
.. _

AT Probe

AT Source Probe

Last revised 5/10/88
I

AT Probe

AT Source Probe

Last revised 5/10/88

ATRON

Saratoga Office Center, 12950 Saratoga Ave.

Saratoga, CA 95070 * (408) 253-5933

Installing the AT PROBE

CHAPTER 1
INSTALLING THE AT PROBE

Chapter 1-1

INTRODUCTION .. 2
UNPACKING THE AT PROBE ... 3
SETTING THE BASE ADDRESS OF AT PROBE MEMOR Y4
INSTALLING THE AT PROBE ... 5
RUNNING AT PROBE DIAGNOSTICS .. 8
WHAT TO DO WHEN THE ATPDIA TEST FAILS 10

Chapter 1-2 Installing the AT PROBE

INTRODUCTION

This chapter contains the set up and installation procedures for the
AT PROBE. There are three major steps in the installation process:

1. Unpacking the AT PROBE

2. Installing the AT PROBE

3. Running the AT PROBE diagnostics.

Installing the AT PROBE Chapter 1-3

UNPACKING THE AT PROBE

Carefully unpack your AT PROBE and inspect the AT PROBE plug
and printed circuit card for damage. If they are damaged, please
contact the dealer from which you purchased the AT PROBE. The
AT PROBE package should contain the following components:

1. AT PROBE printed circuit card and attached umbilical cable

2. AT PROBE floppy disks

3. AT PROBE STOP /RESET switch box

4. AT PROBE 80287 extraction tool

5. Plastic card guide

6. Spare socket

Chapter 1-4 Installing the AT PROBE

SETTING THE BASE ADDRESS OF AT PROBE MEMORY

The AT PROBE contains 1 megabyte of RAM memory which is used
to store the AT PROBE software and symbol table. This memory is
write protected and will prevent the AT PROBE software from being
modified during a debug session from erroneous action by your
program. This memory is above the lowest 1 megabyte of system
memory. You can select the base address of the AT PROBE memory
via the jumpers on the upper right corner of the AT PROBE. The
default for this memory is lmb at DOOOOO. Insure that this does not
conflict with other resources which are in the system. There will not
normally be a resource conflict with most standard equipment. If a
conflict exists, the address of AT PROBE memory can be changed to
100000 by moving the right hand jumper (shown below) from H to L.
The left hand jumper must remain in the right position at all times.

R/P H/L
0 0-0 0-0 0

Figure 1-1. Layout of AT PROBE jumpers

Installing the AT PROBE Chapter 1-5

INST ALLING THE AT PROBE

To install the AT PROBE follow these steps:

1. Disconnect power and remove the top cover of your computer.

2. Set the base address of the AT PROBE as described above.
3. If required, remove boards and associated mechanical hardware

in order to expose the 80287 math co-processor.
4. Find the 80287 slot and note the location of pin 1.
5. If the 80287 is installed, using the inclosed tool, carefully pry it

from its socket and plug it into the AT PROBE buff er assembly.
Note that pin 1 of the cpu should match the red mark on the
buffer assembly.

6. Plug the buff er assembly into the co-processor socket. Insure
that the cables on the buff er assembly align with the notch in
the socket. (1)

7. Plug the AT PROBE hardware board into any 16 bit (dual
connector) slot in the motherboard.

8. Replace previously removed boards.

9. If you want to drive AT PROBE from an external console,
connect the AT PROBE serial cable to the PROBE serial port.

10. Plug the Crash Recovery Switch Box into the AT PROBE.
11. Examine the AT PROBE distribution diskette for the file

README.DOC, which will describe any changes in the AT
PROBE.

(1) In some systems (Compaq 286 for example), the 80287 is under other plug in cards.
A card can not be plugged in over the AT PROBE because of the height. Atron
supplies a special low profile plug at no charge for systems where the 80287 is under
other plug-in cards. Contact Atron if you need one of these special low profile plugs.

Chapter 1-6 Installing the AT PROBE

Other notes

1. If you want to remove the AT PROBE hardware board from your
computer without removing the buffer assembly, disconnect the
cables from the buffer assembly and leave it plugged into your
computer. Additional buffer assemblies can be purchased from
Atron. Note that the cable is keyed to insure proper assembly.

2. As shipped from Atron, the buffer is shipped with an additional
socket. This socket is provided to protect pins on the buff er
assembly from accidental breakage. If any pins are broken from
the buffer assembly, the entire assembly must be replaced. In
some computers, limited space may constrain the use of this
additional socket.

" J.to,~.;..,\ c.:'"'1ze ca__,-.-~,..

(.\0U:A>:G. 51..ffJ- AQ-7oD

Installing the AT PROBE Chapter 1-7

FIG 1-1 REMOVING THE 80287

FIG 1-2 PROBE BUFFER ASSEMBLY

RED MARK

Chapter 1-8 Installing the AT PROBE

RUNNING AT PROBE DIAGNOSTICS

The diagnostic program will test the functionality of the AT PROBE
and print out a PASS/FAIL message for each diagnostic test. You
can now test the AT PROBE by inserting the PROBE diskette and
starting the diagnostic program with the command:

ATPDIA

When ATPDIA is invoked, it will output the following sign-on
message and ask for the base address of the board before it executes
the diagnostics.

Atron's AT Probe Protected Mode Diagnostics Version 03/25/86
(C)Copyright Atron Corp. 1986
Enter board base address (I or [D]):

When the board base address is entered, the following tests will be
performed: (2)

Board base address is DOOOOO
Bank select test .. Passed.

Total memory installed: lOH x 64K
Data RAM test (Test time approx. 1:30 mm:ss) Passed.
Break RAM test ... Passed.
Trace RAM test .. Passed.
RAM Write Protect test•.. Passed.
Press the STOP button .. Passed.
Timer test .. Passed.
Timer overflow test ... Passed.
Break register test ... Passed.
Trace register test ... Passed.
Press the RESET button to test reset
or any key to return to DOS.

(2) Some versions of the Phoenix (R) BIOS will cause the system to hang on the bank
select test. This is because of the sequence and number of instructions used to
switch from real mode to protected mode. Should this occur, use the /HP version of
the AT PROBE software (atpdiahp, atprbhp, etc.).

Installing the AT PROBE Chapter 1-9

If any of the tests fail, messages will be printed giving more detail
on the nature of the failure. The AT PROBE is ready for operation
only if it has passed all diagnostics. A failure in a diagnostic can be
caused by several factors, including hardware conflicts. One such
common conflict is cause by EGA adaptors which use
"auto-switching" to adjust the video mode: these display cards trigger
Non-Maskable Interrupts about 30 times a second. Some network
cards can cause similar difficulties. As NMI is used by the AT
PROBE breakpoint mechanism, this can cause a multitude of
problems. The following are some suggestions to try for different
failures.

Chapter 1-10 Installing the AT PROBE

WHAT TO DO WHEN THE A TPDIA TEST FAILS

Bank Select Test fails:

Ensure that the AT PROBE memory does not conflict with memory
on other boards in the system. If you do not know if there is
memory on the other boards which may conflict with AT PROBE,
try removing all boards which are not part of a standard AT system.
A standard AT system consists of the motherboard, monochrome
board and/or color graphics adapter board, and disk controller board.
If AT PROBE hangs on this test, try using A TPDIAHP.

Stop Button Fails:

If the Stop Button Test fails, ensure that the switch box connecter
was not offset when plugged in (even though it can go in either
direction).

Break Register or Trace Register Test Fails:

If the diagnostic fails the Break Register Test or Trace Register Test,
the cause may be that the buff er assembly is not properly plugged in
to the socket, a pin is bent or broken, or the buff er assembly may be
damaged in some other way. Speed and/or wait states are very
common causes of these tests failing: AT PROBE requires a minimum
of one wait state, and is rated at a speed of 8mhz. Other typical
causes of the Break Register Test or Trace Register Test failing
include Auto-Switching EGA boards, and the 3 1/2" floppy drive
device driver which comes with DOS.

Other Test Failures:

If any other diagnostics fail or you can not get the AT PROBE to
work, contact Atron technical support at (408) 253-5933.

Installing the AT PROBE Chapter 1-11

OTHER PROBLEMS:

System won't boot:

Verify that the AT PROBE plug is not offset in the 80287 socket.

Verify that your system is compatible with the AT PROBE.

If any other diagnostic fails or you cannot get the AT PROBE to
work, contact A TRON technical support.

Quick Start

CHAPTER 2
QUICK START

Chapter 2-1

QUICK ST ART ... 2
HOW TO ST ART AT PROBE .. 3
LOADING USING initialization FILES ... 4
AT PRO BE'S CONFIGURATION FILE ... 5
THE CODE SCREEN ... 6
FUNCTION KEYS .. 7
DIALOG BOXES .. 9
TERMINATING A COMMAND .. 11
EDITING COMMAND PARAMETERS ... 12

What the edit keys do ... 13
Examples of editing command parameters ... 15

TAB FIELDS .. 16
COMMAND SUMMARY .. 17
COPY AND PASTE .. 20
ERROR MESSAGES .. 21
REMOTE CONSOLES ... 22
FILES ON YOUR PROBE DISKETTES ... 23
VERSIONS OF PROBE SOFTWARE .. 24
USING WILDCARD CHARACTERS WHEN ACCESSING
FILENAMES .. 25

Chapter 2-2 Quick Start

QUICK START

This chapter shows you how to start the PROBE and describes the
user interface. It describes the start up configuration file, available
AT PROBE consoles and versions of AT PROBE software. It also
provides a brief overview of AT PROBE commands.

Quick Start Chapter 2-3

HOW TO START AT PROBE

To start the AT PROBE (1), enter:

A TPROBE [.exefilename[.mapextension] [programparameters]]

To start the SOURCE PROBE, enter:

ATSOURCE [.exefilename[.mapextension][programparameters))

The optional [] specifications when PROBE or SOURCE are invoked
have the following effects:

Specification

.exefile

.mapextension
programparameter

Example:

Result

Loads program from file
Loads symbol table from file (2)
Passes command line to loaded program

atsource \exe\demo.exe.map

Loads \exe\demo.exe as the program to be debugged with symbols
from \exe\demo.map

Example:

atsource \obj\demo.exe foo.in foo.out

Loads \obj\demo.exe as the program to be debugged with symbols
from \obj\demo.exe. The program will be passed a command line
of "f oo.in foo.out".

(1) The AT PROBE software must either be in the current directory or a directory
referenced by the "PATH" environmental variable. If the AT PROBE loader is
unable to locate P2.EXE (PROBE) or 82.EXE (source PROBE) you will be
prompted for the location of that file.

(2) There must be no intervening spaces between" .exe" and ".map".

Chapter 2-4 Quick Start

LOADING USING INITIALIZATION FILES

The command line may also include the initialization file to be
loaded, instead of a program. See the File command in chapter 5 for
more information on initializations.

Example:

atsource /i \exe\demo.ini

Loads initialization information from "\exe\demo.ini."

Example:

atsource \exe\demo.exe.map /i demo.ini (3)

Will pass "/i demo.ini" as command line to demo.exe. It will not
load initializations.

Example:

atsource /i demo.ini \exe\demo.exe.map

Will load initialization from "demo.ini" and will only load the
program indicated in the initialization file. The
\exe\demo.exe.map is ignored.

(3) The program and map file load and init file load are mutually exclusive events and
cannot be combined into a single invocation.

Configuration file Chapter 2-5

AT PROBE'S CONFIGURATION FILE

When invoked, AT PROBE and AT SOURCE PROBE look for a file
named PROBE.CNF. If found, configuration parameters for
PROBE's hardware base address, screen color, etc. are selected from
this file. The default base address for AT PROBE memory is DOOOOO
hex and is defined with the line "ADDR=DOOOOO". See Appendix D
for a complete description of these configuration parameters. If
PROBE.CNF does not exist, then standard defaults described in
Appendix D are used. These standard defaults are usable for most
systems. The file PROBE.CNF contains simple ASCII text and can be
changed with a common text editor.

Chapter 2-6 Code Screen

THE CODE SCREEN

When AT PROBE is started, the screen looks like this:

1 _,.File Search sYmbol Watch Options Calls Go Memory Breakpoint Eva! mAcro Reg Trace

3 ---1---~ code in source or assembly language

The top of the screen contains the MENU BAR with a list of
commands. A command is selected by typing its capital character
(which is the first character for all except the sYmbol and the
mAcro command).

2 Once a command from the MENU BAR is selected, a MENU BOX
hangs down from the MENU BAR to let you select a
subcommand. The subcommand is also selected by typing a single
key or using the down arrow key to move a highlight to the
selected subcommand and then typing the <Enter> key.

3 This part of the screen is called the CODE SCREEN and it
appears immediately below the MENU BAR. It is the default
screen when no other AT PROBE command has been invoked.
The CODE SCREEN displays the program if it has been loaded
with the [initfile] when AT PROBE was invoked, with the File
Program-Load command or the File Initializations command. If
no application has been loaded, code is displayed at the current
CS:IP. The CODE SCREEN displays code in either assembly
language or Source depending upon state of F3 key. The
instruction at the current cs:ip is marked with "=" after the
address and is dark blue on a color monitor. While in the Code
Screen, use the paging and cursor keys to move the inverse video
block around the code in assembly or source. Functions keys as
described next operate in the Code Screen.

Function Keys Chapter 2-7

FUNCTION KEYS

The following function keys operate with the CODE SCREEN as
well as several other screens. They closely resemble the use of
Function keys found in the Microsoft CodeView (R) debugger.

Fl Help key. Brings up a hierarchy of Help Screens. At each
command and subcommand, pressing Fl will bring up a
screen of text about that command.

F2 Toggles register window off and on. Register window
appears vertically on right side of screen and operates like
a Watch Window (described in the Watch command).

F3 Switches between source and assembly mode in Code
Screen and Calls command.

F4 Displays applications screen. Press any key to return to
the AT PROBE screen. (This does not apply to any
console except the local console).

F5 Start program execution atJ.d set a sticky breakpoint on the
instruction at the highlighted line, adding an execute
breakpoint to next available breakpoint in breakpoint
screen and activating it. Shows breakpoint number in
highlight to the right edge of the screen on the line of the
instruction. When the instruction is displayed in the
future, the breakpoint is displayed. All other active sticky
breakpoints are still active. When breakpoint is detected,
control returns to the Command Menu.

F6 When data is being entered into a DIALOG BOX, F6
toggles the effect of the cursor keys between two states:

1. The cursor is moved left or right between data entry
fields in the DIALOG BOX (default), or the inverse
block code screen.

2. Moves the cursor left or right within the current
DIALOG BOX data entry field.

Chapter 2-8 Function Keys

F7 Sets a temporary breakpoint on the line with the highlight,
executes to that line and then removes the breakpoint. All
other active sticky breakpoints are still active. When
breakpoint is detected, control returns to the Command
Menu.

F8 Executes a single step of the next instruction, steps into
procedures and interrupts. In order to single step in
source code, first select source to be displayed on the Code
Screen by pressing the F3 key.

F9 Sets or clears an execution breakpoint on instruction at
highlight. Setting a breakpoint adds and activates a sticky
breakpoint with the next available breakpoint number.
Clearing deletes the breakpoint from breakpoint screen.
Shows breakpoint number in highlight to the right edge of
the screen on the line of the instruction. When the
instruction is displayed in the future, the breakpoint is
displayed.

FlO Executes a Program step. If the source line or instruction
contains a function, procedure, or interrupt, the AT
PROBE runs real time until it returns to the instruction
after the currently highlighted instruction.

Alt-FlO This key lets you start a Copy Paste process. Press this
key and the cursor becomes a solid block to the left center
of the screen. Move the block with the cursor keys and
press <Alt-FlO> again to anchor the block. Use the cursor
keys again to highlight a block of text. The block of text
can cover more than one line. Press any other Alt-Key
which stores the highlighted text as an ASCII string in an
Alt-Key which becomes a macro. If the macro is already
defined, then the new entry replaces the old definition.
Pressing this Alt-key will recall the ASCII string it stores.

Note: The Function keys FS, F7, and F9 operate in the Code
Screen, File View, Unassemble, sYmbol display change,
Search, and Calls commands. F3 works in the main Calls
command.

Dialog Boxes Chapter 2-9

DIALOG BOXES

Entering parameters into DIALOG BOXES

When a command is invoked from the MENU BOX, a Dialog Box
appears to provide further input to the command .

3 .-------------------------help key
1 jField [_enter data here] {choices}

2 !Field <current default> {choices}

jcHsplay window

1 A blinking underscore cursor appears in the DIALOG BOX in a
[field]. AT PROBE waits for your data entry into this field or
you can type the <enter> key to take the default.

2 The other <fields> in the dialog box show you their current or
default settings. A field may have a list of {choices} from which
you can select by typing the first capital letter of the choice.

3 If there is a highlight field in the DISPLAY WINDOW while the
blinking cursor is in the DIALOG BOX, then the contents of the
DIALOG BOX are transferred to the highlight field when you
type <enter>. If an expression is typed into the DIALOG BOX, it
is evaluated before the value is put into the highlighted field.
This lets you construct and edit expressions in the DIALOG BOX
and have the results go to the highlight field in the DISPLAY
WINDOW. A maximum of 255 characters can be entered into the
DIALOG BOX (the characters scroll horizontally within the
DIALOG BOX). The expressions inside the DIALOG BOX can be
edited with the EDIT KEYS. See EXAMPLES OF USING EDIT
KEYS later in this chapter.

Chapter 2-10 Dialog Boxes

4 Some commands prompt you several times with DIALOG BOXES.
In this case, after typing <enter> for each DIALOG BOX, the
blinking cursor is transferred to the next DIALOG BOX. When
all necessary data is entered for the command to operate, the
command executes. Execution can mean:

Put data into the DISPLAY WINDOW
Put or get information from the system memory or disk files

5 While in a command, you can move to another DIALOG BOX
manually by typing the <TAB> key. This lets you make new
entries into these fields. Also, in some commands, you are not
automatically prompted through all DIALOG BOXES. This is
because some of the DIALOG BOXES are so rarely used, it would
be annoying to be prompted for them during each command.
These fields are, however, displayed in the formatted screen of
the command, and you may reach them by typing the <TAB> key
until the blinking cursor gets to them. These are sometimes called
<TAB> TO fields.

6 For commands which have both a DIALOG BOX and a display
area below the DIALOG BOX, there is typically only one "main"
field in the DIALOG BOX. You may <TAB> to other fields and
change the choices there, but the display area will not be updated
until you <TAB> back to the "main" field. Also, if the command
allows a highlighted cursor line to be moved up and down in the
display, this cursor will only be active at the "main" DIALOG
BOX field. The "main" fields varies from command to command.

Terminate command Chapter 2-11

TERMINATING A COMMAND

Once in a command, you stay in the command until the <ESC> key is
typed. This lets you make changes in the DIALOG BOX in a
command for re-execution of the same command. ESC typed at any
point will terminate a command and return control back to the
previous screen. Any command execution which is in process but
which has not already executed is canceled with the <ESC> key.
Note however, that you stay in a command and may execute it
several times before terminating it with the <ESC>. These changes
which have already occurred are not undone with the <ESC>.

Chapter 2-12 Editing command parameters

EDITING COMMAND PARAMETERS

If the syntax entered into the DIALOG BOX field is not recognized,
an error appears in an MESSAGE BOX describing the problem. In
addition, the blinking cursor is placed just after the point in the
DIALOG BOX where the syntax could not be recognized by AT
PROBE. The data in the DIALOG BOX may be edited with the
editing keys. These keys are described in the section titled WHAT
THE EDIT KEYS DO.

Edit Keys Chapter 2-13

WHAT THE EDIT KEYS DO

Keys affecting the display window

Cursor Keys (Up, Dn)

Move the highlight field in the DISPLAY WINDOW, the MENU
BAR, or move in the DIALOG BOX if not in the display window or
menu bar.

Cursor Keys (Left, Right)

If the cursor is in a drop down menu, moves to the next drop down
menu to the left/right. If the cursor is in a dialog box, moves the
highlight field in the DISPLAY WINDOW or the cursor within the
current field (depending upon state of F6 key).

Ctr/ Left and Ctr/ Right

While inputting data in a Dialog Box, deletes all characters from the
cursor to the beginning or the end of the line.

PgUp and PgDn

For commands which can display additional screens of information
in the DISPLAY WINDOW, these keys show the previous or following
information associated with the command in process.

Ctr/ PgUp and Ctr/ PgDn

For commands which display files, real time trace data, or source
files during single step in the DISPLAY WINDOW, these keys move
to the start and end of the file. Also to first and last of what is
being displayed (eg. symbols).

<TAB>

Move blinking cursor to the next DIALOG BOX for the command in
process.

Keys for editing data in the dialog box

<BACKSPACE>

Chapter 2-14 Edit Keys

Move blinking cursor left one character and blank this character.

HOME

Move blinking cursor one space toward the beginning of DIALOG
BOX but do not delete the characters. The cursor keys cannot be
used for moving the blinking cursor in the DIALOG BOX since they
are reserved for moving the highlight field in the DISPLAY
WINDOW. If the code display is currently active, HOME will cause
the screen to show line pointed to by the present CS:IP.

END

Move the cursor one space toward the end of the DIALOG BOX.
The cursor keys cannot be used for moving the blinking cursor in the
DIALOG BOX since they are reserved for moving the highlight field
in the DISPLAY WINDOW.

Ctr/ HOME

Move blinking cursor to the beginning of DIALOG BOX.

Ctr/ END

Move the cursor to the end of the DIALOG BOX.

DEL

Delete the character above the blinking cursor.

Keys terminating commands

ESC

Terminates a command which is in the process of executing and
returns to the previous screen.

Ctr/ Break

Terminates current command in process which does not stop with the
<ESC> key. Returns to the code screen.

Edit Keys Chapter 2-15

EXAMPLES OF EDITING COMMAND
PARAMETERS

The EDIT KEYS can be used to make changes in the DIALOG BOX.
The definition of these keys was described previously. Here are
some examples of using the edit keys.

Start by using the Memory Display command. Type:

MD

The command prompts for startaddress in the DIALOG BOX. Type:

MAIN xMODULE.PROCEDUREN AME

Since no symbol matches this, an error message pops up. Type any
key to pop down the error message. The blinking cursor is in the
DIALOG BOX. Use the HOME and END keys to move the blinking
cursor just under the x. Then type the DEL key. Now, to re-execute
this command type <enter>. Alternately, the cursor keys can be used
if the F6 toggle is set to move the cursor within the current field (4).

(4) See Function Keys, F6.

Chapter 2-16 Edit Keys

TAB FIELDS

The AT PROBE commands typically have several options which are
not normally changed. They may be changed occasionally, however,
and therefore must be available when needed. These options are
displayed on the screen as:

Label:< >

These fields contain default values in the < >. You may get to these
fields to change the defaults by typing <TAB>. The default stays in
the < > until you select then change it. The <TAB> fields are
described for each command in Chapter 5.

Command Summary Chapter 2-17

COMMAND SUMMARY

File
Program Load
View
Initializations
Quit
Log file
Revision

Search

sYmbol

Load program, symbols with options
Display up to 10 files simultaneously
Load PROBE initialization conditions
Return to DOS or run in the background
Log a debug session for later review
Display the current PROBE software
version.

Search the file corresponding to the
current cs:ip

sYmbols display /change
Display, change or delete symbols

Default modulename
Sets default modulename for symbols

Load module selections
Load symbols from only from selection
selected modules

Step source screen modules
Source step only in selected modules

Module to file assignments

Watch
Define-edit
Remove
Load
Save

Options

Display /change source files assigned to
program modulenames

Define or edit a pop up Watch Window
Delete currently defined window
Load a file of predefined windows
Save current windows definitions to disk

Screen Selects screen switch and remote consoles
View operands during step

Display operand contents during step
Mix source during step

Show source code with assembly during
step

Chapter 2-18 Command Summary

sYmbols displayed with code
Show symbols with code during step

Case sensitivity Include case in symbol interpretation
sTep count Number of steps to take during step
Interrupts Controls interrupt system while in PROBE
Read after write verification

Verify changes made by PROBE memory
commands

Function call linkage style

Calls

Go

Memory
Display change
Io port
Float display
Unassemble/assem
Block operation
Variable

Breakpoint
Define
Activate
Inactivate
Clear
Set pass counter

Specify call entry protocol

Display stack variables, return addresses

Start program and set non sticky breakpoints

All non-float memory types
IO devices
All floating point types
Unassemble or assemble code into memory
Operate on memory in blocks
Supports complex C data types

Define breakpoints
Activate defined breakpoints
Inactivate defined breakpoints
Clear all breakpoint fields to default state
Set breakpoint pass counter

Evaluate Calculate expression and display in several bases

Macro
Define

Edit
Remove
Load
Save

Define a new macro and assign it to an
Alt-key
Change the definition of a current macro
Delete a currently defined macro.
Load previously defined macros from file
Save all currently defined macros to a
disk file.

Command Summary

Register

Trace
Instructions
Unprocessed ins
Save-to-disk
Raw data
DMA cycles

Chapter 2-19

Display 80286 processor registers, flags,
and 80287 floating point registers and
flags (if co-processor is present)

Display trace data with pref etch filtered
Display trace with prefetch not filtered
Save data to disk
Display trace data in hex format
Toggle DMA cycles on/off in trace display

Chapter 2-20 Copy and Paste

COPY AND PASTE

AT PROBE has a copy and paste feature which eliminates typing in
the long addresses and symbolnames required during program
debugging. When you are looking at information on one screen
which you want to pick up and deposit into fields on another screen,
you can use PROBE's copy and paste keys.

To copy information from a screen, start by typing the <Alt-FlO>
key. The highlight field in the DISPLAY WINDOW will shrink to
the size of one character and will be positioned on the left side of
the screen about half way down from the top. As usual, use the
cursor keys to move this small highlight field to the start of the
information you want to copy. Next, type <Alt-FlO> again which
anchors the highlight field at this location. Use the cursor keys
again to spread the highlight field over the characters on the screen
you want to copy. Next, you can deposit the highlighted information
into any Alt-key.

The inf or ma ti on stored in these function keys can now be pasted
into any other screen. The location on any screen which has the
blinking cursor can receive the information stored in the Alt-key by
typing the key. The ASCII text stored in the function key is
available each time the key is typed until the information in the key
is changed.

Error Messages Chapter 2-21

ERROR MESSAGES

When a command or command parameter is not recognized by AT
PROBE, an error message "pops up" on the screen in a MESSAGE
BOX to indicate the problem. Appendix A contains a summary of
these error messages. To remove an error message from the display
press any key.

Chapter 2-22 Remote Consoles

REMOTE CONSOLES

When AT PROBE is first started, command entry is done through the
resident console. However, you have several choices for console IO
with Options Screen. The simplest choice creates two virtual screens
and isolates the AT PROBE screen from the application screen.

If you have two video controller boards in your system, you can
move the AT PROBE display to the screen "Other" than the one
which is the current default.

A third choice is to switch to an entirely separate CRT which you
connect to the "Remote" or Coml or Com2.

The description on how to connect a remote console and set up its
configuration parameters is shown in Appendix E.

Files Chapter 2-23

FILES ON YOUR PROBE DISKETTES

There are several files on your PROBE product diskettes which may
or may not be needed depending upon what you are doing. A list of
these files and a description is given in Appendix B for each version
of PROBE software. Only those used for "RUNNING" are required
for the actual execution of PROBE software.

Chapter 2-24 Software Versions

VERSIONS OF PROBE SOFTWARE

This manual describes the standard versions of the AT PROBE and
SOURCE PROBE software. Other versions of these software
products are available which are optimized for specific applications.
These versions are described by inserts to this manual.

Wild cards Chapter 2-25

USING WILDCARD CHARACTERS WHEN
ACCESSING FILENAMES

PROBE interprets file specifications in the same manner as DOS on
the computer. A filespec is defined as:

(drive] (path] [name of file]

If not specified, the default drive/path is used. AT PROBE lets you
use wildcard characters in any command which prompts you for a
file name. If you cannot remember the name of the file you want to
specify or you can only remember part of the file name, then use the
wildcard character *. If you are familiar with DOS, the * works in
exactly the same way as it does in the DIR command.

Examples:

To tell the AT PROBE command to display all filenames in the
current directory, type:

* *

To specify all files in the directory \MAIN\DEMOS type:

\MAIN\DEMOS\ *. *

To specify all files in the current directory with a .HEX extension
type:

*.hex

Chapter 2-26 Wild cards

To specify all files in the current directory which start with the
letter A type:

A*.*

When you are prompted for a file name in a Dialog Box, you can
simply type "*" and a summary of files from the specified or
default drive and directory is painted on the screen. Wildcards
can be used to limit the number of displayed files. The highlight
field in the Display Window can be positioned on and file name.
Typing enter will select the highlighted file name.

Symbols and Values

CHAPTER 3
SYMBOLS AND VALUES

Chapter 3-1

VALUE .. ; 3
ADDRESS ... 4
EXPRESSIONs ... 5
RADIX ... 7
BOOLEAN EXPRESSIONS ... 8
DEREFERENCED MEMORY ... 10

Seg & off set operators .. 12
End-of-function operator .. 13
Sizeof operator .. 14

USING SYMBOLS ... 15
SCOPE of SYMBOLS ... 16
REFERENCING SYMBOLS IN COMMANDS .. 20
USING COMPLEX SYMBOL TYPES IN COMMANDS 21
EXAMPLES OF USING SYMBOLS ... 22
DEFAULT SYMBOL PREFIX .. 23
C SOURCE DEBUGGING : .. 24

Chapter 3-2 Symbols and Values

CHAPTER 3
SYMBOLS AND VALUES

This chapter defines values, addresses and how they are used in AT
PROBE commands. Other command definitions which apply to all
AT PROBE commands are also described. It then describes how to
generate symbolic debugging information and how modulenames and
symbolnames are interpreted as values and addresses in AT PROBE
commands.

Symbols and Values Chapter 3-3

VALUE

A value is a 32 bit quantity that can be represented by any of the
items shown in table 3-1.

Table 3-1
Examples of value definitions

Value represented as:

a symbol name (it's address)
a 32 bit numeric hex constant
a 32 bit numeric decimal constant
a register name (it's contents)
an ASCII character in quotes
a dereferenced memory location

Examples

MAIN
12345678
12345678T
AH (I)
'A'
(described later)

(1) A value which matches a register name is interpreted as the register name. Register
names are specified in the R command. If you want a hex value instead, precede the
value with a 0.

Chapter 3-4 Expressions

ADDRESS

An address is represented by:

segment expression:offset expression

Expressions Chapter 3-5

EXPRESSIONS

An expression is a value calculated by combining a series of values
with operators.

+ , - , * , I , -, & , I , % /\

Normal precedence of operators as defined in the C language is
assumed: (*, / ,% ,&) are higher than (+, -, I) and evaluation proceeds
left to right on operators with equal precedence. Precedence may be
overridden by the use of parenthesis. Table 3-2 explains each
operator and lists them in order or precedence.

Table 3-2
Definition and precedence of operators

Operator

Highest precedence

Next highest

*
I
%
&
Lowest precedence
+

A

Definition

2's complement
bitwise negation

multiplication
division
modulus (remainder)
bitwise and

addition
subtraction
bitwise inclusive or
bitwise exclusive or

Chapter 3-6 Expressions

Examples:

Assuming the following values in memory, here are several
expressions and their resulting values.

The symbol Ivar represents a long (four byte wide) integer. The
address of Ivar is 1000:0 and its value is 20000000

Note that the symbol "Ivar" when enclosed by brackets is
dereferenced. See the section on "Dereferenced Memory" later in
this chapter.

Expression

Ivar
[Ivar]
-[1 var]
-[Ivar]
[lvar]*2
[lvar]/2
[lvar]o/olO
[lvar]&30000000
[lvar]+5
[lvar]-5
[lvar]IFF
[lvar]"'FOOOOOOO

Value

00010000
20000000
EOOOOOOO
DFFFFFFF
40000000
10000000
0
20000000
20000005
IFFFFFFB
2000000FF
000000000

Radix Chapter 3-7

RADIX

When you enter values into AT PROBE commands, they are
interpreted as hex unless you specify another numeric base.
Subscript the value with t for a base of ten (i.e. decimal). Put quotes
around the value to make it an ASCII string.

Example:

10 ; ten hex or 16 decimal
1 Ot ; 10 decimal or A hex
'1 O' ; ASCII string

Chapter 3-8 Boolean expressions

BOOLEAN EXPRESSIONS

Boolean expressions use boolean operators and result .in one of two
boolean values. The AT PROBE boolean operators result in a value
of FFFFFFFF (or non zero) if the result is TRUE and a value of
00000000 if the result is FALSE. The boolean opera tors may be
joined with the '&' and 'I' operators for the boolean AND and OR
functions.

Table 3-3
Definition and precedence of boolean operators

Operator

<
<S
<=
<=S
=

==
<>
!=
>=
>=S

>
>S

Examples:

Definition

less than (unsigned)
less than (signed)
less than or equal (unsigned)
less than or equal (signed)
is equal to
is equal to
is not equal to
is not equal to
greater than or equal (unsigned)
greater than or equal (signed)
greater than (unsigned)
greater than (signed)

Here are some boolean expressions and a description of how the
operators work.

Boolean Expression

AX>BX

[123]=[456]

Description

If the contents of register AX is
greater than register BX, then the
result is true.

If the contents of memory at address
DS:l23 are equal to the contents of

Boolean expressions Chapter 3-9

memory at address DS:456, then the
result is true.

offset(ProcedureA) <IP If the offset of the symbol
ProcedureA is less than the register IP,
then the result is true. (See "Seg & Offset
Operators in this chapter)

[Celsius] <lOt If the contents of the variable Celsius is
less than decimal 10, then the result is
true.

Chapter 3-10 Dereferenced memory

DEREFERENCED MEMORY

The contents of a memory location may be used as a value in an
expression. This is commonly ref erred to as dereferencing memory.
The value is pointed to by an address expression which is defined as
follows:

[address]size

The size may be omitted or may be:

Size Definition

B use the byte at the specified address.
W use the word (16 bits) at address (Default).
D use double word (32 bits) at the specified address.
P use 32 bit pointer at specified address
E use 48 bit pointer at specified address
S sign extend a memory access to double word

Examples:

"S" may be used om combination with "B", "W", or "D".
"BS" means sign-extended byte to double word; "WS"
means sign-extended word to double; "DS" is the same
as "D".

Assuming the following values in memory, here are some address
expressions and their resulting values as interpreted by AT
PROBE.

The symbol svar is a short (16 bit) integer
The address of svar is 2000:0
The bytes of memory at 2000:0 are AA, BB, CC, DD
The bytes of memory at 2000:5 are 81, 22, 33, 44
The bytes of memory at 4433:2281 are EE, FF, 77, 88
The bytes of memory at 4433:2291 are 99, 00, 55, 66
The bytes of memory at DS:2281 are 00, 22, 44, 88

Dereferenced memory

Address

svar+5
[svar+5]b
[svar+5]bs
[svar+5]
[svar+5]d
[[svar+5]p]b
[[svar+5]p]
[[svar+5]p]d
[[svar+ 5]p+ 1 O]b
[[svar+5]p+ 1 O]
[[svar+5]p+l0]d
[[svar+5]]d

Expression value (in hex)

20005
0081
ffffff81
2281
44332281
EE
FFEE
8877FFEE
99
0099
66550099
88443300 (2)

Chapter 3-11

(2) The result of the first memory dereference is a 16-bit number (2211), not a complete
address. To dereference that, the AT PROBE will assume a default segment of DS to
make the address it needs. The only time a memory dereference yields an address is
when the expression inside is of type "far pointer" or if the "(]p" or "[]e" notation is
used.

Chapter 3-12 Segment and Offset operator

SEG & OFFSET OPERA TORS

The following operators let you extract the segment and offset from
an address (3). Note that the () are required.

seg(address)
offset(address)

Examples:

The address of "x" is 4ECB:FFFF

seg(x) is 4ECB
offset(x) is FFFF

(3) When using the seg operator in a boolean expression, precede it with a space so that
the "s" of "seg" will not be construed as a "signed" boolean operator (See "Definition
and Precedence of Boolean Operators).

End-Of-Function operator Chapter 3-13

END-OF-FUNCTION OPERATOR

When you want to set a breakpoint over the entire range of a
function, it is useful to know the end address of the function. If a
function was compiled and loaded into the AT PROBE with debug
information, the End expression operator will return the address of
the last byte in the function. The address expression can be a
function name or any expression which evaluates as an address
within the range of a function. The operator has the following form:

end(address expression) (4)

The End operator can also be used as a convenient way of executing
to the end of the current function. If the current CS:IP is within a
function with debug information, then a temporary breakpoint of
"end(cs:ip)" or just "end(ip)" can be entered in the DIALOG BOX of
the GO command.

Examples of using the end operator

To set a Fetch breakpoint over the whole of function MAIN, use
the following range in the Breakpoint DIALOG BOX:

Address: <main > to <end(main) >

To execute to the end of the current function, type:

end(cs:ip) (5)

(4) Note the use of"()"
(5) This assumes that the last byte of the function is a "RET" instruction.

Chapter 3-14 Sizeof operator

SIZEOF OPERA TOR

The Sizeof operator returns the storage size for a symbol or function
length if the symbol is in a file compiled with debug information.
The default length is two bytes for non-typed data. The operator has
the following form (Note the use of "()"):

sizeof(symbol)

Example of using the sizeof operator

To return the size of the data structure D STRUCT enter from
the Eval dialog box: -

sizeof(D _STRUCT)

To return the size of the function main() enter:

sizeof(main)

Using Symbols Chapter 3-15

USING SYMBOLS

AT PROBE allows you to use the symbolic information from your
program during debugging instead of absolute numbers. The
symbolic debugging information which is generated depends upon the
compiler vendor, version number, compiler controls, and linker
controls. Appendix C lists these items for different compiler
vendors. Ref er to this appendix for more details on how to generate
symbolic debugging information. The symbol table information is
loaded into AT PROBE from the .exe file or through the .map file.
AT PROBE puts the symbol table into its on-board memory where it
is hidden and write protected. Other parts of this manual describe
important information regarding symbols. This information is not
duplicated in this Chapter but here is a summary of where to find
this inf or ma ti on.

Description: Location

Single step source code Function keys: Ch 2
Loading symbols into PROBE File Program load: Ch 5
Selectively loading symbols sYmbol Source modules: Ch 5
Defining symbols on line sYmbol Display /change: Ch 5
Deleting symbols sYmbol Display /change: Ch 5
Ignoring case in symbols Option Case sensitive: Ch 5
Default modulename prefix sYmbol Default modulename: Ch 5
Indirectly referencing symbols This Chapter

Chapter 3-16 Using Symbols

SCOPE OF SYMBOLS

A symbol is a value which can have both a segment and an offset. A
symbol can be used in an expression at any place a value is expected.
Symbols can have a scope. AT PROBE interprets the scope of
symbols in the same way as the C language (6). Some definitions are
shown here for reference:

Symbol scope

EXTERNAL or
PUBLIC
LOCAL

STATIC

Description

Visible to all modules. This symbol has a fixed
address when the program is loaded.
Visible only to the declaring procedure. This
symbol is stack based.
Visible to module after point of
declaration. This symbol has a fixed address
when the program is loaded.

Note that AT PROBE provides a more complete means of referencing
symbols than is available to the programming language itself. This is
necessitated by the need to refer to symbols with different scopes but
identical names. For example, if the current function contains the
LOCAL variable foo which has the same name as the EXTERNAL
variable foo, referencing foo will return the LOCAL variable. In this
circumstance, to reference the EXTERNAL variable foo, it is
necessary to use a leading backslash '\' (\foo). If the LOCAL variable
foo did not exist, an attempt to reference foo would cause the
EXTERNAL variable to be returned. A partial list of syntax which
can be used to reference various symbols follows (7):

(6) A symbol is searched for in the current function first, and then, if the variable is not
local it is searched for globally.

(7) This list does not consider such complex combinations as referencing several STATIC
variables which have the same name but are in different modules.

Using Symbols Chapter 3-17

If the symbol is stored in AT PROBE's symbol table is
EXTERNAL, and there is no LOCAL variable with the same
name, it is referenced as:

symbolname or
.symbolname or
\symbolname or
\.symbolname or
.. modulename.symbolname

If the symbol is stored in AT PROBE's symbol table is
EXTERNAL, and a LOCAL variable with the same name exists,
the EXTERNAL symbol can be referenced as:

\symbolname or
\.symbolname or
.. modulename.symbolname

If the symbol is LOCAL to the current function it is referenced
as:

symbolname or
.symbolname or
functionname.symbolname or
.functionname.symbolname or
\functionname.symbolname or
\.functionname.symbolname or
•. modulename.functionname.symbolname

If the symbol is LOCAL to an EXTERNAL function other than
the current function it is referenced as:

functionname.symbolname or
.functionname.symbolname or
\functionname.symbolname or
\.functionname.symbolname or
.. modulename.functionname.symbolname

Chapter 3-18 Using Symbols

If the symbol is LOCAL to a ST A TIC function other than the
current function but it is in either the current module or the
default module, it is referenced as:

functionname.symbolname or
.functionname.symbolname or
.. modulename.f unctionname.symbolname

If the symbol is LOCAL to a ST A TIC function other than the
current function and it is not in either the current module or the
default module, it is referenced as:

.. modulename.functionname.symbolname

If the symbol is ST A TIC and LOCAL to the current module or the
default module it is referenced as:

symbolname or
.symbolname or
•. modulename.sym bolname

If the symbol is STATIC and local to a different module it is
referenced as:

.. modulename.symbolname

If the symbol is a linenumber for a high level language executable
statement, which is in the current module then it is referenced as:

•. modulename#linenumber or
#linenumber

Using Symbols Chapter 3-19

If the symbol is a linenumber contained in a different module for
a high level language executable statement, then it is referenced
as:

.. modulename#linenumber

Function names are treated the same as symbol names. A module
is a single unit of compilation and has a modulename assigned to
it by the compiler.

Chapter 3-20 Using Symbols

REFERENCING SYMBOLS IN COMMANDS

When a symbol is used in an AT PROBE command, it is interpreted
as an address. In this manual, most examples will use symbols
instead of absolute numbers. Here are some notes regarding symbols
used in commands. The use of "[]'' and "." operators in an address are
the same as defined in the language C. Note that the "[]" indicates
dereferencing memory if the "[]" is not preceded by an arrayname. A
symbol in C source code is interpreted by the compiler as a value. A
symbol from the AT PROBE symbol table is interpreted as an
address. Therefore, the @ operator in C is not needed in expressing
an AT PROBE symbol as an address. The * operator in C is
expressed in AT PROBE as dereferenced memory. The table below
shows how these are used in an address expression.

Using Symbols Chapter 3-21

USING COMPLEX SYMBOL TYPES IN COMMANDS

AT PROBE expression C in terpreta ti on

arrayname [index] array of values
arra yname [index].membername.membername

array of structure
structurename.mem bername.mem bername

structure.mem bername[index]
[pointer]
[pointer]d
pointer
[pointer].mem bername.mem bername

structure member
structure of arrays
po in tername in C
*pointer type in C
@pointer in C

structure member

Chapter 3-22 Using Symbols

EXAMPLES OF USING SYMBOLS

In Chapter 5, the AT PROBE commands will use symbols in many
examples. Here are a few examples of how symbols are used:

This expression references the PUBLIC symbol MAIN

MAIN

This expression references the procedure named IO assuming it is in
the module named IOROUTINES .

. .IOROUTINES.10

This expression references the byte pointed to by the 32 bit pointer
MEDIUMPOINTER.

[[MEDIUMPOINTER]P]B

Using Symbols Chapter 3-23

DEFAULT SYMBOL PREFIX

If no modulename is specified when you specify symbol or
linenumber, then the current default prefix is used. After the
symbol table is loaded, the default prefix is set to the first module
encountered during symbol loading, provided that there was no
default module already set. The default module is used as a last
resort in symbol look ups: AT PROBE looks for the "current" module
first. You can define a new default module with the sYmbol
Default modulename command (See Chapter 5).

Example:

First, assume the default prefix is .. MAIN. The table below shows
a symbol as you would specify it. AT PROBE exhaustively creates
combinations of the default prefix and the symbol you type and
tries to match them to a valid symbol in the symbol table.

Symbol AT PROBE searches for

FOO local function .FOO
global .FOO
static .. <current module> .FOO
static .. MAIN.FOO

PROC.FOO global .PROC.FOO
static .. <current module> .PROC.FOO
static .. MAIN.PROC.FOO

.. <module>PROC.FOO static .. <module>PROC.FOO

Chapter 3-24 C Source Debugging

C SOURCE DEBUGGING

If you are running the SOURCE version of the AT PROBE software,
then there are additional features available in AT PROBE.

I. The F3 function key lets you switch the CODE SCREEN between
a display of assembly language and C source code.

2. The source code is intermixed with Assembly language when code
is unassembled or the real time Trace data is displayed, providing
that Options Mix source is set to on.

In order for the AT PROBE to get access to the source code, it must
know where it is stored. The AT PROBE uses the modulenames
found in the symbol table and assigns the source code in a file
named:

modulename.ext (8)

You can view the source file name assignments to modulenames with
the sYmbol Module-to-file-assignment command. If the source code
is in a different file or a different path, you must change the
assignments on this screen.

(8) "ext" is the source file extension specified in the .exe debug information, or the prefix
specified in the File Program Load dialog box if .exe debug information is not used.

Debugging Applications Chapter 4-1

. CHAPTER 4 DEBUGGING APPLICATIONS

INTRODUCTION .. 2
A SAMPLE DEBUGGING SESSION .. 3

Overview ... 3
The program .. 4
Compiling and linking ... 10
Starting AT PROBE .. 11
Go ... 12
Single Stepping .. 13
Displaying registers ... 14
Introduction to .breakpoints ... 15
Defining a window .. 17
Macros .. 18
Define real time Trace .. 20
Init files .. 22
Calling macros from breakpoints ... 23
Define Sequential breakpoints .. 24
Assemble/Unassemble ... 28
The Calls command ... 29
The file view command .. 31
The variable command .. 32
Exiting AT PROBE ... 37

ADV AN CED DEBUGGING TECHNIQUES .. 38
Debugging a boot load sequence ... 38
Debugging a device driver which installs itself 40
Debugging a device driver invoked from command.com or a
terminate and stay resident program ... 43
Loading the symbol table when AT PROBE does not load the
program ... 44
Debugging routines which take over the keyboard 45
Debugging interrupt driven software .. 46
Locking out all Interrupts While in AT PROBE 46
Using Concurrent Process Debugging .. 46
Debugging on a non-DOS operating system .. 47
Debugging a system which crashes and takes PROBE with it 48

Chapter 4-2 Debugging Applications

INTRODUCTION

The commands are listed alphabetically in Chapter 5, COMMAND
REFERENCE, and no attempt is made to duplicate the complete
explanation of each command as it is being used in these examples.
If the short explanation of the command is not sufficient in the
example, please turn to Chapter 5, COMMAND REFERENCE, for
more information.

This chapter contains two sections of application examples for using
the AT PROBE:

A SAMPLE DEBUGGING SESSION
ADVANCED DEBUGGING TECHNIQUES.

The first section exercises many of the AT PROBE commands on an
example program which has been included on the AT PROBE
diskettes. The second section is more advanced and contains many
real world debugging scenarios which have been used by previous AT
PROBE users. The second section assumes a thorough understanding
of the AT PROBE commands.

A Sample Debugging Session Chapter 4-3

A SAMPLE DEBUGGING SESSION

OVERVIEW

The following is a brief tutorial designed to quickly familiarize you
with the use of the AT PROBE. In the tutorial you will learn to:

Load a file and its associated symbolic information.

Automatically initialize the AT PROBE using an init file.

Go to a function in a program.

Single step through a program.

Establish sequential and non-sequential breakpoints.

Trap on read/writes to local variables by other functions.

Use Trace to display run time information.

Examine the stack, registers, memory, variables, data
structures, pointers, and arrays.

Step through a chain of pointers, and examine multiple
instances of a local variable created through recursion.

As this tutorial progresses, it will be necessary to input some lengthy
sequences of keystrokes. For the maximum benefit it is suggested
that you take your time, examining the result of each keystroke
before entering the next one.

Chapter 4-4 A Sample Debugging Session

THE PROGRAM

The program to be debugged uses four modules, three of C code
linked to one of assembly language. The source, object and
executable files for the program are included on your disk, so you
can actually try the example in real time. This example is written to
demonstrate various features of the Source PROBE. If you are using
Pascal, Fortran, or some other language in your application, you will
still find this tutorial useful from a procedural point of view. The
program counts from 0 to 250 five times, and outputs the current
value of the count variable in binary, octal, decimal, and
hexadecimal. Next, it creates a binary tree which sorts an array of
data structures, then outputs the contents of the array in sorted order
by means of recursion. As delivered, the program has several bugs,
one of which will prevent it from running to completion. As the
tutorial progresses, these bugs will be identified, using the AT
PROBE, and eliminated. The program source code is listed below:

/* demo.c
*
* A demo program for the AT PROBE
*I

#include <stdio.h>

void print_nums(void), other_fng(void);
extern void print(short *), demo3(int), demo4(void);
short *zeroptr = (short *) 10;

main(argc,argv)
int argc;

{
char *argv(];

short i;

demo3(7); /*clear the display, using attribute 7 */

if (!--argc)
for (i = O; i < 5; ++i) {

print nums();
other-fng();

} -

demo4();
exit(O);

}

A Sample Debugging Session

void print nums()
{ -

}

short count;

for (count = O; count < 250; ++count) {
if (count == 50)

*zeroptr = Oxff;
print (&count);

}
return;

void other fng()
{ -

puts("\nResetting counter\a\n");
}

/* demo2.c
•
• A second module to be linked in with demo.c
*/

#include <stdio.h>
#include <string.h>

struct TYPES {
short value;

};

char hex[32];
char decimal[32];
char octal[32];
char binary(32];

struct TYPES types;

/* Print "val" in binary, octal, decimal and hexadecimal format
*/

void print(val)
short *val;

{
struct TYPES *tptr = &types;

types.value = *val;
itoa(*val, types.hex, 16);
itoa(*val,types.decimal,10);
itoa(*val, types.octal,8);
itoa(*val,types.binary,2);

printf("%8sy =%4sq =%4st = %sh\n",
types.binary,types.octal,types.decimal,types.hex);

if (strlen(types.decimal) > 2)

Chapter 4-5

Chapter 4-6 A Sample Debugging Session

*val= l;

return;
}

demo3.asm

An example of mixed language programming.
This assembly module uses BIOS to clear the screen.

The object module links to demo.obj, demo2.obj, and demo4.obj

requires MASM 5.0

.radix 10

.model small

.data

if Cllcodesize
ATTRIBUTE equ 6 ;large code model uses a 2 word return address

else
ATTRIBUTE equ 4 ;small code model uses a 1 word return address

end if

PUBLIC demo3

.code

demo3 PROC

PUSH
MOV
PUSH
PUSH

MOV
MOV
MOV
MOV
MOV

BP
BP,SP
SI
DI

AH,07h
AL,O
cx,o
DH,24
DL,79

;save the old base pointer
;use to access passed parameters
;save register variables

;function 7, scroll screen down
;scroll the entire display
;the upper left corner of the window is 0,0
;the lower right row is 24
;the lower right column is 79

MOV BH,BYTE PTR (BP+ATTRIBUTE) ;get the passed attribute

INT

MOV
MOV
MOV

INT

lOh

AH,02h
BH,O
DX,O

!Oh

POP DI
POP SI

;clear the display

;function 2, reset cursor position
;select page 0
;row 0, column 0

;reset the cursor

A Sample Debugging Session

POP BP

RET

demo3
end

ENDP

1·
•
•
•
•

demo4.c

A fourth module to be linked in with demo.c

This module demonstrates the advanced use of the
variables command.

·1

#include <stdio.h>
#include <string.h>

enum INTERESTS {Bicycling= 1,
Break dancing,
Computers,
Classical music,
Dancing,-
Exercise,
Fine art,
Flying,
Games,
Hang gliding,
Hot tubbing,
Literature,
Magic,
Motorcycle racing,
Opera, -
Philosophy,
Rock n roll,
Running;­
Scuba diving,
Skiing-;­
Theater,
Travel};

typedef struct NAMES {
char first[25];
char last[25];

} NAMES;

typedef struct PERSON {
NAMES names;
char phone[16];
enum INTERESTS hobbies[5];

} PERSON;

Chapter 4-7

Chapter 4-8

typedef struct TREE {
struct TREE "left;
struct -TREE *right;
PERSON *entry;

} TREENODE;

PERSON phone book[) = {
{ -

"John" ,"Cannon" ,"(206) 524-4521",
Scuba_ diving,Exercise

},{
"Frank" ,"Adkins" ,"967-8186",

Motorcycle _racing, Opera,Magic
},{

"Cathy","Mann","415 996-9898",
Dancing,Running,Exercise,Fine _art

},{
"","Atron","(408) 253-5933",

},{
"H.D." ,"Graves" ,"253-5433",

Philosophy ,Bicycling, Classical music
},{ -

"Don" ,"Hennings" ,"(312) 121-343511
1

Rock_ n _roll,Running,Skiing
},{

"","Information","??? 555-1212"
},{

"Stacy" ,"Harkala" ,"882-8715",
Travel,Flying,Scuba diving,Hot tubbing

},{ - -
"Otto" ,"Marsh" ,"494-3658",

A Sample Debugging Session

G ames,Literature,Philosophy, Classical_ music
},{

NULL
}};

TREENODE _root, *root =&_root;

/*
*

Create a binary tree, sorting on last name, then output the contents
of that tree in sorted order.

*/

demo4()
{

creat_tree();
display tree(root);

} -

/* Generate a binary tree which sorts "phone book[]"
* by first and last names. -
*/

A Sample Debugging Session

creat tree()
{ -

}

TREENODE *node = root, *tmpnode;
inti;

root->entry = &phone_book[O];

for (i = 1; *phone_book[i].phone; ++i) {
tmpnode = (TREENODE *) malloc(sizeof(TREENODE));
memset(tmpnode,'\O',sizeof(TREENODE));
node= root;
for (;;)

if (stricmp(phone book[i].names.last,node->entry->names.Jast) < 0)
if (lnode->left){

node->left = tmpnode;
break;

} else
node = node->left;

else
if (!node->right) {

node->right = tmpnode;
break;

} else
node = node->right;

tmpnode->entry =&phone book[i];
} -

/* Display the array phone book in alphabetical order by
means of a left prefix transversal of the tree. *

*/

display tree (node)
TREENODE *node;

{

}

if (node->left)
display_ tree(node-> left);

printf("\n%s %s\n%s\n",
node->entry->names.first,
node->entry->names.last,
node->entry->phone);

if (node->right)
display_ tree(node->right);

Chapter 4-9

Chapter 4-10 A Sample Debugging Session

COMPILING AND LINKING

AT PROBE supports Codeview symbolic information generated by
the Microsoft C compiler version 4.0 or greater and the Microsoft
Macro Assembler version 5.0 or greater. To include this symbolic
information in the executable file, compile with the /Zi command
line option and link using the /CO flag. For example, if you have
the Microsoft C compiler version 5.0 and Masm version 5.0 you would
want to compile and link our demonstration program with the
following commands:

masm /Zi /Mx demo3;

cl -Zi demo.c demo2.c demo3.obj demo4.c

We have included an executable version of "demo.exe" so that you
will not have to assemble, compile, and link the example program.

A Sample Debugging Session Chapter 4-11

ST AR TING AT PROBE

The AT PROBE can be started and loaded three different ways: by
specifying the executable file name (with an optional map file
parameter) at the command line (ATPROBE demo.exe.map); by
loading the executable file from within the AT PROBE, or by
loading AT PROBE with an initialization file (ATPROBE /i
initfil.ini). Note that some machines with the Phoenix (R) BIOS will
require the use of AT PROBE software with the "HP" suffix:
A TPRBHP and A TSRCHP. If it was necessary to use the
A TPDIAHP PROBE diagnostics, then "HP" suffix software is
required.

Start the AT PROBE with the following command line:

atsource demo.exe

You will see the following screen:

File Search sYmbol Watch Options Calls Go Memory Breakpoint Eva! mAcro Reg Trace
Program load <Tab> next field <Esc> prev screen ----­
Load code from file: <Yes> {YesiNo} Load symbols from file: <Yes> {YesiNo}
Source file path: <C:\SRC\>
Source file extension:<.C>
Symbol file extension:<.EXE>
Sym--bol adjustment: <Exe> {ExelComlOffsetlAbsolute}

Program command line: <>
Default disk:<C> Default directory:<\SRC>
File name: <DEMO.EXE>

Loading program from file DEMO.EXE
Loading symbols from file DEMO.EXE
Reading symbols, types and lines 0021

To see a source level display, press the <F3> key.

Chapter 4-12 A Sample Debugging Session

GO

It is often useful to execute past the run-time initialization code to
the first C instruction. If you are looking at a source level display,
press <F8> to single step into the main() procedure. An alternate
method would be to Go to main(): this is accomplished with the
keystrokes G main <CR>, where G brings down the Go menu, main
enters the address of main() as non-sticky breakpoint, and <CR>
represents the Carriage-Return (enter) key.

File Search sYmbol Watch Options Calls Go Memory Breakpoint Eva! mAcro Reg Trace
r------------<Tab> next field <Esc> prev screen-------..
Start with CS:IP=<1C43:017E>=. astart
Non-sticky execution breakpoints:[main

..._ _____ Enter list of non-sticky breakpoint execution addresses _____ __.

A Sample Debugging Session Chapter 4-13

SINGLE STEPPING

Press <F3> to switch to assembly mode. You will see the following
display:

File Search sYmbol Watch Options Calls Go Memory Breakpoint Eva! mAcro Reg Trace
----------- PgUp/Dn, Arrows move highlight -------
14. int argc;
1C13:0010=PUSH BP

0000
1C13:0011 MOV BP,SP
1C13:0013 MOV AX,0002
1C13:0016 CALL 04CC ; . chkstk
19. demo3(7); /* clear the display, using attribute 7 * /
1C13:0019 MOV AX,0007
1Cl3:001C PUSH AX
1C13:001D CALL 0136 ; ._demo3
1C13:0020 ADD SP,0002
21. if (!--argc)
1C13:0023 DEC WORD PTR (BP+0004] ; .. DEMO.main.argc
1C13:0026 JNZ 0040 ; .. DEM0#27
22. for (i = O; i < 3; ++i) {
1C13:0028 MOV WORD PTR (BP+FFFE],0000 ; .. DEMO.main.i
1C13:002D JMP 0032 ; .. DEM0#22+0A
1Cl3:002F INC WORD PTR (BP+FFFE] ; .. DEMO.main.i
1C13:0032 CMP WORD PTR (BP+FFFE].0003 ; .. DEMO.main.i
1C13:0036 JGE 0040 ; .. DEM0#27
23. print nums();
1C13:0038 CALL 0050 ; .. DEMO.print_nums

AT PROBE has set the CS:IP to the first instruction in main(), before
the stack initialization procedure chkstk. It will be necessary to
step beyond chkstk before setting a breakpoint on the local
variable coun~Pressing <F8> three times will move the highlight to
the line with the instruction:

CALL xxxx ;. __ chkstk.

At this point, pressing <F8> a forth time would cause the AT PROBE
to step into the function chkstk. Instead, press <FlO> to run in
real time through chkstk, stopping immediately after returning
from that function call. Press <F3> again to return to source display
mode.

Chapter 4-14 A Sample Debugging Session

DISPLAYING REGISTERS

If it is desirable to watch the current register values as code is
stepped though, press <F2>. Pressing <F2> a second time will cause
the register display to be removed from the screen. To load the
watch window included with the demo programs, use the following
sequence of keystrokes:

W L demo. web <CR>

Now press <Alt-S> to bring up a window display of the stack, and
set the registers display <F2> to on. When you wish to toggle the
stack display off, press <Alt-S> a second time. Using <F8>, single
step through the assembly language module demo3.

File Search sYmbol Watch Options Calls Go Memory Breakpoint Eva! mAcro Reg Trace
.-----------<Tab> next field <Esc> prev screen------...,
Processor:<Main> {FloatjMain}
Enter new value:[
-------------Arrows move highlight---------"
AX=0007 CS=l2FD SS=l4AD DS=l4AD ES=l4AD GDTR=OOOOOO,FFFF
BX=l314 IP=Ol36 SP=lSlO SI=0082 DI=l32D IDTR=OOOOOO,FFFF
TR=OOOO
CX=0019 BP=l316 MSW=FFFO=TSO EMO MPO PEO
DX=OOOE FL=0206=00 DO Il TO SO ZO AO Pl CO

If at any time you wish to examine the complete 80286 register set
and/or change the value of a register, use the Registers command. R,
for registers, will display the screen shown above.

A Sample Debugging Session Chapter 4-15

INTRODUCTION TO BREAKPOINTS

Next, a simple breakpoint will be set. Before continuing, a bit of
background is in order. When a program overwrites a value in the
range of DS:O to DS:34h (DS:52 decimal), the Microsoft C (R)
compiler will issue a null pointer error on exiting from the program.
Test.c is deliberately written so that when count is equal to 50 a
value of Oxff will be written to DS:lO. This first breakpoint will
trap on the range of memory being tested by the Microsoft compiler.
To create the breakpoint, enter the following sequence of keystrokes:

B D 0 W DS:O <CR> +52T <CR> <CR> <CR> A <ESC> <ESC>

File Search sYmbol Watch Options Calls Go Memory Breakpoint Eva! mAcro Reg Trace

I Define - <Esc> prev screen
Breakpoint number:[J

..._ ____________ '0' . .'9' for breakpoint---------""'

BP# Status Address [to address] Verb Data When detect
BPO Clear
BPl Clear
BP2 Clear
BP3 Clear
BP4 Clear
BP5 Clear
BP6 Clear
BP7 Clear
BP8 Clear
BP9 Clear

Chapter 4-16 A Sample Debugging Session

File Search sYmbol Watch Options Calls Go Memory Breakpoint Eval mAcro Reg Trace
<Tab> next field Define - <Esc> prev screen

BPO Status:<Active> { Clear!Active!Inactive}
Verb:(Write) {Execute!Read!WritelFetchllnput!OutputlAny}

Address:<ds:O >to <+52t >

Data size: <None> {Byte!None}

When BP detected:<Stop> {Stop!Macro/watch!Arm bp!Reset trigger}

<Space> next choice

Now enter G <CR>. The program will send to the display a series of
numbers from 0 to 49 and then execution will be suspended.

A Sample Debugging Session Chapter 4-17

DEFINING A WINDOW

Since the program was stopped by memory overwrite breakpoint, it
would typically be desirable to examine the block of memory that
was written to. To do so, enter the following sequence:

W D <Alt-W> <CR> <CR> <CR> data seg:O <CR> <CR> R
<CR> DS:O <CR> +52T <CR> <CursorRight> <CursorRight>
<CursorRight> <CursorRight> <CursorRight> <CursorRight>
<CursorRight> <CursorRight> <CursorRight> <CursorRight>
<CursorRight> <CR> <ESC> <ESC>

File Search sYmbol Watch Options Calls Go Memory Breakpoint Eva! mAcro Reg Trace
Define edit <Tab> next field <Esc> prev screen

Operation: [Add field] {Add fieldlMove fieldlChange fieldlRemove field}
Field type:[Range mem] {LabeljExpressionlZero stringOjString lenlRange mem}
Range display type: [Byte] {BytejWordlDwordjfShortjfLongjfTempjfPacked}
Range start address:[DS:O
Range end address: [+52t

dataseg:O 00 00 00 00 00 00 00 00 4D 53 FF 00 75 6E 2D 54 69 6D 65 20 4C 69 62
72 61 72 79 20 2D 20 43 6F 70 79 72 69 67 68 74 20 28 63 29 20 31 39
38 37 2C 20 4D 69

The watch window shown above will appear containing a display of
memory over a range of from DS:O to DS:52. To open the window,
press <Alt-W>. To close the window, press <Alt-W> a second time.

Chapter 4-18 A Sample Debugging Session

MACROS

While the display of memory in the watch window contains all the
information necessary to examine the overwrite, sometimes a simple
hex dump fails to fully convey the meaning contained in a block of
memory. This dilemma is best dealt with by means of the Memory
Display command. To simplify future use of the Memory Display, a
mAcro will be created containing the necessary sequence of
keystrokes to re-open that display at any time. To create the macro,
enter the following series of keystrokes:

A D <Alt-D> <CR> a display of DS:O to DS:52 <CR> <CR> Y
MD <CR> DS:O <CR> +52T <CR> <Alt-D>

File Search sYmbol Watch Options Calls Go Memory Breakpoint Eval mAcro Reg Trace
------<Tab> next field Display change-<Esc> prev screen------.
Data size: <Byte> {BytejWordjDwordjSigned-wordjsigned-longjPointer}
Start address: <lDDC:OOOO> End address: <1DDC:0033>
Enter new value:[
'-------------PgUp/Dn, Arrows move highlight-------
Current address:<lDDC:OOOO>=. cxtoa+5C
lDDC:OOOOO=OO 00 00 00 00 00 00 00 40 53 FF 00 75 6E 2D 54 MS .. un-T
1DDC:0010=69 6D 65 20 4C 69 62 72 61 72 79 20 2D 20 43 6F ime Library - Co
1DDC:0020=70 79 72 69 67 68 74 20 28 63 29 20 31 39 38 37 pyright (c) 1987
1DDC:0030=2C 20 40 69 , Mi

Pressing <ESC> will restore the console to the source lines display.
To active the macro, press <Alt-D>.

If your keyboard has function keys across the top, which can be
difficult to use, you might create other simple macros to substitute
for those keys. For example, Alt-S might be used to single step, and
Alt-C might substitute for F7, going to the cursor line.

A Sample Debugging Session Chapter 4-19

The beauty of macros is the labor they save. Nevertheless, if it is
necessary to re-define the macro each time the debugger is started,
the extent of that savings of labor would be slight. Macros (and
watch windows) can be saved to disk, then automatically reloaded at
will.

A S demo.mac <CR> will save the macro to the file "demo.mac".
Likewise, W S demo.web <CR> will save all watch windows to the
file "demo.wch".

Chapter 4-20 A Sample Debugging Session

DEFINE REAL TIME TRACE

For an in depth analysis of the sequence of instructions leading up
to the break, press T I. The following display will appear for several
seconds while the AT PROBE analyzes the trace:

File Search sYmbol Watch Options Calls Go Memory Breakpoint Eva! mAcro Reg Trace
--------<Tab> next field <Esc> prev screen Instructions ------.

Analyzing trace data near cycle number 0120

Once the trace information has been analyzed, the following display
of source lines, assembly mnemonics and bus cycles will be shown (1).

(1) Because of the way the 80286 "pipeline" works, by the time memory has been overwritten
and the breakpoint detected, the program may have executed some additional
instructions. These instructions will appear below the line marked "B" on the trace
display.

A Sample Debugging Session Chapter 4-21

File Search sYmbol Watch Options Calls Go Memory Breakpoint Eval mAcro Reg Trace
<Tab> next field <Esc> prev screen Instructions~

Search addr:<Any> to <>
Verb: <Any> {ReadlWritellnputlOutputlAny}
Data size: <Any> {BytelWordlDwordlAny} Data: <>
jBegin search oftrace:[No) {YeslNo}
---------- PgUp/PgDn/ Arrows move within memory

29. if (count == 50)
0001C479 CMP WORD PTR (BP+FFFE],0032
0001ED9A READ 0032 . end+07DA
0001C47D JZ $+0005 -

30. *zeroptr = Oxff;
0001C482 MOV BX,WORD PTR (0042)
0001DDD2 READ OOOA . zeroptr
0001C486 MOV WORD PTR (BX),OOFF

B 0001DD9A WRITE - OOFF . __ cxtoa+6C

81. print (&count);
0001C48A LEA AX,(BP+FFFE)
0001C48D PUSH AX
0001ED94 WRITE - lOOA ._end+07D4
0001C48E CALL $+0088
0001ED92 WRITE - 0071 ._end+07D2

The line with a leading 'B' marks the point where the break actually
occurred. After the "B" on that line the absolute address accessed is
displayed, the type of memory access (a write), and the value
accessed. In this example, the value FF hex is being written to the
absolute address 1DD9A, which is offset 6C hex from the symbol

cxtoa. The previous line shows the assembly code which causes
that bus access to occur. That line shows the absolute address of the
instruction (IC486 hex) and the mnemonics (MOY WORD PTR
[BX],OOFF) which construe the actual code.

The trace display can be scrolled through with the <PgUp>, <PgDn>,
<CursorUp>, <CursorDown>, <Ctrl-PgUp>, and <Ctrl-PgDn> keys. To
exit the trace, press <ESC>.

Chapter 4-22 A Sample Debugging Session

INIT FILES

Saving and restoring macros and watch windows is a useful
capability. A more powerful feature of the AT PROBE is its ability
to automatically load a program, macros, watch windows, and
symbols. To save the current AT PROBE environment, enter FI
<CR> <CR> <CR> demo.ini <CR>. Exit the AT PROBE by entering F
Q <CR>. Now restart the.AT PROBE by entering atsource /i
demo.ini <CR>. As the various files are auto-loaded, the following
screen will be displayed:

File Search sYmbol Watch Options Calls Go Memory Breakpoint Eva! mAcro Reg Trace
Initializations <Tab> next field <Esc> prev screen-----...,
Load/save initialization information:<Load> {LoadjSave}
Default disk:<C> Default directory:<\SRC>
File name: <DEMO.IN!>

Loading option .. .
Loading module .. .
Loading program .. .
Loading program from file C:\SRC\DEMO.EXE
Loading symbols from file C:\SRC\DEMO.EXE
Reading symbols, types and lines 0198
Loading macro ...
C:\SRC\DEMO.MAC
Loading watch ...
C:\SRC\DEMO.WCH

Auto loading an init file containing a "Startup" macro used to
prepare AT PROBE for a debugging session can streamline and
simplify the debugging process.

A Sample Debugging Session Chapter 4-23

CALLING MACROS FROM BREAKPOINTS

Press <F3> <F8>. This will bring you to main(). Now, reset
breakpoint 0 with the sequence:

B D 0 W DS:O <CR> +52T <CR> <CR> M <Alt-D> <CR> A
<ESC> <ESC>

Run the program by typing G <CR>. As you see, there is a
difference between the breakpoint just entered and the similar
instructions used to set the breakpoint earlier. Previously, after the
memory write, the breakpoint had simply stopped program execution.
This time, when the program breaks, the macro created earlier to
display the 52 bytes of memory at DS:O will be automatically
executed.

Chapter 4-24 A Sample Debugging Session

DEFINE SEQUENTIAL BREAKPOINTS

Next, using sequential breakpoints, a trap will be put on a write to a
local variable in such a manner that the program will break only
when a write to that variable occurs from a function other than that
which owns the variable. Press <ESC> to clear the display. Next,
put the display into assembly mode and set execution breakpoints on
the line which calls print() and on the line immediately following
that line.

File Search sYmbol Watch Options Calls Go Memory Breakpoint Eval mAcro Reg Trace
-----------PgUp/Dn, Arrows move highlight -------
38. print (&count);
12FD:0078= LEA

12FD:007B
12FD:007C
12FD:007F
12FD:0082
40. return;
12FD:0084
41. }
12FD:0086
12FD:0088
12FD:0089
44. {

0002
PUSH
CALL
ADD
JMP

JMP

MOY
POP
RET

AX,[BP+FFFE]

AX
OOAO
SP,0002
0060

0086

SP,BP
BP

12FD:008A PUSH BP
12FD:008B MOY BP,SP
12FD:008D XOR AX,AX
12FD:008F CALL 04CC
45. puts("\nResetting counter\a\n");
12FD:0092 MOY AX,0566
12FD:0095 PUSH AX
12FD:0096 CALL 1992
12FD:0099 ADD SP,0002

; .. DEMO.print_nums.count

; .. DEM02.print

; .. DEM0#35+07

; .. DEM0#41

; . __ chkstk

; ._puts

BPI
BP2

A Sample Debugging Session Chapter 4-25

Enter B D. You should see a display similar to the one shown below:

File Search sYmbol Watch Options Calls Go Memory Breakpoint Eva! mAcro Reg Trace
... ------------Define -<Esc> prev screen---------.

'

Breakpoint number:[)
'-· -------------'0' . .'9' for breakpoint-----------'
BP#
BPO
BPl
BP2
BP3
BP4
BPS
BP6
BP7
BP8
BP9

Status Address
Inactive
Active
Active
Clear
Clear
Clear
Clear
Clear
Clear
Clear

.. DEM0#38+04

.. DEM0#38+07

[to address] Verb Data When detect
+52t Fetch None <AltD>

Execute Stop
Execute Stop

Breakpoint 0 will now have to be changed to break on a write to the
variable count which is local to the function print nums(), and
breakpoints 1 and 2 will be modified to arm and disarm breakpoint
0. Enter the following sequence of keystrokes:

0 W <Ctrl-CursorLeft> print_nums.count <CR>
<Ctrl-CursorLeft> <CR> <CR> S A <ESC>
1 <CR> <CR> A 0 <space> 2 <CR> <ESC>
2 <CR> <CR> R <ESC> <ESC>

File Search sYmbol Watch Options Calls Go Memory Breakpoint Eva! mAcro Reg Trace
<Tab> next field Define-<Esc> prev screen

BPO Status:<Active> { ClearlActivelinactive}
Verb:[Write] {ExecutelReadlWritelFetchlinputiOutputlAny}

Address:<print _ nums.count >to< >

Data size: <None> {WordlByteiNone}

When BP detected:<Stop> {StoplMacro/watchlArm bplReset trigger}

<Space> next choice

Chapter 4-26 A Sample Debugging Session

File Search sYmbol Watch Options Calls Go Memory Breakpoint Eva! mAcro Reg Trace
<Tab> next field Define --<Esc> prev screen

BP 1 Status:<Active> { ClearlActiveiinactive}
Verb:[Execute] {ExecutelReadlWritelFetchlinputlOutputlAny}

Address:< .. DEM0#38+04 >

When BP detected:<Arm bp> {StoplMacro/watchlArm bplReset trigger}
Arm bp:<O 2>

<Space> next choice

File Search sYmbol Watch Options Calls Go Memory Breakpoint Eva! mAcro Reg Trace
<Tab> next field Define --<Esc> prev screen

BP2 Status:<Active> { CleariActivelinactive}
Verb:[Execute] {ExecutelReadlWriteiFetchlinputlOutputlAny}

Address:< .. DEM0#38+07 >

jwhen BP detected:<Reset trigger> {StoplMacro/watchlArm bplReset trigger}

<Space> next choice

File Search sYmbol Watch Options Calls Go Memory Breakpoint Eva! mAcro Reg Trace
,.------------- Define--<Esc> prev screen----------.

'

Breakpoint number:[]
~---------------- '0' . .'9' for breakpoint __________ _,
BP# Status Address [to address] Verb Data When detect
BPO Active print nums.count Write None Stop
BPl Active .. DEM0#38+04 Execute Arm bp 0 2
BP2 Active .. DEM0#38+07 Execute Reset trigger
BP3 Clear
BP4 Clear
BP5 Clear
BP6 Clear
BP7 Clear
BP8 Clear
BP9 Clear

A Sample Debugging Session Chapter 4-27

Breakpoint #l will cause breakpoint 0 to be armed each time the
function print is called, and breakpoint number three will reset the
entire breakpoint chain each time it is triggered.

As the breakpoint definitions are entered, the display should be the
same as shown above. Having entered the breakpoint definitions,
press G <CR>.(2) After running for a short time, the program will
break on one of the following lines: (3)

}

*val = I;
return;

(2) As AT PROBE sequential breakpoints do not occur in realtime, a loss of performance on
the part of the program being debugged may be observed.

(3) Because of processor queueing, the actual line where program execution ends may vary.

Chapter 4-28 A Sample Debugging Session

ASSEMBLE/UNASSEMBLE

Leave the trace mode and enter M U. Enter the address to be
unassembled as follows:

#38 <CR>

Press <TAB> Y <CR> followed by pressing <CursorDown> one time.
At this point the high lighted line should be the same as the line
which caused the unwanted memory write. The display will show
the instruction coded as bytes of hex. In order to progress beyond
the memory write which is causing an endless loop, it will be
necessary to delete the write instruction. This will be accomplished
by changing the four bytes comprising the write instrqction to a
series of four NOP instructions (see screen display below). To delete
the write instruction enter NOP <CR> four times, followed by <ESC>
to return to the source line display. Once the source of the memory
overwrite has been eliminated, the program will no longer break at
this point.

File Search sYmbol Watch Options Calls Go Memory Breakpoint Eva! mAcro Reg Trace
<Tab> next field Unassemble assemble <Esc> prev~creen

Display bytes:<Yes> {Yes!No}
Start address:<1301:0128>
Instruction: [
Undo last change:<No> {Yes!No}
-----------PgUp/Dn, Arrows move highlight
38. *val= 1;
1301:0128=MOV BX,WORD PTR [BP+0004] ; .. DEM02.print.val
1301:012B 90
AAAA NOP

1301:012C 07
A A A A POP ES

1301:0120 01 00
• • • • ADD WORD PTR [BX+SI],AX ; ._end+0806

40. return;
1301:012F EB 00

A A A A JMP 0131 ; .. DEM02#41
41. }
1301:0131 SB E5

A A A A MOY SP,BP
1301:0133 5D

A A A A POP BP
1301:0134 C3
AAAA RET

A Sample Debugging Session Chapter 4-29

THE CALLS COMMAND

Having eliminated the memory overwrite it may be valuable to be
able to examine the current state of the stack. This can be done with
the Calls command. Calls is activated by pressing C. The Calls
command will display the variables and functions on the stack as
follows:

File Search sYmbol Watch Options Calls Go Memory Breakpoint Eval mAcro Reg Trace
<Tab> next field <Esc> prev screen~

Show arguments:<Yes> {YeslNo}
Show locals: <Yes> {YesiNo}
Operation: [Find) { CodelFindjNextjPreviouslUpjDownlVariable}
Function/variable name:<. stbuf+05><>
,__ ______ <Space> next choice; PgUp/Dn, Arrows move highlight
CS:IP is 1C43:09ED at . __ stbuf+0005

Function at . stbuf+0005 with BP = OFD4:
Returns to 1C43:082B at ._printf+0015

Function at ._printf+0015 with BP = OFE6:
Returns to 1C43:012C at #36+0017 in function .print

Function .print with BP = OFF A:
Returns to 1C43:0071 at #31+0007 in function .print nums
lDDA:OFFE print.val = 1004 -
1DDA:OFF8 print.tptr = 07AO

Function .print nums with BP = 1006:
Returns to 1C43:0026 at #19 in function .main
1DDA:l004 print_nums.count = 0002

Function .main with BP = 1010:

As the previous memory write caused print_nums.count to be
inadvertently changed, it is desirable to restore the proper value to
that variable before continuing program execution. To do so, enter F
count <CR> V <CR>. The first instruction will locate the variable
count on the stack and the second activate the Variable function,
which will display the screen below:

Chapter 4-30 A Sample Debugging Session

File Search sYmbol Watch Options Calls Go Memory Breakpoint Eval mAcro Reg Trace
.---------Variable-<Tab> next field <Esc> prev screen-----­
Variable name or address:<print nums.count>
DataType: <int> -

OOOlH lT +lT '.' 00000000,0000000lY
New value:[

1DDA:1004 print_nums.count = 0002

Press <F4> to examine the last value output to the display. Having
noted that value (which in this case is lOOT), press <F4> again.
Enter the value which was last on the screen, followed by <CR>
<ESC>.

Before continuing, press <CursorUp> five times to high-light the
address to return to print nums, followed by <F7> to go to that
address. This will cause the program to move one level up the stack.

A Sample Debugging Session Chapter 4-31

THE FILE VIEW COMMAND

It is possible to examine and set breakpoints or go to a location in a
file other than the current one by using the File View command.
Enter the following keystrokes:

F V demo4.c <CR> L 111 <CR> <F7>

This ca uses the source file "demo4.c" to be examined, and in this case
line number 111 is located, then using <F7> the applications program
is executed up to that line.

File Search sYmbol Watch Options Calls Go Memory Breakpoint Eva! mAcro Reg Trace
View <Tab> next field <Esc> prev screen -------.

!Operation: [Find] {FindlNextlPreviouslLine}
Find:<>
C:\SRC\DEM04.C PgUp/Dn, Arrows move highlight ___ ..,,.

101. * /
102.
103. creat tree()
104. { -
105. TREENODE *node = root, *tmpnode;
106. inti;
107.
108. root->entry = &phone_book[O];

for (i = 1; *phone_book(i].phone; +-ti) {
tmpnode = (TREENODE *) malloc(sizeof(TREENODE));
memset(tmpnode, '\ O' ,sizeof(TREENODE));
node= root;
for (;;)

BPO

109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.

if (stricmp(phone book(i].names.last,node->entry->names.last) < 0)
if (!node->left){

node->left = tmpnode;
break;

} else
node= node->left;

Chapter 4-32 A Sample Debugging Session

THE VARIABLE COMMAND

At this point the demo program's execution has stopped in function
creat tree(). You may wish to single step through this function as
the binary tree is created in order to gain an understanding of the
form of that data structure. A watch window has been provided
which was loaded along with the stack (<Alt-S>) watch window. The
watch window will show the current state of the variables
phone_book[i].names and node->names. This watch window can be
opened with <Alt-N>.

File Search sYmbol Watch Options Calls Go Memory Breakpoint Eva! mAcro Reg Trace

Variable i 0001 First name: Last Name:
phone_ book[i] .names Frank Adkins ~
<AltN>

node->names John Cannon
C:\SRC\DEM04.C--------PgUp/Dn, Arrows move highlight----'

100. * by first and last names.
101. * /
102.
103. creat tree()
104. { -
105. TREENODE *node= root, *tmpnode;
106. int i;
107.
108. root->entry = &phone_book[O];
109.
110.
111=
112.
113.
114.
115.
116.
117.
118.

for (i = 1; *phone book(i].phone; ++i) {
tmpnode = (TREENODE *) malloc(sizeof(TREENODE));

memset(tmpnode,'\O',sizeof(TREENODE));
node= root;
for (;;)

if (stricmp(phone book[i].names.last,node->entry->names.last) < 0)
if (lnode->left){

node->left = tmpnode;
break;

A Sample Debugging Session Chapter 4-33

To examine the data structure from which the binary tree is being
created, that being the array phone_book[], enter M V phone_book
<CR>. The following display will appear:

File Search sYmbol Watch Options Calls Go Memory Breakpoint Eval mAcro Reg Trace
------<Tab> next field Variable---<Esc> prev screen------.
Variable name or address:<phone book>
DataType: <struct PERSON [lOf>
Member: <[OJ.names.first>
"John"
New value:[

1DC3:0044 [OJ.names.first
1DC3:005D [OJ.names.last
1DC3:0076 [OJ.phone
1DC3:0086 [O] .hobbies[O]
1DC3:0088 [O].hobbies[lJ
1DC3:008A [O] .hobbies[2]
1DC3:008C [O] .hobbies[S]
1DC3:008E [O].hobbies[4]
1DC3:0090 [1].names.first
1DC3:00A9 [lJ.names.last
1DC3:00C2 [1].phone
1DC3:00D2 [1].hobbies[OJ
1DC3:00D4 [1].hobbies[l]
1DC3:00D6 [1].hobbies[2]
1DC3:00D8 [1].hobbies[3]
1DC3:00DA [1].hobbies[4]
1DC3:00DC [2].names.first

="John"
="Cannon"
= "(206) 524-4521"
= Scuba diving
=Exercise
= 0000
= 0000
= 0000
="Frank"
="Adkins"
= "967-8186"
= Motorcycle_racing
=Opera
=Magic
= 0000
= 0000
="Cathy"

From within the Variable command complex data structures such as
phone book[] may be examined and manipulated. Using the cursor
keys, highlight different substructures within phone_book[]. To
alter a member element of the array, highlight that member and
enter the new value to the "New Value: [" prompt. Note that strings
must be contained in quotes, and that enumerated data types can be
entered as either integers or the enumerated types as were defined in
the appropriate ENUM declaration.

Once you have conceptualized how the tree is constructed, close the
watch window with <Alt-N> and go to line number 141 by entering
G 141 <CR>. This will cause execution to stop in the function which
outputs the contents of the binary tree in sorted order. Press <F9> to
set a breakpoint at this line. Now, set the break point counter to 6
with B S 6 <CR>. At this point, enter G <CR> to cause the function
display _tree() to execute five times past the breakpoint set at line

Chapter 4-34 A Sample Debugging Session

141, stopping on the sixth instance of that breakpoint. At this point
the function display tree() has called itself six times and returned
twice, leaving five instances (including the initial call) of
display _tree() on the stack.

Before examining the stack, it is helpful to load a special macro file
created for this example. Enter A L DEMO.MAC <CR>. Now bring
up the Calls command by entering C. With the cursor keys, move the
highlight to the second instance of the variable display _tree.node.
Press V for Variable. You should see the display below:

File Search sYmbol Watch Options Calls Go Memory Breakpoint Eva! mAcro Reg Trace
-------Variable-<Tab> next field <Esc> prev screen------.
Variable name or address:<lDC3:12EC>
DataType: <struct _TREE *>

142AH 5162T +5162T '.*' 00010100,00101010Y
New value:[

1DC3:12EC 1DC3:12EC = 142A

In this case the address of the second instance of the local variable
node was automatically entered into the "Variable name or address"
dialog box rather than the variable name itself in order to
distinguish the particular instance of the variable being examined.
The bottom line displays the address of the variable and the value
contained within that address. Next, since this variable is a pointer,
it will be dereferenced and cast from a pointer to type TREE to
type TREE. Enter the following sequence: -

<CR> <TAB> <CTRL-HOME> [<CTRL-END>] <TAB> <TAB>
C [node]

At this point you should have the following display:

File Search sYmbol Watch Options Calls Go Memory Breakpoint Eva! mAcro Reg Trace
.---------Variable-<Tab> next field <Esc> prev screen------.
Variable name or address:<[1DC3:12EC)>
DataType: <> Use same type as symboi:[[node)

143AH 5178T +5178T '.:' 00010100,00lllOlOY
New value:<>

1DC3:142A (1DC3:12EC) = 143A

)

A Sample Debugging Session Chapter 4-35

The address in "Variable name or address" has been dereferenced by
the use of a set of square brackets. The DataType is about to be
changed to the same type, that being the type of node dereferenced,
or the structure TREE. Enter <CR>.

File Search sYmbol Watch Options Calls Go Memory Breakpoint Eva! mAcro Reg Trace
r-------Variable-<Tab> next field <Esc> prev screen----­
Variable name or address:<[1DC3:12EC]>
DataType: <struct TREE>
Member: <left> -
143AH 5178T +5178T '.:' 00010100,00111010Y
New value:[

1DC3:142A left
1DC3:142C right
1DC3:142E entry

= 143A
= 1432
= OlCO

The structure TREE is a struct containing three pointers. The first
two are pointers to other TREE nodes, while the third points to an
element of the array beingsorted. If, for example, it is desirable to
automatically chain through a tree or a list of this sort, macros can
be used to this purpose. We have provided two such macros in the
file DEMO.MAC which you loaded earlier. Enter <ALT-L> followed
by Y to move to the left node. Now enter the following sequence of
keystrokes:

<TAB> <CTRL-CursorLeft> 258 <CR> <TAB> <TAB> C
([node].entry] <CR>

Chapter 4-36 A Sample Debugging Session

File Search sYmbol Watch Options Calls Go Memory Breakpoint Eval mAcro Reg Trace
--------Variable-<Tab> next field <Esc> prev screen------,
Variable name or address:<258>
DataType: <struct PERSON>
Member: <names.first>
"Stacy"
New value:[

1DCS:0258
1DC3:0271
1DC3:028A
1DC3:029A
1DC3:029C
1DCS:029E
1DCS:02AO
1DCS:02A2

names.first
names.last
phone
hobbies[O]
hobbies[!]
hobbies[2]
hobbies[S]
hobbies[4]

="Stacy"
= "Harkala"
= "882-8715"
=Travel
=Flying
=Scuba diving
= Hot tubbing
=0000

This process was very similar to that which previously dereferenced
a node pointer into the TREE structure, but this time the node
member entry, which points to a structure of type PERSON (which
is an element of the array phone_book[]) was dereferenced. You
might note that .since a variable of type PEOPLE was not available,
it was necessary to dereference *node->entry with the expression
[[node].entry], to gain the proper type cast.

After experimenting with the Variable command, you may wish to
Go to the end of the demo program.

A Sample Debugging Session Chapter 4-37

EXITING AT PROBE

Once the program has completed execution, it must be reloaded using
the Files Program Load instruction, before any more debugging can
be performed. To return to DOS use the Files Quit command.

Chapter 4-38 Advanced Debugging Techniques

ADVANCED DEBUGGING TECHNIQUES

This section shows more advanced examples of using AT PROBE.
These debugging procedures have been arrived at by previous users
in real applications.

DEBUGGING A BOOT LOAD SEQUENCE

If you are developing a boot loader, it will be necessary to make
some additions to the loader before using the AT PROBE for
debugging. A primary concern in using AT PROBE to debug a boot
load sequence is to replace the AT PROBE vectors at locations 0:4,
0:8, and O:C after they have been modified by the boot loader, and to
load the 8k AT PROBE vector table from the AT PROBE protected
mode memory into a suitable safe block of memory in the real mode
address space. As this is a complex and involved process, it will not
be described in detail here: rather, the source and make files for the
PROBE.SYS device driver are included on the distribution diskette to
provide an example of the necessary code. The best place to start in
your study of this code is the function Initialize in drinit.asm. If
you wish, you may use this code in your application.

Once the application has been modified to deal with the issues
discussed in the previous paragraph, AT PROBE can be loaded.
Next, the symbol table can be loaded as discussed in LOADING THE
SYMBOL TABLE WHEN PROBE DOES NOT LOAD THE
PROGRAM. Finally, the system is rebooted by using Go with a
starting address of ffff:O hex (4).

If the AT PROBE loader is not overwritten by memory test of by the
boot loader itself, it will be sufficient to just have the boot loader
set the INT l, 2, and 3 vectors back to their previous values; the boot
loader doesn't need to do all the work that probe.sys does.

If a jump to self loop was used to stop AT PROBE at a specific
address, then wait a few seconds for the system to execute up to that
point and return control to AT PROBE by pressing the STOP button
(5). If it is desired to trap somewhere in the boot loaded program,

(4) If you wish to avoid the system memory tests, write a value of 1234 hex to 0:472 before
jumping to BIOS.

(5) It may be necessary to switch to an external console before rebooting the system. This
should be done if the system locks up when the STOP button is pressed.

Advanced Debugging Techniques Chapter 4-39

rather than simply using the stop button at the point of an infinite
loop, then it is advisable to set a hardware breakpoint. An execute
breakpoint will not work because the boot loaded program will write
over the top of the breakpoint trap. Thus, if you want to stop at an
instruction somewhere in the boot loader, use the Fetch verb in the
hardware breakpoint. Another option would be to hardcode an INT
3 instruction directly into the boot loader, so that it will come off
the disk with a breakpoint set.

Since DOS does not know that AT PROBE is running at this point,
AT PROBE commands File,Macro and Windows commands that load,
and save to disk,will not work. Additionally Source Step cannot be
used as it will perform disk a access to get source file information.
If you want symbols attached to your boot loader, see the section
entitled "LOADING THE SYMBOL TABLE WHEN PROBE DOES
NOT LOAD THE PROGRAM" later in this chapter.

Chapter 4-40 Advanced Debugging Techniques

DEBUGGING A DEVICE DRIVER WHICH INST ALLS ITSELF

When debugging a device driver which is installed from config.sys, as
with the debugging of a boot load sequence it is necessary to reset
vectors 1,2, and 3 before using the AT PROBE. Atron has provided
a device driver called PROBE.SYS (6) to simplify this task.
PROBE.SYS can be used to set vectors 1, 2, and 3 to values passed as
parameters. These parameters can be passed in two forms:

1. As a single digit value for the address of the megabyte of AT
PROBE protected memory followed by the segment address of
16k block of real memory used by AT PROBE. For example, if
ADDR = D, D is set in PROBE.CNF the line in config.sys would
be:

device=PROBE.SYS D, DOOO

This will set vectors 1,2, and 3 to values of DOOO:OOOO,
D000:0003, and 0000:0006 respectively.

2. Using the complete segment address of the megabyte of AT
PROBE protected memory followed by the segment address of
the 8k block of real memory used by AT PROBE. For example,
if ADDR = D, D is set in PROBE.CNF the line in config.sys
would be:

device=PROBE.SYS DOOOOO, DOOO

Upon installation, PROBE.SYS will display the new values of the
three vectors being altered. Note that PROBE.SYS must be installed
before the device driver to be debugged. It is also important to
provide some sort of a means to regain control at a specific point in
the device driver. If the symbol table is loaded before the device
driver is loaded, then a hardware breakpoint can be used; other
options include hardcoding in an INT 3 instruction, which will
automatically return control to the AT PROBE, or writing a jump to
self into the device driver then using the STOP button to return
control to the AT PROBE.

(6) On some systems using the Phoenix (R) Bios it will be necessary to use PROBEHP.SYS.
This applies if the PROBE software being used has the suffix "HP".

Advanced Debugging Techniques Chapter 4-41

Having installed PROBE.SYS in the config.sys file which references
a device driver to be debugged, you can now load and debug that
device driver by using the following procedure:

1. Load AT PROBE.

2. Insert the diskette with the new boot loader to be debugged.

3. Using Go, begin execution at ffff:O hex. At this point, the
system will reboot.

4. Wait a few seconds for the system to execute up to the jump to
self. Return control to AT PROBE by pressing the STOP button.

5. If it is desired to have the symbols for the device driversymbols,
then make a note of the current code segment (7). Reboot the
system without the device driver, and using this value follow the
instructions in the section Loading the symbol table when AT
PROBE does not load the program later in this chapter. Repeat
steps I through 4.

Example:

If a device driver named "driver.asm" is assembled with Microsoft
MASM 5.0 with an ORG of 0 (as required by MS-DOS) and using
the /Zi option, then converted to binary format with exe2bin, the
symbolic information would be loaded with the following
sequence:

F P <TAB> N <CR> <CR> <CR> A SegVal:O <CR> <CR> <CR>
driver.exe <CR>

(7) This value will remain constant so long as the same version of MS-DOS and the same
device drivers are being loaded before the device driver being debugged. Accordingly, it
should be necessary to load the device driver without symbols to obtain this value one
time only.

Chapter 4-42 Advanced Debugging Techniques

File Search sYmbol Watch Options Calls Go Memory Breakpoint Eva! mAcro Reg Trace
Program load <Tab> next field <Esc> prev screen------.
Load code from file: <No> {Yes!No} Load symbols from file: <Yes> {Yes!No}
Source file path: <C:\ASM\>
Source file extension:<.C>

Symbol adjustment: <Absolute> {Exe!Com!Offset!Absolute}
Symbol adjust amount: <0A40:0000>

Default disk:<C> Default directory:<\ASM>
File name: [driver.exe

This will adjust symbol values to match the absolute value (in this
case OxA40:0) of the loaded program. Now a jump to BIOS may be
made to load the device driver, as described earlier.

5. The device driver is now installed and can be debugged by AT
PROBE. If a jump to self loop was used to stop program
execution at a certain point, it will be necessary exit that loop
before continuing with the debugging process.

Advanced Debugging Techniques Chapter 4-43

DEBUGGING A DEVICE DRIVER INVOKED FROM
COMMAND.COM OR A TERMINATE AND ST A Y RESIDENT
PROGRAM

If a device driver or quit and stay resident program is invoked from
DOS, then use the following procedure.

I. Load AT PROBE. You may want to load the program's symbol
table at this point. If this is the case, see LOADING THE
SYMBOL TABLE WHEN PROBE DOES NOT LOAD THE
PROGRAM later in this chapter. If you load the symbols at this
time, you may wish to set a hardware breakpoint(s).

2. Execute a quit and stay resident command:

F Q <TAB> Y <CR>

3. You are now in DOS. Now invoke the device driver or TSR
program to be debugged from the command line.

4. If a jump to self loop was used (see the section entitled
DEBUGGING A DEVICE DRIVER WHICH INST ALLS ITSELF),
press the STOP button to return control to AT PROBE. If the
symbol table was not loaded before the program, you may want
to load symbols at this time.

Chapter 4-44 Advanced Debugging Techniques

LOADING THE SYMBOL TABLE WHEN PROBE DOES NOT LOAD
THE PROGRAM

When AT PROBE does not load a program, some extra steps are
necessary in order to load the program's symbol table. Most
importantly, it is necessary to know the absolute address where the
program is to be loaded. Once this value is known, it is possible to
load the symbol table either before or after the program itself is
loaded. There are advantages and disadvantages to each of these
options.

In order to load the symbol table before loading the program, it will
be necessary to load the program one time, stop execution, and make
note of the absolute address where the program loaded. Having this
information, in the future it will be possible to load the symbol table
at the absolute address retrieved as described above. The advantage
of this method is that hardware breakpoints can be used to stop the
program, rather than mandating the initial use of the stop button
with a jump to self loop in order to halt execution at a specific
point. The disadvantage to this method is that it requires that the
program be loaded at the same absolute address every time it is to be
debugged. Another minor disadvantage is the extra step initially
required to determine where the program is being loaded.

Loading the symbol table after loading the program is somewhat less
complicated. It does, however, require that a jump to self loop be
used to stop the program at a point before the CS register is altered
(as might be the case in a large model program). The STOP button is
used to regain control, after the operating system loads it and begins
execution. The symbol table can then be loaded using the Symbol
adjustment Absolute option, with the load address being given as CS:O.

Advanced Debugging Techniques Chapter 4-45

DEBUGGING ROUTINES WHICH TAKE OVER THE KEYBOARD

Routines which take over the keyboard are tricky to debug because
the BIOS keyboard routines are not reentrant. If a breakpoint is set
inside this routine or inside your keyboard routine which takes over
the keyboard interrupt, a lock of the system may occur because of
the reentrancy problem. If this happens, switch to external console.

Chapter 4-46 Advanced Debugging Techniques

DEBUGGING INTERRUPT DRIVEN SOFTWARE

Debugging programs which are running in an interrupt driven
environment normally happens in one of the following ways: locking
out all interrupts while in AT PROBE or using concurrent process
debugging.

Locking out all Interrupts While in AT PROBE

When first bringing up interrupt routines, it is most useful to lock
out all interrupts while in the AT PROBE software. This is because
an interrupt from a device which happens while in the AT PROBE
software could potentially never return or crash the system if it is
allowed to be serviced. To lock out interrupts while in the AT
PROBE software use the Options hiterrupt command as described in
Chapter 5, COMMAND REFERENCE. This allows masking any or
all of the interrupts from the system interrupt controller from being
processed while in the AT PROBE software. This is especially
necessary if a breakpoint has been set inside a non-reentrant
interrupt routine in which periodic interrupts will continue to
happen. If the keyboard interrupts must be locked out, then use the
external console option with AT PROBE.

Using Concurrent Process Debugging

In some systems it necessary to allow well-behaved interrupts to
continue to process in the background even while the AT PROBE
software has control of the system. For debugging this type of
system, use the Options Interrupt command as described in Chapter 5,
COMMAND REFERENCE to allow some interrupts to take control of
the system whenever they happen.

Advanced Debugging Techniques Chapter 4-47

DEBUGGING ON A NON-DOS OPERATING SYSTEM

AT PROBE software is in a standard .exe file and was designed to
run from DOS. It may be possible to use AT PROBE with other
operating systems besides DOS by using the following procedure.

1. First boot DOS and load the AT PROBE software from drive A.

2. Insert the new operating system in drive A or simply open the
floppy door if the new operating system is already on a hard
disk.

3. Reboot the system using the DEBUGGING A BOOT LOAD
SEQUENCE procedure which was described earlier.

4. If the new operating system does not destroy location 0:8 (the
NMI vector), then control can be returned to AT PROBE with
the STOP button. If the new operating system does destroy this
vector, then you must use a utility in the new operating system
to put this vector back before AT PROBE can get control.

S. You cannot use AT PROBE File,macro,windows commands that
load or save to disk since they use DOS system calls. If the new
operating system is a real time, time slicing version which uses
keyboard BIOS routines, it would be best to switch AT PROBE
to external console and execute the Options Int command to set
all interrupts off before rebooting.

Chapter 4-48 Advanced Debugging TecKniques

DEBUGGING A SYSTEM WHICH CRASHES AND TAKES AT
PROBE WITH IT

Some software applications which use interrupts and lots of DOS and
BIOS interrupt calls can become quite complex to debug. In cases
where the interrupts are not well behaved or there are many
interacting reentrancy problems, the system may crash and not allow
AT PROBE to work. These cases are best debugged on an external
console. You should also lock out all interrupts while in the AT
PROBE software with the Options Interrupt command. This ensures
that interrupts in the system do not take control away from AT
PROBE while you are in the AT PROBE software.

Another case which may cause AT PROBE to not respond is the
modification of location 0:8 (NMI vector). For the AT PROBE to
work properly, location 8 which stores the vector for the NMI must
be left intact as initialized by the AT PROBE software. In the event
that control of the AT PROBE is lost, it may be because this location
has been modified. This event can be detected with the AT PROBE.
Press the RESET button after control of the AT PROBE has been
lost. Once reset, reload the AT PROBE software and display the
trace memory. The trace memory is not cleared upon starting the AT
PROBE software so that this previous event can be detected. The
display of the trace information will show if location 0:8 has been
modified if this event has not been cycled out of the trace memory.
In the case where location 0:8 has been modified but the trace
memory has cycled out the sequence of instructions that modified it,
set a breakpoint on writing to location 0:8. Control of the AT
PROBE will still be lost and the RESET button will be necessary, but
this time the trace will contain the modifying code.

COMMAND REFERENCE Chapter 5-1

CHAPTER 5 COMMAND REFERENCE

FORMAT FOR DESCRIBING AT PROBE COMMANDS4
CODE SCREEN ... 5
BREAKPOINT .. 11

Defining and editing breakpoints ... 12
Notes on breakpoints ... 18
Breakpoint examples .. 22
Sequential breakpoints .. 25
Sequential breakpoint examples ... 26
Breakpoint Activate, Inactivate, and Clear ... 28
Breakpoint Set pass counter ... 30
Breakpoint rules ... 31

CALLS ... 33
EVALUATING EXPRESSIONS ... 38
FILE ... 40

File Program Load .. 41
File View ... 45
File Initializations .. 48
File Quit ... 50
File Log file ... 51
File Revision .. 52

G0 ... 53
MACR0 .. 55

Macro Define ... 56
Macro Edit .. 62
Macro Load and save ... 63
Macro remove .. 64
Macro execution ... 65
Macro command examples ... 66

MEMORY .. 68
Memory Display change ... 69
Memory IO port .. 72
Memory Float display change ... 73
Memory Unassemble assemble ... 74
Memory block operations .. 78
Memory Variable ... 82

OPTIONS ... 85
Options Screen .. 86
Options View operands ... 89

Chapter 5-2 COMMAND REFERENCE

Options Mix source during step .. 90
Options sYmbols displayed with code ... 91
Options Case sensitivity ... 92
Options Interrupts ... 93
Options sTep count ... 95
Options Read after write verification .. 95
Options Function call linkage style•.. 96

REGISTER COMMAND ... 97
SEARCH ... 99
SYMBOL .. 102

sYmbol display change ... 103
sYmbol Default modulename .. 107
sYmbol Load module selections ... 108
sYmbol Step source screen modules ... 109
sYmbol Module to filename assignments .. 110

TRACE ... 112
Trace Instructions ... 113
Trace Unprocessed instructions ... 116
Searching trace data .. 118
Trace Save to disk .. 120
Trace Raw .. 122

WATCH .. 124
Defining and editing watch windows .. 125
Watch Remove window .. 129
Watch Load and Save .. 130

COMMAND REFERENCE Chapter 5-3

Chapter 5-4 COMMAND" 'REFERENCE

CHAPTER 5
COMMAND REFERENCE

This chapter provides the details for AT PROBE commands. Each
command is followed by examples. The commands are listed
alphabetically. The headers at the top of the page indicate the
command/subcommand which is described on the page.

FORMAT FOR DESCRIBING AT PROBE COMMANDS

In this chapter, the MENU BOX, DISPLAY WINDOW, and DIALOG
BOXES produced by the commands are shown. Along the perimeter
of the screens you will find numbers in circles. In the text you will
find the corresponding numbers in circles along with a description of
the screen information.

The prompts AT PROBE provides you in DIALOG BOXES are shown
in italics in this chapter. In the text, a keystroke is specified as:

<key name>

For example, <Enter> means type the key labeled "Enter" on your
keyboard. Some <keynames> require two keys. For example
<Alt-Key> means hold down Alt and type the keyname.

CODE SCREEN Chapter 5-5

CODE SCREEN

The default state of the DISPLAY WINDOW displays your program
after it is loaded. It also displays the code at the current cs:ip after
a breakpoint, Stop button or single step operation. For this reason, it
is called the CODE SCREEN. The other AT PROBE commands
overlay the DISPLAY WINDOW as needed. When commands have
been specified and selected, the display or DIALOG BOX is replaced
by the CODE SCREEN. The operation of the Function keys and
cursor control keys on the CODE SCREEN is given in Chapter 2 and
is not repeated here. This section describes in more detail the
information on the CODE screen and operation during single step
and breakpoints.

rne Search sYmbol Watch Options Calls Go Memory Breakpoint Eva! mAcro Reg Trace

4- ymbolname

l~ ~ddress mnemonic operandl,operand2

2-I-····· operand! value, operand 2 value

3-+tnore instructions BP#

I The instruction which matches the current program counter is
indicated by the highlighted reverse video line or a different
color on a color monitor. The address, mnemonic and operands
are shown on this line. This instruction is not executed until a
Function key is typed.

2 If the CODE SCREEN is displaying assembly language, the values
of the operands for the current instruction are shown along with
the effective address of the operand. AT PROBE calculates the
address of the operand, if appropriate, and retrieves its contents
in memory. Any symbol or near symbol which matches this
calculated address is displayed, along with the contents of the
memory at this calculated address. This shows you the operand
values of the current instruction before it actually executes (i.e.
before you type a function key). This saves you from having to
bail out of the CODE SCREEN to see the values of the operands.
The /\/\/\/\/\ on this line points to the instruction address for these
operands ,i.e. the instruction just above the current line.

Chapter 5-6 CODE SCREEN

**
Note that if the operand is pointing to a memory mapped IO
device which changes content when it is read, AT PROBE's
advance read of the operands may affect your program. You can
disable AT PROBE from showing operand contents with the
Options command.
**

Also note that a highlight field spans the current instruction and
its operands. This highlight field serves as a second cursor. The
highlight field can be moved with the PgDn/PgUp and cursor
keys. When moving the highlight field up the DISPLAY
WINDOW past the current cs:ip, it will not move previous to the
start of code which has executed from this screen unless there is
a symbol within lOOh bytes before that location and unassembly
from that symbol to the start of code ends on an instruction
boundary. When moving the highlight field down the CODE
SCREEN below the current CS:IP, your program (as disassembled
from memory or source code file) is shown. Typing Ctrl PgUp
moves the highlight field to the start of code executed on this
screen. Typing <HOME> moves the highlight to the next
instruction to be executed.

3 If a sticky breakpoint has been set on executing an instruction,
the sticky breakpoint is shown on the screen.

4 If the address of an instruction matches a label or line number,
AT PROBE shows this. You can disable this with the Options
command.

)

/

CODE SCREEN Chapter 5-7

SINGLE STEPPING in the CODE SCREEN

AT PROBE can single step your program from the CODE SCREEN
with the following Function keys.

F8

FlO

Executes a single step of the next instruction, steps into
procedures and interrupts.

Executes a Program step. If the source line or
instruction contains a function, procedure, interrupt, or
call, the AT PROBE runs real time until it returns to
the instruction after the currently highlighted
instruction.

During single stepping in the CODE SCREEN, AT PROBE can do
more than just take the next single step when F8 or FIO is typed.

If you are paging through your program on the CODE SCREEN and
position the highlight field at an instruction, the following function
keys can be used to set and execute to breakpoints at the highlight:

FS

F7

Start program execution and set a sticky breakpoint on
executing instruction at highlight. Adds execute
breakpoint to next available breakpoint in breakpoint
screen and activates it. Shows breakpoint number in
highlight to the right edge of the screen on the line of
the instruction. When the instruction is displayed in
the future, the breakpoint is displayed. All other
active sticky breakpoints are still active. When
breakpoint detected, control returns to the Command
Menu.

Sets a temporary breakpoint on executing instruction at
highlight and executes to that line then removes
breakpoint. All other active sticky breakpoints are still
active. When breakpoint detected, control returns to
the Command Menu.

Chapter 5-8 CODE SCREEN

F9 Sets or clears an execution breakpoint on line at
highlight. Setting a breakpoint adds and activates a
sticky breakpoint with the next available breakpoint
number. Clearing deletes the breakpoint from
breakpoint screen. Shows breakpoint number in
highlight to the right edge of the screen on the line of
the instruction. When the instruction is displayed in
the future, the breakpoint is displayed.

If you type F5, F7, F8, or FIO and the highlight disappears and does
not come back, then AT PROBE did not reach the target instruction
and is still executing the program. To return control to the CODE
SCREEN, press the Stop Button on the crash recovery switch box.

CODE SCREEN Chapter 5-9

Assembly language stepping

During single step, AT PROBE implements Step Assembly language
by setting the Trap flag except for the following conditions:

1. For interrupt instructions AT PROBE sets a software breakpoint
at the target address of the software interrupt vector

2. For a segment load or a Repeat move string instruction, AT
PROBE sets a software breakpoint at the instruction after the
instruction to be stepped.

Source stepping

You can single step the program via source statement lines by putting
the CODE screen in Source display with the F3 key. AT PROBE
implements source level single stepping by setting a software
breakpoint at each instruction which has a source line number, then
executing a GO command. You may also limit the modules through
which you single step while executing all code outside these modules
in real time. This is done using the sYmbol Step-source-screen­
modules selection command. This provides an automatic method of
ignoring parts of you code which are already debugged and which
you do not want to step into.

Step count

Single stepping can be by a single instruction or multiple
instructions. This lets you go through your program in larger steps.
You can change the Step count with the Options command.

Step while condition

Single stepping can be programmed to continue automatically while a
a specified condition is true. You can set this condition by using the
F8 and FlO keys in a conditional macro which has a while condition.

Chapter 5-10 CODE SCREEN

Watch windows during single step

While single stepping, you can pop up one or more Watch Windows.
These windows are defined by the Window command and are popped
up with a single Alt-Key. These windows are updated after each
single step, therefore, you can keep an eye on anything in the target
while you are single stepping.

BREAKPOINT Chapter 5-11

BREAKPOINT

The Breakpoint command lets you define, clear, activate and
inactivate sticky breakpoints. If sticky breakpoints are active, they
are automatically inserted when the Go command is executed or a
function key starts program execution and sets a breakpoint. The
Breakpoint command also allows you to set a pass counter on
breakpoints and to monitor logic lines.

The Breakpoint command is invoked from the MENU BAR by
typing:

B (for Breakpoint)

The subcommands for Breakpoint are:

Subcommand

Define
Activate
Inactivate
Clear
Set pass counter

Operation

Define/change breakpoint
Enable breakpoints during Go
Do not enable breakpoint during Go
Clear the breakpoint screen
Set breakpoint pass counter

Chapter 5-12 Breakpoint - Define and Edit

DEFINING AND EDITING BREAKPOINTS

When the Define subcommand is selected, the DISPLAY WINDOW
shows a summary of the current conditions of sticky breakpoints.
This is sometimes referred to in this manual as the Abbreviated
Breakpoint Summary.

Breakpoint
Define ____________________ <Esc> prev screen_

1-to Breakpoint number: [J

2

!---------------------- '0' .. '9' for breakpoint
BP# Status

BP 0 Clear

BP 1 Clear

BP 2 Clear

BP 3 Clear

BP 4 Clear

BP 5 Clear

BP 6 Clear

BP 7 Clear

BP 8 Clear

BP 9 Clear

Address

3

[to address] Verb Data When detect

4 5 6 7

The DIALOG BOX first prompts you for the breakpoint number.
AT PROBE lets you define up to 10 sticky breakpoints with
breakpoint numbers from 0 to 9. To make it easy to remember
which breakpoints are already defined, an abbreviated summary
of the status of all 10 sticky breakpoints is shown in the
DISPLAY WINDOW. A short explanation of these fields is given
here. A more thorough explanation is given later.

2 This field is the Breakpoint number.

3 If a breakpoint has not previously been defined, its default status
is shown as Clear.

4 This is the address of the currently defined sticky breakpoints.

5 This is the end address for a range breakpoint.

8

Breakpoint - Define and Edit Chapter 5-13

6 This is the verb of the currently defined sticky breakpoints. The
default is Execute.

7 The Data field displays the size of the data if the data bus is
included in the breakpoint. ·

8 This field displays the action to be taken when the breakpoint is
detected.

Note that sticky breakpoints can be put into this breakpoint screen
with the F5 and F9 keys while you are in the CODE SCREEN, File
View, Memory Unassemble, Search, sYmbol sYmbol display, or Calls
command. This is described in more detail in Chapter 2 as well as in
each of these commands.

After you select the breakpoint number, the following will appear in
the DISPLAY WINDOW.

Breakpoint

Define <Esc> prev screen_

4- BPO Status:<Inactive>{ClearlActivelinactive}

1-verb:[Execute] {ExecutelRead!Write!Fetchlinput!OutputjiNt acklAny}

2- ddress:[]

s- When BP detected: [Stop] {StoplMacro-window!ArmbplReset trigger}

Chapter 5-14 Breakpoint - Define and Edit

The first prompt sets the breakpoint verb. The breakpoint verbs
are defined as follows:

VERB

Execute

Read

Write

Fetch

Input

Output

Any

VERB DEFINITION

Instruction execution breakpoint via
software interrupt instruction. May only
be set in RAM memory. This type of
breakpoint temporarily replaces the target
code with the INT 3 instruction. The
execute verb is the default. (1)

Breakpoint on Read of memory address or
range of memory

Breakpoint on Write to memory address or range
of memory

Breakpoint on an opcode read from
memory

Breakpoint on read of IO port

Breakpoint on write to IO port

Breakpoint on Any access (i.e.Read, Write, Input,
Output, or Fetch) of memory address or range
of memory addresses.

2 The second DIALOG BOX prompts you for the address for the
breakpoint. You can use an expression or absolute number for
the address.

3 This field lets you \petermine the action to take when AT PROBE
has detected a breakpoint.

(1) Any time you use Execute in arming chains or use Pass counts, you will not get fully
real time execution.

Breakpoint - Define and Edit Chapter 5-15

Action Description

Stop Stop execution, display code screen

Macro-window Stop execution, execute Macro or display
a user defined Watch Window

Armbp Arm detection of the next breakpoint

Reset trigger Used in breakpoint sequences. Reset
causes the first breakpoint in the sequence
to be re-armed and all other points in the
sequence to be disarmed.

If you select STOP, AT PROBE simply stops program execution
and re-displays the CODE SCREEN. Note, however, that if the
Go command was invoked from inside a macro, the AT PROBE
will continue to execute the remaining commands in the macro.

If you select the Macro/window option for the breakpoint, you
are prompted for an Alt-Key (i.e. hold down Alt and type any
key) to specify the Macro or Watch Window. When the
breakpoint is detected, AT PROBE looks for the specified macro
or Watch Window and executes it when the breakpoint has
occurred.

The Armbp and Reset trigger options are used to define
sequential breakpoints. See the Sequential Breakpoint section for
more information.

4 This field lets you activate or inactivate a breakpoint or clear the
breakpoint screen. AT PROBE looks for all active sticky
breakpoints when the Go command or a function key starts
execution.

The prompts just described are all that are necessary to set a simple
Execute breakpoint. After activating an Execute breakpoint, you
could start defining another breakpoint by typing <ESC>. For the
other breakpoint verbs, the following DISPLAY WINDOW options
would appear.

Chapter 5-16 Breakpoint - Define and Edit

Breakpoint 1
Define ______________ ~ _____ <Esc> prev screen_

PO Status:<Inactive> { Clear!Activellnactive

erb:[Write] {Execute!Read elFetchlinputiOutputliNt ack!Any}

>to [

<Byte> {Dword!Word!Byte!None}

3 [
4-Don't care bits< >

5 Break on data <Equal> {EqualiNot equal}

When BP detected: [Stop] {Stop!Macro-window!ArmbplReset trigger}

For any verb except execute, this field appears to let you enter a
TO address to set a breakpoint on a range of addresses. You may
enter any type of address expression or an address of the form:

+number

In this case the TO address becomes breakpoint start
address+number. If this field has previously been set to other
values and you want to clear the field, type <space><enter>.

2 The breakpoint can be further qualified with the DAT A FIELD.
This is done by first selecting the size of the data. The size of
the data field can be l or 2 bytes by choosing Byte or Word,
except for odd addresses or for ranges, in which case only Byte or
None are available. If you do not want to include the DAT A
FIELD in the breakpoint, then type <enter> to select the default
which is <none> and the next two prompts will be ignored. Note
that size of the data field can only be Byte or None if the
breakpoint is on a range of memory (i.e. has a TO address).

Breakpoint - Define and Edit Chapter 5-17

3 If you select one of the types for the DAT A FIELD, then you
must specify the DAT A VALUE which will cause the breakpoint
with this prompt. The DAT A VALUE can be an expression.

4 This field lets you mask out bits in the DAT A FIELD of the
breakpoint. This is useful if you are looking for a bit field such
as a flag or an ASCII character in the breakpoint. You enter an
X for each data bit position you want to mask and enter a period
(.) for each data bit position you want to detect in the breakpoint.
The initial default is all periods. The data you enter for this
prompt is right justified.

5 The breakpoint can be selected to trap on the data being Equal or
Not Equal to the DATA VALUE, except for odd addresses or for
ranges, in which case only Byte or None are available. This is
useful when you are looking for a change of state of a variable
or a bit in memory. The breakpoint equal/not equal is only
available on byte data, not word data.

See the Sequential Breakpoint Detection section for more
information.

Chapter 5-18 Notes on Breakpoints

NOTES ON BREAKPOINTS

Hardware/software breakpoint implementation

Breakpoints defined with the verbs read, write, fetch, or any are
detected with AT PROBE hardware. Four hardware break registers
are available in AT PROBE. Software breakpoints defined with the
verb execute are implemented by temporarily putting an INT 3
instruction at the breakpoint address. A maximum of four hardware
breakpoints (2) and fifteen software breakpoints may be active when
program execution begins including both STICKY and NON-STICKY
breakpoints. AT PROBE will report an error if an attempt is made
to activate more than four hardware breakpoints or fifteen
breakpoints at once.

When a breakpoint is set for a read or write transaction, some
additional instructions may be executed after the breakpoint. This is
because the instruction is in the 80286 queue and cannot always be
stopped from executing when the breakpoint occurs.

If no breakpoint is detected, you can regain control by pressing the
STOP button on the external switch box.

Parity errors

A parity error will cause a breakpoint. AT PROBE reports a
breakpoint which has been caused by a parity error.

The ANY verb can be used to watch activity on either a single port
or over a range of ports. To use the ANY verb on port I/O, pref ix
the address of the ports being watched with the pseudo segment "O:".
If "O:" is not used, PROBE assumes the current value of DS: as the
data segment value. Thus, to break on any port activity from ports
in the range of 300 to 304 hex, use the ANY verb with a starting
value of 0:300 and an ending value of 0:304.

(2) Each hardware breakpoint uses at least one hardware break register and a single
hardware breakpoint may require all four break registers.

Notes on Breakpoints Chapter 5-19

Use of NMI

The AT PROBE uses the NMI (non maskable interrupt) to cause a
trap during all breakpoints which are not instruction execution
breakpoints. The STOP button also uses the NMI.

Chapter 5-20 Notes on Breakpoints

Multiple breakpoints consumed

There are some conditions in the Breakpoint screen which use more
than one of the available hardware break registers to implement a
breakpoint. The most important if these conditions are listed below:
the complete set of rules is in the "Breakpoint Rules" section.

1. Range breakpoints with data (only bytes are allowed) always take
all four hardware break registers.

2. Range breakpoints with no data which cross 256 byte boundaries
take 2 break registers.

3. Other ranges take one break register.

Breakpoint restrictions

Range Breakpoints have the following restrictions:

a. Verb can be anything but Execute.

b. Range breakpoints may only have a data size of Byte or None.

Since execution breakpoints are implemented via software interrupts,
they may not be used for causing a break in prom memory. To do
this, use a fetch breakpoint on the address in prom. This will cause
a break when the instruction is fetched but not necessarily executed.
This is because the 80286 CPU fetches its instructions into a queue
before executing them. Instructions which are fetched into the
queue are not necessarily executed since they may be preceded by a
jump instruction which clears the queue. This is only a problem
when trying to break on an instruction execution in prom memory.

Notes on Breakpoints Chapter 5-21

Sticky and non sticky breakpoints

Breakpoints which are defined in the Go command or by typing F7
are activated for the duration of program execution and then are
removed once control has been returned to the AT PROBE. These
are commonly referred to as "NON-STICKY BREAKPOINTS."
Breakpoints which are previously defined and activated by the
Breakpoint command will be in effect when a Go command is issued,
even if they are not specified in the new Go command. This is also
true of breakpoints set by typing the F9 key. These are commonly
called "STICKY BREAKPOINTS.".

Since the syntax of a sticky breakpoint is not interpreted until it is
used, a syntax error in the breakpoint will not be found until the Go
command is executed or a function key starts execution. Breakpoints
set with the Go command are not sticky breakpoints.

Chapter 5-22 Breakpoint Examples

BREAKPOINT EXAMPLES

Define and activate breakpoint number 0 which detects a write to
the range of addresses starting at 1000:0 and ending at 1000:4F6
when the value written is 1234. Execute macro <Alt-J> after the
breakpoint. The key sequence to enter this breakpoint is shown
followed by the Abbreviated Breakpoint Summary.

B D 0 W 1000:0 <TAB> +4F6 <TAB> <TAB> B 1234 <TAB>
<TAB> <TAB> M <Alt-J> <TAB> A <ESC>

BP# Status

BP 0 Active

Address

1000:0

[to address]

+4F6

Verb Data

Write Byte

When detect

<Alt J>

Define and activate breakpoint number 1 which traps executing
an instruction at location PROMPT in module MAIN.

B D 1 <TAB> MAIN.PROMPT <CursorUp> <CursorUp> A
<ESC>

BP# Status

BP 1 Active

Address [to address] Verb Data

MAIN.PROMPT Execute

When detect

Stop

Define and activate breakpoint numbers 2, 3, 4, and 5 for
executing instructions at line numbers 45, 49, 78 and 118 in the
current module.

Breakpoint Examples Chapter 5-23

B D 2 <TAB> #45 <TAB> <TAB> A <ESC> 3 <TAB> #49
<TAB> <TAB> A <ESC> 4 <TAB> #78 <TAB> <TAB> A
<ESC> 5 <TAB> #118 <TAB> <TAB> A <ESC>

BP# Status Address [to address] Verb Data When detect

BP 2 Active #45 Execute Stop

BP 3 Active #49 Execute Stop

BP 4 Active #78 Execute Stop

BP 5 Active #118 Execute Stop

Define and activate sticky breakpoint 6 to detect a FETCH from
the lower 4k bytes of memory. Execute the macro assigned to the
key <Alt-F> when this breakpoint occurs.

B D 6 F 0:0 <TAB> +3FF <TAB> <TAB> <TAB> M <Alt-F>
<TAB> A <ESC>

BP# Status

BP 6 Active

Address

0:0

[to address] Verb Data

+3FF Fetch None

When detect

<Alt F>

Define and activate sticky breakpoint 7 to trap Any type of access
between locations 8000:0 and 8000:FFF.

B D 7 A 8000:0 <TAB> +FFF <TAB> <TAB> <TAB> <TAB>
<TAB> A <ESC>

BP# Status

BP 7 Active

Address

8000:0

[to address] Verb Data

+FFF Any None

When detect

Stop

For the next two examples, logic lines must be enabled through
the Breakpoint Logic lines command.

Chapter 5-24 Breakpoint Examples

Define and activate sticky breakpoint 8 to trap if the data pattern
AAAA is written to location 1000:0 and bit 0 of the AT PROBE
Logic lines is equal to 1.

B D 8 W 1000:0 <TAB> <TAB> <TAB> W AAAA <TAB>
<TAB> <TAB> XXl <TAB> <TAB> <TAB> A <ESC>

Define and activate a sticky breakpoint 9 to trap on read of IO
port with the symbol POR T5.

B D 9 I PORTS <TAB> <TAB> <TAB> <TAB> <TAB> A
<ESC>

BP# Status

BP 9 Active

Address

PORTS

[to address] Verb Data

Input None

When detect

Stop

Go back and redefine breakpoint 9 to make it trap on IO write to
PORT5.

B D 9 0 <ESC>

Sequential Breakpoints Chapter 5-25

SEQUENTIAL BREAKPOINTS

AT PROBE has the capability of detecting complex breakpoint
sequences. Sequential breakpoints will not execute in real time. If
you select Armbp from the field "When breakpoint detected" on the
breakpoint screen, then following prompt appears in the Breakpoint
screen:

Arm bp:[]

One breakpoint can arm or enable the detection of a following
breakpoint. The breakpoint number which you insert in the current
breakpoint definition tells AT PROBE to start looking for the next
breakpoint when the current breakpoint occurs.

If you select Reset trigger from the field "When breakpoint detected"
on the breakpoint screen, then the breakpoint is defined to clear the
arming conditions set by all the other breakpoints. When a
breakpoint with a Reset trigger field defined is detected, AT PROBE
clears all Arm bp conditions which have been detected during
program execution. After the Reset trigger has occurred, the process
of arming breakpoints restarts again.

Chapter 5-26 Sequential Breakpoint Examples

SEQUENTIAL BREAKPOINT EXAMPLES

THE BUG:

A stack variable is being randomly changed. The procedure which
owns the variable, however, is OK and does not appear to be
overwriting the variable. It is probably being overwritten by
another procedure. The procedure which owns the variable writes
to it all the time so you don't want to simply trap on a write to
the variable. What you want is to find a write to the variable
which is coming from anywhere other than the current procedure.
AT PROBE can handle this with no problem. In words,

Breakpoint 0 is set for the address of the call which is
suspected to be overwriting the local variable. The breakpoint
verb is execute, and it arms Breakpoints 1 and 2.

Breakpoint 1 is set to Stop on a write to the local variable.

Breakpoint 2 is set for the address immediately after the
address which causes breakpoint 0 to be triggered. The
breakpoint verb is execute, and this breakpoint resets the
chain.

The screens for these breakpoints look like this.

Breakpoint

Define <Esc> prev screen

BPO Status:<Active>{ Clear!Active!Inactive}

erb:<Execute> {Execute!Read!Write!Fetchllnput!Output!Any}
ddress:<call-start> to <>

hen BP detected: [Armbp] {Stop!Macro/watch!Arm bp!Reset trigger}

rmbp:<l 2>

Sequential Breakpoint Examples Chapter 5-27

Breakpoint
Define _____________________ <Esc> prev screen

erb:<Execute>

BPl Status:<Active>{ ClearjActive!Inactive}

{ExecutejReadjWritejFetchjlnputjOutputjAny}

ddress:<stackvar-name> to <>

<None> {WordjBytejNone}

hen BP detected: <Stop> {StopiMacro/watchjArm bp!Reset trigger}

Breakpoint
Define _____________________ <Esc> prev screen

erb:<Write>

BP2 Status:<Active>{ ClearjActivejinactive}

{ExecutejReadjWritejFetchjlnput!OutputjAny}

ddress:<call-end> to <>

hen BP detected: <Reset trigger> {StopjMacro/watchjArm bpjReset trigger}

When program execution starts, the sequential breakpoint
detection is triggered when the program executes the call
instruction to the function suspected as causing the memory
overwrite. If a write to the variable occurs, the AT PROBE stops.
If, however, the program reenters the calling procedure, the
sequential breakpoint detection is reset so that a write to the
variable from this procedure can occur without stopping the AT
PROBE.

Chapter 5-28 Breakpoint - Activate, Inactivate, Clear

BREAKPOINT ACTIVATE, INACTIVATE, AND CLEAR

Three other subcommand choices for the Breakpoint command are
Activate, Inactivate, and Clear. Inactivate lets you have breakpoints
which are defined but are not enabled when the Go command or a
Function key starts program execution. Clear lets you delete the
Breakpoint definition for selected or all breakpoints. The following
screen appears for these subcommands:

reakpoint number: [J

>-------------------'*'for all; '0' .. '9' for breakpoint
P #Status

P 0 Active

P 1 Active

P 2 Clear

P 3 Clear

P 4 Clear

P 5 Clear

P 6 Clear

P 7 Clear

P 8 Clear

P 9 Clear

Address

lower

main

[to address) Verb Data When detect

lower+4 Write None Stop

Execute Stop

The DIALOG BOX prompts you for the sticky breakpoint number
to activate, inactivate or clear:

Breakpoint number: []

Select a breakpoint number or type '*' for all breakpoints.

2 An abbreviated breakpoint summary is shown to make it easy to
see the current status of sticky breakpoints.

Breakpoint - Activate, Inactivate, Clear

EXAMPLE ACTIVATE/INACTIVATE BREAKPOINTS

Inactivate all sticky breakpoints.

BI*

Activate sticky breakpoints 1,2, and 5.

BA 1 2 5 <Esc>

Clear sticky breakpoints 3 and 4.

BC 3 4 <Esc>

Chapter 5-29

Chapter 5-30 Breakpoint Set pass counter

BREAKPOINT SET PASS COUNTER

By setting the pass counter, you can trap on the Nth breakpoint
detected. All breakpoints that stop, execute a macro, display a watch
window, or reset a chain will be counted. Breakpoints which arm
other breakpoints are not counted.

Breakpoint
Set pass counter ______________________ _

~ss count:<0001>(] J
L._ ______________________ <Esc> prev screen

If you type <enter> without a pass count, the pass count will not be
changed. The pass count can have values from I to FFFF. The
Breakpoint Set Pass Counter does not work in real time.

Breakpoint Rules Chapter 5-31

BREAKPOINT RULES

For a discussion of the terms used in discussing breakpoints, see
Appendix K.

1. For range breakpoints, the address that appears on the address
bus must be within the range specified, or the breakpoint event
will not be recognized.

Example:

Memory write breakpoint on range 101-107.
A word write to address 100 will not trigger
the breakpoint.

2. For range breakpoints with data, a false trigger may occur if the
address that appears on the bus is within the range, but the data
falls just above the range.

Example:

Memory write breakpoint on range 101-106
with data 12. A word write to address 106
with data 1234 will break, even though the
12 was written to address 107.

3. A range breakpoint can be programmed in only one hardware
break register if it meets the following criteria:

A. It does not cross a 256 byte boundary.
B. It has no data.

Chapter 5-32 Breakpoint Rules

4. A simple breakpoint with word data needs only 1 hardware break
register. However, word data must start on a word boundary. If
a breakpoint is to be set on a non-word boundary, it must be in
the form of a range of byte data. This would require all four
break registers.

5. If a pass count is used with breakpoints, the user's program will
not execute at full speed. Each time a software breakpoint is hit,
the AT PROBE checks to see if the pass counter has counted
enough repetitions, and restarts the user's program if not.

Calls Chapter 5-33

CALLS

The Calls command lets you display current stack based information
which includes local variables, calling routines, and return addresses.
You can set sticky or non-sticky breakpoints on highlighted function
names, view or execute functions. You can also search for specified
strings within the stack display and change the value of variables.

The Calls command is invoked from the MENU BAR by typing:

C (for Calls)

The following screen appears:

Calls

.------------------<Tab> next field <Esc> prev screen_
3-~how arguments:<Yes> {YeslNo}

4-~how Jocals:<Yes> {YeslNo}

1-joperation (Find] {CodelFindlNextjPreviousjUplDownjVariable}

2-jFunction/variable name:< >< >

1------------<Space> next choice; PgUp/Dn, Arrows move highlight_,

~tack display

I The first prompt in the DIALOG BOX is for the Code
subcommand.

If the CODE SCREEN is in "source" mode, typing C for Code will
display the source code for the function which is highlighted.
When the code is displayed, the Search command DIALOG BOX
will be provided at the top of the screen to enable you to specify
strings to search for in the code. See the Search Command for
description of the subcommands that are now displayed and for
an explanation of the breakpoints that can be set on the code
screen using function keys.

Chapter 5-34

If the CODE SCREEN is in "assembly" mode, the Code
subcommand will unassemble and display the code for the
highlighted function (See the Memory Unassemble Assemble
command for a description of the AT PROBE standard line
assembler.

Calls

Before typing "C", you can use the <F3> key to select source or
assembler code to be displayed when the Code subcommand is
invoked. The subcommand will display the code format that was
last displayed on the CODE SCREEN unless you first press <F3>
to select source or assembler.

The default is F for Find. The Find subcommand will search for
occurrences of the string specified in the next prompt. The
search will be conducted in the function or variable name portion
of each line in the display. The search is not case sensitive.

Typing N or P will search for the next occurrence of the function
or variable name. When no further matches can be found in the
direction of search, the following message will be displayed:

Function/variable name not found

Typing U will move the highlight up the screen (down in the
stack) to the called function name line. Typing D moves the
highlight down the screen (up in the stack).

V for Variable can only be selected in the SOURCE PROBE. This
command allows you to display variables according to their type
and to change their value. Refer to the Memory Variable
command for a general explanation of this subcommand. In
addition to the basic capabilities of the Memory Variable
command, Calls Variable provides the ability to examine and
change a specific instance of a local variable when more than one
instance of that variable was created through recursion. This is
accomplished by highlighting the particular instance of that
variable which is to be examined or changed, and then pressing V
for Variable. Similarly, Calls Variable can be used to examine
other stack based variables. If Calls Variable is used to inspect a
variable on the stack which is other than the most recent instance

Calls Chapter 5-35

of that variable, the variables address will be entered into the
"Variable name or address" DIALOG BOX. This is to distinguish
it from other instances of the same variable.

If a local register variable is on the stack - but is not in the
current procedure - a "?" will be displayed for its value since the
AT PROBE does not know its value.

2 The next prompt is for the Find subcommand. Type as many
characters of a function or variable name as needed to correctly
identify it.

3 Selecting 'Yes' for this prompt will display function arguments in
the display of stack information. Selecting 'No' will clear the
display of function arguments. This prompt is only displayed in
the SOURCE PROBE.

4 Selecting 'Yes' for this prompt will display local symbols in the
display of stack information. Selecting 'No' will clear the display
of local symbols. This prompt is only displayed in the SOURCE
PROBE.

Chapter 5-36 Calls

The display of the stack information is as follows:

Calls

.------------------<Tab> next field <Esc> prev screen
how arguments:<Yes> {Yes!No}

how locals:<Yes> {Yes!No}

peration [Find] { CodelFindlNextlPreviouslUplDownlVariable}

unction/variable name:< >< >
,__ __________ <Space> next choice; PgUp/Dn, Arrows move highlight

S:IP is xxxx:xxxx at #xx in function .functionC

unction .functionC with BP = xxxx:

eturns to xxxx:xxxx at #xx+xxxx in function .functionB

:xxxx argument.A

:xxxx argument.B

:xxxx localsymbol.A

unction .functionB with BP = xxxx:

=xxxx

= xxxx "ABCDEF"

= xxxxxxxx

etums to xxxx:xxxx at #xx+xxxx in function .functionA

BR6

The address of the instruction pointer is displayed at the top of
the screen together with the name of the currently executing
function.

2 The current procedure name and the BP are displayed next.

3 The return address to the calling procedure.

4 Function arguments are displayed when "Yes" has been selected
for "Show arguments". For character arrays, as much data as will
fit on the right side of the display will be shown (for both
arguments and local symbols).

5 Local symbols are displayed when "Yes" has been selected for
"Show locals".

6 Breakpoints can be set on highlighted function name or return
address lines and execution begun using the F5, F7 or F9 key.

Calls Chapter 5-37

EXAMPLES OF USING THE CALLS COMMAND

After a breakpoint has occurred, display the calling sequence and
show both arguments and local symbols.

c
Set a temporary breakpoint on returning to the function that
called the currently executing function and begin execution.

C <DnArrow to calling function> <F7>

Display the current calling sequence and find any local symbol
containing the character string "payrate".

C <TAB> PAYRATE <enter>

Find the next occurrence of a local symbol name with the same
letters in it.

N

Look at the source code for one of the functions listed in the
display of the calling sequence.

C <DnArrow to desired function> C

Move the highlight to next function "up the stack" (down screen).

CD

Chapter 5-38 Evaluate

EVALUATING EXPRESSIONS

This command lets you evaluate expressions and display the results
in several different bases. The command is invoked by typing:

E (for Evaluate)

The following DIALOG BOX appears:

Ev al

xpression:[]

revious expression

ex Decimal Integer ASCII Binary

You can type in any expression in the DIALOG BOX using the
operators described in Chapter 3. After you type <enter>, this
field is cleared and the expression and its results are displayed on
the next two lines.

2 The expression just entered is displayed here.

3 The results of the expression just entered are displayed in the
DIALOG BOX with the following formats:

HEX DECIMAL INTEGER ASCII BINARY

If the expression contains a segment and an offset it is evaluated to
a 8 hex character number. This command serves to calculate real
mode addresses in the same way as done by the 80286.

Evaluate Chapter 5-39

EXAMPLES OF THE EVALUATE COMMAND

Evaluate expression: ((50*10)-1)/499
OOOOOOOlH lT +lT '.' 00000000,00000000,00000000,0000000lY

Evaluate expression: 'a'
00000061H 97T +97T 'a' 00000000,00000000,00000000,0llOOOOlY

Evaluate expression: SS:SP+5 where SS=3000 and SP=O
00030005H 196613T +196613T ' . .' 00000000,00000011,00000000,00000lOlY

Evaluate expression: ((AX-5)*2/10) where AX=l005H
00000200H 512T +512T ' . .' 00000000,00000000,00000010,00000000Y

Evaluate expression: lOT
OOOOOOOAH lOT +lOT '.' 00000000,00000000,00000000,0000lOlOY

Evaluate expression: -1
FFFFFFFFH 4294967295T -lT '.' 11111111,11111111,11111111,llllllllY

Evaluate expression: AAAA:FFFF
OOOBAA9FH 764575T +764575T ' .. .' 00000000,00001011,10101010,lOOlllllY

Chapter 5-40 File Commands

FILE

The File commands let you load a program and symbol table,
initialization conditions, Quit, or save the AT PROBE output from a
debugging session in a log file.

The File command has the following Subcommands:

Subcommand

Program load
View
Initializations

Quit
Log file

Revision

Operation

Load program, symbols with options
View files on disk (up to 10)
Load AT PROBE initialization
conditions
Return to DOS or run in the background
Log a debug session for later
review
Returns the current version of the
AT PROBE software.

File Program Load Chapter 5-41

FILE PROGRAM LOAD

This subcommand loads program, symbols, sets load options, and
allows for entry of a program command line. Programs and symbols
can also be loaded from the command line when invoking AT
PROBE (See Chapter 2).

The following screen appears:

F~ 3
Program Load ____________ <Tab> next field ¥_> prev screen

oad code from file: <Yes> {Yes!No} Load symbols from file: <Yes> {Yes!No}

ource file path: <>

s- ource file extension: <.C>

6 - ymbol file extension:<.Exe>

1- Symbol adjustment: <Exe> {ExelComlOffsetlAbsolute}

s- rogram command line:<>

9- efault disk: <c> Default directory:<\>

1- ile name: []

First you are prompted for the name of the file to load. If you
cannot remember the name of the program, then use the wildcard
capability of AT PROBE to display files. For example, if * is
supplied for filename, the files in the current directory are
shown in the DISPLAY WINDOW.

The program is loaded into system memory and the symbol table
for the program is loaded into the AT PROBE symbol table. If
the file contains only code and no symbols, the symbol table is
not loaded.

Chapter 5-42 File Program Load

2 This field lets you disable the loading of program code when the
file is already loaded. For example, you would not want to load
code if the program were already resident in memory and you
simply wanted to attach a symbol table. Note, however, that
since AT PROBE does not know where your program is located in
memory when AT PROBE does not load the program, you will
have to supply an adjustment for program symbols by setting the
Symbol Adjustment field.

3 This field lets you disable the loading of program symbols when
the program is loaded. Load time is reduced when symbols are
not included. You would want to load without symbols to reload
an already loaded program. The same symbol table will be used
for the program in this case. Note that the sYmbol Load module
command can be used to load only part of the symbols.

4 This field lets you enter the path for your source code files.

5 Field 5 is used when loading symbols from a .MAP file, but not
for symbols from an .EXE file.

6 If the symbol table is in the .exe file, then the default .exe for
the symbol file extension is used. This can be changed to .MAP
to load from a MAP file.

7 This field tells AT PROBE how the symbol table file is related to
the loaded program. The normal and default entry for this field
is <exe>. When AT PROBE reads the symbol table from the
program file, it automatically adjusts the symbol table addresses
per the absolute locations of the loaded segments.

If <com> is selected, AT PROBE adjusts the location of the code
segment down 100 hex locations to fit the .com format.

File Program Load Chapter 5-43

If either Offset or Absolute is selected the following prompt
appears:

Symbol adjust amount<OOOO:OOOO>

The numbers before the colon are taken as the segment and the
numbers after are taken as the offset. In the case of Off set, the
address of each symbol is determined by the equation:

program load address + offset + symbol address

where:
program load address comes from the DOS loader
offset is the number you set in the [] field
symbol address comes from the symbol file

In the case of Absolute, the address of each symbol is determined
by the equation:

absolute + symbol address

where:
absolute is the number you set in the [] field
symbol address comes from the symbol file

The absolute case is very useful for attaching symbols to loaded
device drivers, quit and stay resident programs, or programs
running on Non-DOS operating systems. See "Debugging a Device
driver which installs itself" in the Advanced Debugging section
for more details.

8 This field lets you pass a command line to the loaded program
through the program segment prefix in the normal manner.

9 These fields let you change the default settings for the drive and
path.

Chapter 5-44 File Program Load examples

EXAMPLES OF USING THE FILE PROGRAM LOAD COMMAND

Load the program VIEWORD.EXE with the default settings of the
File Program Load subcommand.

F P VIEWORD.EXE <enter>

Load a the program INVEST.EXE with symbols loaded from the
.EXE file. The executable file is in the default directory but the
C source files are in PROJ\SOURCE. The program command line
will pass the parameter "3" to the program.

F P INVEST.EXE <TAB> <TAB> <TAB> PROJ\SOURCE
<TAB><TAB><TAB><TAB>3<TAB><TAB><TAB>
<enter>

CMDRES.EXE has already been loaded into memory. Symbols
loaded from the .EXE file are to be loaded at an absolute address
of 2A4D:O.

F P CMDRES.EXE <TAB> N <TAB> <TAB> <TAB> A 2A4D:O
<TAB> <TAB> <TAB> <enter>

File View Chapter 5-45

FILE VIEW

Files can be viewed from AT PROBE while debugging with the File
View command. This command displays the following window:

File
~ View _______________________ <Tab> next field <Esc> prev screen......,

s-pefault disk:<>

1-1Fne name: [

Default directory:<>

1 The DIALOG BOX first prompts you for the filename or file
number. If you cannot remember the name of the file, then use
the wild card (*) capability of AT PROBE to display files. In
order for <F5>,<F7>, and <F9> to work correctly, the file name
must exactly match the file name in the sYmbol
Mod ule-to-f ile-assignmen t command.

2 The file names you have previously viewed are shown in the
DISPLAY WINDOW and they are assigned a number. Typing the
number of the file and <enter> selects the file. If there are
already 10 files assigned on the screen and you want to open
another, you will be prompted for the number of a file
(0 to 9) to close. When a file is opened and displayed in the
DISPLAY WINDOW, it is automatically positioned to the point in
the file where it was previously viewed. This lets you move
quickly between 10 files without re-positioning the cursor in each
file.

3 This is the default drive and pathname. Type <TAB> to get to
these DIALOG BOXES to change the defaults.

Chapter 5-46 File View

Once the file name has been entered, the DIALOG BOX changes to
the following:

File
View ______________ <Tab> next field <Esc> prev screen

peration:[Find] {FindlNextlPreviouslLine} l
ind:<>

,__ ________________ PgUp/Dn, Arrows move highlight

The operation of this DIALOG BOX is the same as the DIALOG
BOX for the Search command (see Search command in this chapter).
The highlight field can be moved with the PgDn/PgUp and cursor
keys. To move to the top or bottom of the file, use the Ctrl PgUp or
PgDn keys. Like the Search command, breakpoints can be set at the
highlighted line in the file and execution begun using the
appropriate FS, F7 or F9 key.

File View Chapter 5-47

EXAMPLES OF USING THE FILE VIEW COMMAND

Display all files in the current pathname. The key sequence is:

F V * <enter>

Display all files in drive A: with a .HEX extension and override
the default directory with "\".

F V <TAB> A <TAB> \ <TAB> * .HEX <enter>

View the file INIT.C in the default drive and directory.

FVINIT.C <enter>

View the file with the pathname A:\SRCFILES\MAIN.C:

F V A:\SRCFILES\MAIN.C <enter>

Change the default drive and directory to A:\ TEMPFILES

F V <TAB> A <TAB> \TEMPFILES

View the file named FTOCIO.C. Display line #103 in this file.

F V FTOCIO.C <enter> L103 <enter>

View a file which has already been assigned to number 4 in the
DISPLAY WINDOW.

F V 4 <enter>

Chapter 5-48 File Initializations

FILE INITIALIZATIONS

Parameters which you set in AT PROBE can be saved to a disk file
and recalled in future debugging sessions with the Init command.
Initialization information stored in a previously saved file can be
loaded to completely set up AT PROBE for a debugging session.

File

Initializations <Tab> next field <Esc> main menu

1 ~fad/save initialization information:[Save] {Load IS ave} l
2 ~ efault disk: <> Default directory: <>

3 -- ile name:<>

<Space> next choice

1. First you are prompted to Save or Load the initializations. Save
is the default.

After initializations have been saved, they can later be loaded
using this DIALOG BOX or through the command line when AT
PROBE is invoked (See Chapter 2).

2. The next prompts are for the default disk and directory.

3. The last prompt is for the initialization filename. The default
drive and directory shown on this screen are used if you do not
specify them. If you cannot remember the name of the file you
want to use then type * and all files in the directory will be
displayed.

The following items are saved with the initializations.

1. The Options are the settings found under the Options command.

File Initializations Chapter 5-49

2. The modulename settings found under the sYmbol command such
as:

a) Modulenames put into AT PROBE'S modulename table.
b) If symbols will be loaded for the modulename when the Load

command is invoked.
c) If source level single stepping is to include or ignore a

module when the Step Source command is invoked.
d) File names assigned to the module names for use during Step

Source commands.

3. The most recently loaded program.

4. Macros from a Macrofile. If AT PROBE has currently defined
macronames which are the same as macronames found in the
loaded Macrof ile, then those macronames are left unchanged
when loading initializations.

5. Window definitions from a window file are loaded. If AT
PROBE has currently defined windownames which are the same
as windownames found in the loaded file, then those
windownames are left unchanged when loading initializations.

The information is stored as ASCII text in the initialization file.
You may edit this text off-line with a text editor. The definition of
the contents of this file is shown in Appendix G.

EXAMPLES OF THE INITIALIZE COMMAND

Display the files in directory \MAIN\DEMOFILES which have the
extension .INI and save the current setup in an initialization file
in this directory called DEMO.IN!

FI <TAB> <TAB> \MAIN\DEMOFILES <TAB> *.INI <enter>
<TAB> <UpArrow> DEMO.IN! <enter>

To load the initialize file named DEMO.IN! from drive C,
directory \DEMOS type this key sequence:

F I L C <TAB> DEMOS <TAB> DEMO.IN! <enter>

Chapter 5-50 File Quit

FILE QUIT

File
Quit ______________ <Tab> next field <Esc> prev screen

l:t-turn to DOS now: <Yes> {YeslNo} J
2 emain resident: <No> {Yes!No}

<Space> next choice

AT PROBE restores the user's screen and returns control to the
operating system. This also removes the AT PROBE program
pref ix segment and restores all interrupt vectors to their original
value unless the Remain resident option is selected.

2 You must type the <Tab> key to get to the prompt to select the
Remain Resident option. In this case, AT PROBE returns control
to the operating system but the program prefix segment and
interrupt vectors 1, 2, and 3 remain in memory.

The Remain Resident command may only be issued once and the
AT PROBE will exist in memory until the next RESET. In order
to re-enter the AT PROBE you must press the STOP button.
From then on, the Go command should be used to return to the
DOS command level.

The remain resident option is useful whenever the File Program
Load command cannot be used to load a program. For instance,
it can be used when debugging installed device drivers, and user
quit and stay resident programs.

The AT PROBE File Program Load command cannot be used to
load a program after you have quit AT PROBE with the Remain
resident option. AT PROBE can, however, still load a symbol
table.

Sticky breakpoints are not active when you return to DOS
through the Quit and remain resident option. They are only set
with the Go command. Therefore, after doing a Quit and remain,
press the STOP button to return to AT PROBE, define
breakpoints and do a Go command to continue execution with
breakpoints set.

File Log file Chapter 5-51

FILE LOG FILE

You can redirect AT PROBE output to a log file. This lets you save
the history of a debugging session. A log file can be a disk file,
printer, communications port, or file on a remote file server on a
network. AT PROBE simply calls DOS with the filename handle.
DOS then writes the output to the specified device. When this
subcommand is selected, the following DIALOG BOX appears:

File
Log file ______________ <Tab> next field <Esc> prev screen

efault disk: <c>

ile name:[]

Default directory: <\>

nable log:<No> {YesiNo}

You are prompted for the name of the log file. Here are the
devices you can specify for a log file:

Filename Description

filename
lptl:
lpt2:
coml:
com2:

DOS filename either local or remote on a network
Lineprinter I attached to the 80286 system
Lineprinter 2 attached to the 80286 system
Coml port on 80286 system
Com2 port on 80286 system

Insure that the line printer is attached and turned on, however,
otherwise AT PROBE will wait for the print device indefinitely.

2 After the log option is selected, you return to the MENU BAR.
If a log file is currently open, you can close it and save it by
selecting No for this field.

3 You must type the <Tab> key to get to the prompt to change the
default drive and directory. You can also override these defaults
by specifying the drive and pathname in the filename.

Chapter 5-52 File Log file

FILE REVISION

To examine the current revision of the AT PROBE software.

File
Revision _____________________________ ,

Atron's 80286 Source PROBE Version 04/06/88

Configuration file is C:\PROBE\PROBE.CNF

(C)Copyright Atron 1987,1988

Go Chapter 5-53

GO

The Go command executes the program being debugged. Execution
starts at a specified address and stops when a defined breakpoint
occurs. The Go command is invoked from the MENU BAR by
typing:

G (for Go)

The DIALOG BOX for the Go command is as follows:

Go

,.------------------<Tab> next field <esc> prev screen

2- tart with cs:ip = <xxxx:xxxx> J
1- on-sticky execution breakpoints:[

, ___________ Enter list of non-sticky breakpoint execution addresses

The Go command is optimized for quick start and/or quick set of
simple execution breakpoints. Typing Go <enter> starts execution
at current cs:ip. If you want to start execution from some other
point, type <Tab> to get to the field which lets you change the
start address.

You can optionally enter one or more addresses for non-sticky
software execution breakpoints. You can enter as many as 15
breakpoints separated by commas.

All sticky breakpoints defined on the Abbreviated Breakpoint
Summary screen are activated by the Go command.

For further discussion on breakpoints and an explanation of
sticky and non-sticky breakpoints, see the Breakpoint command
section in this chapter.

2 An address, symbolname or line number can be entered in this
field as the starting address for program execution. The default
is the current CS:IP.

Chapter 5-54

If you want to execute a macro or display a window automatically
after a Go command, then create a macro which imbeds the Go
command into the macro. The macro can pause for you to set the
breakpoints. When any breakpoint occurs, control returns to the
macro and it can execute more commands or pop up a window.

GO COMMAND EXAMPLES

Execute program starting at the current CS:IP displayed in the
start field. Sticky breakpoints are already defined.

G <enter>

Execute program starting at 'init' in module chartio with
breakpoints on lines 22 and 57 of the default module.

G <UpArrow> •• chartio.init <TAB> #22,#57 <enter>

Execute program starting at the current CS:IP and break on
executing instruction at symbol 'tester' in module chartio.

G •. chartio.tester <enter>

Execute program starting at the current CS:IP and stops at
CS:A333.

G A333 <enter>

Go

Macro Commands Chapter 5-55

MACRO

Macros are a way to create your own commands and automate
keystrokes which are repetitive. Macro commands are simply a group
of keystrokes which are assigned to one keystroke. Each macro has a
name which is the keystroke that invokes it. The commands to let
you define, delete, edit, and display macros are invoked from the
MENU BAR by typing:

A (for mAcro)

The Macro subcommands are shown here along with a short
description of their operation.

Sub command

Define
Edit
Remove
Load
Save

Operation

Define a new macro and assign it to an Alt-key
Change the definition of a current macro
Delete a currently defined macro.
Load previously defined macros from file
Save all currently defined macros to a disk
file

Chapter 5-56 Macro Define

MACRO DEFINE

To start the definition of a macro type subcommand D. The
following screen appears:

mAcro

Define <Tab> next field <Esc> prev screen_
1-\Macro <A--lt--K-e_y_>_: __ [] _______ _

2 -·Description: <>

3 - Macro type: <Normal> {NormaljlfjWhilejCountjForever}

4-Begin defining:<No> {YesjNo}

An Alt-Key means hold down the key Alt and then type any
other key. The Alt-Key becomes the macroname. The Alt-key
can be any key except <Alt-0>; thru <Alt-9>, <Alt-= (Alt equals)>
and <Alt-- (Alt minus)>. These are saved for special use within
the macro. <Al t-F 10> is reserved for the Copy Paste process.

If the macroname already exists, you are given the following
prompt:

<Alt-Key> is a macro. Remove it? <Y> for yes, <any other> for
no

or
<Alt-Key> is a watch window. Remove it? <Y> for yes, <any
other> for no

If you answer Yes, the current macro definition is deleted and
you can proceed redefining the macro. If No, you are returned to
the Macro <Alt-key> field. To change a macro use the Macro
Edit command.

2 You are also prompted to add a Macro description to the Macro.
This is an ASCII text string which describes your macro and can
have up to 200 characters. The macro description is stored with
the Macro. The Macro description can be viewed with the Macro
Edit command. If you simply type <enter> in response to this
prompt, no macro description is attached.

Macro Define Chapter 5-57

You cannot define a macro within a macro definition. AT
PROBE commands are executed while the macro definition is in
process.

3 You can define simple (normal) or conditional macros. For more
details, see the next section "Conditional Macros". If you select
Forever, the macro continues to execute repeatedly until the Stop
button is pressed.

4 At this field you can start the macro definition process or type
the <TAB> key to change other fields on this screen. Once macro
definition begins, the MENU BAR reappears and the macro name
appears in the lower right corner of the screen.

The macro is defined as all key strokes until the macroname (i.e.
Alt-key) is typed again. The commands which define the macro
also execute while the macro definition is in process. While the
macro definition is in process, the macroname is displayed in the
lower right area of the DISPLAY WINDOW to remind you that a
macro is being defined.

Finish macro definition by typing the macro name again. (i.e. the
Alt-Key)

PASSING PARAMETERS TO THE MACRO

Parameters can be included in the macro definition. A parameter is
defined as:

<Alt-#> <enter>

This means hold down the Alt key and type a number from 0 to 9.
This is the reason that these Alt-Keys cannot be macronames. Up to
IO different parameters may be included in the macro definition,
and each parameter may be used multiple times within the macro
definition.

Chapter 5-58 Macro Define

When the macro executes, it pauses the first time it encounters each
different Alt-# and waits for you to input the parameter. The
parameter is specified as all keystrokes you type until <enter> is
typed. If there are 10 different #'s, then the macro will pause 10
times.

The same Alt-# may be used at several different places in the macro
definition. When the .i.macro executes;, it will pause only the first
time for this Alt-# parameter definition. The macro will use this
definition each time it encounters this Alt-# during the current
.i.macro execution;.

During definition of a macro which includes parameters (i.e.Alt-#'s),
the parameter specification is passed on to the command in process.
Commands execute while the macro is being defined. Note that the
<enter> which specifies the end of the parameter during the
definition or execution of the macro is not passed on to the command
in process. Also note that you may define a macro which has
parameters without actually having to use real parameters. This is
done by simply typing:

<ALT-#> <enter> <enter>

This puts the ALT-# into the macro definition, and passes <enter>
without a parameter to the command in process. This will typically
produce an error message which you can simply ignore by typing any
key.

A special Alt-Key is the <Alt--key (hold down the Alt key and type
the minus sign). If <Alt--> is encountered, then the macro always
pauses at the <Alt--> during execution to wait for input. This lets
you enter a new parameter for this special Alt-Key each and every
time it is encountered. This is especially useful in conditional
macros which are described later.

Macro Define Chapter 5-59

While parameters are being entered into the definition of a macro, or
the macro is pausing during execution to receive the parameter
specification, the Alt-# for this parameter is displayed in the lower
right of the screen. The definition of the parameters during macro
execution is not maintained after the macro is finished executing.
When this macro is invoked again, it will prompt you for the
definition of each parameter. If you want the macro to always
execute the same way, then do not use parameters.

NESTING MACROS

A macro may be defined which invokes other macros during
execution. This is done simply by typing the appropriate Alt-Key
which invokes the nested macro into the definition of the macro.
During execution, the nested macro may have parameters passed to it.
You can think of Alt-#'s as global variable names which are
recognized by both the outer level and nested macros.

PASSING PARAMETERS TO NESTED MACROS

Parameters may be passed to the nested macro in one of two ways.
The first time an Alt-# is encountered during macro execution, in
either nested or outer level macros, it is specified. All further
encounters of this parameter during execution of the outer level
macro or the nested macro will use this specification for the Alt-#
(i.e. parameter).

The second way of passing a parameter to a macro lets the parameter
change each time the outer macro invokes the nested macro. This is
done by using the following form to redefine a parameter during
macro execution:

<Alt-=> <Alt-#A> <Alt#-B>

<Alt-=> means hold down the Alt-Key and type the = key. Alt-#B is
the Alt-key to be redefined during macro execution. Alt-#A is the
new Alt-key definition for Alt-#B during macro execution. When
the Alt-= is encountered by the macro during execution, Alt-#B is
replaced by Alt-#A. This lets you define macro modules which can
be reused multiple times in a macro execution while having their
parameters changed on the fly by other macros which call the macro
module.

Chapter 5-60 Macro Define

DEFINING MACROS WHICH CONDITIONALLY EXECUTE

Macros can be defined to check for specified conditions before they
will execute. The condition is tested each time the conditional macro
is executed. This type of macro is defined by choosing one of the
following Conditional types from the Macro Define screen.

Type

If

While

Count
Forever

Count

Description

Start macro execution IF boolean expression is
true

Execute macro again and again WHILE
boolean expression is true
Execute macro COUNT times
Execute macro continuously until the
STOP button is pressed.

If you select the Count conditional macro type, the following prompt
appears:

Loop count: [

The macro will execute repetitively the number of times specified by
the Count. Each time the macro reaches the end of its definition, it
decrements the Count. When the Count reaches 0, this macro
terminates execution. The Count can be an expression or simply a
number. It can also be parameter passed from another macro. Since
macros execute while they are being defined, the loop execution
starts when the macro definition is ended (i.e. the Alt-Key is typed
again.) ·

Macro Define Chapter 5-61

While

If you select the While conditional macro type, the following prompt
appears:

Condition : [

The While condition is a boolean expression which is defined in
Chapter 3 in the section called BOOLEAN EXPRESSIONS. The
boolean expression is checked at the beginning of each execution of
the macro. If it is true, the macro executes again. If it is false, the
macro execution is terminated. Since you may be defining a
conditional macro at a time when the condition is not true, the
macro definition ignores the condition so that you can continue the
def ini ti on.

If

Another type of condition for the Conditional macro definitioh is
the IF condition. When this subcommand is selected, you are
prompted with:

Condition : []

The IF condition is a boolean expression which is defined at the start
of this chapter in the section called BOOLEAN EXPRESSIONS. The
boolean expression is checked at the start of execution of the macro.
If it is false, the macro execution is terminated. Since you may be
defining a conditional macro at a time when the condition is not
true, the macro definition ignores the condition so that you can
continue the definition.

In order for a macro parameter to be changed in a conditional macro
that is in a loop, the Alt-- key must be used for the parameter. If
Alt-- is encountered, then the macro always pauses at the Alt-­
during execution to wait for input.

Chapter 5-62 Macro Edit

MACRO EDIT

Once defined, macros can be edited by choosing the Edit
subcommand from the MENU BOX. The names of the currently
defined Macro and Watch window keys are listed in the DISPLAY
WINDOW.

mAcro

E~:-<-A-lt---K-ey_>_:_(] _______________ <E"> prav ~~•1

Type Alt-key to get macro definition or ? to see all currently defined
macros. If the macro already exists, then the current definition of
the macro is shown in the DISPLAY WINDOW as a sequence of
keystrokes. A highlight field in the DISPLAY WINDOW can be
moved with the cursor keys. The DIALOG BOX which lets you
make changes to the macro definition looks like this:

[J

As the highlight field in the DISPLAY WINDOW is moved, the
contents of the highlight filed is duplicated in the DIALOG BOX.
You can use the AT PROBE edit keys to make changes, additions, or
deletions to the keystrokes in the macro. You may put several
keystrokes into the DIALOG BOX.

If you Edit a macro which does not exist, then the DISPLAY
WINDOW only contains the name of the macro. The same DIALOG
BOX as before is displayed. Key strokes are entered into the
DIALOG BOX and transferred to the DISPLAY WINDOW when
<enter> is typed. Using the Macro Edit command to define a new
macro lets you assign pure ASCII text to a macro name. This is
useful to simply save key strokes as with long complex symbolnames.

Since macros are saved in a file as simple ASCII text, they may be
edited off line with your favorite text editor. The format of the
macro text is described in Appendix F.

Macro Load and Save Chapter 5-63

MACRO LOAD AND SA VE

Macros can be loaded and saved from disk. The Load and Save
subcommands prompt you for the filename:

mAcro

Load <Tab> next field <Esc> prev screen
2-§fault-d-is_k_: _<_C_> ___ D_e_fa_u_lt_d_i-re-c-to_ry_: _<__>_

1-rle name:[]

mAcro
Save _______________ <Tab> next field <Esc> prev screen

2- efault disk: <C>

1-File name:[]

Default directory: <\>

Type the name of the macro file to be loaded or saved.

2 You can change the default disk and directory by using <TAB>
to get to these fields and enter a new pathname.

If the drive and directory are not specified, then the defaults shown
on the screen are used. The wildcard character "*" can be used to
display file names.

Chapter 5-64 Macro Remove

MACRO REMOVE

A macro can be deleted by choosing the Remove subcommand from
the MENU BOX. You are then prompted with:

mAcro

Type A to remove all macros; ? to see all macros; or <Alt-Key> to
select macroname.

The names of the currently defined Macro and Watch window keys
are listed in the DISPLAY WINDOW.

By specifying the key which would normally activate this macro in
response to this prompt, it is removed.

/

Macro execution Chapter 5-65

MACRO EXECUTION

After a Macro has been defined, it can be executed by simply typing
the Alt-Key which is the macroname. You will see the macro
execute on the screen. If a macro pauses waiting for you enter to
enter a parameter, the Alt-# for the parameter is in the lower right
hand corner of the screen. The command in process which will
accept the parameter is also shown on the screen.

If you want to bail out of macro execution, press the Stop Button.

Chapter 5-66 Macro examples

MACRO COMMAND EXAMPLES

Define a macro named Alt-A that will load a program and
unassemble from the start of the program. The program name
should be a parameter to the macro.

A D <Alt-A> <enter> <enter> <enter> Y F P <ALT-0>
FTOC.EXE <enter> <enter> M U <enter> <Alt-A>

This macro can now load the file FTOC.EXE with the following
key sequence.

<Alt-A> FTOC.EXE <enter>

Define the same macro, but this time do not really load the file
while the macro is being defined.

A D <Alt-A> <enter> <enter> <enter> Y F P <Alt-0> <enter>
<enter> <ESC> M U <enter> <Alt-A>

Note that the only difference is an <enter> where the file name
was in the previous macro.

Edit the previous macro to delete the unassemble portion of the
macro.

A E <Alt-A> <enter> <DnArrow> <DnArrow> <DnArrow>
<DnArrow> <DelKey 9 times> <enter> <ESC>

Use the <Alt-FIO> key to capture a symbol named
MAINMODULE.IOPROC.VARTEMP from the screen and store it
as AL T-B (See Function Keys in Chapter 2)

<Alt-FlO> <cursor to beginning of symbolname> <Alt-FlO>
<cursor to end of symbolname> <ALT-B>

Macro examples Chapter 5-67

Define a macro named ALT-C which displays memory starting at
an address passed to it from the previously defined macro AL T-B.
Display 15 words at this address, pause to view memory and then
press <ESC> and display the main registers.

A D <ALT-C> <enter> <enter> <enter> Y MD W <ALT-B>
<enter> +15 <enter> <ALT-0> <enter> <enter> <ESC> <ALT-C>

Define a macro ALT-K that displays the file FTOCIO.C if the
contents of memory location FILEPTR is "I". Enter the
description of the macro as "Display file when flag is 'I'."

A D <ALT-K> <enter> Display file when flag is "I" <enter> I
[FILEPTR]B="I" <enter> Y F V FTOCIO.C <enter> <ALT-K>

Define a macro which defines and activates a sticky breakpoint
on writing to the variable FAHR. After each write, check to see
if the contents of FAHR is greater than the contents of the
variable F AHRMAX. If it is greater, stop the macro. If it is not,
keep running the macro. Note that it would be better to define
the breakpoint independently of this macro since it is defined
through each loop.

AD <ALT-X> <enter> <enter> W [FAHR]D<=[FAHRMAX]D
<enter> YB D 0 W FAHR <CTRL-CURSORLEFT> <enter>
<UpArrow 3 times> A <ESC> <ESC> G <enter> <ALT-X>

The following macros may be useful to define:

Define a set of macros which mimic the CodeView Ctrl key
functions, i.e. make Alt-Function keys do the same thing as the
CodeView Ctrl keys.

Define the <Alt-S> key as the single step key.

Chapter 5-68 Memory Commands

MEMORY

The subcommands for the Memory command are:

Subcommand

Display change
Io port
Float display change
Unassemble assemble

Block opera ti on
Variable

Operation

All non-float memory types
IO devices
All floating point types
Unassemble or assemble code into
memory
Operate on memory in blocks
Supports complex C data types

Memory Display change Chapter 5-69

MEMORY DISPLAY CHANGE

You can display memory on screen in several different lengths and
change it directly on the screen. Here is a sample memory display.

Memory 3

Display change <Esc> prev screen

1-+ Data size: [Byte] {ByteiWordlDwordlSigned-wordlslgned-longlPointer}

2--+Start address:

4~ Enter new value:[]

<2000:0000> End address<2000:003F>

5 - Current address:<OOOO:OOOO>= .symbol

\

2000:0000 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 10 11

2000:0010 12 13 14 15 16 17 18 19 lA lB lC 1D lE lF 20 21

2000:0020 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 "#$%&'(
2000:0030 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40 41 3456789

You select the type of the data to be displayed from this field.

2 This field prompts you for the start address of the memory to be
displayed. You may enter any type of address expression. If you
type <enter>, you will get the default start address shown on the
screen.

3 This field prompts you for the end address. You may enter any
type of address expression. The end address may also be of the
form:

+number

In this case the end address becomes start address+number. If
you simply type <enter> without entering a new end address, you
get the default end address shown on the screen. After the end
address is selected, the memory is displayed in the DISPLAY
WINDOW.

Chapter 5-70 Memory Display change

4 A location in memory is highlighted in the DISPLAY WINDOW.
You are prompted to enter a new value into memory at this
location. The value can be a symbolic expression, a number, or a
string of "characters". If the value is a string, each character is
written to the next unit (i.e. byte, word, or long). If the value is
an expression, the standard AT PROBE editing keys can be used
to make changes to the expression in the DIALOG BOX. After
<enter> is typed, the value is deposited into memory and the
highlight moves to the next address. The value deposited in
memory is also displayed in the cell in the DISPLAY WINDOW
unless you have the Read-after-write option set so that a read
after write does not occur. You can move the highlight field in
the DISPLAY WINDOW with the cursor and PgUp/PgDn keys.
This lets you scroll through memory and make changes visually
on the screen.

5 This is the current address of the memory location which is
highlighted in the DISPLAY WINDOW. If the current address
matches or is close to a symbol in the symbol table, then the
symbol is also shown in this field along with the address.

6 A duplicate of the data is shown as ASCII in this area for the
Display Byte command. The ASCII is not displayed for the Word.

Typing <TAB> while in the Memory Display command will move you
to the previous fields. For example, you may want to display several
small blocks of memory on the screen, one after the other. After
displaying each block, type the <TAB> to select new start and end
addresses. The previous blocks of memory are not erased from the
screen but are scrolled up the screen.

Memory Display change Chapter 5-71

EXAMPLES FOR MEMORY DISPLAY CHANGE

This example demonstrates using the Memory Display command to
show a line of words starting at location BUFFER in the current
module. The key sequence is:

M D W BUFFER <enter> <enter>

To look at a screen-full of words at this point type:

<PgDn>

Change the value of 3 bytes of memory starting at TEMP to 0.

MD B TEMP <enter> <enter> 0 <enter> 0 <enter> 0 <enter>
<ESC>

At 4000:0, change the first byte of memory to AA. At 5000:0, type
in a pointer to 4000:0. Then display the byte at 4000:0 using the
pointer.

M D B 4000:0 <enter> <enter> A A <enter> <TAB> P 5000:0
<enter> <enter> 4000:0 <enter> <TAB> B [5000:0] P <TAB> + 1
<enter>

Chapter 5-7 2 Memory IO port

MEMORY IO PORT

This command lets you display and change IO ports.

Memory

H /:O~~-iz-e:----:-~-:-~o-;_{_D_w_or_d_IW_o_r_d_IB-y-te_} _____ <Esc> prev screenl

1-- peration: [Input] {InputjOutput}

1 If Output is selected for the operation, you get the following
prompt:

Enter new value:[}

Each time an output value is entered, the DISPLAY WINDOW
shows:

Value output to port --> [IO port #)

You can continue to write the same value to this port by typing
the <enter> key.

If the operation were Input, the DISPLAY WINDOW shows:

[IO port #) --> Value input from port

2 Tab to this field to select IO port #

3 Tab to this field to select port size.

Memory Float display change Chapter 5-7 3

MEMORY FLOAT DISPLAY CHANGE

If you have a 80287 floating point co-processor in your system, you
can display and change memory of a floating point format. When
you select the Memory Float display command, the following
DIALOG BOX appears:

Memory

Float display change <Esc> prev screen

1,,_ !oat type:(Long] {ShortlLonglTemplPacked-declsHort-intllOng-int}

2- tart address:[]

Current address <0000:0000>

These menu options let you select the floating point data type

2 Once the start address is selected, the following prompt appears
in place of the start address:

Enter new value:[]

If you do not have a 80287 in your target, the values displayed by
this command are in hex. If you have the 80287, the conversions are
done and the data is displayed in decimal in the standard floating
point formats. Values can be entered in this format as well. In
addition, the values of NAN (not a number) and INFINITY are also
accepted. Once <enter> is typed, the next address is displayed. In
this command, each line on the screen shows only one floating point
value, since some values will fill nearly an entire line. The cursor
keys, PgUp/Dn and highlighting work the same in this command as
in all other DISPLAY WINDOWS.

Chapter 5-74 Memory Unassemble/ Assemble

MEMORY UNASSEMBLE ASSEMBLE

Memory can be displayed as assembly language instructions with the
Unassemble command. You can also enter new assembly code
directly on this screen.

Memory :: ~::~;=:~:::::~:::~:-~-8~_7_0_} _______ <Tab> next field <Esc> prev screen

11
3~ Instruction:<> I
4_,.Undo

The first DIALOG BOX prompts you for the starting address of
the memory to disassemble. If <enter> is typed with no start
address then the default start address is assumed. After the start
address is entered or the <default address> is taken, the DISPLAY
WINDOW shows a page full of unassembled instructions with one
line highlighted. You can move the highlight field with the
cursor keys.

Note that symbols or line numbers which match the address fields
are included in the unassembly to simplify the display. If you
are running the SOURCE level version of AT PROBE, the source
code which is associated with the unassembled instructions is also
shown in the DISPLAY WINDOW.

2 This is the current default start address. It is the current
program counter if a Go command or single step has been
executed previous to this command. It is set to the last address of
the previous Unassemble command display if no Go or single step
has been recently executed.

Memory Unassemble/ Assemble Chapter 5-7 5

3 Next, you are prompted to start assembling instructions. The
instructions which are initially typed into the DIALOG BOX are
transferred to memory and then unassembled into the DISPLAY
WINDOW after each <enter>. The AT PROBE edit keys let you
make corrections to the instructions in the DIALOG BOX. The
new instruction overwrites the old instruction and unassembles
the code on the screen directly under it. If the instruction is
longer, the code below it will probably change. After typing
<enter> you are prompted for a new instruction at the next
address. To get to the other fields, type <TAB>.

The assembler will work for Co-processor instructions as well.

4 After an instruction is entered into memory, the following option
appears in the DIALOG BOX:

Undo last change: <No> {YeslNo}

The Undo field gives you a chance to change the instruction you
just changed back to the way it was.

5 This field lets you display the hex equivalent for instructions.

F5 and F7 set breakpoints on this screen, and start program
execution. When a breakpoint is detected, control returns to the
CODE SCREEN. F9 sets or clears sticky breakpoints.

Chapter 5-76 Memory Unassemble/ Assemble

NOTES ON THE AT PROBE LINE ASSEMBLER

The following notes apply to the assembly language which is
understood by the AT PROBE standard line assembler.

1. Standard assembly language mnemonics are used.

2. The assembler will automatically assemble short jumps and calls
depending on the displacement of the destination address.

3. When a byte, word, or double-word size cannot be determined by
the operand, the data type of the operand must be specified by
byte ptr, word pt, or dword ptr.

4. Numbers are in hex. If a symbol is used as an address in a
reference, only the offset will be used. If a symbol is used in a
reference specified as FAR, then both the symbol's segment and
offset values are used.

5. Prefix mnemonics are entered on a separate line.

EXAMPLE:
0642:0000 REP
0642:0001 MOVSB
0642:0002 LOCK
0642:0003 XCHG BYTE PTR[.TEMP],AL

6. Segment override mnemonics are cs:, ds:, es:, and ss:

EXAMPLE:
0642:0000 MOY AX,CS:[.LOOPST ART]

7. The assembler will automatically assemble short or near jumps
and calls depending on byte displacement to the destination
address. The FAR prefix must be specified for inter-segment
jumps or calls, otherwise, the current segment is used.

EXAMPLE:
0642:0000 JMP .LOOP
0642:0002 JMP FAR .ST ART

;A 2 BYTE SHORT JUMP
;A FAR JUMP

Memory Unassemble/ Assemble Chapter 5-77

8. When a byte or word location cannot be determined by the
operand, the data type of the operand must be specified with the
prefix BYTE PTR or WORD PTR, DWORD PTR, QWORD PTR,
etc.

EXAMPLE:
0642:0004 DEC WORD PTR [SI]

9. An immediate operand is distinguished from a memory location
by enclosing the latter in square brackets.

EXAMPLE:
0642:0000 MOY CX,100
0642:0005 MOY CX,[100]

;LOAD ex WITH lOOH
;LOAD ex WITH THE
;CONTENTS OF MEMORY
;LOCATION DS:lOO

0642:0007 MOY AL,CS:[.BUFFER]

10. All forms of register indirect commands are supported.

EXAMPLE:
ADD AX,[BP+SI+34]
POP [BP+Dfl
PUSH [SI]

11. All opcode synonyms are supported.

EXAMPLE:
LOOPZ .LOOPONRDY
LOOPE .LOOPONRDY
JA .LOOPONRDY
JNBE .LOOPONRDY

Chapter 5-78 Memory Block operations

MEMORY BLOCK OPERATIONS

The Memory Block operations lets you save, compare, find, move, and
initialize blocks of memory.

Memory
Block operation _________________ <Esc> prev screen

I-Operation:[] {Move,Compare,Fill, Search, Write to disk} l
2-+ tart address:< >[

nd address:< >[

~---------------------<Space> next choice_

First you select the type of block operation from these choices:

Operation

Move
Compare
Search
Fill
Write to disk

Description

Move block of memory to new destination
Compare two blocks of memory
Find a string in memory
Fill memory with a string
Write a block to disk file

2 Every operation prompts for both start and end address of the
block to be moved, compared, searched, filled or written to disk.

The start and end address of the block are any type of address
expression or simply type <enter> to accept the default start
address shown on the screen. The end address may also be of the
form:

+number

In this case the end address becomes start address+number. If
you simply type <enter> without entering a new end address, you
get the default end address for the block.

Move and Compare both prompt for a destination address:

Destination:[

Memory Block operations Chapter 5-79

For the Move operation, the block defined by the start and end
addresses will be moved to the destination address. Move can
move an overlapping block in memory.

The Compare operation compares the block defined by start and
end with a block of the same size starting at the destination
address. Compare also has the following prompt:

Report if bytes are: <Not equal> { EquallNot Equal}

The two blocks designated by the address prompts will be
compared and a reporting of those bytes that match or don't
match will be displayed in the DISPLAY WINDOW. If you chose
for a report on those bytes which are not equal and they
completely match, AT PROBE will report that they are identical.
Otherwise, the reporting will have the following format:

Offset

+0010

+008F

Src Dest

Byte Byte

67-44

67-49

The Fill and Search operations prompt for the start and end
address of the block and for specified bytes to fill the block or
search for in the block. After the address prompts, the following
prompt appears for these subcommands:

Byte list:[

For the Fill and Search operations, the string may be hex bytes,
or an ASCII string in quotes.

The Fill operation fills the memory repeatedly with the list. The
list written into memory at the destination address may only be
partial since the block size may not be an even multiple of the
list size. The list is treated as a sequence of bytes.

Chapter 5-80 Memory Block operations

If the search command is used, it will further prompt for whether
the search should be for a value equal to the search string, or a
value not equal to the search string. If Search finds a match, it
reports:

Search string found at off set +xxxx

The above message is displayed for every match found. If no
match is found, AT PROBE reports:

Search data not found in block

The Write operation saves a block of memory to a disk file as a
string of bytes. The prompts for this operation are start and end
address of the block to be saved and the name of the file in
which it will be saved. There is also a default disk and directory
prompt which you can override by typing <TAB> to these fields
and typing new path information.

Memory Block operations Chapter 5-81

EXAMPLES OF MEMORY BLOCK OPERATION COMMANDS

Save a block of memory to disk from ARRAY -ST ART to
ARRAY-END in a file called SAVEBLOCK. Use drive D with
directory \ TEMPSA VE.

M B W ARRAY-ST ART <TAB> ARRAY-END <TAB> D
<TAB> \ TEMPSA VE <TAB> SA VEBLOCK <enter>

Compare the block of memory with the defaults from the previous
example with a destination block at 5000:0

C <enter> <enter> 5000:0< enter>

Find the string "Now is the time" in the block of memory from
3000:0 to 3000:FF. Report if bytes are equal.

MB S 3000:0 <enter> +100 <enter> "Now is the time" <enter>
E

Move the block of memory from ARRAY-ST ART to
ARRAY-START +3FF into NEWARRAY.

MB M ARRAY-START <enter> +3FF <enter> NEWARRAY
<enter>

Fill the block of memory starting at ARRAY-ST ART and ending
at ARRAY-END with the string "Now is the time".

MB F ARRAY-START <enter> ARRAY-END <enter> "Now is
the time" <enter>

Chapter 5-82 Memory Variable

MEMORY VARIABLE

Variables can be displayed or changed with the Memory Variable
command. The variables will automatically be displayed in the data
type assigned to the variable.

This command applies only to the SOURCE PROBE.

Memory

Variable _____________ <Tab> next field <Esc> prev screen_

1~ Variable name:<>

2--+ DataType: <>

3-°" Member: <>

4- Hex Decimal Integer ASCII Binary

5~ New value:

:xxxx symbol.A

:xxxx FarPtr.B

:xxxx CharArray

= xxxx
= xxxx:xxxx

="ABCDEFGHIJKLMN" ..

The first field prompts you for the name of the variable to be
displayed or changed.

Structure field names and array indices are allowed.

Expressions such as "[Ptr]" may be given to display memory
pointed at by a pointer variable. In this case, if "Ptr" points to a
structure, then fields within a structure can be specified just as if
the original structure name were specified, as in "[Ptr].fieldname",
etc.

2 The second field displays the data type of the variable entered in
VARIABLE NAME. Optionally, the data type of the variable
being examined can be altered using the DAT A TYPE DIALOG
BOX. Note that if a complex data structure which was defined
without a tag is used as a type cast, VARIABLE NAME will
simply be designated as "struct".

Memory Variable Chapter 5-83

When a variable name is first input, the type in the DAT A TYPE
field is set to the default type for that variable and the cursor
jumps to the NEW VALUE field. To alter the default type cast,
press <TAB> twice. The DAT A TYPE prompt will change to
<SamelChangelNone>. If C is entered for Change, you will be
prompted to input the name of a variable with a type the same
type as the type you wish to cast the current variable to (3).
Complex expressions can be used to specify type casts. If N is
entered to the DAT A TYPE prompt, the variable in question will
be uncast, that is represented as a 16 bit word. Entering S to the
DAT A TYPE prompt will cause the cursor to move to the next
field.

Examples:

If P is a pointer to an integer, specifying [P] will cause the
variable to be cast to the type of dereferenced P, that being to
type integer. If C is a complex structure with S being the address
of the first element of an array of chars (a string) contained as a
member within C, entering C.S will cast the variable being
referenced to the type of an array (or string) of chars.

3 The third field optionally displays the name of the current
member of the data structure being examined. If a simple data
type is being examined, this line will remain blank.

4 After the variable name is entered, its value is displayed
according to its type. Character strings are displayed in quotes,
far pointers are displayed in segment:offset format, enums in
ASCII and other types are shown in hex, decimal, integer, ASCII
and binary formats.

5 A new value for the variable can be entered here. The value
entered should be according to the variable type. For instance, a
character array should be entered in quotes.

(3) It is necessary to extract type casting information from existing variables, due to the
way Microsoft (R) symbolic information is stored. This function does not work with
compilers which do not provide Microsoft symbolic information.

Chapter 5-84 Memory Variable

6 The DISPLAY WINDOW shows the address, name and value of
the variable. This display is updated when a new value is
entered for a variable. Structures and arrays are displayed in a
multi-line format. The highlighted cursor can be used to select
an array element to be changed. Also the PgUp/PgDn and
Ctrl-PgUp/Ctrl-PgDn keys can be used to move the cursor when
there is more than one display line.

The Memory Variable command supports all C data types.

Character arrays are printed in a one-line format. The first 14
characters are displayed on the right side of the screen with
continua ti on indicated.

The Variable subcommand displays all values except character arrays
and enums in hex. Values are displayed as 1, 2, 4 or 8 bytes,
depending on the type of the variable. Enum variable value are
displayed as an ASCII character string if the numeric value has an
associated string. Otherwise, the value is displayed as a 2-byte
number in hex, unsigned decimal, decimal ASCII and binary.

Enum values may be assigned as either ASCII strings (enum element
names) or as hex values.

Note: If you set a breakpoint at .procedurename, execute to that
point, and then try to display a local variable, the value displayed
will be incorrect because the BP register does not get initialized until
several instructions into the procedure. Source stepping one
statement will set up the BP register.

Options Chapter 5-85

OPTIONS

The Options command lets you set a number of parameters which
affect how AT PROBE works while in the code screen. The options
affect the interactive aspects of displaying code and single stepping
program execution.

All the options that are selected from the Options command can be
saved in an initialization file (See the File Initializations command
in this chapter). The options will be set automatically when the
initialization file is loaded.

This command is invoked from the MENU BAR by typing:

0 (for Options)

The Options command has the following subcommands:

Subcommands

Screen
View operands
Mix source
sYmbols displayed
Case sensitivity
sTep count
Interrupts

Read after write

Function call

Operation

Selects screen switch and remote consoles
Display operand contents during step
Show source code with assy during step
Show symbols with code during step
Include case in symbol interpretation
Number of steps to take during step
Controls interrupt system while in
AT PROBE
Verify changes made by the AT PROBE
memory command
Selects linkage style

Chapter 5-86 Options Screen

OPTIONS SCREEN

When this subcommand is selected, the following DIALOG BOX
appears:

Options

Screen <Tab> next field <~sc> main menu

1~ witch screens:<Flip> {F!iplSwitchlNo-switch}

ctivate console:[Local] {Loca!IOther1Remotell-Comll2-Com2}

aud rate: <38400>{2400l9600l19200l38400}

AT PROBE can isolate its screen from the application by creating
two virtual screens. If the AT PROBE console is selected to be
Local, this field selects the type of screen multiplexing between
the AT PROBE screen and the applications screen. If screen
switching or flipping is enabled, the application screen is
displayed whenever your program is executing from a Go
command or a single step. In this manner, output from the
program is not confused with output from AT PROBE. When AT
PROBE has gained control from the application program after a
breakpoint or after each single step, the application screen is
saved and the AT PROBE screen is displayed. There are three
choices:

Screen Flip - the user screen is put on video pages 0, l, or 2,
(depending on the page selected using the BIOS) and the AT
PROBE screen uses video page 3. This is slightly faster than
screen switching, and requires that a video card supporting
multiple display pages be used. In order to use screen flipping,
the application being debugged must remain in the same video
mode as used by AT PROBE (mode 02 on monochrome, 03 on
color) and must be using the 25 line display. If screen flipping is
not available in the current display mode, the Flip option will not
be displayed in the dialog box.

Options Screen Chapter 5-87

Screen Switch - stores the contents of the application screen in
AT PROBE memory and puts up the AT PROBE screen. Screen
switching is the default.

No switch - Both the AT PROBE and the application share the
same screen in this mode.

Screen switching may only be used from the local console. They
have no meaning from the remote console or other console since
the application screen is always displayed on the system console.

You can switch between a display of the application screen and
the AT PROBE screen with the F4 function key when screen
switching is selected.

2 This field lets you select the active console interface for AT
PROBE. AT PROBE starts with the console set to the standard
keyboard and monitor. You can change this by selecting one of
the options from this field.

L for Local restores the communication to the AT PROBE from
the standard keyboard and monitor. This is the default when AT
PROBE first signs on. If you have switched the console to one of
the other choices shown below, you can switch back to the local
console with this option. Local console is the default.

R for Remote console uses the serial RS232 port on the AT
PROBE board for commands. This frees up the keyboard and the
monitor for applications programs. It also eliminates the use of
all DOS and ROM BIOS calls (except for disk use) since the
software driver for this port is contained in the AT PROBE
software. This is very useful for debugging routines which steal
DOS interrupts.

Typing I or 2 specifies using the COMI or COM2 port. The
function is the same as the Remote console case.

Chapter 5-88 Options Screen

The connection to the COMl or COM2 RS232 ports is described in
Appendix E. The external CRT configuration parameters are also
described in Appendix E.

0 for Other console allows the screen display for AT PROBE
commands to appear on an alternate video monitor driven from
an alternate video display controller board plugged into the
system. A system which uses a monochrome monitor may have a
graphics monitor installed also. In this case, the monochrome
monitor would be used for your program output and the graphics
monitor would be used for AT PROBE output. If the system
normally uses the graphics monitor and also has a monochrome
monitor, then your program output is put on the graphics monitor
and AT PROBE output is put on the monochrome monitor.

Press the <Enter> key on the remote keyboard

This prompt allows the AT PROBE to check that the remote
console is connected and operating at the correct baud rate. If
the character received by the AT PROBE is not <enter>, the AT
PROBE will remain at the local keyboard. Typing <enter> at the
local keyboard will also cause AT PROBE to remain there.

3 This field lets you set the baud rate for the Remote, Coml or
Com2 serial ports. You only need to enter the first character to
select the baud rate. 9600 baud is the default. The baud rate
may be specified in the PROBE.CNF file.

Options View operands, mix source Chapter 5-89

OPTIONS VIEW OPERANDS

During single step operations with the F8 or F IO function key, the
code screen can display the contents of operands if the screen is in
assembly language mode. If this is not desirable, enter No to Options
View operands.

Options

View operands during step ______________ <Esc> prev screen
~ ~ i:ad and display operands on code screen: <Yes> {YesJNo} I

The default is Yes.

Chapter 5-90 Options View operands, mix source

OPTIONS MIX SOURCE DURING STEP

If the code screen is in assembly language mode, you can also include
source code mixed in with the display by selecting the option in the
screen below.

Options

Mix Source during step <Esc> prev screen

ix source lines with assembly language instructions: <Yes> {Yes!No} J
The default is Yes.

Options sYmbols displayed with code, Case Chapter 5-91

OPTIONS SYMBOLS DISPLAYED WITH CODE

When AT PROBE displays assembly language in the CODE SCREEN,
you can also include the display of linenumbers and symbols for
address and operand fields. The screen below lets you make the
choice.

Options

sYmbols displayed with code <Esc> prev screen

fsplay symbols for instructions and operand addresses: <Yes> {YesiNo} -1

The default is Yes.

Chapter 5-92 Options sYmbols displayed with code, Case

OPTIONS CASE SENSITIVITY

When symbols are referenced, case can be ignored or used in
correctly identifying the symbol. If your code has symbols that are
only differentiated by case, you should select No for this option.

Options
Case sensitivity _________________ <Esc> prev screen

gnore case in symbol look-up ('A'== 'a'): <Yes> {YeslNo} J
~---------------------<Space> next choice

The default is Yes (ignore case).

Options Interrupts Chapter 5-93

OPTIONS INTERRUPTS

You can enable or disable interrupt masks in the two 8259 interrupt
controllers while in AT PROBE software. The background interrupts
such as the real time clock, disk controller operations, and keyboard
servicing will continue to request servicing while the AT PROBE
software is executing. However, if the routines which service these
requests are not working, they could prevent AT PROBE from
operating. This could happen if they never return to the AT PROBE
software. This could also happen if AT PROBE took control via a
breakpoint you set within a non-reentrant interrupt routine, and then
a new interrupt tried to take control away from AT PROBE. To
prevent this from occurring, use the Options Interrupt command to
mask off the selected interrupts after entry into AT PROBE
software. You would normally execute this command after you had
just loaded your program and before executing it for the first time.
The Options Interrupt command sets the state of the 8259 interrupt
mask register while in the AT PROBE software. The mask change
occurs as soon as the Options Interrupt command is executed. This
does not affect your program since the mask is always restored to the
value it had when AT PROBE was entered from a breakpoint. Also,
references to I/O port 2lh and Alh will reflect the mask used in
your program: they will not affect the mask used in AT PROBE.
There are two cases when this mask is then changed again.

I. ENTERING THE APPLICATION CODE. When the applications
program is started with the Go command, this mask register is
set to the state it was in when the last breakpoint occurred. For
the first Go command the mask register is set to the state it was

·in when AT PROBE was started.

2. ENTERING AT PROBE SOFTWARE. When AT PROBE
software is entered from a breakpoint in the users program, it
sets the mask to the state which was specified by the Options
Interrupt command. If no Options Interrupt command has ever
been issued, it sets the mask to the state it was in when the AT
PROBE software was loaded.

Chapter 5-94 Options Interrupts

The keyboard interrupt can only be masked from a remote CRT. If
the disk controller interrupts are masked, then commands which use
the disk such as Load, Save and Edit subcommands cannot be
executed.

When the Options Interrupt command is selected, the following
DIALOG BOX appears:

Options

Interrupts <Esc> prev screen

1 Enable when application is not running:<Yes> {YeslNolDefault}
, _______________________ <Space> next choice

Interrupt level

2~ aster 0. Timer 0

Master 1. Keyboard

Master 2. Slave

Master 3. COM2:

Master 4. COMl:

Master 5. LPT2:

Master 6. Diskette

aster 7. LPTl:

0. Real clock

1. SW INT OAH

Slave 2. reserved

Slave 3. reserved

Slave 4. reserved

Slave 5. CoProcessor

Slave 6. Fixed disk

Slave 7. reserved

Enable when application is not running

Yes

Yes

Yes

No

No

No

Yes

No

No

Yes

No

No

No

No

Yes

No

This prompt allows you to enable or disable specified interrupts.
Select Yes to enable, No to disable or D to take the default for
the interrupt at the highlight. The default is the state saved
when AT PROBE was loaded.

2 The DISPLAY WINDOW above contains a sam'ple display of the
interrupt states. It will generally be the default. However, a
program you have run may have changed some of the values.

\

Options sTep count, Read after write Chapter 5-95

OPTIONS STEP COUNT

You can select the number of single steps to take each time the F8 or
FIO function keys are typed while in the Code screen.

Options
sTep count __________________ <Esc> prev screen

Steps to take for each <F8> or <FlO> key:<OOOl>[)

The default is I step. You can select up to FFFF steps to be taken
for each press of the F8 and FI 0 keys.

OPTIONS READ AFTER WRITE VERIFICATION

When you change the contents of memory with any of the MEMORY
subcommands, AT PROBE automatically reads back the change to
insure that it occurred. You can disable this verification with the
screen below.

Options
Read after write verification. _________ ---'-___ <Esc> prev screen

erform memory read-after-write verification: <Yes> {YeslNo} J
..__ _____________________ <Space> next choice_

Chapter 5-96 Options Function call linkage

OPTIONS FUNCTION CALL LINKAGE STYLE

In order for the Calls command to correctly display the calling stack
and for local variables to be evaluated in expressions, the style of
function call linkage must be specified.

When this subcommand is selected, the following DIALOG BOX
appears:

Options
Function call linkage style ____________ <Esc> prev screen_

Call linkage style:[Microsoft (r)J {Microsoft (r)ILattice (r)}

Type M for Microsoft or L for Lattice. The default linkage style
is the one used by Microsoft. It assumes the following order of
instructions:

PUSH BP
MOY BP, SP
SUB SP, XX

The linkage for Lattice is as follows:

PUSH BP
SUB SP, XX
MOY BP, SP

Register Chapter 5-97

REGISTER COMMAND

The registers and flags in the 80286 can be displayed and changed
with the register command. You invoke this command from the
MENU BAR by typing:

R (for Register)

The following screen appears:

Reg

.------------------<Tab> next field <Esc> prev screen

2~ rocessor: <Main> {FloatlMain} J
1- nter new value: (]

._ ____________________ Arrows move highlight

The DIALOG BOX prompts lets you change the value of one of
the registers or flags. The register to be changed is indicated by
the highlighted field. You can position the highlight on the
desired register and enter an expression. Optionally, to avoid
having to move the highlight field to a register, you can enter the
following value:

registername = value

The value is deposited directly into registername. Registername
is a standard register definition.

2 This field shows you which processor the registers in the
DISPLAY WINDOW is displaying. The Main processor displays
the 80286 registers. Float displays the 80287 numeric coprocessor
registers. The display formats are shown next.

80286 registers and flags

AX=0007 CS=12FD SS=14AD DS=14AD ES=14AD GDTR=OOOOOO,FFFF

BX=1314 IP=0136 SP=l310 Sl=0082 Dl=l32D IDTR=OOOOOO,FFFF TR=OOOO

CX=0019

DX=OOOE

BP=1316 MSW=FFFO=TSO EMO MPO PEO

FL=0206=00 DO 11 TO SO ZO AO Pl CO

Chapter 5-98

80287 registers and flags

ST(O)= + 1.6148186360801886 E + 4335 Tag=Empty

ST(l)= + 1.6148186360801886 E + 4335 Tag=Empty

ST(2)= + 1.6148186360801886 E + 4335 Tag=Empty

ST(3)= + 1.6148186360801886 E + 4335 Tag=Empty

ST(4)= + 1.6148186360801886 E + 4335 Tag=Empty

ST(5)= + 1.6148186360801886 E + 4335 Tag=Empty

ST(6)= + 1.6148186360801886 E + 4335 Tag=Empty

ST(7)= + 1.6148186360801886 E + 4335 Tag=Empty

FPCW=037F= PMl UMl OMl ZMl DMl IMl

I=Proj R=Near P=64-bit

FPSW=4100=ESO PEO UEO OEO ZEO DEO IEO STO C31 C20 ClO COl BO

Register

These register names are recognized by AT PROBE and can be used
in expressions exactly as they are shown above. If you want to
specify a hex number to AT PROBE which coincides with a register
name, you must precede the hex number with 0.

EXAMPLES OF USING THE REGISTER COMMAND

Change the value of register DS to AAAA.

R <RtArrow> <RtArrow> <RtArrow> AAAA <enter>

Change the value of the ES to EFF

R ES=EFF <enter>

Search Chapter 5-99

SEARCH

The Search command operates in the CODE SCREEN. It lets you
find all occurrences of a specified string in the source code for the
module that is currently executing. It is invoked from the MENU
BAR by typing:

S (for Search)

The following DIALOG BOX appears:

Search
_________________ <Tab> next field <Esc> prev screen

1- peration:[Find] {FindlNextlPreviouslLine} J
2- ind:<>

Modulenam ____________ PgUp/Dn, Arrows move highlight

The first prompt is for the action to be taken in the Search
command.

The default is F for Find. Choose this option to begin searching
for an occurrence of the string specified in the next prompt.

When and if the specified string is found, you can type N for the
Next occurrence of the string in the current module. When no
further occurrences of the string are found in the module, the
following message will be displayed:

Did not find string from here to end of file

Type P for Previous to return the highlight to a previous
occurrence of the string. If there are no other occurrences· of the
string between the current position in the file and the start of the
file, the following message will be displayed:

Did not find string from here to start of file

Type L to display a source code line number.

2 For the Find subcommand, the second prompt is:

Chapter 5-100 Search

Find:[

For this prompt, type the string to be searched. The search looks
for any line which has an occurrence of the string. The search is
not case sensitive. When a match is found, the line containing the
match is highlighted. For the Line subcommand, the second
prompt is:

Line:[

Type the number (in decimal) of the source code line you want to
display. The name of the module that is currently executing is
displayed on the bottom left of the DIALOG BOX.

The highlight field can be moved with the PgDn/PgUp and cursor
keys. To move to the top or bottom of the file, use the Ctrl PgUp or
PgDn keys.

While the file is being displayed in the DISPLAY WINDOW, F5 and
F7 set their breakpoints then transfer control to the program. Upon
breakpoint or Stop button, control returns to the CODE SCREEN. F9
sets or clears a sticky breakpoint on executing a line number or label.
The breakpoint number is shown on the screen at the right edge.

Search Chapter 5-101

EXAMPLES OF USING THE SEARCH COMMAND

Find any occurrence of the string "BuildArray" in the module that
is currently executing.

S <TAB> BUILD ARRAY <enter>

Type N or P for the next or previous occurrences of this string.

Search for line 22 of the source code in the module that is
currently executing.

S L 22 <enter>

From the previous example, the highlight is now on line 22. Set a
temporary breakpoint and execute to that line.

<F7>

Chapter 5-102 Symbol Commands

SYMBOL

The Symbol command lets you view the AT PROBE symbol table
along with several attributes for symbols and modules.

The Symbol command has the following subcommands:

Subcommand

sYmbol display change

Default modulename

Load module selections

Step source screen modules

Module to file assignment

Operation

Display, change or delete
symbols
Sets default modulename
for symbols
Load symbols from only
from selected modules
Source step only in selected
modules
Display /change file names
assigned to mod ulenames

Symbol Display Change Chapter 5-103

SYMBOL DISPLAY CHANGE

The sYmbol display change command lets you display, change, add,
and delete symbols from the AT PROBE symbol table. The following
MENU BOX is displayed:

sYmbol

_sYmbol display change <Tab> next field <Esc> prev screen

2....;. Display type:<Externals> {Externalsllnternals in module I Lines}

3 ~ Operation:<Find> {FindlAddlRemoveiMovelClear TablelVariable}

1-Symbol name:< >[

1-------------------Up/Dn, Arrows move highlight

:xxxx

:xxxx

Name

xxxxxxxxxxxxx

xxxxxxx

Type

xxxxxxxxxx
xxxxxxxxxxxxxxx

The first prompt is for the name of the symbol to find, add,
remove or move. The symbol at the highlighted line is displayed
to the left of the prompt and is the default. To select a symbol,
you can type the name of the symbol at the prompt or move the
highlight to the line containing the symbol.

2 The next prompt is for the display type.

Type E for Externals. Externals is the default. The display
shows all external symbols.

Type I for Internals in module. When you select Internals or
Lines, you are prompted for the name of the module.

Module name:< >

The names of the modules are displayed in the DISPLAY
WINDOW. To select a module, you can type the name of the
module at the prompt or move the highlight in the DISPLAY
WINDOW to the module name.

Chapter 5-104 Symbol Display Change

Type L for Lines. When you select Lines, you are prompted for
the module name (see Internals option above).

3 The Operation prompt has the following choices:

Type F for Find. Find is the default. Find searches for a match
on symbols or line numbers. The highlight is positioned on the
line where the match is found. If there is no match, the
following message is displayed:

Could not find symbol with name
starting with input string

Typing A for Add allows you to add a symbol. For both the Add
and Move subcommands, the following prompt will be displayed:

Symbol address:< >!

Enter the name (1) and the address of the symbol to be added.

If you type R for Remove, you can select symbols or line
numbers to be removed from the list.

Type M to Move symbols to a new address. You will be prompted
for the address where the symbol will be moved (See Add option
above).

Type C for Clear Table if you wish to remove all symbols from
the AT PROBE's memory. If you select this option, the following
message will be displayed to verify whether or not you want to
clear all symbols in the table:

Remove all externals, internals, and lines?
(Y) for yes; <other> for no

\

Symbol Display Change Chapter 5-105

V for Variable can only be selected in SOURCE PROBE. This
command allows you to display variables according to their type
and to change their value. Ref er to the Memory Variable
command for a general explanation of this subcommand.
Variables can be selected to be displayed or changed by moving
the highlighted cursor to the symbol or by typing the symbol
name at the prompt.

4 The DISPLAY WINDOW shows symbols, line numbers or module
choices. In the example DISPLAY WINDOW, symbols are
displayed with their address, name and type.

In addition to the cursor keys, the PgUp and PgDn keys can be used
in the DISPLAY WINDOW to move the highlight to symbols, modules
or line numbers.

FS and F7 operate if highlight is on a line number or procedurename
in the symbol display. Control then transfers to the program. Upon
breakpoint or Stop button, control returns to the CODE SCREEN. F9
sets or clears a sticky breakpoint on executing a line number or label.
The breakpoint number is shown on the screen with the symbol.

Chapter 5-106 Symbol Display Change

EXAMPLES OF USING SYMBOL DISPLAY CHANGE COMMAND

Display the symbol Testvar.

Y Y TESTY AR <enter>

Display all symbols for the module \FTOCIO

Y Y <TAB> I FTOCIO <enter>

The module could also have been selected with the cursor keys.

Starting from the where the previous example leaves you on the
screen, display the symbol Getval and change its address to
Getval+l.

<TAB> GETVAL <enter> <TAB> <TAB> <TAB> M <TAB>
GETVAL+l <enter>

Delete all symbols in all modules.

Y Y <TAB> <TAB> CY

Add the symbol Zcount at address 3000:0

Y Y <TAB> <TAB> A Zcount <TAB> 3000:0 <enter>

Symbol Default modulename Chapter 5-107

SYMBOL DEFAULT MODULENAME

It is tedious to type in the complete modulename for every symbol if
you are always working within the same module. AT PROBE lets
you define a default modulename which will automatically be
included in front of symbols. This is done with the Default­
modulename subcommand which displays the following screen:

Symbol

Default modulename <Tab> next field <Esc> prev screen_

Module name: < >[

t------------------PgUp/Dn, Arrows move highlight_
j:Modulename

All currently loaded modules are displayed on the screen and one of
the modulenames on the screen is highlighted. The cursor keys move
the highlighted field. You can simply type <enter> to select the
highlighted modulename or type in a new modulename.

If no modulename is specified when you specify symbol or line
number, then the default module name is used.

Chapter 5-108 Symbol Load module selections

SYMBOL LOAD MODULE SELECTIONS

The loading of symbols into the symbol table can be limited to
specified modulenames. This is done with the Load-Module­
selections subcommand. When invoked the following screen appears:

Symbol
r-Load module selections ________ <Tab> next field <Esc> prev screen_

2 -.~odule name < >[
l~~oad symbols for module: [Yes] {YeslNo}

1-----------------PgUp/Dn, Arrows move highlight_
!Module name Load symbols for module?

Yes
No

1 The first prompt lets you choose whether or not to load symbols
for the selected module.

2 The module name can be entered here or selected in the
DISPLAY WINDOW with the cursor keys. The module displayed
to the left of the prompt and at the highlight is the default.

3 The DISPLAY WINDOW shows the currently loaded modules and
the choice for loading symbols. The module can be selected by
moving the highlight with the cursor keys. To select modules that
are not currently displayed, use the PgUp/Dn keys.

Symbols in these modules may have previously been loaded from the
AT PROBE initialization file. If the File Program Load command is
invoked before this command is used, then it assumes that all
modules and all symbols will be loaded into the AT PROBE symbol
table and all modulenames are loaded into this selection list table. If
some modules have been specified, symbols will be loaded or not
depending on the selection here. Any module not listed will have
symbols loaded. The init file can be used to perform these selections.

Symbol Step source modules Chapter 5-109

SYMBOL STEP SOURCE SCREEN MODULES

AT PROBE can single step a high level language program by
statements with the Step Source command. It may be desirable to
limit the single stepping of source code to only specified modules.
When the program goes outside of the specified modules, it runs real
time until it gets back into the selected modules. This .can be done
with the Step-source-screen-modules subcommand. When invoked the
following screen appears:

This command applies only to the SOURCE PROBE.

Symbol

Step source screen modules <Tab> next field <Esc> prev screen

2-jModule name< >[
1-+ Step at lines in module: [Yes] {Yes!No}

1-----------------PgUp/Dn, Arrows move highlight_
jModule name

3 _. llooOOCICXX

Step at lines in module?

Yes

No

I. The first prompt lets you choose whether or not to source step in
the selected module.

2. The module name can be entered here or selected in the
DISPLAY WINDOW with the cursor keys. The module displayed
to the left of the prompt and at the highlight is the default.

3. The DISPLAY WINDOW shows the currently loaded modules and
the choice for source step. The module can be selected by moving
the highlight with the cursor keys. To select modules that are not
currently displayed, use the PgUp/Dn keys.

The current modules are shown in the DISPLAY WINDOW. These
may have been previously loaded from the AT PROBE initialization
file. If the File Program Load command is invoked before this
command is used, then it is assumed that all modules will be single
stepped with the Step Source command. The modules to be stepped
could have been specified by loading an initializations file.

Chapter 5-110 Symbol Module to filename assignments

SYMBOL MODULE TO FILENAME ASSIGNMENTS

For source level single stepping or for including source code in Trace
displays, source files must be assigned to modulenames. To do this
select the Module assignments subcommand and the following screen
is displayed:

This command applies only to the SOURCE PROBE.

Symbol

_Module to file assignment _______ <Tab> next field <Esc> prev screen--,

2-~odule name < >[

3-1~.efault disk:<C> Default directory:<\>

1-1File name: [

jModule name

4-JlooooclCXX

Source file for module?

xxxxxxxxxxxxxxx

xxxxxxxxxxxxxxx

PgUp/Dn, Arrows move highlight_

Type the name of the source file for the selected module or
accept the default. If the correct source file name is displayed,
but without the correct pathname, you can accept the default disk
and directory as the source file prefix by simply pressing <enter>.

2 The module name can be entered here or selected in the
DISPLAY WINDOW with the cursor keys. The module displayed
to the left of the prompt and at the highlight is the default.

3 This is the default drive and directory. Type <Tab> to get to the
DIALOG BOXES which let you change these defaults.

4 The DISPLAY WINDOW lists the currently loaded modules and
the names of the corresponding source code files. The module
can be selected by moving the highlight with the cursor keys. To
select modules that are not currently displayed, use the PgUp/Dn
keys.

Symbol Module to filename assignments Chapter 5-111

The current modules are shown in the DISPLAY WINDOW. These
may have been previously loaded with the File Initializations Load
command. If the File Program Load command is invoked before this
command is used, and the object module format includes the
assignments, this table will receive default initializations.

You remain in this command to change other modules until you type
<ESC>.

Default assignments are made from the load module if the Microsoft
C compiler version 4.0 or greater is used. If no assignments are
available from the load module, use the default drive and
modulename on this screen as the pathname and fill in the table with
this and the filename. The user can edit these if they are not
correct.

Default source file pathnames and file extensions can also be picked
up from the File Program Load subcommand which prompts for these
defaults.

Chapter 5-112 Trace

TRACE

While your program is executing, AT PROBE is continually saving a
history of program execution into high speed AT PROBE memory.
This AT PROBE command displays the real time program execution
before (and optionally after) the breakpoint was detected. The trace
command is invoked from the MENU BAR by typing:trace

T (for Trace)

The subcommands for the Trace command are:

Subcommand

Instruction
Unprocessed ins
Save-to-disk
Raw data
DMA cycles

Operation

Display trace data with pref etch filtered
Display trace with pref etch not filtered
Save trace data to disk
Display trace data in hex format
Toggle DMA cycles on/off in trace display

Trace Instructions Chapter 5-113

TRACE INSTRUCTIONS

The Trace Instructions command provides the most useful form of
the trace display. AT PROBE analyzes the trace data which was
collected in real time and processes it to produce an easy to
understand trace display. The processing does the following:

I. The 80286 pipeline has been modeled in AT PROBE software.
AT PROBE analyzes the trace data and tosses out prefetched but
unexecuted instructions so you don't have to guess which
instructions executed and which did not.

2. AT PROBE analyzes the trace data and displays the memory
reference cycles directly under the instructions which executed
them. If AT PROBE did not do this, you would have to do this
yourself mentally. This is because the 80286 pipeline fetches
opcodes many bus cycles earlier than the memory reference cycles
which go with those instructions.

The trace shows assembled instructions and operands, data
transferred during execution cycles, stack operations, and interrupt
cycles. Program symbols are included in the trace data to make the
identification of program operation easy to understand. Trace data
is viewed after the detection of a breakpoint or execution has been
terminated with the Stop Button. A screen similar to the following
appears:

Chapter 5-114 Trace Instructions

Trace

Instructions <TAB> next field <ESC> prev screen

6 -7>1Search addr: <Any>[xxxx:xxxxxxxx] to<>[xxxx:xxxxxxxx] -

Verb: <Any>{Read!Write!Input!Output!Any}

Data size: <Any> {Byte!Word!Dword!Any} Data:<>

Begin search of trace:[No] {Yes!No}

OODA20 MOV BP,SP

OODA22 MOV AX,0004

OODA25 CALL $+OOC8
010940 WRITE OOC8 end+07CC -

5 chkstk:

1~ OODAED POP ex
2- 010940 READ OOC8 _end+07CC

OODAEE MOV BX,SP

OODAFO SUB BX,AX

OODAF2 JB $+oooc

OODAF4 CMP BX,WORD PTR [0082]

OOF8E2 READ OA20 .STKHQQ

OODAF8 JB $+0006

OODAFAMOV SP,BX

OODAFC JMP ex
3-;.. jB OODA28 PUSH SI

010948 WRITE 005D end+07C8 -

This line shows the instruction address, instructions and operands.

2 Any memory reference cycles used by the instruction are shown
on this line with their address, type of cycle, and data on the bus
during the cycle. If the address of the memory reference cycle
matches or is near a program symbol, the symbolname is shown to
the right.

3 A "B" in this column indicates that this is the cycle which caused
the breakpoint.

4 When you use the Trace search commands (described later) the
line of "Found" code is marked with a leading "S".

Trace Instructions Chapter 5-115

5 Procedure names or high level language line numbers which
match the address field of an instruction are shown before the
instruction. If you are using the SOURCE rather than the AT
PROBE version of the software, then the actual program line
precedes the assembly language.

6 You can scroll and search for data in the trace display. This is
described later in this command.

If trace regions were active during the collection of the trace data,
the trace regions are separated in the DISPLAY WINDOW by a row
of * characters.

Chapter 5-116 Trace Unprocessed instructions

TRACE UNPROCESSED INSTRUCTIONS

The Trace Unprocessed instructions command shows you the trace
display in a form similar to the Trace Instructions. The difference is
that AT PROBE does not filter out unexecuted prefetched
instructions or place memory reference cycles directly under the
instructions which generated them. It simply displays the opcodes
and memory reference cycles on the bus in the order in which they
occurred. When this command is invoked the following message
appears on the screen to remind you of these facts.

Trace

.-Unprocessed instructions <TAB> next field <ESC> prev screen_

Analyzing trace data near cycle number 0000

The following trace display has not been analyzed to filter out

instructions fetches that did not execute, nor to determine which

instructions caused which data cycles to be generated.

There are 3 major side effects of this:

1) Data cycles will probably not appear with the instruction that

generated them.

2) Instructions following those that can cause a transfer of control

may not have actually been instructed. These instructions will be

marked with an '*'.
3) The trace display software may print the target of a jump

instruction as the wrong byte of a 4-byte instruction fetch.

Type any key to start the trace display and you will get a screen
similar to Trace Instructions. AT PROBE will sometimes provide you
with the above message and display the trace as Unprocessed
instructions even when you use the Trace Instructions command.
This might happen if AT PROBE could not accurately analyze the
trace data to filter out pref etch and tie memory reference cycles to
instructions.

Trace Unprocessed instructions Chapter 5-117

Waiting for the Trace Command to Work

The trace command does an exhaustive search of the collected trace
data to determine the correct trace. In some cases, the process may
take a long time due to:

1. A non-existent instruction occurring in the data.

2. A long string move operation, which has cycled the instruction
fetch portion of the instruction out of the trace data.

If AT PROBE cannot display accurate instruction execution, the
following is printed. You may use the Trace Raw command to try to
see what happened.

The following trace display has not been analyzed to filter out
instructions fetches that did not execute, nor to determine which
instructions caused which data cycles to be generated.

The following trace display has not been analyzed to filter out

instructions fetches that did not execute, nor to determine which

instructions caused which data cycles to be generated.

There are 3 major side effects of this:

1) Data cycles will probably not appear with the instruction that

generated them.

2) Instructions following those that can cause a transfer of control

may not have actually been instructed. These instructions will be

marked with an'*'.

3) The trace display software may print the target of a jump

instruction as the wrong byte of a 4-byte instruction fetch.

Chapter 5-118 Trace Search data

SEARCHING TRACE DATA

While you are in any of the Trace commands which display data in
the DISPLAY WINDOW, the following keys let you scroll through the
trace display:

PgUp/PgDn and cursor keys move you through the trace data.
Ctrl PgUp moves you to the start of the trace data.
Ctrl PgDn moves you to the end of the trace data.

AT PROBE also has a built in editor which lets you search trace data
fields for specific events. The DIALOG BOX prompts look like this:

3

~eld <ESC> prev screen
2-b<r-e-a-rc_h_a_d_dr_: ____ <_A-ny_>_[_xxxx __ :xxxx--J to<>(xxxx:xxxx] 1
4--lverb: <Any>{ReadlWritelinputlOutputlAny} I
5- ata size: <Any> {ByteiWordlDwordlAny} Data:<> I
i- egin search of trace:[No] {Yes!No}

If you type Y, AT PROBE starts searching from the current
location in the DISPLAY WINDOW until the end of the Trace
data for matches between the trace data and the other fields in
the DIALOG BOX. If you type N, then AT PROBE lets you set
other search conditions in the DIALOG BOX.

2 This field lets you enter an address expression for the search
address.

Trace Search data Chapter 5-119

3 If you want to search for any address within a range, then set the
TO address. You may enter any type of address expression or an
address of the form:

+number

In this case the TO address becomes search address+number. If
this field has previously been set to other values and you want to
clear the field, type <space><enter>.

4 Set the verb field for the search.

5 Set the Data size and Data value fields for the search.

Typing <enter> in response to any of these fields takes the default in
the < >. If a search is completed successfully, the trace data is
positioned in the DISPLAY WINDOW with the first line which
matches the search marked with an 'S'. Any additional lines in the
trace data which match the search condition are also marked with an
'S'. You can continue the search from here by simply typing Y again
in response to the prompt. If the search is not successful, the
following message is displayed:

Specified values not found from current locations to the end of trace.

Chapter 5-120 Trace Save to disk

TRACE SA VE TO DISK

This command lets you save the trace to a disk file. You could also
use the File Log command to open a log file to disk then display the
trace data, but this is much faster. The following screen appears.

Trace

Save to disk ___________ <TAB> next field <ESC> prev screen

ata Format: [ASCII] {RawlASCII}

efault disk: <c>

ile name: [

Default directory: <\>

Type A for ASCII if you want to save the trace in a form that
you can read. This option is valuable if you wish to store the
trace data and examine it at another time or if you wish to look
at the data on paper. The ASCII form of the trace data allows
you to use your favorite text editor to examine the data.

Type R for Raw to save a machine readable form of the trace
data that can be sent to Atron to help resolve trace problems.

Atron has modeled the 80286 pipeline in order to filter
unexecuted instructions and tie memory reference cycles to
instructions. If this model has bugs, you can help us find them
by saving trace data when the Trace Instructions command fails
(i.e. gives you Trace Unprocessed instructions display instead).
With this Raw data, we can exactly recreate the state of the AT
PROBE when it failed in your target. There are other situations
when the AT PROBE appears to be effecting the operation of
your system or program execution that we can often identify at
Atron with this Trace data. In such situations, do a Raw save
and send the resulting file to Atron to the attention of the
Technical Support group. When we receive the information, we
will report our results, work-arounds, or corrections to you as
soon as we analyze the Trace data.

Trace Save to disk Chapter 5-121

2 You are prompted for the pathname of the file in which the trace
data will be saved.

3 You are prompted for the filename to save the data. You can
also save it by directing the trace data to a printer. Use the
standard name for your printer port.

When the filename has been entered, AT PROBE first analyzes the
trace data before saving it. In the DIALOG BOX, the following
message will be displayed:

Analyzing trace data near cycle number xxxx

After the trace data has been analyzed, the following message will be
displayed in the DIALOG BOX:

Writing trace data

Chapter 5-122 Trace Raw

TRACE RAW

This command is meant to be used be used by Atron Technical
Support to diagnose any trace synchronization problems that might
arise. It is not intended for use in the process of debugging
application programs.

The Trace Raw command is a hex display of the real time trace data.
The display of the data appears under these columns:

Trace

Raw <TAB> next field <ESC> main menu -
Search addr: <Any>[xxxx:xxxx) to<>[xxxx:xxxx]

Verb: <Any>{ReadjWritejlnputjOutputjAny}

Data size: <Any> {BytejWordlDwordlAny} Data:<>

Begin search of trace:[No) {YesjNo}

Cycle Addr Data Cod#Int MRW IORW RUN BP DMA SlO BHE Mstr# PeAck IOCHK#j

Raw trace data

Cycle
Address
Data

number of the cycle (0-?ff) in the trace data.

24 bits of 80286 addresses.
16 bits of 80286 data. For any given cycle the data
here may not be valid. The Strobe field indicates
which portion of the data bus contains valid data.

Trace Raw Chapter 5-123

Mstr# and IOCHK# are active low.
See Intel 80286 CPU documentation for an in-depth description.

Cod#lnt
MRW
IORW
Run
BP

Ref
DMA
SlO

Ms tr#
PeAck

IOCHK#

80286 Cod/Int/ line, inverted.
Memory read, Memory write.

1/0 read, 1/0 write.
AT PROBE run bit. High while the board is run.

Hardware breakpoint, misc breakpoint.
Refresh
Direct memory access.

80286 S 1 I and SO/ lines, inverted.

Bus master/.
Peripheral Acknowledge.

1/0 channel check.

The cycle listed in the bottom line of the DIALOG BOX will reflect
the cycle number of the first trace cycle where Run == 0. For
hardware breakpoints, this cycle usually will be very close to the
cycle where the breakpoint was triggered (usually the next cycle).
After a software breakpoint is hit, the Run bit will remain high
until the AT PROBE software can manually stop the board, so the
pseudo trace counter will be further off. Pressing HOME will cause
the display to center around the cycle indicated by the trace counter.
If the trace counter is shown as 0000, this probably means that the
Run bit went low just as trace memory wrapped around; hitting
<Ctrl-PgDn> will move to the end of the display.

Chapter 5-124 Watch

WATCH

You can create your own custom data displays called Watch windows
which can be popped up over the DISPLAY WINDOW. These Watch
windows of data are defined by the Watch command. The Watch
command assigns the Watch window to any Alt-Key (i.e. hold down
ALT while you type any other key). The window can be popped up
at any time by typing the Alt-Key. It can be popped down by typing
the same Alt-Key again. If more than one window is popped up at a
time, they "stack" one under the other. If a command is in process
under the pop up window, it is temporarily suspended until all the
Watch windows are popped down.

If a window is being popped up during the definition of a macro,
the Alt-Key which pops the window down is not passed on to the
macro. This has the effect of pausing the macro when the window is
displayed. You then pop down the window with the appropriate
Alt-Key and the macro continues execution. This feature enables
you to view Watch windows while building macros and other
windows.

The Alt-Key which popped up the Watch window is shown in the
window. When multiple windows are popped up, the must be popped
down starting with the one on the bottom of the screen.

The Watch command is invoked from the MENU BAR by typing:

W (for Watch)

The subcommands for the Watch command are:

Subcommand

Define-edit
Remove
Load
Save

Operation

Define or edit a pop up Watch window
Delete currently defined window
Load a file of predefined windows
Save current window definitions to disk

Watch define edit Chapter 5-125

DEFINING AND EDITING WATCH WINDOWS

When the Define subcommand is selected, the following prompt
appears:

Enter <Alt-Key> that will activate this window: {]

An Alt-Key means hold down Alt and type any other key. This
Alt-Key becomes the key which will pop up the window. This
Alt-Key may have already been assigned to a window. In this case,
the subcommands let you edit the window definition. If you enter
the wild card key *, the names of all windows are displayed. Once
entered, the Define Edit subcommand displays another the following
DIALOG BOX with the Watch window subcommands.

Watch

Define edit <Tab> next field <Esc> prev screen

Operation: [Add field] {Add field!Move field!Change fieldlRemove field} J
~----------------------<Space> next choice

ADDING A FIELD

A field is an area of the window which displays the data. When the
Add-Field subcommand is selected, another line is displayed in the
DIALOG BOX.

Watch

Define edit <Tab> next field <Esc> prev screen_

Operation: [Add field) {Add field!Move field!Change field!Remove field}

ield type:[Label] {Label!Expression!Zero StringO!String len!Range mem}

~----------------------<Space> next choice_

Chapter 5-126 Watch define edit

To add a field to the Watch window:

1. Select the Add field subcommand.

2. Select the Field type.

3. For the Expression and Range-of-memory Field types,
select the appropriate Data Type.

4. Each Field type has DIALOG BOXES that prompt for
expressions, start addresses, etc.

A summary of the Field types and their corresponding Data types
and DIALOG BOX prompts are summarized below.:

FIELD TYPE
SUBCOMMAND

Label

Expression

Zero stringO

String len

DATA
TYPE

String

Byte
Word
Dword
Unsigned
Integer
ASCII
Symbol

ADDITIONAL
DIALOG BOXES

Label:[

Expression:[
II

II

II

II

II

"

Zero-terminated String address:[

Length-defined String address:[
String length:[

Range-of-memory Byte Range start address:[
Range end address:[

Word
Dword
fShort
fLong
fTemp
f Packed

"
"

Watch define edit Chapter 5-127

Each field in a Watch Window has a DAT A TYPE. These are shown
in the previous table and they are explained below. A field which
contains an Expression will first evaluate the expression then put the
data into the field in the DAT A TYPE you select for the expression.

DATA TYPE

String

Byte
Word
Dword
Unsigned
Integer
ASCII
Symbol
Zero-terminated
Length defined
fShort
fLong
fTemp
f Packed

DESCRIPTION

Labels can be any string

Byte value in hex
Word (two bytes) value in hex
Long (four bytes) value in hex
32 bit unsigned integer
32 bit signed integer
Byte value in ASCII
Symbol name which matches expression.
ASCII string terminated with 0
ASCII string defined by length
Short 32 bit real
Real 64 bits
Temp Real 80 bits
80 bit Packed Decimal

At the end of choosing the DAT A TYPE for the field and filling in
the answers to the AT PROBE prompts, the final DIALOG BOX for
the following instruction is displayed:

Place highlight in location for field and press <enter>

The size of the field in the window is automatically adjusted to fit
the data put into the field.

Use the cursor keys to move the solid block cursor shown in the
DISPLAY WINDOW to the position within the window where the
field is to be displayed. If other fields are already defined for this
window, they are shown so that the new field will not conflict with
the current fields. You should insure that a field is not positioned
such that it writes over another currently defined field. If you do,
the data from one field will overwrite the data of other fields.

Chapter 5-128 Watch define edit

MOVE A FIELD

If the Move Field subcommand is selected, the following prompt
appears:

Place highlight in field to be moved and press <Enter>

The solid block cursor can be moved with the cursor motion keys to
the field you want to move within this window. Typing <enter> then
gives you this prompt:

Place highlight in location for field and press <Enter>

Move the solid block cursor where you want the field to move then
type <enter>.

CHANGE A FIELD

If the Change-a-Field subcommand is selected, the following prompt
appears:

Place highlight in field to be changed and press <Enter>

The solid block cursor can be moved with the cursor motion keys to
the field you want to change in this window. The solid block moves
only to the starting position of each field with the cursor keys.
Typing <enter> brings up the prompts from the Add-a-field
subcommand so that you can edit and make changes to the field.
Only the Data Type can be changed for the field.

REMOVING A FIELD

If the Remove-a-field subcommand to the previous screen is selected,
the following prompt appears:

Place highlight in field to be removed and press <Enter>

The solid block cursor can be moved with the cursor motion keys to
the start of the field you want to delete for this window. Deleting
this field leaves the remaining fields in the window in place.

Watch Remove Chapter 5-129

WATCH REMOVE WINDOW

A window can be deleted by selecting the Remove-a-window
subcommand. The following prompt appears:

Enter <Alt-Key> that will activate this window: []

Entering A for this prompt will delete all currently active windows.
The following message will be displayed if you select this choice:

Remove all watch-windows? <Y> for yes, <any other> for no.

Chapter 5-130 Watch Load and Save

WATCH LOAD AND SAVE

Currently defined windows can be saved to a disk file with the Save
subcommand. These windows can be loaded again with the Load
subcommand. For either subcommand, the following screen appears:

Watch
Save ______________ <Tab> next field <Esc> prev screen

2 - efault disk: < > Default directory: < >
1- nter window file name: [J

The DIALOG BOX prompts you for the filename to load or save
the windows.

File name:[

If you do not specify the drive and pathname for the file, the
defaults will be assumed.

2 This is the default disk drive and directory. By typing <TAB>,
you can invoke prompts to change these defaults.

Note that Watch windows that have been saved in a file that is
currently loaded can also be saved with the File Initializations
command and loaded with the File Initializations Load command. If
Windows are currently already defined or loaded in AT PROBE, then
Windows from new loads will not redefine the currently defined
windows. If you want to replace the current definitions with new,
remove the specific Watch window names.

Wat ch Load and Save Chapter 5-131

OTHER NOTES ON WATCH WINDOWS

If you try to define a window which is already assigned to a Macro,
the following prompt appears:

<Alt-Key> is a macro. Remove it: <Y> for yes, <any other> for no.

You can then elect to delete the macro in favor of the window. You
can also edit Watch windows off line with your favorite text editor.
See Appendix F for doing this.

Chapter 5-132 Watch Window examples

EXAMPLES OF USING THE WATCH WINDOW COMMANDS

Define a window named Alt-Z which display the block of memory
3F words long which starts at location ARRAY. Put a label on this
array called MEMBLOCK. Then print the Double-word which is
pointed to by the variable at V ARPOINTER. Put a label on this
called POINTER. A sample of this window is shown below.

W D <Alt-Z> <enter> AL MEMBLOCK <enter> <enter> R W
ARRAY <enter> +3F <enter> <RtArrow 9 times> <enter> L
POINTER <enter> <DnArrow 6 times> <LtArrow 9 times>
<enter> R D VARPOINTER <enter> +1 <enter> <RtArrow 9
times> <enter> <Esc>

~ALT-Z~~~~~~~~~~~~~~~~~~~~~~~~--.
EMBLOCK

POINTER 12345678

FFFE FF44 FF45 5678 1234 959F 9859 9898

9898 9DFE FEAB BABE 1267 1717 7171 7A7C

BE12 12BC BCBD BDBC BCB3 BCBD DEDC CDE4

1234 1234 4567 5667 4567 4523 2345 1234

Define a window named Alt-D which displays the contents of the
Global Descriptor Table Register (GDTR) as a Double-word. Put a
label GDTR in front of the data.

W D <Alt-D> <enter> AL GDTR =<enter> <enter> E D GDTR
<enter> <RtArrow 7 times> <enter> <Esc>

Watch Window examples Chapter 5-133

Define a window named Alt-A which displays the value of a pointer
represented by the symbol POINTER and label it POINTER =. Then
display the 0 terminated string pointed to by this pointer.

W D <ALT-A> <enter> A L POINTER= <enter> <enter> Z
(POINTER] P <Rt Arrow 9 times> <enter>

Load the file of windows from the file REG.WIN.

W L REG.WIN <enter>

Save all currently defined windows in a file called WINSA VE.WIN.
First change the current directory to \WINDOWS and the current
drive to B.

W S <TAB> B <TAB> \WINDOWS <TAB> WINSA VE. WIN

Remove the window assigned to AltD.

WR <Alt-D> <enter>

Remove all currently defined Watch windows.

WRAY

--- ~~---·-··------

AT PROBE Error Messages Appendix-I

APPENDICES

APPENDIX A AT PROBE ERROR MESSAGES .. 2
APPENDIX B FILES ON YOUR AT PROBE DISKETTES 17
APPENDIX C GENERA TING SYMBOLS ... 20

Generating Symbols using MICROSOFT C Ver. 4.0 or 5.0 20
Generating Symbols for other compilers .. 20

APPENDIX D CONFIGURATION FILE ... 21
Remote console escape sequences and special characters 21
Default configuration file ... 25

APPENDIX E EXTERNAL CONSOLE CONNECTION 26
Using the PC as a terminal emulator ... 26
Use of non-ASCII keys from a remote console 28

APPENDIX F TEXT FORMATS FOR MACROS, WATCH WINDOWS,
AND INITIALIZATION FILES .. 30

Macro file formats ... 31
Window text file formats ... 33
Initialize file for ma ts ... 36

APPENDIX G PROBE/MS DOS INTERFACE DESCRIPTION 43
APPENDIX H LANGUAGE COMPATIBILITY ... 45
APPENDIX I GLOSSARY OF BREAKPOINT TERMS 46
APPENDIX J TECHNICAL REPORTS .. 50

Interrupt 3 .. 50
Stack usage during breakpoint .. 50
Getting to DOS commands from AT PROBE .. 50
Modifying the AT PROBE software from the applications
program ... 51
Interrupting critical code sections in DOS .. 51

Appendix-2 AT PROBE Error Messages

APPENDIX A
AT PROBE ERROR MESSAGES

These are the error messages which AT PROBE will display. To
clear the error message and resume keyboard input to AT PROBE,
strike any key. The error messages in this Appendix are arranged in
alphabetical order for easy reference.

"80287 numeric co-processor not present."
The 80287 co-processor is not present in the system so
its registers cannot be displayed.

"<Alt> is already defined. File definition ignored."
The key specified is defined and, therefore, the
definition read from the file was ignored.

"<Alt > is not a macro key."
The key typed is not a macro key and cannot be
removed.

"<Alt > is a macro. Remove it? <Y> for yes, any other for no"
The key typed is already a macro key and must be
removed before the macro or watch window can be
defined.

"<Alt > is a watch-window. Remove it? <Y> for yes any other for no"
The key typed is already a watch window and must be
removed before the macro or watch window can be
defined.

"<Alt> is not a watch-window key."
The key typed is not a watch-window key and cannot
be removed.

"Absolute addresses have no SEG and OFFSET"
The "seg" and "offset" operators cannot be used on an
absolute address in /PRO versions.

"Access denied to file."
DOS denied access to the specified file.

AT PROBE Error Messages Appendix-3

"Address is not in a function compiled and loaded with debug
information"

The end() and sizeof() operators need debug
information.

"All BPs are defined. Use Breakpoint Clear"
All breakpoints are currently defined and one cannot
be allocated for the <F5> or <F9> key. Use Breakpoint
Clear to clear one (or more) BPs.

"Arm list must contain at least one BP to arm."
If a breakpoint is of type "Arm-bp", it must arm some
BP (Breakpoint).

"Array index is out of bounds."
The input array index is not within the defined range
for the array.

"Array index or operator expected but not found."
An array index or operator is expected after an array
name.

"Assembler internal error."
An internal error occurred while assembling the
instruction (Memory Unassemble).

"Attempt to read past end-of-file."
An attempt to read past the end-of-file was detected.

"Attempted division by O."
The expression would result in a division by 0.

"Bad drive request: Abort, Retry, Ignore?"
A request was made to a bad drive in the DOS file
system.

"Base is 24 bit value. High bits ignored"
Memory selector command only allows 24 bits for base
value on an 80286 using AT PROBE /PRO.

Appendix-4 AT PROBE Error Messages

"BPn cannot be programmed together with xxxxxx"
While arming new breakpoints, the AT PROBE's
hardware break registers or software breakpoints were
all used, but BPn has not yet been programmed.

"BPn Data value: xxxxxxxxxxxxxxxxxx"
The data value expression is illegal (Breakpoint).

"BPn End address: xxxxxxxxxxxxxxxxx"
The end address expression is illegal (Breakpoint).

"BPn Start address: xxxxxxxxxxxxxxx"
The start address expression is illegal (Breakpoint).

"Breakpoint may not arm itself, valid ArmBP is 0 to 9"
A breakpoint is not allowed to be armed by itself. A
breakpoint is only allowed to arm breakpoints number
from 0 to 9 (Breakpoint).

"Cannot find file assignment corresponding to current CS:IP value."
The current CS:IP does not exist in a module for which
a Module-to-file assignment is known.

"Cannot find file assignment for that line."
The Calls command cannot associate the highlighted
line number with a file.

"Cannot open source level screen file xxxxxxx"
The file specified in the Module-to-file assignment list
cannot be opened.

"Cannot set software breakpoint - address is not in RAM."
The software break instruction can not be written to
memory.

"Code generator internal error."
Internal error in code generator (Memory Unassemble).

"Could not find symbol with name starting with input string"
There are no symbols which start with the string typed.

AT PROBE Error Messages Appendix-5

"Could not open configuration file xxxxxxxx"
The configuration file specified could not be opened.
Thus, all configuration options are set to default.

"Count is 5 bit value. Higher bits ignored."
The word (or dword) count for a call gate in the
memory selector command (AT PROBE /PRO) is a 5
bit value.

"CRC error: Abort, Retry, Ignore?"
A CRC error was detected on the disk access.

"Default address type changed to xxxx"
After a breakpoint, the protected mode bit in msw
(crO) was set differently than the current address type
so the default address type was changed. If changed to
"Protected" then all addresses now have the form
"selector:offset". If changed to real, then all addresses
now have the form "segment:offset".

"Did not find string from here to end of file."
"Did not find string from here to start of file."

The specified search string was not found in the file
from the current location to the end/start of the file
(depending on if search was for next/previous
occurrence).

"Displacement too large."
The displacement for the memory reference is too large
for this type of instruction (Memory Unassemble).\

"DOS busy: cannot open file - Run until line encountered? <Y> = yes,
<other> = no"

If the STOP button is pressed while a DOS request is
in process, (the DOS busy byte is non-zero) this message
appears. Entering 'Y' will run until the next line
number in the program is encountered: 'N' will display
the assembly screen at the current CS:IP and will not
allow files to be opened. See busy option in
PROBE.CNF.

Appendix-6 AT PROBE Error Messages

"DOS busy flag set: Opening file now would illegally re-enter DOS"
This means the DOS busy flag is non-zero and the file
cannot be opened without destroying the current state
of DOS. See busy option in PROBE.CNF.

"DOS critical error: Abort, Retry, Ignore?"
A DOS critical error occurred during file access.

"Drive not ready: Abort, Retry, Ignore?"
The specified drive is not ready.

"Error: Structure or enumeration type too big. File of /set = xx xx"
The symbolic information read from the .EXE file is
invalid.

"Error: Unknown .EXE debug record. File of /set = xxxx"
The symbolic information begin read from the .EXE
file is invalid.

"Extra characters at end of line."
There were more characters typed for instruction than
expected (Memory Unassemble).

"File error reading .EXE debug information. File of /set = xxxx"
The symbolic information begin read from the .EXE
file is in valid.

"File not found."
The specified file was not found.

"File system error."
An unknown type of file system error occurred.

"Function/variable name not found."
The name typed is not a recognized symbol name
(Calls).

"General error reading .EXE debug information. File of /set = xx xx"
An error occurred while reading symbolic information
from the .EXE file.

AT PROBE Error Messages Appendix-7

"Granularity = 4k. Limit expanded to 4k boundary."
The limit for the selector in Memory Selector (AT
PROBE /PRO) must end with FFFF if granularity is
set to 4k.

"Granularity = Byte. Limit is 20 bit value. Higher bits ignored."
Only the low 20 bits can be used for limit if
Granularity = Byte in the Memory Selector command
(AT PROBE /PRO).

"Illegal baud rate specified: xxxx"
The baud rate specified in the configuration file is
illegal. It must be {2400 I 4800 I 9600 I 19200 I 38400}.

"Illegal destination operand."
The first (destination) operand specified is illegal
(Memory Unassemble).

"Illegal floating point format."
The floating point number is not in a legal format.

"Illegal indirection: A register variable in brackets must be by itself."
Register based variables must be indirected
immediately.

"Illegal interrupt."
Interrupt numbers are: 0 <= Int <= FF (Memory
U nassemble).

"Illegal line number specification"
The line number specification is not a valid decimal
number.

"Illegal operation."
The operation specified is illegal (Memory Unassemble).

"Illegal segment override."
The segment register used as override is not allowed
(Memory Unassemble).

"Illegal shift operation."
This shift factor is illegal (Memory Unassemble).

Appendix-8 AT PROBE Error Messages

"Illegal source operand."
The second (source) operand specified is illegal
(Memory Unassemble).

"Insufficient memory available to load program."
DOS reported that there is not enough memory for the
program to be loaded.

"Internal error: "
An internal error occurred while parsing breakpoints.

"Internal error: Unable to classify breakpoint."
"Internal error: Unknown single breakpoint."
"Internal error: No Possible break modes."
"Internal error: Unknown count breakpoint."
"Internal error: Invalid break reason."

These are all conditions that should never happen, and
should be reported to Atron if they do.

"Internal information in EXE file is corrupt."
The EXE file to be loaded contains corrupted data.

"Interrupt 1 while not single stepping."
An interrupt 1 was detected but the AT PROBE was
not attempting to step in the user's program. This
probably means a bad value for the FL register was
popped from the stack.

"Interrupt number is outside table limit"
The interrupt number in the Memory Selector command
for AT PROBE /PRO is larger than the table limit in
the IDTR.

"Invalid address."
The address typed for the instruction is illegal
(Memory Unassemble).

"Invalid expression."
The expression typed in the instruction is illegal
(Memory Unassemble).

AT PROBE Error Messages Appendix-9

"Invalid file access."
An invalid access was made to the file.

"Invalid instruction mnemonic."
The mnemonic is not an 80286 instruction (Memory
Unassemble).

"Keyboard interrupt must be enabled. Enable now? <Y>=Yes,
<other >=no"

The keyboard interrupt must be enabled (Option
Interrupts) before control can be returned to the local
console (Option Screen).

"Limit is 16 bit value. Higher bits ignored"
The limit of a descriptor in the Memory Selector
command (AT PROBE /PRO) of an 80286 is a 16 bit
value.

"Local symbol is not active on the stack at this time."
The local symbol name entered is not yet active.

"Local variable address must be "SI", "DI", or "SS:BP+ expression ""
When specifying the address of a local symbol, it must
be "SI" or "DI" if it exists in a register, or "SS:BP+ ... " if
it is stack based.

"Macro name may not be changed while editing macro."
All information in a macro may be changed while
editing except the name.

"Macro nesting > 5. Macro will not execute."
Macro are allowed to nest only to a level of 5.

"Missing comma."
Missing ',' between operators in new instruction
(Memory Unassemble).

"Missing operand"
A required operand is missing from new instruction
(Memory Unassemble).

Appendix-JO AT PROBE Error Messages

"Must be a memory operand."
The noted operands must exist in memory (Memory
Unassemble).

"Must be a stack operand."
The noted operand must exist on the stack (Memory
Unassemble).

"Must be: 1 <= Step count <= FFFF"
The step count for code screens must be between 1 and
FFFF.

"Must have Display type == Line to define a line number"
May only define new line numbers if currently
displaying line numbers.

"No debug information in .EXE file."
There is no debug information in the .EXE file.

"No line numbers in symbol table. Cannot display source level screen."
There must be line numbers in the symbol table before
the source screen can correlate addresses to line
numbers.

"No line near current CS:IP. Run until line encountered? <Y>=yes,
<other >=no"

There is no line number near CS:IP for source screen
display. Type 'Y' to run to a line, 'N' to display the
assembly screen.

"No module is assigned to file "
The filename for the file being edited does not
EXACTLY match any filename in the Module-to-file
assignment list.

"No name to find yet,· do a Find first."
Cannot find Next/Previous occurrence of a Find if no
Find has been done (Calls).

"No qualified cycles were fount in trace."
The trace qualification never put any cycles into trace
memory.

AT PROBE Error Messages Appendix-I I

"No user executed instructions were found in trace memory."
A GO or Step (<F8> or <FlO) must have been
performed before trace data is valid.

"Note: Breakpoints will be emulated or counted in software (not
real-time)."

This message appears during a Go if breakpoints must
be sequenced by the AT PROBE software rather than
by the AT PROBE hardware. It can occur because of
arming chains that do not fit any available complex
break mode, or because of a pass count used with
software breakpoints. See "Breakpoint Rules" under
"Breakpoints" in chapter 5.

"Only a quoted string is allowed for a character array"
Only quoted strings are allowed as new values for
character arrays in Memory Variable command. Either
single or double quotes are allowed.

"Operand error."
The noted operand is invalid. Possible mis-matched
operand sizes or this type of operand is not allowed
(Memory Unassemble).

"Offset is 16 bit value. Higher bits ignored"
The offset of a gate is a 16 bit value on a 80286 in the
Memory Selector command (AT PROBE /PRO).

"Operator expected but not found in expression."
An operator was expected in the typed expression but
was not found.

"Overlay for symbol is not loaded at this time."
The overlay for the symbol name is not in memory at
this time.

"Pass count must be in range 1-FFFF."
The pass count is a 16 bit counter (Breakpoint).

"Path not found."
An element of the specified path did not exist.

Appendix-12 AT PROBE Error Messages

"Possible bit values are (0 I 1 I X} optionally separated by <Spaces>"
Bit values (e.g. for logic lines) are either 'O' for a logic
0, 'I' for a logic I, or 'X' for don't care (Breakpoint).

"Possible don't care values are '.'or 'X' optionally separated by
<Spaces>"

When entering don't care values, they must be either '.'
for a care bit or 'X' for a don't care bit (Breakpoint).

"Printer out of paper: Abort, Retry, Ignore?"
The printer is out of paper and cannot be written to.

"Program environment area has been corrupted."
The program environment area has been corrupted and
DOS can no longer load programs.

"Program terminated, termination code = xx"
The program terminrited (AH=4c, Int 21) with the
termination code (al=xx).

"Quit Remain has been performed. You may not Quit or Quit Remain
again."

One a Quit and Remain Resident has be selected, you
may not quit. You must have a program loaded and
GO, or you must re-boot.

"Read fault: Abort, Retry, Ignore?"
A read fault occurred reading from the device.

"Register variable not allowed in address expression (except in
brackets)."

A register based symbol name is not allowed in an
address expression unless it is dereferenced.

"Register variables not int the current function are not allowed"
Register variables are only allowed if CS:IP is
currently in the function containing the variable for
Memory Variable.

"Relative jump out of range."
The input relative jump is more than 128 bytes away
(Memory Unassemble).

AT PROBE Error Messages Appendix-13

"Remove all externals, internals, and lines? <Y> for yes; <any other>
for no"

Type 'Y' to clear the symbol table of all symbols.

"Remove all macros? <Y>=yes; <any other> for no"
Type 'Y' to remove all macro definitions (Macro
Remove).

"Remove all watch-windows? <Y> for yes; <any other> for no"

"Sector not found: Abort, Retry, Ignore?"
The sector was not found by the DOS file system.

"Seek error: Abort, Retry, Ignore?"
A seek error was detected by the file access.

"Selector value is outside table limit"
The selector in the Memory Selector command for AT
PROBE /PRO is larger than the table limit in the
GDTR or LDT.

"Specified size is too big for indirection through a register variable."
The size of indirection specified is too large.

"Structure field name or operator expected but not found."
A field name or operator is expected after
structure/union/bit field name.

"Symbol/Macro/Watch-window allocation table is full."
The AT PROBE memory allocation table is full and no
new symbols, macros, or watch-windows may be added
until some are deleted.

"There is no address corresponding to this line in the symbol table."
The highlighted line in the file does not correspond in
a known way to an address in memory.

"There were more '(' than ')'."
Parenthesis are mismatched.

Appendix-14 AT PROBE Error Messages

"There were more '['than ']'."
Brackets are mismatched. This error can occur in
expressions like "[[pointer].structmember]" if "pointer" is
not of type "struct *". In this case expression parsing
stops at the '.', hence the message.

"Too many '('s to be parsed"
The expression contained too many '(' and cannot be
parsed. Use less open parens or close some out.

"Too many hardware break registers needed."
Too many hardware breakpoints are needed to
implement the currently active breakpoints.

"Too many open files."
DOS reported too many open files. No more may be
opened until one is closed.

"Too many operands."
Too many operands were listed for this instruction
(Memory Unassemble).

"Too many software breakpoints needed."
Too many software breakpoints are needed to
implement the currently active breakpoints.

"Too many trace on/off conditions."
Too many trace on/off conditions were specified to
implement the trace qualification.

"Too many trace qualification regions."
Too many trace qualification regions were specified to
implement the trace qualification.

"Trace on/off address: "
The on/off address for qualification was illegal.

"Trace qua/ data value: "
The data value for qualification was illegal.

"Trace qua/ end address: "
The end address for qualification was illegal.

AT PROBE Error Messages Appendix-15

"Trace qua! start address: "
The start address for qualification was illegal.

"Type file number of file to close before opening xxxxx"
The file list for File View is full and one file must be
"closed" before the new one can be opened.

"Type mismatch."
The operands input are of a different type (Memory
Unassemble).

"Unable to match data cycles with pre/etched instructions in trace."
This may be caused by uninitialized trace memory
(no Go or step command has been entered), or a long
string instruction was recently executed. As a result,
data cycles listed below may not appear with the
instruction that generated them. Also, instructions
with an "*" may or may not have executed. Press any
key to continue, <Esc> to abort. The trace data resident
on the AT PROBE board cannot be decoded.

"Unknown command: Abort, Retry, Ignore?"
An unknown command was issued to the DOS file
system.

"Unknown DOS error while loading program."
DOS reported an unknown error while loading the
program.

"Unknown media: Abort, Retry, Ignore?"
The media type is not known by DOS file system.

"Unknown operand size."
The operands size for the instruction is not known and
must be specified (e.g. INC [xxxx]) (Memory
Unassemble).

"Unknown symbol file (Could not find "Publics by" in map file)"
The file listed for loading of symbols was of an
unknown type. That is, it was not a ".EXE" file and it
was not a ".MAP" file which contained the "Publics by"
string.

Appendix-16 AT PROBE Error Messages

"Unknown unit: Abort, Retry, Ignore?"
An unknown unit was specified.

"Unknown version of debug information in .EXE file."
There is debug information in the .EXE file but it
cannot be loaded.

"Value expected or symbol name not found."
A value was expected at the noted location but one was
not found. This may be because the symbol name
typed was not found.

"Value written to memory is different from value read back."
The value written to memory is not the same as the
value that was read back from the same address. This
probably means that the write occurred to an area of
memory that does not contain functional RAM.

"Values not found from current location to the end of trace"
The search values were not found from the cursor
location to the end of trace.

"Write fault or disk full."
A write fault occurred while writing to the disk. The
disk may be full.

"Write fault: Abort, Retry, Ignore?"
A write fault occurred writing to the device.

"Write-protect error: Abort, Retry, Ignore?"
The disk selected to write file to is write protected.

Files on your AT PROBE diskettes Appendix-17

APPENDIX B
FILES ON YOUR AT PROBE DISKETTES

There are several files on your AT PROBE diskettes which may or
may not be needed depending upon what you are doing. Only those
used for executing AT PROBE are required. A list of these files and
their purpose is given below:

AT PROBE FILES VERSION

atprobe.exe

atprbhp.exe

probe.sys

p2.exe

atpdia.exe

atpdiahp.exe

probe.cnf

demo.c

demo2.c

demo3.asm

demo4.c

DESCRIPTION

for executing PROBE on IBM (R)
BIOS systems

for executing PROBE on Phoenix
(R) BIOS systems

for debugging device drivers

for executing AT PROBE

diagnostic confidence test on IBM
(R) BIOS systems

diagnostic confidence test on
Phoenix (R) BIOS systems

sets AT PROBE configuration
parameters

c source file for demo program
module 1

c source file for demo program
module 2

assembly language source file for
demo program module 3

c source file for demo program
module 4

Appendix-18

demo.mac

demo.wch

demo.exe

pc.cnf

hp.cnf

tv970.cnf

wyse.cnf

termcom.exe

termmode.exe

termmod2.exe

readme.doc

drinit.asm

Files on your AT PROBE diskettes

macro file for demo program

window file for demo program

executable file for demo program

PROBE.cnf type file configured
for pc as external console. Copy it
to PROBE.cnf

PROBE.cnf file configured for HP
terminal as external console

PROBE.cnf type file configured
for Televideo 970 as external
console.

PROBE.cnf type file configured
for Wyse terminals external
console

makes a pc a terminal emulator
for use with AT PROBE as an
external console. AT PROBE uses
pc.cnf

can be used to make a PC run at
speeds above 9600 baud.

similar to termode, but configures
com2:

(optional) describes any changes to
the PROBE subsequent to the
release of the current PROBE
manual

source code for probe;sys driver
"Init" function, which does most
of the work

Files on your AT PROBE diskettes Appendix-19

driver.equ equates used by the probe.sys
.asm files

drivers "make" description file for
probe.sys

drmain.asm source code for probe.sys DOS
driver interface

drprot2.asm source code for pro be.sys
real/protected mode switching on
a 286 with an IBM (R) BIOS

drprot3.asm source code for probe.sys
real/protected mode switching on
a 386

drprothp.asm source code for probe.sys
real/protected mode switching on
a 286 with a Phoenix (R) BIOS

*.hlp AT PROBE help files

SOURCE
PROBE files

a tsource.exe

a tsrchp.exe

s2.exe

VERSION DESCRIPTION

file for executing AT Source
PROBE on an IBM (R) BIOS
system

file for executing AT Source
PROBE on a Phoenix (R) BIOS
system

for executing AT Source PROBE

All other files are duplicates of those on the PROBE diskette.

Appendix-20

APPENDIX C
GENERATING SYMBOLS

Generating Symbols

AT PROBE allows you to use the symbolic information from your
program during debugging instead of absolute numbers. The
symbolic debugging information is passed to the AT PROBE from
the compiler using controls which are discussed here. This symbolic
information may consist of public variables, public procedures,
functions, subroutines, modulenames, and high level language line
numbers. Some compilers will also produce symbols for local
variables and procedures.

Generating Symbols using MICROSOFT C Ver. 4.0 or 5.0

To make all symbolic information available to AT PROBE using
Microsoft C Compiler version 4.00 or later, compile with the /Zi
option. To generate only line numbers use the /Zd option. Use the
/Od option to disable compiler optimization (this will make
debugging much simpler). Next, using the Microsoft linker version
3.51 or later with the /co option. The symbol table information is
now in the .exe file and is loaded with the File Initializations or File
Program Load command. Note that /Zi does not increase the size of
the program image that is loaded; it puts debug information after
the load image in the .exe file.

Generating Symbols for other compilers

Compilers other than the Microsoft C compiler version 4.0 and later
must set compiler flags such that a Microsoft compatible MAP file is
created. For example, if the Computer Innovations compiler version
3.01 is used with DOS link version 2.30, the command line would be:

CC f ilename.c -x2 •..
link ... /map /linenumbers

Modules will have the same names as their respective object files.

Configuration File Appendix-21

APPENDIX D
CONFIGURATION FILE

The configuration file is an ASCII file named PROBE.CNF, and the
file provides AT PROBE system information to be used during some
commands. You can use a text editor to change this file. Your text
editor should store PROBE.CNF as ASCII text and should not include
other hidden text editor control information in PROBE.CNF.
PROBE.CNF specifies the following:

REMOTE CONSOLE ESCAPE SEQUENCES AND SPECIAL
CHARACTERS

Here are some definitions for special characters specified in the
remote console escape sequences which will be used in describing the
configuration file. No distinction is made between upper-case and
lower-case characters.

x

y

v

w

s

N

an ASCII 'X'. AT PROBE will add the column number
to the input offset to create an ASCII representation of
the column number and transmit the resulting two
character sequence ("00"-"84") to the remote terminal.

an ASCII 'Y'. AT PROBE will add the row number to
the input offset to create an ASCII representation of
the row number and transmit the resulting two
character sequence ("00"-"84") to the remote terminal.

an ASCII 'V'. AT PROBE will add the column number
to the input offset and send the result in binary
format (0-ffh) to the remote terminal.

an ASCII 'W'. AT PROBE will add the row number to
the input offset and send the resulting result in binary
format (0-ffh) to the remote terminal.

an ASCII 'S'. AT PROBE will sent the character at
this point in the escape sequence.

an ASCII 'N'. AT PROBE will send a NULL character
(OOh) at this point in the escape sequence.

Appendix-22 Configuration File

Here are the parameters in the PROBE.CNF file:

ADDR = base address (, software execution address]

Base address is the start of the I meg of memory on the AT
PROBE board. It can be set to either 100000 or DOOOOO
(default). Software execution address is the start on an extra
megabyte of memory that, if specified, will be used in
addition to the memory on the AT PROBE board to provide
extra symbols table space.

BUSY = xxxx:yyyy

Set to the address of the DOS "busy" byte. This byte is
non-zero if a DOS request is in progress and is examined
when the STOP button is pressed to determine if control can
safely returned to AT PROBE without destroying the current
state of DOS. If omitted or specified as zero ("O"), the
segment value used is the segment address for the INT 20
vector (located at 0000:0082). If omitted or specified as zero
the offset value is set according to the following:

DOS 2.xx -- 012Dh
DOS 3.00 -- 031 lh
others -- 02CFh (1)

This value can be set using a standard PROBE expression.
For example, to use the segment form the INT 21 vector with
offset 02cfh, the string [0:(21*4)+2]:02cf would be entered. To
disable the DOS busy check, set BUSY = ffff:ffff.

(1) These values have been tested and found to work on DOS 2.10, 3.00, 3.10, 3.20, and 3.30

Configuration File Appendix-23

FIELD = {LIC}

The default, 'L' specifies that on a remote terminal the all of
the current line of code will be displayed in reverse video. If
'C' is specified, then only the first character of the current
line is highlighted. This has no effect on fields of less than
one full line of length.

FLOAT = {yin}

If a 80287 floating point co-processor is present in the
computer FLOAT should be set to "Yes", otherwise FLOAT
should be set to "No". In some cases it is not possible to
accurately test for the co-processor, and so AT PROBE may
cause the system to hang when it attempts to perform a
floating point operation.

COLOR= FC [,BC]

Set the Foreground Color and Background Color of the
monitor. This configuration switch is ignored for monochrome
monitors. Colors are:

'R' -- Red
'C' -- Cyan
'W' -- White

'G' -- Green 'B' -- Blue
'Y' -- Yell ow 'M' -- Magen ta
'K' -- blacK

If omitted, the color is set to "W, K" (white on black). If the
background color is omitted, it is set to black.

Examples:

COLOR= Y,K
COLOR = Blue,White
COLOR = green

MONO= {yin}

Yellow on black
Blue letters on white background
Green letters on black background

If no, then AT PROBE waits for retrace to write to screen. If
yes, AT PROBE does not use any color attributes and does not
wait for retrace to write to the screen.

Appendix-24 Configuration File

LOGIC = {yin}

Tell AT PROBE if logic PROBEs are installed. You can
override this when you are executing PROBE with the
Options Logic PROBEs command. The default value is 'N'.

BAUD= xxxx

xxxx can be 1200, 2400,4800,9600 19200, 38400. Sets the baud
rate for external console using the AT PROBE serial port or
the COMl or COM2 ports. If omitted, or if any other value is
listed, 9600 baud will be used. No parity, 8 data bits, and 2
stop bits are always used and cannot be changed.

ROWS= xx

This is the number of rows on the external console. May be
up to 32 hex (50 decimal). This value must be specified in
hexadecimal. The default is 19.

LINES= xx

This is the number of lines on the local console. This defaults
to 19 (25 decimal) but can be set to 2B (43 decimal) or 32 (50
decimal). This tells the software how many lines are
currently configured on the monitor at the time the AT
PROBE software is loaded.

CLEAR = esc sequence in hex

This is the esc sequence used to clear the external console's
display from the cursor position to the end of the current line.
The default value is lB 32.

INVERSE = esc sequence in hex

This is the esc sequence used by the terminal to put a
character into inverse video. The default value is lB 35.

Configuration File Appendix-25

NORMAL = esc sequence in hex

This is the esc sequence used by the terminal to put an inverse
video character back into normal mode. The default value is
lB 36.

WAIT= xxxx

This is the time to wait after moving the cursor or providing
a line feed character to the terminal. It is a 32 bit hex
number which is determined by the speed of the system. The
default value is 80h.

MOVE = esc sequence in hex

Move cursor to row Y, column X (see X, Y definition).
or

Move cursor to row W, column V (see W, V definition).

The default value is IB 33 WV.

OFFSET = xx [,xx]

Set offset to be added to V, W or X, Y. This is used in
circumstances where the upper left corner of the display is an
offset of some value from 0,0. For example, if the terminal
being used expects the upper left corner of the display to be
accessed as 1, 1, OFFSET should be set to 1, 1. If the terminal
expects the value of 20 hex to be added to row and column
values, then OFFSET should be set to 20,20. The row offset is
listed first. If omitted, the column offset is set to the row
offset. The default value is 0,0.

DEFAULT CONFIGURATION FILE

The default PROBE.CNF file as supplied on your distribution
diskette does not contain any settings, therefore, AT PROBE assumes
the defaults described earlier. If AT PROBE does not find the file
PROBE.CNF in the directory from which the executable files were
loaded, then these default parameters are used ..

Appendix-26 External Console Connection

APPENDIX E
EXTERNAL CONSOLE CONNECTION

CONNECTING AN EXTERNAL CRT TO AT PROBE'S SERIAL
PORT

AT PROBE assumes the following transmission parameters for
transmitting and receiving data via the on-board serial IO channel.

9600 baud (this is the default)
8 data bits
2 stop bits
no parity

This can be reconfigured using either the PROBE.CNF file or from
the Options Screen menu.

The interface for the AT PROBE on-board serial IO channel is
standard RS232 for transmit and receive with the signals provided on
the pins shown in Figure C-1. This is the same as the standard
CO Ml PORT configuration. Only TXD, RXD, and GND are
supported. Note that your terminal may require you to connect pins
4 to 5 (R TS - CTS) and 6 to 20 (DSR - DTR) at the terminal.

USING THE PC AS A TERMINAL EMULATOR

Another PC can be used as an intelligent terminal by using the
Termcom program provided on the AT PROBE diskette. In this case
connect pins 5-6-20 on the PC. Termcom is a terminal emulator
program which makes the COMI port of a second PC look like an
intelligent terminal to AT PROBE.

1. On the PC which is acting like a terminal, use the mode command
to set the baud rate.

mode coml: 9600,n,8,2

External Console Connection Appendix-27

For baud rates above 9600 use the termmode (for Coml:) or
termmod2 (for Com2:) program with the following parameters:

/Bnnnn nnnn = 24, 48, 96, 19.2, 38.4, 57 .6, or 115.2 baud

/Dn n = 5, 6, 7, or 8 data bits

/Sn n = 1 or 2 stop bits

/Pc c = "N", "O", "E", "O", or "l" to indicate parity

2. Connect an RS232 cable between the AT PROBE com port and the
COMl port of the PC terminal emulator.

3. On the PC terminal emulator type:

termcom [displaylines] (2)

where the displaylines option is 2B or 43 for EGA/VGA 43 line mode
and 32 or 50 for VGA 50 line mode. If termcom is used in 43 or 50
line mode, PROBE.CNF needs "ROWS = 2B" or "ROWS = 32" to tell
the AT PROBE software that the terminal has that many lines.

4. Once AT PROBE has been brought up, switch to the external
console.

Commands which send data to the screen can be terminated with the
Ctrl C key or the STOP button on the external switch box.

(2) added Version 2.03

Appendix-28 External Console Connection

USE OF NON-ASCII KEYS FROM A REMOTE CONSOLE

The non-ASCII keys on the PC keyboard can be duplicated on the
remote console by use of the •A• character. This character (5EH,
<Shift-6> on the IBM keyboard) is used to signal that a non-ASCII
specifier is coming next in the input stream. A double '"' sequence
signifies that an <Alt> key is coming next. These sequences are
generated automatically by the TERMCOM.EXE program, version
2.01.

PC keyboard key

<Cursor Up>
<Cursor Down>
<Cursor Left>
<Cursor Right>
<Ctr 1-Cursor Right>
<Ctr I-Cursor Left>
<Pg Up>
<PgDn>
<Ctrl-PgUp>
<Ctrl-PgDn>
<Home>
<End>
<Ctrl-Home>
<Ctrl-End>
<Ins>

<Alt--> (minus)
<Alt-=>

(3) added Version 2.02
(4) added Version 2.02

Remote sequence
AP
AL
AS
AR
AF (3)
AG (4)
AU
AD
AT
AB
AH
AE
AY
AZ
AI
AK
AA -
AA=

External Console Connection

<Fl>

<FlO>

<Alt-A>

<Alt-Z>

<Alt-Fl>

<Alt-FlO>

<Alt-1>

<Alt-0>

(5) Note: '!' is <Shift-1>
(6) Note: ')' is <Shift-0>

to

to

to

to

Appendix-29

"l

"0

""A

""Z

""1

""0

""! (5)

"") (6)

Appendix-30 Text formats for macros, windows & init.

APPENDIX F
TEXT FORMATS FOR MACROS, WATCH WINDOWS, AND
INITIALIZATION FILES

Macros, Watch Windows, and Initialization files are stored as text
files. Macro files are created with the Macro Save command. Watch
Windows are created with the Watch Window Save command.
Initialization files are created with the Initialize Save command.
Macros and windows can be edited on-line with the Macro Edit and
Watch Window Edit commands. Macro, Watch Window, and
Initialization files can also be edited off-line with a standard text
editor and stored as text files. Be sure that your editor only stores
the file as pure ASCII text and does not include additional control
codes. The formats for these files is described below.

Text formats for macros, windows & init. Appendix-31

MACRO FILE FORMATS

In macro editing, both on- and off-line, the special keyboard keys are
specified exactly as described below:

SPECIFICATION

<Enter>
<ESC>
<Tab>
<BS>
<Home>
<End>
<Pg Up>
<PgDn>
<CtrlHome>
<CtrlEnd>
<CtrlPgUp>
<CtrlPgDn>
<Cursor Up>
<Cursor Down>
<Cursor Left>
<Cursor Right>
<CtrlCursor Left>

<CtrlCursor Right>

<Ins>

<Fl> to <FlO>
<Alt?>

Where:

DESCRIPTION

Enter key.
Esc key.
Tab key.
<- backspace key.
Home key.
End key.
PgUp key.
PgDn key.
Home key with the Ctrl key held down.
End key with the Ctrl key held down.
PgUp key with the Ctrl key held down.
PgDn key with the Ctrl key held down.
Up arrow key.
Down arrow key.
Left arrow key.
Right arrow key.
Left arrow key with the Ctrl key held
down.
Right arrow key with the Ctrl key held
down.
Ins key.
Del key.
function keys.
Alt key.

Possible values for'?' are: any letter A .. Z, Space (i.e.<Alt >)
any number 0 .. 9 - or = Fl to FlO

The format for macros in a macrof ile are:

MACRONAME [':' MACROTYPE]['.' MACRODESCRIPTION]
MACRODEFINITION
BLANKLINE

Appendix-32 Text formats for macros, windows & init.

Where:

MACRONAME = an AltKey
MACROTYPE =I I LF I LC I LW

'I' for a conditional macro
'LF' for a loop forever macro
'LC' COUNT for a loop count macro.

COUNT is an expression
'L W' CONDITION for a loop while macro.

CONDITION is a boolean expression which is
either TRUE (not 0) or FALSE (0)

MACRODEFINITION = keystrokes for macro

BLANKLINE a line containing only a Cr (or Cr,Lf) or the
End-of-file to signal end of macro.

Examples:

This macro file contains the macro Alt-R. Macro <AltR> is a macro
which will cause AT PROBE to reload the file currently being
debugged.

<AltR>.reload executable file
fp<Tab>
<Enter>
n<Enter>
<Enter>
<Enter>
<Enter>

Text formats for macros, windows & init.

WINDOW TEXT FILE FORMATS

The format for Windows in a window file are:

Where:

WINDOW NAME
FIELD SPEC
FIELD SPEC
FIELD SPEC

FIELD SPEC
NULL FIELD
<Blankline>

WINDOWNAME =an AltKey

FIELDSPEC = ROW ',' COL <enter>

Appendix-33

{EXPR I ZEROSTR I LENSTR I RANGE I LABEL}

NULL_FIELD = "FF,FF" <Enter>

ROW=

COL=

EXPR =

hex number.
Row relative to start of watch-window for field.

hex number.
Column for field (01..4E).

'E' EXPR TYPE <Enter>
expression <Enter>

EXPR TYPE = {'B' I 'W' I 'D' I 'U' I 'I' I 'A' I 'S'}
(for Byte, Word,Dword, U nsigned,In teger ,ASCII,Sym bol)

ZEROSTR = 'S' 'Z' <Enter>
address <Enter>

LENSTR = 'S' 'L' <Enter>
address <Enter>
length <Enter>

Appendix-34 Text formats for macros, windows & init.

RANGE = 'R' RANGETYPE <Enter>
start address <Enter>
end address <Enter>

RANGETYPE = {'B' I 'W' I 'D' I 'S' I 'L' I 'T' I 'P'}

LABEL=

(for Byte, Word,Dword,fShort,fLong,fTemp,f Packed)

'L' <Enter>
label <Enter>

EXPRESSION = standard AT PROBE expression.

ADDRESS = standard AT PROBE address expression.

LENGTH = length of string.

Text formats for macros, windows & init. Appendix-35

Example:

To create a watch-window that will be opened by typing <AltW> that
will display register AX on the first line of the window, followed by
the zero-terminated string at DS:SI. The next line of the window
will contain the first lOH bytes of the string in byte format.

File definition

<AltW>
00,01
L
AX=
00,04
EW
AX
00,0C
L
DS:SI-->
00,14
sz
DS:SI
01,0C
L
DS:SI=
01,12
RB
DS:SI
DS:SI+IO
FF,FF

Explanation

Watch-window name
Row 0, Column 1
Label field
"AX=" is the label
Row 0, Column 4
Expression,Word field
Value for expression is in register AX
Row 0, Column C
Label field
"DS:SI-->" is the label
Row 0, Column 14
String,Zero-termina ted field
Address for string is DS:SI
Row 1, Column C
Label field
"DS:SI=" is the label
Row 1, Column 12
Range,Byte field
Start address for range is DS:SI
End address for range is DS:SI + 10
Null field at end of definition.

Appendix-36 Text formats for macros, windows & init.

INITIALIZE FILE FORMATS

The initialization file consists of blocks of information for each set
of data stored in the file. The blocks of information may be in any
order in the file. (The INIT block is the last block loaded from the
file. It is never saved). Each block must be separated from the next
block by a blank line. The blocks are always saved (and the file is
searched so that they are always loaded) in the following order:

OPTION
MODULE
PROGRAM
MACRO
WINDOW
INIT

Text formats for macros, windows & init. Appendix-37

OPTION block:

The OPTION block contains the settings for the sub-commands in the
Option command.

OPTION=
Screen, View-ops, Mix-source, sYmbols, Case, sTep-count,
Read-verify, Functions
<Blank line>

SCREEN= {'S' I 'F' I 'N'}
(for Swi tch,Flip,N one) Screen switching type.

VIEW-OPS= {'Y' I 'N'}
(for Yes or No) View operands during step.

MIX-SOURCE= {'Y' I 'N'}
(for Yes or No) Mix source lines with assembly.

SYMBOLS= {'Y' I 'N'}
(for Yes or No) Display symbols with assembly.

CASE= {'Y' I 'N'}
(for Yes or No) Symbol case sensitivity.

STEP-COUNT= {xxxx}
Steps to take for each <Enter>.

READ-VERIFY= {'Y' I 'N'}
(for Yes or No) Verify memory writes.

FUNCTIONS= {'M' I 'L'}
Function linkage style.

Example:

OPTION=
None, Yes, Yes, Y es,N o,0001, Y es,M

Appendix-38 Text formats for macros, windows & init.

MODULE block:

The module block contains the information specific to each module
to be loaded into the symbol table. The options can be used to limit
the number of symbols loaded into the symbol table.

MODULE=
modulename,Load? ,Step? ,filename
mod ulename,Load? ,Step? ,filename

mod ulename,Load? ,Step? ,filename
<Blank line>

Modulename = The name of the module as defined in the .EXE file
or .MAP file

Load?= {'Y' I 'N'}
(for Yes or No) Load symbols/lines for this module

Step? = {'Y' I 'N'}
(for Yes or No) Source level step in this module

filename = ????
The name for the source file that generated this module.

Example:

MODULE=
Hocm, Yes, Yes,c:\source\f tocm.c
ftocio,No
calc, Yes, Y es,c: \ u til \ calc.c

Text formats for macros, windows & init. Appendix-39

PROGRAM block:

The program block consists of the program name (and symbol file
name) to be loaded, along with any command line arguments.

PROGRAM=
programname arguments
<Blank line>

The syn tax for this block is the same as the syn tax for loading a
program from the command line when starting AT PROBE. That is:

filename.exe[.map] <arguments>

Example:

PROGRAM=
ftoc.exe.map 10, 20,

Appendix-40 Text formats for macros, windows & init.

MACRO block:

The macro block consists of a list of filenames, each of wbich
contains macros to be loaded. Only the last mAcro Save (or mAcro
Load) command file name is saved to the init file.

MACRO=
filename
filename

filename
<Blank line>

Example:

MACRO=
c:\A tron \de bug.mac
c:\ Util\util.mac
c:\source \f toe.mac

Text formats for macros, windows & init. Appendix-41

WATCH-WINDOW block:

The watch-window block consists of a list of filenames, each of
which contains watch-windows to be loaded. Only the last Watch
Save (or Watch Load) command file name is saved to the init file.

WATCH=
filename
filename

filename
<Blank line>

Example:

WATCH=
c:\ Util\memory.win
c:\source \f toe. win

Appendix-42 Text formats for macros, windows & init.

INIT block:

The init block contains a macro name. This macro will begin
execution as soon as all of the other blocks have been loaded from
the ini t file.

The INIT block is never saved.

INIT=
<Alt Keyname>
<Blank line>

Example:

INIT=
<Altl>

Inter face Description Appendix-43

APPENDIX G
PROBE/MS DOS INTERFACE DESCRIPTION

Start-up:

INT 11

Get video equipment type

INT 21

ah=l;
ah=2;
ah=4C; al=l
ah=3D; al=O
ah=3E
ah=3F
ah=42
ah=l9
ah=47
ah=4A

Execution:

Read character for ".EXE" path.
Print character for start-up error message.
Abort because of error
Open file "PROBE.CNF", "S2.EXE", "P2.EXE"
Close file
Read from file
Seek in file
Get current disk
Get current directory
Set block size to size of PPS and real/protected
mode interface code

INT 10 (Local/Other console only)

ah=O
ah=2
ah=3
ah=5
ah=l l
ah=l5

Set video mode
Move cursor
Get cursor position
Set video page
Set CRT palette
Get video mode/page

INT 16 (Local/Other console only)

ah=O
ah=l
ah=2

Get character from keyboard
Character ready at keyboard?
Get shift status

Appendix-44

INT 21

ah=OD
ah=lA
ah=29
ah=30
ah=31; al=O
ah=3C

ah=3D

ah=3E
ah=3F
ah=40
ah=42

ah=48
ah=49
ah=4B; al=O l
ah=4C; al=FF
ah=4C; al=OO
ah=4D

ah=4E
ah=4F

Inter face Description

Flush disk buffers after closing any file
Set DT A when directory printed/Program-load
Parse filename into DT A for Program-load
Get DOS version for Program-load
Quit and remain resident command
Create file handle
!nit/Macro/Window /Trace
save Log-file
Open file handle
!nit/Macro/Window
Load View file
Program-load
Source code display
Log-file reopened
Close file handle
Read from file
Write to file
Seek in file
Program-load
View file
Reading conf ig file
Reading init file
Reading symbol file
Allocate memory before Program-load
Release allocated memory before Prog-load
Program-load; do not begin execution
Terminate loaded program before new load
Quit
Get termination code for process after execution
of program
Get first matching file when directory printed
Get next matching file when directory printed

OTHER RESOURCES USED BY AT PROBE

AT PROBE uses 43k bytes of memory to initially load itself onto the
PROBE board. After that, it releases all but 8k bytes. These 8k
bytes remain allocated until PROBE exits.

Language Compatibility Appendix-45

APPENDIX H
LANGUAGE COMPATIBILITY

Software Version Manufacturer

c Microsoft
IBM (no local symbol support)
Lattice (no local symbol support)
Metaware (no local symbol support)
Borland (no local symbol support)
Computer Innovations

(no local symbol support)

Assembler IBM/Microsoft (7)

(7) In order to debug with line numbers from MASM 5.0 or greater, the one segment per
module convention of Microsoft's C compiler must be observed.

Appendix-46 Glossary

APPENDIX I
GLOSSARY OF BREAKPOINT TERMS

Breakpoint:

An event which normally causes an interruption of user program
execution and a return to the Atron PROBE code.

Hardware Breakpoint:

Any of the following types of events:

Memory Read
Memo'ry Write
I/O Read
I/O Write
Instruction Fetch

Hardware break register:

The hardware on the AT PROBE board that detects bus cycles that
match specified conditions. There are four break registers on the AT
PROBE board, and more than one at a time may be needed to
implement a single hardware breakpoint as specified by the
Breakpoint Define command.

Software Breakpoint:

An instruction execution breakpoint that is achieved by inserting an
"Int 3" instruction in the user code at the desired address.

Simple Breakpoint:

Any hardware breakpoint that can be achieved by using one of the
four hard ware break registers.

Examples are:
Memory write to a given address.
Instruction fetch at a given address.

Glossary Appendix-47

Range Breakpoint:

Any hardware breakpoint that is defined over a range of addresses.
Range breakpoints normally require two hardware break registers.

An example is:
Memory write anywhere in the address
range 7000:0 to 8000:0.

Under some circumstances only one hardware break register is
needed for a range of addresses. This kind of breakpoint is ref erred
to as a "Simple Range Breakpoint". The "Breakpoint Rules" section
under the "Breakpoint" command description describes the
circumstances under which range breakpoints are treated as simple
ranges.

Simple Range Breakpoint:

A range breakpoint that only requires one hardware break register.
See "Range Breakpoint" above.

The term "Simple Range Breakpoint" refers to the internal form of
certain breakpoints that are specified as "Range Breakpoints" by the
user.

Data Breakpoint:

Any hardware breakpoint that is defined as happening only when
specified data values are read or written.

Examples are:
Value 1234 written to a given address.
Value 12 written to any of a range of addresses.

Appendix-48 Glossary

Pass Count:

A repetition factor to be applied to one or more breakpoints. If a
pass count is used, it works this way: Any time an event happens
which would otherwise cause the AT PROBE to stop user program
execution and return to the debugger, this event increments the pass
counter. If the specified number of repetitions has not occurred yet,
then user program execution continues, with breakpoints set at their
initial conditions. (More on initial conditions under "Arming".)

An example is:
Pass count = 5.
Memory write to a given address.

In this example, the user program will execute until the fifth time
the specified memory write occurs.

Another example:
Pass count = 5.
Memory write to a given address.
Memory read from a different address.

This example will stop when the total number of occurrences of the
two breakpoint conditions equals five. E.g. four of the memory
writes followed by the memory read will stop execution.

Arming:

Rather than stopping execution, a breakpoint event can arm another
breakpoint condition. When breakpoint "A" arms breakpoint "B", only
breakpoint "A" is armed initially. (If event "B" happens before event
"A", the user program won't stop.) Once event "A" happens, then
breakpoint "A" is disarmed and breakpoint "B" is armed. Event "A"
followed by event "B" will stop the user program and return to the
AT PROBE.

Glossary Appendix-49

Resets:

A breakpoint which arms another breakpoint can arm another
breakpoint as well, which will "reset" the breakpoints back to the
initial state.

An example:
A arms B.
A arms C.
C resets.

In this example, event "A" followed by event "C" will act as though
event "A" had never happened; the AT PROBE will be back looking
for event "B". For instance:

A then B will stop execution.
A then C then A then B will stop execution.
A then C then B will not stop execution.

Appendix-50

APPENDIX J
TECHNICAL REPORTS

USER PROCESSED NMI

Technical Reports

The AT PROBE uses the non-maskable (NMI) interrupt to generate
the breakpoint.

INTERRUPT 3

Software interrupt 3 is used by the AT PROBE for the generation of
software breakpoints and should not be used by the user's program.

STACK USAGE DURING BREAKPOINT

After a breakpoint has been detected, 28 bytes of information are
pushed onto the stack. However, after control is received by AT
PROBE, the stack pointer is adjusted to remove this data. When
starting program execution again, the stack is also restored correctly.

GETTING TO DOS COMMANDS FROM AT PROBE

To execute DOS commands under the watchful eye of AT PROBE, do
the following:

I. Load AT PROBE.

2. Now do a quit and stay resident command from AT PROBE - FQ
<TAB> Y Y.

3. AT PROBE can now be re-entered by using the STOP button as
long as its vectors have not been modified.

Technical Reports

MODIFYING THE AT PROBE SOFTWARE FROM THE
APPLICATIONS PROGRAM

Appendix-51

The memory on the hardware versions of AT PROBE is write
protected. This means that if the applications program tries to write
to the memory area of the AT PROBE it will not change the memory.

INTERRUPTING CRITICAL CODE SECTIONS IN DOS

If the STOP button on the external switch box is pressed or a
breakpoint occurs while the executing user's program is inside a non
re-entrant BIOS call such as the keyboard int 16 or monitor service
routines (INT 10), then the absolute locations which these routines
address will be modified and the results will be indeterminate (the
system may appear to lock up). This is because the AT PROBE
software uses BIOS calls to do some console IO. To eliminate this
from happening, switch to the external console where no BIOS calls
are made by AT PROBE software since the external console routines
are in the AT PROBE software.

INDEX

* 2-25, 5-48
+ number 5-16, 5-69, 5-119
32 bit 3-3
80287 5-97
< > 2-16
\symbolname 3-17
/\/\/\/\/\ 5-5

Absolute option 4-44
Address 3-4
Address expression 5-69
Alt-Key 5-10, 5-15, 5-56, 5-124
Alt-Keys 5-57
<Alt-- (Alt minus)> 5-56, 5-58
<Alt-0> 5-56
<Alt-9> 5-56
<Alt-= (Alt equals)> 5-56
<Alt-FlO> 5-56
<Alt-Key> 5-4
Any 5-14
ASCII 5-38, 5-70, 5-79
Assemble:

data size 5-76
Assemble/Unassemble 4-28
AT PROBE vectors 4-38

'B' 4-21
<BACKSPACE> 2-13
Base 3-7
BINARY 5-38
Binary tree 4-33
BIOS keyboard routines 4-45
Boolean expression 3-8, 5-61
Boot loader 4-38

A

B

Index-I

Index-2

Breakpoint 3-5, 4-15, 5-11, 5-14
Breakpoint:

arming Appendix-48
datafield 5-16, Appendix-47
definition Appendix-46
don't care bi ts 5-1 7
editing 5-12
hardware Appendix-46
number of sticky 5-12
pass count Appendix-48
range 5-16, 5-119, Appendix-47
resets Appendix-49
simple Appendix-46
software Appendix-46
verb 5-14

c
Calling macros from breakpoints 4-23
Calls 4-29
Co-processor 5-75
Code screen 2-6
Command:

editing 2-12
termination 2-11, 2-14

Compiling and linking 4-10
Configuration file Appendix-21
Copy and paste 2-20
Count 5-60
Ctrl Break 2-14
Ctrl End 2-14
Ctrl Home 2-14
Ctrl Left 2-13
Ctrl PgDn 2-13
Ctrl PgUp 2-13, 5-6
Ctrl Right 2-13
Cursor 2-10, 5-128
Cursor Keys 2-13
Cycles 5-113

Data field 5-16
Data type 5-127
Data value 5-17
Debugging a device driver 4-40

D

Debugging on a non-DOS operating system 4-47
Decimal 3-7,5-38
Default data 2-16
Default:

PROBE.CNF Appendix-25
pref ix 3-23

Defining a window 4-17
Del 2-14
Dereferencing 3-10
Device driver:

symbols 4-41
Dialog box 5-4
Dialog box:

Maximum characters 2-9
Display of the stack 4-14
Display window 2-13, 5-4
Displaying registers 4-14

End 2-14
<Enter> 5-4
<ESC> 4-18
Enum 4-33
Error:

syntax 2-12
messages 2-21

ESC 2-11, 2-14
Evaluate 5-38
Execute 5-14
Execute:

command 2-10
Exiting AT PROBE 4-37, 5-127

E

Index-3

Index-4

Expression 2-9, 3-5
Expression:

editing 2-12
boolean 3-8

External 3-16
False 3-8
Fetch 5-14
File:

initialization 5-49
log 5-51
window 5-130
view 4-31

Files:
versions 2-24
distribution Appendix-17
ini tializa ti on Appendix-30
macro Appendix-30

Filespec 2-25
Floating point 5-73

Go 4-12, 5-9

G

H

Hardware break register Appendix-46
HEX 5-38, 5-98
Highlight disappears 5-8
Home 2-14

If 5-61
Infinity 5-73
Init files 4-22
Initialization file 2-3, 5-49
Instructions 5-113
Integer 5-38

Jump to BIOS 4-42

Key definitions 2-13
<keynames> 5-4

Line number 3-18, 5-74
Load file window 5-130
Local 3-16
Log file 5-51

Macro 4-18, 5-49, 5-55
Macro:

conditional 5-60
define 5-56
delete 5-56
description 5-56
edit 5-62
execution 5-59, 5-60, 5-65
load 5-63
nesting 5-59
null parameters 5-58
parameters 5-57, 5-59, 5-65
pause 5-58
pause in window 5-124
save 5-63
stop execution 5-65
terminate 5-60

Menu bar 2-6, 2-13
Menu box 2-6, 5-4
Message box 2-12, 2-21
Module 5-49
Monitors Appendix-23

lndex-5

J

K

L

M

lndex-6

NAN 5-73
No symbols 5-41

Operands 5-5
Operators 3-5

PgDn 2-13
Pg Up 2-13
Pipeline 5-113
Precedence 3-5
Pref etch 2-19, 5-112
PROBE.CNF 2-5
PROBE.SYS 4-40
Public 3-16

Quit 5-50

Read 5-14
Real time Trace 4-20
Rebooting 4-38
Return to DOS 4-37

Scope 3-16
Sequential breakpoints 4-24
Single stepping 4-13, 5-49
Single stepping:

source 5-9
while 5-9

Source level display 4-11
Starting AT PROBE 4-11

N

0

p

Q

R

s

Static 3-16
Step affects IO 5-6
Step-source-screen-modules selection 5-9
String assign to a key 5-62
Symbol 3-16
Symbolic information 4-10
Symbolname 3-17
Symbols:

default prefix 3-23
public 3-23

Syntax editing 2-12

T 3-7
<TAB> 2-10, 2-13, 2-16
<TAB> TO fields, 2-10, 2-16
Terminate command 2-11, 2-14
TO 5-16, 5-119
Trace 5-112
Trace:

assembly language 5-113
raw data 5-122
search 5-118

TRUE 3-8

Value 3-3, 3-10, 5-17
Variable 4-29
Variable command 4-32

T

v

Index-7

Index-8

Watch Window:
define/edit 5-125
delete 5-129
during single step 5-10
field overwrites 5-127

While 5-9, 5-61
Wild card 2-25, 5-41, 5-45, 5-125
Window 5-10, 5-49
Window:

macroname conflict 5-131
Write 5-14

w

