
© 1998 Grammar Engine

User Manual
Version 3.4B

PromICE
TM

Grammar Engine Inc.
921 Eastwind Drive Suite 122 Westerville Ohio 43081

(614) 899-7878 Voice
(614) 899-7888 Fax

Internet: www.gei.com

PromICE User Manual

PromICE User Manual

Version 3.4B

All rights reserved

Copyright © 1998 by Grammar Engine Inc.

No part of this book may be reproduced in any form or by any means
without prior written permission from Grammar Engine.

PRINTED IN THE UNITED STATES OF AMERICA

Thank You 3

© 1998 Grammar Engine

WARRANTY 4

1. INSTALLATION 5

2. SOFTWARE
CONFIGURATION 20

3. COMMAND REFERENCE 26

4. TROUBLESHOOTING 90

5. ERROR MESSAGES 103

6. AI CONFIGURATION 119

7. AI COMMAND REFERENCE123

8. SAMPLE DEBUGGER
CONFIGURATIONS 133

9. AI PORTING 157

10. AI TROUBLESHOOTING168

12. SAMPLE SESSIONS 184

15. TECHNICAL
SPECIFICATIONS 199

16. INTERNAL MEMORY
ADDRESSING 223

17. INDEX 224

4 Installation

PromICE User Manual

WARRANTY
GEI provides a 30-day money back guarantee on its products. Within that period,
if you are not fully satisfied within PromICE, it can be returned for a refund. The
shipping and handling fees are non-refundable. All returned merchandise must
be complete, in working order, and returned in the original packing with a GEI-
supplied Return Material Authorization number.

GEI products are covered by a one year warranty. GEI warrants that the
equipment is free of manufacturing defects (i.e. defects in material and
workmanship under normal and proper use in their unmodified condition) for a
period of one year from the date of delivery. GEI shall repair or replace any
defective equipment during this period at its option. This warranty does not cover
any damage resulting from accident, abuse, or any consequential damages as a
result of the use of this product.

WARNING: All warranties are void if PromICE is opened!

REPAIR/REPLACEMENT

GEI shall perform all warranty repairs and re-ship the product via 3 day shipping
at no charge. Handling charges apply for special shipping considerations. To
return a product for repair or replacement, GEI shall provide a return material
authorization number (RMA#) which should be clearly marked on the outside of
the package. A copy of the invoice or packing slip must accompany the returned
items. Any static sensitive device returned to GEI must be shipped in a
static shielding bag. The warranty is VOID if the product is not returned in
this manner.

Installation 5

© 1998 Grammar Engine

1. INSTALLATION

1.1. Unpacking

When you take PromICE out of the static shielding you must be in a
static safe environment or you could damage the unit. Replacing blown
input buffers on the ROM interface is our most common repair. You
can develop a long and productive relationship with your PromICE by
following a few safety guidelines and handling precautions:

1. Take the box PromICE came in to the work site. If the box must
be opened elsewhere for inspection under no circumstance
should you or anyone else remove PromICE unit from its static
shielding bag.

2. Make sure that a static safe environment is maintained at the
work site at all times. Ground yourself by touching a grounding
strip before touching any device at the workstation.

3. Wear a grounded wrist strap when you handle your PromICE or
target system, such as when setting up. Practice safe static
handling by not touching any exposed metal parts or pins on
PromICE or the target. We recommended you always wear a
wrist strap when handling static sensitive devices.

4. If you must move PromICE, wear a grounded wrist strap and
disconnect all cables from PromICE. Remove power from both
the PromICE and target system before removing ROM and
auxilliary cables. DISCONNECT ALL CABLES FROM PromICE
END FIRST. Return PromICE to its static shielding bag before
transporting. Never carry PromICE with the ROM cables still
attached. You can damage the buffers easily and also damage
the ROM cable pins.

5. When handling PromICE do not touch any exposed pins. Most
of the pins are direct connections to inputs on buffers and are
very sensitive to static damage. A damaged buffer can cause
intermittent and permanent failures.

6 Installation

PromICE User Manual

1.1.1. Packing List

PromICE is shipped in a custom cardboard container with cutouts for
various parts. Do not remove PromICE unit from its static shielding
bag until you get to section 2.1 "Connecting the Hardware":

1. PromICE - in its static shielding bag
2. External power supply
3. 6' shielded serial cable (DB9)
4. DB9 to DB25 adapter for serial cable
5. 6' shielded parallel cable (DB25)
6. Reset mini clip
7. User manual - with Host software - LoadICE

PromICEs with model numbers containing “AI” will receive 3 mini clips.

Installation 7

© 1998 Grammar Engine

1.2. Hardware Installation
Please read this entire section before attempting to connect or
disconnect PromICE from the target. Grammar Engine is not
responsible for damages incurred as a result of mishandling or misuse.

STEP 1: Turn power off to your target and disconnect power from PromICE.
Failure to turn off power may damage PromICE and/or the target.

STEP 2: Disconnect the ROM adapter from PromICE side FIRST.

STEP 3: Connect or disconnect the cable from the target system.

STEP 4: Connect or disconnect the serial and/or parallel cables from
PromICE

STEP 5: (Disconnecting only) Place PromICE in a static bag.

When you are ready to use PromICE, bring the unopened shipping box
to your work area and wear a grounded wrist strap. Remove PromICE,
cables and accessories from the box. DO NOT remove the unit from its
static protective bag at this time.

Please remember any time you are handling connectors, whether from the
target to PromICE or host to PromICE, always remove power first and wear a
wrist ground strap. Never connect or disconnect anything without first turning
off the power to PromICE and target systems (except the host).

8 Installation

PromICE User Manual

1.2.1. Connecting PromICE to the target system

Power Source Selection for PromICE

extrom24 28 32

PromICE power source
ext=GEI AC adapter
rom=from target

Target power sense

Set one jumper on either the "ext" pins for external power (preferred) or
the "rom" pins for parasitic power (When using parasitic power, PromICE
takes its power directly from the target's ROM socket. No external power
supply should be connected to PromICE).

Target Power Sense Selection
Place a jumper on “24” if you are using a 24 pin DIP cable or a jumper on
“28” if you are using the 28 pin DIP cable. Place a jumper on “32” for all
other cables and/or adapters.

Connecting ROM cables
This section describes installation of the 28 and 32 pin DIP cables only.
Refer to the included cable manual for installation instructions for other
cable assemblies.

If you will be emulating multiple ROMs consider the byte order before
connecting the ROM cables. You will have to describe to the LoadICE
software which module is plugged into which ROM. Plug the cable(s) into
the target system as instructed below:

All DIP cables come with a conditioning pod, labeled “NoNoise/NOZap”.
This board contains signal conditioning and protection circuitry. Place
this adapter between the PromICE and the DIP cable.

Carefully locate pin 1 of the ROM socket. It is the top left pin when the
notch on the socket is on the top. If you do not understand how to locate

Installation 9

© 1998 Grammar Engine

pin 1 of a given socket, then get help before proceeding further. Plugging
this cable in backwards will damage PromICE and/or target. Connect the
cable to the target ROM(s) with pin 1 on the cable DIP aligned with pin 1
on the ROM socket. Then, connect the female end of the cable to the
conditioning pod..

2x17 Female
header 24/28/32 pin

DIP plug
pin1

WARNING: CONNECTING THE CABLE INTO THE ROM SOCKET
BACKWARDS WILL DAMAGE PromICE.

Carefully connect the other end of the cable(s) to PromICE via the keyed
34 pin female IDC connector. If you are using a 16 bit or larger system,
Make sure the byte order is set correctly .

Optional Connections

rst-int-ack req swr

inth mwrmwr int+ rst+

The PromICE back panel has auxiliary signals that allow you to control
the target system from the host, or allow additional features of PromICE
to interact with the target. These signals are as follows:

rst- and rst+ : (outputs) These are reset signals that are driven by
PromICE whenever the unit is in LOAD mode or is instructed by the reset
command from LoadICE. Both polarities of the signal are provided and
are driven by a 74HCT125 tri-state buffer. The signals are driven when

10 Installation

PromICE User Manual

asserted and are tri-stated when not asserted. This allows these signals
to be shared by other sources.

int- and int+ : (outputs) These are interrupt signals that are driven by
PromICE whenever the HDA is set in the AI status register, when AI is
used in transparent mode, or driven by a host request. Both polarities of
the signal are provided and they are driven by a 74HCT125 tri-state
buffer. The signals are driven when asserted and are tri-stated when not
asserted. This allows these signals to be shared by other sources.

mwr / swr: (input) This is a low asserted input that usually comes from
the system write line on the target. This allows the target to do write
cycles to PromICE master unit (bottom ROM connector) The swr pin is
used to do writes into the slave module of a PromICE (P2xxx). This
allows byte writes to the ROMs, you must attach two separate mini-clips
to the mwr and the swr signals.

inth: (input) This signal directly drives the CTS pin on the RSR232
interface on PromICE front panel. It allows the target to directly interrupt
or alert the host.

req: (output) This signal is driven directly by PromICE micro-controller to
request the target systems bus for PiCOM protocol use. Its polarity is
programmable via LoadICE.

ack: (input) This is the input from the target responding to req above. Its
sense polarity is programmable by LoadICE.

Reset Line

PromICE will control the target reset, either automatically, i.e. asserted
while down-loading data and released when emulating, or it can be
asserted by issuing direct command. The reset signal as driven by
PromICE is driven only during the asserted state and is tri-stated (i.e. not
driven) during the non-asserted state. This allows the connection to be
shared. However, you must make sure that your target allows a shared
reset. Connecting to unsharable reset on the target will damage the
drivers in PromICE as well as on the target. Refer to your target
hardware documentation.

If the target reset line is low asserted connect the reset line from the
target to the rst- pin on PromICE. If the target reset line is high asserted
connect the target reset line to the rst+ pin on PromICE.

Installation 11

© 1998 Grammar Engine

If you choose not to connect the reset line between PromICE and the
target system, then you must boot your target either by pressing a reset
button or by power-cycling the target system.

Interrupt Line

If the target interrupt line is low asserted connect the int- line from
PromICE to the desired interrupt on the target. If the target interrupt line
is high asserted connect the int+ from PromICE to the desired target
interrupt line. Usually, you will want to connect this line to the NMI line on
the target system.

PromICE has the ability to interrupt the target system. This feature is
used to return control to the debugger if your program runs away. Note
which interrupt this line is connected to your target. Some debuggers will
want to know which target interrupt line PromICE is connected to.

Write Line

The following describes how to connect the target’s write line into the
PromICE depending on the target’s chip select/write configuration:

8 bit only

Connect the target’s write line to either of the mwr pins on the PromICE
unit.

16 bit (1 target write line)

If your target has only one write line and uses separate chip selects for
each byte jumper the swr and mwr pins together and connect the
target’s write line.

16 bit (2 target write lines)

If your target has one ship select and uses the write line to determin
which ROM is being written to remove the jumper between mwr and swr.
Then, connect the write line that will be used for the bottom PromICE unit
to one of the mwr pins on the PromICE. Connect the other write line to
the swr pin on the PromICE.

32 bit (1 target write line)

This configuration requires two PromICE (P2xxx) units. Connect the
target’s write line to each of the PromICE unit’s mwr lines. Leave the
jumper between the other mwr and swr pins in place.

32 bit (4 target write lines)

12 Installation

PromICE User Manual

This configuration requires two PromICE (P2xxx) units. Remove the
jumpers on mwr and swr on each of the PromICE units. Connect one of
the target’s write lines to each of the pins on the PromICE units.

1.3.2. Connecting PromICE to the host PC
There are four ways to connect your PromICE units to the host system's
ports. 1) serial only; 2) parallel only; 3) multiple units on the serial port 4)
multiple units on the serial port with parallel for down-loading only.

1.3.2.1. Serial / Parallel connection

Connect the cable(s) to PromICE by attaching the supplied cables from
PromICE to the host. Refer to the next chapter for software
configuration.

1.3.2.2. Multiple PromICEs on the serial link

To connect multiple PromICEs to a single serial port, you must use the
daisy-chain modules. A daisy chain module lets you create a loop with
the transmit signal of one unit going in as the receive signal of the next.
You can connect multiple daisy chain modules together to emulate a
large configuration of ROMs. Up to 256 modules can be daisy chained
from a single serial port.

The daisy chain module that is made up of DB9 connectors and DB9
adaptors.

With the center jack's opening facing you, connect the master (unit 0 on a
simplex or units 0 and 1 on duplex units) PromICE to the left connector
and the slave (unit 1 on a simplex or units 2 and 3 for duplex units)
PromICE to the right connector (the jacks that go to PromICE will be
facing away from you). Any number of PromICE units can be daisy
chained in this way.

1.3.2.3. Multiple PromICEs The Parallel Bus Cable

When using PromICE in this configuration, the serial port is used for full
communication with PromICEs and the parallel link is used to achieve
fast down-load times. The serial daisy chain adapter determines the byte
ordering, so byte ordering isn’t important when connecting the parallel
bus cable.

Installation 13

© 1998 Grammar Engine

header for 1st unit (ID0&1)

header for 2nd unit (ID2&3)

Connect the serial daisy chain adapter(s) as described in the previous
section (1.3.2.3 Multiple PromICEs on the serial link). Connect the
parallel bus cable in whatever way is most convenient.

This completes the connection of PromICE hardware. Your target
system should now be connected to PromICE properly and
PromICE should be connected to the proper host ports. You can
now proceed with the setup of the host software for down-loading
and emulating your code. It is best to check your setup by simply
down-loading known working code and verifying that your target
system and PromICE are functioning properly and that you can
repeat the down-loading and restarting process.

14 Software Installation

PromICE User Manual

1.3. Software Installation
The software you will need to accomplish most of your work with PromICE is
the LoadICE application. It is distributed with a command line user interface
for all PC and UNIX based systems. The software comes on a 3.5" floppy
disk with the application and sources on it.

If the distribution disk has an executable LoadICE application for your
system, then you do not need to install the sources on your machine.
Otherwise install the sources and use the "make" command to create the
LoadICE executable. You would most likely do this if you are using a UNIX
system.

1.3.1. DOS / Windows 3.x / Windows 95
Insert the floppy disk in to drive A: or B: as appropriate

If you have a directory on your system for local commands or
development tools then its is best to copy just the LoadICE executable to
this directory. For example, assume that you keep a set of your non-
DOS commands in a directory called CMD. This directory should also be
in your PATH. Run the following to install LoadICE on your system:

copy a:\dos\loadice.exe c:\cmd
or
copy a:\win95\loadice.exe c:\cmd

Now you can execute LoadICE from anywhere in your system.

1.3.2. Windows NT 4.0
If you will only be using serial communications, follow the instructions in
1.3.1 to install LoadICE to copy LoadICE from the \winnt directory to your
hard disk.

Follow these steps to installe the parallel port driver:

1. Make sure the port is in either Standard or EPP mode. This is set in
the BIOS of the system.

2. While in BIOS setup, note the address of the port. This is very
important, since some newer computers do not necessarily use
standard addresses.

3. Reboot and login to Windows as administrator.

Software Installation 15

© 1998 Grammar Engine

4. Edit the “PromICE.ini” file in the \WINNT\PromICE directory. Change
the IoPortAddress to match the address of your parallel port.

5. If necessary, edit the PromICE.bat file. This should only be
necessary if you installel NT into a directory other than “C:\winnt”.

6. Run PromICE.bat
7. Restart the computer.
8. From the Start Menu, select Settings->Control Panel.
9. In Devices, there should be a service called PromICE. It should be

started and automatic.

1.3.3 UNIX
If you have a 3.5" floppy drive on your workstation, then the software can
be installed from a DOS diskette as follows (This example is taken from a
SUN workstation):

Insert the floppy disk in the drive and do the following commands:

mkdir LoadICE
cd LoadICE
mount /pcfs
cp /pcfs/source/*.* .
dos2unix makefile.unx makefile

(if you plan to edit any of the files you can
translate all the files to UNIX format: example using
shell:
sh
for file in *
>do
>echo $file
>dos2unix $file $file
>done

make
eject

This will make a LoadICE executable. Ignore warnings during compile
time that are caused by multiple includes in the UNIX header files. You
need only convert the makefile from DOS to UNIX format. You also have
other makefiles that are specific to other types of UNIX, i.e. there is a
makefile.hp for Hewlett Packard and also makefile.unx as a
generic make file.

16 Software Configuration

PromICE User Manual

2. Software Configuration
If you haven't already done so, go back and read the hardware
installation instructions before continuing with this section. This
section details the software configuration only.

Fastport Users: A serial connection is required for communication with the
Fastport. The parallel port is optional, but allows for faster downlad speeds.

1. The LoadICE software uses the LoadICE.ini file to initialize PromICE
to match the ROM that is being emulated. The LoadICE software is
case sensitive. All entries should be lower case unless otherwise
specified. For more information on any of the following LoadICE.ini
instructions, refer to Chapter 3, Command Reference of this manual.

2. If PromICE is using the serial port for communications, the first line in
the LoadICE.ini file should read:

output=comX:abc

Where:
X is the serial port number being used.
:abc (optional) Specify only if the port address is not the

default address.

3. If PromICE is connected via the parallel port only (Fastport and daisy
chain users cannot use this command, goto step 4 below), the
specification should be:

pponly=lptX:abc

Where:
X is the parallel port number being used.
:abc (optional) Specify only if the port address is not the

default address.

4. If PromICE is connected via the parallel port in addition to the serial,
the specification should be:

ppbus=lptX:abc

Where:
X is the parallel port number being used.

Software Configuration 17

© 1998 Grammar Engine

:abc (optional) Specify only if the port address is not the
default address.

You may also have a ppmode command and number statement to
use bus mode of parallel port.

ppbus lpt2
number 4

The statement "number = 4" tells LoadICE that there are four
PromICE units attached to the parallel port "bus". Using the parallel
port bus also requires the serial daisy chain module be used, so the
output and baud statements will also be needed.

5. Specify the socket size of the ROM to be emulated. The socket size
is the largest ROM that the target can use. For example: If you are
trying to emulate a 27010 (1Mbit) part, but you can put a 27040
(4Mbit) part in your target without rewiring it, specify the socket size
as:

socket=27040

The socket size should equal the largest ROM that can be used by
the target. This will ensure that both LoadICE and the target 'see' the
same address space within PromICE units. This is critical when you
are emulating a ROM smaller than the amount of memory PromICE
unit has. This will ensure that if you are using a debugger with
PromICE, it will communicate via the AI option correctly.

NOTE: ALL UNUSED PINS ON THE ROM SOCKET SHOULD BE
TIED HIGH. PROMICE MAY NOT EMULATE PROPERLY IF
THERE ARE ANY FLOATING LINES ON THE ROM SOCKET.

6. Specify the ROM size to be emulated. This size should not exceed
the size specified in the socket statement above. Place the following
line in the LoadICE.ini file after the baud or pponly statement:

rom=27512 Specify the part number of the ROM (i.e. 27512), or
rom=64k Specify the ROM size in bytes.

If you are using a 40 pin DIP or a 44 pin PLCC set the ROM
statement to emulate half the size of the ROM you are emulating.
PromICE master and slave modules will add up to the size you want
to emulate.

18 Software Configuration

PromICE User Manual

7. Specify the word size (and byte order if necessary). The word size is
the width of the target bus in bytes. Place the line as follows:

word=8 for an 8 bit word
word=16 0 1 For a 16 bit word with the first byte going to the "0"

(master) PromICE unit and the second byte going to
the "1" (slave) unit. To reverse the byte order, swap
the "0" and "1".

Unless another order is specified, the default order is 0, 1, 2,... The
byte order allows you to hook your PromICE modules in the order
most convenient for your target.

If you are using a 40 pin DIP adapter or a 44 pin PLCC adapter set
the word size to 16.

8. The file specification is used to specify the file and where the data is
to be loaded. To load multiple files, simply duplicate the following
statement for each of the files to be loaded. LoadICE currently
supports the fololowing file formats: Intel 8 and 16 bit hex, Motorola
S record format, Tektronix standard and extended hex, Mostek and
RCA formats. In HEX files each record contains the address where
the data must be loaded. The following specs lets you map the hex
file to desired location in ROM:

file=filename fileaddr=[id:] romaddr

Where:
filename The file that is to be loaded
fileaddr The file's starting address (i.e. the hex records in

the file indicate to start loading the data at this
address).

id: (optional) PromICE unit ID number that the file is
to be loaded into. This is an optional
specification. If PromICE is a duplex unit or more
than one unit is being used. The bottom unit in
the duplex PromICE is ID 0, or lower ID. Do not
use IDs unless you are using per ROM files.
Improper use can override your word size
without your realizing it.

romaddr The location in PromICE where the code is to be
loaded.

Software Configuration 19

© 1998 Grammar Engine

If a binary image is to be used the line will appear as: (since there is
no explicit address information in a binary file, the specs allow you to
locate it anywhere in the ROM):

image=filename skipcount=[id:]romaddr
skipcount Allows you to skip any data (usually load header)
from the beginning of the file. There are no other differences in
syntax between the two file specifications.

To load multiple files or images, repeat the file/image statement for
each file/image to be loaded:

file = file1.hex 8000=0
file = file2.hex 10000=2000
…

Make sure that you are not loading your files over top of one another.
You can do a compare ‘c’ in LaodICE dialog mode to see if any of
the files are overlapping.

At this point the LoadICE.ini file should appear like one of the
following:

output=com1
baud=57600
socket=27040
rom=27010
word=16 0 1
file=mad.hex fe000=0:0 *Sets the file's address that starts at

* fe000 to position 0 in the ROM

pponly=lpt1 *This tells LoadICE the parallel port
is

socket=27080 *being used as a bi-directional link
rom=27040
word=8
file=mad.hex fe000=0 *The "0:" specification is not

necessary *in an 8 bit configuration

output=com1 *Use the output, baud and parallel
*specifications if you want to use
parallel

20 Software Configuration

PromICE User Manual

baud=19200 port downloading and the serial port
for

ppbus=lpt1 *communications
socket=27010
rom=27256
word=8
file=mad.hex fe000=0

9. Apply power to PromICE and the target system. The RUN light on
PromICE should come on.

10. Execute LoadICE from the directory where the LoadICE.ini file is
located. The RUN light will blink as LoadICE connects. If you are
using the serial link, you will also see the activity on RxD and TxD
lights.

11. Cycle power to the target or press the reset button (This is not
necessary if the reset line is connected to the target). The LOAD
light on PromICE should have already been out. If you boot your
target by power up then the LOAD light should go OFF when target
power is turned on.

You now have a working configuration for ROM emulation. If you are
using PromICE AI (debugger users) proceed to Chapter 6 "Analysis
Interface Configuration" section of this manual. The next chapters
describes how PromICE interface operates and shows examples of basic
PromICE functions.

If the target doesn't run or the LOAD light won't go out or you are
experiencing some other failure double check your previous steps. If there is
any sign of problems with power, such as dim or flickering lights on PromICE
or any target LEDs, immediately shut off power to target system and double
check all connections.

If you find nothing wrong, check your ROM configurations, file mapping and
target booting process. Consult Chapter 4: Troubleshooting for common
configuration problems before calling for technical support.

LoadICE Command Reference 21

© 1998 Grammar Engine

3. LoadICE Command Reference

3.1. OVERVIEW
LoadICE commands fall into four major categories which are summarized in
this chapter. You should be able to find a particular command within a
specific category and then look it up on the following reference pages. If you
are interested in upgrading your LoadICE version you may download it free
from either our WEB or ftp site. If you don't have access to either one of
these services contact your Sales Representative to obtain a copy.

Our WEB site is located at www.gei.com.

To obtain new software over Internet from an anonymous ftp site: (loadice
executable is for SUN sparc stations, for other systems you must do make):

ftp -i ftp.gei.com
login:anonymous
password: <your e-mail address>
cd /gei/loadice <latest LoadICE version number>
ftp> bin
ftp> mget * (or get loadice)

3.1.1. Host to PromICE communication
These commands allow you to specify the link between the host and
PromICE unit(s). You may be using both the serial and the parallel link.
These commands allow you to completely specify your communication
configuration:

output serial device name
baud baud rate
fast Adjusts parallel port timing
number number of PromICE units on daisy chained (UNIX only)
ppbus Connect multiple PromICEs for parallel download
ppmode Sets parallel port's communications mode
pponly parallel bi-directional device name
fastport hostname of FastPort when using PromICE on Ethernet
resetfp reset the FastPort before connecting to PromICE

22 LoadICE Command Reference

PromICE User Manual

3.1.2. ROM specifications and ROM operations
These commands allow you to describe your ROM configuration. The
number, size and arrangement of ROMs must be specified and any
peculiarities of the target addressing , such as mismatch between
sockets and ROMs, must be specified for proper operation. Finally, all
the operations that you may perform on the ROM data are specified:

rom Set size of rom to be emulated
word Set word size for roms being emulated
socket Target rom socket size
checksum Rom checksum specifications
fill Rom fill specification
dump Dump rom data
edit Edit rom data
move Move rom data
search Search for ASCII data in rom space
find Search for binary data in rom space

3.1.3. File specifications and file operations
These commands allow you to specify the data files on the host system
by name, type and configuration information such as word size of the
data they contain, or special mapping of the data to ROM space. Various
loading and processing options can also be specified:

bank Bank emulated memory
file Specify hex data files
image Specify binary data files
load Down-load the data files
compare Compare files with rom contents
noaddrerr Ignore data that falls out of rom space
map Turn off or on the display of data areas being loaded
save to save rom contents to a file

3.1.4. Miscellaneous specifications
dialog Enter dialog mode on startup
display Change output level detail
stop Stop PromICE units form emulating
go Turn on PromICE emulation
help On line help
log Record all LoadICE command traffic to a log file
reset Set default reset time length
ver Report LoadICE and PromICE micro-code versions

LoadICE Command Reference 23

© 1998 Grammar Engine

hso Define the operation and polarity of the interrupt signal
config Display configuration data in use
notimer Disable PromICE internal timer
fkey & altfkey Assign commands to function keys
!system Escape commands to the host shell
exit Exit LoadICE dialog mode
delay Change the time out period used by LoadICE
status Display target status (power on; executing)
sleep Used for waiting for something to get done in batch mode
stop Turn off PromICE emulation
test Test emulation memory

24 LoadICE Command Reference

PromICE User Manual

3.2. .
Bypass the LoadICE.ini file.

3.2.1. Command Forms
. Command line

3.2.2. Syntax
{.} [options]

3.2.3. Use
. Specifies to bypass the LoadICE.ini file.
options Any command line options available to LoadICE.

3.2.4. Default
When this directive is used, LoadICE will try to connect PromICE using
the default configuration:

output=com1
baud=19200
word=8
socket=max_size
rom=max_size

where:
max_size The maximum memory size of your PromICE unit.

3.2.5. Description
LoadICE automatically looks for a configuration file called LoadICE.ini in
the current directory. Specifying the "." on the command line bypasses
this default.

3.2.6. Notes
N/A.

3.2.7. Examples
loadice . -q

Bypass the LoadICE.ini file. Connect to PromICE using the parallel port
LPT1 only (refer to pponly in this section for more information on the
parallel port option).

LoadICE Command Reference 25

© 1998 Grammar Engine

3.3. ! system
Escape command to DOS or UNIX shell.

3.3.1. Command Forms
! Dialog mode

3.3.2. Syntax
{!} {command | "string"}

3.3.3. Use
command The command word.
"string" The command string to be executed by the operating

system shell. After the command completes control is
returned to LoadICE.

3.3.4. Default
None.

3.3.5. Description
This command allows you to execute arbitrary operating system
commands without leaving LoadICE.

3.3.6. Notes
This command does not work on Macintosh or VMS systems.

3.3.7. Examples
!dir

Show the files in current directory.

!edit myfile

Run the editor and edit 'myfile'. When you exit the editor you will be back
at LoadICE: prompt.

26 LoadICE Command Reference

PromICE User Manual

3.4. @filename
Use LoadICE configuration file filename.

3.4.1. Command Forms
@filename Command line

3.4.2. Syntax
{@} [path_name] {file_name}

3.4.3. Use
path_name The directory path in which the configuration file is

located.
file_name The name of the configuration file to use.

3.4.4. Default
LoadICE will automatically look for the file LoadICE.ini in the current
directory. When the @ directive is used, LoadICE will use the file as
specified.

3.4.5. Description
This command allows you to use multiple configuration files for LoadICE
without the necessity of keeping each configuration in a different location.

3.4.6. Notes
There should be no spaces between the "@" symbol and the first
character of the path.

3.4.7. Examples
loadice @c:\mycfg\myini.ini

Tells LoadICE to look for a configuration file called "myini.ini" in
directory "c:\mycfg\"

LoadICE Command Reference 27

© 1998 Grammar Engine

3.5. afn
Allows assigning hot keys to LoadICE or host commands.

3.5.1. Command Forms
afn# LoadICE.ini file
-afn# Command line
afn# Dialog mode

3.5.2. Syntax
{afn#=word | "string"}

3.5.3. Use
(decimal number) alt-function key number
word A LoadICE command.

OR
"string" System shell command.

3.5.4. Default
No keys are assigned.

3.5.5. Description
Allows you to assign LoadICE commands or system commands to
function keys. You can, for example, edit and compile your source file
without exiting LoadICE by assigning command strings to function keys.

3.5.6. Notes
Assign regular word commands directly but enclose strings in double-
quotes. Operating system commands must be preceded by a '!'. Strings
on command line require that \" be used.

3.5.7. Examples
afn12=restart
issues the restart command to LoadICE when ALT key and F12 key are
pressed.

afn1="!edit test.c"
When the alt-function1 key is invoked, LoadICE will automatically execute
the operating system command "edit" to edit "test.c". When you exit the
editor control will return to LoadICE.

28 LoadICE Command Reference

PromICE User Manual

3.6. bank
Allows the emulation space to be broken in to a number of banks.

3.6.1. Command Forms
bank LoadICE.ini file
-ba Command line
bank Dialog mode

3.6.2. Syntax
{bank | -ba} {#}

3.6.3. Use
specifies the number of banks to divide the ROM space into.
after first specification it chooses the bank # you want to use

3.6.4. Default
Banking is disabled.

3.6.5. Description
This command is used when PromICE emulates ROM divided into banks.
The first occurrence of the bank statements defines the number of banks.
The subsequent statements select the bank number to use for the current
operation.

3.6.6. Notes
When using this command the emulation space is effectively reduced to
the size of a given bank. Only files that will fit within the bank can be
loaded.

3.6.7. Examples

LoadICE Command Reference 29

© 1998 Grammar Engine

This example shows loading a single file into multiple bank. from
LoadICE.ini file:
file=mon.hex ; the file to be loaded in multiple banks
bank 4 ; divide ROM into 4 banks
bank 1 ; select bank one
.load ; load files here
bank 3 ; select another bank
load ; load files here
.file = app.hex ; new file
bank 2 ; select bank
load ; load file

30 LoadICE Command Reference

PromICE User Manual

3.7. baud
Specify baud rate for serial communication between PromICE and the host.
(See output)

3.7.1. Command Forms
baud LoadICE.ini file
-b Command line

3.7.2. Syntax
{baud | -b} {baud_rate}

3.7.3. Use
{baud_rate} (integer) A valid baud rate (1200, 2400, 4800, 9600,

19200, 57600)

3.7.4. Default
19200 baud

3.7.5. Description
This command specifies the baud rate a particular serial port.

3.7.6. Notes
The 38400 baud rate is not supported, however, 57600 is supported.

3.7.7. Examples
-b 57600
baud 57600

Sets the baud rate of the specified device to 57600.

LoadICE Command Reference 31

© 1998 Grammar Engine

3.8. checksum
Perform checksum on ROM and store in PromICE memory.

3.8.1. Command Forms
checksum LoadICE.ini file
-k Command line
k Dialog mode

3.8.2. Syntax
{checksum | -k | k} [id {:}] [start] [end] [store] [function] [sum_size] [order]

3.8.3. Use
id (integer) A valid PromICE unit ID number (0-255).
start (hex) An address in PromICE where the checksum

should start.
end (hex) An address in PromICE where the checksum

should stop.
function (character) Indicates the preferred checksum function (x

, X or a, A). An 'x' indicates exclusive OR function will be
performed on data in all locations within the selected
address range. An 'a' indicates addition function will be
performed on data in all locations in selected address
range. Capital X causes a 1's complement of the result to
be stored where as small x stores the result as is. A
capital A causes a 1's complement of the addition be
stored, a lower case a causes a 2's complement to be
stored.

sum_size (integer) The size of checksum. This must be an integral
multiple of 8 and cannot be larger than the data bus
width emulated by the total number of daisy chained
PromICE units.

order (0|1) checksums, longer than a byte, are stored high byte
first, unless this argument is supplied and is '1', then the
low byte is stored first.

3.8.4. Default
You must specify the start, end and store arguments. Default for ID is 0,
default for function is 'x' and sum size is 8.

32 LoadICE Command Reference

PromICE User Manual

3.8.5. Description
Compute and store a 8, 16 or 32 bit checksum in the ROM. The
checksum is performed on a "per ROM" basis or for the entire
configuration. The checksum is computed inclusive of the start and end
addresses, then the results are stored in the given store address. The
checksum is displayed.

If an ID is specified, then perform a checksum on that particular ROM,
otherwise, checksum all ROMs. If it is used from dialog mode then
checksum the current configuration.

You can specify a specific checksum method for each ROM, in the ini file.
This allows you to mix and match custom checksums of your ROM
space.

3.8.6. Notes
Checksum is performed by uploading the data from the ROM and then
stored back. Larger ROMs take longer to compute the checksum. You
can specify separate checksums for each ROM.

3.8.7. Examples
k 0 fffb fffc a 32

Compute the checksum on 0 through FFFB and store the resulting
checksum (2's complement thereof) as a 32 bit number at (FFFC-FFFF).
High byte is stored first.

LoadICE Command Reference 33

© 1998 Grammar Engine

3.9. compare
Compares data loaded in PromICE against files on the host.

3.9.1. Command Forms
c Dialog mode

3.9.2. Syntax
{c}

3.9.3. Use
c Compares files instead of down-loading them

3.9.4. Description
This command will process the data files and upload PromICE contents
and compare it with the data files. It is an explicit verification of file data.
Differences are displayed on the screen and there is an option to
continue displaying the differences or canceling the compare.

3.9.5. Notes
If a compare operation fails, it is most likely due to overlapping data areas
in different files. If that is not the case then it may be overlapping data
areas in the same file. If a 'write' line is connected to the target and the
target was emulating then it could also have 'written' to location to the
emulated space and thus cause the compare failures.

If the unit is failing to compare after loading and none of the above
problems are the cause, there may be problems with the battery backup
or memory in PromICE unit.

3.9.6. Examples
c

Compare now.

34 LoadICE Command Reference

PromICE User Manual

3.10. config
Display current PromICE configuration.

3.10.1. Command Forms
config LoadICE.ini file
C Dialog mode

3.10.2. Syntax
{config | C} [link | rom | file | all]

3.10.3. Use
link Displays diagnostic information about the communication

link (serial or parallel)
rom Displays diagnostic information about the ROM

configuration
file Displays diagnostic information about the list of files

loaded into PromICE
all Displays all diagnostic information

3.10.4. Default
all

3.10.5. Description
Displays the current LoadICE configuration data. This command will
display just about all the information relevant for diagnosing any setup
problem. It will display information regarding communication links, both
serial and parallel as well as various operating mode.

3.10.6. Notes
Use this command when you need to determine the word size, emulation
size and/or file information that is being used by LoadICE

3.10.7. Examples
C all

Display the entire configuration.

LoadICE Command Reference 35

© 1998 Grammar Engine

3.11. delay
Change the value of time period when LoadICE is waiting on response from
PromICE.

3.11.1. Command Forms
delay LoadICE.ini file
delay Command line

3.11.2. Syntax
{delay} [#]

3.11.3. Use
(decimal number) multiplier results in #x4 seconds of

delay.
0 no delay (wait indefinitely).
<no arg> restores default.

3.11.4. Default
Delay 4 seconds.

3.11.5. Description
This command allows control over the delay and keeps LoadICE from
timing out. The nominal delay is 4 seconds. This command supplies a
multiplier for this period.

3.11.6. Notes
While executing certain commands where response may take variable
amount of time, LoadICE internally shuts off the delay, such as when
executing 'test' command to test PromICE memory.

3.11.7. Examples
delay 8

Wait 32 seconds before timing out.

36 LoadICE Command Reference

PromICE User Manual

3.12. dialog
Enter LoadICE dialog mode.

3.12.1. Command Forms
dialog LoadICE.ini file
-d Command line

3.12.2. Syntax
{dialog | -d}

3.12.3. Description
This command will force LoadICE to enter interactive dialog mode.

3.12.4. Notes
Normally LoadICE will process and down-load user data files according
to the configuration specified. However, if no data files are specified
LoadICE will go into an interactive 'dialog' mode also. In this mode any
commands, files and operations can be specified and done interactively.

3.12.5. Examples
loadice -d

Invoke LoadICE application and enter the dialog mode.

LoadICE Command Reference 37

© 1998 Grammar Engine

3.13. display
Change the output display level of LoadICE.

3.13.1. Command Forms
display LoadICE.ini file
-D Command line
D Dialog mode

3.13.2. Syntax
{display | -D | D} [level]

3.13.3. Use
level (hex) A valid number (0 - FF) indicating the level of

diagnostic display desired. Bits are as follows:
0x80 - displays prompts
0x40 - displays progress
0x20 - displays command parser data
0x10 - displays config data, disk i/o and buffer transfer
0x08 - displays hex record processing
0x04 - displays abbreviated commands and responses to/from PromICE
0x02 - displays full commands and responses to/from PromICE
0x01 - displays actual data bytes going over the link

3.13.4. Default
0xC0 - only displays main prompt and command progress and results.

3.13.5. Description
This command allows the display of more or less information about a
command during it's processing.

3.13.6. Notes
Setting the display level to 0x00 will shut off everything except the
command results. Setting the level to 0xFF can cause data overflow over
the serial link.

3.13.7. Examples
-D fe
Display everything but the actual data going over the link.

38 LoadICE Command Reference

PromICE User Manual

3.14. dump
Display PromICE memory contents on the screen.

3.14.1. Command Forms
d Dialog mode

3.14.2. Syntax
{d} [[id {:}] [start] [end]]

3.14.3. Use
id (integer) A valid PromICE unit ID number (0-255)
start (hex) The first PromICE address to display
end (hex) The last PromICE address to display

3.14.4. Default
The ID is zero or use in the current configuration. The default for start
address is 0 and the end is start+64 (or the last valid address in ROM).

3.14.5. Description
The dump command will display PromICE data in hex and ASCII with 16
bytes per line. Data is displayed in the configuration that is active, i.e.
you can view data as 8, 16, 32 (up to 64) bits at a time with the proper
configuration setup. A <cr> will simply repeat the command with next
range of arguments.

3.14.6. Notes
None.

3.14.7. Examples
d 0 ff

Dump data from 0x0 to 0xFF address range.

d 1:fe ff

Dump data from unit ID-1 from 0xFE to 0xFF (two bytes).

LoadICE Command Reference 39

© 1998 Grammar Engine

3.15. edit
Modify PromICE emulation memory (edit ROM space).

3.15.1. Command Forms
edit LoadICE.ini file
-e Command line
edit Dialog mode (also e)

3.15.2. Syntax
{edit | -e | e} [[id {:}] [address] [[value] ...]]

3.15.3. Use
id (integer) A valid PromICE unit ID number (0-255).
address (hex) Address in PromICE to start memory modification.
value (hex) A value or list of values to be written to memory

starting at 'address'. The width of individual values can
be any integral multiple of 8, but less than or equal to the
data bus width emulated by the total number of daisy
chained PromICE units.

3.15.4. Default
Start editing at address 0 of the current configuration.

3.15.5. Description
Edit changes one or more data bytes in one or more ROMs using the
current configuration. When edit is in the ini file or the command line,
bytes are edited after loading any specified files. In dialog mode, edit will
enter interactive mode if no data values are specified.

3.15.6. Notes
The use of edit in the ini file or command line is intended for patching
ROM data after the files have been downloaded. To stop editing in dialog
mode, type a period followed by enter. This will return you to the
LoadICE prompt.

3.15.7. Examples
edit 1:500 ab cd

Will edit location 0x500 and 0x501 in unit 1 with values 0xAB and 0xCD.

40 LoadICE Command Reference

PromICE User Manual

3.16. exit
Exit LoadICE when in dialog mode.

3.16.1. Command Forms
exit Dialog mode (also x or quit)

3.16.2. Syntax
{exit | x | quit} [#]

3.16.3. Use
x exit LoadICE
also set the exit code to this number

3.16.4. Default
Exit code is 0 if all goes well, if error is encountered then exit code is 1.

3.16.5. Description
Exit the LoadICE application.

3.16.6. Notes
The exit code is useful when running LoadICE in batch mode. It can be
used to determine if an error occurred .

3.16.7. Examples
exit

Exit LoadICE application.

LoadICE Command Reference 41

© 1998 Grammar Engine

3.17. fast
Lengthens the strobe on the parallel port on a host with a high performance
host.

3.17.1. Command Forms
fast LoadICE.ini file

3.17.2. Syntax
{fast} [#]

3.17.3. Use
To lengthen the parallel port strobes, by a factor of

3.17.4. Default
The strobe is generated by turning it ON and then OFF. If this command
is specified then a delay loop is inserted between ON and OFF. The
default value for the loop count is 10.

3.17.5. Description
This command allows you to lengthen the strobe by specifying a count for
a delay loop. This delay loop is only inserted if this command is present,
otherwise the length of the strobe depends on how long it takes to
execute the instructions.

3.17.6. Notes
If parallel port transfers fail, use this command to lengthen the strobe.
The strobe is lengthened by inserting an idle loop between the assertion
and removal of strobe signals.

3.17.7. Examples
fast 20

makes it work on a 100MHZ RISC machine.

42 LoadICE Command Reference

PromICE User Manual

3.18. fastport
Specifies the host name for FastPort on the network to LoadICE.

3.18.1. Command Forms
fastport LoadICE.ini file
-fp Command line

3.18.2. Syntax
{fastport | -fp} {hostname}

3.18.3. Use
hostname The name of the host for the fastport on the network. In

UNIX it is generally kept in the /etc/hosts file.

3.18.4. Default
N/A

3.18.5. Description
To access PromICE system including the AI option over a network, the
FastPort print server may be utilized. FastPort supports serial and
parallel printers on Ethernet networks. PromICE units are attached to the
FastPort printer ports and then LoadICE software is used to access
PromICEs over the network.

3.18.6. Notes
The FastPort is a product made by Milan Technologies. Follow the
installations instructions that come standard with the FastPort. Do not
install the printer server software. Follow the instructions for configuring
the FastPort for use with PromICE from the installation instructions
supplied by Grammar Engine.

3.18.7. Examples
fastport=pint Communicate to FastPort "pint" in LoadICE.ini

file.
-fp pint Use FastPort "pint" using LoadICE command

Line.

LoadICE Command Reference 43

© 1998 Grammar Engine

3.19. file
Specify hex record file information for downloading or compare operation.

3.19.1. Command Forms
file LoadICE.ini file
<no arg> Command line
file Dialog mode

3.19.2. Syntax
{file | <no arg>} [[file_name] [link_address =] [id {:}] [ROM_offset]
[data_width] [[byte_n] ...]] [(a1,a2)]

3.19.3. Use
file_name (string) The name of the hex record file to be loaded.

link_address (hex) The absolute starting address of the file 'file_name'
produced by the linker, that is stored incrementally in
each hex record of the file 'file_name'. This address is
normally used by hex record decoding programs to
determine where in memory to place the data.

id (integer) A valid PromICE unit ID number (0-255)

ROM_offset (hex) An offset value within PromICE emulated ROM
space. The start of PromICE emulated ROM space is
assigned to offset address 0. This offset is used to
determine the location within PromICE emulated
memory where the 'link_address' should be assigned.

data_width (integer) The data bus width associated with the width of
data objects in file 'file_name'. It must be an integral
multiple of 8 and can not be larger than the data bus
width emulated by the total number of daisy chained
PromICE units.

byte_n (integer) The nth byte in a data bus that has a width that
is an integral multiple of 8 bits. Bytes are assigned to
successive PromICE units (0 - 255) based on the
selected order of byte_n specifications.

44 LoadICE Command Reference

PromICE User Manual

(a1,a2) (hex addresses) transfer data only from address a1
through address a2, inclusive. This specification allows
partial loading of data files.

3.19.4. Default
Load the file in current configuration starting at address zero.

3.19.5. Description
This specification allows you to specify the file for down-loading to
PromICE. The file type can be specified if it is binary, else it is assumed
to be hex. The command allows for provision to specify whether the data
in the file needs to be mapped or relocated within the ROM space. The
word width of the data in the file as well as byte order within the word can
be specified. Partial loading of a data file can be specified.

File formats supported: Intel 8 and 16 bit, Motorola S record, Tektronix
standard and extended hex, Mostek and RCA.

3.19.6. Notes
Only one set of partial loading addresses can be specified.

You need not specify the ID unless you are loading files "per ROM" (i.e. a
file gets loaded into one ROM and another file gets loaded into the other
ROM). If you have a word size of 16 or larger then specifying the ID says
to load the file into a bank where the given ID is the first ID. If such a
bank is not found then the file is treated as an 8 bit file for that particular
ROM. This inadvertent side affect can be avoided by careful
consideration of ID specification.

To load mutiple files in the LoadICE.ini file, add a new file statement for
each file to be loaded.

3.19.7. Examples
file=myfile.hex 400000=0 16 1 0

Load data from 'myfile.hex' with addresses starting at 0x400000 in the file
to be mapped to 0x0 in PromICE emulation memory and that the file
contains 16 bit data with the first byte (even) to be written to PromICE
unit ID-1 and the second byte (odd) to be written to PromICE unit ID-0.

LoadICE Command Reference 45

© 1998 Grammar Engine

3.20. fill
Fill PromICE memory with repeating data (fill pattern).

3.20.1. Command Forms
fill LoadICE.ini file
-f Command line
f Dialog mode

3.20.2. Syntax
{fill | f | -f} [[id {:}] [start] [end] [data] [data2] [size]]

3.20.3. Use
id (integer) A valid PromICE unit ID number (0-255)
start (hex) The first PromICE address to fill.
end (hex) The last PromICE address to fill.
data (hex) The data value with which to fill the address range.

The width of the data value can be up to four bytes.
data2 (hex) If longer then 32 bytes of pattern are to be used

then the lower long word is specified.
size (decimal) The length of the pattern in bytes when it is not

same as the current word size.

3.20.4. Default
Fill all of the ROM space with the default fill character (0x0FF).

3.20.5. Description
Used for filling all or part of ROM space with a fill character. Individual
ROM or entire configurations can be filled. The fill character matches 8,
16, 32 or 64 bit word configuration (64 bit data is specified as two 32 bit
items). You can load patterns 1 to 8 bytes long in any configuration.

3.20.6. Notes
Filling is done prior to loading the file data, when specified in the
LoadICE.ini file. You can specify unique fill parameters for each ROM.

3.20.7. Examples
f 200 300 ab
Fill from 0x200 to 0x300 with data value 0xAB

46 LoadICE Command Reference

PromICE User Manual

3.21. find
Find binary data patterns in PromICE memory.

3.21.1. Command Forms
F Dialog mode

3.21.2. Syntax
{find | F} [[id {:}] {start} {end} {size } {data bytes}

3.21.3. Use
id (integer) A valid PromICE unit ID number (0-255)

start (hex) The first PromICE address to start search

end (hex) The last PromICE address to search

size (integer) The number of bytes to find, max 32

data bytes (hex) The data values to look for. The sequence of bytes
to search for in the specified address range. The data
must be specified as hex bytes separated by spaces.

3.21.3. Default
All information except for the ID must be specified.

3.21.4. Description
Find allows you to search PromICE memory for binary data patterns.
You can search individual ROMs or ROM configurations.

3.21.5. Notes
None.

3.21.6. Examples
F 0 1ffff 4 de ad fe ed

Looks for the pattern 0xDEADFEED in a 128kB ROM space (0x-
0x1FFFF).

LoadICE Command Reference 47

© 1998 Grammar Engine

3.22. fn
Allows assigning hot keys to LoadICE or host commands.

3.22.1. Command Forms
fn# LoadICE.ini file
-fn# Command line
fn# Dialog mode

3.22.2. Syntax
{fn#=} {word | "string"}

3.22.3. Use
(decimal number) function key number (1-12)
word | "string" LoadICE or system shell command. Precede the system

commands with a '!' so that LoadICE will pass them to
the DOS or UNIX shell.

3.22.4. Default
N/A

3.22.5. Description
Allows you to assign LoadICE commands or operating system
commands to function keys

3.22.6. Notes
Assign commands directly but enclose strings in double-quotes.
Operating system commands must be preceded by a '!'. On the
command line the " must be specified as \".

3.22.7. Examples
fn12=restart
This will issue the restart command to LoadICE when F12 key is pressed.
You can then request LoadICE to restart the link with PromICE after a
time-out error.

fn1="!edit test.c"
When the F1 key is invoked LoadICE will automatically execute the
operating system command 'edit' to edit the file 'test.c'. When you exit
the editor you will return to the LoadICE prompt.

48 LoadICE Command Reference

PromICE User Manual

3.23. go
Instruct PromICE to go into emulation mode.

3.23.1. Command Forms
go Dialog mode
go LoadICE.ini file

3.23.2. Syntax
{go}

3.23.3. Description
Allows you to start emulation from the dialog mode. The status of
PromICE emulation state is reflected in the load light on the front panel.
When the go command is executed the load light should go out (unless
the target is not powered up).

3.23.4. Notes
You can also use the [ESC] key to switch from load to emulate and vice-
versa.

3.23.5. Examples
<ESC>

PromICE will toggle between LOAD and EMULATE.

LoadICE Command Reference 49

© 1998 Grammar Engine

3.24. help
Obtain help about a LoadICE command.

3.24.1. Command Forms
? Command line
help Dialog mode

3.24.2. Syntax
{help | ?} [command]

3.24.3. Use
command (string) Any valid LoadICE command

3.24.4. Default
Display the list of commands for which help is available.

3.24.5. Description
Help will give you on-line help for any command. When invoked with a '?'
as the only argument on the command line, it will give you help on all the
commands that can be specified in the LoadICE.ini file. When invoked as
'?' or 'help' in dialog mode, it will display a list of all the commands
available. Further help then can be obtained on each individual
command.

3.24.6. Notes
Only the most common and useful commands are included in on-line
help. Full documentation is available only in this manual. Or you can
print out PISCRIPT.H file for all command scripts.

3.24.7. Examples
help find

In dialog mode this will give information on how to use the 'find'
command.

50 LoadICE Command Reference

PromICE User Manual

3.25. hso
Program the interrupt signal to the target (on PromICE back panel).

3.25.1. Command Forms
hso LoadICE.ini file
-I Dialog mode

3.25.2. Syntax
{hso | -I} [#]

3.25.3. Use
This number specifies the polarity of the interrupt signal and allows

you to toggle it when LoadICE connects with PromICE:
0 - Interrupt is low asserted, it is raised at this time
1 - Interrupt is high asserted, it is lowered at this time
2 - Interrupt is high asserted and at startup lower-raise-lower interrupt

line.
5 - Interrupt is low asserted and at startup raise-lower-raise the

interrupt line
A - Interrupt is high asserted. At start up lower it, raise it for 1 second,

then lower the interrupt line.
D - Interrupt is low asserted. At startup raise

3.25.4. Default
The signal is low asserted.

3.25.5. Description
This allows the host system to alert the target that LoadICE is talking to
PromICE.

3.25.6. Notes
On current units the polarity of the signal is selectable on the back panel
of PromICE unit. Specify this statement only when needing to toggle the
interrupt line at startup.

3.25.7. Examples
hso 1
Defines the interrupt to the target to be high asserted.

LoadICE Command Reference 51

© 1998 Grammar Engine

3.26. image
Specify binary file information for down-load or compare operation.

3.26.1. Command Forms
image LoadICE.ini file
-i Command line
image Dialog mode

3.26.2. Syntax
{image | -i | i} [[file_name] [skip count] [id {:}] [ROM_offset] [data_width]
[[byte_n] ...]

3.26.3. Use
file_name (string) Name of binary file to be loaded etc.

skip_count (hex) Any data to be skipped from the beginning of the
file. Occasionally there is a 14 byte header that may
need to be skipped.

id (integer) A valid PromICE unit ID number (0-255).

ROM_offset (hex) An offset value within PromICE emulated ROM
space. The start of PromICE emulated ROM space is
assigned to be offset address 0. This offset is used to
determine the location within PromICE emulated memory
where the first data byte of file 'file_name' should be
assigned.

data_width (integer) The data bus width associated with the width of
data objects in file 'file_name'. Must be an integral
multiple of 8 and can not be larger than the data bus
width emulated by the total number of daisy chained
PromICE units.

byte_n (integer) The nth byte in a data bus that has a width that
is an integral multiple of 8 bits. Bytes are assigned to
successive PromICE units (0 - 255) based on the
selected order of byte_n specifications.

3.26.4. Default

52 LoadICE Command Reference

PromICE User Manual

Load the file in its entirety starting at 0 in PromICE configuration.

3.26.5. Description
This command allows you to specify a binary data file to be down-loaded
to PromICE. Furthermore you can specify where the file should be
loaded exactly and if any bytes need to be skipped from the start of the
file. The word size and byte order in the file can also be specified.

3.26.6. Notes
When loading multiple binary files you must specify where they are
written to in the emulated space or else they may get loaded on top of
each other.

You need not specify the ID unless you are using files to be loaded "per
ROM". If you have a word size of 16 or larger then specifying the ID says
to load the file into a bank where the given ID is the first ID. If such a
bank is not found then the file is treated as an 8 bit file for that particular
ROM. This inadvertent side affect can be avoided by careful
consideration of ID specification.

To load mutiple images in the LoadICE.ini file, add a new file statement
for each file to be loaded.

3.26.7. Examples
image=myfile.bin 0=10000 16 0 1

Load the file 'myfile.bin' at location 0x10000. The file contains 16 bit data
and the first byte will be loaded in unit-0 and the second byte in unit-1.

LoadICE Command Reference 53

© 1998 Grammar Engine

3.27. load
File loading associated with LoadICE dialog mode.

3.27.1. Command Forms
load LoadICE.ini
-l Command line (hex file load)
-li Command line (binary file load)
l Dialog mode (hex file load)
li Dialog mode (binary file load)

3.27.2. Syntax
{load | -l | l} [filename etc.]

3.27.3. Use
filename If you wish to load a specific file (in dialog mode only).

3.27.4. Default
Load the pre-specified file list.

3.27.5. Description
'load' allows you to down-load your files on demand. All specified files
are processed and down-loaded.

When 'load' appears in the LoadICE.ini file or '-l' on the command line, it
implies that LoadICE should down-load the files before entering the
dialog mode.

3.27.6. Notes
'dialog' mode is entered only if LoadICE is instructed to do so with 'dialog'
in the LoadICE.ini file or '-d' on the command line. When specified in the
ini file or the command line, LoadICE down-loads the file before entering
the dialog mode.

3.27.7. Examples
l
Load the files now.

54 LoadICE Command Reference

PromICE User Manual

3.28. log
Record all LoadICE command traffic to a log file in real-time.

3.28.1. Command Forms
log LoadICE.ini file
-log Command line
log Dialog mode

3.28.2. Syntax
{log | -log} {filename}
log #

3.28.3. Use
filename specify the file to use
0 - turn logging off

1 - turn logging on
no args Toggle on off

3.28.4. Default
No logfile or log is kept.

3.28.5. Description
This command allows the LoadICE/PromICE traffic to be collected in a
file for later viewing. This is an alternate to changing the display level in
LoadICE (refer to the display command). This command can write the
log with much less overhead and will not loose the information or the
condition of the error. The log can be viewed by using the application
'vlog', included on the LoadICE distribution disk.

3.28.6. Notes
If the log command is used in dialog mode without having previously
specified name then the file 'loadice.log' is created to store the log. This
is also the default filename for 'vlog' application.

3.28.7. Examples
log logfile.log Log data to file 'logfile.log' from either the

LoadICE.ini file or LoadICE dialog mode.

LoadICE Command Reference 55

© 1998 Grammar Engine

3.29. map
Control the display of the address range being loaded during file processing.

3.29.1. Command Forms
map LoadICE.ini file
map Dialog mode

3.29.2. Syntax
{map} [#]

3.29.3. Use
0 - turn the display of the map information off

1 - turn the display of the map information on

3.29.4. Default
On.

3.29.5. Description
LoadICE will display the range of addresses where data is being loaded.
This command lets you turn that feature off.

3.29.6. Notes
When the data file has hex records that have fragmented data then there
may be a large number of address ranges displayed. You can use this
command to turn that display off.

3.29.7. Examples
map 0

Don't display the map information.

56 LoadICE Command Reference

PromICE User Manual

3.30. move
Copy bytes of memory in PromICE.

3.30.1. Command Forms
move LoadICE.ini file
m Dialog mode

3.30.2. Syntax
{move | m} [[id {:}] [start] [end] [destination]]

3.30.3. Use
id (integer) A valid PromICE unit ID number (0-255).

start (hex) The starting address of source data block where
data is copied from.

end (hex) The ending address of source data block where
data is copied to.

destination (hex) The starting address of destination location where
source data block is to be copied to.

3.30.4. Default
All three parameters must be specified.

3.30.5. Description
Allows you to move data (copy) within PromICE memory.

3.30.6. Notes
Data is up-loaded and then down-loaded to a new location. However, it
is uploaded in 4096 bytes chunks, therefore overlapping moves may
have unexpected results.

3.30.7. Examples
m 100 120 300

Move data from 0x100 to 0x120 to 0x300 (to 0x320).

LoadICE Command Reference 57

© 1998 Grammar Engine

3.31. noaddrerr
Ignore address out of range errors during file loading.

3.31.1. Command Forms
noaddrerr LoadICE.ini file
-z Command line
noaddrerr | z Dialog mode

3.31.2. Syntax
{noaddrerr | -z | z} [1]

3.31.3. Use
1 View records in hex file that have address values out of

range.

3.31.4. Default
Stop down-loading data when address error is encountered.

3.31.5. Description
If an attempt is made to load a data byte to an address outside the
specified emulated space (i.e. the address is larger than the ROM size)
LoadICE will stop processing data and report this error message. You
can specify to skip the offending records and continue processing.

3.31.6. Notes
If you have properly mapped your data files, this error is usually caused
by initialized data intended for RAM. This option will allow you to skip
these records.

3.31.7. Examples
noaddrerr 1

Skip records that have an address out of emulation space and display
them.

58 LoadICE Command Reference

PromICE User Manual

3.32. notimer
Turn off the internal timer interrupt in the PromICE.

3.32.1. Command Forms
notimer LoadICE.ini file
-T Command line

3.32.2. Syntax
{notimer | -T}

3.32.3. Use
notimer | -T Turn off the timer.

3.32.4. Default
The timer is on and interrupts every 8.9 milli-seconds

3.32.5. Description
This command is useful when you are using multiple PromICEs with
synchronized targets. Since the timer interrupts are asynchronous, the
different PromICE units can loose lock-step operation.

3.32.6. Notes
When using the AI circuit on fault tolerant systems, this option helps keep
the units synchronized. If the ‘reset’ command is used the timer is turned
on to drive the reset signal. It is then turned off if this option is in effect.

This option will automatically turn off the ‘light’ option if it is enabled.

3.32.7. Examples
notimer

Turn off the timer.

LoadICE Command Reference 59

© 1998 Grammar Engine

3.33. number
(UNIX only) Specify the number of PromICE modules.

3.33.1. Command Forms
number LoadICE.ini file
-n Command line

3.33.2. Syntax
{number | -n} [total_modules]

3.33.3. Use
total_modules (integer) The total number of PromICE master and slave

modules daisy chained together (0-255).

3.33.4. Default
Number is 1.

3.33.5. Description
This option is needed only for UNIX systems. This allows the LoadICE
application to send out enough auto baud characters to ensure that all
the units go through the auto baud sequence and some of the characters
would return to the host before a read is issued. If a read were to be
issued before any characters have arrived, then the read will loop
(forever).

3.33.6. Notes
Even though the serial line is opened with option to not wait on the read,
(i.e. return if nothing to read) the UNIX manual states that on a
communication line the first read will block if no characters are available
to be read. This command allows PromICE to get around this problem.

3.33.7. Examples
number 3

Allows enough auto-baud characters to be transmitted for three units to
auto-baud completely.

60 LoadICE Command Reference

PromICE User Manual

3.34. output
Specify serial output device for connection with PromICE.

3.34.1. Command Forms
output LoadICE.ini file
-o Command line

3.34.2. Syntax
{output | -o} {dev_name} [address]

3.34.3. Use
dev_name (string) The standard operating system name for the

desired serial port. Paths may be required.

address (hex) On an IBM PC or compatibles, LoadICE will lookup
the port address in the BIOS built table in low memory. If
you have a nonstandard serial port, then you may
explicitly give its address to LoadICE.

3.34.4. Default
COM1 PC
/dev/ttyb UNIX

3.34.5. Description
This command specifies the serial link for LoadICE that is used to
communicate with PromICE. Optionally, the port address may be
specified for PC systems.

3.34.6. Notes
When using the AI in transparent mode (ailoc command) this option
specifies the link to use for host communication after transparent mode is
established.

3.34.7. Examples
-o com3

Use COM3.

LoadICE Command Reference 61

© 1998 Grammar Engine

3.35. ppbus
Specifies that the parallel port be used as a down load only bus for PromICE.

3.35.1. Command Forms
ppbus LoadICE.ini file
-pb Command line

3.35.2. Syntax
{ppbus | -pb} {parallel_device_name}

3.35.3. Use
parallel_device_name The LPT number or the device name (UNIX)

where PromICE units are attached.

3.35.4. Default
ppbus is not enabled.

3.35.5. Description
This option is used when attaching more than one PromICE unit to the
parallel port for fast down-load, use the parallel port bus cable and this
command. The serial daisy-chain adapter(s) are also used to support
this option.

3.35.6. Notes
LoadICE uses the serial port to connect with and control PromICE units,
and the parallel port is used to down-loading code. This makes it
possible to have large configurations down-loaded fast. This option also
works with the FastPort.

You must also specify the 'number' command when using the Milan
FastPort.

3.35.7. Examples
ppbus lpt1 Specifies the ppbus port as 'lpt1' in the LoadICE.ini file.

-pb lpt1 Specifies the ppbus port as 'lpt1' from the LoadICE
command line.

62 LoadICE Command Reference

PromICE User Manual

3.36. ppmode
Sets the parallel port's communication mode.

3.36.1. Command Forms
ppmode LoadICE.ini file
-P Command line

3.36.2. Syntax
{ppmode | -P} [0 | 1 | 2]

3.36.3. Use
0 Standard mode, this is the oldest implementation and the

slowest, download speed is around 30Kbytes per second
1 Fast mode, this is the newest and much faster, achieving down-

load speed of about 60KBytes per second
2 Turbo mode, it uses the fast mode with no verify and special

code in the host to download at the fastest possible of about
90Kbytes per second.

3.36.4. Default
0 - standard mode for units with micro-code version 5 or older.
1 - fast mode for all units with micro-code 6 or greater
By default, the mode is determined at connect time. LoadICE connects
to PromICE and automatically determines the parallel port mode by
looking at the micro code version.

3.36.5. Description
This option allows you to select the transfer mode suitable for your
application. Once you have been able to connect and communicate
reliably with other modes you may want to try turbo mode.

3.36.6. Notes
Turbo mode is selectable only on units that support fast mode, i.e. micro-
code versions 6 and above.

3.36.7. Examples
-P 1 Select fast transfer from LoadICE command line.

LoadICE Command Reference 63

© 1998 Grammar Engine

3.37. pponly
Specify parallel port in bi-directional mode (Not available to FastPort Users).

3.37.1. Command Forms
pponly LoadICE.ini file
-q Command line

3.37.2. Syntax
{pponly | -q} {dev_name} [address]

3.37.3. Use
dev_name (string) The standard operating system name for the

desired parallel port.

address (hex) Non-standard port address.

3.37.4. Default
LPT1

3.37.5. Description
The host will communicate to the PromICE via the parallel port only.

3.37.6. Notes
There should note be anything between the host parallel port and the
PromICE. Certain A/B switch boxes can interfere with the proper
operation of the PromICE.

You cannot daisy chain multiple PromICE units over the parallel port
alone. You must use the serial daisy chain adapter with the parallel bus
cable and add "ppbus" and "output" to your LoadICE.ini file. Refer the
installation section for more information about daisy chaining.

PPONLY cannot be used with ethernet adapters like the FastPort. You
must use the serial and parallel ports and “ppbus”.

3.37.7. Examples
pponly lpt2

Use LPT2 as bi-directional parallel port to communicate with PromICE.

64 LoadICE Command Reference

PromICE User Manual

3.38. reset
Specify duration of target reset signal (RST).

3.38.1. Command Forms
reset LoadICE.ini file
-r Command line

3.38.2. Syntax
{reset | -r} [milliseconds]

3.38.3. Use
milliseconds (integer) The number of milliseconds (0-3000) to activate

target reset signal (RST) from PromICE during the next
reset event.

3.38.4. Default
500 milliseconds.

3.38.5. Description
Normally, LoadICE and PromICE will operate in auto-reset mode. This
means that whenever PromICE is in 'load' mode the target reset signal is
asserted and whenever PromICE is in 'emulate' mode then the reset is
released (goes tri-state). However, reset may be asserted by the user by
specifying this command.

3.38.6. Notes
Specifying 'reset' with a time of '0' will disable auto-reset. The target
must be reset by issuing an explicit reset command.

3.38.7. Examples
r 500

Reset the target with a 500 milli-second pulse.

LoadICE Command Reference 65

© 1998 Grammar Engine

3.39. resetfp
Resets the FastPort before connecting with PromICE.

3.39.1. Command Forms
resetfp LoadICE.ini file
-rfp Command line

3.39.2. Syntax
{resetfp | -rfp} [0 | 1]

3.39.3. Use
0 Disables the FastPort reset.

1 Enables the FastPort reset.

3.39.4. Default
The FastPort is not reset.

3.39.5. Description
If the FastPort/PromICE link hangs and LoadICE fails to connect with the
FastPort. Invoking LoadICE with this option enabled resolves this
situation. LoadICE will connect with the FastPort built-in monitor and
reset the unit. After the reset is completed, LoadICE then connects to
PromICE unit(s).

3.39.6. Notes
Whenever a reset command is used, it will take approximately 8 or 9
seconds for LoadICE to connect with PromICE, instead of 1 or 2 it takes
when no reset is to be done. To break the transparent link if you are
using the AI option in transparent mode, the FastPort must be reset every
time LoadICE connects. This will be remedied in a future model of the
FastPort.

3.39.7. Examples
resetfp
OR
resetfp 1 Reset the FastPort from the LoadICE.ini file.

-rfp 0 Disable FastPort reset from the LoadICE command line.

66 LoadICE Command Reference

PromICE User Manual

3.40. restart
Restart the LoadICE/PromICE interface.

3.40.1. Command Forms
restart Dialog mode

3.40.2. Syntax
{restart}

3.40.3. Use
restart To restart the link.

3.40.4. Default
None.

3.40.5. Description
This command lets you reestablish the link with PromICE without
restarting the LoadICE application.

3.40.6. Notes
If you have reset or cycled power to PromICE then you can reestablish
the link by using this command. If LoadICE has timed out waiting for
PromICE then this command can be used as well. However, LoadICE
will try to recover the link automatically unless the 'noautorecovery'
command was specified.

3.40.7. Examples
restart

Regardless of what state PromICE is in, restart the link with PromICE.

LoadICE Command Reference 67

© 1998 Grammar Engine

3.41. rom
Specify ROM emulation memory size.

3.41.1. Command Forms
rom LoadICE.ini file
-r Command line
R Dialog mode

3.41.2. Syntax
{rom | -r | R} [id {:}] {size [k] | part_number}

3.41.3. Use
id (integer) A valid PromICE unit ID number (0-255).

size (integer) The size of emulated memory, measured in bytes.
The specified number must be an integral power of 2 and
cannot be larger than the total memory emulated by the total
number of PromICE units.

k Indicates the size in kilobytes.

part_number (string) JEDEC standard ROM part number. The
number must begin with a 27.

3.41.4. Default
The emulation size is same as the amount of memory in a given
PromICE module.

3.41.5. Description
This command allows you to specify the size of ROM you wish to
emulate. It must be less than or equal to the amount of memory in
PromICE module.

3.41.6. Notes
If your target is wired for a socket larger than the size of ROM you are
emulating (see the description of the socket command). This will usually
be the case only for 1, 2 and 4 Mb ROMs. A socket wired for 4Mb can be
used with a 1, 2 or 4 Mb ROMs without any jumper changes.

68 LoadICE Command Reference

PromICE User Manual

All ROM sizes should be 8 bit. If you are using a 16 bit ROM, the
ROM size should be half of what the 16 bit size. Since LoadICE
treats all ROMs as 8-bit wide. The word size takes care of rest.

3.41.7. Examples
rom=27010 | rom=131072 | rom=128k
They all specify a 1Mbit ROM to be emulated.

LoadICE Command Reference 69

© 1998 Grammar Engine

3.42. save
Save PromICE memory contents to a file on the host.

3.42.1. Command Forms
save Dialog mode

3.42.2. Syntax
{save} {file_name} [[id {:}] [start] [end]]

3.42.3. Use
file_name (string) The name of the host file in which PromICE

memory contents are to be saved. Path names may be
included.

id (integer) A valid PromICE unit ID number (0-255).

start (hex) Specifies the starting address of that portion. The
address must be an offset value within PromICE
emulated ROM space. Data bus width multiples (8,16,32
bit) do not need to be taken into account.

end (hex) Specifies the ending address of that portion. The
address must be an offset value within PromICE
emulated ROM space. Data bus width multiples (8,16,32
bit) do not need to be taken into account.

3.42.4. Default
Save the whole ROM or the current ROM configuration.

3.42.5. Description
The contents of PromICE are uploaded and saved to a binary file.

3.42.6. Examples
save newfile 0:100 3fff

Save the data from unt-0 from 0x100 to 0x3FFF to a file caled “newfile”
on the host.

70 LoadICE Command Reference

PromICE User Manual

3.43. search
Search PromICE memory for an ASCII data pattern.

3.43.1. Command Forms
search Dialog mode (also S)

3.43.2. Syntax
{search | S} [[start] [end]] {pattern}

3.43.3. Use
start (hex) Address must be an offset value within PromICE

emulated ROM space. The start of PromICE emulated
ROM space is assumed to be address 0.

end (hex) Specifies the ending address of the portion. The
address must be an offset value within PromICE
emulated ROM space. The start of PromICE emulated
ROM space is assumed to be address 0.

pattern (string) The data pattern to be searched. Please enclose
the string in double quotation marks (" ").

3.43.4. Default
Search all confugured memory.

3.43.5. Description
This command allows you to search PromICE for an ASCII string.

3.43.6. Notes
Start and End addresses are optional. The entire specified range is
searched even if there are multiple occurrences of the string. Data bus
width multiples (8,16,32 bit) do not need to be taken into account when
specifying the address range.

3.43.7. Examples
S 0 1000 "Enter new value:"

Search from 0x0 to 0x1000 for the string given.

LoadICE Command Reference 71

© 1998 Grammar Engine

3.44. serial
Display PromICE micro-code serial number.

3.44.1. Command Forms
serial Dialog mode.

3.44.2. Syntax
{serial}

3.44.3. Use
serial Display the serial number in the micro-code.

3.44.4. Default
None.

3.44.5. Description
The micro-code has a place for a 32 bit serial number that can uniquely
identify a particular unit. This command shows you what that number is.

3.44.6. Notes
This allows PromICE to be bundled with debuggers that will only work on
given unit. If you would like specific serial numbers in the units, you must
contact Grammar Engine.

3.44.7. Examples
serial

Report serial number.

72 LoadICE Command Reference

PromICE User Manual

3.45. socket
Specify the capacity of the ROM socket on the target.

3.45.1. Command Forms
socket LoadICE.ini file

3.45.2. Syntax
{socket} [id{:}] {romsize}

3.45.3. Use
romsize (part#) Specified as 27040 etc.

(K bytes) Specified as 512K.
(decimal number) Specified as 524288.

3.45.4. Default
Same as ROM size.

3.45.5. Description
If your target is wired to accept a range of ROM devices then this
statement allows you to specify the largest size the target can address as
it is currently configured. If you are emulating a size smaller than the
socket size, LoadICE will make adjustments to make sure that both the
host (LoadICE) and the target 'see' the same ROM space.

3.45.6. Notes
The 27010, 27020 and the 27040 parts (128k; 256k and 512k bytes) can
be plugged into a socket wired for the 27040 part without changing any
jumpers. This will cause a problem especially when AI circuit is in use.
This command allows LoadICE to use the appropriate mask for unused
address lines for such a case.

All socket sizes should be by 8. If you are using a 16 bit ROM, the
socket size should be half of what the largest 16 bit size is.

3.45.7. Examples
socket=27040
rom=27010

Lets you emulate a 1MBit ROM in a socket wired for a 4MBit ROM.

LoadICE Command Reference 73

© 1998 Grammar Engine

3.46. status
Reports the status of the target system as seen by PromICE.

3.46.1. Command Forms
status LoadICE.ini file
-st Command line
status | st Dialog mode

3.46.2. Syntax
{status | -st}

3.46.3. Use
status Displays the current status.

3.46.4. Default
N/A. Status is only displayed when requested.

3.46.5. Description
PromICE can report the target power status and whether the target is
accessing the ROM being emulated by PromICE. This is a quick way to
find out if the target has power and if it is running (at least accessing
PromICE).

3.46.6. Notes
Sometimes you may have to execute the command multiple times if the
target changed state recently (i.e. after resetting the target). Check the
status a few times to see if it is running.

3.46.7. Examples
status Displays the target status from LoadICE dialog mode or

in the LoadICE.ini file.

-st Displays the target status from the LoadICE command
line.

74 LoadICE Command Reference

PromICE User Manual

3.47. stop
Take PromICE out of emulation mode.

3.47.1. Command Forms
stop Dialog mode (also <ESC>)

3.47.2. Syntax
{stop | <ESC>}

3.47.3. Description
Force PromICE units to stop emulating and go into load mode. If auto-
reset is active then reset signal is asserted.

3.47.4. Notes
The target will crash if it is executing out of the emulated space, unless
the reset line is attached to the target. When the 'stop' command is
issued, the buffers on PromICE unit(s) are turned off. If the target is
trying to access code in PromICE memory it will see incorrect data. If the
reset line is connected, the reset will be held until a 'go' command is
issued.

3.47.5. Examples
stop

The load light should come on so you can execute commands that modify
PromICE data.

LoadICE Command Reference 75

© 1998 Grammar Engine

3.48. test
Test PromICE emulation memory.

3.48.1. Command Forms
test Dialog mode

3.48.2. Syntax
{test | t} [[id {:}] [pass_count]]

3.48.3. Use
id (integer) A valid PromICE unit ID number (0-255).

pass_count (integer) The number of times a full memory test is to be
performed.

3.48.4. Default
Test unit with ID-0 once.

3.48.5. Description
It runs a simple RAM test within PromICE memory. If the test fails then
the offending address is reported.

3.48.6. Notes
This command destroys all data. A failed test may indicate several
problems. It can be a damaged buffer interfering with the test, it may be a
weak battery causing write failures to the RAM, or it may be a bad RAM
chip. If the test doesn't come back (hangs) the problem is probably
communication related, not necessarily a PromICE problem. If the test
fails or 'hangs' the problem may also be related to host communication
interference.

3.48.7. Examples
t 3

Test unit-3 once.

76 LoadICE Command Reference

PromICE User Manual

3.49. version
Report micro code version of the PromICE and the LoadICE version.

3.49.1. Command Forms
version Dialog mode

3.49.2. Syntax
{version} [id {:}]

3.49.3. Use
id (integer) A valid PromICE unit ID number (0-255).

3.49.4. Default
Display the LoadICE version number and micro-code version of unit ID-0.

3.49.5. Description
This is to check the version of software and micro-code you are running.
This information is helpful to our Technical Support Department.

3.49.6. Notes
Please have this information readily available when contacting Technical
Support.

3.49.7. Examples
version 3

Report version of the micro-code in unit-3.

LoadICE Command Reference 77

© 1998 Grammar Engine

3.50. word
Specify emulated data bus width.

3.50.1. Command Forms
word LoadICE.ini file
-w Command line
w Dialog mode

3.50.2. Syntax
{word | -w | w} [[data_width] [[byte_n] ...]]

3.50.3. Use
data_width (integer) The data bus width of PromICE emulated memory. It

must be an integral multiple of 8 and can not be larger than the
data bus width of the total number of daisy chained PromICE
units.

byte_n (integer) The nth byte in a data bus that has a width that is an
integral multiple of 8 bits. Bytes are assigned to successive
PromICE units (0 - 255) based on the selected order of byte_n
specifications.

3.50.4. Default
Word size is 8 bits.

3.50.5. Description
This command is used for setting the word size configuration of PromICE
modules.

3.50.6. Notes
The word size specification is used to dump, edit, fill, and save PromICE
memory. On a duplex PromICE (model P2xxx), when word size is set to
8 bit, if the master (bottom) unit's memory is overrun the data will go into
the slave (top) unit. This is the same as having two ROMs mapped
consecutively.

3.50.7. Examples
w 16 1 0

78 LoadICE Command Reference

PromICE User Manual

This specifies that a word size of 16 bits is to be used and that the first
byte of data (all the even numbered bytes) will be loaded in unit ID-1 (top
or slave unit) and the second byte of data (odd numbered bytes) to be
loaded in unit ID-0 (bottom or master unit).

Troubleshooting 79

© 1998 Grammar Engine

4. TROUBLESHOOTING

4.1. BEFORE YOU BEGIN
WARNING: If proper Electro Static Discharge (ESD)
precautions have not been taken you may have damaged
buffers. If your PromICE appears to load fine but will
not emulate or will emulate to a point in code and hang
up reliably, there is a good possibility that the buffers
have been damaged.

NOTE: All warranties are void if unit is opened!
CONTACT GRAMMAR ENGINE TECHNICAL SUPPORT FOR ALL

TECHNICAL SUPPORT RELATED INFORMATION.

4.2. HOST TO PROMICE

4.2.2. Windows / 95 / NT
Do not run Windows for the duration of the diagnostic procedure. You
can try using Windows later. If exiting Windows solves the problem, you
may not have the LoadICE window opened exclusively. Add the
commands "noverify" to your LoadICE.ini file. You may also add “nomap”
and “nocursor” to further speed download. See your Windows
documentation for more information about exclusive applications.

4.2.3. LoadICE Version
Check your LoadICE version. Free upgrades can be downloaded from
the GEI WEB site at www.gei.com.

4.2.4. Switch box / extension cable / software key
Disconnect any switch boxes, extension cables and/or software keys
(hardware security keys, dongles). Connect PromICE to the host via the
supplied cables only. Extension cables and switch boxes are not
recommended for use with PromICE. Software keys may intercept code
intended for PromICE and stop communication. Don't reconnect any of
these cables or boxes until the problem is solved. They can always be
reconnected once PromICE is communicating.

4.2.5. Port specification

80 Troubleshooting

PromICE User Manual

Make sure that you are connected to the right port. If the port has a non-
standard address specify it in the command line or LoadICE.ini file as
follows:

output=com1:3f8
OR
pponly=lpt1:378

4.2.6. Baud rate
Make sure you have selected a valid baud rate. PromICE supports 1200,
2400, 4800, 9600, 19200 and 57600 baud. Try using a slower baud rate.
If this solves the problem you probably have a noise related problem.
Rerouting the cabling away from power supplies, monitors and power
cables may help correct this problem.

4.2.7. Serial/parallel communication
If you are using the serial and parallel port together, slow the serial port to
19200 baud. PromICE cannot handle data at the full baud rate in this
configuration.

4.2.8. Serial/parallel daisy chain
Make sure the daisy chain modules are connected properly. If the serial
connection is the reverse of the parallel connection, PromICE won't
communicate (see also "Serial/parallel communication" above). Refer to
the "Hardware Installation" Section of this manual for more information.

4.2.9. Noise
Move the communications lines away from any power cables, monitors,
power supplies, etc.

4.2.10. Display mode
If you are setting the display mode in LoadICE too high the data will
overflow the host system during communications. The maximum display
mode is "fe".

4.2.11. Conflicting device drivers/TSR's
Check your config.sys and autoexec.bat files for any drivers or TSR's that
may conflict with LoadICE. Anything that effects I/O ports can affect
LoadICE. If in doubt you can rename your config.sys and/or
autoexec.bat files. Reset the system and try LoadICE without any other
drivers loaded. If this solves the problem then one of the drivers is

Troubleshooting 81

© 1998 Grammar Engine

affecting LoadICE communications. Disable one driver at a time until the
problem is found. Some memory driver configurations have been known
to cause problems.

4.2.12. Poor connection (damaged cable)
Disconnect any extension cables, switch boxes or software keys
(dongles) that may be attached to PromICE. Use only the cables
supplied with the unit. If the cable is damaged, contact Grammar Engine
Sales for a replacement.

4.2.13. Damaged serial/parallel port
If communication is impossible through the serial port, try using the TTY
interface as described earlier in this section. If you can connect with the
TTY but not through LoadICE, you probably have a bad serial port. Try
using another port, preferably on another host system.

4.3. PromICE TO TARGET
NOTE: Emulation problems show up in one of two ways. The target either
never emulates, or stops emulating. This section of troubleshooting is split
into two separate sections. Many of the problems experienced with
emulation may show up in a number of ways. For example: If the target
never emulates the problem could be noise related (in the "Never emulates or
stops emulating section") or byte order related (in the "Never emulates"
section).

If your target doesn't "emulate and never did" see the "Never emulates"
section first. If the problem persists, see the "Never emulates or stops
emulating" section. Remember to log off the network and exit Windows. If
this solves the problem, see the "Windows" and/or the "Network" sections
below.

If, after completing the section(s) below, the target still won't emulate, contact
Grammar Engine Inc. Technical Support.

4.3.1. Never emulates or stops emulating

4.3.1.3. Mapping

82 Troubleshooting

PromICE User Manual

If the file specification in the LoadICE.ini or command line is specified
incorrectly, the program will not run or will run to a point and then stop. If
you don't have any code that you are loading into RAM space on
purpose, make sure that noaddrerr is NOT in your LoadICE.ini or
command line. This way, if you are loading out of address range,
LoadICE will show the error and location. If the file address and/or the
ROM address are specified incorrectly the program won't run or will
crash. Make sure you know where your file's starting address is and
where in ROM you want it to load.

Example: Assume you have a file called mad.hex that starts at 0x400000
(the hex records in the file say to start loading data at this address).
Assume that the file contains 16 bit data and the first byte is emulated by
module ID1 (slave unit) and the second by module ID0 (master unit). The
specification would be:

file=mad.hex 400000=0 16 1 0

The "16 1 0" is optional if "word=16 1 0" has been specified.

Example: Assume you have a file called mad.bin that has a 14 byte load
header. Assume that the file contains 16 bit data and the first byte is
emulated by module ID0 (master) and the second by module ID1 (slave).
The specification would be:

image=mad.bin 14=0 16 0 1

Again, the "16 0 1" are optional if the "word=16 0 1" has already been
specified. You can always be safe by specifying all the parameters.

4.3.1.4. Emulation size

Emulate the largest size that your target IS WIRED FOR. If the ROM you
are emulating is a 27512, but your target's socket can handle a 27020,
emulate the 27020. If you don't know for sure whether your target can
emulate larger sizes or not, start by emulating the largest size ROM that
your PromICE can emulate. Work your way down from there until you
find the correct emulation size.

4.3.1.5. Noise

Check the cabling between PromICE and the target. Make sure that the
cable isn't near any power supplies, monitors or cables. If your target is
sensitive to noise or is noisy itself, it may not emulate (or at least not
reliably). Make sure that none of your cables are anywhere near a source

Troubleshooting 83

© 1998 Grammar Engine

of noise (i.e. monitors, power supplies, power cables, etc.). Keep the
cables as short as is possible and route them as far away as possible
from noise sources. If the target itself is noisy it may become necessary
to obtain shielded cables. Contact Grammar Engine if this becomes
necessary. See also "Parasitic power" below.

4.3.1.6. Parasitic power

PromICE unit is designed to run either parasitically (power comes from
target ROM socket) or externally. PromICE draws about 100 mA per
board inside. If you have a duplex (2 PromICE's in a box) with an AI
interface, the unit will draw approximately 300 mA from your target if you
are running PromICE parasitically. This may be enough power drain on
the target system to make it fail. In addition, whether powered
parasitically or externally, if the target voltage drops below a certain
voltage threshold PromICE will go into protected mode. During this time,
PromICE will stop emulation and turn off the buffers to protect its
memory. For Revision 3 units the voltage is approximately 3.3 volts.
Although the voltage may be high enough at startup, there may be a
function that enables a peripheral that takes power away from the target.
This drain may drop the target voltage below the threshold. To resolve
this problem, the voltage sense can be forced to 5v:

Remove power from the target and PromICE. Place jumpers on the
"EXT" and "ROM" positions. Place another jumper on the 28 or 32 pins
depending on the adapter you are using. Only the 28 pin DIP cable will
use the "28" pin jumper. All other PLCC adapters and 40 pin DIP
adapters will use the "32" jumper. Connect the reset line on PromICE to
the target reset line. If you have a reset button on the target, you can use
it instead of the reset line on PromICE.

WARNING: Do not attempt to use this configuration if
you are using the GEI 5V to 3V adapter board for 3V
targets. You will not be able to power down your
target to initiate a reset. In this configuration,
powering down the target without first powering down
PromICE can damage the unit.

Power up the target, THEN PromICE. Rerun LoadICE.

If you are using parasitic power (PromICE gets its power from the ROM
socket) and the target stops emulating at certain points, PromICE is
probably going into protected mode. PromICE stops emulation and turns
off the buffers that go to the target when the target voltage drops below a
certain voltage. If your target locks up while performing a certain function

84 Troubleshooting

PromICE User Manual

the target voltage may be dropping below this threshold. Try powering
PromICE externally. If this still doesn't help you may want to try to force
the voltage sense.

4.3.1.6. Address line floating or pulled low

PromICE units have address lines A0-A19 connected to the 32 pin DIP
cable, except for the following:

For units one megabit or less i.e. Px010 or less A17 and A18 are NOT
connected to PromICE.

For two megabit units Px020, A17 is connected but A18 is NOT.

For units four megabit and larger i.e. Px040 or larger both A17 and A18
are connected.

The reason for this variation is that a 1, 2 or 4 megabit ROMs can be
plugged into a socket wired for 4 megabit, without any jumpers or
changes. This means that the target can drive A17 and A18 even though
it may be addressing a 1 megabit ROM. To accommodate this situation
the socket command is used to tell LoadICE to properly configure
memory pointers so that both LoadICE and the target see the same
memory from both sides.

4.3.2. Never emulates

4.3.2.1. Incorrect byte order

If you are emulating more than one ROM and/or are in a 16 bit or larger
configuration, check the byte order in the LoadICE.ini file or your
command line. If the byte order is reversed the code is going into the
wrong ROMs. In duplex PromICE's, the bottom unit is ID 0 (usually the
even bit) and the top is ID 1 (usually the odd bit).

4.3.2.2. Emulation size

Check your emulation size. Make sure the socket statement is set
correctly and that the ROM size is not set larger than the socket size. If
this is set incorrectly, PromICE will not emulate. If you are not sure what
your target is wired for, set the socket size to emulate a 27080 and then
work your way down.

Troubleshooting 85

© 1998 Grammar Engine

4.4. If All Else Has Failed
If the problem cannot be solved from the information supplied in this manual
then you should contact Grammar Engine Technical Support. Support is
available via email, phone and fax.

If you choose to use the phone option be prepared with the following
information:

PromICE Model and Serial number (Model number starts with a "P")
Contents of the LoadICE.ini file or command line
Exact error message being encountered
Target information:

CPU type
Clock rate
ROM access time
ROM part number

All switch and/or jumper settings on PromICE
Host type and type of connection to PromICE (serial, parallel or both)

Be at your computer with PromICE and target configured and ready to go.
This will help us get you up and running faster.

Before calling Technical Support, check the Grammar Engine WEB site to
see if the answer to your question is there. The fastest way to obtain technial
support is through email. Email requests are received real-time and
answered immediately.

Our numbers are:

Technical Support (614) 899-7878
Fax (614) 899-7888
INTERNET support@gei.com

86 Troubleshooting

PromICE User Manual

4.5. EMERGENCY REPAIRS
WARNING: OPENING PromICE CASE WILL VOID ALL WARRANTIES.
ONCE THE CASE HAS BEEN OPENED THE UNIT IS NO LONGER
UNDER WARRANTY.

You may be in a situation where you must repair PromICE and continue with
your work. In such cases the instructions provided here may help. Warning:
This will definitely void any warranty and you assume the full risk of applying
any fixes here. Any mistakes may further damage the unit or your target
system. If you are very careful and take full precautions against static
damage, you may proceed. Grammar Engine will not be liable for any
damages incurred when you follow these instructions.

Replace parts only with identical replacements. For Example: An HCT244
and ALS244 are not the same. If you replace an ALS with an HCT PromICE
may not emulate properly.

4.5.1. Replacing ROM Interface Buffers
If the PromICE is not emulating or LoadICE is reporting Memory Size
Zero errors when you connect with PromICE, then you may have
damaged buffers on the ROM interface. One or more damaged buffers
can keep one or more address lines from switching and cause the above
mentioned problems.

To replace the buffers do the following:

1. Open PromICE unit by removing the flat head screw on the back panel
that is attached to a heat-sink. Use #1 Phillips screw driver and
remove the two screws from the bottom portion of PromICE box.

2. Slide out the circuit boards and the panel. Keep them all together as
you are taking them out or they may bind in the case. Remove the
panels and gently pry apart the circuit boards. If you have duplex unit,
or AI option installed.

3. The address input buffers are marked U11, U12 and U13 and are
located behind the ROM cable header. These are 20 pin socketed
devices. These are generally 74ALS244 chips. They can be replaced
by equivalent known good chips. If you do not have enough chips
then replace them one at a time, until the defective chip is replaced.

Troubleshooting 87

© 1998 Grammar Engine

4. The data buffer is marked U14 and is a 74ALS245. Replace it with a
similar chip.

5. The interface chips are marked the same on both the master board
(the one with main PromICE circuit on it) and the slave board
(mounted on the master board).

6. After the chips are replaced, reassemble the boards carefully lining up
the 44 pin headers on both sides of the board. You may refrain
putting the unit in the box until the problem is completely fixed.

7. For complete reassembly, hold the panels in position with the boards
and gently slide the whole assembly into the bottom portion of the box.
Attach the heat sink back to the back panel with the flat head screw.
Slide the top half of the box and close it with the Phillips screws
through the bottom half of the box.

4.5.2. Replacing the Parallel Port Buffers
If you are having problems with the parallel port, and it can not be fixed
by any of the things mentioned in regular trouble shooting section, then
the parallel port buffers may be damaged.

Once again, when the unit is open, check the two buffers right behind the
parallel port connector. These are also 20-pin socketed devices. They
are 74LS244 and 74ALS244 chips. Replace them with equivalent chips.

4.5.3. Replacing Other Parts
Theoretically you can replace all the parts but the PAL and
microcontroller. If the problem can not be solved by replacing the buffers,
then the only other parts that are easy to replace are the ones in buffers,
or some of the discretes. Here is a list of parts that you may replace:

1. The 8-pin Op Amp part (the only 8-pin IC on board, and in socket).
The unit will not go into emulation if the target does not have enough
power. This Op Amp will force emulation to shut down if it thinks the
target power is going down.

2. The 7805 regulator. If PromICE will not maintain 5VDC power, the
regulator may have gone bad. Look for discoloration from excessive
heat. Desolder the regulator, solder a new one, reattach the heat
sink.

88 Troubleshooting

PromICE User Manual

3. The 74HCT373. This chip is soldered on to the board. If it has failed,
it will not let PromICE correctly address the memory. It will have to
be desoldered and replaced. Do not replace it with an HC part, it
must be HCT or LS or ALS etc.

4. The 74LS125. This is a 14 pin socketed device. This chip drives the
target RESET and INTERRUPT lines on the back pin rst(- +) and int(-
+). If these signals are not functioning properly, then this chip can be
replaced with an equivalent part. An HCT or ALS part will suffice and
even an HC may be used.

5. The last chip is the LT1081, a 5VDC only RS232 interface device. If
the problem seems to be RS232 then this chip can be desoldered
and replaced with an equivalent chip.

Note: Both the Dallas DS1221 and Linear Technology LT1081 (or
LT1281) have pin compatible parts made by BenchMark and Maxim,
respectively. Carefully check the part pinouts before substituting.

Troubleshooting 89

© 1995 Grammar Engine

4.6. TECHNICAL SUPPORT

PRIORITY FAX
To: GRAMMAR ENGINE TECHNICAL SUPPORT
Fax: (614)899-7888
From: ___________________________________
Company: ________________________________
Fax: () _________________________
Voice: () _________________________
Model # P_________________ (Please include complete number)
Serial # ___________________ (Below model number)
(model and serial numbers are located on the front or bottom of the unit)

Jumper settings on PromICE: EXT ROM 32 28 24
LoadICE version number: _____________ (Run LoadICE or type "v" in dialog

mode to get full version #)
Contents of the LoadICE.ini file: Target Information:

_________________________ Target CPU: __________
_________________________ Clock Rate: _____
_________________________ ROM access time: ______
_________________________ ROM part # __________
_________________________ ROM wait states: _____
_________________________ Bus width: 8 16 24 32

Command line arguments: __
Error messages: __

Host type and speed: ______________ Switchbox: YES / NO
Network: YES NO Windows: YES NO
Connection to PromICE: Serial / Parallel / Both Extension cables: YES / NO
Debugger used: ____________________________________

Additional Information:

__
__
__

90 Troubleshooting

PromICE User Manual

4.7. RMA INFORMATION

SHIP TO: Grammar Engine Inc.
921 Eastwind Dr.
Suite 122
Westerville, OH 43081

ATTN. RMA# ______________ (Contact Grammar Engine Technical Support
 for RMA)

PromICE MODEL # (On front panel or bottom of unit):
P___________________________

PromICE SERIAL NUMBER (Under model number):

Purchase Order number
(If out of warranty and/or for special shipping): ______________

Return Shipping instructions:
__

Return Address: ___________________________

Contact Name: ___________________________
Contact Phone # ___________________________

Reason for Return: _____ Upgrade _____ Repair

Problem Description:

Error Messages 91

© 1995 Grammar Engine

5. ERROR MESSAGES
Normal messages from LoadICE inform you of PromICE's status and show
you information you have requested. The following messages, however, are
error messages that are displayed when errors are encountered. Unless you
are in dialog mode, errors will terminate LoadICE. In dialog mode the control
is returned to you for further command input.

Error messages are always identified as such, and auxiliary data is also
displayed to give you a little more information about errors. If the global
variable 'errno' is set, then a system error message is also displayed. It may
not always be meaningful, but it usually means that some system call that
LoadICE has issued has failed, producing the error message. LoadICE
displays the last user input it was processing when the error occurred. In
some cases it may not apply to the error condition. In some cases the error
may have occurred in processing the input after part of it had been
successfully processed. The negative error numbers are actual failure codes
returned from the emulation units. The positive messages are generated by
LoadICE. Following, is the list of errors you may get from LoadICE:

5.1(-6) Interface is not available or not active
Causes:
Relates to programming the AI. Either the AI option is not installed or it is not
activated by the software, or the PI option is not activated before use.
Solution:
Check your configuration.
Contact Grammar Engine Sales for an upgrade.

5.2(-5) Interface is busy
Cause:
AI interface can not accept more data. The interface is busy with previous
command or is busy processing target data.
Solution:
Check your software.

5.3. (-4) Timer expired while waiting
Cause:
Command timed out on the AI or PI interface either AI or PI operation has
timed out.
Solution:
Check your software.

92 Error Messages

PromICE User Manual

5.4(-3) DataOverflow - lost host data
Cause:
The target is not servicing the interface, it may be hung. A write to the AI or
the PI has failed due to previous write not completing.
Solution:
Rerun LoadICE.

5.5(-2) No data available from the target
Cause:
A read operation from the AI failed
Solution:
Retry the read attempt.

Cause:
Interface is hung or target has crashed. A read command was sent and no
data was available from the target.
Solution:
Run LoadICE to reset the link.

5.6(-1) Feature not implemented
Cause:
You are trying to use an unimplemented feature.
Solution:
Contact Grammar Engine Technical Support for assistance.

5.7. (1) LoadICE parser internal error #1
Cause:
This error should only occure if LadICE has been modified.
Solution:
Correct the input script and retry tho command.

5.8. (2) Illegal command
Cause:
Spelling error
Solution:
Check spelling and retry

Cause:
Capitalization
Solution:

Error Messages 93

© 1995 Grammar Engine

All commands are lower case unless otherwise noted.

5.9. (3) LoadICE parser internal error #2
Cause:
Internal error.
Solution:
Contact Grammar Engine Technical Support for assistance.

5.10. (4) Too many arguments supplied
Cause:
The parser found too many arguments to the command.
Solution:
Check command syntax and retry the command.

5.11 (5) Expected argument not supplied
Cause:
Required input was left out.
Solution:
Check the command syntax.

5.12 (6) Filename error
Cause:
Filename doesn't exist in directory or specified path.
Solution:
Check the path and filename for errors.

5.13 (7) Invalid baud-rate
Cause:
Invalid baud rate specified
Solution:
Specify a supported baud rate (i.e.,1200,2400, 4800, 9600, 19200, or 57600)

5.14 (8) Invalid ROM size
Cause:
ROM size specified is not valid
Solution:
Specify a generic part number (i.e. 27512), the size in Kbytes (i.e. 64k) or the
actual decimal number (i.e. 65536).

94 Error Messages

PromICE User Manual

5.15 (9) Invalid word size
Cause:
Word size is not a multiple of 8.
Solution:
Specify a valid word size (i.e. 8, 16, 32, 64...)

5.16 (10) Invalid ID list
Cause:
Attempting to load into more units than exist.
Solution:
Check your configuration for an ID that is larger than the number of physical
PromICE units. Check file specification(s) and/or id list for incorrect id listing.
Refer to PromICE configuration section for more information.

Cause:
Word size too large.
Solution:
Divide the word size by 8. If this number is larger than the number of
PromICE units, you either need more units or he wordsize is incorrect. See
the Quick Start section Software Configuration" for more information.

5.17 (11) Open failed
Cause:
File name not specified correctly.
Solution:
Make sure the file and it's extension are correctly spelled and in lower case.

Cause:
File not in path.
Solution:
Either the file should be in the same directory as LoadICE or the file path
should be specified.

5.18 (12) Unable to skip file data
Cause:
Skipping more data than is in file.
Solution:
Check your skip count. It should not be larger than your file size.

Error Messages 95

© 1995 Grammar Engine

5.19 (13) Device I/O error
Cause:
This can happen with either the file I/O or the I/O on the link to the PromICE.
Solution:
Check the system message for a more detailed description. If you are
entering data from the command line or in dialog mode, try creating a
LoadICE.ini file. You may have stated the commands in an incorrect order.

5.20 (14) Bad port name
Cause:
Port doesn't exist.
Solution:
Check the port name.

Cause:
Non-standard port address.
Solution:
Check the address of the host port. See the Quick Start section "Software
Configuration" for more information.

5.21 (15) End-o-File
Cause:
Corrupt record in hex file.
Solution:
Remake the file.

5.22 (16) Bad parameters to picmd()
Cause:
Count field larger than allowed.
Solution:
Should only occur if LoadICE has been modified. Recopy LoadICE from the
distribution disks.

5.23 (17) Communication error
Cause:
LoadICE could not establish a link with PromICE or the link failed.
Solution:
Check your connection and try to reconnect. If serial connection isn't working
try using the parallel connection and vica versa. Check the cable
connections at both the host and PromICE sides.

96 Error Messages

PromICE User Manual

5.24 (18) Name too long
Cause:
File or device name too long.
Solution:
Shorten the name to no more than 128 characters long.

5.25 (19) Timed out waiting for response
Cause:
Noisy connection.
Solution:
Move cables away from monitors and/or power supplies.

Cause:
Using DOS version of LoadICE under Winodws 95 or NT.
Solution:
Download the correct version of LoadICE for your operating system.

5.26 (20) FEATURE NOT IMPLEMENTED YET!
Cause:
Internal error.
Solution:
Contact Grammar Engine Technical Support for assistance.

5.27 (21) Verify failed
Cause:
Noisy connection with the PromICE.
Solution:
Rerun LoadICE. Run a test on the PromICE memory (see “Test” in the
command reference). If the test fails or if the problem persists contact
Grammar Engine Technical Support for assistance.

5.28 (22) Invalid unit ID
Cause:
ID specified is larger than the total number of PromICE units.
Solution:
Check file and word specifications for an invalid ID. Refer to the installation
section for more information.

Error Messages 97

© 1995 Grammar Engine

5.29 (23) Address out of range
Cause:
Incorrect file offset.
Solution:
Correct the file offset. See “file” in the COMMAND REFERECNE for more
information on file offsets.

Cause:
ROM size is too small.
Solution:
Set the ROM size to a larger part.

Cause:
Some code being loaded is intended for RAM.
Solution:
Add “noaddrerr” to ignore addresses outside of ROM space.

5.30 (24) LoadICE internal error #3
Cause:
Internal error.
Solution:
Recopy LoadICE from the distribution disks.

5.31 (25) Bad arguments
Cause:
A command has invalid input.
Solution:
This usually occurs when ailoc and pponly are included in the LoadICE.ini file.
Add “output=<com>” (where <com> is the serial port the PromICE is
connected) as the first line in the LoadICE.ini file. See the COMMAND
REFERENCE section of this manual to verify syntax for a particular
command.

5.32 (26) Bad checksum in record
Cause:
File has been manually edited (patched).
Solution:
Use the nochecksum or -x option to process and load the edited records.

98 Error Messages

PromICE User Manual

5.33 (27) Feature not supported on this unit
Cause:
Unit does not have feature installed.
Solution:
Contact Grammar Engine Sales for an upgrade.

5.34 (28) Bad argument for driver call
Cause:
Corrupt LoadICE application.
Solution:
Recopy LoadICE from the distribution disks.

5.35 (29) Bad data in the hex record
Cause:
The file processor found data that it doesn't know how to handle.
Solution:
Recompile the hex file and retry. The error string contains information about
the error. Correct any problems and retry.

5.36 (30) Unit is LOCKED
Cause:
Internal error.
Solution:
Contact Grammar Engine Technical Support for assistance.

Error Messages 99

© 1995 Grammar Engine

5.37 (31) Not enough units to emulate the word-
size

Cause:
An attempt was made to to emulate a word size larger than the number of
PromICE units in the configuration.
Solution:
Select a smaller word size or contact Grammar Engine Sales for an upgrade.
Divide the word size by 8. There should be the same number of PromICE
units as the number you come up with. PromICE models beginning with "P2"
count as two PromICE units and models beginning with a "P1" count as one
unit.

5.38 (32) Memory Size Zero
Cause:
The PromICE memory controller hasn’t charged yet.
Solution:
The PromICE contains a super capacitor that will take a few seconds to
charge. Once charged, it will hold for at least several hours and at most a
week (depending on the PromICE memory size and speed). If the error still
occurs after 30 seconds, check the PromICE power supply. If the Replace
the power supply if necessary.

Cause:
The target’s power supply isn’t powerful enough to supply the PromICE
(PromICE jumper in “ROM” position only).
Solution:
Power the PromICE Externally.

Cause:
Bad or incorrect power supply.
Solution:
If the error still occurs after 30 seconds, check the PromICE power supply. If
the Replace the power supply if necessary.

5.39 (33) Operation terminated by user
Cause:
A command was terminated during processing
Solution:
Retry the command.

100 Error Messages

PromICE User Manual

5.40 (34) Data over-run
Cause:
Interference from a network.
Solution:
Move all files to the local drive.

5.41 (35) Key NOT assigned
Cause:
You pressed a function key that has no assigned value.
Solution:
Assign or press a different key see 'afn' or 'fn' command to assign a key.

5.42 (36) Can't do while Emulating!
Cause:
A command was issued that requires the PromICE to be in load mode.
Solution:
Type “stop” or prress the escape key (The escape key in DOS/Windows
toggles the PromICE between emulation and load modes). When emulation
is stopped, the target will crash and needs to be reset after the "go" command
is issued. If the reset signal is connected to the PromICE, the target will be
held in reset until emulation is turned back on.

5.43 (37) Not emulating! - do a 'go' first
Cause:
A command was issued that requires the PromICE to be in emulation mode.
Solution:
Type “go” or prress the escape key (The escape key in DOS/Windows
toggles the PromICE between emulation and load modes). If the reset line is
not connected from PromICE to the target, the target will have to be reset
after the “go" is issued.

5.44 (38) No operation!
Cause:
The operation was canceled by the user.
Solution:
Retry the operation

5.45 (39) No link with units...
Cause:

Error Messages 101

© 1995 Grammar Engine

Internal error.
Solution:
Contact Grammar Engine Technical Support for assistance.

5.46 (40) Must have AI Rev3.1...
Cause:
Command requires a newer Analysis Interface option.
Solution:
Contact Grammar Engine Sales for an upgrade.

5.47 (41) Must include 'word=' statement...
Cause:
You are specifying a command that requires the “word” statemetn to be
specified.
Solution:
Place the "word" statement into your LoadICE.ini file. Refer to the
SOFTWARE CONFIGURATION for more information.

Analysis Interface Configuration 102

PromICE AI User Manual

6. Analysis Interface Configuration

6.1. Introduction
You must have a PromICE with "AI" as part of the model number. If you do
not have this option and want to debug through the ROM socket, contact your
Grammar Engine Sales Representative for an upgrade.

6.2. Description
The Analysis Interface (Referred to as the "AI") option implements a virtual
serial channel through the ROM socket referred to as the ROMART. The AI
is a separate board installed in PromICE and it operates through the master
module (lower of the two or the only) ROM emulation pod.

6.3. How The AI Works
The AI acts like a serial port on a target system. The AI's address is mapped
into the ROM address space. Communication is done entirely by reading the
interface. This means that you don't have to be able to write into ROM space
to communicate from the target to the host. The AI communications area
takes up only four consecutive address bytes (within the master module) for
communication.

With minimal code on the target system you can communicate to and from
the host system to your target with no target resources taken up. PromICE AI
configuration is also able to do interrupt driven communications. This is done
by connecting a line from the int- (low asserted) or int+ (high asserted) pins
to an interrupt on your target. A target monitor can then be configured for
interrupt driven communications.

By connecting the wrt (write line) from the back of PromICE to the write line
on a target system, you can do write cycles into ROM space (assuming your
target allows writes into ROM). This is strictly to set break-points in ROM or
otherwise load the code in ROM space via the debug monitor.

6.4. How Debuggers Work With the AI
A debugger has two components, the front-end runs on your host and
manages the target and debugging with the help of a monitor. This monitor
generally communicates with the front-end via some connection between the
target and the host system. Usually this is a serial channel connected to a

Analysis Interface Configuration 103

© 1994 Grammar Engine

COM port on the host. The AI removes the requirement of having a spare
serial or other I/O channel on the target for debugging use.

Adding a PromICE and AI to your target is like adding a serial port to your
target. This serial port is mapped into your ROM address range and works
by reading the interface only. In other words, you don't have to write into your
ROM space to communicate bidirectionally with your host system. Other
than that, PromICE AI operates just like a UART on your target system.

The only modification to the target monitor is made to support the AI virtual
UART instead of some other device. All third party debugging packages
support PromICE/AI system as an option.

6.5. Getting Started With the AI
In order to get your debugging configuration quickly, you should use the
following procedure:

Step 1: Get the target system emulating with PromICE
At this point the debugger/monitor should not be involved. Follow the
instructions in the beginning of the manual and get PromICE
emulating with some known working code. Once the target is
running with PromICE connected, you can be certain that everything
in your PromICE configuration (PromICE jumper settings, adapter
configuration, etc) and LoadICE.ini file are correct.

At this point, the only changes you will make to your LoadICE.ini file
will be to the "file" (or "image"). You will also add the "ailoc"
statement and possibly one or more of the other AI commands. You
should NOT change your "socket", "rom", or "word" statements. If
your target is emulating, these are correct.

Step 2: Configure the debugger monitor to work with your target's
serial port (if possible)
This may be impossible for you to accomplish if you don't have a
serial port or if your serial port communications is part of what you
are trying to debug.

The reason for suggesting this is so that you can verify your monitor
configuration without the AI communication routines in the loop. At
this point you may choose to connect the write pin on PromICE to the
write line on your target system. This will allow you to download your
code into PromICE ROM space from the debugger, set breakpoints
in ROM and singlestep.

Analysis Interface Configuration 104

PromICE AI User Manual

If you will be using interrupt driven communications you may also
chose to connect the int- (low asserted) or int+ (high asserted)
interrupt pin on PromICE to an interrupt on your target. Most
debuggers suggest you use polled mode communications before
trying interrupt communications. Most of the debugger monitors
require you to supply your own routines to handle interrupt driven
communications. By using polled communications, you can verify
that your monitor configuration (everything except the interrupt
communications) is working. If the target stops communicating when
you move to interrupt driven communications, it is obviously the
interrupt driver that is the problem and not the rest of the
configuration.

At this point, your LoadICE.ini and monitor configuration should be
correct.

Step 3: Configure the debugger monitor to work with the AI
Finally, add the AI specific modifications to the configuration and add
the "ailoc" statement to your LoadICE.ini file. Again, start with polled
mode communication. If you want to use interrupt driven
communications, you can configure for that once you have the
monitor working in polled mode. At this point you will be debugging
through the ROM socket.

The procedure for configuring a debugger monitor to work with PromICE
varies somewhat from debugger to debugger. However, the modifications
necessary to work with PromICE AI are a very small part of the overall
monitor configuration. We have listed several sample configurations for
some of the debuggers we have used in house. The next few sections will
describe the basics of monitor based debugging; How it works and how
PromICE AI fits in with the solution.

6.6. Download Options
There are two ways to get your application from your host system to the
target system for debugging:

1. Download the debugger monitor to PromICE and load your application
from the debugger either into target RAM or PromICE (ROM) space.

The advantage to setting up your system this way is that it is the fastest
way to set up.

Analysis Interface Configuration 105

© 1994 Grammar Engine

The disadvantage is that although you can download the debug monitor
over the parallel port (very fast) you still have to download your
application via the serial port. The other disadvantage is that if you are
loading your application into PromICE ROM space (write line is
connected), you must be very careful not to load your application over the
monitor. If this occurs your target system will crash during the application
download. The only way to recover is to reload the monitor using
LoadICE and restart the system.

2. Download the debugger monitor and application to PromICE using
LoadICE and then do a symbol load from the debugger application.

The advantage to this configuration is that you can download the
debugger monitor and your application to PromICE at the same time.
You can download over either the serial or parallel port. This is the
fastest way to get the code to your target system. Once you have the
target running with the monitor and application on the target, you can do
a symbol download in the debugger and your ready to start debugging.
In addition, by loading and comparing the monitor and application files,
you can see if one is being loaded over the other.

The debugger setup is the same for both options. Procedurally, the
configuration is the same.

106 LoadICE AI Command Reference

PromICE AI User Manual

7. AI Command Reference

7.1. OVERVIEW

7.1.5. Debug setup commands
The most common debug setup is done by the ailoc command. This
command will let you program PromICE (equipped with the AI option) to
act as a transparent link between the host based debugger and the target
resident monitor. This allows you to debug your target code without
requiring additional hookups for communicating with the target system.

The rest of the commands condition and modify how this link operates
and allow the debugger to interrupt or reset the target via the DTR or INIT
line or support the interface when the target system can only make burst
accesses to the ROM.

aicontrol Controls the AI's access timing
aifast Selects higher speed transparent communications
ailoc Specify the address of AiCOM virtual channel
ainorci Disables per-character receive interrupts
aireset Allows host debugger to reset the AI interface
aitint Allows the host debugger to directly interrupt the target
aitreset Allows debugger to directly reset the target
burst Allows support for burst mode access to ROM interface

LoadICE AI Command Reference 107

© 1998 Grammar Engine

7.1. aicontrol
Selects AI timing characteristics

7.1.1. Command Forms
aicontrol LoadICE.ini file
-aic Command line
aicontrol Dialog mode

7.1.2. Syntax
{aicontrol | -aic} [0 | 1 | 2 | 3]

7.1.3. Use
0 Standard timing derived from target system.

1 Insert a 50ns delay in clocking target to host data.

2 1 above plus use delay on target read of host data.

3 Both 1 & 2 plus use 50ns write for ROM patch operation.

7.1.4. Default
No timing modifications.

7.1.5. Description
The AI is clocked by the accesses from the target system. Clocking is
accomplished by combining chip_enable, output_enable and address
lines, there is a possibility of false clocks from overlap between these
signals. Under ideal conditions this would never happen. However, due
to decoding and buffering, these signals can be skewed by the time the
logic on the AI board decodes them for its own purposes. This command
allows a one-shot timer to be inserted, allowing the signals to be "de-
skewed". The one-shot sets up a 50ns pulse that delays the sampling of
input signals. This can result in more reliable functioning of the AI circuit.
The circuit affected is the one that receives target data for the host. The
circuit that responds to the target read of host data can be programmed
to use this delay for reliable clearing of data available latch.

7.1.6. Notes

108 LoadICE AI Command Reference

PromICE AI User Manual

On target's where the accesses cycle is about 50ns or less, this
command may cause the AI to fail completely.

7.1.7. Examples
aicontrol 1 Enables one-shot delay to help "de-skew" the

control signals.

LoadICE AI Command Reference 109

© 1998 Grammar Engine

7.2. aifast
Selects non-buffered transparent AI communications.

7.2.1. Command Forms
aifast LoadICE.ini file
-aif Command line
aifast Dialog mode

7.2.2. Syntax
{aifast | -aif} [0 | 1]

7.2.3. Use
0 Disable non-buffered communications

1 Enable non-buffered communications

7.2.4. Default
Use the receive buffered method. Up to 40 bytes can be buffered before
data overflows and is lost.

7.2.5. Description
This command allows you to turn off I/O buffering. When buffering is
turned off, communication speed increased at the cost of reliable
communications.

7.2.6. Notes
If you expect the target to be busy servicing an interrupt or expecting
bursty traffic from the host then the buffered method (default) is better. If
you want overall faster throughput and buffered I/O works, then try this
option.

7.2.7. Examples
aifast
or
aifast 1 Enable non-buffered communication from LoadICE.ini

file.

-aif 0 Disable non-buffered communication from the LoadICE
command line.

110 LoadICE AI Command Reference

PromICE AI User Manual

7.3. ailoc
Sets up a communication channel between the host and the target.

7.3.1. Command Forms
ailoc LoadICE.ini file
-a Command line

7.3.2. Syntax
{ailoc | -a } [id {:}] {address} {baud} [break_char] [int_count]

7.3.3. Use
id (integer) A valid PromICE unit ID number (0-255), when

specified it must be followed by a ':'. This number is the
ID of the master module of PromICE unit with the AI
option. If you are using multiple units for 16 or 32 bit
emulation, etc. the other units are automatically
programmed to be in pass through mode.

address (hex) The address of the virtual UART as seen by the
target system, specified as an offset from the beginning
of ROM space. Since the AI interface occupies four
consecutive bytes, this address must be on a quad
boundary (i.e. lowest two bits are always zero) within the
single ROM through which the interface is accessed.
This means that for a 16 bit system the address of the AI
interface must align with an octal boundary (lowest three
bits are always zero) and for a 32 bit system on a 16
byte boundary (lowest nibble is always zero).

baud (integer) A valid baud rate (1200, 2400, 4800, 9600,
19200, 57600) at which the host based debugger will
communicate with the target via PromICE. A baud rate
of zero (0) will invoke transparent parallel port mode.

break_char (hex) A character used to break PromICE out of
transparent mode. This is used with ASCII host-target
communication protocols. Use -1 to specify no break
character when the next argument must be supplied.

int_count (integer) A cumulative number of host interrupts to ignore
before PromICE breaks out of transparent mode. Used

LoadICE AI Command Reference 111

© 1998 Grammar Engine

with binary host-target communication protocols. Some
debuggers will toggle DTR line on startup and thus cause
PromICE to restart and break the link, this option allows
you to override that.

7.3.4. Default
The default id is 0. The address and baud-rate must be specified. The
address is normalized to map to master ROM module according to word
size specification (see word command). The default for thebreak-
character is no break character or "-1" (i.e. binary transparency) and the
default for int_count is to ignore all interrupts from the host. So for most
cases you need only specify the address and the baud rate.

7.3.5. Description
ailoc is used for putting the AI link into transparent mode as the LoadICE
application completes. It is used after down-loading a debugger monitor
and before starting the debugger's front end (DFE). The address
specified is where the target will have the interface mapped. The
address is normalized automatically by LoadICE for mapping to the
master ROM module. The baud-rate programs the serial link baud rate to
the host. The parallel port may be used for communication with the host,
PromICE bi-directional parallel port protocol must be used.
Once the AI link is in transparent mode, the DFE in the host can
communicate with the ROM monitor in the target as if they were
connected with a standard serial link.

7.3.6. Notes
In order to run LoadICE again, the transparent link must be broken.
LoadICE does that by toggling the DTR or INIT signal (on parallel port) 4
times in 5 seconds. This allows PromICE to recognize the LoadICE
attempt to break the link. However, UNIX systems the DTR can not be
toggled fast enough (security precaution for letting the modems hang-up
the connection), so the time period must be increased to almost 30
seconds. This can be avoided by removing the toggle code in piunix.c
and power-cycling PromICE unit or pressing the reset switch on the back
of PromICE.

112 LoadICE AI Command Reference

PromICE AI User Manual

7.3.7. Examples
ailoc 8 19200

This example assumes that the AI link is mapped in the target space at
location (offset from beginning of ROM space) 0x8 in ROM space and the
serial baud-rate for communication with the host is 19200 baud.

LoadICE AI Command Reference 113

© 1998 Grammar Engine

7.4. ainorci
Disables per-character receive interrupts in AI transparent mode.

7.4.1. Command Forms
ainorci LoadICE.ini file
-ainri Command line
ainorci Dialog mode

7.4.2. Syntax
{ainorci | -ainri}

7.4.3. Use
N/A

7.4.4. Default
Both the 'int- and int+' lines on the back of PromICE are asserted
whenever host data is available (HDA bit set in AI status register).

7.4.5. Description
Normally the AI receiver will act like an interrupt driven device, i.e. every
time a character is available from the host (HDA set), the int- and int+
lines are asserted. The target clears the interrupt condition by reading
the host data. However, this command can be used to turn off this
interrupting. Then the target must poll the status for HDA . Debuggers
can use this to disable receive interrupts from PromICE/AI on the target
system and then use the DTR line to directly cause the interrupt when
needed, such as to break a run away application.

7.4.6. Notes
Use this command when the per character interrupt overhead is not
desired or not useful. The debugger then must control the reset directly
via DTR/INIT and 'aitint' command.

7.4.7. Examples
-ainri Disable interrupts from the LoadICE command line.

114 LoadICE AI Command Reference

PromICE AI User Manual

7.5. aireset
Allows a host debugger to reset the AI interface.

7.5.1. Command Forms
aireset LoadICE.ini file
-aire Command line
aireset Dialog mode

7.5.2. Syntax
{aireset | -aire} [0 | 1]

7.5.3. Use
0 Disable the feature

1 Enable the feature

7.5.4. Default
aireset 0

7.5.5. Description
This command allows the host driven DTR or the INIT signal to reset the
AI interface. It is applicable only while operating the AI in transparent
mode and running a debugger. This allows the debugger to toggle the
DTR line and reset the interface. This resetting amounts to clearing all
status bits and throwing away any data in the pipes.

7.5.6. Notes
The command takes effect when LoadICE application exits and programs
the AI to be a transparent link between the host and the target systems.

7.5.7. Examples
aireset
or
aireset 1 Enable the debugger reset feature

-aire 0 Disables the feature from the command line

LoadICE AI Command Reference 115

© 1998 Grammar Engine

7.6. aitint
Allow host debugger to directly interrupt the target system

7.6.1. Command Forms
aitint LoadICE.ini file
-aiti Command line
aitint Dialog mode

7.6.2. Syntax
{aitint | -aiti}

7.6.3. Use
N/A

7.6.4. Default
No interrupt is generated to the target by the DTR/INIT toggle.

7.6.5. Description
When the host toggles the DTR line or the INIT line, PromICE can
translate the signal and generate an interrupt to the target system via the
'int-; int+' pins on the back of PromICE. This allows the host based
debugger to interrupt the target to return control to the monitor.

Generally you would have used the ainorci command to disable receive
character interrupts and then this command lets the debugger drive the
interrupt line whenever desired.

7.6.6. Notes
The interrupt is generated for a fixed period of time. The default is 100
micro seconds and can be changed by using the 'intlen' command.

7.6.7. Examples
aitint Enable host debugger interrupt from the LoadICE.ini file.

-aiti Enable host debugger interrupt from the LoadICE
command line.

116 LoadICE AI Command Reference

PromICE AI User Manual

7.7. aitreset
Allows a host debugger to directly reset the target system.

7.7.1. Command Forms
aitreset LoadICE.ini file
-aitr Command line
aitreset Dialog mode

7.7.2. Syntax
{aitreset | -aitr}

7.7.3. Use
N/A

7.7.4. Default
No reset is done.

7.7.5. Description
This command allows a host based debugger to reset / restart the target
system by toggling the DTR or the INIT line.

7.7.6. Notes
This is a reliable way to recover when the target system is unable to
recover from an error.

7.7.7. Examples
aitreset Enable debugger reset from the LoadICE.ini file or in

LoadICE dialog mode.

-aitr Enable debugger reset from the LoadICE.ini command
line.

LoadICE AI Command Reference 117

© 1998 Grammar Engine

7.8. burst
Program the AI to accept burst mode accesses.

7.8.1. Command Forms
burst LoadICE.ini file
-B Command line

7.8.2. Syntax
{burst | -B} [#]

7.8.3. Use
Specifies the number of reads executed during the cycle.

The available bursts are: 0, 4, 8, and 16.

7.8.4. Default
Burst mode is disabled.

7.8.5. Description
Some 680x0 based target systems do burst mode reads from the ROM.
The processor holds the /RD line and reads either 4, 8 or 16 bytes of
data. During this time the /RD line is held and the address is changed.

In such cases this command allows the interface to be shifted up the
address range and the interface would appear as if in a longer word
configuration. On a normal access 8-bit target the interface occupies four
successive bytes with internal offset of 0,1,2 & 3. However on a 16-bit
system the consecutive bytes have target offset 0,2,4 & 6 and for a 32-bit
system 0,4,8 and C (12). When burst mode is active the interface is
effective spread over by as many bytes as the burst access allows. So a
4 bytes burst effectively maps the interface same as 32-bit target.

7.8.6. Notes
This command is only needed when using the AILOC command. Target
burst reads do not affect normal emulation. The AI needs to be set up to
handle the burst accesses.

7.8.7. Examples
burst 4 Specifies a 4 byte burst in the LoadICE.ini file.

118 Analysis Interface Sample Configurations

PromICE User Manual

8. Sample Debugger Configurations
This section will outline sample configurations for AI communications with
some of the debuggers that support PromICE AI option. These examples are
taken from actual configurations.

Whenever possible, debugger versions have been listed. Refer the
documentation for the particular debugger you have purchased for
information specific to your configuration.

This section gives sample configurations for the following debuggers:

8051 family
ChipTools Chipview

68000 family
SDSI SingleStep
MRI XRAY

We have not included sample configurations for the following debuggers
either because their configurations were not available at the time of printing or
PromICE specific configuration is described in their documentation:

80x88/x86 family
Paradigm
CSI
PharLap
SSI

The list of debuggers supported by PromICE is continually growing. Refer
the Application Notes for any additional debuggers.

Analysis Interface Sample Configurations 119

© 1998 Grammar Engine

8.1. ChipView®-51
ChipView requires certain hardware modifications to take full advantage of all
of its capabilities. Following is a list of target requirements and why you may
need them:

Overlapping CODE/XDATA space: If you don't have the ability to overlap
the space you will NOT be able to download your application through
the debugger, single step or set breakpoints in your code. How you
go about this overlap is up to you, but you must tell the monitor how
to overlap the memory space and/or where the overlap is.

One target interrupt: This allows you to bring control back from a "runaway"
application. For example: If you press the F9 function key the
debugger jumps to the application and lets it run at full speed. When
you press the F9 key again, the interrupt is asserted and control
comes back to the monitor.

If you want to overlap the CODE/XDATA space you will need to modify your
target hardware. How you do this is up to you, but you will need to configure
the monitor to take advantage of the modifications.

8.1.1. 8x51 Debugging Concept
All references to the 8x51 and from this point on will be referred to as the
8051 unless otherwise noted. The 8051 has separate read lines for RAM
and ROM and a write line for the RAM. This makes it impossible to do a
write cycle to the ROM space without modifying the target system. In
order for ChipView-51 to be able to download the application to your
target system, set breakpoints and single step, you must modify the
hardware so that some of your CODE and DATA address space overlap.
Ordinarily, the physical ROM space where the CODE is to be
downloaded to would be populated with RAM chips. By inserting
PromICE into the ROM socket and connecting the WRITE line to
PromICE, the monitor can be downloaded into PromICE and the rest of
the CODE space can be written to. This still requires overlapping CODE
and DATA space, but it isn't necessary to add an extra socket to your
target system (one for the monitor and one for overlapped CODE) when
using PromICE.

This requires a hardware modification to your target system. One way of
implementing this configuration is to dedicate a port pin to be used to set

120 Analysis Interface Sample Configurations

PromICE User Manual

the overlay only when you want to write to ROM. By redirecting the write
signal to the ROM address space you can then use the RAM as ROM (so
when you do a write to the ROM space, it doesn't do a write to the same
address in RAM and when you do a read, it will only be from RAM), and
then clear the bit to put things back to normal.

M
o

n
it

o
r

CODE

DATA

Overlap Area

If you overlap all of RAM and ROM space you must be careful that you
don't write over your monitor code. If this happens your target and/or
host will lock up. If this happens you will have to reload the monitor and
start over.

8.1.2. Building the Monitor for Use with the AI

In order to take full advantage of PromICE/ChipView®-51 package you
should have the following:

• A small amount of RAM in DATA space to hold the monitor state.
• A small amount of stack to breakpoint into the monitor code.
• Overlapping CODE and XDATA space.

Overlapping CODE and XDATA space is necessary for downloading your
application and inserting breakpoints. This means that your target's
architecture must support writing into the CODE space. The amount of
RAM and stack necessary for the monitor depend on your configuration.

Analysis Interface Sample Configurations 121

© 1998 Grammar Engine

If you are not able to overlap the CODE and XDATA space you will need
to load your application into PromICE using LoadICE at the same time
you load the monitor. In the monitor program, you will need to eliminate
any code that does writes to the "ROM" space. The monitor will try to
write to the overlapping area. Instead, it will be writing to RAM space and
may write over your reset vectors, interrupt vectors etc. Without this
overlap, you won't be able to single step or set breakpoints.

In addition, you should have INT0 or INT1 available to break into the
code in the event it runs away. If you cannot use an interrupt you will not
be able to stop your application from running.

8.1.3. Process
• The first step to successful debugging with PromICE is to get the target

emulating known working code. By doing this, you can verify that the
LoadICE.ini file (discussed later) is configured correctly.

• The second step is to get the debugger working through a serial port on
the target, with PromICE being used as a ROM emulator only. By
doing this, you can verify that the monitor program has been configured
correctly for your target system. If you don't have a serial port skip this
step.

• The third step is to get the debugger running using PromICE Analysis
Interface (AI). At this point, you will be adding PromICE AI specific
code to allow you to debug through PromICE Virtual UART (AI).

8.1.4. PromICE Specific Modifications

PromICE disk you received with your ChipView®-51 / PromICE order
contains prebuilt monitors and sources for the GET451 compiled under
Archimedes/IAR, BSO/Tasking and Franklin/Keil formats. Also supplied
on the disk are generic, prebuilt monitors and monitor sources for each of
the compilers.

If you are using the GET451 target board you may use one of the prebuilt
monitors and LoadICE.ini files and start debugging right away. You may
also choose to modify the monitor to your particular application.

If you are using another target you may choose to use one of the prebuilt
monitors as well. However, you will probably want to modify the monitor
to take into consideration your target's configuration. For the purpose of

122 Analysis Interface Sample Configurations

PromICE User Manual

this document, we will assume that you are using your own target
system.

1. The LoadICE disk contains two versions of the monitor program.
They are described as follows:

CVMON51.ASM BSO/Tasking format
CVMON51.A51 Franklin/Keil format
CVMON51.S03 Archimedes/IAR format

Select the format for the compiler you will be using.

2. Edit the monitor file you selected. Near the top of the file will be a
selection for DEVELOPMENT or PRODUCTION.

For the DEVELOPMENT phase the monitor requires the
following:

570 Bytes ROM at 0000
3+ Bytes RAM in XDATA/CODE space
INT0 or INT1 input pin (optional)

For the PRODUCTION phase the monitor requires the following:

700 Bytes ROM
INT0 or INT1 input pin

Select the option you want by setting the DEVELOPMENT or
PRODUCTION bit to 1 and the other to 0.

Once you have decided to use DEVELOPMENT or
PRODUCTION it is necessary to tell the monitor something
about your target configuration and how you want to control it.
You will only need to modify the code under either the
DEVELOPMENT or PRODUCTION, which ever you selected.

3. If you want the target to start up in the monitor set the
MONBOOT bit to 1.

4. MONSERIAL should be set to 0.

5. Set MONINT0 or MONINT1 to 1. This will determine which
interrupt is used to vector to the monitor. You will need to set up

Analysis Interface Sample Configurations 123

© 1998 Grammar Engine

your interrupt vectors (ROMVECS) and make sure the interrupt is
enabled in your application code. If you use this configuration
you will also need to set MONSINT to 1. This will specify an
interrupt driven UART.

6. If the chip you are using has a watchdog timer set MONDOG. If
you set this bit you will also need to fill in the WATCHDOG
routine.

7. Set the CHIP to the part number of the Controller you are using.

Refer to the ChipView®-51 User's Manual for supported chips.

8. Set the MONCODE statement to the address where you want the
monitor to reside.

9. Select the CSEG address where monitor will address PromICE's
AI. This address will be used in the AILOC statement in the
LoadICE.ini file (described later).

10. Save the file.

11. Next, edit the CSTART.ASM file.

12. Set up this file so that it matches your target's configuration.

13. Save the file.

8.1.5. Building the Monitor
The following is a sample list of commands to build the monitor for the
BSO and Franklin compilers:

BSO/TASKING:
mpp51 cstart.asm
asm51 cstart.src

mpp51 cvmon51.asm
asm51 cvmon51.src
link51 cstart.obj, cvmon51.obj, c51s.lib to cvmon51.out
ihex51 cvmon51.out cvmon51.hex

Franklin/Keil:
a51 startup.a51

124 Analysis Interface Sample Configurations

PromICE User Manual

a51 cvmon51.a51
l51 startup.obj, cvmon51.obj TO cvmon51.abs
oh51 cvmon51.abs HEX(cvmon51.hex)

Refer to your compiler reference manuals if you want to customize any of
these settings. For now, stay with the default settings until you get the
debugger working. Once the configuration has been verified, you can
customize these settings for your application.

Now we are ready to create a LoadICE.ini file and download the monitor
into PromICE.

8.1.6. Downloading the Monitor to PromICE
1. Create a LoadICE.ini file and add the following lines:

output=com1
baud=57600
socket=27xxx
rom=27xxx
word=8
file=cvmon51.hex
ailoc xxxx,9600

where:
output/baud The output serial port and baud rate you

will be communicating at. If you want
to use the parallel port to download the
monitor faster, you can replace these
lines with "pponly=lpt1". The debugger
will still connect via the serial port, but
the monitor program will be downloaded
via the parallel port.

socket Is set to the part number of the largest
size ROM your target can use. This
should be set to what your ROM socket
is wired for, NOT the size you want to
emulate.

rom Can be set to any size, up to the socket
size but not larger. This tells LoadICE
what size ROM you want to emulate.

word This is the word size of the target you
are emulating. In this case it should be
set to 8.

Analysis Interface Sample Configurations 125

© 1998 Grammar Engine

file This tells LoadICE to download the
monitor. You may need to relocate this
file in PromICE memory if it starts at
some address other than 0. Refer to the
LoadICE Command Reference chapter
for more information if this is necessary.

ailoc This tells PromICE where the virtual
UART (AI) is mapped. The xxxx is the
address and "9600" is the baud rate.
This address is equal to the address you
specified in step 9 of the "PromICE
Specific Modifications" section.

126 Analysis Interface Sample Configurations

PromICE User Manual

8.1.7. Starting the Debug Session

Before downloading the monitor and starting the ChipView®-51
debugger, a few additional lines must be connected from PromICE to the
target. We will assume that you have already connected PromICE ROM
cable from the target to PromICE. Refer to the installation section of this
manual if you haven't connected the cable.

MAKE SURE THAT PromICE AND TARGET ARE TURNED
OFF/UNPLUGGED BEFORE ATTEMPTING TO ATTACH OR
DISCONNECT ANY CABLES. FAILURE TO DO SO WILL DAMAGE
PromICE AND MAY ALSO DAMAGE THE TARGET!

Connect the write line (WRT) from PromICE to the target system. Where
this connection is made to depends on how you have decided to overlap
the code space. If you are not overlapping the CODE/DATA space this
connection will not be necessary (refer to section 8.1.2, Building the
Monitor for use with PromICE/AI system for more information).

Next, connect the interrupt (INT-) to the interrupt pin on the target you
chose to use in step 5 of the "PromICE Specific Modifications". This
connection is not necessary if you chose not to use an interrupt to bring
control back to the monitor from the application.

You may connect the reset line (RST+) to the reset line on your target.
By connecting this line, you won't have to manually reset or cycle power
to your target system each time you download the monitor program. This
is not required for the debugger operation.

Run the LoadICE application to load the monitor program. Once the
LoadICE application has completed, reset the target either by pressing
the reset button on the target or by cycling power to the target (This is not
necessary if you have connected the reset line from PromICE to the
target). DO NOT PRESS THE RESET BUTTON ON THE BACK OF
PromICE UNIT. THAT WILL RESET PromICE ONLY AND BREAK THE
AI LINK. If you press the button on PromICE you will need to rerun
LoadICE to reinitialize the AI.

Now run CVM51. Once the debugger comes up you are ready to load
your application and start debugging!

Analysis Interface Sample Configurations 127

© 1998 Grammar Engine

8.1.8. It Did Not Work
The debugger fails to connect with the monitor:

1. Verify that the target is emulating. Take a known working ROM
and, using an EPROM programmer, backup the ROM up to a
binary image and download it into PromICE using the same
LoadICE.ini file with the following differences:

image=image.bin

The image statement tells LoadICE that you will be loading a
binary image. Comment out the "file=" statement by placing a '*'
in front of the line. Run LoadICE and reset the target if
necessary. If the target doesn't run you may have a problem with
your "socket" statement. Verify that the "socket" is set for the
largest ROM that the target can use. Refer to the LoadICE
Command Reference Chapter for more information on the
"socket" statement.

2. Verify that the "ailoc" statement has been correctly specified in
the LoadICE.ini file. If this has been set incorrectly the debugger
will not be able to connect.

If none of these appear to be the problem, refer to PromICE
User's Guide for more detailed diagnostics.

Debugger runs but monitor crashes when trying to load application:
If the debugger comes up but the monitor crashes when you try to
load your application you are loading over all or part of the monitor
program. Verify that the code you are trying to debug and the
monitor are not located at the same address.

Cannot load application / set breakpoints in code:
The write line either isn't connected or the target isn't allowing the
ROM/RAM overlap. Verify your target's configuration.

Cannot break execution of application (F9 key in ChipView®-51):
Verify that you have connected the interrupt line from PromICE to the
correct interrupt on the target. The interrupt you are using should be
defined in PromICE Specific Modifications step 5.

128 Analysis Interface Sample Configurations

PromICE User Manual

8.2. SDS SingleStep
This example generates a monitor for a simple 68000 board called TUTOR.
Throughout this document we have used the notation used by SDSI for
specifying a hex number by appending 'H' to the number, otherwise the
numbers are decimal.

8.2.1. 68000 System
The TUTOR has 32K of RAM that starts at 000000H and 32K of ROM
that starts at 8000H. Both RAM and ROM are 16-bit wide.

8.2.2. PromICE Specific Modifications
Since this target system doesn't have a prebuilt board support package,
we will need to use the base model found in the \sds60\boards\proto
directory.

• Edit the "board.h" file.

• Comment out the defines for FLOW_IN, FLOW_OUT, COMBINED,
INTERVAL, VECT_READ AND READ_LEVEL by placing a ';' at the
beginning of the line:

;INTERVAL: equ 2

• Set the DEV_IN and DEV_OUT to PROMICE:

#define DEV_IN PROMICE
#define DEV_OUT PROMICE

• Set BASE_IN and BASE_OUT to valid addresses.

• Set the PNAME_IN and PNAME_OUT to some valid value so that the
correct I/O routines will be called. For this example, leave them at the
default 0x0010040.

• Add the following lines to the USER_DEFS macro:

xdef AI_ZERO,AI_ONE,AI_DATA,AI_STAT
SECTION usr_promice

AI_ZERO: dcb.b 2,$00
AI_ONE: dcb.b 2,$01
AI_DATA: dcb.b 2,$00

Analysis Interface Sample Configurations 129

© 1998 Grammar Engine

AI_STAT: dcb.b 2,$CC

• Save the board.h file.

• Edit "board.def".

• Comment the defines for MMU and FPU

• Set the RAMADDR to 0:

#define RAMADDR 0x0

• Set ROMADDR to 8000:

#define ROMADDR 0x8000

• Comment the define for RAMSIZE.

• Save board.def.

8.2.3. Building the Monitor
• Run the MKMON utility:

mkmon board

• Use the DOWN utility to make a file that can be downloaded to
PromICE:

down -d mot board.out -v -w 0x8000

where:
-d mot Specifies a Motorola S-record format board.out

Specifies the file to make a downloadable file from
-v Displays verbose information to the screen
-w 0x8000 Sets the starting address of the created file to 8000H

8.2.4. Downloading the Monitor
• Use the sym utility to find the AILOC:

sym -m board.out |find "promice"

where:

130 Analysis Interface Sample Configurations

PromICE User Manual

-m board.out The .out file to search find "promice"Find
the address where "promice" is located.

• When executed, the program should display the following:

usr_promice 8010H 8H

8010H is the physical address where the AI is located. The LoadICE
"ailoc" requires that the address be an offset from the beginning of
ROM (8000H). Subtract the starting address of ROM from the address
from the "sym" utility. The result will be used in the ailoc statement
when we create the LoadICE.ini file in the next step.

• Create a LoadICE.ini file. For this target, the file should appear as:

output=com1
baud=57600
socket=27256
rom=27256
word=16
file=board.dwn

• The file must be mapped properly to load in the right location. In
general, most target's ROM starts at some address other than 0. For
this particular case the address is linked to address 0, so the file
statement should appear as:

file=board.dwn

This implies that [data in file and] ROM starts at 0H and should be
loaded at address 0 in PromICE memory.

8.2.5. Specifying the AILOC
• If you have an 8-bit data bus to the ROM, then this number must end in

0H, 4H, 8H or CH. If your data bus is 16-bit wide, then this number
must end in 0H, 8H and for a 32-bit wide ROM data bus, the number
must end in 0H.

In this case it happens to be at 0x10. Edit LOADICE.INI file to make
sure that the ailoc statement is correct. For the MACH1 it should be

ailoc 10 9600

The second argument is baud rate that SingleStep will use (this is the
debugger front end that you will execute).

Analysis Interface Sample Configurations 131

© 1998 Grammar Engine

• Now you are ready to load the monitor into PromICE unit(s). Make sure
that your PromICE system is set up such that the MASTER module
(lower emulation module, the one with host interfaces) is connected to
the EVEN byte. The AI option is addressed via the EVEN byte. Edit
the LOADICE.INI for the proper communication port. If you want faster
downloading, use the parallel port specification.

• Now run LoadICE:

loadice

LoadICE will download the monitor and program the AI to be a
transparent link. If you have the 'rst-' line connected from
PromICE back panel to the reset on the target then the target should be
running the monitor when LoadICE exits. Otherwise, you will need to
reset the target. NOTE: If you must boot your target by power cycling
then make sure that PromICE is externally powered. PromICE will
loose the transparent link if it gets power cycled.

• Now invoke the debugger front end by double clicking on the SingleStep
Monitor Debugger icon. You will see PromICE Rx and Tx light flicker
and the debugger screen will come up.

8.2.6. It Did Not Work
At this point you need to make sure:

1. Your target system is running. You may need a scope to see that it is
doing bus cycles.

2. Your ROM cables are connected to appropriate socket and PromICE
modules.

3. You are emulating the proper size of ROMs for your target (check your
socket statement in the LoadICE.ini file).

4. If you are plugging into a socket that is configured (wired) for ROMs
larger than you are emulating then specify the socket statement to
specify the socket size. (This is generally true when a socket is wired
for a 4Mbit ROM and a 1 or 2 or 4 Mbit device can be inserted without
any jumper requirements. These particular devices have the pins that
are don't_care for higher address. PromICE has no don't_care lines,
so the socket statement takes the additional lines into consideration).

132 Analysis Interface Sample Configurations

PromICE User Manual

5. If you have a 'write' line connected to PromICE, then the target could
be writing over the monitor program by doing stray cycles while
booting. For now, connect the line after the target has booted.

6. You can use a terminal emulator (i.e. PROCOMM) to test the interface.
Set the communications to 19200,N,8,1 (you may need to change the
baud rate). Download the monitor program to PromICE. Enter the
terminal emulator and reset the target. The following should appear on
the screen:

{#@

This character set will display repeatedly, pausing between each set. If
this prompt appears, type:

{#}

If the monitor's user-provided initialization and output routines are
working, the following should appear:

{#+

If the monitor doesn't pass this test either the LoadICE.ini file has been
configured incorrectly, PromICE isn't connected correctly or the user-
provided routines aren't working. There are three steps to diagnosing
and correcting these problems:

Take a known working file and download it into PromICE. If it doesn't
work your LoadICE.ini file isn't correctly configured. Check your
"socket" statement, byte order and/or file mapping.

SOCKET: If you are plugging into a socket that is configured (wired)
for ROMs larger than you are emulating then specify the socket
statement in the LoadICE.ini file.

This is generally true when a socket is wired for a 4Mbit ROM and a 1
or 2 or 4 Mbit device can be inserted without any jumper requirements.
These particular devices have the pins that are don't_care for higher
address. PromICE has no don't_care lines, so the socket statement
takes the additional lines into consideration.

MAPPING: If the debugger comes up but crashes when you try to load
your application, you are probably writing over the monitor program.

Analysis Interface Sample Configurations 133

© 1998 Grammar Engine

This will only happen if you have the write line connected from the
target to PromICE.

BYTEORDER: If you are using a 16 or 32 bit configuration verify that
the byte order is correct. If the byteorder isn't correct the target won't
emulate.

7. If none of these appear to be the problem refer to the Troubleshooting
chapter for more extensive diagnostics.

8.2.7. CPU32
The primary difference for the CPU32 is the proper initialization of the
processor for correct operation for your board. You may have specific
initialization code for your board. This should be inserted after
COLD_PC: in the MONBASE.SRC file. CPU32 chips are highly
programmable in just about every aspect and require specific startup
code.

Due to the detail and application specifics of this configuration refer
to the SingleStep Debugger manual for more information on this
subject.

134 Analysis Interface Sample Configurations

PromICE User Manual

8.3. Microtec XRAY
We have chosen to show this process by giving two specific examples. The
first example generates a monitor for a simple 68000 board called MACH1.
Through out this document we have used the notation used by Microtec
Research for specifying a hex number by appending 'H' to the number,
otherwise the numbers are decimal.

8.3.1. 68000 System
The MACH1 has 128K of DRAM that starts at 000000H and 64K of ROM
that starts at 400000H. Both RAM and ROM are 16-bit wide. The
MACH1 has a hardware BOOT bit that is set by a reset and must be
cleared soon after reset. This bit forces RAM references to go to ROM
until cleared, so the reset-vector is the first thing in ROM. The BOOT bit
is kept in a CSR at address 800001H and is cleared by writing a '1' to the
CSR. This will require that the BOOT bit be cleared before the monitor
can use any RAM. The DRAM is refreshed by hardware and requires no
set up. Also, for the MACH1, We will show you how to generate a
monitor that does POLLED I/O and also a version of the monitor that
uses INTERRUPT I/O. For interrupt I/O a wire (mini-hook) must be
attached from the 'int-' pin on PromICE back-panel to an interrupt
source on the target. We used auto-vectored interrupt level 1, which is
interrupt vector #25 (19H).

8.3.2. CPU32 System
The second example uses a board with a 68331 processor on it with
128K of ROM that is at address 000000H. The ROM is 16-bit wide (2
chips). However it has 32K of SRAM and it is only 8-bits wide, the RAM
starts at 100000H. The internal registers of the 68331 must be
programmed to generate proper chip_select for the SRAM before the
monitor can use any RAM.

8.3.3. General Process
Use the MCT68K utility supplied by Microtec Research to build a monitor
that will support your board. The MCT68K utility will ask you quite a few
questions about your board. It will sequentially go through the main items
and depending on the answers, it will ask you for different questions.
Once it has acquired all the information, you will have a chance to review
it. Once you tell it to go ahead, it will copy several files and then actually
try to assemble the monitor. This process will fail since at AI specific files

Analysis Interface Sample Configurations 135

© 1998 Grammar Engine

have not been copied. Don't panic and follow the instructions given in
this document and then the build procedure can be invoked successfully.

It is best to create a sub directory in the MON68K directory and run
MCT68K from there. In this example we created a sub-directory MACH1
within MON68K and invoked the MCT68K as follows:

MCT68K -s

If your base directory is not /MON68K then you must specify the path to
source files and invoke the command as such:

MCT68K -p path_to_source_files -s

You can set the MON68K variable in the environment like this:

SET MON68K=C:/monitor-directory

Answer the questions for your target board as honestly as you can. The
following is set to show you how to generate a version of the monitor for a
custom board. In this particular case I am using the MACH1.

• For the first item select board type 15, a custom board.

• For the second item select 1, 68000 processor.

• For the third item select 2, Serial RS232 for debugger communication.

For POLLED I/O:

We will select a device that does not generate interrupt, so that the
MCT68K will ask the proper questions. We will of course replace the
driver with our own.

• Select item 2, 6850 ACIA. This device does not generate interrupts.

• For base address select item 3 "address hard coded in software".

• For the next item select #3. This has nothing to do the with baud rate
we will use. It simply makes the monitor call the INIT routine, which we
need.

• The next item is parity type, pick 1, it does not matter.

• Now we are back at main item #4. We will come back to it after
showing you what you must pick for INTERRUPT mode I/O.

136 Analysis Interface Sample Configurations

PromICE User Manual

For INTERRUPT I/O:

Here we will select a device that generates interrupts so that MCT68K will
ask the proper questions for configuring the monitor for interrupt driven
I/O. Once again we will replace the driver with our own (for AI).

• Select item 4, 68562 DUSCC. This device generates interrupts.

• Select item 2 or 3 depending on if you want interrupt only or both.
PromICE/AI will support either automatically.

• Now specify the interrupt vector. You must know where you are going
to connect the interrupt output from the back panel of PromICE to your
target. This interrupt is generated on the pins 'int-' and 'int+'.
You will generally use 'int-' since generally 68K interrupts are low
asserted. In addition, the interrupt on these pins is asserted whenever
there is a character available from the host. It is cleared when the
target reads the character. The signal is tri-stated (turned off) when not
asserted. Make sure that the place you are connecting this signal to is
shareable. You may need to attach a pull-up resister to make sure that
the signal goes high when not asserted. In other words, PromICE will
only drive this signal low when asserted and turns it off when not
asserted. A value like 1 or 2K Ohm to VCC will pull-up the tri-stated
signal. Refer to the hardware reference for your target board to
determine where the interrupt should be attached on the board. On the
MACH1, we attached to a spare input pin (#11) on a 74LS148 priority
encoder chip. You must then determine the vector number. For
example, We hooked the signal to interrupt level 1 for auto-vectored
interrupt. This is vector #25 or 0x19.

Select item #2. This allows you to specify the vector number. Then
specify the vector #. Remember that the numbers are decimal unless
followed by an 'h' for hex.

• Next, for the base address of device pick # 3.

• Pick #3 for the baud rate selection. This allows monitor to call the INIT
routine.

• Pick #1 for parity type, it does not really matter.

. . . Continuing the main process:

• Now we are at main menu item #4. This one asks if you have another
monitor. Answer is 49, no monitor. You could have another monitor

Analysis Interface Sample Configurations 137

© 1998 Grammar Engine

on-board or a real-time OS that you want to hook up with the debugger
monitor. If this is the case you will want to make the appropriate
selection here. Refer to the XRAY68K reference manual for more
information if necessary.

• Item 5 deal with where code starts. Pick #2 for this monitor to boot at
reset. You may pick #1 if you have a different monitor. The debug
monitor is then called from your other monitor.

• Now specify the address where your ROM starts. In this case (for
MACH1), the answer is 400000H (hex value).

• For the data start address you should specify the address in RAM
where the monitor can use the space for its own use. Pick #2. (You
could pick #1 if you plan to hook the 'write' line to PromICE and use
it as RAM for the monitor to use. However, be aware that unless your
target hardware allows, you may not be able to do byte writes to
PromICE. This is true only if your target generates a single chip_select
for all the ROMs for multi-byte ROM configurations, quite common).

• If you picked #2, then specify the RAM address which monitor can use.
Don't specify 0 since low RAM is used by interrupt vectors (may not be
true for some systems). We specified 1000H for MACH1.

• If you have an abort switch then pick something appropriate here,
otherwise pick #1. The abort switch will let you return control to the
monitor if your application hangs.

• Now you must select the interrupt level you want the monitor to run at.
We picked #2 for interrupt mode I/O and #3 for polled I/O. However,
you would probably not want #3 even for polled I/O.

• Pick #1 unless you have a 68881 coprocessor.

• This one is a bit tricky. You should pick #1 unless you have some
reason to patch the config table, like if you plan to hook some
multitasking OS etc.

• You can now see the configuration. If there is something you don't like
then you can select that entry number and make any changes.

• Now pick #7. This will let you review your choices again. Answer Y if
everything is correct.

138 Analysis Interface Sample Configurations

PromICE User Manual

• MCT68K will now copy several files to the current directory and try to
build the monitor. This will probably fail with errors. Ignore any errors.
The appropriate files needed to work with PromICE haven't been
configured yet. We will now make the changes to support PromICE's
AI virtual channel.

8.3.4. PromICE Specific Modifications
As a result of picking a UART there are two files in the current directory.
They are HWEQU.INC and HWDRV.INC. These are of no use to us.

• From your distribution disk copy the AIEQU.INC and AIDRV.INC files to
the current directory and rename them HWEQU.INC and HWDRV.INC
respectively.

• Edit HWEQU.INC to define the bus-width for your target. You can
define a BYTE_WIDE, WORD_WIDE or LONG_WIDE configuration.
You may also have to edit this file later to move the AILOC to
appropriate address.

This next step is critical for making sure that the monitor will execute on
your target board. In the case of the MACH1, the boot bit must be
cleared before the monitor can use any RAM. You must determine
what code, if any, you need for your hardware.

• Use a text editor and edit file MONBASE.SRC. Find the label
COLD_PC: Right after this label insert the code required to properly
initialize the hardware. For MACH1 the following line is inserted here:

MOVE.B #1,$800001 ; clear the BOOT bit in
; CSR

Save the file.

• There is also a label BOARD_START: in the file BOARD.SRC. Insert
your board initialization code there. This is where you will insert any
code that must initialize any peripherals etc. that you will use. The
code to initialize vital resources such as turning on chip_selects, or
DRAM refresh etc. must be done in the MONBASE.SRC as shown
above.

8.3.5. Building the Monitor
Now you can build the monitor by typing the following:

BUILDMON

Analysis Interface Sample Configurations 139

© 1998 Grammar Engine

This process should be error free and produces an XDM68K.ABS file.
This is the downloadable S-record file. This is absolutely linked. In case
of MACH1 it will load at 400000H (where the ROM starts in target's
address space).

If you get any assembly errors then check the syntax of the code you
inserted. There should be no errors in the stock software.

8.3.6. Downloading the Monitor to PromICE
Now you are ready to load the monitor into PromICE unit(s). Make sure
that your PromICE system is set up such that the MASTER module
(lower emulation module, the one with host interfaces) is connected to
the EVEN byte. The AI option is addressed via the EVEN byte. Copy the
LOADICE.INI file from the distribution directory to your current directory.
Edit the LOADICE.INI for the proper communication port. If you want
faster downloading, use the parallel port specification.

You must make sure that your file is mapped properly to load in the right
location. In general, most target's ROM starts at some address other
than 0:

file=xdm68k.abs 400000=0

This implies that [data in file and] ROM starts at 400000H and should be
loaded at address 0 in PromICE memory.

8.3.7. Specifying the AILOC
When you run BUILDMON it creates a MAP file. This file will give you
location of many of the monitor globals. View this file with a text editor
and look for AILOC. This line will show the AILOC address. In this case
(MACH1), it is at 400068H. Since 400000H is the ROM start address,
the AILOC is at offset 68H within the ROM space. Note this number for
your particular case.

If you have an 8-bit data bus to the ROM, then this number must end in
0H, 4H, 8H or CH. If your data bus is 16-bit wide, then this number must
end in 0H, 8H and for a 32-bit wide ROM data bus, the number must end
in 0H.

If the offset for the AILOC is not correct for your bus size, then edit the
HWEQU.INC (was AIEQU.INC) file and insert DC.L 0 statements to align
the AILOC to the proper value (i.e. the last digit of the address in the
MAP is outlined in the previous paragraph).

140 Analysis Interface Sample Configurations

PromICE User Manual

In this case it happens to be at 0x68. Edit LOADICE.INI file to make sure
that the ailoc statement is correct. For the MACH1 it should be

ailoc 68 9600

The second argument is baud rate that XHM68K will use (this is the
debugger front end that you will execute).

Now run LoadICE as:

loadice

LoadICE will download the monitor and program the AI to be a
transparent link. If you have the 'rst-' line connected from PromICE
back panel to the reset on the target then the target should be running
the monitor when LoadICE exits. Otherwise, you will need to reset the
target. NOTE: If you must boot your target by power cycling then make
sure that PromICE is externally powered. PromICE will loose the
transparent link if it gets power cycled.

Now invoke the debugger front end:

XHM68K

You will see PromICE Rx and Tx light flicker and the debugger screen will
come up.

8.3.8. It Did Not Work
At this point you need to make sure:

1. Your target system is running, you may need a scope to see that it is
doing bus cycles.

2. Your ROM cables are connected to appropriate socket and PromICE
modules.

3. You are emulating the proper size of ROMs for your target (check your
socket statement in the LoadICE.ini file).

4. If you are plugging into a socket that is configured (wired) for ROMs
larger than you are emulating then specify the socket statement to
specify the socket size. (This is generally true when a socket is wired
for a 4Mbit ROM and a 1 or 2 or 4 Mbit device can be inserted without
any jumper requirements. These particular devices have the pins that

Analysis Interface Sample Configurations 141

© 1998 Grammar Engine

are don't_care for higher address. PromICE has no don't_care lines,
so the socket statement takes the additional lines into consideration).

5. If you have a 'write' line connected to PromICE, then the target could
be writing over the monitor program by doing stray cycles while
booting. For now, connect the line after the target has booted. (Soon
you will be able to tell LoadICE to disable the 'write' line until the target
has booted, this will still leave your ROMs susceptible to application
bugs, however, that may be fixed in some future version of the
XHM68K front-end).

6. Edit the HWDRV.INC file and enable the LOOPBACK code. Run the
BUILDMON program. This will include code that will read input from
the host and increment the data by one and echo it back. You can use
a terminal emulator (i.e. PROCOMM). Whatever you type should be
echoed back as the next higher character (i.e. a will echo back as b
etc.).

If this test works, the AI circuit is working correctly. If the interface is
randomly sending characters or is echoing wrong characters the AI
suffering from some target timing glitches. Call Grammar Engine
Technical Support for assistance.

7. If none of these appear to be the problem refer to the Troubleshooting
chapter for more extensive diagnostics.

8.3.9. CPU32
The primary difference for the CPU32 is the proper initialization of the
processor for correct operation for your board. You may have specific
initialization code for your board. This should be inserted after
COLD_PC: in the MONBASE.SRC file. CPU32 chips are highly
programmable in just about every aspect and require specific startup
code. Due to the detail and application specifics of this configuration refer
to the XRAY68K Debugger manual for more information on this subject.

142 AI Porting

PromICE User Manual

9. AI Porting

9.1. Overview
The AI is a memory mapped peripheral that can be located anywhere in the
target’s ROM address space (being emulated by the PromICE). The address
at which the AI is located is configured by the host software.

The AI consists of four 8 bit registers. The AI registers are mapped in ROM
address space to the master (bottom) PromICE. Once the AI is enabled,
(reading) any of the four locations has the side effect of operating the
interface.

The PromICE programs and enables the AI as commanded by the host
software. Once enabled, it allows the host and the target systems to
exchange data.

9.2. AI Register Description
This section contains the bit descriptions for each of the four registers.

ZERO
(read only) Offset Address: 0

7 0

- - - - - - - -

Bit # Mnemonic Function

7-0 - Reading this register sends a 0 bit to the AI.

ONE
(read only) Offset Address: 1

7 0

- - - - - - - -

Bit # Mnemonic Function

7-0 - Reading this register sends a 1 bit to the AI.

AI Porting 143

© 1998 Grammar Engine

HOST_DATA
(read only) Offset Address: 2

7 0

RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0

Bit # Mnemonic Function

7-0 RB7:0 Receive Buffer Bits:
These bits make up the last word received.

STATUS
(read only) Offset Address: 3

7 0

- - - - 0 OVR HAD TDA

Bit # Mnemonic Function

7-4 - Reserved. These bits are undefined; for compatibility
with future devices, do not modify these bits.

3 0 Reserved. Do not modify this bit.

2 OVR Host data overflow bit

1 HAD Valid host data in buffer

0 TDA Valid target data in buffer

9.3. AI Operation

9.3.1. Target Initialization
Initializing the AI is a process that involves both the target software and
host LoadICE application. The target software sets up a four byte
address in ROM address space as the AI address. These four locations
must be initialized with 0xCC with a fill command in LoadICE. When the
target is first started (power-up or reset), the target must wait for the AI to

144 AI Porting

PromICE User Manual

be enabled. When the AI is ready (status changes from 0xCC), the
status will change and the data register is read to clear the status.

9.3.2. Host Initialization
Since the target has no way of directly telling the PromICE the address of
the AI, the PromICE must be configured by the host software (LoadICE).
Using the AILOC command in LoadICE, the AI address, baud rate and
port are set:

ailoc 10, 57600

The address “10”, is an offset address from the beginning of ROM. For
example: The target accesses the AI at address 80010H. ROM starts at
address 80000. By subtracting the base ROM address of 80000 from the
AI address of 80010, we get the ailoc address (10). The AI address must
be aligned on a proper boundary depending on the bus width:

8 bit - lower two bits of the address must be zero
16 bit - lower three bits of the address must be zero
32 bit - lower four bits of the address must be zero

If, for example, you are using a 32 bit processor with one 8 bit ROM, your
bus width would be considered to be 8 bit. The bus width is determined
by the ROM bus width, not the processor’s bus.

The baud rate (57600) is specified next. The parallel port can be used for
communications by setting the baud rate to zero.

AI Porting 145

© 1998 Grammar Engine

9.4. AI Algorithms

9.4.1. Initialization Algorithm

STATUS
= 0xCC ?

Yes

Read DATA
Register

No

Start

End

9.4.2. Read Algorithm

HDA
set?

No

Read DATA
Register

Yes

Start

End

146 AI Porting

PromICE User Manual

9.4.3. Write Algorithm

TDA
set?

Yes

Read “1”
Register

Counter = 0

Data & 1
= 1 ?

No

No

Yes
Read “1”
Register

Read “0”
Register

Start

Counter
= 8 ?

Yes

No

Read “1”
Register

End
Shift Data
1 bit Right

Increment
Count

AI Porting 147

© 1998 Grammar Engine

9.5. AI Code Example
The following example was written using Borland C/C++ 4.5 and Paradigm
Locate 5.0. The target system is a 386EX development board (available from
Grammar Engine) with a 512K x 8 ROM in address range from 80000H -
fffffH.

#define BUS_SIZE 8 // Target ROM bus size (8,
// 16, 32)

#define AILOC 0x82000UL // AI base address (Base
// ROM address = 80000H)

// AI status register masks
#define TDA 0x01 // Target data available
#define HDA 0x02 // Host data available
#define OVR 0x04 // Host data overflow

#if BUS_SIZE == 8
typedef struct{
unsigned char ZERO;
unsigned char ONE;
unsigned char DATA;
unsigned char STATUS;

}FPORT, far * AISTRUCT;
#endif // BUS_SIZE = 8

#if BUS_SIZE == 16
typedef struct{
unsigned int ZERO;
unsigned int ONE;
unsigned int DATA;
unsigned int STATUS;

}FPORT, far * AISTRUCT;
#endif // BUS_SIZE = 16

#if BUS_SIZE == 32
typedef struct{
unsigned long ZERO;
unsigned long ONE;
unsigned long DATA;
unsigned long STATUS;

}FPORT, far * AISTRUCT;
#endif // BUS_SIZE = 32

// Create a pointer to the AI memory location
// using above structure

volatile AISTRUCT AI = (AISTRUCT) MK_FP((unsigned int)
(AILOC >> 4), (unsigned char)(AILOC & 0x0f));

148 AI Porting

PromICE User Manual

/**
 * FUNCTION: AIinit *
 * *
 * INPUT: NA *
 * RETURNS: NA *
* DESCRIPTION: Waits for the AI become *
* available and data to be received from the *
* host. The first byte read from the AI on *
* startup is not valid. *

 **/
void AIinit(void)
{
unsigned char dummy;
while(AI->STATUS == 0xcc){} // Wait for host data

// available
dummy = AI->DATA; // clear interface
return;

}

/**
 * FUNCTION: AIputc *
 * *
 * INPUT: Data to be output *
 * RETURNS: NA *
* DESCRIPTION: Sends data one bit at a time *
* to the host. Start and stop *
* bits are also sent. *

 **/
void AIputc(char data)
{
int count;
unsigned char dummy;

while(AI->STATUS & TDA){} // Wait until target
// data gone

dummy=AI->ONE; // Send start bit

for (count = 0; count < 8; count++)
{

if(data & 1)
dummy=AI->ONE; // Send a 1 bit

else
dummy=AI->ZERO; // Send a 0 bit

data >>= 1; // rotate right one bit
}
dummy=AI->ONE; // Send stop bit

}

AI Porting 149

© 1998 Grammar Engine

/**
 * FUNCTION: AIgetc *
 * *
 * INPUT: NA *
 * RETURNS: Data received from host *
 * DESCRIPTION: Receives 8 bit data from the *
 * host. *
 **/
char AIgetc(void)
{
while(!(AI->STATUS & HDA)){} // Wait for host data
return AI->DATA; // Return data received

}

LoadICE.ini file:

output=com1
pponly=lpt1
socket=27040
rom=27040
word=8
ffill cccc
noverify
file=aitest.hex 80000=0
ailoc 2000, 57600

9.6. Using The AI with Interrupts
Interrupt driven communications is primarily used as a way for a debugger to
regain control from a runaway application.

Implementing interrupt driven communications is simply a matter of
connecting the interrupt pin on the PromICE (INT+ high asserted, INT- low
asserted) to one of the target’s interrupt lines. Usually, the INT pin is
connected to NMI on the target system to allow for debugging.

Interrupts do not occur until the AIinit routine is complete (see code example).
Once the port is initialized, an interrupt is generated for every character
received from the host (HDA bit set).

9.7. Writing Into The PromICE Memory
The ability to write into ROM gives a debugger the ability to set breakpoints
and single step in ROM address space.

150 AI Porting

PromICE User Manual

The MWR and SWR pins on the PromICE are the write pins for the master
(bottom connector) and the slave (top connector) of the PromICE. On newer
duplex (P2xxx) PromICE units there will be two MWR pins and one SWR pin.
There should be a jumper between one of the MWR pins and the SWR. The
system write line should be connected to the available MWR pin.

On some targets, separate write signals are generated for odd and even
writes. If this is the case, the jumper should be removed from the MWR/SWR
and one of the connected to one of the MWR pins (it doesn’t matter which
one; they are connected internally) and the other to the SWR pin. It is very
important that the correct write line get connected to the correct write pin.

9.8. Byte Swapping (16/32 bit only)
The AI is an 8 bit device mapped to the master PromICE unit. In most cases,
the target will access the AI at an even address (the master PromICE is Byte
0). When the “word” statement is set to 16 or 32, the byte order is set to “0 1”
or “ 0 1 2 3” by default.. “0” refers to the master or bottom unit where the AI is
physically mapped. When the byte order isn’t set to the “0 1 …” default the
target can no longer access is at an even boundary.

To move the AI to an odd address, the monitor and AILOC statements must
be offset to odd addresses. Depending on the compiler being used, this may
require some special padding so that the software can access a peripheral
mapped to an odd address.

In a 32 bit system, the complexity is compounded by having more than one
possible “non-zero” offset for the AI.

9.9. Breaking Transparency
The AI can be put into serial transparent mode using the parallel port. For
example: Suppose we have the following LoadICE configuration file:

pponly=lpt1
..
..
..
ailoc 200, 19200

This configuration file tells LoadICE to use the parallel port only for LoadICE
to PromICE communications. The ailoc statement puts the PromICE into
serial transparency. This means that LoadICE talks to the parallel port and

AI Porting 151

© 1998 Grammar Engine

the debugger or terminal program talks to the AI through the PromICE serial
port.

When the PromICE is put into serial transparent mode, the parallel port is
turned off. When LoadICE is run again (trying to connect to the parallel port),
the connection hangs until the PromICE is reset. The solution is to add the
serial port specification to the LoadICE.ini file:

output=com2
pponly=lpt1
..
..
ailoc 200, 19200

When LoadICE parses the LoadICE.ini file, it will see the combination of
output, pponly and ailoc. LoadICE will then use the serial port to break the AI
transparency. From there, LoadICE will communicate with the parallel port
normally.

9.10. Burst Mode ROM Access
Some processors (i.e. 68EC030, 486) do burst reads from the ROM. This
occurs when the processor holds the /RD line and changes the address.
Either 4, 8 or 16 bytes of data are read at a time.

Adding ‘burst’ to the LoadICE.ini file with the number of reads per cycle as the
argument, adjusts the addressing to support this processor function. Refer to
the PromICE User’s Manual for more information.

9.11. Cache
If the memory space the AI occupies is cached, the AI will not be able to
communicate. You must either disable the cache for debugging or find some
other way of forcing a cache miss for every AI access.

9.12. Adjusting AI Timing
The AI is clocked by the accesses from the target system. The clocking is
accomplished by combining /CE, /OE and the address lines. On some target
systems, there is a possibility of false clocks from overlap between these
signals. The ‘aicontrol’ LoadICE.ini switch is used to “de-skew” the signals.

152 AI Porting

PromICE User Manual

This command is used most often by 683xx and DSP users (you may need to
use 1 or 2 as the argument). If the target works reliably don’t use this
command. Refer to the PromICE User’s Manual for more information.

9.13. Product Support
The following companies have ported their debugger environments to support
the PromICE AI:

ChipTools
Concurrent Sciences
Paradigm
Microtec Research
Phar Lap
SDSI
SSI

If you have any comments or suggestions concerning this document please
email or fax them to us:

email: support@gei.com
phone: 614-899-7878
fax: 614-899-7888

AI Troubleshooting 153

© 1998 Grammar Engine

10. AI TROUBLESHOOTING
This section explains some of the possible causes why communications
problems may occur when using PromICE with a debugger.

10.1. QUICK FIXES
Here are a few solutions to communication issues. If these suggestions don't
apply or solve the problem, continue to one of the following sections.

10.1.1. Target Is Doing Burst Mode Access to ROM
If you have a target (i.e. 68EC030) that does burst mode accesses to
ROM, add the "burst" statement to your LoadICE.ini file. Refer to the
"burst" statement in the LoadICE AI Command Reference section of this
manual for a description and configuration options.

10.1.2. Receiving Bad Data Back From Target
Add the statement "aicontrol 1" to your LoadICE.ini file. Depending on
your target system, you may want to try "aicontrol 2" or "3". Refer to the
"aicontrol" statement in the LoadICE AI Command Reference section of
this manual for a description and configuration options.

10.1.3. Target Crashes During Download
If you are downloading your application into ROM space from the
debugger and your target crashes at some point during the download,
your application is overwriting you monitor.

The fastest way to diagnose this problem is to load your application and
the monitor into PromICE together using LoadICE. Once the files are
loaded, enter LoadICE dialog mode. This can be done automatically by
adding the statements "load" and "dialog" to the LoadICE.ini file. Next,
"compare" the files that have been loaded against the files on your disk.
In dialog mode this is done using the command "c". If one of the files
overlaps the other, the address that is overlapping will be listed.
Relocate your application if this is the problem.

10.1.4. Watchdog Timer
If you have a watchdog on your target, disable it in the monitor startup
code. The debug monitor will not come up if a watchdog is enabled or
not configured in the monitor.

154 AI Troubleshooting

PromICE User Manual

10.1.5. AI Not Getting Into Transparent mode
This can occur if you are trying to connect through the AI transparent
mode in Windows with LoadICE running in another. The AI is only put in
transparent mode when LoadICE exits.

10.1.6. Byte Order Swapped
The AI must be mapped to the master PromICE unit. If your LoadICE.ini
file word statement looks something like:

word = 16 1 0

you will need to map the AI to the ODD address location. Since this word
statement specifies that the ODD byte go to unit 0 (the master or bottom
PromICE unit) you need to map the AI to the ODD address boundary.
This usually means adding a "1" to the address location.

10.1.7. Can't Interrupt Target
In order to bring control back to the monitor from a runaway application or
to enable interrupt driven communications you must have either the "int+"
(high asserted) or "int-" (low asserted) pin on back of PromICE connected
to the target.

The target monitor must be configured to handle the interrupt. Refer to
your debug monitor documentation for information on interrupt driven
communications.

10.1.8. Can't Write, SingleStep or Set Breakpoint in
ROM Space

In order to write into the ROM space, the "wrt" pin on the back of
PromICE must be connected to the target's write line.

Some target systems will not allow a write into the ROM space. Usually
this is controlled by a PAL that is not allowing the write. Verify that the
target supports write cycles into the ROM space and make appropriate
modifications if necessary.

If the debugger needs to do byte writes (using multiple write lines) in a 16
or 32 bit configuration you need to have a PromICE customized to
support multiple write lines. Contact your Grammar Engine Sales
Engineer if you need this option.

AI Troubleshooting 155

© 1998 Grammar Engine

10.2. DEBUGGER DIAGNOSIS

10.2.1. Never Worked
Step 1: Verify your LoadICE.ini configuration. Get PromICE emulating

some known working code. At this point, you should not be
trying to use the debugger. If possible, back up a working
ROM to a binary image and load it into PromICE.

If this works, the only thing that could be wrong with your
LoadICE.ini file could be the "socket", "file", or AI control
statements. The rest of the configuration (i.e. "rom", "word"...)
is correct.

If this doesn't work, go back to the installation section of this
manual to reconfigure your LoadICE.ini file.

Step 2: Once you have verified your LoadICE.ini file, verify your
monitor configuration. If possible, try to configure the monitor
to work through a serial port on your target. If the monitor
doesn't work there, it won't work with the AI either. If this is
the case, check your monitor configuration.

Step 3: Next, uncomment or insert (depending on the monitor) the test
code in the monitor. Refer to your debugger manuals if you
are unsure how to do this.

If you are not receiving any characters from the target, your
AILOC statement is probably incorrect. Verify that the ailoc is
on the correct boundary and is at the beginning of the AI
mapped area.

Verify that the baud rate specified in the ailoc statement
matches the baud rate specified to the debugger. If you are
still getting incorrect characters back from the target add the
statement "aicontrol 1" to your LoadICE.ini file. If the problem
persists, change the statement from "1" to "2", then "3".

If the monitor appears to be running, but you aren't getting any characters
back at this point, contact Grammar Engine Technical Support for
assistance.

156 AI Troubleshooting

PromICE User Manual

10.2.2. Worked previously
If you have made a change to your configuration or to your source file
and something fails (i.e. The debugger can't connect and/or the monitor
crashes) the change is most likely where the problem is.

Go back into your configuration, step by step. Look at even the most
benign changes. Most of the time it is the most minor change that
causes the most problems.

10.3. WHO TO CALL
If you have a question and don't know who to call for support please call
Grammar Engine. If we can't answer your question directly, we will direct you
to someone who can. Here are some ways to determine who to call:

Call The Debugger Company...

Compiler and/or locator questions.
Target specific monitor configuration questions.
Debugger switches and options.

Call Grammar Engine Technical Support...

PromICE / LoadICE questions.
AI specific configuration questions.
If you don't know who to call.

Technical Specifications 157

© 1998 Grammar Engine

15. Technical Specifications

15.1. Identification
PromICE models are identified as P1xxx or P2xxx as follows:

P1nnn- Simplex: Single (master) module for emulating 1 ROM.

P2nnn- Duplex: Two modules (master and slave in one box) for emulating 2
ROMs, where nnn is one of the following indicating the maximum capacity of
the ROM:

512 Emulates 2716 - 27512 (64KBytes)
010 Emulates 2716 - 27010 (128KBytes)
020 Emulates 2716 - 27020 (256KBytes)
040 Emulates 2716 - 27040 (512KBytes)
080 Emulates 2716 - 27080 (1MBytes)
160 Emulates 2716 - 27160 (2MBytes)

Further postfixes that may be added to indicate the following options:

nnn: If faster than standard speed, then speed in nano-seconds is nnn.
AI: Analysis Interface for special firmware development features.

15.2. Power Consumption
Power consumption will vary depending on the buffers in the ROM emulation
interface. Also faster models consume more power due to faster SRAMs and
faster buffers. The figures below are based on a 4 Meg unit built with 4 1Mbit
SRAMs and the ALS buffers.

PromICE Master: +5VDC < 200mA
PromICE Slave : +5VDC < 150mA
PromICE Analysis Interface: +5VDC < 70mA

Power Jack:

Pin and sleeve plug, with pin as +V and sleeve as ground. External supply
provides 9VDC ~1A (unregulated)

9-12 VDC

+

GND

158 Technical Specifications

PromICE User Manual

15.3. Interfaces

15.3.1. Serial Interface / DB9 female
The RS232-C connects to the host or a terminal via 9 conductor serial
cable. Pinout are GND-5, RXD-3, TXD-2, CTS-8, DTR-4. GND is signal
ground. TXD is data out of PromICE and RXD is data into PromICE.
DTR is used as interrupt from the host. Among other things the interrupt
signal is used for restarting PromICE from a known state.

1 5

6 9

15.3.2. Parallel Interface / DB25 male header
It is a Centronics compatible parallel printer port configured for direct
connection to DB25 connector on the back of PC or Compatibles. It can
operate bidirectionally by using 'error status lines' for sending data back 4
bits at a time.

1

25

13

14

PIN# SIGNAL SIGNAL PIN#

1 STROBE AUTOFEED 2
3 D0 ERROR 4
5 D1 INIT 6
7 D2 SELECTIN 8
9 D3 GND 10
11 D4 GND 12
13 D5 GND 14
15 D6 GND 16
17 D7 GND 18
19 ACK GND 20
21 BUSY GND 22
23 PE GND 24
25 SELECT GND 26

The data transfer protocol is modified so that the parallel port can be
used bidirectionally. The STROBE line is used to send data from the

Technical Specifications 159

© 1998 Grammar Engine

host to PromICE. The BUSY signal is asserted by PromICE to indicate
that it either has not read the previous data from the host or it has data to
send to the host. For this reason, the SELECTIN signal is used to
acknowledge the unasserted state of BUSY line to PromICE. This
ensures that the sense of the BUSY line is never confused by the host.

For sending data to the host, PromICE places data 4-bits at a time on the
ACK, PE, SELECT, and ERROR lines and asserts BUSY signal.

When two PromICE units are daisy-chained on parallel port, the
AUTOFEED signal is used as a STROBE line for the second unit, and the
PE signal is used as the BUSY line. Because of this, the port is used for
download only and the serial daisy-chain must also be used.

15.4. Indicators
RUN - a programmable run light, blinks during connect sequence; Rx & Tx -
two LEDs for received and transmitted data signals (serial data only); LOAD
- indicates when the unit is in load mode, i.e. not emulating.

15.5. Enclosure
5.08" Wide, 1.5" High w/o rubber feet, 5.25" Deep, Impact-resistant, ABS-
molded, Grade DFA/R Plastic.

15.6. Environmental Restrictions
Operating Temperature: 5 to 32 degree C (41 to 90 degrees F)
Storage Temperature: -40 to 70 degrees C (-40 to 158 degrees F)
Humidity: 90% maximum without condensation.

15.7. Accessories

15.7.1. External Power Supply
A wall mountable power-supply is able to provide 912VDC unregulated
and up to 1A of current. The plug on the power supply has the sleeve as
ground and the pin as positive.

15.7.2. Standard ROM Cables
A standard (.6") DIP plug on 12" 24,28 and 32 pin Shielded (ground
plane) Ribbon cable with a 34-position Female Header for mating with
connector on the back of the unit.

160 Technical Specifications

PromICE User Manual

15.7.3. ROM Socket
JEDEC 24/28/32 pin DIP socket w/100ns access. Non-JEDEC and non-
DIP footprints are handled via custom cables.

15.7.4. Host cables
Shielded DB9M to DB9F and DB25M to DB25F cables are supplied. The
DB9 cable is for connection from COM port to serial port of PromICE and
the DB25 cable is for connection from the LPT port to the parallel port on
PromICE. For connecting to COM ports that are DB25M a DB25M to
DB9M adapter is provided.

15.7.5. Mini-Clip
The pin sleeve for attaching to PromICE pins and a micro-hook for
attaching to the target system. Clip provided for reset line.

15.7.6. Custom ROM Cables
We currently support a wide range of footprints including DIP, PLCC,
TSOP, PSOP and SSOP. Contact Grammar Engine Sales for the latest
information.

Technical Specifications 161

© 1998 Grammar Engine

15.8. Standard ROM Cable Pinouts

32-PIN DIP
PIN# SIGNAL SIGNAL PIN#

1 A19 VCC 32
2 A16 A18 31
3 A15 A17 30
4 A12 A14 29
5 A7 A13 28
6 A6 A8 27
7 A5 A9 26
8 A4 A11 25
9 A3 OE_ 24
10 A2 A10 23
11 A1 CE_ 22
12 A0 D7 21
13 D0 D6 20
14 D1 D5 19
15 D2 D4 18
16 GND D3 17

28-PIN DIP

PIN# SIGNAL SIGNAL PIN#

1 A15 VCC 28
2 A12 A14 27
3 A7 A13 26
4 A6 A8 25
5 A5 A9 24
6 A4 A11 23
7 A3 OE_ 22
8 A2 A10 21
9 A1 CE_ 20
10 A0 D7 19
11 D0 D6 18
12 D1 D5 17
13 D2 D4 16
14 GND D3 15

162 Technical Specifications

PromICE User Manual

24-PIN DIP
PIN# SIGNAL SIGNAL PIN#

1 A7 VCC 24
2 A6 A8 23
3 A5 A9 22
4 A4 A11 21
5 A3 OE_ 20
6 A2 A10 19
7 A1 CE_ 18
8 A0 D7 17
9 D0 D6 16
10 D1 D5 15
11 D2 D4 14
12 GND D3 13

Technical Specifications 163

© 1998 Grammar Engine

15.9. Timing Diagrams
Here is how the target signals are received by PromICE. The address bus
and the chip_select and output_enable control signals are received by uni-
directional buffers (74ALS244) and the data bus is connected to a bi-
directional buffer (74ALS245) . When PromICE is in 'load' mode, these
buffers are turned off and their outputs are tri-stated.

When PromICE is emulating these buffers are turned on and the address
buffers supply the address to the emulation memory within PromICE. The
data buffer is enabled by a combination of the chip_select andoutput_enable
signals. The direction of the data buffer is controlled by a target supplied
write signal.

Emulation memory is made up of SRAM chips that are selected directly by
the address supplied by the target system (in other words without using
chip_select or the output_enable signals). This allows faster access to data.
The data is placed on the target's data bus by the data buffer. This achieves
a faster response from PromICE to a target driven ROM read cycle.

Address

Control

Benable

Data

Tce Ted Tcd Tdx

valid

valid

Tce - time from chip_select & Output_enable to internal buffer enable.

Ted - time from buffer enable to data valid (delay through 74xxx245)

Tcd - time from chip_select & output_enable to buffer disable

Tdx - time from buffer disable to data bus tri-state

These times will vary according to the buffers used. The typical values are:
Tce - 35ns / Ted - 20ns / Tcd - 35ns / Tdx - 20ns

164 PromICE Internal Memory Addressing Scheme

PromICE User Manual

16. Internal Memory Addressing
PromICE can address up to 1 megabyte of memory per module. Master and
slave modules are addressed by switching the internal circuit to select either
module. There a total of 20 address lines required to access the 1 megabyte
of memory. When less than 1 meg of memory is present, the higher address
lines are pulled high. The micro controller in PromICE can set its I/O lines to
an "off" state and the internal pull up resisters will pull the signals up. The
unused address lines will remain pulled up. Therefore, internally PromICE
addresses memory by using this map:

address 0 last address Emulated ROM size

1F F8 00 1F FF FF 2K
1F F0 00 1F FF FF 4K
1F E0 00 1F FF FF 8K
1F C0 00 1F FF FF 16K
1F 80 00 1F FF FF 32K
1F 00 00 1F FF FF 64K
1E 00 00 1F FF FF 128K
1C 00 00 1F FF FF 256K
18 00 00 1F FF FF 512K
10 00 00 1F FF FF 1M

When using a terminal or a terminal emulator to talk to PromICE the actual
address used by PromICE is displayed. An example would be a unit
equipped with 128KBytes of memory when emulating a 32kbyte ROM will
display address 0F8000 for address zero. This will compute to be the highest
one addressed of the four chunks of 32kbytes that comprise the 128kbyte
unit.
This is why the LoadICE software must be told exactly what size ROM you
are emulating using the "socket" and "rom" statements. It ensures that the
data is loaded at the proper place in the internal space.

Index 165

© 1998 Grammar Engine

17. Index
24-PIN DIP, 207
28-PIN DIP, 9, 206
32-PIN DIP, 9, 206
aicontrol, 124
Analysis Interface Configuration, 119
ChipView®-51, 134
Command Line Arguments, 182
Connecting ROM cables, 9
Connecting the PromICE to the host PC, 15
Connecting the PromICE to the target system, 8
ERROR MESSAGES, 103
File specifications and file operations, 27
Host cables, 202
Identification, 199
Initialization File, 181
Internal Memory Addressing, 223
LoadICE AI Command Reference, 123
LoadICE Command Reference, 26
MicroTec XRAY, 149
Optional Connections, 13
Parallel Interface / DB25 male header, 200
Power Source Selection for PromICE, 8
RMA INFORMATION, 102
ROM Configurations, 177, 180
ROM Emulation, 176
ROM Socket, 201
ROM specifications and ROM operations, 27
Sample Debugger Configurations, 133
SDS SingleStep, 143
Serial, 15, 200
Software Configuration, 20
Software Installation, 18
Target Power Sense Selection, 8
Technical Specifications, 199
TECHNICAL SUPPORT, 101
Timing Diagrams, 222
TROUBLESHOOTING, 90, 168
UNIX, 19
WARRANTY, 4

