binary operators. All expressions can
contain any combination of unary and binary operators and the evaluation of the expression is
based on predefined precedence rules (refer to Table 5.1).

Arithmetic Operators

• Unary plus
- Unary minus (2's complement)
• Addition
- Subtraction

Multiplication
Division

• Modulus

Relational Operators

Is equal to
Is greater than
Is less than
Is greater than or equal to
Is less than or equal to
Is not equal to

Logical Operators

! or NOT Logical NOT
&& or AND Logical AND
I I or OR Logical OR
AA or XOR Logical exclusive OR

Bitwise Logical Operators

Bitwise AND
Bitwise OR
Bitwise exclusive OR
Left shift
Right shift
l's complement (unary)

Microtek International, DSD 77 hyperSOURCE-386 User Manual

Chapter Five Debug Environment

Operators

There are two types of operators: unary operators and binary operators. All expressions can
contain any combination of unary and binary operators and the evaluation of the expression is
based on predefined precedence rules (refer to Table 5.1).

Arithmetic Operators

• Unary plus
- Unary minus (2's complement)
• Addition
- Subtraction

Multiplication
Division

• Modulus

Relational Operators

Is equal to
Is greater than
Is less than

>= Is greater than or equal to
<= Is less than or equal to
! = Is not equal to

Logical Operators

! or NOT Logical NOT
&& or AND Logical AND
I I or OR Logical OR
AA or XOR Logical exclusive OR

Bitwise Logical Operators

Bitwise AND
Bitwise OR
Bitwise exclusive OR
Left shift
Right shift
l's complement (unary)

Microtek International, DSD 77 hyperSOURCE-386 User Manual

Debug Environment Chapter Five

Assignment Operators

a = b
a += b
a -= b
a *= b
a /= b
a %= b
a &= b
a I = b
a A = b
a <<= b
a >>=b

Assigns the value of b to a
Addition - assigns the value of a+b to a (a=a+b)
Subtraction - assigns the value of a-b to a (a=a-b)
Multiplication - assigns the value of a * b to a (a=a*b)
Division - assigns the value of a / b to a (a=a/b)
Modulus - assigns the value of a % b to a (a=a%b)
Bitwise AND - assigns the value of a & b to a (a=a&b)
Bitwise OR - assigns the value of a i b to a (a=a i b)
Bitwise exclusive OR - assigns the value of a A b to a (a=aAb)
Left shift - assigns the value of a shifted b places left to a (a=a< <b)
Right shift - assigns the value of a shifted b places right to a
(a=a> >b)

Miscellaneous Operators

+ + increment
decrement
indirect reference of pointer
address

• struct field reference
- > pointer to struct
sizeof size of type or variable

separator for specifying address base and offset

Type Operators

A type operator is used in an expression either to cast the value of a variable of a certain
data type to another data type or to override the value of a variable with no type to the
specified data type. The type operators are as follows:

BYTE, CHAR, WORD, SHORT, DWORD, QWORD, LONG, FLOAT, DOUBLE,
TREAL, and STRUCT

For example:

- > a = (word)b + (word)c < < 4
- > real = (treal)fa / (treal)fb
- > value = *(byte *)ptrword + *(word *)ptrbyte

hyperSOURCE-386 User Manual 78 Microtek International, DSD

Debug Environment Chapter Five

Assignment Operators

Assigns the value of b to a
Addition - assigns the value of a+b to a (a=a+b)
Subtraction - assigns the value of a-b to a (a=a-b)
Multiplication - assigns the value of a * b to a (a=a*b)
Division - assigns the value of a / b to a (a=a/b)
Modulus - assigns the value of a % b to a (a=a%b)
Bitwise AND - assigns the value of a & b to a (a=a&b)
Bitwise OR - assigns the value of a i b to a (a=a i b)
Bitwise exclusive OR - assigns the value of a A b to a (a=aAb)
Left shift - assigns the value of a shifted b places left to a (a=a< <b)
Right shift - assigns the value of a shifted b places right to a
(a=a> >b)

a = b
a += b
a -= b
a *= b
a /= b
a %= b
a &= b
a I= b
a A = b
a <<= b
a >>=b

Miscellaneous Operators

+ + increment
decrement
indirect reference of pointer
address

• struct field reference
-> pointer to struct
sizeof size of type or variable

separator for specifying address base and offset

Type Operators

A type operator is used in an expression either to cast the value of a variable of a certain
data type to another data type or to override the value of a variable with no type to the
specified data type. The type operators are as follows:

BYTE, CHAR, WORD, SHORT, DWORD, QWORD, LONG, FLOAT, DOUBLE,
TREAL, and STRUCT

For example:

-> a = (word)b + (word)c < < 4
- > real = (treal)fa / (treal)fb
-> value = *(byte *)ptrword + *(word *)ptrbyte

hyperSOURCE-386 User Manual 78 Microtek International, DSD

Chapter Five Debug Environment

Note that type operations may override or cast a variable. If the variable is of NULL type,
it is an override operation, i.e., the variable will be overridden to the type specified;
otherwise it is a cast operation, i.e., the variable value will be cast to the type specified.

For example, if doublevalue is a double type variable, then:

- > doublevalue = 9.99999
-> eva doublevalue

9.999990000000000000e+0
> eva (char)doublevalue

0000000000001001Y 11Q 9T 0009H

For example, if nulltype is a NULL type variable, then:

-> byte &nulltype = 12H,34H,56H,78H,3FH,3FH,3FH,3FH,3FH,3FH
- > eva (char)nulltype

0000000000010010Y 22Q 18T 0012H
- > eva (short)nulltype

0001001000110100Y 11064Q 4660T 1234H
- > eva (double)nulltype

4.76792331334520E-4

Note

The arithmetic operator "%" and all bitwise logical operators may not be
applied to floating point numbers.

Operator Precedence

The table below summarizes the rules for precedence and associativity of all operators.

Table 5.1 - Operator Precedence

Operator Associativity

0 0 - > .
!—++-- -

+ -
< < >> >
< <= > >=
== !=

&

(type) * & sizeof
left to right
right to left
left to right
let to right
left to right
left to right
left to right
left to right

Microtek International, DSD 79 hyperSOURCE-386 User Manual

Chapter Five Debug Environment

Note that type operations may override or cast a variable. If the variable is of NULL type,
it is an override operation, i.e., the variable will be overridden to the type specified;
otherwise it is a cast operation, i.e., the variable value will be cast to the type specified.

For example, if doublevalue is a double type variable, then:

-> doublevalue = 9.99999
-> eva doublevalue

9.999990000000000000e+0
> eva (char)doublevalue

0000000000001001Y 11Q 9T 0009H

For example, if nulltype is a NULL type variable, then:

-> byte &nulltype = 12H,34H,56H,78H,3FH,3FH,3FH,3FH,3FH,3FH
- > eva (char)nulltype

0000000000010010Y 22Q 18T 0012H
-> eva (short)nulltype

0001001000110100Y 11064Q 4660T 1234H
-> eva (double)nulltype

4.76792331334520E-4

Note

The arithmetic operator "%" and all bitwise logical operators may not be
applied to floating point numbers.

Operator Precedence

The table below summarizes the rules for precedence and associativity of all operators.

Table 5.1 - Operator Precedence

Operator Associativity

0 0 - > .
!—++--

+ -
<< >> >
< <= > >=
== !=

&

(type) * & sizeof
left to right
right to left
left to right
let to right
left to right
left to right
left to right
left to right

Microtek International, DSD 79 hyperSOURCE-386 User Manual

Debug Environment Chapter Five

A left to right
left to right
left to right
left to right
right to left
right to left
left to right

+= -= etc.

Expressions

h rSOURCE-386 supports high-level language expression evaluation. Variables can be
assigned new values using expressions. In fact, you may enter a C expression on the
command line. For example:

- > i = 4 //Initialize i to 4.
- > my_ptr = my_ptr- > i link
-> i++
-> i_buf[i+ +] = *c_ptr+ +
-> j =eax * 2 + i
- > ecx = 4
- > evaluate A + B + 7

In hyperSOURCE-386, zero produced from expression evaluation equals FALSE and non-
zero equals TRUE. Expressions are used in commands that involve conditional tests such as
the IF, SWITCH, FOR, WHILE, and REPEAT commands and in commands that set
breakpoints or specify conditional command execution. Expressions can also be used to
change the contents of a program variable, or to compute the index value for an array
reference.

There are four types of expressions that can be used in a hyperSOURCE-386 command:

• Numerical expression
• Address expression
• Boolean expression
• CPU register expression

The expression syntax consists basically of operators and operands. Expressions are
evaluated from left to right taking into account operator precedence (refer to Table 5.1).
Parentheses may be used within expressions to explicitly delineate the operator's precedence.

hyperSOURCE-386 User Manual 80 Microtek International, DSD

Debug Environment Chapter Five

A left to right
left to right
left to right
left to right
right to left
right to left
left to right

+= -= etc.

Expressions

h rSOURCE-386 supports high-level language expression evaluation. Variables can be
assigned new values using expressions. In fact, you may enter a C expression on the
command line. For example:

- > i = 4 //Initialize i to 4.
- > my_ptr = my_ptr- > i link
-> i++
-> i_buf[i+ +] = *c_ptr+ +
-> j =eax * 2 + i
-> ecx = 4
-> evaluate A + B + 7

In hyperSOURCE-386, zero produced from expression evaluation equals FALSE and non-
zero equals TRUE. Expressions are used in commands that involve conditional tests such as
the IF, SWITCH, FOR, WHILE, and REPEAT commands and in commands that set
breakpoints or specify conditional command execution. Expressions can also be used to
change the contents of a program variable, or to compute the index value for an array
reference.

There are four types of expressions that can be used in a hyperSOURCE-386 command:

• Numerical expression
• Address expression
• Boolean expression
• CPU register expression

The expression syntax consists basically of operators and operands. Expressions are
evaluated from left to right taking into account operator precedence (refer to Table 5.1).
Parentheses may be used within expressions to explicitly delineate the operator's precedence.

hyperSOURCE-386 User Manual 80 Microtek International, DSD

Chapter Five Debug Environment

Numerical Expressions

The operands in numerical expressions may be constants (real or integer) or variables. The
expressions are evaluated in the precedence order of each operator defined in
h rSOURCE-386. Numerical expressions are generally used in assignment statements and
in the EVALUATE commands.

Address Expressions

An address expression contains at least one address operand. Address operands can be
specified in segment and offset combination or referencing the locations of variables.

Each address is a 32-bit value represented by a 16-bit segment and 16-bit offset. For
example:

- > byte &start //Display byte.
- > word cs:1000h //Display WORD object at absolute location CS:1000H.
- > my_ptr = &start //Assign the address value to a pointer.

Boolean Expressions

Boolean expressions are used in flow control commands that involve conditional tests such as
IF/ELSE, REPEAT/UNTIL, WHILE/EWHILE, FOR/EFOR, and SWITCH/CASE. They
produce a result of either TRUE or FALSE.

CPU Register Expressions

A CPU register expression deals with the CPU registers and status flags. The result is either
TRUE or FALSE. The syntax is as follows:

register name = = data

register name = EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP, EFG, EIP, CS, DS, ES,
FS, GS, SS

flag_name = = one_bit_value

flag_name = CF, PF, AF, ZF, SF, TF, IF, DF, OF, IOPL, NT, RF, VM.

one_bit_value = 0, 1.

Microtek International, DSD 81 hyperSOURCE-386 User Manual

Chapter Five Debug Environment

Numerical Expressions

The operands in numerical expressions may be constants (real or integer) or variables. The
expressions are evaluated in the precedence order of each operator defined in
h rSOURCE-386. Numerical expressions are generally used in assignment statements and
in the EVALUATE commands.

Address Expressions

An address expression contains at least one address operand. Address operands can be
specified in segment and offset combination or referencing the locations of variables.

Each address is a 32-bit value represented by a 16-bit segment and 16-bit offset. For
example:

-> byte &start //Display byte.
-> word cs:1000h //Display WORD object at absolute location CS:1000H.
-> my_ptr = &start //Assign the address value to a pointer.

Boolean Expressions

Boolean expressions are used in flow control commands that involve conditional tests such as
IF/ELSE, REPEAT/UNTIL, WHILE/EWHILE, FOR/EFOR, and SWITCH/CASE. They
produce a result of either TRUE or FALSE.

CPU Register Expressions

A CPU register expression deals with the CPU registers and status flags. The result is either
TRUE or FALSE. The syntax is as follows:

register name = = data

register name = EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP, EFG, EIP, CS, DS, ES,
FS, GS, SS

flag_name = = one_bit_value

flag_name = CF, PF, AF, ZF, SF, TF, IF, DF, OF, IOPL, NT, RF, VM.

one_bit_value = 0, 1.

Microtek International, DSD 81 hyperSOURCE-386 User Manual

Debug Environment Chapter Five

Any numerical data entered is assumed to be in decimal notation unless followed by a radix
specifying otherwise. Radix suffixes are as follows: H (hexadecimal), T (decimal), Q
(octal), and Y (binary). The RADIX command defaults to decimal notation. If you want to
use another base, you can either suffix the decimal number with a radix suffix, or you can
change the base to another base with the RADIX command.

The data operand is a 16-bit unsigned integer value. "x" can be used to mask out some don't
care conditions. For example, 1011001111110001Y, 1110000000XXXXXOY, 37547Q,
35X6XQ, 0A45CH, 6DEXH, OX45XH, 0X45X, 389T.

Note that masking is not allowed in the decimal format. For example, 3X9T is not allowed.
For example:

EAX = = 20
ECS = = 458H
EBX == 0X11X110Y
IF = = 1

hyperSOURCE-386 User Manual 82 Microtek International, DSD

Debug Environment Chapter Five

Any numerical data entered is assumed to be in decimal notation unless followed by a radix
specifying otherwise. Radix suffixes are as follows: H (hexadecimal), T (decimal), Q
(octal), and Y (binary). The RADIX command defaults to decimal notation. If you want to
use another base, you can either suffix the decimal number with a radix suffix, or you can
change the base to another base with the RADIX command.

The data operand is a 16-bit unsigned integer value. "x" can be used to mask out some don't
care conditions. For example, 1011001111110001Y, 1110000000XXXXXOY, 37547Q,
35X6XQ, 0A45CH, 6DEXH, OX45XH, 0X45X, 389T.

Note that masking is not allowed in the decimal format. For example, 3X9T is not allowed.
For example:

EAX = = 20
ECS = = 458H
EBX == 0X11X110Y
IF = = 1

hyperSOURCE-386 User Manual 82 Microtek International, DSD

Chapter Six Command Reference

Chapter Six - Command Reference
This chapter details each command used in hyperSOURCE-386. The following syntax rules
apply to all commands:

Square brackets indicate that the parameter(s) is optional. If you do not specify a
parameter, the default is used. For most hyperSOURCE-386 commands, the default
is the value or setting that was used the last time the command was executed.

{ } Curly braces indicate that the parameter(s) is optional. However, you MUST specify
one of the optional parameters in curly braces.

• • • An ellipsis indicates that you can repeat an item.

A vertical bar means either/or. Choose one of the separated items and type it as part
of the command. For example, ON:OFF indicates that you can type either ON or
OFF, but not both.

Microtek International, DSD 83 hyperSOURCE-386 User Manual

Chapter Six Command Reference

Chapter Six - Command Reference
This chapter details each command used in hyperSOURCE-386. The following syntax rules
apply to all commands:

[1 Square brackets indicate that the parameter(s) is optional. If you do not specify a
parameter, the default is used. For most hyperSOURCE-386 commands, the default
is the value or setting that was used the last time the command was executed.

{} Curly braces indicate that the parameter(s) is optional. However, you MUST specify
one of the optional parameters in curly braces.

• • • An ellipsis indicates that you can repeat an item.

A vertical bar means either/or. Choose one of the separated items and type it as part
of the command. For example, ON:OFF indicates that you can type either ON or
OFF, but not both.

Microtek International, DSD 83 hyperSOURCE-386 User Manual

Command Reference Chapter Six

(escape to command shell)

Syntax: ! [command_string]

Function: The ! command lets you escape to the operating system's command shell. To
leave the shell and return to the debugger, type EXIT from the shell. You can
directly spawn a command by specifying the command after the !.

If a DOS command preceded by a ! is part of an include file, that command
will be processed without waiting for a key to be pressed when the include file
is run from within hyperSOURCE-386.

Examples: -> i //Escapes to DOS shell.
C>dir //DOS command to display file directory.
C>exit //Returns to the debugger.
->lcc test.c //Spawns "cc test.c" directly.

See Also: FREe

hyperSOURCE-386 User Manual 84 Microtek International, DSD

Command Reference Chapter Six

(escape to command shell)

Syntax: ! [command_string]

Function: The ! command lets you escape to the operating system's command shell. To
leave the shell and return to the debugger, type EXIT from the shell. You can
directly spawn a command by specifying the command after the !.

If a DOS command preceded by a ! is part of an include file, that command
will be processed without waiting for a key to be pressed when the include file
is run from within hyperSOURCE-386.

Examples: ->1 //Escapes to DOS shell.
C>dir //DOS command to display file directory.
C>exit //Returns to the debugger.
->1cc test.c //Spawns "cc test.c" directly.

See Also: FREe

hyperSOURCE-386 User Manual 84 Microtek International, DSD

Chapter Six Command Reference

(specify variable name)

Syntax: [$moclule_name][0procedure_name]ltvariable_name
[$module_name]#number

Function: # is a parser operator which can be used to access a variable outside of the
current scope. It is also used as a prefix for line-numbers.

When used as a variable name prefix with no other prefix, i.e., "#variable",
the variable is searched for using the normal scoping rules. This provides a
method to circumvent conflicts with commands or keywords.

A module name and procedure name may be optionally specified in order to
access a specific variable outside of the current scope. To access a global
symbol, use the root module $. For example, $#foo refers to the public
instance of variable foo.

Finally, when used as a numeric prefix, # indicates a line-number.

Examples: ->#USER = 4
->$#USER = 4
->? $MOD1##PROC1#VAR1
->$modl#staticl = 3
->G #14
->B $MOD1#14

//Assigns 4 to a variable called USER.
//Assign to the global variable USER.
//Display a local variable to a procedure.
//Assign to a variable local to a module.
//Go to line 14 in the current module.
//Break at line 14 in another module.

See Also: ##, $, &, EVAluate, EXAmine, SYMbol

Microtek International, DSD 85 hyperSOURCE-386 User Manual

Chapter Six Command Reference

(specify variable name)

Syntax: [$moclule_name][0procedure_name]ltvariable_name
[$module_name]#number

Function: # is a parser operator which can be used to access a variable outside of the
current scope. It is also used as a prefix for line-numbers.

When used as a variable name prefix with no other prefix, i.e., "#variable",
the variable is searched for using the normal scoping rules. This provides a
method to circumvent conflicts with commands or keywords.

A module name and procedure name may be optionally specified in order to
access a specific variable outside of the current scope. To access a global
symbol, use the root module $. For example, $#foo refers to the public
instance of variable foo.

Finally, when used as a numeric prefix, # indicates a line-number.

Examples: ->#USER = 4
->$#USER = 4
->? $MOD1##PROC1#VAR1
->$modl#staticl = 3
->G #14
->B $MOD1#14

//Assigns 4 to a variable called USER.
//Assign to the global variable USER.
//Display a local variable to a procedure.
//Assign to a variable local to a module.
//Go to line 14 in the current module.
//Break at line 14 in another module.

See Also: ##, $, &, EVAluate, EXAmine, SYMbol

Microtek International, DSD 85 hyperSOURCE-386 User Manual

Command Reference

Syntax:

Function:

Examples:

See Also:

Chapter Six

(specify procedure name) ##

[$module_name]##procedure_name[#variable name]

is a parser operator which allows the specification of a procedure name
outside of the current scope.

If a module name precedes the ## operator, only procedure names within that
module are searched. If no leading module name is specified, only procedure
names in the current module are searched.

Typically, ## is needed only if two or more modules have local procedures
with the same name.

->B $MODULE1##PROC3 //Set a breakpoint at proc3 in modulel
->G0 FROM $##F00 //Go from global procedure foo

#, $, &, B, Go, SYMbol

hyperSOURCE-386 User Manual 86 Microtek International, DSD

Command Reference

Syntax:

Chapter Six

(specify procedure name)

[$module_name]##procedure_name[#variable name]

Function: ## is a parser operator which allows the specification of a procedure name
outside of the current scope.

If a module name precedes the ## operator, only procedure names within that
module are searched. If no leading module name is specified, only procedure
names in the current module are searched.

Typically, ## is needed only if two or more modules have local procedures
with the same name.

->B $MODULE1##PROC3 //Set a breakpoint at proc3 in modulel
->G0 FROM $##F00 //Go from global procedure foo

#, $, &, B, Go, SYMbol

Examples:

See Also:

hyperSOURCE-386 User Manual 86 Microtek International, DSD

Chapter Six Command Reference

$ (specify module name) $

Syntax: Smodule_name

Function:

Examples:

See Also:

$ is a parser operator which distinguishes module names from other symbolic
names. If no module_name is specified and $ is used in conjunction with # or
##, then $ refers to the root module containing only global symbols.

->SET $MOD2=SOURCE.0 //Associate a source file with a module.
->? $MOD1##PROC1#VAR1 //Display a local variable to a procedure.

#, ##, $, &, DIRectory MODule, EVAluate, SET, SYMbol

Microtek International, DSD 87 hyperSOURCE-386 User Manual

Chapter Six Command Reference

$ (specify module name) $

Syntax: Smodule_name

$ is a parser operator which distinguishes module names from other symbolic
names. If no module_name is specified and $ is used in conjunction with # or
##, then $ refers to the root module containing only global symbols.

->SET $MOD2=SOURCE.C //Associate a source file with a module.
->? $MOD1##PROCl#VAR1 //Display a local variable to a procedure.

#, ##, $, &, DIRectory MODule, EVAluate, SET, SYMbol

Function:

Examples:

See Also:

Microtek International, DSD 87 hyperSOURCE-386 User Manual

Command Reference Chapter Six

& (symbol address) &

Syntax: &symbol

Function: & is an address operator which gives the address of a symbolic object.

Examples: ->G0 FROM &START FOREVER
->POINTER &POINTER_BUF LENGTH 20
->TYPE long *ptr_to_long, long_buf[8] at &buf

See Also: #, ##, $, &, B, EVAluate, Go, SYMbol

hyperSOURCE-386 User Manual 88 Microtek International, DSD

Command Reference Chapter Six

& (symbol address) &

Syntax: &symbol

Function: & is an address operator which gives the address of a symbolic object.

Examples: ->GO FROM &START FOREVER
->POINTER &POINTER_BUF LENGTH 20
->TYPE long *ptr_to_long, long_buf[8] at &buf

See Also: #, ##, $, &, B, EVAluate, Go, SYMbol

hyperSOURCE-386 User Manual 88 Microtek International, DSD

Chapter Six Command Reference

// (specify comment) //

Syntax: //comment

Function: Indicates that everything that follows "II" until the end of a line is a comment,
and should not be interpreted as part of the command.

Examples: ->//A comment line
->DIR MAC //Display directory of macros

Microtek International, DSD 89 hyperSOURCE-386 User Manual

Chapter Six Command Reference

11 (specify comment) //

Syntax: //comment

Function: Indicates that everything that follows "II" until the end of a line is a comment,
and should not be interpreted as part of the command.

Examples: ->//A comment line
->DIR MAC //Display directory of macros

Microtek International, DSD 89 hyperSOURCE-386 User Manual

Command Reference Chapter Six

• • (invoke macro) • •

Syntax: : macro_name [actual_parameter_list]

Function: Executes the specified macro. A macro may accept up to ten parameters
which are separated by commas. " <*" and "*> " can be used as parentheses
in the actual parameter list to delimit a parameter that contains commas.

The colon character is also used in macro definitions to specify a label.

Examples: ->:AA 34, <* AX,BX,CL *>, #20 //3 actual parameters
->:BB //No parameter
->:AA :BB, <* AL,5,3.5*BX *>, :CC

See Also: DIRectory MACro, DISplay MACro, EDit, EDit MACro, INClude, MACro,
MLIst, PUT, REMove MACro

hyperSOURCE-386 User Manual 90 Microtek International, DSD

Command Reference Chapter Six

•
• (invoke macro) • •

Syntax: : macro_name [actual_parameter_list]

Function: Executes the specified macro. A macro may accept up to ten parameters
which are separated by commas. " <*" and "*> " can be used as parentheses
in the actual parameter list to delimit a parameter that contains commas.

The colon character is also used in macro definitions to specify a label.

Examples: ->:AA 34, <* AX,BX,CL *>, #20 //3 actual parameters
->:BB //No parameter
->:AA :BB, <* AL,5,3.5*BX *>, :CC

See Also: DIRectory MACro, DISplay MACro, EDit, EDit MACro, INClude, MACro,
MLIst, PUT, REMove MACro

hyperSOURCE-386 User Manual 90 Microtek International, DSD

Chapter Six Command Reference

(line continuation) ..
••

Syntax: command_line ::
continuation of line _ _

Function: Allows the continuation of a command line to the next line.

Example: —>BYT &array(12] = 1941, 42, 1776, 1812, ::
::>1492, 2001

Microtek International, DSD 91 hyperSOURCE-386 User Manual

Chapter Six Command Reference

(line continuation) ..
••

Syntax: command_line ::
continuation of line _ _

Function: Allows the continuation of a command line to the next line.

Example: ->BYT &array(12] = 1941, 42, 1776, 1812, ::
::>1492, 2001

Microtek International, DSD 91 hyperSOURCE-386 User Manual

Command Reference Chapter Six

= or EVAluate = or EVAluate

Syntax: { = } expr

{EVAluate}

Function: Evaluates an expression. All register and flag names are recognized. Full C
syntax is supported. Moreover, the following key words are recognized:

NOT, AND, OR, XOR, BYTE, CHAR, WORD, SHORT, DWORD, LONG,
FLOAT, DOUBLE, TREAL, SIZEOF.

Note that the QWORD key word is not allowed.

You can also evaluate a function in your program that returns a value. If a
symbol name has the same name as the register or flag names, it should be
prefixed with the # operator in the expression.

The following key words are allowed in the SIZEOF operator and type
casting:

BYTE, CHAR, WORD, SHORT, DWORD, LONG, FLOAT, DOUBLE,
TREAL.

Examples: ->eva 'A'
->= ax + 1
->eva ++i //value of i is incremented by 1
->eva i + 1 //value of i is unchanged
->eva *(byte *)ptr_to_short + *val
->= fact(3) + 6
->eva a * b >> 2
->eva sizeof(count) //a symbol
->eva sizeof(long) //a type
->eva count and 1 //logical and
->eva short(i)
->= i or j //logical or
->eva ptr->size
->eva ary[1).length + count
->= (double)realno + c
->= ax 1 148fh
->eva fax //ax is a variable in program module.

See Also: ?, SYMbol

hyperSOURCE-386 User Manual 92 Microtek International, DSD

Command Reference Chapter Six

= or EVAluate = or EVAluate

Syntax: { = } expr

{EVAluate}

Function: Evaluates an expression. All register and flag names are recognized. Full C
syntax is supported. Moreover, the following key words are recognized:

NOT, AND, OR, XOR, BYTE, CHAR, WORD, SHORT, DWORD, LONG,
FLOAT, DOUBLE, TREAL, SIZEOF.

Note that the QWORD key word is not allowed.

You can also evaluate a function in your program that returns a value. If a
symbol name has the same name as the register or flag names, it should be
prefixed with the # operator in the expression.

The following key words are allowed in the SIZEOF operator and type
casting:

BYTE, CHAR, WORD, SHORT, DWORD, LONG, FLOAT, DOUBLE,
TREAL.

Examples: ->eva 'A'
->= ax + 1
->eva ++i //value of i is incremented by 1
->eva i + 1 //value of i is unchanged
->eva *(byte *)ptr_to_short + *val
->= fact(3) + 6
->eva a * b >> 2
->eva sizeof(count) //a symbol
->eva sizeof(long) //a type
->eva count and 1 //logical and
->eva short(i)
->= i or j //logical or
->eva ptr->size
->eva ary[1).length + count
->= (double)realno + c
->= ax I 148fh
->eva fax //ax is a variable in program module.

See Also: ?, SYMbol

hyperSOURCE-386 User Manual 92 Microtek International, DSD

Chapter Six Command Reference

(examine symbol)

Syntax: ? lvalue

Function: Displays the type, value, and address of an lvalue. An lvalue is any C
expression which can be used on the left-hand side of an assignment statement.

The value is displayed in a format consistent with the type. Alternative
formats may be selected when the value is displayed using the EXAmine
command.

Example:

->?
->?

*(char *)0
foo
array(1)
*ptr

//Display address 0 as a character
//Display foo
//Display array element
//Display data referenced by pointer

See Also: =, EXAmine, SYMbol

Microtek International, DSD 93 hyperSOURCE-386 User Manual

Chapter Six Command Reference

(examine symbol)

Syntax: ? lvalue

Function: Displays the type, value, and address of an lvalue. An lvalue is any C
expression which can be used on the left-hand side of an assignment statement.

The value is displayed in a format consistent with the type. Alternative
formats may be selected when the value is displayed using the EXAmine
command.

Example:

*(char *)0
foo
array(1)
*ptr

//Display address 0 as a character
//Display foo
//Display array element
//Display data referenced by pointer

See Also: =, EXAmine, SYMbol

Microtek International, DSD 93 hyperSOURCE-386 User Manual

Command Reference Chapter Six

@ or INClude @ or INClude

Syntax: {@} ["]file name["] [LISt]

{INClude}

Function: Executes the commands from the specified file. If LISt is specified, the
commands in the command file are displayed on the console as they are being
executed (default is NO LIST).

Remark: This command is identical to the INClude command.

Examples: ->INC "INIT.MAC" LIS
->@ C:\TMP\GR1.INC

See Also: JOUrnal, LISt, MACro

hyperSOURCE-386 User Manual 94 Microtek International, DSD

Command Reference Chapter Six

@ or INClude @ or INClude

{@} ["]file name["] [LISt]

{INClude}

Executes the commands from the specified file. If LISt is specified, the
commands in the command file are displayed on the console as they are being
executed (default is NO LIST).

This command is identical to the INClude command.

->INC "INIT.MAC" LIS
->@ C:\TMP\GR1.INC

JOUrnal, LISt, MACro

Syntax:

Function:

Remark:

Examples:

See Also:

hyperSOURCE-386 User Manual 94 Microtek International, DSD

Chapter Six Command Reference

B (breakpoint) B (breakpoint)

Syntax: B [n] [OFF]
[ON]
[CLFar]

B [n] [=] addr [COUnt num] [IF (expr)] [THEN command]

where n = 0 to 31t.

Function: Breakpoints are used to specify addresses at which program execution is
halted. The breakpoints are effective in all execution commands except for
GO FOREVER.

B by itself will display all breakpoints; specifying n alone will display a
specific breakpoint. OFF, ON, and CLFar are used to disable, enable, or
remove a breakpoint, respectively. A disabled breakpoint will be inactive until
enabled. Normally, a breakpoint is enabled when first set, but if an error
occurs when setting a breakpoint, the breakpoint may be defined but disabled.

If no breakpoint number is specified when setting a breakpoint, the first
unused breakpoint is allocated. If no breakpoint number is specified with the
CLFar qualifier, the breakpoint at the current execution pointer is cleared. If
no breakpoint number is specified with the ON or OFF qualifiers, all
breakpoints are enabled or disabled. The assignment operator (=) is only
required when the distinction between a breakpoint number and an address is
ambiguous.

When a break is encountered and COUnt is specified, execution resumes
automatically unless the event has been encountered num times. A conditional
breakpoint condition may be specified using the IF qualifier. The condition
can be any expression accepted by the EVALuate command. If the expression
evaluates to non-zero after the rest of the break condition is satisfied, then
execution will be halted, otherwise execution resumes.

A command may be specified which is executed after a breakpoint is hit using
the THEN qualifier. IF and THEN qualifiers are not evaluated until after all
other conditions are satisfied, including the COUnt condition. Complex
command sequences may be invoked after a breakpoint by invoking a macro in
the THEN statement.

Remarks: The B command uses software breakpoints to implement breakpoints, unless
the address of the breakpoint is in ROM. If so, a debug register breakpoint is

Microtek International, DSD 95 hyperSOURCE-386 User Manual

Chapter Six Command Reference

B (breakpoint) B (breakpoint)

Syntax: B [n] [OFF]
[ON]
[CLFar]

B [n] [=] addr [COUnt num] [IF (expr)] [THEN command]

where n = 0 to 31t.

Function: Breakpoints are used to specify addresses at which program execution is
halted. The breakpoints are effective in all execution commands except for
GO FOREVER.

B by itself will display all breakpoints; specifying n alone will display a
specific breakpoint. OFF, ON, and CLFar are used to disable, enable, or
remove a breakpoint, respectively. A disabled breakpoint will be inactive until
enabled. Normally, a breakpoint is enabled when first set, but if an error
occurs when setting a breakpoint, the breakpoint may be defined but disabled.

If no breakpoint number is specified when setting a breakpoint, the first
unused breakpoint is allocated. If no breakpoint number is specified with the
CLFar qualifier, the breakpoint at the current execution pointer is cleared. If
no breakpoint number is specified with the ON or OFF qualifiers, all
breakpoints are enabled or disabled. The assignment operator (=) is only
required when the distinction between a breakpoint number and an address is
ambiguous.

When a break is encountered and COUnt is specified, execution resumes
automatically unless the event has been encountered num times. A conditional
breakpoint condition may be specified using the IF qualifier. The condition
can be any expression accepted by the EVALuate command. If the expression
evaluates to non-zero after the rest of the break condition is satisfied, then
execution will be halted, otherwise execution resumes.

A command may be specified which is executed after a breakpoint is hit using
the THEN qualifier. IF and THEN qualifiers are not evaluated until after all
other conditions are satisfied, including the COUnt condition. Complex
command sequences may be invoked after a breakpoint by invoking a macro in
the THEN statement.

Remarks: The B command uses software breakpoints to implement breakpoints, unless
the address of the breakpoint is in ROM. If so, a debug register breakpoint is

Microtek International, DSD 95 hyperSOURCE-386 User Manual

Command Reference Chapter Six

used. If you want to set a breakpoint based on bus-level events involving
address, data, status, counter or logic module conditions, you have to define
trigger specifications in transparent mode. Use the TM command to enter
transparent mode, then use the TRIGx:WHEN command of MICE-V to define
triggers.

Examples: ->B //Display all breakpoints.
->B 0 //Displays contents of breakpoint O.
->B 0 CLE //Clears contents of and disables breakpoint 0.
->B 0 OFF //Disables breakpoint 0 but leaves it defined.
->B 0 ON //Re-enables breakpoint 0.
->B OFF //Disables all breakpoints but leaves them
-> //defined.
->B 0 = 100h //Sets breakpoint 0.
->B #12 //Sets an arbitrary breakpoint at line 12.
->B &FOO EXE COUNT 2 //Breaks after FOO is reached twice.
->B subrl IF (i > 3) //Breaks if i > 3 when entering subrl
->B cs:100h THEN ? i //Display i before executing at 100h
->B subr3 IF (i > 3) THEN :macl a,42

See Also: CAUse, Go, IStep, Step, TM

hyperSOURCE-386 User Manual 96 Microtek International, DSD

Command Reference Chapter Six

used. If you want to set a breakpoint based on bus-level events involving
address, data, status, counter or logic module conditions, you have to define
trigger specifications in transparent mode. Use the TM command to enter
transparent mode, then use the TRIGx:WHEN command of MICE-V to define
triggers.

Examples: ->B //Display all breakpoints.
->B 0 //Displays contents of breakpoint 0.
->B 0 CLE //Clears contents of and disables breakpoint 0.
->B 0 OFF //Disables breakpoint 0 but leaves it defined.
->B 0 ON //Re-enables breakpoint 0.
->B OFF //Disables all breakpoints but leaves them
-> //defined.
->B 0 = 100h //Sets breakpoint 0.
->B #12 //Sets an arbitrary breakpoint at line 12.
->B &FOO EXE COUNT 2 //Breaks after FOO is reached twice.
->B subrl IF (i > 3) //Breaks if i > 3 when entering subrl
->B cs:100h THEN ? i //Display i before executing at 100h
->B subr3 IF (i > 3) THEN :macl a,42

See Also: CAUse, Go, IStep, Step, TM

hyperSOURCE-386 User Manual 96 Microtek International, DSD

Chapter Six Command Reference

BEEp BEEp

Syntax: BEEp [ON]
[OFF]

Function: Enables, disables, or displays the status of the error beeper.

Examples: ->BEEP
->BEEP ON
->BEEP OFF

See Also: ENV

Microtek International, DSD 97 hyperSOURCE-386 User Manual

Chapter Six Command Reference

BEEp BEEp

Syntax: BEEp [ON]
[OFF]

Function: Enables, disables, or displays the status of the error beeper.

Examples: ->BEEP
->BEEP ON
—>BEEP OFF

See Also: ENV

Microtek International, DSD 97 hyperSOURCE-386 User Manual

Command Reference Chapter Six

Mary Mary

Syntax: BINary

Function: Sets the default input radix to binary or base 2.

Example: —>B IN

See Also: DECimal, HEX, OCTal, RADix

hyperSOURCE-386 User Manual 98 Microtek International, DSD

Command Reference Chapter Six

BINary BINary

Syntax: BINary

Function: Sets the default input radix to binary or base 2.

Example: ->BIN

See Also: DECimal, HEX, OCTal, RADix

hyperSOURCE-386 User Manual 98 Microtek International, DSD

Chapter Six Command Reference

BREak BREak

Syntax: BREak

Function: Causes an immediate exit from the REPeat-UNTil, WHIle-EWHile,
FOR-EFOr loop, or SWItch-ESWitch block.

Examples: ->macro testa //Define a macro.
MD>switch(c)
MD> case 30:
MD> case 20:
MD> c = a + b * c;
MD> d = d / c + 8;
MD> break;
MD> default:
MD> • c »= 1;
MD>eswitch
MD>emacro
->while 1
CD> c = a - 1
CD> if IC
CD> break
CD>ewhile

See Also: CONtinue, FOR, GOTo, IF, REPeat, SWItch, WHIle

Microtek International, DSD 99 hyperSOURCE-386 User Manual

Chapter Six Command Reference

BREak BREak

Syntax: BREak

Function: Causes an immediate exit from the REPeat-UNTil, WHIle-EWHile,
FOR-EFOr loop, or SWItch-ESWitch block.

Examples: ->macro testa //Define a macro.
MD>switch(c)
MD> case 30:
MD> case 20:
MD> c = a + b * c;
MD> d = d / c + 8;
MD> break;
MD> default:
MD> • c »= 1;
MD>eswitch
MD>emacro
->while 1
CD> c = a - 1
CD> if IC
CD> break
CD>ewhile

See Also: CONtinue, FOR, GOTo, IF, REPeat, SWItch, WHIle

Microtek International, DSD 99 hyperSOURCE-386 User Manual

Command Reference Chapter Six

BRKgdt BRKgdt

Syntax: BRKgdt [physical_addr] [BS16] [E]
[D]

Function: Sets the global descriptor table address that the emulator will use for protected
mode breakpoints.

'physical_addr' is the physical address (followed by the letter 'p') of the global
descriptor table (GDT) when the processor is running in protected mode. The
power-up default is BRKgdt Op d.

BS16 indicates that the interrupt table resides in 16-bit memory. If BS16 is
not specified, it is assumed that the interrupt table resides in 32-bit memory.
E enables and D disables recognition of fetches from the global descriptor
table at breakpoints.

Remarks: The BRKgdt command must be enabled before any type of protected mode
breakpoints can be used.

Use BRKgdt only once during initial setup to configure the emulator to a
particular target configuration.

This command is the same as the BRKGDT command of MICE-V 386.

Examples: ->BRK 400p e
->BRK

See Also: BRkPidt, BRkRidt, Go, GR, HALt, RBRk, TKB

hyperSOURCE-386 User Manual 100 Microtek International, DSD

Command Reference Chapter Six

BRKgdt BRKgdt

Syntax: BRKgdt [physical_addr] [BS16] [E]
[D]

Function: Sets the global descriptor table address that the emulator will use for protected
mode breakpoints.

'physical_addr' is the physical address (followed by the letter 'p') of the global
descriptor table (GDT) when the processor is running in protected mode. The
power-up default is BRKgdt Op d.

BS16 indicates that the interrupt table resides in 16-bit memory. If BS16 is
not specified, it is assumed that the interrupt table resides in 32-bit memory.
E enables and D disables recognition of fetches from the global descriptor
table at breakpoints.

Remarks: The BRKgdt command must be enabled before any type of protected mode
breakpoints can be used.

Use BRKgdt only once during initial setup to configure the emulator to a
particular target configuration.

This command is the same as the BRKGDT command of MICE-V 386.

Examples: ->BRK 400p e
->BRK

See Also: BRkPidt, BRkRidt, Go, GR, HALt, RBRk, TKB

hyperSOURCE-386 User Manual 100 Microtek International, DSD

Chapter Six Command Reference

BRkPidt BRkPidt

Syntax: BRkPidt [linear_addr physical_addr] [BS16] [E]
[D]

Function: Sets the interrupt descriptor address that the emulator will use for protected
mode breakpoints.

'linear_addr' is the linear address (followed by the letter 'n') of the interrupt
descriptor table (IDT) when the processor is running in protected mode. The
power-up default is BRKgdt Op d.

'physical_addr' is the physical base address (followed by the letter 'p') of the
interrupt descriptor table (IDT) when the processor is running in protected
mode. The power-up default is BRkPidt On Op d.

BS16 indicates that the interrupt table resides in 16-bit memory. If BS16 is
not specified, it is assumed that the interrupt table resides in 32-bit memory.
E enables and D disables protected mode debug, software and hardware
breakpoints. HALT and real-time analyzer (RTA) bus breakpoints may still be
used with BRkPidt disabled.

However, linear_adde must match the IDT BASE register contents and
'physical_addr' must correspond to the 'linear_addr' at the time of the
breakpoint.

Remarks: The BRkPidt command must be enabled before protected mode breakpoints can
be used. If the BRkPidt address matches the IDT BASE register contents,
HALT and bus breakpoints may still be used.

IDT_

This command is the same as the BRKPIDT command of MICE-V 386.

Examples: ->BRP 100N 100P E
->BRP

See Also: BRKgdt, BRkRidt, GO, GR, HALt, RBRk, TKB

Microtek International, DSD 101 hyperSOURCE-386 User Manual

Chapter Six Command Reference

BRkPidt BRkPidt

Syntax: BRkPidt [linear_addr physical_addr] [BS16] [E]
[D]

Function: Sets the interrupt descriptor address that the emulator will use for protected
mode breakpoints.

'linear_addr' is the linear address (followed by the letter 'n') of the interrupt
descriptor table (IDT) when the processor is running in protected mode. The
power-up default is BRKgdt Op d.

'physical_addr' is the physical base address (followed by the letter 'p') of the
interrupt descriptor table (IDT) when the processor is running in protected
mode. The power-up default is BRkPidt On Op d.

BS16 indicates that the interrupt table resides in 16-bit memory. If BS16 is
not specified, it is assumed that the interrupt table resides in 32-bit memory.
E enables and D disables protected mode debug, software and hardware
breakpoints. HALT and real-time analyzer (RTA) bus breakpoints may still be
used with BRkPidt disabled.

However, linear_addr' must match the IDT BASE register contents and
'physical_addr' must correspond to the 'linear_addr' at the time of the
breakpoint.

Remarks: The BRkPidt command must be enabled before protected mode breakpoints can
be used. If the BRkPidt address matches the IDT BASE register contents,
HALT and bus breakpoints may still be used.

IDT_

This command is the same as the BRKPIDT command of MICE-V 386.

Examples: ->BRP 100N 100P E
->BRP

See Also: BRKgdt, BRkRidt, GO, GR, HALt, RBRk, TKB

Microtek International, DSD 101 hyperSOURCE-386 User Manual

Command Reference Chapter Six

BRkRidt BRkRidt

Syntax: BRkRidt [address] [BS16] [E]
[D]

Function: Sets the interrupt descriptor table address that the emulator will use for real
mode breakpoints.

'address' is the physical base address of the interrupt descriptor table (IDT)
when the processor is running in real mode. A physical address must be
followed by the letter 'p.' The power-up default is BRkRidt Op e.

Remarks:

Examples:

See Also:

BS16 indicates that the interrupt table resides in 16-bit memory. If BS16 is
not specified, it is assumed that the interrupt table resides in 32-bit memory.
E enables and D disables real mode debug, software and hardware
breakpoints. HALT and real-time analyzer (RTA) bus breakpoints may still be
used with BRkRidt disabled, provided 'address' matches the IDT_BASE
register contents at the time of the breakpoint.

The BRkRidt command must be enabled before real mode debug or software
breakpoints are in use. HALT and bus breakpoints may be used whether
BRkRidt is enabled or not.

This command is the same as the BRKRIDT command of MICE-V 386.

- >BRR 100P E
- >BRR

BRKgdt, BRkPidt, GO, GR, HALt, RBRk, TKB

hyperSOURCE-386 User Manual 102 Microtek International, DSD

Command Reference Chapter Six

BRkRidt BRkRidt

Syntax: BRkRidt [address] [BS16] [E]
[D]

Function: Sets the interrupt descriptor table address that the emulator will use for real
mode breakpoints.

'address' is the physical base address of the interrupt descriptor table (IDT)
when the processor is running in real mode. A physical address must be
followed by the letter 'p.' The power-up default is BRkRidt Op e.

BS16 indicates that the interrupt table resides in 16-bit memory. If BS16 is
not specified, it is assumed that the interrupt table resides in 32-bit memory.
E enables and D disables real mode debug, software and hardware
breakpoints. HALT and real-time analyzer (RTA) bus breakpoints may still be
used with BRkRidt disabled, provided 'address' matches the IDT_BASE
register contents at the time of the breakpoint.

The BRkRidt command must be enabled before real mode debug or software
breakpoints are in use. HALT and bus breakpoints may be used whether
BRkRidt is enabled or not.

This command is the same as the BRKRIDT command of MICE-V 386.

- >BRR 100P E
- >BRR

BRKgdt, BRkPidt, GO, GR, HALt, RBRk, TKB

Remarks:

Examples:

See Also:

hyperSOURCE-386 User Manual 102 Microtek International, DSD

Chapter Six Command Reference

BYTe BYTe

Syntax: BYTe [address] [= expression [, expression]...]
[= "string"]
[[TO] address [= expression]]
[LENgth n [= expression]]

Function: Displays or alters memory contents in byte scope. The base of two addresses
that define an address range must be the same. For example, BYT 200:40 TO
300:300 is invalid.

Examples: ->BYT 40 //Display byte content of address DS:40
->BYTE 100:40 TO 100:200
->BYTE &BUF LENGTH 20
->BYTE DS:SI = 23, 234Q, 4+6, AL, 38T
->BYT ARRAY LEN 100 = 0
->BYTE &string = "\tThis is a test program\n"

See Also: CHAr, DOUble, DWOrd, FLOat, POInter, QWOrd, TREal, WORd

Microtek International, DSD 103 hyperSOURCE-386 User Manual

Chapter Six

BYTe

Syntax: BYTe [address] [= expression [, expression]...]
[= "string"]
[[TO] address [= expression]]
[LENgth n [= expression]]

Command Reference

BYTe

Function: Displays or alters memory contents in byte scope. The base of two addresses
that define an address range must be the same. For example, BYT 200:40 TO
300:300 is invalid.

Examples: ->BYT 40 //Display byte content of address DS:40
->BYTE 100:40 TO 100:200
->BYTE &BUF LENGTH 20
->BYTE DS:SI = 23, 234Q, 4+6, AL, 38T
->BYT ARRAY LEN 100 = 0
->BYTE &string = "\tThis is a test program\n"

See Also: CHAr, DOUble, DWOrd, FLOat, POInter, QWOrd, TREal, WORd

Microtek International, DSD 103 hyperSOURCE-386 User Manual

Command Reference Chapter Six

CALIstack CAListack

Syntax: CALlstack [expression]

Function: For use with high-level languages. Displays the current chain of procedure
calls in the program being executed. A CALLSTACK is a fully qualified list
of references to procedures. The reference listed first is the current execution
address. The second entry is the current address for the procedure that called
the current procedure, etc. CALLSTACK shows the dynamic, run-time
nesting of the program as opposed to the static, lexical nesting.

The CALLSTACK display may be incorrect if invoked before a valid stack
frame is built.

Example: ->cAL

See Also: DOWn, Go, TRAce, UP

hyperSOURCE-386 User Manual 104 Microtek International, DSD

Command Reference Chapter Six

CALIstack CAListack

Syntax: CALlstack [expression]

Function: For use with high-level languages. Displays the current chain of procedure
calls in the program being executed. A CALLSTACK is a fully qualified list
of references to procedures. The reference listed first is the current execution
address. The second entry is the current address for the procedure that called
the current procedure, etc. CALLSTACK shows the dynamic, run-time
nesting of the program as opposed to the static, lexical nesting.

The CALLSTACK display may be incorrect if invoked before a valid stack
frame is built.

Example: ->cAL

See Also: DOWn, Go, TRAce, UP

hyperSOURCE-386 User Manual 104 Microtek International, DSD

Chapter Six Command Reference

CAUse CAUse

Syntax: CAUse

Function: Reports the cause of the last break in execution.

Remarks: This command is the same as the CAUSE command of MICE-V 386.

Example: ->CAUse

See Also: B, Go

Microtek International, DSD 105 hyperSOURCE-386 User Manual

Chapter Six Command Reference

CAUse CAUse

Syntax: CAUse

Function: Reports the cause of the last break in execution.

Remarks: This command is the same as the CAUSE command of MICE-V 386.

Example: ->CAUse

See Also: B, Go

Microtek International, DSD 105 hyperSOURCE-386 User Manual

Command Reference Chapter Six

CHAr CHAr

Syntax: CHAr [address] [= expression [, expression]...]
[= "string"]
[[TO] address [= expression]]
[LENgth n [= expression]]

Function: Displays or alters memory contents in byte scope. If the byte value is an
ASCII printable character, the character will be displayed. Otherwise, a "."
will be displayed for that byte. The base of two addresses that define an
address range must be the same. For example, BYT 200:40 TO 300:300 is
invalid.

Examples: ->CHA 40 //Display ASCII character at address DS:40
->CHAR 100:40 TO 100:200
->CHAR &BUF LENGTH 20
->CHAR DS:SI = 23, 234Q, 4+6, AL, 38T
->CHA ARRAY LEN 100 = 0
->CHAR &string = "\tThis is a test program\n"

See Also: BYTe, DOUble, DWOrd, FLOat, POInter, QWOrd, TREal, WORd

hyperSOURCE-386 User Manual 106 Microtek International, DSD

Command Reference Chapter Six

CHAr CHAr

Syntax: CHAr [address] [= expression [, expression]...]
[= "string"]
[[TO] address [= expression]]
[LENgth n [= expression]]

Function: Displays or alters memory contents in byte scope. If the byte value is an
ASCII printable character, the character will be displayed. Otherwise, a "."
will be displayed for that byte. The base of two addresses that define an
address range must be the same. For example, BYT 200:40 TO 300:300 is
invalid.

Examples: ->CHA 40 //Display ASCII character at address DS:40
->CHAR 100:40 TO 100:200
->CHAR &BUF LENGTH 20
->CHAR DS:SI = 23, 234Q, 4+6, AL, 38T
->CHA ARRAY LEN 100 = 0
->CHAR &string = "\tThis is a test program\n"

See Also: BYTe, DOUble, DWOrd, FLOat, POInter, QWOrd, TREal, WORd

hyperSOURCE-386 User Manual 106 Microtek International, DSD

Chapter Six Command Reference

CLOse CLOse

Syntax: CLOse [n [, n]...]

where n = 0, 1, 2, 3, 4, or 5.

Function: Closes previously opened file. If no file number n is specified, all the opened
files are closed. Files are opened using the OPEN command.

Examples: ->CLOSE 1, 2 //Closes file 1 and 2.
->CLOSE //Closes all opened files.

See Also: OPEn, REAd, WRIte

Microtek International, DSD 107 hyperSOURCE-386 User Manual

Chapter Six Command Reference

CLOse CLOse

Syntax: CLOse [n [, n]...]

where n = 0, 1, 2, 3, 4, or 5.

Function: Closes previously opened file. If no file number n is specified, all the opened
files are closed. Files are opened using the OPEN command.

Examples: ->CLOSE 1, 2 //Closes file 1 and 2.
->CLOSE //Closes all opened files.

See Also: OPEn, REAd, WRIte

Microtek International, DSD 107 hyperSOURCE-386 User Manual

Command Reference Chapter Six

CODe CODe

Syntax: CODe [ON]
[OFF]

Function: Enables or disables hex code display during code disassembly for both the
source window and the command line. Disabling hex code display allows
other windows to overlap the right side of the source window without
completely obscuring useful disassembly information.

Examples: ->COD //Displays current CODE setting
->COD ON //Turns code display on
->COD OFF //Turns code display off

See Also: DASm, NUMber, SOUrce, VIEw

hyperSOURCE-386 User Manual 108 Microtek International, DSD

Command Reference Chapter Six

CODe CODe

Syntax: CODe [ON]
[OFF]

Function: Enables or disables hex code display during code disassembly for both the
source window and the command line. Disabling hex code display allows
other windows to overlap the right side of the source window without
completely obscuring useful disassembly information.

Examples: ->COD //Displays current CODE setting
->COD ON //Turns code display on
->COD OFF //Turns code display off

See Also: DASm, NUMber, SOUrce, VIEw

hyperSOURCE-386 User Manual 108 Microtek International, DSD

Chapter Six

COMpare

Syntax:

Command Reference

COMpare

COMpare start_addrl {[TO] end_addrl} [NOT] start_addr2 [BYTe]
{LENgth n [WORd]

[DWOrd]

Function: Compares two regions of memory and reports all differences.

NOT displays the addresses that match, instead of the normal display of
mismatches.

BYTe, WORd or DWOrd specifies the size of the memory reads used to
gather data for the comparison. The power-up default is BYTe.

Remark: The syntax of this command is similar to that of the CMP command of
hyperlCE-386.

Examples: ->com &bytel LEN 1 &charl //Compare charl to bytel
->com 30:50 to 30:300 200:200 //Compare memory from 30:50 and
-> //30:300 inclusive to that at
-> //200:200 to 200:450.
->COM ARRAY BUF len 50 NOT 40:50 WORD
->COM &STRING1 LEN 20 MEM2

See Also: COPy, FINd

Microtek International, DSD 109 hyperSOURCE-386 User Manual

Chapter Six

COMpare

Syntax:

Command Reference

COMpare

COMpare start_addrl {[TO] end_addrl} [NOT] start_addr2 [BYTe]
{LENgth n [WORd]

[DWOrd]

Function: Compares two regions of memory and reports all differences.

NOT displays the addresses that match, instead of the normal display of
mismatches.

BYTe, WORd or DWOrd specifies the size of the memory reads used to
gather data for the comparison. The power-up default is BYTe.

Remark: The syntax of this command is similar to that of the CMP command of
hyperlCE-386.

Examples: ->com &bytel LEN 1 &charl //Compare charl to bytel
- >com 30:50 to 30:300 200:200 //Compare memory from 30:50 and
- > //30:300 inclusive to that at
- > //200:200 to 200:450.
- >COM ARRAY BUF len 50 NOT 40:50 WORD
->COM &STRING1 LEN 20 MEM2

See Also: COPy, FINd

Microtek International, DSD 109 hyperSOURCE-386 User Manual

Command Reference Chapter Six

CONtinue CONtinue

Syntax: CONtinue

Function: Causes the next iteration of the REPEAT-UNTIL, WHILE-EWHILE,
FOR-EFOR loop to begin. In the REPEAT-UNTIL and WHILE-EWHILE
loop, the test part is executed immediately. In the FOR-EFOR loop, control
passes to the re-initialization step.

Examples: ->MACRO //Define a macro.
MD>while(a)
MD> b = subr(&c, d);
MD> if(b == a)
MD> continue;
MD> else
MD> c = c << 3;
MD> d = d % 3;
MD> eif
MD>ewhile
MD>EMACRO
->WHILE I--
CD> IF A 1= SUB(I, D)
CD> CONTINUE
CD> ORIF
CD> D = A
CD> EIF
CD>EWH

See Also: BREak, FOR, GOTo, IF, REPeat, SWItch, WHIle

hyperSOURCE-386 User Manual 110 Microtek International, DSD

Command Reference Chapter Six

CONtinue CONtinue

Syntax: CONtinue

Function: Causes the next iteration of the REPEAT-UNTIL, WHILE-EWHILE,
FOR-EFOR loop to begin. In the REPEAT-UNTIL and WHILE-EWHILE
loop, the test part is executed immediately. In the FOR-EFOR loop, control
passes to the re-initialization step.

Examples: ->MACRO TEST1 //Define a macro.
MD>while(a)
MD> b = subr(&c, d);
MD> if(b == a)
MD> continue;
MD> else
MD> c = c << 3;
MD> d = d % 3;
MD> eif
MD>ewhile
MD>EMACRO
->WHILE I--
CD> IF A 1= SUB(I, D)
CD> CONTINUE
CD> ORIF
CD> D = A
CD> EIF
CD>EWH

See Also: BREak, FOR, GOTo, IF, REPeat, SWItch, WHIle

hyperSOURCE-386 User Manual 110 Microtek International, DSD

Chapter Six Command Reference

COPy COPy

Syntax: COPy src_start_addr {[TO] src_end_addr} dest addr [BYTe]
{LENgth n [WORd]

[DWOrd]

Function: Copies a block of memory contents from one location to another.

BYTe, WORd, or DWOrd indicates how the data are read from and written to
memory.

Remarks: The syntax of this command is similar to that of the MOVE command of
hyperlCE-386.

Examples: ->COPY &charl LEN 1 &bytel //Copy one byte from charl to bytel
->COPY 30:50 TO 30:300 200:200 //Copy from memory 30:50 and
-> //30:300 inclusive to destination
-> //starting at 200:200.
->COPY 40:50 len 50 ARRAY BUF WORD
->COPY &STRING1 LEN 20 MEM2

See Also: COMpare, FINd

Microtek International, DSD 111 hyperSOURCE-386 User Manual

Chapter Six

COPy

Syntax:

Command Reference

COPy

COPy src_start_addr {[TO] src_end_addr} destaddr [BYTe]
{LENgth n [WORd]

[DWOrd]

Function: Copies a block of memory contents from one location to another.

BYTe, WORd, or DWOrd indicates how the data are read from and written to
memory.

Remarks: The syntax of this command is similar to that of the MOVE command of
hyperlCE-386.

Examples: ->COPY &charl LEN 1 &bytel //Copy one byte from charl to bytel
- >COPY 30:50 TO 30:300 200:200 //Copy from memory 30:50 and
- > //30:300 inclusive to destination
- > //starting at 200:200.
- >COPY 40:50 len 50 ARRAY BUF WORD
- >COPY &STRING1 LEN 20 MER2

See Also: COMpare, FINd

Microtek International, DSD 111 hyperSOURCE-386 User Manual

Command Reference Chapter Six

CRRepeat CRRepeat

Syntax: CRRepeat [ON]
[OFF]

Function: Enables, disables, or displays the status of command repeating on C/R. If
enabled, the Enter key will repeat the last execution, disassembly, or memory
display command from the point where the last command left off. Otherwise,
Enter does nothing.

Example: —›CRR ON

See Also: ENV

hyperSOURCE-386 User Manual 112 Microtek International, DSD

Chapter Six

CRRepeat

CRRepeat [ON]
[OFF]

Enables, disables, or displays the status of command repeating on C/R. If
enabled, the Enter key will repeat the last execution, disassembly, or memory
display command from the point where the last command left off. Otherwise,
Enter does nothing.

Command Refer

CRRepeat

Syntax:

Function:

ence

Example: —>CRR ON

See Also: ENV

hyperSOURCE-386 User Manual 112 Microtek International, DSD

Chapter Six Command Reference

CW CW

Syntax: CW

Function: Displays or changes the value of the 80387 control word. The value of the
control word is displayed followed by a slash. The contents can be altered by
entering a new hexadecimal value. A carriage return alone will preserve the
contents.

Examples: ->cw
CONTROL WORD = 0000H / 1324H

->CW
CONTROL WORD = 1324H / <CR>

See Also: ST, SW, TW

Microtek International, DSD 113 hyperSOURCE-386 User Manual

Chapter Six Command Reference

CW CW

Syntax: CW

Function: Displays or changes the value of the 80387 control word. The value of the
control word is displayed followed by a slash. The contents can be altered by
entering a new hexadecimal value. A carriage return alone will preserve the
contents.

Examples: ->cw
CONTROL WORD = 0000H / 1324H

->CW
CONTROL WORD = 1324H / <CR>

See Also: ST, SW, TW

Microtek International, DSD 113 hyperSOURCE-386 User Manual

Command Reference Chapter Six

DASm or U DASm or U

Syntax:

Function:

Remark:

Examples:

See Also:

{DASm} [addressl [[TO] address2]]

{U} [LENgth n]

Displays a block of memory in assembly mnemonic form. The MIX qualifier
causes source to be mixed in with the disassembly display.

This command is the same as the U command.

->DASM //Default address is CS:IP
->DASM CS:(IP+5) MIX
->DASM &MAIN LEN 20

SOUrce, VIEw

hyperSOURCE-386 User Manual 114 Microtek International, DSD

Command Reference Chapter Six

DASm or U DASm or U

Syntax:

Function:

Remark:

Examples:

See Also:

{DASm} [addressl [[TO] address2]]

{U} [LENgth n]

Displays a block of memory in assembly mnemonic form. The MIX qualifier
causes source to be mixed in with the disassembly display.

This command is the same as the U command.

->DASM //Default address is CS:IP
- >DASM CS:(IP+5) MIX
- >DASM &MAIN LEN 20

SOUrce, VIEw

hyperSOURCE-386 User Manual 114 Microtek International, DSD

Chapter Six Command Reference

DECimal DECimal

Syntax: DECimal

Function: Sets the default input radix to decimal or base 10.

Example: ->DEC

See Also: BINary, HEX, OCTal, RADix

Microtek International, DSD 115 hyperSOURCE-386 User Manual

Chapter Six

DECimal

Syntax:

Function:

Example:

See Also:

DECimal

Sets the default input radix to decimal or base 10.

->DEC

BINary, HEX, OCTal, RADix

Command Reference

DECimal

Microtek International, DSD 115 hyperSOURCE-386 User Manual

Command Reference Chapter Six

DIRectory MACro DIRectory MACro

Syntax: DIRectory MACro

Function: Lists the names of all defined macros.

Example: —>DIR MAC

See Also: :, DISplay MACro, EDit MACro, INClude, MACro, MLIst, PUT, REMove
MACro

hyperSOURCE-386 User Manual 116 Microtek International, DSD

Command Reference Chapter Six

DIRectory MACro DIRectory MACro

Syntax: DIRectory MACro

Function: Lists the names of all defined macros.

Example: ->DIR MAC

See Also: :, DISplay MACro, EDit MACro, INClude, MACro, MLIst, PUT, REMove
MACro

hyperSOURCE-386 User Manual 116 Microtek International, DSD

Chapter Six Command Reference

DIRectory MODule DIRectory MODule

Syntax: DIRectory MODule

Function: Lists all module names and corresponding source file names.

Example: ->D IR MODULE

See Also: $, SET, SOUrce, SYMbol

Microtek International, DSD 117 hyperSOURCE-386 User Manual

Chapter Six Command Reference

DIRectory MODule DIRectory MODule

Syntax: DIRectory MODule

Function: Lists all module names and corresponding source file names.

Example: ->D IR MODULE

See Also: $, SET, SOUrce, SYMbol

Microtek International, DSD 117 hyperSOURCE-386 User Manual

Command Reference Chapter Six

DIRectory STRucture DIRectory STRucture

Syntax: DIRectory STRucture

Function: Lists all structure names which have been defined or loaded.

Example: ->DIR STR

See Also: DISplay STRucture, STRucture

hyperSOURCE-386 User Manual 118 Microtek International, DSD

Command Reference Chapter Six

DIRectory STRucture DIRectory STRucture

Syntax: DIRectory STRucture

Function: Lists all structure names which have been defined or loaded.

Example: ->DIR STR

See Also: DISplay STRucture, STRucture

hyperSOURCE-386 User Manual 118 Microtek International, DSD

Chapter Six Command Reference

DISplay MACro DISplay MACro

Syntax: DISplay MACro [macro_name [, macro_name]...]

Function: Displays all or some macro definitions.

Examples: ->D I S MAC //Displays all macro definitions.
->DIS MAC AA, BB, CC //Displays macros AA, BB, CC.

See Also: :, DIRectory MACro, EDit MACro, INClude, MACro, MLIst, PUT,
REMove MACro

Microtek International, DSD 119 hyperSOURCE-386 User Manual

Chapter Six Command Reference

DISplay MACro DISplay MACro

Syntax:

Function:

Examples:

See Also:

DISplay MACro jmacro_name [, macro name]...]

Displays all or some macro definitions.

->DIS MAC //Displays all macro definitions.
->DIS MAC AA, BB, CC //Displays macros AA, BB, CC.

:, DIRectory MACro, EDit MACro, INClude, MACro, MLIst, PUT,
REMove MACro

Microtek International, DSD 119 hyperSOURCE-386 User Manual

Command Reference Chapter Six

DISplay STRucture DISplay STRucture

Syntax:

Function:

Examples:

See Also:

DISplay STRucture [structure_name [, structure_name]...]

Lists the contents of the specified structures. If no structure name is specified,
all structure definitions in the structure directory are listed.

->D I S PLAY STRUCTURE //Lists all structure definitions.
->DIS STR STR1, STR2 //Lists STR1 and STR2 structure
-> //definitions.

DIRectory STRucture, STRucture

hyperSOURCE-386 User Manual 120 Microtek International, DSD

Command Reference Chapter Six

DISplay STRucture DISplay STRucture

DISplay STRucture [structure_name [, structure_name]...]

Lists the contents of the specified structures. If no structure name is specified,
all structure definitions in the structure directory are listed.

Syntax:

Function:

Examples:

See Also:

- >D I S PLAY STRUCTURE //Lists all structure definitions.
- >DIS STR STR1, STR2 //Lists STR1 and STR2 structure
- > //definitions.

DIRectory STRucture, STRucture

hyperSOURCE-386 User Manual 120 Microtek International, DSD

Chapter Six Command Reference

DISplay TRAce or PRInt DISplay TRAce or PRInt

Syntax: DISplay TRAce [start_line [end_line]] [CLEar]

Function: Displays the trace buffer. 'start_line' is the line number where the trace
display begins. 'end_line' is the line number to end the display. CLFar clears
the entire trace buffer (The CLFar key word can also be specified as CLR).

Remarks: This command is the same as the PRInt command.

The syntax of this command is similar to that of the DT command of
MICE-V.

Examples: ->DIS TRA Ot 20t //Prints bus cycle trace frames 0 to 20.
->DIS TRA CLE //Clears trace buffer.

See Also: HTRc, PRInt

Microtek International, DSD 121 hyperSOURCE-386 User Manual

Chapter Six Command Reference

DISplay TRAce or PRInt DISplay TRAce or PRInt

Syntax: DISplay TRAce [start_line [end_line]] [CLEar]

Function: Displays the trace buffer. 'start_line' is the line number where the trace
display begins. 'end_line' is the line number to end the display. CLFar clears
the entire trace buffer (The CLFar key word can also be specified as CLR).

Remarks: This command is the same as the PRInt command.

The syntax of this command is similar to that of the DT command of
MICE-V.

Examples: ->DIS TRA Ot 20t //Prints bus cycle trace frames 0 to 20.
->DIS TRA CLE //Clears trace buffer.

See Also: HTRc, PRInt

Microtek International, DSD 121 hyperSOURCE-386 User Manual

DOUble

Syntax:

Command Reference Chapter Six

DOUble

DOUble [address] [= expression [, expression]...]
[[TO] address [= expression]]
[LENgth n [= expression]]

Function: Displays or alters memory contents in double (8-byte) scope. The base of two
addresses that define an address range must be the same. For example,
DOUBLE 200:40 to 300:300 is invalid.

Examples: ->DOUBLE 40
->DOUBLE 100:40 TO 100:200
->DOUBLE &double buf LENGTH 20
->DOUBLE DS:SI 9.9, 8.8, 1.2+3.5
->DOUBLE double_array LEN 100 = 0.0

See Also: BYTe, CHAr, DWOrd, FLOat, POInter, QWOrd, TREal, WORd

hyperSOURCE-386 User Manual 122 Microtek International, DSD

Command Reference Chapter Six

DOUble DOUble

Syntax: DOUble [address] [= expression [, expression]...]
[[TO] address [= expression]]
[LENgth n [= expression]]

Function: Displays or alters memory contents in double (8-byte) scope. The base of two
addresses that define an address range must be the same. For example,
DOUBLE 200:40 to 300:300 is invalid.

Examples: ->DOUBLE 40
- >DOUBLE 100:40 TO 100:200
- >DOUBLE &double buf LENGTH 20
- >DOUBLE DS:SI 9.9, 8.8, 1.2+3.5
->DOUBLE double_array LEN 100 = 0.0

See Also: BYTe, CHAr, DWOrd, FLOat, POInter, QWOrd, TREal, WORd

hyperSOURCE-386 User Manual 122 Microtek International, DSD

Chapter Six Command Reference

DOWn DOWn

Syntax: DOWn [n]
[HOMe]

Function: Walks down the call stack allowing access to the source and local variables of
any active procedure. If no argument is specified, the stack is walked down
one level. If HOMe is specified, the active scope returns to what it was
before any UP or DOWN command was issued.

If any execution command or command that directly changes the CS:IP or BP
is given by the user while an UP or DOWN command is in effect, a DOWN
HOME action is automatically performed before the command is executed.

Examples: ->DOWN
->DOWN 3
->DOWN HOME

See Also: CALlstack, SOUrce,

//Walk down one level
//Walk down three levels
//Return to the initial scope

SYMbol, UP

Microtek International, DSD 123 hyperSOURCE-386 User Manual

Chapter Six Command Reference

DOWn DOWn

Syntax: DOWn [n]
[HOMe]

Function: Walks down the call stack allowing access to the source and local variables of
any active procedure. If no argument is specified, the stack is walked down
one level. If HOMe is specified, the active scope returns to what it was
before any UP or DOWN command was issued.

If any execution command or command that directly changes the CS:IP or BP
is given by the user while an UP or DOWN command is in effect, a DOWN
HOME action is automatically performed before the command is executed.

Examples: ->DOWN
- >DOWN 3
- >DOWN HOME

See Also: CALlstack, SOUrce,

//Walk down one level
//Walk down three levels
//Return to the initial scope

SYMbol, UP

Microtek International, DSD 123 hyperSOURCE-386 User Manual

Command Reference Chapter Six

DT DT

Syntax: DT \[selector_expr\] [.seg_element [= expr]]

where selector_expr is an expression that computes to a 16-bit number or the
name of a 16-bit register (such as TR, LDTR, CS, DS, etc.) which is
interpreted as a selector; seg_element is BASe, LIMit, P, DPL, C, R, W, A,
E, WCO, SOFf, SSE1, or TYPe; expr is an expression. The notations \[and
\] indicate that the square bracket pair is part of the required syntax.

Displays or modifies descriptors, descriptor components or descriptor tables.

The descriptor components are as follows:

Name Size Description

BASe
LIMit
P
DPL

R

C
E
WCO
SOFf
SSE1
TYPe

Examples: ->DT(OCH)
->
->DT(csJ
->
->DT[cs].base
->
->DT[ldtr]
->
->DT[tr]
->

24 bits
16 bits
1 bit
2 bits
1 bit
1 bit
1 bit
1 bit
1 bit
5 bits
16 bits
16 bits
5 bits

Segment base linear address
Segment limit
Segment present, 1 = present
Descriptor privilege level
Conforming segment
Readable segment
Writable segment
Segment accessed
Expand down segment
Gate word count
Gate segment offset
Gate segment selector
Descriptor type

//Displays the descriptor referenced by a
//selector value of OCH.
//Displays the descriptor referenced by cs
//register.
//Displays the base value of segment referenced
//by cs register.
//Displays the descriptor referenced by ldtr
//register.
//Displays the task state segment (TSS)
//referenced by the TR register.

See Also: GDT, IDT, LDT, REGister, TSS

hyperSOURCE-386 User Manual 124 Microtek International, DSD

Command Reference Chapter Six

DT DT

Syntax: DT \[selector_expr\] [.seg_element [= expr]]

where selector_expr is an expression that computes to a 16-bit number or the
name of a 16-bit register (such as TR, LDTR, CS, DS, etc.) which is
interpreted as a selector; seg_element is BASe, LIMit, P, DPL, C, R, W, A,
E, WCO, SOFf, SSE1, or TYPe; expr is an expression. The notations \[and
\] indicate that the square bracket pair is part of the required syntax.

Displays or modifies descriptors, descriptor components or descriptor tables.

The descriptor components are as follows:

Name Size Description

BASe
LIMit
P
DPL

R

C
E
WCO
SOFf
SSE1
TYPe

Examples: ->DT(OCH)
->
- >DT(csJ
- >
- >DT[cs].base
- >
->DT[ldtr]
- >
- >DT[tr]
- >

24 bits
16 bits
1 bit
2 bits
1 bit
1 bit
1 bit
1 bit
1 bit
5 bits
16 bits
16 bits
5 bits

Segment base linear address
Segment limit
Segment present, 1 = present
Descriptor privilege level
Conforming segment
Readable segment
Writable segment
Segment accessed
Expand down segment
Gate word count
Gate segment offset
Gate segment selector
Descriptor type

//Displays the descriptor referenced by a
//selector value of OCH.
//Displays the descriptor referenced by cs
//register.
//Displays the base value of segment referenced
//by cs register.
//Displays the descriptor referenced by ldtr
//register.
//Displays the task state segment (TSS)
//referenced by the TR register.

See Also: GDT, IDT, LDT, REGister, TSS

hyperSOURCE-386 User Manual 124 Microtek International, DSD

Chapter Six

DWOrd

Syntax: DWOrd [address] [= expression [, expression]...]
[[TO] address [= expression]]
[LENgth n [= expression]]

Command Reference

DWOrd

Function: Displays or alters memory contents in double word (4-byte) scope. The base
of two addresses that define an address range must be the same. For example,
DWORD 200:40 to 300:300 is invalid.

Examples: ->DWORD 40 //Display double word at address DS:40
->DWORD 100:40 TO 100:200
->DWORD &unsigned_long_buf LENGTH 20
->DWORD DS:SI = 23, 234Q, 4+6, AL, 38T
->DWORD unsigned_long_array LEN 100 = 0

See Also: BYTe, CHAr, DOUble, FLOat, POInter, QWOrd, TREal , WORd

Microtek International, DSD 125 hyperSOURCE-386 User Manual

Chapter Six

DWOrd

Syntax: DWOrd [address] [= expression [, expression]...]
[[TO] address [= expression]]
[LENgth n [= expression]]

Command Reference

DWOrd

Function: Displays or alters memory contents in double word (4-byte) scope. The base
of two addresses that define an address range must be the same. For example,
DWORD 200:40 to 300:300 is invalid.

Examples: ->DWORD 40 //Display double word at address DS:40
->DWORD 100:40 TO 100:200
- >DWORD &unsigned_long_buf LENGTH 20
- >DWORD DS:SI = 23, 234Q, 4+6, AL, 38T
->DWORD unsigned_long_array LEN 100 = 0

See Also: BYTe, CHAr, DOUble, FLOat, POInter, QWOrd, TRFal, WORd

Microtek International, DSD 125 hyperSOURCE-386 User Manual

Command Reference Chapter Six

EDit EDit

Syntax:

Function:

EDit filename

Invokes the editor defined in hyperSOURCE-386 EDITOR environment
variable to edit the specified file. It should be noted that editing a source file
of the program being debugged can cause source line number information to
be rendered incorrect.

Examples: ->ED foo.c

See Also: SOUrce

hyperSOURCE-386 User Manual 126 Microtek International, DSD

Command Reference Chapter Six

EDit EDit

Syntax: EDit filename

Function: Invokes the editor defined in hyperSOURCE-386 EDITOR environment
variable to edit the specified file. It should be noted that editing a source file
of the program being debugged can cause source line number information to
be rendered incorrect.

Examples: ->ED foo.c

See Also: SOUrce

hyperSOURCE-386 User Manual 126 Microtek International, DSD

Chapter Six Command Reference

EDit MACro EDit MACro

Syntax: EDit MACro name

Function: Invokes the editor defined in hyperSOURCE-386 EDITOR environment
variable for the creation or editing of a macro.

Example: ->ED MAC FOO

See Also: :, DIRectory MACro, DISplay MACro, ENV, INClude, MACro, MLIst,
PUT, REMove MACro

Microtek International, DSD 127 hyperSOURCE-386 User Manual

Chapter Six Command Reference

EDit MACro EDit MACro

Syntax: EDit MACro name

Function: Invokes the editor defined in hyperSOURCE-386 EDITOR environment
variable for the creation or editing of a macro.

Example: ->ED MAC FOO

See Also: :, DIRectory MACro, DISplay MACro, ENV, INClude, MACro, MLIst,
PUT, REMove MACro

Microtek International, DSD 127 hyperSOURCE-386 User Manual

Command Reference

EGA

Chapter Six

EGA

Syntax: EGA [ON]
[OFF]

Function: Enable or display EGA-43 line or VGA-50 line display mode.

Examples: ->EGA //Displays the current display mode.
->EGA ON //Display EGA-43 or VGA-50 line display mode.
->EGA OFF //Displays 25 lines.

See Also: ENV

hyperSOURCE-386 User Manual 128 Microtek International, DSD

Command Reference Chapter Six

EGA EGA

Syntax: EGA [ON]
[OFF]

Function: Enable or display EGA-43 line or VGA-50 line display mode.

Examples: ->EGA //Displays the current display mode.
->EGA ON //Display EGA-43 or VGA-50 line display mode.
->EGA OFF //Displays 25 lines.

See Also: ENV

hyperSOURCE-386 User Manual 128 Microtek International, DSD

Chapter Six Command Reference

ENV ENV

Syntax: ENV [filename]

Function: ENV displays parameters of the configurable environment, and optionally
allows the environment to be saved to a file. Environment parameters
displayed include:

BARLINE = n

BAUD = n

Position of the horizontal bar dividing the source and
dialog windows with respect to the top of the display
screen. Default is 18.
Baud rate of serial port connecting to MICE-V 386; n
= 300, 600, 1200, 2400, 4800, 9600, 19200, 38400,
or 57600.
Audible error beep setting.
Break window size, position, and status.
Source-window object code display setting.
Color values file for windows.
Serial port number; 1 for COM1 or 2 for COM2.
Command repeat on C/R setting.
Call-stack window size, position and status.
Maximum depth of the dialog window; n is from 43
to 512 lines. Default is 80 lines.
Editor program to be invoked for file editing.
EGA-43/VGA-50 line mode setting.
Source lines counting method (C or LiST).
Maximum depth of the history window; n is from 1
to 512 lines. Default is 40 lines.
Home window, name is SOUrce/COMmand.
Key macro definitions.
Start-debugging-at-function-main setting.
Memory window size, position, and status.
Source-window line-number setting.
Automatic prolog execution setting.
Input number base setting; base is HEX, DEC, OCT,
or BIN.
Register window size, position and status; win is
described below.
Run-trace window size, position, and status.
Case-sensitive symbol matching setting.
Source file search path, multiple paths are separated
by semicolons.

BEEP bool
BREAKWN=win
CODE bool
COLOR = file
COM = n
CRREPEAT bool
CSTACKWN=win
DIALOG = n

EDITOR = file
EGA bool
EXTENSION = ext
HISTORY = n

HOME name
<key > = string
MAIN bool
MEMWN = win
NUMBER bool
PROLOG = bool
RADIX base

REGWN = win

RTRACEWN=win
SENSITIVE bool
SPATH path

Microtek International, DSD 129 hyperSOURCE-386 User Manual

Chapter Six Command Reference

ENV ENV

Syntax: ENV [filename]

Function: ENV displays parameters of the configurable environment, and optionally
allows the environment to be saved to a file. Environment parameters
displayed include:

Position of the horizontal bar dividing the source and
dialog windows with respect to the top of the display
screen. Default is 18.
Baud rate of serial port connecting to MICE-V 386; n
= 300, 600, 1200, 2400, 4800, 9600, 19200, 38400,
or 57600.
Audible error beep setting.
Break window size, position, and status.
Source-window object code display setting.
Color values file for windows.
Serial port number; 1 for COM1 or 2 for COM2.
Command repeat on C/R setting.
Call-stack window size, position and status.
Maximum depth of the dialog window; n is from 43
to 512 lines. Default is 80 lines.
Editor program to be invoked for file editing.
EGA-43/VGA-50 line mode setting.
Source lines counting method (C or LiST).
Maximum depth of the history window; n is from 1
to 512 lines. Default is 40 lines.
Home window, name is SOUrce/COMmand.
Key macro definitions.
Start-debugging-at-function-main setting.
Memory window size, position, and status.
Source-window line-number setting.
Automatic prolog execution setting.
Input number base setting; base is HEX, DEC, OCT,
or BIN.
Register window size, position and status; win is
described below.
Run-trace window size, position, and status.
Case-sensitive symbol matching setting.
Source file search path, multiple paths are separated
by semicolons.

BARLINE = n

BAUD = n

BEEP bool
BREAKWN=win
CODE bool
COLOR = file
COM = n
CRREPEAT bool
CSTACKWN=win
DIALOG = n

EDITOR = file
EGA bool
EXTENSION = ext
HISTORY = n

HOME name
<key > = string
MAIN bool
MEMWN = win
NUMBER bool
PROLOG = bool
RADIX base

REGWN = win

RTRACEWN=win
SENSITIVE bool
SPATH path

Microtek International, DSD 129 hyperSOURCE-386 User Manual

Command Reference Chapter Six

STARF = file Start-up command filename.
TAB = n Tab expansion size; n is from 1 to 8. Default is 4

spaces.

The "bool" argument is either ON or OFF.

The "file" argument is a file name.

The "string" argument is an ASCII string. Some key macro examples are as
follows:

<F5> = pline
<ALT-Fl> = time
<SHF-F2> = version

The "path" is a directory path name. Multiple paths are separated by
semicolons. For example:

SPATH = c:\hs386\demo;d:\project

The "win" argument is an argument list as follows:

yxhws

where:
y is the y-coordinate (vertical-axis) with respect to the upper left hand corner
of the screen. Its range is from 0 to 24.

x is the x-coordinate (horizontal-axis) with respect to the upper left hand
corner of the screen. Its range is from 0 to 79.

h is the height of the window. Its range is from 1 to 24.

w is the width of the window. Its range is from 1 to 80.

s is the status of the window. It is either OPEN or CLOSE.

The start-up environment file's name can be set in the HS386ENV MS-DOS
environment variable. The default name is hs386.env. In the environment
file, the # prefix specifies a comment. If an environment file is not found,
hyperSOURCE-386 will use default settings. You can find out the default
settings by writing them to an output file.

hyperSOURCE-386 User Manual 130 Microtek International, DSD

Command Reference Chapter Six

STARF = file Start-up command filename.
TAB = n Tab expansion size; n is from 1 to 8. Default is 4

spaces.

The "bool" argument is either ON or OFF.

The "file" argument is a file name.

The "string" argument is an ASCII string. Some key macro examples are as
follows:

<F5> = pline
<ALT-Fl> = time
<SHF-F2> = version

The "path" is a directory path name. Multiple paths are separated by
semicolons. For example:

SPATH = c:\hs386\demo;d:\project

The "win" argument is an argument list as follows:

yxhws

where:
y is the y-coordinate (vertical-axis) with respect to the upper left hand corner
of the screen. Its range is from 0 to 24.

x is the x-coordinate (horizontal-axis) with respect to the upper left hand
corner of the screen. Its range is from 0 to 79.

h is the height of the window. Its range is from 1 to 24.

w is the width of the window. Its range is from 1 to 80.

s is the status of the window. It is either OPEN or CLOSE.

The start-up environment file's name can be set in the HS386ENV MS-DOS
environment variable. The default name is hs386.env. In the environment
file, the # prefix specifies a comment. If an environment file is not found,
hyperSOURCE-386 will use default settings. You can find out the default
settings by writing them to an output file.

hyperSOURCE-386 User Manual 130 Microtek International, DSD

Chapter Six Command Reference

Examples: ->ENV
->ENV HS386.ENV

See Also: BEEp, CODe, EDit, EGA, EXTension, HOMe, NUMber, RADix, SENsitive,
SPAth

Microtek International, DSD 131 hyperSOURCE-386 User Manual

Chapter Six Command Reference

Examples: ->ENV
->ENV HS386.ENV

See Also: BEEp, CODe, EDit, EGA, EXTension, HOMe, NUMber, RADix, SENsitive,
SPAth

Microtek International, DSD 131 hyperSOURCE-386 User Manual

Command Reference Chapter Six

ESCape ESCape

Syntax: ESCape

Function: The ESCape command stops macro processing. It is used in macro definitions
to abort processing.

Example: ->IF AX > 0
CD>ESCAPE
CD>ELSE
CD>AX++
CD>EIF
->

//Returns to command mode.

See Also: BREak, CONtinue, GOTo

hyperSOURCE-386 User Manual 132 Microtek International, DSD

Command Reference Chapter Six

ESCape ESCape

Syntax: ESCape

Function: The ESCape command stops macro processing. It is used in macro definitions
to abort processing.

Example: ->IF AX > 0
CD>ESCAPE
CD>ELSE
CD>AX++
CD>EIF
->

//Returns to command mode.

See Also: BREak, CONtinue, GOTo

hyperSOURCE-386 User Manual 132 Microtek International, DSD

Chapter Six Command Reference

EVALuate or = EVAluate or =

Syntax: {EVAluate} expr

{=}

Function: Evaluates an expression. All register and flag names are recognized. Full C
syntax is supported. Moreover, the following key words are recognized:

NOT, AND, OR, XOR, BYTE, CHAR, WORD, SHORT, DWORD, LONG,
FLOAT, DOUBLE, TREAL, SIZEOF.

Note that the QWORD key word is not allowed.

You can also evaluate a function in your program that returns a value. If a
symbol name has the same name as the register or flag names, it should be
prefixed with the # operator in the expression.

The following key words are allowed in the SIZEOF operator and type
casting:

BYTE, CHAR, WORD, SHORT, DWORD, LONG, FLOAT, DOUBLE,
TREAL.

Examples: ->eva 'A'
->= ax + 1
->eva ++i //value of i is incremented by 1
->eva i + 1 //value of i is unchanged
->eva *(byte *)ptr_to

-
short + *val

->= fact(3) + 6
->eva a * b >> 2
->eva sizeof(count) //a symbol
->eva sizeof(long) //a type
->eva count and 1 //logical and
->eva short(i)
->= i or j //logical or
->eva ptr->size
->eva ary[l).length + count
->= (double)realno + c
->= ax I 148fh
->eva #ax //ax is a variable in program module.

See Also: ?, SYMbol

Microtek International, DSD 133 hyperSOURCE-386 User Manual

Chapter Six Command Reference

EVALuate or = EVAluate or =

Syntax: {EVAluate} expr

{=}

Function: Evaluates an expression. All register and flag names are recognized. Full C
syntax is supported. Moreover, the following key words are recognized:

NOT, AND, OR, XOR, BYTE, CHAR, WORD, SHORT, DWORD, LONG,
FLOAT, DOUBLE, TREAL, SIZEOF.

Note that the QWORD key word is not allowed.

You can also evaluate a function in your program that returns a value. If a
symbol name has the same name as the register or flag names, it should be
prefixed with the # operator in the expression.

The following key words are allowed in the SIZEOF operator and type
casting:

BYTE, CHAR, WORD, SHORT, DWORD, LONG, FLOAT, DOUBLE,
TREAL.

Examples: ->eva 'A'
- >= ax + 1
- >eva ++i //value of i is incremented by 1
- >eva i + 1 //value of i is unchanged
- >eva *(byte *)ptr_to —short + *val
->= fact(3) + 6
->eva a * b >> 2
- >eva sizeof(count) //a symbol
->eva sizeof(long) //a type
- >eva count and 1 //logical and
- >eva short(i)
- >= i or j //logical or
- >eva ptr->size
- >eva ary[l).length + count
- >= (double)realno + c
- >= ax I 148fh
->eva #ax //ax is a variable in program module.

See Also: ?, SYMbol

Microtek International, DSD 133 hyperSOURCE-386 User Manual

Command Reference Chapter Six

EXAmine or E EXAmine or E

Syntax: {EXAmine} lvalue

{E}

Function: Opens a symbol window to display the value and type information of the
specified lvalue.

If a symbol window has already been opened for the specified lvalue, that
symbol window will be selected.

Examples: ->EXA TOP //Examine a symbol called top.
->E COUNT
->E *(char *)0

See Also: ?, =, SYMbol

hyperSOURCE-386 User Manual 134 Microtek International, DSD

Command Reference Chapter Six

EXAmine or E EXAmine or E

Syntax: {EXAmine} lvalue

{E}

Function: Opens a symbol window to display the value and type information of the
specified lvalue.

If a symbol window has already been opened for the specified lvalue, that
symbol window will be selected.

Examples: ->EXA TOP //Examine a symbol called top.
->E COUNT
->E *(char *)0

See Also: ?, =, SYMbol

hyperSOURCE-386 User Manual 134 Microtek International, DSD

Chapter Six Command Reference

EXIt EXIt

Syntax: EXIt

Function: Exits from the debug session. This command closes all opened files and
deletes all temporary files that are created by hyperSOURCE-386. You can
also press the <Alt> x keys to terminate the debug session.

Remark: This command is the same as the QUIt command.

Example: —>EXIT

See Also: QUIt

Microtek International, DSD 135 hyperSOURCE-386 User Manual

Chapter Six Command Reference

EXIt EXIt

Syntax: EXIt

Function: Exits from the debug session. This command closes all opened files and
deletes all temporary files that are created by hyperSOURCE-386. You can
also press the <Alt> x keys to terminate the debug session.

Remark: This command is the same as the QUIt command.

Example: ->EXIT

See Also: QUIt

Microtek International, DSD 135 hyperSOURCE-386 User Manual

Command Reference Chapter Six

EXTension EXTension

Syntax: EXTension [C 1 LiST]

Function: Displays or sets the method for counting line numbers in source files. The
default parameter is 'C.'

When the 'C' parameter is in effect, the source files are assumed to have C as
file extension. The line numbers in these source files are assumed to be
continuous without any break, starting from 1 for the first line to the last line,
even though the source files may have other include files. You should use this
file extension for C compilers from most vendors except Intel.

When the 'LST' parameter is in effect, the source files are assumed to have
LST as file extension. The line numbers in these source files are not
continuous, with breaks to accommodate any include files. You should use
this parameter for Intel compilers - C, PL/M, PASCAL, etc.

If no argument is specified, this command displays the current setting.

The file extension can also be set using the EXTENSION parameter in
hyperSOURCE-386's environment file. Both the command and the
environment parameter have the same syntax.

Note that both the EXTENSION command and the EXTENSION parameter in
hyperSOURCE-386's environment file affect how the line numbers are counted
in the source files. If you want to override the default file extension you have
to specify the actual file extension of your source files with the LOAd
command's EXTension="string" argument.

Examples: ->EXT LST //Object file is generated by Intel compiler.
->LOAD EXT="PAS" //File extension of source listing is PAS.

See Also: ENV, LOAd

hyperSOURCE-386 User Manual 136 Microtek International, DSD

Command Reference Chapter Six

EXTension EXTension

Syntax: EXTension [C 1 LiST]

Function: Displays or sets the method for counting line numbers in source files. The
default parameter is 'C.'

When the 'C' parameter is in effect, the source files are assumed to have C as
file extension. The line numbers in these source files are assumed to be
continuous without any break, starting from 1 for the first line to the last line,
even though the source files may have other include files. You should use this
file extension for C compilers from most vendors except Intel.

When the 'LST' parameter is in effect, the source files are assumed to have
LST as file extension. The line numbers in these source files are not
continuous, with breaks to accommodate any include files. You should use
this parameter for Intel compilers - C, PL/M, PASCAL, etc.

If no argument is specified, this command displays the current setting.

The file extension can also be set using the EXTENSION parameter in
hyperSOURCE-386's environment file. Both the command and the
environment parameter have the same syntax.

Note that both the EXTENSION command and the EXTENSION parameter in
hyperSOURCE-386's environment file affect how the line numbers are counted
in the source files. If you want to override the default file extension you have
to specify the actual file extension of your source files with the LOAd
command's EXTension="string" argument.

Examples: ->EXT LST //Object file is generated by Intel compiler.
->LOAD EXT="PAS" //File extension of source listing is PAS.

See Also: ENV, LOAd

hyperSOURCE-386 User Manual 136 Microtek International, DSD

Chapter Six Command Reference

FINd

Syntax: {FINd} addrl {[TO] addr2} [NOT] {"string"}
{LENgth n {expr [expr]...} [BYTe]

[WORd]
EDWOrd]

FINd

Function: Searches the specified memory range for the specified value or string of
values.

NOT indicates to display all locations that do not match the value. NOT is the
exact inverse of the normal operation. If a pattern is matched, the address is
not displayed. If a pattern is not matched, the address is displayed.

'expr' is one or more data values to be searched (or NOT searched) for.
BYTe, WORd or DWOrd indicates how the data will be read. The power-up
default is BYTe.

Remarks: The syntax of this command is similar to that of the FIND command of
MICE-V 386.

Examples: ->FIN &buf(12) LEN 8192 "Copyright"
- >FIN DS:100H TO DS:OFFFFH 50H 4CH
- >FIN DS:40H LEN 20 0x56 WOR //Search for 0056h

See Also: COMpare, COPy

Microtek International, DSD 137 hyperSOURCE-386 User Manual

Chapter Six Command Reference

FINd

Syntax: {FINd} addrl {[TO] addr2} [NOT] {"string"}
{LENgth n {expr [expr]...} [BYTe]

[WORd]
EDWOrd]

FINd

Function: Searches the specified memory range for the specified value or string of
values.

NOT indicates to display all locations that do not match the value. NOT is the
exact inverse of the normal operation. If a pattern is matched, the address is
not displayed. If a pattern is not matched, the address is displayed.

'expr' is one or more data values to be searched (or NOT searched) for.
BYTe, WORd or DWOrd indicates how the data will be read. The power-up
default is BYTe.

Remarks: The syntax of this command is similar to that of the FIND command of
MICE-V 386.

Examples: ->FIN &buf(12) LEN 8192 "Copyright"
->FIN DS:100H TO DS:OFFFFH 50H 4CH
- >FIN DS:40H LEN 20 0x56 WOR //Search for 0056h

See Also: COMpare, COPy

Microtek International, DSD 137 hyperSOURCE-386 User Manual

Command Reference Chapter Six

FLAg FLAg

Syntax: {FLAg}
{status_flag [,status_flag]...}
{status_flag = value [, status_flag = value]...}

where status_flag may be:
AF, CF, DF, IF, IOPL, NT, OF, PF, RF, SF, TF, VM, or ZF.

Function: Displays or alters the 80386 flags register. When changing flag value, any
value at the right hand side of "=" which is not 0 is treated as 1. Note that
IOPL is two bits; the rest of the flags are one bit.

Remark: You can display the status flag register with the register name FS.

Examples: ->FLA //Display all flags
->CF, OF, ZF //Display CF, OF, ZF
->CF = 1, IF = 1, AF = 1 //Set flag value
->FS //Display the status flag register.

See Also: REGister

hyperSOURCE-386 User Manual 138 Microtek International, DSD

Command Reference Chapter Six

FLAg FLAg

Syntax: {FLAg}
{status_flag [,status_flag]...}
{status_flag = value [, status_flag = value]...}

where status_flag may be:
AF, CF, DF, IF, IOPL, NT, OF, PF, RF, SF, TF, VM, or ZF.

Function: Displays or alters the 80386 flags register. When changing flag value, any
value at the right hand side of "=" which is not 0 is treated as 1. Note that
IOPL is two bits; the rest of the flags are one bit.

Remark: You can display the status flag register with the register name FS.

Examples: ->FLA //Display all flags
- >CF, OF, ZF
- >CF = 1, IF = 1, AF = 1
- >FS

See Also: REGister

//Display CF, OF, ZF
//Set flag value
//Display the status flag register.

hyperSOURCE-386 User Manual 138 Microtek International, DSD

Chapter Six Command Reference

FLOat FLOat

Syntax: FLOat [address] [= expression [, expression]...]
[[TO] address [= expression]1
[LENgth n [= expression]]

Function: Displays or alters memory contents in float (4-byte) scope. The base of two
addresses that define an address range must be the same. For example,
FLOAT 200:40 TO 300:300 is invalid.

Examples: ->FLOAT 40
->FLOAT 100:40 TO 100:200
->FLOAT &float buf LENGTH 20
->FLOAT DS:SI 7. 9.9, 8.8, 1.2+3.5
->FLOAT float_array LEN 100 = 0.0

See Also: BYTe, CHAr, DOUble, DWOrd, POInter, QWOrd, TREal, WORd

Microtek International, DSD 139 hyperSOURCE-386 User Manual

Chapter Six Command Reference

FLOat FLOat

Syntax: FLOat [address] [= expression [, expression]...]
[[TO] address [= expression]1
[LENgth n [= expression]]

Function: Displays or alters memory contents in float (4-byte) scope. The base of two
addresses that define an address range must be the same. For example,
FLOAT 200:40 TO 300:300 is invalid.

Examples: ->FLOAT 40
->FLOAT 100:40 TO 100:200
->FLOAT &float buf LENGTH 20
- >FLOAT DS:SI 7. 9.9, 8.8, 1.2+3.5
- >FLOAT float_array LEN 100 = 0.0

See Also: BYTe, CHAr, DOUble, DWOrd, POInter, QWOrd, TREal, WORd

Microtek International, DSD 139 hyperSOURCE-386 User Manual

Command Reference Chapter Six

FOR FOR

Syntax: FOR ([exprla[,exprlb]...];[expr2];[expr3a[,expr3b]...])
[commandl[,command2]...]
EFOr

The FOR-EFOr loop command is equivalent to:
[exprla]
[exprlb]

WHILE [expr2]
[command 1]
[command2]

[expr3a]
[expr3b]

EWHILE

Note: If expr2 is not specified, it is taken as permanently TRUE.

Function: In the FOR-EFOR loop command, exprl is the initialization expression,
expr2 is the loop control expression and expr3 is the re-initialization
expression. There may be multiple initialization and re-initialization
expressions, but only one conditional expression.

Examples: ->MACRO TEST1 //Define a macro.
MD>for(a=0,b=0; a<=0; a++)
MD> c=abc(&b, *ptr)
MD> c = c >> 4
MD> d I= b
MD>efor
MD>emacro
->macro test2 //Define a macro.
MD>for(;;)
MD> if(!(c = get_data()))
MD> break;
MD> else
MD> buf[i++] = c;
MD> eif
MD>efor
MD>emacro
->for (i = 0; I < 10; i++)
CD> buf[i] = 0;
CD>efor
->

See Also: BREak, CONtinue, GOTo, IF, REPeat, SWItch, WHIle

hyperSOURCE-386 User Manual 140 Microtek International, DSD

Command Reference Chapter Six

FOR FOR

Syntax: FOR ([exprla[,exprlb]...];[expr2];[expr3a[,expr3b]...])
[commandl[,command2]...]
EFOr

The FOR-EFOr loop command is equivalent to:
[exprla]
[exprlb]

WHILE [expr2]
[command 1]
[command2]

[expr3a]
[expr3b]

EWHILE

Note: If expr2 is not specified, it is taken as permanently TRUE.

Function: In the FOR-EFOR loop command, exprl is the initialization expression,
expr2 is the loop control expression and expr3 is the re-initialization
expression. There may be multiple initialization and re-initialization
expressions, but only one conditional expression.

Examples: ->MACRO TEST1 //Define a macro.
MD>for(a=0,b=0; a<=0; a++)
MD> c=abc(&b, *ptr)
MD> c = c >> 4
MD> d I= b
MD>efor
MD>emacro
- >macro test2 //Define a macro.
MD>for(;;)
MD> if(!(c = get_data()))
MD> break;
MD> else
MD> buf[i++] = c;
MD> eif
MD>efor
MD>emacro
- >for (i = 0; I < 10; i++)
CD> buf[i] = 0;
CD>efor
->

See Also: BREak, CONtinue, GOTo, IF, REPeat, SWItch, WHIle

hyperSOURCE-386 User Manual 140 Microtek International, DSD

Chapter Six Command Reference

FREe FREe

Syntax: FRF-e

Function: Displays the size of remaining free DOS memory on the PC host. You can
determine whether there is enough DOS memory to spawn a new command
shell to run another application.

Examples: —>FRE

See Also: !, LOAd

Microtek International, DSD 141 hyperSOURCE-386 User Manual

Chapter Six Command Reference

FREe FREe

Syntax: FREe

Function: Displays the size of remaining free DOS memory on the PC host. You can
determine whether there is enough DOS memory to spawn a new command
shell to run another application.

Examples: ->FRE

See Also: !, LOAd

Microtek International, DSD 141 hyperSOURCE-386 User Manual

Command Reference Chapter Six

GDT GDT

Syntax: GDT [\[expr\] [.LDT\[expr\]] [= expr]
[.seg_element]

where seg_element is BASe, LIMit, G, B, P, D, DPL, C, R, W, A, E, V,
WCO, SOFf, SSE1, or TYPe.

Function: Displays or modifies descriptors or descriptor components of the global
descriptor table.

Examples: ->GDT //Displays the GDT.
->GDT[1T].P=1 //Writes the present bit of GDT(1).
->GDT(10)=GDT(5).LDT(7) //Makes one table entry the same as
-> //another.
->GDT[7T).LDT //Displays the LDT whose descriptor is the
-> //seventh entry in the GDT.
->gdt(7).1dt[4].limit=12345h //Writes the limit field of entry
-> //four in the LDT whose descriptor
-> //is entry seven in the GDT.

See Also: DT, IDT, LDT, PD, REGister, TSS

hyperSOURCE-386 User Manual 142 Microtek International, DSD

Command Reference Chapter Six

GDT GDT

Syntax: GDT [\[expr\] j.LDT\[expr\]] [= expr]
[.seg_element]

where seg_element is BASe, LIMit, G, B, P, D, DPL, C, R, W, A, E, V,
WCO, SOFf, SSE1, or TYPe.

Function: Displays or modifies descriptors or descriptor components of the global
descriptor table.

Examples: ->GDT //Displays the GDT.
- >GD1[1T].P=1 //Writes the present bit of GDT(1).
->GDT(10)=GDT(5).LDT(7) //Makes one table entry the same as
- > //another.
- >GDT[7T).LDT //Displays the LDT whose descriptor is the
- > //seventh entry in the GDT.
- >gdt(7).1dt[4].limit=12345h //Writes the limit field of entry
- > //four in the LDT whose descriptor
- > //is entry seven in the GDT.

See Also: DT, IDT, LDT, PD, REGister, TSS

hyperSOURCE-386 User Manual 142 Microtek International, DSD

Chapter Six Command Reference

GLObal GLObal

Syntax: GLObal

Function: Displays all global symbols. The value of any global variable may be
examined via the EXAmine command.

Example: ->GLOBAL

See Also: ?, =, EVAluate, EXAmine, LOCal, SYMbol

Microtek International, DSD 143 hyperSOURCE-386 User Manual

Chapter Six Command Reference

GLObal GLObal

Syntax: GLObal

Function: Displays all global symbols. The value of any global variable may be
examined via the EXAmine command.

Example: ->GLOBAL

See Also: ?, =, EVAluate, EXAmine, LOCal, SYMbol

Microtek International, DSD 143 hyperSOURCE-386 User Manual

Command Reference Chapter Six

Go Go

Syntax: Go [FROm addr] [FORever]
[[TILl] address]
[[TM] RETurn [level]]
[[TILl] CALI]

Function: Starts emulation. If no argument is specified, program execution begins from
the current program counter. Program execution will be halted if a breakpoint
is reached.

The "FROm addr" parameter is used to specify the starting address for
program execution. The address must be a virtual address or an offset into the
current code segment. It cannot be a physical nor a linear address.

If the argument is FORever, all previously specified breakpoints (see the B
command) are disabled, and the emulator runs forever (or until the program is
killed). You can break emulation by pressing <Esc> or <Ctrl > c and then
entering the HALt command.

If RETurn is specified, execution terminates after the code has returned from
the specified number of levels of call nesting. The default is to return from
the current procedure (i.e., 1 level).

If CALI is specified, execution continues until a CALL or INT instruction is
executed.

Remarks: Before using GO, you must first set up the stack pointer as follows:

For virtual mode addressing: ESP > = 24h

For protected mode privilege level zero: ESP > = OCh

For protected mode privilege level non-zero: ESP > = 14h

GO enters emulation with a long jump instruction.

Examples: ->G0 FROM &START FOREVER //Go from address of start with
-> //breakpoints disabled
->G0 TIL #40 //Go until ready to execute line #40
->G0 RET //Go until first RET instruction
->G0 CALL //Go until next CALL instruction

hyperSOURCE-386 User Manual 144 Microtek International, DSD

Command Reference Chapter Six

Go Go

Syntax: Go [FROm addr] [FORever]
[[TILl] address]
[[TILL] RETurn [level]]
[[TILl] CALI]

Function: Starts emulation. If no argument is specified, program execution begins from
the current program counter. Program execution will be halted if a breakpoint
is reached.

The "FROm addr" parameter is used to specify the starting address for
program execution. The address must be a virtual address or an offset into the
current code segment. It cannot be a physical nor a linear address.

If the argument is FORever, all previously specified breakpoints (see the B
command) are disabled, and the emulator runs forever (or until the program is
killed). You can break emulation by pressing <Esc> or <Ctrl > c and then
entering the HALt command.

If RETurn is specified, execution terminates after the code has returned from
the specified number of levels of call nesting. The default is to return from
the current procedure (i.e., 1 level).

If CALI is specified, execution continues until a CALL or INT instruction is
executed.

Remarks: Before using GO, you must first set up the stack pointer as follows:

For virtual mode addressing: ESP > = 24h

For protected mode privilege level zero: ESP > = 0Ch

For protected mode privilege level non-zero: ESP > = 14h

GO enters emulation with a long jump instruction.

Examples: ->GO FROM &START FOREVER
- >
- >GO TIL #40 //Go until
- >GO RET //Go until
- >GO CALL //Go until

//Go from address of start with
//breakpoints disabled

ready to execute line #40
first RET instruction
next CALL instruction

hyperSOURCE-386 User Manual 144 Microtek International, DSD

Chapter Six Command Reference

See Also: B, CALlstack, GR, Step, ISTep, LOAd

Microtek International, DSD 145 hyperSOURCE-386 User Manual

Chapter Six Command Reference

See Also: B, CALlstack, GR, Step, ISTep, LOAd

Microtek International, DSD 145 hyperSOURCE-386 User Manual

Command Reference Chapter Six

GOTo GOTo

Syntax: GOTo macro label

Function: Causes program execution to be transferred to the specified macro-label. Note
that GOTO command cannot be used to jump into REPEAT-UNTIL,
WHILE-EWHILE, FOR-EFOR loop, or IF-EIF, SWITCH-ESWITCH block,
but can be used to jump out of these loops or blocks.

Examples: ->MACRO TEST1 //Define a macro.
MD>a = 8;
MD>aa:
MD>if(c >= 999
MD> goto as
MD>orif(c <= 0
MD> goto bb
MD>eif
MD>bb:
MD>EMACRO
->

See Also: BREak, CONtinue, ESCape, MACro

hyperSOURCE-386 User Manual 146 Microtek International, DSD

Command Reference Chapter Six

GOTo GOTo

Syntax: GOTo macro label

Function: Causes program execution to be transferred to the specified macro-label. Note
that GOTO command cannot be used to jump into REPEAT-UNTIL,
WHILE-EWHILE, FOR-EFOR loop, or IF-EIF, SWITCH-ESWITCH block,
but can be used to jump out of these loops or blocks.

Examples: ->MACRO TEST1
MD>a = 8;
MD>aa:
MD>if(c >= 999
MD> goto as
MD>orif(c <= 0
MD> goto bb
MD>eif
MD>bb:
MD>EMACRO
->

//Define a macro.

See Also: BREak, CONtinue, ESCape, MACro

hyperSOURCE-386 User Manual 146 Microtek International, DSD

Chapter Six Command Reference

GR GR

Syntax: GR [FORever]
[[TM] address]

Function: Starts emulation with a "go reset." Program execution will be halted if a
breakpoint is reached.

If the argument is FORever, all previously specified breakpoints (see B) are
disabled, and the CPU executes forever (or until the program is killed).

Remarks: Before using GR, you must first set up the stack pointer as follows:

For virtual mode addressing: ESP > = 24h

For protected mode privilege level zero: ESP > = OCh

For protected mode privilege level non-zero: ESP > = 14h

GR enters emulation with a short jump instruction. GR is necessary if your
target system's boot-up code is physically located between
FFFF0000-FFFFFFFF at reset.

Examples: ->GR FOREVER
->GR TIL 300H:45H

See Also: B, CALlstack, GO, IStep, LOAd, STEp

Microtek International, DSD 147 hyperSOURCE-386 User Manual

Chapter Six Command Reference

GR GR

Syntax: GR [FORever]
[[TILL] address]

Function: Starts emulation with a "go reset." Program execution will be halted if a
breakpoint is reached.

If the argument is FORever, all previously specified breakpoints (see B) are
disabled, and the CPU executes forever (or until the program is killed).

Remarks: Before using GR, you must first set up the stack pointer as follows:

For virtual mode addressing: ESP > = 24h

For protected mode privilege level zero: ESP > = 0Ch

For protected mode privilege level non-zero: ESP > = 14h

GR enters emulation with a short jump instruction. GR is necessary if your
target system's boot-up code is physically located between
FFFF0000-FFFFFFFF at reset.

Examples: ->GR FOREVER
->GR TIL 300H:45H

See Also: B, CALlstack, GO, IStep, LOAd, STEp

Microtek International, DSD 147 hyperSOURCE-386 User Manual

Command Reference Chapter Six

HALt HALt

Syntax: HALt

Function: Halts emulation.

After you have entered the Go command, you can halt emulation by first
pressing <Esc > or <Ctrl> c and then entering the HALt command.

Remark: This command is the same as the HAlt command of MICE-V 386.

Example: ->HALt

See Also: Go

hyperSOURCE-386 User Manual 148 Microtek International, DSD

Command Reference Chapter Six

HALt HALt

Syntax: HALt

Function: Halts emulation.

After you have entered the Go command, you can halt emulation by first
pressing <Esc > or <Ctrl> c and then entering the HALt command.

Remark: This command is the same as the HAlt command of MICE-V 386.

Example: ->HALt

See Also: Go

hyperSOURCE-386 User Manual 148 Microtek International, DSD

Chapter Six Command Reference

HELp HELp

Syntax: HELp [ncommand_keyword["])

Function: Shows you how to use hyperSOURCE-386 commands. If no parameter is
specified, the command summary will be displayed. If a command key word
is given, the syntax and example of usage of the command will be displayed.

Examples: ->HELP //Enters the HELP menu system.
->HELP EVALUATE //Displays help on the EVALUATE command.
->HELP "BYTE"

Microtek International, DSD 149 hyperSOURCE-386 User Manual

Chapter Six Command Reference

HELp HELp

Syntax: HELp [["]command_keyword["]]

Function: Shows you how to use hyperSOURCE-386 commands. If no parameter is
specified, the command summary will be displayed. If a command key word
is given, the syntax and example of usage of the command will be displayed.

Examples: ->HELP //Enters the HELP menu system.
- >HELP EVALUATE //Displays help on the EVALUATE command.
- >HELP "BYTE"

Microtek International, DSD 149 hyperSOURCE-386 User Manual

Command Reference Chapter Six

HEX HEX

Syntax: HEX

Function: Sets the default input radix to hexadecimal or base 16.

Examples: —>HEX

See Also: BINary, DECimal, OCTal, RADix

hyperSOURCE-386 User Manual 150 Microtek International, DSD

Command Reference Chapter Six

HEX HEX

Syntax: HEX

Function: Sets the default input radix to hexadecimal or base 16.

Examples: ->HEX

See Also: BINary, DECimal, OCTal, RADix

hyperSOURCE-386 User Manual 150 Microtek International, DSD

Chapter Six Command Reference

HOLdtp HOLdtp

Syntax: HOLdtp [[=] ON]
[[=] OFF]

Function: Places the 80386 target processor into a HOLD state while plugging into a
power-up target.

With HOLdtp set to ON, functions requiring the target processor cannot be
performed. With HOLdtp set to OFF, the emulator operates normally. The
power-up default is OFF.

Remarks: HOLdtp places the processor pins into high impedance which allows the probe
to be plugged into the target while power is on. If you do not issue the
HOLdtp command before plugging into a target when the emulator is powered
up, you can cause damage to the emulator, the target, or both.

This command is the same as the HOLDTP command of MICE-V 386.

Examples: ->HOL ON
->HOL OFF

Microtek International, DSD 151 hyperSOURCE-386 User Manual

Chapter Six Command Reference

HOLdtp HOLdtp

Syntax: HOLdtp [[=] ON]
[[=] OFF]

Function: Places the 80386 target processor into a HOLD state while plugging into a
power-up target.

With HOLdtp set to ON, functions requiring the target processor cannot be
performed. With HOLdtp set to OFF, the emulator operates normally. The
power-up default is OFF.

Remarks: HOLdtp places the processor pins into high impedance which allows the probe
to be plugged into the target while power is on. If you do not issue the
HOLdtp command before plugging into a target when the emulator is powered
up, you can cause damage to the emulator, the target, or both.

This command is the same as the HOLDTP command of MICE-V 386.

Examples: ->HOL ON
->HOL OFF

Microtek International, DSD 151 hyperSOURCE-386 User Manual

Command Reference Chapter Six

HOMe HOMe

Syntax:

Function:

HOMe [COMmand]
[SOUrce]

Sets the default window from which commands are issued and to which
commands return after execution. COMmand specifies the command-line, and
SOUrce specifies the source window as the home base. The command-line is
the default home base, but the default may be changed in the environment file.

Examples: ->HOM SOU //Issue commands from the source window
->HOM COM //Issue commands from the command-line

See Also: ENV, SOUrce

hyperSOURCE-386 User Manual 152 Microtek International, DSD

Command Reference Chapter Six

HOMe HOMe

Syntax: HOMe [COMmand]
[SOUrce]

Function: Sets the default window from which commands are issued and to which
commands return after execution. COMmand specifies the command-line, and
SOUrce specifies the source window as the home base. The command-line is
the default home base, but the default may be changed in the environment file.

Examples: ->HOM SOU //Issue commands from the source window
->HOM COM //Issue commands from the command-line

See Also: ENV, SOUrce

hyperSOURCE-386 User Manual 152 Microtek International, DSD

Chapter Six Command Reference

HTRc HTRc

Syntax: HTRc

Function: Starts trace collection while emulating.

Example: ->HTRC

Microtek International, DSD 153 hyperSOURCE-386 User Manual

Chapter Six Command Reference

HTRc HTRc

Syntax: HTRc

Function: Starts trace collection while emulating.

Example: ->HTRC

Microtek International, DSD 153 hyperSOURCE-386 User Manual

Command Reference Chapter Six

IDT IDT

Syntax: IDT Nexpr\Thseg_element] [= expr]

where seg_element is BASe, LIMit, G, B, P, D, DPL, C, R, W, A, E, V,
WCO, SOFf, SSE1, or TYPe.

Function: Displays or modifies descriptors or descriptor components of the interrupt
descriptor table.

Examples: ->IDT //Displays the IDT.
->IDT[1T) //Displays an entry in the IDT.

See Also: DT, GDT, LDT, PD, REGister, TSS

hyperSOURCE-386 User Manual 154 Microtek International, DSD

Command Reference Chapter Six

IDT IDT

Syntax: IDT Nexpr\][.seg_element] [= expr]

where seg_element is BASe, LIMit, G, B, P, D, DPL, C, R, W, A, E, V,
WCO, SOFf, SSE1, or TYPe.

Function: Displays or modifies descriptors or descriptor components of the interrupt
descriptor table.

Examples: ->IDT //Displays the IDT.
->IDT[1T) //Displays an entry in the IDT.

See Also: DT, GDT, LDT, PD, REGister, TSS

hyperSOURCE-386 User Manual 154 Microtek International, DSD

Chapter Six

IF

Syntax: IF expression
[command]

[ORIf expression]
[command]

[ELSe]
[command]

EIF

Command Reference

IF

Function: If any expression is TRUE (non-zero), the commands associated with it are
executed. If all of the expressions are FALSE (zero), either no action at all or
the commands associated with ELSE are executed, This command can be
formed by an IF-EIF, IF-ELSE-EIF, IF-ORIF-EIF, or IF-ORIF-ELSE-EIF
clause.

Examples: ->MACRO TESTIF //Define a macro.
MD>IF A + B >= %0
MD>LINE
MD>ORIF A + B < %1
MD>GO TIL %2
MD>ELSE
MD>A
MD>B
MD>EIF
MD>EMACRO
->MACRO TTT
MD>if(a > 0)
MD> if(b++ 1= 0)
MD> c--
MD> d--
MD> orif(b < -3)
MD> c >>= 2;
MD> eif
MD>else
MD> a = 0
MD>eif
MD>EMACRO
->

See Also: EIF, FOR, INClude, MACro, REPeat, SWItch, WHIle

Microtek International, DSD 155 hyperSOURCE-386 User Manual

Chapter Six

IF

Syntax: IF expression
[command]

[ORIf expression]
[command]

[ELSe]
[command]

EIF

Command Reference

IF

Function: If any expression is TRUE (non-zero), the commands associated with it are
executed. If all of the expressions are FALSE (zero), either no action at all or
the commands associated with ELSE are executed, This command can be
formed by an IF-EIF, IF-ELSE-EIF, IF-ORIF-EIF, or IF-ORIF-ELSE-EIF
clause.

Examples: ->MACRO TESTIF //Define a macro.
MD>IF A + B >= %0
MD>LINE
MD>ORIF A + B < %1
MD>GO TIL %2
MD>ELSE
MD>A
MD>B
MD>EIF
MD>EMACRO
->MACRO TTT
MD>if(a > 0)
MD> if(b++ 1= 0)
MD> c--
MD> d--
MD> orif(b < -3)
MD> c >>= 2;
MD> eif
MD>else
MD> a = 0
MD>eif
MD>EMACRO
->

See Also: EIF, FOR, INClude, MACro, REPeat, SWItch, WHIle

Microtek International, DSD 155 hyperSOURCE-386 User Manual

Command Reference Chapter Six

INClude or @ INClude or @

Syntax: {INClude} nfile_name["] [LISt]

{@}

Function: Executes the commands from the specified file. If LISt is specified, the
commands in the command file are displayed on the console as they are being
executed (default is NO LIST).

Remark: This command is identical to the @ command.

Examples: ->INC "INIT . MAC" LIS
->@ C: \ TMP \ GR1 . INC

See Also: JOUrnal, LISt, MACro

hyperSOURCE-386 User Manual 156 Microtek International, DSD

Command Reference Chapter Six

INClude or @ INClude or @

Syntax: {INClude} ["]file_name["] [LISt]

{@}

Function: Executes the commands from the specified file. If LISt is specified, the
commands in the command file are displayed on the console as they are being
executed (default is NO LIST).

Remark: This command is identical to the @ command.

Examples: ->INC " INIT. MAC" LIS
->@ C:\TMP\GR1.INC

See Also: JOUrnal, LISt, MACro

hyperSOURCE-386 User Manual 156 Microtek International, DSD

Chapter Six Command Reference

INPut INPut

Syntax: INPut [address =] port_no [W]
[D]

Function: Reads the contents from the specified input port and displays it on the console.
The contents are the data involved in the last I/O operation performed via the
port. If the qualifier "W" is specified, the port is 16-bit. Otherwise, it is
8-bit. If the qualifier "D" is specified, the port is 32-bit. If an "address" is
specified, the contents of the input port will be stored at the specified address.

Examples: ->INPUT 20H
->INP port_index W

See Also: OUTput

Microtek International, DSD 157 hyperSOURCE-386 User Manual

Chapter Six Command Reference

INPut INPut

Syntax: INPut [address =] port_no [W]
[D]

Function: Reads the contents from the specified input port and displays it on the console.
The contents are the data involved in the last I/O operation performed via the
port. If the qualifier "W" is specified, the port is 16-bit. Otherwise, it is
8-bit. If the qualifier "D" is specified, the port is 32-bit. If an "address" is
specified, the contents of the input port will be stored at the specified address.

Examples: ->INPUT 20H
->INP port_index W

See Also: OUTput

Microtek International, DSD 157 hyperSOURCE-386 User Manual

Command Reference Chapter Six

IStep IStep

Syntax: IStep [INto] [n]

Function: IStep causes the program to execute n machine instructions before breaking. If
n is not specified, the default is 1, which allows single-step debugging.

IStep INto will step into the called procedure.

Examples: ->IS 10 //Execute 10 instructions and stop.
->IS //Execute one instruction and atop.
->IS IN //Step into the called procedure.

See Also: Go, Step

hyperSOURCE-386 User Manual 158 Microtek International, DSD

Command Reference Chapter Six

IStep IStep

Syntax: IStep [INto] [n]

Function: IStep causes the program to execute n machine instructions before breaking. If
n is not specified, the default is 1, which allows single-step debugging.

IStep INto will step into the called procedure.

Examples: ->IS 10 //Execute 10 instructions and stop.
- >IS //Execute one instruction and atop.
->IS IN //Step into the called procedure.

See Also: Go, Step

hyperSOURCE-386 User Manual 158 Microtek International, DSD

Chapter Six Command Reference

JOUrnal, NO JOUrnal JOUrnal, NO JOUrnal

Syntax:

Function:

Examples:

See Also:

JOUrnal ["]file_name["] [KEYboard] [APPend]

NO JOUrnal

Creates a text file with the specified file name and records the user's entered
commands into the specified file. The command file created may be used in
the INClude command.

If KEYboard is specified, the journal file will store all entered keystrokes,
including those used in windows, rather than only the commands entered on
the command line.

If the specified file already exists, and the APPend qualifier is specified, then
the existing file will be appended rather than over-written.

This command may be disabled with the NO JOUrnal command.

->JOURNAL "MYDEBUG.LOG" //Record all entered commands to a file
-> //named "MYDEBUG.LOG."

INClude, LISt

Microtek International, DSD 159 hyperSOURCE-386 User Manual

Chapter Six Command Reference

JOUrnal, NO JOUrnal JOUrnal, NO JOUrnal

Syntax: JOUrnal ["]file_name["] [KEYboard] [APPend]

NO JOUrnal

Function: Creates a text file with the specified file name and records the user's entered
commands into the specified file. The command file created may be used in
the INClude command.

If KEYboard is specified, the journal file will store all entered keystrokes,
including those used in windows, rather than only the commands entered on
the command line.

If the specified file already exists, and the APPend qualifier is specified, then
the existing file will be appended rather than over-written.

This command may be disabled with the NO JOUrnal command.

Examples: ->JOURNAL "MYDEBUG.LOG" //Record all entered commands to a file
-> //named "MYDEBUG.LOG."

See Also: INClude, LISt

Microtek International, DSD 159 hyperSOURCE-386 User Manual

Command Reference Chapter Six

LDT LDT

Syntax: LDT Nexpr\Thseg_element] [= expr]

Function:

Examples:

See Also:

where seg_element is BASe, LIMit, G, B, P, D, DPL, C, R, W, A, E, V,
WCO, SOFf, SSE1, or TYPe.

Displays or modifies descriptors or descriptor components of the local
descriptor tables.

->LDT //Displays the LDT.
->LDT[12H) //Displays an entry in the LDT.
->LDT[2T].BASE=12345678H //Writes base field of LDT(2).

DT, GDT, IDT, PD, REGister, TSS

hyperSOURCE-386 User Manual 160 Microtek International, DSD

Command Reference Chapter Six

LDT LDT

Syntax: LDT Nexpr\][.seg_element] [= expr]

where seg_element is BASe, LIMit, G, B, P, D, DPL, C, R, W, A, E, V,
WCO, SOFf, SSE1, or TYPe.

Function: Displays or modifies descriptors or descriptor components of the local
descriptor tables.

Examples: ->LDT //Displays the LDT.
- >LDT[12H) //Displays an entry in the LDT.
- >LDT[2T].BASE=12345678H //Writes base field of LDT(2).

See Also: DT, GDT, IDT, PD, REGister, TSS

hyperSOURCE-386 User Manual 160 Microtek International, DSD

Chapter Six Command Reference

LiNEar LiNEar

Syntax: LiNEar address

Function: Converts the address to a linear address. Note that the abbreviation for this
command is LNE and not UN, in order to distinguish it from the LINE
command.

Examples: ->LNE 0D420000P
->
->LNE 1444:5678
->LNE 17H:12H:0

See Also: PHYsical, VIRtual

//Converts a physical address to a linear
//address.
//Converts a real mode virtual address.
//Converts a protected mode virtual address.

Microtek International, DSD 161 hyperSOURCE-386 User Manual

Chapter Six Command Reference

LiNEar LiNEar

Syntax: LiNEar address

Function: Converts the address to a linear address. Note that the abbreviation for this
command is LNE and not LIN, in order to distinguish it from the LINE
command.

Examples: ->LNE 0D420000P
->
->LNE 1444:5678
->LNE 17H:12H:0

See Also: PHYsical, VIRtual

//Converts a physical address to a linear
//address.
//Converts a real mode virtual address.
//Converts a protected mode virtual address.

Microtek International, DSD 161 hyperSOURCE-386 User Manual

Command Reference Chapter Six

LISt, NO LISt LISt, NO LISt

Syntax: LISt ["]file name["] [APPend]

NO LISt

Function: Creates a text file with the specified file name and records the console display
into the specified file. This command enables you to make a copy of a
debugging session.

If the APPend qualifier is given and the specified file already exists, then the
logged data will be appended to the specified file.

Remark: This command is disabled with the NO LIST command which closes the list
file.

Examples: ->LIST "MYDEBUG.LOG" //Record current session.
->NO LIS //Terminate logging.

See Also: JOUrnal

hyperSOURCE-386 User Manual 162 Microtek International, DSD

Command Reference Chapter Six

LISt, NO LISt LISt, NO LISt

Syntax: LISt ["]file name["] [APPend]

NO LISt

Function: Creates a text file with the specified file name and records the console display
into the specified file. This command enables you to make a copy of a
debugging session.

If the APPend qualifier is given and the specified file already exists, then the
logged data will be appended to the specified file.

Remark: This command is disabled with the NO LIST command which closes the list
file.

Examples: ->LIST "MYDEBUG.LOG" //Record current session.
->NO LIS //Terminate logging.

See Also: JOUrnal

hyperSOURCE-386 User Manual 162 Microtek International, DSD

Chapter Six Command Reference

LOAd LOAd

Syntax: LOAd ["]file name["] [NOCode] [EXTension="stringl

Function: Loads an object file from the host into the target memory. The file must be
an absolute file in Intel OMF86, OMF286, or OMF386 formats.

If NOCode is specified, executable code is not loaded into memory; only
symbol, line number and type information is loaded into hyperSOURCE-386.

The default file extension of source files is ".c"; EXTension can be used to
specify an alternate source file extension. The EXT entry in the *.env file
will do the same function.

Remark: The symbol and type information is loaded into the extended memory (RAM
above 1M bytes) of the PC host. Fnch symbol requires 40 bytes of RAM as
overhead plus the length of the symbol. Each type description requires five
bytes of RAM overhead plus the length of the type description.

Examples: ->LOAD "MYPROG.OMF"
->LOA MYPROG NOCODE
->LOAD C:\PROG\TSTPRO EXT = "pas"

See Also: EXTension, FREe, Go

Microtek International, DSD 163 hyperSOURCE-386 User Manual

Chapter Six Command Reference

LOAd LOAd

Syntax: LOAd ["]file name["] [NOCode] [EXTension="stringl

Function: Loads an object file from the host into the target memory. The file must be
an absolute file in Intel OMF86, OMF286, or OMF386 formats.

If NOCode is specified, executable code is not loaded into memory; only
symbol, line number and type information is loaded into hyperSOURCE-386.

The default file extension of source files is ".c"; EXTension can be used to
specify an alternate source file extension. The EXT entry in the *.env file
will do the same function.

Remark: The symbol and type information is loaded into the extended memory (RAM
above 1M bytes) of the PC host. Fnch symbol requires 40 bytes of RAM as
overhead plus the length of the symbol. Each type description requires five
bytes of RAM overhead plus the length of the type description.

Examples: ->LOAD "MYPROG.OMF"
- >LOA MYPROG NOCODE
- >LOAD C:\PROG\TSTPRO EXT = "pas"

See Also: EXTension, FREe, Go

Microtek International, DSD 163 hyperSOURCE-386 User Manual

Command Reference Chapter Six

LOCal LOCal

Syntax: LOCal

Function: Displays all active local symbols - type and address only. You need to use the
= or EVAluate command to examine their values.

Example: ->Loc

See Also: EVAluate, GLObal, SYMbol

hyperSOURCE-386 User Manual 164 Microtek International, DSD

Command Reference Chapter Six

LOCal LOCal

Syntax: LOCal

Function: Displays all active local symbols - type and address only. You need to use the
= or EVAluate command to examine their values.

Example: ->Loc

See Also: EVAluate, GLObal, SYMbol

hyperSOURCE-386 User Manual 164 Microtek International, DSD

Chapter Six Command Reference

MACro MACro

Syntax: MACro macro_name
[command}

EMAcro

Function: Defines a macro body. The text lines enclosed between the MACro definition
command and the EMAcro command will be stored in the macro symbol
table. The text lines can be any commands or comment lines. The command
can even be a macro invocation (see below) command. However, it cannot be
another macro definition command. In other words, nested macro definition is
not supported.

The macro can be invoked by prefixing the ':' before the name of the specific
macro. As part of the macro invocation, up to 10 parameters can be passed to
the macro. The macro parameters can be specified within the macro
definitions as %0 to %9. Macro parameters are passed as text strings.

Examples: ->MAC AA //Define macro AA.
MD>$stub#m=%0 //Pass one parameter.
MD>emacro
->

See Also: :, DIRectory MACro, DISplay MACro, EDit MACro, INClude, MLIst, PUT,
REMove MACro

Microtek International, DSD 165 hyperSOURCE-386 User Manual

Chapter Six Command Reference

MACro MACro

Syntax: MACro macro_name
[command}

EMAcro

Function: Defines a macro body. The text lines enclosed between the MACro definition
command and the EMAcro command will be stored in the macro symbol
table. The text lines can be any commands or comment lines. The command
can even be a macro invocation (see below) command. However, it cannot be
another macro definition command. In other words, nested macro definition is
not supported.

The macro can be invoked by prefixing the ':' before the name of the specific
macro. As part of the macro invocation, up to 10 parameters can be passed to
the macro. The macro parameters can be specified within the macro
definitions as %0 to %9. Macro parameters are passed as text strings.

Examples: ->MAC AA //Define macro AA.
MD>$stub#m=%0 //Pass one parameter.
MD>emacro
->

See Also: :, DIRectory MACro, DISplay MACro, EDit MACro, INClude, MLIst, PUT,
REMove MACro

Microtek International, DSD 165 hyperSOURCE-386 User Manual

Command Reference Chapter Six

MAP MAP

Syntax: MAP [start addr [[TO] end_addr]] [FAST] [RAM]
[LENgth n] [TARG] [ROM]

[CLEar] [NONE]
[E]
[D]

Function: Displays or sets up the user system memory layout.

CLEar clears any existing memory map by setting all memory to TARG RAM
(The CLEar key word can also be specified as CLR). E enables the map. E
can be used to restore the memory map. D disables the map. start_addr is the
starting address of the map. The range must be in multiples of 64K bytes. If
it is not, then it is rounded to the beginning of the 64K-byte boundary block.
end_addr is the ending physical address of the map. n is the number of bytes
in the memory range. If end_addr or n is not on a 64K-byte boundary, it is
rounded up to the nearest boundary. If end_addr or n is not given, one
64K-byte block is mapped. FAST indicates to use overlay RAM located on
the in-circuit probe. TARG indicates that the memory range exists in TARGet
(user) memory. RAM, ROM or NONE indicates the valid read/write access
to be checked whenever an address in the memory range appears on the
processor bus. RAM indicates the memory is both read and write. ROM
indicates the memory is read-only. NONE indicates no memory exists for the
specified range (no read or write).

Examples: ->MAP
->MAP OP OFFFFP FAST RAM
->MAP D

See Also: RAMtst, RAmtstP

hyperSOURCE-386 User Manual 166 Microtek International, DSD

Command Reference Chapter Six

MAP MAP

Syntax: MAP [start addr [[TO] end_addr]] [FAST] [RAM]
[LENgth n] [TARG] [ROM]

[CLEar] [NONE]
[E]
[D]

Function: Displays or sets up the user system memory layout.

CLEar clears any existing memory map by setting all memory to TARG RAM
(The CLEar key word can also be specified as CLR). E enables the map. E
can be used to restore the memory map. D disables the map. start_addr is the
starting address of the map. The range must be in multiples of 64K bytes. If
it is not, then it is rounded to the beginning of the 64K-byte boundary block.
end_addr is the ending physical address of the map. n is the number of bytes
in the memory range. If end_addr or n is not on a 64K-byte boundary, it is
rounded up to the nearest boundary. If end_addr or n is not given, one
64K-byte block is mapped. FAST indicates to use overlay RAM located on
the in-circuit probe. TARG indicates that the memory range exists in TARGet
(user) memory. RAM, ROM or NONE indicates the valid read/write access
to be checked whenever an address in the memory range appears on the
processor bus. RAM indicates the memory is both read and write. ROM
indicates the memory is read-only. NONE indicates no memory exists for the
specified range (no read or write).

Examples: ->MAP
- >MAP OP OFFFFP FAST RAM
- >MAP D

See Also: RAMtst, RAmtstP

hyperSOURCE-386 User Manual 166 Microtek International, DSD

Chapter Six

MEMory

Syntax:

Function:

Examples:

See Also:

Command Reference

MEMory

MEMory [address]

Enters the memory window. If no address is specified, the last specified
address will be used.

->MEM
->MEM de:100h
->MEM big_array

BYTe, CHAr, DOUble, DWOrd, FLOat, POInter, QWOrd, TREal, WORd

Microtek International, DSD 167 hyperSOURCE-386 User Manual

Command Reference

MEMory

MEMory [address]

Enters the memory window. If no address is specified, the last specified
address will be used.

->MEM
->MEM de:100h
- >MEM big_array

BYTe, CHAr, DOUble, DWOrd, FLOat, POInter, QWOrd, TREal, WORd

Chapter Six

MEMory

Syntax:

Function:

Examples:

See Also:

Microtek International, DSD 167 hyperSOURCE-386 User Manual

Command Reference Chapter Six

MLIst MLIst

Syntax: MLIst [ON]
[OFF]

Function: Causes the macro bodies to be displayed on the console as the macros are
expanded. The MUST OFF command may be used to disable this command.
On start up the default is MUST OFF.

Example: ->MLI //Display current setting.
->MLI ON //Enable the display of macro body.
->MLI OFF //Disable the display of macro body.

See Also: INClude, LISt, MACro

hyperSOURCE-386 User Manual 168 Microtek International, DSD

Command Reference Chapter Six

MLIst MLIst

Syntax: MLIst [ON]
[OFF]

Function: Causes the macro bodies to be displayed on the console as the macros are
expanded. The MUST OFF command may be used to disable this command.
On start up the default is MUST OFF.

Example: ->MLI //Display current setting.
->MLI ON //Enable the display of macro body.
->MLI OFF //Disable the display of macro body.

See Also: INClude, LISt, MACro

hyperSOURCE-386 User Manual 168 Microtek International, DSD

Chapter Six Command Reference

NUMber NUMber

Syntax: NUMber [ON]
[OFF]

Function: Enables or disables the displaying of line numbers in the source window. If
no argument is specified, the current setting will be displayed. The default is
OFF.

Examples: ->NUM ON
->NUM OFF

See Also: #, B, Go, VIEw

Microtek International, DSD 169 hyperSOURCE-386 User Manual

Chapter Six Command Reference

NUMber NUMber

Syntax: NUMber [ON]
[OFF]

Function: Enables or disables the displaying of line numbers in the source window. If
no argument is specified, the current setting will be displayed. The default is
OFF.

Examples: ->NUM ON
->NUM OFF

See Also: #, B, Go, VIEw

Microtek International, DSD 169 hyperSOURCE-386 User Manual

Command Reference Chapter Six

OCTal OCTal

Syntax: OCTal

Function: Sets the default input radix to octal or base 8.

Example: —>OCT

See Also: BINary, DECimal, HEX, RADix

hyperSOURCE-386 User Manual 170 Microtek International, DSD

Command Reference

OCTal

Syntax: OCTal

Function: Sets the default input radix to octal or base 8.

Example: ->ocT

See Also: BINary, DECimal, HEX, RADix

Chapter Six

OCTal

hyperSOURCE-386 User Manual 170 Microtek International, DSD

Chapter Six Command Reference

OPEn OPEn

Syntax: OPEn n = ["]file name["]

where n = 0, 1, 2, 3, 4, or 5

Function: Opens a file and associates it with a number n. The opened file may later be
used in READ or WRITE commands to read/write data from/to the file. If
the specified file does not exist, it will be created.

Examples: ->OPEN 1 = INPUT.DAT //Open file INPUT.DAT
->OPEN 2 = "OUTPUT.DAT" //Open file OUTPUT.DAT
->READ A, B FROM 1
->WRITE "A = ", A TO 2

See Also: CLOse, INClude, MACro, REAd, WRIte

Microtek International, DSD 171 hyperSOURCE-386 User Manual

Chapter Six Command Reference

OPEn OPEn

Syntax: OPEn n = ["]file name["]

where n = 0, 1, 2, 3, 4, or 5

Function: Opens a file and associates it with a number n. The opened file may later be
used in READ or WRITE commands to read/write data from/to the file. If
the specified file does not exist, it will be created.

Examples: ->OPEN 1 = INPUT.DAT //Open file INPUT.DAT
->OPEN 2 = "OUTPUT.DAT" //Open file OUTPUT.DAT
->READ A, B FROM 1
->WRITE "A = ", A TO 2

See Also: CLOse, INClude, MACro, REAd, WRIte

Microtek International, DSD 171 hyperSOURCE-386 User Manual

Command Reference Chapter Six

OUTput OUTput

Syntax: OUTput port no = value [W]
[D]

Function: Assigns an 8-bit value to the specified output port. If the qualifier "W" is
specified, a 16-bit value will be assigned. If the qualifier "D" is specified, a
32-bit value will be assigned.

Examples: ->OUTPUT 20H = Oc2H
->OUT out_port_index = 1011H W
->OUT out_port_index + 6 = 10H

See Also: INPut

hyperSOURCE-386 User Manual 172 Microtek International, DSD

Command Reference Chapter Six

OUTput OUTput

Syntax: OUTput port no = value [W]
[D]

Function: Assigns an 8-bit value to the specified output port. If the qualifier "W" is
specified, a 16-bit value will be assigned. If the qualifier "D" is specified, a
32-bit value will be assigned.

Examples: ->OUTPUT 20H = 0c2H
->OUT out_port_index = 1011H W
->OUT out_port_index + 6 = 10H

See Also: INPut

hyperSOURCE-386 User Manual 172 Microtek International, DSD

Chapter Six

PAUse

Syntax:

Function:

Examples:

See Also:

Command Reference

PAUse

PAUse [ON]
[OFF]

Enables or disables the scrolling of the display in the dialog window. When
PAUse ON is in effect, the display will stop if the display lines fill up the
dialog window. The display will continue to scroll after any key is pressed.
PAUse OFF turns off the effect such that the display will continue scrolling
without any pause.

The default is PAUse ON. PAUse OFF is needed if the debugging session
must be run unattended using a command file. PAUse without any parameter
will display the current setting.

->PAUse //Displays current setting.
->PAU OFF //No pause during text scrolling.

INClude, LISt, WAIt

Microtek International, DSD 173 hyperSOURCE-386 User Manual

Command Reference

PAUse

PAUse [ON]
[OFF]

Enables or disables the scrolling of the display in the dialog window. When
PAUse ON is in effect, the display will stop if the display lines fill up the
dialog window. The display will continue to scroll after any key is pressed.
PAUse OFF turns off the effect such that the display will continue scrolling
without any pause.

Chapter Six

PAUse

Syntax:

Function:

The default is PAUse ON. PAUse OFF is needed if the debugging session
must be run unattended using a command file. PAUse without any parameter
will display the current setting.

Examples: ->PAUse //Displays current setting.
- >PAU OFF //No pause during text scrolling.

See Also: INClude, LISt, WAIt

Microtek International, DSD 173 hyperSOURCE-386 User Manual

Command Reference Chapter Six

PD PD

Syntax: PD Nexprla.PTNexpr\fl.pt_part [= expr]]

where pt_part is PTA, PFA, AVL, P, RW, US, D, or A.

Function: Displays page directory. Displays or modifies page table and page table entry.

Examples: ->PD[DT] //Displays the page table at page directory
-> //index zero.
->PD[07].PT[4T] //Displays the 5th entry in the first page
-> //table.

See Also: DT, GDT, IDT, LDT, REGister, TSS

hyperSOURCE-386 User Manual 174 Microtek International, DSD

Command Reference Chapter Six

PD PD

Syntax: PD Nexpr\][[.PTNexpr\fl.pt_part [= expr]]

where pt_part is PTA, PFA, AVL, P, RW, US, D, or A.

Function: Displays page directory. Displays or modifies page table and page table entry.

Examples: ->PD[DT] //Displays the page table at page directory
- > //index zero.
- >PD[07].PT[4T] //Displays the 5th entry in the first page
- > //table.

See Also: DT, GDT, IDT, LDT, REGister, TSS

hyperSOURCE-386 User Manual 174 Microtek International, DSD

Chapter Six Command Reference

PHYsical PHYsical

PHYsical address

Converts the address to a physical address.

->PHYSICAL 1234:8767 //Converts a real mode virtual address.
->PHYSICAL 10:20 //Converts a protected mode virtual
-> //address.
->PHY 12898778 //Converts a linear address.

LiNEar, VIRtual

Syntax:

Function:

Examples:

See Also:

Microtek International, DSD 175 hyperSOURCE-386 User Manual

Chapter Six Command Reference

PHYsical PHYsical

Syntax: PHYsical address

Function: Converts the address to a physical address.

Examples: ->PHYSICAL 1234:8767
- >PHYSICAL 10:20
- >
- >PHY 12898778

See Also: LiNEar, VIRtual

//Converts a real mode virtual address.
//Converts a protected mode virtual
//address.
//Converts a linear address.

Microtek International, DSD 175 hyperSOURCE-386 User Manual

Command Reference Chapter Six

PMOde PMOde

Syntax: PMOde

Function: Displays the current mode of the processor.

Displays REAL, V86, PROTECT16, or PROTECT32 mode, depending on the
mode of the 80386 at the last breakpoint or HALT.

Remarks: This command is the same as the PMODE command of MICE-V 386.

Example: ->PMO

hyperSOURCE-386 User Manual 176 Microtek International, DSD

Command Reference Chapter Six

PMOde PMOde

Syntax: PMOde

Function: Displays the current mode of the processor.

Displays REAL, V86, PROTECT16, or PROTECT32 mode, depending on the
mode of the 80386 at the last breakpoint or HALT.

Remarks: This command is the same as the PMODE command of MICE-V 386.

Example: ->PMO

hyperSOURCE-386 User Manual 176 Microtek International, DSD

Chapter Six

POInter

Syntax: POInter [address] [= expression [, expression]...]
[[TO] address [= expression]]
[LENgth n [= expression]]

Command Reference

POInter

Function: Displays or alters memory contents in pointer (4-byte) scope. The base of two
addresses that define an address range must be the same. For example,
POINTER 200:40 to 300:300 is invalid.

Examples: ->POI 40
->POINTER 100:40 TO 100:200
->POI &pointer_buf LENGTH 20
->POINTER DS:SI = 9:6, CS:IP, SS:BP+SP
->POI pointer_array LEN 100 = 0:0

See Also: BYTe, CHAr, DOUble, DWOrd, FLOat, QWOrd, TRRal, WORd

Microtek International, DSD 177 hyperSOURCE-386 User Manual

Chapter Six

POInter

Syntax: POInter [address] [= expression [, expression]...]
[[TO] address [= expression]]
[LENgth n [= expression]]

Command Reference

POInter

Function: Displays or alters memory contents in pointer (4-byte) scope. The base of two
addresses that define an address range must be the same. For example,
POINTER 200:40 to 300:300 is invalid.

Examples: ->POI 40
- >POINTER 100:40 TO 100:200
- >POI &pointer_buf LENGTH 20
->POINTER DS:SI = 9:6, CS:IP, SS:BP+SP
- >POI pointer_array LEN 100 = 0:0

See Also: BYTe, CHAr, DOUble, DWOrd, FLOat, QWOrd, TRRal, WORd

Microtek International, DSD 177 hyperSOURCE-386 User Manual

Command Reference Chapter Six

PRInt or DISplay TRAce PRInt or DISplay TRAce

Syntax: {PRInt} [start_line [end line]] [CLF2r]

{DISplay TRAce}

Function: Displays the trace buffer. 'start_line' is the line number where the trace
display begins. 'end_line' is the line number to end the display. CLF2r clears
the entire trace buffer (The CLEar key word can also be specified as CLR).

Remarks: This command is the same as the DISplay TRAce command.

The syntax of this command is similar to that of the DT command of MICE-V
386.

Examples: ->PRI 0 20 //Prints trace frames 0 to 20.
->PRI CLE //Clears trace buffer.

See Also: DISplay TRAce, HTRc

hyperSOURCE-386 User Manual 178 Microtek International, DSD

Command Reference Chapter Six

PRInt or DISplay TRAce PRInt or DISplay TRAce

Syntax: {PRInt} [start_line [end line]] [CLF2r]

{DISplay TRAce}

Function: Displays the trace buffer. 'start_line' is the line number where the trace
display begins. 'end_line' is the line number to end the display. CLF2r clears
the entire trace buffer (The CLEar key word can also be specified as CLR).

Remarks: This command is the same as the DISplay TRAce command.

The syntax of this command is similar to that of the DT command of MICE-V
386.

Examples: ->PRI 0 20 //Prints trace frames 0 to 20.
->PRI CLE //Clears trace buffer.

See Also: DISplay TRAce, HTRc

hyperSOURCE-386 User Manual 178 Microtek International, DSD

Chapter Six Command Reference

PROlog PROlog

Syntax: PROlog [ON]
[OFF]

Function: Enables, disables, or displays the status of automatic prolog execution. If
enabled, function prolog code will be automatically executed whenever the
function is entered via Go, Step or ISTep. The default setting is ON. You
can set the PROLOG variable to override the default setting in the
environment file.

The prolog of a C function is the instructions at the beginning of the function
that set up the local stack frame for the C function when it is entered.

Example: ->PRO OFF //Disables automatic prolog execution.

See Also: B, ENV, Go, ISTep, Step

Microtek International, DSD 179 hyperSOURCE-386 User Manual

Chapter Six Command Reference

PROlog PROlog

Syntax: PROlog [ON]
[OFF]

Function: Enables, disables, or displays the status of automatic prolog execution. If
enabled, function prolog code will be automatically executed whenever the
function is entered via Go, Step or ISTep. The default setting is ON. You
can set the PROLOG variable to override the default setting in the
environment file.

The prolog of a C function is the instructions at the beginning of the function
that set up the local stack frame for the C function when it is entered.

Example: ->PRO OFF //Disables automatic prolog execution.

See Also: B, ENV, Go, ISTep, Step

Microtek International, DSD 179 hyperSOURCE-386 User Manual

Command Reference Chapter Six

PUT PUT

Syntax: PUT "file name" MACro [macro_name [, macro_name]...]

Function: Writes some or all macro definitions to a specified file.

Examples: ->PUT "mac.inc" MAC //Write all macro definitions to the
-> //file MAC.INC
->PUT "ABC.INC" MAC AA,BB,CC //Write macro definitions AA, BB,
-> //and CC to the file ABC.INC

See Also: DIRectory MACro, DISplay MACro, EDit MACro, INClude, MACro, MLIst,
REMove MACro

hyperSOURCE-386 User Manual 180 Microtek International, DSD

Command Reference Chapter Six

PUT PUT

Syntax: PUT "file name" MACro [macro_name [, macro_name]...]

Function: Writes some or all macro definitions to a specified file.

Examples: ->PUT "mac.inc" MAC //Write all macro definitions to the
- > //file MAC.INC
- >PUT "ABC.INC" MAC AA,BB,CC //Write macro definitions AA, BB,
- > //and CC to the file ABC.INC

See Also: DlRectory MACro, DISplay MACro, EDit MACro, INClude, MACro, MLIst,
REMove MACro

hyperSOURCE-386 User Manual 180 Microtek International, DSD

Chapter Six Command Reference

QUIt QUIt

Syntax: QUIt

Function: Terminates the debug session. This command closes all opened files and
deletes all temporary files that are created by hyperSOURCE-386. You can
also press the <Alt> x keys to terminate the debug session.

Remark: This command is the same as the EXIt command.

Example: ->QUIT

See Also: EXIt

Microtek International, DSD 181 hyperSOURCE-386 User Manual

Chapter Six Command Reference

QUIt QUIt

Syntax: QUIt

Function: Terminates the debug session. This command closes all opened files and
deletes all temporary files that are created by hyperSOURCE-386. You can
also press the <Alt> x keys to terminate the debug session.

Remark: This command is the same as the EXIt command.

Example: ->QUIT

See Also: EXIt

Microtek International, DSD 181 hyperSOURCE-386 User Manual

QWOrd

Syntax:

Command Reference Chapter Six

QWOrd

QWOrd [address] [= expression [, expression]...]
[[TO] address [= expression]]
[LENgth n [= expression]]

Function: Displays or alters memory contents in quad-word (8-byte) scope. The base of
two addresses that define an address range must be the same. For example,
QWORD 200:40 to 300:300 is invalid.

Examples: ->QWORD 40 //Display quad-word content of address DS:40
->QWORD 100:40 TO 100:200
->QWORD &unsigned long buf LENGTH 20
->QWORD DS:SI = 23, 234Q, 4+6, AL, 38-T
->QWORD unsigned_long_array LEN 100 = 0

See Also: BYTe, CHAr, DOUble, DWOrd, FLOat, POInter, TREaI, WORd

hyperSOURCE-386 User Manual 182 Microtek International, DSD

Command Reference Chapter Six

QWOrd QWOrd

Syntax: QWOrd [address] [= expression [, expression]...]
[[TO] address [= expression]]
[LENgth n [= expression]]

Function: Displays or alters memory contents in quad-word (8-byte) scope. The base of
two addresses that define an address range must be the same. For example,
QWORD 200:40 to 300:300 is invalid.

Examples: ->QWORD 40 //Display quad-word content of address DS:40
->QWORD 100:40 TO 100:200
->QWORD &unsigned long buf LENGTH 20
->QWORD DS:SI = 23, 234Q, 4+6, AL, 38-T
->QWORD unsigned_long_array LEN 100 = 0

See Also: BYTe, CHAr, DOUble, DWOrd, FLOat, POInter, TREaI, WORd

hyperSOURCE-386 User Manual 182 Microtek International, DSD

Chapter Six Command Reference

RADIX RADix

Syntax: RADix [HEX]
[DECimal]
[OCTal
[BINary

Function:

Remarks:

Examines or sets radix for input numbers. Default radix is decimal. The
qualifiers HEX, DEC, OCT, and BIN indicate hexadecimal, decimal, octal and
binary, respectively.

This command only affects the number input. Variable values are displayed in
the radix that is consistent with the type. For examples, the values for short,
int and long variables are displayed as decimal numbers, the values for char
variables are displayed as ASCII characters and hexadecimal numbers, the
values for double and float variables are displayed as floating point numbers.
Use the EVAluate or = command to display the variable values as binary,
octal, decimal and hexadecimal numbers.

Examples: ->RAD //Examines current input radix
->RAD HEX //Sets input radix to hexadecimal

See Also: BINary, DECimal, HEX, OCTal

Microtek International, DSD 183 hyperSOURCE-386 User Manual

Chapter Six Command Reference

RADIX RADix

Syntax: RADix [HEX]
[DECimal]
[OCTal
[BINary

Function:

Remarks:

Examines or sets radix for input numbers. Default radix is decimal. The
qualifiers HEX, DEC, OCT, and BIN indicate hexadecimal, decimal, octal and
binary, respectively.

This command only affects the number input. Variable values are displayed in
the radix that is consistent with the type. For examples, the values for short,
int and long variables are displayed as decimal numbers, the values for char
variables are displayed as ASCII characters and hexadecimal numbers, the
values for double and float variables are displayed as floating point numbers.
Use the EVAluate or = command to display the variable values as binary,
octal, decimal and hexadecimal numbers.

Examples: ->RAD //Examines current input radix
->RAD HEX //Sets input radix to hexadecimal

See Also: BINary, DECimal, HEX, OCTal

Microtek International, DSD 183 hyperSOURCE-386 User Manual

Command Reference Chapter Six

RAMtst RAMtst

Syntax: RAMtst [load_addr]

Function: Loads a RAM test program into memory. BRkRidt, BRkPidt, and BRKgdt are
set up automatically by this command.

load_adde is the address where RAM test is loaded into memory. If
'load_addr' is not specified, it is loaded at the same location as the last time
the command was executed (0:0 on power-up). The 'load_addr' must be
virtual. If you supply a virtual address, but do not specify a segment, then the
DS register is used.

Remarks: This command is the same as the RAMTST command of MICE-V 386.

Examples: ->RAM 1000H:0
->DS=0
->ESI=0
->EDI=OFFFFH
->GO TIL OFCH

See Also: MAP, RAmtstP, VeRiFy

hyperSOURCE-386 User Manual 184 Microtek International, DSD

Command Reference Chapter Six

RAMtst RAMtst

Syntax: RAMtst [load_addr]

Function: Loads a RAM test program into memory. BRkRidt, BRkPidt, and BRKgdt are
set up automatically by this command.

load_addr' is the address where RAM test is loaded into memory. If
'load_addr' is not specified, it is loaded at the same location as the last time
the command was executed (0:0 on power-up). The 'load_addr' must be
virtual. If you supply a virtual address, but do not specify a segment, then the
DS register is used.

Remarks: This command is the same as the RAMTST command of MICE-V 386.

Examples: ->RAM 1000H:0
->DS=0
- >ESI=0
- >EDI=OFFFFH
- >GO TIL OFCH

See Also: MAP, RAmtstP, VeRiFy

hyperSOURCE-386 User Manual 184 Microtek International, DSD

Chapter Six Command Reference

RAmtstP RAmtstP

Syntax: RAmtstP [load_addr]

Function: Loads a protected mode RAM test program into memory, BRkRidt, BRkPidt,
and BRKgdt are set up automatically by this command. The test program
begins in real mode and switches to protected mode.

'load_addr' is the address where RAM test is loaded into memory. If
'load_addr' is not specified, it is loaded at the same location as the last time
the command was executed (0:0 on power-up). The 'load_addr' must be
virtual. If you supply a virtual address, but do not specify a segment, then the
DS register is used.

Remarks: This command is the same as the RAMTSTP command of MICE-V 386.

Examples: ->RAP 1000H:0
->DS=0
->ESI=0
->EDI=OFFFFH
->GO TIL OFCH

See Also: MAP, RAMtst, VeRiFy

Microtek International, DSD 185 hyperSOURCE-386 User Manual

Chapter Six Command Reference

RAmtstP RAmtstP

Syntax: RAmtstP [load_addr]

Function: Loads a protected mode RAM test program into memory, BRIcRidt, BRkPidt,
and BRKgdt are set up automatically by this command. The test program
begins in real mode and switches to protected mode.

load_addr' is the address where RAM test is loaded into memory. If
'load_addr' is not specified, it is loaded at the same location as the last time
the command was executed (0:0 on power-up). The load_addr' must be
virtual. If you supply a virtual address, but do not specify a segment, then the
DS register is used.

Remarks: This command is the same as the RAMTSTP command of MICE-V 386.

Examples: ->RAP 1000H:0
- >DS=0
- >ESI=0
->EDI=OFFFFH
- >GO TIL OFCH

See Also: MAP, RAMtst, VeRiFy

Microtek International, DSD 185 hyperSOURCE-386 User Manual

Command Reference Chapter Six

RBRk RBRk

Syntax: RBRk [FROm address] register [NOT] expression [high_value]

Function: Single steps the processor until a register matches the specified value or falls
within or outside the specified range.

FROm 'address' sets the CS and EIP registers to 'address' before the single
stepping starts. 'address' must be a virtual address. 'register' is a 80386
registers. NOT breaks when the register does not match the specified value or
is outside the specified range. 'expression' is the value to match.
'high_value' specifies the high end of a range, that is, from 'expression'
through 'high_value.' The range bounds are inclusive.

Remark: Before using RBRk, you must first set up the stack pointer as follows:

For real mode addressing: ESP > = 6h

For virtual mode addressing: ESP > = 24h

For protected mode privilege level zero: ESP > = OCh

For protected mode privilege level non-zero: ESP > = 14h

The syntax of this command is similar to that of the RBRK command of
MICE-V 386.

Examples: ->RBR AX 1234H
->RBR FROM 1000 SI NOT 5555H

See Also: REGister

hyperSOURCE-386 User Manual 186 Microtek International, DSD

Command Reference Chapter Six

RBRk RBRk

Syntax: RBRk [FROm address] register [NOT] expression [high_value]

Function: Single steps the processor until a register matches the specified value or falls
within or outside the specified range.

FROm 'address' sets the CS and EIP registers to 'address' before the single
stepping starts. 'address' must be a virtual address. 'register' is a 80386
registers. NOT breaks when the register does not match the specified value or
is outside the specified range. 'expression' is the value to match.
'high_value' specifies the high end of a range, that is, from 'expression'
through 'high_value.' The range bounds are inclusive.

Remark: Before using RBRk, you must first set up the stack pointer as follows:

For real mode addressing: ESP > = 6h

For virtual mode addressing: ESP > = 24h

For protected mode privilege level zero: ESP > = 0Ch

For protected mode privilege level non-zero: ESP > = 14h

The syntax of this command is similar to that of the RBRK command of
MICE-V 386.

Examples: ->RBR AX 1234H
->RBR FROM 1000 SI NOT 5555H

See Also: REGister

hyperSOURCE-386 User Manual 186 Microtek International, DSD

Chapter Six Command Reference

RDYbrk RDYbrk

Syntax: RDYbrk [F.---10N]
[[=]OFF]

Function: Displays, enables, or disables the emulator's ready signal timeout break
hardware.

ON stops the emulator with a break message when a cycle with more than
RDYTO wait-states is encountered. If OFF, the emulator supplies READY
for the current cycle and execution continues without a message provided that
the RDYTO symbol is enabled. The power-up default is OFF,

Remarks: This symbol may be used to detect READY hang conditions in the target
system hardware.

RDYBRK has no effect if the MEAD Y signal is set to OFF.

This command is the same as the RDYBRK command of MICE-V 386.

Examples: ->RDY
->RDY ON

See Also: RDyTo, SIG, WSTate

Microtek International, DSD 187 hyperSOURCE-386 User Manual

Chapter Six Command Reference

RDYbrk RDYbrk

Syntax: RDYbrk [F---1ON]
[[=]OFF]

Function: Displays, enables, or disables the emulator's ready signal timeout break
hardware.

ON stops the emulator with a break message when a cycle with more than
RDYTO wait-states is encountered. If OFF, the emulator supplies READY
for the current cycle and execution continues without a message provided that
the RDYTO symbol is enabled. The power-up default is OFF,

Remarks: This symbol may be used to detect READY hang conditions in the target
system hardware.

RDYBRK has no effect if the MEAD Y signal is set to OFF.

This command is the same as the RDYBRK command of MICE-V 386.

Examples: ->RDY
->RDY ON

See Also: RDyTo, SIG, WSTate

Microtek International, DSD 187 hyperSOURCE-386 User Manual

Command Reference Chapter Six

RDyTo RDyTo

Syntax: RDyTo [=expression]

Function: Specifies the emulator's ready timeout as 'expression.'

'expression' is the number of ready timeouts. 'expression' must be between 0
and 1Fh. The emulator supplies a READY for the current bus cycle after
'expression' wait-states. If RDYBRK is set to ON, then a "Ready Timeout
Break" error will occur if 'expression' is set to more than the longest known
wait-state used in the target system. The power-on default is 0, meaning the
RDYTO function is disabled.

Remarks: RDYTO has no effect if the $READY signal is set to OFF.

This command is the same as the RDYTO command of MICE-V 386.

Examples: ->RDYBRK ON
->RDT=OF
->RDT=O

See Also: RDYbrk, SIG, WSTate

hyperSOURCE-386 User Manual 188 Microtek International, DSD

Command Reference Chapter Six

RDyTo RDyTo

Syntax: RDyTo [=expression]

Function: Specifies the emulator's ready timeout as 'expression.'

'expression' is the number of ready timeouts. 'expression' must be between 0
and 1Fh. The emulator supplies a READY for the current bus cycle after
'expression' wait-states. If RDYBRK is set to ON, then a "Ready Timeout
Break" error will occur if 'expression' is set to more than the longest known
wait-state used in the target system. The power-on default is 0, meaning the
RDYTO function is disabled.

Remarks: RDYTO has no effect if the $READY signal is set to OFF.

This command is the same as the RDYTO command of MICE-V 386.

Examples: ->RDYBRK ON
->RDT=OF
->RDT=O

See Also: RDYbrk, SIG, WSTate

hyperSOURCE-386 User Manual 188 Microtek International, DSD

Chapter Six Command Reference

REAd REAd

Syntax: REAd symbol [, symbol]... [FROm n]

Function: Reads in symbol values from specified file n which is opened using the OPEN
command. Default is from user's terminal.

Examples: ->READ A, *ptr_to_byte, ARRAY[4][3] FROM 2
->READ STRUCT.MEMBER, PTRSTR->FIELD

See Also: CLOse, INClude, OPEn, WRIte

Microtek International, DSD 18.9 hyperSOURCE-386 User Manual

Chapter Six Command Reference

REAd REAd

Syntax: REAd symbol [, symbol]... [FROm n]

Function: Reads in symbol values from specified file n which is opened using the OPEN
command. Default is from user's terminal.

Examples: ->READ A, *ptr_to_byte, ARRAY[4][3] FROM 2
->READ STRUCT.MEMBER, PTRSTR->FIELD

See Also: CLOse, INClude, OPEn, WRIte

Microtek International, DSD 18.9 hyperSOURCE-386 User Manual

Command Reference Chapter Six

REGister REGister

Syntax: REGister
reg_name[=expression] [, reg_name[=expression]]...
reg_name:reg_name[=expression:expression]

Function: Displays or changes 80386 register values.

General purpose registers: EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP,
AX, BX, CX, DX, SI, DI, BP, SP, AH, AL, BH, BL, CH, CL, DH, DL.

Segment registers: DS, ES, FS, GS, SS, CS.

Instruction pointers: EIP, IP.

Status registers: AF, CF, DF, IF, IOPL, NT, OF, PF, RF, SF, TF, VM, ZF,
FLAG.

System table registers: GDTBAS, GDTLIM, IDTBAS, IDTLIM, LDTR, TR.

Control registers: CRO, CR2, CR3.

80287/387 registers: CW, TW, SW, STO..ST7

Examples: ->REG //Displays current register values
->AX, BL, CH //Displays register AX, BL, AND CH
->AH=56Q, CL=101Y, IP=78T //Changes register values
->GDTLIM
->CS:IP
->AX:BL = (678 + 6) : 4445
->cs:ip = &start

See Also: DT, GDT, IDT, LDT, PD, TSS

hyperSOURCE-386 User Manual 190 Microtek International, DSD

Command Reference Chapter Six

REGister REGister

Syntax: REGister
reg_name[=expression] [, reg_name[=expression]]...
reg_name:reg_name[=expression:expression]

Function: Displays or changes 80386 register values.

General purpose registers: EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP,
AX, BX, CX, DX, SI, DI, BP, SP, AH, AL, BH, BL, CH, CL, DH, DL.

Segment registers: DS, ES, FS, GS, SS, CS.

Instruction pointers: EIP, IP.

Status registers: AF, CF, DF, IF, IOPL, NT, OF, PF, RF, SF, TF, VM, ZF,
FLAG.

System table registers: GDTBAS, GDTLIM, IDTBAS, IDTLIM, LDTR, TR.

Control registers: CR0, CR2, CR3.

80287/387 registers: CW, TW, SW, ST0..ST7

Examples: ->REG
- >AX, BL, CH
- >AH=56Q, CL=101Y, IP=78T
- >GDTLIM
- >CS:IP
->AX:BL = (678 + 6) : 4445
- >cs:ip = &start

See Also: DT, GDT, IDT, LDT, PD, TSS

//Displays current register values
//Displays register AX, BL, AND CH
//Changes register values

hyperSOURCE-386 User Manual 190 Microtek International, DSD

Chapter Six Command Reference

REMove MACro REMove MACro

Syntax:

Function:

Examples:

See Also:

REMove MACro [macro_name [,macro_name]...]

Removes the designated macro definition(s) from the macro symbol table. If
no macro name is specified in the command, all macros are removed.

->REM MAC //Remove all macro definitions.
->REM MAC AA, BB, CC //Remove macro AA, BB, and CC.

DIRectory MACro, DISplay MACro, EDit MACro, INClude, MACro,
MLIst

Microtek International, DSD 191 hyperSOURCE-386 User Manual

Chapter Six Command Reference

REMove MACro REMove MACro

Syntax:

Function:

Examples:

See Also:

REMove MACro [macro_name [,macro_name]...]

Removes the designated macro definition(s) from the macro symbol table. If
no macro name is specified in the command, all macros are removed.

- >REM MAC //Remove all macro definitions.
- >REM MAC AA, BB, CC //Remove macro AA, BB, and CC.

DIRectory MACro, DISplay MACro, EDit MACro, INClude, MACro,
MLIst

Microtek International, DSD 191 hyperSOURCE-386 User Manual

Command Reference Chapter Six

REPeat REPeat

Syntax: REPeat [n]
[command]

UNTil expression

Function: Executes the group of commands included between REPEAT and UNTIL, then
evaluates the expression. If it is TRUE (non-zero), the group of commands
are executed again and the expression is reevaluated. The loop continues until
the termination condition is satisfied, i.e., the expression becomes FALSE
(zero) or has looped n times if n is specified.

Examples: ->MACRO TESTI
MD>REPEAT %0
MD>A1 = Al / 2.
MD>B = ROUTINE(A)
MD>UNTIL B == %1
MD>EMACRO
->

//Define a macro that
//at most repeats %0 times.

//Call routine, return value to B
//Break if B equals to %1

See Also: FOR, IF, INClude, MACro, UNTil, WHIle

hyperSOURCE-386 User Manual 192 Microtek International, DSD

Command Reference Chapter Six

REPeat REPeat

Syntax: REPeat [n]
[command]

UNTil expression

Function: Executes the group of commands included between REPEAT and UNTIL, then
evaluates the expression. If it is TRUE (non-zero), the group of commands
are executed again and the expression is reevaluated. The loop continues until
the termination condition is satisfied, i.e., the expression becomes FALSE
(zero) or has looped n times if n is specified.

Examples: ->MACRO TESTI
MD>REPEAT %0
MD>A1 = Al / 2.
MD>B = ROUTINE(A)
MD>UNTIL B == %1
MD>EMACRO
->

//Define a macro that
//at most repeats %0 times.

//Call routine, return value to B
//Break if B equals to %1

See Also: FOR, IF, INClude, MACro, UNTil, WHIle

hyperSOURCE-386 User Manual 192 Microtek International, DSD

Chapter Six Command Reference

RESet RESet

Syntax: RESet

Function: Resets the 80386 emulator or processor.

Example: —>RESET

See Also: HALt, REGister

Microtek International, DSD 193 hyperSOURCE-386 User Manual

Chapter Six Command Reference

RESet RESet

Syntax: RESet

Function: Resets the 80386 emulator or processor.

Example: ->RESET

See Also: HALt, REGister

Microtek International, DSD 193 hyperSOURCE-386 User Manual

Command Reference Chapter Six

RUNning RUNning

Syntax: RUNning

Function: Displays the 80386 processor status. The status is either ON or OFF. ON
indicates that the processor in the probe is executing code and that all
monitored systems are working. OFF means that the probe is not executing
user code. When stopped, the emulator can be used to modify memory, load
a program, etc.

Remark: This command is the same as the RUNNING command of MICE-V 386.

Examples: ->RUN

See Also: RESet

hyperSOURCE-386 User Manual 194 Microtek International, DSD

Command Reference Chapter Six

RUNning RUNning

Syntax: RUNning

Function: Displays the 80386 processor status. The status is either ON or OFF. ON
indicates that the processor in the probe is executing code and that all
monitored systems are working. OFF means that the probe is not executing
user code. When stopped, the emulator can be used to modify memory, load
a program, etc.

Remark: This command is the same as the RUNNING command of MICE-V 386.

Examples: ->RUN

See Also: RESet

hyperSOURCE-386 User Manual 194 Microtek International, DSD

Chapter Six Command Reference

SENsitive SENsitive

Syntax: SENsitive [ON]
[OFF]

Function: Sets, disables, or examines the status of case sensitivity in matching symbol
names.

If SENsitive is off, symbolic reference will be case insensitive. If SENsitive
is on, symbolic reference will be case sensitive. The default setting is
SENsitive OFF.

Examples: ->SEN //Examines case sensitivity.
->SEN ON //Makes symbolic reference case sensitive.
->SEN OFF //Makes symbolic reference case insensitive.

See Also: EVAluate, SYMbol

Microtek International, DSD 195 hyperSOURCE-386 User Manual

Chapter Six Command Reference

SENsitive SENsitive

Syntax: SENsitive [ON]
[OFF]

Function: Sets, disables, or examines the status of case sensitivity in matching symbol
names.

If SENsitive is off, symbolic reference will be case insensitive. If SENsitive
is on, symbolic reference will be case sensitive. The default setting is
SENsitive OFF.

Examples: ->SEN //Examines case sensitivity.
->SEN ON //Makes symbolic reference case sensitive.
->SEN OFF //Makes symbolic reference case insensitive.

See Also: EVAluate, SYMbol

Microtek International, DSD 195 hyperSOURCE-386 User Manual

Command Reference Chapter Six

SET SET

Syntax:

Function:

Examples:

See Also:

SET Smodule name = ["]file_name["]

Associates the specified file to the specified module name. The specified file
is treated as the source listing file for the specified module.

->SET $MAIN = "START.C" //Default is MAIN.0
->SET $MEMORY = "STORAGE.C" //Default is MEMORY.0

DIRectory MODule, SOUrce

hyperSOURCE-386 User Manual 196 Microtek International, DSD

Command Reference Chapter Six

SET SET

Syntax: SET Smodule name = ["]file name["]

Function: Associates the specified file to the specified module name. The specified file
is treated as the source listing file for the specified module.

Examples: ->SET $MAIN = "START.C" //Default is MAIN.C
->SET $MEMORY = "STORAGE.C" //Default is MEMORY.C

See Also: DIRectory MODule, SOUrce

hyperSOURCE-386 User Manual 196 Microtek International, DSD

Chapter Six

SIG

Syntax: SIG [E]
[D]
[COP

[HOLd

[INTr

[NMI

[REAdy

[RESet

[=ON]]
[=OFF]
[=ON]]
[=OFF]
[=ON]]
[=OFF]
[=ON]]
[=OFF]
[=ON]]
[=OFF]
[=ON]]
[=OFF]

Command Reference

SIG

Function:

Remark:

Examples:

See Also:

Displays current status of target signals and enables or disables them.

E enables and D disables all target signals. The power-up default is D. If no
argument is given, a list of signals and their status is displayed. ON means
the input signals generated by the target can reach the 80386. OFF means the
input signals are masked and cannot reach the 80386.

COP is the coprocessor signals ERROR#, BUSY#, and PEREQ. HOLd is the
hold processor input signal. INTr is the INTR processor input signal. NMI is
the non-maskable interrupt processor input signal. REAdy is the processor's
ready input signal. RESet is the processor's reset input signal.

The syntax of this command is similar to the SIG, $COP, $HOLD, $INTR,
$NMI, $READY, and $RESET commands of MICE-V 386.

- >SIG
- >SIG E
- >SIG D
->SIG COP = ON
- >SIG HOL = OFF
- >SIG NMI

RDYbrk, RDyTo, WSTate

Microtek International, DSD 197 hyperSOURCE-386 User Manual

Command Reference

SIG

Chapter Six

SIG

Syntax: SIG [E]
[D]
[COP

[HOLd

[INTr

[NMI

[REAdy

[RESet

[=ON]]
[=OFF]
[=ON]]
[=OFF]
[=ON]]
[=OFF]
[=ON]]
[=OFF]
[=ON]]
[=OFF]
[=ON]]
[=OFF]

Function:

Remark:

Examples:

See Also:

Displays current status of target signals and enables or disables them.

E enables and D disables all target signals. The power-up default is D. If no
argument is given, a list of signals and their status is displayed. ON means
the input signals generated by the target can reach the 80386. OFF means the
input signals are masked and cannot reach the 80386.

COP is the coprocessor signals ERROR#, BUSY#, and PEREQ. HOLd is the
hold processor input signal. INTr is the INTR processor input signal. NMI is
the non-maskable interrupt processor input signal. REAdy is the processor's
ready input signal. RESet is the processor's reset input signal.

The syntax of this command is similar to the SIG, $COP, $HOLD, $INTR,
$NMI, $READY, and $RESET commands of MICE-V 386.

->SIG
- >SIG E
- >SIG D
->SIG COP = ON
- >SIG HOL = OFF
- >SIG NMI

RDYbrk, RDyTo, WSTate

Microtek International, DSD 197 hyperSOURCE-386 User Manual

Command Reference Chapter Six

SOUrce SOUrce

Syntax: SOUrce rifile_namen I
[$module_name
[##procedure_name]

Function: Enters the source window for the specified file.

Examples: ->SOU $MAIN
->SOU ##RFREE
->SOU PROG.0

See Also: #, DIRectory MODule, NUMber, SET, SPAth, VIEw

hyperSOURCE-386 User Manual 198 Microtek International, DSD

Command Reference Chapter Six

SOUrce SOUrce

Syntax: SOUrce [["]file_name["] I
[$module_name
[##procedure_name]

Function: Enters the source window for the specified file.

Examples: ->SOU $MAIN
- >SOU ##RFREE
- >SOU PROG.C

See Also: #, DIRectory MODule, NUMber, SET, SPAth, VIEw

hyperSOURCE-386 User Manual 198 Microtek International, DSD

Chapter Six

SPAth

Syntax:

Function:

Examples:

See Also:

Command Reference

SPAth

SPAth [=] [directory [; directory]...]

Displays or sets the search path for source files. Source files are always
searched for in the current directory first.

->SPA //Display the current path.
->SPA c:\projl\src;d:\proj2\src

DIRectory MODule, ENV, SET, SOUrce

Microtek International, DSD 199 hyperSOURCE-386 User Manual

Chapter Six Command Reference

SPAth SPAth

Syntax: SPAth [=] [directory [; directory]...]

Displays or sets the search path for source files. Source files are always
searched for in the current directory first.

->SPA //Display the current path.
->SPA c:\projl\src ;d:\proj2\src

DIRectory MODule, ENV, SET, SOUrce

Function:

Examples:

See Also:

Microtek International, DSD 199 hyperSOURCE-386 User Manual

Command Reference Chapter Six

STO, ST1, ST2, ST3, STO, ST1, ST2, ST3
ST4, STS, ST6, ST7 ST4, ST5, ST6, ST7

Syntax: STn

where n = 0 to 7.

Function: Displays or updates the 80387 stack elements and the corresponding tag words.
The value of the stack element is first displayed as a treal number. It can be
altered by entering a new value. A carriage return will preserve the contents.
If a carriage return is entered, the stack element is once again displayed, but
this time it is displayed as ten hexadecimal values. It can be altered by
entering a new set of ten hexadecimal values. A carriage return will preserve
the contents. Next, the tag word that corresponds to the stack element is
displayed. It can be altered by entering a new value. A carriage return will
preserve the contents.

Examples: ->ST4
ST(4) = 0./ <CR>
ST(4) = OOH OOH OOH OOH OOH OOH OOH OOH OOH 00H

/ OF1H2OFFH,OF7H,98H,00H,56H,43H,69H,8AH,7CH
TAG(4) = 3 / 0

->ST3
st(3) = 7.8 / 0.0
tag(3) = 0 / 3

See Also: CW, SW, TW

hyperSOURCE-386 User Manual 200 Microtek International, DSD

Command Reference Chapter Six

STO, ST1, ST2, ST3, STO, ST1, ST2, ST3
ST4, STS, ST6, ST7 ST4, ST5, ST6, ST7

Syntax: STn

where n = 0 to 7.

Function: Displays or updates the 80387 stack elements and the corresponding tag words.
The value of the stack element is first displayed as a treal number. It can be
altered by entering a new value. A carriage return will preserve the contents.
If a carriage return is entered, the stack element is once again displayed, but
this time it is displayed as ten hexadecimal values. It can be altered by
entering a new set of ten hexadecimal values. A carriage return will preserve
the contents. Next, the tag word that corresponds to the stack element is
displayed. It can be altered by entering a new value. A carriage return will
preserve the contents.

Examples: ->ST4
ST(4) = 0./ <CR>
ST(4) = OOH OOH OOH OOH OOH OOH OOH OOH OOH 00H

/ OF1H2OFFH,OF7H,98H,00H,56H,43H,69H,8AH,7CH
TAG(4) = 3 / 0

->ST3
st(3) = 7.8 / 0.0
tag(3) = 0 / 3

See Also: CW, SW, TW

hyperSOURCE-386 User Manual 200 Microtek International, DSD

Chapter Six Command Reference

Step Step

Syntax: Step [INto] [n]

Function: Step causes the program to execute n statements before halting for debugging
purposes. If n is not specified, the default is 1, which allows single-statement
debugging.

Step INto will step into the called function.

Examples: ->S 10 //Execute 10 statements and stop.
->S //Execute one statement and stop.
->S IN //Step into the called function.

See Also: Go, IStep

Microtek International, DSD 201 hyperSOURCE-386 User Manual

Chapter Six Command Reference

Step Step

Syntax: Step [INto] [n]

Function: Step causes the program to execute n statements before halting for debugging
purposes. If n is not specified, the default is 1, which allows single-statement
debugging.

Step INto will step into the called function.

Examples: ->S 10 //Execute 10 statements and stop.
- >S //Execute one statement and stop.
- >S IN //Step into the called function.

See Also: Go, IStep

Microtek International, DSD 201 hyperSOURCE-386 User Manual

Command Reference Chapter Six

STRucture STRucture

Syntax: STRucture structure_name = (
{data_type}field_name[,field_name]...
{ < symbol> }

)

Function: Defines a new data structure and the data type of each field in it. However,
existing data structures cannot be redefined. When you enter the left
parenthesis, hyperSOURCE-386 enters the structure field definition mode with
the STR> prompt. You must enter the correct field definition on each line.
When you enter the right parenthesis, the command is completed.

Examples:

See Also:

->STR NEWSTR =
STR> WORD *i link
STR> BYTE i type
STR> DWORD iecw[7]
STR> DOUBLE *p_real
STR> STR NEWSTR *p_str
STR>)
->type struct newstr new_name at &start
->
->str newst =(
->
STR> type <x> *i_link, float i_type, word
->STR STRTYP =(
STR>WORD AA, BB, CC
STR>CHAR *P_TO_CHAR, CHAR_ARRAY[7][8]
STR>LONG *LL[6], (*FF)[5]
STR>STR STRTYP *LINK
STR>TYPE <AA> ZZ
STR>)

DIRectory STRucture, DISplay STRucture, SYMbol, TYPe

//Use the new
//structure
//variable x is of type
//byte.
i _ecw)

hyperSOURCE-386 User Manual 202 Microtek International, DSD

Command Reference Chapter Six

STRucture STRucture

Syntax: STRucture structure_name = (
{data_type}field_name[,field_name]...
{ < symbol> }

)

Function: Defines a new data structure and the data type of each field in it. However,
existing data structures cannot be redefined. When you enter the left
parenthesis, hyperSOURCE-386 enters the structure field definition mode with
the STR> prompt. You must enter the correct field definition on each line.
When you enter the right parenthesis, the command is completed.

Examples: ->STR NEWSTR =
STR> WORD *i link
STR> BYTE i type
STR> DWORD iecw[7]
STR> DOUBLE *p_real
STR> STR NEWSTR *p_str
STR>)
->type struct newstr new_name at &start
- >
- >str newst =(
->
STR> type <x> *i_link, float i_type, word
- >STR STRTYP =(
STR>WORD AA, BB, CC
STR>CHAR *P_TO_CHAR, CHAR_ARRAY[7][8]
STR>LONG *LL[6], (*FF)[5]
STR>STR STRTYP *LINK
STR>TYPE <AA> ZZ
STR>)

//Use the new
//structure
//variable x is of type
//byte.
i ecw)

See Also: DIRectory STRucture, DISplay STRucture, SYMbol, TYPe

hyperSOURCE-386 User Manual 202 Microtek International, DSD

Chapter Six Command Reference

SW SW

Syntax: SW

Function: Displays or changes the value of the 80387 status word. The value of the
status word is displayed followed by a slash. The contents can be altered by
entering a new hexadecimal value. A carriage return will preserve the
contents.

Examples: ->sw
STATUS WORD = 0000H / 1324H

->SW
STATUS WORD = 1324H / <CR>

See Also: CW, STn, TW

Microtek International, DSD 203 hyperSOURCE-386 User Manual

Chapter Six Command Reference

SW SW

Syntax: SW

Function: Displays or changes the value of the 80387 status word. The value of the
status word is displayed followed by a slash. The contents can be altered by

Examples:

entering a new hexadecimal value. A carriage return will preserve the
contents.

->SW
STATUS WORD = 0000H / 1324H

->SW
STATUS WORD = 1324H / <CR>

See Also: CW, STn, TW

Microtek International, DSD 203 hyperSOURCE-386 User Manual

Command Reference Chapter Six

SWItch SWItch

Syntax: &Witch expression
CASe constant_expression :
[command]

[CASe constant_expression :
[command]

[DEFault :]
[command]

ESWitch

Function: A multi-way decision maker that tests whether an expression matches one of a
number of constant values, and branches accordingly. If none is matched,
control flow is branched to the DEFault case. After having executed the
group of commands associated with the matched case, control flow falls
through to the next CASe/DEFault unless a BREak command is encountered.
The BREak command causes an immediate exit from the SWitch.

Examples: ->MACRO TESTI //Define a macro.
MD>SWITCH A
MD> CASE 0 :
MD> B = 10
MD> BREAK
MD> BREAK
MD> DEFAULT:
MD> LINE 5
MD>ESWITCH
MD>EMACRO

See Also: ESWitch, FOR, IF, INClude, MACro, REPeat, WHIle

hyperSOURCE-386 User Manual 204 Microtek International, DSD

Command Reference Chapter Six

SWItch SWItch

Syntax: SWitch expression
CASe constant_expression :
[command]

[CASe constant_expression :
[command]

[DEFault :]
[command]

ESWitch

Function: A multi-way decision maker that tests whether an expression matches one of a
number of constant values, and branches accordingly. If none is matched,
control flow is branched to the DEFault case. After having executed the
group of commands associated with the matched case, control flow falls
through to the next CASe/DEFault unless a BREak command is encountered.
The BREak command causes an immediate exit from the SWitch.

Examples: ->MACRO TESTI //Define a macro.
MD>SWITCH A
MD> CASE 0 :
MD> B = 10
MD> BREAK
MD> BREAK
MD> DEFAULT:
MD> LINE 5
MD>ESWITCH
MD>EMACRO

See Also: ESWitch, FOR, IF, INClude, MACro, REPeat, WHIle

hyperSOURCE-386 User Manual 204 Microtek International, DSD

Chapter Six

SYMbol

Syntax: SYMbol [GLObal]
[LOCal]
[$module name]
[symbol_name]
[address]
["reg_exp"]

Command Reference

SYMbol

Function: Displays symbol declarations. If GLOBAL is specified, only the global
symbols are displayed. Likewise, if LOCal is specified, only the currently
active local symbols are displayed. If a module name is specified, the symbols
belonging to the specified module are displayed.

If a symbol name is specified, the declaration for that symbol is displayed. If
an address is specified, the global symbol with the closest matching address is
displayed. And if a string is specified, the symbols matching the regular
expression in quotes will be displayed.

Examples: ->SYMBOL
->SYM GLO
->SYM LOC
->SYM $MODULE_AA
->SYM main
->SYM CS:100H

See Also: EVAluate, STRucture, TYPe

Microtek International, DSD 205 hyperSOURCE-386 User Manual

Chapter Six

SYMbol

Syntax: SYMbol [GLObal]
[LOCal]
[$module name]
[symbol_name]
[address]
["reg_exp"]

Command Reference

SYMbol

Function: Displays symbol declarations. If GLOBAL is specified, only the global
symbols are displayed. Likewise, if LOCal is specified, only the currently
active local symbols are displayed. If a module name is specified, the symbols
belonging to the specified module are displayed.

If a symbol name is specified, the declaration for that symbol is displayed. If
an address is specified, the global symbol with the closest matching address is
displayed. And if a string is specified, the symbols matching the regular
expression in quotes will be displayed.

Examples: ->SYMBOL
- >SYM GLO
- >SYM LOC
- >SYM $MODULE_AA
->SYM main
->SYM CS:100H

See Also: EVAluate, STRucture, TYPe

Microtek International, DSD 205 hyperSOURCE-386 User Manual

Command Reference Chapter Six

TIMe TIMe

Syntax: TIMe

Function: Displays the current time and date.

Example: ->TIM

See Also: VERsion

hyperSOURCE-386 User Manual 206 Microtek International, DSD

Command Reference Chapter Six

TIMe TIMe

Syntax: TIMe

Function: Displays the current time and date.

Example: ->TIM

See Also: VERsion

hyperSOURCE-386 User Manual 206 Microtek International, DSD

Chapter Six Command Reference

TKB TKB

Syntax: TKB [selector [, selector]...] [PERM]
[TEMP]
[CLFar]
[E]
[D]

Function: Displays, sets or clears task switch breakpoints. The CLFar key word can
also be specified as CLR.

'selector' is the task state segment (TSS) to be displayed, set, or cleared. Any
number of breakpoints are allowed. If 'selector' is not specified, all current
breakpoints are affected according to the specified key word (PERM, TEMP,
CLFar/CLR, E, or D). If 'selector' is specified without another parameter
(PERM, TEMP, CLFar/CLR, E or D), then all current task switch
breakpoints are PERManent. 'selector' must reference a TSS descriptor in the
global descriptor table (GDT). PERM is a permanent task switch breakpoint
that remains until it is cleared. If 'selector' is not specified, then all current
task switch breakpoints are PERManent. TEMP is a temporary task switch
breakpoint that is automatically cleared when it is reached. If 'selector' is not
specified, then all current task switch breakpoints are TEMPorary. CLF2r or
CLR clears the selector(s) specified from the list. If 'selector' is not specified,
then all current task switch breakpoints are cleared. E enables and D disables
one or more breakpoints. Disabling breakpoints leaves the definitions in the
table but does not affect emulation until they are re-enabled. If 'selector' is
not specified, then all task switch breakpoints are affected.

Remarks: The emulator implements task switch breakpoints by setting the
DEBUG_TRAP bit in the specified TSS. The TSS must be in RAM and
accessible when the TKB command is entered. If the 80386 invokes the
selected task during emulation, a breakpoint occurs. The DEBUG_TRAP bit
remains set until the task switch breakpoint is cleared.

This command is the same as the TKB command of MICE-V 386.

Examples: ->TKB 20 28 38 PERM
- >TKB
- >TKB 20 28 CLE

See Also: BRKgdt, BRkPidt, BRkRidt, Go, GR

Microtek International, DSD 207 hyperSOURCE-386 User Manual

Chapter Six Command Reference

TKB TKB

Syntax: TKB [selector [,selector]...] [PERM]
[TEMP]
[CLFar]
[E]
[D]

Function: Displays, sets or clears task switch breakpoints. The CLFar key word can
also be specified as CLR.

'selector' is the task state segment (TSS) to be displayed, set, or cleared. Any
number of breakpoints are allowed. If 'selector' is not specified, all current
breakpoints are affected according to the specified key word (PERM, TEMP,
CLFar/CLR, E, or D). If 'selector' is specified without another parameter
(PERM, TEMP, CLFar/CLR, E or D), then all current task switch
breakpoints are PERManent. 'selector' must reference a TSS descriptor in the
global descriptor table (GDT). PERM is a permanent task switch breakpoint
that remains until it is cleared. If 'selector' is not specified, then all current
task switch breakpoints are PERManent. TEMP is a temporary task switch
breakpoint that is automatically cleared when it is reached. If 'selector' is not
specified, then all current task switch breakpoints are TEMPorary. CLF2r or
CLR clears the selector(s) specified from the list. If 'selector' is not specified,
then all current task switch breakpoints are cleared. E enables and D disables
one or more breakpoints. Disabling breakpoints leaves the definitions in the
table but does not affect emulation until they are re-enabled. If 'selector' is
not specified, then all task switch breakpoints are affected.

Remarks: The emulator implements task switch breakpoints by setting the
DEBUG_TRAP bit in the specified TSS. The TSS must be in RAM and
accessible when the TKB command is entered. If the 80386 invokes the
selected task during emulation, a breakpoint occurs. The DEBUG_TRAP bit
remains set until the task switch breakpoint is cleared.

This command is the same as the TKB command of MICE-V 386.

Examples: ->TKB 20 28 38 PERM
- >TKB
- >TKB 20 28 CLE

See Also: BRKgdt, BRkPidt, BRkRidt, Go, GR

Microtek International, DSD 207 hyperSOURCE-386 User Manual

Command Reference Chapter Six

TM TM

Syntax: TM [MICE_command_sequence]

Function: Enters transparent mode to issue MICE-V commands directly. The MICE-V
prompt is displayed. To leave transparent mode, press < Ctrl> a.

If a command sequence follows the TM command, it will be sent directly to
the MICE-V 386. No parsing is done. No error checking is done. No results
are passed back up to hyperSOURCE-386. This facility is provided solely for
automating tested MICE-V 386 commands via include files and/or macros.

Note

Changes made in the emulation environment while in
transparent mode are not tracked by hyperSOURCE-386
and can result in erroneous operation.

Remarks: Transparent mode provides access to the low-level command line and
command interpreter resident in the MICE-V emulator. This command line
interface is a whole input/output system by itself. It has the ability to parse
commands and store results of command usage in its own variables. This
extra layer of control variables can lead to confusion.

If you issue a command from hyperSOURCE-386, such as MAP, the results of
the command are stored by the hypeSOURCE-386 interface. If you now enter
transparent mode and view the MICE-V command line variables, it will appear
that the command has not been executed. This is because the variables in the
MICE-V command line interface are not set by the command issued from
hyperS OURCE-386 .

Because this is true with many of the commands in transparent mode, use
hyperSOURCE-386 to issue commands and check variable values; use
transparent mode only to view the trace buffer and set high level triggers.

If your PC host is not able to keep pace with the rate that characters are
displayed when in Transparent Mode, try altering the value of the TMDELAY
variable in your environment file.

Examples: ->TM //Enters transparent mode.

> ^A //Exits transparent mode.

hyperSOURCE-386 User Manual 208 Microtek International, DSD

Command Reference Chapter Six

TM TM

Syntax: TM [MICE_command_sequence]

Function: Enters transparent mode to issue MICE-V commands directly. The MICE-V
prompt is displayed. To leave transparent mode, press < Ctrl> a.

If a command sequence follows the TM command, it will be sent directly to
the MICE-V 386. No parsing is done. No error checking is done. No results
are passed back up to hyperSOURCE-386. This facility is provided solely for
automating tested MICE-V 386 commands via include files and/or macros.

Note

Changes made in the emulation environment while in
transparent mode are not tracked by hyperSOURCE-386
and can result in erroneous operation.

Remarks: Transparent mode provides access to the low-level command line and
command interpreter resident in the MICE-V emulator. This command line
interface is a whole input/output system by itself. It has the ability to parse
commands and store results of command usage in its own variables. This
extra layer of control variables can lead to confusion.

If you issue a command from hyperSOURCE-386, such as MAP, the results of
the command are stored by the hypeSOURCE-386 interface. If you now enter
transparent mode and view the MICE-V command line variables, it will appear
that the command has not been executed. This is because the variables in the
MICE-V command line interface are not set by the command issued from
hyperS OURCE-386 .

Because this is true with many of the commands in transparent mode, use
hyperSOURCE-386 to issue commands and check variable values; use
transparent mode only to view the trace buffer and set high level triggers.

If your PC host is not able to keep pace with the rate that characters are
displayed when in Transparent Mode, try altering the value of the TMDELAY
variable in your environment file.

Examples: ->TM //Enters transparent mode.

> ^A //Exits transparent mode.

hyperSOURCE-386 User Manual 208 Microtek International, DSD

Chapter Six Command Reference

See Also: ENV

Microtek International, DSD 209 hyperSOURCE-386 User Manual

Chapter Six Command Reference

See Also: ENV

Microtek International, DSD 209 hyperSOURCE-386 User Manual

Command Reference Chapter Six

TRCmode TRCmode

Syntax: TRCmode [PRE]
[POST]
[CENTER]
[SINGLE [count]]

Function: Specifies the type of trace collection to use.

PRE collects up to 8192 frames of trace before the trigger, then forces a
breakpoint. The trigger event will be nearly the last bus cycle in the buffer.
Actually, a few bus cycles "slide" before emulation and the trace finally stop.
POST collects 8192 frames of trace after the trigger, then forces a breakpoint.
CENTER collects 4096 frames before and after the trigger, then forces a
breakpoint. SINGLE collects a single frame of trace. No breakpoint is
forced. The power-up default is SINGLE 1. 'count' specifies how many
cycles to trace when in SINGLE mode. 'count' can be any number from 1
through 16t. If 'count' is not specified, it defaults to 1.

Remarks: If TRCmode is set to POST, CENTER, or SINGLE with CNT greater than 1,
then the occurrence counter (CNT) cannot be used in the trigger definition.

The TRCmode command is the same as the TRCMODE command in MICE-V
386.

Examples: ->TRC SINGLE 3
->TRC
->TRC PRE

hyperSOURCE-386 User Manual 210 Microtek International, DSD

Command Reference Chapter Six

TRCmode TRCmode

Syntax: TRCmode [PRE]
[POST]
[CENTER]
[SINGLE [count]]

Function: Specifies the type of trace collection to use.

PRE collects up to 8192 frames of trace before the trigger, then forces a
breakpoint. The trigger event will be nearly the last bus cycle in the buffer.
Actually, a few bus cycles "slide" before emulation and the trace finally stop.
POST collects 8192 frames of trace after the trigger, then forces a breakpoint.
CENTER collects 4096 frames before and after the trigger, then forces a
breakpoint. SINGLE collects a single frame of trace. No breakpoint is
forced. The power-up default is SINGLE 1. 'count' specifies how many
cycles to trace when in SINGLE mode. 'count' can be any number from 1
through 16t. If 'count' is not specified, it defaults to 1.

Remarks: If TRCmode is set to POST, CENTER, or SINGLE with CNT greater than 1,
then the occurrence counter (CNT) cannot be used in the trigger definition.

The TRCmode command is the same as the TRCMODE command in MICE-V
386.

Examples: ->TRC SINGLE 3
- >TRC
- >TRC PRE

hyperSOURCE-386 User Manual 210 Microtek International, DSD

Chapter Six

TREal

Syntax: TREal [address] [= expression [, expression]...]
[[TO] address [= expression]]
[LENgth n [= expression]]

Command Reference

TREal

Function: Displays or alters memory contents in treal (10-byte) scope. The base of two
addresses that define an address range must be the same. For example,
TREAL 200:40 to 300:300 is invalid.

Examples: ->TRE 40
->TREAL 100:40 TO 100:200
->TRE &REAL LENGTH 20
->TREAL DS:SI = 8.8, 3.5+1, 0.0
->TRE pointer_to_treal LEN 100 = 0:0

See Also: BYTe, CHAr, DOUble, DWOrd, FLOat, POInter, QWOrd, WORd

Microtek International, DSD 211 hyperSOURCE-386 User Manual

Chapter Six

TREal

Syntax: TREal [address] [= expression [, expression]...]
[[TO] address [= expression]]
[LENgth n [= expression]]

Command Reference

TREal

Function: Displays or alters memory contents in treal (10-byte) scope. The base of two
addresses that define an address range must be the same. For example,
TREAL 200:40 to 300:300 is invalid.

Examples: ->TRE 40
- >TREAL 100:40 TO 100:200
- >TRE &REAL LENGTH 20
->TREAL DS:SI = 8.8, 3.5+1, 0.0
->TRE pointer_to_treal LEN 100 = 0:0

See Also: BYTe, CHAr, DOUble, DWOrd, FLOat, POInter, QWOrd, WORd

Microtek International, DSD 211 hyperSOURCE-386 User Manual

Command Reference Chapter Six

TSS TSS

Syntax: TSS [\[expr\][.tss_element]]

where tss element is LINk, {[E]SP I SS}{01112}, or a register.

Function: Displays or modifies the contents of a task state segment.

Examples:

See Also:

->TSS
->TSS(8).LINK=6890
->
->

//Displays current TSS.
//Modifies the link field of the TSS whose
//descriptor is at GDT(l) or the TSS
//selector equals 8.

DT, GDT, IDT, LDT, PD, REGister

hyperSOURCE-386 User Manual 212 Microtek International, DSD

Command Reference Chapter Six

TSS TSS

Syntax: TSS [\[expr\][.tss_element]]

where tss element is LINk, {[E]SP I SS}{01112}, or a register.

Function: Displays or modifies the contents of a task state segment.

Examples: ->TSS //Displays current TSS.
- >TSS(8).LINK=6890 //Modifies the link field of the TSS whose
- > //descriptor is at GDT(l) or the TSS
- > //selector equals 8.

See Also: DT, GDT, IDT, LDT, PD, REGister

hyperSOURCE-386 User Manual 212 Microtek International, DSD

Chapter Six Command Reference

TW TW

Syntax: TW

Function: Displays or changes the value of the 80387 tag word. The value of the tag
word is displayed followed by a slash. The contents can be altered by entering
a new hexadecimal value. A carriage return will preserve the contents.

Examples: —>TW
TAG WORD = 0000H / OFFFFH

—>TW
TAG WORD = FFFFH / <CR>

See Also: CW, STn, SW

Microtek International, DSD 213 hyperSOURCE-386 User Manual

Chapter Six Command Reference

TW TW

Syntax: TW

Function: Displays or changes the value of the 80387 tag word. The value of the tag
word is displayed followed by a slash. The contents can be altered by entering
a new hexadecimal value. A carriage return will preserve the contents.

Examples: ->TW
TAG WORD = 0000H / OFFFFH

->TW
TAG WORD = FFFFH / <CR>

See Also: CW, STn, SW

Microtek International, DSD 213 hyperSOURCE-386 User Manual

Command Reference Chapter Six

TYPe TYPe

Syntax: TYPe {data_type} symbol [, symbol)... [AT address]
{ < symbol> }

Declares or redefines symbols. The data type can be BYTe, CHAr, WORd,
SHOrt, DWOrd, LONg, INTeger, FLOat, DOUble, TREal, STRuct, or a
pointer to these basic types. If a POInter is declared, the size of offset, 16-
bits or 32 bits, depends on the setting of the USE or WIDth command.

The <... > construct can be used to declare the variable to be of the same
type as the variable enclosed in the < ... > pair.

If no AT address is specified, the symbol uses internal debugger memory.
These symbols are called internal variables. Pointers to internal variables are
not allowed.

Examples: ->TYPE long *ptr_to_long, long_buf[8] at &buf
->TYPE CHAR CH1, CH2[3][4], (*CH3)[7]
->TYPE struct straa etrl, *str2, str3[7] at &str_buf
->TYPE <yy> xx AT 200:10
->type char $m##pro#a, ##pp#b, #c at 8:9

See Also: STRucture, SYMbol

hyperSOURCE-386 User Manual 214 Microtek International, DSD

Command Reference Chapter Six

TYPe TYPe

Syntax: TYPe {data_type} symbol symbol]... [AT address]
{< symbol> }

Declares or redefines symbols. The data type can be BYTe, CHAr, WORd,
SHOrt, DWOrd, LONg, INTeger, FLOat, DOUble, TREal, STRuct, or a
pointer to these basic types. If a POInter is declared, the size of offset, 16-
bits or 32 bits, depends on the setting of the USE or WIDth command.

The <... > construct can be used to declare the variable to be of the same
type as the variable enclosed in the < > pair.

If no AT address is specified, the symbol uses internal debugger memory.
These symbols are called internal variables. Pointers to internal variables are
not allowed.

Examples: ->TYPE long *ptr_to_long, long_buf[8] at &buf
- >TYPE CHAR CH1, CH2[3][4], (*CH3)[7]
- >TYPE struct straa etrl, *str2, str3[7] at &str_buf
- >TYPE <yy> xx AT 200:10
- >type char $m##pro#a, ##pp#b, #c at 8:9

See Also: STRucture, SYMbol

hyperSOURCE-386 User Manual 214 Microtek International, DSD

Chapter Six Command Reference

U or DASm U or DASm

Syntax: {U} [address I [[TO] address2]] [MIX]
{DASm} [LENgth n]

Function: Displays a block of memory in assembly mnemonic form. The MIX qualifier
causes source to be mixed in with the disassembly display.

Remark: This command is the same as the DASm command.

Examples: ->u //Default address is CS:IP
->U CS:(IP+5) MIX
->U &MAIN LEN 20

See Also: SOUrce, VIEw

Microtek International, DSD 215 hyperSOURCE-386 User Manual

Chapter Six Command Reference

U or DASm U or DASm

Syntax: {U} [addressl [[TO] address2]] [MIX]
{DASm} [LENgth n]

Displays a block of memory in assembly mnemonic form. The MIX qualifier
causes source to be mixed in with the disassembly display.

This command is the same as the DASm command.

- >U //Default address is CS:IP
- >U CS:(IP+5) MIX
->U &MAIN LEN 20

SOUrce, VIEw

Function:

Remark:

Examples:

See Also:

Microtek International, DSD 215 hyperSOURCE-386 User Manual

Command Reference

UP

Chapter Six

UP

Syntax: UP [n]

Function: Walks up the call stack allowing access to the source and local variables of
any active procedure. If no argument is specified, the stack is walked up one
level.

If any execution command or command that directly changes the CS:IP or BP
is given by the user while an UP or DOWN command is in effect, a DOWN
HOME action is automatically performed before the command is executed.

Examples:

See Also:

->Up
->Up 3

//Walk up one level
//Walk up three levels

CALlstack, DOWn, SOUrce, SYMbol

hyperSOURCE-386 User Manual 216 Microtek International, DSD

Command Reference Chapter Six

UP UP

Syntax: UP [n]

Function: Walks up the call stack allowing access to the source and local variables of
any active procedure. If no argument is specified, the stack is walked up one
level.

If any execution command or command that directly changes the CS:IP or BP
is given by the user while an UP or DOWN command is in effect, a DOWN
HOME action is automatically performed before the command is executed.

Examples: ->Up //Walk up one level
->Up 3 //Walk up three levels

See Also: CALlstack, DOWn, SOUrce, SYMbol

hyperSOURCE-386 User Manual 216 Microtek International, DSD

Chapter Six Command Reference

USE USE

Syntax: USE [16]
[32]

Function: Displays or modifies the default setting for disassembling code. The default
setting causes the debugger to (1) assume 16-bit or 32-bit code when
disassembling code from linear or physical addresses using the ASM
command, (2) assume 16-bit or 32-bit offset when handling POInter type, (3)
assume 16-bit or 32-bit offset when a symbol is declared as pointer type using
the TYPE command.

Examples: ->USE 16 //Sets to 16-bit code.
->USE //Displays the current setting.

See Also: DASm, TYPe, STRucture, POInter

Microtek International, DSD 217 hyperSOURCE-386 User Manual

Chapter Six Command Reference

USE USE

Syntax: USE [16]
[32]

Function: Displays or modifies the default setting for disassembling code. The default
setting causes the debugger to (1) assume 16-bit or 32-bit code when
disassembling code from linear or physical addresses using the ASM
command, (2) assume 16-bit or 32-bit offset when handling POInter type, (3)
assume 16-bit or 32-bit offset when a symbol is declared as pointer type using
the TYPE command.

Examples: ->USE 16 //Sets to 16-bit code.
->USE //Displays the current setting.

See Also: DASm, TYPe, STRucture, POInter

Microtek International, DSD 217 hyperSOURCE-386 User Manual

Command Reference Chapter Six

VeRiFy VeRiFy

Syntax: VeRiFy [ON]
[OFF]

Function: Displays, enables, or disables the verification of memory write operations. If
no argument is specified, the current setting is displayed.

Remark: This command is the same as the VERIFY command of MICE-V 386.

The abbreviation is VRF in order to avoid conflict with the VERsion
command.

Examples: ->VRF
->VRF ON
->VRF OFF

See Also: BYTe, CHAr, DOUble, DWOrd, FLOat, POInter, QWOrd, TRFal, WORd

hyperSOURCE-386 User Manual 218 Microtek International, DSD

Command Reference Chapter Six

VeRiFy VeRiFy

Syntax: VeRiFy [ON]
[OFF]

Function: Displays, enables, or disables the verification of memory write operations. If
no argument is specified, the current setting is displayed.

Remark: This command is the same as the VERIFY command of MICE-V 386.

The abbreviation is VRF in order to avoid conflict with the VERsion
command.

Examples: ->VRF
- >VRF ON
- >VRF OFF

See Also: BYTe, CHAr, DOUble, DWOrd, FLOat, POInter, QWOrd, TRFal, WORd

hyperSOURCE-386 User Manual 218 Microtek International, DSD

Chapter Six Command Reference

VERsion VERsion

Syntax: VERsion

Function: Displays hyperSOURCE-386 and emulator version numbers.

Example: ->VER

See Also: DATe

Microtek International, DSD 219 hyperSOURCE-386 User Manual

Chapter Six Command Reference

VERsion VERsion

Syntax: VERsion

Function: Displays hyperSOURCE-386 and emulator version numbers.

Example: ->VER

See Also: DATe

Microtek International, DSD 219 hyperSOURCE-386 User Manual

Command Reference Chapter Six

VIEw VIEw

Syntax: VIEw [HL]
[ASM]
[MIX]

Function: Displays or modifies the mode of source line display in the source window.
HL sets the source window to display high level language source statements
only. ASM sets the source window to display assembly language mnemonics
only. MIX sets the source window to display high level language source
statements interleaved with assembly language mnemonics. If no parameter is
specified, it displays the current display mode of the source window.

Examples: ->VIEW //Displays current setting.
->VIEW MIX //Displays high level source and assembly.

See Also: #, NUMber, SOUrce

hyperSOURCE-386 User Manual 220 Microtek International, DSD

Command Reference Chapter Six

VIEw VIEw

Syntax: VIEw [HL]
[ASM]
[MIX]

Function: Displays or modifies the mode of source line display in the source window.
HL sets the source window to display high level language source statements
only. ASM sets the source window to display assembly language mnemonics
only. MIX sets the source window to display high level language source
statements interleaved with assembly language mnemonics. If no parameter is
specified, it displays the current display mode of the source window.

Examples: ->VIEW //Displays current setting.
->VIEW MIX //Displays high level source and assembly.

See Also: #, NUMber, SOUrce

hyperSOURCE-386 User Manual 220 Microtek International, DSD

Chapter Six Command Reference

WAIt WAR

Syntax: WAIt

Function: Stops command processing, resumes when user presses any key from the
keyboard. The WAIt command is useful in command files for demonstrations
or interactive automated testing. A typical usage is to halt the display until the
user presses a key.

Example: ->WAIT

See Also: INClude, PAUse

Microtek International, DSD 221 hyperSOURCE-386 User Manual

Chapter Six Command Reference

WAIL WAR

Syntax: WAIt

Function: Stops command processing, resumes when user presses any key from the
keyboard. The WAIt command is useful in command files for demonstrations
or interactive automated testing. A typical usage is to halt the display until the
user presses a key.

Example: ->WAIT

See Also: INClude, PAUse

Microtek International, DSD 221 hyperSOURCE-386 User Manual

Command Reference Chapter Six

WHIIe Willie

Syntax: WHIle expression
[command]

EWHile

Function: In the WHILE-EWHILE loop command, the expression is evaluated first. If it
is TRUE (non-zero), the group of commands listed between WHILE and
EWHILE are executed and the expression is evaluated again. This loop is
repeated until the expression becomes FALSE (zero).

Examples: ->MACRO TEST1 //Define a macro.
MD>WHILE NOT ZERO
MD>LINE //Single line.
MD>NOT_ZERO //Display NOT_ZERO value.
MD>EWHILE
MD>EMACRO
->

See Also: EWHile, FOR, IF, INClude, MACro, REPeat, SWItch

hyperSOURCE-386 User Manual 222 Microtek International, DSD

Command Reference Chapter Six

WHIIe Willie

Syntax: WHIle expression
[command]

EWHile

Function: In the WHILE-EWHILE loop command, the expression is evaluated first. If it
is TRUE (non-zero), the group of commands listed between WHILE and
EWHILE are executed and the expression is evaluated again. This loop is
repeated until the expression becomes FALSE (zero).

Examples: ->MACRO TESTI
MD>WHILE NOT ZERO
MD>LINE
MD>NOT_ZERO
MD>EWHILE
MD>EMACRO
->

//Define a macro.

//Single line.
//Display NOT ZERO value.

See Also: EWHile, FOR, IF, INClude, MACro, REPeat, SWItch

hyperSOURCE-386 User Manual 222 Microtek International, DSD

Chapter Six Command Reference

WIDth WIDth

Syntax: WIDth [16]
[32]

Function: Displays or modifies the default setting for disassembling code. The default
setting causes the debugger to (1) assume 16-bit or 32-bit code when
disassembling code from linear or physical addresses using the ASM
command, (2) assume 16-bit or 32-bit offset when handling POInter type, (3)
assume 16-bit or 32-bit offset when a symbol is declared as pointer type using
the TYPE command. This command is identical to the USE command.

Examples: ->WID 16 //Sets to 16-bit code.
->WID //Displays the current setting.

See Also: DASm, POInter, STRucture, TYPe

Microtek International, DSD 223 hyperSOURCE-386 User Manual

Chapter Six Command Reference

WIDth WIDth

Syntax: WIDth [16]
[32]

Function: Displays or modifies the default setting for disassembling code. The default
setting causes the debugger to (1) assume 16-bit or 32-bit code when
disassembling code from linear or physical addresses using the ASM
command, (2) assume 16-bit or 32-bit offset when handling POInter type, (3)
assume 16-bit or 32-bit offset when a symbol is declared as pointer type using
the TYPE command. This command is identical to the USE command.

Examples: ->WID 16 //Sets to 16-bit code.
->WID //Displays the current setting.

See Also: DASm, POInter, STRucture, TYPe

Microtek International, DSD 223 hyperSOURCE-386 User Manual

Command Reference Chapter Six

WORd WORd

Syntax: WORd [address] [= expression [, expression]...]
[[TO] address [= expression]]
[LENgth n [= expression]]

Function: Displays or alters memory contents in word (2-byte) scope. The base of two
addresses that define an address range must be the same. For example,
WORD 200:40 to 300:300 is invalid.

Examples: ->WORD 40
->WOR 100:40 TO 100:200
->WORD pointer to word LENGTH 20
->WOR DS:SI = 5, 81c6, AX+BX
->WORD word_array LEN 100 = 0:0

See Also: BYTe, CHAr, DOUble, DWOrd, FLOat, POInter, QWOrd, TREal

hyperSOURCE-386 User Manual 224 Microtek International, DSD

Command Reference Chapter Six

WORd WORd

Syntax: WORd [address] [= expression [, expression]...]
[[TO] address [= expression]]
[LENgth n [= expression]]

Function: Displays or alters memory contents in word (2-byte) scope. The base of two
addresses that define an address range must be the same. For example,
WORD 200:40 to 300:300 is invalid.

Examples: ->WORD 40
- >WOR 100:40 TO 100:200
- >WORD pointer to word LENGTH 20
- >WOR DS:SI = 5, T3*6, AX+BX
- >WORD word_array LEN 100 = 0:0

See Also: BYTe, CHAr, DOUble, DWOrd, FLOat, POInter, QWOrd, TREal

hyperSOURCE-386 User Manual 224 Microtek International, DSD

Chapter Six Command Reference

WRIte WRIte

Syntax: WRIte { "string" } [, { "string" }]... [TO n]
{expression} {expression}

Function: Writes strings or values of expressions to the specified file n which must have
been opened using the OPEN command. Default is to the console.

Certain non-graphic characters, the double quote and the backslash characters
may be represented by escape sequences and included in the character string as
follows:

newline \n
horizontal tab \t
backspace \b
carriage return \r
backslash \\
double quote v,

Examples: ->WRITE "\tIOPB=", IOPB //"\t" is a tab.
->WRITE "\nVALUE OF X IS", X //"\n" is a newline.
->WRITE a[6) + *ptr_to_short + struct.al to 3
->WRITE "al = ", al, "a2 = ", a2, "a3 = ", a3

See Also: CLOse, INClude, OPEn, REAd

Microtek International, DSD 225 hyperSOURCE-386 User Manual

Chapter Six Command Reference

WRIte WRIte

Syntax: WRIte { "string" } [, { "string" }]... [TO n]
{expression} {expression}

Function: Writes strings or values of expressions to the specified file n which must have
been opened using the OPEN command. Default is to the console.

Certain non-graphic characters, the double quote and the backslash characters
may be represented by escape sequences and included in the character string as
follows:

newline \n
horizontal tab \t
backspace \b
carriage return \r
backslash \\
double quote v,

Examples: ->WRITE "\tIOPB=", IOPB //"\t" is a tab.
- >WRITE "\nVALUE OF X IS", X //"\n" is a newline.
- >WRITE a[6) + *ptr_to_short + struct.al to 3
- >WRITE "al = ", al, "a2 = ", a2, "a3 = ", a3

See Also: CLOse, INClude, OPEn, REAd

Microtek International, DSD 225 hyperSOURCE-386 User Manual

Command Reference Chapter Six

WSTate WSTate

Syntax: WSTate [=expression]

Function: Displays or sets the number of wait-states to insert when the $READY signal
is internal (OFF).

'expression' is the number of wait states. 'expression' must be 0 through 1Fh.
WSTate may be set at any time but is effective only if the $READY signal is
set to OFF.

Remark: This command is the same as the WSTATE of MICE-V 386.

Examples: ->SIG READY OFF
->WST=4

See Also: RDYBRK, RDYTO, SIG

hyperSOURCE-386 User Manual 226 Microtek International, DSD

Command Reference Chapter Six

WSTate WSTate

Syntax: WSTate [=expression]

Function: Displays or sets the number of wait-states to insert when the $READY signal
is internal (OFF).

'expression' is the number of wait states. 'expression' must be 0 through 1Fh.
WSTate may be set at any time but is effective only if the $READY signal is
set to OFF.

Remark: This command is the same as the WSTATE of MICE-V 386.

Examples: ->SIG READY OFF
->WST=4

See Also: RDYBRK, RDYTO, SIG

hyperSOURCE-386 User Manual 226 Microtek International, DSD

Chapter Six Command Reference

XLT XLT

Syntax: XLT address

Function: Translates a virtual address to a linear and physical address, or a linear
address to a physical address using segmentation and paging rules.

'address' is the address to translate. This may be a virtual address, linear
address (followed by the letter 'n'), or physical address (followed by the letter
f p1)

.

Remark: This command is the same as the XLT command of MICE-V 386.

Examples: ->XLT CS:4567
->XLT 1234N

Microtek International, DSD 227 hyperSOURCE-386 User Manual

Chapter Six Command Reference

XLT XLT

Syntax: XLT address

Function: Translates a virtual address to a linear and physical address, or a linear
address to a physical address using segmentation and paging rules.

'address' is the address to translate. This may be a virtual address, linear
address (followed by the letter 'n'), or physical address (followed by the letter
f p 1)

.

Remark: This command is the same as the XLT command of MICE-V 386.

Examples: ->XLT CS:4567
->XLT 1234N

Microtek International, DSD 227 hyperSOURCE-386 User Manual

Chapter Seven Macros

Chapter Seven - Macros
This chapter describes the macro facility. It enables you to use hyperSOURCE-386's
commands to form aggregate commands called macros. Macros may contain arguments that
can be substituted by actual values when a macro is being expanded.

Using the Flow Control Commands

The flow control commands are used to control the sequence of command execution. The
flow control commands are most often used in macros, although they can be used in the
command line.

The syntax of the flow control commands is very similar to the C language. The flow
control command set includes the following commands which are described in Chapter Six -
Command Reference.

Program sequence alteration control:

BREAK
CONTINUE
GOTO

Decision making blocks:

IF/ORIF/ELSE/EIF
SWITCH/CASE/DEFAULT/ESWITCH

Command loops:

FOR/EFOR
REPEAT/UNTIL
WHILE/EWHILE

Defining Macros

A macro definition consists of the following three parts:

1. Macro command name, recognized by the first six alphanumeric characters.

2. Argument list, up to ten arguments.

Microtek International, DSD 229 hyperSOURCE-386 User Manual

Chapter Seven Macros

Chapter Seven - Macros
This chapter describes the macro facility. It enables you to use hyperSOURCE-386's
commands to form aggregate commands called macros. Macros may contain arguments that
can be substituted by actual values when a macro is being expanded.

Using the Flow Control Commands

The flow control commands are used to control the sequence of command execution. The
flow control commands are most often used in macros, although they can be used in the
command line.

The syntax of the flow control commands is very similar to the C language. The flow
control command set includes the following commands which are described in Chapter Six -
Command Reference.

Program sequence alteration control:

BREAK
CONTINUE
GOTO

Decision making blocks:

IF/ORIF/ELSE/EIF
SWITCH/CASE/DEFAULT/ESWITCH

Command loops:

FOR/EFOR
REPEAT/UNTIL
WHILE/EWHILE

Defining Macros

A macro definition consists of the following three parts:

1. Macro command name, recognized by the first six alphanumeric characters.

2. Argument list, up to ten arguments.

Microtek International, DSD 229 hyperSOURCE-386 User Manual

Macros Chapter Seven

3. Macro body which consists of a sequence of commands.

You can define macros in the debug session using the MACRO command.

An easier way is to use an editor to define macros. You can invoke an editor in
h rSOURCE-386 in any one of the following ways:

1. Enter the EDIT MACRO command with the name of the macro on the command
line.

2. Press < Alt > a to popup the mAcro menu, select Edit and enter the name of the
macro.

The editor is defined by the EDITOR variable in the environment file. The EDITOR
variable is described in Preparing the Environment File in Chapter Two.

A third way is to first use an editor to define macros in a text file before you start a debug
session, then load in the macros during the debug session.

Before the debug session ends, you can save any or all of the macros to a file for future use
(use the PUT command).

When you define a macro with the MACRO command on the command line, the prompt
changes from - > to MD > . After you have entered the EMACRO command, the prompt
changes back to - > . For example,

- > load mac. inc
- > directory macro
- > macro mymac
MD > map 0 len 1/r
MD>if %0 > 0
MD >goto done
MD > step
MD > eif
MD > done:
MD > emacro
- >put "macl.inc macro"

//Load macro definitions.
//List directory of macros.
//Define a new macro called mymac.
//First input line for macro body.
//A macro argument.

//Single step one instruction

//A macro label.
//End of macro definition.
//Save all macros to file.

Each line of a macro definition should contain only one command. The command line may
include macro arguments. The size of a macro definition and the number of macro
definitions that can be loaded into the debug session are limited only by the available
memory.

hyperSOURCE-386 User Manual 230 Microtek International, DSD

Macros Chapter Seven

3. Macro body which consists of a sequence of commands.

You can define macros in the debug session using the MACRO command.

An easier way is to use an editor to define macros. You can invoke an editor in
h rSOURCE-386 in any one of the following ways:

1. Enter the EDIT MACRO command with the name of the macro on the command
line.

2. Press < Alt > a to popup the mAcro menu, select Edit and enter the name of the
macro.

The editor is defined by the EDITOR variable in the environment file. The EDITOR
variable is described in Preparing the Environment File in Chapter Two.

A third way is to first use an editor to define macros in a text file before you start a debug
session, then load in the macros during the debug session.

Before the debug session ends, you can save any or all of the macros to a file for future use
(use the PUT command).

When you define a macro with the MACRO command on the command line, the prompt
changes from - > to MD > . After you have entered the EMACRO command, the prompt
changes back to - > . For example,

- > load mac. inc //Load macro definitions.
- > directory macro //List directory of macros.
- > macro mymac //Define a new macro called mymac.
MD > map 0 len 1/r //First input line for macro body.
MD>if %0 > 0 //A macro argument.
MD >goto done
MD > step //Single step one instruction
MD > eif
MD > done: //A macro label.
MD > emacro //End of macro definition.
- >put "macl.inc macro" //Save all macros to file.

Each line of a macro definition should contain only one command. The command line may
include macro arguments. The size of a macro definition and the number of macro
definitions that can be loaded into the debug session are limited only by the available
memory.

hyperSOURCE-386 User Manual 230 Microtek International, DSD

Chapter Seven Macros

A macro definition may contain labels. A label is a symbol suffixed with a colon. A label
specifies an entry point for command execution. Labels are often used in the GOTO
command.

HyperSOURCE-386 does not check for command syntax errors in the macro definition input
mode, except the flow control constructs. If you invoke the MACRO command to define a
macro, hyperSOURCE-386 checks for completion of the flow control constructs. For
example, if a FOR command is specified, hyperSOURCE-386 expects a EFOR command is
also specified in the macro definition. HyperSOURCE-386 also checks the syntax of the
expressions used in the flow control commands.

A macro may be used to invoke another macro, but not to define another macro. In other
words, the macro body may not contain any MACRO command. Each macro may have up
to ten arguments, identified as %0 through %9. For example,

- > macro config
MD> load %0
MD> setbrk
MD> ema
- > config test

Displaying Macros

//Create a macro named config.
//Load file.
//Invoke another macro to set breakpoints.
//End of macro definition.
//Execute macro named config which loads a file
//named "test".

Once the macros are loaded in hyperSOURCE-386, you can display the macro definitions in
any one of the following ways:

1. Enter the DISPLAY MACRO command on the command line.

2. Press < Alt > a to popup the mAcro menu, select Dir to display the macro
directory. Move the highlight to the desired macro name and press <Enter > .

In the DISPLAY MACRO command, if you specify more than one macro name as
arguments, the arguments have to be separated by commas. If you do not specify any macro
names, all macro definitions will be displayed. For example,

- > display macro mymac,config //Display mymac and config.
- >dis mac //Display all macros.
- > dis mac config //Display config only.

Microtek International, DSD 231 hyperSOURCE-386 User Manual

Chapter Seven Macros

A macro definition may contain labels. A label is a symbol suffixed with a colon. A label
specifies an entry point for command execution. Labels are often used in the GOTO
command.

HyperSOURCE-386 does not check for command syntax errors in the macro definition input
mode, except the flow control constructs. If you invoke the MACRO command to define a
macro, hyperSOURCE-386 checks for completion of the flow control constructs. For
example, if a FOR command is specified, hyperSOURCE-386 expects a EFOR command is
also specified in the macro definition. HyperSOURCE-386 also checks the syntax of the
expressions used in the flow control commands.

A macro may be used to invoke another macro, but not to define another macro. In other
words, the macro body may not contain any MACRO command. Each macro may have up
to ten arguments, identified as %0 through %9. For example,

- > macro config
MD> load %0
MD> setbrk
MD> ema
- > config test

Displaying Macros

//Create a macro named config.
//Load file.
//Invoke another macro to set breakpoints.
//End of macro definition.
//Execute macro named config which loads a file
//named "test".

Once the macros are loaded in hyperSOURCE-386, you can display the macro definitions in
any one of the following ways:

1. Enter the DISPLAY MACRO command on the command line.

2. Press < Alt > a to popup the mAcro menu, select Dir to display the macro
directory. Move the highlight to the desired macro name and press <Enter > .

In the DISPLAY MACRO command, if you specify more than one macro name as
arguments, the arguments have to be separated by commas. If you do not specify any macro
names, all macro definitions will be displayed. For example,

- > display macro mymac,config //Display mymac and config.
- >dis mac //Display all macros.
- > dis mac config //Display config only.

Microtek International, DSD 231 hyperSOURCE-386 User Manual

Macros Chapter Seven

Displaying Macro Directory

You can display the macro directory in any one of the following ways:

1. Enter the DIRECTORY MACRO command on the command line.

2. Press < Alt> a to popup the mAcro menu, select Dir.

The names of all the macros that are present in hyperSOURCE-386 will be displayed.

Deleting Macros

You can delete macros in any one of the following ways:

1. Enter the REMOVE MACRO command on the command line.

2. Press <Alt> a to popup the mAcro menu, select Remove and specify the macro
names.

If you specify more than one macro name as arguments, the arguments have to be separated
by commas. If you do not specify any macro names, all macro definitions will be deleted.
For example,

- > remove macro mymac,config //Delete mymac and config.
- > rem mac //Delete all macros.
- > rem mac config //Delete config only.

Invoking Macros

You can invoke macros in any one of the following ways:

1. Enter the macro name on the command line.

2. Press <Alt> a to popup the mAcro menu, select Invoke and specify the macro
name.

If the macro accepts arguments, you may enter values for the arguments after the macro
name. If an expected argument is missing, the macro expansion may produce unpredictable
results. A macro may accept up to 10 arguments. The argument values are separated by
commas. If an argument value contains commas, the " <*" and "*> " operators can be used
as parentheses in specifying the value. For example,

hyperSOURCE-386 User Manual 232 Microtek International, DSD

Macros Chapter Seven

Displaying Macro Directory

You can display the macro directory in any one of the following ways:

1. Enter the DIRECTORY MACRO command on the command line.

2. Press < Alt> a to popup the mAcro menu, select Dir.

The names of all the macros that are present in hyperSOURCE-386 will be displayed.

Deleting Macros

You can delete macros in any one of the following ways:

1. Enter the REMOVE MACRO command on the command line.

2. Press <Alt> a to popup the mAcro menu, select Remove and specify the macro
names.

If you specify more than one macro name as arguments, the arguments have to be separated
by commas. If you do not specify any macro names, all macro definitions will be deleted.
For example,

-> remove macro mymac,config //Delete mymac and config.
-> rem mac //Delete all macros.
- > rem mac config //Delete config only.

Invoking Macros

You can invoke macros in any one of the following ways:

1. Enter the macro name on the command line.

2. Press <Alt> a to popup the mAcro menu, select Invoke and specify the macro
name.

If the macro accepts arguments, you may enter values for the arguments after the macro
name. If an expected argument is missing, the macro expansion may produce unpredictable
results. A macro may accept up to 10 arguments. The argument values are separated by
commas. If an argument value contains commas, the " <*" and "*> " operators can be used
as parentheses in specifying the value. For example,

hyperSOURCE-386 User Manual 232 Microtek International, DSD

Chapter Seven Macros

- > config test //Invoke macro config with argument.
- > abc 24,count //Two arguments.
->aa 34, <* ax,bx,c1*>, #20 //Three arguments.
- > bb //No argument.

Saving Macros to a File

You can save macros to a file in any one of the following ways:

1. Enter the PUT command on the command line.

2. Press <Alt> a to popup the mAcro menu, select Save and specify the file name
and the macro names.

More than one macro definitions can be saved to a text file. If you do not specify any macro
names, all macro definitions will be saved. For example,

- >put mac.inc macro mymac,config //Save two macros to file.
- > put macdef.inc macro //Save all macros to file.

Loading Macros from a File

You can load macros from a file in any of the following ways:

1. Enter the @ or INCLUDE command with the file name as argument on the
command line.

2. Press <Alt> a to popup the mAcro menu, select Load and specify the file name.

Debugging Macros

The MUST command is used primarily for debugging macros. You can enter the MUST in
any of the following ways:

1. Enter MUST command on the command line.

2. Press <Alt> c to popup the Config menu, select mAcro listing and then select
On or oFf.

Microtek International, DSD 233 hyperSOURCE-386 User Manual

Chapter Seven Macros

-> config test //Invoke macro config with argument.
-> abc 24,count //Two arguments.
->aa 34, <* ax,bx,c1*>, #20 //Three arguments.
->bb //No argument.

Saving Macros to a File

You can save macros to a file in any one of the following ways:

1. Enter the PUT command on the command line.

2. Press <Alt> a to popup the mAcro menu, select Save and specify the file name
and the macro names.

More than one macro definitions can be saved to a text file. If you do not specify any macro
names, all macro definitions will be saved. For example,

-> put mac.inc macro mymac,config //Save two macros to file.
-> put macdef.inc macro //Save all macros to file.

Loading Macros from a File

You can load macros from a file in any of the following ways:

1. Enter the @ or INCLUDE command with the file name as argument on the
command line.

2. Press <Alt> a to popup the mAcro menu, select Load and specify the file name.

Debugging Macros

The MUST command is used primarily for debugging macros. You can enter the MUST in
any of the following ways:

1. Enter MUST command on the command line.

2. Press <Alt> c to popup the Config menu, select mAcro listing and then select
On or oFf.

Microtek International, DSD 233 hyperSOURCE-386 User Manual

Macros Chapter Seven

This MUST ON command causes the commands in the macro definition to be displayed on
the dialog window as the macro is being expanded. The MUST OFF command can be used
to disable the display. The default setting is MUST OFF. The MUST command without
any arguments displays the setting. For example,

- > mlist //Examine setting.
- > mlist on //Enable macro debug.
- > mymacro //Display command during macro expansion.
- > mlist off //Disable macro debug.

hyperSOURCE-386 User Manual 234 Microtek International, DSD

Macros Chapter Seven

This MUST ON command causes the commands in the macro definition to be displayed on
the dialog window as the macro is being expanded. The MUST OFF command can be used
to disable the display. The default setting is MUST OFF. The MUST command without
any arguments displays the setting. For example,

-> mlist //Examine setting.
-> mlist on //Enable macro debug.
- > mymacro //Display command during macro expansion.
-> mlist off //Disable macro debug.

hyperSOURCE-386 User Manual 234 Microtek International, DSD

Index

: 90 left shift 77
:: 91 OR 77
! 84 right shift 77
? 93 Boolean expressions 81
$ 87 BREak 99
// 89 BRKgdt 100
<Ctrl> g 20, 24 BRkPidt 101
<Ctrl> t 20, 24 BRkPidt 102
<Esc> 34 BYTe 103
= 92, 133
85 C
86
& 88 CALlstack 104
@ 94, 156 CAUse 105

CHAr 106
A

Address expressions 81
Angle Brackets (< >) 83
Arithmetic operators 77

addition 77
division 77
modulus 77
multiplication 77
subtraction 77
unary minus 77
unary plus 77

Assembly-level format 1
Assignment operators 78

B

B 95
Background colors 21
BEEp 97
BINary 98
Bitwise logical operators 77

l's complement (unary) 77
AND 77
exclusive OR 77

Character set 68
CLOse 107
CNTROL 64
CODe 108
Command

recall 24
Command state 24
Communication

baud rate 5
COMpare 109
CONtinue 110
Control keys 34

<ctrl > g 34
<ctrl> t 34

COPy 111
CPU register expressions 81
CRRepeat 112
Current program counter 23
Cursor control keys 24
CW 113

D

DASm 114, 215
Data structure reference 73

Microtek International, DSD index-1 hyperSOURCE-386 User Manual

Index

: 90 left shift 77
:: 91 OR 77
! 84 right shift 77
? 93 Boolean expressions 81
$ 87 BREak 99
// 89 BRKgdt 100
<Ctrl> g 20, 24 BRkPidt 101
<Ctrl> t 20, 24 BRkPidt 102
<Esc> 34 BYTe 103
= 92, 133
85 C
86
& 88 CALlstack 104
@ 94, 156 CAUse 105

CHAr 106
A Character set 68

CLOse 107
Address expressions 81 CNTROL 64
Angle Brackets (< >) 83 CODe 108
Arithmetic operators 77 Command

addition 77 recall 24
division 77 Command state 24
modulus 77 Communication
multiplication 77 baud rate 5
subtraction 77 COMpare 109
unary minus 77 CONtinue 110
unary plus 77 Control keys 34

Assembly-level format 1 <ctrl > g 34
Assignment operators 78 <ctrl> t 34

COPy 111
B

B 95
Background colors 21
BEEp 97
BlNary 98
Bitwise logical operators 77

l's complement (unary) 77
AND 77
exclusive OR 77

CPU register expressions 81
CRRepeat 112
Current program counter 23
Cursor control keys 24
CW 113

D

DASm 114, 215
Data structure reference 73

Microtek International, DSD index-1 hyperSOURCE-386 User Manual

Data type 69
Data types

additional data types 69
BYTE 69
CHAR 69
DOUBLE 69
DWORD 69
FLOAT 69
LONG 69
POINTER 69
QWORD 69
SHORT 69
TREAL 69
WORD 69

DECimal 115
Default window size 23
Defining

symbols 68, 69
Defining symbols 68
Dialog window 23
DIRectory MACro 116
DIRectory MODule 117
DIRectory STRucture 118
Disassembled instructions 22
DISplay MACro 119
DISplay STRucture 120
DISplay TRAce 121, 178
DOS files

modifying 2
DOUble 122
DOWn 123
DT 124
DWOrd 125

E

E 134
EDit 126
EDit MACro 127
EGA 128
Ellipsis (...) 83
ENV 129
Environment file 23

Environment Variable
hs386env 3
hs386h1p 3

ESCape 132
EVAluate 92, 133
EXAmine 134
EXIT 17, 66, 135
Exiting hyperSOURCE-386 17
Expressions 80

address 80
Boolean 80
CPU register 80
numerical 80

EXTension 136

F

FINd 137
FLAG 76, 138
FLOat 139
Flow control commands 229
FOR 140
Foreground colors 21
FREe 141
Full-stack trace 1
Function keys

F 1 34
F10 19
F2 34
F3 34

G

G 144
GDT 142
GLObal 143
Global symbols 68
GO 144
GOTo 146
GR 147

hyperSOURCE-386 User Manual index-2 Microtek International, DSD

Data type 69
Data types

additional data types 69
BYTE 69
CHAR 69
DOUBLE 69
DWORD 69
FLOAT 69
LONG 69
POINTER 69
QWORD 69
SHORT 69
TREAL 69
WORD 69

DECimal 115
Default window size 23
Defining

symbols 68, 69
Defining symbols 68
Dialog window 23
DIRectory MACro 116
DIRectory MODule 117
DIRectory STRucture 118
Disassembled instructions 22
DISplay MACro 119
DISplay STRucture 120
DISplay TRAce 121, 178
DOS files

modifying 2
DOUble 122
DOWn 123
DT 124
DWOrd 125

E

E 134
EDit 126
EDit MACro 127
EGA 128
Ellipsis (...) 83
ENV 129
Environment file 23

Environment Variable
hs386env 3
hs386h1p 3

ESCape 132
EVAluate 92, 133
EXAmine 134
EXIT 17, 66, 135
Exiting hyperSOURCE-386 17
Expressions 80

address 80
Boolean 80
CPU register 80
numerical 80

EXTension 136

F

FINd 137
FLAG 76, 138
FLOat 139
Flow control commands 229
FOR 140
Foreground colors 21
FREe 141
Full-stack trace 1
Function keys

F 1 34
F10 19
F2 34
F3 34

G

G 144
GDT 142
GLObal 143
Global symbols 68
GO 144
GOTo 146
GR 147

hyperSOURCE-386 User Manual index-2 Microtek International, DSD

H

HALt 148

I

INPut 157, 158
Install hyperSOURCE-386 2
Installation 2
Invoking hyperSOURCE-386 16

J
Hardware requirements 1
Hardware signals 65 JOUrnal 159
Help 17, 149
Help File 3 K

hs386h1p.txt 3
HEX 150 Key Macro 13
High-level format 1
High-level language statements 22 L
HOLdtp 151
HOMe 152 LDT 160
Host LiNEar 161

autoexec.bat 3 LISt 162
config.sys 2 LOAd 163
environment file 3 LOCal 164
files used 14, 15 Local symbols 68

hs386.env 23, 33 Logical operators 77
HTRc 153 logical AND 77
hyperSOURCE-386 logical exclusive OR 77

block-structured programming logical NOT 77
languages 71 logical OR 77

data types 69
definition 1 M
exiting 17, 66
multi-dimensional arrays 73 MACro 165
powering up 61 argument 231
seven nested layers 73 debug 233

define 229
I delete 232

directory 232
display 231
invoke 232
load 233
save 233

IDT 154 MAP 166
IF 155 Masking 82
In-circuit probe 61 MEMory 167
INClude 94, 156 Menu bar 19

Microtek International, DSD index-3 hyperSOURCE-386 User Manual

I/O port reference 74
IBM CGA color graphic display 1
IBM EGA color graphic display 1
IBM VGA color graphic display 1

H

HALt 148

I

INPut 157, 158
Install hyperSOURCE-386 2
Installation 2
Invoking hyperSOURCE-386 16

J
Hardware requirements 1
Hardware signals 65 JOUrnal 159
Help 17, 149
Help File 3 K

hs386h1p.txt 3
HEX 150 Key Macro 13
High-level format 1
High-level language statements 22 L
HOLdtp 151
HOMe 152 LDT 160
Host LiNEar 161

autoexec.bat 3 LISt 162
config.sys 2 LOAd 163
environment file 3 LOCal 164
files used 14, 15 Local symbols 68

hs386.env 23, 33 Logical operators 77
HTRc 153 logical AND 77
hyperSOURCE-386 logical exclusive OR 77

block-structured programming logical NOT 77
languages 71 logical OR 77

data types 69
definition 1 M
exiting 17, 66
multi-dimensional arrays 73 MACro 165
powering up 61 argument 231
seven nested layers 73 debug 233

define 229
I delete 232

directory 232
display 231
invoke 232
load 233
save 233

IDT 154 MAP 166
IF 155 Masking 82
In-circuit probe 61 MEMory 167
INClude 94, 156 Menu bar 19

Microtek International, DSD index-3 hyperSOURCE-386 User Manual

I/O port reference 74
IBM CGA color graphic display 1
IBM EGA color graphic display 1
IBM VGA color graphic display 1

Miscellaneous operators 78
address 78
decrement 78
increment 78
indirect reference of pointer 78
pointer to struct 78
separator for specifying address base

and offset 78
size of type or variable 78
struct field reference 78

Mixed language 22
Mixed-mode format 1
MLIst 168
Modifying DOS files 2
Monochrome graphic display 1
Mouse 1

driver 2

N

NO JOUrnal 159
NO LISt 162
NUMber 169
Numerical expressions 81

PHYsical 175
PMOde 176
POInter 177
Pointer reference 72
Previous command 24
PRInt 121, 178
PROlog 179
Pull-down menus 19, 20

Config 20
Debug 20
Execute 20
Host 20
mAcro 20
Memory 20
Register 20
Symbol 20
Window 20

PUT 180

Q

QUIT 17, 66, 181
QWOrd 182

R
0

OCTal 170
OPEn 171
Operands 76

CPU registers 76
location references 76
numerical constants 76
variable references 76

Operators 77
binary 77
unary 77

OUTput 172

P

PAUse 173
PD 174

Radix 82, 183
Radixes 73

binary 73
decimal 73
hexadecimal 73
octal 73

RAM-based applications 63
RAMtst 184
RAmtstP 185
RBRk 186
RDYbrk 187
RDyTo 188
REAd 189
Referencing symbols 67
REGISTER 75, 190
Register variables 67

hyperSOURCE-386 User Manual index-4 Microtek International, DSD

Miscellaneous operators 78
address 78
decrement 78
increment 78
indirect reference of pointer 78
pointer to struct 78
separator for specifying address base

and offset 78
size of type or variable 78
struct field reference 78

Mixed language 22
Mixed-mode format 1
MLIst 168
Modifying DOS files 2
Monochrome graphic display 1
Mouse 1

driver 2

N

NO JOUrnal 159
NO LISt 162
NUMber 169
Numerical expressions 81

PHYsical 175
PMOde 176
POlnter 177
Pointer reference 72
Previous command 24
PRInt 121, 178
PROlog 179
Pull-down menus 19, 20

Config 20
Debug 20
Execute 20
Host 20
mAcro 20
Memory 20
Register 20
Symbol 20
Window 20

PUT 180

Q

QUIT 17, 66, 181
QWOrd 182

R
0

OCTal 170
OPEn 171
Operands 76

CPU registers 76
location references 76
numerical constants 76
variable references 76

Operators 77
binary 77
unary 77

OUTput 172

P

PAUse 173
PD 174

Radix 82, 183
Radixes 73

binary 73
decimal 73
hexadecimal 73
octal 73

RAM-based applications 63
RAMtst 184
RAmtstP 185
RBRk 186
RDYbrk 187
RDyTo 188
REAd 189
Referencing symbols 67
REGISTER 75, 190
Register variables 67

hyperSOURCE-386 User Manual index-4 Microtek International, DSD

Relational operators 77
is equal to 77
is greater than 77
is greater than or equal to 77
is less than 77
is less than or equal to 77
is not equal to 77

REMove MACro 191
REPeat 192
RESet 193
ROM-based applications 62
RUNning 194

S

S 201
SENSITIVE 68, 195
SET 196
SIG 197
Software requirements 1
SOUrce 198
Source code 1
Source file

directory path 6
Source line number reference
Source window 20
SPATH 61, 199
Specifying symbols 70
Square Brackets ([]) 83
STO 200
ST1 200
ST2 200
ST3 200
ST4 200
ST5 200
ST6 200
ST7 200
Status flag reference 76
STEp 201
STRucture 202
Structures 69, 73
Submenus 24
SW 203

SVVItch 204
SYMBOL 69, 205
Symbol table 69
Symbolic reference 67
Symbols

defining 68, 69
specifying 70

T

TIMe 206
TKB 207
TM 208
Transparent mode 1
TRCmode 210
TREal 211
TSS 212
TW 213
TYPE 69, 214
Type operators 78

U

U 114, 215
72 UP 216

USE 217
User-defined data types 69

structures 69

V

VeRiFy 218
VERsion 219
Vertical Bar (1) 83
VIEw 220

W

WAIt 221
Watchdog timer 65
WHIle 222
WIDth 223

Microtek International, DSD index-5 hyperSOURCE-386 User Manual

Relational operators 77
is equal to 77
is greater than 77
is greater than or equal to 77
is less than 77
is less than or equal to 77
is not equal to 77

REMove MACro 191
REPeat 192
RESet 193
ROM-based applications 62
RUNning 194

S

S 201
SENSITIVE 68, 195
SET 196
SIG 197
Software requirements 1
SOUrce 198
Source code 1
Source file

directory path 6
Source line number reference
Source window 20
SPATH 61, 199
Specifying symbols 70
Square Brackets ([]) 83
ST0 200
ST1 200
ST2 200
ST3 200
ST4 200
ST5 200
ST6 200
ST7 200
Status flag reference 76
STEp 201
STRucture 202
Structures 69, 73
Submenus 24
SW 203

SVVItch 204
SYMBOL 69, 205
Symbol table 69
Symbolic reference 67
Symbols

defining 68, 69
specifying 70

T

TIMe 206
TKB 207
TM 208
Transparent mode 1
TRCmode 210
TREal 211
TSS 212
TW 213
TYPE 69, 214
Type operators 78

U

U 114, 215
72 UP 216

USE 217
User-defined data types 69

structures 69

V

VeRiFy 218
VERsion 219
Vertical Bar (1) 83
VIEw 220

W

WAIt 221
Watchdog timer 65
WHIle 222
WIDth 223

Microtek International, DSD index-5 hyperSOURCE-386 User Manual

Window browse cursor keys
<ctrl>g 21
<ctrl>t 21
<ctrl>--* 21
<End> 21
<Enter> 21
<Esc> 21
<Home> 21
<PgDn> 21
<PgUp> 21
t 21

Window browse mode 21
Window size 20, 23
Windows 19
WORd 224
WRIte 225
WSTate 226

X

XLT 227

hyperSOURCE-386 User Manual index-6 Microtek International, DSD

Window browse cursor keys
<ctrl>g 21
<ctrl>t 21
<ctrl>--* 21
<End> 21
<Enter> 21
<Esc> 21
<Home> 21
<PgDn> 21
<PgUp> 21
t 21

Window browse mode 21
Window size 20, 23
Windows 19
WORd 224
WRIte 225
WSTate 226

X

XLT 227

hyperSOURCE-386 User Manual index-6 Microtek International, DSD

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Insert from: "GW02C2504-1.corp.capitalpower.com_20240822_053259.pdf"
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134

