

@3-3255-01
May, 1983

Copyright 1981, 1983 by Zilog Inc. All rights reserved. No
part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of Zilog.

The information in this publication 1is subject to change
without notice.

Zilog assumes no responsibility for the use of any circuitry
other than circuitry embodied in a Zilog product. No other
circuit patent licenses are implied.

ZEUS REFERENCE MANUAL
Zilog Part Number @3-3255-01

Software Release 3.1

AN INTRODUCTION TO THE
'ZEUS SOFTWARE DOCUMENTATION

INTRO(Q)

ii

Zilog

Zilog

INTRO (@)

ii

REFERENCE Zilog REFERENCE

Preface

This manual and the related manuals below provide the com-
plete technical documentation for the System 8000 and the
ZEUS operating system,

Title Zilog Part Number
Zeus Software Documents:

Zeus Languages/Programming Tools Manual #3-3249

Zeus Utilities Manual ¥3-3259

Zeus Administrator Documents:

Zeus Administrator Manual #3-3254
{Model 11)
Zeus Administrator Manual #33-3246

(Model 21/31)

System 8060 Hardware Documents:

‘System 8000 Hardware Reference Manual #3-3227
(Model 11)
System 8000 Hardware Reference Manual #3-3237

(Model 21/31)

System 8000® and zEUS® are registered trademarks of Zilog
Inc. C

iii zilog iii

INTRO (Q)

iv

Zilog

Zilog

INTRO (8)

iv

INTRO (9)

Zilog INTRO (@)

Table of Contents

SECTION 1 INTRODUCTION TO ZEUS DOCUMENTATION

1.1. ZEUS
.1.
2.
«3.
.4
.5
.6
.7
.8
.9

Reference ManUal ..ccccecceocesccnsosssncss

Section
Section
Section
Section
Section
Section
Section
Section
Section

IO WNDHS
1
i

-— Introduction ..ccieveccccccas
-— User CommandsS .cciseecescccas
—— System Calls .eceeecccccscasns
—= SUbYOUtINeS .eoecevecccsccnse
Special FPileS .ivveececcocccas
-- Files and Conventions
—— GAMES s coevsssosscscsssscascs
-- Program Support Files
-—- System

inistrator Commands ceeess et ssececssessesanans
.1.19. Command Syntax Descriptionsceeeeecas

1.1.11. Command Entry Descriptionsceeeeeeees

1.2. Related Documents .

l1.2.1.

1.2.3.
1.2.4.

® 9 @ 0 0 0 0 0 0 0 0 0 58 0PSO S0

ZEUS Utilities Manual SUMMArY .ccescovsaes
1.2.2. ZEUS Languages/Programming

Tools Manual SUMMAYY .eeossevssscocsocssosososoasccs
ZEUS Administrator Manual SummMarye..
ZEUS and Related Document Part Numbers ...

SECTION 2 SUMMARY OF SECTION 1 COMMANDS ...cccocceoses

2.1.

2.2,
2.2.1.
2.2.2.
2.2.3.
2.2.4.
2.2.5.
2.2.6.
2.2.7.
2.2.8.
2.2.9.

2.3. Languages

Section 1 Commands

File Communica
File Compare .
File Editors .
File Formatter

® 0 0 ¢ 2 000 006060000000 008080060000

Commands Related tO FlleS .cceececeseccccsonses

tiOl’lS ® 0 06 0 0 0006000000000 00000

® 6 060060 0065 00600806050 00000000000
LR B N BN A 2L B B I IR B I I I R R AN B R B Y)

File Exa}mination ® ® 0 0 0 0000000000000 000580000

File Moving ..

@ 0 0 060 6060060600600 0000000000000

File Protectionvevieeecessccsscncanns
File Source Code Control Systemcece.

File Status ..

2.4. The Shell Commands

® 8 0.6 008 00600 002 0000 e e 0N

and Programming ToOlS: ..eeeveecccccs

® 9 6 86 0606 6 0 0 060 2 00 00000090 06000000

Zilog

e
I I
-

Hi-H e
| I R I N B B |
NNNNN -

e
1
SN

)
[}
wn

NN
P
[

WNNODNONDNDND
!
SR wWwwNNND -

NN
[
a v

INTRO(9)

2' 5.
2.6‘

SECTION

3.1.
3.
3.
3.
3.
3.2'
3.3.

SECTION

4.1.

4.4.

4.4.1. Process Synchronizationceceeececcccos

4.5' The Signal Mechanism ® ® & 0 0 0 & 00 0 O & 0000 eSS e

4.6.
4.7.

4.

4.8.
4.9.

vi

The System as a Whole

1.
2.
3.
4.

User-Oriented Commands

6'1'
6.2.
6.3.

3 ‘ZEUS FUNCTIONAL ovERvIEW ® 8 0 ¢ 0 0 0 9 906 009 00 8 00000

File

& wN -

o

File

Input/Output

Shell Commands

System Manual

System Devices

Zilog

® 6 0 0600 00 0 000000 0800I e e

shell Scripts ® % 0 & 0 0 0 8 0 O O G 0P OO 00D O O e v e o
The Shells as Commands

System Math % 00 060 00 0 90000000 sPe s s 0000

® 0 6. 6.9 0600 0006000000000 4¢0008 300

System Time LR BB B 2R B Y YR I K AR B A B I R I I I KU Y)

User Communications

System ® © 8 5 0 0 0 0 458 ¢ 000000080 P0G ee s oo

Ordinary Files

Directory Files

Special Files

® # 0 005 00 000060000000 s00 0000

© 000 0600 00 00 0000000000000 00

Removable File SystemsS ...ccceceecsscncons

Security Protection

® 6 0 0 0 00 05 9 0TS0 PO OGO CE LI SO IOSIPOCOE

4 PROCESSES AND IMAGES

Process Creation
4.2. Execution of Programs
4.3. The Parent/Child Relationship .ccceeecececocccas

Process Termination

The Pipe Mechanism
The Wait Mechanism

7.1..

Stalndard I/o ® © @ & & & 8 6 5 0 0 O OO OO S T e OO 0O e PGPS G S OSD
Filtexs

The Shell @ ® % 0 03 C S 00 B OO S 00 0SNG S S s SLeeeo

® 0 6 8 9 06 00 000 0 000000 LO OGO SO

@ 0 06 0 0 0600 0 00 0000000000000

® 2 @ 0 8 0 0O S S OO OSSP e e e e s

® 3 © 6 8 8 0060 0 000000 000200000000

S ® 0 0 0 5 6 09 60 S DO OO SO O L LGNS EL L0080 s0 00

Zilog

® 060 00600 0000600000000

® 8 8 60 000 000000000200 e e

® 5 0 00 8 060 0080000000000 ee

User Info ® O & & & 0 0 0 0 O 0 OB 9N OO L P e e e e e e e
User Manipulation

® 9 5 060 200600 0060908000000

® 6 @ 0 ® 00 005060000 09000V ENOOECOE

b S ® 060 00006000000 00

® 8 00 0006000309000 000000000

® © 8 0 6 0 0600 0080600 00000000000

INTRO (@)

vi

INTRO (9) Zilog INTRO (9)

SECTION S PATTERN MATCHING AND OTHER TRICKS¢s.. 5-1

5.1. Command Separators and Multitaskingveceece 5=1
5.2. The Shell as a Command: Command fileS ...cecec.. 5=2
3

5.2.1. Implementation of the Shell

P 00 000000000 5-

vii Zilog vii

INTRO (0) Zilog INTRO (@)

viii Zilog viii

INTRO (0) - Zilog INTRO (9)

List of Illustrations

Figure
1-1 Sample Page from the ZEUS
Reference Manual, Reduced ® ® ® 0 5 0 0 06 0 0 00 000 0 e 1-3
3-1 File System Representation¢eeccveeeeeses 3-4.

ix Zilog ix

INTRO (9) zilog INTRO (9)

SECTION 1
INTRODUCTION TO ZEUS DOCUMENTATION

1.1. ZEUS Reference Manual

The following topics are described in the 9 sections of the
ZEUS Reference Manual:

Section ¢ This introduction
Section 1 - User commands
Section 2 System calls
Section 3 Library subroutines
Section 4 Special files
Section 5 File formats and conventions
Section 6 Games
Section 7 Program support files
Section M System administration commands
l.1.1. Section 9 -~ Introduction: This introduction is

Section @ of the Reference Manual. It outlines the ZEUS
software document set, introduces the rest of the ZEUS
Reference Manual, and explains the descriptions in each of
the subsequent sections. It also provides an overview of the
ZEUS operating system as a whole.

1.1.2. Section 1 -- User Commands: Section 1 of the ZEUS
Reference Manual describes each of the more than 200 ZEUS
user commands that are entered at the keyboard and result in
some action.

Most of these commands are located in the directory /bin or
in /usr/bin.

1.1.3. Section 2 -- System Calls: System calls are issued
from programs. They are like commands entered from the key-
board, but are written into a program and executed from
within a running program. Section 2 explains each system
call, 1its interface subroutine (shown for both the C
language and Zilog's PLZ/ASM), the call's action, and errors
returned,

Many of the system calls have corresponding command programs
(Section 1).

1-1 Zilog 1-1

INTRO (@) Zilog INTRO (@)

1.1.4. Section 3 -- Subroutines: Section 3 describes the
system 1library subroutines. These subroutines can only be
linked with programs written in C. Other high-level
languages provided with ZEUS have their own library facili-
ties which are documented with the language.

1.1.5. Section 4 -- Special Files: Section ¢ describes
special files -- the 1/0 drivers. I/0 functions of ZEUS are
accomplished by reading or writing to a file that
corresponds to an actual I/0 device, like a port to a termi-
nal, or a channel to a disk drive.

1.1.6. Section 5 -- Files and Conventions: Section 5 docu-
ments the structure of specific types of files, such as the
output file format of the loader and assembler. Files that
are used by only one command are excluded; for example, the
intermediate assembler files are not described.

1.1.7. Section 6 -- Games: Section 6 documents the
system's games, and other programs of a similar nature.

1.1.8. Section 7 -- Program Support Files: Section 7 docu-
ments specific files referred to by programs. These files
include configuration tables, macro definition packages, and
other online data. Section 7 also includes a summary of the
entire ZEUS file hierarchy.

1.1.9. Section M -- System Administrator Commands: Section
M contains information about commands used by the system
administrator (login name "zeus"). These commands are
privileged, and can only be executed by "zeus". They are
found in the directory /etc.

1.1.16. Command Syntax Descriptions: Each section in the
ZEUS Reference Manual consists of independent alphabetical
entries of a page or so each that describe a command func-
tion. The name of the entry being described and its section
number are in the upper corners of the page.

1-2 Zilog 1-2

INTRO (4)

Zilo
9 INTRO ()

COMMAND (1) . Zilog : COMMAND (1)
NAME

command .name - the name of the command typed into the termi-

nal
SYNOPSIS 4

command.name [options] [arguments]
DESCRIPTION .

This section of the page describes the workings of the com-

mand.
EXAMPLES

This section contains an example of the command exactly as
it might be typed into the computer.

FILES :
/path/file name of the file that contains the program
/path/file name of a related file

LIMITATIONS

As the name suggests, this section lists the limitations on
the program (e.g., file size).

SBE ALSO
command (1), related.command(2), others(M).

Other documents related to the command are listed here.

1 Source 1

Figure 1-1} Sample Pa
) ge from the Zz
Reference Manual, Reduced BUS

Zilog

INTRO (@) 7ilog INTRO (@)

The pages for each entry are numbered independently within
the section to simplify future revisions of this document.
That is, each command starts on page 1.

1.1.11. Command Entry Descriptions: All entries are based
on a common format, but some entries may not use all possi-
ble subsections.

@ The NAME subsection lists the exact names of the com-

mands and subroutines covered under the entry and gives
a very short description of their purpose.

& The SYNOPSIS summarizes the use of the program being
described. A few conventions are used, particularly in
the description of commands.

- Boldface words are considered literals, and are typed
just as they appear.

- Square brackets (" [] ") around an argument indicate
that the argument is optional.

- Ellipses -- three dots in a row -- (" ... ") are used
to show that the previous argument can be repeated.

- An argument beginning with a minus sign (-) often
means that the argument 1is an option, even if it
appears in a position where a file name could appear.
Therefore, it 1is unwise to have files names beginning
with a minus sign.

® The DESCRIPTION section discusses the topic in detail.

® The EXAMPLES section provides one or two examples of
the command's use.

® The FILES section gives the name of files that are
built into the program, system call, or subroutine.

® A SEE ALSO section shows where related information is
located.

@ A DIAGNOSTICS section discusses the diagnostic indica-
tions that can be produced. Self-explanatory messages
are not listed.

® The LIMITATIONS section gives known 1limitations (and
sometimes deficiencies).

1-4 Zilog 1-4

INTRO (@) Zilog INTRO(9)

® In Section 2, a subsection called ASSEMBLER gives the
assembly language required to implement the system
call,

A permuted index points to each section by entry title and
section number. The section number is important because
some names are duplicated among the sections. Most of the
duplications result from commands that exercise a particular
system call.

1.2. Related Documents
ZEUS software documentation is supplied in four volumes.

The first volume is known as the ZEUS Reference Manual
(ZRM) . It is the Dbasic user reference manual because it
contains a description of all the basic user commands (com-
mands that are typed at the terminal) available in the 3.1
ZEUS operating system.

The second volume of ZEUS documentation is the ZEUS Utili-
ties Manual. It contains expanded instructions for 20 of
the more complex ZEUS commands.

The third volume in the ZEUS set is the ZEUS
Languages/Programming Tools Manual. It is a guide to the
programming languages and related 1language aids provided
with the ZEUS system.

The fourth volume in the ZEUS software documentation set is
the System 80@@ ZEUS Administrator Manual. It contains
information related to setting up and maintaining the System
8000. This manual is "model-specfic".

1.2.1. ZEUS Utilities Manual Summary: The ZEUS Utilities
Manual contains articles that supplement the information in
Section 1 of the ZEUS Reference Manual. The entries are:

Intro -- An Introduction to the ZEUS operating system
Acct -- The system accounting package

Awk ~- A pattern scanning and processing language
Comm -- The Zeus communications package

Cshell -- The C Shell from UC Berkeley

Ed -- The basic line editor

Ex -- An expanded line editor

Fsck -- A File System Checking package

Learn -- Computer-aided learning program

Me -~ The text formatting package from UC Berkeley

Ms ~- The text formatting package from Bell

1-5 Zilog 1-5

INTRO (Q) Zilog INTRO (2)

Laboratories

Nroff -- For terminal and line printer output
Sccs -~ Source Code Control System package

Sed -- A non-interactive stream editor

Shell -- The Bourne Shell from Bell Laboratories
Thl -- For formatting tables

Troff --- For CAT phototypesetter output

Uucp -- Unix to Unix Communication Package

Vi -- The visual mode of the Ex editor

Zeus for Beginners -- A basic introduction

Each expanded entry in the ZEUS Utilities Manual has a
corresponding page in the ZEUS Reference Manual. Utilities
entries are intended to provide the in-depth and tutorial
information necessary for a complete understanding of the
more complex and sophisticated commands in the ZEUS system.

1.2.2. ZEUS Languages/Programming Tools Manual
Summary: The ZEUS Languages/Programming Tools Manual con-
tains articles that supplement the information in the ZEUS
Reference Manual.

Intro -- Introduction to ZEUS Languages/Programming
Tools Manual

Adb -- A Tutorial Introduction to Adb (A De-Bugger)
As -- System 8000 Assembly Language Reference Manual
C -- The C Programming Language

Call Conv -- System 8¢@@ Calling Conventions

C-Isam -- C Index Sequential Access Method

Curses -- Cursor Motion Package

Lex -- A Lexical Analyzer Generator

Lint -- A C Program Checker

Make -- A Control Program Programming Language

M4 -- The M4 Macro Processor

Pgmg -- ZEUS Programming

Plz/Asm -- Programming Language -- ZEUS/Assembly
Plz/Sys -- Programming Language -- ZEUS/System
Screen -- Screen Handling

Yacc -- Yet Another Compiler-Compiler

1.2.3. ZEUS Administrator Manual Summary: The ZEUS
Administrator Manual discusses procedures that are intended
for the administrator of a ZEUS installation. This document
provides specialized knowledge required €for system boot and
recovery procedures. System maintenance commands are in
this document, and can also be found in manM of the usr/man
system directory.

1-6 Zilog 1-6

INTRO (9)

Zilog

The sections in the Administrator Manual are:

Introduction

Start-up and Shut-down Procedures
Restoring the System Disk

File System Management

System Generation

System Crashes and Other Problems
System Maintenance

An Overview of ZEUS
Redistributiing Files on the Disk

1.2.4. ZEUS and Related Document Part Numbers:

System
System
System
System
System

8000
8000
8000
8000
8000

ZEUS Reference Manual
ZEUS Utilities Manual

INTRO (9)

@3-3255
93-3250

ZEUS Languages/Programming Tools Manual @3-3249

ZEUS System Administrator Manual
Model 11 Administrator Manual

Programming References:

PLZ/ASM Assembly Language Programming Manual
Report on the Programming Language PLZ/SYS
C Programming Language

Hardware References:

System 8000 Hardware Reference Manual
System 8000 Model 11 Hardware Reference Manual

UNIX References:

UNIX Reference Manual for System 3
UNIX Programmer's Manual for System 3

Available from:

AT&T Co.
0. Box 2500
Greensborough, NC 27420

P.

The Bell System Technical Journal,
vol. 57, No. 6, Part 2

Zilog

93-3246
#3-3254

@3-3655
93-3059
#3-3161

@3-3237
@3-3227

1-7

INTRO (0)

zZilog

Available from:

Bell Laboratories
Circulation Group
Whippany Road
Whippany, NJ 07981

Zilog

INTRO (@)

INTRO () Zilog INTRO (0)

SECTION 2
SUMMARY OF SECTION 1 COMMANDS

2.1. Section 1 Commands

Entries in this section marked with an asterisk-y "*g"
denote a longer entry for the command in the ZEUS Utilities
Manual, entries marked with an asterisk-P "*p" symbolize a
longer entry for the command in the ZEUS
Languages/Programming Tools Manual.

The commands in section 1 fall into 5 basic catagories:

Files

Programming Languages
The Shell

The System, and

Usexrs

2.2. Commands Related to Files

All the entries in this catagory are commands that act on
files.

2.2.1. File Communications:

The entries in this catagory are commands that transfer
information via files, or are a significant part of that
transfer process.

cu - call up another ZEUS system

mail - send or read mail to and from users

rmail - send mail only to users (cannot read mail)
uucp - UNIX-to-UNIX / ZEUS-to-ZEUS copy *U

uuname - list the uucp names of known systems

uux - UNIX-to-UNIX / ZEUS~-to-ZEUS command execution

2.2.2. File Compare: Commands in this section are used to
compare differences or commonalities between files -- pri-
marily text files. Commands that check the contents of a
file against another file (like the spell program) are also
included.

2-1 Zilog 2-1

INTRO(0Q) Zilog INTRO(9)

bdiff - find the differences in large files (4diff)
cmp - compare the contents of two files

comm - select or reject lines common to two sorted files
diff - find the differences in files (bdiff) ’
diff3 - find the difference between three files (diff)
diffmk - mark differences between files (diff)

dircmp - compare the contents of two directories
sdiff - print Qiff results side-by-side

spell - find spelling errors in text files

spellin - add words to spell list (spell)

spellout - find words not in spell list (spell)

sort - sort and/or merge the lines in a file

tsort - topological sort of lines in a file

uniq - find repeated lines in a file

2.2.3. File Editors: Commands in this section include the
actual system editors (ed, edit, ex, and vi) and commands
that are used to change the contents of a file (usually at
text file).

awk - pattern scanning and processing language *U
csplit - context split

cut - cut out selected fields of each line of a file
ed - basic editor for first-time users *U

edit - intermediate editor for casual users

ex - high-powered editor for advanced users *U

join - join together lines from two pre-sorted files
paste - merge same lines of several files

sed - non-interactive stream editor like ed

split - split a file into pieces

tr - translate characters from one class to another
vi - visual mode of the ex editor *U

2.2.4. PFile Formatter: The commands in this section are
used to change raw input files (usually text and formatting
commands) into formatted output files. Commands that are
related to this process, 1like the col filter, are also
included. :

banner - print strings in large letters

col - filter escape characters out of a file

crypt - encode/decode a file

deroff - remove nroff/troff, tbl, and egn constructs *U
egqn - troff pre-processor for typesetting equations
neqgn- nroff pre-processor for printing equations
checkeq - check syntax of eqn input

expand - expand tabs to spaces

nl - add line numbers to each line of file

pr - format files for printer output

2-2 Zilog 2-2

INTRO (9) Zilog INTRO (0)

ptx - create and format the permuted index

tbhl - table pre-processor for nroff or troff *U

troff - text formatter for CAT phototypesetter output *U
nroff - text formatter for printer output *U

2.2.5. File Examination:

The commands in the following section are used to produce or
investigate the contents of files (usually text files).

cat - print (concatentate) the contents of a file

dog - print the contents of a file one screen at a time

grep - find a pattern in a file using ed syntax

egrep - grep using ex syntax

fgrep - fast grep using fixed strings

head - print the first 10 lines of a file

hyphen - tind hyphenated words 1n a rilie

more - print the contents Or a rile one sScreen at a time
page - print tne contents OL a rL1.ie one screen at a ctime
Taili - print tne Last Lv LlNesS OrL a riie

2..6. Frlie Moving: <Lommandas 1n tnls Sectlon dAeal wilth
moving and storing tiles.

ar - archive and library tlle maintainer

Cp - copy a tile to a new hame and/or lLocation

cCplo - copy tile archives 1n and out ot their Library
da - convert and copy (dump) a tile

getrile - transter riles rrom local to remote system
In - 1ink one filename to a tile

mkdlr - make a directory

mv - move or rename tiles and dlrectories

pack ~ compress triles to save dlsk space

pcat - cat compressed files without unpacking them
unpack - expand previously compressed files

putfile - transfer files from remote to local system
rm - remove a file

rmdir - remove a directory

tar - archive files for tape

tee - split output of a process into two destinations

2.2.7. File Protection: The commands in this section deal
with the protection mode for files and directories. These
commands control the read, write, and execute access for
files. :

2-3 Zilog 2-3

INTRO (9) Zilog INTRO (@)

chmod - change the protection mode of a file or directory
chown - change ownership of a file or directory
umask - set the default file protection mode for new files

2.2.8. File Source Code Control System: The commands in
this section relate to the manipulation of the Source Code
Control System (SCCS). Refer to the SCCS section of the
ZEUS Utilities Manual for more information on this program.

admin - create and administer SCCS files *U

cdc - change the commentary in an SCCS file *U

chkdiff - list differences between versions of a source file
chkin - check in file to Zilog Source Control file
chkout - check out file from Zilog Source Control file
comb - combine SCCS changes *U

delta - make a delta (change) to an SCCS file *U

get - get a version of an SCCS file *U

prs - print an SCCS file *U

rmdel - remove a change from an SCCS file *U

sact - print current SCCS file editing activity *U
sccsdiff - compare two versions of an SCCS file *U
unget - undo a previous get of an SCCS file *U

val - validate SCCS file *U

what - identify SCCS files *U

2.2.9. File Status: Commands in this section are used to
find, 1identify, investigate, or summarize files, their con-
tents, or qualities.

chkwhat - print Zilog Source Control what strings

du - summarize disk space usage

file - determine file type

find - find files

ls - list files and directories in current directory
quot - summarize file system ownership

sum - sum and count blocks in a file

touch - update access and modification times of files
vls - "visually" list files and directories

wc - count the lines, words, and characters in a file
whereis - locate source, binary, and or manual for program

2.3. Languages and Programming Tools:

Commands in this section are used in conjunction with ZEUS
programming languages. More information on the programming
languages can be found in the 2ZEUS Languages/Programming
Tools Manual.

2-4 zilog 2-4

INTRO(9) Zilog INTRO (9)

adb - debugger *P

as - PLZ/ASM assembler *p

cas - invoke assembler

cb - C program beautifier

cc - System 8007 C compiler *p

code - print characters with their octal equivalents
cref - make cross-reference listing *p

cxref - a simple C routine referencing program *p
error - analyze and disperse compiler error messages
expr - evaluate arguments as an expression

flow - flow analysis of C programs *P

1d - nonsegmented 78000 and 8-bit loader *p

lex - generate programs for simple lexical tasks *P
lint - a C program verifier *p

locad - download to a Zilog Development Module

lorder - find ordering relation for an object library
m4 - macro processor *P

make - maintain, update, and regenerate groups of programs
*p

mkstr - create an error message file by massaging C source
*p

nm - print name list

objdu - dump for object and load modules

objhdr - object module header dump

objsu - object module underscore stripper

od hd - octal or hex dump

plz - plz/sys compiler driver *p

plzcg - plz/sys System 8000 code generator *P

plzsys - plz/sys compiler *p

prof - display profile data

prom - prom programming utility

ranlib - convert archives to random libraries

regcmp - regular expression compile

scc - segmented C compiler *p

send - upload to the Zilog Development Module

size - size of an object file

sld - segmented 78000 loader

sprof - display profile data

strings - print strings in object or other binary file
strip - remove symbols and relocation bits and header
uimage - Zobj to a.out translator

xref - cross reference for C programs *P

xstr - extract strings from C programs

yacc - yet another compiler-compiler *p

2.4. The Shell Commands
The Shell is the primary interface between the user and the

computer., The programs in this section relate to the func-
tions of the shell. For more information on the shells refer

2-5 Zilog 2-5

INTRO (@) Zilog INTRO (0Q)

to CSH - The C Shell and SH - The Bourne Shell both in the
ZEUS Utilities Manual

2.4.1. Shell Commands:

Shell commands control or report on the way the shell
responds to all other commands typed into the terminal.

at - execute command or shell script file at a later time
cd - change working directory

env - set environment for command execution

kill - send a signal to a process

printenv - display environment variables

PS - process status

pwd - working directory name

script - record all terminal interactions

sleep - suspend execution for an interval

wait - await completion of background processes

xargs - construct argument list(s) and execute command

2.4.2. Shell Scripts:

Shell scripts are files of commands executed by the shell,
the commands in this section relate to making and executing
these shell scripts.

basename - truncate path name to filename
dirname - truncate path name to directory name
echo - print strings with carriage return
echo2 - print strings without carriage return
getopt - break up (parse) command line options
gets - get a string from the terminal input
line - read one line from the terminal input
nice - run a command at low system priority
nohup - run a command immune to phone hangups
test - test qualities of files and strings
true - provide the value "true"

false - provide the value "false"

2.4.3. The Shells as Commands: Since the shell is itself a
command, it has its own program and manual entry. The three
commands in this section are shells and can be used from the
terminal.

csh - a command interpreter with C-like syntax *U

rsh - restricted shell (command interpreter)
sh - the Bourne Shell command interpreter *U

2-6 Zilog 2-6

INTRO(9) Zilog INTRO (@)

2.5. The System as a Whole

Some commands pertain to functions of the system as a whole,
the on-line reference manual, the system calculator and
clock, and the devices linked to the system.

The commands in this section deal with those programs that
relate to these aspects of the system.

2.5.1. System Manual: The system contains an on-line
manual. The commands in this section relate to that manual
or other on-line sources of information.

apropos - locate commands by keyword lookup
getname - get NAME sections from manual source
help - on-line assistance

learn - computer-aided instruction program *U
look - find lines in a sorted dictionary list
man - print sections of the ZEUS Reference Manual
news - print news itens

vaews - "visually" display the news items

whatis - describe a command

2.5.2. System Math: The system maintains an on-line calcu-
lator. The commands in this section relate to that function.

bc - better calculator (subset of dc)
dc - desk calculator
units - print formula to change one unit to another

2.5.3. System Devices: The system interfaces with a number
of peripheral devices. The commands in this section regu-
late the way that interaction takes place.

308 - handle special functions of DASI. 300 terminal
3008s ~ handle special functions of DASI 30@s terminal
458 - handle special functions of DASI 450 terminal
greek - select terminal filter

isrio - determine if terminal is a RIO System

local - return control to local system

lpr - line printer spooler

nq - print enqueing program

remote - transfer control to a remote ZEUS/UNIX system
reserv - tape drive reserving system

reset - reset terminal modes to default values

stty - set the options for a terminal

tabs - set tabs on a terminal

tty - get terminal name

2-7 Zilog 2-7

INTRO (0) Zilog INTRO (@)

vtzset - set up vtz terminal function keys
Xxq - examine or delete requests from the line printer

2.5.4. System Time: The system contains a clock and calen-
dar mechanism. These commands relate to those functions:

cal - print calendar

calendar - reminder service

date - print the date and time

daytime - give the time to human-reasonable accuracy

time - time a command

timex - time a command and generate a system activity report

2.6. User-Oriented Commands

This last block of information relates to the fact that the
ZEUS system is an interactive, multi-user system.

2.6.1. User Communications:

Users logged on at the same time can communicate with each
other over the system with a variety of tools. The commands
in this section relate to those communication tools.

mesg - permit or deny incoming user messages
talk - communicate with another user, character by character
write - communicate with another user, line by line

2.6.2. User Info: This group of commands provides informa-
tion about other users on the system.

id - print user and group ID and names

logname - get login name

uname - print name of current ZEUS

users - compact list of users who are on the system
who - print a list of the users currently on the system
whoami - print current user login name

whodo - print current users and their process status
whois - access the user information database

2.6.3. User Manipulation: The commands in this group
relate to the files and commands that provide an individual
user with an account and a system "identity".

chgrp - change group
gpasswd - change group password

2-8 Zilog 2-8

INTRO (9) Zilog

grpck - password/group file checkers
pwck - password/group file checkers
login - sign on :

newgrp - log in to a new group
passwd - change login password

su - substitute user ID temporarily

2-9 Zilog

INTRO (9)

INTRO (9) Zilog INTRO (9)

SECTION 3
ZEUS FUNCTIONAL OVERVIEW

ZEUS is a powerful multi-user operating system for interac-
tive use. It 1is developed as a super-set of UNIX, and has
many tools for the development of operating systems,
languages, and computer networks. ZEUS is also useful for
document preparation.

ZEUS is installed on Zilog's System 8000 16-bit microcom-
puter. A standard video keyboard terminal provides console
interaction.

This functional overview of ZEUS discusses the following
topics:

& The File System
- Ordinary Files
- Directories
- Special Files
- Removable Files

S Protection
& ZEUS I/0

® Processes and Images
- Process Creation
- Program Execution
- Process Parent/Child
- Process Termination

o Process Synchronization
- Signal
- Pipe
- Wait

® The Shell
- Standard 1/0
- Filters
- Pattern Matching
- Multitasking
- Command Files

3 Shell Implementation

3-1 Zilog 3-1

INTRO (0) Zilog INTRO (0)

3.1. File System

One of the most important features provided by ZEUS 1is its
file system. The file system is hierarchically structured,
using the concepts of root directories, subdirectories, and
path names to locate specific files. ZEUS provides three
types of files: ordinary and directory files (the hierarch-
ical file system), and special files, which are for system
devices (1/0).

3.1.1. oOrdinary Files: Ordinary disk files contain infor-
mation placed there by a user. This information can be
source programs, object programs, documents, or data bases.
To the ZEUS operating system, a file 1is only a one-
dimensional array of bytes with no implied structure. This
means that any type of structure can be imposed on an ordi-
nary file.

3.1.2. Directory Files: An ordinary file is 1located by
reference o a directory file. Directory files provide the
mapping between a file name and the file itself; this effec-
tively induces a structure on the entire file system. Files
can be grouped in subdirectories (subdirectories are created
by the user) to any practical depth. The references to
files organized in this manner, when graphically depicted
as in Figure 3-1, look like a rooted tree, and provide a
hierarchical structure. This structure is often called a
directory tree.

ZEUS maintains several directories for its own use. Perhaps
the most important of these is the root directory (/) which
is the base of the entire file structure. All files in the
system can be found by tracing a path from the root through
a chain of directories, though it is not necessary for every
path to start at the root.

The construction of the path through a chain of directories
is called the path name. This path name to a file consists
of directory names, separated by /, ending in the file name.
Figure 3-1 1illustrates a typical file structure. The same
nondirectory file can appear in several directories under
possibly different names. For instance, two files, filel
and file2 might be the same file. This feature 1is called
linking; a directory entry for a file is sometimes called a
link. (The link system call can be found in 1link(2).) 1In
the ZEUS system, all 1links to a file have equal status.
That is, a file does not exist within a particular direc-
tory; the directory entry for a file consists merely of its
name and a pointer to the information actually describing

3-2 Zilog 3-2

INTRO (@) zZilog INTRO (0)

the file. Thus, a file exists independently of any direc-
tory entry, although in practice, a file disappears along
with the last link to it.

At the base of the illustrated tree structure (Figure 3-1)
is the system root, /. This root directory, like any direc-
tory, contains entries that point to any of the three types
of files. The root directory illustrated has three entries,
two of which point to other directory files, /dev and z, and
one pointing to an ordinary file, me. The directory dev has
entries for two special files, 2zd5 and ctl (I/0 drivers for
the disk and cartridge tape unit 1). The directory /z con-
tains entries for two files, a and b, and a subdirectory, c.
Under the directory /z/c, there are also two files named a
and b. This poses no problems when the files are searched
for ~because the full path name specifications are different

(/z/a and /z/c/a).

All names in the ZEUS file system must be 14 or fewer char-
acters. There is little other restriction imposed on names;
for example, the naming of files beginning with a minus sign
(-) 1is not recommended, and the C language compiler expects
source files to end with .c. Other naming conventions can
be found in the compiler descriptions.

3-3 Zilog 3-3

INTRO (9) Zilog INTRO (0)

/ ZEUS System Root
root directory
entries
A me dev /Z : directory file
/ /me : ordinary file
/dev : directory file
a b c zds ctl /z/a : ordinary file
/z/b : ordinary file
/z/c : directory file
/dev/zd5 : special file
(disk)
/dev/ctl : special file
(tape)

a b /z/c/a
/z/c/b

Figure 3-1 File System Representation

ordinary file
ordinary file

It is always possible to specify a complete path name for a
file, in which the path name starts from the root. However,
the unlimited depth allowed by the ZEUS directory structure
can make such names inconveniently long. To remedy this,
the file structure uses the concept of a current directory,
also called the working directory. The system interprets
path names not beginning with the root (nonrooted path
names) as being relative to the current working directory.
This current directory can be moved around the tree at will
(unless the directory 1is read protected). To illustrate,
suppose the current directory is placed at /z, shown in

3-4 Zilog 3-4

INTRO(0) Zilog INTRO (9)

Figure 3-1. Specifying nonrooted path name a refers to the
file /z/a. 1If the current directory is moved to /z/c, the
path name a refers to /z/c/a. 1In effect, the name of the
current directory is prepended to nonrooted path names.

Normally, each directory contains a subtree of files and
directories. The shape of these subtrees is free form, and
subordinate directories can be c¢reated and destroyed at
will, Directories can be structured according to the task
to be done. At log in, the initial position of the working
directory 1is typically set to the top of the subtree. This
initial, current directory, specified as part of the 1login
information, 1is <contained in the file /etc/passwd, and is
commonly called the home directory.

Each directory always has at least two entries. The name
dot (.) in each directory refers to the directory itself. A
program can read the current directory under the name .
without knowing its complete path name. In Figure 3-1, the
file a can be referred to by /E/Ef or, if the current direc-
tory 1is /z, by a or ./a. The name .. refers to the parent
of the directory in which it appears, that is, the directory
in which it was created.

Except for the special entries . and .., each directory must
appear as an entry in exactly one other directory, which is
its parent. This simplifies the writing of programs that
access subtrees of the directory structure, and more impor-
tantly, avoids the separation of portions of the hierarchy.
If arbitrary links to directories were permitted, it would
be difficult to detect when the last connection from the
root to a directory was severed.

The difference between a directory and an ordinary file is
that a directory can be written on only by privileged system
programs. This is because directories impose a file struc-
ture. Write~-permission on an ordinary file enables changes
to be made to the contents of that file; write-permission on
a directory (for all but privileged users) enables files to
be added or deleted from that directory.

3.1.3. Special Files:

Each supported I/0 device is associated with at least one
special file. Special files are read and written just like
ordinary disk files, but requests to read or write activate
the associated device. An entry for each special file
resides in the directory /dev. A link can be made to one of
these files just as it can to an ordinary file. To write to
the line printer, write to the file /dev/lpd.

3-5 Zilog 3-5

INTRO (0) Zilog INTRO (@)

Special files exist for each communication line, disk file
system, tape drive, line printer, or terminal, and for phy-
sical main memory. These files are generally created
through the system generation process.

There are advantages in treating I/0 devices this way. File
and device 1I/0 are as similar as possible; file and device
names have the same syntax and meaning so that a program
expecting a file name as a parameter can be passed a device
name. Finally, special files are subject to the same protec-
tion mechanisms as regular files.

3.1.4. Removable File Systems:

When the system is generated, each disk on the generated
system 1is partitioned into one or more unrelated but physi-
cally contiguous regions. A region can be thought of as a
virtual disk associated with a file system. Although the
root of the ZEUS file system is always stored on the same
disk, the entire file system hierarchy does not have to
reside on the same physical (virtual) disk.

The system mount request attaches an independent file system
with its own directory hierarchy to the existing file system
hierachy (tree). The mount request has two arguments: the
name of an existing directory, and the name of a special
file whose associated virtual disk has the independent file
system and hierarchy. 1In effect, the mount request replaces
a leaf or subtree (the directory) of the current hierarchy
tree with a whole new subtree (the hierarchy stored on the
virtual disk).

After a file is mounted, there 1is no distinction between
files on the mounted virtual disk and those of the permanent
file system. There is one exception to the rule of identi-
cal treatment of files mounted on different devices: no
link can exist between one file system hierarchy and
another. This restriction 1is enforced to avoid the ela-
borate system bookkeeping that would be required to ensure
removal of any existing links whenever the removable file
system is unmounted.

3.2. File Security Protection

The ZEUS system administrator, who is a person charged with
the administration of the ZEUS installation, creates a
unique individual user identification number and a group
identification number for each new user. When the new user
creates a file, it is marked with the assigned user and

3-6 Zilog 3-6

INTRO (Q) Zilog INTRO(9)

group ID. This new file also has ten protection bits. Nine
of these protection bits independently specify read (r),
write (w), and execute (x) permission for each of three lev-
els of access. The three levels of access protection are:

® owner--the user

& group--members of the user's group who have the same
group ID

@ public--all other users of the system

Examgle:

-rw-r--r-- 2 cpc system 46 Feb 10 18:43 addpath
drwxrwxr-x 2 cpc sSystem 2144 Apr 22 18:22 bin

This organization is the same for ordinary files and special
files. For directories, the meaning of the access bits are
modified. Read means the ability to read the directory as a
file, that is, to discover all the names it contains. Exe-
cute means the ability to search a directory for a given
name when it appears as part of a qualified name. Write
means the ability to create and delete files in that direc-
tory. It is unrelated to writing of files in the directory.

If the tenth protection bit is on, the system temporarily
changes the 1ID of the current user to that of the owner or
creator of the file whenever the file is executed as a pro-
gram, This change in user ID is effective only during exe-
cution of the program that calls for it. The set-user-ID
feature allows for privileged programs that can use files
inaccessible to other users. For example, a program may
keep an accounting file that should neither be read nor
changed except by the program itself. If the set-user-ID
bit is on for an executing program, the file can be accessed
(although this access might be forbidden to other programs
invoked by the given program's user). Since the actual user
ID of the user who invokes a program is always available,
set-user-ID programs can take any measures required to check
the invoker's credentials. This mechanism allows execution
of carefully written commands that call privileged system
entries. Because the set-user-ID bit can be set on one's
own files, this mechanism 1is generally available without’
administrative intervention.

The system call that creates an empty directory can only be
invoked by the super-user. Directories are expected to
have . and .. entries. The command that creates a directory
is owned by the super-user and has the set-user-ID bit set.

3-7 Zilog 3-7

INTRO (@) Zilog INTRO (@)

After ZEUS checks the invoker's authorization to'create the
specified directory, the directory 1is created and the
entries for . and .. are made.

The system recognizes the super-user ID as able to access
all files without regard to permissions. The super-user is
also the only one permitted to make privileged system calls.
Programs owned by the super-user with the set-user-ID bit
set can be written to (such as dump and reload a file sys-
tem) without unwarranted interference from the protection
system.,

The chmod system call and its corresponding command, which
change the protection bits of a file, is only executable by
the super-user or on files owned by the user.

3.3. Input/Output

Files in ZEUS are manipulated through Input/Output (I/0)
system calls that create, delete, read, write, or seek into
a file.

1/0 system calls do not differentiate between various dev-
ices and styles of access methods. There is no distinction
between random and sequential 1/0, nor is there any concept
of record. The size of an ordinary file is determined by
the number of bytes written on it; no preallocation of disk
area is needed since files grow dynamically as they are
written.

To illustrate the essentials of 1/0, some of the basic calls
are summarized below. Each call to the system can result in
an error return. (This is not represented in the examples.)
To read or write a file assumed to exist already, it must be
opened by the following system call:

filep = open (name, flag)

where name indicates the name (character string) of the
file. An arbitrary path name can be given. The returned
value filep is called the file descriptor. This is a small
integer used to identify the file in subsequent calls that
read, write, or otherwise manipulate the file. The flag
argument indicates whether the file is to be read, written,
or updated; that is, read and written simultaneously.

The flag argument also indicates the access privileges that
other users have while the file is open. These open access
privileges are distinct from the eleven protection bits dis-
cussed above. The protection bits are checked at open time

3-8 Zilog 3-8

INTRO (9) Zilog INTRO(9)

to see if the invoker has permission to access the file.
Once this 1is done, if the file is already open, the open
access privileges are checked to make sure the program that
originally opened the file will allow others to open it.
When a file is opened, the following permissions are speci-
fied for others attempting to open the file:

® Any executing program can open the file

& Any executing program can open the file as long as
it only reads it

® No executing program can open the file

When the I/0 is complete and the file is closed, any con-
straints imposed while the file was open are removed.

To create a new file or completely rewrite an old one, there
is a create system call that creates the given file if it
does not exist, or truncates it to zero length if it does
exist; create also opens the new file for writing and, like
open, returns a file descriptor. Such a call is defined as:

filep = creat(name, mode)

where name is the name of the file and filep is the file
descriptor. The mode argument specifies the eleven protec-
tion bits that the file will have, as well as the open
access privileges allowed others while the file is open.

Reading and writing are sequential (except as indicated
below). This means that for any particular last byte writ-
ten (or read) in the file, the next I/0 call refers .to the
immediately following byte. For each open file there is a
pointer, maintained inside the system. When n bytes are
read or written, the pointer advances by n bytes.

Once a file is open, the following calls can be used:

read(filep, buffer, count)
write(filep, buffer, count)

J=T}=

Up to count bytes are transmitted between the file specified
by filep and the byte array specified by buffer. The
returned value n is the number of bytes actually transmit-
ted. In the write case, n 1is the same as count, except
under exceptional conditions, such as I/0 errors or end of
physical medium on special files. 1In a read, n can, without
error, be less than count.

3-9 Zilog 3-9

INTRO (9) zilog INTRO (0)

If the read pointer is so near the end of the file that
reading count characters causes reading beyond the end of
the file, bytes are transmitted to reach only to the end of
the file. When a read call returns with n equal to zero,
the end of the file has been reached. For disk files, this
occurs when the read pointer becomes equal to the current
size of the file.

Bytes written affect only those parts of a file pointed to
by the position of the write pointer and the count; no other
part of the file is changed. 1If the last byte 1lies Dbeyond
the current end of the file, the file expands as needed.

For random ({(direct access) I/0, the read or write pointer is
moved to the appropriate location in the file; thus,

location = lseek(filep, offset, base)

The pointer associated with filep is moved to a position
offset n bytes from the beginning of the file, from the
current position of the pointer, or from the end of the
file, depending on the base value x. Offset can be nega-
tive., For some devices (paper tape and video terminals),
seek calls are ignored. The actual offset from the begin-
ning of the file to which the pointer was moved is returned
on location,

Other I/0 and file system calls exist that are not discussed
here. These are listed below with the corresponding com-
mand, if any.

close(2) close file

stat(2) change protection mode
chmod (2) ,chmod (1) change owner

chown(2) ,chown (1) create directory

mknod (2) ,mkdir (1) create directory
link(2), Ln(1l) link existing file
unlink(2), rm(1l) delete file

The command counterparts to the system calls shown are gen-
erally wmore flexible and have more options than the system
calls.

3-10 Zilog 3-10

INTRO (@) Zilog INTRO(9)

SECTION 4
PROCESSES AND IMAGES

An image can be thought of as a snapshot of the program exe-
cution environment. The image includes not only a memory
image of the code and data of the program itself, but also
the current state of the registers, the status of open
files, and the current directory.

A process is the execution of an image, or, in other words,
an executing program. While the CPU is executing on behalf
of the process, the image must reside in main memory; during
the execution of other processes, it remains in main memory
unless the appearance of an active, higher-priority process
forces it to be swapped out on disk,

The user has a virtual address space within which a process
runs. This address space is either 64K bytes or 128K bytes,
depending on how the program is compiled., (Compiling a pro-
gram with the separate I&D (information and data) option
allows for up to 64K of instruction space to 64K bytes of
data space for a total of 128K.)

The user-memory of an image is divided into three logical
groups or sections: the program text, data, and stack sec-
tions. These sections can share one or two contiguous
memory areas. If the separate I&D compile option is used,
then two memory areas are shared. In this case, the two
physical memory areas are each 64K bytes--one for the shared
write-protected text, and one for the data and stack. The
text segment is write-protected during execution, and a sin-
gle copy is shared among all processes executing the same
program.

The program code, data, and stack reside in one memory area,
up to 64K bytes long, when the separate I1&D compile option
is not used. 1In this case, the program code is not shared
or write-protected. The stack, which is considered a part
of the data since it shares the same memory address space,
and the data are never shared among processes regardless of
the compile option used.

The program text section begins at location @ in the virtual
address space, The data section also begins at location 9
in its own virtual 64K-byte address space if the program is
compiled with the separate I&D option; otherwise, it follows
the code. The data section can be extended in size by the
brk and sbrk system calls. The stack section begins at the

4-1 Zilog 4-1

INTRO(Q) Zilog INTRO (9)

highest address in the virtual address space and automati-
cally grows downward as the stack pointer fluctuates.

4.1. Process Creation

A process can be put into execution from within an executing
program by making the system call

processid = fork()

When fork is executed, the process splits and becomes two
independently executing processes. The newly created pro-
cess (child) is a copy of the original process (parent).
The two processes have independent copies of the original
memory image and share all open files. (If the parent pro-
cess was executing from a read-only, sharable text segment,
however, the child shares the text segment.) Copies of all
the writable data sections are made for the child process.

Making a complete copy of a process with the fork is actu-
ally an effactive way to communicate from the parent process
to the child process; the child has access to the entire
memory image of the parent. This avoids many structures and
restrictions and allows arbitrary information transfer
between parent and child.

Processes in ZEUS are inexpensive in terms of CPU time; a
sharp contrast to many other operating systems. The forking
of a medium-~sized process requires only a few milliseconds.
This 1low c¢ost means that the fork feature is used exten-
sively and provides the basis of shell interaction, in that
(almost) every entered command is executed in a child pro-
cess forked for the command. When the command completes,
the child process terminates.

4.2. Execution of Programs

Programs are executed by invoking a form of the exec system
call: :

exec(file, argl, arg2, ...,argn)

where exec is execv, execl, execve, or execle. The exec
system call requests ZEUS to read into memory and execute
the program file, passing it string arguments argl, ...,

argn.

All of the code and data in the process attached to exec are
replaced by the code and data in file. Open files, current

4-2 zilog ‘ 4-2

INTRO (9) Zilog INTRO (0)

directory position, and interprocess relationships are unal-
tered, because invoking exec does not change processes. The
process attached to exec persists; it is just executing a
different program file. A return to the calling process
takes place only if the call to exec fails.

Consider interactive commands as an example of fork and exec
usage. A process is interactively invoked from the keyboard
by giving the name of the object file to be run. To copy a
file templ in the current directory to a file temp2, a pro-
cess is invoked with this keyboard command:

/bin/cp templ temp2

ZEUS can be given a single path name, such as cp, causing a
search through a user-set path for the named executable
file. The following command is most commonly entered:

cp templ temp2

The interactive command is interpreted by the shell to gen-
erate a process to perform the copy. The shell forks a copy
of itself, and the copy of the shell searches for the exe-
cutable program c¢p. When cp is found, it is invoked by an
exec system call from the shell copy. The executing shell
copy 1is the parent process of the cp command. In this way,
the shell is not destroyed and can interpret subsequent com-
mands when the child process, cp, finishes.

4.3. The Parent/Child Relationship

The new processes created by a fork differ only in that one
is considered the parent process. In the parent, the
returned processid actually identifies the child process and
is never 9, while for the child process, the returned value
is always @. Because the values returned by fork in the
parent and <child process are different, each process can
determine whether it is the parent or child.

If process A invokes processes B and C , process A is called
a parent process, and processes B and C are its children.
If process B invokes processes D and E, B is the parent of D
and E. D and E would be the grandchildren of A or, more
generally, descendents of A. If a parent process ter-
minates, 1its descendents continue execution until they are
finished. A descendent process's parent then becomes a ZEUS
system process.

4-3 Zilog 4-3

INTRO (9) Zilog INTRO (@)

4.4. Process Termination
The system call
exit(status)

terminates a process, destroys its image, closes 1its open
files, and generally removes it from the system.

A process can be terminated interactively (from the key-
board) by the command:

kill processid

This sends a signal (Section 2.2.5) to the process whose ID
is processid. If the signal is not handled in some other
way, the process is terminated. The command:

kill -9 processid
is a sure kill, and must be issued carefully.

The equivalent system call of the above command is:

status = kill
(processid, 9)

where status is an error status.

4.4.1. Process Synchronization: ZEUS provides mechanisms
whereby a process can synchronize itself with either an
external event or another process. These are discussed 1in
this section.

4.5. The Signal Mechanism

A signal is generated by some abnormal event, or initiated
at a console keyboard (quit, interrupt), by a program error
(bus error, illegal instruction, etc.), or by a another pro-
gram request (kill). Normally, all signals cause termina-
tion of the receiving process; however, a signal system call
allows signals to be handled in one of three ways: signals
can be ignored; they can cause termination of the process
(reinstate the default); they can result in a call to a
specified routine. The signal call looks like:

old_value = signal (sig,func)

where old value is a value that indicates how the signal was

4-4 Zilog 4-4

INTRO (0) Zilog INTRO(9)

handled previously. The variable sig is the event to be
caught (such as a quit from the typewriter), func is an
indication of what to do when the signal occurs, whether it
is to terminate the process, ignore the signal, or call the
process's routine func.

There are sixteen signals. The kill(l) command normally
generates the signal SIGTERM (a constant equivalent to 15)
which, when not caught, results in termination of the pro-
cess. A process can choose to catch such signals to clean
up temporary files before terminating. A process can also
ignore such calls. If a process should be terminated, but
ignores SIGTERM signals, the signal SIGKILL (a constant
equivalent to 9) can be issued by entering:

kill -9 processid

This signal cannot be caught or ignored; it results in an
automatic termination of the process associated with proces-
sid. (The kill command must be issued only for processes
belonging to the user, unless the user is the super-user.)

It is possible to suspend program execution while waiting
for a signal. The pause system call does this to prevent
busy waiting.

If a process issues a signal call and then forks a child
process, the child's signal is handled in the same way; the
child inherits all signals.

4.6. The Pipe Mechanism

Processes can synchronize with related processes through the
pipe mechanism. The pipe mechanism allows sending messages
back and forth between processes using the same system read
and write calls that are used for file system I/0. The sys-
tem call: ‘

Ireturn_value = pipe(fildes)

returns two file descriptors in array filep and creates an
interprocess pipe. One file descriptor is used for reads,
the other is used for writes. The command return value
indicates whether or not the system call resulted in the
successful creation of the pipe. A read, using a pipe file
descriptor, waits until another process writes using the
write file descriptor for the same pipe. The writing pro-
cess can issue up to 4096 Dbytes of data before it is
suspended, waiting for a read from the pipe. Thus, data is
passed between the images of the two processes. It does not

4-5 Zilog 4-5

INTRO (@) Zilog INTRO (@)

matter to either process that a pipe, rather than an ordi-
nary file, is involved.

The pipe channel, like other open files, is passed from the
parent to the child process image by the fork call.

4.7. The Wait Mechanism
Another process control system call:
processid = wait(status)

causes the parent process to suspend execution until one of
its children completes execution. The command wait then
returns the processid of the terminated process. An error
return 1is taken 1f the calling process has no descendents.
Certain status is available from the child process, such as
a termination status.

As an example of the use of wait, the shell command line
interpretor generally works as follows. When a command is
entered, the shell forks a copy of itself. The <child copy
performs an exec, in effect becoming the process performing
the requested command. Meanwhile, the parent process per-
forms a wait and, when the child process finishes, inter-
prets the next command.

A wait system call can also be interrupted by a signal
mechanism.

4.7.1. The Shell: Most communication with ZEUS is through
the shell, a command-line interpreter program that reads
lines as requests to execute other programs. (The shell is
described fully in the ZEUS Utilities Manual.) In simplest
form, a command line consists of the command name followed
by arguments to the command, all separated by spaces or
tabs, as in

command argl arg2 ... argn

The shell splits the command name and the arguments into
separate strings. Then a file with the name command is
sought; command can be a path name including the / character
to specify any file in the system. If command is found, it
is brought into memory and executed. The arguments col-
lected by the shell are accessible to the command. When the
command is finished, the shell resumes its own execution,
and indicates 1its readiness to accept another command by
issuing a prompt character.

4-6 Zilog 4-6

INTRO (4) Zilog INTRO(9)

If the file command cannot be found, the shell usually pre-
fixes a string such as /bin or /usr/bin to command and
attempts again to find the file. (Th path name, or
sequence of directories to search can be changed by
request.)

4.8. Standard 1/0

The previous discussion of I/0 implies that every file used
by a program must be opened or created by the program to get
that file's descriptor. Programs executed by the shell,
however, start with three open files having the file
descriptors @, 1, and 2. When such a program begins execu-
tion, file 1, called the standard output file, is open for
writing. This file 1is the terminal, except under cir-
cumstances indicated in the following examples. File
descriptor 1 is usually used to write program data. Con-
versely, file @ starts open for reading, and programs that
read entered messages read this file. File descriptor 2,
another file open for writing, is similar to descriptor 1.
By default, it is assigned to the terminal and usually used
for standard error message output.

Many commands request information from the console keyboard.
These commands issue a read system call using file descrip-
tor @. No open is required of the command program.

The shell can change the standard assignments of these file
descriptors from the terminal. If an argument to a command
is prefixed by >, for the duration of the command file
descriptor 1 refers to the file named after the >. For
example:

1ls

ordinarily lists, on the standard output, the names of the
files in the current directory. The command:

1s > there

creates a file called there and places the 1listing there,
The argument > there means place output on there. On the
other hand:

ed

ordinarily enters the editor, which takes requests from the
keyboard. The command

ed < script‘

4-7 Zilog 4-7

INTRO (@) Zilog INTRO(9)

interprets script as a file of editor commands; thus <
script means take input from script.

Al though the file name following < or > appears to be an
argument to the command, it is interpreted completely by the
shell and is not passed to the command at all. Thus, no
special coding to handle 1/0 redirection is needed within
each command; the command uses the standard file descriptors
@ and 1 where appropriate.

File descriptor 2, like file descriptor 1, 1is ordinarily
associated with the terminal output stream. When an
output-diversion request using > in the command argument is
specified, file 2 remains attached to the terminal so that
commands producing diagnostic messages do not silently place
them in the redirected output file.

4.9. Filters

The output of one command can be directed to the input of
another command by extending the concept of standard I1/0.

A sequence of commands separated by a vertical bar (l)
causes the shell to execute all the commands simultaneously
and to arrange that the standard output of each command be
delivered to the standard input of the next command in the
sequence. This is called piping, since the output of one
command is piped to the input of another. In the command
line:

ls | pr -2 | opr

ls lists the names of the files in the current directory;
its output 1is passed to pr, which paginates its input with
dated headings. (The argument -2 requests double-column
output.) Likewise, the output from pr is input to opr; this
command invokes a hypothetical program that spools its input
onto a file for off-line printing.

This procedure is inefficiently accomplished by:

1s > templ
pr -2 < templ > temp2
opr < temp2

followed by removal of the temporary files. Without the
ability to redirect output and input, a still clumsier
method would require the 1ls command to accept requests to
paginate 1its output, to print in multicolumn format, and to
arrange that its output be delivered off-line. Actually, it

4-8 Zilog 4-8

INTRO (@) Zilog INTRO (9)

would be surprising, and in fact unwise for efficiency rea-
sons, to expect authors of commands such as 1ls to provide
such a wide variety of output options.

A program such as pr, which copies its standard input to its
standard output (with processing), is called a filter. Some
useful filters have been developed that perform character
transliteration, selection of lines according to a pattern,
and sorting of the input.

4-9 Zilog 4-9

INTRO(9) Zilog INTRO (9)

SECTION 5
PATTERN MATCHING AND OTHER TRICKS

The shell can generate a list of file names that match a
pattetrn. These file names can then be used as input argu-
ments to a command. In general, patterns are specified as
follows:

* Matches any string of characters, including the null
string. For example, the command

lpr /a/b/c/*
prints all the files in directory /a/b/c and

lpr /a/b/c/*.c

prints all the files whose names end in .c in that
directory.

? Matches any single character.

[...]
Matches any one of the enclosed characters. A pair of
characters separated by a minus sign matches any char-
acter lexically between the pair.

5.1. Command Separators and Multitasking

The shell supports multiple command entries on a single
line. Commands need not be on different lines; instead they
can be separated by semicolons.

1s; ed

first lists the coantents of the current directory, then
enters the editor.

A related feature is more interesting. If a command is fol-
lowed by &, the shell executes the command in the background
and does not wait for the command to finish before prompting
again; instead, it is ready immediately to accept a new com-
mand. For example: '

as source > output &

causes soutce'to be assembled, with diagnostic output going

5-1 Zilog 5-1

INTRO (9) Zilog INTRO (9)

to output; no matter how long the assembly takes, the shell
returns immediately. When the shell does not wait for the
completion oF a command, the identification number of the
process running that command is printed. This process iden-
tification can be wused to wait for the completion of the
command or to terminate it (with kill). The & can be used
several times in a line. The command

as source > output & 1s > & files

does both the assembly and the listing 1in the background.
In these examples, an output file other than the terminal
was provided, If this had not been done, the outputs of the
various commands would be intermingled at the video termi-
nal.

The shell also allows parentheses in the above operations.
For example:

(date; 1ls) > x &

writes the current date and time, followed by a list of the
current directory, onto the file x. The shell also returns
immediately for another request.

5.2. The Shell as a Command: Command Files

The shell is itself a command, and can be called recur-
sively. Suppose file tryout contains the lines:

as source
mv a.out testprog
testprog

The mv command causes the file a.out to be renamed testprog.
The file a.out is the (binary) output of the assembler,
ready to be executed. Thus, if the three lines above were
typed on the keyboard, source would be assembled, the
resulting program renamed testprog, and testprog executed.
When the lines are in tryout, the command:

sh < tryout
causes the shell sh to execute the commands sequentially.
Furthermore, 1if the chmod command were used to change the
protection bits of the file tryout so that the file became
executable, the command:

tryout

5-2 Zilog 5-2

INTRO (4) Zilog INTRO (9)

would be equivalent to invoking the shell explicitly. This
happens because the script file of shell commands has the
execute permission bits turned on; the shell interprets the
command as if it had been entered:

sh < tryout

The shell has further capabilities, including parameter sub-
stitution and the ability to construct argument lists from a
specified subset of the file names in a directory. The
shell also provides general conditional and looping con-
structions.

5.2.1. Implementation of the Shell: Most of the time, the
shell is waiting for a command. When the new line character
ending the line is typed, the shell's read call returus.
The shell analyzes the command line, putting the arguments
in a form appropriate for execute. Then fork is called.
The child process, whose code is still that of the shell,
attempts to perform an exec with the appropriate arguments.
If successful, this brings in and starts execution of the
program whose name was given. Meanwhile, the other process
resulting from the fork, which is the parent process, waits
for the child process to terminate. When this happens, the
shell knows the command is finished, so it types its prompt
and reads the keyboard to obtain another command.

Given this framework, the implementation of background
processes 1is trivial; whenever a command line contains &,
the shell merely refrains from waiting for the process that
it created to execute the command.

This mechanism meshes well with the concept of standard
input and output files. When a process is created by the
fork system call, it inherits not only the memory image of
its parent but also all the files currently open in its
parent, including those with file descriptors @, 1, and 2.
The shell, of course, uses these files to read command lines
and to write its prompts and diagnostics. 1In the ordinary
case, its children~-the command programs--inherit these
files automatically. When an argument with < or > is given,
however, the offspring process, just before it performs
exec, makes the standard 1/0 file descriptor (@ or 1) refer
to the named file. The smallest unused file descriptor is
assigned when a new file is opened (or created); it is only
necessary to close file @ (or 1) and open the named file.
Because the process in which the command program runs simply
terminates when it 1is through, the association between a
file specified after < or > and file descriptor # or 1 |is

5-3 Zilog 5-3

INTRO(Q) Zilog INTRO (®)

ended automatically when the process terminates. Therefore,
the shell need not kXnow the actual names of the £files that
are 1its own standard input and output, because it never
needs to reopen them.

Filters are straightforward extensions of standard 1/0
redirection with pipes used instead of files.

In ordinary circumstances, the main loop of the shell never
terminates. (The main loop includes the Dbranch of the
return from fork belonging to the parent process; that Iis,
the Dbranch that does a wait, then reads another command
line.) One thing that causes the shell to terminate is dis-
covering an end-of-file condition in its input file, When
the shell is executed as a command with a given input file,
as in:

sh < comfile

the commands in comfile are executed until the end of com-
file 1is reached; then the shell process invoked by sh ter-
minates. Because this shell process is the child of another
invocation of the shell, the wait executed previously will
return, and another command can then be processed.

5-4 Zilog 5-4

INTRO(1) Zilog INTRO (1)

NAME
INTRO -~ introduction to Section 1 commands

SYNOPSIS
INTRO is not a command, it is a manual entry, th
there is no synopsis.

DESCRIPTION

erefore

The commands described in Section 1 of the 2ZEUS Reference
Manual are available to all users and are typed into the
computer via the terminal keyboard. The commands in each
section of this manual are arranged alphabetically. Nota-
tions are made at the center of the foot of each command
page indicating the engineer source of the command., These
are:

Notation: Source:

Bell Bell Laboratories

ucB University of California, Berkeley

Zilog Zilog, Inc.
Reference to Section 1C as in the entry foreach(lC) refers
to commands that are internal to the C Shell.

COMMAND SYNTAX ,

The description of each command (unless otherwise noted)

uses the following conventions:

Bold Face Words in bold print are literal, they must be
typed into the terminal [or they will appear
on the terminal], Jjust as they appear on
paper.

Underlining Words that are wunderlined can or must be
replaced by words of the user's choosing.

Brackets [] Words in brackets are options, they can

appear in the command line, but may b
ted.
Ellipsis ... Three dots in a row -- an elipse -- i

to note that the preceding word
repeated any number of times.

Quote Marks Double Quotes are used to isolate
characters from the body of the text.

Single Front Quotes are used to denote

e omit-

s used
can be

special

words

with special meaning, though they may not be

actual commands.

1 Zilog

INTRO (1) Zilog INTRO(1)

Single Back Quotes are used by the computer
to substitute the output of a command for the
command word itself.

SEE ALSO
Section @ -- Introduction to ZEUS Software Documentation
ZEUS Reference Manual @3-3255
ZEUS Utilities Manual #3-3250
ZEUS Languages/Programming Tools Manual #3-3249
ZEUS Administrator Manual @3-3246
Model 11 ZEUS Administrator Manual 93-3254
PLZ/ASM Assembly Language Programming Manual #3-3055
Report on the Programming Language PLZ/SYS @3-9059
The C Programming Language 33-3161

LIMITATIONS

Regretfully, many command descriptions do not adhere to the
aformentioned conventions,

2 Zilog 2

ADB(1) Zilog ADB(1)

NAME

adb - debugger

SYNOPSIS

adb [-w] [objfil [corfil]]

DESCRIPTION

Adb is a general-purpose debugging program to examine files
and provide a controlled environment for execution of ZEUS
programs.

Objfil is normally an executable program file, preferably
containing a symbol table; if not, the symbolic features of
adb cannot be used, although the file can still be examined.
The default for objfil is a.out. Corfil is assumed to be a
core image file produced after executing objfil; the default
for corfil is core.

Requests to adb are read from the standard input and
responses are written to the standard output. Adb prompts
for input with a question mark " ? ". If the -w flag 1is
present, both objfil and corfil are created, if necessary,
and opened for reading, modifying, and writing. Adb ignores
QUIT; INTERRUPT causes return to the next adb command.

Requests to adb are of the form

[address] [,count] [command] [;]

If address is present, dot is set to address. Initially,
dot 1is set to #. For most commands, count is an expression
that specifies how many times the command will be executed
(default is 1). Currently, address is considered an expres-
sion with an unspecifiable (default) segment number of @.
It is expected that this will change.

The interpretation of an address depends on the context in

which it is used. If a subprocess 1is being debugged,
addresses are interpreted in the usual way in the address
space of the subprocess. For further details of address

mapping, see ADDRESSES.

EXPRESSIONS
. The value of dot
+ The value of dot incremented by the current increment
~ " The value of dot decremented by the current increment

" The last address typed

integer

Bell 1

ADB(1) Zilog ADB(1)

An octal number if integer begins with a @; a hexade-
cimal number if preceded by $; otherwise, a decimal
nurmber

integer.fraction
A 32 bit floating point number

'ccec' An ASCII value of up to 4 characters; a backslash
" \ " can be used to escape an apostrophe " ' ",

< name The value of name, which is either a variable name or
a register name. Adb maintains a number of variables
(see VARIABLES) named by single letters or digits.
If name is a register name, the value of the register
is obtained from the system header in corfil. The
register names are r@ ... rl4 sp pc fcw.

symbol A symbol is a sequence of upper or lowercase letters,
underscores, or digits not starting with a digit.
The value of the symbol is taken from the symbol
table in objfil.” An initial underbar " _ " or tilde
" 7 " will be prepended to symbol if needed.

_ symbol

In C, the "true name" of an external symbol begins
with . It may be necessary to write this name to
disinguish it from internal or hidden variables of a
program.

routine.name
The address of the variable name in the specified C
routine. Both routine and name are symbols. If name
is omitted, the value is the address of the most
recently activated C stack frame corresponding to
routine. Currently, this expression type is not sup-

ported.

(exp) The value of the expression exp

Monadic Operators

*exp The contents of the location addressed by exp in cor-
£il

@exp The contents of the location addressed by exp in
objfil

-exp Integer negation

exp Bitwise complement

2 Bell 2

ADB(1) Zilog ADB(1)

Dyadic Operators (left associative and 1less binding than
monadic operators)

el+e2 Integer addition
el-e2 Integer subtraction
el*e2 1Integer multiplication
el%e2 Integer division
el&e2 Bitwise conjunction
elle2 Bitwise disjunction

l#e2 El rounded up to the next multiple of e2

COMMANDS
Most commands consist of a verb followed by a modifier or
list of modifiers. The following verbs are available. (The
commands ? and / can be followed by an asterisk " * "; see

ADDRESSES for further details.)

?f Locations starting at address in objfil are printed
according to the format f

/£ Locations starting at address in corfil are printed
according to the format £

=f The value of address itself is printed in the styles

- indicated by the format f. (For i format, ? is printed
for the parts of the instruction that reference subse-
quent words.)

A format consists of one or more characters that specify a
style of printing. Each format character can be preceded by
a decimal integer that is a repeat count for the format
character. While stepping through a format, dot is incre-
mented temporarily by the amount given for each format
letter. If no format is given, the last format is used.
The format letters available are as follows:

0 2 Print 2 bytes in octal. All octal numbers output
by adb are preceded by @.

O 4 Print 4 bytes in octal.
d 2 Print in decimal.
D 4 Print long decimal.

X 2 Print 2 bytes in hexadecimal.

3 Bell 3

ADB(1)

T ®m m a

0

[}=]

s

Zilog ADB(1)

Print 4 bytes in hexadecimal.

Print as an unsigned decimal number.

Print long unsigned decimal.

Print the 32-bit value as a floating point number.
Print double floating point.

Print the addressed byte in octal.

Print the addressed character.

Print the addressed character using the following
escape convention. Character values @00 to 040
are printed as @ followed by the corresponding
character in the range 0109 to @140. The charac-
ter @ is printed as @@.

Print the addressed characters until a zero char-
acter is reached.

Print a string using the @ escape convention. n
is the 1length of the string including its zero
terminator.

Print four bytes in date format (ctime(3)).

Print as Z80@0@ instructions. n is the number of
bytes occupied by the instruction. This style of
printing causes variables 1 and 2 to be set to the
offset parts of the source and destination respec-
tively.

Print the value of dot in symbolic form. Symbols
are checked to ensure that they have an appropri-
ate type as indicated below.

local or global data symbol
local or global text symbol
local or global absolute symbol

v~

2
Print the addressed value in symbolic form using
the same rules for symbol lookup as a.

o
When preceded by an integer tabs to the next
appropriate tab stop. For example, 8t moves to

the next 8-space tab stop.

Bell ' 4

ADB(1) Zilog ADB(1)

r 2
Print a space.

n 7]
Print a new line.

ll..'- g

Print the enclosed string.

Dot 1is decremented by the current increment.
Nothing is printed.

+ Dot is incremented by 1l; nothing is printed.
- Dot is decremented by 1l; nothing is printed.

newline
If the previous command temporarily incremented dot,
make the increment permanent. Repeat the previous com-
mand with a count of 1.

[2/]1 value mask

Words starting at dot are masked with mask and compared
with wvalue until a match is found. If L is used, the

match is for four bytes at a time instead of two. If
no match is found, dot is unchanged; otherwise, dot is
set to the matched location. If mask is omitted, -1 is
used.

[?2/]w value ...
Write the 2-byte value into the addressed location. If
the command is W, write four bytes. O0dd addresses are
not allowed when writing to the subprocess address
space.

[?2/Im bl el £f1[2/]

New values for (bl, el, fl) are recorded. If less than
three expressions are given, the remaining map parame-
ters are left unchanged. If the ? or / is followed by
an asterisk " * " the second segment (b2,e2,f2) of the
mapping is changed. If the list is terminated by ? or
/. the file (objfil or corfil respectively) is used for
subsequent requests. (For example, /m? causes / to
refer to gbjfil.)

>name
Dot is assigned to the variable or register named.

! A shell is called to read the rest of the line follow-
ing !.
Smodifier

5 Bell 5

ADB(1)

Zilog ADB(1)

Miscellaneous commands. The available modifiers are:

$<£

$>£

Sr

st

$C

Se

S$w

$s

$o
$x
sd
$q
sv
$m

smodifier

Read commands from the file f and return.

Send output to the file f, which is created if it
does not exist. ’

Print the general registers and the instruction
addressed by pc. Dot is set to pc.

Print the floating registers.

Print all breakpoints and their associated counts
and commands.

If $SC is used, the 16 bit values for each active
routine's stack frame are printed with the return
address labeled. If count is given, only the
first stack frames are printed If address is
given, dot is temporarily moved to that address
(i.e. pc 1is not altered) for perusal of instruc-
tions.

The names and values of external variables are
printed.

Set the page width for output to address (default
72).

Set the 1limit for symbol matches to address
(default 255).

All integers input are regarded as octal.

All integers input are regarded as hexadecimal.
Reset integer input as described in EXPRESSIONS.
Exit from adb.

Print all nonzero variables in hexadecimal.

Print the address map.

Manage a subprocess. Available modifiers are:

sbe

Set breakpoint at address. The breakpoint is exe-
cuted count-1] times before causing a stop. Each
time the breakpoint is encountered, the command :c
is executed. If this command sets dot to zero,
the breakpoint causes a stop. ___

Bell 6

ADB(1) Zilog ADB(1)

=d Delete breakpoint at address.

:r Run objfil as a subprocess. If address is given
explicitly, the program is entered at this point;
otherwise, the program is entered at its standard
entry point. Count specifies how many breakpoints
are to be ignored before stopping. Arguments to
the subprocess can be supplied on the same line as
the command. An argument starting with < or >
causes the standard input or output to be esta-
blished for the command. All signals are turned
on at entry to the subprocess.

:cs The subprocess is continued with signal s (signal
(2)). 1If address is given, the subprocess is con-
tinued at this address. If no signal is speci-
fied, the signal that caused the subprocess to
stop is sent. Breakpoint skipping is the same as
for r.

As for c, except that the subprocess is single
stepped count times. If there is no current sub-
process, objfil is run as a subprocess as for r.
In this case, no signal can be sent; the remainder
of the line is treated as arguments to the subpro-
cess.

.
|t
/]

:k The current subprocess, if any, is terminated.

VARIABLES
Adb provides a number of variables. Named variables are set
initially by adb but are not used subsequently. Numbered
variables are reserved for communication as follows:

] The last value printed.
1 The last offset part of an instruction source.
2 The previous value of variable 1.

On entry, the following are set from the system header in
the corfil. If corfil does not appear to be a core file,
these values are set from objfil.

b The base address of the data segment.
d The data segment size.
e The entry point.

m The magic number (@xE607, ©@xE6l1l, ©@xEe6d5, @xE797,
@xE711, @xXE785)

7 Bell 7

ADB(1) Zilog ADB(1)

S The stack segment size.
t The text segment size.
ADDRESSES

The address in a file associated with a written address 1is
determined by a mapping associated with that file. Each
mapping is represented by two triples (bl, el, £fl1) and (b2,
e2, f2) and the file address corresponding to a written
address is calculated as follows:

bl<address<el => file address=address+fl-bl

otherwise,

b2<address<e2 => file address=address+f2-b2

otherwise, the requested address is not legal. In some
cases (for example, for programs with separated information
and data space) the two segments for a file can overlap. If
a question mark " 2?2 " or a slash " / " is followed by an
asterisk " * " only the second triple is used.

The initial setting of both mappings is suitable for normal
a.out and core files. If either file is not of the kind
expected, then, for that file, bl is set to @, el is set to
the maximum file size, and fl is set to @; in this way the
whole file can be examined with no address translation.

All appropriate values are kept as signed 32-bit integers so
that adb can be used on large files.

FILES
/dev/mem
/dev/swap
a.out
core

SEE ALSO
ptrace(2), disasm(3), a.out(5), core(5)

DIAGNOSTICS
"Adb" when there is no current command or format. Comments
about inaccessible files, syntax errors, abnormal termina-
tion of commands, etc. Exit status is @, unless 1last com-
mand failed or returned a non-zero status.

LIMITATIONS
A breakpoint set at the entry point is not effective on ini-
tial entry to the program.

When single stepping, system calls do not count as an

8 Bell 8

ADB(1) Zilog ADB(1)

executed instruction.

Local variables whose names are the same as an external
variable can cause errors in the accessing of the external.

A hexadecimal number specified for an address may he inter-
preted as a symbol if not preceded by a %.

2 Bell 9

ADMIN(1) Zilog ADMIN(1)

NAME
admin - create and administer SCCS files

SYNOPSIS

admin [~-alogin]
[-dflagl flag-val]l]
[-elogin]
[~fflag[flag-vall]
[-h]
[-i[namel]
[-m[mrlist]]
[-n]
[-rrel]
[-tlname]]
[-y[comment]]
[-z]

files

DESCRIPTION
Admin is used to create new SCCS files and change parameters
of existing ones. Arguments to admin, which may appear in
any order, consist of keyletter arguments, which begin with
-, and named files (note that SCCS file names must begin
with the characters s.). '

If a named file doesn't exist, it is created, and its param-
eters are initialized according to the specified keyletter
arguments. Parameters not initialized by a keyletter argu-
ment are assigned a default value. If a named file does
exist, parameters corresponding to specified keyletter argu-
ments are changed, and other parameters are left as is.

If a directory is named, admin behaves as though each file
in the directory were specified as a named file, except that
non-SCCS files (last component of the path name does not
begin with s.) and unreadable files are silently ignored.

If a name of - is given, the standard input is read; each
line of the standard input is taken to be the name of an
SCCSs file to bhe processed. Again, non-SCCS files and
unreadable files are silently ignored.

The keyletter arguments are as follows. Each 1is explained
as though only one named file is to be processed since the
effects of the arguments apply independently to each named
file.

OPTIONS

—alogin :
A login name, or numerical ZEUS group ID, to be added
to the list of users which may make deltas (changes) to

1 Bell 1

ADMIN(1) Zilog ADMIN(1)

the sSCCS file. A group ID is equivalent to specifying
all login names common to that group ID. Several a
keyletters may be used on a single admin command 1line.
As many logins, or numerical group ID, as desired may
be on the list simultaneously. If the list of users is
empty, then anyone may add deltas.

-dflag
Causes removal (deletion) of the specified flag from an
SCCs file. The -d keyletter may be specified only when
processing existing SCCS files. Several -d keyletters
may be supplied on a single admin command. See the -f
keyletter for allowable flag names.

-1list
A list of releases to Dbe "unlocked". See the -f
keyletter for a description of the 1 flag and the syn-
tax of a list.

-elogin
A login name, or numerical group ID, to be erased from
the 1list of users allowed to make deltas (changes) to
the SCCS file. Specifying a group ID is equivalent to
specifying all login names common to that group ID.
Several e keyletters may be used on a single admin com-

mand line.

-fflag
This keyletter specifies a flag, and, possibly, a value
for the flag, to be placed in the SCCS file. Several f
keyletters may be supplied on a single admin command
line. The allowable flags and their values are:

b Allows use of the -b keyletter on a get(l) com-
mand to create branch deltas.

cceil The highest release (i.e., "ceiling"), a number
legss than or equal to 9999, which may be
retrieved by a get command for editing. The
default value for an unspecified c flag is 9999.

dSID The default delta number (SID) to be used by a
get command.

ffloor
The lowest release (i.e., "floor"), a number
greater than & but less than 9999, which may be
retrieved by a get command for editing. The

default value for an unspecified £ flag is 1.

i Causes the "No id keywords (ge6)" message issued
by get or delta(l) to be treated as a fatal

Bell 2

ADMIN(1)

llist

zilog ADMIN(1)

error. In the absence of this flag, the message
is only a warning. The message is issued if no
SCCS identification keywords (see get(l)) are
found in the text retrieved or stored in the
sccs file.

Allows concurrent get commands for editing on
the same SID of the SCCS file. This allows mul-
tiple concurrent updates to the same version of
the SCCS file.

A list of releases to which deltas can no longer

mmod

qtext

ttype

vipgm]

be made (get —e against one of these "locked"
release fails.). The 1list has the following
syntax:

<list> :=:

= <range> | <list> , <range>
<range> ::

= RELEASE NUMBER | a

The character a in the list 1is equivalent to
specifying all releases for the named SCCS file.

Module name of the SCCS file substituted for all
occurrences of the ¥M% keyword in SCCS file text
retrieved by get. If the m flag is not speci-
fied, the value assigned is the name of the SCCS
file with the leading s. removed.

Causes delta to create a "null" delta in each of
those releases (if any) being skipped when a
delta is made in a new release (e.g., in making
delta 5.1 after delta 2.7, releases 3 and 4 are
skipped). These null deltas serve as "anchor
points" so that branch deltas may later be
created from them. The absence of this flag
causes skipped releases to be non-existent in
the SCCS file preventing branch deltas from
being created from them in the future.

User definable text substituted for all
occurrences of the %Q% keyword in SCCS file text
retrieved by get.

Type of module in the SCCS file substituted for
all occurrences of %Y% keyword in SCCS file text
retrieved by get.

Causes delta to prompt for Modification Request
(MR) numbers as the reason for creating a delta.
The optional value specifies the name of an MR
number validity checking program (see delta(l)).

Bell 3

ADMIN(1)

zZilog ADMIN(1)

(If this flag is set when creating an SCCS file,
the m Xkeyletter mwmust also be used even if its
value is null).

Causes admin to check the structure of the SCCS file
(see sccsfile(5)), and to compare a newly computed
check-sum (the sum of all the characters in the SCCS
file except those in the first line) with the check-sum
that is stored in the first line of the SCCS file.
Appropriate error diagnostics are produced.

This keyletter inhibits writing on the file, so that it
nullifies the effect of any other keyletters supplied,
and is, therefore, only meaningful when processing
existing files.

-i[name]

The name of a file from which the text for a new SCCS
file 1is to be taken. The text constitutes the first
delta of the file (see -r keyletter for delta numbering
scheme). If the i keyletter is used, but the file name
is omitted, the text is obtained by reading the stan-
dard input until an end-of-file is encountered. If
this keyletter is omitted, then the SCCS file 1is
created empty. Only one SCCS file may be created by an
admin command on which the i keyletter 1is supplied.
Using a single admin to create two or more SCCS files
require that they be created empty (no -i Xkeyletter).
Note that the -i keyletter implies the -n keyletter.

-m[mrlist]

-n

The list of Modification Requests (MR) numbers is
inserted into the SCCS file as the reason for creating
the initial delta in a manner identical to delta. The
v flag must be set and the MR numbers are validated if
the v flag has a value (the name of an MR number vali-
dation program). Diagnostics will occur if the v flag
is not set or MR validation fails.

This keyletter indicates that a new SCCS file is to Dbe
created.

-rrel

The release into which the initial delta is inserted.
This keyletter may be used only if the -i keyletter is
also used. If the -r keyletter is not used, the ini-
tial delta 1is inserted into release 1. The level of
the initial delta is always 1 (by default initial del-
tas are named 1.1).

-t[name]

The name of a file from which descriptive text for the

Bell 4

ADMIN(1) Zilog ADMIN(1)

SCcCcs file is to be taken. If the -t keyletter is used
and admin is creating a new SCCS file (the -n and/or -i
keyletters also used), the descriptive text file name
must also be supplied. In the case of existing SCCS
files: (1) a -t keyletter without a file name causes
removal of descriptive text (if any) currently in the
sccs file, and (2) a -t keyletter with a file name
causes text (if any) in the named file to replace the
descriptive text (if any) currently in the SCCS file.

~y[comment]

The comment text is inserted into the SCCs file as a
comment for the initial delta in a manner identical to
that of delta. Omission of the -y keyletter results in
a default comment line being inserted in the form:

date and time created YY/MM/DD HH:MM:SS by login

The -y keyletter is valid only if the -i and/or -n
keyletters are specified (i.e., a new SCCS file is

being created).

-z The SCCS file check-sum is recomputed and stored in the
first line of the SCCS file (see -h , above).

Note: The use of this keyletter on a truly corrupted file
may prevent future detection of the corruption.

FILES
The last component of all SCCS file names must be of the
form s.file-name. New SCCS files are given mode 444 (see
chmod(1)). Write permission in the pertinent directory is,
of course, required to create a file. All writing done by
admin is to a temporary x-file, called x.file-name, created
with mode 444 if the admin command is creating a new SCCS
file, or with the same mode as the SCCS file if it exists.
After successful execution of admin , the SCC5 file is
removed (if it exists), and the x~-file is renamed with the
name of the SCCS file. This ensures that changes are made .
to the SCCS file only if no errors occurred.

It is recommended that directories containing SCCS files be
mode 755 and that SCCS files themselves be mode 444. The
mode of the directories allows only the owner to modify SCCS
files contained in the directories. The mode of the SCCS
files prevents any modification at all except by SCCS com-
mands.

If it should be necessary to patch an SCCS file for any rea-
son, the mode may be changed to 644 by the owner allowing
use of ed(l). Care must be taken! The edited file should
always Dbe processed by an admin -h to check for corruption
followed by an admin -z to generate a proper check-sum.
Another admin -h is recommended to ensure the SCCS file is

5 Bell 5

ADMIN(1) Zilog ADMIN(1)

valid.

Admin also makes use of a transient lock file (called
z.file-name), which is used to prevent simultaneous updates

to the SCCS file by different users. See get(l) for further
information.

SEE ALSO

delta(l), ed(l), get (1), help(1), prs(l), what (1),
scesfile(5).

Source Code Control System User's Guide in the ZEUS Utilites
Manual

DIAGNOSTICS
Use help (1) for explanations.

Bell 6

ALIAS (1C) Zilog ALIAS (1C)

NAME
alias - substitute a word for a command or command string

SYNOPSIS
alias word command-string

DESCRIPTION
An alias is an abreviation for a longer command. The shell
maintains a 1list of aliases which can be established,
displayed, modified, and removed by the alias and unalias
commands.

EXAMPLE
The command for extracting a name from the /etc/passwd file:

grep user.name /etc/passwd
can be aliased to the word "lookup" with the command:
alias lookup 'grep \!* /etc/passwd’
the command:
vlookup bill
is the same as the command:
grep bill /etc/passwd
The alias command can be used ian any of 4 ways:

alias
prints all aliases.

alias name
prints the alias for name. —

alias name command.string
assigns the specified command.string as the alias of
name. Name is not allowed to be alias or unalias

unalias pattetrn
All aliases whose names match the specified pattern are
discarded. Thus all aliases are removed by unalias *.

LIMITATIONS
Alias limits substititutions on a single line to 20; meta-
charactetrs must be escaped with a backslash "\".

SEE ALSO
csh(1C), set(1lC).
The C Shell in the ZEUS Utilities Manual

1 ucs 1

APROPOS(1) Zilog APROPOS (1)

NAME

apropos - locate commands by keyword lookup

SYNOPSIS

apropos word ...

DESCRIPTION

Apropos shows which manual sections contain instances of any
of the given keywords in their title. Each word is con-
sidered separately and case of letters 1is ignored. Words
which are part of other words are considered. Thus looking
for compile will hit all instances of compiler also.

If the line starts ‘name (section) ...' you can do ‘man sec-
tion name' to get the documentation for it. Try ‘apropos
format' and then ‘man 5 core' to get the manual write-up on
core.

EXAMPLES
% apropos password
getpass (3) - read a password
getpwent(3) ... - get password file entry
gpasswd (1) - change group password
passwd (1) - change login password
passwd (5) - password file
pwek, grpck (1) -~ password/group file checkers
FILES
/usr/lib/whatis data base
SEE ALSO

makewhatis(1l), man(l1), whatis(1l)

UcB 1

AR(1)

7ilog AR(1)

NAME
ar - archive and library maintainer

SYNOPSIS
ar key [posname] afile name ...

DESCRIPTION
Ar maintains groups of files combined into a single archive
file. It creates and updates library files as used by the
loader.

OPTIONS
c Create. Normally ar creates afile when it needs to.

KEYS

The create option suppresses the normal message that is
produced when afile is created.

1 Local. Normally ar places its temporary files in the
directory /tmp. This option causes them to be placed
in the local directory.

v Verbose. ar gives a file-by-file description of the
making of a new archive file from the o0ld archive and
the constituent files. When used with t, it gives a
long 1listing of all information about the files. When
used with p, it precedes each file with a name.

Key is one character from the set dmpgrtx, optionally con-
catenated with one or more of the options, abciluv. Afile is
the archive file. The names are constituent files 1in the

archive file. The meanings of the key characters are as
follows:

d Delete the named files from the archive file.

m Move the named files to the end of the archive. If a

positioning character is present, then the posname
argument must be present and, as in r, specifies where
the files are to be moved.

P Print the named files in the archive.

q Quickly append the named files to the end of the
archive file. Optional positioning characters are
invalid. The command does not check whether the added
members are already in the archive. Useful only to
avoid quadratic behavior when creating a large archive
piece-by-piece.

r Replace the named files in the archive file. If the

optional character u is used with r, then only those
files with modified dates later than the archive files

Zilog 1

AR(1)

FILES

Zilog AR(1)

are replaced. If an optional positioning character
from the set abi is used, then the osname argument
must Dbe present and specifies that new files are to be
placed after (a) or before (b or i) posname. Other-
wise, new files are placed at the end.

Print a table of contents of the archive file. If no
names are given, all files in the archive are tabled.
If names are given, only those files are tabled.

Extract the named files. If no names are given, all
files in the archive are extracted. 1In neither case
does X alter the archive file.

/tmp/v* temporaries

SEE ALSO

14(1), ranlib(l), ar(5)

LIMITATIONS
If the same file is mentioned twice in an argument list, it
may be put in the archive twice.

Zilog 2

AS(1) Zilog as(1l)
NAME
as - PLZ/ASM assembler
SYNOPSIS
as [option ...] file
DESCRIPTION
As assembles the named file.
OPTIONS
-f Allow assembly of floating point instructions.
-1 Produce a listing containing object code and loca-

tions. For input file file.s, the listing is produced
in file file.l in the current directory.

-0 objfile

The output of the assembly is 1left on objfile. If
this option is omitted, the output is left on the file
a.out.

-p Produce a listing to standard output.

-u Treat all undefined references as externals.

-z Produce Zobj object format for MCZ compatible systems.
When this option is specified, the default output file
becomes t.out instead of a.out.

FILES ,

/lib/as?2 pass 2 of the assembler

/lib/as2d pass 2 data

/lib/asz?2 pass 2 for Zobj output

/lib/asz2d pass 2 data for Zobj output

/tmp/T *H temporary

/tmp/T *I temporary

a.out object

SEE ALSO

cas(1l), 1d(1), nm(1), objdu(l), objhdr(l), a.out(5).
PLZ/ASM Assembler User Guide in the ZEUS Languages / Pro-

gramming Tools Manual

DIAGNOSTICS
When syntactic or semantic errors occur, the offending 1line
is printed followed by an error number. The errors are
described in the user guide.

Zilog 1

AT(1) Zilog AT(1)
NAME

at - execute command or shell script file at a later time
SYNOPSIS

at time [day] file

DESCRIPTION

At makes a copy of the named shell script file and executes
it at the specified time.

At checks the file to see if it is a C-Shell or Bourne-Shell
script, inserts a cd(l) command (directing the shell to the
proper file) and the appropriate shell variables (see
setenv in sh(l)) and places a copy of the file in
/usr/spool/at/yy.ddd.hhhh.uu.

At the specified time atrun checks the file to determine its
shell type and invokes the appropriate shell which executes
the c¢d command, sets the environment variables and executes
the shell script commands.

When the file is run, it has the access privileges of its
owner and group. The program /usr/lib/atrun insures that the
file was placed on the spool by at and runs the program

The time is one to four digits, with an optional following
A, P, N, or M, for AM, PM, noon or midnight. One and two
digit numbers are taken to be hours, three and four digits
to be hours and minutes. If no letters follow the digits, a
24 hour clock time is understood.

The optional day is either a month name followed by a day
number, or a day of the week; if the word week follows, exe-
cution of the file is moved seven days further off. Names

of months and days can be recognizably truncated.

The mode of the shell script file need not be marked execut-
able.

At programs are executed by periodic execution of the com-
mand /usr/lib/atrun from cron(M). The frequency of at
depends upon how often atrun is executed.

Standard output or error output is lost unless redirected.

EXAMPLES

Examples of legitimate commands are:
at 8:30%am file

executes file at 8:30 on the current day

Bell 1

AT(1) Zilog AT(1)

at 8am jan 24 file
executes file at 8:900 on jan 24
at 153% fr week file

executes file at 3:30 a week from this friday

FILES
/usr/spool/at/yy.ddd.hhhh.uu copy of shell program
/usr/spool/at/lasttimedone time of last execution
/usr/spool/at/past dir of activities in progress
/usr/lib/atrun deamon which executes due files

SEE ALSO
calendar(l), cd(l1), pwd(l), setenv -- in csh(l), cron(M).

DIAGNOSTICS
Complains about various syntax errors and times out of
range.

LIMITATIONS

Due to the periodic execution of /usr/lib/atrun by cron(M),
accurate scheduling of tightly synchronized shell scripts is
not possible.

2 Bell 2

AWK(1) Zilog AWK(1)

NAME

awk - pattern scanning and processing language

SYNOPSIS

awk [-F c J [prog 1 [file] ...
or
awk [-F c]J [-f progfile]J [file] ...

DESCRIPTION

Awk scans each input file for lines that match any of a set
of patterns specified in prog. With each pattern in prog
there can be an associated action that will be performed
when a line of a file matches the pattern. The set of pat-
terns may appear literally as prog, or in a file specified
as -f file.

Files are read in order; if there are no files, the standard
input is read. The file name ‘-' means the standard input.
Each line is matched against the pattern portion of every
pattern-action statement; the associated action is performed
for each matched pattern.

An input line is made up of fields separated by white space.
(This default can be changed by using FS, vide infra.) The
fields are denoted $1, $2, ... ; $8 refers to the entire
line.

A pattern-action statement has the form
pattern { action }

A missing { action } means print the line; a missing pattern
always matches.

An action is a sequence of statements. A statement can be
one of the following:

if (conditional) statement [else statement]
while (conditional) statement

for (expression ; conditional ; expression) statement
break

continue

{ [statement] ... }

variable = expression

print [expression-list] [>expression]

printf format [, expression-list] [>expression]
next # skip remaining patterns on this input 1line
exit # skip the rest of the input

Statements are terminated by semicolons, newlines or right

braces. An empty expression-list stands for the whole line.
Expressions take on string or numeric values as appropriate,

Bell 1

AWK(1) Zilog AWK(1)

and are built using the operators +, -, *, /, %, and con-
catenation (indicated by a blank). The C operators ++, ==,

+=, -=, *=, /=, and %= are also available in expressions.
Variables may be scalars, array elements (denoted x[i]) or
fields. Variables are initialized to the null string.

Array subscripts may be any string, not necessarily numeric;
this allows for a form of associative memory. String con-
stants are quoted "...".

The print statement prints its arguments on the standard
output or on a file if >file is present), separated by the
current output field separator, and terminated by the output
record separator. The printf statement formats its expres-
sion list according to the format (see printf(3)).

The built-in function length returns the length of its argu-
ment taken as a string, or of the whole line if no argument.
There are also built-in functions exp, log, sqrt, and int.
The last truncates its argument to an integer.
substr(s, m, n) returns the n-character substring of s that

begins T at position m. The function
sprintf(£fmt, expr, expr, ...) formats the expressions

according to the printf(3) format given by fmt and returns
the resulting string.

Patterns are arbitrary Boolean combinations (!, ||, &&, and
parentheses) of regular expressions and relational expres-
sions. Regular expressions must be surrounded by slashes
and are as in egrep. Isolated regular expressions in a pat-
tern apply to tge entire line. Regular expressions may also
occur in relational expressions.

A pattern may consist of two patterns separated by a comma:;
in this case, the action is performed for all lines between
an occurrence of the first pattern and the next occurrence
of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C,
and a matchop is either ~ (for contains) or |~ (for does not
contain). A conditional is an arithmetic expression, a
relational expression, or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture

control before the first input line is read and after the
last. BEGIN must be the first pattern, END the last.

2 Bell 2

AWK(1) Zilog AWK(1)

A single character ¢ may be used to separate the fields by
starting the program with

BEGIN { FS8 = "c" }

or by using the -Fc option.

Other variable names with special meanings include NF, the
number of fields in the current record; NR, the ordinal
number of the current record; FILENAME, the name of the
current input file; OFS, the output field separator (default
blank); ORS, the output record separator (default newline):;
and OFMT, the output format for numbers (default "%.6g").

EXAMPLES
Print lines longer than 72 characters:

length > 72
Print first two fields in opposite order:
{ print $2, $1 }
Add up first column, print sum and average:

{ s += 81 }
END { print "sum is", s, " average is", s/NR }

Print fields in reverse order:
{ for (i = NF; i > @; --i) print $i }
Print all lines between start/stop pairs:
/start/, /stop/

Print all lines whose first field is different from previous
one:

$1 = prev { print; prev = $1 }

SEE ALSO
lex(1l), sed(l).
Awk - a pattern scanning and processing language
In the ZEUS Utilities Manual.

LIMITATIONS
There are no explicit conversions between numbers and
strings. To force an expression to be treated as a number
add @ to it; to force it to be treated as a string concaten-
ate "" to it.

3 Bell 3

AWK(1) zilog AWK(1)

When a set of pattern-actions appears literally as prog, it
is generally necessary to enclose it in single quotes to
prevent interpretation of special characters by the shell.
For example:

awk 'fprint $2,$1}' test

will print the first two fields of each entry in test in
reverse order.

awk {print $2,$1} test
or
awk "{print $2,81}" test

will not.

4 Bell 4

BANNER(1) 7ilog BANNER(1)

NAME
banner - make posters

SYNOPSIS
banner strings

DESCRIPTION
Banner prints its arguments (each up to 1@ characters 1long)
in large letters on the standard output.

EXAMPLES
banner "hi there"
banner hello world
banner "happy" "birthday"
LIMITATIONS

In order to get any of the special symbols, or "hard"
spaces, the symbol or space must be preceded by a backslash
"\ ". Banner accepts only 10 characters.

1 Bell 1

BASENAME (1)

NAME

Zilog BASENAME(1)

basename, dirname - deliver portions of path names

SYNOPSIS

basename string [suffix]

dirname string

DESCRIPTION
Basename deletes any
suffix, (if it is

prints the result on

Basename can be used
(* ') in the body of

Dirname delivers all
string.

EXAMPLES
The command:

prefix ending in a slant " / " and the
present in the string) from string, and
the standard output.

inside of command substitution marks
shell scripts.

but the last level of the path name 1in

basename /usr/spool/file.c

returns the string:
file.c

the command:

basename /usr/spool/file.c .c

returns the string:
file

The command:

set NAME=‘dirname /usr/src/cmd/cat.c’

sets the shell variable NAME to

/usr/src/cmd

SEE ALSO
csh(l), sh(l) and,

The C Shell in the ZEUS Utilities Manual

Bell 1

BC(1) Zilog BC(1)

NAME '
bc - arbitrary-precision arithmetic language
SYNOPSIS
bc [-cl1 J [file ...]
DESCRIPTION

Bc is an interactive translator for a language which resem-
bles C Dbut provides unlimited precision arithmetic. It
receives input from any files given and then reads the stan-
dard input.

Comments
are enclosed in /* and */.

Names
simple variables: letters a-z
array elements: letter [expression]
The words 'ibase', 'obase', and 'scale'’

Other operands
arbitrarily 1long numbers with optional sign and
decimal point.
(expression)
sqrt (expression)
length (expression) number of significant decimal

digits
scale (expression) number of digits right of
decimal point
letter (expression , ... , expression)
Operators

+ - * / g °
(% is remainder; * is power)

++ -
(prefix and postfix; apply to names)
== <= >= = < >
= =4 == =% = =% ="
Statements
expression
{ statement ; ... ; statement }

if (expression) statement
while (expression) statement
for (expression ; expression ; expression) statement
null statement
break
quit
Function definitions

define letter (letter ,..., letter) {
auto letter, ... , letter

1 Bell 1

BC(1) Zilog BC(1)

statement; ... statement
return (expression)

}

Functions in -1 math library
s(x) sine
c(x) cosine
e(x) exponential

1(x) log
a(x) arctangent
j(n,x) Bessel function

All function arguments are passed by value.

The value of a statement that is an expression 1is printed
unless the main operator 1is an assignment. Either semi-
colons or newlines may separate statements. Assignment to
scale influences the number of digits to be retained on
arithmetic operations in the manner of dc(l). Assignments
to ibase or obase set the input and output number radix
respectively.

The same letter may be used as an array, a function, and a
simple variable simultaneously. All variables are global to
the program. ‘'Auto' variables are pushed down during func-
tion calls. When arrays are used as function arguments or
defined as automatic variables, empty square brackets must
follow the array name.

Bc is actually a preprocessor for dc(l). Bc automatically
runs dc and opens a pipe to it.

OPTIONS
-c Only compiles, does not run dc and the dc input
appears on bc 's standard output.
-1 Defines a math function library.

EXAMPLES

scale = 20
define e(x){
auto a, b, c, i, s

a =1
b =1
8 = 1
for(i=1; 1==1; i++){
a = a*x
b = b*i
c = a/b
if(c == @) return(s)
8 = s+c¢
}

2 Bell 2

BC(1) Zilog BC(1)

}

defines a function to compute an approximate value of the
exponential function and

for(i=1; i<=10; i++) e(i)

prints approximate values of the exponential function of the
first ten integers.

FILES
/usr/1lib/1lib.b mathematical library
dc(1l) desk calculator proper
LIMITATIONS
No &&, ||, or | operators.

For statement must have all three expression's.

Quit is interpreted when read, not when executed.

3 Bell 3

BDIFF(1) Zilog BDIFF(1)

NAME
bdiff - the diff program for very large files

SYNOPSIS
bdiff filel file2 [n] [-s]

DESCRIPTION
Bdiff is used in a manner analogous to Aiff(1l) to find which
lines must be changed in two files to bring them into agree-
ment. Its purpose is to allow processing of files which are
too large for dAiff.

Bdiff ignores lines common to the beginning of both files,
splits the remainder of each file into n-line segments, and
invokes diff upon corresponding segments. The value of n is
3500 by default. If the optional third argument is given,
and it is numeric, it is used as the value for n. This is
useful in those cases in which 35@@-line segments are too
large for 4iff, causing it to fail.

If filel (file2) is -, the standard input is read.

The optional -s (silent) argument specifies that no diagnos-
tics are to be printed by bdiff (note, however, that this
does not suppress possible exclamations by diff. If both
optional arguments are specified, they must appear in the
order indlicated above.

The output of bdiff is exactly that of diff, with line
numbers adjusted to account for the segmenting of the files
(that is, to make it look as if the files had been processed
whole).

Note: because of the segmenting of the files, bdiff does not
necessarily find a smallest sufficient set of file differ-
ences.

FILES
/tmp/bd???22?

SEE ALSO
diff(1).

DIAGNOSTICS
Use help(l) for explanations.

1 Bell 1

BREAK (1C) Zilog BREAK (1C)

NAME
break -~ C-Shell flow control interrupt statement

SYNOPSIS
break

DESCRIPTION
Break causes execution to resume after the end of the
nearest enclosing foreach or while loop. The remaining com-
mands on the current line are executed. Multi-level breaks
are thus possible by writing them all on one line.

The built-in command continue can be used to continue the
loop prematurely.

EXAMPLE
$ test.script
while (1)
echo -n 'enter x: '
set x = 'gets'
if(8x == 'a') then
break
else
echo 'it didn't break'
endif
end
echo 'it broke'

SEE ALSO

foreach(1C), while(1C), breaksw(1lC), end(lC), continue(lC)
and

The C Shell in the ZEUS Utilities Manual

1 UCB 1

BREAKSW(1C) Zilog BREAKSW(1C)

NAME
breaksw - C-Shell flow control interrupt statement
SYNOPSIS
breaksw
DESCRIPTION
Breaksw causes a break from a switch, resuming after the
endsw. The command breaksw causes execution to continue
after the endsw.
EXAMPLE
$ test
foreach i (*)
switch (8i)
case ?2?7?7?
echo "$i is a 4 character filename"
breaksw
case ?2?22?7?
echo "$i is a 5 character filename"
breaksw
case 2?2?2272
echo "$i is a 6 character filename"
breaksw
default
echo "$i is not 4, 5, or 6, characters"
endswitch
end
SEE ALSO

foreach(1C), switch(1C), case(1lC), echo(lC), default(lC),

endswitch(1C), and end (1C).
The C Shell in the ZEUS Utilities Manual

1 UcCB 1

CAL(1) 7ilog CAL(1)

NAME
cal - print calendar

SYNOPSIS
cal [month] year

DESCRIPTION :
Cal prints a calendar for the specified year. If a month is
also specified, a calendar just for that month is printed.
Year can be between 1 and 9999. The month is a number
between 1 and 12. The calendar produced is that for England
and her colonies.

EXAMPLES
INCORRECT CORRECT
cal September 1752 cal 9 1752
cal '42 cal 1942
LIMITATIONS

The year is always considered to start in January even
though this is historically naive.

Beware that "cal 78" refers to the early Christian era, not
the 20th century.

CALENDAR(1) Zilog CALENDAR(1)

NAME

calendar - reminder service
SYNOPSIS

calendar [-]
DESCRIPTION

Calendar consults the file "calendar" in the current direc-
tory and prints out lines that contain today's or tomorrow's
date anywhere in the line. Most reasonable month-day dates
such as "Dec. 7," "december 7," "12/7," etc., are recog-
nized, but not "7 December" or "7/12". On weekends, "tomor-
row" extends through Monday.

When an argument is present, calendar does its job for every
user who has a file calendar in their login directory and
sends any positive results by mail(l). Normally this is
done daily after midnight under control of cron(M).

EXAMPLE
The file calendar in the home directory can have the follow-
ing lines:

3/3 meeting, 19:0¢ am conference room B
3/3 call hank re schedule
3/5 dinner with carol -- pm.

the command:
(cd; calendar)

will always execute the calendar file in the home directory,
regardless of the current working directory.

FILES
/usr/lib/calprog to figure out today's and tomorrow's dates
/etc/passwd
/tmp/cal*
/usr/lib/crontab

SEE ALSO
egrep(l), sed(1l), at(l), mail(l), cron(M)

LIMITATIONS
The calendar must be public information to get reminder ser-
vice.
Calendar"s extended idea of tomorrow does not account for
holidays.

1 Bell 1

CAS(1) Zilog CAS(1)

NAME
cas - invoke assembler

SYNOPSIS
cas [—oud] file

DESCRIPTION
Cas assembles the named file written in the assembly
language described in the ZEUS Languages/Programming Tools
Manual. It will not assemble files written in PLZ/ASM
assembly language.

OPTIONS
-0 objfile The output of the assembly is left on objfile.
If this option 1is omitted, the output is left on the
file a.out.

-u Treat all undefined references as externals.
-d Include internal labels in the a.out symbol table.

FILES
/bin/cas assembler
/tmp/as* temporary
a.out object

SEE ALSO
1d(1), nm(1), objdu(l), strip(l), a.out(5).

ZEUS Languages/Programming Tools Manual.

DIAGNOSTICS
The assembler produces error messages to standard error if
an error occurs during the assembly process. If errors

prevent further assembly, the assembler aborts, closes all
files, and prints a message to standard error. If the
assembler is interrupted during assembly, the assembler
aborts and closes all files.

LIMITATIONS
The following features are not implemented.

- Floating point numbers, constants and conversion operators
(*F, “FD, "“FS, .quad, .extend). ,

- Absolute sections and common sections (.asec and .csec).

- Listing facilities.

- Error recovery (currently the assembler terminates on most
errors). '

- Program sectioning (.psec) in nonsegmented mode.

1 Zilog 1

CAT(1) Zilog CAT(1)

NAME
cat - concatenate and print files

SYNOPSIS
cat [-u] [-s] file ...

DESCRIPTION
Cat reads each file in sequence and writes it on the stan-
dard output. The input file may not be the same as the out-
put file unless it is a special (device) file.

OPTIONS
- Reads from the standard output; same as if no output
file is given.
-8 Makes cat silent about non-existent files.

-u Does not buffer the output in 512-byte blocks as usual.

EXAMPLES
cat file

prints the file, and:

cat filel file2 > file3
concatenates the first two files and places the result in
the third file. The third file is created if it does not

exist.

SEE ALSO
cp(l), pr{l).

1 Bell 1

CB(1) Zilog

NAME
cb - C program beautifier

SYNOPSIS
cb < file.c

DESCRIPTION
Cb reformats a C program file, providing the spacing
indentation to display the structure of the program.

EXAMPLE
The raw file named test.c containing the line:

main() { printf("hello, world\n"); }
when reformatted with the command:

cb < test.c
produces the output:

main() {
printf("hello, world\n");
}

1 Bell

CB(1)

and

cc(1)

NAME

Zilog cc(1l)

cc - S890@ C compiler

SYNOPSIS

cc [option] file

DESCRIPTION

Cc is the portable C compiler modified to produce Z800dJ
code. Depending on the options, a single cc call can com-
pile; compile and assemble; compile, assemble, and link; or
do any of these combinations with an optional global optimi-
zation pass.

The cc compiler provides an unsigned char data type, ini-
tialized bit fields, the ZEUS version 7 features of C
(structure assignments and enumeration types) and the new
ZEUS System III additions to the C language, the "void" data
type and unique identification of names of structure and
union memkers.

The default is to compile, assemble, and link, using inter-
nal calls to the Z8099 assembler, cas, and S80¢0 linker, 1d.
File names ending in .c are taken to be C source files to be
compiled. The -0l option causes the optional global optimi-
zation pass to be invoked in order that loop optimization be
applied to the code. The -Or option invokes global optimiza-
tion so that both loop optimization and register allocation
be applied to the code. The assembly language code produced
by the compiler can be (peephole) optimized with the -0
option before being passed to the assembler. (The -0l and -
Or options also invoke the peephole optimizer.) The =S
option saves the 278000 assembly language code in .s files
and suppresses further processing. By default, the code is
assembled and then passed to the linker. The =-c option
saves the assembled code in .o files and suppresses further
processing. By default, the linker then links the code to
produce an executable 278000 program.

File names ending with .s are taken to be Z8007 assembly
language. By default, the .s files are assembled to produce
.0 files and then linked. The compilation step is skipped
with .s files.

Other file names are taken to be names of C-compatible
object programs (typically produced by an earlier cc run),
or perhaps libraries of C-compatible routines. These pro-
grams, together with the results of any compilations speci-
fied, are linked (in the order given) to produce an execut-
able load module with name a.out.

Options on the cc call can be for cc or for 1d.

Zilog 1

CC(1) Zilog CC(1l)

OPTIONS
-C Compile and assemble the named C source files but
suppress the linking step. Force an object file .o
to be produced even if only one source file is com-
piled. If a number of C source files are specified,
the .o files are saved.
-Dname

—Dname=def
Define name to the preprocessor, as if by #define.
If no definition is given, name is defined as 1.

-E Run only the macro preprocessor and send the result
to the standard output.

-Idir Bring in a directory of #include files. Names that
do not begin with / are always sought first in the
same directory as the source file, then in direc-
tories named in -I options, then in directories on a
standard list.

-0l Invoke the C global optimizer to apply loop optimi-
zation.

-0Or Invoke the C global optimizer to apply loop optimi-
zation and register allocation.

-0 Invoke the C peephole optimizer for z8099J code.

-p Arrange for the compiler to produce code that counts

the number of times each routine is called; also, if
loading takes place, replace the standard startup
routine by one which automatically calls monitor(3)
at the start and arranges to write out a mon.out
file at normal termination of execution of the
object program. An execution profile can then be
generated by use of prof(l).

-P Run only the macro preprocessor and place the result
for each .c file in a corresponding .i file with no
lines in it.

-s[1] Compile the named C source files but suppress the
assembly and link step. Leave the assembly language
code on corresponding files named .s. If 1 is
specified, make the original C source lines appear
as assembly language commments preceding the code
produced for them.

—~Uname Remove any initial definition of name.

2 zilog 2

cc(1)

zilog cc(l)

Other options can be specified on the cc call and are passed
to the linker 1ld. No options are passed to as from the cc
call, but any internal call to the assembler uses the —-u and
-f options and the -o option with a name consisting of the
original name and .o. The internal call to the linker
specifies the options =X and -e with entry name start, and
adds the library name /lib/libc.a to the end of the list of
object module names. See the description of 1d.

FILES
file.c source file
file.o object file
a.out load module
/tmp/cc.? temporaries
/1ib/cpp preprocessor
/lib/cparse compiler passl
/1lib/gopt optional global optimizer
/1ib/codgen compiler pass3
/1ib/popt optional peephole optimizer
/1lib/clist optional listing pass
/1lib/libc.a standard library

/lib/mcrtd.o optional startup routine for profiling

SEE ALSO

as(1l), 14(1).

The C Programming Language (by B. W. Kernighan and D. M.
Ritchie, Prentice-Hall, 1978),

C in the ZEUS Languages/Programming Tools Manual.

DIAGNOSTICS

The diagnostics produced by the compiler, assembler, or
linker are self-explanatory.

IMPLEMENTATION

The cc compiler has the following characteristics:
& As many as seven register declarations can be
honored. The 78000 registers r8 through rl4 can
be used for register variables.

& The cc compiler produces object code that conforms
to the S8@00 calling conventions.

Zilog 3

CD(1C) Zilog CDh(1C)

NAME
cd - change working directory

SYNOPSIS
cd directory

DESCRIPTION

Directory becomes the new working directory. The process
must have execute (search) permission in directory.

Cd is recognized and executed by the shell. A new process
is created to execute each command, and cd would be ineffec-
tive if it were written as a normal command.

SEE ALSO

csh(l), pwd(l), sh(l), chdir(2).
The C Shell in the ZEUS Utilities Manual

ucB 1

cpe(l) Zilog CDC(1)

NAME

cde -~ change the delta commentary of an SCCS delta

SYNOPSIS

cdc -rSID [-mlmrlist]] [-y[comment]] files

DESCRIPTION

Cdc changes the delta commentary, for the SID specified by
the -r keyletter, of each named SCCS file.

Delta commentary is defined to be the Modification Request (
MR) and comment information normally specified via the
delta(l) command (-m and -y keyletters).

If a directory is named, cdc behaves as though each file in
the directory were specified as a named file, except that
non-SCCS files (last component of the path name does not
begin with 8.) and unreadable files are silently ignored.
If a name of - is given, the standard 1input is read (see
WARNINGS); each 1line of the standard input is taken to be
the name of an SCCS file to be processed.

Arguments to cdc, which may appear in any order, consist of
keyletter arguments, and file names.

All the described keyletter arguments apply independently to
each named file:

-m[mrlist] If the SCCS file has the v flag set (see
admin(1l)) then a list of MR numbers to be added and/or
deleted in the delta commentary of the SID specified by
the =~-r keyletter may be supplied. A null MR list has
no effect.

MR entries are added to the list of MR in the same
manner as that of delta(l). In order to delete an MR,
precede the MR number with the character | (see EXAM-
PLES) . If the MR to be deleted is currently in the
list of MR s, it is removed and changed into a "com-
ment" line. A 1list of all deleted MR s is placed in
the comment section of the delta commentary and pre-
ceded by a comment line stating that they were deleted.

If -m is not used and the standard input is a terminal,
the prompt MRs? is issued on the standard output before
the standard input is read; if the standard input is
not a terminal, no prompt is issued. The MRs? prompt
always precedes the comments? prompt (see -y
keyletter).

MR s in a list are separated by blanks and/or tab char-
acters. An unescaped new-line character terminates the

Bell 1

cDC(1) Zilog CDC(1)

MR list.

Note that if the v flag has a value (see admin (1)), it
is taken to Dbe the name of a program (or shell pro-
cedure) which validates the correctness of the MR
numbers. If a non-zero exit status is returned from
the MR number validation program, cdc terminates and
the delta commentary remains unchanged.

-r SID Used to specify the SCCS ID entification (SID)
string of a delta for which the delta commentary is to
be changed.

-y [comment] Arbitrary text used to replace the comment
(s) already existing for the delta specified by the -r
keyletter. The previous comments are kept and preceded
by a comment 1line stating that they were changed. A
null comment has no effect.

If -y is not specified and the standard input is a ter-
minal, the prompt comments? is issued on the standard
output before the standard input is read. If the stan-
dard input is not a terminal, no prompt is issued. An
unescaped new-line character terminates the comment
text.

The exact permissions necessary to modify the SCCS file are
documented in the Source Code Control System User's Guide.
Simply stated, they are either (1) if you made the delta,
you can change its delta commentary; or (2) if you own the
file and directory you can modify the delta commentary.

EXAMPLES
cdc -rl .6 -m"bl78-12345 \!bl77-54321 bl79-2@3@21"
-ytrouble s.file

adds bl78-12345 and Db179-990001 +to the MR list, removes
bl77-54321 from the MR list, and adds the comment trouble to
delta 1 . 6 of s . file.

cde -rl . 6 s.file
MRs? 1bl77-54321 b178-12345 bl79-20001
comments? trouble

does the same thing.

WARNINGS
If SCCS file names are supplied to the cdec command wvia the
standard input (- on the command line), then the -m and -y

keyletters must also be used.

2 Bell 2

CDC(1) Zilog CDC(1)

FILES
x-file (see delta(l))
z-file (see delta(l))
SEE ALSO

admin(1), delta(l), get(l), help(l), prs(l), sccsfile(5).
Source Code Control System User's Guide in the ZEUS Utili-
ties Manual '

DIAGNOSTICS
Use help(l) for explanations.

3 Bell 3

CHGRP(1) zilog CHGRP(1)

NAME
chgrp - change group

SYNOPSIS
chgrp group file ...

DESCRIPTION
Chgrp changes the group-ID of the files to group. The group
may be either a decimal group-ID number or a group name
found in the group-ID file.

FILES
/etc/chgrp
/etc/passwd
/etc/group

SEE ALSO
chown(l), chown(2), passwd(5), group(5), chmog(M)

1 Bell 1

CHKIN(1) Zilog CHKIN(1)

COMB(1) Zilog COMB(1)

168 * (original - combined) / original

It is recommended that before any SCCS files are
actually combined, this option should be used to
determine exactly how much space is saved by the
combining process.

If no keyletter arguments are specified, comb preserves only
leaf deltas and the minimal number of ancestors needed to
preserve the tree.

FILES
s .COMB The name of the reconstructed SCCS file.
comb?2?2??? Temporary.

SEE ALSO

admin(1l), delta(l), get(1l), help(l), prs(l), sccsfile(5).
Source Code Control System User's Guide in the ZEUS Utili-
ties Manual

DIAGNOSTICS
Use help(l) for explanations.

LIMITATIONS
Comb can rearrange the shape of the tree of deltas. It may
not save any space; in fact, it is possible for the recon-
structed file to actually be larger than the original.

CHGRP(1) Zilog CHGRP(1)

NAME
chgrp - change group

SYNOPSIS
chgrp group file ...

DESCRIPTION
Chgrp changes the group-ID of the files to group. The group
may be either a decimal group-ID number or a group name
found in the group-ID file.

FILES
/etc/chgrp
/etc/passwd
/etc/group

SEE ALSO
chown(l), chown(2), passwd(5), group(5), chmog(M)

1 Bell 1

CHKDIFF(1) Zilog CHKDIFF(1)

NAME
chkdiff - list differences between versions of a source file

SYNOPSIS
chkdiff [-h] [-v rel.lev] [-v rel.lev] file

DESCRIPTION
Chkdiff lists the differences between a source code file and
another version of it in its source control file; chkdiff
can also list the differences between two versions in the
source control file. The differences are described in the
form used by 4iff(1).

The filename argument must be the name of a source file, not
its control file. By default, the differences listed are
those between the source file and the last version in the
control file.

OPTIONS
-h Invokes the "halfhearted" version of 4Aiff(1l).

-v Lists the differences between the source file and the
specified version if used once. If the ~v option is
used twice, the differences listed are those between
the two specified versions. Each -v option is followed
by an argument of the form rel.lev, where rel 1is the
release number and lev is the release level number.

FILES
file+ -- control file for file
/tmp/chkdif£XXX -- temporarily holds one of the versions

SEE ALSO
chkin(1l), chkout(l), chkwhat(1l), zsc(5), diff(1l)

DIAGNOSTICS
corrupt chkfile: the convention specified in zsc(5) has
been violated

diff: files too big, try -~h: version differences cannot be
calculated because the file is too big

version rel.lev not found: use chkout -h to find correct
version numbers

LIMITATIONS

If the files are too big for the differences to be calcu-
lated, an version entry is made showing no differences.

1 Zilog 1

CHKIN(1) Zilog CHKIN(1)

NAME

chkin - check in file to Zilog Source Control file

SYNOPSIS

chkin [-r] [-b] [-c comment] [-d dir] file ...

DESCRIPTION

Chkin checks in a source file to its Zilog Source Control
file (see 2zsc(5)). If the control file does not exist, it
is created, and the entire contents of the source file
entered. If the source file does exist, the differences
between the source file and the last version in the control
file are found using dAiff(1l) and these differences entered.

If the control file exists, chkin looks for a lock file.
The existence of the 1lock file indicates that the source
file was previously checked out for editing by chkout(l).
If the 1lock file is missing, chkin will not check in the
file.

The filename argument can be either the name of the source
file (must not end with +) or the control file name (the
local name of the source file ending with a +). If the con-
trol file 1is specified and the -4 option is not used, the
source file is assumed to be in the working directory even
if the control file is not.

By default, chkin assigns the new version the same major
version number as the last version and a minor version
number one greater than the last version's. Also Dby
default, chkin prompts for comments and reads its standard
input until an EOF (control-d on terminal input). This
input 1is inserted in the control file as comment lines (see
zsc(5)). Each comment line (which is terminated by a car-
riage return) is limited to 256 characters.

Note that the interrupt key typed after the comment 1lines
have been entered can cause an inconsistent control file.
After the new version entry is added to the control file,
chkin removes (if it has one) its lock file. The source
file is replaced by a checked-out read-only version of
itself: see chkout(l).

OPTIONS

-b Bump the release number: the major version number for
this version 1is one greater than that of the previous
version and the minor version number is 1.

—-Cc comment
Insert comment as a comment line enclosed in double
quotes; don't prompt for a comment; ignore the standard

input.

Zilog 1

CHKIN(1) Zilog CHKIN(1)
-d dir
Get the source from directory dir instead of the work-
ing directory.
-r The source file is just removed and not replaced by a
read-only file.
FILES
file+ -— control file for file
file- -- lock file for file
/tmp/chkinXXXXXX -- latest version restored here
chkinXXXXXX -- temporary for keyword substitution
/bin/diff -- program which derives version differ-
ences
SEE ALSO
chkout(1l), chkdiff(l), chkwhat(l), zsc(5)
DIAGNOSTICS
no lock file for XxXxXxX: either the 1lock file has been

removed or you are trying to checkin a new source file to an
existing control file

corrupt chkfile: the convention specified in zsc(5) has
been violated

LIMITATIONS

It is possible to fool chkin into accepting a file that was
not previously checked out. This is done at your own risk.

Zilog 2

CHKOUT (1) Zilog CHKOUT(1)

NAME
chkout - check out file from Zilog Source Control file

SYNOPSIS
chkout [-d dir] [-e] [-h] [-p] [-v rel.lev] file ...

DESCRIPTION
Chkout reconstructs (checks out) any version of a source
file wusing the information contained in a Zilog Source Con-
trol file (see zsc(5)). For each file checked out, the ver-
sion number and number of lines in the file are listed.

The filename argument can be either the name of the source
file (which cannot end with a +) or the name of the control
file (which is the local name of the source file with a +
appended). If the control file 1is specified and the -d
option is not used, the source file is created in the work-
ing directory, even if the control file is elsewhere.

Used without options, chkout checks out the last version as
a read-only file: the source file has no write permission
and has keywords substituted. (Keywords are described in
zsc(5).) Use read-only files for listing, compilation, or
other program input. A read-only source file must not be
modified or checked back in to the control file.

OPTIONS
- dir
Create the source file in the directory dir instead of
the working directory. -

-e Check out. the version as an editable file: the source
file has the usual mode, the keywords are left alone,
and a lock file is created. The lock file prevents
additional checkouts for this file; it must be present
if the edited editable file is to be checked back in.
See chkin(1l).

~h For each version in the control file, 1list wversion
number, date checked in, comments, and who checked in
this version. No version is checked out.

-p List the version on the standard output. Substitute
keywords.

-v rel.lev
Check out the specified version instead of the last

version.
FILES
file+ -— control file for file
file- -- lock file for (editable) file

1 Zilog 1

CHKOUT(1) Zilog CHKOUT(1)

SEE ALSO

chkin(l), chkdiff(1l), chkwhat(l), zsc(5)

DIAGNOSTICS

xxxxx checked out by xxxxx at xxxxx: the file 1is checked
out for editing; it can not be checked out again until the
new version is checked back in or the editing copy and 1its
lock file are removed.

writable xxxxx exists: checking out the file would
overwrite a file which is not apparently a checked out file

corrupt chkfile: the convention specified in zsc(5) has
been violated

version rel.lev not found: use chkout -h to find correct
version numbers

LIMITATIONS

e

No editor checks for the presence of a 1lock file, so be
careful not to edit read-only files: your mistake will not
become apparent until the editor refuses to overwrite the
file.

Zilog 2

CHKWHAT (1) Zilog CHKWHAT(1)

NAME

chkwhat - print Zilog Source Control what strings

SYNOPSIS

chkwhat [-w] file ...

DESCRIPTION

Chkwhat searches the specified files for "what strings" and
lists the identifying portion of these strings. If the -w
option is used the entire "what string" will be printed.
This option can be helpful when placing "what strings" in an
archive. The file need not be a text file.

A "what string" shows which version of a source file the
specified file 1is or is associated with. It is defined as
beginning with the four-character sequence @[$] and ending
with a null, newline, ", or '. Chkwhat lists the string
from after the @[$] to before the terminating character.

SEE ALSO

zsc(5), chkin(l), chkout(l)

LIMITATIONS

The "what string" was presumably. created when the file or
the source code it was generated from was properly checked
out of a Zilog Source Control file, but there is no guaran-
tee of this.

Zilog 1

CHMOD (1) Zilog CHMOD (1)

NAME

chmod - change mode

SYNOPSIS

chmod mode file ...

DESCRIPTION

The file protection mode controls the read, write, and exe-
cute permissions for the owner of a file, the owner's group,
and other users. The file protection mode is changed accord-
ing to mode, which can be an absolute number, or a symbolic
set of letters.

The protection mode of a file is shown with the 1s -1 com-
mand as in the example below:

~-YWXIrw-r-- 1 owner group 2268 Mar 3 12:42 filename

The mode portion of the command usually takes the form of a
3-digit number. The first digit controls the permission bits
for the owner of the file, the second digit controls the
permission bits for the members of the same group, and the
third digit controls the permissions for everyone else.

A leading fourth digit controls special access codes to set
a new user or group identification on execution of the file.

19049 tricky bit (chmod (2))
2900 set group ID on execution
4000 set user ID on execution

The mode is a three-digit number constructed from the fol-
lowing numbers:

Number: Bits: Meaning:

- no permissions

-—X execute (search in directory) only
-W- write only

-WX write and execute (search)

read only

r-x read and execute (search)

rw- read and write

WX read, write and execute (search)

SNAOAUdWNMEHR
~
|
|

Thus the command:
chmod 758 file

changes the protection mode of file such that the owner has

Bell 1l

CHMOD (1) Zilog CHMOD (1)

read, write, and execute permission; members of the owner's
group have read and execute permission, and all others are
excluded from any access to the file.

The file permission bits will look like the following:
-rWXr-x--- 1 owner group 2268 Mar 3 12:42 filename

Note that the first character in the string refers to the
nature of the file ("-" if it is a regular file, "d" if it
is a directory file and "p" if it is a named pipe. For spe-
cial device files, a "c¢" refers to a "character" file, and
"b" refers a "block" file).

The first set of 3 bits refers to the permissions of the
owner, the second set of 3 bits refers to the permissions of
those in the owner's group, and the 1last set of 3 bits
refers to the permissions for everyone else.

File ©User Group Others

file 7 5 7]

- WX r-x —-——- 1 owner group 2268 Mar 3
12:42 filename

A command using the symbolic mode has the form:

chmod who operator ggrmissioh file

Where who is one or more of the following letters:

Letter: who: Bits affected:
u user —LWK=—m————
g group =Y WX ==
o others ——-cw-- rwx
a all ~LTWXEWXEWX

If who is omitted, the default is all but the setting of the
file creation mask (umask(2)) is taken into account.

The operator can be any of the following:
to add permission to the file's mode,

to take away permission
to assign permission absolutely.

Wi+

All other bits are reset.

Permission is any combination of the letters

Bell . 2

CHMOD (1) Zilog CHMOD (1)

Letter: Bit: Meaning:

r r-- read

w ~W- write

X --X execute

s set owner or group ID
t save text - sticky bit

Only the owner of a file (or the super-user) can change its
mode.

EXAMPLES
The command:
chmod 740 filename
produces the following file protections:
—rWXL————- 1 owner group 2268 Mar 3 12:42 filename
The owner can read, write on, and execute the file; members
of the owner's group can only read the file, and everyone
else has no access at all.
The command:
chmod 551 filename
produces the following file protections:
-r-Xr-x--x 1 owner group 2268 Mar 3 12:42 filename
The owner has read and execute permission, members of the

owner's group also have read and execute permission, while
everyone else is restricted to execute permission.

The command:
chmod 765 filename
produces the following file protections:
-IWXrw-r-x 1 owner group 2268 Mar 3 12:42 filename
The owner can read, write on, and execute the file, members
of the owner's group can read and write on the file (but

they cannot execute it), and all others can read the the
file and execute it, but they cannot write on it.

3 Bell 3

CHMOD (1) Zilog CHMOD (1)

SEE ALSO
1s(1l), umask(l), chown(l), chmod(2), stat(2), umask(2),
chmog (M) , chown (M) .

4 Bell 4

CHOWN(1) zilog CHOWN(1)

NAME
chown - change the owner-name of a file
SYNOPSIS
chown owner file
DESCRIPTION
Chown changes the owner of the files to owner. The owner

may be either a decimal user-ID number or a login name found
in the /etc/passwd file.

EXAMPLES
The command:

chown bill test.c

changes the ownership of the file test.c to bill (assuming
bill is a valid user-name in the /etc/passwd file).

FILES
/etc/chown
/etc/passwd

SEE ALSO
chown(2), chgrp(l), passwd(5), group(5), chmog(M).

LIMITATIONS

Only the owner or the super-user should be able to change
the ownership of a file.

1 Bell 1

CMP(1) Zilog CMP(1)

NAME
cmp - compare two files

SYNOPSIS
cmp [-1 1 [-8] filel file2

DESCRIPTION
The two files are compared. If filel is a minus sign "-",
the standard input 1is used. Under default options, cmp
makes no comment if the files are the same; if they differ,
it announces the byte and line number at which the differ-
ence occurred. If one file is an initial subsequence of the
other, that fact is noted.

OPTIONS
-1 Print the byte number (decimal) and the differing
bytes (octal) for each difference.
-3 Print nothing for differing files; return codes only.
SEE ALSO

diff(1), comm(1l)
DIAGNOSTICS

Exit code @ is returned for identical files, 1 for different
files, and 2 for an inaccessible or missing argument.

1 Bell 1

CODE(1) Zilog CODE(1)

NAME
code - print characters with their octal equivalents.

SYNOPSIS
code [< file]

DESCRIPTION
Code reads from standard input or from a file (with the

"less than" redirect symbol) and lists each character with
its hex eguivalent on the standard output.

Code runs in ‘raw mode' and terminates on the DEL character

(hex 7F).
EXAMPLES

Without argument: Input from file
code code < file

a 6l a 61
b 62 b 62
c 63 c 63
 7f

1 Zilog 1

COL(1) Zilog COL(1)

NAME

col - nroff post-processing filter for printer output

SYNOPSIS

col [-bfx] [< file]
cat file | col

DESCRIPTION

This filter removes halfline and reverse-line motions gen-
erated by nroff(l).

To display equations, tables, or multi-column formats on a
device that lacks reverse-line capability, such as a line
printer or video terminal, run nroff without the -T option
and filter the output with col.

Col is also used to optimize output to a TTY37. The -f
option should be used in this case.

These are col's primary features:

® Col transforms input containing the TTY37 sequences for
reverse~line (ESC-7), reverse-halfline (ESC-8), and
forward-halfline (ESC-9) to a form suitable for a dev-
ice without these capabilities. It does this by over-
laying the text lines on an internal buffer the same
way the TTY37 overlays the physical lines on the output
paper. VT ("K) is also assumed to mean reverse-line.

® Where possible, col changes blanks to equivalent tabs.
Tab stops are assumed for the ninth columns and every 8
columns thereafter.

) The TTY37 uses SI ("N) and SO ("0) to shift to and from
its Greek character set. Nroff generates a SI and a SO
for every Greek letter. Col eliminates the unnecessary
shift-out-shift-in sequences. Col can be used to
optimize any use of SI and SO to indicate an alternate
character set.

& Col eliminates all control characters except for ESC
(escape, hexadecimal 1b) when followed by a 7, 8, or 9
character,

SP (space, 20),

BS (backspace, 08),
HT (tab, ©9),

CR (return, @4d),

NL (newline, @a),
SI (shift in, @f),
SO (shift out, @e),

Bell 1

COL(1)

OPTIONS
-b

-X

SEE ALSO

Zilog COL(1)

Generate output suitable for a device that cannot back-

space. In a series of overstruck characters, only the
last is output.

Eliminate all reverse motion but permit halfline-

forward (ESC-9) sequences. Useful to optimize output
to TTY37.

Do not generate new tab characters.

troff(1l), tbl(l), eqn(l), ascii(7)

LIMITATIONS
Can't back up more than 128 lines.

Permits no more than 803 characters, including backspaces,
on a line.

Bell 2

COMB(1) Zilog COMB(1)

NAME

comb - combine SCCS deltas

SYNOPSIS

comb [-clist -0 -pSID -s] files

DESCRIPTION

Comb generates a shell procedure (see sh(l)) which recon-
structs the given SCCS files. The reconstructed files will
be smaller than the original files. The arguments can be
specified in any order, but all keyletter arguments apply to
all named SCCS files.

If a directory is named, comb behaves as though each file in
the directory were specified as a named file, except that
non-SCCS files (last component of the path name does not
begin with s.) and unreadable files are ignored.

If a name of - is given, the standard input is read; each
line of the standard input is taken to be the name of an
SCCs file to be processed; non-SCCS files and unreadable
files are ignored.

The generated shell procedure is written on the standard
output.

OPTIONS

The keyletter arguments are as follows. Each is explained
as 1f only one named file 1is to be processed, but the
effects of any keyletter argument apply independently to
each named file.

-clist A list (see get(l) for the syntax of a 1list) of
deltas to be preserved. All other deltas are dis-
carded.

-0 Causes the reconstructed file to be accessed at

the release of the created delta for each get -e
generated; otherwise, the reconstructed file is
accessed at the most recent ancestor. Use of the
-0 keyletter can decrease the size of the recon-
structed SCCS file. It can also alter the shape
of the delta tree of the original file.

-pSID The SCCS IDentification string (SID) of the oldest
delta to be preserved. All older deltas are dis-
carded in the reconstructed file.

-8 Causes comb to generate a shell procedure which
produces a report for each file giving: the file
name, size (in blocks) after combining, original
size, and percentage change computed by:

Bell 1

COMB(1) Zilog COMB(1)

1868 * (original - combined) / original

It is recommended that before any SCCS files are
actually combined, this option should be used to
determine exactly how much space is saved by the
combining process.

If no keyletter arguments are specified, comb preserves only
leaf deltas and the minimal number of ancestors needed to
preserve the tree.

FILES
s .COMB The name of the reconstructed SCCS file.
comb??2?2?7? Temporary.

SEE ALSO

admin(1l), delta(l), get(l), help(l), prs(l), sccsfile(5).
Source Code Control System User's Guide in the ZEUS Utili-
ties Manual

DIAGNOSTICS
Use help(l) for explanations.

LIMITATIONS
Comb can rearrange the shape of the tree of deltas. It may
not save any space; in fact, it is possible for the recon-
structed file to actually be larger than the original.

2 Bell 2

COMM(1) zilog COMM(1)

NAME - .
' comm - select or reject lines common to two sorted files

SYNOPSIS
comm [- 1237 filel file2

DESCRIPTION >
Comm reads filel and file2, (which must be ordered in ASCII
collating sequence, see sort(l)) and produces three-column

-output.

column 1 contains those lines only in filel;
column 2 contains lines only in file2;
column 3 contains lines in both files.

The minus sign "~" means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding
column. Thus the command: o

comm -12 filel file2

prints only the lines in column 3 -- the lines common to the
two files;

The command:

comm -23 filel file2

prints only lines in column 1 -- the lines only in the first
file

The command:

comm —123 filel file2

is not wvalid.

EXAMPLES
The results for the examples were obtained using the follow-
ing two lists. _ N

% cat templ

tanoTp

cat temp?2

1 Bell 1

COMM(1) Zilog CoMM(1)

e
£
)
h
% comm templ temp2
a
b
c
ol
e
£
g
n
% comm -23 templ temp2
a
b
$ comm -13 templ temp2
£
9
h
$ comm -12 templ temp2
c
d
e
SEE ALSO

cmp(l), diff(1), sort(l), unig(l).

2 Bell 2

CONTINUE (1C) Zilog ' CONTINUE (1C)

NAME
continue - C Shell flow control statement

SYNOPSIS
continue

DESCRIPTION
Continue execution of the nearest enclosing while or
foreach, The rest of the commands on the current line are
executed.

EXAMPLE
test
while (1)
echo -n "enter x:"
set x="gets’

if ($x == 'a') then
echo "it continued"
continue

endif

echo "it didnt continue"
exit
end

This shell script prompts for input and sets the variable x
to whatever is input at the terminal. If the input is "a™
the continue statement moves control of the program back to
the while statement at the top and the process repeats.

If the input is not the letter "a" control drops through the
loop and exits.

SEE ALSO
foreach(1lC), while(1lC).
The C Shell in the ZEUS Utilities Manual

1 ucCB 1

cp(1) zZilog : cP(1)

NAME
cp - copy a file into another or into a directory

SYNOPSIS
cp filel file2
cp file directory

DESCRIPTION
Filel is copied onto file2. The mode and owner of file2 are
preserved if it already existed; the mode of the source file
is used otherwise.

In the second form, one or more files are copied into the
directory with their original file names.

Cp refuses to copy a file onto itself.

SEE ALSO
cat(1l), pr(l), mv(1l).

1 Bell 1

CPIO(1) zilog CPIO(1)

NAME
cpio - copy file archives in and out

SYNOPSIS
cpio -o [acBv]

cpio. -i [Bdmrtuvs6é] [patterns]
cpio -p [adlmuv] directory

DESCRIPTION
Cpio -o (copy out) reads the standard input to obtain a list
of path names and copies those files onto the standard out-
put together with path name and status information.

Cpio -i (copy in) extracts from the standard input (which is
assumed to Dbe the product of a previous cpio -o0) the names
of files selected by zero or more patterns given in the

name-generating notation of sh(l). In patterns, meta-
characters ?, *, and [...] match the slash / character. The

default for patterns is * (i.e., select all files).

Cpio -p (pass) copies out and in 1in a single operation.
Destination path names are interpreted relative to the named

directory.
OPTIONS
a Reset access times of input files after they have been
copied.
B Input/output is to be blocked 5,120 bytes to the record

(does not apply to the pass option; meaningful only
with data directed to or from tape devices).

C Write header information in ASCII character form for
portability.

d Directories are to be created as needed.

1 Whenever possible, link files rather than copying them.

Usable only with the -p option.

m Retain previous file modification time. This option is
ineffective on directories that are being copied.

r Interactively rename files. If the user types a null

1 Bell 1

CPIO(1) zilog CPIO(1)

line, the file is skipped.

s This option swaps the bytes of a words as they are
read.

t Print a table of contents of the input. No files are
created.

u Copy unconditionally (normally, an older file will not

replace a newer file with the same name).

v Verbose: causes a list of file names to be printed.

Whe used with the t option, the table of contents
looks like the output of an 1ls -1 command (see 1ls(1)).

6 Process an old (i.e., UNIX Sixth Edition format) file.
Only useful with -i (copy in).

EXAMPLES
The first example below copies the contents of a directory
into an archive:; the second duplicates a directory hierar-
chy:

l1s | cpio -o >/dev/ctd

cd olddir
find . -print | cpio -pdl newdir

The command:

**find . -print | cpio -oB >/dev/rct@'’
can be handled more efficiently by:

find . -exec cpio -oB > /dev/rctd

SEE ALSO
ar(l), find(1l), cpio(5).

LIMITATIONS
Path names are restricted to 128 characters. If there are.
too many unique linked files, the program runs out of memory
to keep track of them and, thereafter, 1linking information
is 1lost. Only the super-user can copy special files.
Archive files created with the 'co' option can't be read
back with the 'ci' option.

2 Bell 2

CREF(1) Zilog CREF(1)

NAME
cref - make cross-reference listing

SYNOPSIS
cref [-ilnostux123] files

DESCRIPTION
Cref makes a cross-reference listing of C programs;
are searched for symbols in the appropriate syntax.

The output report is in four columns:

1. symbol;

2. file name;

3. see below;

4. text as it appears in the file.

files

Cref uses either an ignore file or an only file. Ignore and

only files are lists of symbols separated by new-lines.
symbols in an ignore file are ignored in columns 1 and

All
3 of

the output. If an only file is given, only symbols in that
file will appear in column 1. Only one of these options may

be given. C keywords are ignored.

In C the current symbol is the current function name.

This

file 1s created and is not removed at the end of the pro-

cess.
OPTIONS

i The next argument is taken to be an ignore file (see
FILES below).

1 Put line number in column 3 (instead of current sym-
bol).

n Omit column 4 (no context).

o The next argument is taken to be an only file.

s Current symbol in column 3 (default).

t Causes the next available argument to be used as the
name of the intermediate file (instead of the temporary
file /tmp/crt??).

u print only symbols that occur exactly once.

X Print only C external symbols.

1 Sort output on column 1 (default).

2 Sort output on column 2.

1 Bell 1

CREF(1) Zilog

3 Sort output on column 3.

FILES

/tmp/crt?? temporaries
/usr/lib/cref/cign

default C ignore file
/usr/lib/cref/ctab

grammar table for C files
/usr/lib/cref/crpost

post-processor
/usr/lib/cref/upost

post-processor for -u option

SEE ALSO
cc(l), sort(l),

LIMITATIONS
Cref inserts an ASCII DEL character into the

CREF(1)

intermediate

file after the eighth character of each name that is eight

or more characters long in the source file.

2 Bell

CRYPT(1) Zilog CRYPT(1)

NAME
crypt - encode/decode

SYNOPSIS
crypt [password] < in.file > out.file
crypt [password] < out.file > in.file

DESCRIPTION

Crypt reads from files (or from the standard input) and
writes to the standard output (or an output file). The
password is a key that determines the particular transforma-
tion. If no password is given, crypt demands a key from the
terminal and turns off printing (echoing the characters on
the terminal) while the Xkey is being typed in. Crypt
encrypts and decrypts with the same key; thus the command:

crypt key < file > encrypted

encrypts file with the password key and puts the encrypted
output in the file encrypted. The command:

crypt key < encrypted | pr

decodes the encrypted file with the same password key and
prints the file.

Files encrypted by crypt are compatible with those treated
by the editor ed in encryption mode.

The security of encrypted files depends on three factors:
the fundamental method must be hard to solve; direct search
of the key space must be infeasible; and "sneak paths" by
which keys or cleartext can become visible must be minim-
ized.

Crypt implements a one-rotor machine designed along the
lines of the German Enigma, but with a 256-element rotor.
Debug methods on such machines require a large amount of
work.

The transformation of a key into the internal settings of
the machine 1is deliberately designed to take a substantial
fraction of a second to compute. However, if keys are res-
tricted to three lowercase letters, for example, then
encrypted files can be read by expending only a substantial
fraction of five minutes of machine time.

Since the key is an argument to the crypt command, it is
potentially visible to ps(l) or a derivative. To minimize
this possibility, crypt destroys any record of the key
immediately upon entry. The choice of keys and key security
is the most vulnerable aspect of crypt.

1 Bell 1

CRYPT

FILES

(1) Zilog CRYPT(1)

/dev/tty for typed key

SEE ALSO

ed(1l), makekey(M).

LIMITATIONS

38

There is no warranty, either expressed or implied, about the
accuracy of the enclosed materials or their suitability for
any particular purpose. Accordingly, Zilog assumes no
responsibility for their use by the recipient. Further,
Zilog assumes no obligation to furnish any assistance of any
kind whatsoever, or to furnish any additional information or
documentation.

Bell 2

CSH(1) zilog CSH(1)

NAME

csh, - a command interpreter with C-like syntax
SYNOPSIS

csh[-cefinstvvxX] [arg ...]
DESCRIPTION

A csh command script can be interpreted by entering
csh script ...

where script is the name of the file containing a number of
csh commands and ... is replaced by a sequence of arguments.
The C shell places these arguments in the variable argv and
then begins to read commands from the script. These parame-—
ters are then available through the same mechanisms used to
reference any other C shell variables. When a login shell
terminates, it executes commands from the file .logout in
the home directory.

The shell then repeatedly performs the following actions: a

line of command input is read and broken into words. This
sequence of words is placed on the command history list and
parsed. Finally, each command in the current line is exe-
cuted.

OPTIONS

The flag arguments are interpreted as follows:

-c Commands are read from the (single) following
argument that must Dbe present. Any remaining
arguments are placed in argv.

-e The shell exits if any invoked command terminates
abnormally or yields a nonzero exit status.

-f The shell starts faster, because it neither
searches for nor executes commands from the file
.cshrc in the invoker's home directory.

-i The shell is interactive and prompts for its top-
level input, even if it appears to not be a termi-
nal. $Shells are interactive without this option
if their inputs and outputs are terminals.

-n Commands are parsed, but not executed. This aids
in syntactic checking of shell scripts.

-s Command input is taken from the standard input.

-t A single line of input is read and executed. A \
can bhe used to escape the new line at the end of

1 UCB 1

CSH(1) 7ilog CSH(1)

this line and continue onto another line.

-V Causes the verbose variable to be set, with the
effect that command input is echoed after history
substitution.

-X Causes the echo variable to be set, so that com-
mands are echoed immediately before execution.

-V Causes the verbose variable to be set even before
.cshrc is executed.

-X Is to -x as =V is to =-v.

After processing of flag arguments, if arguments remain but
none of the -c, -i, -8, or -t options was given, the first
argument is taken as the name of a file of commands to be
executed. The shell opens this file, and saves its name for
possible resubstitution by $4.

FILES

~/.cshre Read at beginning of execution by each

shell

~/.login Read by login shell, after .cshrc at

login

~/.logout Read by login shell, at logout

/etc/cshprofile Read by login shell, before .cshrc file.
This is a system profile file for the

csh. .
See cshrc(5).

/bin/sh Standard shell, for shell scripts not
starting with a #

/tmp/sh* Temporary file for <«

/dev/null Source of empty file

/etc/passwd Source of home directories for “name.

SEE ALSO

alias(1lC), Dbreak(1lC), breaksw(1lC), <cd(1lC), continue(lC),

echo(1lcC), exit(1lC), foreach(1lC), glob(1lC), history(1lcC),

if(1C), logout(1icC), nice(1cC), nohup(1C), onintr(1cC),

repeat(l1lC), set(lC), setenv(1lC), source(lC), switch(1lc),

time(1lC), umask (1cC), wait(1cC), while(1cC), access(2),

exec(2), fork(2), pipe(2), signal(2), umask(2), wait(2),
a.out(5), environ(s).

The C shell in the ZEUS Utilities Manual

LIMITATIONS
Control structure should be parsed rather than being recog-
nized as built-in commands. This would allow control com-
mands to be placed anywhere, to be combined with |, and to
be used with & and ; metasyntax.

2 UCB 2

CSH(1) zilog CSH(1)

Commands within loops, prompted for by ?, are not placed 1in
the history list.

It should be possible to use the : modifiers on the output
of command substitutions. All and more than one : modifier
should be allowed on $ substitutions.

Words can be no longer than 512 characters. The number of
characters in an argument list or a ccommand substitution is
limited to 512@ characters. The number of arguments to a
command that involves file name expansion is limited to 853.

To detect 1looping, the shell restricts the number of
alias(1C) substititutions on a single line to 20.

3 UCB 3

CSPLIT(1)

NAME

Zilog CSPLIT(1)

csplit - split file according to contextual arguments

SYNOPSIS

csplit [-s] [-k] [-f prefix] file argl [... argn]

DESCRIPTION

Csplit reads

file and separates it into n+l sections,

defined by the arguments argl... argn. By default the sec-
tions are placed in xx0@ ... xxn (n may not be greater than

99).

OPTIONS

ARGUMENTS

These
a9 :
g1l

n+l:

-k

sections get the following pieces of file:

From the start of file up to (but not including)
the line referenced by argl.

From the line referenced by argl up to the line
referenced by arg2.

From the line referenced by argn to the end of
file.

Csplit normally prints the character counts
for each file created. If the -s option is
present, csplit suppresses the printing of
all character counts.

Csplit normally removes created files if an
error occurs. If the -k option is present,
csplit leaves previously created files
intact. -

-f prefix 1If the —-f option is used, the created files

/rexp/

3rexp?

lnno

{num}

are named prefix@@ ... prefixn. The
default is xx@09 ... Xxxn.

A file is to be created for the section from
the current line up to (but not including) the
line containing the regular expression rexp.
The current line becomes the line containing

rexp. This argument may be followed by an
optional + or - some number of lines (e.g.,
/Page/-5).

This argument is the same as /rexp/, except
that no file is created for the section.

A file is to be created from the current line
up to (but not including) lnno. The current
line becomes lnno.

Repeat argument. This argument may follow any
of the above arguments. If it follows a rexp

Bell 1

CSPLIT(1) Zilog CSPLIT(1)

type argument, that argument is applied num

more times. If it follows lnno, the file will
be split every lnno 1lines (num times) from
that point.

Enclose all rexp type arguments that contain blanks or other
characters meaningful to the Shell in the appropriate
guotes. Regular expressions may not contain embedded new-
lines. Csplit does not affect the original file; it is the
users responsibility to remove it.

EXAMPLES
csplit -f cobol file '/procedure division/' /par5./ /parlé./
This example creates four files, cobol@dd ... cobol@#3. After
editing the "split" files, they can be recombined as fol-
lows:

cat cobol@[@-3] > file
Note that this example overwrites the original file.
csplit -k file 10@ {99}

This example would split the file at every 109 lines, up to
19,008 lines. The -k option causes the created files to be
retained if there are more than 10,009 lines; however, an
error message would still be printed.

csplit ~k prog.c 'gmain(%' '/"“}/+1' {20}

Assuming that prog.c follows the normal C coding convention
of ending routines with a } at the beginning of the line,
this example will create a file containing each separate C
routine (up to 21) in prog.c.

SEE ALSO
ed(1l), sh(l), regexp(7).

DIAGNOSTICS
Self explanatory except for:
arg - out of range
which means that the given argument did not reference a line
between the current position and the end of the file.

2 Bell 2

CTAGS(1) Zilog CTAGS(1)

NAME

ctags - maintain a tags file for C or Fortran programs

SYNOPSIS

ctags [-auw] file ...

DESCRIPTION

Ctags makes a tags file for ex(l) from the specified C or
Fortran programs. Files ending in ".f" are assumed to be
Fortran source files and all others are assumed to be C
source files. A tags file gives the locations of specified
objects (in this case functions) in a group of files. Each
line of the tags file contains the function name, the file
in which it is defined, and a scanning pattern used to find
the function definition. These are given in separate fields
on the line, separated by blanks or tabs.

OPTIONS

-a Causes the output to be appended to the tags file
instead of rewriting it.

-u Causes the specified files to be updated in tags, that
is, all references to them are deleted, and the new
values are appended to the file. The tags file is then
piped through sort(l) to restore the ordering required
by ex(1l). This option implies the -—-a option.

-w Suppresses warning diagnostics.

The tag main is treated specially in C programs. The tag
formed 1is created by prepending M to the name of the file,
with a trailing .c removed, if any, and leading pathname
components also removed. This makes use of ctags practical
in directories with more than one program. Fortran programs
are not named main, so this is not necessary.

FILES

tags output tags file

SEE ALSO

ex(1l), vi(l).

LIMITATIONS

In a directory with only one main, the tag main will still
not be created.

In Fortran 77, the program statement is optional, and 1if
missing, no entry will be made in tags.

Zilog 1

cu(1l)

NAME

Zilog Ccu(1)

cu - call another ZEUS system

SYNOPSIS

cu [-sspeed] [-aacul] [-1line] [-h] [-ol|-e] telno | dir

DESCRIPTION

Cu calls up another ZEUS system, a terminal, or possibly a
non-ZEUS system. It manages an interactive conversation
with possible transfers of ASCII files.

Cu will try each line listed in the file /fusr/lib/uucp/L-
devices until it finds an available line with appropriate
attributes or runs out of entries. The L-devices file must
be set up using: -

CONNECTION line speed

where connection is either DIR (for a direct connection to
another system) or ACU (where the line is connected to an
ACU) (see acu(4)). Line is the tty line which will serve to
make the connection. The form of line is ttyX where X is

the tty number. Speed is the baud rate for the connection.
399 bpaud is the default.

After making the connection, cu runs as two processes: the
transmit process reads data from the standard input and,
except for lines beginning with ¥, passes it to the remote
system; the receive process accepts data from the remote
system and, except for lines beginning with =, passes it to
the standard output. Normally, an automatic DC3/DCl proto-
col is used to control input from the remote system so the
buffer 1is not overrun. Lines beginning with ™ have special
meanings.

The transmit process interprets the following:

. terminate the conversation.

~1 escape to an interactive shell on the
local system. The shell is taken from
the SHELL environment wvariable. TIf it
is not set, /bin/sh is used.

“icmd. .. run cmd on the local system. The shell
to be used 1is taken from the SHELL
environment variable. If it is not set,
/bin/sh is used.

“$cmd. .. run cmd locally and send its output to
the remote system.

Bell 1

cu(1l) Zilog cu(1)

~gtake from [to] copy file from (on the remote system) to
) T file to on the local system. If to is
omitted, the from argument is used in

both places.

~“gput from [to] copy file from (on local system) to file
to on remote system. If to is omitted,
the from argument is wused 1in both

places.

N send the line “... to the remote sys-
tem.

“nostop turn off the DC3/DCl input control pro-

tocol for the remainder of the session.
This is useful in case the remote system
is one which does not respond properly
to the DC3 and DCl characters.

The receive process normally copies data from the remote
system to its standard output. A line from the remote sys-
tem that begins with > initiates an output diversion to a
file. The complete sequence is:

“>[>]:file
zero or more lines to be written to file

Data from the remote system is diverted (or appended, if >>
is used) to file. The trailing ™> terminates the diversion.

The use of “gput requires stty(l) and cat(l) on the remote

side. It also requires that the current erase and kill
characters on the remote system be identical to the current
ones on the local system. Backslashes are inserted at

appropriate places.

The use of “$take requires the existence of echo(l) and
cat(l) on the remote system. Also, stty tabs mode should be
set on the remote system if tabs are to be copied without
expansion.

For example, in order to call another system on a direct
line, you would first have to know the terminal name and the
default speed for that line. Then you would type (assuming
that the direct line is tty3):

cu =-1ltty3 dir

OPTIONS
—-e(~0)
Designate that even (odd) parity is to be generated for
data sent to the remote system.

2 Bell 2

Cu(1l) Zilog cu(1)

-h Emulate local echo, supporting calls to other computer
systems which expect terminals to be in half-duplex

mode.

a(]_) .

Specify a device name for the ACU and communications
line device. They can be used to override searching

for the first available ACU with the right speed.

-gspeed

Give the transmission speed (110, 150, 300, 1200, 4800,
2690); 3083 is the default value. Most of our modems
restrict us to choose between 300 and 1200. Directly

connected lines may be set to other speeds.

Telno

is the telephone number. Character sequences to dial
using the Hayes Microcomputer Products modems as well
as the Ven-~Tel 212 Plus modem may be included in telno.

dir Must be used for directly connected lines,

implies a null ACU. When the string dir is specified

the -1 option must also be specified.

FILES
/usr/lib/uucp/L-devices
/usr/spool /uucp/LCK. . (tty-device)
/dev/null

SEE ALSO
cat(1), echo(l), stty(l), uucp(l), tty(4).

DIAGNOSTICS

Exit code is zero for normal exit, non-zero (various values)

otherwise.

LIMITATIONS

There is an artificial slowing of transmission by cu during

the “$put operation so that loss of data is unlikely.

3 Bell

CUT(1) zilog cuT(1)

NAME

cut - cut out selected fields of each line of a file
SYNOPSIS

cut =-clist [filel file2 ...]

cut -flist [—dchar] [-s] [filel file2 ...]
DESCRIPTION

Use cut to cut out columns from a table or fields from each
line of a file; 1in data base parlance, it implements the
projection of a relation. The fields as specified by 1list
can be fixed 1length, i.e., character positions as on a
punched card (-c option), or the length can vary from line
to line and be marked with a field delimiter character like
tab (-f option). Cut can be used as a filter; if no files
are given, the standard input is used.

OPTIONS
list A comma-separated list of integer field numbers (in
increasing order), with optional - to indicate
ranges as in the -—-o option of nroff/Ezgff for page
ranges; e.g., 1,4,7; 1-3,8; -5,10 (short for
1-5,19); or 3- (short for third through last
field).

-clist The list following -c (no space) specifies charac-
ter positions (e.g., -cl-72 would pass the first 72
characters of each line).

—dchar The character following -4 is the field delimiter
(-f option only). Default is tab. Space or other
characters with special meaning to the shell must
be quoted.

-flist The list following —-f is a list of fields assumed
to be separated in the file by a delimiter charac-
ter (see -d); e.g., -f1,7 copies the first and
seventh field only. Lines with no field delimiters
will be passed through intact (useful for table
subheadings), unless -s is specified.

-8 Suppresses lines with no delimiter characters in
case of -f option. Unless specified, lines with no
delimiters will be passed through untouched.

Either the -c or -f option must be specified.

HINTS
Use grep(l) to make horizontal ‘‘cuts'' (by context) through
a file, or paste(l) to put files together column-wise (i.e.,
horizontally). To reorder columns in a table, use cut and
paste.

1 Bell 1

CcuT(1) Zilog cuT(1l)

EXAMPLES
cut -d: -f1,5 /etc/passwd
mapping of user IDs to names
name=‘who am i | cut -f1 -4" "*°
to set name to current login name.

DIAGNOSTICS
line too long

A line can have no more than 511 characters or
fields.

bad list for c¢/f option

Missing —c or —-f option or incorrectly specified
list. No error occurs 1if a 1line has fewer
fields than the list calls for.

no fields The list is empty.

SEE ALSO
grep(l), paste(l).

Bell

CXREF(1) Zilog CXREF(1)

NAME

cxref - a simple C routine referencing program

SYNOPSIS

cxref ﬁile

DESCRIPTION

Cxref is a simple shell script which uses grep(l) and ex(1l)
and sort(l) to make a listing of the routines in the speci-
fied C program files and the 1lines on which they are
defined. It is useful as a summary when prowling in a large
program.

LIMITATIONS

Cxref assumes that routines begin in the first column of
lines, and that type names are given on different lines than
the routine names. If you have a program which is in a dif-
ferent format than this, cxref will fail miserably. The
operating system, C compiler, ex editor, etc. all work with
cxref.

Zilog 1

DATE(1) Zilog DATE(1)

NAME
date - print the date and time

SYNOPSIS
date [-u]

DESCRIPTION
The current date and time are printed, including the day of
week, month, day of month, time (hh:mm:ss), time zone, and
year.

If the -u option is given, GMT time is printed.
EXAMPLE
2 date
Thu Nov 11 14:44:32 PST 1982

SEE ALSO
time(2), ctime(3), datem(M).

1 Bell 1

DAYTIME (1) zilog DAYTIME(1)

NAME
daytime - give the time to human-reasonable accuracy

SYNOPSIS
daytime

DESCRIPTION
Daytime prints out in English the current time of day, accu-
rate to the nearest five minutes.

EXAMPLE
$ daytime
Five after four

LIMITATIONS

Daytime depends on the user to determine whether it's
currently night or day.

1 ucB 1

DC(1)

NAME

Zilog DC(1)

dc - desk calculator

SYNOPSIS

de [file]

DESCRIPTION

Dc is an arbitrary precision arithmetic package. Ordinarily
it operates on decimal integers, but one may specify an
input base, output base, and a number of fractional digits
to be maintained. The overall structure of dc is a stacking
(reverse Polish) calculator. If an argument is given, input
is taken from that file until its end, then from the stan-
dard input. The following constructions are recognized:

c All values on the stack are popped.
d The top value on the stack is duplicated.
£ All values on the stack and in registers are printed.

i The top value on the stack is popped and used as the
number radix for further input.

I Pushes the input base on the top of the stack.

k The top of the stack is popped, and that value is used
as a non-negative scale factor: the appropriate number
of places are printed on output, and maintained during
multiplication, division, and exponentiation. The
interaction of scale factor, input base, and output
base will be reasonable if all are changed together.

1x The value in register x is pushed on the stack. The
register x 1is not altered. All registers start with
zero value. 1If the 1 is capitalized, register x 1is
treated as a stack and its top value is popped onto the
main stack.

o The top value on the stack is popped and used as the
number radix for further output.

o] Pushes the output base on the top of the stack.

P The top value on the stack is printed. The top value
remains unchanged. P interprets the top of the stack
as an ascili string, removes it, and prints it.

q Exits the program. If executing a string, the recur-

sion level is popped by two. If q is capitalized, the
top value on the stack is popped and the string execu-
tion level is popped by that value.

Bell 1

DC(1)

Zilog DC(1)

sX The top of the stack is popped and stored into a regis-
ter named x, where x may be any character. If the s is
capitalized, X is treated as a stack and the value is
pushed on it.

v Replaces the top element on the stack by its square
root. Any existing fractional part of the argument is
taken into account, but otherwise the scale factor is
ignored.

X Treats the top element of the stack as a character

string and executes it as a string of dc¢ commands.

X Replaces the number on the top of the stack with its
scale factor.

z The stack level is pushed onto the stack.

Z Replaces the number on the top of the stack with its
length.

number
The value of the number is pushed on the stack. A
number 1is an unbroken string of the digits 0-9. It
may be preceded by an underscore () to input a

negative number. Numbers may contain decimal points.

+ -/ * g °
The top two values on the stack are added (+), sub-
tracted (-), multiplied (*), divided (/), remaindered
($), or exponentiated ("). The two entries are popped
off the stack; the result is pushed on the stack in
their place. Any fractional part of an exponent 1is
ignored.

L ... 1
Puts the bracketed ascii string onto the top of the
stack.

<X >x =X
~The_top two elements of the stack are popped and com-
pared. Register x is executed if they obey the stated

relation.
1 Interprets the rest of the line as a ZEUS command.
? A line of input is taken from the input source (usu-

ally the terminal) and executed.

2 Are used by bc for array operations.

“e
L]

Bell 2

DC(1) . zilog DC(1)

EXAMPLES
$ dc
2.05
156.35
+ p (add and print the answer)
158.49
2.85
+p
169.45
6
* p (multiply and print the answer)
962.79

14
/ p - (divide and print the answer)
68)

An example which prints the first ten values of n! is
[lal+dsa*plal@>ylsy @sal lyx
SEE ALSO
bc(l), which is a preprocessor for dc providing infix nota-
tion and a C-like syntax which implements functions and rea-
sonable control structures for programs.

DIAGNOSTICS
‘x is unimplemented' where x is an octal number.

‘stack empty' for not enough elements on the stack to do
what was asked.

‘Oout of space' when the free list 1is exhausted (too many
digits).

‘Oout of headers' for too many numbers being kept around.
*out of pushdown' for too many items on the stack.

‘Nesting Depth' for too many levels of nested execution.

3 Bell 3

DD(1)

NAME

Zilog DD(1)

dd - convert and copy a file

SYNOPSIS

dd [option=value]

DESCRIPTION

DA copies the specified input file to the specified output
with possible conversions. The standard input and output
are used by default. The input and output block size can be
specified to take advantage of raw physical I/C.

Where sizes are specified, a number of bytes is expected. A
nunber may end with k, b, or w to specify multiplication by
1924, 512, or 2 respectively; a pair of numbers may be
separated by x to indicate a product.

Cbs is used only if ascii or ebcdic conversion is specified.
In the former case cbs characters are placed into the
conversion buffer, converted to ASCII, and +trailing blanks
trimmed and new-line added before sending the line to the
output. In the latter case ASCII characters are read 1into
the conversion buffer, converted to EBCDIC, and blanks added
to make up an output record of size cbs.

After completion, dd reports the number of whole and partial
input and output blocks.

OPTIONS
option values
bs=n set both input and output block size,
superseding ibs and obs; also, if no conver-
sion is specified, it is particularly effi-
cient since no in-core copy need be done
cbs=n conversion buffer size
conv=ascii convert EBCDIC to ASCII
ebcdic convert ASCII to EBCDIC
ibm slightly different map of ASCII to EBCDIC
lcase map alphabetics to lower case
noerror do not stop processing on an error
swab swap every pair of bytes
sync pad every input record to ibs
1 Bell 1

pD(1) Zilog DD(1)

ucase map alphabetics to upper case
<ee 4 «e. several comma-separated conversions
count=n copy only n input records
files=n skip n files on (tape) input before starting

copy seek=n seek n records from beginning of
output file before copying

ibs=n input block size n bytes (default 512)
if=Ffile input file name; standard input is default
obs=n output block size (default 512)

of=file output file name; standard output is default
seek=n seek n records from beginning of output file

before copying
skip=n skip n input records before starting copy

EXAMPLE
This command will read an EBCDIC tape blocked ten 8@-byte
EBCDIC card images per record into the ASCII file x:

dd if=/dev/rmtd of=x ibs=800 cbs=87 conv=ascii,lcase

Note the use of raw magtape. DA is especially suited to I/0
on the raw physical devices because it allows reading and
writing in arbitrary record sizes.

SEE ALSO
cp(l).

DIAGNOSTICS
f+p records in(out)
numbers of full and partial records read(written)

LIMITATIONS
The ASCII/EBCDIC conversion tables are taken from the 256
character standard in the CACM Nov, 1968. The ibm conver-
sion, while less blessed as a standard, corresponds better
to certain IBM print train conventions. There is no univer-
sal solution.

New-lines are inserted only on conversion to ASCII; padding
is done only on conversion to EBCDIC. These should be
separate options.

N

Bell 2

DELTA(1) zilog DELTA(1)

NAME
delta - make a delta (change) to an SCCS file
SYNOPSIS
delta [-rsiD]
[-sn]
[-glist]
[-mlmriist]]
[~y[comment]]
[-p]
files
DESCRIPTION

Delta is used to permanently introduce into the named SCCS
file changes that were made to the file retrieved by get(l)
(called the g-file, or generated file).

Delta makes a delta to each named SCCS file. If a directory
is named, delta behaves as though each file in the directory
were specified as a named file, except that non-SCCS files
(last component of the path name does not begin with s.) and
unreadable files are silently ignored. If a name of - 1is
given, the standard input is read (see WARNINGS); each line
of the standard input is taken to be the name of an SCCS
file to be processed.

Delta may issue prompts on the standard output depending
upon certain Xkeyletters specified and flags (see admin(l))
that may be present 1in the SCCS file (see -m and -~y
keyletters below).

Keyletter arguments apply independently to each named file.

-rSID

" Uniquely identifies which delta is to be made to the
SCCS file. The use of this keyletter is necessary only
if two or more outstanding gets for editing (get -e) on
the same SCCS file were done by the same person (login
name). The SID value specified with the -r keyletter
can be either the SID specified on the get command line
or the SID to be made as reported by the get command.
A diagnostic results if the specified SID is ambiguous,
or, if necessary and omitted on the command line.

-s Suppresses the issue, on the standard output, of the
created delta's SID, as well as the number of lines
inserted, deleted and unchanged in the SCCS file.

-n Specifies retention of the edited g-file (normally
removed at completion of delta processinET:

Bell 1

DELTA(1) Zilog DELTA(1)

-glist
Specifies a list for the definition of list) of deltas
which are to be ignored when the file is accessed at
the change level (SID) created by this delta.

-m[mrlist]
If the SCCS file has the v flag set (see admin(1l)) then
a Modification Request (MRs) number must be supplied as
the reason for creating the new delta.

If -m is not used and the standard input is a terminal,
the prompt MRs? is issued on the standard output before
the standard input is read; if the standard input is
not a terminal, no prompt is issued. The MRs? prompt
always precedes the comments? prompt (see -y
keyletter).

MRs in a list are separated by blanks and/or tab char-
acters. An unescaped new-line character terminates the
MRs list.

Note that if the v flag has a value it is taken to be
the name of a program (or shell procedure) which will
validate the correctness of the MRs numbers. If a
non-zero exit status is returned from MRs number vali-
dation program, delta terminates (it 1is assumed that
the MRs numbers were not all valid).

~y[comment]
Arbitrary text used to describe the reason for making
the delta. A null string is considered a valid com-
ment.

If -y is not specified and the standard input is a ter-
minal, the prompt comments? is issued on the standard
output before the standard input is read; if the stan-
dard input is not a terminal, no prompt is issued. An
unescaped new-line character terminates the comment
text.

-p Causes delta to print (on the standard output) the SCCS
file differences before and after the delta is applied
in a diff(1) format.

FILES ;
All files of the form ?-file are explained 1in the Source
Code Control System User's Guide. The naming convention for
these files is also described there,

2 Bell 2

DELTA(L) Zilog DELTA(1)

g-file
Existed before the execution of delta; removed after
completion of delta.

p-file
Existed before the execution of delta; may exist after
completion of delta.

g-file
Created during the execution of delta; removed after
completion of delta.

x-file
Created during the execution of delta; renamed to SCCS
file after completion of delta.

z-file
Created during the execution of delta; removed during
the execution of delta.

d-file
Created during the execution of delta; removed after
completion of delta.

Jusr/bin/bdiff
Program to compute differences between the ‘‘gotten''
file and the g-file.

WARNINGS .
Lines beginning with an SOH ASCII character (binary 001)
cannot be placed in the SCCS file unless the SOH is escaped.
This character has special meaning to SCCS (see sccsfile(5))
and will cause an error.

A get of many SCCS files, followed by a delta of those
files, should be avoided when the get generates a large
amount of data. Instead, multiple get/delta sequences
should be used.

If the standard input (-) is specified on the delta command
line, the -m (if necessary) and -y keyletters must also be
present. Omission of these keyletters causes an error to
occur.

SEE ALSO
admin(l), bdiff(l), get(l), help(l), prs(l), sccsfile(5).
Source Code Control System User's Guide in the ZEUS Utili-
ties Manual

DIAGNOSTICS
Use help(l) for explanatious.

3 Bell 3

DEROFF (1) Zilog DEROFF (1)

NAME
deroff - remove nroff/troff, tbl, and eqgn constructs

SYNOPSIS
deroff [-mx] [-w]J [files]

DESCRIPTION

Deroff reads each of the files in sequence and removes all
troff(1l) requests, macro calls, backslash constructs, eqn(l)
constructs (between .EQ and .EN lines, and between delim-
iters), and tbl(1l) descriptions, and writes the remainder of
the file on the standard output. Deroff follows chains of
included files (.so and .nx troff commands); if a file has
already been included, a .so naming that file is ignored and
a .nx naming that file terminates execution. If no input
file is given, deroff reads the standard input.

OPTIONS
-m may be followed by an m, s, or 1. The resulting -mm or
-ms option causes the mm or ms macros to be interpreted
so that only running text is output (i.e., no text from

macro lines). The -ml option forces the -mm option and
also causes deletion of lists associated with the mm
macros.

-W the output is a word list, one "word" per 1line, with
all other characters deleted. Otherwise, the output
follows the original, with the deletions mentioned
above. In text, a "word" is any string that contains
at least two letters and is composed of letters,
digits, ampersands (&), and apostrophes ('); in a macro
call, however, a "word" is a string that begins with at
least two 1letters and contains a total of at least
three letters. Delimiters are any characters other
than 1letters, digits, apostrophes, and ampersands.
Trailing apostrophes and ampersands are removed from
"words."

EXAMPLES
¢ cat example.file
. PP
This is a sample file with nroff commands.
It will be used with deroff:
.RS
deroff example.file
+RE
to remove the nroff commands for reading purposes.

2 deroff example.file

This is a sample file with nroff commands.
It will be used with deroff:

1 Bell 1

DEROFF (1) Zilog DEROFF (1)

deroff example.file

to remove the nroff commands for reading purposes.
2 deroff -w example.file
This

is

a

sample
file
with
nroff
commands
It

will

be

used
with
deroff
deroff
example
file

to
remove
the
nroff
commands
for
reading
purposes

SEE ALSO
egqn(l), tbl(l), troff(1l).

LIMITATIONS
Deroff is not a complete troff interpreter, so it can be
confused by subtle constructs. Most such errors result in
too much rather than too little output.
The -ml option does not handle nested lists correctly.

2 Bell 2

DIFF(1) « Zilog DIFF(1)

NAME
diff - differential file comparer
SYNOPSIS
diff [-befh] filel file2
DESCRIPTION
Diff tells what lines must be changed in two files to bring
them into agreement. If filel (file2) is -, the standard

input is used. If filel (file2) is a directory, then a file
in that directory whose file-name is the same as the file-
name of file2 (filel) is used. The normal output contains
lines of these forms:

nl a n3,n4
l n2 d n3
nl n2 c n3 n4

These lines resemble ed(1l) commands to convert filel into
file2. The numbers after the letters pertain to file2. By
exchanging a for d and readlng backward, conversion of file2
into filel is given. As in ed, ldentlcal pairs where nl =
n2 or n3 = n4 are abbreviated as a single number.

Following each of these lines come all the lines that are
affected in the first file flagged by <, then all the lines
that are affected in the second file flagged by >.

Except in rare circumstances, diff finds a smallest suffi-
cient set of file differences.

OPTIONS
-b Cause trailing blanks (spaces and tabs) to be ignored
and other strings of blanks to compare equal.

-e Produce a script of a, ¢, and 4 commands for the editor
ed, which recreates file2 from filel.

~f Produce a similar script, not useful with ed, in the
opposite order.

In connection with -e, the following shell program can
help maintain multiple versions of a file. Only an
ancestral file (S$1) and a chain of version-to-version
ed scripts ($“,$3,...) made by diff need be on hand. A
Tatest version appears on the standard output.

(shift; cat $*; echo '1,$p') | ed - $1
--h Does a fast, but incomplete job. It works only when

changed parts are short and well separated. Options -e
and -f are unavailable with -h.

1 _ Bell 1

DIFF(1)
EXAMPLES
¢ cat listl
bhoat
boathouse
boatload
boatman
boatmen
boatyard
% diff listl list2
PAal,5
> boa
> boar
> board
> boardinghouse
> bhoast
6419
< boatyard
FILES
/tmp/d?222?
/usr/1ib/diffh for -h
SEE ALSO
cmp(l), comm(l), ed(1l)
DIAGNOSTICS
Exit status is 9 for no differences,
ble.
LIMITATIONS

Editing scripts produced under the

unable to create

results if run under ed.

Zilog

Bell

DIFF(1)

$ cat list2
boa

boar

board
boardinghouse
boast

boat
boathouse
boatload
boatman
boatmen

1 for some, 2 for trou-

-e or -~f option are

lines consisting of a single period (.).
The script file is produced, hut it will

produce incorrect

DIFF3(1)

NAME

zilog DIFF3(1)

diff3 - 3-way differential file comparison

SYNOPSIS

diff3 [~ex3] filel file2 file3

DESCRIPTION
Diff3 compares three versions of a file and publishes
disagreeing ranges of text flagged with these codes:

=== all three files differ

====] filel is different
=== file2 is different
====3 file3 is different

The type of change needed to convert a given range of a
given file to some other is indicated in one of these ways:

f :nl a Text 1is to be appended after 1line
-number nl in file f, where £ =1, 2, or

3.
f :nl , n2c Text is to be changed in the range line

nl to 1line n2. If nl = n2, the range
may be abbreviated to nl.

The original contents of the range follows immediately after

a indication. When the contents of two files are ident-
ical, the contents of the lower-numbered file is suppressed.
OPTIONS
-e diff3 publishes a script (to standard output) for the
editor ed(l) that will incorporate into filel all
changes between file2 and file3, that is, the changes
that normally would be flagged "====" and "====3",.
-x (-3)
produces a script to incorporate only changes flagged
"mm==" ("====3").
EXAMPLES

The following command will apply the resulting script to
filel:

FILES

(cat script; echo '1,8$p'; echo.w) | ed -~ filel

/tmp/da3*
/usr/lib/diff3prog

Bell 1

DIFF3(1) zilog

SEE ALSO
diff(1), ed(1)

LIMITATIONS
Text lines that consist of a single "."
option.

Files longer than 64K bytes won't work.

8]

Bell

will defeat

DIFF3(1)

the -e

DIFFMK (1) Z1ilog DIFFMK(1)

NAME

diffmk - mark differences between files

SYNOPSIS

diffmk namel name?2 name3

DESCRIPTION

Diffmk compares two versions of a file and creates a third
file that includes "change mark" commands for nroff(l) or

troff(l). Namel and name2 are the old and new versions of
the file. Diffmk generates name3, which contains the lines
of name2 plus inserted formatter ‘"change mark" (.mc)
requests. When name3 is formatted, changed or inserted text
is shown by | at the right margin of each line. The posi-

tion of deleted text is shown by a single *.

Diffmk can be used to produce listings of C (or other) pro-
grams with changes marked. A typical command line for such
use is:

diffmk old.c new.c tmp; nroff macs tmp | pr
where the file macs contains:

.pl 1
.11 77
.nf
.0
.nc

The .11 request might specify a different 1line 1length,
depending on the nature of the program being printed. The
.e0 and .nc requests are probably needed only for C pro-
grams.

If the characters | and * are inappropriate, a copy of
diffmk can be edited to change them (diffmk is a shell pro-
cedure).

SEE ALSO

BUGS

diff(1l), nroff(l).

Aesthetic considerations may dictate manual adjustment of
some output. File differences involving only formatting
requests may produce undesirable output, i.e., replacing .sp
by .sp 2 will produce a "change mark" on the preceding or
following line of output.

Bell 1

DIRCMP(1) zilog DIRCMP(1)

NAME

dircmp - directory comparison

SYNOPSIS

dircmp dirl dir2

DESCRIPTION

Dircmp examines dirl and dir2 and generates various tabu-
lated information about the contents of the directories.
Listings of files that are unique to each directory are gen-
erated in addition to a 1list that indicates whether the
files common to both directories have the same contents.

SEE ALSO

cmp(l), Aiff(1).

Zilog 1

DOG(1) Zilog DOG(1)

NAME

dog - controlled output flow filter for CRT previewing
SYNOPSIS

dog [file...]
DESCRIPTION

Dog is a filter that allows examination of a continuous text
on a soft-copy terminal. Dog pauses after the first 23
lines of output. If RETURN is pressed, 23 more 1lines are
displayed.

If CTRL-D is pressed, 1l more lines are displayed so that
the file is scrolled. It is also possible to type positive
numbers to dog causing that many lines to be printed, or
negative numbers causing that many lines to be discarded
followed by a scroll.

The terminal is set to noecho mode by this program so that
the output can be continuous. The numbers and carriage
returns therefore do not show on the terminal.

SEE ALSO

cat(1l), more(l), pr(l).

UcCB 1

nU(l)

NAME

Zilog DU(1)

du - summarize disk usage

SYNOPSIS

du [-ars] [files]

DESCRIPTION

Du gives the number of blocks contained in all files and
(recursively) directories within each directory and file
specified by the names argument. The block count includes
the 1indirect blocks of the file. If names is missing, . is
used.

Absence of an option causes an entry to be generated for
each directory only. Du 1is normally silent about direc-
tories that cannot be read, files that cannot be opened,
etc.

A file with two or more links is only counted once.

OPTIONS

-a Cause an entry to be generated for each file.

~-r Cause du to generate messages in cases where files and
directories cannot be opened or read.

-S Cause only the grand total (for each of the specified
names) to be given.

LIMITATIONS

If the —~a option is not used, non-directories given as argu-
ments are not listed.

If there are too many distinct linked files, du will count
the excess files more than once.

Files with holes in them will get an incorrect block count.

Bell 1

ECHO (1) Zilog ECHO (1)

NAME
echo - echo (print) arguments to the standard output (termi-
nal)

SYNOPSIS
echo [-n] [arg] ...

DESCRIPTION
Echo writes its arguments separated by blanks and terminated
by a new-line on the standard output. It also understands
C-like escape conventions; beware of conflicts with the
shell's use of \:

\b backspace

\¢c print line without new-line

\f form-feed

\n new-line

\x carriage return

\t tab

A\ backslash

\n the 8-bit character whose ASCII code is the 1-, 2-
or 3-digit octal number n, which must start with a
zZero.

BEcho is useful for producing diagnostics in command files
and for sending known data into a pipe.

OPTIONS
-n No newline is added to the output.
EXAMPLE
% echo this is using the echo command
this is using the echo command
SEE ALSO

csh(l), echo(1C), echo2(l).

1 Bell 1

ECHO (1C) Zilog ECHO (1C)

NAME
echo - echo (print) arguments to the standard output (termi-
nal)

SYNOPSIS
echo [-n] [arg] ...

DESCRIPTION
Echo is both an internal shell command, and an external pro-
gram, it writes its arguments separated by blanks and ter-
minated by a new-line on the standard output, It also
understands C-like escape conventions; beware of conflicts
with the shell's use of \:

\b backspace

\c print line without new-line

AN & form-feed

\n new-line

\r carriage return

\t tab

“\\ backslash

\n the 8-bit character whose ASCII code is the 1-, 2-
or 3-digit octal number n, which must start with a
Zero.

Echo is useful for producing diagnostics in c¢ommand files
and for sending known data into a pipe.

OPTIONS
-n No newline is added to the output.
EXAMPLE
% echo this is using the echo command
this is using the echo command
SEE ALSO

csh(l), echo(l), echo2(l).
The C Shell in the ZEUS Utilities Manual

1 ucB 1

ECHO2(1) Zilog ECHO2 (1)

NAME

echo2 - echo (print) arguments to standard erxror
SYNOPSIS

echo2 [-n] [arguments ...]
DESCRIPTION

Echo2 writes its arguments separated by blanks and
minated by a newline on the standard error.

OPTIONS
-n No newline is added to the output.

SEE ALSO

1 Zilog

ter-

ED(1)

NAME

Zilog ED(1)

ed - text editor

SYNOPSIS

ed [-][-x]I file]

DESCRIPTION

EAd is the standard text editor.

If a file argument is given, ed simulates an e command on
the named file; that is, the file is read into ed's buffer
for editing.

Ed operates on a copy of any file it 1is editing; changes
made in the copy have no effect on the file until a w
(write) command is given. The copy of the text being edited
resides in a temporary file called the buffer.

Commands to ed have a simple and regular structure: zero or
more addresses followed by a single character command, pos-

sibly followed by parameters to the command . These
addresses specify one or more lines in the buffer. Missing
addresses are supplied by default. Only one command can

appear on a line.

Certain commands allow the addition of text to the buffer.
While ed is accepting text, it is said to be in input mode.
In this mode, no commands are recognized; all input is
merely collected. Input mode is left by typing a period (.)
alone at the beginning of a line.

Ed supports a limited form of regular expression notation.
A regular expression specifies a set of strings of charac-
ters. A member of this set of strings is said to be matched
by the regular expression. In the following specification
for regular expressions the word "character" means any char-
acter but new line.

1. Any character except a special character matches
itself. Special characters are the regular
expression delimiter plus \,[, and sometimes *, *,
S.

2. A . matches any character.

3. A \ followed by any character except a digit or ()

matches that character.

4. A nonempty string s bracketed [s] (or ["s])
matches any character in (or not in) s. In s, \
has no special meaning, and] can appear only as
the first letter. A substring a-b, with a and b

Bell 1

ED(1)

Zilog ED(1)

in ascending ASCII order, stands for the inclusive
range of ASCII characters.

5. A regular expression of form 1-4 followed by *
matches a sequence of @ or more matches of the
regular expression.

6. A regular expression, x, of form 1-8, bracketed
\(x\) matches what x matches.

7. A \ followed by a digit n matches a copy of the
string that was matched by the bracketed regular
expression beginning with the nth \(.

8. A regular expression of form 1-8, x, followed by a
regular expression of form 1-7, y matches a match
for x followed by a match for y, with the x match
being as long as possible while still permitting a

y match.

9. A regular expression of form 1-8 preceded by "~ (or
followed by $), 1is constrained to matches that
begin at the left (or end at the right) end of a
line.

19. A regular expression of form 1-9 picks out the
longest among the leftmost matches in a line.

11. An empty regular expression stands for a copy of
the last regular expression encountered.

Regular expressions are used in addresses to specify lines
and in the substitution command to specify a portion of a
line which is to be replaced. To use one of the regular
expression metacharacters as an ordinary character, precede
that character by \. This also applies to the character
bounding the reqular expression (often /) and to \ itself.

To understand addressing in ed, it is necessary to know that
at any time there is a current line. Generally speaking,
the current line is the last line affected by a command;
however, the effect on the current line is discussed under
the description of the command. Addresses are constructed
according to the following rules:

1. The dot (.) addresses the current line.
2. The ($) addresses the last line of the buffer.
3. A decimal number n addresses the n-th line of the
buffer.
Bell 2

ED(1)

Zilog ED(1)

4. 'x addresses the line marked with the name x,
which must be a lowercase letter. Lines are
marked with the k command described below.

5. A regqular expression enclosed in slashes (/)
addresses the line found by searching forward from
the current line and stopping at the first 1line
containing a string that matches the regular
expression. If necessary, the search wraps around
to the beginning of the buffer.

6. A regular expression enclosed in queries (?)
addresses the 1line found by searching backward
from the current line and stopping at the first
line containing a string that matches the regular
expression. If necessary, the search wraps around
to the end of the buffer.

7. An address followed by a plus sign (+) or a minus
sign (-) followed by a decimal number specifies
that address plus (or minus) the indicated number
of lines. The plus sign can be omitted.

8. If an address begins with + or - the addition or
subtraction 1is taken with respect to the current
line; for example, -5 is understood to mean .-5.

9. If an address ends with + (or -), then 1 is added
(or subtracted). As a consequence of this rule
and rule 8, the address - refers to the 1line
before the current line. Trailing + and - charac-
ters have cumulative effect, so -- refers to the
current line less 2.

1¢. To maintain compatibility with earlier versions of

the editor, the character in addresses 1is
equivalent to -.

Commands can require zero, one, or two addresses. Commands
that require no addresses regard the presence of an address
as an error. Commands that accept one or two addresses
assume default addresses when insufficient ones are given.
If more addresses are given than such a command requires,

the last one or two (depending on what is accepted) are
used.

Addresses are separated from each other by a comma (,).
They can also be separated by a semicolon (;). In this case
the current line, dot (.) is set to the previous address
before the next address is interpreted. This feature can be
used to determine the starting line for forward and backward
searches (/ or ?). The second address of any two-address

Bell 3

ED(1) zilog ED(1)

sequence must correspond to a line following the 1line
corresponding to the first address.

In the following list of ed commands, the default addresses
are shown in parentheses; the parentheses are not part of
the address.

It is generally illegal for more than one command to appear
on a line. However, most commands can be suffixed by p or
by 1, in which case the current line is either printed or
listed respectively in the following way:

(.)a

<text>
The append command reads the given text and appends it
after the addressed line. Dot is left on the last line
input, if there were any, otherwise at the addressed
line. Address @ 1is 1legal for this command; text is
placed at the beginning of the buffer.

(., .)c
<text>

The change command deletes the addressed lines, then
accepts input text that replaces these lines. Dot is
left at the last line input; if there were none, it is
left at the line preceding the deleted lines.

(., .)a
The delete command deletes the addressed lines from the
buffer. The line originally after the 1last 1line
deleted becomes the current line; if the lines deleted
were originally at the end, the new last line becomes
the current line.

e filename

The edit command causes the entire contents of the
buffer to be deleted, and then the named file to be
read in. Dot is set to the last line of the buffer.
The number of characters read is typed. Filename is
retained for possible use as a default file name in a
subsequent r or w command. If filename is missing, the
retained name is used.

E filename
This command is the same as e, except that no diagnos-
tic results when no w has been given since the last
buffer alteration.

f filename
The filename command prints the currently retained file

4 Bell 4

ED(1) Zilog ED(1)

name. If filename 1is given, the currently retained
file name is changed to filename.

(1,$)g/regular expression/command list
In the global command, the first step is to mark every
line that matches the given regular expression. Then
for every such line, the given command list is executed
with dot initially set to that line. A single command
or the first of multiple commands appears on the same
line with the global command. All lines of a multi-
line list except the last line must be ended with \.
A, i, and ¢ commands and associated input are permit-
ted; the dot terminating the input mode can be omitted
if it is on the last line of the command list. The
commands g and v are not permitted in the command list.

(I)i
<text>

This command inserts the given text before the

addressed line. Dot is left at the last line input,
or, if there were none, at the line before the
addressed 1line. This command differs from the a com-

mand only in the placement of the text.

(o, -+1)3
This command joins the addressed lines into a single
line; intermediate newlines simply disappear. Dot is
left at the resulting line. .

(- dkx
The mark command marks the addressed line with name X
which must be a lowercase letter. The address form '
addresses this line.

(«,)1
The list command prints the addressed lines in an unam-
biguous way: nongraphic characters are printed in two-
digit octal, and long lines are folded. The 1 command
can be placed on the same line after any non-I/0 com-
mand .

’
X

(«, -)ma
The move command repositions the addressed lines after
the 1line addressed by a. The last of the moved lines
becomes the current line.

(., <)o
The print command prints the addressed lines. Dot is
left at the last line printed. The command can be
placed on the same line after any non-I/0 command.

5 Bell 5

ED(1)

(-,

Zilog ED(1)

.)P
This command is a synonym for p.

The quit command causes ed to exit. No automatic write
of a file is done.

This command is similar to g, but no diagnostic results
when no w has been given since the last buffer altera-
tion.

($)r filename

(-
¢ -

(-,

The read command reads in the given file after the
addressed line. 1If no file name is given, the retained
file name, if any, is used (e and £ commands). The
file name 1is retained if there was no retained file
name already. Address @ is legal for r and causes the
file to be read at the beginning of the buffer. If the
read is successful, the number of characters read is

typed. Dot is left at the last line read in from the
file.
.)s/regular expression/replacement/ or,

.)s/regular expression/replacement/g

The substitute command searches each addressed line for
an occurrence of the specified regular expression. On
each line in which a match 1is found, all matched
strings are replaced by the replacement specified, if
the global replacement indicator g appears after the
command. If the global indicator does not appear, only
the first occurrence of the matched string is replaced.
It is an error for the substitution to fail on all
addressed lines. Any character other than space or
newline can be used instead of / to delimit the regular
expression and the replacement. Dot is left at the
last line substituted. :

An ampersand (&) appearing in the replacement is
replaced by the string matching the regular expression.
The special meaning of & in this context can be
suppressed by preceding it by \. The characters \n,
where n is a digit, are replaced by the text matched by
the E:th regular subexpression enclosed between \(and
\). When nested subexpressions in parentheses are
present, n is determined by counting occurrences of \(
starting from the left.

Lines can be split by substituting new line characters
into them. The new line in the replacement string must
be escaped by preceding it by \.

.)ta
This command acts like the m command, except that a

Bell 6

ED(1)

Zilog ED(1)

copy of the addressed lines is placed after address a
that can be #. Dot is left on the 1last 1line of the

copy -

(., -)u
The undo command restores the preceding contents of the
current line, which must be the last line in which a
substitution was made.

(1, $)v/regular expression/command list
This command is the same as the global command g except
that the command list is executed g with dot initially
set to every line except those matching the regular
expression.

{1, $)w filename

The write command writes the addressed lines onto the
given file. If the file does not exist, it is created
mode 666 (readable and writable by everyone). The file
name is retained if there was no retained file name
already. If no file name is given, the retained file
name, if any, is used (e and f commands). Dot is
unchanged. If the command is successful, the number of
characters written is printed.

(1,$)W filename
This command 1is the same as w, except that the
addressed lines are appended to the file.

X A key string 1is demanded from the standard input.
Later r, e and w commands encrypt and decrypt the text
with this key by the algorithm of crypt(l). An expli-
citly empty key turns off encryption.

($)= The line number of the addressed line is typed. Dot is
unchanged by this command.

I1<shell command>
The remainder of the line after the | is sent to sh(1l)
to be interpreted as a command. Dot is unchanged.

(-.+1)<newline>
An address alone on a line causes the addressed line to
be printed. A blank line alone is equivalent to .+1lp:
it is useful for stepping through text.

If an interrupt signal (ASCII DEL) is sent, ed prints a ?
and returns to its command level.

Some size limitations are 512 characters per line, 256 char-

acters per global command list, 64 characters per file name,
and 128K characters in the temporary file. The limit on the

Bell 7

ED(1) 7ilog ED(1)

number of 1lines depends on the amount of core: each line
takes 1 word.

A line of text in append ("a"), change ("¢") or insert ("i")
commands should not exceed 256 characters.

When reading a file, ed discards ASCII NUL characters and
all characters after the 1last newline. It does not read
files containing non-ASCII characters.

OPTIONS
-X An x command is simulated first to handle an encrypted
file.
- Suppress the printing of character counts by e, r, and
w commands .
FILES
/tmp/e*

ed.hup: work is saved here if terminal hangs up

SEE ALSO
The Zeus Line-Oriented text editor ED
The EX Reference Manual both in the ZEUS Utilities Manual.
edit (1), ex(1l), vi(1l), sed(l).

DIAGNOSTICS
"?name"” for inaccessible file; "?" for errors in commands

"?2TMP" for temporary file overflow.

A g or e command is in errpr, unless a
the last buffer change. A second g or

has occurred since
is always obeyed.

LIMITATIONS
The 1 command mishandles DEL.

A | command cannot be subject to a g command.

Because @ is an illegal address for a w command, it is not
possible to create an empty file with ed.

8 Bell 8

EDIT(1) zilog EDIT(1)

NAME

edit - text editor for new or casual users

SYNOPSIS

edit [-=r] name ...

DESCRIPTION

Edit is a variant of the text editor ex(l) and 1is recom-
mended for new or casual users who wish to use a command-
oriented editor. The following is a brief introduction to
edit. A more complete basic introduction is provided by the
EX Reference Manual. See ex(1l) for other useful documents;
for example, documents on vi(l) for easily manipulating text
on a CRT terminal.

BRIEF INTRODUCTION

To edit the contents of an existing file, begin with the
command :

edit file

Edit makes a copy of the file and returns with the number of

lines and characters 1in the file. To create a new file,

‘make up a name for the file and run edit on it. This causes

an error diagnostic, but allows the edit to procede.

Edit prompts for commands with the character :. Editing an
existing file means there are some lines in edit's buffer
(its name for the copy of the file being edited). Most com-
mands to edit use its current line if a line number is not
specified. (The current line is the last line affected by a
command.) Thus, to print the current line, enter p, and
press RETURN. To delete the current line, enter the delete
command (d). BEdit deletes the 1line and prints the new
current line (usually the line following the deleted 1line).
When the last line is deleted, the new last line becomes the
new current line.

To start with an empty file or to add some new 1lines, wuse
the append (a) command. Edit reads lines from the terminal
until it receives a line consisting of Jjust a dot, then
places these lines after the current line. The last line
typed then becomes the current line. The command insert (i)
is 1like append, but places the lines before the current
line. :

Edit sequentially numbers the lines in the buffer, starting
with 1 for the first line. The command 1 causes edit to
type this first line.

Change text within the current line by using the substitute
(s) command. Enter s/old/new/ where old is the characters

UCB 1

EDIT(1) Zilog EDIT(1)

to be replaced and new is the new characters.

The file command (f) tells how many lines there are in the
buffer being edited and says "[Modified]" if that number has
changed. After modifying a file in the buffer, replace the
original (unmodified) file with it by entering a write (w)
command. Leave the editor by issuing a quit (g) command.
If edit is run on a file, but it is not changed, it is not
necessary to write the file. Trying to quit from edit after
modifying the buffer without writing it prints a warning
that there has been "No write since last change" and edit
awaits another command. Issuing another quit command causes
the buffer to be irretrievably discarded, and there 1is a
return to the shell.

By using the delete and append commands and giving 1line
numbers to see lines in the file, any changes can be made.
The following commands are handy, however, if edit 1is used
more than a few times.

The change command (c¢) changes the current line to a
sequence of lines supplied. To change more than one line,
give the line numbers of the lines to be changed; for exam-
ple, "3,5change." Lines can be printed this way too; for
example, "1,23p" prints the first 23 lines of the file.

The undo command (u) reverses the effect of the last command
that changed the buffer. Thus, if a substitute command does
not produce the desired results, enter u and the o0ld con-
tents of the 1line will be restored. An undo command can
also act on itself. Edit gives a warning message when com-
mands affect more than one 1line of the buffer. 1If the
amount of change seems unreasonable, issue an undo and see
what Thappened. If the change is ok, then enter undo again
to get back the changes made before the first undo. Com-
mands such as write and quit cannot be undone.

To look at the next line in the buffer, press RETURN. To
look at a number of lines, press "D (control key and, while
it is held down, D key, rather than carriage return). This

displays a half screen of lines on a CRT or 12 lines on a
hardcopy terminal. The text around the current location can
be scanned by giving the z. command. The current line is
then the last line printed. ~To get back to the line before
the 2z command, type ". The z command can also be given
other following characters: z- prints a screen of text (or
24 1lines) ending at the current line; z+ prints the next
screen. A number of lines can be specified with the z com-
mand, for example "z.12" prints 12 lines. This method of
giving counts works in general; thus, five 5 lines of text
starting with the current line can be deleted with the com-
mand d5.

2 UCB 2

RDIT(1) zilog EDIT(1)

Search the file for strings by giving commands of the form
/text/ to search forward for text or ?text? to search back-
ward for text. If a search reaches the end of the file
without finding the text, it wraps around and continues to

search to the line where the search command was 1issued. A
useful feature here 1is a search of the form /“text/ which
searches for text at the beginning of a 1line. Similarly

/text$/ searches for text at the end of a line. The trail-
ing / or ? can be omitted in these commands.

The current line has a symbolic name dot (.); this is most
useful in a range of lines, as in .,$print that prints the
rest of the lines in the file. To get to the last 1line in
the file, wuse its symbolic name $. Thus, the command §$
delete or $4d deletes the last line in the file. Arithmetic
with 1line references is also possible. Thus, the line $-5
is the fifth before the last line, and .+20 is 2@ 1lines
after the present line.

The current line is printed in response to a .= entry.
This 1is wuseful to move or copy a section of text within a
file or between files. Find out the first and last 1line
numbers to copy or move (say 18 to 20). For a move, enter
10, 20move "a which deletes these lines from the file and
places them in a buffer named a. Edit has 26 such buffers
named a through z. Enter "a move . to put the contents of
buffer a after the current line. To move or copy these
lines between files, give an edit (e) command after copying
the 1lines, following it with the name of the other file to
edit; for example, edit chapter2. By changing move to copy,
a pattern can be established for copying lines. If the text
to move or copy is all within one file, enter 14,20move §.
It is not necessary to use named buffers in this case.

OPTIONS
-r Recover named files after an editor or system crash;
the last saved version is retrieved.

SEE ALSO
ed(1), ex(l), vi(l), sed(l).
EX Reference Manual in the ZEUS Utilities Manual

LIMITATIONS
See ex(1l).

3 UCB 3

ENV(1) zilog ENV(1)

NAME _
env - set environment for command execution
SYNOPSIS
env [-] [name=value] ... [command args]
DESCRIPTION

Env obtains the current environment, modifies it according
to its arguments, then executes the command with the modi-
fied environment.. Arguments of the form name=value are
merged into the inherited environment before the command is
executed.

If no command is specified, +the resulting environment is
printed, one name=value pair per line.

OPTIONS
- Cause the inherited environment to be ignored com-
pletely, so that the command is executed with exactly
the environment specified by the arguments.
SEE ALSO

sh(1l), csh(1l), exec(2), environ(5).

Bell L

EQN (1) Zilog EQN (1)

NAME
eqgn, neqgn, checkeq - typeset mathematics
SYNOPSIS
egn [-dxy] [-pn] [-sn] [-fn] [file] ...
negqgn [-dxy] [-pn] [-sn] [-fn] [file] ...
checkeq [file] ...
DESCRIPTION

Egqn is a troff(l) preprocessor for typesetting mathematics
on a Graphic Systems phototypesetter, neqn on terminals.
Usage is almost always

eqn file ... | troff
negn file ... | nroff

If no files are specified, these programs read from the
standard input. A line beginning with ‘.EQ' marks the start
of an equation; the end of an equation is marked by a 1line
beginning with “.EN'. Neither of these lines is altered, so
they may be defined in macro packages to get centering,
numbering, etc. It is also possible to set two characters
as ‘delimiters'; subsequent text between delimiters is also

"treated as eqn input. Delimiters may be set to characters x

and y with the command-line argument -dxy or (more commonly)
with “delim xy' between .EQ and .EN. The left and right
delimiters may be identical. Delimiters are turned off by
‘delim off'. All text that is neither between delimiters
nor between .EQ and .EN is passed through untouched.

The program checkeq reports missing or unbalanced delimiters
and .EQ/.EN pairs.

Tokens within eqn are separated by spaces, tabs, newlines,
braces, double quotes, tildes or circumflexes. Braces {}
are used for grouping; generally speaking, anywhere a single
character 1like x could appear, a complicated construction
enclosed in braces may be used instead. Tilde ™ represents
a full space in the output, circumflex ® half as much.

Subscripts and superscripts are produced with the keywords
sub and sup.

Thus x sub i makes:
Xy

a sub i sup 2 produces:

Bell 1

EQN (1) Zilog EQN (1)

and e sup {x sup 2 + y sup 2} gives

2442

X
e

Fractions are made with over: a over b yields:

a

b

sqrt makes square roots: 1 over sqrt {35 sup 2 +g§+g}
results in:

1

\ ax2+bx+c

The keywords from and to introduce lower and upper limits on
arbitrary things:

n
lim RX
n->009¢

Left and right brackets, braces, etc., of the right height
are made with left and right: left [x sup 2 + y sup 2 over

~ o~

alpha right] “=~1 produces:

2
x2+%— =1

The right clause is optional. Legal characters after 1left
and right are braces, brackets, bars, ¢ and £ for ceiling
and floor, and "" for nothing at all (useful for a right-
side-only bracket).

Vertical piles of things are made with pile, 1lpile, cpile,
and rpile: pile {a above b above c} produces:

a
b
c

There can be an arbitrary number of elements in a pile.
lpile 1left-justifies, pile and cpile center, with different
vertical spacing, and rpile right justifies.

2 » Bell 2

EQN (1) Zilog EQN (1)

Matrices are made with matrix: matrix { lcol { x sub i above
y sub 2 } ccol { 1 above 2 } } produces:

In addition, there is rcol for a right-justified column.

Diacritical marks are made with dot, dotdot, hat, tilde,
bar, vec, dyad, and under: x dot = f(t) bar is:

x=F ()

y dotdot bar “=7 n under is:

o

y =1
and x vec "=" y dyad is:

X =y

Sizes and font can be changed with size n or size +n, roman,
italic, bold, and font n. Size and fonts can be changed glo-
bally in a document by gsize n and gfont n, or by the
command-line arguments -sn and -fn.

Normally subscripts and superscripts are reduced by 3 point
sizes from the previous size; this may be changed by the
command-line argument -pn.

Successive display arguments can be lined up. Place mark
before the desired lineup point in the first equation; place
lineup at the place that is to line up vertically in subse-
guent equations.

Shorthands may be defined or existing keywords redefined
with define: define thing % replacement % defines a new
token called thing which will be replaced by replacement
whenever it appears thereafter. The % may be any character
that does not occur in replacement.

Keywords like sum (sum) int (int) inf (inf) and short-
hands 1like »>= (>=) -> (->), and = (!=) are racog-
nized. Greek letters are spelled out in the desired case,
as 1in alpha or GAMMA. Mathematical words like sin, cos, log
are made Roman automatically. Troff (1) four-character
escapes like \(bs can be used anywhere. Strings enclosed in
double quotes "..." are passed through untouched; this per-
mits keywords to be entered as text, and can be used to

3 Bell 3

EQN (1) Zilog EQN (1)

communicate with troff when all else fails.

SEE ALSO
troff(l), tbl(l), ms(7), eqnchar (7).
NROFF/TROFF User's Manual in the ZEUS Utilities Manual

BUGS
To embolden digits, parens, etc., it is necessary to quote
them, as in ‘bold "12.3"'.

4 UCB 4

ERROR (1) Zilog ERROR (1)

NAME
error - analyze and disperse compiler error messages
SYNOPSIS |
error [-I ignorefile] [-n] [-g)] [-s] [-t suffixlist
] [-v] [name]
DESCRIPTION

Error analyzes and optionally disperses the diagnostic error
messages produced by a number of compilers and language pro-
cessors to the source file and 1line where the errors
occurred. It can replace the painful, traditional methods
of scribbling abbreviations of errors on paper, and permits
error messages and source code to be viewed simultaneously
without machinations of multiple windows in a screen editor.

Error looks at the error messages, either from the specified
file name or from the standard input, and attempts to deter-
mine which language processor produced each error message,
determines the source file and 1line number to which the
error message refers, determines if the error message is to
be ignored or not, and inserts the (possibly slightly modi-
fied) error message into the source file as a comment on the
"line preceeding to which the line the error message refers.

Error messages which can't be categorized by language pro-
cessor or content are not inserted into any file, but are
sent to the standard output. Brror touches source files
only after all input has been read. By specifying the -q
query option, the user is asked to confirm any potentially
dangerous (such as touching a file) or verbose action. Oth-
erwise error proceeds on its merry business. If the -t
touch option and associated suffix list is given, error will
restrict itself to touch only those files with suffices in
the suffix list.

Error can be asked (by specifying -v) to invoke vi(l) on the
files 1in which error messages were inserted; this obviates
the need to remember the names of the files with errors.

EBrror is intended to be run with its standard input con-
nected via a pipe to the errotr message source. Some
language processors put error messages on their standard
error file; others put their messages on the standard out-
put. Hence, both error sources should be piped together
into error. For example, when using the csh syntax,

make -s lint |& error -q -v

will analyze all the error messages produced by whatever
programs make(l) runs when making lint.

1 ucsn 1

ERROR (1) zilog ERROR (1)

Error knows about the error messages produced by: make, cc,
cpp, c¢com, as, lint, and £77. Error knows a standard format
for error messages produced by the language processors, so
is sensitive to changes in these formats. Error messages
are restricted to be on one line. Some error messages refer
to more than one line 'in more than one file; error will
duplicate the error message and insert it at all of the
places referenced.

Error will do one of six things with error messages.

synchronize
Some language processors produce short errors
describing which file it 1is processing. Error
uses these to determine the file name for
languages that don't include the file name in each
error message. These synchronization messages are
consumed entirely by error.

discard Error messages from limt(l) that refer to one of
the two 1lint(l) 1libraries, /usr/lib/llib-lc and
/usr/lib/11lib-port are discarded, to prevent
accidently touching these libraries. Again, these
error messages are consumed entirely by error.

nullify Error messages from lint(l) can be nullified if
they refer to a specific function, which is known
to generate diagnostics which are not interesting.
Nullified error messages are not inserted into the
source file, but are written to the standard out-
put. The names of functions to ignore are taken
from either the file named .errorrc in the wuser's
home directory, or from the file named by the -I
option. If the file does not exist, no error mes-
sages are nullified. If the file does exist,
there must be one function name per line.

not file specific
Error messages that can't be intuited are grouped
together, and written to the standard output
before any files are touched. They will not be
inserted into any source file.

file specific
Error message that refer to a specific file, but
to no specific line, are written to the standard
output when that file is touched.

true errors :
Error messages that can be intuited are candidates
for insertion into the file to which they refer.

2 UCB 2

ERROR (1) zilog ERROR (1)

Only true error messages are candidates for inserting into
the file they refer to, Other error messages are consumed
entirely by error or are written to the standard output.
Error inserts the error messages into the source file on the
line preceeding the line the language processor found in
error. Each error message is turned into a one line comment
for the language, and is internally flagged with the string
"4#44" at the beginning of the error, and "%$%%" at the end of
the error. This makes pattern searching for errors easier
with an editor, and allows the messages to be easily
removed.

In addition, each error message contains the source 1line
number for the 1line the message refers to. A reasonably
formatted source program can be recompiled with the error
messages still in it, without having the error messages
themselves cause future errors. For poorly formatted source
programs in free format languages, such as C, it is possible
to insert a comment into another comment, which can wreck
havoc with a future compilation.

To avoid this, format the source program so there are no
language statements on the same line as the end of a com-
" ment.

Exrror catches interrupt and terminate signals, and if in the
insertion phase, will orderly terminate what it is doing.

OPTIONS
-I ignorefile
Names file containing the names of the functions to
ignore.

-n Do not touch any files; all error messages are sent to
the standard output.

-q The user is queried whether s/he wants to touch the
file. A "y" or "n" to the question is necessary to
continue. Absence of the -q option implies that all
referenced files (except those referring to discarded
error messages) are to be touched.

-s Print out statistics regarding the error categoriza-
tion. Not too useful.

-t Take the following argument as a suffix 1list. Files
whose suffixes do not appear in the suffix list are not
touched. The suffix list is dot separated, and "*"
wildcards work., Thus the suffix list:

".c.y.foo* h"

3 ucB 3

ERROR (1) Zilog ERROR (1)

allows error to touch files ending with ".c", ".y",
".foo*" and ".h".

-v After all files have been touched, overlay the visual
editor wvi(l) to edit all files touched, and positioned
in the first touched file at the first error. If vi(l)
can't be found, try ex(l) or ed(l) from standard

places.
FILES
“/.errorrc function names to ignore for lint
error messages
/dev/tty user's teletype
LIMITATIONS

Opens the teletype directly to do user querying.

Source files with links make a new copy of the file with
only one link to it.

Changing a language processor's format of error messages may
cause error to not understand the error message.

Error, since it is purely mechanical, will not filter out
subsequent errors caused by " floodgating' initiated by one
syntactically trivial error. Humans are still much better
at discarding these related errors.

Error was designed for work on CRTs at reasonably high

speed. It is less pleasant on slow speed terminals, and has
never been used on hardcopy terminals.

4 UCB 4

EX (1) Zilog EX (1)

NAME
ex, edit - text editor
SYNOPSIS
ex
[-]
[-v]
[-ttag]
[-x]
[-R]
{ +[command]]
[-1]
file ...
edit [ex options]
DESCRIPTION

Ex is the root of a family of editors: edit, ex, and vi. Ex
is a superset of ed, with the most notable extension being a
display editing facility. Display-based editing is the
focus of vi.

The available options are:

- This option suppresses all editor prompts and printing
of character counts output by e, r, and w commands;
this option is also useful in processing editor scripts
in command files.

-v This option causes vi to be invoked instead of ex.

-t tag
The cursor will be positioned at the definition of tag
immediately after ex is entered.

-r This option is used to recover named files after an
editor or system crash; the 1last saved version is
retrieved.

-R This option is used to invoke a "read only" version of
ex.

+[command]
The editor begins by executing the command, command; if
command is omitted, then the editor begins with the
cursor positioned at the last line of the file.

1 UCB 1

EX (1)

Zilog EX (1)

-1 This sets up ex for LISP editing; that is, the editing
options, showmatch and lisp are set.
file Name of the file(s) to be edited.

The editor edit is convenient for casual users; it avoids
some of the complexities of ex.

To use a display-based editor on a CRT terminal, see vi (1),
a command that focuses on the display editing portion of ex.

DOCUMENTATION

The document The ZEUS Line-Oriented Text Editor -- Ed pro-
vides a comprehensive introduction to edit assuming no pre-
vious knowledge of computers or the ZEUS system.

The Ex Reference Manual is a comprehensive and complete
manual for the command mode features of ex, but is not a
tutorial to learn from.

Introduction to Display Editing with vi introduces the
display editor vi and provides reference material on vi.

These documents can be found in the ZEUS Utilities Manual.

FILES
/usr/lib/ex?.?strings error messages
/usr/lib/ex?.?recover recover command
/usr/lib/ex?.?preserve preserve command
/etc/termcap describes capabilities of terminals
~/.exxrc editor startup file
/tmp/EXxnnnnn editor temporary
/tmp/Rxnnnnn named buffer temporary
/usr/preserve preservation directory

SEE ALSO

ed(l), grep(l), sed(l), vi(l), termcap(5), environ(5), term-
list (7)

LIMITATIONS

The undo command causes all marks to be lost on lines
changed, then restored if the marked lines were changed.

Undo never clears the buffer modified condition.

The z command prints a number of logical rather than physi-
cal lines. More than a screen full of output results if
long lines are present. ‘

File input/output errors do not print a name if the command
line option - is used.

ucB 2

BEX(1) Zilog EX (1)

There is no easy way to do a single-scan ignoring case.

The editor does not warn if text is placed in named buffers
and not used before exiting the editor.

Null characters are discarded in input files, and cannot
appear in resultant files.

3 UcB 3

EXIT (1C) Zilog EXIT (1C)

NAME
exit - exit a shell

SYNOPSIS
exit
exit (expression)

DESCRIPTION
The shell exits either with the value of the status variable
(Eirst form) or with the value of the specified expression
(second form). This command is ignored 1if the ignoreexit
variable is set.

SEE ALSO
break (1C), logout(lC).
The C Shell in the ZEUS Utilities Manual.

1 ucCB 1

EXPAND (1) Zilog EXPAND (1)

NAME
expand - expand tabs to spaces
SYNOPSIS .
expand [-tabstop] [-tabl,tab2,...,tabn] [file ...]
DESCRIPTION

Expand processes the named files or the standard input writ-
ing the standard output with tabs changed into blanks.
Backspace characters are preserved 1into the output and
decrement the column count for tab calculations., Expand is
useful for pre-processing character files (before sorting,
looking at specific columns, etc.) that contain tabs.

If a single tabstop argument is given then tabs are set
tabstop spaces apart instead of the default 8. If multiple
tabstops are given then the tabs are set at those specific
columns.

Bell 1

EXPR (1) Zilog EXPR (1)

NAME
expr - evaluate arguments as an expression

SYNOPSIS
expr arg ...

DESCRIPTION
The arguments are taken as an expression. After evaluation,
the result is written on the standard output. Each token of
the expression is a separate argument.

The operators and keywords are listed here. The list is 1in
order of increasing precedence, with equal precedence opera-

tors grouped.

expr | expr
yields the first expr if it is neither null nor @; oth-
erwise, yields the second expr

expr & expr
yields the first expr if nelther expr 1is null or @;
otherwise, yields ¢

expr relop expr where relop is one of <, <=, =, =, >=, or
>, it yields 1 if the indicated comparison is true, "g"
if false. The comparison is numeric if both expr are
integers, otherwise, it is lexicographic

expr + expr

expr - expr
addition or subtraction of the arguments

expr * expr
expr / expr

expr % expr
multiplication, division, or remainder of the arguments

expr : expr

The matching operator compares the string first argu-
ment with the regular expression second argument; regu-
lar expression syntax is the same as that of ed(l).
The \(...\) pattern symbols can be used to select a
portion of the first argument; otherwise, the wmatching
operator yields the number of characters matched and
returns ¢ on failure

substr string start length
yields the substring of length characters of string
starting at the start (numeric index, 1 is the first

EXPR (1) Zilog EXPR (1)

character of string)

length string
yields the length in bytes of string

index string target
yields the index of the first occurrence in string of
any one of the characters in target. The characters of
target are not treated as a string; rather, they are
treated as individual characters.

(expr)
parentheses for grouping

Examples:
To add 1 to the shell variable a, enter:
a="expr $a + 1°

To find the filename part (least significant part) of the
path name stored in variable a, that can contain /:

expr $a : ".*/A\(.*\)" "|" sa
Note the quoted shell metacharacters.

SEE ALSO
csh(l), ed(1l), sh(l), test(l)

DIAGNOSTICS
Expr returns the following exit codes:

] if the expression is neither null nor ¢
1 if the expression is null or @,
2 for invalid expressions

LIMITATIONS

substr does not follow the system standard of counting from
a.

2 Bell 2

FILE(1) Zilog FILE(1)

NAME

file - determine file type

SYNOPSIS

file [-f] file ...

DESCRIPTION

File performs a series of tests on each argument in an
attempt to classify it. If an argument appears to be ASCII,
file examines the first 512 bytes and tries to guess its
language. If the -f option is given, the next argument is
taken to be a file containing the names of the files to be
examined.

LIMITATIONS
It often makes mistakes. 1In particular, it often suggests
that command files are C programs. It also has trouble dis-

tinguishing between PLZ/ASM and PLZ/SYS programs.

Bell 1

FIND(1)

NAME

zilog FIND(1)

find - find files

SYNOPSIS

find path-name-list expression

DESCRIPTION
Find recursively descends the directory hierarchy for each

path

name in the path-name-list (i.e., one or more path

names) seeking files that match a Boolean expression written

in

the primaries given below. In the descriptions, the

argument n is used as a decimal integer where +n means more
than n, -n means less than n, and n means exactly n.

The primaries can be combined using the following operators
(in order of decreasing precedence):

1) The negation of a primary (! is the unary not opera-

tor).

2) Concatenation of primaries (the and operation is

implied by the juxtaposition of two primaries).

3) Alternation of primaries (o is the or operator).

OPTIONS

-atime n True if the file has been accessed in n
days.

-cpio device Write the current file on device in cpio(5)
format (5120 byte records).

-ctime n True if the file has been changed in n days.

-exec cmd True if the executed omd returns a zero
value as exit status. The end of cmd must
be punctuated by an escaped semicolon. A
command argument {} is replaced by the
current path name.

—group gname True if the file belongs to the group gname.
If gname is numeric and does not appear in
the /etc/group file, it is taken as a group
ID.

-links n True if the file has n links.

-mtime n True if the file has been modified in n
days.

-name file True if file matches the current file name.

Normal shell argument syntax may be used if

Bell 1

FIND(1)

-newer file

-ok omd

-perm onum

-print

-size n

-type c

—user uname

(expression)

EXAMPLE

zilog FIND(1)

escaped (watch out for [,? and *).

True if the current file has been modified
more recently than the argument file.

Like -exec except that the generated command
line 1is printed with a question mark first,
and is executed only if the user responds by
typing y.

True 1f the file permission flags exactly

match the octal number onum (see chmod(l)).

If onum is prefixed by a minus sign, more

flag Dbits (917777, see stat(2)) become sig-

nificant and the flags are compared:
(flags&onum)==onum

Always true; causes the current path name to
be printed.

True if the file is n blocks long (512 bytes
per block).

True if the type of the file is ¢, where ¢
is b, ¢, d, p, or £ for block special file,
character special file, directory, fifo
(a.k.a named pipe), or plain file.

True if the file belongs to the user uname.
If uname is numeric and does not appear as a
login name in the /etc/passwd file, it is
taken as a user ID.

True if the parenthesized expression is true

(parentheses are special to the shell and
must be escaped).

To find all files named a.out that have not been accessed

for a week:

find / -name a.out -atime +7 -print

FILES

/etc/passwd, /etc/group

SEE ALSO

cpio(l), sh(1l),

test(1l), stat(2), cpio(5), fs(5).

FLOW(1) zilog FLOW(1)

NAME

flow - flow analysis of C programs
SYNOPSIS

flow [-bcors] [output-suffix] files ...
DESCRIPTION

Flow performs a flow analysis on the named files producing 3
tables: which functions call which; which functions are
called by which; which functions reside 1in which source
files. These tables are called flow.CALLS, flow.CALLEDBY and
flow.RESIDES respectively.

To create these tables, first the C source files must be
converted into trace files. Then any trace files specified
on the command line as well as any trace files produced are
processed to create the needed tables. In order to facili-
tate the use of flow with make(l) the ‘trace files' may be
saved.

The ‘files' specified on the command line can be any mixture
of C source files and trace files. Remember that trace files

~are name “file.t'.

OPTIONS

-b Generate the ‘CALLEDBY' file.
-c Generate the ‘CALLS' table.

-0 Rather than using the suffix ‘flow' for naming the out-
put tables, use the suffix supplied by the user, which
is the next argument.

-r Generate the ‘RESIDES' file.
The default for the ‘table' flags are to produce all
tables.

-s Save the trace files. Trace file names are the ‘root-
name' of the C source file, with a ‘.t' appended. For
example, if the source file is adb.c, 1its trace file
would be adb.t.

FILES
/tmp/flow[ABCDE] temporary processing files
file.i Files produced by the C pre-processor
file.t Trace files

SEE ALSO
cc(l)

DIAGNOTICS

Diagnostics are intended to be self-explanatory. However

Zilog 1

FLOW(1) Zilog FLOW(1)

when processing interrupts, misleading diagunostics can
occur.

LIMITATIONS

Since the output tables are produced with the help of tbl(1)
and nroff(l), the process is slow.

2 Zilog

N

FOREACH (1C) Zilog FOREACH (1C)

NAME
foreach - C Shell flow control loop initiation

SYNOPSIS
foreach name (list)
command

end

DESCRIPTION
The variable name is successively set to each member of

wordlist and the sequence of commands between this command
and the matching end are executed. Both foreach and end

must appear alone on separate lines.

When this command is read from the terminal, the 1loop is
read up once prompting with ? before any statements in the

loop are executed. A typing mistake in a loop at the termi-
nal can be rubbed out.

FILES
/bin/csh

SEE ALSO
break (1C), breaksw(lC), continue(lC), exit(lC), if(1cy,
nohup (1C), onintr(1C), switch(1lC), while(1C).
The C Shell in the ZEUS Utilities Manual

1 UCB 1

GET(1) . Zilog GET(1)

NAME

get - get a version of an SCCS file

SYNOPSIS

get [-rSiID]
[-ccutoff]

[[-1[p]]
[-pmnsbgt]
[-aseg-no.] file

DESCRIPTION

Get generates an ASCII text file from each named SCCS file
according to the specifications given by its keyletter argu-
ments, which begin with -. The arguments may be specified
in any order, but all keyletter arguments apply to all named
SCCs files. 1If a directory is named, get behaves as though
each file in the directory were specified as a named file,
except that non-SCCS files (last component of the path name
does not begin with s.) and unreadable files are silently
ignored. 1If a name of - is given, the standard input is
read; each line of the standard input is taken to be the
name of an SCCS file to be processed. Again, non-SCCS files
and unreadable files are silently ignored.

The generated text is normally written into a file «called
the g-file whose name is derived from the SCCS file name by
simply removing the leading s.; (see also FILES, below).

Each of the keyletter arguments is explained below as though
only one SCCS file is to be processed, bhut the effects of
any keyletter argument applies independently to each named
file.

-rSID The SCCS IDentification string (SID) of the ver-
- sion (delta) of an SCCS file to be retrieved.
Table™1 below shows, for the most useful cases,
what version of an SCCS file is retrieved (as
well as the SID of the version to be eventually
created by delta(l) if the -e keyletter is also

used), as a function of the SID specified.

—-ccutoff Cutoff date-time, in the form:

YY[MM[DD[HH[MM[SS]111]]

No changes (deltas) to the SCCS file which were
created after the specified cutoff date-time are

GET(1)
-e
-b
-ilist
2

zilog GET(1)

included in the generated ASCII text file. Units
omitted from the date-time default to their max-
imum possible values; that is, -c7502 is
equivalent to =-c750228235959. Any number of
non-numeric characters may separate the various 2

digit pieces of the cutoff date-time. This
feature allows one to specify a cutoff date in
the form: "-c77/2/2 9:22:25". Note that this

implies that one may use the %E% and $U% identif-
ication keywords (see below) for nested gets
within, say the input to a send(l) command:

“lget "-c%E% 3U%" s.file

Indicates that the get 1is for the purpose of
editing or making a change (delta) to the SCCS
file via a subsequent use of delta(l). The -e
keyletter used in a get for a particular version
(SID) of the SCCS file prevents further gets for
editing on the same SID until delta is executed
or the j (joint edit) flag is set in the SCCS
file (see admin(1l)). Concurrent use of get -e
for different SIDs is always allowed.

If the g-file generated by get with an -e
keyletter is accidentally ruined in the process
of editing it, it may Dbe regenerated by re-
executlng the get command with the -k keyletter
in place of the —-e keyletter.

SCCS file protection specified via the ceiling,
floor, and authorized user 1list stored in the
SCCS file (see admin(l)) are enforced when the -e
keyletter is used.

Used with the —e keyletter to indicate that the
new delta should have an SID in a new branch as
shown in Table 1. This keyletter is ignored if
the b flag is not present in the file (see
admin(l)) or if the retrieved delta is not a leaf
delta. (A leaf delta is one that has no succes-
sors on the SCCS file tree.)

Note: A branch delta may always be created from a
non-leaf delta.

A list of deltas to be included (forced to Dbe
applied) in the creation of the generated file.
The list has the following syntax:

<list> :

: ange> | <list> , <range>
<range> :

<r
= SID | SID - SID

Bell 2

GET(1)

-xlist

-1[p]

-P

-m

-t

Zilog GET(1)

SID, the SCCS Identification of a delta, may be
in any form shown in the ''SID Specified'' column
of Table 1. Partial SIDs are interpreted as
shown in the ‘*SID Retrieved'' column of Table 1.

A list of deltas to be excluded (forced not to be
applied) in the creation of the generated file.
See the -i keyletter for the list format.

Suppresses replacement of identification keywords
(see below) in the retrieved text by their value.
The -k kevletter is implied by the -e keyletter.

Causes a delta summary to be written into an 1-
file. If -1p 1s used then an 1l-file is not
created; the delta summary is written on the
standard output instead. See FILES for the for-

mat of the l—file.

Causes the text retrieved from the SCCS file to
be written on the standard output. No g-file is
created. All output which normally goes to the
standard output goes to file descriptor 2
instead, unless the -s keyletter is used, in
which case it disappears.

Suppresses all output normally written on the
standard output. However, fatal error messages
(which always go to file descriptor 2) remain
unaffected.

Causes each text line retrieved from the SCCS
file to be preceded by the SID of the delta that
inserted the text line in the 8CCS file. The
format is: SID, followed by a horizontal tab,
followed by the text line.

Causes each generated text line to be preceded
with the 2M% identification keyword value (see
below). The format is: $M% value, followed by a
horizontal tab, followed by the text line. When
both the -m and -n keyletters are used, the for-
mat is: %M2? value, followed by a horizontal tab,
followed by the -m keyletter generated format.

Suppresses the actual retrieval of text from the
sccs file. It is primarily used to generate an
l-file, or to verify the existence of a particu-
Tar SID.

Used to access the most recently created
(*‘top'') delta in a given release (e.g., -rl),

Bell 3

GET(1) zilog GET(1)

or release and level (e.g., -rl.2).

-aseq-no. The delta sequence number of the SCCS file delta
T 7 (version) to Dbe retrieved (see sccsfile(5)).
This keyletter is used by the comb(l) command; it
is not a generally useful keyletter, and users
should not use it. If both the -r and -a
keyletters are specified, the -a keyletter is
used. Care should be taken when using the -a
keyletter in conjunction with the --e keyletter,
as the SID of the delta to be created may not be
what one expects. The -r keyletter can be used
with the -a and -e keyletters to control the nam-

ing of the SID of the delta to be created.

For each file processed, get responds (on the standard out-
put) with the SID being accessed and with the number of
lines retrieved from the SCCS file.

If the -e keyletter is used, the SID of the delta to be made
appears after the SID accessed and before the number of
lines generated. If there is more than one named file or if
a directory or standard input is named, each file name is
printed (preceded by a new-line) before it is processed. If
the -i keyletter is used included deltas are listed follow-
ing the notation '‘Included''; if the -x keyletter is used,
excluded deltas are listed following the notation
**Excluded’'’'.

TABLE 1. Determination of SCCS Identification String

SID¥* -b Key Other SID SID of Delta

Spec. Used Condltlons Retrleved to be Created

none no R defaults to mR mR.mL mR. {mL+1)

none yes R defaults to mR mR.mL mR.mL. (mB+1) .1

R no R > mR mR.mL .1***

R no R = mR mR.mL mR. (mL+1)

R yes R > mR mR.mL mR.mL. (mB+1) .1

R yes R = mR mR.mL mR.mL. (mB+1) .1
R < mR and

R - R does not exist hR.mL** hR.mL. (mB+1) .1
Trunk succ.#

R - in release > R R.mL R.mL.(mB+1) .1
and R ex1sts

R.L no No trunk succ. R.L R. (L+1)

R.L yes No trunk succ. R.L R.L.{(mB+1).1
Trunk succ.

R.L - in release »* R R.mL R.mL. (mB+1).1

4 Bell 4

GET(1) Zilog GET(1)

R.L.B no No branch succ. R.L.B.mS R.L.B.(mS+1
R.L.B ves No branch succ. R.L.B.mS R.L.(mB+1).
mERsSESSIxmEsSESsEsass T e e N T e e N T I T NS R RIS R A S R S XSS SIS R IR
R.L.B.S no No branch succ. R.L.B.S R.L.B. (S+1)
R.L.B.S yes No branch succ. R.L.B.S R.L.(mB+1).
R.L.B.S - Branch succ. R.L.B.S R.L.(mB+1)
Code

R = release

L = level

B = branch

S = sequence

m = maximum.

Thus, for example,
R.mL = the maximum level number within release R;

R.L.(mB+1).1 :
= the first sequence number on the new branch (i.e.,
maximum branch number plus one) of 1level L within
release R.

Note that if the SID specified is of the form R.L, R.L.B, or
R.L.B.S, each of the specified components must exist.

** "*hR'' is the highest existing release that is lower
than the specified, nonexistent, release R.

*** This is used to force creation of the first delta in a
new release.

Successor.

+ The -b keyletter is effective only if the b flag (see
admin(l)) is present in the file. An entry of - means
*‘*irrelevant'’.

+ This case applies if the 4 (default SID) flag is not

present in the file. If the 4 flag is present in the
file, then the SID obtained from the 4 flag 1is inter-
preted as if it had been specified on the command line.
Thus, one of the other cases in this table applies.

IDENTIFICATION KEYWORDS
Identifying information is inserted into the text retrieved
from the SCCS file by replacing identification keywords with
their value wherever they occur. The following keywords may
be used in the text stored in an SCCS file:

5 Bell 5

GET(1) Zilog GET(1)

Keyword Value

IM3 Module name: either the value of the m flag in the
file (see admin(l)), or if absent, the name of the
SCCS file with the leading s. removed.

IS SCCS identification (SID) (%R%.%3%L%.%B%.%S%) of
the retrieved text.

2R3 Release.

L3 Level.

2B3 Branch.

%53 Sequence.

eD3 Current date (YY/MM/DD).

LHS , Current date (MM/DD/YY).

TS Current time (HH:MM:SS).

3ES Date newest applied delta was created (YY/MM/DD).

G2 Date newest applied delta was created (MM/DD/YY).

U3 Time newest applied delta was created (HH:MM:SS).

Y3 Module type: value of the t flag in the SCCS file
(see admin(l)).

tF SCCS file name.

P2 Fully qualified SCCS file name.

20% . The value of the q flag in the file (see
admin(1l)).

3C3 Current line number. This keyword is intended for
identifying messages output by the program such as
**this shouldn't have happened'' type errors. It

is not intended to be used on every line to pro-
vide sequence numbers.

2% The 4-character string @(#) recognizable by
what(1).

IWS A shorthand notation for c¢onstructing what(1l)
strings for ZEUS program files.
W% = %Z%3¥IM¥<horizontal-tab>%3I%

2AL Another shorthand notation for constructing

what (1) strings for non-ZEUS program files.
2A% = BZ2%3Y% MY BI1%2Z2%

FILES

Several auxiliary files may be created by get. These files
are known generically as the g-file, l1-file, p-file, and z-
file. The letter before the hyphen is called the tag. An
auxlliary file name is formed from the SCCS file name: the
last component of all SCCS file names must be of the form
s.module-name, the auxiliary files are named by replacing
the leading s with the tag. The g-file is an exception to
this scheme: the g-file is named by removing the s. prefix.

For example, s.xyz.c, the auxiliary file names would be
Xxyz.c, l.xyz.c, p.xyz.c, and z.xXyz.c, respectively.

The g-file, which contains the generated text, is created in
the current directory (unless the -p keyletter is used). A
g-file is created in all cases, whether or not any lines of
text were generated Dby the get. It is owned by the real

Bell 6

GET(1) zilog GET(1)

user. If the -k keyletter is used or implied its mode 1is
644; otherwise its mode 1is 444. Only the real user need
have write permission in the current directory.

The 1l-file contains a table showing which deltas were
applie in generating the retrieved text. The l-file is
created in the current directory if the =1 keyletter is
used; its mode 1is 444 and it is owned by the real user.
Only the real user need have write permission in the current

directory.

Lines in the 1l-file have the following format:

a. A blank character if the delta was applied;
* otherwise.
b. A blank character if the delta was applied or

wasn't applied and ignored;
* if the delta wasn't applied and wasn't ignored.
c. A code indicating a ‘‘special'' reason why the
delta was or was not applied:
**I'': Included.
*YX'': Excluded.
**Cc'': Cut off (by a —-c keyletter).
d Blank.
e SCCS identification (SID).
£. Tab character.
g. Date and time (in the form YY/MM/DD HH:MM:SS) of
creation.
h. Blank.
i Login name of person who created delta.

The comments and MR data follow on subsequent 1lines,
indented one horizontal tab character. A blank line
terminates each entry.

The p-file is used to pass information resulting from a get
with an -e keyletter along to delta. 1Its contents are also
used to prevent a subsequent execution of get with an -e
keyletter for the same SID until delta is executed or the
joint edit flag, Jj, (see admin(l)) is set in the SCCS file.
The p-file 1is created in the directory containing the SCCS
file and the effective user must have write permission in
that directory. Its mode 1is 644 and it is owned by the
effective user. The format of the p-file 1is: the gotten
SID, followed by a blank, followed by the SID that the new
delta will have when it is made, followed by a blank, fol-
lowed by the login name of the real user, followed by a
blank, followed by the date-time the get was executed, fol-
lowed by a blank and the -i keyletter argument if it was
present, followed by a blank and the -x keyletter argument
if it was present, followed by a new-line. There can be an
arbitrary number of lines in the p-file at any time; no two

7 Bell 7

GET(1) Zilog GET(1)

lines can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultane-
ous updates. Its contents are the binary (2 bytes) process
ID of the command (i.e., get) that created it. The z-file
is created in the dlrectory containing the SCCS file for the
duration of get. The same protection restrictions as those
for the p-file apply for the z-file. The z-file is created
mode 444.

SEE ALSO
admin(1l), delta(l), help(l), prs(l), what(l), sccsfile(5).
Source Code Control System User's Guide in the ZEUS Utili-
ties Manual

DIAGNOSTICS
Use help(l) for explanations.

LIMITATIONS
If the effective user has write permission (either expli-
citly or implicitly) in the directory containing the SCCS
files, but the real user doesn't, then only one file may be
named when the -e keyletter is used.

GETFILE(1) Zilog GETFILE(1)

NAME

getfile - transfer files from local to remote system
SYNOPSIS

getfile [-qfBb] filel [[-b] file2 ...]
DESCRIPTION

Getfile uploads one or more files to ZEUS from another ZEUS
system or a RIO System running the file transfer software of
the S-8000 Communication Package. This program is invoked
from the remote system; therefore, remote(l) must be exe-
cuted first. Files are transferred one record at a time
along with a checksum to ensure the accuracy of the data.
Transfer of one file can be terminated by entering a
control-x. The entire transfer can be aborted by entering
an escape.

OPTIONS

~-b The next file is considered to be a Dbinary. Carriage
returns are not replaced by new lines.

-B All file names on the line are treated as if they were
preceded Dby a -b. This is usually desirable for ZEUS-
to-ZEUS transfers.

-f The program suppresses all nonfatal error messages.

-q The program prints a query before replacing an existing
file of the same name as the one being transferred.

SEE ALSO
putfile(l), local(l), remote(l).
DIAGNOSTICS
"checksum error ... retry" Printed if the computed check-

sum does not match the transmitted checksum.

"<filename> ... transfer aborted" Printed after a specific
number of retries, if a control-x or an escape is entered,
or if the transfer failed (due to 1lack of space or Dbad
media).

"getfile: <nl> successful transfers <n2> unsuccessful
transfers"” Printed at program termination.

"<filename> ... unable to open file" Printed if the file
cannot be opened on either system.

The program outputs a single dot (.) after each successful

transfer of a record. If the transfer appears to halt,
allow 20 seconds for a retry.

Zilog 1

GETNAME (1) Zilog GETNAME(1)

NAME

getNAME - get NAME sections of manual for whatis/apropos
data base

SYNOPSIS
getNAME name ...

DESCRIPTION
Getname reads the first few lines of each of the argument
manual section sources, and finds the .TH entry and the .SH
entry writing them to the standard output in a form suitable
for making into the whatis/apropos data base.

FILES
/usr/lib/whatis Eventual data base

SEE ALSO
apropos(1l), makewhatis(1l), whatis(1l).

1 uce 1

GETOPT(1C) Zilog GETOPT(1C)

NAME

getopt - parse command options
SYNOPSIS

set -- getopt optstring $*
DESCRIPTION

Getopt is used to break up options in command lines for easy
parsing by shell procedures, and to check for legal options.

Optstring is a string of recognized option letters (see
getopt(3)); if a letter is followed by a colon, the option
is expected to have an argument which may or may not be
separated from it by white space.

Getopt will place -- in the arguments at the end of the
options, or recognize it 1if used explicitly. The shell
arguments ($1 $2 . . .) are reset so that each option is

preceded by a - and in its own shell argument; each option
argument is also in its own shell argument.

OPTIONS

- Delimit the end of the options.

DIAGNOSTICS

Getopt prints an error message on the standard error when it
encounters an option letter not included in optstring.

EXAMPLE

The following code fragment shows how one might process the
arguments for a command that can take the options a and b,
and the option o, which requires an argument.

set -- getopt abo: $*

if [82 =0]

then
echo SUSAGE
exit 2

fi

for 1 in $*

do
case Si in
-a | -b) FLAG=$i; shift;;
-0) OARG=$2; shift; shift;;
--) shift; break;;
esac

done
This code will accept any of the following as equivalent:

cmd -acarg file file
cmd -a -o arg file file

Bell 1

GETOPT(1C) Zilog GETOPT(1C)

cmd -oarg -a file file
cmd -a -oarg -- file file
SEE ALSO
sh(1l), getopt(3).

LIMITATIONS

Getopt is not useful when typed at the prompt. Its use |is
within the body of a shell script. Although it is not a
built-in feature of the C Shell,

it is included in the 1C
section of the reference manual because of its use.

Bell

GETS(1C) Zilog GETS(1C)

NAME

gets - get a string from standard input

SYNOPSIS

gets [default]

DESCRIPTION

Gets can be used with csh(l) to read a string from the stan-
dard input. If a default is given it is used if an error
occurs. The resultant string (either the default or as read
from the standard input) is written to the standard output.

If no default is given and an error occurs, gets exits with
exit status 1.

EXAMPLE

The following shell script will set the variable a to what-
ever is typed into the terminal at the prompt, and then echo
the contents of the variable "a"

example shell script

echo -n "Enter a letter:"

set a=‘gets®

echo $a

LIMITATIONS

The gets command is used from within the ©body of a shell
script, it is not useful from the prompt. For that reason it
is in the "1C" section of the manual.

SEE ALSO

csh(l), line(1l).
The C Shell in the ZEUS Utilities Manual.

UucCB 1

GLOB(1C) Zilog GLOB (1C)

NAME
glob - print strings on the terminal without spaces

SYNOPSIS
glob wordlist

DESCRIPTION
Like echo, but no \ escapes are recognized and words are
delimikted by null characters in the output. Useful for pro-
grams which use the shell to expand a list of words.

SEE ALSO

echo (1C), echo2(1l).
The C Shell in the ZEUS Utilities Manual

1 UCB 1

GPASSWD(1) Zilog GPASSWD(1)

NAME

gpasswd - change group password

SYNOPSIS

gpasswd [name]

DESCRIPTION

This command changes (or installs) a password associated
with the group name (your own group by default).

The program prompts for the old password and then for the
new one. The caller must supply both. The new password
must be typed twice to forestall mistakes.

New passwords must be at least four characters long if they
use a sufficiently rich alphabet and at least six characters
long if monocase.

Only the owner of the name or the super-user can change a
password; the owner must prove he knows the old password.

Once the password has been changed, a notice is sent to all
members of the group.

FILES

/etc/passwd
/etc/gtmp*

SEE ALSO

login(l), crypt(3), passwd(5).

LIMITATIONS

Under certain conditions the group file will not be updated.
In these situations the new file resides in /etc/gtmp*.

Zilog 1

GREEK(1) Zilog GREEK(1)

NAME ‘
greek - select terminal filter
SYNOPSIS
greek [-Tterminal]
DESCRIPTION
Greek is a filter that reinterprets the extended character
set, as well as the reverse and half-line motions, of a
128-character TELETYPE(Reg.) Model 37 terminal (which is the
nroff(l) default terminal) for certain other terminals.
Special characters are simulated by overstriking. If the
argument 1is omitted, greek attempts to use the environment
variable S$TERM (see environ(7)). The following terminals
are currently recognized:
hp Hewlett-Packard 2621, 2640, and 2645.
tek Tektronix 4914.
300 DASI 303.
390-12 DASI 30@ in 12-pitch.
333s DASI 300s.
300s-12 DASI 30@s in 12-pitch.
459 DASI 458.
450-12 DASI 450 in 12-pitch.
1620 Diablo 1620 (alias DASI 450).
1620-12 Diablo 1620 (alias DASI 45@) in 12-pitch.
2621 Hewlett-Packard 2621, 2640, and 2645.
2640 Hewlett-~Packard 2621, 2644, and 2645.
2645 Hewlett-Packard 2621, 2640, and 2645.
4914 Tektronix 4¢14.
FILES
/usr/bin/ 300
/usr/bin/300s
/usr/bin/450
SEE ALSO
399(1), 4@14(1), 450(1), eqn(l), greek(7), nroff(1l),

environ(5), term(7).

1 Bell 1

GREP(1) Zilog GREP(1)

NAME
grep, egrep, fgrep - search a file for a pattern

SYNOPSIS
grep [options] expression [files]

egrep [options] [expression] [files]

fgrep [options] [strings] [files]

DESCRIPTION

Commands of the grep family search the input files (standard
input default) for lines matching a pattern. Normally, each
line found is copied to the standard output. Grep patterns
are limited regular expressions in the style of ed(l); it
uses a compact non-deterministic algorithm. Egrep patterns
are full regular expressions; it uses a fast deterministic
algorithm that sometimes needs exponential space. Fgrep
patterns are fixed strings; it is fast and compact.

In all cases, the file name is output if there is more than
one input file. Care should be taken when using the charac-
ters $, *, [, *, |, (,), and \ in expression, because they
are also meaningful to the shell. It is safest to enclose

the entire expression argument in single quotes "...°'.

Fgrep searches for lines that contain one of the strings
separated by new-lines.

Egrep accepts regular expressions as in ed(l), except for \(
and \), with the addition of:

1. A regular expression followed by + matches one or more
occurrences of the regular expression.

2. A regular expression followed by ? matches @ or 1
occurrences of the regular expression.

3. Two regular expressions separated by | or by a new-
line match strings that are matched by either.

4. A regular expression may be enclosed in parentheses ()

for grouping.

The order of precedence of operators is [], then *2?+, then
concatenation, then | and new-line.

OPTIONS '

-b Each line is preceded by the block number on which it
was found. This is sometimes useful in locating disk
block numbers by context.

-c Only a count of matching lines is printed.

-e expression

1 Bell 1

GREP(1) Zilog GREP(1)

Same as a simple expression argument, but useful when
the expression begins with a - (does not work with

grep).

-f file
The regular expression or strings list (fgrep) is taken
from the file.

~h Do not print filename headers with output lines.

-1 Only the names of files with matching lines are 1listed
(once), separated by new-lines.

-n Each line is preceded by its relative 1line number in
the file.

-s The error messages produced for nonexistent or unread-
able files are suppressed (grep only).

-v All lines but those matching are printed.

-Xx (Exact) only 1lines matched in their entirety are
printed (fgrep only).

SEE ALSO
csh(l), ed(l), sed(l), sh(l).

DIAGNOSTICS
Exit status is # if any matches are found, 1 if none, 2 for
syntax errors or inaccessible files.

LIMITATIONS
Ideally there should be only one grep, but we don't know a
single algorithm that spans a wide enough range of space-
time tradeoffs.

Lines are limited to 256 characters; longer lines are trun-
cated.

Egrep does not recognize ranges, such as [a-z], in character
classes.

2 Bell 2

HEAD(1) 7ilog HEAD(1)

NAME ,
head - give first few lines of a stream
SYNOPSIS
head [—count] [file ...]
DESCRIPTION
This filter gives the first count 1lines of each of the
specified files, or of the standard input. If count is

omitted it defaults to 19.

SEE ALSO
cat(l), dog(l), more(l), tail(l).

1 UCB 1

HELP(1) Zilog HELP(1)

NAME

help - ask for help

SYNOPSIS

help [args]

DESCRIPTION

Help finds information to explain a message from a command
or explain the use of a command. Zero or more arguments may
be supplied. If no arguments are given, help will prompt
for one.

The arguments may be either message numbers (which normally
appear in parentheses following messages) or command names,
of one of the following types:

type 1 Begins with non-numerics, ends in numerics. The
non-numeric prefix is usually an abbreviation for
the program or set of routines which produced the
message (e.g., ge6, for message 6 from the get

command) .

type 2 Does not contain numerics (as a command, such as
get)

type 3 Is all numeric (e.g., 212)

The response of the program will be the explanatory informa-
tion related to the argument, if there is any. .

When all else fails, try "help stuck."”

FILES

/usr/lib/help directory containing files of message
text

DIAGNOSTICS

Use help(l) for explanations.

SEE ALSO

man(l), INTRO(1l), apropos(l).

Bell 1l

HISTORY (1C) Zilog HISTORY (1C)

NAME
history - print list of previous commands

SYNOPSIS
history
set history=N

DESCRIPTION
Commands input from the teminal are numbered sequentially

from one and are saved on the history list, whose size is
controlled by the history variable.

The contents of the history list is seen with the command:
history

The size of the history list is determined by setting the
history shell variable with the command:

set history=N

where N is the desired size of the history 1list (15 is a
recommended number).

These saved commands (also called events) are referred to in
the following ways:

!'n event number n

f-m the desired even is m events prior to the
current event

'p prefix of a command in an event

1?string? string in an event argument; trailing ? can
be omitted if nothing follows

[immediately previous event

A history reference can be given without an event specifica-
tion; for example, !S. 1In this case, the reference is to
the previous command unless a previous history reference
occurred on the same line in which case this form repeats
the previous reference.

SEE ALSO
set (1C), setenv(1lC).
The C Shell in the ZEUS Utilities Manual

1 ucs 1

HYPHEN(1) Zilog HYPHEN(1)

NAME ‘
hyphen - find hyphenated words

SYNOPSIS
hyphen files

DESCRIPTION

Hyphen finds all the hyphenated words in files and prints
them on the standard output. If no arguments are given, the
standard input is used. Hyphen can be used as a filter.

LIMITATIONS
Hyphen can't cope with hyphenated italic (i.e., underlined)
words; it often misses them completely, or mangles them.

1 Bell 1

ID(1) zilog ID(1)

NAME

id - print user and group IDs and names
SYNOPSIS

id
DESCRIPTION

Id writes a message on the standard output giving the user
and group IDs and the corresponding names of the invoking
process. If the effective and real IDs do not match, both

are printed.

SEE ALSO
logname(l), getuid(2), getgid(2).

1 Bell 1

IF(1C) Zilog IF(1C)

NAME '
if - C Shell flow control branch statament
SYNOPSIS
if (expression.l) then
command.l
else if (expression.2) then
command. 2
else =~ -
command.3
endif
DESCRIPTION
If the specified expression.l is true, the commands to the
first else are executed; else if expression.2 is true, the
commands to the second else are executed, etc. Any number
of else-if pairs are possible; only one endif is needed.
The else part is likewise optional. The words else and
endif must appear at the beginning of input lines; command
must be a simple command, not a pipeline, a command list, or
a command list within parentheses.
SEE ALSO

foreach(1C), while(1C).
The C Shell in the ZEUS Utilities Manual.

UucB 1

ISRIO(1) zilog ISRIO(1)

NAME

isrio - determine if terminal is a RIO System

SYNOPSIS

isrio

DESCRIPTION

Isrio outputs a character sequence ("ESC?") that causes a
RIO System to return another character sequence. 1Isrio
prints a "y" if the terminal is a RIO System, an "n" if it
is not. Thus, the program can be used significantly in ini-

tialization files, as in the following example:

if (‘isrio' == "y") setenv TERM mcz

SEE ALSO

getfile(l), local(l), putfile(l).

DIAGNOSTICS

Non-RIO terminals that recognize the sequence "ESC?" will
execute that terminal function first and after a timeout,

isrio returns "y"

Zilog 1

JOIN(1) zilog JOIN(1)

NAME
join - relational database operator

SYNOPSIS
join [options] filel file2

DESCRIPTION
Join forms, on the standard output, a join of the two rela-
tions specified by the lines of filel and file2. If filel
is minus, the standard input is used.

Filel and file2 must be sorted in increasing ASCII collating
sequence on the fields on which they are to be joined, nor-
mally the first field in each line.

There is one line in the output for each pair of 1lines 1in
filel and file2 that have identical join fields. The output
line normally consists of the common field, then the rest of
the line from filel, then the rest of the line from file2.

Fields are normally separated by blank, tab, or new line.
In this case, multiple separators count as one, and leading
separators are discarded.

OPTIONS
-an In addition to the normal output, produce a 1line for
each unpairable line in file n, where n is 1 or 2.

-e s Replace empty output fields by string s.

" " Jcin on the mth field of file n. If n is missing, use
the mth field in each file. - -
-0 list
Each output line comprises the fields specifed in list,
each element of which has the form n.m, where n is a
file number and m is a field number.
-tc Use character c as a separator (tab character). Every
~ appearance of ¢ in a line is significant.
EXAMPLES
% cat listl % cat list2
boat boa
boathouse boar
boatload board
boatman boardinghouse
boatmen boast
boatyard boat
boathouse
boatload

1 Bell 1

JOIN(1) Zilog JOIN(1)

poatman
boatmen

% join listl 1list2 2 join -a2 listl list2

boat boa

boathouse boar

boatload board

boatman boardinghouse

boatmen boast
boat
boathouse
boatload
boatman
boatmen

£ join -al 1listl list2

boat

boathouse

boatload

boatman

boatmen

boatyard

SEE ALSO

sort(l), comm(1l)

LIMITATIONS
With default field separation, the collating sequence is
that of sort -b; with -t, the sequence is that of a plain
sort.

The conventions of join, sort, comm, unig, look (1) are
incongruous.

N

2 Bell

KILL(1) 7ilog KILL(1)

NAME

kill - send a signal to a process

SYNOPSIS

kill [-signol] processid ...

DESCRIPTION

Kill sends a signal (15 by default to terminate) to the
specified processes. If a signal number preceded by a minus
is given as the first argument, that signal is sent instead
of terminate (signal (2)). This kills processes that do not
catch the signal; "kill -9 ..." is a sure kill.

If process number @ is specified, all members in the process
group (processes resulting from the current login) are sig-
naled.

The killed processes must belong to the current user unless
the super-user executes 1it. To shut the system down and
bring it up, the super-user uses "kill -1 1"; init(M).

The process number of an asynchronous process started with
an & 1is reported by the shell. Process numbers are also
found by using ps(1l).

EXAMPLE
% nroff -man intro.@#3 > INTRO &
1928
% ps
PID TTY TIME CMD
42 8 F:12 -csh
1928 8 @:92 nroff -man intro.@3
1929 8 P:02 ps
% kill -9 1928
1928: nroff: Killed
% ps
PID TTY TIME CMD
42 8 @:12 -csh
1838 8 B:02 ps
SEE ALSO

ps(1l), kill(2), signal(2), init(M).

Bell 1

LD(1)

NAME

7ilog LD(1)

1d - nonsegmented Z80@% and 8-bit loader

SYNOPSIS

1d [option] file ...

DESCRIPTION

Id creates load modules for execution under ZEUS and down-
loading to target hardware.

Ld combines several object files into one load module file.
In the process, it resolves external references and searches
libraries. 1In the simplest case, several object files are
given and 1ld combines them to produce an executable load
module. An object module can also be produced and used as
input to a subsequent 1ld run, in which case the -r option
must be given to preserve the relocation bits.

The output of 1ld is left on the file a.out(5). If the -o
option is used, the name so specified is used instead a.out;
the file has the same format.

If no errors occur during the 1link, the output file is
marked executable.

The argument routines are concatenated in the order speci-
fied. In absence of the -e option, the entry point of the
output is the beginning of the first routine.

If any argument is a library, it is searched once at the
point it 1is encountered in the argument list. Only those
routines defining an unresolved external reference are
linked.

If a routine from a library references another routine in
the 1library, and the library has not been processed by
ranlib(1l),thereferenced routine must appear after the
referencing routine in the 1library. Thus, the order of
modules within libraries is important. If the first member
of a library is named __ .SYMDEF, then it is understood to be
a dictionary for the library, such as one produced by ran-
1lib. The dictionary is repeatedly searched to satisfy all
possible references.

The symbols etext, _edata, and _end in assembly language
code (etext, edata, and end in C programs) are reserved and
cannot be redefined by the user. The symbol etext refers
to the first location above the text section, or the start
of the data section. The symbol edata refers to the first
location above initialized data, or the start of the bss
section. The symbol end refers to the first location above
all data, and can be used as a starting location for a

Zilog 1

LD(1) Zilog LD(1)

dynamic allocation area managed by the user.

Except for -1, the options must appear before the file
names. The -1 option must follow the names of any routines
which reference it.

To link a program for downloading to a 28000 development
module, the -0 option must be used to specify an uppercase
file name, and the -b option must be used to specify a
starting address that is 0x4600 or higher. No special name
or address is required to link a program for downloading to
a 7Z8 development module.

OPTIONS
~b addr
‘bi addr

Set the bottom location for the program, or for the
specified section if x is specified. X can be one of
t, 4, or b for text, data, and bss, respectively. The
address can be specified 1in decimal, hex, or octal
using the standard C language conventions: a leading
zero indicates octal, and a leading @x indicates hex.
The address specified must be a multiple of 256. If no
section 1is selected, the bottom applies to all three
sections if the program 1is combined instruction and
data, or to data and bss if separate instruction and
data. Only one -t or -b option per section can Dbe
specified. Errors can result if sections overlap, or
the bottom address causes a section to wrap around.

-d Force definition of common storage even if the -r flag
is present.

—-e name
Take the following argument as the name of the entry
point of the loaded program. The link address of the
text section is the default. -~i Separate the program
text and data (also called instruction and data) areas
when the output file is executed.

-1x Search the named library. The library /lib/libx.a, is
sought, if this is inaccessible or missing
/usr/lib/libx.a, is searched followed by /z/bin/libx.a.
The specifed library file is used as though its full
name had been used instead of the -1 option. A library
is searched when its name is encountered, so the place-
ment of a ~1 option is significant.

-0 name
Change the name of the 1d output file to the name
specified. The form of the load module remains the

2 Zilog 2

LD(1)

FILES

-

-S

Zilog LD(1)

same as described in a.out(5).

Generate relocation bits in the output file so that it
can be used 1in a subsequent 1d run. This flag over-
rides the -t and -b options. It also prevents final
definitions from Dbeing given to common symbols, and
suppresses the undefined symbol diagnostics. The -r
flag may not be used to generate 8-bit object files.

Strip the output: remove the symbol table and reloca-
tion bits to save space.

-t addr

-tx addr

-u

-w

-X

Set the highest location of the program or section to

the hex, octal, or decimal number specified. X can be
one of t, 4, or b for text, data, and bss respeEtively.
This option is similar to that of -b except a top
address is specified instead of a bottom one. The link
location of the program or section is justified to meet
the specified top. The low address of the section or
program is always a multiple of 256. In most cases,
the top is within 256 bytes of the specified address,
and is padded with zeros to meet the address.

Take the following argument as a symbol and enter it as
undefined 1in the symbol table. This is useful for
linking wholly from a library, since initially the sym-
bol table 1is empty and an unresolved reference is
needed to force the link of the first routine.

Suppress the symbol redefinition warning. This warning
is produced while searching archives. If an archive
contains a module that defines a symbol that is already
defined, a redefinition warning is produced.

Enter only external and global symbols and do not
preserve local symbols in the output symbol table.
This option saves some space in the output file.

Save local symbols except for section name entries in
the symbol table and for those whose names begin with
L. This option is used by the C compiler to discard
internally generated labels while retaining symbols
local to routines.

/1ib, /usr/lib libraries for -1 option
a.out output file

Zilog 3

LD(1) Zilog LD(1)

SEE ALSO
load(l), ar(l), ranlib(l), a.out(5).

DIAGNOSTICS
Any undefined references cause the special symbol " end" to
be reported as undefined. The "redefinition" warning occurs
if, while searching an archive, a symbol that is already
defined 1is defined in an archive member. This warning can
be suppressed with the -w option. It does not occur if the

symbol name Dbegins with two underscores (one underscore in
c).

LIMITATIONS

The "redefinition" warning should not occur on symbols that
occur twice within the same archive. The double underscore
exception is a kludge.

4 7Zilog 4

LEARN(1) zilog LEARN(1)

NAME

learn - on-line computer-aided instruction

SYNOPSIS

learn [subject [lesson]]

DESCRIPTION

Learn gives practice in the use of ZEUS by providing a
number of CAI courses on the system. To get started, simply
type "learn" and follow the instructions. The strength of
the learn facility 1is 1learning by doing, rather than by
reading about the system.

To go directly to a specific subject, specify the subject
name on the command line, or specify both the subject and
lesson number. The subjects are:

ftuser (first-time user)

files (intro to file usage)

morefiles (more detail)

editor (line-oriented editor ed)

C (programming in C)

macros (-ms package for text formatting)

Other subjects can be supplied on the system. Each site can
prepare and provide local courses that serve a particular
audience. For a local course, the site can install a new
directory containing lessons for that subject.

For debugging lessons, there are a few additional options.
If the lesson number is minus (-), learn prompts for each
lesson. Also, the first option to learn can be -directory,
followed by subject and lesson, in which case a lesson
script can be exercised anywhere.

The special command bye terminates a learn session prema-
turely.

FILES

/usr/lib/learn and all subdirectories such as subjects
(ftuser, files, morefiles, etc.) and play, which contain
subdirectories for individual learn sessions

Bell 1

LEX (1) Zilog LEX (1)

NAME

lex - generate programs for simple lexical tasks

SYNOPSIS

lex [-tvfn] [file] ...

DESCRIPTION

Lex generates programs to be used in simple lexical analysis
of text.

The input files (standard input default) contain strings and
expressions to be searched for, and C text to be executed
when strings are found.

A C source program lex.yy.c is generated, to be compiled
thus:

cc -u main lex.yy.c -11

This program copies the input to the output except when a
string specified in the file is found; then the correspond-
ing program text is executed. The actual string matched is
left in yytext, an external character array.

Matching is done in order of the strings in the file. The
strings may contain square brackets to indicate character
classes, as in [abx-z] to indicate a a, b, x, and z and

the operators *, +, and ? mean respectively any non-
negative number of, any positive number of, and either zero
or one occurrences of, the previous character or character
class. The character . is the class of all ASCII characters
except new-line. Parentheses for grouping and vertical bar
for alternation are also supported.

The notation r { d , e } in a rule indicates between d and e
instances of regular expression r. It has higher precedence
than |, but lower than *, 2, +, and concatenation. The
character ° at the beginning of an expression permits a suc-
cessful match only immediately after a new-line, and the
character $ at the end of an expression requires a trailing
new-line, The character / in an expression indicates trail-
ing context; only the part of the expression up to the slash
is returned in yytext, but the remainder of the expression
must follow in the input stream. An operator character may
be used as an ordinary symbol if it is within " symbols or
preceded by \. Thus [a-2zA-Z]+ matches a string of letters.

Three subroutines defined as macros are expected: input() to
read a character; unput(c) to replace a character read; and
output({c}) to place an output character. They are defined in
terms of the standard streams, but you can override them.

Bell 1

LEX(1) Zilog LEX(1)

The program generated is named yylex(), and the library con-
tains a main() which calls it. The action REJECT on the
right side of the rule causes this match to be rejected and
the next suitable match executed; the function yymore()
accumulates additional characters into the same yytext:; and
the function yyless(p) pushes back the portion of the string
matched beginning at p, which should be between yytext and
yytext+yyleng. The macros input and output use files yyin
and yyout to read from and write to, defaulted to stdin and
stdout, respectively.

Any line beginning with a blank is assumed to contain only C
text and is copied; if it precedes %% it is copied into the
external definition area of the lex.yy.c file. All rules
should follow a %%, as in YACC. Lines preceding %% which
begin with a non-blank character define the string on the
left to be the remainder of the line; it can be called out
later by surrounding it with {}.

Note that curly brackets do not imply parentheses; only
string substitution is done.

EXAMPLES
D [@-9]
23
if printf("IF statement\n");

[a-z]+ printf("tag, value %s\n",yytext);
@{D}+ printf("octal number %s\n",yytext);

{D}+ printf("decimal number %s\n",yytext):;
" printf("unary op\n");
"y printf("binary op\n");
u/* " { lOOp:
while (input() l= '*');

switch (%nput())

case '/': break;
case '*';: unput('*');
default: go to loop:

}

The following lex program converts upper case to lower,
removes blanks at the end of lines, and replaces multiple
blanks by single blanks.

2%

[A-Z] putchar(yytext[Z]J+'a'-'A');
[1+$:

[]+ putchar(' ');

2 Bell 2

LEX(1) Zilog LEX(1)

The external names generated by lex all begin with the pre-
fix yy or YY. '

The options have the following meanings.

-t Place the result on the standard output instead of in
file lex.yy.c .

-V Print a one-line summary of statistics of the generated
analyzer.

-n Opposite of -v; -n is default;

-f ‘Faster' compilation: don't bother to pack the result-
ing tables; limited to small programs.

Multiple files are treated as a single file. If no files
are specified, standard input is used.

Certain table sizes for the resulting finite state machine
can be set in the definitions section:

%P n number of positions is n (default 2000)

In

is

number of states is n (500)
%t n number of parse tree nodes is n (190@9)

%a

s

number of transitions is n (3000)

The use of one or more of the above automatically implies
the -v option, unless the -n option is used.

SEE ALSO
yacc(1l).
LEX - Lexical Analyzer Generator in the ZEUS Languages /[
Programming Tools Manual

3 Bell 3

LINE(1) Zilog | LINE(1)

NAME
line - read one line from the terminal

SYNOPSIS
line

DESCRIPTION
Line copies one line (up to a new-line) from the standard
input and writes it on the standard output. It returns an
exit code of 1 on EOF and always prints at least a new-line.
It 1is often used within shell files to read from the user's
terminal.

SEE ALSO
gets(1C), sh(l), read(2).

1 Bell 1

LINT(1) zilog LINT(1)

NAME

lint - a C program verifier
SYNOPSIS

lint [-—-abchnpuvx] file ...
DESCRIPTION

Lint detects C program bugs and checks the type usage of the
program more strictly than the compilers. Among the things
which are currently found are unreachable statements, loops
not entered at the top, automatic variables declared and not
used, and 1logical expressions whose value 1is constant.
Moreover, the wusage of functions is checked to find func-
tions which return values in some places and not in others,
functions called with varying numbers of arguments, and
functions whose values are not used.

Lint assumed that all files are loaded together; they are
checked for mutual compatibility. Function definitions for
certain libraries are available to lint; these libraries are
referred to by a conventional name, such as ‘~1lm', in the
style of 1d(1).

Exit(2) and other functions which do not return are not
understood; this causes various lies.

Certain conventional comments in the C source will change
the behavior of lint:

/ *NOTREACHED* / :
at appropriate points stops comments about unreachable
code.

/ *VARARGSn* /
suppresses the usual checking for variable numbers of
arguments in the following function declaration. The
data types of the first n arguments are checked; a
missing n is taken to be 4.

/*NOSTRICT*/
shuts off strict type checking in the next expression.

/*ARGSUSED*/
turns on the -v option for the next function.

/*LINTLIBRARY*/
at the beginning of a file shuts off complaints about
unused functions in this file.

OPTIONS
Any number of the options in the following list may be used.
The =D, -U, and -I options of cc(l) are also recognized as

1 Bell 1

LINT(1)

Zilog LINT(1)

separate arguments.

a

b

FILES

Report assignments of long values to int variables.

Report break statements that cannot be reached. (This
is not the default because, unfortunately, most lex and
many yacc outputs produce dozens of such comments.)

Complain about casts which have questionable portabil-
ity.

Apply a number of heuristic tests to intuit Dbugs,
improve style, and reduce waste.

Do not check compatibility against the standard
library.

Attempt to check portability to the IBM and GCOS
dialects of C.

Do not complain about functions and variables used and
not defined, or defined and not used (this is suitable
for running lint on a subset of files out of a larger
program) .

Suppress complaints about unused arguments in func-
tions.

Report variables referred to by extern declarations,
but never used.

/usr/lib/1int[12] programs
/usr/1ib/1lib-1lc declarations for standard functiouns
/usr/lib/1llib-port declarations for portable functions

SEE ALSO

cc(l).
Lint, a C Program Checker in the ZEUS Languages / Program-
ming Tools Manual

Bell 2

LN{(1) Zilog LN(1)

NAME
In - link a filename to an actual file

SYNOPSIS
In namel name?2

DESCRIPTION
A link is a directory entry referring to a file; the same
file (together with its size, all its protection informa-
tion, etc.) can have several links to it. There is no way
to distinguish a link to a file from its original directory
entry; any changes in the file are effective independently
of the name by which the file is known.

A link is created from name2 to namel.

It is forbidden to link to a directory or to 1link across
file systems.

SEE ALSO
rm(1l).

1 Bell 1

ILOAD(1) Zilog LOAD(1)

NAME

LOAD - Download to 78009 or Z8 Development Module

SYNOPSIS

LOAD file

DESCRIPTION

LOAD takes an executable 78000 or Z8 load module and down-
loads the text, data, and bss sections into the 78007 or 28
Development Module (DM). The hardware link is described
fully in the appropriate DM manual. The magic number of the
load module must be N_MAGICl, X MAGICl, or X MAGIC3 (a.out
(5)),. The execute permission bit is checked to ensure that
the load module contains no errors.

LOAD determines the load points of the text and data by
inspecting the header and the segment table, which contains
the upper eight bits of each 1load point. Therefore, the
text, data, and bss sections are loaded only on 256-byte
boundaries. The load module must be specified to 1link at
location 4609 hex or higher if the target system is a non-
segmented Z7Z80¢Q% DM or at location 5009 hex or higher if the
target system 1is a segmented Z8@@J DM. These restrictions
do not apply if the target system is a Z8 DM.

The bss section of Z8 programs refers to the REGISTER memory
of the Z8. LOAD does not download bss section of a Z8 pro-
gram. If a 7Z8 program has combined instruction and data (I
and D) areas the data section is downloaded following the
code section; the data section is considered to be part of
program memory. If a Z8 program has separate I and D areas,
the data section is not downloaded; the data section refers
to external data memory.

If a file is loaded to a 7Z8@0Y DM without error, the DM
announces the entry point of the program; if a file is
loaded to a Z8 DM without error, the DM monitor simply
prints a prompt. To start the program jump to the entry
point with the monitor JUMP command. If the program runs
and terminates normally, the exit routine linked into the
program returns the user to the monitor. The Z8 DM provides
no exit routine: for details on program execution consult
the Z8 Development Module User's Manual.

LOAD is invoked from the DM monitor. On a Z8¢¢gg DM, lower-
case characters can be entered at the terminal but are
translated to uppercase by the monitor. The monitor sends
only uppercase characters to ZEUS for compatibility with
Zilog's MCZ/ZDS RIO system. Therefore, the file to be down~-
loaded 1is not found unless the the load module name is all
in uppercase. Also, unless the path name is all in upper-
case, the user must use LOAD only on a load module file in

Zilog 1

LOAD(1)

zilog LOAD(1)

the current working directory.

The 7Z8 DM does not require uppercase input and the monitor
makes no translation. No special care need be taken naming
files or running the program from the Z8 DM.

FILES

SEE ALSO

a.out load module

14(1), SEND(1l), a.out(5)
728030 Development Module Hardware Reference Manual,

@33-8394-01

728009 Development Module Hardware Reference Manual Errata,

E3-0394-01

Z28939 Development Module Monitor Program Listing,

93-3094-01

728009 Development Module Monitor Program Listing Errata,

E3-3094-01

%Z8 Development Module User's Manual,

03-3157

DIAGNOSTICS
The DM monitor displays any error messages received from
LOAD. The error messages are the same as for LOAD in the DM
manual.

DOWNLOAD PROCEDURE FOR THE Z800@ DM

1.

Install the Zilog 7Z83%@ DM between the terminal and the
System 8@@%. The line from the System 80@@ attaches to
the channel A RS-232C connection of the DM. The termi-
nal attaches to channel B of the DM.

Power up the DM and turn on the terminal.

Press DM RESET switch. The DM monitor prints its <
pronmpt.

Press DM NMI switch. The DM monitor prints NMI and its
< prompt.

Enter quit. This command allows transparent mode for
communication with ZEUS.

Press the RETURN key again, to get a response from ZEUS.
Login to the ZEUS system if you aren't already correctly
logged in.

Create a 78090 program for download. The following sim-
ple program can be used for a download example:

main()

Zilog 2

LOAD(1)

1g.

11.

12.

zilog LOAD(1)

{
printf("DOWNLOAD OK\n");

Compile, assemble, and link the program. The C compiler
might be run to do this with a command such as:
cc ~-o TEST -b Ox4600 test.c

Press the DM NMI switch to return control to the moni-
tor. The DM monitor responds with NMI and its prompt <.

Enter
LOAD TEST
This downloads the program.

Wait for the DM monitor to print ENTRY POINT 4DBA and
the < prompt. Enter

jump 4dba
This jumps to the entry point of the program.

The program executes. The monitor prints DOWNLOAD OK
and its prompt <.

At this point, enter other monitor commands or go back to
ZEUS by entering the guit command.

DOWNLOAD PROCEDURE FOR THE Z8 DM

1.

Install the Zilog Z8 DM between the terminal and the
System 800%. The line from the System 8007 attaches to
the DM RS-232C connection marked "computer." The termi-
nal attaches to the DM connection marked "terminal."

Power up the DM and turn on the terminal.

Press DM RESET switch. The DM monitor prints its @
prompt.

Enter quit. This command allows transparent mode for
communication with ZEUS.

Press the RETURN key again, to get a response from ZEUS.
Login to the ZEUS system if you aren't already correctly
logged in.

Create a 78 program for download. The following simple
program can be used for a download example:

Z1ilog 3

LOAD(1)

19.

11.

12.

Zilog LOAD(1)

test module

global
pl procedure
entry
srp #%10
11: jr 11
end pl
end test

Assemble and link the program. The 28 cross-assembler
and the loader would be run with commands such as:

z8as -o test.o test.s
1d -o test test.o

Press DM RESET and MODE switches. The monitor prompts
Q.

Download the program with the command:
LOAD test
Wait for the DM monitor prompt, @. Enter

G d
This jumps to the entry point of the program.

The program executes and enters an infinite loop. Enter
H to return to the monitor.

Enter R. The register pointer has been set to %10.

At this point, enter other monitor commands or enter quit to
return to ZEUS.

Zilog 4

LOCAL(1) zilog LOCAL(1)

NAME
local - return control to local system

SYNOPSIS
local [-1]

DESCRIPTION
Local returns control to the local system which 1is running
the ZLAB-800@ Communication Package file transfer software.

OPTIONS
-1 A "logout" is given to the remote system before return-
ing to the local system.

FILES
/usr/src/local.c C source program for local
SEE ALSO
getfile(l), putfile(l), remote(l).
COMM -~ The ZEUS Communications Package in the ZEUS Utili-

tles Manual

1 Zilog 1

LOGIN(1) Zilog LOGIN(1)

NAME

login - sign on to the computer

DESCRIPTION

Login can no longer be invoked explicitly, but is invoked by
the system when a connection is established.

Echoing is turned off (if possible) during the typing of the
password, so it does not appear on the written record of the
session.

If password aging has been invoked by the super-user the
password may have expired. In this case, passwd(l) is
invoked to change it.

A dial-up login attempt must complete the login within one
minute or the connection is broken.

After a successful login, accounting files are updated, the
user is informed of the existence of mail, and the message-
of-the-day file is displayed (motd(5)). Login initializes
the environment variable TERM (describing the login terminal
type), the user and group IDs, and the working directory,
then executes a command interpreter (usually csh(l)) accord-
ing to specifications found in a password file. Argument @
of the command interpreter is =-csh.

The environment (see environ(5)) is initialized to:
HOME=login-directory
PATH=:/bin:/usr/bin
LOGNAME=login-name

OPTIONS

- Turns off the display of message-of-the-~day file.
FILES

/etc/utmp accounting

/usr/adm/wtmp accounting

/usr/spool/mail/* mail

/etc/motd message-of-the-day

/etc/passwd password file

/etc/profile system profile

/etc/cshrc system cshrc

/etc/ttytype terminal type file
SEE ALSO

newgrp(l), mail(1l), passwd(1l), motd(5), passwd(5),

ttytype(5), init(M), getty(M).
ZEUS for Beginners in the ZEUS Utilities Manual

DIAGNOSTICS

"Login incorrect," if the name or the password is bad.

Bell 1

LOGIN(1) Zilog LOGIN(1)

"No shell," if the shell is missing.

"Cannot open password file," if the password file is miss-
ing.

"No directory," cannot find the home directory (usually due
to unmounted file systems).

2 Bell

TLLOGNAME(1) Zilog LOGNAME(1)

NAME
logname - get login name

SYNOPSIS
logname

DESCRIPTION

Logname returns the contents of the environment variable
SLOGNAME, which is set when a user logs into the system.

FILES
/etc/profile

SEE ALSO
env(l), login(l), logname(3), environ(5).

1 Bell 1

LOGOUT (1C) Zilog LOGOUT (1C)

NAME
logout - terminate the current login session
SYNOPSIS
logout
DESCRIPTION
Logout terminates a 1login shell. Especially useful
ignoreeof is set.
LIMITATIONS
Logout will only execute from the login shell.
the logout process does not recognize interupts
SEE ALSO

exit(lC), kill(l), onintr(1lC).
The C Shell in the ZEUS Utilities Manual

1 ucs

if

LOOK(1) Zilog LOOK(1)

NAME
look - find lines in a sorted list

SYNOPSIS
look [-df] string [file]

DESCRIPTION
Look consults a sorted file and prints all lines that begin
with string. It uses binary search. If no file is speci-
fied, /usr/dict/words is assumed with collating sequence
-df.

OPTIONS

The opticons -d and -f affect comparisons as in sort(l):

-d Dictionary order: only 1letters, digits, tabs, and
blanks are compared.

-f Fold. Uppercase letters compare equal to lowercase.

FILES
/usr/dict/words

SEE ALSO
sort(l), grep(l).

1 Bell 1

LORDER(1) Zilog LORDER(1)

NAME

lorder - find ordering relation for an object library

SYNOPSIS

lorder file

DESCRIPTION

The input is one or more object or library archive (see
ar(l)) files. The standard output is a list of pairs of
object file names, meaning that the first file of the pair
refers to external identifiers defined in the second. The
output may be processed by tsort(l) to find an ordering of a
library suitable for one-pass access by 1d(1).

This brash one-liner intends to build a new library from
existing ‘.o' files.

ar cr library ‘lorder *.o | tsort®

FILES

*symref, *symdef

SEE ALSO

ar(1l), 14(1), tsort(l).

LIMITATIONS

The names of object files, in and out of libraries, must end
with ‘.0'; nonsense results otherwise.

Bell 1

LPR(1) Zilog LPR(1)

NAME
lpr - line printer spooler

SYNOPSIS
lpr [option] ... [file] ...

DESCRIPTION

Lpr is now linked to nq(l). Please refer to this page in the
manual for more information.

1 Bell 1

LS(1) zilog Ls(1)
NAME

1s - list the contents of a directory
SYNOPSIS

1s [-aAcCADfFgilmngrRstuxl] file ...

DESCRIPTION

For each file argument, 1ls repeats its name and any other
information requested; for each directory argument, 1ls lists
the contents of the directory. The output is sorted alpha-
betically by default. When no argument 1is given, the
current directory is listed. When several arguments are
given, the arguments are first sorted appropriately, but
file arguments appear before directories and their contents.

The mode information printed under the -1 option contains 10
characters. The first character is interpreted as follows:

directory

‘block-type special file
character-type special file
named pipe

plain file

10 Q00T Q

The next nine characters are interpreted as three sets of
permission bits. The first set is permissions for the owner
of the file or directory; the next set is for others in the
same user-group; and the last set is for all other users.
Within each set, the three characters indicate permission
respectively to read, write on, or execute the file as a
program. For a directory, execute permission is interpreted
to mean permission to search the directory for a specified
file. The permissions are as follows:

readable

writable

executable

permission is not granted

1 X ER

The group-execute permission character is given as s if the
file has set-group-ID mode; likewise the user-execute per-
mission character is giveh as s if the file has set-user-ID
mode.

The last character of the mode (normally x or -) is t if the
1003 bit of the mode is on. See chmod(l) for the meaning of
this mode.

There are three possible listing formats. The format chosen
depends on whether the output is going to a terminal, and
can also be controlled by option flags. (1) The default

format for a terminal is to list the contents of directories

UCB 1

LS (1) Zilog LS (1)

in multicolumn format, with the entries sorted down the
columns (changed with the -x option). (2) If the standard
output is not a terminal, the default format is to list one
entry per line. (3) Finally, there is a stream output for-
mat in which files are listed across the page, separated by
commas (changed with the -m option). Files which are not
the contents of a directory being interpreted are always
sorted across the page rather than down the page in columns.
This is because the individual file names are arbitrarily
long.

OPTIONS
-a List all entries. Without this option, files beginning
with . are omitted.

-A Like -a, but . and .. are suppressed. For the
superuser, this option 1is on by default, and -A
suppresses . listings.

-C Use time of last modification to i-node (mode, etc.)
instead of last modification to file for sorting (-t)
or printing (-1).

-C Force multicolumn output (default if output device is a
terminal).

-d If argument is a directory, list only its name, not its
contents (mostly wused with -1 to get status on direc-
tory).

-D List only directories.

~-f Force each argument to be interpreted as a directory
and list the name found 1in each slot. This option
turns off -1, -t, -s, and -r, and turns on -a; the
order 1is the order in which entries appear in the
directory.

-F Indicate directories by appending a / to the filename
in the listing, and executable files by appending a *.

-g Give group ID instead of owner ID in long listing; use
only with the -1 function.

-i Print i-number in first column of the report for each
file listed.

-1 List in 1long format, giving permission mode bits,
number of links, owner, group, size in bytes, and time
of last modification for each file. The year is
printed (instead of the time in hours and minutes) for
files older than six months. For a directory, the

2 ucs 2

Ls{1) Zilog LS(1)

total count of Dblocks (including indirect blocks) is
printed. TFor a special file, the size field instead
contains the major and minor device numbers.

-m Force stream output format.

-n In long listings, give numeric uid or group id instead
of name of user or group.

-q Force printing of nongraphic characters in file names
as the character ? (default if output device is a ter-
minal).

-r Reverse the order of sort to get reverse alphabetic or
oldest first.

-R Recursively list the contents of each directory found.

-s Give size in blocks, including indirect blocks, for
each entry.

-t Sort by time modified (latest first) instead of by
name, as is normal.

-u Use time of last access instead of 1last modification
for sorting (-t) or printing (-1).

-X Force columnar printing to be sorted across rather than
down the page (default if the last character of the
name the program is invoked with is not an 1 or an s).

-1 Force one entry per line output format (default if out-
put is redirected or piped).

FILES
/etc/passwd to get user ID's for "ls -1"
/etc/group to get group ID's for "ls -1lg"

SEE ALSO
file(1), £find(1l), chmod(l), chown(l), umask(1lC), chmog(M),
chown (M) .

LIMITATIONS

New line and tab are considered printing characters in file
names.

3 UucB 3

M4(1)

NAME

Zilog M4(1)

m4d - macro processor

SYNOPSIS

m4 [files]

DESCRIPTION

M4 is a macro processor intended as a front end for Ratfor,
C, and other languages. Each of the argument files is pro-
cessed in order; if there are no arguments, or if an argu-
ment is ‘~', the standard input is read. The processed text
is written on the standard output.

Macro calls have the form
name(argl,arg2, . . . , argn)

The ‘(' must immediately follow the name of the macro. If a
defined macro name is not followed by a “(', it is deemed to
have no arguments. Leading unquoted blanks, tabs, and new-
lines are 1ignored while collecting arguments. Potential
macro names consist of alphabetic letters, digits, and
underscore ° ', where the first character is not a digit.
Left and right single quotes (‘') are used to quote strings.
The value of a quoted string is the string stripped of the
quotes.

When a macro name is recognized, its arguments are collected
by searching for a matching right parenthesis. Macro
evaluation proceeds normally during the collection of the
arguments, and any commas or right parentheses which happen
to turn up within the value of a nested call are as effec-
tive as those in the original input text. After argument
collection, the value of the macro is pushed back onto the
input stream and rescanned.

M4 makes available the following built-in macros. They may
be redefined, but once this is done the original meaning is
lost. Their values are null unless otherwise stated.

define The second argument is installed as the value of
the macro whose name is the first argument. Each
occurrence of $n in the replacement text, where n
is a digit, iIs replaced by the n-th argument.
Argument @ is the name of the macro; missing argu-
ments are replaced by the null string.

undefine Removesithe definition of the macro named 1in its
argument.

ifdef If the first argument is defined, the value is the

Bell 1

M4 (1)

7Zilog M4 (1)

second argument, otherwise the third. 1If there is
no third argument, the value is null. The worxd
unix is predefined on UNIX versions of m4.

changequote

divert

undivert

divnum

dnl

ifelse

incr

eval

len

index

substr

Change quote characters to the first and second
arguments. Changequote without arguments restores
the original values (i.e., “').

M4 maintains 10 output streams, numbered ¢-9. The
final output 1is the concatenation of the streams
in numerical order; initially stream @ 1is the
current stream. The divert macro changes the
current output stream to its (digit-string) argu-
ment. Output diverted to a stream other than ¢
through 9 is discarded.

Causes immediate output of text from diversions
named as arguments, or all diversions if no argu-
ment. Text may be undiverted into another diver-
sion. Undiverting discards the diverted text.

Returns the value of the current output stream.

Reads and discards characters up to and including
the next newline.

Has three or more arguments. If the first argu-
ment is the same string as the second, then the
value is the third argument. If not, and if there
are more than four arguments, the process is
repeated with arguments 4, 5, 6 and 7. Otherwise,
the value 1is either the fourth string, or, if it
is not present, null.

Returns the value of its argument incremented by
1. The value of the argument is calculated by
interpreting an initial digit-string as a decimal
number.

Evaluates its argument as an arithmetic expres-
sion, using 32-bit arithmetic. Operators include
+, -, *, /, %, ~ (exponentiation); relationals;
parentheses.,

Returns the number of characters in its argument.
Returns the position in its first argument where
the second argument begins (zero origin), or -1 if
the second argument does not occur.

Returns a substring of its first argument. The

Bell 2

M4 (1)

translit

include

sinclude

syscmd

maketemp

errprint

dumpdef

SEE ALSO

Zilog M4(1)

second argument is a zero origin number selecting
the first character; the third argument indicates
the length of the substring. A missing third
argument is taken to be large enough to extend to
the end of the first string.

Transliterates the characters in its first argu-
ment from the set given by the second argument to
the set given by the third. No abbreviations are
permitted.

Returns the contents of the file named 1in the
argument.

Is identical to include, except that it says noth-
ing if the file is inaccessible.

Executes the UNIX command given in the first argu-
ment. No value is returned.

Fills in a string of XXXXX in its argument with
the current process id.

Prints its argument on the diagnostic output file.

Prints current names and definitions, for the
named items, or for all if no arguments are given.

The M4 Macro Processor in the ZEUS Languages / Programming

Tools Manual

Bell 3

MAIL (1) Zilog MAIL(1)

NAME

mail, rmail - send and receive mail among users

SYNOPSIS

mail [-pgr] [-f file]
mail persons

rmail persons

DESCRIPTION

Mail without arguments prints a wuser's mail, message-by-
message, in last-in, first-out order. For each message, the
user is prompted with a ?, and a line is read from the stan-
dard input to determine the disposition of the message:

d Delete message and go on to next message.

EOT (control-D)
Put undeleted mail back in the mailfile and stop.

m[persons]
Mail the message to the named persons (yourself is
default).
<new-line> Go on to next message.
o) Print message again.
q Same as EOT. and stop.
s[file] Save message in the named files (mbox is
default) .
w[files] Save message, without its header, in the
named files (mbox is default).
X Put all mail back in the mailfile unchanged
and stop.
+ Same as <new-line>.
- Go back to previous message.
fcommand Escape to the shell to do command.
* Print a command summary.

When persons are named, mail takes the standard input up to
an end-of-file (or a line consisting of just a .) and adds
it to each person's mailfile. The message 1is preceded by
the sender's name and a postmark. Lines that look like

MAIL (1) Zilog MAIL (1)

postmarks in the message, (i.e., "From...") are preceded
with a »>. A person is usually a user name recognized by
login(l). If a person being sent mail is not recognized, or
if mail is interrupted during input, the dead.letter will be
saved to allow editing and resending. It will be placed in
the current working directory.

To denote a recipient on a remote system, prefix person by
the system name and exclamation mark (see uucp(l)). Every-
thing after the first exclamation mark in persons is inter-
preted by the remote system. In particular, if persons con-
tains additional exclamation marks, it can denote a sequence
of machines through which the message is to be sent on the
way to its ultimate destination. For example, specifying
alblcde as a recipient's name causes the message to be sent
to user b!cde on system a. System a will interpret that
destination as a request to send the message to user cde on
system b. This is useful if the sending system can access
system a but not system b, and system a has access to system
b.

The mailfile can be manipulated in two ways to alter the
function of mail. The other permissions of the file may be
read-write, read-only, or neither read nor write to allow
different 1levels of privacy. 1If changed to other than the
default, the file will be preserved even when empty to per-
petuate the desired permissions. The file can also contain
the first line:

Forward to person

which causes all mail sent to the owner of the mailfile to
be forwarded to person. This is especially useful to for-
ward all of a person's mail to one machine in a multiple
machine environment.

Rmail only permits the sending of mail; uucp(l) uses rmail
as a security precaution.

When a user logs in he is informed of the presence of mail,
if any.

OPTIONS
~-ffile
" causes mail to use file (e.g., mbox) instead of the
default mailfile.

-p causes all mail to be printed without prompting for
disposition.

-q causes mail to terminate after interrupts. Normally an
interrupt only causes the termination of the message

2 Bell 2

MAIL (1) Zilog MAIL (1)

being printed.

-r causes messages to be printed in first-in, first-out

order.

FILES
/etc/passwd to identify persons
/usr/spool/mail/* incoming mail for user *
SHOME /mbox saved mail
SMAIL mailfile
/tmp/ma* temporary file
/usr/spool/mail/*.lock lock for mail directory
dead.letter unmailable text

SEE ALSO
login(l), uucp(l), write(l).

LIMITATIONS
Race conditions sometimes result in a failure to remove a
lock file.

After an interrupt, the next message may not be printed;
printing may be forced by typing a p.

3 Bell 3

MAKE (1) Zilog MAKE (1)

NAME

make - maintain, update, and regenerate groups of programs

SYNOPSIS

make [-bdeikmnpqgrst] [-f makefile] [names]

DESCRIPTION

Make executes commands in makefile to update one or more
target names. Name is typically a program. If no -f option
is present, makefile, Makefile, makefile+ and Makefile+ are
tried in order. If makefile is -, the standard input is
taken. More than one —-f makefile argument pair may appear.

Make updates a target only if it depends on files that are
newer than the target. All prerequisite files of a target
are added recursively to the list of targets. Missing files
are deemed to be out of date.

Makefile contains a sequence of entries that specify depen-
dencies. The first line of an entry is a blank-separated,
non-null list of targets, then a :, then a (possibly null)
list of prerequisite files or dependencies. Text following
a ; and all following lines that begin with a tab are shell
commands to be executed to update the target. The first
line that does not begin with a tab or # begins a new depen-
dency or macro definition. Shell commands may be continued
across lines with the <backslash><new-line> sequence. Sharp
(#) and new-line surround comments.

The following makefile says that pgm depends on two files
a.o and b.o, and that they in turn depend on their
corresponding source files (a.c and b.c) and a common file
incl.h:

pgm: a.o b.o

cc a.o b.o -0 pgm
a.o: incl.h a.c

cc -Cc a.c
b.o: incl.h b.c

cc -c b.c

Command lines are executed one at a time, each by 1its own
shell. A line is printed when it is executed unless the -s
option is present, or the entry .SILENT: is in makefile, or
unless the first character of the command is @. The -n
option specifies printing without execution; however, if the
command line has the string $(MAKE) in it, the line is
always executed (see discussion of the MAKEFLAGS macro under
Environment). The -t (touch) option updates the modified
date of a file without executing any commands.

Bell 1

MAKE (1) Zilog MAKE (1)

Commands returning non-zero status normally terminate make.
If the -i option is present, or the entry .IGNORE: appears
in makefile, or if the line specifying the command begins
with <tab><hyphen>, the error is ignored. 1If the -k option
is present, work is abandoned on the current entry, but con-
tinues on other branches that do not depend on that entry.

The -b option allows old makefiles (those written for the
old version of make) to run without errors. The difference
between the o0ld version of make and this version 1is that
this version requires all dependency lines to have a (possi-
bly null) command associated with them. The previous ver-
sion of make assumed if no command was specified explicitly
that the command was null.

Interrupt and quit cause the target to be deleted unless the
target depends on the special name .PRECIOUS.

OPTIONS
-b Compatibility mode for old makefiles.

-d Debug mode. Print out detailed information on files
and times examined.

-e Environment variables override assignments within
makefiles.

-f makefile
Description file name. Makefile is assumed to be the
name of a description file. A file name of - denotes
the standard input. The contents of makefile override
the built-in rules if they are present.

-i Ignore error codes returned by invoked commands. This
mode is entered if the fake target name .IGNORE appears
in the description file.

-k Abandon work on the current entry, but continue on
other branches that do not depend on that entry.

-n No execute mode. Print commands, but do not execute
them. Even lines beginning with an @ are printed.

-p Print out the complete set of macro definitions and
target descriptions.

-q Question. The make command returns a zero or non-zero
status code depending on whether the target file is or
is not up-to-date.

-r Do not use the built-in rules.

2 Bell 2

MAKE (1) Zilog MAKE (1)

-s Silent mode. Do not print command lines before execut-
ing. This mode is also entered if the fake target name
.SILENT appears in the description file.

-t Touch the target files (causing them to be up-to-date)
rather than issue the usual commands.

-DEFAULT
If a file must be made but there are no explicit com-
mands or relevant built-in rules, the commands associ-
ated with the name .DEFAULT are used if it exists.

- IGNORE
Same effect as the -i option.

-PRECIOUS
Dependents of this target will not be removed when quit
or interrupt are hit.

- SILENT
Same effect as the -s option.

ENVIRONMENT
The environment is read by make. All variables are assumed
to be macro definitions and processed as such. The environ-
ment variables are processed before any makefile and after
the internal rules; thus, macro assignments in a makefile
override environment variables. The -—-e option causes the
environment to override the macro assignments in a makefile.

The MAKEFLAGS environment variable is processed by make as
containing any legal input option (except -f, -p, and -d)
defined for the command line. Further, upon invocation,
make "invents" the variable if it is not in the environment,
puts the current options into it, and passes it on to invo-

cations of commands. Thus, MAKEFLAGS always contains the
current input options. This proves very useful for "super-
makes". In fact, as noted above, when the -n option is

used, the command $(MAKE) is executed anyway; hence, one can
perform a make -n recursively on a whole software system to
see what would have been executed. This is because the -n
is put in MAKEFLAGS and passed to further invocations of
$(MAKE). This is one way of debugging all of the makefiles
for a software project without actually doing anything.

Macros

Entries of the form stringl = string2 are macro definitions.
Subsequent appearances of $(stringl[:substl=[subst2]]) are
replaced by string2. The parentheses are optional if a sin-
gle character macro name is used and there is no substitute
sequence, The optional :substl=subst2 1is a substitute
sequence. 1t it is specified, all non-overlapping

3 Bell 3

MAKE (1) Zilog MAKE (1)

occurrences of substl in the named macro are replaced by
subst2. Strings (for the purposes of this type of substitu-
tion) are delimited by blanks, tabs, new-line characters,
and Dbeginnings of lines. An example of the use of the sub-
stitute sequence is shown under Libraries.

Internal Macros
There are five internally maintained macros which are useful
for writing rules for building targets.

S* The macro $* stands for the file name part of the
current dependent with the suffix deleted. It is
evaluated only for inference rules.

se The $@ macro stands for the full target name of the
current target. It 1is evaluated only for explicitly
named dependencies.

s< The $< macro is only evaluated for inference rules ot
the .DEFAULT rule, It is the module which is out of
date with respect to the target (i.e., the "manufac-
tured" dependent file name). Thus, in the .c.o rule,
the $< macro would evaluate to the .c file. An example
for making optimized .o files from .c files is:

.C.0:
cc -c =0 S$*.c

or:

.C.0:
cc -c -0 8<

$? The $? macro is evaluated when explicit rules from the
makefile are evaluated. It is the 1list of prere-
quisites that are out of date with respect to the tar-
get; essentially, those modules which must be rebuilt.

$% The $% macro is only evaluated when the target is an
archive library member of the form lib(file.o). 1In
this case, $@ evaluates to lib and $% evaluates to the
library member, file.o.

Four of the five macros can have alternative forms. When an
upper case D or F is appended to any of the four macros the
meaning is changed to "directory part" for D and "file part"
for F. Thus, $(@D) refers to the directory part of the
string $@. If there is no directory part, ./ is generated.
The only macro excluded from this alternative form is §$2.
The reasons for this are debatable.

MAKE (1) Zilog MAKE (1)

Suffixes

Certain names (for instance, those ending with .o) have
inferable prerequisites such as .c, .s, etc. If no update
commands for such a file appear in makefile, and if an
inferable prerequisite exists, that prerequisite is compiled
to make the target. 1In this case, make has inference rules
which allow building files from other files by examining the
suffixes and determining an appropriate inference rule to
use. The current default inference rules are:

.¢ .c+ .f .f+ .sh .sh+ .c.o .c+.0 .c+.c .f.o .f+.0
f+.f .8.0 .s+.0 .S+.5 .y.0 .Yy+.0 .y+.C .Y.C .C.a .C+.a
.S+.a

To print out the rules compiled into the make on any
machine, the following command is used:

make -fp - 2>/dev/null </dev/null

The only peculiarity in this output is the (null) string
which printf(3) prints when handed a null string.
(Cshell (1) users will have to redirect the standard output
to a file and ignore the errors printed out on the termi-
nal.)

A rule with only one suffix (i.e. .c:) is the definition of
how to build x from x .c. In effect, the other suffix is
null. This is useful for building targets from only one
source file (e.g., shell procedures, simple C programs).

Additional suffixes are given as the dependency list for
.SUFFIXES. Order 1is significant; the first possible name
for which both a file and a rule exist 1is inferred as a
prerequisite.

The default list is:

.SUFFIXES: .0 .c .c+ .y .y+ .f .f+ .p .p+ .s .s+ .sh
.sh+ .h .h+

Here again, the above command for printing the internal
rules will display the list of suffixes implemented on the
current machine. Multiple suffix 1lists accumulate; .SUP-
FIXES: with no dependencies clears the list of suffixes.

Inference Rules
The first example can be done more briefly:

pgm: a.o b.o

cc a.0 b.o -0 pgm
a.o b.o: incl.h

) Bell 5

MAKE (1) zilog MAKE (1)

This is because make has a set of internal rules for build-
ing files. The user may add rules to this list by simply
putting them in the makefile .

Certain macros are used by the default inference rules to
permit the inclusion of optional matter in any resulting
commands. For example, CFLAGS and YFLAGS are used for com-
piler options to cc(l) and yacc(l) respectively. Again, the
previous method for examining the current rules 1is recom-
mended.

The inference of prerequisites can be controlled. The rule
to create a file with suffix .o from a file with suffix .c
is specified as an entry with .c.o: as the target and no
dependents. Shell commands associated with the target
define the rule for making a .o file from a .c file. Any
target that has no slashes in it and starts with a dot is
identified as a rule and not a true target.

Libraries

If a target or dependency name contains parenthesis, it |is
assumed to be an archive 1library, the string within
parenthesis referring to a member within the library. Thus
lib(file.o) and S$(LIB)(file.o) both refer to an archive
library which contains file.o. (This assumes the LIB macro
has been previously defined.) The expression $(LIB) (filel.o
file2.0) 1is not 1legal. Rules pertaining to archive
libraries have the form .XX.a where the XX is the suffix
from which the archive member is to be made. An unfortunate
byproduct of the current implementation requires the XX to
be different from the suffix of the archive member. Thus,
one cannot have lib(file.o) depend upon file.o explicitly.
The most common use of the archive interface follows. Here,
we assume the source files are all C type source:

lib: lib(filel.o) lib(file2.0) lib(file3.0)
@echo lib is now up to date

.C.a:

S$(CC) -c S (CFLAGS) $<

ar rv $@ S$*.o

rm -f $*.0

In fact, the .c.a rule listed above is built into make and
is unnecessary in this example. A more interesting, but
more limited example of an archive library maintenance con-
struction follows:

lib: lib(filel.o) lib(file2.0).lib(file3.0)
$(CC) ~c S(CFLAGS) $(?:.0=.C)
ar rv lib §?
rm $?
@echo lib is now up to date

6 Bell 6

MAKE (1) Zilog MAKE (1)

.C.at;

Here the substitution mode of the macro expansions is used.
The 8? 1list is defined to be the set of object file names
(insid2 1ib) whose C source files are out of date. The
substitution mode translates the .o to .c. Note also, the
disabling of the .c.a: rule, which would have created each
object file, one by one. This particular construct speeds
up archive library maintenance considerably. This type of
construct becomes very cumbersome if the archive library
contains a mix of assembly programs and C programs.

FILES
[Mm] akefile
[Mm]akefile+

SEE ALSO
chkin(l), chkout(l), c¢sh(l), sh(l), touch(l).
Make - A Program for Maintaining Computer Programs in the
ZEUS Languages / Programming Tools Manual

LIMITATIONS
Some commands return non-zero status inappropriately; use -i
to overcome the difficulty. Commands that are directly exe-
cuted by the shell, notably cd(l), are ineffectual across
new-lines 1in make. The syntax lib(filel.o file2.0 file3.0)
is illegal. You cannot build lib(file.o) from file.o.

MAN(1) Zilog MAN (1)

NAME
man - print sections of this manual

SYNOPSIS
man [option ...] [chapter] title ...

DESCRIPTION

Man locates and prints the section of this manual named
title in the specified chapter. (In this context, the word
"page" is often used as a synonym for "section.") The
title, is entered in lowercase. The chapter number does not
need a letter suffix. If no chapter is specified, the whole
manual is searched for title and all occurrences of it are
printed.

OPTIONS
-e Appended or prefixed to any of the above causes the
manual section to be preprocessed by negn or eqn(l); -e
alone means -te.

-h Send the manual entry to the output device wusing the
program "cat"™ rather than the default "more." This is
intended primarily for hardcopy terminals.

-n Print the section on the standard output using
nroff(l).

-t Phototypeset the section using troff(l).

-v Send the manual entry to the output device wusing the
program "view" rather than the default "more."

-w Print the path names of the manual sections, but do not
print the sections themselves.

(default)
Copy an already formatted manual section to the termi-
nal, or, if none is available, act as -n. It may be
necessary to use a filter to adapt the output to the
particular terminal's characteristics.

Further options, for example, to specify the kind of termi-
nal you have, are passed on to troff(l) or nroff(l).
Options and chapter can be changed before each title.

EXAMPLES
man man
reproduces this section, as well as any other sections
named man that can exist 1in other chapters of the
manual, (man(7)).

1 Bell 1

MAN (1) Zilog MAN (1)

man 1 man
reproduces only this section.

FILES
/usr/man/man?/*
/usr/man/cat?/*

SEE ALSO
INTRO(@), apropos(l), help(l), nroff(l), egn(l), man(7).

LIMITATIONS
The manual is supposed to be reproducible either on a photo-

typesetter or on a terminal. However, on a terminal some
information is lost.

N

Bell 2

MESG (1) Zilog MESG (1)

NAME
mesg - permit or deny messages

SYNOPSIS :
mesg [n] [yl

DESCRIPTION
With no arguments, mesg reports the current state without
changing it.

OPTIONS
n Forbids messages via write(l) or talk(l), by revoking
non-user write permission on the user's terminal.
Yy Reinstates permission.
FILES
/dev/tty*
/dev
SEE ALSO
talk(l), write(l).
DIAGNOSTICS
Exit status is ¢ if messages are receivable, 1 if not, 2 on
error.

1 Bell 1

MKDIR (1) Zilog MKDIR (1)

NAME
mkdir - make a directory

SYNOPSIS
mkdir dirname ...

DESCRIPTION
Mkdir creates specified directories in mode 777 joined with
logical and to the complement of the current umask value.
The umask value is controlled by the umask shell command.
Standard entries (. for the directory itself, and .. for
its parent), are made automatically.
Mkdir requires write permission in the parent directory.

SEE ALSO
csh(l), rm(l), sh(l), umask(2), chmod(1l).

DIAGNOSTICS
Mkdir returns exit code @ if all directories were success-
fully made. Otherwise, it prints a diagnostic and returns
nonzero.

Bell 1

MKNOD (1) zilog MKNOD (1)

NAME
mknod - build special file

SYNOPSIS
/etc/mknod name [¢] [b] major minor
/etc/mknod name p

DESCRIPTION
Mknod makes a directory entry and corresponding i-node for a
special file.

Mknod can also be used to create fifo's (a.k.a named pipes)
(second case in SYNOPSIS above). This use of Mknod can be
used by any user. The first case can be used only by
members of the 'system' group. It is used to create special
device files.

The first argument is the name of the entry. In the first
case, the second 1is b if the special file is block-type
(disks, tape) or c if it is character-type (other devices).
The last two arguments are numbers specifying the major dev-
ice type and the minor device (e.g. unit, drive, or line
number), which may be either decimal or octal. A leading ¢
for the major and minor device numbers mean that they are in
octal.

The assignment of major device numbers depends on the posi-
tion of the driver in dispatch tables in the kernel. The
major device numbers for current drivers is as follows:

Device Character Dev. Block Dev.
Major Number Major Number

ZD

CcT

SMD

MT

MD

ERR

MEM

TTY

SIO

LP

PTC (unet)
PTS (unet)
UP (unet)

UU (unet)

UD (unet)

10 -

HOoOoJaaubdkwhhEFER
=~

1

1

o
Ul WD
|
|

1 Bell 1

MKNOD (1) Zilog MKNOD (1)

Device (cont.) Charactexr Dev. Block Dev.
Major Number Major Number
Ul (user defined dev) 16 2
U2 (user defined dev) 17 3
U3 (user defined dev) 18 4
U4 (user defined dev) 19 5
U5 (user defined dev) 20 6
U6 (user defined dev) 21 7

The minor device number is device dependent. For disks, the
minor device number is the number of the file system. The
first digit (decimal) corresponds to the drive number and
the second digit (decimal) is the order of the file system
on the disk. For ttys, the minor device number 1is the
number of the port. For other devices the numbers represent
options passed to the drivers (eg. no-rewind for tapes).

SEE ALSO
mknod (M) , mknod (2) .

2 Bell 2

MKSTR (1) Zilog MKSTR (1)

NAME

mkstr - create an error message file by massaging C source
SYNOPSIS

mkstr [-] messagefile prefix file ...
DESCRIPTION

Mkstr is used to create files of error messages. Its use

can make programs with large numbers of error diagnostics
much smaller, and reduce system overhead in running the pro-
gram as the error wmessages do not have to be constantly
swapped in and out.

Mkstr will process each of the specified files, placing a
massaged version of the input file in a file whose name con-
sists of the specified prefix and the original name. A typ-
ical usage of mkstr would be:

mkstr pistrings xx *.c

This command would cause all the error messages from the C
source files in the current directory to be placed in the
file pistrings and processed copies of the source for these
files to be placed in files whose names are prefixed with
XX.

To process the error messages in the source to the message
file mkstr keys on the string ‘error("' in the input stream.
Each time it occurs, the C string starting at the "' s
placed 1in the message file followed by a null character and
a new-line character; the null character terminates the mes-
sage so it can be easily used when retrieved, the new-line
character makes it possible to sensibly cat the error mes-
sage file to see 1its contents. The massaged copy of the
input file then contains a lseek pointer into the file which
can be used to retrieve the message, i.e.:

char efilname[] = "/usr/lib/pi_strings";
int efil = -1;
error (al, a2, a3, ad)
{
char buf[256];
if (efil < @) {
efil = open(efilname, 9);
if (efil < @) {
oops:

perror (efilname);
exit(1l);

1 Zilog 1

MKSTR (1) Zilog MKSTR (1)

}

if (lseek(efil, (long) al, @) || read(efil, buf, 256) <= @)

goto oops;
printf(buf, a2, a3, a4);

}
OPTIONS
- Causes the error messages to be placed at the end of
the specified message file for recompiling part of a
large mkstred program.
SEE ALSO

lseek (2), xstr(l).
LIMITATIONS

All the arguments except the name of the file to be pro-
cessed are unnecessary.

2 Zilog 2

MM (7)

NAME

Zilog MM (7)

mm - the MM macro package for formatting documents

SYNOPSIS

mm [options] [files]

nroff -mm [options] [files]

nroff -cm [options] [files]

mmt [options] [files]

troff -mm (options] {[files]

troff -cm [options] [files]

DESCRIPTION

This package provides a formatting capability for a wide
variety of documents. It is the standard package used by

‘the BTL typing pools and documentation centers. The manner

in which a document 1is entered and edited is essentially
independent of whether the document is to be eventually for-
matted at a terminal or phototypeset. See the references
below for further details.

OPTIONS

-cm Causes nroff(l) and troff(l) to use the compacted ver-
sion of the macro package, thus speeding up the process
of loading.

-mm Results in the use of the non-compacted version of the
macro package.

FILES
/usr/lib/tmac/tmac.m pointer to the non-
compacted version of the
package
/usr/lib/macros/mm[nt] non-compacted version of
the package
/usr/lib/macros/cmp. [nt].[dt] .m compacted version of the
package
/usr/lib/macros/ucmp. [nt] .m initializers for the com-
pacted version of the
package
SEE ALSO
troff(1l).
1 Bell _ 1

MORE (1) _ Zilog MORE (1)

NAME

more, page - file perusal filter for crt viewing

SYNOPSIS

more [-dfln] [+line] [+/pat] [file ...]

page [-dfln] [+line] [+/pat] [file ...]

DESCRIPTION

More allows examination of a file on a terminal one screen-
ful at a time. It normally pauses after each screenful,
printing:

~—More—-

at the bottom of the screen. A carriage return displays one
more line, a space displays another screenful.

I1f the -1 option is not given, more will pause after any
line that contains a control-L ""L", as if the end of a
screenful had been reached. Also, if a file begins with a
form feed, the screen will be cleared before the file is
printed,

If the program is invoked as page, then the screen is
cleared before each screenful is printed (but only if a full
screenful is being printed), and k - 1 rather than k - 2
lines are printed in each screenful, where k is the number
of lines the terminal can display. :

More looks in the file /etc/termcap to determine terminal
characteristics, and to determine the default window size.
On a terminal capable of displaying 24 lines, the default
window size is 22 1lines.

I1f more is reading from a file, rather than a pipe, then a
percentage 1is displayed along with the --More-- prompt.
This gives the fraction of the file (in characters, not
lines) that has been read so far.

Other sequences which may be typed when more pauses, and
their effects, are as follows (i is an optional integer
argument, defaulting to 1) :

i<space>
display i more lines, (or another screenful if no argu-
ment is given)

“D Control-D

display 11 more lines (a ““scroll''). 1If i is given,
then the scroll size is set to i.

UcB 1

MORE (1) zilog MORE (1)

d same as "D (control-D)

iz same as typing a space except that i, 1if present,
becomes the new window size.

is skip i lines and print a screenful of lines

if skip i screenfuls and print a screenful of lines

q or Q
Exit from more.

= Display the current line number.

v Start up the editor wvi at the current line.

h Help command; give a description of all the more com-
mands.

i/expression
search for the i-th occurrence of the regular expres-
sion expression. If there are less than i occurrences
of expression, and the input is a file (rather than a
pipe), then the position in the file remains unchanged.
Otherwise, a screenful is displayed, starting two lines
before the place where the expression was found. The
user's erase and kill characters may be used to edit
the regular expression. Erasing back past the first
column cancels the search command.

in search for the i-th occurrence of the 1last regular
expression entered.

' (single quote) Go to the point from which the last
search started. If no search has been performed in the
current file, this command goes back to the beginning
of the file.

!command
invoke a shell with command. The characters %' and !
in "command" are replaced with the current file name
and the previous shell command respectively. If there
is no <current file name, %' is not expanded. The
sequences "\%" and "\!" are replaced by "g" and "!"
respectively.

ism skip to the i-th next file given in the command 1line
(skips to last file if i doesn't make sense)

i:p skip to the i-th previous file given in the command

line. If this command is given in the middle of print-
ing out a file, then more goes back to the beginning of

UCB 2

MORE (1) Zilog MORE (1)

the file. If i doesn't make sense, more skips back to '
the first file. 1If more is not reading from a file,
the bell is rung and nothing else happens.

:£ display the current file name and line number.

:q or :Q
exit from more (same as q or Q).

. Dot
(dot) repeat the previous command.

The commands take effect immediately, i.e., it is not neces-
sary to type a carriage return. Up to the time when the
command character itself is given, the user may hit the line
kill character to cancel the numerical argument being
formed. 1In addition, the user may hit the erase character
to redisplay the --More--(xx%) message.

At any time when output is being sent to the terminal, the
user can hit the quit key (normally control-\). More will
stop sending output, and will display the usual --More--
prompt. The user may then enter one of the above commands
in the normal manner. Unfortunately, some output is 1lost
when this is done, due to the fact that any characters wait-
ing in the terminal's output queue are flushed when the quit
signal occurs.

The terminal is set to noecho mode by this program so that
the output can be continuous. What you type will thus not
show on your terminal, except for the / and ! .commands.

If the standard output is not a teletype, then more acts
just 1like cat, except that a header is printed before each
file (if there is more than one).

A sample usage of more in previewing nroff output would be
nroff -ms +2 doc.n | more

OPTIONS
-d More will prompt the user with the message "Hit space
to continue, Rubout to abort" at the end of each
screenful., This is useful if more is being used as a
filter in some setting, such as a class, where many
users may be unsophisticated.

-f This causes more to count logical, rather than screen
lines. That is, long lines are not folded.

~

-1 Do not treat "L (form feed) specially.

3 ucCB 3

MORE (1) Zilog MORE (1)

-n An integer which is the size (in lines) of the window
which more will use instead of the default.

+line
Start up at line.

+/pat
Start up two lines before the line containing the regu-
lar expression pattern.

FILES
/etc/termcap Terminal data base
/usr/lib/more.help Help file

SEE ALSO
cat(l), dog(l), head(l), tail(l), pr(l).

4 UcCB 4

MV (1) Zilog MV (1)
NAME

mv - move or rename files and directories
SYNOPSIS

mv filel file2

mv file ... directory

DESCRIPTION

Mv moves (changes the name of) filel to file2.

If file2 already exists, it 1is removed before filel 1is
moved., 1If file2 has a mode which forbids writing, mv prints
the mode (see chmod(2)) and reads the standard input to
obtain a 1line; 1if the line begins with y, the move takes
place; if not, mv exits.

In the second form, one or more files are moved to the
directory with their original file-names.

Mv refuses to move a file onto itself.

DIAGNOSTICS

"cannot link /dir2/dirl to /dirl" Printed if not superuser.

SEE ALSO

cat(l), cp(l), chmod(2).

LIMITATIONS

If filel and file2 lie on different file systems, mv must
copy the file and delete the original. 1In this case the
owner name becomes that of the copying process and any link-

ing relationship with other files is lost.

Bell 1

NEWGRP (1) . Zilog NEWGRP (1)

NAME

newgrp - log in to a new group

SYNOPSIS

newgrp [group]

DESCRIPTION

FILES

SEE A

Newgrp changes the group identification of 1its caller,
analogously to login(l). The same person remains logged in,
and the current directory is unchanged, but calculations of
access permissions to files are performed with respect to
the new group ID.

A password is demanded if the group has a password and the
user does not.

When most users log in, they are members of the group named
other. Newgrp is known to the shell, that executes it
directly without a fork if the shell is a login shell.
You can always newgrp back to your default group at login by
typing: newgrp. The super-user can newgrp to any group.

/etc/group; /etc/passwd

LSO
csh(l), login(l), sh(l), group(5).

Bell 1

NEWS (1) Zilog NEWS (1)

NAME

news - print news items

SYNOPSIS

news [-ans] [items]

DESCRIPTION

News is used to keep the user informed of current events.
By convention, these events are described by files in the
directory /usr/lib/news.

When invoked without arguments, news prints the contents of
all current files in /usr/lib/news, most recent first, with
each preceded by an appropriate header. News stores the
"currency" time as the modification date of a file named
.news time in the user's home directory (the identity of
this directory 1is determined by the environment variable
SHOME) ;

If a delete is typed during the printing of a news item,
printing stops and the next item is started. Another delete
within one second of the first causes the program to ter-
minate. Only files more recent than this currency time are
considered "current".

OPTIONS

-a Prints all items, regardless of currency; the stored
time is not changed.

-n Reports the names of the current items without printing
their contents, and without changing the stored time.

-8 Reports how many current items exist, withcocut printing
their names or contents, and without changing the
stored time. It is useful to include such an invoca-
tion of news in one's .login file..

All other arguments are assumed to be specific news items
that are to be printed.

FILES

/usr/lib/news/*
SHOME/ .news_time
/etc/motd

SEE ALSO

environ(5).

Zilog 1

NICE (1) Zilog NICE(1)

NAME

nice, nohup - run a command at low priority

SYNOPSIS

nice [-number] command [arguments]

nohup command [arguments]

DESCRIPTION

Nice executes command with low scheduling priority. If the
number argument 1is present, the priority is incremented
{higher numbers mean lower priorities) by that amount up to
a limit of 20. The default number is 7.

The super-user can run commands with priority higher than
normal by using a negative priority, for example --14.

Nohup executes command immune to hangup and terminate sig-
nals from the controlling terminal. The priority is incre-
mented by 5. Nohup should be invoked from the shell with &
to prevent it from responding to interrupts by or stealing
the input from the next person who logs in on the same ter-
minal.

NOTE: The C shell executes these commands internally. The
syntax and features differ somewhat from the commands
described here, so C shell users should refer directly to
nice(1lC), and nohup(1lC).

FILES

nohup.out standard output and standard error file under
nohup

SEE ALSO

csh(l), nice (1C), nice(2).

DIAGNOSTICS

Nice returns the exit status of the subject command.

Bell 1

NICE (1C) Zilog NICE (1C)

NAME

nice - set the priority of a command

SYNOPSIS

nice [number] command

DESCRIPTION

Nice without an argument, increments the nice value for this
shell by seven. With a number argument, nice increments the
nice number of the current shell by the given number (e.g.,

"nice -+8' and 'nice -8' have the same effect, that is ,
incrementing the priority by 8).

With a command argument, nice increments the nice value of
. —_— - .
the given command by number and by seven if no number is

given.

The super-user can specify negative niceness by wusing the
"nice --number ..." command. The command is always executed
in a subshell, and the restrictions placed on commands in
simple if statements apply.

SEE ALSO

nice(l), nohup(1lC).
The C Shell in the ZEUS Utilities Manual

ucse 1

NL (1)

NAME

Zilog NL (1)

nl - line numbering filter

SYNOPSIS

nl

[-btype]

[-Etype]

[-htype]

[-iincr]

[-1num]

[~nformat]

[-p]

[-ssep]
[—vstarti#]
[~-wwidth]
file

DESCRIPTION

N1l reads lines from the named file or the standard input if
no file 1is named and reproduces the lines on the standard
output. Lines are numbered on the left in accordance with
the command options in effect.

N1 views the text it reads in terms of logical pages. Line
numbering 1is reset at the start of each logical page. A
logical page consists of a header, a body, and a footer sec-
tion. Empty sections are valid.

Different line numbering options are independently available
for header, body, and footer (e.g. no numbering of header
and footer lines while numbering blank 1lines only in the
body) .

The start of logical page sections are signaled by input
lines containing nothing but the following character(s):

Line contents Start of

AR header
\:\: body
\: footer

Unless signaled otherwise, nl assumes the text being read is
in a single logical page body.

Command options may appear in any order and may be intermin-

gled with an optional file name. Only one file may be
named.

Zilog 1

NL (1)

OPTIONS
-btype

-ftype

~htype
-iincr

=1num

-nformat

Zilog NL (1)

Specifies which logical page body lines are to be
numbered. Recognized types and their meaning are:
a, number all lines; t, number lines with print-
able text only; n, no line numbering; pstring,
number only lines that contain the regular expres-
sion specified in string. Default type for logi-
cal page body is t (text lines numbered).

Same as