
United States Patent (19)
Knoke et al.

||||||||||||||
USOO5228039A

(11) Patent Number:
45 Date of Patent:

5,228,039
Jul. 13, 1993

(54) souRCE-LEVELIN-CIRCUIT SOFTWARE
CODE DEBUGGING INSTRUMENT

75) Inventors: Robin L. Knoke, Duvall; Marvin T.
Johnson, Bothell, both of Wash.
Applied Microsystems Corporation,
Redmond, Wash.

(21) Appl. No.: 521,261

73) Assignee:

(22) Filed: May 9, 1990
(51) Int. Cl. - - - - - - oa o a so so e o see e sees so G06F 11/00

52 U.S. C. 371/19; 371/16.1
(58) Field of Search 371/19, 16.2, 16.
56) References Cited

U.S. PATENT DOCUMENTS

4,192,451 3/1980 Swerling et al. 371/16.2
4,486,827 12/1984 Shima et al. 364/200
4,569,048 2/1986 Sargent 371/16
4,674,089 6/1987 Poret et al. ... 37/16.2
4,788,683 11/1988 Hester et al. 371/16.2
4,796,258 1/1989 Boyce et al. 371/16
4,809,167 2/1989 Pawloski et al. 364/200
4,899,306 2/1990 Greer 364/900
4,924,382 5/1990 Shouda 364/200
4,964,074 10/1990 Suzuki et al. 364/900
5,047,926 9/1991 Kuo et al. 364/200
5,053,949 10/1991 Allison et al. 364/200
5,056,013 10/1991 Yamamoto 371/16.2
5,073,968 12/1991 Morrison 395/500
5,077,657 12/1991 Cooper et al. 395/500

OTHER PUBLICATIONS

Majewski, et al., "Emulator kit multiplies microproces
sor choices,' 30 Electronic Design, 117-122 (Nov. 25,
1982).
Falk, "Emulators keep pace with chip speeds and com
plexity," 26 Computer Design, 31-38 (May 15, 1987).
Everett, "In-circuit emulators keep pace with 16- and
32-bit uPs," 32 EDN-Electrical Design News, 252-258
(Jul 23, 1987).
Balthasart, "Development of a low cost emulator for
microprocessor Z 80," 95 Bulletin Scientifique No. 4,
Association des Ingenieurs Electriciens sortis de L'Institut
Electrotechnique Montefiore, 131-136 (1982).

Santoni, "Instruments,' 26 EDN-Electrical Design
News, 212-224 (Jul. 22, 1981).
Yen, "Fast emulator debugs 8085-based microcomput
ers in real time,' 50Electronics, 108-112 (Jul. 21, 1977).
Primary Examiner-Robert W. Beausoliel, Jr.
Assistant Examiner-Allen M. Lo
Attorney, Agent, or Firm-Stoel Rives Boley Jones &
Grey
57 ABSTRACT

A source-level run-time software code debugging in
strument (10) includes a target access probe ("TAP")
(12) and a communications adapter ("COMDAP') (14)
that process emulation commands provided by source
level debugging software operating on a host computer.
The TAP includes a TAP CPU (28) that receives target
CPU input signals and delivers target CPU output sig
nals for controlling the execution of software code by
the target circuit in accordance with command signals
provided by the host computer. The TAP also includes
a programmable logic cell array (24) and a RAM (34).
The TAP logic cell array routes command and data
signals to and from the TAP CPU, and the RAM stores
an in-circuit emulation ("ICE") program used by the
TAP to operate the target circuit. The COMDAP is
physically separate from the TAP and provides an in
terface between the host computer and the TAP. The
COMDAP includes a programmable logic cell array
(44) and an EPROM (46). The COMDAP logic cell
array routes command and data signals to and from the
COMDAP, and the EPROM stores the commands for
configuring the signal paths within the TAP and COM
DAP logic cell arrays and stores the TAP ICE pro
gram. A flat cable assembly (16) provides a high-speed
signal communications link between the TAP and the
COMDAP. The TAP uses certain microprocessor sig
nal features and source-level debugging software that
runs on the host computer to provide a software engi
neer with a fully transparent window into the internal
functioning of the TAP CPU while executing code in
the target circuit environment.

32 Claims, 8 Drawing Sheets

U.S. Patent July 13, 1993 Sheet 1 of 8 5,228,039

5,228,039 Sheet 3 of 8 July 13, 1993 U.S. Patent

8/

24. H/S EABOBH
LESEH ELLOWEE ÅSTE dV/C|WOO | 891

·LÍTO \/ LVCI

U.S. Patent

FIG. 4
94

LVL R
* conv

July 13, 1993 Sheet 4 of 8 5,228,039

----as--------
FIFO OUTPUT

BUFFER PORT SA
REGISTER INT

164

102

RECEIVE T HANESHAkE APBUSY 134
130 46

EPROM
RANS. FFO
MIT ABUFFER

REGISTER FROM TAP
INSERALIN
108

COMDAP
TRANSMITHANDSHAKE BUSY CONTROL | 10 MHz
BAUDRATE CLOCK

U.S. Patent July 13, 1993 Sheet 6 of 8 5,228,039

FIG. 6
200 APPLY ELECTRICAL

POWERTO
DEBUGGING INSTRUMENT

2O2 CONFIGURE
LOGIC CELL
ARRAYS

DOWNLOAD
ICE PROGRAM

TO RAM

204

APPLY LOGIC 9. STATE
TO BREAK CONDUCTOR AND
LOGIC 1 STATE TO RESET

CONDUCTOR TO RESET CPU
PROGRAM COUNTERTO
THE RESTART VECTOR

206

APPLY LOGIC-0STATE TO
RESE CONDUCTOR AND
SET BREAK CONDUCTOR

TOLOGIC 1 STATE TO DUMP
CONTENTS OF CPU REGISTERS

208

APPLY LOGIC 1 STATE
TO BREAK CONDUCTOR
TO RUNICE PROGRAM

210

DOWNLOAD
NEW TARGET
PROGRAM

212

U.S. Patent July 13, 1993 Sheet 7 of 8 5,228,039

FIG. 7

as as is a do an TOP OF MEMORY

------------------------------- ---. START-UP-FFFFFFFO
REAL MODE BOOT CODE

!------------------------------- -----. O0067000

PROTECT MODE CODE

------------------------------- ------ OOO64OOO
PROTECT MODE STACK

PROTECT MODE DATA

!------------------------------- -----. O0064128
LOADALL AREA CS, DS, SS (rim)

------------------------------- ------ OOO6OOOO

HS SERIAL PORT SITES

---------- FS-00010000

U.S. Patent July 13, 1993 Sheet 8 of 8 5,228,039

DETALA O) O O (e) O O. O. O. O. O. O. O. O

FIG. 8 0 0 (0?;HE O OG
ee e O (OO
G G O Y (c) () ()
O Go O
O) (OO)
O) (O) O
G) 6) G)
O G) G)

6) G. G)
9 (9) (d
O) () ()
G) G. G.
6) G) 6)

Yaa

, Illic
UAAA-SHELF
W22-SHELF 2

DETAL C

5,228,039
1.

SOURCE-LEVEL IN-CIRCUIT SOFTWARE CODE
DEBUGGING INSTRUMENT

TECHNICAL FIELD

The present invention relates to techniques for cor
recting or "debugging' computer software code and, in
particular, to a source-level run-time software code
debugging instrument using microprocessor emulation
technology.

BACKGROUND OF THE INVENTION

There are currently two conventional techniques
used by programmers to debug computer software
code. These techniques include program monitors and
microprocessor emulators.
A program monitor is intrusive software code located

in target memory to debug computer programs. The
program monitor operates in conjunction with and
monitors the operation of a main computer program
that controls the functions of a microprocessor-based
target circuit. The program monitor code is intrusive in
that it is linked to the main program code, both of which
are either downloaded into memory sites provided in
the target circuit or stored in a read only memory
(ROM) used by the programmer. The use of a monitor
program requires that a universal asynchronous receiv
er-transmitter or other communication hardware be
provided in the target circuit so that the monitor can
communicate apart from the main program to the pro
grammer.
The use of program monitors is advantageous be

cause they are relatively inexpensive and find the ma
jority of errors or "bugs' located in the main program.
One drawback of program monitors is that they require
the use of resources in the target circuit and typically
are ineffective in detecting more difficult problems
present in the associated program code.
An emulator is a nonintrusive software debugging

tool that uses external hardware to provide transparent
operation of a microprocessor embedded in a target
circuit. The emulator microprocessor substitutes for the
target microprocessor during target circuit testing and
execution, and the emulator traces all activity that oc
curs at the target microprocessor input and output ter
minals. An emulator provides a complex breakpoint
system that monitors the target microprocessor activity
and stops the microprocessor operations at predeter
mined points for analysis of certain target circuit sig
nals.
An emulator is designed for use primarily in full sys

ten integration and for solving real-time problems. A
programmer using an emulator is able to replace the
programmer's ancillary ROM with an overlay random
access memory (RAM) located in the emulator. The
overlay RAM allows the programmer to debug the
program code even when the target circuit is not com
plete physically and thereby shortens the development
time of microprocessor-embedded circuits. Certain
types of emulators do not require the use of the target
resources; therefore, such emulators can be viewed as
nonintrusive code debugging instruments.
An emulator addresses the needs of the integration

phase and time-dependent problems in a target circuit
by using a trace feature, complex breakpoint systems,
and an overlay memory. Because each of these features
is expensive but critical for full system integration, such
features are not necessary for run-time debugging.

10

15

20

25

30

35

45

50

55

65

2
Thus, one major drawback of emulators is that they are
relatively expensive, thereby making them inaccessible
to a significant percentage of the growing number of
Software engineers participating in microprocessor
based circuit design tasks.

SUMMARY OF THE INVENTION
An object of the present invention is, therefore, to

provide cost-effective early access to a microprocessor
embedded target computer system for software debug
ging by a programmer.
Another object of the invention is to provide a soft

ware code debugging instrument that allows the short
ening of development time for microprocessor-embed
ded target computer systems.
A further object of the invention is to address the

increasing ratio of software engineers to hardware engi
neers and to shorten the time-to-market by cost-effec
tively providing each member of a software design team
with a run-time code debugging instrument.
Yet another object of the invention is to provide a

cost-effective transparent run-time instrument that need
not require the use of target resources to function.
The present invention is a source-level run-time soft

ware code debugging instrument that uses emulation
technology. The invention fills a void in the micro
processor-based circuit development cycle because it is
a cost-effective, transparent run-time software debug
ging instrument that need not use the target resources
required by a monitor and does not provide the com
plex, expensive debugging features present in an emula
tor.
A preferred embodiment of the present invention

includes a target access probe ("TAP') subsystem and a
communications adapter ("COMDAP") subsystem that
process emulation commands provided by a host analy
sis code source such as source-level debugging software
operating on a host computer. The TAP includes a
microprocessor or central processing unit ("CPU') that
receives target CPU input signals and delivers target
CPU output signals for controlling the execution of
software code by the target circuit in accordance with
command signals provided by the host computer. The
command signals from the host computer formulate
operating instructions that the TAP CPU receives and
decodes to cause the target circuit to produce a desired
response. The TAP also includes a first programmable
logic cell array and a RAM. The first programmable
logic cell array routes command and data signals to and
from the TAP CPU along signal paths established to
assemble such signals in a digital word format that is
compatible to the specific type of TAP CPU in use. The
RAM stores an in-circuit emulation ("ICE") program
used by the TAP to operate the target circuit whenever
the TAP assumes target circuit control.
The COMDAP, which is physically separate from

the TAP, provides an interface between the host com
puter and the TAP. The COMDAP includes a second
programmable logic cell array and an erasable program
mable ROM ("EPROM"). The second programmable
logic cell array routes command and data signals to and
from the COMDAP along signal paths established to
assemble such signals in a digital word format that is
compatible with the specific type of host analysis code
source and TAP in use. The EPROM stores the con
mands for configuring the signal paths within the first
and Second programmable logic cell arrays and stores

5,228,039
3

the TAPICE program, which is transferred to the TAP
RAM upon initial application of electrical power to the
debugging instrument.
A flat cable assembly provides the necessary signal

communications link between the TAP and the COM
DAP. The use of the EPROM in conjunction with the
first and second programmable logic cell arrays in the
TAP and COMDAP, respectively, allows a software
engineer to provide software code that configures the
TAP for a particular type of microprocessor and the
COMDAP for a particular type of host analysis code
SOC,

The present invention differs from a software moni
tor in that the former monitors and controls the execu
tion of code in the target circuit without requiring prior
code modification or without using target memory or
input-output circuitry. The present invention includes
RAM sites on the TAP and EPROM sites on the COM
DAP, thereby eliminating the use of target RAM or
ROM space. Equipping the debugging instrument with
the COMDAP eliminates the need for use of a target
universal asynchronous receiver-transmitter or other
communication hardware.

Because of certain microprocessor signal features
used by the TAP, source-level debugging software that
runs in the host computer provides the software engi
neer with a fully transparent window into the internal
functioning of the TAP CPU while executing code in
the target circuit environment. This window into the
TAP CPU combined with powerful source-level de
bugging software provides a software engineer with the
capability of solving run-time problems. A preferred
source-level debugging software package facilitates
ready access to data structures, arrays, dynamic vari
ables, and data breakpoints. The software engineer can
read data from and write data to specific target loca
tions as well as transmit register states and other data to
the debugging program for display to the software engi
neer. The software engineer can also download and
upload code, execute code starting at a preset value, and
stop code at a preset value. A software engineer may
use target interrupt resources depending on target cir
cuit CPU being emulated.

Additional objects and advantages of the present
invention will be apparent from the detailed description
of a preferred embodiment thereof, which proceeds
with reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a pictorial view of the software code debug
ging instrument of the present invention, which in
cludes target access probe ("TAP") and communica
tions adapter (“COMDAP") subsystems connected by a
flat cable assembly.
FIG. 2 is an enlarged view of the lower side of the

TAP, the upper side of which is shown in FIG. 1.
FIG. 3 is a functional block diagram of the TAP

subsystem of the present invention.
FIG. 4 is a functional block diagram of the COM

DAP subsystem of the present invention.
FIG. 5 is a block diagram showing the functions

implemented in software used by the present invention
to perform microprocessor-based emulation.
FIG. 6 is a flow diagram showing the processing

steps for initially configuring the TAP and COMDAP
for operation.
FIG. 7 shows an address map for the RAM included

as part of the TAP.

O

15

20

25

30

35

45

50

55

65

4.
FIG. 8 is a diagram showing certain areas of the

topology of the Intel (R) 80386 microprocessor chip
where wire placement is required to bond out three
signal features used by a preferred embodiment of the
present invention.
DETAILED DESCRIPTION OF PREFERRED

EMBOOMENT

FIG. 1 is a pictorial view of a preferred embodiment
of software code debugging instrument 10 of the pres
ent invention. Debugging instrument 10 includes a tar
get access probe ("TAP') subsystem 12 and a communi
cations adapter (“COMDAP') subsystem 14 intercon
nected by a detachable flat cable assembly 16. COM
DAP 14 receives command signals transmitted on a
RS-232 serial communications link 18 from a host analy
sis code source or host computer (not shown) on which
a fully integrated windowed debugging software pro
gram operates. Communications link 18 is preferably of
the RS-232 type because standard computer terminals
use a communications protocol defined by EIA stan
dard RS-232 to send and receive data from a control
computer. COMDAP 14 conditions the command sig
nals for delivery through the conductors of cable assem
bly 16 to TAP 12.
TAP 12 includes a printed circuit board 20 that

carries on its upper surface 22 a first programmable
logic cell array 24 and a first socket 26 that receives the
lead pins of a microprocessor or central processing unit
(“CPU”) 28. Socket 26 is affixed to conductive regions
of circuit board 20 by solder pads associated with differ
ent ones of the microprocessor lead pins. Printed circuit
board 20 carries on its lower surface 30 a second socket
32 having multiple downwardly depending pins 33
(FIG. 2) that connect by electrically conductive paths
through circuit board 20 to the solder pads of socket 26
and can be inserted into a female target CPU socket on
the target circuit board (not shown). Printed circuit
board 20 also carries on its lower surface 30 a random
access memory ("RAM") 34. Programmable logic cell
array 24 establishes signal flow paths necessary to pro
vide data and address signals in the proper digital word
format to CPU 28 and RAM 34. CPU 28 substitutes for
and plugs into the socket receptacles dedicated for a
CPU on the target circuit board, and RAM 34 functions
as the in-circuit emulation ("ICE') program memory
for TAP 12 when it takes control of target circuit opera
tion.
COMDAP 14 includes a printed circuit board 40 that

carries on its upper surface 42 a second programmable
logic cell array 44 and an erasable programmable read
only memory ("EPROM") 46. COMDAP 14 also in
cludes a 30 MHz crystal oscillator 48 and associated
frequency divider circuitry 50 that provide clock sig
nals to programmable logic cell arrays 24 and 44 to
enable high-speed serial command and data transfer
between TAP 12 and COMDAP 14 through cable as
sembly 16.
TAP 12 and COMDAP 14 are preferably physically

separate so that TAP 12 can be used with COMDAPs
14 adapted for use with host computers of different
types and so that COMDAP 14 can be used with TAPs
12 adapted for use with CPUs 28 of different types. It
will be appreciated, however, that TAP 12 and COM
DAP 14 need not reside on separate printed circuit
boards but may share a common printed circuit board,
if desired.

5,228,039
5

FIG. 3 is a functional block diagram of TAP 12. With
reference to FIG. 3, first programmable logic cell array
24 of TAP 12 is configured to have a data receive shift
register 60 and a data transmit shift register 62 that
respectively receive serial digital commands from and
deliver serial digital data to COMDAP 14 through
cable assembly 16. One commercially available device
suitable for use as logic cell array 24 is a part number
XC 3042 logic cell array manufactured by XILINX,
Inc., San Jose, Calif. Logic cell array 24 is also config
ured to have a pair of first-in, first-out ("FIFO") buffer
registers 64 and 66, the former receiving serial digital
commands from the output of shift register 60 and the
latter delivering serial digital commands or data to the
input of shift register 62. Logic cell array 24 is config
ured as described above in accordance with commands
stored in EPROM 46 of COMDAP 14 (FIG. 1). Shift
registers 60 and 62 assemble the serial digital commands
and data received from or delivered to the COMDAP.
An output port register 68 of logic cell array 24 re

ceives the byte wide digital words from FIFO register
64 and provides them as address words and data words
of the required length and in the required format for use
by CPU 28. These address and data words appear on
separate sets of conductors to the respective address bus
conductors 70 and data bus conductors 72 of CPU 28.
An input port register 74 of logic cell array 24 and
RAM 34 receive parallel digital address words and data
words from the respective address bus conductors 70
and data bus conductors 72 of CPU 28. Input port 74
reconfigures the address and data information into byte
wide format and provides them to FIFO register 66 for
delivery to shift register 62 and COMDAP 14. RAM 34
stores the software code representing the ICE program
for TAP 12 to perform the debugging function. The
contents of RAM 34 are loaded upon initial application
of power to TAP 12 as will be described later below.
The address bus conductors 70 and data bus conductors
72 are connected to the appropriate address input con
ductors and data output conductors of RAM 34 to ef
fect operational control of CPU 28 in response to com
mand signals that formulate operating instructions pro
vided by the host computer to debugging instrument 10.

Shift registers 60 and 62 of logic cell array 24 provide
digital words to CPU 28 in accordance with the instruc
tions delivered to instrument 10 from the host computer
debugging software and provide address words and
data words indicative of the results produced by the
target software for analysis by the software in the host
computer in response to earlier provided instructions.
The ICE program software inscribed in RAM34 effects
the proper execution of the instructions delivered to
debugging instrument 10 from the host computer.
FIG.3 shows TAP 12 providing a BREAK signal on

a conductor 76 and a RESET signal on a conductor 78
to respective BREAK and RESET inputs of CPU 28.
The BREAK signal indicates the receipt by FIFO reg
ister 64 of any command from the host computer to stop
the execution of the target program by CPU 28. The
RESET signal is developed by a RESET circuit 80 in
response to a RESET signal generated by a software
engineer activating a RESET button 82 (FIG. 1) to
reset the target program to its starting address. The
BREAK and RESET signals affect the operation of
CPU 28 in a manner that is described in detail below.
FIG. 4 is a functional block diagram of COMDAP

14. With reference to FIG. 4, second programmabie
logic cell array 44 of COMDAP 14 is configured to

O

15

20

25

30

35

45

50

55

65

6
have a data receive shift register 90 and a data transmit
shift register 92 that respectively receive serial digital
commands from and deliver serial digital data to the
host computer through communications link 18. Logic
cell array 44 is of a similar type to that of logic cell array
24. A pair of voltage level converters 94 and 96 condi
tion the digital signals respectively received from and
transmitted to the host computer.

Logic cell array 44 is also configured to have a pair of
FIFO buffer registers 98 and 100, the former receiving
byte wide digital commands from the output of shift
register 90 and the latter delivering byte wide digital
data to the input of shift register 92. Logic cell array 44
is configured as described above in accordance with
commands stored in EPROM 46 of COMDAP 14
(FIG. 1). FIFO register 98 temporarily stores the byte
wide digital commands received from shift register 90
at a relatively low data rate for delivery to TAP 12
through cable assembly 16 at a relatively high data rate.
FIFO register 92 temporarily stores the byte wide digi
tal data received from TAP 12 at a high data rate for
delivery to shift register 92 and transmission to the host
computer through communications link 18 at a rela
tively low data rate.
An output port register 102 of logic cell array 44

receives byte wide digital commands from FIFO regis
ter 98 and delivers them in serial format at a high data
rate on a conductor 104 of cable assembly 16 to data
receive shift register 60 of TAP12. An input port regis
ter 106 of logic cell array 44 receives serial digital data
from data transmit shift register 62 of TAP 12 at a high
data rate on a conductor 108 of cable assembly 16.
The digital commands and data are transmitted in

serial format between TAP 12 and COMDAP 14
through the conductors of cable assembly 16 at a 10
Mbps rate. This is accomplished by 30 MHz oscillator
48 and a divide-by-three counter 110 connected to the
output 112 of oscillator 48, which together develop a 10
MHz clock signal that is delivered to output port regis
ter 102 and input port register 106. The 10 MHz clock
signal is also provided on a conductor 114 of cable
assembly 16 for delivery to data receive shift register 60
and data transmit shift register 62 of TAP 12. Output
112 of 30 MHz oscillator 48 is also applied to a program
mable frequency divider 116 that provides on its output
118 a baud rate clock signal, which is applied to the
clock inputs of receive shift register 90 and transmit
shift register 92 that, respectively, receive serial com
mands from and provide serial data to the host com
puter. The baud rate clock enables COMDAP 14 to
receive command signals from and deliver data signals
to the host computer at a rate that differs from the 10
Mbps data transfer rate between TAP 12 and COM
DAP 14. A manually programmable baud rate switch
120 facilitates the selection of a baud rate that is appro
priate to the capabilities of the type of host computer
with which COMDAP 14 communicates. A 19.2K
baud rate is appropriate for a PC type host computer.
The transmission of command and data signals among

the host computer, TAP 12, and COMDAP 14 takes
place at different rates. Moreover, commands are as
sembled in byte wide digital format in TAP 12 for trans
mission to and from CPU 28. To accommodate the
resulting timing differences, coordination of command
and data transfer among the host computer, TAP 12,
and COMDAP 14 is accomplished by the use of hand
shake techniques.

5,228,039
7

FIFO register 98 provides on an output terminal 122
through a voltage level converter 124 a RECEIVE
HANDSHAKE CONTROL signal to the host com
puter, and FIFO register 100 receives on an input termi
nal 126 through a voltage level converter 128 a
TRANSMIT HANDSHAKE CONTROL signal from
the host computer. The two handshake control signals
coordinate the data transfer between the serial digital
signal input and output ports of the host computer and
COMDAP 14 FIFO register 98 receives on a conduc
tor 130 of cable assembly 16 a TAP BUSY signal from
FIFO register 64 whenever TAP 12 is providing infor
mation to or receiving information from CPU 28. Simi
larly, FIFO register 100 delivers on a conductor 132 of
cable assembly 16 a COMDAP BUSY signal whenever
COMDAP 14 is processing an instruction and is un
available for receiving data from data transmit shift
register 62 of TAP 12.
EPROM 46 provides on multiple output conductors

134 command signals for configuring the data pathway
structures of logic cell arrays 24 and 44 and address and
data signals for loading the operations program in RAM
34. All of these functions occur upon initial application
of electrical power to debugging instrument 10.
FIG. 5 is a block diagram showing the functions

implemented in software for processing command sig
nals sent to the target circuit and for processing data
signals developed by the target circuit in response to
such commands. Debugging instrument 10 operates in
association with a host computer that is implemented
with windowed, source-level debugging software. The
debugging software provides command signals that
debugging instrument 10 processes and delivers to a
target circuit to provide a software engineer with the
capability of solving run-time problems.
A preferred embodiment of debugging instrument 10

is designed for use in debugging a target circuit con
trolled by an Intel (R) 80386 32-bit microprocessor. A
preferred source-level debugging software program is
the VALIDATE(R)/Soft-Scope III (R) 386, which to
gether with Pharlap 386 ASM/Linkloc assembly soft
ware, supports Intel OMF-compatible languages, Mi
croSoft (R) C, and most compilers. The preferred em
bodiment of debugging instrument 10 provides a soft
ware engineer with a fully transparent window into the
internal functioning of the Intel (R) 80386 microproces
sor when executing software code instructions in the
target environment.
With reference to FIG. 5, an application software

driver 150 of the host computer provides a set of con
mand signals, referred to as a set of "C calls,” in accor
dance with the debugging software applications pro
gram. The C calls are delivered to an ASCII Remote
Control Driver (“ARCD”) 152, which interprets the C
calls and conditions then to a format that is compatible
for transmission to COMDAP14. ARCD 152 interprets
the C calls as commands having command codes and
command fields. A command code is a standard ASCII
character (7-bit ASCII code), such as "M" for a mem
ory write command and "m' for a memory read com
mand. The command code may be followed by one or
more field codes.
The basic command protocol of ARCD 152 is the

receipt of a C call from the host computer and the re
ceipt of a response delivered by debugging instrument
10 from the target circuit. The commands interpreted
by ARCD 152 are delivered to a serial port 154 in
cluded within the host computer hardware for transmis

10

15

20

25

30

35

45

50

55

65

8
sion as serial digital signals on a conductor 156 of the
RS-232 communications link 18 to TAP 12 by way of
COMDAP 14. The commands received by TAP 12 are
processed in accordance with an operations program
initially stored in EPROM 46 of COMDAP 14 and
transferred to RAM 34 of TAP 12 upon initial applica
tion of electrical power.
The ICE program stored in RAM 34 effectively sub

stitutes for the target program provided in the target
circuit whenever debugging instrument 10 takes control
of the target circuit operation. In FIG. 5, process block
160 represents the translation by the ICE program
stored in RAM 34 of a command in ASCII format to
binary format for use by the Intel (R) 80386 micro
processor-based target circuit. Process block 162 repre
sents the decoding of the command, and process block
164 represents various exemplary functions such as
configure data base, execute breakpoint data base or
single step instruction analysis, access memory, and
access register that a particular command could entail.
Process block 166 represents the register table assem
bled specifically for the Intel (R) 80386 microprocessor,
and indicates in broken lines additional separate register
tables custom arranged in additional memory space for
selective use with microprocessors of different types.
FIG. 6 is a flow diagram showing the sequence of

operations debugging instrument 10 carries out to en
able debugging of a target circuit. With reference to
FIG. 6, process block 200 represents the initial applica
tion of electrical power to debugging instrument 10.

Process block 202 indicates that, immediately after
application of electrical power, the command signals
required to configure logic cell arrays 44 and 24 of
COMDAP 14 and TAP 12, respectively, are sequen
tially read out from the memory sites that correspond to
the lowest order addresses (starting at hexadecimal
0000) of EPROM 46.
Once logic cell arrays 24 and 44 are properly config

ured to operate with the particular host computer and
CPU 28 in use, the contents of one-half of the memory
sites that correspond to the highest order addresses
(hexadecimal 8000-FFFF) of EPROM 46 are down
loaded to RAM 34, as indicated by process block 204.
The information transfer to RAM 34 is the firmware
representing the ICE program of TAP 12. (In a pre
ferred embodiment, EPROM 46 has a 64K-byte storage
capacity but RAM 34 has a 32K-byte storage capacity,
thereby providing TAP 12 with memory expansion
capability.) The above-described operations are ef
fected by means of conventional hardware techniques
for initializing computer-based electronic circuitry.

Process block 206 represents the application of a
logic 1 state on RESET conductor 78 and a logic 0 state
on BREAK conductor 76 of CPU 28 to reset its pro
gram counter to the restart vector, which is defined in
the Intel (R) 80386 specifications.

Process block 208 indicates the application of a logic
0 state to RESET conductor 78 and a logic 1 state to
BREAK conductor 76 will cause CPU 28 to dump the
contents of the target CPU registers to ICE memory
space in RAM 34, which ICE memory space begins at
hexadecimal address 60000. The result is that RAM. 34
stores the contents of the target CPU registers before
the target operations program has an opportunity to run
and before the ICE program runs the target circuit.
This allows the software engineer to step through the
registers and inspect their contents.

5,228,039
9

Process block 210 indicates that applying a logic 1
state on BREAK conductor 76 causes CPU 28 to run on
the ICE program stored in RAM 34. This assumes a
preexisting condition of debugging instrument 10 oper
ating on the target program, which operation requires a
logic 0 state on BREAK conductor 76.

Process block 212 indicates that the software engi
neer can at this stage download a different target pro
gram, if the software engineer so desires.
Debugging instrument 10 performs emulation func

tions on a target circuit controlled by CPU 28, which in
a preferred embodiment is an Intel (R) 80386 32-bit mi
croprocessor. To provide a capability for complete
transparency during the emulation process, debugging
instrument 10 takes advantage of three signal features
provided by emulation hardware integrated within the
Intel (R) 80386 chip (but not bonded out to the CPU
pins) and of certain undocumented instructions. Appli
cants have identified the signal features as IADS,
IRDY, and BREAK and have identified the undocu
mented instructions as LOADALL and four MOV
instructions. (The term "undocumented' refers to in
structions implemented in the Intel (R) 80386 micro
processor but not mentioned in its specification sheets.)
The IADS ("in-circuit emulation address strobe")

and IRDY ("in-circuit emulation ready") signals imple
ment an additional 4 Gigabyte address space, which is
available as an alternative to, and an image of, the nor
mal 4 Gigabyte address space dedicated for use by the
software engineer. This additional memory space is
referred to herein as "ICE memory space" and repre
sents memory sites in RAM. 34. To access ICE memory
space, the Intel (R) 80386 microprocessor generates an
IADS signal instead of the documented normal ADS
signal. The appropriate ICE memory sites respond to
the receipt of the IADS signal by generating an IRDY
signal, instead of the documented normal RDY signal
dedicated to the target memory system.
There are several ways to cause the Intel (R) 80386

microprocessor to generate addresses in the ICE mem
ory space. One way is to apply to BREAK conductor
76 a logic 0 state, which suspends execution of the tar
get program and commences execution of instructions
stored in ICE memory space at the restart vector, be
ginning at hexadecimal address FFFFFFF0. Applying
a logic 0 state to BREAK conductor 76 also saves in a
LOADALL area of ICE memory space the contents of
the Intel (R) 80386 microprocessor registers at the point
of transfer to ICE memory space. (This can be consid
ered as a "SAVEALL' instruction for storing the cur
rent microprocessor state in the LOADALL area.)
Thus, the current microprocessor state in the target
program execution remains available for inspection,
later resumption of the target program, or modification
as desired. The BREAK signal allows, therefore, the
software engineer to seize control of the target pro
gram.

Executing the undocumented LOADALL instruc
tion, whose opcode is 0F07, transitions the Intel (R)
80386 microprocessor from ICE memory space to tar
get memory space. Before entering target memory
space by executing a LOADALL instruction, break
points need to be set to acquire control of CPU 28 at the
appropriate time during target code execution. One
method is to set software breakpoints, such as an in
struction that, when executed, will cause a BREAK to
ICE memory space. In the Intel (R) 80386, this instruc
tion has a single opcode "Fl' that when executed saves

O

5

20

25

30

35

45

50

55

65

10
the target CPU states in the LOADALL area of ICE
memory space, as was described above. Another
method is to set bit number 12 of the DEBUG register
DR7 to a logic 1 state. This causes the hardware break
point feature of the Intel (R) 80386 to BREAK to ICE
memory space rather than to target memory space.
Whenever a hardware or software breakpoint occurs,

CPU 28 will dump the contents of the CPU internal
registers to the LOADALL area, starting at hexadeci
mal address 60000, and then proceed to the RESTART
vector and begin execution.

In summary, executing the LOADALL instruction
transitions the Intel (R) 80386 microprocessor from ICE
memory space to target memory space. Effecting a
BREAK condition (i.e., executing SAVEALL) causes
storage of the entire state of the Intel (R) 80386 micro
processor in the LOADALL area of ICE memory
space. The target program can be resumed by executing
the undocumented LOADALL instruction. Effecting a
BREAK condition causes, therefore, a SAVEALL of
the microprocessor state to ICE memory address 60000
and begins execution in ICE memory space at
FFFFFFF0. The SAVEALL/LOADALL capability
of the Intel (E) 80386 microprocessor loads the entire
microprocessor state, including "invisible' descriptor
caches, from ICE memory addresses 60000 to 60127.

Table 1 below identifies the hexadecimal addresses
for the target CPU register contents stored in the LOA
DALL area of ICE memory space.

TABLE 1
Address Microprocessor Register
60000 CRO
60004 EFLAGS
60008 EIP
6000C EDI
6000 ESI
6004 EBP
6008 ESP
6001C EBX
60020 EDX
60024 ECX
60028 EAX
6002C DR6
60030 DR7
60034 TR
60038 LTS
6003C GS
60040 FS
60044 DS
600.48 SS
6004C CS
60050 ES
60054 TSS Attributes
60.058 TSS BASE
6005C TSS LIMIT
60060 DTAttributes
60064 IDT BASE
60068 IDT LIMIT
6006C GDTAttributes
60070 GDT BASE
60074 GDT LIMIT
60078 LDTAttributes
6007C LOT BASE
60080 LDT LIMIT
60084 GS Attributes
60088 GS BASE
6008C GSLIMIT
60090 FS Attributes
60094 FS BASE
60098 FS LIMIT
6009C DS Attributes
600A0 DS BASE
600A4 DS LIMIT
600A8 SS Attributes
600AC SS BASE

5,228,039
11

TABLE 1-continued
Address Microprocessor Register
6OOBO SS LIMIT
600B4 CS Attributes
600B8 CS BASE
600BC CS LIMIT
6OOCO ES Attributes
600C4 ES BASE
600C8 ESLIMIT
6000 Attributes of selector

recently loaded
60104 undefined
60.108 Destination EIP of

last MP FAR
600C undefined
600 undefined
6014 undefined
60.18 undefined
601C undefined
6020 undefined
6024 VEIP Value of virtual EP

The information in Table 1 enables the software engi
neer to examine the state of the CPU registers and alter
their contents, if desired.
The four undocumented MOV instructions perform

target memory read and write operations from ICE
memory address space. A set of possible mnemonics for
these four instructions for inclusion in an Intel (E) 80386
microprocessor disassembler, together with their op
codes and descriptions are summarized below in Table
2.

TABLE 2
Opcode Instruction Description

OFO Ar MVTGT r?m8,r8 Move Byte to target
address ram

OF1 /t MVTGT r?m32, r32 Move Dword to target
address An

OF12 Ar MVTGT r8,rm8 Move Byte from target
address T?in

OF3 r MVTGT r32,ram32 Move Dword from
target address r?m

In Table 2, "/r" specifies the effective address and
"r/m" specifies the effective address in target memory
space. The mnemonic “MVTGT" refers to "MOV to
target space,” and the terms "Byte" and "Dword" refer
to 8-bit data and 32-bit data, respectively. (All addresses
are 32 bits in length.) The above instructions work
properly in the protect mode of the Intel (R) 80386 mi
croprocessor. Persons having ordinary skill in the art
would appreciate the relationship of these instructions
to the operation of the Intel (R) 80386.
FIG. 7 shows for RAM 34 the memory map summa

rizing the starting addresses in ICE memory space for
information stored in response to execution of the uni
dentified signal features and undocumented instruc
tions. The address assignments in memory space for
protect mode code, protect mode stack, and protect
mode data are optional. Other optional address assign
ments are real mode boot code, which refers to the
starting address at initial application of electrical power,
and HS ("high-speed”) serial port locations, which refer
to memory sites from which data and instructions are
transferred between the host computer and debugging
instrument 10.
FIG. 8 shows a diagram of the topology of the In

tel(R) 80386 microprocessor chip for accomplishing a
bond out of the IADS, IRDY, and BREAK signal
features to the CPU pins. With reference to FIG. 8,
arrows 13E and 13F in DETAIL C and arrow 7C in

10

5

20

25

30

35

45

50

55

65

12
DETAIL A designate the areas for placement of bond
out wires (shown as broken lines) for the IADS, IRDY,
and BREAK signal features, respectively.

It will be obvious to those having skill in the art that
many changes may be made to the details of the above
described preferred embodiment of the present inven
tion without departing from the underlying principles
thereof. As a first example, the debugging instrument
can be adapted for use with target circuits controlled by
a CPU other than an Intel (R) 80386 microprocessor.
Depending on the type of CPU, different program in
structions may be required to provide the fully transpar
ent window into the internal functioning of the TAP
CPU while executing code in the target circuit environ
ment. As a second example, the programmable logic
cell arrays may be replaced by individual digital circuit
components electrically interconnected to achieve the
functions described herein. The scope of the present
invention should, therefore, be determined only by the
following claims.
We claim:
1. An instrument for testing and verifying the opera

tional performance of a target computer system in the
electrical absence of a target CPU having input and
output terminal positions at which respective specified
target CPU input and output signals appear, the instru
ment comprising:

target access probe ("TAP") means including a TAP
CPU receiving target CPU input signals and deliv
ering target CPU output signals for controlling the
execution of software code on the target computer
System in accordance with command signals pro
vided by a host analysis code source, the TAP
means including TAP signal routing means for
routing the command signals to the TAP CPU;

a communications adapter ("COMDAP") that pro
vides an interface between the host analysis code
source and the TAP means, the COMDAP includ
ing COMDAP memory means having memory
sites that store information for configuring signal
paths within the COMDAP; and

data communication linking means for providing a
data communication link between the TAP means
and the COMDAP.

2. The instrument of claim 1 in which the COMDAP
memory means is of a reprogrammable type, thereby
providing a capability of storing information for config
uring different signal paths within the COMDAP to
enable writing command signals delivered by host anal
ysis code sources of different types.

3. The instrument of claim 1 in which the TAP signal
routing means comprises a TAP logic cell array and in
which each of the TAP logic cell array and the COM
DAP memory means is of a reprogrammable type, the
COMDAP memory means being adaptable for storing
information for configuring signal paths within the
TAP logic cell array.

4. The instrument of claim 3 in which the TAP means
further comprises a TAP memory having memory sites
that store instructions carried by command signals de
livered by the COMDAP and routed through the TAP
logic cell array.

5. The instrument of claim 4 in which the TAP mem
ory is of a random access memory type.

6. The instrument of claim 4 in which the COMDAP
memory means and the TAP memory are in signal com
munication with each other and the instructions stored

5,228,039
13

in the COMDAP memory sites are transferred to the
TAP CPU at the time electrical power is initially ap
plied to the instrument.

7. The instrument of claim 1 in which the TAP means
and COMDAP are physically separate and in which the
data communication linking means includes multiple
electrically insulated conductors that carry the com
mand signals between the TAP means and the COM
DAP.

8. The instrument of claim 7 in which the conductors
are configured to form a flat cable assembly.

9. A target access probe ("TAP) for connecting to a
target circuit that includes a target CPU communicat
ing with a target program memory having memory sites
that store main program instructions for exercising of
target circuit components, the target CPU having input
and output terminal positions at which respective speci
fied target CPU input and output signals appear, the
TAP testing and verifying the operational performance
of the target circuit in response to host command signals
provided by a host computer in the electrical absence of
the target CPU and comprising:

a TAP CPU receiving target CPU input signals at the
input terminal positions and delivering target CPU
output signals at the output terminal positions;

in-circuit emulation (“ICE') means including ICE
program memory sites that store ICE program
instructions and communicating with the TAP
CPU for producing the target CPU output signals
in accordance with the ICE program instructions
executed by the TAP CPU in response to the host
command signals, the ICE program instructions
including an instruction for transferring opera
tional control of the TAP CPU from the target
program to the ICE program and instructions for
reading information from or writing information
into target program memory sites;

a TAP signal routing integrated circuit for configur
ing signal paths within the TAP; and

input and output signal link means for providing a
signal link to and from the host computer for the
target CPU input and output signals;

whereby the ICE means resides wholly outside of the
target circuit and the delivery of the target CPU
input signals to the corresponding target CPU
input terminal positions and the delivery of the
target CPU output signals to the corresponding
target CPU output positions in response to the host
command signals provide a capability for testing
and verifying the performance of the target circuit
in accordance with the ICE program instructions
independently of the target program stored therein.

10. The TAP of claim 9 in which the TAP CPU
produces an ICE address strobe signal that enables
access to the ICE program memory sites.

11. The TAP of claim 10 in which the ICE program
memory sites respond to the receipt of the ICE address
strobe signal by delivering an ICE ready signal to the
TAP CPU.

12. The TAP of claim 9 in which the TAP CPU
produces a break signal that suspends execution of in
structions stored in the main program memory sites and
commences execution of instructions stored in the ICE
program memory sites.

O

15

25

35

45

50

55

14
15. The TAP of claim 14 in which the TAP signal

routing integrated circuit comprises a reprogrammable
logic cell array.

16. An instrument for testing and verifying the opera
tional performance of a target computer system in the
electrical absence of a target CPU having input and
output terminal positions at which respective specified
target CPU input and output signals appear, the instru
ment comprising:

target access probe ("TAP") means including a TAP
CPU receiving target CPU input signals and deliv
ering target CPU output signals for controlling the
execution of software code on the target computer
system in accordance with command signals pro
vided by a host analysis code source;

a communications adapter ("COMDAP") that coop
erates with the TAP means to provide an interface
between the host analysis code source and the TAP
means, the COMDAP including a COMDAP
memory having memory sites that store informa
tion for configuring signal paths within the COM
DAP; and

data communication linking means for providing a
data communication link between the TAP means
and the COMDAP, the data communication link
including handshake signals that indicate to the
COMDAP whether the TAP means is available to
provide data to the COMDAP and to the TAP
means whether the COMDAP is available to re
ceive data from the TAP means.

17. An instrument for testing and verifying the opera
tional performance of a target computer system in the
electrical absence of a target CPU having input and
output terminal positions at which respective specified
target CPU input and output signals appear, the instru
ment comprising:

target access probe ("TAP") means including a TAP
CPU receiving target CPU input signals and deliv
ering target CPU output signals for controlling the
execution of software code on the target computer
system in accordance with command signals pro
vided by a host analysis code source;

a communications adapter ("COMDAP”) that coop
erates with the TAP means to provide an interface
between the host analysis code source and the TAP
means;

a signal routing integrated circuit operatively associ
ated with one of the TAP means and COMDAP to
configure signal paths within the one of the TAP
means and COMDAP; and

data communication linking means for providing a
data communication link between the TAP means
and the COMDAP, the data communication link
including handshake signals that indicate to the
COMDAP whether the TAP means is available to
provide data to the COMDAP and to the TAP
means whether the COMDAP is available to re
ceive data from the TAP means.

18. The instrument of claim 17 in which the signal
60 routing integrated circuit is of a programmable type.

19. The instrument of claim 18 in which the signal
routing integrated circuit comprises a logic cell array of
a reprogrammable type.

20. The instrument of claim 17 in which the signal
13. The TAP of claim 9 in which the TAP signal 65 routing integrated circuit comprises a logic cell array.

routing integrated circuit is of a programmable type.
14. The TAP of claim 9 in which the TAP signal

routing integrated circuit comprises a logic cell array,

21. An instrument for testing and verifying the opera
tional performance of a target computer system in the
electrical absence of a target CPU having input and

5,228,039
15

output terminal positions at which respective specified
target CPU input and output signals appear, the instru
ment comprising:

target access probe ("TAP") means including a TAP
CPU receiving target CPU input signals and deliv
ering target CPU output signals for controlling the
execution of software code on the target computer
system in accordance with command signals pro
vided by a host analysis code source, the TAP
means further including TAP signal path configur
ing memory sites that store information for config
uring signal paths within the TAP means;

a communications adapter ("COMDAP") that coop
erates with the TAP means to provide an interface
between the host analysis code source and the TAP
means; and

data communication linking means for providing a
data communication link between the TAP means
and the COMDAP, the data communication link
including handshake signals that indicate to the
COMDAP whether the TAP means is available to
provide data to the COMDAP and to the TAP
means whether the COMDAP is available to re
ceive data from the TAP means,

22. A target access probe ("TAP") for connecting to
a target circuit that includes a target CPU communicat
ing with a target program memory having memory sites
that store main program instructions for exercising of
target circuit components, the target CPU having input
and output terminal positions at which respective speci
fied target CPU input and output signals appear, the
TAP testing and verifying the operational performance
of the target circuit in response to host command signals
provided by a host computer in the electrical absence of
the target CPU and comprising:

a TAP CPU receiving target CPU input signals at the
input terminal positions and delivering target CPU
output signals at the output terminal positions;

in-circuit emulation ("ICE") means including ICE
program memory sites that store ICE program
instructions and communicating with the TAP
CPU for producing the target CPU output signals
in accordance with the ICE program instructions
executed by the TAP CPU in response to the host
command signals, the ICE program instructions
including an instruction for transferring opera
tional control of the TAP CPU from the target
program to the ICE program and instructions for
reading information from or writing information
into target program memory sites;

a TAP signal path configuration memory having
memory sites that store information for configuring
signal paths within the TAP; and

input and output signal link means for providing a
signal link to and from the host computer for the
target CPU input and output signals;

whereby the ICE means resides wholly outside of the
target circuit and the delivery of the target CPU
input signals to the corresponding target CPU
input terminal positions and the delivery of the

5

10

15

20

25

30

35

45

50

55

60

65

16
target CPU output signals to the corresponding
target CPU output positions in response to the host
command signals provide a capability for testing
and verifying the performance of the target circuit
in accordance with the ICE program instructions
independently of the target program stored therein.

23. An instrument for testing and verifying the opera
tional performance of a target computer system in the
electrical absence of a target CPU having input and
output terminal positions at which respective specified
target CPU input and output signals appear, the instru
ment comprising:

target access probe ("TAP") means including a TAP
CPU receiving target CPU input signals and deliv
ering target CPU output signals for controlling the
execution of software code on the target computer
system in accordance with command signals pro
vided by a host analysis code source;

a communications adapter ("COMDAP”) that pro
vides an interface between the host analysis code
source and the TAP means;

a signal routing integrated circuit operatively associ
ated with one of the TAP means and COMDAP to
configure signal paths within the one of the TAP
means and COMDAP; and

data communication linking means for providing a
data communication link between the TAP means
and the COMDAP.

24. The instrument of claim 23 in which the signal
routing integrated circuit is of a programmable type.

25. The instrument of claim 24 in which the signal
routing integrated circuit includes a reprogrammable
logic cell array.

26. The instrument of claim 25 in which the TAP
means further comprises a TAP signal path configura
tion memory including memory sites that store informa
tion for configuring signal paths within the TAP.

27. The instrument of claim 23 in which the signal
routing integrated circuit includes a logic cell array.

28. The instrument of claim 23 in which the TAP
means and COMDAP are physically separate and in
which the data communication linking means includes
multiple electrically insulated conductors that carry the
command signals between the TAP means and the
COMDAP.

29. The instrument of claim 23 in which the TAP
means further comprises a TAP instruction memory
having memory sites that store instructions carried by
command signals.

30. The instrument of claim 29 in which the TAP
memory is of a random access memory type.

31. The instrument of claim 23 in which the signal
routing integrated circuit is operatively associated with
the TAP means.

32. The instrument of claim 23 in which the COM
DAP includes a COMDAP memory having memory
sites that store information for configuring the signal
paths within the COMDAP.

B. k h : it

