
System 8000™
ZEUS Reference Manual

03-3255-01

May, 1983

Copyright 1981, 1983 by Zilog Inc. All rights reserved. No
part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of Zilog.

The information in this publication is subject to change
without notice.

Zilog assumes no responsibility for the use of any circuitry
other than circuitry embodied in a Zilog product. No other
circuit patent licenses are implied.

ZEUS REFERENCE MANUAL

Zilog Part Number 03-3255-01

Software Release 3.1

Al~ INTRODUCTlON TO THE
ZEUS SOFTWARE DOCUMENTATION

INTR0(0) Zilog INTR0(0)

ii Zilog ii

REFERENCE Zilog REFERENCE

Pref ace

This manual and the related manuals below provide the com­
plete technical de>cumentation for the System 8000 and the
ZEUS operating system.

Title

Zeus Software DocumEmts:

Zeus Languages/Programming Tools Manual

Zeus Utilities Manual

Zeus Administrator Documents:

Zeus Administrator Manual
(Model 11)

Zeus Administrator Manual
(Model 21/31)

System 8111 Hardware! Documents:

System 8000 Hardware Reference Manual
(Model 11)

System 8000 Hardware Reference Manual
(Model 21/31)

Zilog Part Number

03-3249

03-3250

03-3254

03-3246

03-3227

03-3237

System a000® and ZEus® are registered trademarks of Zilog
Inc.

iii Zilog iii

INTR0(0) Zilog INTR0(0)

iv Zilog iv

INTR0(0) Zilog INTR0(0)

Table of Contents

SECTION 1 INTRODUCTION TO ZEUS DOCUMENTATION ••••••••• 1-1

1.1. ZEUS Reference Manual ••••••••••••••••••••••••• 1-1

1.1.1. Section 0 Introduction •••••••••••••••• 1-1
1.1.2. Section 1 User Commands ••••••••••••••• 1-1
1.1.3. Section 2 System Calls •••••••••••••••• 1-1
1.1.4. Section 3 Subroutines ••••••••••••••••• 1-2
1.1.5. Section 4 Special Files ••••••••••••••• 1-2
1.1.6. Section 5 Files and Conventions ••••••• 1-2
1. 1. 7. Section 6 Games • . • • 1-2
1.1.8. Section 7 Program Support Files ••••••• 1-2
1.1.9. Section M System
Administrator Commands ••••••.••••••••••••••••••• 1-2
1.1.10. Command Syntax Description9 ••••••••••••• 1-2
1.1.11. Command Entry Descriptions •••••••••••••• 1-4

1.2. Related Document9 ••••••••••.••••••••••••.••••• 1-5

1.2.1. ZEUS Utilities Manual Summary •••••••••••• 1-5
1. 2. 2. ZEUS Languages/Programming
Tools Manual Summary •••••••••••••••••••••••••••• 1-6
1.2.3. ZEUS Administrator Manual Summary •••••••• 1-6
1.2.4. ZEUS and Related Document Part Numbers ••• 1-7

SECTION 2 SUMMARY OF SECTION 1 COMMANDS •••••••••••••• 2-1

2.1. Section 1 Commands ••••••••••••••••..•••.•••••• 2-1
2.2. Commands Related to Files ••••••••••••••••••••• 2-1

2.2.1. File Communications •••••••••••••••••••••• 2-1
2.2.2. File Compare •.•••.••••••••••••••••••••••• 2-2
2.2.3. File Editors ••••••••••••.••••••••••••••.• 2-2
2.2.4. File Formatter •.••.•••••••••••••••••••••• 2-2
2.2.5. File Examination ••••••••••••••••••••••••• 2-3
2.2.6. File Moving •.•••••••••••••••••••••••••••• 2-3
2.2.7. File Protection •••.••••••••••••••.••••••• 2-4
2.2.8. File Source Code Control System •••••••••• 2-4
2.2.9. File Status • . • . • • • • • • • ~-4

2.3. Languages and Programming Tools: •••••••••••••• 2-5
2.4. The Shell Commands • 2-6

v Zilog v

INTR0(0) Zilog INTR0(0)

2. 4 ~ L
2.4.2 ..
2. 4 .. 3 ..

Shell Commands
Shell Scripts
The Shells as

.
Commands

2.5. The Syste~ as a Whole e • e e e e e e e e e e e e e e e e 9 e e e G e e

2. 5. L
2.5.2.
2.5.3 ..
2.5.4.

System
System
System
System

Manual
Math
Device!S
Time

2. 6. Use1t:-Or iented Commands

.
,,

. ~ . .
2.6.1.
2.6.2.
2.6.3.

user
User
user

Communications
Info •o••••••
Manipulation

SECTION 3 ZEUS FUNCTIONAL OVERVIEW

3 .1.
3.1. L
3.1.2.
3.1.3.
3.1.4.

Ordinary Files
Directory Files
Special Files
Removable File Systems

3.2.
3.3.

Fi l ·e Sec u r it y
Input/Output

Protection

.
.

SECTION 4 PROCESSES AND IMAGES .

vi

4.1.
4.2.
4.3.
4.4.

Process Creation ••••••••••••••••••••••••••••••
Execution of Programs •••••••••••••••••••••••••
The Parent/Child Relationship
Process Termination ••••••••••••

.
4.4.1. Process Synchronization

4.5.
4.6.
4.7.

The Signal Mechanism
The! Pipe Mechanism
The Wait Mechanism

.
4. 7. 1.. The She 11 .

4.8.
4.9.

Stslndard
Filters

I/O

Zilog

2-6
2-6
2-7

2-7

2-7
2-7
2-8
2-8

2-8

2-8
2-9
2-9

3-1

3-2

3-2
3-2
3-5
3-6

3-6
3-8

4-1

4-2
4-2
4-3
4-4

4-4

4-4
4-5
4-6

4-6

4-7
4-8

vi

INTR0(0) Zilog INTR0(0)

SECTION 5 PATTERN MA.TCHING AND OTHER TRICKS •••••••••• 5-1

vii

5.1. Command Separators and Multitasking ••••••••••• 5-1
5.2. The Shell as a Command: Command files ••••••••• 5-2

5.2.1. Implementation of the Shell •••••••••••••• 5-3

Zilog vii

INTR0(0) Zilog INTR0(0)

viii Zilog viii

INTR0(0)

Figure
1-1

3-1

ix

Zilog INTR0(0)

List of Illustrations

Sample Page from the ZEUS
Reference Manual, Reduced 1-3

File System Representation •••••••••••••••••• 3-4.

Zilog iK

INTR0(0) Zilog INTR0(0)

SECTION 1
INTRODUCTION TO ZEUS DOCUMENTATION

1.1. ZEUS Reference Manual

The following topics are described in the 9 sections of the
ZEUS Reference Manual:

Section 0
Section 1
Section 2
Section 3
Section 4
Section 5
Section 6
Section 7
Section M

This introduction
User commands
System calls
Library subroutines
Special files
File formats and conventions
Games
Program support files
System administration commands

1.1.1. Section B Introduction: This introduction is
Section 0 of the Reference Manual. It outlines the ZEUS
software document set, introduces the rest of the ZEUS
Reference Manual, and explains the descriptions in each of
the subsequent sections. It also provides an overview of the
ZEUS operating system as a whole.

1.1.2. Section 1 -- User Commands: Section 1 of the ZEUS
Reference Manual describes each of the more than 200 ZEUS
user commands that are entered at the keyboard and result in
some action.

Most of these commands are located in the directory /bin or
in /usr/bin.

1.1.3. Section 2 -- System Calls: System calls are issued
from programs. They are like commands entered from the key­
board, but are written into a program and executed from
within a running program. Section 2 explains each system
call, its interface subroutine (shown for both the C
language and Zilog's PLZ/ASM), the call's action, and errors
returned.

Many of the system calls have corresponding command programs
(Section 1).

1-1 Zilog 1-1

INTR0(0) Zilog INTRO (0)

1.1.4. Section 3 -- Subroutines: Section 3 describes the
system library subroutines. These subroutines can only be
linked with programs written in C. Other high-level
languages provided with ZEUS have their own library facili­
ties which are documented with the language.

1.1.5. Section 4 -- Special Files: Section 4 describes
special files -- the I/O drivers. I/O functions of ZEUS are
accomplished by reading or writing to a file that
corresponds to an actual I/O device, like a port to a termi­
nal, or a channel to a disk drive.

1.1.6. Section 5 -- Files and Conventions: Section 5 docu­
ments the structure of specific types of files, such as the
output file format of the loader and assembler. Files that
are used by only one command are excluded; for example, the
intermediate assembler files are not described.

1.1. 7. Seiction 6 Games: Section 6 documents the
system's games, and other programs of a similar nature.

1.1.8. Section 7 -- Program Support Files: Section 7 docu­
ments specific files referred to by programs. These files
include configuration tables, macro definition packages, and
other onlin 1e data. Section 7 also includes a summary of the
entire ZEUS file hierarchy.

1.1.9. Section M -- System Administrator Commands: Section
M contains information about commands used by th1~ system
administrator (login name "zeus"). These commands are
privileged, and can only be executed by "zeus". They are
found in the directory /etc.

1.1.18. Command Syntax Descriptions: Each section in the
ZEUS Reference Manual consists of independent alphabetical
entries of a page or so each that describe a command func­
tion. The name of the entry being described and its section
number are in the upper corners of the page.

1-2 Zilog 1-2

1-3

INTR0(0) Zilog
INTR0(0)

COMMANO(l) Zilog COMMANO(l)

NMB ~

command .name - the name of the command typed into the termi- ~jjiil[
Ml I

SYNOPSIS ·~:~:~:
command .name [options l (arguments J ~m

DESCRIPTION illllll
This section of the page describes the workings of the com­
mand.

BXAMPLBS

FI LBS

This section contains an example of the command exactly as
it might be typed into the computer.

/path/file name of the file that contains the program

/path/file name of a related file

LIMITATIONS
As the name suggests, this section lists the limitations on
the program (e.g., file size).

SBB ALSO
command(!), related.command(2), others(M).

Other documents related to the command are listed here.

1 source 1

Figure 1-1 Sample Page from the ZEUS
Reference Manual, Reduced

Zilog
1-3

INTR0(0) Zilog INTRO (0)

The pages feir each entry are numbered independently within
the section to simplify future revisions of this document.
That is, each command starts on page 1.

1.1.11. Command Entry Descriptions: All entries are based
on a common format, but some entries may not use all possi­
ble subsections.

$ The NAME subsection lists the exact names of the com­
mands and subroutines covered under the entry and gives
a very short description of their purpose.

$ The SYNOPSIS summarizes the use of the program being
described. A few conventions are used, particularly in
the description of commands.

- Boldface words are considered literals, and are typed
just as they appear.

- Square brackets (" [] ") around an argument indicate
that the argument is optional.

- Ellipses -- three dots in a row -- (" ••• ") are used
to show that the previous argument can be repeated.

- An argument beginning with a minus sign (-) often
means that the argument is an option, even if it
appears in a position where a file name could appear.
Therefore, it is unwise to have files names beginning
with a minus sign.

• The DESCRIPTION section discusses the topic in detail.

• The E~~MPLES section provides one or two examples of
the command's use.

$ The FILES section gives the name of files that are
built into the program, system call, or subroutine.

• A SEE ALSO section shows where related information is
located.

• A DIAGliOSTICS section discusses the diagnostic ind ica­
tions that can be produced. Self-explanatory messages
are not listed.

1-4

The LIMITATIONS section gives known limitations (and
sometimes deficiencies) •

Zilog 1-4

INTR0(0) Zilog INTR0(0)

In Section 2, a subsection called ASSEMBLER
assembly language required to implement
call.

gives the
the system

A permuted index points to each section by entry title and
section number. The section number is important because
some names are duplicated among the sections. Most of the
duplications result from commands that exercise a particular
system call.

1. 2. Related Docum.e:nts

ZEUS software documentation is supplied in four volumes.

The first volume is known as the ZEUS Reference Manual
(ZRM). It is the basic user reference manual because it
contains a descripti()n of all the basic user commands (com­
mands that are typed at the terminal) available in the 3.1
ZEUS operating system.

The second volume of ZEUS documentation is the ZEUS Utili­
ties Manual. It contains expanded inst-ructions for 20 of
tfi'"emore complex ZEUS commands.

The third volume in the ZEUS set is the ZEUS
Languages/Programmin<I_ Tools Manual. It is a guide to the
programming languagei;; and related language aids provided
with the ZEUS system.

The fourth volume in the ZEUS software documentation set is
the System 8000 ~us Administrator Manual. It contains
information related to setting up and maintaining the System
8000. This manual is "model-specfic".

1.2.1. ZEUS Utilities Manual Summary: The ZEUS Utilities
Manual contains art:icles that supplement the information in
Section 1 of the ZEUS Reference Manual. The entries are:

1-5

Intro -- An Introduction to the ZEUS operating system
Acct -- The system accounting package
Awk -- A pattern scanning and processing language
Comm -- The Zeus communications package
Cshell -- The C Shell from UC Berkeley
Ed -- The basic line editor
Ex ~- An expanded line editor
Fsck -- A File System Checking package
Learn -- Computer-aided learning program
Me -- The text formatting package from UC Berkeley
Ms The text formatting package from Bell

Zilog 1-5

INTRO (0) Zilog INTRO (0)

Labo:r: a tor ies
Nroff -- For terminal and line printer output
Secs -- Source Code Control System package
Sed -- A non-interactive stream editor
Shell -- The Bourne Shell from Bell Laboratories
Tbl -- For formatting tables
Troff -- For CAT phototypesetter output
Uucp -- Unix to Unix Communication Package
Vi -- The visual mode of the Ex editor
Zeus for Beginners -- A basic introduction

Each expanded entry in the ZEUS Utilities Manual has a
corresponding page in the ZEUS Reference Manual. Utilities
entries are intended to provide the in-depth and tutorial
information necessary for a complete understandin9 of the
more comple:ie and sophisticated commands in the ZEUS system.

1. 2. 2. :~EUS Languages/Programming Tools Manual
Summary: The ZEUS Languages/Programming Tools Manual con­
tains articles that supplement the information in the ZEUS
Reference Manual.

Intro ·-- Introduction to ZEUS Languages/~Jramming
Tools Manual
Adb ---·A Tutorial Introduction to Adb (A De-Bu~19er)
As -- System 8000 Assembly Language Reference Manual
c -- The c Programming Language
Call Conv -- System 8000 Calling Conventions
C-Isam -- C Index Sequential Access Method
Curses -- Cursor Motion Package
Lex -- A Lexical Analyzer Generator
Lint -- A C Program Checker
Make -·- A Control Program Programming Language
M4 -- The M4 Macro Processor
Pgmg -- ZEUS Programming
Plz/Asm -- Programming Language -- ZEUS/Assembly
Plz/Sy:s -- Programming Language -- ZEUS/System
Screen -- Screen Handling
Yacc -- Yet Another Compiler-Compiler

1. 2. 3. ZEUS Administrator Manual Summary: ThE~ ZEUS
Administrat 1or Manual discusses procedures that are :intended
for the adm1nistrator of a ZEUS installation. This document
provides specialized knowledge required for system boot and
recovery procedures. System maintenance commands are in
this document, and can also be found in manM of the usr/man
system directory.

1-6 Zilog 1-6

INTR0(0) Zilog

The sections in the Administrator Manual are:

Introduction
Start-up and Shut-down Procedures
Restoring the System Disk
File System Management
System Generation
System Crashes and Other Problems
System Maintenance
An Overview of ZEUS
Redistributiing Files on the Disk

1 .. 2.4. ZEUS and Related Document Part Numbers:

System 8000 ZEUS Reference Manual
System 8000 ZEUS Utilities Manual

INTRO (0)

System 8000 ZEUS Languages/Programming Tools Manual
System 8000 ZEUS System Administrator Manual

03-3255
03-3250
03-3249
03-3246
03-3254 System 8000 Model 11 Administrator Manual

Programming References:

PLZ/ASM Assembly Language Programming Manual
Report on the Programming Language PLZ/SYS
C Programming Language

Hardware References:

03-3055
03-3059
03-3161

System 8000 Hardware Reference Manual 03-3237
System 8000 Model 11 Hardware Reference Manual 03-3227

UNIX References:

1-7

UNIX Reference Manual for System 3
UNIX Programmer's Manual for System 3

Available from:

AT&T Co.
P. O. Box 2500
Greensborough, NC 27420

The Bell System Technical Journal,
Vol. 57, No. 6, Part 2

Zilog 1-7

INTR0(0)

1-8

Zilog

Av ad 1ab1 e fr om :

Bell Laboratories
Circulation Group
Whippany Road
Whippany, NJ 07981

Zilog

INTRO (0)

1-8

INTR0(0) Zilog INTR0(0)

SECTION 2
SUMMARY OF SECTION 1 COMMANDS

2.1. Section 1 Commands

Entries in this section marked with an asterisk-U "*U"
denote a longer entry for the command in the ZEUS Utilities
Manual, entries marked with an aste-risk-P "*P"---s"Ymbol1ze a
longer entry for the command in the ZEUS
Languages/Programmi1:!2. Tools Manual.

The commands in section 1 fall into 5 basic catagories:

Files
Programming Lan9uages
The Shell
The System, and
Users

2u2. Commands Related to Files

All the entries in this catagory are commands that act on
files.

2~2.1. File Communications:

The entries in this catagory
information via files, or
transfer process.

a-re commands that transfer
are a significant part of that

cu - call up another ZEUS system
mail - send or read mail to and from users
rmail - send mail only to users (cannot read mail)
uucp - UNIX-to-UNIX / ZEUS-to-ZEUS copy *U
uuname - list the uu.cp names of known systems
uux - UNIX-to-UNIX / ZEUS-to-ZEUS command execution

2.2.2. Pile Compare: Commands in this section are used to
compare differences or commonalities between files -- pri­
marily text files. Commands that check the contents of a
file against another file (like the spell program) are also
included.

2-1 Zilog 2-1

INTR0(0) Zilog INTR0(0)

bdiff - find the differences in large files (diff)
<!mp - compare the contents of two files
comm - select or reject lines common to two sorted files
diff - find the differences in files (bdiff)
diff3 - find the difference between three files (diff)
diffmk - mark differences between files (diff)
dircmp - compare the contents of two directories
sdiff - print diff results side-by-side
spell - find spelling errors in text files
spellin - add words to spell list {spell)
spellout - find words not in spell list {spell)
sort - sort and/or merge the lines in a file
tsort - topological sort of lines in a file
uniq - find repeated lines in a file

2.2.3. File~ Editors: Commands in this section include the
actual system editors (ed, edit, ex, and vi) and commands
that are used to change the contents of a file (usually at
text file) •

awk - pattern scanning and processing language *U
csplit - context split
cut - cut out selected fields of each line of a file
ed - basic e!d i tor :for first-time users *U
edit - intermediate editor for casual users
ex - high-powered editor for advanced users *U
101n - join together lines from two pre-sorted files
paste - merge same lines of several files
sed - non-interactive stream editor like ed
split - split a file into pieces
tr - translate characters from one class to another
vi - visual mode of the ex editor *U

2.2.4. File Formatter: The commands in
used to change raw input files (usually
commands) into formatted output files.
related to this process, like the
included.

this section are
text and formatting
Commands that are

col filter, are also

banner - print strings in large letters
col - filter escape characters out of a file
crypt - encode/decode a file
deroff - remove nroff/troff, tbl, and eqn constructs *U
eqn - troff pre-processor for typesetting equations
neqn- nroff pre-processor for printing equations
checkeq - check syntax of eqn input
expand - expand tabs to spaces
nl - add line numbers to each line of file
pr - format files for printer output

2-2 Zilog 2-2

INTR0(0) Zilog INTR0(0)

ptx - create and format the permuted index
tbl - table pre-processor for nroff or troff *U
troff - text formatter for CAT phototypesetter output *U
nroff - text formatter for printer output *U

2fi2.5. Pile Examination:

The commands in the following section are used to produce or
investigate the contents of files (usually text files) .

cat.- print (concatentate) the contents of a file
dog - print the contents of a file one screen at a time
grep - find a pattern in a file using ed syntax
egrep - grep using ex syntax
fgrep - fast grep using fixed strings
head - print the first 10 lines of a file
hyphen - tina nypnenatea woras in a ri1e
more - print tne contents or a ri1e one screen at a time
page - pr1nc cne concents oc a L1ie one screen ac a cime
~aii - pr1nc tne Lase L~ i1nes or a ~1Le

2.~.o. ~iie Moving: ~ommanas in tnis section aea1 w1tn
moving ana storing r11es.

ar - archive ana i1orary ri1e maintainer
cp - copy a r11e to a new name ana/or location
cpio - copy tile archives in and out ot tneir library
aa - convert and copy caump) a tile
gett11e - transrer ri1es rrom local to remote system
ln - llnk one £11ename to a ri1e
mkd1r - make a a1rectory
mv - move or rename r11es ana directories
pack - compress tiles to save dlSK space
peat - cat compressed files without unpacking them
unpack - expand previously compressed files
putfile - transfer files from remote to local system
rm - remove a file
rmdir - remove a directory
tar - archive files for tape
tee - split output of a process into two destinations

2.2.7. File Protection: The commands in this section deal
with the protection mode for files and directories. These
commands·control the read, write, and execute access for
files.

2-3 Zilog 2-3

INTR0(0) Zilog I:NTR0(0)

chmod - change the protection mode of a file or directory
chown - change ownership of a file or directory
wnask - set the default file protection mode for new files

2.2.8. FilE! Source Code Control System: The commands in
this section relate to the manipulation of the Source Code
Control System (SCCS). Refer to the SCCS section of the
ZEUS Utilities Manual for more information on this program.

admin - create and administer SCCS files *U
cdc - changE~ the commentary in an secs file *U
chkdiff - list differences between versions of a source file
chkin - check in file to Zilog Source Control file
chkout - check out file from Zilog Source Control file
comb - combine SCCS changes *U
delta - make a delta (change) to an SCCS file *U
get - get a version of an SCCS file *U
prs - print an SCCS file *U
rmdel - remove a change from an secs file *U
sact - print current SCCS file editing activity *U
sccsdiff - compare two versions of an SCCS file *U
unget - undo a previous get of an SCCS file *U
val - validate SCCS file *U
what - identify SCCS files *U

2.2.9. File Status: Commands in this section are used to
find, identify, investigate, or sutTu'llarize files, thE!ir con­
tents, or qualities.

chkwhat - pJdnt Zilog Source Control what strings
du - summarize disk space usage
file - determine file type
find - find files
ls - list files and directories in current directory
quot - summarize file system ownership
sum - sum and count blocks in a file
touch - update access and modification times of files
vls - "visually" list files and directories
we - count the 1 ines, words, and characters in a fi l•~
whereis - locate source, binary, and or manual for p1cogram

2.3. Lango.ages and Programming Tools:

Commands in this section are used in conjunction with ZEUS
programming languages. More information on the pro9ramming
languages can be found in the ZEUS Languages/Proc;iramming
Tools Manual.

2-4 Zilog 2-4

INTR0(0) Zilog INTR0(0)

adb - debugger *P
as - PLZ/ASM assembler *P
cas - invoke assembler
cb - C program beautifier
cc - System 8000 C compiler *P
code - print characters with their octal equivalents
cref - make cross-reference listing *P
cxref - a simple C routine referencing program *P
error - analyze and disperse compiler error messages
expr - evaluate arguments as an expression
flow - flow analysis of C programs *P
ld - nonsegmented Z8000 and 8-bit loader *P
lex - generate programs for simple lexical tasks *P
lint - a C program verifier *P
load - download to a Zilog Development Module
lorder - find ordering relation for an object library
m4 - macro processor *P
make - maintain, update, and regenerate groups of programs
*P
mkstr - create an error message file by massaging c source
*P
nm - print name list
objdu - dump for object and load modules
objhdr - object module header dump
objsu - object module underscore stripper
od hd - octal or hex dump
plz - plz/sys compiler driver *P
plzcg - plz/sys System 8000 code generator *P
plzsys - plz/sys compiler *P
prof - display profile data
prom - prom programming utility
ranlib - convert archives to random libraries
regcmp - regular expression compile
sec - segmented C compiler *P
send - upload to the Zilog Development Module
size - size of an object file
sld - segmented Z8000 loader
sprof - display profile data
strings - print strings in object or other binary file
strip - remove symbols and relocation bits and header
uimage - Zobj to a.out translator
xref - cross reference for C programs *P
xstr - extract strings from C programs
yacc - yet another compiler-compiler *P

2.4. The Shell Commands

The Shell is the primary interface between the user and the
computer. The prog1:ams in this section relate to the func­
tions of the sh.ell. For more information on the shells refer

2-!i Zilog 2-5

INTR0(0) Zilog INTR0(0)

to CSH - The C Shell and SH - The Bourne Shell both in the
ZEUS--uEilitTes Manual

2.4.1. Shell Commands:

Shell commands control or report on the way the shell
1:esponds to all other commands typed into the terminal.

at - execute command or shell script file at a later time
cd - change working directory
env - set environment for command execution
kill - send a signal to a process
printenv - display environment variables
ps - process status
pwd - working directory name
script - record all terminal interactions
sleep - suspend execution for an interval
wait - await completion of background processes
xargs - construct argument list(s) and execute command

2.4.2. Shell Scripts:

Shell scripts are files of commands executed by the shell,
the commands in this section relate to making and executing
these shell scripts.

basename - truncate path name to filename
dirname - truncate path name to directory name
echo - print strings with carriage return
echo2 - print strings without carriage return
getopt - bre~ak up (parse) command 1 ine options
gets - get a string from the terminal input
line - read one line from the terminal input
nice - run cl command at low system priority
nohup - run a command immune to phone hangups
test - test qualities of files and strings
true - provide the value "true"
false - provide the value "false"

2.4.3. The Shells as Commands: Since the shell is itself a
command, it has its own program and manual entry. The three
commands in this section are shells and can be used from the
terminal.

csh - a command interpreter with C-like syntax *U
rsh - restricted shell (command interpreter)
sh - the Bourne Shell command interpreter *U

2-6 Zilog 2-6

INTR0(0) Zilog INTR0(0)

2.5. The System as a Whole

Some commands pertain to functions of the system as a whole,
the on-line reference manual, the system calculator and
clock, and the devices linked to the system.

The commands in this section deal with those programs that
relate to these aspects of the system.

2.5.1. System Manual: The system contains an on-line
manual. The commands in this section relate to that manual
or other on-line sources of information.

apropos - locate commands by keyword lookup
getname - get NAME sections from manual source
help - on-line assistance
learn - computer-aided instruction program *U
look - find lines in a sorted dictionary list
man - print sections of the ZEUS Reference Manual
news - print news items
vnews - "visually" display the news items
whatis - describe a command

2.s.2. System Math: The system maintains an on-line calcu­
lator. The commands in this section relate to that function.

be - better calculator (subset of de)
de - desk calculator
units - print formula to change one unit to another

2.5.3. System Devie1es: The system interfaces with a number
of peripheral devices. The commands in this section regu­
late the way that interaction takes place.

391 - handle special functions of DASI 300 terminal
318s - handle special functions of DASI 300s terminal
451 - handle special functions of DASI 450 terminal
greek - select terminal filter
isrio - determine if terminal is a RIO System
local - return control to local system
lpr - line printer spooler
nq - print enqueing program
remote - transfer control to a remote ZEUS/UNIX system
reserv ~ tape drive reserving system
reset - reset terminal modes to default values
stty - set the options for a terminal
tabs - set tabs on a terminal
tty - get terminal name

2-7 Zilog 2-7

INTRO (0} Zilog INTR0(0}

vtzset - set up vtz terminal function keys
xq - examine or delete requests from the 1 ine printe:r

2.5.4. System Time: The system contains a clock and calen­
dar mechanism. These commands relate to those functions:

cal - print calendar
calenda~ - reminder service
date - print the date and time
daytime - give the time to human-reasonable accuracy
time - time a command
timex - time a command and generate a system activity report

2.6. User-Oriented Commands

This last block of information relates to the fact that the
ZEUS system is an interactive, multi-user system.

2.6.1. Useir Communications:

Users logged on at the same time can communicate with each
other over the system with a variety of tools. The commands
in this section relate to those communication tools.

mesg - permit or deny incoming user messages
talk - communicate with another user, character by character
write - communicate with another user, line by line

2.6.2. User Info: This group of commands provides informa­
tion about other users on the system.

id - print user and group ID and names
logname - g 1et log in name
uname - print name of current ZEUS
users - compact list of users who are on the system
who - print a list of the users currently on the system
whoami - print current user login name
whodo - print current users and their process status
whois - access the user information database

2.6.3. user Manipulation: The commands in thi:s group
relate to the files and commands that provide an individual
user with an account and a system "identity".

chgrp - change group
gpasswd - change group password

2-8 Zilog 2-8

INTR0(0) Zilog

grpck - password/group file checkers
pwck - password/group file checkers
login - sign on
newgrp - log in· to a new group
passwd - change login password
su - substitute user ID temporarily

2-9 Zilog

INTR0(0)

2-9

INTR0(0) Zilog INTR0(0)

SECTION 3
ZEUS FUNCTIONAL OVERVIEW

ZEUS is a powerful multi-user operating system for interac­
tive use. It is developed as a super-set of UNIX, and has
many tools for the development of operating systems,
languages, and computer networks. ZEUS is also useful for
document preparation.

ZEUS is installed on Zilog's System 8000 16-bit microcom­
puter. A standard video keyboard terminal provides console
interaction.

This functional overview of ZEUS discusses the following
topics:

The File System
Ordinary Files
Directories
Special File!s
Removable Files

ft Protection

E& ZEUS I/O

$ Processes and Images
Process Creation
Program Execution
Process Parent/Child
Process Termination

3-1

Process Synchronization
Signal
Pipe
Wait

The Shell
Standard I/O
Filters
Pattern Matching
Multitasking
Command Fi le:s

Shell Implementation

Zilog 3-1

INTR0(0) Zilog INTR0(0)

3.1. Pile System

One of the most important features provided by ZEUS is its
file system. The file system is hierarchically structured,
using the concepts of root directories, subdirectories, and
path names to locate specific files. ZEUS provides three
types of files: ordinary and directory files (the hierarch­
ical file system), and special files, which are for system
devices (I/O).

3.1.1. Ordinary Files: Ordinary disk files contain infor­
mation placed there by a user. This information can be
source programs, object programs, documents, or data bases.
To the ZEUS operating system, a file is only a one­
dimensional array of bytes with no implied structure. This
means that any type of structure can be imposed on an ordi­
nary file.

3.1.2. Directory Files: An ordinary file is located by
reference to a directory file. Directory files provide the
mapping between a file name and the file itself; this effec­
tively induces a structure on the entire file systemo Files
can be grouped in subdirectories (subdirectories are created
by the user) to any practical depth. The references to
files organized in this manner, when graphically depicted
as in Figure 3-1, look like a rooted tree, and provide a
hierarchical structure. This structure is often called a
di rectory t:ree.

ZEUS maintains several directories for its own use. Perhaps
the most important of these is the root directory (/) which
is the base of the entire file structure. All file:; in the
system can be found by tracing a path from the root through
a chain of directories, though it is not necessary for every
path to start at the root~

The construction of the path through a chain of directories
is called the path name. This path name to a file consists
of directory names, separated by/, ending in the file name.
Figure 3-1 illustrates a typical file structure. The same
nondirectory file can appear in several directories under
possibly different names. For instance, two files, filel
and file2 might be the same file. This feature is called
linking; a directory entry for a file is sometimes called a
link. (The link system call can be found in link(2) .) In
the ZEUS system, all links to a file have equal-status.
That is, a file does not exist within a particular direc­
tory; the directory entry for a file consists merely of its
name and a pointer to the information actually describing

3-2 Zilog 3-2

INTR0(0) Zilog INTR0(0)

the file. Thus, a file exists independently of any direc­
tory entry, although in practice, a file disappears along
with the last link to it.

At the base of the illustrated tree structure (Figure 3-1)
is the system root, /. This root directory, like any direc­
tory, contains entries that point to any of the three types
of files. The root directory·illustrated has three entries,
two of which point to other directory files, /dev and z, and
one pointing to an ordinary file, me. The directory dev has
entries for two special files, zds---and ctl (I/O drivers- for
the disk and cartridge tape un~l). The directory /z con­
tains entries for two files, a and b, and a subdirectory, c.
Under the directory /z/c, there are also two files named-a
and b. This poses no problems when the files are searched
for -because the full path name specifications are different
(/~/~ and /~/£/~) .

All names in the ZEUS file system must be 14 or fewer char­
acters. There is little other restriction imposed on names;
for example, the naming of files beginning with a minus sign
(-) is not recommended, and the C language compiler expects
source files to end with .c. Other naming conventions can
be found in the compiler descriptions.

3-3 Zilog 3-3

INTR0(0)

I

root di re!ctory
entries,

• • • z me

II
a b c

a

Zilog

zd5

b

INTRO (0)

ZEUS System Root

ctl

/z
/me
/dev

directory file
ordinary file
directory file

/z/a : ordinary file
/z/b : ordinary file
/z/c : directory file
/dev/zd5 special file

(disk)
/dev/ctl : special file

(tape)

/z/c/a
/z/c/b

ordinary file
ordinary file

Figure 3-1 File System Representation

It is always possible to specify a complete path name for a
file, in which the path name starts from the root. However,
the unlimited depth allowed by the ZEUS directory structure
can make such names inconveniently long. To remedy this,
the file structure uses the concept of a current directory,
also called the working directory. The system interprets
path names not beginning with the root (nonrooted path
names) as being relative to the current working directory.
This current directory can be moved around the tree at will
(unless the directory is read protected). To illustrate,
suppose the current directory is placed at /~, shown in

3-4 Zilog 3-4

INTR0(0) Zilog INTR0(0)

Figure 3-1. Specifying nonrooted path name a refers to the
file /z/~. If the current directory is moved-to /z/c, the
path name a refe1rn to /z/c/a. In effect, the name-of the
current directory is prepended-to nonrooted path names.

Normally, each directory contains a subtree of files and
directories. The shape of these subtrees is free form, and
subordinate directories can be created and destroyed at
will. Directories can be structured according to the task
to be done. At log in, the initial position of the working
directory is typically set to the top of the subtree. This
initial, current directory, specified as part of the login
information, is contained in the file /etc/passwd, and is
commonly called the home directory.

Each directory always has at least two entries. The name
dot (.) in each directory refers to the directory itself. A
program can read the current directory under the name
without knowing its complete path name. In Figure 3-1, the
file a can be referred to by /z/a, or, if the current direc­
tory -is /z, by a or ./a. The name •• refers to the parent
of the directory Tn which it appears, that is, the directory
in which it was created.

Except for the special entries • and •• , each directory must
appear as an entry in exactly one other directory, which is
its parent. This simplifies the writing of programs that
access subtrees of the directory structure, and more impor­
tantly, avoids the separation of portions of the hierarchy.
If arbitrary links to directories were permitted, it would
be difficult to detect when the last connection from the
root to a directory was severed.

The difference between a directory and an ordinary file is
that a directory can be written on only by privileged system
programs. This is because directories impose a file struc­
ture. Write-permission on an ordinary file enables changes
to be made to the contents of that file; write-permission on
a directory (for all but privileged users) enables files to
be added or deleted from that di~ectory.

3.1.3. Special Piles:

Each supported I/O device is associated with at least one
special file. Special files are read and written just like
ordinary disk files, but requests to read or write activate
the associated device. An entry for each special file
resides in the directory /dev. A link can be made to one of
these files just as it can~ an ordinary file. To wrife to
the line printer, write to the file /dev/!.E!·

3-5 Zilog 3-5

INTR0(0) Zilog INTR0(0)

Special files exist for each communication line, disk file
system, tape drive, line printer, or terminal, and for phy­
sical main memory. These files are generally created
through the system generation process.

There are advantages in treating I/O devices this way. File
and device I/O are as similar as possible; file and device
names have the same syntax and meaning so that a program
expecting a file name as a parameter can be passed a device
name. Finally, special files are subject to the same protec­
tion mechanisms as regular files.

3 .1. 4. Remc•vable Fi le Systems:

When the systein is generated, each disk on the generated
system is partitioned into one or more unrelated but physi­
cally contiguous regions. A region can be thought of as a
virtual disk associated with a file system. Although the
root of the ZEUS file system is always stored on the same
disk, the entire file system hierarchy does not have to
reside on the same physical (virtual) disk.

'The system mount request attaches an independent file system
with its owr1 directory hierarchy to the existing file! system
hierachy (t.r:ee) • The mount request has two argument.s: the
name of an existing directory, and the name of a special
file whose associated virtual disk has the independent file
system and hierarchy. In effect, the mount request replaces
a leaf or subtree (the directory) of the current hierarchy
tree with a whole new subtree (the hierarchy stored on the
virtual d is~n •

After a file is mounted, there is no distinction between
files on the mounted virtual disk and those of the permanent
file system@ There is one exception to the rule of identi­
cal treatment of files mounted on different devices: no
link can exist between one file system hierarchy and
another. This restriction is enforced to avoid the ela­
borate system bookkeeping that would be required to ensure
removal of any existing links whenever the removable file
system is unmounted.

3.2. Pile Security Protection

The ZEUS system administrator, who is a person chargE~d with
the administration of the ZEUS installation, creates a
unique indhridual user identification number and a group
identification number for each new user. When the new user
creates a file, it is marked with the assigned user and

3-6 Zilog 3-6

INTR0(0) Zilog INTR0(0)

group ID. This new file also has ten protection bits. Nine
of these protection bits independently specify read (r),
write (w), and execute (x) permission for each of three lev­
els of access. The three levels of access protection are:

$ owner--the user
$ group--members of the user's group who have the same

group ID
$ public--all other users of the system

Example:

-rw-r--r-- 2 cpc
drwxrwxr-x 2 cpc

system
system

46 Feb 10 18:43 addpath
2144 Apr 22 18:22 bin

This organization is the same for ordinary files and special
files. For directories, the meaning of the access bits are
modified. Read means the ability to read the directory as a
file, that--r5; to discover all the names it contains. Exe­
cute means the ability to search a directory for a gTVeii
nailie when it appears as part of a qualified name. Write
means the ability to create and delete files in that direc­
tory. It is unrelated to writing of files in the directory.

If the tenth protection bit is on, the system temporarily
changes the ID of the current user to that of the owner or
cteator of the file whenever the file is executed as a pro­
gram. This change in user ID is effective only during exe­
cution of the program that calls for it. The set-user-ID
feature allows for privileged programs that can use files
inacces~ible to other users. For example, a program may
keep an accounting file that should neither be read nor
changed except by the program itself. If the set-user-ID
bit is on for an executing program, the file can be accessed
(althoug~ this access might be forbidden to other programs
invoked by the given program's user). Since the actual user
ID of the user who invokes a program is always available,
set-user-ID programs can take any measures required to check
the invoker's credentials. This mechanism allows execution
of carefully wri ttE:m commands that call privileged system
entries. Because the set-user-ID bit can be set on one's
own files, this mechanism is generally available without
administrative intervention.

The system call that creates an empty directory can only be
invoked by the super-user. Directories are expected to
have • and •• entries. The command that creates a directory
is owned by th~ super-user and has the set-user-ID bit set.

3-7 Zilog 3-7

INTR0(0) Zilog INTR0(0)

After ZEUS checks the invoker's authorization to create the
specified directory, the directory is created and the
entries for • and •• are made.

The system recognizes the super-user ID as able to access
all files without regard to permissions. The super-user is
also the only one permitted to make privileged system calls.
Programs owned by the super-user with the set-user-ID bit
set can be written to (such as dump and reload a file sys­
tem) without unwarranted interference from the protection
system.

The chmod system call and its corresponding command, which
change the protection bits of a file, is only executable by
the super-user or on files owned by the user.

3.3. Inpu~/Output

Files in ZEUS are manipulated through Input/Output (I/O)
system calls that create, delete, read, write, or seek into
a file.

I/O system calls do not differentiate between various dev­
ices and styles of access methods. There is no distinction
between random and sequential I/O, nor is there any concept
of record. The size of an ordinary file is determined by
the number of bytes written on it; no preallocation of disk
area is needed since files grow dynamically as they are
written.

To illustrate the essentials of I/O, some of the basic calls
are summarized below. Each call to the system can result in
an error return. (This is not represented in the examples.)
To read or write a file assumed to exist already, it must be
opened by the following system call:

filep = open (name, flag)

where name indicates the name (character string) of the
file. ~ arbitrary path name can be given. The returned
value filep is called the file descriptor. This is a small
integer used to identify the file in subsequent calls that
read, write!, or otherwise manipulate the file. The flag
argument indicates whether the file is to be read, written,
or updated; that is, read and written simultaneously.

The flag at·gument also indicates the access privileges that
other users have while the file is open. These ope·n access
privileges are distinct from the eleven protection bits dis­
cussed above. The protection bits are checked at open time

3-8 Zilog 3-8

INTR0(0) Zilog INTR0{0)

to see if the invoker has permission to access the file.
Once this is done, if the file is already open, the open
access privileges are checked to make sure the program that
originally opened the file will allow others to open it.
When a file is opened, the following permissions are speci­
fied for others attempting to open the file:

$ Any executing program can open the file

$ Any executing program can open the file as long as
it only reads it

No executing program can open the file

When the I/O is complete and the file is closed, any con­
straints imposed while the file was open are removed.

To create a new file or completely rewrite an old one, there
is a create system call that creates the given file if it
does not exist, or truncates it to zero length if it does
exist; create also opens the new file for writing and, like
open, returns a file descriptor. Such a call is defined as:

filep = creat (na1~, mode)

where name is the name of the file and filep is the file
descriptor. The mode argument specifies the eleven protec­
tion bits that the file will have, as well as the open
access privileges allowed others while the file is open.

Reading and writing are sequential (except as indicated
below). This means that for any particular last byte writ­
ten (or read) in the file, the next I/O call refers .to the
immediately following byte. For each open file there is a
pointer, maintained inside the system. When n bytes are
read or written, the pointer advances by n bytes.

Once a file is open, the following calls can be used:

n = read(filep, buffer, count)
n = wrfte(filep, buffer, count)

Up to count bytes are transmitted between the file specified
by filep and the byte array specified by buffer. The
returned·value n is the number of bytes actually transmit­
ted. In the -write case, n is the same as count, except
under exceptional conditions,-such as I/O errors or end of
physical medium on special files. In a read, n can, without
error, be less than sount.

3-9 Zilog 3-9

INTR0(0) Zilog INTR0(0)

If the read pointer is so near the end of the file that
·reading count characters causes reading beyond the· end of
the file, bytes are transmitted to reach only to the end of
the file. When a read call returns with n equal to zero,
the end of t:he file has been reached. For disk files, this
occurs when the read pointer becomes equal to the current
size of the file.

Bytes written affect only those parts of a file pointed to
by the position of the write pointer and the count; no other
part of the file is changed. If the last byte lies beyond
the current end of the file, the file expands as needed.

For random (direct access) I/O, the read or write pointer is
moved to the appropriate location in the file; thus,

location = lseek(filep, offset, base)

The pointer associated with filep is moved to a position
offset n bytes from the beginning of the file, from the
current position of the pointer, or from the end of the
file, depending on the base value x. Offset can be nega­
tive. For some devices (paper tape and video terminals),
seek calls are ignored. The actual offset from the begin­
ning of the file to which the pointer was moved is t:eturned
on location.

Other I/O and file system calls exist that are not discussed
here. These are listed below with the corresponding com­
mand, if any.

close(2)
stat (2)
chmod(2) ,chmod(l)
chown(2) ,chown(l)
mknod(2) ,mkdir(l)
link(2), Ln(l)
unlink(2), rm(l)

close file
change protection mode
change owner
create directory
create directory
link existing file
delete file

The command counterparts to the system calls shown aii:e gen­
erally more flexible and have more options than the system
calls.

3-10 Zilog 3-10

INTR0(0) Zilog

SECTION 4
PROCESSES AND IMAGES

INTR0(0)

An image can be thought of as a snapshot of the program exe­
cution environment~ The image includes not only a memory
image of the code and data of the program itself, but also
the current state of the ·registers, the status of open
files, and the current directory.

A process is the execution of an image, or, in other words,
an executing program. While the CPU is executing on behalf
of the process, the image must reside in main memory; during
the execution of other processes, it remains in main memory
unless the appearance of an active, higher-priority process
forces it to be swapped out on disk.

The user has a virtual address space within which a process
runs. This address space is either 64K bytes or 128K bytes,
depending on how the program is compiled. (Compiling a pro­
gram with the separate .!.&.Q. (~nformation and data) option
allows for up to 64K of instruction space to 64K bytes of
data space for a total of 128K.)

The user-memory of an image is divided into three logical
groups or sections: the program text, data, and stack sec­
tions. These sections can share one or two contiguous
memory areas. If the separate .!.&D compile option is used,
then two memory areas are shared. In this case, the two
physical memory areas are each 64K bytes--one for the shared
write-protected text, and one for the data and stack. The
text segment is write-protected during execution, and a sin­
gle copy is shared among all processes executing the same
program.

The program code, data, and stack res!de in one memory area,
up to 64K bytes long, when the separate I&D compile option
is not used. In this case, the program code-is not shared
or write-protected. The stack, which is considered a part
of the data since it shares the same memory address space,
and the data are never shared among processes regardless of
the compile option used.

The program text section begins at location 0 in the virtual
address ·space. The data sectjon also begins at location 0
in its own virtual 64K-byte add~ess space if the program is
compiled with the separate I&D option; otherwise, it follows
the code. The data section-can be extended in size by the
brk and sbrk sy$tem calls. The stack section begins at the

4-1 Zilog 4-1

INTR0(9) Zilog INTR0(9)

highest address in the virtual address space and automati­
cally grows downward as the stack pointer fluctuates.

4.1. Process Creation

A process can be put into execution from within an executing
program by making the system call

processid = fork()

When fork is executed, the process splits and becomes two
:independently executing processes. The newly created pro­
cess (child) is a copy of the original process (parent) •
The two processes have independent copies of the original
memory image and share all open files. (If the parent pro­
cess was executing from a read-only, sharable text segment,
however, the child shares the text segment.) Copies of all
the writable data sections are made for the child process.

Making a complete copy of a process with the fork is actu­
ally an effective way to communicate from the parent process
to the child process; the child has access to the entire
memory image of the parent. This avoids many structures and
restrictions and allows arbitrary information transfer
between parent and child.

Processes in ZEUS are inexpensive in terms of CPU time; a
sharp contrast to many other operating systems. The forking
of a medium-sized process requires only a few milliseconds.
This low cost means that the fork feature is used exten­
sively and provides the basis of shell interaction, in that
(almost) every entered command is executed in a child pro-
cess forked for the command. When the command completes,
the child process terminates.

4.2. Execution of Programs

Programs are executed by invoking a form of the exec system
call:

exec(file, argl, arg2, ••• ,argn)

where exec is execv, execl, execve, or execle. The exec
system call requests ZEUS to read into memory and execute
the program file, passing it string arguments argJ~, ••• ,
argn.

All of the code and data in the process attached to exec are
replaced b~f the code and data in file. Open files,-CUrrent

4-2 Zilog 4-2

INTR0(0) Zilog INTR0{0)

directory position, and interprocess relationships are unal­
tered, because invoking exec does not change processes. The
process attached to exec persists; it is just executing a
different program file. A return to the calling process
takes place only if the call to exec fails.

Consider interactive commands as an example of fork and exec
usage. A process is1 interactively invoked from the keyboard
by giving the name of the object file to be run. To copy a
file templ in the current directory to a file temp2, a pro­
cess is invoked with this keyboard command:

/bin/cp templ te!mp2

ZEUS can be given a single path name, such as cp, causing a
search through a user-set path for the named executable
file. The following command is most commonly entered:

cp templ temp2

The interactive command is interpreted by the shell to gen­
erate a process to perform the copy. The shell forks a copy
of itself, and the copy of the shell searches for the exe­
cutable program EE~· When .£E. is found, it is invoked by an
exec system call from the shell copy. The executing shell
copy is the parent process of the ~ command. In this way,
the shell is not destroyed and can interpret subsequent com­
mands when the child process, .£E. 1 finishes.

4.3. The Parent/Child Relationship

The new processes created by a fork differ only in that one
is considered the parent process. In the parent, the
returned processid actually identifies the child process and
is never 0, while for the child process, the returned value
is always 0. Because the values returned by fork in the
parent and child process are different, each process can
determine whether it is the parent or child.

If process A invokes processes B and C , process A is called
a parent process, and processes B and c are its children.
If process B invokes processes D and E, B is the parent of D
and E. D and E would be the grandchildren of A or, more
generally, descendents of A. If a parent process ter­
minates, its descendents continue e>eecution until they are
finished~ A descendent process·•s parent then becomes a ZEUS
system process.

4-3 Zilog 4-3

INTR0(0) Zilog INTR0(0)

4. 4. ProcE!'SS Termination

The system call

exit(st:atus)

terminates a process, destroys its image, closes its open
files, and generally removes it from the system.

A process can be terminated interactively (from the key­
board) by t:he command:

kill E..!~ocessid

This sends a signal (Section 2.2.5) to the process whose ID
is processid. If the signal is not handled in some other
way, the process is terminated. The command:

kill -! processid

is a sure kill, and must be issued carefully.

The equivalent system call of the above command is:

status = kill
(processid, 2_)

where status is an error status.

4.4.1. Process Synchronization: ZEUS provides mechanisms
whereby a process can synchronize itself with E~ither an
external event or another process. These are discussed in
this secti<m.

4. 5. The :Signal Mechanism

A signal is generated by some abnormal event, or initiated
at a console keyboard (quit, interrupt), by a program error
(bus error, illegal instruction, etc.), or by a another pro­
gram request (kill). Normally, all signals cause termina­
tion of the receiving process; however, a signal system call
allows signals to be handled in one of three ways: signals
can be ignored; they can cause termination of the process
(reinstate the default); they can result in a call to a
specified routine. The signal call looks like:

old value = signal (~1 func)

where old value is a value that indicates how the signal was

4-4 Zilog 4-4

INTR0(0) Zilog INTR0(0)

handled previously.. The variable ~ is the event to be
caught (such as a quit from the typewriter), func is an
indication of what to do when the signal occurs, whether it
is to terminate the process, ignore the signal, or call the
process's routine func.

There are sixteen signals. The ~(.!) command normally
generates the signal SIGTERM (a constant equivalent to 15)
which, when not caught, results in termination of the pro­
cess. A process can choose to catch such signals to clean
up temporary files before terminating. A process can also
ignore such calls.. If a process should be terminated, but
ignores SIGTERM signals, the signal SIGKILL (a constant
equivalent to 9) can be issued by entering:

kill -9 processid

Thi~ signal cannot be caught or ignored; it results in an
automatic termination of the process associated with proces­
sid. (The kill command must be issued only for processes
belonging to the usE~r, unless the user is the super-user.)

It is possible to suspend program execution while waiting
for a signal. The pause system call does this to prevent
busy waiting.

If a process issues a signal call and then forks a child
process, the child's signal is handled in the same way; the
child inherits all signals.

4.6. The Pipe Mechanism

Processes can synchronize with related processes through the
~ mechanism. The ~ mechanism allows sending messages
back and forth between processes using the same system read
and write calls that are used for file system I/O. The sys­
tem call:

Ireturn_value = pipe(fildes)

returns two file descriptors in array filep and creates an
interprocess ~· One file descriptor is used for reads,
the other is used for writes. The command return value
indicates whether or not the system call resulted in the
successful crea·tion of the ~· A re.ad, using a ~ file
descriptor, waits until another process writes using the
write file descriptor for the same ~· The writing pro­
cess can issue up to 4096 bytes of data before it is
suspended, waiting for a read from the~· Thus, data is
passed between the images of· the two processes. It does not

4-5 Zilog 4-5

INTR0(0) Zilog INTR0(0)

matter to either process that a pipe, rather than an ordi­
nary file, is involved.

The pipe channel, like other open files, is passed from the
parent to the child process image by the fork call.

4.7. The Wait Mechanism

Another process control system call:

processid = wait(status)

causes the parent process to suspend execution until one of
its children completes execution. The command wait then
returns the processid of the terminated process. A1n--error
return is taken if the calling process has no descendents.
Certain status is available from the child process, such as
a termination status.

As an example of the use of wait, the shell command line
interpretor generally works as follows. When a command is
entered, the shell forks a copy of itself. The child copy
performs an exec, in effect becoming the process performing
the requested command. Meanwhile, the parent process per­
forms a wait and, when the child process finishes, inter­
prets the next command.

A wait system call can also be interrupted by a signal
mechanism.

4.7.1. The Shell: Most communication with ZEUS is through
the shell, a command-line interpreter program that reads
lines as requests to execute other programs. (The shell is
described fully in the ZEUS Utilities Manual.) In simplest
form, a command line consists of the command name followed
by arguments to the command, all separated by spaces or
tabs, as in

command. argl arg2 ••• argn

The shell splits the command name and the arguments into
separate strings.. Then a file with the name command is
sought; command can be a path name including the / characte~
to specify any file in the system. If command is found, it
is brought into memory and executed. The arguments col­
lected by t.he shell are accessible to the command. When the
command is finished, the shell resumes its own execution,
and indicates its readiness to accept another command by
issuing a prompt character.

4-6 Zilog 4-6

INTR0(0) Zilog INTR0(0}

If the file command cannot be found, the shell usually pre­
fixes a string such as /bin or /usr/bin to command and
attempts again to find the---ri1e. -cThe--path name, or
sequence of directories to search can be changed by
request.)

4.8. Standard I/O

The previous discussion of I/O implies that every file used
by a program must be opened or created by the program to get
that file's descriptor. Programs executed by the shell,
however, start with three open files having the file
descriptors 0, 1, and 2. When such a program begins execu­
tion, file 1, called the standard output file, is open for
writing. This file is the terminal, except under cir­
cumstances indicated in the following examples. File
descriptor 1 is usually used to write program data. Con­
versely, file 0 starts open for reading, and programs that
read entered messages read this file. File descriptor 2,
another file open for writing, is similar to descriptor 1.
By default, it is assigned to the terminal and tisually used
for standard error message output.

Many commands request information from the console keyboard.
These commands issue a read system call using file descrip­
tor 0. No open is r,equired of the command program.

The shell can change the standard assignments of these file
descriptors from the terminal. If an argument to a command
is prefixed by >, for the duration of the command file
descriptor 1 refers to the file named after the >. For
example:

ls

ordinarily lists, on the standard output, the names of the
files in the current directory. The conunand:

ls > there

creates a file called there and places the listing
The argument > there means place output on there.
other hand:

ed

there.
On the

ordinarily enters thE~ editor, which takes requests from the
keyboard. The command

ed < script

4-7 Zilog 4-7

INTR0(0) Zilog INTR0(0)

interprets script as a file of editor commands; thus <
.script meanf; take input from script.

Although the file name following < or > appears to be an
argument to the command, it is interpreted completely by the
shell and is not passed to the command at all. Thus, no
special coding to handle I/O redirection is needed within
each command; the command uses the standard file desc:riptors
0 and 1 where appropriate.

File descriptor 2, like file descriptor 1, is ordinarily
associated with the terminal output stream. When an
output-diversion request using > in the command argument is
specified, file 2 remains attached to the terminal so that
commands producing diagnostic messages do not silently place
them in the redirected output file.

4. 9. Filte1i:s

The output of one command can be directed to the input of
another co~nand by extending the concept of standard I/O.

A sequence of commands separated by a vertical bar <I>
causes the shell to execute all the commands simul tcmeously
and to arra11ge that the standard output of each command be
delivered to the standard input of the next command in the
sequence. This is called piping, since the output of one
command is piped to the input of another. In the command
line:

ls I pr -2 I opr

ls lists the names of the files in the current directory;
ITs output is passed to £!_, which paginates its input with
dated headings. (The argument -2 requests doublE~-column
output.) Likewise, the output from .E!. is input to .212!.i this
command invokes a hypothetical program that spools its input
onto a file for off-line printing.

This procedure is inefficiently accomplished by:

ls > te1npl
pr -2 < templ > temp2
opr < tiemp2

followed by removal of the temporary files. Without the
ability to redirect output and input, a still clumsier
method would require the ls command to accept requests to
paginate its output, to print in multicolumn format, and to
arrange that its output be delivered off-line. Actually, it

4-8 Zilog 4-8

INTR0(0) Zilog INTR0(0)

would be surpr1s1ng, and in fact unwise for efficiency rea­
sons, to expect authors of commands such as ls to provide
such a wide variety of output options.

A program such as ~' which copies its standard input to its
standard output (with processing), is called a filter. Some
useful filters have been developed that perform character
transliteration, selection of lines according to a pattern,
and sorting of the input.

4-'9 Zilog 4-9

INTR0(0) Zilog INTR0(0)

SECTION 5
PATTERI~ MATCHING AND OTHER TRICKS

The shell can generate a list of file names that match a
pattern. These file names can then be used as input argu­
ments to a command. In general, patterns are specified as
follows:

* Matches any string of characters, including the null
string. For e>i~ample, the command

lpr /a/b/c/*

prints all the files in directory /a/b/c and

lpr /a/b/c/*.c

prints all the files whose names end in .c in that
directory.

? Matches any single character.

[...]
Matches any one of the enclosed characters. A pair of
characters separated by a minus sign matches any char­
acter lexically between the pair.

5.1. Command Separators and Multitasking

The shell supports multiple command entries on a single
line. Commands need not be on different lines; instead they
can be separated by semicolons.

ls; ed

first lists the contents of the current directory, then
enters the editor.

A related feature is more interesting. If a command is fol­
lowed by &, the shell executes the command in the background
and does not wait for the command to finish bef6re prompting
again; instead, it is ready immediately to accept a new com­
mand. F.or example:

as source > output &

causes source to be assembled, with diagnostic output going

5-1 Zilog 5-1

INTR0(0} Zilog INTR0(0}

to output~ no matter how long the assembly takes, the shell
returns immediately. When the shell does not wait f<>r the
completion of a command, the identification number of the
process running that command is printed. This process iden­
tification can be used to wait for the completion of the
command or to terminate it (with kill} • The & can be used
several time~; in a 1 ine. The command

as source > output & ls > & files

does both the assembly and the listing in the background.
In these examples, an output file other than the terminal
was provided~ If this had not been done, the outputs of the
various commands would be intermingled at the video termi­
nal.

The shell also allows parentheses in the above operations.
For example:

(date; li;) > x &

writes the current date and time, followed by a list of the
current dirE~ctory, onto the file x. The shell also :returns
immediately for another request.

5. 2. The Sh~!ll as a Command: Command Piles

The shell is itself a command, and can be called recur­
sively. Suppose file tryout contains the lines:

as sourcE!
mv a.out testprog
testprog

The mv command causes the file a.out to be renamed testprog.
The file a@out is the (binary) output of the assembler,
ready to be -E~xecuted. Thus, if the three 1 ines abovE~ were
typed on the keyboard, source would be assembled, the
resulting program renamed testprog, and testprog executed.
When the 1 i nE~S are in tryout, the command:

sh < tryout

causes the shell sh to execute the commands sequentially.
Furthermore, if the chmod command were used to change the
protection bits of the file tryout so that the file became
executable, t:he command:

tryout

5-2 Zilog 5-2

INTR0(0) Zilog INTR0(0)

would be equivalent to invoking the shell explicitly. This
happens because the script file of shell commands has the
execute permission bits turned on; the shell interprets the
command as if it had been entered:

sh < tryout

The shell has further capabilities, including parameter sub­
stitution and the ability to construct argument lists from a
specified subset of the file names in a directory. The
shell also provides general conditional and looping con­
structions.

5 .. 2.1. Implementation of the Shell: Most of the time, the
shell is waiting fo:e a command. When the new 1 ine character
ending the line is typed, the shell's read call returns.
The shell analyzes the command line, putting the arguments
in a form appropriate for execute. Then fork is called.
The child process,. whose code is sti 11 that of the shell,
attempts to perform an exec with the appropriate arguments.
If successful, this brings in and starts execution of the
program whose name was given. Meanwhile, the other process
resulting from the fork, which is the parent process, waits
for the child process to terminate. When this happens, the
shell knows the corr~and is finished, so it types its prompt
and reads the keyboard to obtain another command.

Given this framework, the implementation of background
processes is trivial; whenever a command line contains &,
the shell merely refrains from waiting for the process that
it created to execute the command.

This mechanism meshes well with the concept of standard
input and output files. When a process is created by the
fork system call, it inherits not only the memory image of
itS- parent but also all the files currently open in its
parent, including those with file descriptors 0, 1, and 2.
The shell, of course, uses these files to read command lines
and to write its prompts and diagnostics. In the ordinary
case, its children--the command programs--inherit these
files automatically. When an argument with < or > is given,
however, the offspring process, just before it performs
exec, makes the standard I/O file descriptor (0 or 1) refer
to-the named file. The smallest unused file descriptor is
assignea·when a new file is opened (or created); it is only
necessary to close file 0 (or 1) and open the named file.
Because the process in which the command program runs simply
terminates when it is through, the association between a
file specified after < or > and file descriptor 0 or 1 is

5-3 Zilog 5-3

INTR0{0) Zilog INTR0{0)

ended automatically when the process terminates. Therefore,
the shell need not know the actual names of the files that
are its own standard input and output, because it never
needs to reopen them.

Filters are straightforward extensions of standard I/O
redirection with pipes used instead of files.

In ordinary circumstances, the main loop of the shell never
terminates. {The main loop includes the branch of the
return from fork belonging to the parent process; that is,
the branch ·that does a wait, then reads another command
line.) One thing that causes the shell to terminate is dis­
covering an end-of-file condition in its input file~ When
the shell is executed as a command with a given input file,
as in:

sh < comfile

the commands in comfile are executed until the end of com­
file is reached; then the shell process invoked by sh ter­
mTnates. Because this shell process is the child of ~mother
invocation of the shell, the wait executed previously will
return, and .another command can then be processed.

5-4 Zilog 5-4

INTRO(l) Zilog INTRO(l)

NAME
INTRO - introduction to Section 1 commands

SYNOPSIS
INTRO is not a command, it is a manual entry, therefore
there is no synopsis.

DESCRIPTION
The commands described in Section 1 of the ZEUS Reference
Manual are available to all users and are typed into the
computer via the terminal keyboard. The commands in each
section of this manual are arranged alphabetically. Nota­
tions are made at the center of the foot of each command
page indicating ·the engineer source of the command. These
are:

Notation:

Bell
UCB
Zilog

Source:

Bell Laboratories
University of California, Berkeley
Zi log, Inc.

Reference to Section lC as in the entry foreach(lC) refers
to commands that are internal to the C Shell.

COMMAND SYNTAX

1

The description of each command (unless otherwise noted)
uses the following conventions:

Bold Face

Underlining

Brackets []

Ellipsis •••

Quote Marks

Words in bold print are literal, they must be
typed into the terminal [or they will appear
on the terminal], just as they appear on
paper.

Words that are underlined can or must be
replaced by words of the user's choosing.

Words in brackets are options, they can
appear in the command line, but may be omit­
ted·.

Three dots in a row -- an elipse -- is used
to note that the preceding word can be
repeated any number of times.

Double Quotes are used to isolate special
characters from the body of the text.

Single Front Quotes are used to denote words
with special meaning, though they may not be
actual commands.

Zilog 1

INTRO(l) Zilog INTRO(l)

Single Back Quotes are used by the computer
to substitute the output of a command for the
command word itself.

SEE ALSO
Section 0' -- Introduction to ZEUS Software Documentation
ZEUS Reference Manual 03-3255
ZEUS Utilities Manual 03-3250
ZEUS Languages/Programming Tools Manual 03-32·i9
ZEUS Administrator Manual 03-32·i6
Model 11 ZEUS Administrator Manual 03-32S4
PLZ/ASM Assembly Language Programming Manual 03-3055
Report on the Programming Language PLZ/SYS 03-0059
The C Programming Language 03-31151

[,IMITATIONS

2

Regretfully, many command descriptions do not adhere to the
aformentioned conventions.

Zilog 2

ADB(l) Zilog ADB(l)

NAME
adb - debugger

SYNOPSIS
adb [-w] [objfil [corfil]]

DESCRIPTION
Adb is a general-purpose debugging program to examine files
and provide a controlled environment for execution of ZEUS
programs.

Objfil is normally an executable program file, preferably
containing a symbol table: if not, the symbolic features of
adb cannot be used, although the file can still be examined.
The default for objfil is a.out. Corfil is assumed to be a
core image file produced after executing objfil: the default
for corfil is core.

Requests to adb are read from the standard input and
responses are written to the standard output. Adb prompts
for input with a question mark " ? ". If the -w flag is
present, both objfil and corfil are created, if-necessary,
and opened for reading, modifying, and writing. Adb ignores
QUIT: INTERRUPT causes return to the next adb command.

Requests to adb are of the form

[address] [,count] [command] [:]

If address is present, dot is set to address. Initially,
dot is set to 0. For most commands, count is an expression
that specifies how many times the command will be executed
(default is 1). Currently, address is considered an expres­
sion with an unspecifiable (default) segment number of 0.
It is expected that this will change.

The interpretation of an address depends on the context in
which it is used. If a subprocess is being debugged,
addresses are interpreted in the usual way in the address
space of the subprocess. For further details of address
mapping, see AD.DRESSES.

EX.PRESSIONS
The value of dot

+ The valu 1e of dot incremented by the current increment

The valuie of dot decremented by the current increment

.. The last address typed

integer

1 Bell 1

ADB(l) Zilog ADB(l)

2

An octal number if integer begins with a 0; a hexade­
cimal number if preceded by %; otherwise, a decimal
number

integer.fraction

1 cccc 1

A 32 bit floating point number

An ASCII value of up to 4 characters; a
11

\
11 can be used to escape an apostrophe

backslash
II I II

< name ThE! value of name, which is either a variable name or
a register name:- Adb maintains a number of variables
(SE!e VARIABLES) named by single letters or digits.
If name is a register name, the value of thE! register
is obtained from the system header in corfil. The
re~Jister names are r0 ••• r14 sp pc few.

symbol A !~ymbol is a sequence of upper or lowercaSE! letters,
underscores, or digits not starting with cl digit.
ThE! value of the symbol is taken from the symbol
table in objfil. An initial underbar 11

_
111 or tilde

"
11 will be prepended to symbol if needed.

symbol
In C, the 11 true name 11 of an external symbol begins
with It may be necessary to write thi.s name to
disinguish it from internal or hidden variables of a
program.

routine. nc:tme
ThE! address of the variable name in the spe!cified C
routine. Both routine and name are symbols. If name
is omitted, the value is t~address of the most
recently activated C stack frame corresponding to
routine. Currently, this expression type is: not sup-
ported. --

(exp) ThE! value of the expression exp

Monadic Operators

-exp

exp

ThE! contents of the location addressed by ex:E, in cor­
fil

ThE! contents of the location addressed by exp in
obj1 fil

Integer negation

Bitwise complement

Bell 2

ADB(l) Zilog ADB(l)

Dyadic Operators (left associative and less binding than
monadic operators)

el+e2 Integer addition

el-e2 Integer subtraction

el*e2 Integer multiplication

el%e2 Integer division

el&e2 Bitwise conjunction

elle2 Bitwise disjunction

el#e2 El rounded up to the next multiple of e2

COMMANDS

3

Most commands consist of a verb followed by a modifier or
list of modifiers. The following verbs are available. (The
commands ? and/ can be followed by an asterisk " * ": see
ADDRESSES for further details.)

?f Locations starting at address in objfil are printed
according to the format f

/f Locations starting at address in corf il are printed
according to the format f

=f The value of address itself is printed in the styles
indicated by the format f. (For i format, ? is printed
for the parts of the instruction that reference subse-
quent words.)

A format consists of one or more characters that specify a
style of printing. Each format character can be preceded by
a decimal integer that is a repeat count for the format
character. While stepping through a format, dot is incre­
mented temporarily by the amount given for --each format
letter. If no format is given, the last format is used.
The format letters available are as follows:

o 2 Print 2 bytes in octal. All octal numbers output
by adb are preceded by 0.

O 4 Print 4 bytes in octal.

d 2 Print in decimal.

D 4 Print long decimal.

x 2 Print 2 bytes in hexadecimal.

Bell 3

ADB(l)

4

Zilog ADB(l)

X 4 Print 4 bytes in hexadecimal.

u 2 Print as an unsigned decimal number.

U 4 Print long unsigned decimal.

f 4 Print the 32-bit value as a floating point number.

F 8 Print double floating point.

b 1 Print the addressed byte in octal.

c 1 Print the addressed character.

C 1 Print the addressed character using the following
escape convention. Character values '2100 to 040
are printed as @ followed by the corresponding
character in the range 0100 to 0140. The charac­
ter @ is printed as @@.

s n Print the addressed characters until a ZE~ro char­
acter is reached.

S n Print a string using the @ escape convention. n
is the length of the string including its zero
terminator.

Y 4 Print four bytes in date format (ctime(3)i).

i n Print as Z8000 instructions. n is the number of
bytes occupied by the instruction. Thie' style of
printing causes variables 1 and 2 to be e'et to the
offset parts of the source and destination respec­
tively.

a 0

p

Print the value of dot in symbolic form. Symbols
are checked to ensure that they have an appropri-
ate type as indicated below.

I local or global data symbol
? local or global text symbol
= local or global absolute symbol

2
Print the addressed value in symbolic fe>rm using
the same rules for symbol lookup as a.

t 0
When preceded by an integer tabs to the next
appropriate tab stop. For example, 81:. moves to
the next 8-space tab stop.

Bell 4

ADB(l) Zilog ADB(l)

5

r 0
Print a space.

n 0
Print a new line.

II•••. 0
Print the enclosed string.

Dot is decremented by the current increment.
Nothing is printed.

+ Dot is incremented by l; nothing is printed.

Dot is decremented by l; nothing is printed.

newline
If the previous command temporarily incremented dot,
make the increment permanent. Repeat the previous com­
mand with a count of 1.

[?/]l value mask
Words starting at dot are masked with mask and compared
with value until-a-match is found. If L is used, the
match is for four bytes at a time instead of two. If
no match is found, dot is unchanged; otherwise, dot is
set to the matched location. If mask is omitted,-::Y is
used.

[?/]w value
Write the 2-byte value into the addressed location. If
the conunand is W, write four bytes. Odd addresses are
not allowed when- writing to the subprocess address
space.

[?/]m bl el fl[?/]

>name

New values for (bl, el, fl) are recorded. If less than
three expressions are given, the remaining map parame­
ters are left unchanged. If the ? or / is followed by
an asterisk 11 * 11 the second segment (b2,e2,f2) of the
mapping is changed. If the list is terminate-a-by ? or
/, the file (objfil or corfil respectively) is used for
subsequent requests. (For example, /m? causes / to
refer to objfil.)

--Dot is assigned to the variable or register named.

1 A shell is called to read the rest of the line follow­
ing 1.

$modifier

Bell 5

ADB{l) Zilog ADB{l)

Misc•9llaneous commands. The available modifi•~rs are:

$<£ Read commands from the file f and return.

$>£ Send output to the file f, which is created if it
does not exist.

$r Print the general registers and the instruction
addressed by pc. Dot is set to pc.

$£ Print the floating registers.

$b Print all breakpoints and their associatE~d counts
and commands.

$C If $C is used, the 16 bit values for eac~h active
routine's stack frame are printed with the return
address labeled. If count is given, only the
first stack frames are printed If address is
given, dot is temporarily moved to that:. address
(i.e. pc is not altered) for perusal of instruc­
tions.

$e The names and values of external variables are
printed.

$w Set the page width for output to address {default
72).

$s Set the limit for symbol matches to address
{default 255).

$0 All integers input are regarded as octalo

$x All integers input are regarded as hexadecimal.

$d Reset integer input as described in EXPRHSSIONS.

$q Exit from adb.

$v Print all nonzero variables in hexadecimal.

$m Print the address map.

:modifier

6

Mana9e a subprocess. Available modifiers are::

:be Set breakpoint at address. The breakpoint is exe­
cuted count-1 times before causing a stop. Each
time the breakpoint is encountered, the c!ommand : c
is executed. If this command sets dot:. to zero;
the breakpoint causes a stop.

Bell 6

ADB(l) Zilog ADB(l)

:d Delete breakpoint at address.

:r Run 9bjfil as a subprocess. If address is given
explicitly, the program is entered at this point;
otherwise, the program is entered at its standard
entry point. Count specifies how many breakpoints
are to be ignored before stopping. Arguments to
the subprocess can be supplied on the same line as
the command. An argument starting with < or >
causE~s the standard input or output to be esta­
blished for the command. All signals are turned
on at entry to the subprocess.

:cs The subprocess is continued with signal s (signal
(2)). If address is given, the subprocess is con­
tinm~d at this address. If no signal is speci­
fied1, the signal that caused the subprocess to
stop is sent. Breakpoint skipping is the same as
for lC'.

:ss As for c, except that the subprocess is single
stepped count times. If there is no current sub­
process, objfil is run as a subprocess as for r.
In this case, no signal can be sent; the remainder
of the line is treated as arguments to the subpro­
cess.

:k The c~urrent subprocess, if any, is terminated.

VARIABLES

7

Adb provides a number of variables. Named variables are set
initially by adb but are not used subsequently. Numbered
variables are reserved for communication as follows:

0 The last value printed.

1 The last offset part of an instruction source.

2 The previous value of variable 1.

On entry, the following are set from the system header in
the corfil. If corfil does not appear to be a core file,
these values are set from objfil.

b The base address of the data segment.

d The data segment size.

e The entry point.

m The magic number (0xE607, 0xE611, 0xE605, 0xE707,
0xE711, 0xE705)

Bell 7

ADB(l) Zilog ADB(l)

s The stack segment size.

t The tE~xt segment size.

ADDRESSES

Fii.ES

The address in a file associated with a written address is
determined by a mapping associated with that file. Each
mapping is represented by two triples (bl, el, fl) and (b2,
e2, f2) a.nd the file address corresponfilngto a written
address is calculated as follows:

bl<address<el => file address=address+fl-bl

otherwise,

b2<address<e2 => file address=address+f2-b2

otherwise, the requested address is not legal. In some
cases (for example, for programs with separated information
and data space) the two segments for a file can overlap. If
a quest.ion mark 11 ? 11 or a slash 11

/
11 is followed by an

asterisk 11 * 11 only the second triple is used.

The initial setting of both mappings is suitable foir normal
a.out and core filese If either file is not of the kind
expected, then, for that file, bl is set to 0, el is set to
the maximum file size, and fl1s set to 0; inthis way the
whole file can be examined with no address translation.

All appropriate values are kept as signed 32-bit integers so
that adb can be used on large files.

/dev/mem
/dev/swap
a.out
core

SEE ALSO
ptrace(2), disasm(3), a.out(S), core{S)

DIAGNOSTICS
11 Adb 11 when there is no current command or format. Comments
about inaccessible files, syntax errors, abnormal termina­
tion of commands, etc. Exit status is 0, unless Last com­
mand failed or returned a non-zero status.

LIMITATIONS

8

A breakpoint set at the entry point is not effecti V·e on ini­
tial entry to the program.

When singl·e stepping, system calls do not count as an

Bell 8

ADB(l) Zilog ADB(l)

9

executed instruction.

Local variables whose names are the same as an external
variable can cause errors in the accessing of the external.

A hexadecimal number specified for an address may be inter­
preted as a symbol if not preceded by a %.

Bell 9

ADMIN(l) Zilog ADMIN(l)

NAME
admin - create and administer secs files

SYNOPSIS
admin [-alogit]

[-·dflag flag-val]]
[-elogini­
[-fflag[flag-val]]
[-bi- -- --
[-·i[name]]
[-·m[mrITst]]
[-·n]
[-·rrel]
[-·t[name]]
[-y[comment]]
[-·z]

files

DESCRIPTION
Admin is used to create new secs files and change! parameters
of existing ones. Arguments to ad.min, which may appear in
any .order, consist of keyletter arguments, which begin with

, and named files {note that secs file names must begin
with the characters s.).

If a named file doesn't exist, it is created, and its param­
eters a.re initialized according to the specifie~d keyletter
arguments. Parameters not initialized by a keyletter argu­
ment are assigned a default value. If a named file does
exist, parameters corresponding to specified keyletter argu­
ments are changed, and other parameters are left as is.

If a directory is named, adJnin behaves as though each file
in the directory were specified as a named file, except that
non-SCCS: files (last component of the path name! does not
begin with s.) and unreadable files are silently ignored.

If a name of - is given, the standard input is read: each
1 ine of the standard input is taken to be thei name of an
secs file to he processed. Again, non-SCCS files and
unreadable files are silently ignored.

The keyletter arguments are as follows. Each is; explained
as though only one named file is to be processe~d since the
effects of the arguments apply independently to each named
file.

OPTIONS
-alogin

1

A login name, or numerical ZEUS group ID, tC> be added
to the list of users which may make deltas (changes) to

Bell 1

ADMIN(l) Zilog ADMIN(l)

2

the SCCS file. A group ID is equivalent to specifying
all logir~ names common to that group ID. Several a
keyletters may be used on a single ad.min command line.
As many logins, or numerical group ID, as desired may
be on the list simultaneously. If the list of users is
empty, then anyone may add deltas.

-df lag
--Causes removal (deletion) of the specified flag from an

SCCS file., The -d keyletter may be specified only when
processing existing SCCS files. Several -d keyletters
may be supplied on a single adJnin command. See the -f
keyletter for allowable flag names.

-1list
A list of releases to be "unlocked". See the -f
keyletter for a description of the 1 flag and the syn­
tax of a list.

-elogin
A login name, or numerical group ID, to be erased from
the list of users allowed to make deltas (changes) to
the SCCS file. Specifying a group ID is equivalent to
specifying all login names common to that group ID.
Several e keyletters may be used on a single admin com­
mand line.,

-ff lag
--This keylE~tter specifies a flag, and, possibly, a value

for the fl~, to be placed in the SCCS file. Several f
keyletters may be supplied on a single admin command
line. ThE! allowable flags and their values are:

b Allows use of the -b keyletter on a get(l) com­
mand to create branch deltas.

cceil ThE~ highest release (i.e., "ceiling"), a number
less than or equal to 9999, which may be
retrieved by a get command for editing. The
default value for an unspecified c flag is 9999.

dSID The~ default delta number (SID) to be used by a
get command.

ff loor
The~ lowest release (i.e., "floor"), a number
gre~ater than 0 but less than 9999, which may be
retrieved by a get command for editing. The
default value for an unspecified f flag is 1.

i Causes the "No id keywords {ge6)" message issued
by get or delta{l) to be treated as a fatal

Bell 2

ADMIN(l)

3

Zilog ADMIN(l)

error. In the absence of this flag, the message
is only a warning. The message is issued if no
secs identification keywords (see get(l)) are
found in the text retrieved or stored in the
SCCS file.

j Allows concurrent get commands for editing on
the same SID of the secs file. This allows mul­
tiple concurrent updates to the same version of
the secs file.

llist A list of releases to which deltas can no longer
be--rri'ade (get -e against one of these "locked"
release fails.). The list has the following
syntax:

<list> ::= <range> I <list> , <range>
<range> ::= RELEASE NUMBER I a

The character a in the list is equiva.lent to
specifying all releases for the named SCCS file.

mrnod Module name of the SCCS file substituted. for all
occurrences of the %M% keyword in secs file text
retrieved by get. If the m flag is not speci­
fied, the value assigned is the name of the SCCS
file with the leading s. removed.

n Causes delta to create a "null" delta in. each of
those releases (if any) being skippe1d when a
delta is made in a new release (e.g., in making
delta 5 .1 after delta 2. 7, releases 3 aLnd 4 are
skipped). These null deltas serve as "anchor
points" so that branch deltas may later be
created from them. The absence of this flag
causes skipped releases to be non-existent in
the secs file preventing branch deltas from
being created from them in the future.

qtext: User definable text substituted £:or all
occurrences of the %Q% keyword in secs file text
retrieved by get.

ttype: ~ of module in the secs file substituted for
all occurrences of %Y% keyword in secs file text
retrieved by get.

v[pgm]
~-- Causes delta to prompt for Modification Request

(MR) numbers as the reason for creating a delta.
The optional value specifies the name oj: an MR
number validity checking program (see dE~lta(1)}.

Bell 3

ADMIN(l) Zilog ADMIN(l)

4

(I:f this flag is set when creating an SCCS file,
the m keyletter must also be used even if its
value is null).

-h Causes adJnin to check the structure of the SCCS file
(see sccisfile (5)) , and to compare a newly computed
check-sum (the sum of all the characters in the secs
file except those in the first line) with the check-sum
that is stored in the first line of the secs file.
Appropriate error diagnostics are produced.

This keyl•~tter inhibits writing on the file, so that .it
nullifies the effect of any other keyletters supplied,
and is, therefore, only meaningful when processing
existing files.

-i[name]
---nle name of a file from which the text for a new SCCS

file----r6 to be taken. The text constitutes the first
delta of the file (see -r keyletter for delta numbering
scheme). If the i keyletter is used, but the file name
is omitted., the text is obtained by reading the stan­
dard input until an end-of-file is encountered. If
this keyh~tter is omitted, then the SCCS file is
created empty. Only one secs file may be created by an
admin command on which the i keyletter is supplied.
Using a single admin to create two or more SCCS files
require that they be created empty (no -i keyletter).
Note that the -i keyletter implies the -n keyletter.

-m[mrlist]
The list of Modification Requests (MR) numbers is
inserted into the secs file as the reason for creating
the initial delta in a manner identical to delta. The
v flag must be set and the MR numbers are validated if
the v flag has a value (the name of an MR number vali­
dation program). Diagnostics will occur if the v flag
is not set or MR validation fails.

-n This keylE~tter indicates that a new SCCS file is to be
created ..

-rrel
--The release into which the initial delta is inserted.

This--'keyletter may be used only if the -i keyletter is
also used.. If the -r keyletter is not used, the ini­
tial delta is inserted into release 1. The level of
the initial delta is always 1 (by default initial del­
tas are named 1.1).

-t[name]
---nle name of a file from which descriptive text for the

Bell 4

ADMIN(l) Zilog 1\DMIN(l)

FILES

5

secs file is to be taken. If the -t keyletter is used
and acimin is creating a new SCCS file (the -n and/or -i
keyletters also used), the descriptive text file name
must also be supplied. In the case of existing secs
files:: (1) a -t keyletter without a file name causes
removal of descriptive text (if any) currently in the
secs file, and (2) a -t keyletter with a file name
causes text (if any) in the named file to replace the
descriptive text (if any) currently in the secs file.

-y[comment]
The comment text is inserted into the secs file as a
comment for the initial delta in a manner identical to
that of delta. Omission of the -y keyletter r~~sults in
a default comment line being inserted in the form:
date and time created YY/MM/DD HH:MM:SS by login
The -~r keyletter is validonly if-the -i---ai1d/or -n
keyletters are specified (i.e., a new secs file is
being created).

-z The secs file check-sum is recomputed and stor~~a in the
first line of the SCCS file (see -h , above).

Note: The use of this keyletter on a truly corrupted file
may prevent future detection of the corruption.

The last component of all SCCS file names must be of the
form a.file-name. New SCCS files are given mode 444 (see
chmod(l)}.-Write permission in the pertinent directory is,
of course, required to create a file. All writing done by
admin is tc) a temporary x-file, called x.file-name, created
with mode 444 if the adJnin command is creatrng--a new SCCS
file, or with the same mode as the secs file if it exists.
After succ~essful execution of admin , the SCCS file is
removed (i:E it exists), and the x-file is renamed with the
name of the SCCS file. This ensures that changes are made
to the SCCS file only if no errors occurred.

It is recommended that directories containing secs files
mode 755 and that secs files themselves be mode 444.
mode of thE:? directories allows only the owner to modify
files contained in the directories. The mode of the
files prevE:mts any modification at all except by SCCS
mands.

be
The

secs
secs
com-

If it should be necessary to patch an secs file for any rea­
son, the mode may be changed to 644 by the owner allowing
use of ed(l). Care must be taken! The edited fil•e should
always be processed by an admin -b to check for corruption
followed by an admin -z to generate a proper check-sum.
Another ad.min -h is recommended to ensure the secs file is

Bell 5

ADMIN(l) Zilog ADMIN(l)

valid.

Admin also makE~s use of a transient lock file (called
z.file-name), which is used to prevent simultaneous updates
to the SCCS file by different users. See get(l) for further
information.

SEE ALSO
delta (1), ed l(1), get (1), help (1), prs (1), what (1),
sccsfile(5).
Source Code Control System User's Guide in the ZEUS Utilites
Manual

DIAGNOSTICS
Use help (1) for explanations.

6 Bell 6

~LIAS(lC) Zilog ALIAS(lC)

NAME
alias - substitute a word for a command or command string

SYNOPSIS
alias word command-string

DESCRIPTION
An alias is an abreviation for a longer command. The shell
maintains a list of aliases which can be established,
displayed, modified, and removed by the alias and unalias
commands.

EXAMPLE
The command for extracting a name from the /etc/passwd file:

grep user.name /etc/passwd

can be aliased to the word "lookup" with the command::

alias lookup 'grep \!* /etc/passwd'

the command ::

lookup bill

is the same as the command:

grep bill /etc/passwd

The alias command can be used in any of 4 ways:

alias
prints all aliases.

alias name
prints the alias for name.

alias name command.string
aSSTgns the specified command.string as the alias of
name. Name is not allowed to be alias or unalias

unalias pattern
All aliases whose names match the specified pattern are
discarded. Thus all aliases are removed by unalias *

LIMITATIONS
Alias limits substititutions on a single line to 20; meta­
characters must be escaped with a backslash "\".

SEE A:LSO
csh (lC) , set: (lC) •
The C Shell in the ZEUS Utilities Manual

1 UCB 1

APROPOS(l) Zilog APROPOS(l)

NAME
apropos - locate commands by keyword lookup

SYNOPSIS
apropos word

DESCRIPTION
Apropos shows which manual sections contain instances of any
of the given keywords in their title. Each word is con­
sidered separately and case of letters is ignored. Words
which are part of other words are considered. Thus looking
for compile will hit all instances of compiler also.

If the line starts 'name (section) ... •you can do 'man sec­
tion name' te> get the documentation for it. Try 'apropos
format' and then 'man 5 core' to get the manual write-up on
core.

EXAMPLES
% apropos password
getpass (3)
getpwent(3)
gpasswd (1)
passwd (1)
passwd (5)
pwck, grpck (1)

FILES
/usr/lib/whatis.

SEE ALSO

- read a password
- get password file entry
- change group password
- change login password
- password file
- password/group file checkers

data base

makewhatis(l), man{l), whatis(l)

1 UCB 1

A.R{ 1) Zilog AR{l)

NAME
ar - archive and library maintainer

SYNOPSIS
ar key [~sname] afile name ...

DESCRIPTION
Ar maintains groups of files combined into a single archive
file. It creates and updates library files as used by the
loader.

OPTIONS

KEYS

1

c Create. Normally ar creates afile when it needs to.
The create option suppresses the normal message that is
produced when afile is created.

1 Local. Normally ar places its temporary files in the
directory /tmp. This option causes them to be placed
in the local directory.

v Verbose. ar gives a file-by-file description of the
making of a new archive file from the old archive and
the constituent files. When used with t, it gives a
long listing of all information about the files. When
used with _E, it precedes each file with a name.

Key is one character from the set dmpqrtx, optionally con­
catenated with one or more of the options, abciluv. Afile is
the archive! file. The names are constituent files in the
archive file. The meanings of the key characters are as
follows:

d Delete1 the named files from the archive file.

m Move the named files to the end of the archive. If a
positioning character is present, then the posname
argumemt must be present and, as in r, specifies where
the files are to be moved. -

p Print the named files in the archive.

q Quickly append the named files to the end of the
archive file. Optional positioning characters are
invall.d. The command does not check whether the added
members are already in the archive. Useful only to
avoid quadratic behavior when creating a large archive
piece-·by-piece.

r Replace the named files in the archive file. If the
optional character u is used with r, then only those
files with modified dates later than the archive files

Zilog 1

AR(l) Zilog

are replaced. If an optional positioning
from the Ernt abi is used, then the posname
must be present and specifies that new files
placed after (a) or before (b or i) posname.
wise, new files are placed at the end.

AR(l)

character
argument

are to be
Other-

t Print a table of contents of the archive file. If no
names arE~ given, all files in the archive are tabled.
If names are given, only those files are tabled.

x Extract the named files. If no names
files in the archive are extracted.
does x alter the archive file.

are given, all
In neither case

FILES
/tmp/v* temporaries

SEE ALSO
ld(l), ranlib(l), ar(S)

LIMITATIONS
If the same file is mentioned twice in an argument list, it
may be put in the archive twice.

2 Zilog 2

AS(l) Zilog AS(l)

NAME
as - PLZ/ASM assembler

SYNOPSIS
as [option ...] file

DESCRIPTION
As assemble!; the named file.

O:PTIONS

FILES

-f Allow assembly of floating point instructions.

-1 Produ<::e a listing containing object code and loca­
tions. For input file file.a, the listing is produced
in file file.l in the current directory.

-o objfile
The output of the assembly is left on objfile. If
this option is omitted, the output is left on the file
a.out ..

-p Produce a listing to standard output.

-u Treat all undefined references as externals.

-z Produce Zobj object format for MCZ compatible elystems.
When this option is specified, the default output file
becomes t.out instead of a.out.

/lib/as2
/lib/as2d
/lib/asz2
/lib/asz2d
/tmp/T *H
/tmp/T-*I
a.out -

pass 2 of the assembler
pass 2 data
pass 2 for Zobj output
pass 2 data for Zobj output
temporary
temporary

object

SEE ALSO
cas(l), ld(l), nm(l), objdu(l), objhdr(l), a.out(S).
PLZ/ASM AssE!mbler User Guide in the ZEUS Languages / Pro­
gramming Tools Manual

DIAGNOSTICS

1

When syntactic or semantic errors occur, the offending line
is printed followed by an error number. The errors are
described in the user guide.

Zilog 1

Nr(1) Zilog AT (1)

NAME
at - execute command or shell script file at a later time

SYNOPSIS
at time [day] file

DESCRIPTION
At makes a copy of the named shell script file and executes
it at the specified time.

At checks the :Eile to see if it is a C-Shell or Bourne-Shell
script, inser1:s a cd(l) command (directing the shell to the
proper fi~e) and the appropriate shell variables (see
setenv in sh(l)) and places a copy of the file in
/usr/spool/at/yy.ddd.hhhh.uu.

At the specifiE:!d time atrun checks the file to determine its
shell type and invokes the appropriate shell which executes
the cd command,, sets the environment variables and executes
the shell script commands.

When the file is run, it has the access privileges of its
owner and group. The program /usr/lib/atrun insures that the
file was placed on the spool by at and runs the program

The time is onE~ to four digits, with an optional following
A, P, N, or M, for AM, PM, noon or midnight. One and two
digit numbers are taken to be hours, three and four digits
to be hours and minutes. If no letters follow the digits, a
24 hour clock time is understood.

The optional day is either a month name followed by a day
number, or a day of the week; if the word week follows, exe­
cution of the file is moved seven days further off. Names
of months and days can be recognizably truncated.

The mode of the~ shell script file need not be marked execut­
able.

At programs are! executed by periodic execution of the com­
mand /usr/lib/atrun from cron(M). The frequency of at
depends upon how often atrun is executed.

Standard output or error output is lost unless redirected.

EXAMPLES
Examples of legitimate commands are:

at 8:3f2Jam file

executeis file at 8: 30 on the current day

1 Bell 1

AT(l) Zilog AT(l)

at Sam jan 24 file

executes file at 8:00 on jan 24

at 1530 fr week file

executes file at 3:30 a week from this friday

FILES
/usr/spool/.at/yy.ddd.hhhh.uu copy of shell program
/usr/spool/at/lasttimedone time of last execution
/usr/spool/.at/past dir of activities in progress
/usr/lib/atrun deamon which executes due files

SEE ALSO
calendar(!), cd(l), pwd(l), setenv in csh(l), cron(M).

DIAGNOSTICS
Complains about various syntax errors and times out of
range.

LIMITATIONS

')

"'·

Due to the periodic execution of /usr/lib/atrun by 1cron(M),
accurate scheduling of tightly synchronI'Zed shell sc:ripts-is
not possible.

Bell 2

AWK(l) Zilog AWK(l)

NAME
awk - pattern e;canning and processing language

SYNOPSIS
awk [-F c] [prog] [file] -or
awk [-F c] [-f progfile] [file] ..• -

DESCRIPTION

1

Awk scans each input file for lines that match any of a set
of patterns specifiea-in ~· With each pattern in E!:..29.
there can be an associated action that will be performed
when a line of a file matches the pattern. The set of pat­
terns may appear literally as E!:..29.i or in a file specified
as -f file.

Files are read in order; if there are no
input is read., The file name ' - ' means
Each line is matched against the pattern
pattern-action statement; the associated
for each matchE!d pat tern.

files, the standard
the standard input.
portion of every

action is performed

An input line is made up of fields separated by white space.
(This default can be changed by using FS, vide infra.) The
fields are denoted $1, $2, ; $0 refers ~ the entire
line.

A pattern-action statement has the form

pattern { action }

A missing { action } means print the line; a missing pattern
always matches.

An action is a sequence of statements. A statement can be
one of the following:

if (conditional) statement [else statement]
while (conditional) statement
for (expression ; conditional ; expression) statement
break
continue
{ [statement] .•. }
variable = expression
print [expression-list] [>expression]
printf format [, expression-list] [>expression]
next # ski.p remaining patterns on this input line
exit # ski.p the rest of the input

Statements are terminated by semicolons, newlines or right
braces. An empty expression-list stands for the whole line.
Expressions take on string or numeric values as appropriate,

Bell 1

AWK(l) Zilog AWK(l)

2

and are built using the operators +, -, *, /, %, cmd con­
catenation (indicated by a blank). The C operators++, --,
+=, -=, *==, /=, and %= are also available in exprE~ssions.
Variables may be scalars, array elements (denoted x[i]) or
fields. VcLriables are initialized to the null string.
Array subscripts may be any string, not necessarily numeric;
this allowss for a form of associative memory. String con­
stants are quoted" ... ".

The prinC statement prints its arguments on the s1tandard
output or on a file if >file is present), separated by the
current output field separator, and terminated by thE~ output
:record sepcLrator. The print£ statement formats its expres­
sion list according to the format (see printf(3)).

The built-in function length returns the length of
ment taken els a string, or of the whole line if no
There are also built-in functions exp, log, sqrt,
The last truncates its argument to an
substr(s, m, n) returns the n-character substring
begins - - at position- m. The

its argu­
argument.
and int.
integer.

of s that
function

sprintf(fmt, expr, expr, •••) formats the expressions
according to the printf(3) format given by fmt and returns
the resulting string. --

Patterns arE~ arbitrary Boolean combinations (1, 11, ~c&, and
parentheses)1 of regular expressions and relational expres­
sions. Regular expressions must be surrounded by slashes
and are as in e*rep. Isolated regular expressions in a pat­
tern apply to te entire line. Regular expressions may also
occur in relational expressions.

A pattern mcLy consist of two patterns separated by a comma:
in this case, the action is performed for all lines between
an occurrenc=e of the first pattern and the next occ:urrence
of the second.

A relational. expression is one of the following:

expression matchop regular-expression
expression relop expression

where a rele>p is any of the six relational operators in C,
and a matchc>p is either - (for contains) or 1,.. (for does not
contain). A conditional is an arithmetic exprest:lion, a
relational expression, or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture
control before the first input line is read and aj:ter the
last. BEGIN must be the first pattern, END the last ..

Bell 2

AWK(l) Zilog AWK(l)

A single chara<::!ter c may be used to separate the fields by
starting the program with

BEGIN { FS = "c" }

or by using thE~ -Fe option.

Other variable names with special meanings include NF, the
number of fields in the current record; NR, the ordinal
number of the <:mrrent record; FILENAME, the name of the
current input file; OFS, the output field separator (default
blank); ORS, the output record separator (default newline);
and OFMT, the output format for numbers (default "%.6g").

EXAMPLES
Print lines longer than 72 characters:

length > 72

Print first tw() fields in opposite order:

{ print $2, $1 }

Add up first column, print sum and average:

{ s += $1 }
END { print "sum is'", s, " average is", s/NR }

Print fields in reverse order:

{ for (i = NF; i > 0; --i) print $i }

Print all lines between start/stop pairs:

/start/, /stop/

Print all lines whose first field is different from previous
one:

$1 l= prev { print; prev = $1 }

SEE ALSO
lex(l), sed(l).
Awk - a pattern scanning and processing language
Irlthe-ZEUS Utflities Manual.

LIMITATIONS

3

There are no explicit conversions between numbers and
strings. To force an expression to be treated as a number
add 0 to it; to force it to be treated as a string concaten­
ate "" to it.

Bell 3

AWK(l) Zilog AWK(1)

4

When a set of pattern-actions appears literally as 1>rog, it
is generally necessary to enclose it in single quotes to
prevent interpretation of special characters by the shell.

For exarnplE~:

awk '{print $2,$1}' test

will print the first two fields of each entry in test in
reverse order.

awk {print $2,$1} test

or

awk "{print $2,$1}" test

will not.

Bell 4

BANNER(l) Zilog BANNER(l)

NAME
banner - make posters

SYNOPSIS
banner strings

DESCRIPTION
Banner prints its arguments (each up to 10 characters long)
in large letters on the standard output.

EXAMPLES
banner "hi there"
banner hello world
banner "happy" "birthday"

LIMITATIONS

1

In order to get any of the special symbols, or "hard"
spaces, the symbol or space must be preceded by a backslash
" \ " Banner accepts only 10 characters.

Bell 1

BASENAME(l) Zilog BA:SENAME(l)

.NAME
basename, dirname - deliver portions of path names

SYNOPSIS
basename string [suffix]
dirname string

DESCRIPTION
Basename d·eletes any prefix ending in a slant " / 11 and the
suffix, (if it is present in the string) from string, and
prints the result on the standard output.

Basename c.an be used inside of command substitution marks
(' ') in the body of shell scripts.

Dirname delivers all but the last level of the path name in
string.

EXAMPLES
The command:

basename /usr/spool/file.c

returns the string:

file.c

the command:

basename /usr/spool/file.c .c

returns the string:

file

The command:

set NAME='dirname /usr/src/cmd/cat.c'

sets the shell variable NAME to

/usr/src/cmd

SEE ALSO
csh (1) , sh (1) and,
The C Shell in the ZEUS Utilities Manual

1 Bell 1

BC(l) Zilog BC(l)

NAME
be - arbitrary-precision arithmetic language

SYNOPSIS
be [-cl] [file .•.]

DESCRIPTION

1

Be is an interactive translator for a language which resem­
bles C but provides unlimited precision arithmetic. It
receives input from any files given and then reads the stan­
dard input.

Conmen ts

Names

are enclosed in /* and */.

simple variables: letters a-z
array elements: letter [expression]
The words 'ibase', 'obase', and 'scale'

Other operands
arbitrarily long numbers with optional sign and
decimal point.
(expres.sion)
sqrt (expression)
length (expression) number of significant decimal
digits
scale (expression) number of digits right of
decimal point
letter (expression, ... , expression)

Operators
+ * I % A

++

=

(% is remainder; A is power)

(pre:fix and postfix; apply to names)
<= :>= 1= < >

=+ =- =* =/ =% =A

Statements
expressic:m
{statement ; ... ; statement }
if (expression) statement
while (c9xpression) statement
for (expression ; expression ; expression) statement
null statement
break
quit

Function defin:itions
define letter (letter, •.. , letter) {

auto letter, ••. , letter

Bell 1

BC(l) Zilog

statement; ... statement
return (expression)

}

Functions ln -1 math library
s(x) sine
c(x) cosine
e(x) exponential
l(x) log
a(x) arctangent
j(n,x) Bessel function

All function arguments are passed by value.

BC(l)

The value <:>f a statement that is an expression is printed
unless th•e main operator is an assignment. Either· semi­
colons or newlines may separate statements. Assignment to
scale influences the number of digits to be retained on
arithmetic operations in the manner of de(1). Asi;ignments
to ibase or obase set the input and output number radix
respectively.

The same l4etter may be used as an array, a function, and a
simple variable simultaneously. All variables are 9lobal to
the program. 'Auto' variables are pushed down during func­
tion call:s. When arrays are used as function argllments or
defined as automatic variables, empty square brack1ets must
follow the array name.

Be is actually a preprocessor for dc(l).
runs de and opens a pipe to it.

Be automatically

OPTIONS

EXAMPLES

2

-e Only compiles, does not run de and the d.c input
appears on be 's standard output.

-1 Defines a math function library.

scale = 20
define e(x) {

auto a, b, c, i, s
.a = 1
b = 1
s = 1
for(i=l; l==l: i++){

a = a*x

}

b = b*i
c = a/b
if(c == 0) return(s)
s = s+c

Bell 2

BC(l) Zilog BC(l)

}

defines a function to compute an approximate value of the
exponential function and

for(i=l: i<=l0: i++) e(i)

prints approximate values of the exponential function of the
first ten integers.

PILES
/usr/lib/lib.b mathematical library
dc(l) desk calculator proper

I.IMITATIONS
No&&, I I, or 1 operators.

For statement must have all three expression's.

Quit is interpreted when read, not when executed.

3 Bell 3

BDIFF(l) Zilog BDIFF(l)

NAME
bdiff - t~e diff program for very large files

SYNOPSIS
bdiff filel file2 [n] [-s]

DESCRIPTION
Bdiff is used in a manner analogous to diff(l) to find which
lines mue1t be changed in two files to bring them into agree­
ment. Its purpose is to allow processing of files1 which are
too large for diff.

Bdiff ignores lines common to the beginning of both files,
splits tile remainder of each file into n-line segments, and
invokes Cliff upon corresponding segments. The value of n is
3500 by default. If the optional third argument is given,
and it ie: numeric, it is used as the value for n. This is
useful in those cases in which 3500-line segments are too
large for diff, causing it to fail.

If filel (file2) is -, the standard input is read.

The optional -s (silent) argument specifies that no diagnos­
tics are to be printed by bdiff (note, however, that this
does not suppress possible exclamations by diff. If both
optional arguments are specified, they must appear in the
order indicated above.

The output of bdiff is exactly that of diff, with line
numbers a,djusted to account for the segmenting of the files
(that is, to make it look as if the files had been processed
whole).

Note: because of the segmenting of the files, bdif:f does not
necessarily find a smallest sufficient set of file differ­
ences.

FILES
/tmp/bd?'t'???

SEE ALSO
diff(l).

DIAGNOSTICS
Use help(l) for explanations.

1 Bell 1

BREAK (lC) Zilog BREAK(lC)

' NAME
break -- C-Shell flow control interrupt statement

SYNOPSIS
break

DESCRIPTION
Break causes execution to resume after
nearest enclosing f1oreach or while loop.
mands on the current line are executed.
are thus possible by writing them all on

the end of the
The remaining com­

Mul ti-level breaks
one line.

The built-in command continue can be used to continue the
loop prematurely.

EXAMPLE
test.script
while (1)

end

echo -n 'enter x: '
set x = ' g 1e ts '
if($x == 'a') then

break
else

echo 'it didn't break'
end if

echo 'it broke'

SEE ALSO

1

foreach(lC), while(lC), breaksw(lC), end(lC), continue(lC)
and
The C Shell in the ZEUS Utilities Manual

UCB 1

BREAKSW (lC) Zilog BREAKSW (lC)

NAME
breaksw - C-Shell flow control interrupt statement

SYNOPSIS
breaks~w

DESCRIPTIOll
Breaks:w causes a break from a switch, resuming after the
endsw. The command breaksw causes execution to continue
after the endsw.

EXAMPLE
test
foreach i (*)

switch ($i
case ????

end

echo "$i is a 4 character filename"
breaksw

case ?????
echo "$i is a 5 character filename"

breaksw

case ??????
echo "$i is a 6 character filename"

breaksw

default
echo "$i is not 4, 5, or 6, characters"

endswitch

SEE ALSO

1

foreach(lC), switch(lC), case(lC), echo(lC), default(lC),
endswitch(lC), and end(lC).
The C Shell in the ZEUS Utilities Manual

UCB 1

CAL(l) Zilog CAL(l)

NAME
cal - print calendar

SYNOPSIS
cal [month] year

DESCRIPTION
Cal prints a calendar for the specified year. If a month is
also specified, a calendar just for that month is printed.
Year can be between 1 and 9999. The month is a number
between 1 and 12. The calendar produced is that for England
and her colonies.

EXAMPLES
INCORRECT

cal Septiember 1752
cal 1 42

CORRECT

cal 9 1752
cal 1942

LIMITATIONS

1

The year is always considered to start in January even
though this i:s historically naive.
Beware that 11 1cal 78" refers to the early Christian era, not
the 20th century.

Bell 1

C~LENDAR(l) Zilog CAJC...ENDAR(1)

NAME
calendar - reminder service

SYNOPSIS
calendar [-]

DESCRIPTION
Calendar consults the file "calendar" in the current direc­
tory and prints out lines that contain today's or t<>morrow's
date anywhE~re in the line. Most reasonable month-day dates
such as 11 Dec. 7," "december 7, 11 11 12/7," etc~, are recog­
nized, but not "7 December" or "7/12". On weekends,, "tomor­
row" extends through Monday.

When an ar~Jument is present, calendar does its job for every
user who has a file calendar in their login directory and
sends any positive results by mail(!). Normally this is
done daily after midnight under control of cron(M).

EXAMPLE
The ·file calendar in the home directory can have the follow­
ing lines:

3/3 meeting~ 10:00 am confere~ce room B
3/3 call hank re schedule
3/5 dinner with carol -- pm.

the command:

(cd; <~alendar)

will alway~; execute the calendar file in the home directory,
regardless of the current working directory.

FILES
/usr/lib/calprog to figure out today's and tomorrow's dates
/etc/passwd
/tmp/cal*
/usr/lib/crontab

SEE ALSO
egrep(l}, sed(l), at(l), mail(l), cron(M)

LIMITATIONS

1

The calendar must be public information to get reminder ser­
vice.
Calendar" s extended idea of tomorrow does not accoiunt for
holidays.

Bell 1

CAS(l) Zilog CAS(l)

NAME
cas - invoke assembler

SYNOPSIS
cas [-oud] file

DESCRIPTION
Cas assembles the named file written in the assembly
language described in the ZEUS Languages/Programming Tools
Manual. It will not assemble files written in PLZ/ASM
assembly language.

OPTIONS
-o objfile The output of the assembly is left on objfile.

If this option is omitted, the output is left on the
file a.out.

-u Treat all undefined references as externals.

-d Include internal labels in the a.out symbol table.

FILES
/bin/cas
/tmp/as*
a.out

assembler
temporary
object

SEE ALSO
ld(l), nm(l), ()bjdu(l), strip{!), a.out(S).

ZEUS Languages/Programming Tools Manual.

DIAGNOSTICS
The assembler produces error messages to standard error if
an error occurs during the assembly process. If errors
prevent further assembly, the assembler aborts, closes all
files, and prints a message to standard error. If the
assembler is interrupted during assembly, the assembler
aborts and closes all files.

LIMITATIONS

1

The following features are not implemented.

- Floating point numbers, constants and conversion operators
("'F, "FD, "FS, .quad, .extend).
- Absolute sections and common sections (.asec and .csec).
- Listing facilities.
- Error recovery (currently the assembler terminates on most
errors).
- Program sectioning (.psec) in non~egmented mode.

Zilog 1

CAT(l) Zilog CAT(l)

NAME
cat - concatenate and print files

SYNOPSIS
cat [-u] [-s] file ...

DESCRIPTION
Cat reads each file in sequence and writes it on the stan­
dard output. The input file may not be the same as the out­
put file unless it is a special (device) file.

OPTIONS
Read::; from the standard output; same as if no output
file is given.

-s Makes cat silent about non-existent files.

-u Does not buffer the output in 512-byte blocks as usual.

EXAMPLES
cat file

prints the file, and:

cat filel file2 > file3

concatenates the first two files and places the result in
the third file. The third file is created if it does not
exist.

SEE ALSO
cp (1) , pr (1) .

1 Bell 1

CB(l) Zilog CB(l)

NAME
cb - C program beautifier

SYNOPSIS
cb < file.c

DESCRIPTION
Cb reformats a C program file, providing the spacing and
indentation to display the structure of the program.

EXAMPLE
The raw file named test.c containing the line:

main() { printf("hello, world\n"); }

when reformatted with the command:

cb < test.c

produces the output:

main() {
printf("hello, world\n");

}

1 Bell l

CC(l) Zilog CC(l)

NAME
cc - 58000 C compiler

SYNOPSIS
cc [option] file

DESCRIPTION

1

Cc is the portable c compiler modified to produce Z8000
code. Depending on the options, a single cc call can com­
pile; compile and assemble; compile, assemble, and link; or
do any of these combinations with an optional global optimi­
zation pass.

The cc compiler provides an unsigned char data type,
tialized bit fields, the ZEUS versIOn 7 features
(structure: assignments and enumeration types) and the
ZEUS System III additions to the C language, the "void"
type and unique identification of names of structure
union members.

ini­
of c

new
data

and

The default is to compile, assemble, and link, using inter­
nal calls to the Z8000 assembler, cas. and S8000 linker, ld.
File names ending in .c are taken to be C source files to be
compiled. The -01 option causes the optional global optimi­
zation pass to be invoked in order that loop optimization be
applied to the code. The -Or option invokes global optimiza­
tion so that both loop optimization and register allocation
be applied to the code. The assembly language code produced
by the compiler can be (peephole) optimized with the ·-o
option before being passed to the assembler. (The -01 and -
Or options also invoke the peephole optimizer.) The -s
option saves the Z8000 assembly language code in. .s files
and suppresses further processing. By default, the code is
assembled and then passed to the linker. The -c option
saves the assembled code in .o files and suppresses further
processing. By default, the linker then links the code to
produce an executable Z8000 program.

File names ending with .s are taken to be Z8000 assembly
language. By default, the ~s files are assembled to produce
.o files and then linked. The compilation step is skipped
with .s files.

Other file: names are taken to be names of C-compatible
object programs (typically produced by an earlier cc run),
or perhaps libraries of c-compatible routines. These pro­
grams, together with the results of any compilations speci­
fied, are linked (in the order given) to produce an execut­
able load module with name a.out.

Options on the cc call can be for cc or for ld.

Zilog 1

CC(l) Zilog CC(l)

OPTIONS

2

-c CompilE~ and assemble the named C source files but
suppress the linking step. Force an object file .o
to be produced even if only one source file is com­
piled. If a number of C source files are specified,
the .o files are saved.

-Dname
-Dname=def

Define name to the preprocessor, as if by #define.
If no definition is given, name is defined as 1.

-E Run only the macro preprocessor and send the result
to the standard output.

-Idir Bring in a directory of #include files. Names that
do not begin with / are always sought first in the
same directory as the source file, then in direc­
tories named in -I options, then in directories on a
standard list.

-01 Invoke the c global optimizer to apply loop optimi­
zation ..

-or Invoke the c global optimizer to apply loop optimi­
zation and register allocation.

-o Invoke the C peephole optimizer for Z8000 code.

-p Arrange~ for the compiler to produce code that counts
the number of times each routine is called: also, if
loading takes place, replace the standard startup
routine by one which automatically calls monitor(3)
at the start and arranges to write out a man.out
file at normal termination of execution of the
object program. An execution profile can then be
generated by use of prof(l).

-P Run only the macro preprocessor and place the result
for ea.ch . c file in a corresponding . i file with no
lines in it.

-S[l] Compile! the named C source files but suppress the
assembly and link step. Leave the assembly language
code on corresponding files named .s. If 1 is
specified, make the original C source lines appear
as asse:mbly language commments preceding the code
produced for them.

-Uname Remove any initial definition of name.

Zilog 2

CC(l)

FILES

Zilog CC(l)

Other options can be specified on the cc call and are passed
to the linker ld. No options are passed to as from the cc
call, but any internal call to the assembler uses the -u and
-f options and the -o option with a name consisting of the
original name and .o. The internal call to the linker
specifies the options -X and -e with entry name start, and
adds the library name /lib/libc.a to the end of the list of
object module names. See the description of ld.

file.c
file.o
a.out
/tmp/cc.?
/lib/cpp
/lib/cparse
/lib/gopt
/lib/codgen
/lib/popt
/lib/clist
/lib/libc.a
/lib/mcrt10. o

source file
object file
load module
temporaries
preprocessor
compiler passl
optional global optimizer
compiler pass3
optional peephole optimizer
optional listing pass
standard library
optional startup routine for profiling

SEE ALSO
as (1) , ld (1) •

The ~ Proigramming Language (by B. w. Kernighan and o. M.
Ritchie, Prentice-Hall, 1978),

C in the _ZEUS Languages/Programming Tools Manual.

DIAGNOSTICS
The diagnostics produced by the compiler, assembler, or
linker are self-explanatory.

IMPLEMENTATION

3

The cc compiler has the following characteristics:

$ As many as seven register declaration:s can be
honored. The Z8000 registers r8 throu1gh rl4 can
be used for register variables.

$ The cc compiler produces object code that conforms
to the 88000 calling conventions.

Zilog 3

CD(lC) Zilog CD(lC)

NAME
cd - change working directory

SYNOPSIS
cd directory

DESCRIPTION
Directory becomes the new working directory. The process
must have execute (search) permission in directory.

Cd is recognized and executed by the shell. A new process
is created to E~xecute each command, and cd would be ineffec­
tive if it were written as a normal command.

SEE ALSO
csh (1), pwd (1) ,, sh (1), chdir (2).
The C Shell in the ZEUS Utilities Manual

1 UCB 1

CDC(!) Zilog CDC(l)

NAME
cdc - chan9e the delta commentary of an secs delta

SYNOPSIS
cdc -rSIJ2 [-m[mrlist]] [-y[comment]] files

DESCRIPTION

1

Cdc changes the delta commentary, for the SID specified by
the -r keyletter, of each named secs file.

Delta commE:mtary is defined to be the Modification Request (
MR). and comment information normally specified via the
delta(!) command (-m and -y keyletters).

If a directory is named, cdc behaves as though each file in
the directory were specified as a named file, except that
non-SCCS files (last component of the path name does not
begin with s.) and unreadable files are silently ignored.
If a name of - is given, the standard input is r•~ad (see
WARNINGS); each line of the standard input is taken to be
the name of an SCCS file to be processed.

Arguments to cdc, which may appear in any order, consist of
keyletter arguments, and file names.

All the de:scribed keyletter arguments apply independently to
each named file:

-m[mrlist] If the SCCS file has the v flag :set (see
adminfl)) then a list of MR numbers to be add1~d and/or
deletied in the delta commentary of the SID spe1~ified by
the ·-r keyletter may be supplied. A null MR list has
no effect.

MR entries are added to the list of MR in the same
manner as that of delta(l). In order to delete an MR,
precede the MR number with the character · 1 (s·ee EXAM­
PLES). If the MR to be deleted is currently in the
list of MR s, it is removed and changed into a "com­
ment" line. A list of all deleted MR s is placed in
the comment section of the delta commentary .and pre­
ceded by a comment line stating that they were deleted.

If -m is not used and the standard input is a terminal,
the prompt MRs? is issued on the standard output before
the standard input is read; if the standard input is
not a terminal, no prompt is issued. The MRs? prompt
always precedes the conunents? prompt (see -y
key letter) .

MR s in a list are separated by blanks and/or tab char­
acters. An unescaped new-line character terminates the

Bell 1

CDC(l) Zilog CDC(l)

MR list.

Note that if the v flag has a value (see admin (1)), it
is taken to be the name.of a program (or shell pro­
cedure) which validates the correctness of the MR
numbers. If a non-zero exit status is returned from
the MR number validation program, cdc terminates and
the delta commentary remains unchanged.

-r SID Used to specify the SCCS ID entification (SID)
string of a delta for which thedelta commentary is to
be changed.

-y [comment] Arbitrary text used to replace the comment
(s) alrecLdy existing for the delta specified by the -r
keyletter.. The previous comments are kept and preceded
by a comment line stating that they were changed. A
null comment has no effect.

If -y is not specified and the standard input is a ter­
minal, the prompt conunents? is issued on the standard
output before the standard input is read. If the stan­
dard input is not a terminal, no prompt is issued. An
unescaped new-line character terminates the comment
text.

The exact permissions necessary to modify the secs file are
documented in the Source Code Control System User'~ Guide.
Simply stated, they are either (1) if you made the delta,
you can changE~ its delta commentary: or (2) if you own the
file and directory you can modify the delta commentary.

ElrAMPLES
cdc -rl .6 -m"bl78-12345 \lbl77-54321
-ytrouble s.file

bl79-00001"

adds bl78-1234S and bl79-00001 to the MR list, removes
bl77-54321 from the MR list, and adds the comment trouble to
delta 1 • 6 of s • file.

cdc -rl • 6 s.file
MRs? lbl77-54321 bl78-12345 bl79-00001
comments? trouble

does the same thing.

WARNINGS

2

If secs file names are supplied to the cdc command via the
standard input (- on the command line), then the -m and -y
keyletters must also be used.

Bell 2

CDC(l)

FILES
x-file

z-f ile

SEE ALSO

(see delta(!))

(see delta(!))

Zilog CDC(l)

admin(l), delta(!), get(l), help(!), prs(l), sccsfile(S).
Source Code Control System User's Guide in the ZEUS Utili-
ties Manual ~~ -

DIAGNOSTICS
Use help(l) for explanations.

3 Bell 3

CHGRP(l) Zilog CHGRP(l)

NAME
chgrp - change group

SYNOPSIS
chgrp group file ...

DESCRIPTION
Chgrp changes the group-ID of the files to group. The group
may be either a decimal group-ID number or a group name
found in the group-ID file.

FILES
/etc/chgrp
/etc/passwd
/etc/group

SEE ALSO
chown(l), chown(2), passwd(5), group(S), chmog(M)

1 Bell 1

CHKIN(l) Zilog CHKIN(l)

COMB(!} Zilog COMB(l}

FILES

100 * (original - combined} / oriq-inal

It is recommended that before any secs files are
actually combined, this option should be used to
determine exactly how much space is sa V•:!d by the
combining process.

If no ke~rletter arguments are specified, comb preserves only
leaf deltas and the minimal number of ancestor~; needed to
preserve the tree.

s.CQMB The name of the reconstructed secs :Eile.

comb????~? Temporary.

SEE ALSO
admin(l}, delta(!}, get(l}, help(!}, prs(l), sccsfile(S).
Source Code Control System User Is Guide in the z1ms Utili-
ties Mant1al -- -

DIAGNOSTICS
Use help(l) for explanations.

LIMITATIONS
Comb can rearrange the shape of the tree of delta~s. It may
not savE~ any space; in fact, it is possible for the recon­
structed file to actually be larger than the original.

CHGRP(l) Zilog CHGRP(l)

NAME
chgrp - change group

SYNOPSIS
chgrp group file ...

DESCRIPTION
Chgrp changes the group-ID of the files to group. The group
may be either a decimal group-ID number or a group name
found in the group-ID file.

FILES
/etc/chgrp
/etc/passwd
/etc/group

SEE ALSO
chown(l), chown(2), passwd(S), group(S), chmog(M)

1 Bell 1

CHKDIF.F (1) Zilog CHKDIFF(l)

NAME
chkdif f - list differences between versions of a source file

SYNOPSIS
chkdiff [·-h] [-v rel.lev] [-v rel.lev] file

DESCRIPTION
Chkdiff lists the differences between a source cod1e file and
another version of it in its source control filie: chkdiff
can also list the differences between two version:s in the
source control file. The differences are described in the
form used by diff(l).

The filename argument must be the name of a source file, not
its control file. By default, the differences listed are
those between the source file and the last version in the
control file.

OPTIONS
-h Invol!{es the "halfhearted" version of diff(1).

FILES

-v List::; the differences between the source file and the
specified version if used once. If the -v option is
used twice, the differences listed are those between
the two specified versions. Each -v option i:3 followed
by an argument of the form rel.lev, where rel is the
release number and lev is the release levelm:imber.

file+
/tmp/chkdiffXXX

control file for file
temporarily holds one of the versions

SEE ALSO
chkin(l), chkout(l), chkwhat(l), zsc(S), diff(l)

DIAGNOSTICS
corrupt chkfile: the convention specified in Zl3C (5) has
been violated

diff: files too big, try -h: version differences cannot be
calculated because the file is too big

version rE!l. lev not found: use chkout -h to find correct
version numbers

LIMITATIONS

1

If the files are too big for the differences to be calcu­
lated, an version entry is made showing no differences.

Zilog 1

CHKIN(l) Zilog CHKIN(l)

NAME
chkin - check in file to Zilog Source Control file

SYNOPSIS
chkin [-r] [-b] [-c comment] [-d dir] file

DESCRIPTION
Chkin checks in a source .file to its Zilog Source Control
file (see zsc(S)). If the control file does not exist, it
is created, and the entire contents of the source file
entered. I.f the source file does exist, the differences
between the source file and the last version in the control
file are found using diff(l) and these differences entered.

If the control file exists, chkin looks for a lock file.
The existence of the lock file indicates that the source
file was previously checked out for editing by chkout(l).
If the lock file is missing, chkin will not check in the
file.

The filename argument can be either the name of the source
file (must not end with +) or the control file name (the
local name of the source file ending with a+). If the con­
trol file is specified and the -d option is not used, the
source file is assumed to be in the working directory even
if the control file is not.

By default, chkin assigns the new version the same major
version number as the last version and a minor version
number one greater than the last version's. Also by
default, chkin prompts for comments and reads its_ standard
input until an EOF {control-d on terminal input). This
input is inserted in the control file as comment lines (see
zsc(S)). Each comment line (which is terminated by a car­
riage return) is limited to 256 characters.

Note that the interrupt key typed after the comment lines
have been entered can cause an inconsistent control file.
After the new version entry is added to the control file,
chkin removes (if it has one) its lock file. The source
file is replaced by a checked-out read-only version of
itself: see chkout{l).

OPTIONS
-b Bump the release number: the major version number for

this ven;ion is one greater than that of the previous
version and the minor version number is 1.

1

-c comment
Insert comment as a comment line enclosed in double
quotes: don't prompt for a comment: ignore the standard
input.

Zilog 1

CHKIN(l) Zilog CHKIN(l)

-d dir
Get the source from directory dir instead of the work-
ing directory. --

-r The source file is just removed and not replaced by a
read-·only file.

FILES
file+
file-

control file for file
lock file for fil-e~-

/ tmp/ chkinXXXXXX
chkinXXXXXX
/bin/di ff

latest version restored here
temporary for keyword substitution
program which derives version differ­
ences

SEE ALSO
chkout(l), chkdiff(l), chkwhat(l), zsc(S)

DIAGNOSTICS
no lock fi.le for xxxxx: either the lock file has been
removed or you are trying to checkin a new source file to an
existing control file

corrupt chkfile: the convention specified in zsc(S) has
been violated

LIMITATIONS

2

It is possible to fool chkin into accepting a file that was
not previously checked out. This is done at your c>wn risk-.

Zilog 2

CHKOUT(l) Zilog CHKOUT(l)

NAME
chkout - check out file from Zilog Source Control file

SYNOPSIS
chkout [-d di~] [-e] [-h) [-p] [-v rel.lev] file

DESCRIPTION
Chkout reconstructs (checks out) any version of a source
file using the information contained in a Zilog Source Con­
trol file (see zsc(S)). For each file checked out, the ver­
sion number and number of lines in the file are listed.

The filename argument can be either the name of the source
file (which cannot end with a +) or the name of the control
file (which is the local name of the source file with a +
appended). If the control file is specified and the -d
option is not used, the source.file is created in the work­
ing directory,. even if the control file is elsewhere.

Used without options, chkout checks out the last version as
a read-only file: the source file has no write permission
and has keywords substituted. (Keywords are described in
zsc(S).) Use read-only files for listing, compilation, or
other program input. A read-only source file must not be
modified or checked back in to the control file.

OPTIONS
-d dir

""Create the source file in the directory dir instead of
the working directory.

-e Check out the version as an editable file: the source
file has: the usual mode, the keywords are left alone,
and a lock file is created. The lock file prevents
additional checkouts for this file; it must be present
if the edited editable file is to be checked back in.
See chkin(1).

-h For each version in the control file, list version
number, date checked in, comments, and who checked in
this vers:ion. No version is checked out.

-p List the version on the standard output.
keywords.

-v rel.lev

Substitute

-Check out the specified version instead of the last
version.

FILES
file+
file-

control file for file
lock file for (editable) file

1 Zilog 1

CHKOUT(l) Zilog CHKOUT(l)

SEE ALSO
chkin{l), ehkdiff{l), chkwhat{l), zsc{S)

DIAGNOSTICS
xxxxx checked out by xxxxx at xxxxx: the file is checked
out for E!di ting; it can not be checked out again until the
new version is checked back in or the editing copy and its
lock file are removed.

writable xxxxx exists: checking out the filE! would
overwrite a file which is not apparently a checked out file

corrupt chkfile: the convention specified in zsc{S) has
been violated

version rel.lev not found: use chkout -h to find correct
version numbers

LIMITATIONS
No editor checks for the presence of a lock file, so be
careful not to edit read-only files: your mistake will not
become apparent until the editor refuses to overwrite the
file.

Zilog 2

CHKWHAT(l) Zilog CHKWHAT{l)

NAME
chkwhat - print Zilog Source Control what strings

SYNOPSIS
chkwhat [-w] file

DESCRIPTION
Chkwhat searches the specified files for "what strings" and
lists the identifying portion of these strings. If the -w
option is used the entire "what string" will be printed:­
This option can be helpful when placing "what strings" in an
archive. The file need not be a text file.

A "what string" shows which version of a source file the
specified file is or is associated with. It is defined as
beginning with the four-character sequence @[$] and ending
with a null, newline, ", or '. Chkwhat lists the string
from after the @[$] to before the terminating character.

SEE ALSO
zsc(S), chkin{l), chkout(l)

LIMITATIONS

1

The "what string" was presumably created when the file or
the source code it was generated from was properly checked
out of a Zilog Source Control file, but there is no guaran­
tee of this.

Zilog 1

CHMOD (1) Zilog CHMOD (1)

NAME
chmod - change mode

SYNOPSIS
chmod mode file

DESCRIPTION

1

The file protection mode controls the read, write, and exe­
cute permissions for the owner of a file, the owner~s group,
and other users. The file protection mode is changed accord­
ing to mode, which can be an absolute number, or a symbolic
set of letters.

The protection mode of a file is shown with the ls -1 com­
mand as in the example below:

-rwxrw-r-- 1 owner group 2268 Mar 3 12:42 filename

The mode portion of the command usually takes the form of a
3-digit number. The first digit controls the pe·cmis:sion bits
for the owner of the file, the second digit controls the
permission bits for the members of the same group, and the
third digit controls the permissions for everyone else.

A leading fourth digit controls special access codes to set
a new user or group identification on execution of the file.

1000
2000
4000

tricky bit (chmod (2))
set group ID on execution
set user ID on execution

The mode is a three-digit number constructed from the fol­
lowing numbers:

Number: Bits: Meaning:

8 no permissions
1 --x execute (search in directory) only
2 -w- write only
3 -wx write and execute (search)
4 r-- read only
5 r-x read and execute (search)
6 rw- read and write
7 rwx read, write and execute (search)

Thus the command:

chmod. 758 file

changes the protection mode of file such that the owner has

Bell 1

CHMOD(l) Zilog CHMOD{l)

2

read, write, and execute permission; members of the owner's
group have raad and execute permission, and all others are
excluded from any access to the file.

The file permission bits will look like the following:

-rwxr-x--- 1 owner group 2268 Mar 3 12:42 filename

Note that the first character in the string refers to the
nature of the file ("-" if it is a regular file, "d" if it
is a directory file and ''p" if it is a named pipe. For spe­
cial device files, a "c" refers to a "character" file, and
"b" refers a "block" file).

The first set of 3 bits refers to the permissions of the
owner, the second set of 3 bits refers to the permissions of
those in the owner's group, and the last set of 3 bits
refers to the permissions for everyone else.

File user
file 7

Group Others
5 0

rwx r-x
12:42 filename

1 owner group 2268 Mar

A command using the symbolic mode has the form:

chmod who operator permission file

Where who is one or more of the following letters:

Letter: who: Bits affected:

u user -rwx------
9 group ----rwx---
0 others -------rwx

a all -rwxrwxrwx

3

If who is omitted, the default is all but the setting of the
file creation mask (umask(2)) is taken into account.

The operator can be any of the following:

+ to add permission to the file's mode,
to take away permission

= to assign permission absolutely.

All other bits are reset.

Permission is any combination of the letters

Bell 2

CHMOD(l) Zilog CHMOD(l)

Letter: Bit:

r r--
w -w-
x --x

s
t

Meaning:

read
write
execute

set owner or group ID
save text - sticky bit

Only the owner of a file (or the super-user) can change its
mode.

EXAMPLES

3

The command:

chmod 74g filename

produces the following file protections:

-rwxr----- 1 owner group 2268 Mar 3 12:42 filename

The owner can read, write on, and execute the file~ members
of the owner's group can only read the file, and everyone
else has no access at all.

The command:

chmod 551 filename

produces the following file protections:

-r-xr-x--x 1 owner group 2268 Mar 3 12:42 filename

The owner has read and execute permission, members of the
owner's group also have read and execute permission, while
everyone else is restricted to execute permission.

The command:

chmod 765 filename

produces the following file protections:

-rwxrw-r-x 1 owner group 2268 Mar 3 12:42 filename

The owner can read, write on, and execute the file, members
of the owner's group can read and write on the file (but
they cannot execute it) , and all others can read the the
file and execute it, but they cannot write on it.

Bell 3

CHMOD(l) Zilog CHMOD(l)

SEE ALSO
ls(l), umask(l), chown(l), chmod(2), stat(2), umask{2),
chmog(M), chown(M).

4 Bell 4

CHOWN{l) Zilog CHOWN(l)

NAME
chown - change the owner-name of a file

SYNOPSIS
chown owner file

DESCRIPTION
Chown chan9es the owner of the files to owner. The owner
may be either a decimal user-ID number or a login name found
in the / etr!/passwd file.

EXAMPLES
The command:

chown bill test.c

changes th•~ ownership of the file test.c to bill (assuming
bill is a v·alid user-name in the /etc/passwd file).

FILES
/etc/chown
/etc/passwd

SEE ALSO
chown{2), chgrp{l), passwd(S), group{S), chmog(M).

LIMITATIONS

1

Only the owner or the super-user should be able to change
the ownership of a file ..

Bell 1

CMP(l) Zilog CMP(l)

NAME
cmp - compare two files

SYNOPSIS
cmp [-1] [-s] filel file2

DESCRIPTION
The two files are compared. If filel is a minus sign 11

-
11

,

the standard input is used. Under default options, cmp
makes no comment if the files are the same; if they differ,
it announces the byte and l.ine number at which the differ­
ence occurred. If one file is an initial subsequence of the
other, that fact is noted.

OPTIONS
-1 Print th•e byte number (decimal) and the differing

bytes (octal) for each difference.

-s Print nothing for differing files; return codes only.

SEE ALSO
diff(l), comm(l)

DIAGNOSTICS
Exit code 0 is returned for identical files, 1 for different
files, and 2 for an inaccessible or missing argument.

1 Bell 1

CODE(!) Zilog CODE(l)

NAME
code - print characters with their octal equivalents.

SYNOPSIS
code [< file]

DESCRIPTION
Code reads from standard input or from a file (with the
"less t.ha.n" redirect symbol) and lists each character with
its hex equivalent on the standard output.

Code runs in 'raw mode' and terminates on the DEL character
(hex 7F).

EXAMPLES
Without argument: Input from file

code code < file
a 61 a 61
b 62 b 62
c 63 c 63
 7f

1 Zilog 1

COL(l) Zilog COL(l)

NAME
col - nroff post-processing filter for printer output

SYNOPSIS
col [-bfx] [•: file]
cat file I col

DESCRIPTION

1

This filter rE~moves halfline and reverse-line motions gen­
erated by nroff(l).

To display equations, tables, or multi-column formats on a
device that lacks reverse-line capability, such as a line
printer or video terminal, run nroff without the -T option
and filter the! output with col.

Col is also used to optimize output to a TTY37.
option should be used in this case.

These are col's primary features:

The -f

t& Col transforms input containing the TTY37 sequences for
reverse-line (ESC-7), reverse-halfline (ESC-8), and
forward-halfline (ESC-9) to a form suitable for a dev­
ice without these capabilities. It does this by over­
laying the text lines on an internal buffer the same
way the 'l'TY37 overlays the physical lines on the output
paper. VT (AK) is also assumed to mean reverse-line.

Where pos:sible, col changes blanks to equivalent tabs.
Tab stops are assumed for the ninth columns and every 8
columns thereafter.

The TTY37 uses SI (AN) and SO (AO) to shift to and from
its Greek character set. Nroff generates a SI and a SO
for every Greek letter. Col eliminates the unnecessary
shift-out-shift-in sequences. Col can be used to
optimize any use of SI and SO to indicate an alternate
character set.

Col eliminates all control characters except for ESC
(escape, hexadecimal lb) when followed by a 7, 8, or 9
character,

SP (space, 20) ,
BS (backspace, 08),
HT (tab, 09),
CR (return, 0d),
NL (newline, 0a),
SI {shift in, 0f),
SO (shift out, 0e),

Bell 1

COL(l)

OPTIONS
-b

-f

-x

SEE ALSO

Zilog COL(l)

Generate output suitable for a device that cannot back­
space. In a series of overstruck characters, only the
last is output.

Eliminate all reverse motion but permit halfline­
forward (ESC-9) sequences. Useful to optimize output
to TTY37.

Do not generate new tab characters.

troff(!), tbl(l), eqn(l), ascii(7)

[,IMITATIONS

2

Can't back up more than 128 lines.

Permits no more than 800 characters, including backspaces,
on a line.

Bell 2

COMB(l) Zilog COMB(!)

NAME
comb - combine secs deltas

SYNOPSIS
comb [-clist -o -pSID -s] files

DESCRIPTION
Comb generates a shell procedure {see sh{l)) which recon­
structs the given SCCS files. The reconstructed files will
be smaller than the original files. The arguments can be
specified in any order, but all keyletter arguments apply to
all named secs files.

If a directory is named, comb behaves as though each file in
the directory were specified as a named file, except that
non-SCCS files {last component of the path name does not
begin with s.) and unreadable files are ignored.

If a name of - is given, the standard input is read; each
line of the standard input is taken to be the name of an
SCCS file to be processed; non-SCCS files and unreadable
files are ignored.

The generated shell procedure is written on the standard
output.

OPTIONS

1

The keyletter arguments are as follows. Each is explained
as if only one named file is to be processed, but the
effects of any keyletter argument apply independently to
each named file ..

-clist

-o

-pSID

-s

A list {see get{l) for the syntax of a list) of
deltas to be preserved. All other deltas are dis­
carded.

Causes the reconstructed file to be accessed at
the release of the created delta for each get -e
generated: otherwise, the reconstructed file is
accessed at the most recent ancestor. Use of the
-o keyletter can decrease the size of the recon­
structed SCCS file. It can also alter the shape
of the~ delta tree of the original file.

The SCCS IDentification string {SID) of the oldest
delta-----Eo~e preserved. All older deltas are dis­
carded in the reconstructed file.

Causes comb to generate a shell procedure which
produces a report for each file giving: the file
name, size {in blocks) after combining, original
size, and percentage change computed by:

Bell 1

COMB{l) Zilog COMB{l)

100 * {original - combined) / ori9inal

It is recommended that before any secs files are
actually combined, this option should be used to
determine exactly how much space is savE~d by the
combining process.

If no keyletter arguments are specified, comb preeierves only
leaf deltas and the minimal number of ancestors needed to
preserve the tree.

FILES
s.COMB The name of the reconstructed secs file.

comb????~> Temporary.

SE:E ALSO
admin{l), delta(l), get(!), help(l), prs(l), sccsfile(S).
Source Code Control System User's Guide in the ZE:US Utili-
ties Mant1al -- -

DIAGNOSTICS
Use help(!) for explanations.

LIMITATIONS

2

Comb can rearrange the shape of the tree of deltas1. It may
not savE~ any space; in fact, it is possible for the recon­
structed file to actually be larger than the original.

Bell 2

COMM(l) Zilog COMM(l)

NAME
comrh - select or reject lines common to two sorted files

SYNOPSIS
conun [- 123] filel file2

DESCRIPTION
Conun reads filel and file2, (which must be ordered in ASCII
collating sequence, see sort(l)) and produces three-column
output.

column 1 contains those lines only in filel;
column 2 contains lines only in file2;
column 3 contains lines in both files.

~rhe minus sign "·-" means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding
column. Thus thee command:

conun -12 filel file2

prints only the lines in column 3 -- the lines common to the
two files;

The command:

comm -23 filel file2 --- ---
prints only line:s in column 1 -- the lines only in the first
file

The command:

conun -123 filel file2 --- ---
is not valid.

EXAMPLES

1

The results for the examples were obtained using the follow­
ing two lists.

% cat templ
a
b
c
d
e

% cat temp2
c
d

Bell 1

COMM(!)

e
f
g
h

% comm tE:nnpl temp2
a
b

f
g
h

c
d
e

% comm -23 templ temp2
a
b

% comm -13 templ temp2
f
g
h

% comm -12 templ temp2
c
d
e

SE.E ALSO

Zilog

cmp(l), diff(l), sort(l), uniq(l).

2 Bell

COMM(!)

2

.-

CONTINlJE(lC) Zilog

NAME
continue - C Shell flow control statement

SYNOPSIS
continue

CONTINlJE(lC)

DESCRIPTION
Continue
foreach.
executed.

execution
The r·est

of the nearest enclosing while or
of the commands on the current line are

EXAMPLE
test
while (1)

end

echo -n "enter x:"
set x=' gets'

if ($ x == 'a') then
echo "it continued"
continue

end if

echo "it didnt continue"
exit

This shell script prompts for input and sets the variable x
to whatever is input at the terminal. If the input is "a"
the continue statement moves control of the program back to
the while statement at the top and the process repeats.

If the input is not the letter "a" control drops through the
loop and exits.

SEE ALSO
foreach(lC), while(lC).
The C Shell in the ZEUS Utilities Manual

1 UCB 1

CP{l) Zilog CP(l)

NAME
cp - copy a file into another or into a directory

SYNOPSIS
cp f ilel file2
cp file ~ii rectory

DESCRIPTION
Filel is copied onto file2. The mode and owner of file2 are
preserved if it already existed; the mode of the source file
is used otherwise.

In the second form, one or more files are copied into the
director~~ with their original file names.

Cp refuses to copy a file onto itself.

SEE ALSO
cat (1) , pr (1) , mv (1) •

1 Bell 1

CPIO(l) Zilog CPIO(l)

"' NAME
cpio - copy file archives in and out

SYNOPSIS
cpio -o [acBv]

cpio.-i [Bdmrtuvs6] [patterns]

cpio -p [adlmuv] directory

DESCRIPTION
Cpio -o (copy out) reads the standard input to obtain a list
of path names a.nd copies those files onto the standard out­
put together with path name and status information.

Cpio -i (copy in) extracts from the standard input (which is
assumed to be the product of a previous cpio -o) the names
of files selected by zero or more patterns given in the
name-generating notation of sh(l). In patterns, meta­
characters ?, *,and[...] match the slash/ character. The
default for patterns is* (i.e., select all files).

Cpio -p (pass) copies out and in in a single operation.
Destination path names are interpreted relative to the named
directory.

OPTIONS

l

a Reset access times of input files after they have been
copied.

B Input/output is to be blocked 5,120 bytes to the record
(does not apply to the pass option; meaningful only
with data directed to or from tape devices).

c Write header information in ASCII character form for
portability.

d Directories are to be created as needed.

1 Whenever po::;sible, link files rather than copying them.
Usable only with the -p option.

m Retain previous file modificat~on time. This option is
ineffective on directories that are being copied.

r Interactively rename files. If the user types a null

Bell l

CPIO{l) Zilog CPIO(1)

line, the file is skipped.

s This option swaps the bytes of a words as they are
read.

t Print a table of contents of the input. No files are
created.

u Copy unconditionally {normally, an older file will not
replace a newer file with the same name).

v Verbose: causes a list of file names to be printed.
When-tised with the t option, the table of contents
looks like the output of an ls -1 command {see ls{l)).

6 Process an old {i.e., UNIX Sixth Edition format) file.
Only useful with -i (copy in).

EXAMPLES
The first example below copies the contents of a directory
into an archive: the second duplicates a directory hierar­
chy:

ls cpio -o >/dev/ct0

cd olddir
find • -print

The command:

cpio -pdl newdir

''find. -print I cpio -oB >/dev/rct0''

can be handled more efficiently by:

find • -exec cpio -oB > /dev/rct0

SEE ALSO
ar { 1) , find (1) , cpio (5) •

LIMITATIONS

2

Path names are restricted to 128 characters. If there are.
too many unique linked files, the program runs out of memory
to keep track of them and, thereafter, linking information
is lost. Only the super-user can copy spe·cial files.
Archive files created with the 'co' option can't be read
back with the 'ci' option.

Bell 2

CREF(l) Zilog CREF{l)

"'" NAME
cref - make cross-reference listing

SYNOPSIS
cref [-ilnostuxl23] files

DESCRIPTION
Cref makes a cross-reference listing of C programs; files
are searched for symbols in the appropriate syntax.

The output report is in four columns:

1. symbol;
2. file name;
3. see below;
4. text as it appears in the file.

Cref uses either an ignore file or an only file. Ignore and
only files are lists of symbols separated by new-lines. All
symbols in an ignore file are ignored in columns 1 and 3 of
the output. If--an-only file is given, only symbols in that
file will appear in column 1. Only one of these options may
be given. C keywords are ignored.

In C the current symbol is the current function name. This
file is created and is not removed at the end of the pro­
cess.

OPTIONS

1

i The next ar9ument is taken to be an ignore file (see
FILES below) .

1 Put line number in column 3 (instead of current sym­
bol).

n Omit column 4 (no context).

o The next argument is taken to be an only file.

s Current symbol in column 3 (default).

t Causes the next available argument to be used as the
name of the intermediate file (instead of the temporary
file /tmp/crt??).

u print only symbols that occur exactly once.

x Print only C external symbols ..

1 Sort output on column 1 (default).

2 Sort output on column 2.

Bell 1

CREF(l) Zilog CREF(l)

FILES

3 Sort output on column 3.

/tmp/crt?? temporaries
/usr/lib/cref/cign

default C ignore file
/usr/lib/cref/ctab

grammar table for C files
/usr/lib/cref/crpost

post-processor
/usr/lib/cref/upost

post-processor for -u option

SEE ALSO
cc { 1) , sort { 1) ,

LIMITATIONS

')

"""'

Cref inserts an ASCII DEL character into the intermediate
file after the eighth character of each name that is eight
or more characters long in the source file.

Bell 2

CRYPT(!) Zilog CRYPT(!)

NAME
crypt - encode/decode

SYNOPSIS
crypt [pas swore~] < in. file > out. file
crypt [pas swore~] < out. file > 1Il. file

DESCRIPTION

1

Crypt reads from files (or from the standard input) and
writes to the standard output (or an output file). The
password is a key that determines the particular transforma­
tion. If no password is given, crypt demands a key from the
terminal and turns off printing (echoing the characters on
the terminal) while the key is being typed in. Crypt
encrypts and decrypts with the same key; thus the command:

crypt key < file > encrypted

encrypts file wi.th the password key and puts the encrypted
output in the file encrypted. The cormnand:

crypt key < encrypted I EE_

decodes the encrypted file with the same password key and
prints the file.

Files encrypted by crypt are compatible with those treated
by the editor ed. in encryption mode.

The security of encrypted files depends on three factors:
the fundamental method must be hard to solve; direct search
of the key space must be infeasible; and "sneak paths" by
which keys or cleartext can become visible must be minim­
ized.

Crypt implements a one-rotor machine designed along the
lines of the German Enigma, but with a 256-elernent rotor.
Debug methods on such machines require a large amount of
work.

The transformation of a key into the internal settings of
the machine is deliberately designed to take a substantial
fraction of a second to compute. However, if keys are res­
tricted to thr1ee lowercase letters, for example, then
encrypted files can be read by expending only a substantial
fraction of five minutes of machine time.

Since the key is an argument to the crypt command, it is
potentially visible to ps(l) or a· derivative. To minimize
this possibility, crypt destroys any record of the key
immediately upon entry. The choice of keys and key security
is the most vulrn:~rable aspect of crypt.

Bell 1

CRYP'r (1) Zilog CRYPT(l)

FILES
/dev/tty for typed key

SEE ALSO
ed (1) , makekey (M) .

LIMITATIONS

2

There is no warranty, either expressed or implied, about the
accuracy of the enclosed materials or their suitability for
any particular purpose. Accordingly, Zilog assumes no
responsibility for their use by the recipient. Further,
Zilog assumes no obligation to furnish any assistance of any
kind whatsoever, or to furnish any additional information or
documentation.

Bell 2

CSH{l) Zilog CSH{l)

NAME
csh, - a command interpreter with C-like syntax

SYNOPSIS
csh[-cefinstvVxX] [arg ...]

DESCRIPTION
A csh command script can be interpreted by entering

csh script

where script is the name of the file containing a number of
csh commands and ... is replaced by a sequence of arguments.
The c shell plac•es these arguments in the variable argv and
then begins to r•ead commands from the script. These parame­
ters are then available through the same mechanisms used to
reference any c::>ther C shell variables. When a login shell
terminates, it executes commands from the file .logout in
the home directory.

The shell then repeatedly performs the following actions: a
line of command input is read and broken into words. This
sequence of word:s is placed on the corrunand history list and
parsed. Finally, each command in the current line is exe­
cuted.

OPTIONS

1

The flag arguments are interpreted as follows:

-c Commands are read from the {single) following
argument that must be present. Any remaining
arguments are placed in argv.

-e The shc~ll exits if any invoked command terminates
abnormally or yields a nonzero exit status.

-f The shell starts faster, because it neither
searchE~s for nor executes commands from the file
.cshrc in the invoker's home directory.

-i The shE:!ll is interactive and prompts for its top­
level input, even if it appears to not be a termi­
nal. Shells are interactive without this option
if their inputs and outputs are terminals.

-n Commands are parsed, but not executed. This aids
in syntactic checking of shell scripts.

-s Command input is taken from the standard input.

-t A single line of input is read and executed. A \
can bH used to ~scape the new line at the end of

UCB 1

CSH(l) Zilog CSH(l)

this line and continue onto another line.

-v Causes the verbose variable to be set, with the
effect that command input is echoed a:fter history
substitution.

-x Causes the echo variable to be set, so that com­
mands are echoed immediately before ex•ecution.

-V Causes the verbose variable to be set 4even before
.cshrc is executed.

-x Is to -x as -v is to -v.

After processing of flag arguments, if arguments remain but
none of the -c, -i, -s, or -t options was given, the first
argument is taken as the name of a file of commands to be
executed. The shell opens this file, and saves its name for
possible resubstitution by $0.

FILES
-;.cshrc
shell
""/.login
login
-/.logout
/etc/cshprofile

csh.

/bin/sh

/tmp/sh'i~
/dev/null
/etc/passwd

Read at beginning of executi<)n by each

Read by login shell, after .cshrc at

Read by login shell, at logout
Read by login shell, before .cshrc file.
This is a system profile file for the

See cshrc(S).
Standard shell, for shell scripts not
starting with a #
Temporary file for <<
Source of empty file
Source of home directories for -name.

SEE ALSO
alias(lC), break(lC), breaksw(lC), cd(lC), continue(lC),
echo(lC), exit(lC), foreach(lC), glob(lC), history(lC),
if(lC), logout(IC), nice(lC), nohup(lC), onintr(lC),
repeat(lC), set(lC), setenv(lC), source(lC), switch(lC),
time(lC :~, umask (IC), wait (IC), while(IC), access (2),
exec (2), fork (2), pipe (2), signal (2), umask (2), wait (2),
a.out(S), environ(S).

The C shell in the ZEUS Utilities Manual

LIMITATIONS

2

Control structure should be parsed rather than bE~ing recog­
nized as built-in commands. This would allow control com­
mands to be placed anywhere, to be combined with I, and to
be used with & and ; metasyntax.

UCB 2

CSH(l) Z.ilog CSH(l)

3

Commands within loops, prompted for by ?, are not placed in
the history list.

It should be possible to use the : modifiers on the output
of conunand substitutions. All and more than one : modifier
should be allowed on $ substitutions.

Words can be no longer than 512 characters. The number of
characters in an argument list or a ccommand substitution is
limited to 5120 characters. The number of arguments to a
command that involves file name expansion is limited to 853.

To detect looping, the shell restricts the number of
alias(lC) substititutions on a single line to 20.

UCB 3

CSPLIT(l) Zilog CSPLIT(l)

NAME
csplit - split file according to contextual arguments

SYNOPSIS
csplit [-s] [-k] [-f prefix] file argl [... ar~!!!]

DESCRIPTION
Csplit reads file and
defined by the arguments
tions are placed in xx00
99). These sections get

separates it into n+l sections,
argl ... Crgn. By default the sec­
··· xxn n may not be q-reater than
the followTng pieces of file:

00: From the start of file up to (but not including)
the line referenced by argl.

01: From the line referenced by argl up to the line
referenced by arg2.

n+l: From the line referenced by argn to the end of
file.

OPTIONS

ARGUMENTS

1

-==- Csplit normally prints the character counts
for each file created. If the -s option is
present, csplit suppresses the printing of
all character counts.

-le Csplit normally removes created files if an
error occurs. If the -k option is present,
csplit leaves previously created files
intact.

-f prefix If the -f option is used, the created files

/~-:exp/

lnno

{num}

are named prefix80 prE~fixn. The
default is xx00 ... xxn.

A file is to be created for the sE~ction from
the current line up to (but not including) the
line containing the regular expression rexp.
The current 1 ine becomes the 1 inE~ containing
rexp. This argument may be followed by an
optional + or - some number of lines (e.g.,
/Page/-5).

This argument is the same as /re)C.J!._/, except
that no file is created for the section.

A file is to be created from the current line
up to (but not including) lnno. The current
line becomes lnno.

Repeat argument. This argument may follow any
of the above arguments. If it follows a rexp

Bell 1

CSPLIT(l) Zilog CSPLIT(l)

type argument, that argument is applied num
more times. If it follows lnno, the file will
be split every lnno lines --rntlm times) from
that point. --

Enclose all rexp type arguments that contain blanks or other
characters meaningful to the Shell in the appropriate
quotes. Regular expressiohs may not contain embedded new­
lines. Csplit does not affect the original file: it is the
users responsibility to remove it.

EXAMPLES
csplit -f cobol file '/procedure division/' /pars./ /parl6./

This example crc:~a tes four files, coboUJ8 . . . coboUJ3. After
editing the "split" files, they can be recombined as fol­
lows:

cat cobol0[0-3] > file

Note that this example overwrites the original file.

csplit -k file 100 {99}

This example would split the file at every 100 lines, up to
10,000 lines. The -k option causes the created files to be
retained if there are more than 10,000 lines; however, an
error message would still be printed.

csplit -k prog.c '%main(%' · r· 1 / + i • r 20 1

Assuming that prog.c follows the normal C coding convention
of ending routines with a } at the beginning of the line,
this example will create a file containing each separate C
routine (up to 21) in prog.c.

SEE ALSO
ed(l), sh(l), regexp(7).

DIAGNOSTICS

2

Self explanatory except for:
arg - out of range

which means that the given argument did not reference a line
between the current position and the end of the file.

Bell 2

CTAGS(l) Zilog CTAGS(l)

NAME
ctags - maintain a tags file for C or Fortran programs

SYNOPSIS
ctags [-auw] file

DESCRIPTION
Ctags makes a tags file for ex(l) from the specified C or
Fortran programs. Files ending in 11 .f 11 are assumed to be
Fortran source files and all others are assumed to be C
source files. A tags file gives the locations of specified
objects (in this case functions) in a group of files. Each
line of the tags file contains the function name, the file
in which it is defined, and a scanning pattern used to find
the function definition. These are given in separate fields
on the line, separated by blanks or tabs.

OPTIONS
-a Causes the output to be appended to the tags file

instead of rewriting it.

-u Causes the specified files to be updated in tags, that
is, all references to them are deleted, and the new
values are appended to the file. The tags file is then
piped through sort(l) to restore the ordering required
by ex(l). This option implies the -a option.

-w Suppresses warning diagnostics.

The tag main is treated specially in c programs.. The tag
formed rs-created by prepending M to the name of the file,
with a trailing .c removed, if any, and leading pathname
components also removed. This makes use of cta9s practical
in directories with more than one program. Fortran programs
are not named main, so this is not necessary.

FILES
tags output tags file

SEE ALSO
ex(lL vi(l).

L.IMITATIONS

1

In a directory with only one main, the tag main will still
not be c~reated.

In Fortran 77, the program statement is optional, and if
missing, no entry will be made in tags.

Zilog 1

CU(l) Zilog CU(l)

,tC NAME
cu - call another ZEUS system

SYNOPSIS
cu [-sspeed] [-aacu] [-!line] [-h] [-ol-e] telno I dir

DESCRIPTION

1

Cu calls up another ZEUS system, a terminal, or possibly a
non-ZEUS system. It manages an interactive conversation
with possible transfers of ASCII files.

Cu will try each line listed in the file /usr/lib/uucp/L­
devices until it finds an available line with appropriate
attributes or runs out of entries. The L-devices file must
be set up using:

CONNECTION line speed

where connection is either DIR (for a direct connection to
another system)' or ACU (where the line is connected to an
ACU) (see acu(4)}. Line is the tty line which will serve to
make the connectio~ The form of line is ttyX where X is
the tty number. Speed is the baud rate for the -connection.
300 baud is the default.

After making the connection, cu runs as two processes: the
transmit process reads data from the standard input and,
except for lines beginning with -, passes it to the remote
system: the receive process accepts data from the remote
system and, except for lines beginning with -, passes it to
the standard output. Normally, an automatic DC3/DC1 proto­
col is used to control input from the remote system so the
buffer is not overrun. Lines beginning with - have special
meanings.

The transmit process interprets the following:

-1

-1cmd ...

terminate the conversation.

escape to an interactive shell on the
local system. The shell is taken from
the SHELL environment variable. If it
is not set, /bin/sh is used.

run cmd on the''ibbal system. The shell
to be used is taken from the SHELL
environment variable. If it is not set,
/bin/sh is used~

run cmd locally and send its output to
the remote system.

Bell 1

CU{l) Zilog CU{l)

-%take from [to] copy file from {on the remote system) to
file to on the local system. If to is
omitted;"" the from argument is usea- in
both places.

-%put from [to] copy file from {on local system) to file
to on remote system. If to is omitted,
the from argument is use·d in both
place-s-.-

-nostopi

send the line -
tern.

to the remote sys-

turn off the DC3/DC1 input control pro­
tocol for the remainder of the session.
This is useful in case the remote system
is one which does not respond properly
to the DC3 and DCl characters.

The receive process normally copies data from the remote
system to its standard output. A line from the! remote sys­
tem that begins with -> initiates an output diversion to a
file. The complete sequence is:

->[>]:file
ze!ro or more lines to be written to file
,..)-

Data from the remote system is diverted {or appemded, if ->>
is used) to file. The trailing -> terminates the diversion.

The USE! of -%put requires stty{ 1) and cat{ 1) on the remote
side. It also requires that the current erase and kill
characters on the remote system be identical to the current
ones cm the local system. Backslashes are~ inserted at
appropriate places.

The USE~ of -%take requires the existence of echo(1) and
cat(l) on the remote system. Also, stty tabs mode should be
set on the remote system if tabs are to be copied without
expansion.

For example, in order to call another system on a direct
line, you would first have to know the terminal name and the
default speed for that line. Then you would type {assuming
that the direct line is tty3):

cu -ltty3 dir

OPTIONS
-e(-o)

2

DE~signate that even {odd) parity is to be qenerated for
data sent to the remote system.

Bell 2

CU(l)

FILES

Zilog CU(l)

-h Emulate local echo, supporting calls to other computer
systems which expect terminals to be in half-duplex
mode.

-a(-1)
Specify a device name for the ACU and communications
line device. They can be used to override searching
for the first available ACU with the right speed.

-sspeed

Tel no

Give the transmission speed (110, 150, 300, 1200, 4800,
9600); 300 is the default value. Most of our modems
restrict us to choose between 300 and 1200. Directly
connected lines may be set to other speeds.

is the telephone number. Character sequences to dial
using the Hayes Microcomputer Products modems as well
as the Ven-Tel 212 Plus modem may be included in telno.
dir Must be used for directly connected lines, and
implies a null ACU. When the string dir is specified
the -1 option must also be specified.

/usr/lib/uucp/L-devices
/usr/spool/uucp/LCK .. (tty-device)
/dev/null

SEE ALSO
cat(l), echo(!), stty(l), uucp(!), tty(4).

DIAGNOSTICS
Exit code is zero for normal exit, non-zero (various values)
otherwise.

LIMITATIONS

3

There is an artificial slowing of transmission by cu during
the -%put operation so that loss of data is unlikely.

Bell 3

CUT(l) Zilog CUT(l)

NAME
cut - cut out selected fields of each line of a file

SYNOPSIS
cut -clist [filel file2 ...]
cut -f~list [-dchar] [-s] [file! file2 ...]

DESCRIPTION
Use cut to cut out columns from a table or fields from each
line of a file; in data base parlance, it implements the
projection of a relation. The fields as specified by list
can be fixed length, i.e., character positions as Olla
punched card (-c option), or the length can vary from line
to line and be marked with a field delimiter character like
tab(-£ option). Cut can be used as a filter; if no files
are given, the standard input is used.

OPTIONS
list A comma-separated list of integer field numbers (in

increasing order), with optional to indicate
ranges as in the -o option of nroff /troff for page
ranges; e.g., 1,4,7; 1-3,8; -5,10 -C-short for
1-5,10); or 3- (short for third through last
field).

-clist

-dchar

-flist

-s

The list following -c (no space) specifies charac­
ter positions (e.g., -cl-72 would pass the first 72
characters of each line).

The character following -d is the field delimiter
(-f option only). Default is tab. Sp.ace or other
characters with special meaning to the shell must
be quoted.

The list following -f is a list of fields assumed
to be separated in the file by a delimiter charac­
ter (see -d}; e.g., -fl,7 copies the first and
seventh field only. Lines with no field delimiters
will be passed through intact (useful for table
subheadings}, unless -s is specified.

Suppresses lines with no delimiter characters in
case of -f option. Unless specified, lines with no
delimiters will be passed through untouehed.

Either the -c or -f option must be specified.

HINTS

1

Use grep(l} to make horizontal ''cuts 1 1 (by contE!xt) through
a file, or paste(l) to put files together column-wise (i.e.,
horizontally}. To reorder columns in a table, use cut and
paste*

Bell 1

CUT(l) Zilog CUT(l)

.,. EXAMPLES
cut -d: -fl,5 /etc/passwd

mapping of user IDs to names

name='who am i I cut -fl -d" 11
'

to set name to current login name.

DIAGNOSTICS
line too long

A line can have no more tl1an 511 characters or
fields.

bad list for c/! option

no fields

Missing -c or -f option or incorrectly specified
list. No error occurs if a line has fewer
fields than the list calls for.

The list is empty.

SEE ALSO
grep(l), paste(l).

2 Bell 2

CXREF(l) Zilog CXREF(l)

NAME
cxref - a simple C routine referencing program

SYNOPSIS
cxref file

DESCRIPTION
Cxref is a simple shell script which uses grep(l)
and sort(l) to make a listing of the routines in
f ied C program files and the lines on which
defined. It is useful as a summary when prowling
program.

and ex(l)
the speci­
they are

in a large

LIMITATIONS

1

Cxref assumes that routines begin in the first column of
lines, and that type names are given on different lines than
the routine names. If you have a program which is in a dif­
ferent format than this, cxref will fail miserably. The
operating system, C compiler, ex editor, etc. all work with
cxref.

Zilog 1

DATE(l) Zilog DATE(l)

_, NAME
date - print the date and time

SYNOPSIS
date [-u]

DESCRIPTION
The current dabe and time are printed, including the day of
week, month, day of month, time (hh:mm:ss), time zone, and
year.

If the -u option is given, GMT time is printed.

EXAMPLE
% date
Thu Nov 11 14:44:32 PST 1982

SEE ALSO
time(2), ctime(3), datem(M).

1 Bell 1

DAYTIME(l) Zilog DAYTIME(l)

NAME
daytimE~ - give the time to human-reasonable accuracy

SYNOPSIS
daytim•:?

DESCRIPTION
Dayt.imta prints out in English the current time of day, accu­
rate to the nearest five minutes.

EXAMPLE
~~ daytime

Five after four

LIMITATIONS
Daytim1e depends on the user to determine whether it's
currently night or day.

1 UCB 1

DC(l) Zilog OC(l)

NAME
de - desk calculator

SYNOPSIS
de [file]

DESCRIPTION

1

De is an arbitrary precision arithmetic package. Ordinarily
it operates on decimal integers, but one may specify an
input base, output base, and a number of fractional digits
to be maintained. The overall structure of de is a stacking
(reverse Polish) calculator. If an argument is given, input
is taken from that file until its end, then from the stan­
dard input. ThE~ following constructions are recognized:

c All values on the stack are popped.

d The top value on the stack is duplicated.

f All values on the stack and in registers are printed.

i The top value on the stack is popped and used as the
number radix for further input.

I Pushes the input base on the top of the stack.

k The top of the stack is popped, and that value is used
as a non-negative scale factor: the appropriate number
of places are printed on output, and maintained during
multiplication, division, and exponentiation. The
interaction of scale factor, input base, and output
base will he reasonable if all are changed together.

1x The value in register x is pushed on the stack. The
register x is not altered. All registers start with
zero value~ If the 1 is capitalized, register x is
treated as a. stack and its top value is popped onto the
main stack.

o The top value on the stack is popped and used as the
number radix for further output.

O Pushes the output base on the top of the stack.

p The top value on the stack is printed. The top value
remains unchanged. P interprets the top of the stack
as an ascii string, removes it, and prints it.

q Exits the program. If executing a string, the recur­
sion level is popped by two. If q is capitalized, the
top value on the stack is popped and the string execu­
tion level i.s popped by that value.

Bell 1

DC(l)

2

Zilog DC(l)

sx n1e top of the stack is popped and stored into a regis­
ter named x, where x may be any character. If the s is
capitalized, !. is treated as a stack and the value is
pushed on it.

v RE~places the top element on the stack by its square
root. Any existing fractional part of thE~ argument is
taken into account, but otherwise the scalE~ factor is
i~rnored.

x Treats the top element of the stack as a character
st.ring and executes it as a string of de commands.

X RE:!places the number on the top of the stack with its
scale factor.

z The stack level is pushed onto the stack.

Z R~~places the number on the top of the stac~k with its
lEmgth.

number
rl.'he value of the number is pushed on thE:! stack. A
number is an unbroken string of the di9its 0-9. It
may be preceded by an underscore () to input a
negative number. Numbers may contain decimal points.

+ I * %
rrhe top two values on the stack are added (+) , sub­
tracted (-), multiplied (*), divided (/), remaindered
(%) , or exponentiated (....) . The two entriE~s are popped
off the stack: the result is pushed on the stack in
their place. Any fractional part of an exponent is
ignored.

[. . .]
Puts the bracketed ascii string onto the top of the
i::;tack.

<x >x =x
-

1rhe-top two elements of the stack are popped and com­
pared. Register x is executed if they obE~Y the stated
relation.

1 Interprets the rest of the line as a ZEUS command.

? A line of input is taken from the input source (usu­
.ally the terminal) and executed.

: : Are used by be for array operations.

Bell 2

DC(l) Zilog DC(l)

EXAMPLES
$ de

2.05
156.35
+ p
158.40
2 .05
+ p
160.45
6
* p
962.70
14
I P
68

(add and print the answer)

(multiply and print the answer)

(divide and print the answer)

An example which prints the first ten values of nl is

[lal+dsa*pla10>y]sy 0sal lyx

SEE ALSO
bc(l), which is a preprocessor for de providing infix nota­
tion and a C-like syntax which implements functions and rea­
sonable control structures for programs.

DIAGNOSTICS

3

'x is unimplemented' where x is an octal number.

'stack empty' for not enough elements on the stack to do
what was asked.

'out of space' when the free list is exhausted (too many
digits).

'out of headers' for too many numbers being kept around.

'out of pushdown' for too many items on the stack.

'Nesting Depth' for too many levels of nested execution.

Bell 3

DD(l) Zilog DD(l)

NAME
dd - convert and copy a file

SYNOPSIS
dd [option=value] ...

DESCRIPTION'
Dd copies the specified input file to the specified output
with possible conversions. The standard input and output
are used by default. The input and output block size can be
specified to take advantage of raw physical I/O.

Where sizes are specified, a number of bytes is expected. A
number may end with k, b, or w to specify multiplication by
1024, 512, or 2 respectively: a pair of numbers may be
separated by x to indicate a product.

Cbs is used only if ascii or ebcdic conversion is specified.
In the former case cbs characters are placed into the
conversion buffer, converted to ASCII, and trailing blanks
trimmed and new-line added before sending the line to the
output. In the latter case ASCII characters are read into
the conversion buffer, converted to EBCDIC, and blanks added
to make up an output record of size cbs.

After completion, dd reports the number of whole and partial
input and output blocks.

OPTIONS
optio:r:~ values

bs=n

cbs=n

conv=aLscii

E~bcdic

i.bm

lease

noerror

flWab

sync

1

set both input and output block size,
superseding ibs and obs: also, if no conver­
sion is specified, it is partic~ularly effi­
cient since no in-core copy need be done

conversion buffer size

convert EBCDIC to ASCII

convert ASCII to EBCDIC

slightly different map of ASCII to EBCDIC

map alphabetics to lower case

do not stop processing on an error

swap every pair of bytes

pad every input record to ibs

Bell 1

DD(l)

ucase

. . . .
count=n

f iles=n

ibs=n

if=f ile

obs=n

of=f ile

seek=n

skip=_!!

Zilog DD(l)

map alphabetics to upper case

several comma-separated conversions

copy only g input records

skip n files on (tape) input before starting
copy seek=n seek n records from beginning of
output file before copying

input block size n bytes (default 512)

input file name; standard input is default

output block size (default 512)

output file name; standard output is default

seek n records from beginning of output file
before copying

skip n input records before starting copy

EXAMPLE
This command will read an EBCDIC tape blocked ten 80-byte
EBCDIC card images per record into the ASCII file x:

dd if=/dev/rmt0 of=x ibs=800 cbs=80 conv=ascii,lcase

Note the use of raw magtape. Dd. is especially suited to I/O
on the raw physical devices because it allows reading and
writing in arbitrary record sizes.

SEE ALSO
cp (1) .

DIAGNOSTICS
f+£ records in(out)

numbers-of full and partial records read(written)

LIMIT.AT IONS

2

The ASCII/EBCDIC conversion tables are taken from the 256
character standard in the CACM Nov, 1968. The ibm conver­
sion, while less blessed as a standard, corresponds better
to certain IBM print train conventions. There is no univer­
sal solution.

New-lines are inserted only on conversion to ASCII; padding
.is done only on conversion to EBCDIC. These should be
separate options.

Bell 2

DELTA{l) Zilog DELTA{!)

NAME
delta - make a delta {change) to an secs file

SYNOPSIS
delta [·-rSID]

[-:snY­
[-•;;rlist]
[-mrmrfist]]
[-y[comment]]
[-p]
files

DESCRIPTION

1

Delta is used to permanently introduce into the named SCCS
file changes that were made to the file retrieved by get{l)
{called the 9.-file, or generated file).

Delta makes a delta to each named secs file. If a directory
is named, delta behaves as though each file in the directory
were specified as a named file, except that non-SCCS files
(last component of the path name does not begin with s.) and
unreadable files are silently ignored. If a name of is
given, the standard input is read {see WARNINGS); each line
of the standard input is taken to be the name of an SCCS
file to be processed.

Delta may issue prompts on the standard output depending
upon certain keyletters specified and flags {see admin{l))
that ma.y be present in the SCCS file {see -m and --y
keyletters below).

Keylett.er arguments apply independently to each named file.

-rSID
--Uniquely identifies which delta is to be made to the

SCCS file. The use of this keyletter is ne~cessary only
if two or more outstanding gets for editinsr {get -e) on
the same SCCS file were done by the same person {login
name). The SID value specified with the -·r keyletter
can be either the SID specified on the get conunand line
or the SID to be made as reported by the <Jet command.
A diagnostic results if the specified SID i.s ambiguous,
or, if necessary and omitted on the command line.

-s Suppresses the issue, on the standard output, of the
created delta's SID, as well as the number of lines
inserted, deleted and unchanged in the SCCS file.

-n Specifies retention of the edited 9_-file {normally
removed at completion of delta processing).

Bell 1

DELTA(l) Zilog DELTA(l)

FILES

2

-glist
--Specifies a list for the definition of list) of deltas

which are ~be ignored when the file is accessed at
the change level (SID) created by this delta.

-m[mrlist]
If the SCCS file has the v flag set (see ad.min(!)) then
a Modification Request (MRs) number must be supplied as
the reason for creating the new delta:--

If -m is not used and the standard input is a terminal,
the prompt MRs? is issued on the standard output before
the standard input is read; if the standard input is
not a terminal, no prompt is issued. The MRs? prompt
always prec«~des the comments? prompt (see -y
key letter).

MRs in a list are separated by blanks and/or tab char­
acters. An unescaped new-line character terminates the
MRs list.

Note that if the v flag has a value it is taken to be
the name of a program (or shell procedure) which will
validate the correctness of the MRs numbers. If a
non-zero exit status is returned from MRs number vali­
dation program, delta terminates (it is assumed that
the MRs numbers were not all valid).

-y[conunent]
Arbitrary tex:t used to describe the reason for making
the delta. A null string is considered a valid com­
ment.

If -y is not specified and the standard input is a ter­
minal, the prompt comments? is issued on the standard
output before the standard input is read; if the stan­
dard input is not a terminal, no prompt is issued. An
unescaped new-line character terminates the comment
text.

-p Causes delta to print (on the standard output) the SCCS
file differences before and after the delta is applied
in a diff(l) format.

All files of the form ?-file are explained in the Source
Code Control System User's Guide. The naming convention for
these files is also described there!'

Bell 2

DELTA(l) Zilog DELTA(l)

g-file
Existed before the execution of delta; removed after
completion of delta.

p-file
Existed before the execution of delta; may exist after
completion of delta.

q-file
Created during the execution of delta; removed after
completion of delta.

x-file
Created during the execution of delta; renamed to SCCS
file after completion of delta.

z-file
Cre:ated during the execution of delta; removed during
the execution of delta.

d-file
Cre~ated during the execution of delta; removed after
completion of delta.

/usr/bin/bdiff
Program to compute differences between the ''gotten''
file and the g-file.

WARNINGS
Lines bE~ginning with an SOH ASCII character (binary 001)
cannot be placed in the secs file unless the SOB is escaped.
This character has special meaning to SCCS (see ~;ccsfile(S))
and will cause an error.

A get of many secs files I followed by a deltcl of those
files, should be avoided when the get generates a large
amount of data. Instead, multiple get/delta sequences
should be used.

If the standard input (-) is specified on the delta command
line, the -m (if necessary) and -y keyletters must also be
present.. Omission of these keyletters causes arlerror to
occur ..

SEE ALSO
admin(l), bdiff(l), get(l), help(l), prs(l), sccsfile(S).
Source Code Control System User'~ Guide in the ~rnus Utili­
ties Ma"irnal

DIAGNOSTICS
Use hel~~(l) for explanations.

3 Bell 3

DEROPF(l) Zilog DEROFF(l)

NAME
deroff - remove nroff/troff, tbl, and eqn constructs

SYNOPSIS
deroff [-mx] [-·w] [files]

DESCRIPTION
Deroff reads each of the files in sequence and removes all
troff(l) requests, macro calls, backslash constructs, eqn(l)
constructs (between .EQ and .EN lines, and between delim­
iters), and tbl(l) descriptions, and writes the remainder of
the file on the standard output. Deroff follows chains of
included files (.so and .nx troff commands); if a file has
already been included, a .s'C>naming that file is ignored and
a .nx naming that file terminates execution. If no input
file1s given, der1off reads the standard input.

OPTIONS
-m may be follow1ed by an m, s, or 1. The resulting -mm or

-ms option causes the mm or ms macros to be interpreted
so that only running text is output (i.e., no text from
macro lines). The -ml option forces the -mm option and
also causes dceletion of lists associated with the mm
macros.

·-w the output is a word list, one "word" per line, with
all other characters deleted. Otherwise, the output
follows the original, with the deletions mentioned
above. In text, a "word" is any string that contains
at least two letters and is composed of letters,
digits, amperf3ands (&) , and apostrophes ('); in a macro
call, however" a "word" is a string that begins with at
least two lE~tters and contains a total of at least
three letters.. Delimiters are any characters other
than letters,. digits, apostrophes, and ampersands.
Trailing apostrophes and ampersands are removed from
"words."

EXAMPLES

1

% cat example .. file
.pp
This is a sample file with nroff commands.
It will be use!d with deroff:
• RS
deroff example!. file
• RE
to remove the nroff commands for reading purposes.

% deroff example.file

This is a sample file with nroff commands.
It will be used with deroff:

Bell 1

DEROFF(l) Zilog DEROFF(l)

SEE ALSO

deroff example.file

to remove the nroff commands for reading purposes.
% deroff -w example.file
This
is
a
sample
file
with
nroff
commands
It
will
be
used
with
deroff
deroff
example
file
to
remove
the
nroff
commands
for
reading
purposes

eqn(l), tbl(l), troff(l)4

LIMITATIONS
Deroff is not a complete troff interpreter, so it can be
confused by subtle constructs. Most such errors result in
too much rather than too little output.
The -ml option does not handle nested lists correctly.

Bell 2

Zilog DIFF(l)

NAME
diff - differential file comparer

SYNOPSIS
diff [-befh] fi:Lel file2

DESCRIPTION
Diff tells what lines must be changed in two files to bring
them into agreement. If tile! (file2) is -, the standard
input is used. If file! (file2) is a directory, then a file
in that directory whose file-name is the same as the file­
name of file2 (file!) is used. The normal output contains
lines of these forms:

nl a n3,n4
nl,n2d n3
nl, n2 c n3, n4:

These lines resemble ed(l) commands to convert file! into
file2. The numbe~rs after the letters pertain to file2. By
exchanging a for d and reading backward, conversion of file2
into filel- is given. As in ed, identical pairs where nl =
n2 or n3 = n4 are abbreviated as a single number.

Following each of these lines come all the lines that are
affected in the first file flagged by <, then all the lines
that are affected in the second file flagged by >.

Except in rare circumstances, diff finds a smallest suffi­
cient set of file differences.

OPTIONS
-b Cause trailing blanks (spaces and tabs) to be ignored

and other strings of blanks to compare equal.

-e

-f

-h

1

Produce a scr:ipt of a, c, and d commands for the editor -ed, which recreates file2 from file!.

Produce a similar script, not useful with ed, in the
opposite order.

In connection with -e, the following shell program can
help maintain multiple versions of a file. Only an
ancestral filE~ ($1) and a chain of version-to-version
ed scripts ($2,$3, ...) I!lade by diff need be on hand. A
latest version appears on the standard output.

(shift; cat$*; echo 'l,$p') I ed - $1

Does a fast, but incomplete job. It works
changed parts are short and well separated.
and -f are unavailable with -h.

Bell

only when
Options -e

1

DIFF{l)

EXAMPLES

FILES

% c~at listl
boat
boathouse
boatload
boatman
boatmen
boatyard

% diff listl list2
0al, .5
> boa
> boar
> board
> boardinghouse
> boast
6dl0
< boatyard

/tmp/d?????
/usr/lib/diffh for -h

SEE ALSO
cmp(l), comm{!), ed(l)

DIAGNOSTICS

Zilog

% cat list2
boa
boar
board
boardinghouse
boast
boat
boathouse
boatload
boatman
boatmen

DIFF(l)

Exit status is 0 for no differences, 1 for some, 2 for trou­
ble.

T..1IMITATIONS

2

Editing- scripts produced under the -e or -f option are
unable to create lines consisting of a single period (.).
The script file is produced, but it will produce incorrect
results if run under ed.

Bell 2

DIFF3(1) Zilog DIFF3(1)

NAME
diff3 - 3-way differential file comparison

SYNOPSIS
diff3 [-ex3] filel file2 file3

DESCRIPTION
Diff3 compares three versions of a file and publishes
disagreeing ranges of text flagged with these codes:

all three files differ

====l filel is different

=====2 f ile2 is different

====3 file3 is different

The type of changE~ needed to convert a given range of a
given file to somE~ other is indicated in one of these ways:

f : nl a

f : nl , n2 c~

Text is to be appended after line
·number nl in file f, where f = 1, 2, or

3.

Text is to be changed in the range line
nl to line n2. If nl = n2, the range
may be abbreviated to---ril.

The original contents of the range follows immediately after
a "c" indication. When the contents of two files are ident­
ical, the contents of the lower-numbered file is suppressed.

OPTIONS
-e diff3 publishes a script (to standard output} for the

editor ed(l) that will incorporate into filel all
changes between file2 and file3, that is, the changes
that normally would be flagged 11 ==== 11 and "====3".

-x (-3)
produces a script to incorporate only changes flagged
"====" (''----'3") ----, .

EXAMPLES

FILES

1

The following comm<:tnd will apply the resulting script to
:Eilel:

(cat script: echo 'l,$p': echo w) I ed - file!

/tmp/d3*
/usr/lib/diff3prog

Bell 1

DIFF3(1) Zilog DIFF3(1)

SEE ALSO
diff{l), ed{l)

LIMITATIONS
Text lines that consist of a single 11

•
11 will defeat the -e

option.

Files longer than 64K bytes won't worl<.

2 Bell 2

DIFFMK(l) Zilog DIFPMK(l)

NAME
diffmk - mark differences between files

SYNOPSIS
diffmk namel name:2 name3

DESCRIPTION
Diffmk compares two versions of a file and creates a third
file that includes "change mark" corrunands for nroff(l) or
troff(!). Namel and name2 are the old and new versions of
the file. Diffm1c generates name3, which contains the lines
of name2 plus inserted formatter "change mark" (.me)
requests. When name3 is formatted, changed or inserted text
is shown by I at~:he right margin of each line. The posi­
tion of deleted text is shown by a single *

Diffmk can be used to produce listings of c (or other) pro­
grams with changes marked. A typical command line for such
use is:

diffmk old.c new.c tmp; nroff macs tmp I pr

where the file mac~s contains:

.pl 1

.11 77

.nf

.eo

.nc

The .11 request might specify a different line length,
depending on the nature of the program being printed. The
.eo and .nc requests are probably needed only for C pro­
grams.

If the characters I and * are inappropriate, a copy of
diffmk can be edited to change them (diffmk is a shell pro­
cedure).

SEE ALSO

BUGS

1

diff(l), nroff(!).

Aesthetic considerations may dictate manual adjustment of
some output. File differences involving only formatting
requests may produce undesirable output, i.e., replacing .sp
by .sp 2 will produce a "change mark" on the preceding or
following line of output.

Bell 1

DIRCMP(l) Zilog DIRCMP(l)

NAME
dircmp - directory comparison

SYNOPSIS
dircmp d.irl dir2

DESCRIPTION
Dircmp e~xamines dirl and dir2 and generates various tabu­
lated information about the contents of the directories.
Listings of files that are unique to each directory are gen­
erated in addition to a list that indicates whether the
files common to both directories have the same contents.

SEE ALSO
cmp(l), diff(l).

l Zilog 1

DOG{l) Zilog DOG{l)

NAME
dog - controlled output flow filter for CRT previewing

SYNOPSIS
dog [file ...]

DESCRIPTION
Dog is a filter that allows examination of a continuous text
on a soft-copy terminal. Dog pauses after the first 23
lines of output. If RETURN is pressed, 23 more lines are
displayed.

If CTRL-D is pressed, 11 more lines are displayed so that
the file is scrolled. It is also possible to type positive
numbers to dog causing that many lines to be printed, or
negative numbers causing that many lines to be discarded
followed by a scroll.

The terminal is set to noecho mode by this program so that
the output can be continuous. The numbers and carriage
returns therefore do not show on the terminal.

SEE ALSO
cat(l), more(l), pr(l).

1 UCB 1

DU{l) Zilog DU(l)

NAME
du - summarize disk usage

SYNOPSIS
du [-ars] [files]

DESCRIPTION
Du gives the number of blocks contained in all files and
(recursively) directories within each directory and file
specified by the names argument. The block count includes
the indirect blocks of the file. If names is missing, . is
used.

Absence of an option causes an entry to be generated for
each directory only. Du is normally silent about direc­
tories that cannot be read, files that cannot be opened,
etc.

A file with two or more links is only counted once.

OPTIONS
-a Cause an entry to be generated for each file.

-r Ca.use du to generate messages in cases where files and
directories cannot be opened or read.

-s Ca.use only the grand total (for each of the specified
na.mes) to be given.

LIMITATIONS

1

If the -a option is not used, non-directories given as argu­
ments are not listed.

If there are too many distinct linked files, du will count
the excess files more than once.

Files with holes in them will get an incorrect 'block count.

Bell 1

ECHO (l} Zilog ECHO (1)

NAM.E
echo - echo (print) arguments to the standard output (termi­
nal)

SYNOPSIS
echo -n] ar~l] •••

DESCRIPTION
Echo writes its arguments separated by blanks and terminated
by a new-line on the standard output. It also understands
C-like escape conventions; beware of conflicts with the
shell's use of \:

\b backspace
\c print line without new-line
\f form-fe!ed
\n new-line
\r carriage return
\t tab
\\ backslash
\,!! the 8-bit character whose ASCII code is the 1-, 2-

or 3-digit octal number _!!, which must start with a
zero.

Echo is useful for producing diagnostics in command files
and for sending known data into a pipe.

OPTIONS
-n No newline is added to the output.

EXAMPLE

SEE ALSO

% echo this is using the echo command
this is using the echo command

csh (1) , echo (lC) , echo2 (1).

1 Bell 1

ECHO(lC) Zilog ECHO(lC)

NAME
echo - echo {print) arguments to the standard output (termi­
nal)

SYNOPSIS
echo -n]

DESCRI PTI Otil
Echo is both an internal shell command, and an external pro­
gram, it writes its arguments separated by blanks and ter­
minated by a new-line on the standard output. It also
understands C-like escape conventions~ beware of conflicts
with the shell's use of\:

\b backspace
\c print line without new-line
\f form-feed
\n new-line
\r carriage return
\t tab
\\ backslash
'~ the 8-bit character whose ASCII code is the 1-, 2-

or 3-digit octal number _!!, which must: start with a
zero.

Echo is useful for producing diagnostics in command files
and for sending known data into a pipe.

OPTIONS
-n No newline is added to the output.

EXAMPLE
% echo this is using the echo command
this is using the echo command

SEE ALSO
csh (1) , echo (1) , echo 2 (1) •
The C Shell in the ZEUS Utilities Manual

1 UCB 1

ECH02(1) Zilog

NAME
echo2 - echo (print) arguments to standard error

SYNOPSIS
echo2

DESCRIPTION

-n] [arguments • • •]

ECH02(1)

Echo2 writes its arguments separated by blanks and ter­
minated by a newline on the standard error.

OPTIONS
-n No newline is added to the output.

SEE ALSO

1 Zilog 1

ED(l) Zilog ED(l)

NAME
ed - tE!Xt editor

SYNOPSIS
ed [-] [-x] [file]

DESCRIPTION

1

Ed is the standard text editor.

If a file argument is given, ed simulates an e command on
the na.med file; that is, the file is read into ed's buffer
for editing.

Ed operates on a copy of any file it is editing; changes
made i.n the copy have no effect on the file until a w
(write) command is given. The copy of the text being edited
resides in a temporary file called the buffer.

Commands to ed have a simple and regular structure: zero or
more addresses followed by a single character command, pos­
sibly followed by parameters to the command. These
addresses specify one or more lines in the buffer. Missing
addresses are supplied by default. Only one command can
appear on a line.

Certain commands allow the addition of text to the buffer.
While ed is accepting text, it is said to be in input mode.
In this mode, no commands are recognized; all input is
merely collected. Input mode is left by typing a period (.)
alone at the beginning of a line.

Ed supports a limited form of regular expression notation.
A regular expression specifies a set of strings of charac­
ters. A member of this set of strings is said to be matched
by the regular expression. In the following specification
for regular expressions the word "character" means any char­
acter but new line.

1. Any character except a special character matches
itself. Special characters are the regular
expression delimiter plus \,[, and sometimes A *,
$.

2. A • matches any character.

3. A\ followed by any character except a digit or ()
matches that character.

4. A nonempty string s bracketed [s] (or [As])
matches any character in (or not in) s. In s; \
has no special meaning, and] can appear- only- as
the first letter. J\ substring a-b, with a and b

Bell 1

ED(l)

2

5.

Zilog ED(l)

in ascending ASCII order, stands for the inclusive
range of ASCII characters.

A regular expression of form 1-4 followed by *
matches a sequence of 0 or more matches of tl1e
regular expression.

6. A regular expression, x, of form 1-8, bracketed
\(x\) matches what x matches.

7. A \ followed by a digit n matches a copy of the
string that was matched by the bracketed regular
expression beginning with the nth \ (.

8. A regular expression of form 1-8, x, followed by a
regular expression of form 1-7, y-matches a match
for x followed by a match for y_, with the x match
being as long as possible while still permTtting a
y match.

9. A regular expression of form 1-8 preceded by A (or
followed by $), is constrained to matches that
begin at the left (or end at the right) end of a
line.

10. A regular expression of form 1-9 picks out the
longest among the leftmost matches in a line.

11. An empty regular expression stands for a copy of
the last regular expression encountered.

Regular expressions are used in addresses to specify lines
and in the substitution command to specify a portion of a
line which is to be replaced. To use one of the regular
expression metacharacters as an ordinary character, precede
that character by \. This also applies to the character
bounding the re9ular expression (often /) and to \ itself.

To understand addressing in ed, it is necessary to know that
at any time there is a current line. Generally speaking,
the current line! is the last line affected by a command;
however, the e!ffect on the current line is discussed under
the description of the command. Addresses are constructed
according to the following rules:

1. The dot (.) addresses the current line.

2. The ($) addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the
buffer.

Bell 2

ED(l)

3

Zilog ED(l)

4. 'x addresses the line marked with the name x,

5.

which must be a lowercase letter. Lines are
marked with the k command described below.

A regular expression enclosed in
addresses the line found by searching
the current line and stopping at the
containing a string that matches
expression. If necessary, the search
to the beginning of the buffer.

slashes (/)
forward from
first line

the regular
wraps around

6. A regular expression enclosed in queries (?)
addresses the line found by searching backward
from the current line and stopping at the first
line containing a string that matches the regular
expression. If necessary, the search wraps around
to the end of the buffer.

7. An address followed by a plus sign (+) or a minus
sign (-) followed by a decimal number specifies
that address plus (or minus) the indicated number
of lines. The plus sign can be omitte!d.

8. If an address begins with + or - the addition or
subtraction is taken with respect to the current
line; for example, -5 is understood te> mean .-s.

9. If an address ends with+ (or -), then 1 is added
(or subtracted). As a consequence of this rule
and rule 8, the address refers to the line
before the current line. Trailing + and - charac­
ters have cumulative effect, so -- refers to the
current line less 2.

10. To maintain compatibility with earlier versions of
the editor, the character in ctddresses is
equivalent to -.

Commands can require zero, one, or two addresses. Commands
that require no addresses regard the presence of an address
as an E!rror. Commands that accept one or two addresses
assume default addresses when insufficient onE~s are given.
If mon~ addresses are given than such a command requires,
the last one or two (depending on what is accepted) are
used.

Addresses are separated from each other by a comma (.).
They can also be separated by a semicolon (:). In this case
the current line, dot (.) is set to the previous address
before the next address is interpreted. This fE!ature can be
used to determine the starting line for forward and backward
searchE~s (/ or ?) . The second address of any two-address

Bell 3

ED(l)

4

Zilog ED(l)

sequence must correspond to a line following the line
corresponding to the first address.

In the followin9 list of ed commands, the default addresses
are shown in parentheses; the parentheses are not part of
the address.

It is generally illegal for more than one command to appear
on a line. However, most commands can be suffixed by p or
by 1, in which case the current line is either printed- or
listed respectively in the following way:

(•) a
<text>

The append command reads the given text and appends it
after the addressed line. Dot is left on the last line
input, if there were any, otherwise at the addressed
line. Address 0 is legal for this command; text is
placed at the beginning of the buffer.

(., .)c
<text>

The change command deletes the addressed lines, then
accepts input text that replaces these lines. Dot is
left at thE~ last line input; if there were none, it is
left at the line preceding the deleted lines.

(., .)d
The delete command deletes the addressed lines from the
buffer. The line originally after the last line
deleted becomes the current line; if the lines deleted
were originally at the end, the new last line becomes
the current line.

e filename
The edit command causes the entire contents of the
buffer to be deleted, and then the named file to be
read in. Dot is set to the last line of the buffer.
The number of characters read is typed. Filename is
retained for possible use as a default file name in a
subsequent r or w comrnand. If filename is missing, the
retained name is-used.

E filename
This command is the same as e, except that no diagnos­
tic results when no w has]?een given since the last
buffer alteration.

f filename
The filename command prints the currently retained file

Bell 4

ED(l)

5

Zilog ED(l)

name. If filename is given, the currently retained
file name is changed to filename.

(l,$)g/regular expression/command list

(.) i

In the global command, the first step is to mark every
line that matches the given regular expre!ssion. Then
for every such line, the given command list is executed
with dot initially set to that line. A si.ngle command
or the first of multiple commands appears cm the same
li.ne with the global command. All lines of a multi­
line list except the last line must be ended with \.
A, i, and c commands and associated input are permit­
ted ;-the dot-terminating the input mode can be omitted
if: it is on the last 1 ine of the command list. The
commands g and v are not permitted in the command list.

<text>

This command inserts the given text before the
addressed line. Dot is left at the last line input,
or, if there were none, at the line before the
addressed line. This command differs from the a com­
mand only in the placement of the text.

(., .. +l)j
This command joins the addressed lines into a
line; intermediate newlines simply disappear.
lE~ft at the resulting line.

(•)kx

single
Dot is

Tfi"e mark command marks the addressed line with name x,
which must be a lowercase letter. The address form 1 x
addresses this line.

(., .)1
The list command prints the addressed lines in an unam­
biguous way: nongraphic characters are printed in two­
digit octal, and long lines are folded. The 1 command
can be placed on the same line after any non-I/O com­
mand.

(., •)ma
The move command repositions the addressed lines after
the line addressed by a. The last of thE! moved lines
bE~comes the current line-:

(., ..)p
The print command prints the addressed linE!S. Dot is
lE~ft at the last line printed. The ,e command can be
placed on the same line after any non-I/O command.

Bell 5

ED(l)

6

Zilog ED(l)

(., .)P
This command is a synonym for p.

q The quit command causes ed to exit. No automatic write
of a file is done.

Q This command is similar to q, but no diagnostic results
when no w has been given since the last buffer altera­
tion.

($)r filename
The read command reads in the given file after the
addressed line. If no file name is given, the retained
file name, if any, is used (e and f commands). The
file name is retained if-there was no retained file
name already. Address 0 is legal for r and causes the
file to be read at the beginning of the ·buffer. If the
read is successful, the number of characters read is
typed. Dot is left at the last line read in from the
file.

(., .)s/regular expression/replacement/ or,
(., .)s/regular expression/replacement/g

The substitute command searches each addressed line for
an occurremce of the specified regular expression. On
each line in which a match is found, all matched
strings are replaced by the replacement specified, if
the global replacement indicator g appears after the
conunand. If the global indicator does not appear, only
the first occurrence of the matched string is replaced.
It is an error for the substitution to fail on all
addressed lines. Any character other than space or
newline can be used instead of / to delimit the regular
expression and the replacement. Dot is left at the
last line substituted.

An ampersand (&) appearing in the replacement is
replaced by the string matching the regular expression.
The special meaning of & in this context can be
suppressed by preceding it by \. The characters \n,
where n is a digit, are replaced by the text matched°""1)y
the n-th regular subexpression enclosed between \{ and
\). When nested subexpressions in parentheses are
present, n is determined by counting occurrences of \(
starting fi;om the left.

Lines can be split by substituting new line characters
into them. The new line in the replacement string must
be escaped by preceding it by \.

(•I •)ta
ThTs command acts like the m command, except that a

Bell 6

ED(l)

7

Zilog ED(l)

copy of the addressed lines is placed after address a
that can be 0. Dot is left on the last line of the
copy.

(., .)u
'I'he undo command restores the preceding contents of the
current line, which must be the last li.ne in which a
substitution was made.

(1, $)v/regular expression/command list
This command is the same as the global command ~ except
that the command list is executed ~ with dot initially
set to every line except those matching the regular
expression.

(1, $)w filename
The write command writes the addressed lines onto the
given file. If the file does not exist, it is created
mode 666 (readable and writable by everyone). The file
name is retained if there was no retained file name
already. If no file name is given, the retained file
name, if any, is used (e and f commands). Dot is
unchanged. If the command is successful, the number of
characters written is printed.

(l,$)W filename
This command is the same as w, except that the
addressed lines are appended to the file.

x A key string is demanded from the standard input.
La.ter r, e and w commands encrypt and decirypt the text
w:ith this key by-the algorithm of crypt(!). An expli­
citly empty key turns off encryption.

($) = The line number of the addressed line is t~{ped. Dot is
unchanged by this command.

!<shell command>
The remainder of the line after the 1 is sEmt to sh(1)
to be interpreted as a command. Dot is unchanged.

(.+!)<newline>
An address alone on a line causes the addre~ssed line to
be printed. A blank line alone is equivalent to .+lp:
it is useful for stepping through text.

If an interrupt signal {ASCII DEL) is sent, ed prints a ?
and returns to its command level.

Some size limitations are 512 characters per line, 256 char­
acters per global command list, 64 characters pe!r file name,
and 12BK characters in the temporary file. The limit on the

Bell 7

ED(l) Zilog ED(l)

number of line~s depends on the amount of core: each line
takes 1 word.

A line of text in append (11 a"), change ("c") or insert ("i")
commands should not exceed 256 characters.

When reading a file, ed discards ASCII NUL
all characters after the last newline.
files containing non-ASCII characters.

characters and
It does not read

OPTIONS
-x An x command is simulated first to handle an encrypted

file.

Suppress the printing of character counts by e, r, and
w commands.

FILES
/tmp/e*
ed.hup: work is saved here if terminal hangs up

SEE ALSO
The Zeus Line-Oriented text editor ED
The EX ReTere"nce Manual both in the--ZEUS Utilities Manual.
edit Tl), ex(l), vi(l), sed(l).

DIAGNOSTICS
"?name" for inaccessible file; 11 ? 11 for errors in commands

"?TMP" for temporary file overflow.

A q or e command is in error, unless a w has occurred since
the last buffer change. A second g or e is always obeyed.

LIMITATIONS

8

The 1 command mishandles DEL.

A 1 command cannot be subject to a ~ command.

Because 0 is an illegal address for a w command, it is not
possible to create an empty file with ed.

Bell 8

EDIT(!) Zilog EDIT(!)

NAME
edit - text editor for new or casual users

SYNOPSIS
edit [-r] name

DESCRIPTION
Edit i:3 a variant of the text editor ex(1) and is recom­
mended for new or casual users who wish to ui:;e a command­
orienb~d editor. The following is a brief introduction to
edit. A more complete basic introduction is provided by the
EX RefE~rence Manual. See ex(1) for other useful documents;
for example, documents on vi(l) for easily manipulating text
on a CRT terminal.

BRIEF INTRODUCTION

1

To edit the contents of an existing file, begin with the
command:

edit file

Edit makes a copy of the file and returns with the number of
lines and characters inthe file. To creatE~ a new file,

·make up a name for the file and run edit on it. This causes
an error diagnostic, but allows the edit to procede.

Edit prompts for commands with the character :. Editing an
existing file means there are some lines in edit's buffer
(its na.me for the copy of the file being edited). Most com-
mands to edit use its current line if a line number is not
specified. (The current line is the last line a.ffected by a
command.) Thus, to print the current line, enter £1 and
press RETURN. To delete the current line, enter the delete
command (d). Edit deletes the line and prints the new
current line (usually the line following the deleted line).
When the last line is deleted, the new last line becomes the
new current line.

To start with an empty file or to add some new lines, use
the append (a) command. Edit reads lines from the terminal
until it receives a line consisting of just a dot, then
places these lines a£ter the current line. The last line
typed then becomes the current line. The command insert (i)
is lik1e append, but places the lines before the current
line.

Edit sequentially numbers the lines in the buffer, starting
with 1 for the first line. The command 1 causes edit to
type this first line.

Change text within the current line by using the substitute
(s) corrunand. Enter s/old/new/ where old is tlu:! characters

UCB 1

E:DIT(l) Zilog EDI 1r(1)

2

to be replaced and new is the new characters.

The file command (f) tells how many lines there are in the
buffer being edited and says "[Modified]" if that number has
changed. After modifying a file in the buffer, replace the
original (unmodified) file with it by entering a write (w)
command. Leave the editor by issuing a quit (q) command.
If edit is run on a file, but it is not changed, it is not
necessary to wri.te the file. Trying to quit from edit after
modifying the buffer without writing it prints a warning
that there has been "No wri;te since last change" and edit
awaits another C!ommand. Issuing another quit command causes
the buffer to be! irretrievably discarded, and there is a
return to the shell.

By usin9 the delete and append commands and giving line
numbers to see! lines in the file, any changes can be made.
The following commands are handy, however, if edit is used
more than a few times.

The change command (c) changes the current line to a
sequence of li.nes supplied. To change more than one line,
give the line numbers of the lines to be changed; for exam­
ple, "3,5change." Lines can be printed this way too; for
example, "1, 23p 111 prints the first 23 lines of the file.

The undo conunand (u) reverses the effect of the last conunand
that changed the~ buffer. Thus, if a substitute command does
not produce the desired results, enter u and the old con­
tents of the line will be restored.- An undo command can
also act on itse!lf. Edit gives a warning message when com­
mands affect more than .one line of the buffer. If the
amount of change! seems unreasonable, issue an undo and see
what happened. If the change is ok, then enter undo again
to get back the changes made before the first undo. Com­
mands such as write and quit cannot be undone.

To look at the next line in the buffer, press RETURN. To
look at a numbE~r of lines, press "'D (control key and, while
it is held down, D key, rather than carriage return). This
displays a half screen of lines on a CRT or 12 lines on a
hardcopy terminal. The text around the current location can
be scanned by giving the z. command. The current line is
then the last line printed. -To get back to the line before
the z command,, type " The z command can also be given
other-following characters: z- prI"nts a screen of text (or
24 lines) ending at the current line; z+ prints the next
screen. A numbE~r of lines can be specified with the z com­
mand, for example "z.12" prints 12 lines. This method of
giving counts works in general; thus, five 5 lines of text
starting with the current line can be deleted with the com­
mand d5.

UCB 2

8DIT(l) Zilog EDIT(l)

Search the file for strings by giving conunands of the form
/text/ to search forward for text or ?text? to search back­
ward for text. If a search reaches the end of the file
without finding the text, it wraps around and continues to
search to the line where the search command was issued. A
useful feature here .is a search of the form /""text/ which
searches for text at the beginning of a line. Similarly
/text$/ searches for text at the end of a line. The trail­
ing / or ? can be omitted in these conunands.

The current line has a symbolic name dot (.); this is most
useful in a range of lines, as in .,$print that prints the
rest of the lines in the file. To get to the last line in
the file, use its symbolic name $. Thus, the conunand $
delete or $d deletes the last line in the file. Arithmetic
with line references is also possible. Thus, the line $-5
is the fifth before the last line, and .+20 is 20 lines
after the present line.

The current line is printed in response to a .- entry.
This is useful to move or copy a section of text within a
file or between files. Find out the first and last line
numbers to copy or move (say 10 to 20). For a move, enter
10,20move "a which deletes these lines from the file and
places them in a buffer named a. Edit has 26 such buffers
named a through z. Enter "a move -: to put the contents of
buffer·- a after - the current line. To move or copy these
lines between files, give an edit (e) command after copying
the lines, following it with the name of the other file .to
edit; for example, edit chapter2. By changing move to~,
a pattern can be established for copying lines. If the text
to move or copy is all within one file, enter 10,20move $.
It is not necessary to use named buffers in this case.

OPTIONS
-r Recover named files after an editor or system crash;

the last saved version is retrieved.

SEE ALSO
ed(l), ex{l), vi{l), sed(l).
EX Reference Manual in the ZEUS Utilities Manual

LIMITATIONS
See ex (1) .

3 UCB 3

ENV(l) Zilog ENV{l)

NAME
env - set environment for command execution

SYNOPSIS
env [-] [name=value] ... [command args]

DESCRIPTION
Env obtains the current environment, modifies it according
to its arguments, then executes the conunand with the modi­
fied environment. Arguments of the form name=value are
merged into thE~ inherited environment before the command is
executed.

If no command is: specified, the resulting environment is
printed, one name=value pair per line.

OPTIONS

SEE ALSO

Cause the i.nherited environment to be ignored com­
pletely, so that the command is executed with exactly
the environment specified by the arguments.

sh(l), csh(l), exec(2), environ(S).

1 Bell l

EQN(l) Zilog EQN(l)

NAME
eqn, neqn, checkeq typeset mathematics

SYNOPSIS
eqn [-dxy] [-pn]
neqn [-dxy] [-pn]
checkeq [file

[-sn]
[-sn]

[-fn]
[-fn]

[file]
[file]

DESCRIPTION

1

Eqn is a troff (l) preprocessor for typesetting mathematics
on a Graphic Systems phototypesetter, neqn on terminals.
Usage is almost always

eqn file •.• I troff
n,eqn file ••• I nroff

If no files are specified, these programs read from the
standard input. A line beginning with '.EQ' marks the start
of an equation; the end of an equation is marked by a line
beginning with '.EN'. Neither of these lines is altered, so
they may be defined in macro packages to get centering,
numbering, etc. It is also possible to set two characters
as 'delimiters'; subsequent text between delimiters is also

·treated as eqn input. Delimiters may be set to characters x
and y with the command-line argument -dxy or (more commonly)
with- ''delim xy' between .EQ and .EN-.- The h~ft and right
delimiters maybe identical. Delimiters are turned off by
'delim off'. All text that is neither between delimiters
nor between .EQ and .EN is passed through untouched.

The program checkeq reports missing or unbalanced delimiters
and .EQ/.EN pairs.

Tokens within eqn are separated by spaces, tabs, newlines,
braces., double quotes, tildes or circumflexes. Braces {}
are used for grouping; generally speaking, anywhere a single
character like x could appear, a complicated construction
enclosed in braces may be used instead. Tilde ·· represents
a full space in the output, circumflex A half as much.

Subscripts and superscripts are produced with the keywords
sub and sup.

Thus x sub i makes: - -- -

x" 1

a sub i ~ 2 produces:

Bell 1

EQN(l) Zilog EQN(l)

2

.2
a· 1

and ~ sup {~ sup 2 + y sup ~} gives

x2+y2
e

Fractions are made with over: a over b yields:

a
b

sqrt makes square roots: 1 over sqrt {ax sup 2 +bx+£}
results in:

1

\jax 2+bx+c

The keywords from and to introduce lower and upper limits on
arbitrary things:

n

n~~~o~xi

is made with lim from {_!!-> inf } sum from 0 to E. ~ sub _!_.

Left and right brackets, braces, etc., of the right height
are made with left and right: left [~ sup ~ + y sup ~ over
alpha right] -=-l produces:

2
x 2+L = 1

A

The right clause is optional. Legal characters after left
and right are braces, brackets~ bars, c and f for ceiling
and floor, and "" for nothing at all (useful for a right­
side-only bracket) •

vertical piles of things are made with pile, lpile, cpile,
and rpile: pile {~ above b above c} produces:

a
b
c

There can be an arbitrary number of elements in a pile.
lpile left-justifies, pile and cpile center, with different
vertical spacing, and rpile right justifies.

Bell 2

EQN(l) Zilog EQN{l)

3

Matrices are made with matrix: matrix { lcol { x sub i above
y sub ~~ } ecol { 1 above 2 } } produces=--

x. 1
l

2

In addition, there is rcol for a right-justified column.

Diacritical marks are made with
bar, VE~C, dyad, and under: .! dot

.
x==f{t)

y dotdot bar n under is:

y = n

and x vec is:

x = y

dot, dotdot,
= !_{.:~) bar is:

hat, tilde,

Sizes and font can be changed with size n or size +n, roman,
italic,. bold, and font n. Size and fonts can be changed glo­
bally in a document by ~size n and gfont !!.r or by the
command-line arguments -sg and---f!!..

Normally subscripts and superscripts are reduced by 3 point
sizes from the previous size; this may be changed by the
command-line argument -P!!.·

Successive display arguments can be lined up. Place mark
before the desired lineup point in the first equation; place
lineup at the place that is to line up vertically in subse­
quent e!quations.

Shorthands may be defined or existing keywords redefined
with define: define thing % replacement % defines a new
token called thing which will be replaced by replacement
whenever it appears thereafter. The % may be any character
that does not occur in replacement.

Keywords like sum (sum) int {int) inf (inf) and short­
hands like >-;;-----(>=) -> (->) , ana-f= { !=) are racog­
nized. Greek letters are spelled out in the desired case,
as in alpha or GAMMA. Mathematical words like sin, cos, log
are made Roman automatically. Troff (l) four-character
escapes like \{bs can be used anywhere. Strings enclosed in
double quotes " ••• " are passed through untouched; this per­
mits keywords to be entered as text, and can be used to

Bell 3

EQN(l) Zilog EQN (1)

communicate with troff when all else fails.

SEE ALSO

BUGS

4

troff(l), tbl(l), ms(7), eqnchar(7).
NROFF/TROFF User's Manual in the ZEUS Utilities Manual

To embolden digits, parens, etc., it is necessary to quote
th em, as in ' b o 1 d "12 • 3 " ' •

UCB 4

ERROR(l) Zilog ERROR(l)

NAME
error - analyze and disperse compiler error messages

SYNOPSIS
error [-I ignoref ile

[·-v] [name]
[-n] [-q] [-s] [·-t suffixlist

DESCRIPTION

1

Error analyzes and optionally disperses the diagnostic error
messages produced by a number of compilers and language pro­
cessors to the source file and line where the errors
occurred. It can replace the painful, traditional methods
of scribbling abbreviations of errors on paper, and permits
error messages and source code to be viewed simultaneously
without machinations of multiple windows in a screen editor.

Error looks at the error messages, either from the specified
file name or from the standard input, and attempts to deter­
mine which language processor produced each er1:or message,
determines the source file and line number to which the
error message refers, determines if the error message is to
be ignored or not, and inserts the (possibly slightly modi­
fied) e~rror message into the source file as a comment on the
line preceeding to which the line the error message refers.

Error messages which can't be categorized by language pro­
cessor or content are not inserted into any file, but are
sent to the standard output. Error touches source files
only after all input has been read. By specifying the -q
query option, the user is asked to confirm any potentialiy
dangerous (such as touching a file) or verbose action. Oth­
erwise error proceeds on its merry business. If the -t
touch option and associated suffix list is given, error will
restrict itself to touch only those files with suffices in
the suffix list.

Error can be asked (by specifying -v) to invoke vi(l) on the
files in which error messages were inserted; this obviates
the need to remember the names of the files with errors.

Error is intended to be run with its standard input con­
nected via a pipe to the error message source. Some
language processors put error messages on their standard
error file; others put their messages on the standard out­
put. Hence, both error sources should be piped together
into error. For example, when using the csh syntax,

make -s lint I& error -q -v

will analyze all the error messages produced by whatever
programs make(l) runs when making lint.

UCB 1

ERROR(l) Zilog ERROR(l)

2

Error knows about the error messages produced by: make, cc,
cpp, ccom, as, lint, and f77. Error knows a standard format
for error-messa9es produced by the language processors, so
is sensitive to changes in these formats. Error messages
are restricted to be on one line. Some error messages refer
to more than one line in more than one file; error will
duplicate the error messag~ and insert it at all of the
places referenced.

Error will do one of six things with error messages.

synchronize

discard

nullify

Some language processors produce short errors
describing which file it is processing. Error
uses these to determine the file name for
languages that don't include the file name in each
error message. These synchronization messages are
consumed entirely by error.

Error messages from lint(l) that refer to one of
the two lint(l) libraries, /usr/lib/llib-lc and
/usr/lib/llib-port are discarded,~-t-o~-prevent
accidently touching these libraries. Again, these
error messages are consumed entirely by error.

Error messages from lint(l) can be nullified if
they refer to a specific function, which is known
to generate diagnostics which are not interesting.
Nullified error messages are not inserted into the
source file, but are written to the standard out­
put. The names of functions to ignore are taken
from either the file named .errorrc in the user's
home directory, or from the file named by the -I
option. If the file does not exist, no error mes­
sages are nullified. If the file does exist,
there must be one function name per line.

not file specifiq
Error messages that can't be intuited are
together, and written to the standard
before any files are touched. They will
inserted into any source file.

file specific

grouped
output

not be

Error message that refer to a specific file, but
to no specific line, are written to the standard
output when that file is touched.

true errors
Error messages that can be intuited are candidates
for insertion into the file to which they refer.

UCB 2

ERROR(l) Zilog ERROR(l)

Only true error messages are candidates for inserting into
the file they refer to. Other error messages are consumed
entirely by error or are written to the standard output.
Error inserts the error messages into the source file on the
line preceeding the line the Language processor found in
error. Each error message is turned into a one line comment
for the language, and is internally flagged with the string
"###" at the beginning of the error, and "%%%" at the end of
the error. This makes pattern searching for errors easier
with an editor, and allows the messages to be easily
removed.

In addition, each error message contains the source line
number for the line the message refers to. A reasonably
formatted source program can be recompiled with the error
messages still in it, without having the error messages
themselves cause future errors. For poorly formatted source
programs in free format languages, such as C, it is possible
to insert a comment into another comment, which can wreck
havoc with a future compilation.

To avoid this, format the source program so there are no
language statements on the same line as the end of a com­
ment.

Error catches interrupt and terminate signals, and if in the
insertion phase, will orderly terminate what it is doing.

OPTIONS

3

-I ignorefile
Names file containing the names of the functions to
iqnore.

-n Do not touch any files; all error messages are sent to
the standard output.

-q The user is queried whether s/he wants to touch the
file. A "y" or "n" to the question is necessary to
continue. Absence of the -q option implies that all
referenced files (except those referring to discarded
error messages) are to be touched.

-s Print out statistics regarding the error categoriza­
tion. Not too useful.

-t Take the following argument as a suffix list. Files
whose suffixes do not appear in the suffix list are not
touched. The suffix list is dot separated, and "*"
wildcards work. Thus the suffix list:

".c.y.foo*.h"

UCB 3

ERROR(l) Zilog ERROR(l}

FILES

allows error to touch files ending with ".c", ".y",
". foo*" and ".h".

-v After all files have been touched, overlay the visual
editor vi(l) to edit all files touched, and positioned
in the first touched file at the first error. If vi(l)
can't be found, try ex(l) or ed(l) from standard
places.

-;.errorrc

/dev/tty

function names to ignore for lint
error messages
user's teletype

LIMITATIONS

4

Opens the teletype directly to do user querying.

Source files with links make a new copy of the file with
only one link to it.

Changing a language processor's format of error messages may
cause error to not understand the error message.

Error, since it is purely mechanical, will not filter out
subsequent errors caused by 'floodgating' initiated by one
syntactically trivial error. Humans are still much better
at discarding these related errors.

Error was designed for work on CRTs at reasonably high
speed. It is less pleasant on slow speed terminals, and has
never been used on hardcopy terminals.

UCB 4

EX (1) Zilog EX (1)

NAME
ex, edit - text editor

SYNOPSIS
ex

[-]
[-v]
[-ttag
[-r-]-
[-R]
[+[command]]
[-1]
file

edit [ex options

DESCRIPTION

1

Ex is the root of a family of editors: edit, ex, and vi. Ex
is a superset of ed, with the most notable extension being a
display editing facility. Display-based editing is the
focus of vi.

The available options are:

This option suppresses all editor prompts and printing
of charactet: counts output by e, r, and w commands;
this option is also useful in procissTng edi~or scripts
in command files.

-v This option causes vi to be invoked instead of ex.

-t tag
~he cursor will be positioned at the definition of ~

immediately after ex is entered.

-r This option is used to recover named f i 1 E~S after an
editor or system crash; the last savE~d version is
n~tr ieved.

-R This option is used to invoke a "read only" version of
ex.

+[command]
-'fiie editor beg ins by executing the command,, command; if

command is omitted, then the editor begins with the
cursor positioned at the last line of the file.

UCB 1

EX(l) Zilog EX (1)

-1 This sets up ex for LISP editing; that is, the editing
options, showmatch and lisp are set.

file Name of the file(s) to be edited.

The editor edit is convenient for casual users; it avoids
some of the complexities of ex.

To use a display-based editor on a CRT terminal, see vi (1),
a command that focuses on the display editing portion of ex.

DOCUMENTATION

FILES

The document The ZEUS Line-Oriented Text Editor -- Ed pro­
vides a comprehensIV'e introduction to edit assuming no pre­
vious knowledge of computers or the ZEUS system.

The Ex Reference Manual is a comprehensive and complete
manual for the command mode features of ex, but is not a
tutorial to learn from.

Introduction to Display Editing with vi introduces the
display editor vi and provides reference material on vi.

These documents can be found in the ZEUS Utilities Manual.

/usr/lib/ex?.?strings
/usr/lib/ex?.?recover
/usr/lib/ex?.?preserve
/etc/termcap
-;.exrc
/tmp/Exnnnnn
/tmp/Rxnnnnn
/usr/preserve

error messages
recover command
preserve command
describes capabilities of terminals
editor startup file
editor temporary
named buffer temporary
preservation directory

SEE ALSO
ed(l), grep(l), :sed(l), vi(l), termcap(S), environ(S), term­
list(7)

LIMITATIONS

2

The undo command causes all marks to be lost on lines
changed, then restored if the marked lines were changed.

Undo never clears the buffer modified condition.

The z command prints a number of logical rather than physi­
cal -lines. More than a screen full of output results if
long lines are present.

File input/output errors do not print a name if the command
line option - is used.

UCB 2

~X(l)

3

Zilog EX(l)

There is no easy way to do a single-scan ignoring case.

The editor does not warn if text is placed in named buffers
and not used before exiting the editor.

Null characters are discarded in input files, and cannot
appear in resultant files.

UCB 3

EXIT(lC)

NAME
exit - exit a shell

SYNOPSIS
exit
exit (expressio~}

DESCRIPTION

Zilog EXIT(lC)

The shell exits either with the value of the status variable
(first form} or with the value of the specified expression
(second form} • This command is ignored if the ignoreexit
variable is set.

SEE ALSO
break (lC} , logout (lC) •
The C Shell in the ZEUS Utilities Manual.

1 UCB 1

EXPAND(l) Zilog EXPAND(l)

NAME
expand - expand tabs to spaces

SYNOPSIS
expand -tabstop] -tabl,tab2, ••• ,tabn file •••]

DESCRIPTION

1

Expand processes the named files or the standard input writ­
ing the standard output with tabs changed into blanks.
Backspace characters are preserved into the output and
decrem1~nt the column count for tab calculations. Expand is
useful for pre-processing character files (before sorting,
lookinq at specific columns, etc.) that contain tab~.

If a single tabstop argument is given then tabs are set
tabstop spaces apart instead of the default 8. If multiple
tabstops are given then the tabs are set at those specific
columns.

Bell 1

EXPR(l) Zilog EXPR(l)

NAME
expr - evaluate arguments as an expression

SYNOPSIS
expr arg

DESCRIPTION

1

The arguments are taken as an expression. After evaluation,
the result is written on the standard output. Each token of
the expression is a separate argument.

The operators and keywords are listed here. The list is in
order of increasing precedence, with equal precedence opera­
tors grouped.

expr I . exldpr h f. . f . t . . th 11 h y1e s t e irst expr 1 1 is ne1 er nu nor 0; ot -
erwise, yields the second expr

expr & expr
yields the first expr if neither expr is null or 0;
otherwise, yields 0

expr relop expr where relop is one of <, <=, =, !=, >=, or
>, it yields 1 if the indicated comparison is true, "0"
if false. The comparison is numeric if both expr are
integers, otherwise, it is lexicographic

expr + expr

expr - expr
addition or subtraction of the arguments

expr * expr

expr I expr

expr % expr
multiplication, division, or remainder of the arguments

expr : expr
The matching operator compares the string first argu­
ment with the regular expression second argument; regu­
lar expression syntax is the same as that of ed(l).
The \(••• \) pattern symbols can be used to select a
portion of the first argument; otherwise, the matching
operator yields the number of characters matched and
returns 0 on failure

substr string start length
yields the substring of length characters of string
starting at the start (numeric index, 1 is the first

Bell l

EXPR(l) Zilog EXPR(l)

character of string)

length string
yields the length in bytes of string

index string target
yields the index of the first occurrence in string of
any one of the characters in target. The characters of
target are not treated as a string; rather, they are
treated as individual characters.

expr)
--parentheses for grouping

Examples:

To add 1 to the shell variable~, enter:

a='expr $a+ l'

To find the filename part (least significant part) of the
path name stored in variable ~, that can contain /:

ex pr $ a : " • * /\ (. * \) " " I " $ a

Note the quoted shell metacharacters.

SEE ALSO
csh(l), ed(l), sh(l), test(l)

DIAGNOSTICS
Expr returns the following exit codes:

0 if the expression is neither null nor 0
1 if the expression is null or 0,
2 for invalid expressions

LIMITATIONS

2

substr does not follow the system standard of counting from
0.

Bell 2

FILE(l) Zilog FILE(l)

NAME
file - determine file type

SYNOPSIS
file [-f] file

DESCRIPTION
File performs a series of tests on each argument in an
attempt to classify it. If an argument appears to be ASCII,
file examines the first 512 bytes and tries to guess its
language. If the -f option is given, the next argument is
taken to be a file containing the names of the files to be
examined.

LIMITATIONS

1

It often makes mistakes. In particular, it often suggests
that command files are C programs. It also has trouble dis­
tinguishing between PLZ/ASM and PLZ/SYS programs.

Bell 1

PIND(l) Zilog FIND(l)

NAME
find - find files

SYNOPSIS
find pat~-name-list expression

DESCRIPTION
Find recursively descends the directory hierarchy for each
path name in the path-name-list (i.e., one or more path
names) seeking files that matchaBoolean expression written
in the primaries given below. In the descriptions, the
argument n is used as a decimal integer where +n means more
than .!!_, -n means less than !:!_, and ~ means exactly n.

The primaries can be combined using the followinsr operators
(in order of decreasing precedence):

1) The! negation of a primary (1 is the unary not opera­
tor).

2) Concatenation of primaries (the and ope~ration
implied by the juxtaposition of two primaries).

3) Alternation of primaries {o is the or operator).

is

OPTIONS
-atime n True if the file has been acce!ssed in n

days.

-cpio dE~vice

-ctime n

-exec cr:nd

-group 9name

-links n

-mtime n

-name file

1

Write the current file on device in cpio{S)
format (5120 byte records).

True if the file has been changed in n days.

True if the executed cmd returns a zero
value as exit status.~e end of cmd must
be punctuated by an escaped semicolon. A
command argument {} is replaced by the
current path name.

True if the file belongs to the 9roup gname.
If gname is numeric and does not appear in
the /etc/group file, it is taken as a group
ID.

True if the file has n links.

True if the file has been modified in n
days.

True if file matches the current file name.
Normal shell argument syntax may be used if

Bell 1

FIND(l) Zilog FIND(l)

-newer file

-ok cmd

-perm onum

-print

-size n

-type c

-user uname

(expression }

escaped (watch out for [,? and *).

True if the current file has been modified
more recently than the argument file.

Like -exec except that the generated command
line is printed with a question mark first,
and is executed only if the user responds by
typing y.

True if the file permission flags exactly
match the octal number onum (see chmod.(l)).
If onum is prefixed by a---minus sign, more
flag-""bits (017777, see stat(2)) become sig­
nificant and the flags are compared:

(flags&onum)==onum

Always true; causes the current path name to
be printed.

True if the file is n blocks long (512 bytes
per block).

True if the type of the file is c, where c
is b, c, d, p, or f for block special file~
character special file, directory, fifo
{a.k.a named pipe), or plain file.

True if the file belongs to the user uname.
If uname is numeric and does not appear as a
login name in the /etc/passwd file, it is
taken as a user ID.

True if the parenthesized expression is true
(parentheses are special to the shell and
must be escaped).

EXAMPLE

FILES

To find all filE~s named a.out that have not been accessed
for a weel<::

find / -name a.out -atime +7 -print

/etc/passwd, /etc/group

SEE ALSO
cpio{l), sh{l), test{l), stat(2), cpio{S), fs{5).

2 Bell 2

FLOW{l) Zilog FLOW{l)

NAME
flow - flow analysis of C programs

SYNOPSIS
flow [-bcors] [output-suffix] files ...

DESCRIPTION
Flow performs a flow analysis on the named files producing 3
tables: which functions call which; which functions are
called by which; which functions reside in which source
files. ~1ese tables are called flow.CALLS, flow.CALLEDBY and
flow.RESIDES respectively.

To creatE:!! these tables, first the C source files must be
converted into trace files. Then any trace files specified
on the command line as well as any trace files produced are
processed to create the needed tables. In order to facili­
tate the use of flow with make{l) the 'trace files' may be
saved.

The 'filHs' specified on the command line can be any mixture
of C source files and trace files. Remember that trace files
are name 'file.t'.

OPTIONS
-b GenE~rate the 'CALLEDBY' file.

FILES

-c

-o

GenE~rate the 'CALLS' table.

Rather than using the suffix 'flow' for naming the out­
put tables, use the suffix supplied by the user, which
is t~e next argument.

-r Generate the 'RESIDES' file.
The default for the 'table' flags are to produce all
tables.

-s Sa VE! the trace files. Trace file names are the 'root­
name~ • of the C source file, with a '.t' appended. For
example, if the source file is adb.c, its trace file
would be adb.t.

/tmp/flow[ABCDE] temporary processing files
file.i Files produced by the C pre-processor
file.t Trace files

SEE ALSO
cc{l)

DIAGNOTICS
Diagnostics are intended to be self-explanatory. However

1 Zilog 1

FLOW(l)

when
occur.

LIMITATIONS

Zilog FLOW(l)

processing interrupts, misleading diagnostics can

Since the output tables are produced with the help of tbl(l)
and nroff(l), the process is slow.

2 Zilog 2

FOREACH(lC) Zilog FOREAC H (lC)

N,AME
foreach - C Shell flow control loop initiation

SYNOPSIS
foreach name

command
end

list

DESCRIPTION
The variable name is successively set to each member of
wordlist: and the sequence of commands between this command
and the ·matching end are executed. Both foreac:h and end
must appear alone on separate lines.

When this command is read from the terminal, the loop is
read up once prompting with ? before any statements in the
loop are executed. A typing mistake in a loop at the termi­
nal can be rubbed out.

FILES
/bin/csh

SEE ALSO

1

break(lC), breaksw(lC), continue(lC), exit(lC),
nohup { lC), onintr (lC) , switch (lC), while (lC) •
The C Shell in the ZEUS Utilities Manual

UCB

if (lC) ,

1

GET (1) Zilog GET(l)

NAME
get - get a version of an secs file

SYNOPSIS
get [-rSID]

[-cCutoff]
[-e]
[-b]
[-ilist]
[-xlist]
[-kr­
[[-l[p]]
[-pmnsbgtJ
[-aseq-no.] file

DESCRIPTION

1

Get generates an ASCII text file from each named secs file
according to the specifications given by its keyletter argu­
ments, which begin with -. The arg.uments may be specified
in any order, but all keyletter arguments apply to all named
secs files. If at directory is named, get behaves as though
each file in the directory were specified as a named file,
except that non-SCCS files (last component of the path name
does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is
read; each line of the standard input is taken to be the
name of an secs file to be processed. Again, non-SCCS files
and unreadable files are silently ignored.

The generated text is normally written into a file called
the g-file whose name is derived from the SCCS file name by
simply removing the leadings.; (see also FILES, below).

Each of the keyletter arguments is explained below as though
only one secs file is to be processed, but the effects of
any keyletter argument applies independently to each named
file.

-rSID

-ccutof f

The SCCS IDentification string (SID) of the ver­
sion- (delta) of an SCCS file to be retrieved.
Table-1 below shows, for the most useful cases,
what version of an SCCS file is retrieved (as
well as the SID of the version to be eventually
created by delta(l) if the -e keyletter is also
used), as a function of the SID specified.

Cutoff date-time, in the form:

Y~[MM[DD[HH[MM[SS]])]]

No changes (deltas) to the SCCS file which were
created after the specified cutoff date-time are

Bell l

GET(l)

-e

-b

-ilist

2

Zilog GET(l)

included in the generated ASCII text file. Units
omitted from the date-time default to their max­
imum possible values; that is, -c7502 is
equivalent to -c750228235959. Any number of
non-numeric characters may separate the various 2
digit pieces of the cutoff date-time. This
feature allows one to specify a cutoff date in
the form: "-c77/2/2 9:22:25". ~te that this
implies that one may use the %E% and %U% identif­
ication keywords (see below) for nested gets
within, say the input to a send(l) command: ~~

-1get 11 -c%E% %U% 11 s.file

Indicates that the get is for the purpose of
editing or making---a change (delta) to the SCCS
file via a subsequent use of delta(!). The -e
keyletter used in a get for a particular version
(SID) of the SCCS file prevents further gets for
editing on the same SID until delta is executed
or the j (joint edit) flag is set fn the SCCS
file (see admin(l)). Concurrent use of get -e
for different SIDs is always allowed.

If the g-file generated by get with an -e
keyletter- rs--accidentally ruined in the process
of editing it, it may be regenerated by re­
executing the get command with the -k keyletter
in place of the -e keyletter.

secs file protection specified via the ceiling,
floor, and authorized user list stored in the
SCCS file (see admin(l)) are enforced when the -e
keyletter is used.

Used with the -e keyletter to indicate that the
new delta should have an SID in a new branch as
shown in Table 1. This keyletter is ignored if
the b flag is not present in the file (see
admin(l)) or if the retrieved delta is not a leaf
delta. (A leaf delta is one that has no succes­
sors on the secs file tree.)
Note: A branch delta may always be created from a
non-leaf delta.

A list of deltas to be included (forced to be
applied) in the creation of the generated file.
The list has the following syntax:

<list> : := <range> I <list> , <Jrange>
<range> ::=SID I SID - SID

Bell 2

GET(l)

-xlist

-k

-l.[p]

-p

-s

-rn

-n

-9

-t

3

Zilog GET(l)

SID, the SCCS Identification of a delta, may be
in any form shown in the ''SID Specified'' column
of Table 1. Partial SIDs are interpreted as
shown in the ''SID Retrieved' 1 column of Table l.

A list of deltas to be excluded (forced not to be
applie·d) in the creation of the generated file.
See the -i keyletter for the list format.

Suppresses replacement of identification keywords
(see below) in the retrieved text by their value.
The -k keyletter is implied by the -e keyletter.

Causes a delta summary to be written into an 1-
file. If -lp is used then an 1-file is not
created; the delta summary is written--on the
standard output instead. See FILES for the for­
mat of the 1-file.

Causes the text retrieved from the SCCS file to
be written on the standard output. No g-file is
created. .All output which normally goes - ~the
standard output goes to file descriptor 2
instead, unless the -s keyletter is used, in
which case it disappears.

Suppre:sses all output normally written on the
standard output. However, fatal error messages
(which always go to file descriptor 2) remain
unaffected.

Causes each text line retrieved
file to be preceded by the SID
insertE~d the text 1 ine in the
format is: SID, followed by
followed by the text line.

from the secs
of the delta that
SCCS file. The
a horizontal tab,

Causes each generated text line to be preceded
with the %M% identification keyword value (see
below) .. The format is: %M% value, followed by a
horizontal tab, followed by the text line. When
both the -m and -n keyletters are used, the for­
mat is: %M% value, followed by a horizontal tab,
folloWE!d by the -m keyletter generated format.

Suppresses the actual retrieval of text from the
SCCS file. It is primarily used to generate an
1-file, or to verify the.existence of a particu­
lar SID.

Used to access
(' 'top 1 1

) de 1 ta

Bell

the most recently created
in a given release (e.g., -rl),

3

GE'r (1)

-aseq--no.

Zilog GET(l)

or release and level (e.g., -rl.2).

The delta sequence number of the SCCS file delta
(version) to be retrieved (see sccsfile(S)).
This keyletter is used by the comb(l) command; it
is not a generally useful keyletter, and users
should not use it. If both the -r and -a
keyletters are specified, the -a keyletter is
used. Care should be taken when using the -a
keyletter in conjunction with the --e keyletter,
as the SID of the delta to be created may not be
what one expects. The -r keyletter can be used
with the -a and -e keyletters to control the nam­
ing of the SID of the delta to be crE~ated.

For ea.ch file processed, get responds (on the standard out­
put) with the SID being accessed and with the number of
lines retrieved from the secs file.

If th•3 -e keyletter is used, the SID of the delta to be made
appears after the SID accessed and before the number of
lines generated. If there is more than one namE~d file or if
a directory or standard input is named, each file name is
printed (preceded by a new-line) before it is processed. If
the -i keyletter is used included deltas are listed follow­
ing the notation ''Included''; if the -x keyletter is used,
excluded deltas are listed following the notation
''Excluded' ' .

TABLE 1. Determination of SCCS Identification String
==============================~=~====:=========================

SID*
Spec.

-b Key
Used

Other
Conditions

SID
Retrieved

SID of Delta
to be Created

=============================:=====:==========================
none
none

no
yes

R defaults to mR
R defaults to mR

mR.mL
mR.mL

mR. (mL+l)
mR. mL . (mB+ 1) . 1

=================================~============================

R
R
R
R

R

R

R.L
R.L

R.L

no
no
yes
yes

no
yes

R > mR
R = mR
R > mR
R = mR
R < mR and
R does not exist
Trunk succ.#
in release > R
and R exists

No trunk succ.
No trunk succ.
'rrunk succ.
in release > R

Bell

mR.mL
mR.mL
mR.mL
mR.mL

hR.mL**

R.mL

R.L
R.L

R.mL

R.l***
mR. (mL+l)
mR.mL. (mB+l) .1
mR.mL. (mB+l) .1

hR .rnL. (mB+l) .1

R.rnL. (mB+l) .1

R. (L+l)
R. L. (mB+l) .1

R • mL . (mB+ 1) • 1

4

GET(l) Zilog GET(l)

no
yes

No branch succ.
No branch succ.

R.L.B.mS
R.L.B.mS

R. L.B. (ms+ 1)
R • L • (mB + 1) • 1

R.L.B.S
R.L.B.S
R.L.B.S

no
yes

No branch succ.
No branch succ.
Branch succ.

R.L.B.S
R.L.B.S
R.L.B.S

R.L.B.(S+l)
R • L . (rnB+ 1) • 1
R . L . (rnB + 1) . 1

Code
R = release
L = level
B = branch
s = sequence!
m = maximum.

Thus, for example!,

R.mL = the maximum level number within release R;

R . L . (rnB+ 1) . 1
= the first sequence number on the new
maximum branch number plus one) of
release R.

branch (i.e.,
level L within

Note that if the SID specified is of the form R.L, R.L.B, or
R.L.B.S, each of the specified components must exist.

**

+

''hR'' is the highest existing release that is lower
than the specified, nonexistent, release R.

This is used to force creation of the first delta in a -·-new release.

Successor.

The -b keyletter is effective only if the b flag (see
admin(l)) is present in the file. An entry of - means
''irrelevant' ' .

This case applies if the d (default SID) flag is not
present in the file. If the d flag is present in the
file, then the SID obtained from the d-'flag is inter­
preted as if it had been specified on the command line.
Thus, one of the other cases in this table applies.

IDENTIFICATION .KEYWORDS

5

Identifying information is inserted into the text retrieved
from the SCCS filE~ by replacing identification keywords With
their value wherever they occur. The following keywords may
be used in the text stored in an secs file:

Bell 5

GET(l) Zilog GET(l)

Keyword
%M%

%1%

Value
Module name: either the value of the m flag in the
file (see admin(l)), or if absent, the name of the
secs file with the leading s. removed.

SCCS identification (SID) (%R%.%L%.%B%.%S%) of
the retrieved text.

%R% Release.
%L% Level.
%B% Branch.
%S% Sequence.
%D% Current date (YY/MM/DD).
%H% Current date (MM/DD/YY).
%T% Current time (HH:MM:SS).
%E% Date newest applied delta was created (YY/MM/DD).
%G% Date newest applied delta was created (IMM/DD/YY).
%U% Time newest applied delta was created (HH:MM:SS).
%Y% Module type: value of the t flag in the SCCS file

(see admin(l)).
%F% SCCS file name.
%P% Fully qualified secs file name.
%0% The value of the q flag in the file (see

admin(l)).
%C% Current line number. This keyword is intended for

identifying messages output by the program such as
''this shouldn't have happened' ' type errors. It
is not intended to be used on every line to pro­
vide sequence numbers.

%Z% The 4-character string @(t) recognizable by
what(1).

%W% A shorthand notation for constructing what(l)
strings for ZEUS program files.
%W% = %Z%%M%<horizontal-tab>%I%

%A% Another shorthand notation for constructing
what(l) strings for non-ZEUS program files.
%A% = %Z%%Y% %M% %I%%Z%

FILES

6

Several auxiliary files may be created by get. These files
are known generically as the g-file, 1-file, p-file, and z­
file. The letter before the hyphen is-called the~ag. An
a:uxI"liary file name is formed from the SCCS fil•e name: the
last component of all SCCS file names must be of the form
s.module-name, the auxiliary files are named by replacing
the leading s with the tag. The g-file is an exception to
this scheme: the g-file is named-by removing the s. prefix.
For example, s.xyz~c, the auxiliary file names would be
xyz.c, l.xyz.c, p.xyz.c, and z.xyz.c, respectively.

The ~-!ile, which contains the generated text, is created in
the current directory (unless the -p keyletter i:s used). A
g-file is created in all cases, whether or not any lines of
te~were generated by the get. It is owned lby the real

Bell 6

GE'I~ (1) Zilog GET(l)

7

user. If the -'k: keyletter is used or implied its mode is
644; otherwise its mode is 444. Only the real user need
have write permission in the current directory.

The l-file contains a table showing which
applied in generating the retrieved text.
created in the current directory if the -1
used; its mode is 444 and it is owned by
Only the real user need have write permission
directory.

deltas were
The 1-f ile is
keyletter is

the real user.
in the current

Lines in the l-!:ile have the following format:

a. A blank character if the delta was applied~
* otherwise.

b. A blank character if the delta was applied or
wasn't applied and ignored;
* if the delta wasn't applied and wasn't ignored.

c. A code indicating a ''special'' reason why the
delta was or was not applied:

''I'': Included.
''X'': Excluded.
''c'': Cut off (by a -c keyletter).

d. Blank.
e. SCCS identification (SID).
f. Tab character.
g. Date and time (in the form YY/MM/DD HH:MM:SS) of

creation.
h. Blank.
i. Login name of person who created delta.

The comment:s and MR data follow on subsequent lines,
indented one horizontal tab character. A blank line
terminates each entry.

The p-file is usced to pass information resulting from a get
with- an -e keylcetter along to delta. Its contents are also
used to prevent a. subsequent execution of get with an -e
keyletter for the same SID until delta .is executed or the
joint edit flag, j, (see ad~in(l)) is set in the secs file.
The p-file is created in the directory containing the SCCS
file and the eff~~ctive user must have write permission in
that directory. Its mode is 644 and it is owned by the
effective user. The format of the p-file is: the gotten
SID, followed by a blank, followed-by the SID that the new
delta will have ~~1en it is made, followed by a blank, fol­
lowed by the login name of the real user, followed by a
blank, followed by the date-time the get was executed, fol­
lowed by a blank and the -i keyletter argument if it was
present, followed by a blank and the -x keyletter argument
if it was present, followed by a new-line. There can be an
arbitrary number of lines in the p-file at any time; no two

Bell 7

Zilog GET(l)

lines can have the same new delta SID~

The z-file serves as a lock-out mechanism against simultane­
ous -updates. Its contents are the binary (2 bytes) process
ID of the command (i.e., get) that created it. The z-file
is created in the directory containing the SCCS file for the
duration of get. The same protection restrictions as those
for the p-file apply for the z-file. The z-file is created
mode 444.- ~~ - ~~ - ~--

SEE ALSO
admin(l), delta(!), help(l), prs(l), what(!), sccsfile(S).
Source Code Control System User'~ Guide in the ZEUS Utili­
ties Ma:nual

DIAGNOSTICS
Use help(l) for explanations.

LIMITATIONS

8

If the effective user has write permission (either expli­
citly or implicitly) in the directory containing the secs
files, but the real user doesn't, then only one file may be
named when the -e keyletter is used.

Rell 8

GETFILE(l) Zilog GETFILE(l)

NAME
getfile - transfer files from local to remote system

SYNOPSIS
getfile [-qfBb] filel [[-b] file2 ...]

DESCRIPTION
Getfile uploads one or more files to ZEUS from another ZEUS
system or a RIO System running the file transfer software of
the S-8000 Communication Package. This program is invoked
from the remotie system; therefore, remote(!) must be exe­
cuted first. Files are transferred one record at a time
along with a 1checksum to ensure the accuracy of the data.
Transfer of one file can be terminated by entering a
control-x. The entire transfer can be aborted by entering
an escape.

OPTIONS
-b The next file is considered to be a binary.

returns are not replaced by new lines.
Carriage

-B All file names on the line are treated as if they were
preceded by a -b. This is usually desirable for ZEUS­
to-ZEUS transfers.

-f The program suppresses all nonfatal error messages.

-q The program prints a query before replacing an existing
file of the same name as the one being transferred.

SEE ALSO
putfile(l), local(l), remote(l).

DIAGNOSTICS

1

"checksum error ... retry" Printed if the computed check­
sum does not mat•::h the transmitted checksum .

.. <filename> ... transfer aborted" Printed after a specific
number of retries, if a control-x or an escape is entered,
or if the transf1er failed (due to lack of space or bad
media).

"getfile: <nl> successful transfers <n2>
transfers" Prinbed at program termination.

unsuccessful

"<filename> ... unable to open file"
cannot be opened on either system.

Printed if the file

The program outputs a single dot (.) after each successful
transfer of a record. If the transfer appears to halt,
allow 20 seconds for a retry.

Zilog 1

GETNAME(l) Zilog GETNAME(l)

NAME
getNAME: - get NAME sections of manual for whatis/apropos
data ba.se

SYNOPSIS
getNAME: name

DESCRIPTION
Getname! reads the first few lines of each of the argument
manual section sources, and finds the .TH entry and the .SH
entry writing them to the standard output in a form suitable
for making into the whatis/apropos data base.

FILES
/usr/li.b/whatis

SEE ALSO

Eventual data base

apropos(!), makewhatis(l), whatis(l).

1 UCB 1

GETOPT(lC) Zilog

NAME
getopt - parse command opt.ions

SYNOPSIS
set getopt optstring $*

DESCRIPTION
Getopt is used to break up options in command lines for easy
parsing by shell procedures, and to check for legal options.

Optstring is a string of recognized option letters (see
getopt(3}); if a letter is followed by a colon, the option
is expected to have an argument which may or may not be
separated from it by white space.

Getopt will place in the arguments at the end of the
options, or recognize it if used explicitly. The shell
arguments ($1 $2 ...) are reset so that each option is
preceded by a - and in its own shell argument; each option
argument is also, in its own shell argument.

OPTIONS
Delimit the end of the options.

DIAGNOSTICS
Getopt prints an error message on the standard error when it
encounters an option letter not included in optstring.

EXAMPLE

1

The following code fragment shows how one might process the
arguments for a command that can take the options a and b,
and the option o, which requires an argument.

set -- getopt abo: $*
if [$? 1 = 0]
then

f i

echo .$USAGE
exit :2

for i in $'1\'
do

case $i in
-a I -b) FLAG=$i; shift;;
-o) OARG=$2; shift; shift;;
--) shift; break;;
esac

done

This code will accept any of the foilowing as equivalent:

cmd -aoarg file file
cmd -a -o arg file file

Bell 1

GETOPT(lC)

SEE ALSO

Zilog

c:md -oarg -a file file
cmd -a -oarg -- file file

sh(l), getopt(3).

I .. IMITATIONS

GETOPT(lC)

Getopt is not useful when typed at the prompt. Its use is
within the body of a shell script. Although it is not a
built-in feature of the C Shell, it is included in the lC
section of the reference manual because of its use.

Bell 2

GETS(lC) Zilog GETS(lC)

NAME
gets - get a string from standard input

SYNOPSIS
gets [default]

DESCRIPTION
Gets can be used with csh(l) to read a string from the stan­
dard input. If a default is given it is used if an error
occurs. The resultant string (either the default or as read
from the standard input) is written to the standard output.
If no default is given and an error occurs, gets exits with
exit status 1.

EXAMPLE
The following shcell script will set the variable a to what­
ever is typed into the terminal at the prompt, and then echo
the contents of the variable "a".

example shell script

echo -n "Enter a letter:"

set a='gets'

echo $a

LIMITATIONS
The gets command is used from within the body of a shell
script, it is not useful from the prompt. For that reason it
is in the "lC" section of the manual.

SEE ALSO
csh(l), line(l).
The C Shell in the ZEUS Utilities Manual .

•

1 UCB l

GLOB(lC) Zilog GLOB(lC)

NAME
glob - print strings on the terminal without spaces

SYNOPSIS
glob wordlist

DESCRIPTION
Like echo, but no \ escapes are recognized and words are
delimited by null characters in the output. Useful for pro­
grams which use the shell to expand a list of words.

SEE ALSO
echo (lC) , echo 2 (1) •
The C Shell in the ZEUS Utilities Manual -- - ----

1 UCB 1

GPASSWD(l) Zilog GPASSWD(l)

NAME
gpasswd - change group password

SYNOPSIS
gpasswd [name]

DESCRIPTION
This command changes (or installs) a password associated
with the group !lame (your own group by default).

The program prompts for the old password and then for the
new one. The caller must supply both. The new password
must be typed twice to forestall mistakes.

New passwords must be at least four characters long if they
use a sufficiently rich alphabet and at least six characters
long if monocase.

Only the owner of the name or the super-user can change a
password; the owner must prove he knows the old password.

Once the password has been changed, a notice is sent to all
members of the 9roup.

FILES
/etc/passwd
/etc/gtmp*

SEE ALSO
login(!), crypt(3), passwd(S).

LIMITATIONS

1

Under certain conditions the group file will not be updated.
In these situations the new file resides in /etc/gtmp*.

Zilog 1

GREEK{l) Zilog GREEK{l)

NAME
greek - select terminal filter

SYNOPSIS
greek [-Tterminal]

DESCRIPTION

:Ei"ILES

Greek is a filter that reinterprets the extended character
set, as well as the reverse and half-line motions, of a
128-character TELETYPE{Reg.) Model 37 terminal (which is the
nroff(l) default terminal) for certain other terminals.
Special characters are simulated by overstriking. If the
argument is omitted, greek attempts to use the environment
variable $TERM {see environ(?)). The following terminals
are currently recognized:

hp
tek
300
300-12
300s
300s-12
450
450-12
1620
1620-12
2621
2640
2645
4014

/usr/bin/300
/usr/bin/300s
/usr/bin/450

Hewlett-Packard 2621, 2640, and 2645.
Tektronix 4014.
DASI 300.
DASI 300 in 12-pitch.
DASI 300s.
DASI 300s in 12-pitch.
DASI 450.
DASI 450 in 12-pitch.
Diablo 1620 {alias DASI 450).
Diablo 1620 {alias DASI 450) in 12-pitch.
Hewlett-Packard 2621, 2640, and 2645.
Hewlett-Packard 2621, 2640, and 2645.
Hewlett-Packard 2621, 2640, and 2645.
Tektronix 4014.

SEE ALSO

1

300(1), 4014(1), 450(1),
environ(5), term(7).

Bell

eqn(l), greek(7), nroff (1),

1

GREP(l) Zilog GREP{l)

NAME
grep, egrep, fgrep - search a file for a pattern

SYNOPSIS
grep [options] exEression [files]

egrep [optionf!_ J [expression J [files J

f grep [options] [strin2s] [files]

DESCRIPTION
Commands of the grep family search the input files {standard
input default) for lines matching a pattern. Normally, each
line found is copied to the standard output. Grep patterns
are limited rE:?gular expressions in the style of ed{l); it
uses a compact non-deterministic algorithm. Egrep patterns
are full regular expressions; it uses a fast deterministic
algorithm that sometimes needs exponential space. Fgrep
patterns are fiJced strings: it is fast and compact.

In all cases, the file name is output if there is more than
one input file. Care should be taken when using the charac­
ters $, *, [, ""'" I, (,) , and \ in expression, because they
are also meaningful to the shell. It is safest to enclose
the entire expn~ssion argument in single quotes '. . . .

Fgrep searches for lines that contain one of the strings
separated by new-lines.

Egrep accepts rE:?gular expressions as in ed{ 1), except for \ (
and \), with thE~ addition of:

1. A regular expression followed by+ matches one or more
occurrencE:?s of the regular expression.

2. A regular expression followed by ? matches 0 or 1
occurrences of the regular expression.

3. Two regular expressions separated by I or by a new­
line match strings that are matched by either.

4. A regular expression may be enclosed in parentheses ()
for grouping.

The order of prE~cedence of operators is [], then *?+, then
concatenation, then I and new-line.

OPTIONS
-b Each line is preceded by the block number on which it

was found.. This is sometimes useful in locating disk
block numbers by context.

-c Only a count of matching lines is printed.

-e expression

1 Bell 1

GREP(l) Zilog GREP(1)

Same as a simple expression argument, but useful when
the expression begins with a - {does not work with
grep).

-f file
--rrhe regular expression or strings list {fgrep) is taken

from the file.

-h Do not print filename headers with output lines.

-1 Only the names of files with matching lines are listed
(once), separated by new-lines.

-n Each line is preceded by its relative line number in
the file.

-s The error messages produced for nonexistent or unread­
able files are suppressed {grep only).

-v .All lines but those matching are printed.

-x {Exact) only lines matched in their entirety are
printed (fgrep only).

SEE ALSO
csh { 1) , ed { 1) , sed (1) , sh { 1) •

DIAGNOSTICS
Exit status is 0 if any matches are found, 1 if none, 2 for
syntax errors or inaccessible files ..

LIMITATIONS
Ideally there should be only one grep, but we don't know a
single algorithm that spans a wide enough ran9e of space­
time tra.deoffs.

Lines are limited to 256 characters; longer lines are trun­
cated$

Egrep does not recognize ranges, such as [a-z], in character
classes ..

Bell 2

HEAD(l) Zilog HEAD(l)

NAME
head - give first few lines of a stream

SYNOPSIS
head [-count] [file ...]

DESCRIPTION
This filter gives the first count lines of each of the
specified files~, or of the standard input. If count is
omitted it defaults to 10.

SEE ALSO
cat(l), dog(l), more(!), tail(l).

1 UCB 1

HELP(l) Zilog HELP(l)

NAME
help - ask for help

SYNOPSIS
help [~.rgs]

DESCRIPTION
Help finds information to explain
or explain the use of a command.
be supplied. If no arguments are
for one.

a message from a command
Zero or more arguments may
given, help will prompt

The arguments may be either message numbers (which normally
appear in parentheses following messages) or command names,
of one of the following types:

type 1

type 2

type 3

Begins with non-numerics, ends in numerics. The
non-numeric prefix is usually an abbreviation for
the program or set of routines which produced the
message (e.g., ge6, for message 6 from the get
command).

Does not contain numerics (as a command, such as
get)

Is all numeric (e.g., 212)

The response of the program will be the explanatory informa­
tion related to the argument, if there is any.

When all else fails, try "help stuck."

FILES
/usr/lib/help directory containing files of message

text

DIAGNOSTICS
Use help(l) for explanations.

SEE ALSO
man(l), INTRO(!), apropos(!).

1 Bell 1

HISTORY(lC) Zilog H I S 'r 0 RY (1 C)

NAME
history - print list of previous commands

SYNOPSIS
history
set history=!!

DESCRIPTION
Commands input from the teminal are numbered sequentially
from one and are saved on the history list, whose size is
controlled by the history variable.

The contents of the history list is seen with the command:

history

The size of the history list is determined by setting the
history shell variable with the command:

set histoqr=~

where N is the desired size of the history list (15 is a
recommended number) •

These saved commands (also called events) are referred to in
the following ways:

!n

!-m

!p

!?string?

! !

event number n

the desired even is m events prior to the
current event

prefix of a command in an event

string in an event argument; trailing ? can
be omitted if nothing follows

immediately previous event

A history reference can be given without an event specifica­
tion; for example, !$. In this case, the reference is to
the previous command unless a previous history reference
occurred on the same line in which case this form repeats
the previous reference.

SEE ALSO
set(lC), setenv(lC).
The C Shell in the ZEUS Utilities Manual

1 UCB 1

HYPHEN(!) Zilog HYPHEN(!)

NAME
hyphen -· find hyphenated words

SYNOPSIS
hyphen files

DESCRIPTION
Hyphen finds all the hyphenated words in files and prints
them on the standard output. If no arguments arE~ given, the
standard input is used~ Hyphen can be used as a filter.

LIMITATIONS

1

Hyphen can't cope with hyphenated italic (i.e., underlined)
words i :i.t often misses them completely, or mangl1es them.

Bell 1

ID{l} Zilog ID(l)

NAME
id - print user and group IDs and names

SYNOPSIS
id

DESCRIPTION
Id writes a mes:sage on the standard output giving the user
and group IDs and the corresponding names of the invoking
process. If thee effective and real IDs do not match, both
are printed.

SEE ALSO
logname{l), getuid(2), getgid{2).

1 Bell 1

H' (lC) Zilog IF(lC)

NAME
if - C Shell flow control branch statement

SYNOPSIS
if (expression.!) then

command.1
else if (expression.2) then

command. 2 -
else

command.3
end if

DESCRIPTION
If the specified expression.! is true, the commands to the
first else are executed; eTse if expression.2 is true, the
commands to the second else are executed, etc.- Any number
of else-if pairs are possible; only one endif is needed.
The else part is likewise optional. The words else and
endif must appear at the beginning of input lines; command
must be a simple command, not a pipeline, a command list, or
a command list within parentheses.

SEE ALSO
foreach(lC), while(lC).
The C Shell in the ZEUS Utilities Manual.

1 UCB 1

ISRIO(l) Zilog ISRIO(l)

NAME
isrio - determine if terminal is a RIO System

SYNOPSIS
isrio

DESCRIPTION
Isrio outputs a character sequence ("ESC?") that causes a
RIO System to return another character sequence. Isrio
prints a "y" if the terminal is a RIO System, an "n" if it
is not. Thus, the program can be used significantly in ini­
tialization file~s, as in the following example:

if ('isrio' == "y") setenv TERM mcz

SEE ALSO
getfile(l), local(!), putfile(l).

DIAGNOSTICS

1

Non-RIO terminals that recognize the sequence "ESC?" will
execute that terminal function first and after a timeout,
isrio returns "y".

Zilog 1

,JOIN (1) Zilog JOIN(l)

NAME
join - relational database operator

SYNOPSIS
join [options] f ilel file2

DESCRIPTION
Join forms, on the standard output, a join of the two rela­
tions specified by the lines of filel and file2. If filel
is minus, the standard input is used.

Filel and file2 must be sorted in increasing ASCII collating
sequence on the fields on which they are to be joined, nor­
mally the first field in each line.

There i.s one line in the output for each pair of lines in
filel and file2 that have identical JOl.n fields.. The output
line normally consists of the common field, then the rest of
the line from file!, then the rest of the line from file2.

Fields are normally separated by blank, tab, or new line.
In this case, multiple separators count as one, and leading
separators are discarded.

OPTIONS
-an In addition to the normal output, produce a line for

ea.ch unpairable line in file !!_, where n is 1 or 2.

-e s Re:place empty output fields by string s.

-j!!_ rn --Join on the mth field of file n. If n is missing, use
the mth field in each file.

-o list
~-ch output line comprises the fields speci.fed in list,

each element of which has the form !!·!!!1 where n---rBa
file number and m is a field number.

-tc Use character c as a separator (tab character).
appearance of c in a line is significant.

Every

EXAMPLES

1

% cat listl
boat
boathouse
boatload
boatman
boatmen
boatyard

% cat list2
boa
boar
board
boardinghouse
boast
boat
boathouse
boatload

Bell 1

.JOIN(1} Zilog JOIN(l)

boatman
boatmen

% join listl list2
boat
boathouse
boatload
boatman
boatmen

% join -al list! list2
boat
boathouse
boatload
boatman
boatmen
boatyard

% join -a2 listl list2
boa
boar
board
boardinghouse
boast
boat
boathouse
boatload
boatman
boatmen

SEE ALSO
sort(l}, comm(!)

LIMITATIONS

2

With default fiE:dd separation, the collating sequence is
that of sort --b: with -t, the sequence is that of a plain
sort.

The conventions of join, ~' ~' uniq, look (!) are
incongruous.

Bell 2

KII.iL{ 1) Zilog KILL{l)

NAME
kill - send a signal to a process

SYNOPSIS
kill [-signo] processid

DESCRIPTION
Kill sends a signal {15 by default to terminate) to the
specified processes. If a signal number preceded by a minus
is given as the first argument, that signal is sent instead
of terminate {signal (2)). This kills processes that do not
catch the signal; "kill -9 ... "is a sure kill.

If process number 0 is specified, all members in the process
group {processes resulting from the current log;in) are sig­
naled.

The killed processes must belong to the current user unless
the super-user executes it. To shut the system down and
bring it up, the super-user uses "kill -1 1 11

; ~.nit(M).

The process number of an asynchronous process started with
an & is reported by the shell. Process numbers are also
found by using ps{l).

EXAMPLE

SEE ALSO

% nroff -man intro.03 > INTRO &
1028

% ps
PID TTY TIME CMD

42 8 0:12 -csh
1028 8 0:02 nroff
1029 8 0:02 ps

% kill -9 1028
1028: nroff: Killed

% ps
PID TTY TIME CMD

42 8 0:12 -csh
1038 8 0:02 ps

-man intro.03

ps(l), kill(2), signal(2), init(M).

1 Bell 1

LD(l) Zilog LD(l)

NAME
ld - nonsegmented Z8000 and 8-bit loader

SYNOPSIS
ld [option] file

DESCRIPTION

1

Ld creates load modules for execution under ZEUS and down­
loading to target hardware.

Ld combines several object files into one load module file.
In the process, it resolves external references and searches
libraries. In the simplest case, several object files are
given and ld combines them to produce an executable load
module. An object module can also be producea and used as
input to a subsequent ld run, in which case the -r option
must be given to preserve the relocation bits.

The output of ld is left on the file a.out(S). If the -o
option is used, the name so specified is used instead a.outi
the file has the same format.

If no errors occur during the link, the output file is
marked executable.

The argument routines are concatenated in the order speci­
fied. In absence of the -e option, the entry point of the
output is the beginning of the first routine.

If any argument is a library, it is searched once at the
point it is encountered in the argument list. Only those
routines defining an unresolved external reference are
linked.

If a routine from a library references another routine in
the library, and the library has not been processed by
ranlib(1), theref,erenced routine must appear after the
referencing routine in the library. Thus, the order of
modules within libraries is important. If the first member
of a library is named .SYMDEF, then it is understood to be
a dictionary for the library, such as one produced by ran­
lib. The dictionary is repeatedly searched to satisfy all
possible references.

The symbols etext, edata, and end in assembly language
code (etext--; edata,-and end in C programs) are reserved and
cannot be redefined by the user. The symbol etext refers
to the first location above the t~xt section; or the start
of the data section. The symbol edata refers to the first
location above initialized data, or the start of the bss
section. The symbol end refers to the first location above
all data, and can -be used as a starting location for a

Zilog 1

LD { 1) Zilog LD{l)

dynamic allocation area managed by the user.

Except for -1, the options must appear befon~ the file
names. The -1 option must follow the names of any routines
which rE~ference it.

To link a program for downloading to a Z8000 development
module, the -o option must be used to specify an uppercase
file name, and the -b option must be used to specify a
startin9 address that is 0x4600 or higher. No special name
or address is required to link a program for downloading to
a Z8 development module.

OPTIONS

2

-b addr

-bx addr
SeE the bottom location for the program, or for the
specified section if x is specified. X can be one of
t, d, or b for text, data, and bss, respectively. The
address can be specified in decimal, hex, or octal
using the standard C language conventions: a leading
zero indicates octal, and a leading 0x indicates hex.
The:! address specified must be a multiple of 256. If no
section is selected, the bottom applies to all three
sections if the program is combined instruction and
data, or to data and bss if separate instruction and
data. Only one -t or -b option per section can be
specified. Errors can result if sections overlap, ~r
th•a bottom address causes a section to wrap around.

-d Force definition of conunon storage even if the -r flag
is present.

-e name
~~ke the following argument as the name of the entry

point of the loaded program. The link address of the
text section is the default. -i Separate the program
text and data {also called instruction and data) areas
when the output file is executed.

-1x Se.arch the named library. The library /lib/libx.a, is
sought, if this is inaccessible or -missing
/usr/lib/libx.a, is searched followed by /z/bin/libx.a.
The specifed library file is used as though its full
name had been used instead of the -1 option. A library
is searched when its name is encountered, so the place­
ment of a -1 option is significant.

-o name
- Change the name of the ld

specified. The form of

Zilog

output file to the name
the load module remains the

2

LD(l)

FILES

3

Zilog LD(l)

same as described in a.out(5).

-r Generate relocation bits in the output file so that it
can be used in a subsequent ld run. This flag over­
rides the -t and -b options. It also prevents final
definitions from being given to common symbols, and
suppresses the undefined symbol diagnostics. The -r
flag may not be used to generate 8-bit object files.

-s Strip the output: remove the symbol table and reloca­
tion bits to save space.

-t addr

-tx addr
Set the hi9hest location of the program or section to
the hex, octal, or decimal number specified. X can be
one of t, d, or b for text, data, and bss respectively.
This option is similar to that of -b except a top
address is specified instead of a bottom one. The link
location of the program or section is justified to meet
the specified top. The low address of the section or
program is always a multiple of 256. In most cases,
the top is within 256 bytes of the specified address,
and is padded with zeros to meet the address.

-u Take the following argument as a symbol and enter it as
undefined in the symbol table. This is useful for
linking wholly from a·library, since initially the sym­
bol table is empty and an unresolved reference is
needed to force the link of the first routine.

-w Suppress the symbol redefinition warning. This warning
is produce!d while searching archives. If an archive
contains a module that defines a symbol that is already
defined, a redefinition warning is produced.

-x Enter only external and global symbols and do not
preserve local symbols in the output symbol table.
This option saves some space in the output file.

-x Save local symbols except for section name entries in
the symbol table and for those whose names begin with
L. This option is used by the C compiler to discard
internally generated labels while retaining symbols
local to routines.

/lib, /usr/lib libraries for -1 option
a.out output file

Zilog 3

LD(l) Zilog LD(l)

SEE ALSO
load(l), ar(l), ranlib(l), a.out(S).

DIAGNOSTICS
Any undefined references cause the special symbol " end" to
be reported as undefined. The "redefinition" warning occurs
if, whilE:! searching an archive, a symbol that is already
defined is defined in an archive member. This warning can
be supprE:!ssed with the -w option. It does not occur if the
symbol name begins with two underscores {one underscore in
c) •

LIMITATIONS

4

The "redt~finition" warning should not occur on symbols that
occur twice within the same archive. The double underscore
exception is a kludge.

Zilog 4

LEARN(l) Zilog LEARN(l)

NAME
learn - on-line computer-aided instruction

SYNOPSIS
learn [subject [lesson]]

DESCRIPTION
Learn gives practice in the use of ZEUS by providing a
number of CAI courses on the system. To get started, simply
type "learn" and follow the instructions. The strength of
the learn facility is learning by doing, rather than by
reading about the system.

To go directly to a specific subject, specify the subject
name on the conunand line, or specify both the subject and
lesson number. The subjects are:

ftuser (first-time user)
files (intro to file usage)
morefiles (more detail)
editor (line-oriented editor ed)
C (programming in C)
macros (-ms package for text formatting)

Other subjects can be supplied on the system. Each site can
prepare and provide local courses that serve a particular
audience. For a local course, the site can install a new
directory containing lessons for that subject.

For debugging lessons, there are a few additional options.
If the lesson number is minus (-), learn prompts for each
lesson. Also, the first option to learn can be -directory,
followed by subject and lesson, in which case a lesson
script can be ex:ercised anywhere.

The special command bye terminates a learn session prema­
turely.

FIL.ES

1

/usr/lib/learn and all subdirectories such as subjects
(ftuser, files, morefiles, etc.) and play, which contain
subdirectories for individual learn sessions

Bell l

LEX(l) Zilog LEX (1)

NAME
lex - generate programs for simple lexical tasks

SYNOPSIS
lex [-t:vfn [file]

DESCRIPTION

1

Lex generates programs to be used in simple lexical analysis
of text.

The input files (standard input default) contain strings and
expressions to be searched for, and C text to be executed
when strings are found.

A C source program lex.IT·£ is generated, to be compiled
thus:

cc -u main lex.yy.c -11

This program copies the input to the output except when a
string specified in the file is found; then the correspond­
ing program text is executed. The actual string matched is
left in yytext, an external character array.

Matching is done in order of the strings in the file. The
strings may contain square brackets to indicate character
classes, as in [abx-~] to indicate a~' £, ~' ~ and ~ and
the operators *, +, and ? mean respectively any non­
negative number of, any positive number of, and either z~ro
or one occurrences of, the previous character or character
class. The character • is the class of all ASCII characters
except new-line. Parentheses for grouping and vertical bar
for alternation are also supported.

The notation r { d , e } in a rule indicates between d and e
instances of regular expression r. It has higher precedence
than j, but lower than*, ?, +; and concatenation. The
character A at the beginning of an expression permits a suc­
cessful match only immediately after a new-line, and the
character $ at the end of an expression requires a trailing
new-line. The character I in an expression indicates trail­
ing context; only the part of the expression up to the slash
is returned in yytext, but the remainder of the expression
must follow in the input stream. An operator character may
be used as an ordinary symbol if it is within " symbols or
preceded by\. Thus [a-zA-!]+ matches a string of letters.

Three subroutines defined as macros are expected: input() to
read a character; unput(c) to replace a character read; and
output(c)i to place an output character. They are defined in
terms oY the standard streams, but you can override them.

Bell 1

LEX(l) Zilog LEX(l)

The program generated is named yylex(), and the library con­
tains a main() which calls it. The action REJEC'r on the
right side of the rule causes this match to be rejected and
the next suitable match executed; the function yymore()
accumulates additional characters into the same yytext; and
the function yyless(p) pushes back the portion of the string
matched beginning at-p, which should be between yytext and
yytext+yyleng. The macros input and output use files yyin
and yyout to read from and write to, defaulted to stdin and
stdout, respectively.

Any line beginning with a blank is assumed to contain only C
text and is copied; if it precedes %% it is copied into the
external definition area of the lex.~.c file. All rules
should follow a %%, as in YACC. Lines preceding %% which
begin with a non-blank character define the string on the
left to be the remainder of the line; it can be called out
later by surrounding it with {}.

Note that curly brackets do not imply parentheses; only
string substitution is done.

EXAMPLES

2

D
%%
if
[a-z]+
0{D}+
{D}+
"++"
"+"
"/*"

[0-9]

printf("IF statement\n");
printf("tag, value %s\n",yytext);
printf(11 octal number %s\n",yytext);
printf("decimal number %s\n",yytext);
printf("unary op\n");
printf("binary op\n");
{ loop:

while (input() 1= '*');
switch (input())

}

{
case '/': break;
case '*': unput('*');
default: go to loop;
}

The following lex program converts upper case to lower,
removes blanks at the end of lines, and replaces multiple
blanks by single blanks.

%%
[A-Z] putchar(yytext[0]+'a'-'A:);
[]+$;
[]+ putchar(' ');

Bell 2

LEX(l) Zilog LEX(l)

The external names.generated by lex all begin with the pre­
fix yy or YY.

The options have the following meanings.

-t Place the result on the standard output instcead of in
f i 1 E~ 1 ex . yy . c .

-v Print a one-line summary of statistics of the generated
analyzer.

-n Opposite of -v: -n is default:

-f 'Faster' compilation: don't bother to pack t:he result­
ing tables: limited to small programs.

Multiple files are treated as a single file.
are specified, standard input is used.

If no files

Certain table sizes for the resulting finite state machine
can be s•et in the definitions section:

%p n number of positions is n (default 2000)
·- -

%n :n number of states is n (500) -
%t n number of parse tree nodes is n (1000) -
%a :n number of transitions is n (3000) ·-

The use of one or more of the above automatically implies
the -v option, unless the -n option is used.

SEE ALSO
yacc(l).

3

LEX - Lexical Analyzer Generator in the ZEUS Languages /
Prograrmning Tools Manual

Bell 3

LINE(l) Zilog

NAME
line - read one~ line from the terminal

SYNOPSIS
line

DESCRIPTION

LINE(l)

Line copies one line (up to a new-line) from the standard
input and writes it on the standard output. It returns an
exit code of 1 on EOF and always prints at least a new-line.
It is often used within shell files to read from the user's
terminal.

SEE ALSO
gets(lC), sh(l), read(2).

1 Bell 1

LINT{!) Zilog LINT{!)

NAME
lint - a C program verifier

SYNOPSIS
lint [--abchnpuvx] file ...

DESCRIPTION
Lint detects C program bugs and checks the type usage of the
program more strictly than the compilers. Amon9 the things
which are currently found are unreachable statements, loops
not entE~red at the top, automatic variables declared and not
used, and logica 1 expressions whose value i::; constant.
Moreover, the usage of functions is checked to find func­
tions which return values in some places and not in others,
functions called with varying numbers of arquments, and
functions whose values are not used.

Lint assumed that all files are loaded together; they are
checked for mutual compatibility. Function definitions for
certain libraries are available to lint; these libraries are
referred to by a conventional name, such as '·-lm' , in the
style of ld{ 1).

Exit{2) and other functions which do not return are not
understood: this causes various lies.

Certain conventional comments in the C source will change
the behavior of lint:

/*NOTREACHED*/
at appropriate points stops comments about unreachable
code.

/*VARARGSn*/
suppresses the usual checking for variable numbers of
ar9uments in the following function declaration. The
data types of the first n arguments are checked; a
missing n is taken to be 0.

/*NOSTRICT* I
shuts off strict type checking in the next expression.

/*ARGSUSED*/
turns on the -v option for the next function.

/*LINTLIBRARY*/
at the beginning of a file shuts off complaints about
unused functions in this file.

OPTIONS

1

Any number of the options in the following list may be used.
The -D, -u, and -I options of cc{l) are also recognized as

Bell 1

LINT(!) Zilog LINT(l)

separate arguments.

a Report assignments of long values to int variables.

b Report break statement.s that cannot be reached. (This
is not the default because, unfortunately, most lex and
many yacc outputs produce dozens of such cormnents.)

c Complain about casts which have questionable portabil­
ity.

h Apply a number of h~uristic tests to intuit bugs,
improve style, and reduce waste.

n Do not check compatibility against
library.

the standard

p Attempt to check portability to the IBM and GCOS
dialects of c.

u Do not complain about functions and variables used and
not definE!d, or defined and not used (this is suitable
for running lint on a subset of files out of a larger
program).

v Suppress complaints about unused arguments in func­
tions.

x Report variables refe~red to by extern declarations,
but never used.

Fii.JES
/usr/lib/lint[l2] programs
/usr/lib/llib-lc declarations for standard functions
/usr/lib/llib-port declarations for portable functions

SEE ALSO
cc (1) .
Lint, a C Program Checker in the ZEUS Languages / Program­
ming Tools Manual

2 Bell 2

LN(l) Zilog LN(l)

NAME
ln - link a filename to an actual file

SYNOPSIS
ln narnel narne2

DESCRIPTION
A link is a directory entry referring to a file: the same
file (together with its size, all its protection informa­
tion, etc.) can have several links to it. There is no way
to distinguish a link to a file from its original directory
entry~ any changes in the file are effective independently
of the name by which the file is known.

A link is created from narne2 to namel.

It is forbidden to link to a directory or to link across
file systems.

SEE ALSO
rm (1) .

1 Bell 1

LOAD(l) Zilog LOAD(l)

NAME
LOAD - Download to Z8000 or Z8 Development Module

SYNOPSIS
LOAD file

DESCRIPTION

1

LOAD takes an executable Z8000 or Z8 load module and down­
loads the text, data, and bss sections into the Z8000 or Z8
Development Module (DM). The hardware link is described
fully in the appropriate DM manual. The magic number of the
load module must be N MAGICl, X MAGICl, or X MAGIC3 (a.out
(5)),. The execute permission bit is checked-to ensure-that
the load module contains no errors.

LOAD determines the load points of the text and data by
inspecting the header and the segment table, which contains
the upper eight bits of each load point. Therefore, the
text, data, and bss sections are loaded only on 256-byte
boundaries. The load module must be specified to link at
location 4600 hex or higher if the target system is a non­
segmented Z8000 DM or at location 5000 hex or higher if the
target system is a segmented Z8000 DM. These restrictions
do not apply if the target system is a Z8 DM.

The bss section of Z8 programs refers to the REGisrrER memory
of the Z8. LOAD does not download bss section of a Z8 pro­
gram. If a Z8 program has combined instruction and data (I
and D) areas the data section is downloaded following the
code section; the data section is considered to be part of
program memory. If a Z8 program has separate I and D areas,
the data section is not downloaded; the data section refers
to external data memory.

If a file is loaded to a Z8000 DM without error, the DM
announces the entry point of the program; if a file is
loaded to a Z8 DM without error, the DM monitor simply
prints a prompt. To start the program jump to the entry
point with the monitor JUMP command. If the program runs
and terminates normally, the exit routine linked into the
program returns the user to the monitor. The Z8 DM provides
no exit routine: for details on program execution consult
the Z8 Development Module ~·!!.Manual.

LOAD is invoked :from the DM monitor. On a Z8000 DM, lower­
case characters can be entered at the terminal but are
translated to uppercase by the monitor. The monitor sends
only uppercase characters to ZEUS for compatibility with
Zilog's MCZ/ZDS RIO system. Therefore, the file to be down­
loaded is not found unless the the load module name is all
in uppercase. Also, unless the path name is all in upper­
case, the user must use LOAD only on a load module file in

Zilog 1

LOAD(l) Zilog LOAD(l)

the current working directory.

The ZS OM does not require uppercase input and the monitor
makes no translation. No special care need be taken naming
files or running the program from the Z8 DM.

FILES
a.out load module

SEE ALSO
ld(l), SEND(l), a.out(S)
Z8000 Development Module Hardware Reference Manua.l,

03-0394-01
Z8000 Development Module Hardware Reference Manua.l

E3-0394-01
Z8000 Development Module Monitor Program Listing,

03-3094-01

Errata,

Z8000 Development Module Monitor Program Listing Errata,
E3-3094-en

Z8 Development Module User's Manual,
03-3157

DIAGNOSTICS
The DM monitor displays any error messages received from
LOAD. The error messages are the same as for LOA,D in the DM
manual.

DOWNLOAD PROCEDURE FOR THE Z8000 DM

2

1. Install the Zilog Z8000 DM between the terminal and the
System 8000. The line from the System 8000 attaches to
the channel A RS-232C connection of the DM.. The termi­
nal attaches to channel B of the DM.

2. Power up the DM and turn on the terminal.

3. Press DM RESET switch~ The DM monitor prints its <
prompt.

4. Press DM NMI switch. The DM monitor prints NM! and its
< prompt.

5. Enter quit. This command allows transparent mode for
communication with ZEUS.

6. Press the RETURN key again, to get a response: from ZEUS.
Login to the ZEUS system if you aren't already correctly
logged in.

7. Create a Z8000 program for download. The following sim­
ple program can be used for a download example:

main()

Zilog 2

LOAD(l) Zilog

{
printf("DOWNLOAD OK\n");
}

LOAD(l)

8. Compile, assemble, and link the program. The C compiler
might be run to do this with a command such as:

cc -o TEST -b 0x4600 test.c

9. Press the DM NMI switch to return control to the moni­
tor. The DM monitor responds with NMI and its prompt <.

10. Enter

LOAD Tl~ST

This downloads the program.

11. Wait for thE~ DM monitor to print ENTRY POINT 4DBA and
the < prompt. Enter

jump 4dba

This jumps to the entry point of the program.

12. The program executes.
and its prompt <.

The monitor prints DOWNLOAD OK

At this point, enter other monitor commands or go back to
ZEUS by enterin9 the quit command.

DOWNLOAD PROCEDURE FOR THE za DM
1. Install the Zilog Z8 DM between the terminal and the

System 800~J. The line from the System 8000 attaches to
the DM RS-232C connection marked "computer." The termi­
nal attaches to the DM connection marked "terminal."

2. Power up thE~ DM and turn on the terminal.

3. Press DM RESET switch. The DM monitor prints its @
prompt.

4. Enter quit. This command allows transparent mode for
communication with ZEUS.

5. Press the RE!TURN key again, to get a response from ZEUS.
Login to the ZEUS system if you aren't already correctly
logged in.

6. Create a Z8 program for download. The following simple
program can be used for a download example:

3 Zilog 3

LOAD(l) Zilog LOAD(!)

4

test module

global
pl procedure
entry

srp #%10
11: jr 11
end pl

end test

7. AssE~mble and link the program. The Z8 cross-assembler
and the loader would be run with commands such as:

z8as -o test.a test.s
ld -o test test.a

8. Press DM Rl<~SET and MODE switches. The monitor prompts
@.

9. Download the program with the command:

LOAD test

10. Wait for the DM monitor prompt, @. Enter

G 0
This jumps to the entry point of the program ..

11. The program executes and enters -an infinite loop. Enter
H to return to the monitor.

12. Ente!r R. The register pointer has been set to %10.

At this point, enter other monitor commands or enter quit to
return to ZEUS.

Zilog 4

LOCAL(l) Zilog LOCAL(l)

NAME
local - return control to local system

SYNOPSIS
local [-1]

DESCRIPTION
Local returns control to the local system which is running
the ZLAB-8000 Communication Package file transfer software.

OPTIONS
-1 A "logout" is given to the remote system before return­

ing to the local system.

FILES
/usr/src/local.c

SEE ALSO

C source program for local

getfile(l), putfile(l), remote(l).
COMM -- The ZEU~ Communications Package in the ZEUS Utili­
ties Manual

1 Zilog 1

LOGIN(!) Zilog LOGIN(l)

NAME
login - sign on to the computer

DESCRIPTION
Login can no longer be invoked explicitly, but is .invoked by
the system when a connection is established.

Echoing is turned off (if possible) during the typing of the
password, so it does not appear on the written record of the
session.

If password aging has been invoked
password may have expired. In
invoked to change it.

by the super-user the
this case, passwd(l) is

A dial-up login attempt must complete the login within one
minute or the connection is broken.

After a successful login, accounting files are updated, the
user is informed of the existence of mail, and the message­
of-the-day file is displayed (motd(S)). Login initializes
the environment variable TERM (describing the lo.gin terminal
type), the user and group IDs, and the working directory,
then ex1~cutes a conunand interpreter (usually csh(1)) accord­
ing to :specifications found in a password file. Argument 0
of the conunand interpreter is -csh.

The environment (see environ(S)) is initialized to:
HOME= login-directory
PATH=:/bin:/usr/bin
LOGNAME=login-narne

OPTIONS
Turns off the display of message-of-the-day file.

FILES
/etc/utmp
/usr/adrn/wtmp
/usr/spool/mail/*
/etc/motd
/etc/passwd
/etc/profile
/etc/cshrc
/etc/ttytype

accounting
accounting
mail
message-of-the-day
password file
system profile
system cshrc
terminal type file

SEE ALSO
newgrp(1), mail (1), passwd (1), motd (5),
ttytype(S), init(M), getty(M).
ZEUS !01~ Beginners in the ZEUS Utilities Manual

DIAGNOSTICS

passwd(5),

"Login incorrect," if the name or the password is bad.

1 Bell 1

LOGIN{l) Zilog LOGIN(!)

2

"No shell," if the shell is missing.

"Cannot open pa~;sword file," if the password file is miss­
ing.

"No directory," cannot find the home directory {usually due
to unmounted file systems).

Bell 2

LOGNAME(l) Zilog LOGNAME(l)

NAME
logname - get login name

SYNOPSIS
log name~

DESCRIPTION
Logname~ returns the contents of the environment variable
$LOGNAME, which is set when a user logs into the~ system.

FILES
/etc/profile

SEE ALSO
env(l), login(!), logname(3), environ{S).

1 Bell 1

LOGOUT(lC) Zilog

NAME
logout - terminate the current login session

SYNOPSIS
logout

DESCRIPTION

LOGOUT(lC)

Logout terminates a login shell.
ignoreeof is set.

Especially useful if

LIMITATIONS
Logout will only execute from the login shell.

the logout process does not recognize interupts

SEE ALSO
exit (lC), kill (1), onintr (lC).
The C Shell in the ZEUS Utilities Manual

1 UCB 1

LOOK(l) Zilog LOOK(l)

NAME
look - find lines in a sorted list

SYNOPSIS
look [-df] string [file]

DESCRIPTION
Look consults a sorted file and prints all lines that begin
with string. It uses binary search. If no file! is speci­
fied, /usr/dict/words is assumed with collatinsr sequence
-df.

OPTIONS
The opticins -d and -f affect comparisons as in sort(l):

-d Dictionary order: only letters, digits, tabs, and
blanks are compared.

-f Fold. Uppercase letters compare equal to lowE~rcase.

FILES
/usr/dict/words

SEE ALSO
sort(l}, grep(l).

1. Bell 1

LORDER(l) Zilog LORDER(l)

NAME
!order - find ordering relation for an object library

SYNOPSIS
!order file

DESCRIPTION
The input is one or more object or library archive (see
ar(l)) files. The standard output is a list of pairs of
object file names, meaning that the first file of the pair
refers to external identifiers defined in the second. The
output may be processed by tsort(l) to find an ordering of a
library suitable for one-pass access by ld(l).

This brash one-liner intends to build a new library from
existing '.o' files.

ar er library 'larder *.o I tsort'

FILES
*syrnref, *symdef

SEE ALSO
ar (1) , ld (1) , tsort (1) .

LIMITATIONS
The names of object files, in and out of libraries, must end
with '.o': nonsense results otherwise.

1 Bell 1

LPR{l) Zilog LPR{l)

NAME
lpr - line printer spooler

SYNOPSIS
lpr [option] ... [file]

DESCRIPTION
Lpr is now linked to nq(l). Please refer to this page in the
manual for more information.

1 Bell 1

LS(l) Zilog LS(l)

NAME
ls - list the contents of a directory

SYNOPSIS
ls [-aAcCdDfF1gilmnqrRstuxl] file

DESCRIPTION

1

For each file argument, ls repeats its name and any other
information requested; for each directory argument, ls lists
the contents of the directory. The output is sorted alpha­
betically by default. When no argument is given, the
current directory is listed. When several arguments are
given, the arguments are first sorted appropriately, but
file arguments appear before directories and their contents.

The mode information printed under the -1 option contains 10
characters. The first character is interpreted as follows:

d directory
b block-type special file
c character-type special file
p named pipe

plain file

The next nine characters are interpreted as three sets of
permission bits. The first set is permissions for the owner
of the file or directory; the next set is for others in the
same user-group; and the last set is for all other users.
Within each set, the three characters indicate permission
respectively to read, write on, or execute the file as a
program. For a directory, execute permission is interpreted
to mean permission to search the directory for a specified
file. The permissions are as follows:

r readable
w writable
x executable

permission is not granted

The group-execute permission character is given as s if the
file has set-group-ID mode; likewise the user-execute per­
mission character is given as s if the file has set-user-ID
mode.

The last character of the mode (normally x or -) is t if the
1000 bit of the mode is on. See chmod(l) for the meaning of
this mode.

There are thre 1e possible listing formats. The format chosen
depends on whether the output is going to a terminal, and
can also be controlled by option flags. (1) The default
format for a terminal is to list the contents of directories

UCB 1

LS { l) Zilog LS { 1)

in multicolumn format, with the entries sorted down the
columns {changed with the -x option). (2) If the standard
output is not a terminal, the default format is to list one
entry per line. (3) Finally, there is a stream output for­
mat in which files are listed across the page, separated by
commas (changed with the -m option). Files which are not
the contents of a directory being interpreted are always
sorted across the page rather than down the page in columns.
This is because the individual file names are arbitrarily
long.

OPTIONS

2

-a List all entries. Without this option, files beginning
with • are omitted.

-A Like -a, but and
superuser, this option
suppresses • listings.

are suppressed.
is on by default,

For the
and -A

-c Use time of last modification to i-node (mode, etc.)
instead of last modification to file for sorting (-t)
or printing (-1).

-C Force multicolumn output (default if output device is a
terminal).

-d If .argument is a directory, list only its name, not its
contents (mostly used with -1 to get status on direc­
tory) •

-D List only directories.

-f Force each argument to be interpreted as a directory
and list the name found in each slot. This option
turns off -1, -t, -s, and -r, and turns on -a; the
order is the order in which entries appear in the
di r(~ctory.

-F Indicate directories by appending a / to the filename
in the listing, and executable files by appending a *

-g Give group ID instead of owner ID in long listing; use
only with the -1 function.

-i Print i-number in first column of the report for each
file~ listed.

-1 List in long format, giving permission mode bits,
number of links, owner, group, size in bytes, and time
of last modification for each file. The year is
printed (instead of the time in hours and minutes) for
files older than six months. For a directory, the

UCB 2

LS(l)

FILES

Zilog LS(l)

total count of blocks (including indirect blocks) is
printed. Por a special file, the size field instead
contains the major and minor device numbers.

-m Force stream output format.

-n In long listings, give numeric uid or group id instead
of name of user or group.

-q Force printing of nongraphic characters in file names
as the character ? (default if output device is a ter­
minal).

-r Reverse the order of sort to get reverse alphabetic or
oldest first.

-R Recursively list the contents of each directory found.

-s Give size in blocks, including indirect blocks, for
each entry.

-t Sort by time modified (latest first) instead of by
name, as is normal.

-u Use time of last access instead of last modification
for sorting (-t) or printing (-1).

-x Force columnar printing to be sorted across rather than
down the page (default if the last character of the
name the program is invoked with is not an 1 or ans).

-1 Force one entry per line output format (default if out­
put is redirected or piped).

/etc/passwd to ~Jet user !D's for "ls -1"
/etc/group to gc~t group !D's for "ls -lg"

SEE ALSO
file(l), find(l), chmod(l), chown(l), umask(lC), chmog(M),
chown(M).

LIMITA'l'IONS

3

New line and tab are considered printing characters in file
names.

UCB 3

M4(1) Zilog M4(1)

NAME
m4 - macro processor

SYNOPSIS
m4 [files]

DESCRIPTION

1

M4 is a macro processor intended as a front end for Ratfor,
C, and other languages. Each of the argument files is pro­
cessed i.n order; if there are no arguments, or if an argu­
ment is'-•, the standard input is read. The processed text
is written on the standard output.

Macro calls have the form

name(argl,arg2, . , argn)

The '{' must immediately follow the name of the macro. If a
defined macro name is not followed by a'(', it is deemed to
have no arguments. Leading unquoted blanks, tabs, and new­
lines a.re ignored while collecting arguments. Potential
macro names consist of alphabetic letters, digits, and
underscore ' ',where the first character is not a digit.

Left and right single quotes (' 1
) are used to quote strings.

The value of a quoted string is the string stripped of the
quotes.

When a macro name is recognized, its arguments are collected
by searching for a matching right parenthesis. Macro
evaluation proceeds normally during the collection of the
arguments, and any commas or right parentheses which happen
to turn up within the value of a nested call are as effec­
tive as those in the original input text. After argument
collection, the value of the macro is pushed back onto the
input stream and rescanned.

M4 makes available the following built-in macros. They may
be redefined, but once this is done the original meaning is
lost. Their values are null unless otherwise stated.

define The second argument is installed as the value of
the macro whose name is the first argument. Each
occurrence of $n in the replacement text, where n
is a digit, Ts replaced by the n-th argument-:­
Argument 0 is the name of the macro;-missing argu­
ments are replaced by the null string.

undefine Removes the definition of the macro named in its
argument.

ifdef If the first argument is defined, the value is the

Bell 1

M4 (1)

2

Zilog M4 (1)

second argument, otherwise the third. If there is
no third argument, the value is null. The word
unix is predefined on UNIX versions of m4.

changequote
Change quote characters to the first and second
arguments. Changequote without arguments restores
the original values (i.e., '').

divert M4 maintains 10 output streams, numbered 0-9. The
final output is the concatenation of the streams
in numerical order; initially stream 0 is the
current stream. The divert macro changes the
current output stream to its (digit-string) argu­
ment. Output diverted to a stream other than 0
through 9 is discarded.

undivert Causes immediate output of text from diversions
named as arguments, or all diversions if no argu­
ment. Text may be undiverted into another diver­
sion. Undiverting discards the diverted text.

divnum Returns the value of the current output stream.

dnl

ifelse

incr

eval

len

index

subs tr

Reads and discards characters up to and including
the next newline.

Has three or more arguments. If the first argu­
ment is the same string as the second, then the
value is the third argument. If not, and if there
are more than four arguments, the process is
repeated with arguments 4, 5, 6 and 7. Otherwise,
the value is either the fourth string, or, if it
is not present, null.

Returns the value of its argument incremented by
1. The value of the argument is calculated by
interpreting an initial digit-string as a decimal
number.

Evaluates its argument as an arithmetic expres­
sion, using 32-bit arithmetic. Operators include
+, -, *, /, %, "' (exponentiation); relationals;
parentheses.

Returns the number of characters in its argument.

Returns the position in its first argument where
the second argument begins (zero origin), or -1 if
the second argument does not occur.

Returns a substring of its first argument. The

Bell 2

M4(1) Zilog M4(1)

second argument is a zero origin number selecting
the first character; the third argument indicates
the length of the substring. A missing third
argument is taken to be large enough to extend to
the end of the first string.

translit Transliterates the characters in its first argu­
ment from the set given by the second argument to
the set given by the third. No abbreviations are
permitted.

includE~ Returns the contents of the file named in the
argument.

sinclude Is identical to include, except that it says noth­
ing if the file is inaccessible.

syscmd Executes the UNIX command given in thE~ first argu­
ment. No value is returned.

maketemp Fills in a string of XXXXX in its argument with
the current process id.

errprint Prints its argument on the diagnostic output file.

dumpdef Prints current names and definitions, for the
named items, or for all if no arguments are given.

SEE ALSO

3

The M4 Macro Processor in the ZEUS Languages / Programming
ToolsManual

Bell 3

MAIL(l) Zilog MAIL (1)

NAME
mail, rmail - send and receive mail among users

SYNOPSIS
mail [-pqr] [-f ~file]

mail persons

rmail persons

DESCRIPTION

1

Mail without arguments prints a user's mail, message-by­
message, in last-in, first-out order. For each message, the
user is prompted with a ?, and a line is read from the stan­
dard input to determine the disposition of the message:

d Delete message and go on to next message.

EOT (control-D)
Put undeleted mail back in the mailfile and stop.

m[persons]
Mail the message to the named persons (yourself is
default).

<new-line>

p

q

s[file]

w[files]

x

+

!command

*

Go on to next message.

Print message again.

Same as EOT. and stop.

Save message in the named files (mbox is
default).

Save message, without its header, in the
named files (mbox is default).

Put all mail back in the mailfile unchanged
and stop.

Same as <new-line>.

Go back to previous message.

E:scape to the shell to do command.

P:r int a command summary.

When persons are named, mail takes the standard input up to
an end-of-file (or a line consisting of just a .) and adds
it to each person's mailfile. The message is preceded by
the sender's name and a postmark. Lines that look like

Bell 1

MAIL (1) Zilog MAIL(l)

postmarks in the message, (i.e., "From ... ") a:re preceded
with a >. A person is usually a user name recognized by
login(l). If a person being sent mail is not recognized, or
if mail is interrupted during input, the dead.letter will be
saved to allow editing and resending. It will be placed in
the current working directory.

To denote a recipient on a remote system, prefix person by
the system name and exclamation mark (see uucp(l)). Every­
thing after the first exclamation mark in persons is inter­
preted by the remote system. In particular, if persons con­
tains additional exclamation marks, it can denote a sequence
of machines through which the message is to be sent on the
way to its ultimate destination. For example, specifying
a!b!cde as a recipient's name causes the message to be sent
to user b!cde on system a. System a will interpret that
destination as a request to send the message to user cde on
system b. This is useful if the sending system can access
system a but not system b, and system a has access to system
b.

The mailfile can be manipulated in two ways to alter the
function of mail. The other permissions of the file may be
read-write, read-only, or neither read nor write to allow
different levels of privacy. If changed to other than the
default, the file will be preserved even when empty to per­
petuate the desired permissions. The file can also contain
the first line:

Forward to person

which causes all mail sent to the owner of the mailfile to
be forwarded to person. This is especially useful to for­
ward all of a person's mail to one machine in a multiple
machine environment.

Rmail only permits the sending of mail; uucp(l) uses rmail
as a security precaution.

When a user logs in he is informed of the presence of mail,
if any ..

OPTIONS

2

-ff ile
causes mail to use file (e.g., mbox)
default mailfile.

instead of the

-p causes all mail to be printed without prompting for
disposition.

-q causes mail to terminate after interrupts. Normally an
interrupt only causes the termination of the message

Bell 2

MAIL(l) Zilog MAIL(l)

FILES

being prinbed.

-r causes messages to be printed in first-in, first-out
order.

/etc/passwd
/usr/spool/mail/*
$HOME/mbox
$MAIL
/tmp/ma*
/usr/spool/mail/~r. lock
dead.letter

to identify persons
incoming mail for user *
saved mail
mailf ile
temporary file
lock for mail directory
unmailable text

SEE ALSO
login(l), uucp(l), write(l).

LIMITATIONS

3

Race conditions sometimes result in a failure to remove a
lock file.
After an interrupt, the next message may not be printed;
printing may be forced by typing a p.

Bell 3

MAKE (1) Zilog MAKE(l)

NAME
make - maintain, update, and regenerate groups of programs

SYNOPSIS
make -bdeikmnpqrst] [-f makefile] [names]

DESCRIPTION

1

Make executes commands in makefile to update one or more
target names. Name is typically a program. If no -f option
is present, makefile, Makefile, makefile+ and Makefile+ are
tried in order. If makefile is -, the standard input is
taken. More than one -f makefile argument pair may appear.

Make updates a target only if it depends on f i lE?S that are
newer than the target. All prerequisite files of a target
are added recursively to the list of targets. Missing files
are deemed to be out of date.

Makefile contains a sequence of entries that specify depen­
dencies. The first line of an entry is a blank-separated,
non-null list of targets, then a :, then a (possibly null)
list of prerequisite files or dependencies. Text following
a ~ and all following lines that begin with a tab are shell
commands to be executed to update the target. The first
line that does not begin with a tab or I begins a new depen­
dency or macro definition. Shell commands may be continued
across lines with the <backslash><new-line> sequence. Sharp
(#) and new-line surround comments.

The following makefile says that pgm depends on two
a.o and b.o, and that they in turn depend on
corresponding source files (a.c and b.c) and a common
incl .h::

p9m: a. o b .o
cc a.o b.o -o pgm

a .. o : inc 1 • h a • c
cc -c a.c

b .. o : inc 1 • h b • c
cc -c b.c

files
their
file

Command lines are executed one at a time, each by its own
shell. A line is printed when it is executed unless the -s
option is present, or the entry .SILENT: is in ~akefile, or
unless the first character of the command is @. The -n
option specifies printing without execution~ however, if the
command line has the string $(MAKE) in it, the line is
always executed (see discussion of the MAKEFLAGS macro under
Environment). The -t (touch) option updates the modified
date of a file without executing any commands.

Bell 1

MAKE(l) Zilog MAKE(l)

Commands returning non-zero status normally terminate make.
If the -i option is present, or the entry .IGNORE: appears
in makefile, or if the line specifying the command begins
with <tab><hyphen>, the error is ignored. If the -k option
is present, work is abandoned on the current entry, but con­
tinues on other branches that do not depend on that entry.

The -b option allows old makefiles (those written for the
old version of make) to run without errors. The difference
between the old version of make and this version is that
this version requires all dependency lines to have a (possi­
bly null) command associated with them. The previous ver­
sion of make assumed if no command was specified explicitly
that the command was null.

Interrupt and quit cause the target to be deleted unless the
target depends on the special name .PRECIOUS.

OPTIONS
-b Compatibility mode for old mak~files.

2

-d Debug mode. Print out detailed information on files
and times examined.

-e

-f

Environment variables override
makefiles.

makefile

assignments within

Description file name. Makefile is assumed to be the
name of a description file. A file name of - denotes
the standard input. The contents of makefile override
the built-in rules if they are present.

-i Ignore error codes returned by invoked commands. This
mode is entered if the fake target name .IGNORE appears
in the description file.

-k Abandon work on the current entry,
other branches that do not depend on

but continue
that entry.

on

-n No execute mode. Print commands, but do not execute
them. Even lines beginning with an @ are printed.

-p Print out the complete set of macro definitions and
target descriptions.

-q Question. The make command returns a zero or non-zero
status code depending on whether the target file is or
is not up-to-date.

-r Do not use the built-in rules.

Bell 2

MAKE(l) Zilog MAKE(l)

-s Silent mode. Do not print command lines before execut­
ing. This mode is also entered if the fake target name
.SILENT appears in the description file.

-t Touch the target files (causing them to be up-to-date)
rather than issue the usual commands •

• DEFAULT
If a file must be made but there are no explicit com­
mands or relevant built-in rules, the commands associ­
ated with the name .DEFAULT are used if it exists •

• IGNORE:
Same effect as the -i option •

• PRECIOUS
Dependents of this target will not be removed when quit
or interrupt are hit •

• SILEN'11

Same effect as the -s option.

ENVIRONMENT

3

The environment is read by make. All variables are assumed
to be macro definitions and processed as such. The environ­
ment variables are processed before any makefile and after
the internal rules; thus, macro assignments in a makefile
override environment variables. The -e option causes the
environment to override the macro assignments in a makefile.

The MAKEFLAGS environment variable is processed by make as
containing any legal input option (except -f, -p, and -d)
defined for the command line. Further, upon invocation,
make "invents" the variable if it is not in the environment,
puts the current options into it, and passes it on to invo­
cations of commands. Thus, MAKEFLAGS always contains the
current input options. This proves very useful for "super­
makes".. In fact, as noted above, when the -n option is
used, the command $(MAKE) is executed anyway; hence, one can
perform a make -n recursively on a whole software system to
see what would have been executed. This is because the -n
is put in MAKEFLAGS and passed to further invocations of
$(MAKE). This is one way of debugging all of the makefiles
for a software project without actually doing anything.

Macros
Entries of the form stringl = string2 are macro definitions.
Subsequent appearances of $(stringl[:substl=[subst2]]) are
replaced by string2. The parentheses are optional if a sin­
gle character macro name is used and there is no substitute
sequence. The optional :substl=subst2 is a substitute
sequence. If it is specified, all non-overlapping

Bell 3

MAKE(l) Zilog MAKE(l)

4

occurrences of substl in the named macro are replaced by
subst2. Strings (for the purposes of this type of substitu­
tion) are delimited by blanks, tabs, new-line characters,
and beginnings of lines. An example of the use of the sub­
stitute sequence is shown under Libraries.

Internal Macros
There are five internally maintained macros which are useful
for writing rules for building targets.

$* The macro $* stands for the file name part
current dependent with the suffix deleted.
evaluated only for inference rules.

of the
It is

$@ The $@ macro stands for the full target name of the
current target. It is evaluated only for explicitly
named dependencies.

$< The $< macro is only evaluated for inference rules or
the .DEFAULT rule. It is the module which is out of
date with respect to the target (i.e., the "manufac­
tured" dependent file name). Thus, in the .c.o rule,
the $< macro would evaluate to the .c file. An example
for making optimized .o files from .c files is:

.c.o:
cc -c -0 $*.c

or:

.c.o:
cc -c -0 $<

$? The $? macro is evaluated when explicit rules from the
makefile are evaluated. It is the list of prere­
quisites that are out of date with respect to the tar­
get; essentially, those modules which must be rebuilt.

$% The $% macro is only evaluated when the target is
archive library member of the form lib(file.o).
this case, $@ evaluates to lib and $% evaluates to
library member, file.o.

an
In

the

Four of the five macros can have alternative forms. When an
upper case D or F is appended to any of the four macros the
meaning is changed to "directory part" for D and "file part"
for F. Thus, $(@D) refers to the directory part of the
string $@. If there is no directory part, ./ is generated.
The only macro excluded from this alternative form is $?.
The reasons for this are debatable.

Bell 4

MAKE(l) Zilog MAKE(l)

r _)

Suffixes
Certain names (for instance, those ending with .o) have
inferable prerequisites such as .c, .s, etc. If no update
commands for such a file appear in makefile, and if an
inferable prerequisite exists, that prerequisite is compiled
to make the target. In this case, make has inference rules
which allow building files from other files by examining the
suffixes and determining an appropriate inference rule to
use. The current default inference rules are:

.c .c+ .f .f+ .sh .sh+ .c.o .c+.o .c+.c .f .. o .f+.o

.f+.f .s.o .s+.o .s+.s .y.o .y+.o .y+.c .y .. c .c.a .c+.a

.s+.a

To print out the rules compiled into the make on any
machine, the following command is used:

make -fp - 2>/dev/null </dev/null

The only peculiarity in this output is the (null) string
which printf(3) prints when handed a null string.
(Cshell(l) users will have to redirect the standard output
to a file and ignore the errors printed out on the termi­
nal.)

A rule with only one suffix (i.e .• c:) is the definition of
how to build x from x .c. In effect, the other suffix is
null. This is useful for building targets from only one
source file (e.g., shell procedures, simple C programs).

Additional suffixes are given as the dependency list for
.SUFFIXES. Order is significant; the first possible name
for which both a file and a rule exist is inferred as a
pre requisite.

The default list is:

.SUFFIXES: .o .c .c+ .y .y+ .f .f+ .p .p+ .s .s+ .sh
.sh+ .h .h+

Here again, the above command for printing the internal
rules will display the list of suffixes implemented on the
current machine. Multiple suffix lists accumulate; .SUF­
FIXES: with no dependencies clears the list of suffixes.

Inference Rules
The first example can be done more briefly:

pgm: a.o b.o
cc a.a b.o -o pgm

a. o b. o: inc 1. h

Bell 5

MAKE{l) Zilog MAKE{l)

6

This is because make has a set of internal rules for build­
ing files. The user may add rules to this list by simply
putting them in the makefile •

Certain macros are used by the default inference rules to
permit the inclusion of optional matter in any resulting
commands. For example, CFLAGS and YFLAGS are used for com­
piler options to cc{l) and yacc{l) respectively. Again, the
previous method for examining the current rules is recom­
mended.

The inference of prerequisites can be controlled. The rule
to create a file with suffix .o from a file with suffix .c
is specified as an entry with .c.o: as the target and no
dependents. Shell commands associated with the target
define the rule for making a .o file from a .c file. Any
target that has no slashes in it and starts with a dot is
identified as a rule and not a true target.

Libraries
If a target or dependency name contains parenthesis, it is
assumed to be an archive library, the string within
parenthesis referring to a ~ember within the library. Thus
lib(file.o} and $(LIB} (file.o} both refer to an archive
library which contains file.o. {This assumes the LIB macro
has been previously defined.) The expression $(LIB} (filel.o
file2.o) is not legal. Rules pertaining to archive
libraries have the form .xx.a where the XX is the suffix
from which the ar·chive member-rs to be made. An unfortunate
byproduct of the current implementation requires the XX to
be different from the suffix of the archive member. Thus,
one cannot have lib(file.o) depend upon file.a explicitly.
The most common use of the archive interface follows. Here,
we assume the source files are all C type source:

lib: lib{filel.o) lib{file2.o) lib{file3.o)
@echo lib is now up to date

.c.a:
${CC) -c $(CFLAGS) $<
ar rv $@ $*.o
rm -f $*.o

In fact, the .c.a rule listed above is built into make and
is unnecessary in this example. A more interesting, but
more limited example of an archive library maintenance con­
struction follows:

lib: lib(filel.o) lib(file2.o). lib(file3.o)
$(CC) -c $(CFLAGS) $(?:.o=.c)
ar rv lib $?
rm $?
@echo lib is now up to date

Bell 6

MAKE(l) Zilog MAKE(l)

FILES

.4:=.a:;

Here the substitution mode of the macro expansions is used.
The $? list is defined to be the set of object file names
(inside lib) whose C source files are out of date. The
substitution mode translates the .o to .c. Note also, the
disabling of the .c.a: rule, which would have created each
object file, one by one. This particular construct speeds
up archive library maintenance considerably. This type of
construct becomes very cumbersome if the archive library
contains a mix of assembly programs and C programs.

[Mm] ak 1efi le
[Mm] ak•=f ile+

SEE ALSO
chkin(l), chkout(l), csh(l), sh(l), touch(!).
Make - A Program for Maintaining Computer Programs in the
ZEUS L,anguages / Programming Tools Manual

LIMITATIONS

7

Some commands return non-zero status inappropriately; use -i
to overcome the difficulty. Commands that are directly exe­
cuted by the shell, notably cd(l), are ineffectual across
new-lines in make. The syntax lib(filel.o file2.o file3.o)
is illegal. You cannot build lib(file.o) from file.o.

Bell 7

MAN (1) Zilog MAN(l)

NAME
man - print sections of this manual

SYNOPSIS
man [option .•.] [chapter] title .••

DESCRIPTION
Man locates and prints the section of this manual named
title in the specified chapter. (In this context, the word
"page" is often used as a synonym for "section.") The
title, is entered in lowercase. The chapter number does not
need a letter suffix. If no chapter is specified, the whole
manual is searched for title and all occurrences of it are
printed.

OPTIONS
-e Appended or prefixed to any of the above causes the

manual section to be preprocessed by neqn or eqn(l); -e
alone means -te.

-h Send the manual entry to the output device using the
program "cat" rather than the default "more." This is
intended primarily for hardcopy terminals.

-n Print the section on the standard
nroff(!).

output using

-t Phototypeset the section using troff(!).

-v Send the manual entry to the output device using the
program "view" rather than the default "more."

-w Print the path names of the manual sections, but do not
print the sections themselves.

(default)
Copy an already formatted manual section to the termi­
nal, or, if none is available, act as -n. It may be
necessary to use a filter to adapt the output to the
particular terminal's characteristics.

Further options, for example, to specify the kind of termi­
nal you have, are passed on to troff(l) or nroff(!).
Options and chapter can be changed before each title.

EXAMPLES

1

man man

reproduces this section, as well as any other sections
named man that can exist in other chapters of the
man ua 1 , (man (7)) •

Bell 1

MAN (1) Zilog

man 1 man

reproduces only this section.

FILES
/usr/man/man?/*
/usr/man/cat?/*

SEE ALSO

MAN (1)

INTR0(0), apropos(l), help(l), nroff(l), eqn(l), man(7).

LIMITATIONS

2

The manual is supposed to be reproducible either on a photo­
typesetter or on a terminal. However, on a terminal some
information is lost.

Bell 2

MESG(l) Zilog

NAME
mesg - permit or deny messages

SYNOPSIS
mesg

DESCRIPTION

n] [y]

MESG(l)

With no arguments, mesg reports the current state without
changing it.

OPTIONS
n Forbids messages via wtite(l) or talk(l), by revoking

non-user write permission on the user's terminal.

y Reinstates permission.

FILES
/dev/tty*
/dev

SEE ALSO
ta 1 k (1) , write (1) •

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on
error.

1 Bell 1

MKDIR(l) Zilog MKDIR(l)

NAME
mkdir - make a directory

SYNOPSIS
mkdir dirname

DESCRIPTION
Mkdir creates specified directories in mode 777 joined with
logical and to the complement of the current umask value.
The umask value is controlled by the umask sh1ell command.
Standard entries (. for the directory itself, and •• for
its parent), are made automatically.

Mkdir requires write permission in the parent directory.

SEE ALSO
cs h (1) , rm (1) , sh (1) , um ask (2) , chm od (1) •

DIAGNOSTICS

1

Mkdir returns exit code 0 if all directories were success­
fully made. Otherwise, it prints a diagnostic and returns
nonzero.

Bell 1

MKNOD(l) Zilog MKNOD(l)

NAME
mknod - build special file

SYNOPSIS
/etc/mknod name c] [b] major minor
/etc/mknod name p

DESCRIPTION

1

Mknod makes a di.rectory entry and corresponding i-node for a
special file.

Mknod can also be used to create fifo's (a.k.a named pipes)
(second case in SYNOPSIS above). This use of Mknod can be
used by any user. The first case can be used only by
members of the 'system' group. It is used to create special
device files.

The first argument is the name of the entry. In the first
case, the second is b --rr-the special file is block-type
(disks, tape) or c if it is character-type (other devices).
The last two arguments are numbers specifying the major dev­
ice type and the minor device (e.g. unit, drive, or line
number), which may be either decimal or octal. A leading 0
for the major and minor device numbers mean that they are in
octal.

The assignment of major device numbers depends on the posi­
tion of the driver in dispatch tables in the kernel. The
major device numbers for current drivers is as follows:

Device

ZD
CT
SMD
MT
MD
ERR
MEM
TTY
SIO
LP
PTC (unet)
PTS (unet)
UP (unet)
uu (unet)
UD (unet)

Character Dev.
Major Number

0
1
2
3
4
5
6
7
8
9, 10
11
12
13
14
15

Bell

Block Dev.
Major Number

0
1
8
9
10

1

MKNOD(l) Zilog MKNOD(l)

Device (cont.) Character Dev. Block Dev.
Major Number Major Number

Ul (user defined dev) 16 2
02 (user defined dev) 17 3
U3 (use·r defined dev) 18 4
04 (user defined dev) 19 5
us (use!r defined dev) 20 6
06 (user defined dev) 21 7

The minor device number is device dependent. For disks, the
minor device number is the number of the file system. The
first digit (decimal) corresponds to the drive number and
the second digit (decimal) is the order of the file system
on the disk. For ttys, the minor device number is the
number of the port. For other devices the numbers represent
options passed to the drivers (eg. no-rewind for tapes).

SEE ALSO
mknod(M), mknod(2).

2 Bell 2

MKSTR(l) Zilog MKSTR(l)

NAME
mkstr - create an error message file by massaging C source

SYNOPSIS
mks tr -] messagefile prefix file •••

DESCRIPTION

1

Mkstr is used to create files of error messages. Its use
can make programs with large numbers of error diagnostics
much smaller, and reduce system overhead in running the pro­
gram as the error messages do not have to be constantly
swapped in and out.

Mkstr will process each of the specified files, placing a
massaged version of the input file in a file whose name con­
sists of the specified prefix and the original name. A typ­
ical usage of mkstr would be:

mkstr pistrings xx *.c

This command would cause all the error messages from the C
source files in the current directory to be placed in the
file pistrings and processed copies of the source for these
files to be placed in files whose names are prefixed with
xx.

To process the error messag~s in the source to the message
file mkstr keys on the string 'error("' in the input stream.
Each time it occurs, the C string starting at the ''" is
placed in the message file followed by a null character and
a new-line character; the null character terminates the mes­
sage so it can be easily used when retrieved, the new-line
character makes it possible to sensibly cat the error mes­
sage file to see its contents. The massaged copy of the
input file then contains a lseek pointer into the file which
can be used to retrieve the message, i.e.:

char efilname[] = "/usr/lib/pi_strings";
int efil = -1;

error(al, a2, a3, a4)
{

oops:

char buf[256];

if (efil < 0) {
efil = open(efilname, 0);
if (efil < 0) {

}

perror(efilname);
exit (1) ;

Zilog 1

MKSTR{l)

}

OPTIONS

SEE ALSO

Zilog MKSTR{l)

}
if (lseek(efil, (long) al, 0) 11 read(efil, buf, 256) <= 0)
goto oops;

printf(buf, a2, a3, a4);

Causes the error messages to be placed at the end of
the specified message file for recompiling part of a
large mkstred program.

lseek (2.), xstr (1).

LIMITATIONS

2

All the arguments except the name of the file to be pro­
cessed are unnecessary.

Zilog 2

MM (7) Zilog MM(7)

NAME
mm - the MM macro package for formatting documents

SYNOPSIS
mm [options] [files]

nroff -mm [options] [f i 1 es]

nroff -cm [opt ions] [f i 1 es]

mmt [options] [!_iles]

troff -mm [opt i o :n s] [f i 1 es]

troff -cm [options] [files]

DESCRIPTION
This package provides a formatting capability for a wide
variety of documents. It is the standard package used by
the BTL typing pdols and documentation centers. The manner
in which a document is entered and edited is essentially
independent of whether the document is to be eventually for­
matted at a terminal or phototypeset. See the references
below for further details.

OPTIONS
-cm Causes nroff(l) and troff (l) to use the compacted ver­

sion of the-macro package, thus speeding up the process
of loading.

-mm Results in the use of the non-compacted version of the
macro packasre.

FILES
/usr/lib/tmac/tmac.m pointer

compacted
package

to the non­
ver s ion of the

/usr/lib/macros/mm[nt]

/usr/lib/macros/cmp. [nt]. [dt] .m

/usr/l ib/macros/ucmp. [nt] .m

SEE ALSO
troff (1) •

1 Bell

non-compacted version of
the package

compacted version of the
package

initializers for the com­
pacted version of the
package

1

MORE(l) Zilog MORE(l)

NAME
more, page - file perusal filter for crt viewing

SYNOPSIS
more [-dfl~] [+line] [+/pat] [file

page [-dfl~] [+line] [+/pat] [file

DESCRIPTION

1

More allows examination of a file on a terminal one screen­
ful at a time. It normally pauses after each screenful,
printin9:

--More--

at the bottom of the screen. A carriage return displays one
more line, a space displays another screenful.

If the -1 option is not given, more will pause after any
line that contains a control-L ""L", as if the end of a
screenful had been reached. Also, if a file begins with a
form feed, the screen will be cleared before the file is
printed.

If the program is invoked as page, then the screen is
cleared before each screenful is printed (but only if a full
screenful is being printed), and k - 1 rather than k 2
lines are printed in each screenful, where k is the number
of lines the terminal can display.

More looks in the file /etc/termcap to determine terminal
charactE~ristics, and to determine the default window size.
On a terminal capable of displaying 24 lines, the default
window· size is 22 lines.

If more is reading from a file, rather than a pipe, then a
percentage is displayed along with the --More-- prompt.
This gives the fraction of the file (in characters, not
lines) that has been read so far.

Other sequences which may be typed
their effects, are as follows
argument, defaulting to 1)

i<space>

when more pauses, and
C! is an optional integer

- display i more lines, (or another screenful if no argu­
ment is given)

AD Cont:rol-D
display 11 more lines (a ''scroll''). If i is given,
then the scroll size is set to i.

UCB 1

MOHE(l) Zilog MORE(l)

2

d same as "'o (control-D)

iz same as typing a space except that .! ' if present,
becomes the new window size.

is skip i lines and print a screenful of lines

if skip i screenfuls and print a screenful of lines

q or Q
Exit from more.

= Display the current line number.

v Start up the editor vi at the current line.

h Help command; give a description of all the more com­
mands.

i/expression
- search for the i-th occurrence of the regular expres­

sion expression. If there are less than i occurrences
of expression, and the input is a file (rather than a
pipe), then the position in the file remains unchanged.
Otherwise, a screenful is displayed, starting two lines
before the place where the expression was found. The
user's erase and kill characters may be used to edit
the regular expression. Erasing back past the first
column cancels the search command.

in search for the i-th occurrence · of the last regular
expression ente~ed.

I (single quote) Go to the point from which the last
search started. If no search has been performed in the
current file, this command goes back to the beginning
of the file.

!command
invoke a shell with command. The characters'%' and'!'
in "command" are replaced with the current file name
and the previous shell command respectively. If there
is no current file name, '%' is not expanded. The
sequences "\%" and "\!" are replaced by "%" and "!"
respectively.

i:n skip to the i-th next file given in the command line
(skips to la~t file if ! doesn~t make sense)

.!_:p skip to the i-th previous file given in the command
line. If thTs command is given in the middle of print­
ing out a file, then more goes back to the beginning of

UCB 2

MORE(l) Zilog MORE (1)

the file. If i doesn't make sense, more skips back to
the first file. If more is not reading from a file,
the bell is rung and nothing else happens.

:f display the current file name and line number.

:q or :Q
exit from more (same as q or Q).

Dot
(dot) repeat the previous command.

The commands take effect immediately, i.e., it is not neces­
sary to type a carriage return. Up to the time when the
command character itself is given, the user may hit the line
kill character to cancel the numerical argument being
formed. In addition, the user may hit the erase character
to redisplay the --More--(xx%) message.

At any time when output is being sent to the terminal, the
user ca.n hit the quit key (normally control-\).. More will
stop sending output, and will display the usual --More-­
prompt. The user may then enter one of the above commands
in the normal manner. Unfortunately, some output is lost
when this is done, due to the fact that any characters wait­
ing in the terminal's output queue are flushed when the quit
signal occurs.

The terminal is set to noecho mode by this program so that
the output can be continuous. What you type will thus not
show on your terminal, except for the/ and ! .commands.

If the standard output is not a teletype, then more acts
just like cat, except that a header is printed before each
file (if there is more than one).

A sample usage of more in previewing nroff output would be

nroff -ms +2 doc.n I more

OPTIONS
-d Mo:i:e wi 11 prompt the user with the message "Hit space

to continue, Rubout to abort" at the end of each
screenful. This is useful if more is being used as a
filter in some setting, such as a class, where many
users may be unsophisticated.

3

-f This causes more to count logical, rather than screen
lines. That is, long lines are not folded.

-1 Do not treat AL (form feed) specially.

UCB 3

MORE(l) Zilog MORE(l)

FILES

-n An integer which is the size {in lines) of the window
which more will use instead of the default.

+line
Start up at line.

+/pat
--Start up two lines before the line containing the regu­

lar expression pattern.

/etc/termcap
/usr/lib/more.help

Terminal data base
Help file

SEE ALSO
cat (1), dog (1), head (1), tail (1), pr (1).

4 UCB 4

MV (1) Zilog MV (1)

NAME
mv - move or rename files and directories

SYNOPSIS
mv f ilel file2

mv file ••• directory

DESCRIPTION
Mv moves (changes the name of) filel to file2.

If !. i le.~ already exists, it is removed before f i lel is
moved. If file2 has a mode which forbids writing, mv prints
the mod1e (see chmod (2)) and reads the standard input to
obtain a line; if the line begins with y, the move takes
place; if not, mv exits.

In the second form, one or more files are moved to the
directo~ with their original file-names.

Mv refuses to move a file onto itself.

DIAGNOSTICS
"cannot link /dir2/dirl to /dirl" Printed if not superuser.

SEE ALSO
cat (1) , c p (1) , chm od (2) •

LIMITATIONS

1

If filel and file2 lie on different file systems, mv must
copy-the file and delete the original. In this case the
owner name becomes that of the copying process and any link­
ing relationship with other files is lost.

Bell 1

NEWGRP(l) . Zilog NEWGRP(l)

NAME
newgrp - log in to a new group

SYNOPSIS
newgrp [group]

DESCRIPTION

FILES

Newgrp changes the group identification of its caller,
analogously to login(l). The same person remains logged in,
and the current directory is unchanged, but calculations of
access permissions to files are performed with respect to
the new group ID.

A password is demanded if the group has a password and the
user does not.

When most users log in, they are members of the group named
other. Newgrp is known to the shell, that executes it
directly without a fork if the shell is a login shell.

You can always m~wgrp back to your default group at log in by
typing: newgrp. 'rhe super-user can newgrp to any group.

/etc/group, /etc/passwd

SEE ALSO
csh(l), login(l) ,. sh(l), group(S).

1 Bell 1

NEWS(l) Zilog NEWS (1)

NAME
news - print news items

SYNOPSIS
news ·-ans] [i terns]

DESCRIPTION
News is used to keep the user informed of current events.
By convention, these events are described by files in the
directory /usr/lib/news.

When invoked without arguments, news prints the contents of
all current files in /usr/lib/news, most recent first, with
each preceded by an appropriate-----ileader. News stores the
"currency" time as the modification date of a file named
.news time in the user's home directory (the identity of
this directory is determined by the environment variable
$HOME);

If a delete is typed during the printing of a news item,
printing stops and the next item is started. Another delete
within one second of the first causes the program to ter­
minate. Only files more recent than this currency time are
considered "current".

OPTIONS

FILES

-a Prints all items, regardless of currency; the stored
time is not changed.

-n Reports the names of the current items without printing
their contents, and without changing the stored time.

-s Reports how many current items exist, without printing
their names or contents, and without changing the
stored time. It is useful to include such an invoca­
tion of news in one's .login file.

All other arguments are assumed to be specific news items
that are to be printed.

/usr/lib/news/*
$HOME/.news time
/etc/motd -

SEE ALSO
environ(S}.

1 Zilog 1

NICE(l) Zilog NICE(l)

NAME
nice, nohup - run a command at low priority

SYNOPSIS
nice [-number] command [arguments

nohup command [arguments]

DESCRIPTION

FILES

Nice executes command with low scheduling priority. If the
number argument: is present, the priority is incremented
(higher numbers mean lower priorities) by that amount up to
a limit of 20. The default number is 7.

The super-user can run commands with priority higher than
normal by using a negative priority, for example --10.

Nohup executes command immune to hangup and terminate sig­
nals from the controlling terminal. The priority is incre­
mented by 5. Nohup should be invoked from the shell with &
to prevent it from responding tQ interrupts by or stealing
the input from the next person who logs in on the same ter­
minal.

NOTE: The C shell executes these commands internally. The
syntax and features differ somewhat from the commands
described here, so C shell users should refer directly to
nice(lC), and nohup(lC).

nohup.out standard output and standard error file under
nohup

SEE ALSO
csh(l), nice (lC), nice(2).

DIAGNOSTICS
Nice returns the exit status of the subject command.

1 Bell 1

NICE(lC) Zilog NICE(lC)

NAME
nice - set the priority of a command

SYNOPSIS
nice number] command

DESCRIPTION
Nice without an argument, increments the nice value for this
shell by seven. With a number argument, 0ICe increments the
nice number of the current shell by the given number (e.g.,
'nice -+8' and 'nice -8' have the same effec~hat is ,
incrementing the priority by 8).

With a command argument, nice increments the nice value of
the given command by number and by seven rr-no number is
given.

The super-user can specify negative niceness by using the
"nice --number ••• " command. The command is always executed
in a subshell, and the restrictions placed on commands in
simple if statements apply.

SEE ALSO
nice (1) , nohup (lC) •
The C Shell in the ZEUS Utilities Manual

1 UCB 1

NL (1) Zilog NL(l)

NAME
nl - line numbering filter

SYNOPSIS
nl

[-btype]
[-ftype]
[-htype]
[-iincr]
[-lnum]
[-n"f"Orma t]
[-p]
[-ssep]
[-vstart#]
[-wwidth]
file

DESCRIPTION

1

Nl reads lines from the named file or the standard input if
no file is named and reproduces the lines on the standard
outplit:- Lines are numbered on the left in accordance with
the command options in effect.

Nl views the text it reads in terms of logical pages. Line
numbering is reset at the start of each logical page. A
logical page consists of a header, a body, and a footer sec­
tion. Empty sections are valid.

Different line numbering options are independently available
for header, body, and footer (e.g. no numbering of header
and footer lines while numbering blank lines only in the
body) •

The start of logical page sections are signaled by input
lines containing nothing but the following character(s):

Line contents Start of

\:\:\: header

\ :\: body

\: footer

Unless signaled otherwise, nl assumes the text being read is
in a single logical page body.

Command options may appear in any order and may be intermin­
gled with an optional file name. Only one file may be
named.

Zilog 1

NL (l)

OPTIONS
-btype

-f type

-htype

-iincr

-lnum

-nformat

-p

-ssep

-vs tar~#

-wwidth

SEE ALSO

Zilog NL (1)

Specifies which logical page body lines are to be
numbered. Recognized types and their meaning are:
a, number all lines; t, number lines with print­
able text only; n, no line numbering; pstring,
number only lines that contain the regular expres­
sion specified in string. Default _9rpe for logi­
cal page body is t (text lines numbered).

Same as -btype except for footer. Default for
logical page footer is n (no lines numbered).

Same as -btype except for header. Default type
for logical page header is n (no lines numbered).

Iner is the increment value used to number logical
page lines. Default is 1.

Num is the number of blank 1 ines to b•= considered
as one. For example, -12 results in only the
second adjacent blank being numbered (if the
appropriate -ha, -ba, and/or -fa option is set).
Default is 1.

Format is the line numbering format. Recognized
values are: ln, left justified, leading zeroes
supressed; rn, right justified, leading zeroes
supressed; rz, right justified, leading zeroes
kept. Default format is rn (right justified).

Do not restart numbering at logical page delim­
iters.

Sep is the character(s)
line number and the
Default sep is a tab.

used in separating the
corresponding text line.

Start# is the initial value used to number logical
page lines. Default is 1.

Width is the number of characters to be used for
the-Yine number. Default width is 6.

n r o ff (1) , pr (1) .

2 Zilog 2

NM (1) Zilog NM (1)

NAME
nm - print name list

SYNOPSIS
nm [-gnoprsu] [!_;ile]

DESCRIPTION
nm prints the name list (symbol table) of each load module
in the argument list. If an argument is an archive, a list­
ing for each load module file in the archive is produced.
If no file is given, the symbols in a.out are listed.

The output is so1~ted alphabetically by default. Each symbol
name is preceded by its value in hex, or by blanks if unde­
fined, and one of the letters:

U undefined
A absolute
T text section symbol
D data SE~ction symbol
B bss section symbol
C common symbol
F file name
S section name

An uppercase letter means global or external.
type letter means local.

A lowercase

OPTIONS
-g Pr int only grlobal (external) symbols.

FILES

1

-n Sort numerically rather than alphabetically.

-o Prepend file or archive element name to each output
line.

-p Print in symbol-table order rather than in sorted
order.

-r Sort in reverse order.

-s Sort according to the size of the external symbol (com­
puted from the difference between the value of the sym­
bol and the value off the symbol with the next highest
value). This difference is the value printed. This
flag turns on -g and -n and turns off -u and -p.

-u Print only undefined symbols.

a.out load module

Zilog 1

NM(l) Zilog NM (1)

SEE ALSO
at: (1), a.out(S), ar (5).

LIMITATIONS
The -s options does not work on segmented object files.

2 Zilog 2

NOHUP(lC) Zilog NOHUP(lC)

NAME
nohup - no hang-up on interupts in a dial-up situation

SYNOPSIS
nohup command

DESCRIPTION
Nohup executes command with telephone hangups and quits
ignored. If output is not re-directed by the user, it will
be sent to nohup.out. If nohup.out is not writable in the
current directory, output is redirected to $HOME/nohup.out.

Nohup is used in shell scripts. It causes the shell to
ignore telephone hangups for the remainder of the script.
With a command argument, nohup executes command with hangups
and quits ignored.

LIMITATIONS
Unless the shell is running detached (in background), nohup
has no effect.

SEE ALSO
nice (lC), onintr (lC), signal (2).
The C Shell in the ZEUS Utilities Manual -- - ---

1 UCB 1

NQ (1) Zilog NQ (1)

NAME
nq - print enqueing program

SYNOPSIS
nq [option file

DESCRIPTION
Nq is a general purpose enqueing program. It queues files to
be processed by dqueuer(M). Dqueuer is responsible for han­
dling requests for most shared devices such as line printers
and text quality typewriters. Nq is used to queue requests
for all dqueuer(M) devices. Xq(l) can then be used to exam­
ine and delete previously queued requests. Nq accepts any
number of filenames to be printed. If none are given, stan­
dard input is read.

With no options, nq takes the files given (or standard
input) and queues them for the default queue for the partic­
ular system being used. The default queue is the first in
the list of queues printed by xq. All attributes used to
print these files will take on reasonable values for the
default device.

Options may be used to modify certain of these attributes
pertaining to each file. An option affects all files follow­
ing it on the command line until it is overidden by another
option.

OPTIONS

1

-b Return to burst page printing (default) if it had been
turned off in a previous command.

-c Normally, nq "remembers" the name of a file to be
printed. The '-c' option (copy) can be used to cause nq
to copy the file to insulate it against changes that may
occur before printing occurs.

-d des.t
ceitain burst page formats allow for a destination field.
This option is used to set that field. If the '-m' option
is also specified, and if dest is a valid login name,
mai.1(1) will also be sent to user 'dest'.

-m Report by mail(l) when printing is complete. Addition­
ally, if the '-d' option is supplied, mail(l) may be sent
to the identified user (see '-d' option).

-n[bcdmpqrst]
This option is used to negate previous options. For the
letter given, the value of that option is reset to the
default value. If no option is given, '-nm' is assumed,
to retain compatibility with the obsolete lpr(l) format.

Zilog 1

NQ (1) Zilog NQ (1)

-p pri
File is to be printed at priority pri. Valid priorities
are 'normal', 'deferred', and 'rush'. Abbreviations to
one character are excepted. All 'rush' requests will
print before 'normal' requests, which will print before
'deferred' requests. In addition, a queue may be set to
prevent requests below a specific priority from printing.

-q que [: dev]
~th~option is omitted, the file will be sent to the
default queue. When specified, the files will be sent to
queue que, to be printed on the first available device.
If a queue is serviced by more than one device and a
specific device is desired, the :dev option can be added.
Que and dev are site-dependen-t--strings. Their exact
values can be found using the xq command or through the
system administrator.

-r Remove the file once it has been printed.

-s Silence. Prevents file name from appearing in queue lists
(see xq (1)) •

-t number
Print file number times.

EXAMPLES

FILES

nq filel
Print filel with burst pages.

nq -nb f ilel -b file2
Print filel without burst pages. File2, because of the
-b option, prints with burst pages.

nq -nb filel
Print filel without burst pages.

/usr/spool/queuer/activeconf ig
/usr/spool/queuer/statusdir
/usr/spool/queuer/requestdir
/tmp/queuer
/usr/spool/queuer/logfile

SEE ALSO
xq (1) , backend (M) , dqueuer (M) , xq (M) •

DIAGNOSTICS

2

If the dequeueing daemon is not active, nq will print a mes­
sage saying so, but accept the request anyway.

Zilog 2

OBJDU(l) Zilog OBJDU(l)

NAME
objdu - dump for object and load modules

SYNOPSIS
objdu [-r] [-h] file

DESCRIPTIO:N
Objdu dumps 88000 load modules in hex format, since bytes in
a word are displayed in the Z8~00 ordering and addresses
correspond to the link addresses. Header information is also
displayed in a convenient format. Values are decimal unless
otherwise noted.

OPTIONS
-h

-r

Print only the header information.

Print relocation information if the file is
stripped.

DIAGNOSTICS
"Not a loadable file " for non-88000 load modules

"Premature EOF" for files with an odd number of bytes

SEE ALSO
nm (1) , a. out (5) , od (1) , obj hdr (1) •

1 Zilog

not

1

OBJHDR(l) Zilog OBJHDR(l)

NAME
objhdr - object module header dump

SYMOPSIS
objhdr file

DESCRIPTION
Objhdr is specifically designed for dumping 88000 load
module header information in hex format.

SEE ALSO
nm (1) , a • out (5) , od (1) , obj du (1) •

1 Zilog 1

OBJ SU (1) Zilog OBJSU(l)

NAME
objsu - object module underscore stripper

SYNOPSIS
objsu file

DESCRIPTION
Objsu is specifically designed for removing the leading
underscore from names in the symbol table section of a.out
files. This is useful in PLZ/SYS programs when linking with
assembly language programs.

SEE ALSO
nm (1) , a. out (5) , pl z (1) .

DIAGNOSTICS

1

"file not in correct a.out format" if magic number is not
valid.

Zilog 1

00(1) Zilog OD (1)

NAME
od, hd - octal or hex dump

SYNOPSIS
od [-bcdox

hd -bed ox

file

file

[+ [x]]offset[•] [b

[+ [x]]offset[.][b

DESCRIPTION
Od dumps file in one or more formats as selected by the
first argument. If the first argument is missing, -o is
default.

The file argument specifies which file is to be dumped. If
no f~argument. is specified, the standard input is used.

The offset argument specifies the offset in the file whera
the dump starts. This argument is normally interpreted as
octal bytes by od and hex bytes by hd. If the offset is
preceded by a x or ex, the offset is interpreted as hex. If
dot is appended, the offset is interpreted in decimal. If b
is appended, the offset is interpreted in blocks of 512
bytes. If the file argument is omitted, the offset argument
must be preceded +.

Dumping continues until end-of-file.

An asterisk (*) is generated when the data to be displayed
on the next two or more lines is identical to the line just
displayed. The asterisk is placed in column 1 of the line.

Hd is the same program as od but with the default dump
option of -x.

OPTIONS

SEE

1

-b Interpret bytes in octal.

-c Interpret bytes in ASCII. Certain nongraphic characters
appear as C escapes: null=\0, backspace=\b, form feed=\f,
new line=\n, return=\r, tab=\t; others appear as three­
digit octal numbers (for od) and hex numbers (for hd).

-d Interpret words in dee imal.

-o Interpret words in octal.

-x Interpret words in hex. Display addresses in hex.

ALSO
adb(l), obj du (1) , objhdr (1).

Bell 1

ONINTR(lC) Zilog ONINTR(lC)

NAME
onintr - regulate responce to interupts in a shell script

SYNOPSIS
onintr [-] [arg ...

DESCRIPTION
Onintr

restores the default action of the shell on interrupts;
that is, it terminates shell scripts or returns to the
terminal command input level.

onintr
causes all interrupts to be ignored.

onintr label
c~1ses the shell to execute a goto label when an inter­
rupt is received or a child process terminates because
it was interrupted.

If the shell is running detached and interrupts a~e being
ignored, all forms of onintr have no meaning and interrupts
continue to be ignored by the shell and all invoked com­
mands.

Signal Handling

The shell normally ignores quit signals. The interrupt and
quit signals are ignored for an invoked command if the com­
mand is followed by &; otherwise, the signals have the
values which the shell inherited from its parent. The
shell's handling of interrupts can be controlled by onintr.
Login shells catch the terminate signal; otherwise this sig­
nal is passed on to children from the state in the shell's
parent. Interrupts are not allowed when a login shell is
reading the file .logout.

SEE ALSO

1

continue(lC), exit(lC), logout(lC), nohup(lC).
The C Shell in the ZEUS Utilities Manual

UCB 1

PACK(l) Zilog PACK(l)

NAME
pack, peat, unpack - compress and expand files

SYNOPSIS
pack [-] file

peat file •••

unpack file

DESCRIPTION

1

Pack attempts to store the specified files in a compressed
form. Wherever possible (and useful), each input file is
replaced by a packed file.z with the same access modes,
access and modified dates, and owner as those of file. If
pack is successful, file will be removed. Packed files can
be restored to their original form using unpack or peat.

Pack uses Huffman (minimum redundancy) codes on a byte-by­
byte basis. If the - argument is used, an internal flag is
set that causes the number of times each byte is used, its
relative frequency, and the code for the byte to be printed
on the standard output. Additional occurrences of in
place of file will cause the internal flag to be set and
reset.

The amount of compression obtained depends on the size of
the input file and the character frequency distribution.
Because a decoding tree forms the first part of each .z
file, it is usually not worthwhile to pack files smaller
than three blocks, unless the character frequency distribu­
tion is very skewed, which may occur with printer plots or
pictures.

Typically, text files are reduced to 60-75% of their origi­
nal size. Load modules, which use a larger character set
and have a more uniform distribution of characters, show
little compression, the packed versions being about 90% of
the original size.

Pack returns a value that is the number of files that it
failed to compress.

No packing will occur if:

the file appears to be already packed;
the file name has more than 12 characters;
the file has links;
the file is a directory;
the file cannot be opened;
no disk storage blocks will be saved by packing;
a file called file.z already exists;

Bell l

PACK(l) Zilog PACK(l)

2

the .z file cannot be created;
an I/O error occurred during processing.

The last segment of the file name must contain no more than
12 characters to allow space for the appended .z extension.
Directories cannot be compressed.

Peat does for packed files what cat(l) does for ordinary
files. The specified files are unpacked and written to the
standard output. Thus to view a packed file named file.z
use:

peat file.z

or just:

peat file

To make an unpacked copy, say nnn, of a packed file named
file.z (without destroying file.z) use the command:

peat file > nnn

Peat returns the number of files it was unable to unpack.
Failure may occur if:

the file name (exclusive of the .z) has more than 12
characters;
the file cannot be opened;
the file does not appear to be- the output of pack.

Unpack expands files created by pack. For each file speci­
fied i.n the command, a search is made for file.z (or just
file, if file ends in .z). If this file appea1~s to be a
packed file, it is replaced by its expanded version. The
new file has the .z suffix stripped from its name, and has
the same access modes, access and modification dates, and
owner as those of the packed file.

Unpack returns a value that is the number of files it was
unable to unpack. Failure may occur for the same reasons
that it may in peat, as well as for the following:

a file with the ''unpacked'' name already exists;
if the unpacked file cannot be created.

Bell 2

PASSWD(l) Zilog PASSWD(l)

NAME
passwd - change login password

SYNOPSIS
passwd [name]

DESCRIPTION

FILES

This command changes (or installs) a password associated
with the user name (your own name by default).

The program prompts for the old password and then for the
new one. The caller must supply both. The new password
must be typed twice to forestall mistakes.

New passwords must be at least four characters long if they
use a sufficiently rich alphabet and at least six characters
long if monocase. Only the first eight characters of the
password are significant.

Only the owner of the name or the super-user can change a
password; the owner must prove he knows the old password.

The password file is not changed if the new password is the
same as the old password, or if the password has not "aged"
sufficiently; see passwd(S).

/etc/passwd, /etc/ptmp

SEE ALSO
login (1), crypt (3), passwd (5).

LIMITATIONS

1

Under certain conditions the password file will not be
updated. In these situations the new file resides in
/etc/ptmp.

Bell 1

PASTE{!) Zilog PASTE(l)

NAME
paste - merge same lines of several files or subsequent
lines of one file

SYNOPSIS
paste filel file2 •••
paste =dlist filel f ile2
paste -s~[-dlist] filel file2

DESCRIPTION
In the first two forms, paste concatenates corresponding
lines of the given input files filel, file2, etc. It treats
each file as a column or columns of a table and pastes them
together horizontally (parallel merging). If you will, it
is the counterpart of cat(l) which concatenates vertically,
i.e., one file after the other. In the last form above,
paste subsumes the function of an older command with the
same name by combining subsequent lines of the input file
(serial merging). In all cases, lines are glued together
with the tab character, or with characters from an option-
ally specified list. Output is to the standard output, so
it can be usea--as-the start of a pipe, or as a filter, if -
is used in place of a file name.

OPTIONS
-d Without this option, the new-line characters of each

but the last file (or last line in case of the -s
option) are replaced by a tab character. This option
allows replacing the tab character by one or more
alternate characters (see below).

1

list One or more characters immediately following -·d replace
the default tab as the line concatenation ciharacter.
The list is used circularly, i. e. when exhausted, it
is reused. In parallel merging (i.e. no -s option),
the lines from the last file are always terminated with
a new-line character, not from the list. The list may
con ta in the special escape sequences: \n (new-·l ine) , \t
(tab), \\ (backslash), and \& (empty string, not a null
character). Quoting may be necessary, if characters
have special meaning to the shell (e.g. to get one
backslash, use "" -,9."\\\\") .

-s Merge subsequent lines rather than one from each input
file. Use tab for concatenation, unless a list is
specified with -d option. Regardless of the lis~the
very last character of the file is forced to-be a new­
line.

May be used in place of any file name, to ~ead a line
from the standard input. (There is no prompting).

Bell 1

PASTE{l) Zilog

EXAMPLES
ls I paste -d" "

list directory in one column

ls I paste - -
list directory in four columns

paste -s -d"\t\n" file
combine pairs of lines into lines

SEE ALSO
grep{l), cut(l),

PASTE(l)

pr(l): pr -t -m... works similarly, but creates extra
blanks, tabs and new-lines for a nice page layout.

DIAGNOSTICS

2

line too long
Output linE~s are restricted to 511 characters.

too many files
Except for -s option, no more than 12 input files
may be specified.

Bell 2

PLZ(l) Zilog PLZ(l)

NAME
plz - plz/sys compiler driver

SYNOPSIS
plz [option] ••• file •••

DESCRIPTION
Plz is the ZEUS plz/sys compiler driver. Like cc(l), it
provides a simpified interface for compiling programs.

In typical uses, where the plz program is targeted for the
ZEUS environment, all plz/sys sources, plz/asm sources,
zcode files, etc. are turned into their respective .o files
and linked together by the ZEUS linker ld(l). Plz/sys
source files must end with .p. Plz/asm sources must end
with .s. Zcode files must end with .z and Zobj files (out­
put of the plz code generator) must end with .t.

The following options are interpreted by plz. Other command
line options are passed on directly to ld(l).

OPTIONS

1

-c Suppress the linking phase of the compilation and force
an object file (.o) to be produced even if only one
program is compiled.

-Dname=def
~~-Dname Define name to the preprocessor, as if by

#d;afine. If no definition is given, name is defined ·as
1.

-Idir
#include files whose names do not begin with / are
always sought first in directory of the file argument,
then in directories named in -I options, then in direc­
tories on a standard list.

-L Cause the plz code generator and assembler to create
assembly language listings of their inputs. Listings
are left on corresponding files suffixed .1. The code
generator's listing is a pseudo-assembly language list­
in9.

-ooutput
Name the final output file output. This option does
not take effect if other options are invoked which
inhibit linking. If this option is used, the file
a.out is left undisturbed.

-P Run only the macro preprocessor and place the result
for each .p file in a corresponding .i.p file that has
no # lines in it.

Zilog 1

PLZ(l) Zilog PLZ (1)

FILES

-t Run only the plz/sys compiler and code generator and
leave the zobj output on the corresponding files suf­
fixed .t.

-uname
Remove any initial definition of name.

-v Cause all the various stages of compilation or assembly
to be verbose. (Default is silent.)

-z Run only the plz/sys compiler and leave the zcode out­
put on the corresponding files suffixed .z.

Other arguments are taken to be linker options, or plz­
compatible object programs, typically produced by an earlier
plz run, or perhaps libraries of plz-compatible routines.
These programs, together with the results of any compila­
tions or assemblies specified, are linked in the order given
to produce an executable program with name a.out.

file.p
file.z
file.t
:file.o
/lib/cpp
/usr/bin/plzsys
/usr/bin/plzcg
/usr/bin/uimage
/usr/l ib/l ibp .a

/lib/libc.a
/usr/include

plz/sys source
zcode (intermediate plz/sys)
zobj (output of code generator)
object file
preprocessor
plz/sys compiler proper
plz/sys code generator proper
zobj to a.out translator
plz library

(plz/io, system interface, etc.)
standard library
standard directory for

#include files

SEE ALSO
rrod Snook, et al .. , Report on the Programming Language
PLZ/SYS
ZEUS plz/~ user 9uide in the ZEUS Languages / Programming
Tools Manual
plzsys(l), plzcg(l]I, uimage(l), ld{l).

DIAGNOSTICS

2

The diagnostics produced by plz are self explanatory.
Explanations of compiler or code generator error numbers can
be found in the ZEUS plz/~ User Guide.

Zilog 2

PLZCG(l) Zilog PLZCG (1)

NAME
plzcg - plz/sys 88000 code generator

SYNOPSIS
plzcg [-lsv] [-o output file] file

DESCRIPTION
Plzcg takes zcode files produced by plzsys(l) and creates a
88000 executable object module in zobj format named by
default t.out. The input file must have a .z extension. If
it is not supplied as such on the command line, plzcg
appends .z to the name before opening the file. Command
line options can be specified in upper or lowercase.

To produce an object module that runs on ZEUS, the output of
plzcg must be run through uimage(l) and possibly ld(l).
Plzcg is invoked automatically by the plz/sys compiler
driver plz(l).

OPTIONS
-1 Produce a pseudo-assembly language listing of the

module. The listing file has the same name as the
input file with .1 substituted for the .z suffix. No
assembly listing is produced for the data in the module
and there are no symbolic labels. References to code
are prefaced by the letter P; local data by L; global
data by G.

-s

-v

Produce code that is sharable among multiple processes.
This option is only valid for segmented code and is not
applicable for programs targeted to the ZEUS environ­
ment. It is currently only useful in a cross­
d•:velopment sense.

Cause plzcg to be slightly more verbose It announces
its presence when it starts and tells how much code and
data were produced when finished.

FILES
/tmp/?XXXXX
file.z
file.l
t.out

temporary file
zcode source file
listing file
default output file name

SEE ALSO
ZEUS plz/sys User Guide
plzsys(T)-;-plz(l), uimage(l)

DIAGNOSTICS

1

A more detailed description of possible errors can be found
in the ZEUS plz/sys User Guide.

Zilog 1

PLZSYS{l) Zilog PLZSYS{l)

NAME
plzsys - plz/sys compiler

SYNOPSIS
plzsys -elnv] [-n[c/d -ooutputfile
-tz8000ns,z8000s,~80] file

DESCRIPTION
Plzsys is the plz/sys compiler proper. It takes a plz/sys
source program with filename extension .p and translates it
into a machine independent intermediate code {zcode). If
the .p extension is not supplied, plzsys appends it before
trying to open the input file. The default output filename
is the input file name with .z substituted for the .p suf­
fix. Options are recognized in uppercase or lowercase.

To produce code suitable to be run under ZEUS, the .z
{zcode) file must then be run through the plz/sys code gen­
erator plzcg{l), uimage(l), and possibly ld{l). Plz{l), the
plz/sys driver program, invokes all the compiler related
programs automatically.

OPTIONS

1

-e Create an error file in the event of errors. An error
file, with the file name extension .e substituted for
the source file name, is created if there were any
errors during compilation. These error messages are
the same as the ones shown on the standard output.
Normally, errors only go to the standard output.

-1 Create listing file. This file (file.l) contains a
complete listing of the plz/sys source file plus any
error messages that have been produced by the compiler.

-n[c/d]
Do not produce debugging information. These two
options cause the compiler to not produce debug symbols
(-nd) or debug constant symbols (-nc). Normally, the
compiler produces extra symbolic information for a
hypothetical debugger. These options are only signifi­
cant to a debugger that may wish to disregard these
particular symbols.

-ooutput file
Creates zcode output on output file instead of file.z

-t[z8B&Bns,z8000s,z80]
Produce zcode suitable for a particular target machine.
This option tells the compiler what machine the code it
is producing will be targeted for. This information is
necessary, as some machine dependen~ features such as
machine address size, need to be encoded in the zcode.

Zilog 1

PLZSYS(l) Zilog PLZSYS (1)

FILES

The compiler produces code suitable for
s4=gmented S8000 (S8000ns) in the absence
option.

the
of

non­
th is

-v Bi= verbose during compilation. (Default is silent.)
With this option, plz/sys announces its presence and
tells how many zcode bytes and data bytes were produced
when finished.

/tmp/pXXXXX temporary file
file.p
--source file
file.z
--default output file

SEE ALSO
ZEUS plz/~ User Guide in the ZEUS Languages / Programming
Tools Manual.
Tod Snook, et al., Report on the Programming Language
PLZ/SYS
plzcg(f), plz(l), uimage(l), ld(l).

DIAGNOSTICS

2

Diagnostics are self explanatory. The ZEUS J?lz/~ User
Guide has a complete list of plz source error explanations.

Zilog 2

PR{l) Zilog PR (1)

NAME
pr - format files for printer output

SYNOPSIS
pr [adefhilmnoprstw+-1] [files]

DESCRIPTION
Pr prints the named files on the standard output. If file
is -, or if no files are specified, the standard inpu"tl'S
assumed. By default, the listing is separated into pages,
each headed by the page number, a date and time, and the
name of the file.

By default, columns are of equal width, separated by at
least one space; lines which do not fit are truncated. If
the -s option is used, lines are not truncated and columns
are separated by the separation character.

If the standard output is associated with a terminal, error
messages are withheld until pr has completed printing.

Interterminal messages via write{l) are forbidden during a
pr.

OPTIONS

1

Options may appear singly or be combined in any order.

-a Print multi-column output across the page.

-d Double-space the output.

-eek Expand input tabs to character positions k+l, 2*k+l,
3*k+l, etc. If k is 0 or is omitted, default tab set­
tings at every eighth position are assumed. Tab char­
acters in the input are expanded into the appropriate
number of spaces. If c (any non-digit character) is
given, it is treated as the input tab character
(default for £ is the tab character).

-f Use form-feed character for new pages (default is to
use a sequence of line-feeds). Pause before beginning
the first page if the standard output is associated
with a terminal.

-h Use the next argument as the header to be printed
instead of the file name.

-ick In output, replace white spac~ wherever possible by
inserting tabs to character positions k+l, 2*k+l,
3*k+l, etcG If k is 0 or is omitted, default tab set­
tings at every ~ighth position are assumed. If c (any
non-digit character) is given, it is treated as the

Bell 1

PR(l) Zilog PR (1)

output tab character (default for £ is the tab charac­
ter) •

+k Begin printing with page ~ {default is 1).

-k Produce k-column output {default is 1). -e and -i are
assumed ~or multi-column output.

-lk Set the length of a page to k lines (default is 66).

-m Merge and print all files simultaneously, one per
column (overrides the -~, and -a options).

-nck Provide k-digit line numbering (default for k is 5).
The number occupies the first k+l character-positions
of each column of normal output or each line of -m out­
put. If c (any non-digit character) is given, it is
appended to-the line number to separate it from what­
ever follows (default for£ is a tab).

-ok Offset each line by k character positions (default is
0). The number of character positions per line is the
sum of the width and offset.

-p Pause before beginning each page if the output is
directed to a terminal (pr will ring the bell at the
berminal and wait for a carnage return).

-r Print no diagnostic reports on failure to open files~

-sc Separate columns by the single character c instead of
by the appropriate number of spaces (default for c is a
tab) •

-t Print neither the five-line identifying header nor the
five-line trailer normally supplied for each page.
Quit printing after the last line of each file without
spacing to the end of the page.

-wk Set the width of a line to k character positions
(default is 72 for equal-width multi-column output, no
limit otherwise).

EXAMPLES
Print file! and file2 as a double-spaced, three-column list­
ing headed by "file list":

pi~ -3dh "file list" filel file2

Write file! on file2, expanding tabs to columns 10, 19, 28,
37, ~. w :

Bell 2

PR (1) Zilog PR(l)

pr -e9 -t <filel >f ile2

FILES
/dev/tty* to suspend messages

SEE ALSO
cat(l), dog(l), mesg{l), more(l), nq(l).

3 Bell 3

PR I N'r EN V (1) Zilog PRINTENV(l)

NAME
printenv - display environment variables

SYNOPSIS
printenv

DESCRIPTION

name

Printenv prints out the values
environment. If a name is
printed.

of the variables in the
specified, only its value is

If a name is specified and it is not defined in the environ­
ment,-printenv returns exit status 1, else it returns status
0.

SEE ALSO
sh(l), environ(5), csh(l).
The C Shell in the ZEUS Utilities Manual

1 UCB 1

PROF(l) Zilog PROF(l)

NAME
prof - display profile data

SYNOPSIS
prof -al] file

DESCRIPTION
Prof interprets the file mon. 1out produced by the monitor
subroutine. Under default modes, the symbol table in the
named object file (a.out default) is read and correlated
with the men.out -profile file. For each external symbol,
the percentage C>r-time spent executing between that symbol
and the next is printed (in decreasing order), together with
the number of times that routine was called and the number
of milliseconds per call.

In order for the number of calls to a routine to be tallied,
the -p option of cc must have been given when the file con­
taining the routine was compiled. This option also arranges
for the men.out file to be produced automatically.

OPTIONS

FILES

-a All symbols are reported rather than just external sym­
bols.

-1 Output is listed by symbol value rather than decreasing
percentage.

mon.out for profile
a.out for namelist

SEE ALSO
cc (1), profil (2), monitor (3), men.out (5).

LIMITATIONS

1

Beware of errors due to the granularity of the profile data;
it typically is accurate to within eight bytes as a symbol.

Zilog 1

PROM(l) Zilog PROM (1)

NAME
prom - prom programming utility

SYNOPSIS
prom [-b] [-d device [-Dlos hex file

DESCRIPTIO~I

Prom is used to output a file to a prom programming device.
The user can specify the size (length) of the prom (-1), the
address space of the file which is to be placed into the
prom (-s and -o), and either word or byte oriented input to
the device. The output from prom can be dire!cted to any
device and is in Tektronix Hex format without acknowlede­
ments. This allows direct communication with various pro­
gram.ming units such as the Data I/O Model 19 with the Trans­
lation Option.

Once the command line is entered, prom will query the user
before each transfer. The prompt is similar to this:

Ready: segment 0 start 0 end fff low byte ? (y/r/s/q)

Respond by typing one of these replies:

y yes - send data to device and increment to next address
space

r repeat - send data and repeat same address space

s skip - do not send data; inc~ement to next address
space

q quit - end execution, do not send data

Prom does not check for bad address offsets. An odd offset
is acc1~ptable.

The prom programming device is usually connected to a dif­
ferent terminal port (RS232) than the user is currently
using. The prom program can be controlled from one port and
the actual transfers to the device controlled through
another port. Any device can be named including a file to
be copied into the prom programming device at a later time.

All prom programming devices have different options. This
program was specifically designed for use with a Data I/O
Model 19 with Translation Mode. Other devices that accept
Tektronix Hex format without acknowledgements may also func­
tion correctly but have not been specifically tested.

OPTIONS
-b Break word-oriented files into high and low bytes so

1 Zilog 1

PROM(l) Zilog PROM(l)

FILES

that 16 bit data can be sent to two 8 bit proms.
Default is off. Processing always begins with the low
byte with this option on.

-d Select ouput device. Enter a full pathname for either
a device or file. Default is /dev/tty, the controlling
terminal.

-D For separate I and D files, only output the data sec­
tion. Default for separate I and D files is only out­
put the code section.

-1 Set the length of the prom; default is 0x800. A
transfer of this length is sent to the designated dev­
ice. The transfer is padded with 0xFF value bytes
wherever code is not found in the input file.

-o Set the offset (beginning address) of the first data to
be transferred. This should be an even number for
word-oriented files such as Z8000 object code files.
Default is 0x000.

-s Select the se!gment number from the input file to be
programmed. Only one segment is valid during each exe­
cution of pr<J•m • The value must be between 0x00 and
0 x 8 0 • Def au 1 t i s 0 x 0 0 •

/dev/tty - to send the output to the user's terminal
/tmp/prm* - temporary file

SEE ALSO
1 oad (1) , a.out (5) •

DIAGNOSTICS

2

Diagnostics will be issued if:

the input file is not a valid object module;

a specified segment is not found in the file;

a specified segment is empty;

or the specified address range contains no code or
data.

Zilog 2

PRS{l) Zilog PRS{l)

NAME
prs - print an secs file

SYNOPSIS
prs [-·a]

[-d[dataspec]]
[e]
(-1]
[-r[SID]]

files

DESCRIPTIOM

1

Prs prints, on the standard output, parts or all of an SCCS
file {see sccsfile(S)) in a user supplied format. If a
directory is named, prs behaves as though each file in the
directory were specified as a named file, except that non­
SCCS files (last component of the path name does not begin
with s.), and unreadable files are silently ignored. If a
name of - is given, the standard input is read; each line of
the standard input is taken to be the name of an SCCS file
or directory to be processed; non-SCCS files and unreadable
files are silently ignored.

Arguments to prs, which can appear in any order, consist of
keylet:ter arguments, and file names.

All the described keyletter arguments apply independently to
each named file:

-a Requests printing of information for both removed,
i.e., delta type = R, (see rmdel(l)) and existing,
i.e., delta type= D, deltas. If the -a keyletter is
not specified, inf~rmation for existing deltas only is
provided.

-d[dataspec]

-e

Used to specify the output data specification. The
dataspec is a string consisting of SCCS file data key­
words (see DATA KEYWORDS) interspersed with optional
user supplied text.

Requests information for
than and including the
keyletter.

all deltas created earlier
delta designated via the -r

-1 Requests information for all deltas created later than
and including the delta designated via the -r
keyletter.

-r[SID]
Used to specify the SCCS IDentification (SID) string of

Bell 1

PRS(l) Zilog PRS (1)

a delta for which information is desired. If no SID is
specified, the SID of the most recently created delta
is assumed.

DATA KEYWORDS
Data keywords specify which parts of
retrieved and output. All parts
sccsfile(5)) have an associated data
11m1t on the number of times a data
dataspec.

an SCCS file are to be
of an SCCS file (see

keyword. There is no
keyword can appear in a

The information printed by prs consists of: (1) the user
supplied text; and (2) appropriate values (extracted from
the secs file) substituted for the recognized data key­
words in the order of appearance in the dataspec. The for­
mat of a data keyword value is either Simple (S), in which
keyword substitution is direct, or Multi-line (M), in which
keyword substitution is followed by a carrlag'e return.

User supplied text is any text other
keywords. A tab is specified
return/new-line is specified by \n.

than
by

recognized data
\t and carriage

TABLE 1. SCCS Files Data Keywords

Keyword Data Item File Section Value Format
==

:Dt: Delta information Delta Table See below* s
:DL: Delta line statistics " :Li:/:Ld:/:Lu: s
:Li: Lines inserted by Delta " nnnnn s
: Ld: Lines deleted by Delta " nnnnn s
:Lu: Lines unchanged by Delta " nnnnn s
:DT: Delta type " D ... or ... R"" s

: I : secs ID string (SID) " :R:. :L:. :B:. :S: s
:R: Release number " nnnn s
: L: Level number " nnnn s
:B: Branch number " nnnn s
: s : Sequence number " nnnn s
: D: Date Delta creabed " :Dy:/:Drn:/:Dd: s

:Dy: Year Delta creabed " nn s
:Om: Month Delta created " nn s
:Dd: Day Delta created " nn s

: T: Time Delta created " : Th: : : Tm: : : Ts: s
:Th: Hour Delta crea tE:~d " nn s
: Tm: Minutes Delta cn~a ted " nn s
:Ts: Seconds Delta crE~a ted " nn s

: p: Programmer who c1::-eated Delta " log name s
:OS: Delta sequence number " nnnn s
:DP: Predecessor Delta seq-no. " nnnn s
:DI: Seq-no. of deltas incl, excl, ignor " :Dn:/:Dx:/:Dg: s
:On: Deltas included !(seq #) " : DS: ,. : OS: .•• s

2 Bell 2

PRS(l) Zilog PRS (1)

:ox: Deltas excluded (seq #) " :OS: - : OS: •••
: Dg: Deltas ignored (seq #) " :OS: - : OS: .•.
:MR: MR numbers for delta " text

:C: Comments for delta " text
===

:UN: User names User Names text
:FL: Flag list Flags text

:Y: Module type flag " text
:MF: MR validation flag " yes -or -no
:MP: MR validation pgm name " text
:KF: Keyword error/warning flag " yes-or -no
:BF: Branch flag " yes-or-no
:J: Joint edit flag " yes-or -no

:LK: Locked releases " : R: • • •
: Q: User defined keyword " text
:M: Module name " text

:FB: Floor boundary " :R:
:CB: Ceiling boundary " :R:
:Os: Default SID " : I :
:ND: Null delta flag " yes-or-no

===
:FD: Fi lE~ descriptive text Comments text
:BD: Body Body text
:GB: Gotten body " text

:W A form of what(l) string N/A :Z::M::I:
: A: A form of what(l) string N/A :~~: :Y:--:M: - :I::z:
: z: wha 1: (1) string delimiter N/A @ (#)
:F: secs file name N/A text

:PN: SCCS file path name N/A text
==~==========================

EXAMPLES

3

prs -d"Users and/or user
s.file

IDs for

may produce on the standard output:

Users and/or user IDs for s.file are:
KYZ

131
abc

:F: are: \n:UN:"

prs -d"Newest delta for pgm :M::
:P:" -r s.file

:I: Created : D: By

can produce on the standard output:

Newest delta for pgm main.c: 3.7 Created 77/12/1 By cas

As a special case:

Bell 3

PRS(l) Zilog

prs s.file

can produce on the standard output:

o 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000
MRs:
bl78-12345
bl79-54321
COMMENTS:
this is the comment line for s.file initial d~lta

PRS (1)

for each delta table entry of the "D" type. The only
keyletter argument allowed to be used with the special case
is the -a keyletter.

FILES
/tmp/pr?????

SEE ALSO
admin(l), delta(l), get(l), help(l), sccsfile(S).
Source Code Control System user'~ Guide in the ZEUS Utili­
ties Manual

DIAGNOSTICS
Use help(l) for explanations.

4 Bell 4

PS(l) Zilog PS (1)

NAME
ps - report process status

SYNOPSIS
ps [-edalf]

[-n namelist
[-t tlist]
[-p plist]
[-u ul1st]
[·-g gl i st]

DESCRIPTION

1

Ps prints certain information about active processes.
Without options, information is printed about processes
associated with the current terminal. Otherwise, the infor­
mation that is displayed is controlled by the following
options:

-e

-d

-a

-f

-1

Print information about all processes.

Print information about all processes, except
process group leaders.

Print information about all processes, except
process group leaders and processes not associ­
ated with a terminal.

Generate a full listing. (Normally, a short
listing containing only process ID, terminal
("tty") identifier, cumulative ex«~cution time,
and the command name is printed.) See below for
meaning of columns in a full listing.

Generate a long listing. See below.

-n namelist The argument will be taken as the name of an
alternate namelist (/zeus is the default).

-t tlist

-u uli.st

Restrict listing to data about the processes
associated with the terminals given in tlist,
where tlist can be in one of two forms: a list
of terminal identifiers separated from one
another by a comma, or a list of terminal iden­
tifiers enclosed in double quotes and separated
from one another by a comma and/or one or more
spaces.

Restrict listing to data about processes whose
process ID numbers are given in plist, where
plist is in the same format as tlist.

Restrict listing to data about processes whose

Bell 1

PS (1)

2

--g gl ist

Zilog PS (1)

user ID numbers or login names are given in
ulist, where ulist is in the same format as
tl1st. In the listing, the numerical user ID
will be printed unless the -f option is used, in
which case the login name will be printed.

Restrict listing to data about processes whose
process groups are given in glist, where glist
is a list of process group leaders and is in the
same format as tlist.

The column headin9s and the meaning of the columns in a ~
listing are given below; the letters f and 1 indicate the
option (full or long) that causes the corresponding heading
to appear; all means that the heading always appears. Note
that these two options only determine what information is
provided for a process; they do not determine which
processes will be listed.

F (1)

s (1)

Flags (octal and additive) associated with
thE~ process:

00 swapped out;

01 in memory;

02 system process;

04 locked in core (e.g., for physical
I/0);

l<J being swapped;

20 being traced by another process;

40 another tracing flag.

The~ state of the process:

(iJ non-existent;

s sleeping;

w waiting;

R running;

I intermediate;

z terminated;

T stopped.

Bell 2

PS (1)

FILES

3

UID (f, 1)

PIO (al 1)

PPID (f ,1)

c (f ,l)

STIME (f)

PRI (1)

NI (1)

ADDR (1)

sz (1)

WCHAN (1)

TTY (all)

TIME (all)

CHO (all)

Zilog PS (1)

The user ID number of the process owner; the
login name is printed under the -f option.

The process ID of the process; it is possi­
ble to kill a process if you know this
datum.

The process ID of the parent process.

Processor utilization for scheduling.

Starting time of the process.

The priority of the process; higher numbers
mean lower priority.

Nice value; used in priority computation.

The memory address in clicks (a click equals
256 bytes) in hex representation of the pro­
cess, if resident; otherwise, the disk
address.

The size in clicks (in hex) of the memory
image of the process.

The event for which the process is waiting
or sleeping; if blank, the process is run­
ning.

The controlling terminal for the process.

The cumulative execution time for the pro­
cess.

The command name; the full command name
its arguments are printed under the
option.

and
-f

A process that has exited and has a parent, but has not yet
been waited for by the parent, is marked <defunct>.

Under the -f option, ps tries to determine the command name
and arguments given when the process was created by examin­
ing memory or the swap area. Failing this, the command
name, as it would appear without the -f option, is printed
in square brackets.

/zeus
/dev/mem
/dev

system namelist
memory
searched to find swap device and

Bell

terminal

3

PS (1) Zilog PS (1)

(''tty") names.

SEE ALSO
kill (1), nice (1).

LIMITATIONS

4

Things can change while ps is running~ the picture it gives
is only a close approximation to reality. Some data printed
for defunct processes are irrelevant.

Bell 4

PTX (1) Zilog PTX (1)

NAME
ptx - generate the permuted index

SYNOPSIS
ptx [·-bfgiortw input output]]

DESCRIPTION
Ptx generates a permuted index to file input on file output
(standard input and output default). It has three phases:
the first does the permutation, generating one line for each
keyword in an input line. The keyword is rotated to the
front. The permuted file is then sorted. Finally, the
sorted lines are rotatea so the keyword comes at the middle
of the page. Ptx produces output in the form:

.>rn "tail" "before keyword" "keyword and after" "head"

where oXX may be an nroff (l) or troff (l) macro for user­
defined formatting. The before keyword and keyword and
after fields incorporate as much of the line as will fit
around the keyword when it is printed at the middle of the
page. Tail and head, at least one of which is an empty
string ~ are wrapped-around pieces small enough to fit in
the unused space at the opposite end of the line. When ori­
ginal text must be discarded, '/' marks the spot.

The cs:hell command script "/usr/man/man0/tools/buildptx"
generates the index for this manual using ptx.

OPTIONS

1

-b brea.k
Use the characters in the break file to separate words.
In any case, tab, newline, and space characters are
always used as break characters.

-f Fold upper and lower case letters for sorting.

-g n use the next argument, n, as the number of characters
to allow for each gap among the four parts of the line
as finally printed. The default gap is 3 characters.

-i ignore
Do not use as keywords any words given in the ignore
file. If the -i and -o options are missing, use
/usr/lib/cref/eign as the ignore file.

-o only
Use as keywords only the words given in the only file.

-r Take any leading nonblank characters of each input line
to be a reference identifier (as to a page or chapter)
separate from the text of the line. Attach that

Bell 1

PTX (1) Zilog PTX(l)

FILES

identifier as a 5th field on each output line.

-t Prepare the output for the phototypesetter; the default
line length is 100 characters.

-w n Use the next argument, n, as the width of the output
line. The default line-length is 72 characters.

/bin/sort
/usr/lib/cref/eign

SEE ALSO
apropos{l), getname{l), man{l), nroff(l), troff (1).

LIMITATIONS

2

Line length counts do not account for overstriking or pro­
portional spacing.

Bell 2

PUTFILE(l) Zilog PUTFILE(l)

NAME
putfile - transfer files from remote to local system

SYNOPSIS
putfile [-bBfq] filenamel [[-b] filename2 •••]

DESCRIPTION
Putfile downloads one or more files from a remote ZEUS to a
local system running ZEUS or RIO. The RIO System must be
running the file transfer software of the ZLAB-8000 Communi­
cation Package. This program is invoked from the remote
system; therefore, remote(!) must be executed first. Files
are transferred one record at a time along with a checksum
to ensure the accuracy of the data. The transfer of one
file can be terminated to go to the next by entering a
control-x. The entire transfer can be aborted by entering
an escape.

OPTIONS
-b The next file is considered to be a binary. A binary

file is created on the local system instead of an ASCII
file and new lines are not replaced by carriage
rE~turns.

-B All file names on the line are treated as if they are
preceded by a -b. This is generally desirable for a
ZEUS-to-ZEUS transfer.

-f The program suppresses all nonfatal error messages.

-q The program prints a query before replacing an existing
file of the same name as the one being transferred.

SEE ALSO
getf i lE~ (1), local (1), remote (1).

DIAGNOSTICS

1

"checkBum error ••• retry" Printed if the computed check­
sum does not match the transmitted checksum.

"timeout :retry" Printed if a character is not
read within a reasonable time after a read is issued.

"illegal end-of-text ••• retry" Generally indicates a
system error; not enough characters were read.

"<filename> ••• transfer aborted" Printed aftEn· a specific
number of retries, if the user enters a control-x or an
escape, or if the transfer failed {due to lack of space or
bad media).

"putfile: <nl> successful transfers <n2> unsuccessful

Zilog 1

PUTFILE(l) Zilog PUTFILE:(l)

2

transfers"
Printed at program termination.

"<filename> .•• unable to open file"
cannot be opened on either system.

Printed if the file

The program outputs a single dot (.) after each successful
transfer of a 128-byte record. If the transfer appears to
halt, allow 20 seconds for a retry.

Zilog 2

PWCK(l) Zilog PWCK (1)

NAME
pwck, grpck - password/group file checkers

SYNOPSIS
pwck [file]
grpck [file]

DESCRIPTION

FILES

Pwck scans the password file and notes any inconsistencies.
The checks include validation of the number of fields, login
name, user ID, group ID, and whether the login directory and
optional program name exist. The default password file is
/etc/passwd.

Grpck verifies all entries in the group file. This verifica­
tion includes a check of the number of fields, group name,
group ID, and whether all login names appear in the password
file. The default group file is /etc/group.

/etc/group
/etc/passwd

SEE ALSO
g r o up (5) , pas s wd (5) •

DIAGNOSTICS
Group entries in /etc/group with no login names are flagged.

1 Bell 1

PWD (1) Zilog

NAME
pwd - print present working directory name

SYNOPSIS
pwd

DESCRIPTION

PWD(l)

Pwd prints the path name of the working (current) directory.

SEE ALSO
cd (1) •

DIAGNOSTICS
"cannot open •• " and "read error in " indicate possible
file system trouble or no permission for directory access.

1 Bell 1

RANLIB(l) Zilog RANLIB (1)

NAME
ranlib - convert archives to random libraries

SYNOPSIS
ranlib archive •••

DESCRIPTION
Ranlib converts each archive to a form that can be loaded
more rapidly by the loader, by adding a table of contents
named .SYMDEF to the beginning of the archive. It uses
ar(l) to reconstruct the archive, so that sufficient tem­
porary file space must be available in the file system con­
taining the current directory.

SEE ALSO
ld (1) , ar (1) •

LIMITATIONS

l

Because generation of a library by ar and randomization by
ranlib are separate, phase errors are possible. The loader
ld warns when the modification date of a library is more
recent than the creation of its dictionary; but this warning
appears even if the library is only copied.

Bell 1

REGCMP (1) Zilog REGCMP (1)

NAME
regcmp - regular expression compile

SYNOPSIS
regcmp [-] files

DESCRIPTION
Regcmp precludes the need for calling regcmp (see regex(3))
from C programs. This saves on both execution time and pro­
gram size.

The command regcmp compiles the regular expressions in file
and places thE~ output in file.i. If the - option is used,
the output will be placed in file.c. The format of entries
in file is a name (C variable) followed by one or more
blanks followed by a regular expression enclosed in double
quotes.

The output of regcmp is C source code. Compiled regular
expressions are represented as extern char vectors. File.i
files may thus be included into C programs, or file.c fITes
may be compi l1~d and later loaded. In the C program which
uses the regcmp output, regex(abc,line) will apply the regu­
lar expression named abc to line. Diagnostics are self­
explanatory.

EXAMPLES
name " ([A-Za-z] [A-Za-z0-9] *) $0"

tel no "\ ({ 0 , 1 } ([2 - 9] [01 J [1-9]) $ 0\) { 0 , 1 } * "
"([2-9] [0-9] {2})$1[-] {0,1}"
" ([0-9] {4}) $2"

In the C program that uses the regcmp output,

regex(telno, line, area, exch, rest)

will apply the regular expression named telno to line.

SEE ALSO
regex(3).

1 Bell 1

R8HASf-l(lC) Zilog REHASH(lC)

NAME
rehash -- re-make the hash table of commands

SYNOPSIS
rehash

DESCRIPTION
The rehash command is internal to the C Shell. Its purpose
is to create a hash-table of the available commands (files)
named in the PATH shell variable.

The rehash command is invoked automatically at login and
must be re-invoked each time there is a change in either the
PATH v a I~ i ab 1 e , or the co mm ands (f i 1 es) 1 oc a ted a 1 o ng the
seiich .Path •

SEE ALSO
The C Shell in the ZEUS Utilities Manual

l UCB 1

REMOTE{l) Zilog REMOTE (1)

NAME
remote - transfer control to a remote ZEUS/UNIX system

SYNOPSIS
remote [system name]

DESCRIPTION

FILES

Remote is used to transfer control to a remote system run­
ning ZEUS or UNIX software. Additionally, using the utili­
ties getfile(l) and putfile(l), files can be up and down
loaded between the remote and local systems. System name
indicates the name of the system to which control is to be
transferred. If no system name is given, the first system
in "/usr/spool/uucp/remotelines" is taken as default.

If the remote system does not respond within twenty seconds,
the remoteline times out and a message "remote line to
system name tim 1ed out" is printed. This can occur if the
remoteline is disconnected or if the remote system is down.

Also, if remote terminates via a "hangup", a "logout" is
sent to the remote system and control is returned to the
local system.

If the remote system should go down while connected to it
through remote, it is possible to return to the local system
by using the control-\ (ASCII fs). This feature can also be
useful when using remote over a dial-up line.

/usr/spool/uucp/LCK •• *
/usr/spool/uucp/remotelines

lock files
database of systems

SEE ALSO
putfile(l), getfile(l), local (1), remotelines (5).

1 Zilog 1

R E: P ~~A ·r (l C) Zilog REPE~'r (lC)

NAME
repeat - repeat a command

SYNOPSIS
repeat count command

DESCRIPTION
The specified command is subject to the same restrictions as
the command in the one line statement above and is executed
count times. I/O redirections occurs exactly once, even if
count is 0.

SEE ALSO
The C Shell in the ZEUS Utilities Manual

1 UCB 1

RESERV(l) z i log · RESERV(l)

NAME
reserv tape drive reserving system

SYNOPSIS
reserv

DESCRIPTION
Reserv provides a mechanism for reserving a cartridge tape
drive on the system. Its actions are controlled by the key
argument. The key is a string of characters containing at
most one function letter and possibly one or more function
modifiers. If no key is specified, reserv reserves, by
default, the tape drive linked to /dev/resdev. If
/dev/resdev does not exist, tape drive ct0 is used. The
drive is automatically freed 5 minutes after the last read
or write. If the tape drive is already reserved by someone
else, it prints:

y is using drive x

and returns exit status of 1, otherwise, it returns exit
status of 0 with no message.

OPTIONS

1

The function portion of the key is specified by one of the
following letters:

-f Frees the tape drive. Only the user who originally
reserved the tape drive can free it. The super user
can free any drive. If it is already free and this
option specified, an exit code of 1 is returned.
Otherwise, an exit code of 0 is returned.

-q Query drive to find out if it is busy. Gives one of
the following messages:

Tape drive ~ is free

returning an exit status = 0, or

y is using tape drive ~

returning an exit status = 1.

-r Request to be put on the queue of users waiting for
the tape drive if tape drive is busy. Otherwise,
the tape drive will be reserved immediately. If you
have been put on the queue (indicating drive is busy
presently) the message

y is using tape drive x.
You have been put on the queue for drive x.

Zilog l

RESERV(l) Zilog RESERV(l)

is printed. When your turn arrives, the message

Tape drive x is now reserved for y.

The maximun size of the queue is 10.

The following characters can be used as a modifier to the
function letter or used alone. These can be specified even
if a function letter wasn't specified, since the default
function is to reserve drive 0.

-9, ••• ,7 This modifier selects the cartridge tape drive
number. The default is 9.

-m8, ••• .,m7

-i

This modifier selects the mag tape drive number.
The default is 8.

The following argument is the increment of time,
in minutes, that reserv waits since last access to
free tape (default is 5 minutes) •

EXAMPLES

FILES

reserv --ql

reserv

reserv -·f

reserv -·lir 18

Queries drive 1 to see if it is
or not. Appropriate message
printed.

reserved
will be

Tries to reserve tape drive 0. No message
is printed out unless drive is busy.

Relinquishes cartridge tape drive 0.

Try to reserve tape drive 1, if busy it
will put user in queue and reserve tape
drive in his name when his turn comes up.
In any case, after tape drive is reserved,
it will be freed 10 minutes after last
access.

/usr/spool/reserv/*ct* /etc/reservrc

SEE ALSO
re (M) •

DIAGNOSTICS

2

Reserv aborts with an error message if more than one func­
tion character was specified.

A message is printed if the user tries to put himself on the
queue and it is full.

Zilog 2

RESET(l) Zilog RES E'r (1)

NAME
reset - reset terminal modes to default values

SYNOPSIS
reset<linefeed>

DESCRIPTION
Reset sets the terminal mode bits to the login defaults with
the erase character set to control-h and the kill character
to control-x.

It is most useful for recovering from program errocs which
leave the terminal in an unknown and unusable state. Typing
<LF> (line feed) to clear any previous inputs, and then to
enter the reset command is often necessary since new-line
mapping and character echoing may have been turned off.

Sli:E ALSO
stty(l), stty(2), gtty(2).

1 UCB l

RM (1) Zilog RM (1)

NAME
rm, rmdir - remove {unlink) files

SYNOPSIS
rm [-:1: i r] f i 1 e

rmdir dir

DESCRIPTION
Rm removes the entries for one or more files from a direc­
tory. If an entry was the last link to the file, the file
is destroyed. Removal of a file requires write permission
in its directory, but neither read nor write permission on
the file itself.

If a file has no write permission and the standard input is
a terminal, its permissions are printed and a line is read
from the standard input. If that line begins with y, the
file is deleted, otherwise the file remains. If a desig­
nated file is a directory, an error comment is printed
unless the optional argument -r has been used.

Rmdir removes entries for the named directories, which must
be empty.

OPTIONS
-f No questions are asked when the -f {force) option is

given.

-i Asks whether to delete each file {interactive option),
and, under -r, whether to examine each directory.

-r Recursively deletes the entire contents of the speci­
fied directory, and the directory itself.

SEE ALSO
chmod (2), unlink (2).

DIAGNOSTICS

1

Diagnostics are self-explanatory. It is forbidden to remove
the file •• to avoid the consequences of inadvertently doing
something like rm -r .*.

Bell 1

RMDEL(l) Zilog RMDEL(l)

NAME
rmdel - remove a delta from an secs file

SYNOPSIS
rmdel -rSID files

DESCRIPTION
Rmdel removes the delta specified by the SID from each named
SCCS file. The delta to be removed must be the newest (most
recent) delta in its branch in the delta chain of each named
SCCS file. In addition, the specified must not be that of a
version being E~dited for the purpose of making a delta
(i.e., if a p-file (see get(l)) exists for the named SCCS
file, the specified must not appear in any entry of the E.-
file). -

If a directory is named, rmdel behaves as though each file
in the directory were specified as a named file, except that
non-SCCS files (last component of the path name does not
begin with s.) and unreadable files are silently ignored.
If a name of - is given, the standard input is read; each
line of the standard input is taken to be the name of an
SCCS file to be processed; non-SCCS files and unreadable
files are silently ignored.

The exact permissions necessary to remove a delta are docu­
mented in the ~>ource ~ Control System User'~ Guide. Sim­
ply stated, they are either (1) if you make a delta you can
remove it; or (2) if you own the file and directory you can
remove a delta ..

FILES
x-file
z-file

(see delta(l))
(see delta(l))

SEE ALSO
delta(l), get(l), help(l), prs(l), sccsfile(S).
Source Code Control System user'~ Guide in the ZEUS Utili­
ties Manual

DIAGNOSTICS
use help(l) for explanations.

1 Bell 1

RSH{l) Zilog RSH{l)

NAME
rsh - restricted shell {command interpreter)

SYNOPSIS
rs h [f 1 a_g s] [name [a r g 1. • •]]

DESCRIPTION
Rsh is a restricted version of the standard command inter­
preter sh(l). It sets up login names and execution environ­
ments with capabilities more controlled than the standard
shell. The actions of rsh are identical to sh, except the
following are disallowed:

When
file
while
exit,
tions

cd
setting the value of $PATH
co~nand names containing I
> and >>

invoked with the name -rsh, rsh reads the user's .pro-
(f:rom $HOME/ .profile) • It acts as the standard sh
doing this, except an interrupt causes an immediate
instead of returning to command level. These restric­
are enforced after .profile is interpreted.

When a command to be executed is found to be a shell pro­
cedure, rsh invokes sh to execute it. It is possible to
provide to a user some shell procedures that have access to
the full power of the standard shell, while restricting him
to a limited menu of commands; this assumes that the user
does not have write and execute permissions in the same
directory.

The net effect of these rules is that the writer of the
.profile has complete control over user actions, by perform­
ing guaranteed setup actions, then leaving the user in an
appropriate directory {probably not the login dire~ctory).

Rsh is a link to sh and any flag arguments are the same as
for sh { 1) •

The system administrator sets up a directory of commands
that can be safely invoked by rsh.

SEE ALSO
sh{l), profile{S).

1 Bell 1

SACT (1) Zilog SACT(l)

NAME
sact - print current secs file editing activity

SYNOPSIS
sact files

DESCRIPTION
Sact informs the user of any impending deltas to a named
SCCS file. This situation occurs when get(l) with the -e
option has been previously executed without a subsequent
execution of delta(l). If a directory is named on the com­
mand line, sact behaves as though each file in the directory
were specified as a named file, except that non-SCCS files
and unreadable files are silently ignored. If a name of
is given, the standard input is read with each line being
taken as the name of an SCCS file to be processed. The out­
put for each named file consists of five fields separated by
spaces.

Field 1

Field 2

Field 3

Field 4

Field 5

specifies the SID of a delta that currently
exists in the SCCS file to which changes
will be made to make the new delta.

specifies the SID for the new delta to be
created.

contains the log name of the user who will
make the delta (i.e. executed a get for
editing) •

contains the date that get -e was executed.

contains the time that get -e was executed.

Sl~E ALSO
delta (1) , get (1) , unget (1) •
SCCS - Source Code Control
Manual

DIAGNOSTICS
Use help(l) for explanations.

1 Bell

System in the ZEUS Utilites

l

SCC(l) Zilog sec (1)

NAME
sec - 88000 segmented C compiler

SYNOPSIS
sec [-cmnopPSU] file

DESCRIPTION
Sec is the portable C compiler modified to produce Z8001
code. Depending on the options, a single sec call can com­
pile; compile and assembler; or compile, assemble, and link.

The sec compiler provides an unsigned char data type, ini­
tialized bit fields, and the new ZEUS version 7 features of
C, which are structure assignments and enumeration types.

The default is to compile, assemble, and link, using inter­
nal calls to the Z8000 assembler, as, and segmented Z8000
linker, sld. File names ending in .c are taken to be C
source files to be compiled. The source files are compiled,
and the assembly language code can be optimized with the -0
option before being passed to the assembler.

The -S option saves the Z8001 assembly language code in .s
files and suppress further processing. By default, the code
is assembled and then passed to the linker. The -c option
saves the assembled code in .o files and suppress further
processing. By default, the linker then links the code to
produce an executable Z8001 program.

File names ending with .s are taken to be Z8001 assembly
language~ By default, the .s files are assembled to produce
.o files and then linked. The compilation step is skipped.

Other file names are taken to be names of C-compatible
object programs (typically produced by an earlier sec run),
or perhaps libraries of C-compatible routines. These pro­
grams, together with the results of any compilations speci­
fied, are linked (in the order given) to produce an execut­
able load module with name a.out.

OPTIONS

1

Options on the sec call can be for sec or for sldo The fol­
lowing options are interpreted by sec:

-c Compile and assemble the named C source files but
suppress the linking step. Force an object file .o to
be produced even if only one source file is compiled.
If a number of C source files are specified, the .o
filE!S are saved.

-Dnarne
-Dnarne=def

Zilog 1

SCC(l) Zilog sec< 1)

Define name to the preprocessor, as if by #define. If
no definitTon is given, name is defined as 1.

-E Run only the macro preprocessor and send the result to
the standard output.

-Idir
~-Bring in a directory of #include files. Names that do

not begin with / are always sought first in the same
directory as the source file, then in directories named
in -I options, then in directories on a standard list.

-0 Invoke the C optimizer for 88000 code.

-p Arrange for the compiler to produce code that counts
the number of times each routine is called; also, if
loading takes place, replace the standard startup
routine by one which automatically calls segmon(3) at
the start and arranges to write out a mon.out(S) file
at normal termination of execution of the object pro­
gram. An execution profile can then be generated by
use of sprof (l). This option produces an execution
profile; however, it should not be used since the
related programs are not supplied for the 88000.

-P Run only the macro preprocessor and place the result
for each .c file in a corresponding .i file with no #
lines in it.

-S[l) Compile the named C source files but suppress the
assembly and link step. Leave the assembly language
code on corresponding files ·named .s. If 1 is speci­
fied, make the original C source lines appear as
assembly language comments preceding the code pro­
duced for them.

-Uname Remove any initial definition of name.

Other options can be specified on the sec call and are
passed to the linker sld. No options are passed to as from
the sec call, but any internal call to the assembler uses
the -o option with a name consisting of the original name
and .o. The internal call to the linker specifies the
options -X and -e with entry name start, and adds the
library name /lib/slibc.a to the end of the list of object
module names. Sld and ld recognize the same set of options.
See the description of ld for a description of these
options.

FILES
file.c
file.a

source file
object file

2 Zilog 2

SCC(l) Zilog SCC(l)

a.out
/tmp/ztm?
/lib/cpp
/lib/sl
/lib/s2
/lib/s3
/lib/c4
/lib/slibc.a
/lib/smcrt0.o

SEE ALSO
as(l), ld(l).

load module
temporaries
preprocessor
compiler passl
compiler pass2
optional optimizer
optional listing pass
standard library
optional startup routine for profiling

The f Programming Language by B. w. Kernighan and D. M.
Ritchie, Prentice-Hall, 1978,
C Reference Manual by D. M. Ritchie

COMPARE
cc (1)

DIAGNOSTICS
The diagnostics produced by the compiler, assembler, or
linker are self-explanatory.

IMPLEMENTATION
The sec compiler has the following characteristics:

3

As many as six register declarations can
honored, rather than three, as on the PDP-11.
Z8001 registers r8 through rl3 can be used
register variables.

The sec compiler produces object code which
forms to the 88000 calling conventions.

Zilog

be
The
for

con-

3

SCCSDIFF(l) Zilog SCCSDIFE'(l)

NAME
sccsdiff - compare two versions of an SCCS file

SYNOPSIS
sccsdiff -rSIDl -iSID2 [-p -SE_] file •••

DESCRIPTION
Sccsdiff compares
the differences
secs files may be
files.

two versions of an SCCS file and generates
between the two versions. Any number of
specified, but arguments apply to all

OPTIONS

FILES

-p pipe output for each file through pr(l).

-rSID? SIDl and SID2 specify the deltas of an SCCS
file that are to be compared. Versions are
passed to bdiff (l) in the order given.

-sn n is the file segment size that bdiff will
pass to diff (l). This is useful when diff
fails due to a high system load.

/tmp/get????? Temporary files

SEE ALSO
bdiff(l), get(l), help(l), pr(l).
Source Code Control System User'~ Guide in the ZEUS Utili­
ties Manual

DIAGNOSTICS

1

"file: No differences" If the two versions are the same.
use help(l) for explanations.

Bell 1

SCRI P'r (1) Zilog SCRIPT (1)

NAME
script - make a file copy of all terminal interactions

SYNOPSIS
script [-a] [-q] [-s she 11] [file]

DESCRIPTION
Script makes a file of everything printed on your terminal.
The typescript is saved in a file, and can be sent to the
line printer later with nq(l). If a file name is given, the
typescript is saved there. If not, the typescript is saved
in the file typescript.

To exit script, type control D. This sends an end of file to
all processes you have started up, and causes script to
exit. For this reason, control D behaves as though you had
typed an infinite number of control D's.

This program is useful when using a crt and a hard-copy
record of the dialog is desired, as for a student handing in
a program that was developed on a crt when hard-copy termi­
nals are in short supply.

OPTIONS
-a flag causes script to append to the typescript file

instead of creating a new file.

-q Asks for "quiet mode", where the "script started" and
-.. script done" messages are turned off.

-s Lets you specify any shell you want. The default shell
is the one specified in the user's entry of the
/etc/passwd file. If the requested shell is not avail­
able, script uses any shell it can find.

EXAMPLES

1

Script started on Thu Oct 28 13:21:23 1982
$ cat list!
boat
boathous1e
boatload
boatman
boatmen
$ rev li:stl
ta ob
esuohtaob
daoltaob
namtaob
nemtaob
$
script done on Thu Oct 28 13:21:55 1982

UCB 1

SCRIPT(l) Zilog SCRIPT(l)

LIMITATIONS

2

Since ZEUS has no way to write an end-of-file down a pipe
without closing the pipe, there is no way to simulate a sin­
gle control D without ending script.

The new shell has its standard input coming from a pipe
rather than a tty, so stty will not work, and neither will
ttyname. Programs such as ls do not produce a multi-column
format because they are writing to a pipe. In general,
script does not work well when a program attempts to use
many system features other than character-oriented I/O.

When the user interrupts a printing process, script attempts
to flush the output backed up in the pipe for better
response. Usually the next prompt also gets flushed.

UCB 2

SDIFF(l) Zilog SDIFF(l)

NAME
sdiff - side-by-side difference program

SYNOPSIS
sdiff -losw •••] file! file2

DESCRIPTION
Sdiff uses the output of diff (l) to produce a side-by-side
listing of two files indicating those lines that are dif­
ferent. Each line of the two files is printed with a blank
gutter between them if the lines are identical, a "<" in the
gutter if the line only exists in file!, a ">" in the gutter
if the line only exists in file2, and a "I" for lines that
are diff~~rent.

For example:

x y
a a
b <
c <
d d

> c

OPTIONS
-1 Only print the left side of any lines that are identi­

cal.

1

-o output
Use the next argument, output, as the name of a third
file that is created as a user controlled merging of
filel and file2. Identical lines of file! and file2
are copied to output. Sets of differences, .:is produced
by diff (l), are printed where a set of differences
sha:re a comtnon gutter character. After printing each
set of differences, sdiff prompts the user with a "%"
and waits for one of the following user-typed commands:

e call the editor ed(l) with a zero length file

e b call the editor ed(l) with both (the concate­
nation of) left and right

e 1 call the editor ed(l) with the left column

e r call the editor ed(l) with the right column

1 append the left column to the output file

q exit from the program

r append the right column to the output file

Bell 1

SDIFF(l) Zilog SDIE'F(l)

s turn on silent mode; do not print identical
lines

v verbose; turn off silent mode

On exit from the editor ed(l), the resulting file is
concatenated to the end of the output file.

-s Do not print identical lines.

-w n
use the next argument, n, as the width of the output
line. The default line-length is 130 characters.

EXAMPLES

2

% cat listl

boat
boathouse
boatload
boatman
boatmen
boatyard

% cat list2

boa
boar
board
boardinghouse
boast
boat
boathouse
boatload
boatman
boatmen

% sdiff listl list2

boat
boathouse
boatload
boatman
boatmen
boatyard

% sdiff -s listl list2

Bell

> boa
> boar
> board
> boardinghouse
> boast

<

boat
boathouse
boatload
boatman
boatmen

2

SDIFF{l} Zilog SDIFF{l)

0a 1, 5
> boa
> boar
> board
> board inghousE~
> boast

6dl0
boatyard <

% sdiff --1 listl list2

> boa
> boar
> board
> boardinghouse
> boast

boat
boathouse
boatload
boatman
boatmen
boatyard <

%

SEE ALSO
diff{l), ed { 1) •

3 Bell 3

SED(l) Zilog SEO (1)

NAME
sed - stream editor

SYNOPSIS
sed [-e script. [-f sf ile [-n] file

DESCRIPTION

l

Sed copies the named files (standard input default) to the
standard output, edited according to a script of commands.

A script consists of editing commands, one per line, of the
following form:

[address [, address]] function [arguments]

In normal operation sed cyclically copies a line of input
into a pattern space (unless there is something after a D
command), applies in sequence all commands whose addresses
select that pattern space, and at the end of the script
copies the pattern space to the standard output (except
under -n) and deletes the pattern space.

An address is either a decimal number that counts input
lines cumulatively across files, a $ that addresses the last
line of input, or a context address, /regular expression/,
in the style of ed(l) modified thus:

$ The escape sequence \n matches a new line embedded
in the pattern space.

A command line with no addresses selects every
pattern space.

A command line with one address selects each pat­
tern space that matches the address.

$ A command line with two addresses selects the
inclusive range from the first pattern space that
matches the first address through the next pattern
space that matches the second. (If the second
address is a number less than or equal to the line
number first selected, only one line is selected.)
Thereafter the process is repeated, looking again
for the first address.

Editing commands can be applied only to non-selected pattern
spaces by use of the negation function !.

In the following list of functions, the maximum number of
permissible addresses for each function is indicated in
parentheses.

Bell l

SED(l) Zilog SEO (1)

2

An argument denoted text consists of one or more lines, all
but the last of which end with \ to hide the new line.
Backslashes in text are treated like backslashes in the
replacement string of an s command, and protects initial
blanks and tabs against the stripping that is done on every
script line.

An argument denoted rfile or wfile must terminate the com­
mand line and must be preceded by exactly one blank. Each
wfile is created before processing begins. There can be at
most 10 distinct wfile arguments.

(l)a\
text

Append. Place text on the output before reading the
next. input 1 ine-.---

(2)b labe·l

(2)c\
text

Branch to the : command bearing the label. If label is
empty, branch to the end of the script.

Change.
or at
output.

Delete the pattern space. With 0 or 1 address
the end of a 2-address range, place ~ext on the
Start the next cycle.

(2)d Delete the pattern space. Start the next cycle.

(2)D Delete the initial segment of the pattern space through
the first new line. Start the next cycle.

(2)g Replace the contents of the pattern space by the con­
tents of the hold space.

(2)G Append the contents of the hold space to the pattern
space.

(2)h Replace the contents of the hold space by the contents
of the pattern space.

(2)H Append the contents of the pattern space to the hold
space.

(1) i \
text Insert. Place text on the standard output.

Bell 2

SED(l) Zilog SED(l)

3

(2)1 List the pattern space on the standard output in an
unambiguous form. Nonprinting characters are spelled
in two-digit ASCII, and long lines are folded.

(2)n Copy the pattern space to the standard output. Replace
the pattern space with the next line of input.

(2)N Append the next line of input to the pattern space with
an embedded new l.ine. (The current line number
changes.)

{2)p Print. Copy the pattern space to the standard output.

(2)P Copy the initial segment of the pattern space through
the first new line to the standard output.

(l)q Quit. Branch to the end of the script. Do not start a
new cycle.

(2)r rfile
Read the contents of rfile. Place them on the output
before reading the next input line.

{2)s/regular expression/replacement/flags
Substitute the repl~cement string for instances of the
regular expression in the pattern space. Any character
can be used instead of /. For a fuller description,
see ed(l). Flags is zero or more of of the following:

g Global. Substitute for all nonoverlapping
instances of the regular expression rather than
just the first one.

p Print the pattern space if a replacement was made.

w wfile
Write. Append the pattern space to wfile if a
replacement was made.

(2)t label
Test. Branch to the : command bearing the label if any
substitutions have been made since the most recent
reading of an input line or execution of a t. If label
is empty, branch to the end of the script.

(2)w wfile
Write. Append the pattern space to wfile.

(2)x Exchange the contents of the pattern and hold spaces.

{2)y/stringl/string2/
Transformo Replace all occurrences of characters in

Bell 3

S ED (l) Zilog SED(l)

stringl with the corresponding character in string2.
The lengths of stringl and string2 must be equal.

(2) ! function
(Do not use.) Apply the function (or group, if function
is bracket) only to lines not selected by the
address (es).

(0): lab~el

·Thi;S-command does nothing; it bears a label for b and t
co~nands to branch to.

(l)= Place the current line number on the standard output as
a line.

(2){ Execute the following commands through a matching }
only when the pattern space is selected.

(0) An Eempty command is ignored.

OPTIONS
-f Cause the script to be taken from file sfile; these

options accumulate.

-e If there is just one -e option and no -f's, the flag -e
can be omitted.

-n Suppress the default output.

SEE ALSO
ed (1) , g J~e p (1) •

4 Bell 4

SEND(l) Zilog SEND(l)

NAME
SEND - Uploader to the Zilog Z8000 Development Module

SYNOPSIS
SEND file start end [entry]

DESCRIPTION
SEND is invoked from the monitor and uploads memory from a
Zilog Development Module (DM) to the ZEUS system. SEND
creates a Z8000 memory image in the named file. Since the
monitor translates lowercase to uppercase characters, the
file created on the ZEUS system always receives an uppercase
name. Start, ~md, and entry are hexadecimal addresses, with
no leading 0x. See the description of SEND in the OM
manual.

The default for entry is start, but the user should either
omit entry or supply a reasonable value. If entry is omit­
ted, the user must remember the appropriate address and jump
to it when the program is downloaded again.

The text size in the header of the load module accounts for
all of the uploaded program since there is no way to discern
the sizes of the data and bss sections.

The uploaded memory image is assumed to be a complete Z8000
program and is created in the a.out(5) load module format.
If no errors occurred during transmission, the file is
marked executable. An existing file with the same name is
overwritten. The file is of type N MAGICl (Z8000 execut­
able) and is suitable input to the download program LOAD.
Therefore, the downloaded program can be run or changed,
uploaded to ZEUS, and then later downloaded again.

FILES
load module (in DM memory)

SEE ALSO
1 d (1) , LO AD (1) ,, a • out (5) •
Z8000 Development Module Hardware Reference Manual,

03-3080-01
Z8000 Development Module Hardware Reference Manual Errata,

03-3080-01

DIAGNOSTICS
The monitor displays any error messages received from SEND.
The error messages are the same as for SEND in the DM
manual.

LIMITATIONS

l

start must be on a 256-byte boundary such as 4600, 4700,
4800, and so forth. Otherwise, the SEND program does not

Zilog 1

SEND(l) Zilog SEND(l)

upload.

UPLOAD PROCEDURE

2

For uploading a memory image from the Development Module to
the ZEUS system, the steps are:

1. If communicating with ZEUS, press only the DM NMI
switch. Response is NMI and the prompt <.

2. Upload the program with a command such as:

send save 4600 5000 4dba

3. Response is the prompt <. On the ZEUS system, the
current working directory now contains the file
named SAVE. At this point, enter other monitor
commands or go back to ZEUS by entering the quit
command.

Zilog 2

SE:T(lC) Zilog SET (lC)

NAME
set - establish or modify a C Shell variable

SYNOPSIS
set [name=value]

DESCRIPTION
Without an argument, the set command command shows the value
of all shell variables. variables that have other than a
single word as value print as a word list enclosed in
parentheses.

The set command with an argument in the form ~=value, set
sets name to the single value

variable expansion happens for all arguments before any set­
ting occurs.

SEE ALSO

1

csh(l), env(l), printenv(l), setenv(lC).
The C Shell in the ZEUS Utilities Manual

UCB 1

S.ETENV(lC) Zilog SETENV(lC)

NAME
setenv - establish or revise an environment variable

SYNOPSIS
setenv [name value]

DESCRIPTION
The command setenv name value Sets the value of the environ­
ment variable name-to be value, a single string. Useful
environm.ent variables are TERM, the type of terminal, and
SHELL, the shell being used.

SEE ALSO
csh (1), env (1), printenv (1), set (lC).
The C Shell in the ZEUS Utilities Manual.

1 UCB 1

SH(l) Zilog SH (1)

NAME
sh - shell, the Bourne shell command programming language

SYNOPSIS
sh [-ceiknrstuvx [arg s]

DESCRIPTION

1

Sh is a command programming language that executes commands
read from a terminal or a file. See Invocation below for
the meaning of arguments to the shell.

Commands.

A simple-command is a sequence of non-blank words separated
by blanks (a blank is a tab or a space). The first word
specifies the name of the command to be executed. Except as
specified below, the remaining words are passed as arguments
to the invoked command. The command name is passed as argu­
ment 0 (see exe·c(2)). The value of a simple-command is its
exit status if it terminates normally, or (octal) 200+status
if it terminates abnormally (see signal(2) for a list of
status values).

A pipeline is a sequence of one or more commands separated
by I· The standard output of each command but the last is
connected by a pipe(2) to the standard input of the next
command. Each command is run as a separate process; the
shell waits for the last command to terminate.

A list is a sequence of one or more pipelines separated by
; ,-r;; &&, or 11, and optionally terminated by ; or &. Of
these four symbols, ; and & have equal precedence, which is
lower than that of && and JI· The symbols && and II also
have equal precedence. A semicolon (;) causes sequential
execution of the preceding pipeline; an ampersand (&) causes
asynchronous execution of the preceding pipeline (i.e., the
shell does not wait for that pipeline to finish). The sym­
bol && (11) ca us.es the list following it to be executed only
if the preceding pipeline returns a Zf=ro (non-zero) exit
status. An arbitrary numbe~ of new-lines may appear in a
list, instead of semicolons, to delimit commands.

A command is either a simple-command or one of the follow­
ing. Unless otherwise stated, the value returned by a com­
mand is that of the last simple-command executed in the com­
mand.

for name [in word •••] do list done
Each time-a-for command is executed, name is set to the
next word taken from the in word lis~If in word ••.
is omitted, then the for command executes the ~list
once for 'each positional parameter that is set (see

Bell 1

SH(l)

2

Zilog SH(l)

Parameter Substitution below) • Execution ends when
there are no more words in the list.

case word in [pattern [j pattern] ...) list ;;] .•. esac
A case command executes the list associated with the
first pattern that matches word. The form of the pat­
terns is the sa:ne as that used for file-name generation
(see File Name Generation below).

if list then list [elif list then list] [else list] fi
-The 1 i st following if is executed and, if it returns a

zero--ei"it status, the list following the~ first then is
executed. Otherwise, the list following elif is exe­
cuted and, if its value is zero, the list following the
next then is executed. Failing that,--rfie,· else list is
executed. If no else list or then lis:t is executed,
then the if command returns a zero exits.tatus.

while list do list done
A while command repeatedly executes the while list and,
if the exit status of the last command in the-Trst is
zero, executes the do list; otherwise the loop ter­
minates. If no commands in the do list are executed,
then the while command returns a zero · exit status;
until may be used in place of while to negate the loop
termination test.

(1 ist)
Execute list in a sub-shell.

{list;}
----list is simply executed.

The following words are only recognized as the first word of
a command and when not quoted:

if then else elif fi case esac for while until do done { }

Comments.

In general a word beginning with I causes that word and all
the following characters up to a new-line to be ignored.
Comments have a special meaning as the first line of a shell
script. Please refer to the following chart as to specific
meanings:

First Line in Script:Meaning:

#!sh This is a shell script for /bin/sh

#!csh This is a shell script for /bin/csh

Bell 2

SH (1)

3

Zilog SH (1)

! Error, can't determine which shell

#!/xxx Use the shell /xxx

#?

?

(where the string xxx is a pathname)
to execute this script

Where '?' is any character not equal
this is a shell script for /bin/csh

When~ '?' is any character not equal
this is a shell script for /bin/sh

to ' ! '

to I# I

Command Substitution.
The standard output from a command enclosed in a pair of
grave accents as in the command:

'ls'

may be used as part or all of a word; trailing new-lines are
removed.

Parameter Substitution.
The character $ is used to introduce substitutable parame­
ters. Positional parameters may be assigned values by set.
variables may be set by writing:

name=val UE~ [name=val ue]

Pattern-matching is not performed on value.

${parameter}
A parameter is a sequence of letters, digits, or under­
scores (a name), a digit, or any of the characters *,
@ , :fl: , ? , -- , $,and ! • The v a 1 ue , i f any , o f the
parameter is substituted. The braces are required only
when parameter is followed by a letter, digit, or
underscore that is not to be interpreted as part of its
name. A name must begin with a letter or underscore.
If parame1:er is a digit then it is a positional parame­
ter. If parameter is * or @, then all the positional
parameter~, starting with $1, are substituted
(separated by spaces) • Parameter $0 is set from argu­

ment zero when the shell is invoked.

${parameter:-word}
If paramet:er is set and is non-null then substitute its
value; otherwise substitute word.

${parameter:=word}
If parameter is not set or is null then set it to word;
the value of the parameter is then substituted. Posi­
tional parameters may not be assigned to in this way.

Bell 3

SH (1)

4

Zilog SH(l)

${parameter:?word}
If .parameter" is set and is non-null then substitute its
value; otherwise, print word and exit from the shell.
If word is omitted, then the message "paramE~ter null or
not: set" is printed.

${parameter:+word}
~~r-Y-parameter is set and is non-null then substitute

woz.:d; otherwise substitute nothing.

In the above, word is not evaluated unless it is to be used
as the substituted string, so that, in the following exam­
ple, pwc:31 is executed only if d is not set or is null:

echo ${d:-pwd}

If the colon (:) is omitted from the above expressions, then
the shell only checks whether paramete~ is set or not.

The following parameters are automatically set by the shell:

t The number of positional parameters in decimal.

Flags supplied to the shell on invocation or by
the set command ..

? The decimal value returned by the last synchro­
nously executed command.

$ The process number of this shell.

The process number of the last background command
invoked.

The following parameters are used by the shell:

HOME The default argument (home directory) for the cd
command.

PATH The search path for commands (see
below) •

MAIL If this variable is set to the name
file, then the shell informs the
arrival of mail in the specified file.

Execution

of a mail
user of the

PSI Primary prompt string, by default''$ ''.

PS2 Secondary prompt string, by default''> ''.

IFS Internal field separators, normally space, tab,
and new-line.

Bell 4

SH(l)

5

Zilog SH(l)

The shell gives default values to PATH, PSI, PS2, and IFS,
while HOME and MAIL are not set at all by the shell
(although HOME is set by login(l)).

Blank Interpretation.

After parameter and command substitution, the results of
substitution .are scanned for internal field separator char­
acters (those found in IFS) and split into distinct argu­
ments where such characters are found. Explicit null argu­
ments ("" or) are retained. Implicit null arguments (those
resulting from parameters that have no values) are removed.

File Name Generation.

Following substitution, each command word is scanned for the
characters *, ? , and [. If one of these characters appea.cs
then the word is regarded as a pattern. The word is
replaced with alphabetically sorted file names that match
the pattern. If no file name is found that matches the pat­
tern, then the word is left unchanged. The character • at
the start of a file name or immediately following a /, as
well as the character / itself, must be matched explicitly.

* Matches any string, including the null string.

? Matches any single character.

[...]

Quoting.

Matches any one of the enclosed characters. A
pair of characters separated by - matches any
character lexically between the pair, inclusive.

The following characters have a special meaning to the shell
and cause termination of a word unless quoted:

. , & < > new-line space tab

A character may be quoted (i.e., made to stand for itself)
by preceding it with a \. The pair \new-line is ignored.
All characters enclosed between a pair of single quote marks
(), except a single quote, are quoted. Inside double quote
marks ("") , par·ameter and command substitution occurs and \
quotes the characters \, , •, and $. "$*" is equivalent to
"$1 $2 ••• ",whereas•$@" is equivalent to "$1" •$2" •.••

Prompting.

When used interactively, the shell prompts with the value of
PSl before reading a command. If at any time a new-line is

Bell 5

SH(l)

6

Zilog SH (1)

typed and further inp~t is needed to
then the secondary prompt (i.e.,
issued.

complete
the value

a command,
of PS2) is

Input/Output.

Before a command is executed, its input and output may be
redirected using a special notation interpreted by the
shell. The following may appear anywhere in a simple­
commalnd or may precede or follow a comma1nd and are not
passe~a on to the invoked command; subs ti tut1on occurs before
word or digit is used:

<word!

>word!

>>wo:r·d

<<[-]word

<&digit

<&-

Use file word as standard input (file descrip­
tor 0) •

Use file word as standard output (file
descriptor --n-; If the file does not exist
then it is created; otherwise, it is truncated
to zero length.

Use file word as standard output. If the file
exists then output is appended to it (by first
seeking to the end-of-file); otherwise, the
file is created.

The shell input is read up to a line that is
the same as word, or to an end-of-file. The
resulting document becomes the standard input.
If any character of word is quoted, then no
interpretation is placed upon the characters
of the document; otherwise, parameter and com­
mand substitution occurs, (escaped) \new-line
is ignored, and \ must be used to quote the
characters \, $, , and the first character of
word. If - is appended to <<, then all lead­
ing tabs are stripped from word and from the
document.

The standard input is duplicated from file
descriptor digit (see dup(2)). Similarly for
the standard output using >.

The standard input is closed.
the standard output using >.

Similarly for

If one of the above is preceded by a digit, then the file
descriptor created is that specified by the digit (instead
of the default 0 or 1). For example:

• • • 2>&1

Bell 6

SH(l)

7

Zilog SH(l)

creates file descriptor 2 that is a duplicate of file
descriptor 1.

If a command is followed by & then the default standard
input for thE~ command is the empty file /dev/null. Other­
wise, the environment for the execution of a command con­
tains the file descriptors of the invoking shell as modified
by input/output specifications.

Environment.

The environment (see environ(7)) is a list of name-value
pairs that is-passed to an executed program in the same way
as a normal argument list. The shell interacts with the
environment in several ways. On invocation, the shell scans
the environment and creates a parameter for each name found,
giving it the corresponding value. Executed commands
inherit the same environment. If the user modifies the
values of these parameters or creates new ones, none of
these affects the environment unless the export command is
used to bind the shell's parameter to the environment. The
environment seen by any executed command is thus composed of
any unmodified name-value pairs originally inherited by the
shell, plus any modifications or additions, all of which
must be noted in export commands.

The environment for any simple-command may be augmented by
prefixing it with one or more assignments to parameters.
Thus:

TERM=450 cmd argsand
(export TERM; TERM=450; cmd args)

are equivalent (as far as the above execution of cmd is con­
cerned) •

If the -k flag is set, all keyword arguments are placed in
the environment, even Tfthey occur after the command name.
The following first prints "a=b c" and then "c":

echo a=b c
set -k
echo a=b c

Signals.

The INTERRUPT and QUIT signals for an invoked command are
ignored if the command is followed by &; otherwise signals
have the values inherited by the shell from its parent, with
the exception of signal 11 (but see also the trap command
below) •

Bell 7

SH(l)

8

Zilog SH (1)

Execution.

Each time a command is executed, the above substitutions are
carried out. Except for the Special Commands listed below,
a new process is created and an attempt is made to execute
the command via exec(2).

The shell parameter PATH defines the search path for the
directo1:y containing the command. Alternative directory
names are separated by a colon (:). The default path is
:/bin:/usr/bin {specifying the current directory, /bin, and
/usr/bin, in that order). Note that the current directory
is specified by a null path name, which can appear immedi­
ately after the equal sign or between the colon delimiters
anywher(~ else in the path list. If the command name con­
tains a / then the search path is not used. Otherwise, each
directory in the path is searched for an executable file.
If the file has execute permission but is not an a.out file,
it is assumed to be a file containing shell commands. A
sub-shell (i.e., a separate process) is spawned to read it.
A parenthesized command is also executed in a sub-shell.

Special Commands.

The following commands are executed in the shell process
and, except as specified, no input/output redirection is
permitted for such commands:

. . No effect; the command does nothing. A zero exit code
is returned •

• file
--Read and execute commands from file and rE~turn. The

search path specified by PA~is used to find the
directory containing file.

break [!!.
Exit from the enclosing for or while loop, if any. If
n is specified then break n levels.

cont inuE! [n]
Resume-the next iteration of the enclosing for or while
loop. If n is specified then resume at the n-th
enclosing loop.

cd [ar9]
Chctnge the current directory to arg. The shell parame­
tet: HOME is the default arg.

eval [arg • • •]
The~ arguments are read as input to the shell and the
resulting command(s) executed.

Bell 8

SH (1)

9

Zilog SH(l)

exec [a r g • $ •]

The command specified by the arguments is executed in
place of this shell without creating a new process.
Input/output arguments may appear and, if no other
arguments are given, cause the shell input/output to be
modified.

exit [n]
Causes a shell to exit with the exit status specified
by n. If n is omitted then the exit status is that of
the Tast co~mand executed (an end-of-file will also
cause the shell to exit.)

export [name o••]
The gTV"en names are marked for automatic export to the
environmentof subsequently-executed commands. If no
arguments are given, then a list of all names that are
exported in this shell is printed.

newgrp [~ • ,, •
Equivalent to exec newgrp arg ••••

read [name ••O]
Onellne is read from the standard input and the first
word is assigned to the first name, the second word to
the second name, etc., with leftover words assigned to
the last name. The return code is 0 unless an end-of­
file is encountered.

readonly [name~ •••]
The given names are marked readonly and the values of
the these names may not be changed by subsequent
assignment. --U-no arguments are given, then a list of
all reado1!..!_y names is printed.

set [-ekntuvx [arg •••]

-e If the shell is non-interactive then exit immedi­
ately if a command exits with a non-zero exit
status.

-k All keyword arguments are placed in the environ­
ment for a command, not just those that precede
the command name.

-n Read commands but do not execute them.

-t Exit after reading and executing one command.

-u Treat unset variables as an error when substitut­
ing.

Bell 9

SH(l)

10

shift

test

Zilog SH (1)

-v Print shell input lines as they are read.

-x Print commands and their arguments as they are
executed.

Do not change any of the flags; useful in setting
$1 to -.

using + rather than - causes these flags to be turned
off. These flags can also be used upon invocation of
the shell. The current set of flags may be found in
$-. The remaining arguments are positional parameters
and are assigned, in order, to $1, $2, If no
ar9uments are given then the values of all names are
printed.

The positional parameters from $2 .•. are renamed $1

Evaluate conditional expressions. See test(l) for usage
and description.

times
Print the accumulated user and system times for
processes run from the shell.

trap [arg] [n]
ar~~s a command to be read and executed wh~~n the shell
rec~eives signal (s) n. (Note that arg is scanned once
whfm the trap is set and once when the trap is taken.)
Trap commands are executed in order of si9nal number.
Any attempt to set a trap on a signal that was ignored
on entry to the current shell is ineffective. An
attempt to trap on signal 11 (memory fault) produces an
error. If arg is absent then all trap(s) n are reset
to their original values. If arg is the null string
then this signal is ignored by the shell and by the
commands it invokes. If n is 0 then the command ~ is
exE~cuted on exit from the shel 1. The trap command with
no arguments prints a list of commands associated with
each signal number.

umask [nnn]
ThE~-User file-creation mask is set to nnn (see
umask(2)). If nnn is omitted, the current value of the
mask is printed-.-

wait Wait for all child processes to terminate report
termination status. If n is not given then
currently active child proc~sses are waited for.

Bell

the
all
The

10

SH (1) Zilog SH(l)

return code from this command is always zero.

Invocation.

If the shell is invoked through exec(2) and the first char­
acter of argument zero is -, commands are initially read
from /etc/profile and then from $HOME/.profile, if such
files exist. Thereafte~, commands are read as described
below, which is also the case when the shell is invoked as
/bin/sh. The flags below are interpreted by the shell on
invocation only; Note that unless the -c or -s flag is
specified, the first argument is assumed to be the name of a
file containing commands, and the remaining arguments are
passed as positional parameters to that command file:

-c string If the -c flag is present then commands are read
from string.

-s.

-i

-r

If the -s flag is present or if no arguments
remain then commands are read from the standard
input. Any remaining arguments specify the posi­
tional parameters. Shell output is written to
file descriptor 2.

If the -i flag is present or if the shell input
and output are attached to a terminal, then this
shell is interactive. In this case TERMINATE is
ignored (so that kill e does not kill an interac­
tive shell) and INTERRUPT is caught and ignored
(so that wait is interruptible). In all cases,
QUIT is ignored by the shell.

If the -r flag is present the shell is a res­
tricted shell (see rsh(l)).

The remaining flags and arguments are described under the
set command above.

EXIT STATUS
Errors detected by the shell, such as syntax errors, cause
the shell to return a non-zero exit status. If the shell is
being used non-interactively then execution of the shell
file is abandoned. Otherwise, the shell returns the exit
status of the last command executed (see also the exit com­
mand above) •

E'ILES

11

/etc/profile
$HOME/ .prof i lE!

/tmp/sh*
/dev/null

Bell 11

SH(l) Zilog SH (1)

SEE ALSO
cd (1) , e· n v (1) , 1 o g i n (1) , n e wg r p (1) , r sh (1) , t e st (1) ,
umask (1), dup (2), exec (2), fotk (2), pipe (2), signal (2),
urn ask (2) , w a i t (2) , a • o u t (5) , pro f i 1 e (5) , en v iron (7) •

LIMITATIONS

12

The command readonly (without arguments) produces the same
output as the command export.

If << is used to provide standard input to an asynchronous
process invoked by &, the shell gets mixed up about naming
the input document; a garbage file /tmp/sh* is created and
the shell complains about not being able to find that file
by another name.

Bell 12

SIZE(l) Zilog

NAME
size - size of an object file

SYNOPSIS
size

DESCRIPTION

file

SIZE(l)

Size prints the decimal number of bytes required by the text
(code) sections, initialized data sections, and bss (unini­
tialized data) portions, and their sum in decimal and hexa­
decimal, of each object-file argument. If no file is speci­
fied, a.out is used.

EXAMPLES
% size /bin/ls

7276+760+3840 - 11876b = 027144b

SEE ALSO
objdu(l), objhdr(l), a.out(S).

1 Bell 1

SLD(l) Zilog SLD(l)

NAME
sld - seg·mented Z8000 loader

SYNOPSIS
sld [-bdeilMorRstuwxxz file

DESCRIPTION

1

sld combines several Z8000 object programs into one load
module, resolves external references, and searches
libraries. In the simplest case, several Z8000 object files
are g ive·n and sld combines them to produce an executable
load module. An object module can also be produced and used
as input to a subsequent sld run, in which case the -r
option must be given to preserve the relocation bits. The
output of sld is left on the file a.out(5), unless the -o
option is used to select a name. If no errors occur during
the link, the output file is marked executable.

The order of the argument routines in the load module
depends on whether the -M or -R options are used. If they
are not being used then the argument routines are con­
catenated in the order specified with the following mapping
assignments: teKt, data and bss in segment 0 for combined
I&D; and text in segment 0, data and bss in segment 1 for
separate I&D. If -M or -R is used then the range for segment
assignments is between 0 and 127 segments (inclusive), and
the ordering for each section of the argument routines is
left up to the user. In absence of the -e option, the entry
point of the output is the lowest text address.

If any argument is a library, it is searched once at the
point it is encountered in the argument list. Only those
routines defining an unresolved external reference are
linked. If a routine from a library references another rou­
tine in the library, and the library has not been processed
by ranlib(l), the referenced routine must appear after the
referencing routine in the library. Thus, the order of
modules within libraries is important. If the first member
of a library is named .SYMDEF, then it is understood to be
a dictionary for the---Y-ibrary, such as one produced by ran­
lib(l). The dictionary is searched iteratively to satisfy
all possible references.

The symbols etext, _edata, end and _stkseg in assembly
language code (etext, edata, end and stkseg in C programs)
are reserved and cannot be redefined by the user. The sym­
bol etext refers to the first location above the text sec­
tion. The symbol edata refers to the first location above
initialized data. -The symbol end refers to the first loca­
tion above all data, and can b~ used as a starting location
for a dynamic allocation area managed by the user. The sym­
bol _stkseg refers to the stack segment and the starting

Zilog 1

SLD(l) Zilog SLD(l)

segment is either: segment 0 (for combined I&D) or the seg­
ment after the last segment used for text and/or data. The
above default can be overriden by the -Ms option.

OPTIONS

2

Except for -1, the options appear before the file names.
For the purpose of linking a program to be downloaded to a
development module, the -o option must be used with an
uppercase file name, and the -t option must be used with a
starting address that is 0x5000 or higher. The options are:

-b addr

-bx addr
Set the bottom location for the program, or for the
specified section if x is specified. X can be one of
t, d, or b for text, data, and bss, respectively. The
address can be specified in decimal, hex, or octal
using the standard C language conventions: a leading
zero indicates octal, and a leading 0x indicates hex.
The address specified must be a multiple of 256. If no
section is selected, the bottom applies to all three
sections if the program is combined instruction and
data, or to data and bss if separate instruction and
data. Only one -t or -b option per section can be
specified. Errors can result if sections overlap, or
the bottom address causes a section to wrap around.

-d Force definition of common storage even if the -r flag
is present.

-e name

-i

Take the following argument as the name of the entry
point of the loaded program. (Note that C program
names specified as the entry point must have the
prepended underbar.) The lowest text address is the
default entry point.

S~parate the program
instruction and data)
executed.

and data (also called
when the output file is

-lx Search the named library. This option is an abbrevia­
tion for the library name /lib/slibx.a, where x is a
string. "-lxyz" refers to /lib/slibxyz.a. If the
library is not found in /lib then /usr/lib is searched
followed by /z/bin/lib. A library is searched when its
name is encountered, so the placement of a -1 option is
significant.

-My

Zilog 2

SLD (l) Zilog SLD(l)

3

-Mxy

-My + file +

-M~ + file +

-Msy This option allows the user to specify section to seg­
ment mappings. X can be one of t, d, b for text, data
and bss respectively. Y is a decimal integer, between
0 and 127 (inclusive), which indicates which segment
the user wants to use as a target segment. -·My states
that the sections for all files specified after this
option (and up to the next -M) are to be mapped using
segment y_ as the starting segment. -M~ states that the
x type sections for all files specified after this
~ption (and up to the next -M, if any) are to be mapped
onto segment y. The remaining sections are assigned to
their default segments or to a user specified segment
that pertains to these sections. The -My+ file ••• +
states that only the sections whose files are between
the + delimiters are to be mapped onto segmemt y_. -Mxy
+ file + states that only x type sections whose
file~s are between the + delimiters- are to be mapped
onto segment y. The other sections will be assigned to
their default segments or to any user specified segment
(if applicable). The -Msy_ option refers to the stack
segment. Y indicates the segment that the user wants
to reserve for the stack segment. Only the -My option
is valid for combined I&D.

-o name
Change the name of the sld output file to the name
specified. This option must be used to specify an
uppercase file name for a load module to be downloaded
to the Zilog Z8000 Development Module. The form of the
load module remains the same as described in a.out(S).

-r Generate relocation bits in the output file so that it
can be used in a subsequent sld run. This flag over­
rides the -t and -b options. It also prevents final
definitions from being given to common symbols, and
suppresses the undefined symbol diagnostics.

-Ry Crez1tes a zero length segment. This option generates a
zero segment by entering an entry into the segment
table which refers to a segment of size 0. Y is a
decimal integer, between 0 and 127 (inclusive), that
specifies which segment is to be reserved.

-s Strip the output; that is, remove the symbol table and
relocation bits to save space.

Zilog 3

s r...o (1) Zilog SLD(l)

FILES

-t addr

-tx addr
Set the highest location of the program or section to
the hex, octal, or decimal number specified. X can be
one of t, d, or b for text, data, and bss respectively.
This option is similar to that of -b except a top
address is specified instead of a bottom. The link
location of the program or section is justified so that
it meets the specified top. The low address of the
section or program is always a multiple of 256. In
most cases, the top is within 256 bytes of the speci­
fied address, and is padded with zeros to meet the
address.

-u Take the following argument as a symbol and enter it as
undefined in the symbol table. This is useful for
linking wholly from a library, since initially the sym­
bol table is empty and an unresolved reference is
needed to force the link of the first routine.

-w Suppress the symbol redefinition warning. This warning
is produced while searching archives. If an archive
contains a module that defines a symbol that is already
defined, a redefinition warning is produced.

-x Enter only external and global symbols and do not
preserve local symbols in the output symbol table.
This option saves some space in the output file.

-X Save local symbols except for those whose names begin
with L. This option is used by the C compiler to dis­
card internally generated labels while retaining sym­
bols local to routines.

-z Gives the output file the default mappings for the
S8000. Segment four is the lo~est segment, segment
sixty-three is for the stack and segments sixty-four
and sixty-five are unusable. The output file can be
either separate or combined I & o.

/lib
/usr/lib
/z/bin/lib
/slib*.a
a.out

libraries for -1 option

output file

SEE ALSO
LOAD(l), ar(l), ld(l), ranlib(l), a.out(5)

4 Zilog 4

SLD(l) Zilog SLD (1)

DIAGNOSTICS
Any undefined references cause the special symbol "_end" to
be repo1~ted as und1~fined. As a programmer aid, the "rede­
finition" warning occurs if, while searching an archive, a
symbol that is already defined is defined in an archive
member. This warning can be suppressed with the -w option.
It also does not occur if the sy.nbol name begins with two
underscores (one underscore in C) •

LIMITATIONS

5

The "rede~finition" warning should not occur on symbols that
occur twice within the same archive.

The segment numbers for the section entries in the symbol
table maybe in error. However this information is not being
used by sld.

The -b and -t options work only for single segment programs.

Zilog 5

SLEEP{l) Zilog SLEEP(l)

NAME
sleep - suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION
Sleep suspends execution for time seconds. It is used to
execute a command after a 105 seconds, as in:

(sleep 105; command)&

or to execute a command every 37 seconds, as in:

while tru1e
do

done

command
sleep 37

SEE ALSO
w a i t { 1) , a 1 a rm { 2) , s 1 ee p (3) •

LIMITATIONS
Time must be less than 65536 seconds.

1 Bell l

SLINK(l) Zilog SLINK{l)

NAME
slink - memory binder for downloading object modules.

SYNOPSIS
slink -eioPsvwxX] [[-S addr file •••]

DESCRIPTION

1.

Slink creates load modules for downloading to target
hardware~ Modules may be bound to particular memory loca­
tions by using the -s address option.

Slink combines several object modules into one
file. The output of slink is left on the file
the -o option is used, the name so specified is
of a.out; the file has the same format. If no
during the link, the file is marked executable.

load module
a.out(S). If
used instead
eirrors occur

The argument routines are concatenated in the order speci­
fied. In the absence of the -e option, the entry point of
the output is the beginning of the first routine.

The options must be specified separately.

The options are:

-e name

-i

-o name

-P

-s

Take the following argument as the name of the
entry point of the program. The link address of
the text section is the default.

Separate the program text and data (also called
instruction and data) areas when the output file
is execute. This option is only for Z8 object
modules.

Change the name of the slink output file to the
name specified. The form of the load module
remains the same as described in a.out(S).

Preserve the temporary work files in /tmp/sl •••.••
for debug purposes.

Strip the output: remove the symbol table and
relocation bits to save space.

-S address file •••
Set the location of the files listed. The address
may be specified in hex, octal, or decimal using
standard C language conventions: a leading 0x
indicates hex, and a leading zero indicates octal.
Errors can result if sections overlap, or if the
bottom address causes a section to wrap around.

Zilog 1

SLINK(l) Zilog SLINK(l)

FILES

-v

-w

-x

-X

Verbose option. Print the command line passed to
ld.

Suppress the symbol redefinition warning. This
warning is produced while searching archives. If
an archive contains a module that defines a symbol
that is already defined, a redefinition warning is
produced.

Enter only external and global symbols and do not
preserve local symbols in the output symbol table.
This option saves some space in the output file.

Save local symbols except for section name entries
in the symbol table and for those whose names
begin with L. This option is used by the C com­
piler to discard internally generated labels while
retaining symbols local to routines.

/tmp/sl •.••.• work files which will remain if -P option is
specified.
a.out output file.

SEE ALSO
ld(l), a.out(S).

DIAGNOSTICS
Load not performed.
Fork failed.
No children to wait for.
Temp files, '/tmp/sl •.•••• ', were not removed.
Bad option: <option>.
<file> not in correct a.out format.
Cannot handle segmented file: <file>.
Cannot handle overlay file: <file>.
Cannot handle stripped file: <file>.
Z8000 files cannot start on odd boundaries.
Cannot mix Z8000 modules with Z8 or Z80 modules.
Cannot mix Z8 modules with Z80 modules.

LIMITATIONS

2

Slink is unable to handle segmented or overlay programs.
Nothing is done with common symbols; they follow bss.

Zilog 2

SORT(l) Zilog SOR'r(l)

NAME
sort - sort and/or merge files

SYNOPSIS
sort

[-bcdfimnortTu]
[+posl [-pos2] [-c~ name] ~~
[-11 dfrectory

file]

DESCRIPTION
Sort sorts lines of all the named files together and writes
the result on the standard output. The name minus means the
standard input. If no input files are named, the standard
input is sorted.

The default sort key is an entire line. Default ordering is
lexicographic by bytes in machine collating sequence.

OPTIONS

1

The ordering is affected globally by the following options,
one or more of which can appear:

- b Ignore leading blanks (spaces and tabs) in field com­
parisons.

-c Check that the input file is sorted according to the
ordering rules; give no output unless the file is out
of sort.

-d Dictionary order: only letters, digits and blanks are
significant in comparisons.

-f Fold uppercase letters onto lowercase.

-i Ignore characters outside the ASCII range 040-0176 in
nonnumeric comparisons.

-m Merge only, the input files are already sorted.

-n An initial numeric string, consisting of optional
blanks, optional minus sign, and zero or more digits
with optional decimal point, is sorted by arithmetic
value. Option -n implies option -b.

-o The next argument is the name of an output file to use
instead of the standard output. This file can be the
same as one of the inputs.

-r Reverse the sense of comparisons.

Bell 1

SORT(l) Zilog SORT(l)

-tx Tab character separating fields is x.

-T The next argument is the name of a directory in which
temporary files are made.

-u Suppress all but one in each set of equal lines.
Ignored bytes and bytes outside keys do not participate
in this comparison. x.

The notation +posl -pos2 restricts a sort key to a field
beginning at posl and ending just before pos2. Posl and
pos2 each have the form m.n, optionally followed by one or
more of the flags bdfinr; where m tells a number of fields
to skip from the beginning of the Tine and n tells a number
of characters to skip further.

If any flags are present, they override all the global ord­
ering options for this key. If the -b option is in effect n
is counted from the first nonblank in the field; -b is
attached independently to pos2. A missing .n means .0; a
missing -pos2 means the end ofthe line.

Under the -tx option, fields are strings separated by x;
otherwise fTelds are nonempty nonblank strings separated by
blanks.

When there are multiple sort keys, later keys are compared
only after all earlier keys compare equal. Lines that oth­
erwise compare equal are ordered with all bytes significant.

EXAMPLES

FILES

2

Print in alphabetical order all the unique spellings in a
list of words. Capitalized words differ from uncapitalized.

sort -u +0f +0 list

Print the password file (aasswd(5) sorted by user ID
(the third colon-separate field).

sort -t: +2n /etc/passwd

number

Print the first instance of each month in an already sorted
file of month-day entries. The options -um with one input
file make the choice of a unique representative from a set
of equal lines predictable.

sort -um +0 -1 dates

/usr/tmp/stm*, /tmp/*
first and second tries for temporary files

Bell 2

SORT(l) Zilog SOR'r (1)

SEE ALSO
uniq(l), comm(l), rev(l), join(l).

DIAGNOSTICS
Comments and exits with nonzero status for various trouble
conditi-0ns and for disorder discovered under option -c.

LIMITATIONS
very long lines are silently truncated.

3 Bell 3

SOURCE(lC) Zilog SOURCE(lC)

NAME
source - execute commands,in a shell script in the current
shell

SYNOPSIS
source file

DESCRIPTION
The shell reads commands from file. Source commands can be
nested; if they are nested too deeply1 the shell can run out
of file descriptors.

LIMITATIONS
An error in a source at any level terminates all nested
source commands. Input during source commands is never
placed on the history list. Source output cannot be re­
directed.

SEE ALSO
The C Shell in the ZEUS Utilities Manual

l UCB 1

SPELL(l) Zilog SPELL (1)

NAME
spell, spellin, spellout - find spelling errors

SYNOPSIS
spell -bdvx] [file]

spellin [list]

spellout [-d] list

DESCRIPTION
Spell collects words from the named documents, and looks
them up in a spelling list. Words that do not occur and
cannot be derived (by applying certain inflections, prefixes
or suffixes) from words in the spelling list are printed on
the standard output. If no files are named, words are col­
lected from the standard input.

Spell ignores most troff(l), tbl(l), and eqn(l) construc­
tions.

The spelling list is based on many sources, and while more
haphazard than an ordinary dictionary, is also more effec­
tive in respect to proper names and popular technical words.
Coverage of the specialized vocabularies of biology, medi­
cine, and chemistry is light.

Pertinent auxiliary files can be specified by name argu­
ments, indicated as follows with their default settings.
Copies of all output are accumulated in the history file.
The stop list filters out misspellings (for example,
thier=thy-y+ier) that would otherwise pass.

Two routines help maintain the hash lists used by spell.
Both expect a list of words, one per line, from the standard
input. Spellin adds the words on the standard input to the
preexisting list and places a new list on the standard out­
put. If no list is specified, the new list is created from
scratch. Spellout looks up each word in the standard input
and prints on the standard output those that are missing
from (or present on, with option -d) the hash list.

OPTIONS
-b British spelling is checked. Besides preferring cen­

tre, colour, speciality, travelled, etc., this option
insists upon -ise in words like standardise.

-d

-v

l

used with spellout; prints on the standard output those
that are present on the hash list.

all words not
printed, and

literally in the spelling list are
plausible derivations from spelling list

Bell 1

SPELL{l) Zilog SPELL(l)

words are indicated.

-x every plausible stem is printed with = for each word.

EXAMPLES
To add words in file to the list:

cat file >> /usr/dict/words

sort -o /usr/dict/words -u /usr/dict/words

spellin /usr/dict/hlista < /usr/dict/words > /usr/dict/hlistx

move /usr/dict/hlistx /usr/dict/hlista

FILES
/usr/dict/hlist[ab]

hashed spE~lling lists, American & British
/usr/dict/hstop

hashed stop list
/usr/dict/spellhist

history file
/usr/lib/spell

SEE ALSO
deroff(l), look(l), sort(l), tee(l), sed(l).

LIMITATIONS

2

The spelling list's coverage is uneven; new installations
will probably wish to monitor the output for several months
to gather local additions.

British spelling was done by an American.

Bell 2

Zilog SPLI'r (1)

NAME
split split a file into pieces

SYNOPSIS
split -·n [file name]]

DESCRIPTION
Split reads file and writes it in n-line pieces (default
1000) 1 or n-character pieces if the number ends with a 'c'
(default 10000), as many as necessary, onto a set of output
files. The name of the first output file is name with aa
appended, and so on lexicographically. The maxTnlUm number
of files created is 676. If there is more data to split
from the original file and all 676 files have been used, the
balance will go into the last file, namely, nc:tme with zz
appended. If no output name is given, x is default.

If no input file is given, or if - is given in its stead,
then the standard input file is used.

EXAMPLE

1

% cat list
boa
boar
board
boardinghouse
boast
boat
boathouse
boatload
boatman
boatmen

% split -5 list

% ls
list xaa xab

% cat xaa
boa
boar
board
boardinghouse
boast

% cat xab
boat
boathouse
boatload
boatman
boatmen

Bell 1

SPROF(l) Zilog SPROF(l)

NAME
sprof - display profile data

SYNOPSIS
sp:rof -al [file

DESCRIPTION
Sprof interprets the file mon.out produced by the segmon
subroutine. Under defaurt modes, the symbol table in the
named object fi lE~ (a .out default) is read and correlated
with the mon.out(5)-profile file. For each external symbol,
the percentage of time spent executing between that symbol
and the next is printed (in decreasing order), together with
the number of times that routine was called and the number
of milliseconds per call.

In order for the number of calls to a routine to be tallied,
the -p option of sec must have been given when the file con­
taining the routine was compiled. This option also arranges
for the mon.out(S) file to be produced automatically.

OPTIONS

FILES

-a Report all symbols rather than just external symbols.

-1 List output by symbol value rather than decreasing per­
centage.

mon.out for profile
a.out for namelist

SEE ALSO
mon.out(5), segmon(3), sprofil (2), scc(l).

LIMITATIONS
Beware of quantization errors.

1 Zilog 1

STRINGS(l) Zilog STRINGS(l)

NAME
strings - print strings in object or other binary file

SYNOPSIS
string~; [-] [-number] [-o] file •••

DESCRIPTION
Strings prints all strings of printable characters in file
that are more than 4 characters long. If file is in obJect
forrnat, strings only looks for strings in the initialized
data portion.

Strings is useful for identifying random object files and
many ofher things.

OPTIONS
Examine the entire file, even if it is in object for­
mat.

-numbe1:
n~mber is the minimum string length instead of 4.

-o Give each string's offset in octal.

EXAMPLES
$ strings /bin/ls
/etc/passwd
/etc/gi:oup
total ~~D
%5u
%40
%2d
%-6.6s
%-6d
%3d,%3d
%7ld
%-7.7s %-4.4s
%-12.12s
%.14s
%s unrE~adable

ls: out of memory
ls: too many files
%s not found
(null)
Day Mon 00 00:00:00 1900
SunMonTueWedThuFriSat

SEE ALSO
od (1) .

1

$ strings -o /bin/ls
7450 /etc/passwd
7462 /etc/group
7481 total %D

UCB

7491 %Su
7496 %40
7501 %2d
7506 %-6.6s
7513 %-Gd
7518 %3d,%3d
7526 %7ld
7531 %-7.7s %-4.4s
7547 %-12.12s
7562 %.14s
7571 %s unreadable
7586 ls: out of memory
7605 ls: too many files
7625 %s not found
7708 (null)
7910 Day Mon 00 00~00:00 1900
7936 SunMonTueWedThuFriSat

1

STRIP(l) Zilog STRIP (1)

NAME
strip - remove symbols and relocation bits and header
(optional)

SYNOPSIS
strip [-h] file

DESCRIPTION
Strip removes the
narily attached
This is useful to
debugged.

symbol table and relocation bits ordi­
to the output of the assembler and loader.

save space after a program has been

This effect of strip is the same as use of the -s option of
ld.

OPTIONS
-h Cause the header and segment table to be stripped.

SEE ALSO
ld(l), objdu(l), objhdr(l), a.out(5).

DIAGNOSTICS

1

"file not in con:ect object format" if the file is not a
nonsegmented executable file.

"cannot recreate file" if the file is not owned by the
invoker of the program.

"file already stt:ipped" if the file has no symbol table or
relocation information and the -h option has not been speci­
fied.

Bell 1

STTY(l) Zilog STTY (1)

NAME
stty - set the options for a terminal

SYNOPSIS
stty [-a] [-g] [options]

DESCRIPTION
Stty sets certain terminal I/O options for the device that
is the current standard input; without arguments, it reports
the settings of certain options.

OPTIONS

MODES

1

-a Reports all of the option settings.

-g Reports current settings in a form that can be used as
an argument to another stty command.

Detailed information about the modes listed
five groups below may be found in tty(4).
last group are implemented using options in
groups.

Control Modes

clocal (-clocal)

in the first
Options in the

the previous

assume a line without (with) modem control.

cread (-cread)
enable (disable) the receiver.

cstopb (-cstopb)
use two (one) stop bits per character. (The Sys­
tem 8000 doesn't currently support -c:stopb) •

cs5 est) cs7 cs8
select character size (see tty(4)).

hup (-hup)
hang up (do not hang up) DATA-PHONE(Reg.) connec­
tion on last close.

hupcl i(-hupcl)
same as hup (-hup)

parenb (-parenb)
enable (disable) parity generation and detection.

parodd (-parodd)
select odd (even) parity.

hang up phone line immediately. Note:: this option

Bell 1

STTY(l) Zilog STTY{l)

2

is provided to hang up a line (usually associated
with a dial out moqem) and should not be used on a
line associated with a login shell.

50 75 110 134 150 200 300 690 1209 1809 2409 4890 9609 19209 extb
Set terminal bau.d rate to the number given (the
speeds supported by the 88000 interface).

Input Modes

brkint (-brkint)
signal (do not signal) INTR on break.

icrnl (-icrnl)
map (do not map) CR to NL on input.

ignbrk (-ignbrk)
ignore (do not ignore) break on input.

igncr (-igncr)
ignore (do not ignore) CR on input.

ignpar (-ignpar)
ignore (do not ignore) parity errors.

inlcr (-inlcr)
map (do not map) NL to CR on input.

inpck (-inpck)
enable (disable) input parity checking.

istrip (-istrip)
strip (do not strip) input characters to seven
bits.

iuclc (-iuclc)
map (do not map) upper-case alphabetics to lower
case on input.

ixany (-ixany)
allow any character (only DCl) to restart output.

ixoff (-ixoff)
request that the system send (not send) START/STOP
characters when the input queue is nearly
empty/:Eull.

ixon (-ixon) .
enable (disable) START/STOP output control. Out­
put is stopped by sending an ASCII DC3 and started
by sending an ASCII DCl.

Bell 2

3

Zilog STTY(l)

parmr"k~ (-parmrk)
mark (do not mark) parity errors (see tty(4)).

Output Modes

bs0 bsl select style of delay for backspaces (see tty(4)).

ere c:r:·l cr2 cr3
select style of delay for carriage returns (see
tty(4)).

ff WJ ff:l select style of delay for form-feeds (see tty (4)) •

nHJ nll select style of delay for line-feeds (see tty(4)).

ocrnl (-ocrnl)
map (do not map) CR to NL on output.

ofdel (-ofdel)
fill characters are DELs (NULs).

ofill (-ofill)
use fill characters (use timing) for delays.

olcuc (-olcuc)
map (do not map) lower-case alphabetics to upper
case on output.

onlcr (-onlcr)
map (do not map) NL to CR-NL on output.

onlret (-onl ret)
on the terminal NL performs (does not perform) the
CR function.

onocr (-onocr)
do not (do) output CRs at column ze.ro.

opost (-opost)
post-process output (do not post-process output;
ignore all other output modes) •

tab& tabl tab2 tab3

vt0 vtl

select style of delay for horizontal tabs (see
tty(4)).

select style of delay for vertical tabs (see
tty(4)).

Local Modes

echo (--echo)

Bell 3

STTY (1) Zilog ST'rY (1)

4

echo back (do not echo back) every character
typed.

echoe (-echoe)
echo (do not echo) ERASE character as a
backspace-space-backspace string. Note: this mode
will erase the ERASEed character on many CRT ter­
minals; however, it does not keep track of column
position and can be confusTOg on escaped charac­
ters, tabs, and backspaces.

echok (-echok)
echo (do not echo) NL after KILL character.

echonl (-echonl)
echo (do not echo) NL.

icanon (-icanon)
enable (disable) canonical input (ERASE and KILL
processing).

isig (-isig)
enable
against:

(disable) the
the special

checking of characters
control characters INTR and

QUIT ..

lfkc (-lfkc)
the same as echok (-echok) •

noflsh (-noflsh)
disable (enable) flush after INTR or QUIT.

xcase (-xcase)
canonical (unprocessed) upper/lower-case presenta­
tion.

Control Assignments

control-character c

line i

set control-character to £' where control­
character is erase, kill, intr, quit, eof, eol,
min, or time (min and time are used with -icanon;
see tty(4)). If c is preceded by an (escaped from
the shell) caret (A) , then the value used is the
corresponding CTRL character (e.g., Ad is a
CTRL-d); A? is interpreted as DEL and is
interpreted as undefined.

set line discipline to i (0 < i < 127).

Combination Modes

Bell 4

STTY(l) Zilog STTY (1)

ek reset ERASE and KILL characters back to normal Ah
and Ax.

evenp or parity
enable parenb and cs7.

lease (-lease)
set (unset) xcase, iuclc, and olcuc.

LCASE i(-LCASE)
same as lease (-lease) •

nl (-nl) unset (set) icrnl, onlcr. In addition -nl unsets
inlcr, igncr, ocrnl, and onlret.

oddp enable parenb, cs7, and parodd.

-parity, -evenp, or -oddp
disable parenb, and set cs8.

raw (-raw or cooked)

sane

enable (disable) raw input and output (no ERASE,
KILL, INTR, QUIT, EOT, or output post processing) •

resets all modes to some reasonable values.

tabs (-tabs or tab3)

term

preserve (expand to spaces) tabs when printing.

set all modes suitable for the terminal type term,
where term is one of tty33, tty37, vt95, tn318,
ti788, or tek.

the command

prints the characteristics of ttyx.

SEE ALSO
tabs (1) , i oc t 1 (2) , tty (4) .

5 Bell 5

SU{l) Zilog SU{l)

NAMJ!:
su - substitute user ID temporarily

SYNOPSIS
SU [-) name arg • • •]]

DESCRIPTION
Su demands the password of the specified userid, unless the
current userid is ZEUS. Su then changes to the specified
userid and invokes the user•s default shell {passwd (5))
without changing the current directory or the environment
(en vi r on (5)) • ~rh e new user ID stays in force u n t i l the
shell exits.

If no userid is specified, ZEUS is assumed. To remind the
super-user of the responsibilities, the shell substitutes #
for its usual prompt.

Any additional arguments are passed to the shell, permitting
the super-user to run shell procedures with restricted
privileges (an arg of the form -c string executes string via
the shell). When additional arguments are passed, /bin/sh
is always used. When no additional arguments are passed, ·su
uses the shell specified in the password file.

OPTIONS

SEE ALSO

Cause the environment to be changed to the
would be expected if the user actually logged
Otherwise, the environment is passed along
possible exception of $PATH, which is
/bin:/etc:/usr/bin for ZEUS.

csh(l), sh(l) env(l), login(l), environ(S).

1 Bell

one that
in again.
with the

set to

1

SUM{l) Zilog SUM (1)

NAME
sum - sum and count blocks in a file

SYNOPSIS
sum [-r file

DESCRIPTIOM
Sum calculates and prints a 16-bit checksum for the named
file, and also prints the number of blocks in the file. It
is typically used to look for bad spots, or to validate a
file communicated over some transmission line.

OPTIONS
-r Cause the algorithm from the previous version of to be

used in computing the checksum.

SEE ALSO
WC (1)

DIAGNOSTICS

1

"Read error" is indistinguishable from end of file on most
devices; check the block count.

Bell 1

SWITCH{lC) Zilog SWITCH(lC)

NAME
switch - C Shell flow control statement for decision-making

SYNOPSIS
switch (string)

case label!:

command

breaksw

case label2:

command

breaksw

default

command

endsw

DESCRIPTION
Switch is generally useful in the context of a foreach or
while statement.

Each case label is successively matched against the speci­
fied Sfilng.

The file metachar:acters " *, ?, [, and] " can be used in
the case labels. If none of the labels match before a
defauTilabel 1s- found, the execution begins after the
default label.

Each case label and the default label must appear at the
beginning of a line. The command breaksw causes execution
to continue after the endsw. Otherwise, control falls
through case labels and default labels, as in c. If no
label matches and there is no default, execution continues
after the endsw.

SEE ALSO

1

break(lC), breaksw(lC), continue(lC), exit(lC), foreach(lC),
if (lC), logout(lC), while(lC).
The C Shell in the ZEUS Utilities Manual

UCB 1

TABS(l) Zilog TABS(l)

NAME
tabs - set tabs on a terminal

SYNOPSIS
tabs tabspec] [+mn] [-Ttype]

DESCRIPTION

1

Tabs sets the tab stops on the user's terminal according to
the tab specification tabspec, after clearing any previous
settings. The user must of course be logged in on a termi­
nal with remotely-settable hardware tabs.

Users of GE TermiNet terminals should be aware that they
behave in a different way than most other terminals for some
tab settings: the first number in a list of tab settings
becomes the left margin on a TermiNet terminal. Thus, any
list of tab numbers whose first element is other than 1
causes a margin to be left on a TermiNet, but not on other
terminals. A tab list beginning with 1 causes the same
effect regardless of terminal type. It is possible to set a
left margin on some other terminals, although in a different
way (see below).

Four types of tab specification are accepted for tabspec:
"canned," repetitive, arbitrary, and file. If no tabspec is
given, the default value is -8, i.e., ZEUS "standard" tabs.
The lowest column number is 1. Note that for tatbs, column 1
always refers to the leftmost column on a terminal, even one
whose column markers begin at 0, e.g., the DASI 300, DASI
300s, and DASI 450.

-code

-a

-a2

-c

-c2

-c3

Gives the name of one of a set of "canned" tabs.
The legal codes and their meanings are as follows:

1,10,16,36,72
Assembler, IBM S/370, first format

1,10,16,40,72
Assembler, IBM S/370, second format

1,8,12,16,20,55
COBOL, normal format

1,6,10,14,49
COBOL compact format (columns 1-6 omitted). Using
this code, the first typed character corresponds to
card column 7, one space gets you to column 8, and a
tab reaches column 12. Files using this tab setup
should include a format specification as follows:

<:t-c2 m6 s66 d:>

1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67

Bell 1

TABS(l) Zilog TABS(l)

2

COBOL compact format (columns 1-6 omitted), with
more tabs than -c2. This is the recommended format
for COBOL. The appropriate format specification is:

<:t-c3 m6 s66 d:>

-f 1,7,11,15,19,23
FORTRAN

-p l,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61
PL/I

-s 1,10,55
SNOBOL

-u 1,12,20,44
UNIVAC 1100 Assembler

In addition to these "canned" formats, three other types
exist:

-n A repetitive specification requests tabs at columns
l+n, 1+2*n, etc. Note that such a setting leaves a
left margin of .!! columns on TermiNet terminals only.
Of particular importance is the value -8: this
represents the ZEUS "standard" tab setting, and is
the most likely tab setting to be found at a termi­
nal. It is required for use with the nroff(l) -h
option for high-speed output. Another special case
is the value -0, implying no tabs at all.

nl,n2, •••
-- - The arbitrary format permits the user to type any

chosen set of numbers, separated by commas, in
ascending order. Up to 40 numbers are allowed. If
any number (except the first one) is preceded by a
plus sign, it is taken as an increment to be added
to the previous value. Thus, the tab lists
1,10,20,30 and 1,10,+10,+10 are considered identi­
cal.

--file If the name of a file is given, tabs reads the first
line of the file, searching for a format specifica­
tion. If it finds one there, it sets the tab stops
according to it, otherwise it sets them as -8. This
type of specification may be used to make sure that
a tabbed file is printed with correct tab settings,
and would be used with the pr(l) command:

tabs file; pr file .

Any of the following may be used also; if a given flag
occurs more than once, the last value given takes effect:

Bell 2

TABS(l) Zilog TABS (1)

-Ttype

+mn

Tabs usually needs to know the type of terminal in
order to set tabs and always needs to know the type
to set margins. Type is a name listed :in term(7).
If no -T flag is supplied, tabs searches for the
$TERM value in the environment (see envi1con(7)). If
no type can be found, tabs tries a sequence that
will work for many terminals.

The margin argument may be used for some terminals.
It causes all tabs to be moved over n columns by
making column n+l the left margin. If ~~ is given
without a value-of n, the value assumed is 10. For
a TermiNet, the firs~ value in the tab list should
be 1, or the margin will move even further to the
right. The normal (leftmost) margin on most termi­
nals is obtained by +m~. The margin for most termi­
nals is reset only when the +m flag is given expli­
citly.

Tab and margin setting is performed via the standard output.

DIAGNOSTICS
illegal tabs when arbitrary

incorrectly.
tabs are ordered

illegal increment

unknown tab code

file indirection

when a zero or missing increment is
found in an arbitrary specification.

when a "canned" code cannot be found.

if --file option used, and file can't be
openecr:--

if --file option used and the specif ica­
tion ---rflthat file points to yet another
file. Indirection of this form is not
permitted.

SEE ALSO
nroff (1) , en v i r on (7) , term (7) •

LIMITATIONS

3

There is no consistency among different terminals regarding
ways of clearing tabs and setting the left margin.
It is generally impossible to usefully change the left mar­
gin without also setting tabs.
Tabs clears only 20 tabs (on terminals requiring a long
sequence), but is willing to set 40.

Bell 3

TAIL(l) Zilog TAIL (1)

NAME
tail - print the last 10 lines of a file

SYNOPSIS
tail ![number[lbc] [-f] [file]

DESCRIPTION
Tail copies the named file to the standard output beginning
at a designated place. If no file is named, the standard
input is used.

Copying begins at distance +number from the beginning, or
-number from the end of the input (if number is null, the
value 10 is assumed). Number is counted in units of lines,
blocks, or characters, according to the appended option.
When no units ~rE~ specified, counting is by lines.

OPTIONS
b Number is counted in blocks.

c Number is counted in characters.

1 Number is counted in lines.

-f "follow" option. If the input file is not a pipe,
the program will not terminate after the line of the
input file has been copied, but will enter an end­
less loop, wherein it sleeps for a second and then
attempts to read and copy further records from the
input file. Thus it may be used to monitor the
growth of a file that is being written by some other
process.

EXAMPLE
the command:

tail -f file

prints the last ten lines of file followed by any lines that
are appended to file between the time tail is initiated and
killed.

SEE ALSO.
cat(l), dog(l), head(l), more(l), dd(l).

LIMITATIONS

1

Tails relative to the end of the file are treasured up in a
buffer, and thus are limited in length.

various kinds of behavior may happen with character special
files.

Bell 1

'rALK (1) Zilog TALK(l)

NAME
talk communicate with another user

SYNOPSIS
talk user ttyname]

Dl-~SCRIPTION

l~ILES

Talk copies lines from your terminal to that of another
user. When first called, it sends the message

Message from name ttyname •.•

The recipient of the message should write back at this
point. Communication continues until an end of file is read
from the terminal or an interrupt is sent. At that point
talk writes "EOF" on the other terminal and exits.

To write to a user who is logged in more than once, the
ttyname argument may be used to indicate the appropriate
terminal.

Permission to write may be denied or granted by use of the
mesg(l) command. At the outset writing is allowed. Certain
commands, in particular nroff(l) and pr(l) disallow messages
in order to prevent messy output.

Talk differs from write(l) in that the message is written as
each character is read, rather than at end of line.

Typing the "escape" key, " ESC " causes a new line, and a
"less than sign", " < ", to be sent to the sender's termi­
nal, and a new line, and a "greater than sign", ">", to be
sent to the receiver's terminal. This sequence is meant to
indicate that it is the other persons turn to talk.

The following protocol is suggested for using talk: one user
first writes to a second user, the first user should wait
for the second user to respond before starting to send.
Each party should end each part of their communication with
an "escape" key "ESC".

/etc/utmp to find user

SEE ALSO
mesg (1) , who (1) , ma i 1 (1) , write (1)

LIMITATIONS

1

Escape to the shell via "!" is not supported, as it is in
write (1) •

Zilog 1

TAR (1) Zilog TAR (1)

NAME
tar - tape archiver

SYNOPSIS
tar [crtux~bf lmqvw name • • •]

DESCRIPTION
Tar saves and restores files in an archive. This is usually
on tape, but may be in a file archive. Its actions are con­
trolled by the kc~ argument.. The key is a string of charac­
ters containing at most one function letter and possibly one
or more function modifiers.

Other arguments to the command are file or directory
specifying which files are to be dumped or restored.
cases, appearance of a directory name refers to the
and (recursively) to subdirectories of that directory.

names
In all
files

The default destination device is /dev/tardev, which is
created by linking it to a tape device. If /dev/tardev does
not exist, tar uses /dev/rct0 for the default.

The cartridge tape unit has the capability of accessing each
of the four tracks on ~ tape individually. The files
/dev/rct0a, ••• , /dev/rct0d, /dev/rctla, refer to the
individual tracks "()"(la tape. --

OPTIONS

l

The function portion of the key is specified by one of the
following letters:

c Create a new tape: writing begins on the beginning of
the archive instead of after the end of the archive.
This destroys the existing files on the archive.

r The named files are written on the end of the archive
without disturbing existing files on the tape.

t The names of the specified files are listed each time
they occur on the archive. If no file argument is
given, all of the names on the tape are listed.

u The named files are added to the archive if either they
are not already there or have been modified since last
put on the archive.

x The named files are extracted from the archive. If the
named file matches a directory whose contents had been
written onto the archive, this directory is recursively
extracted.

The owner, modification time, and mode are restored if

Bell 1

'l'AR(l) Zilog TAR(l)

2

possible. If no file argument is given, the entire
contents of the archive is extracted. If multiple
entries specifying the same file are on the tape
(archive), the last one overwrites all earlier files.

The following characters can be used in addition to the
letter that selects the function desired.

f!J, ••• ,1
this modifier selects the drive on which the tape is
mounted. The default is I.

b the next argument is the blocking factor. The range is
1 to 20, the default is 8. This option is only used
with raw magnetic tape archives (f below). The block
size is determined automatically when reading tapes
(key letters x and t) •

f file
--the~ next argument is the name of the archive or file

instead of /dev/rct0. Possible alternatives are:
/dev/rct0, which is the raw i/o tape device, or
/dev/nrct0 for the no rewind device. If the name of
the file is -, tar writes to standard output or reads
from standard --rrlput, whichever is approp1~ iate. Thus,
tar can be used as the head or tail of a filter chain.
Tar can also be used to move hierarchies with the com­
mand

c d fr o,n d i r ; tar c f - • I (cd tad i r ; tar x f -·)

1 print diagnostics if it cannot resolve all of the links
to the files dumped. If this is not specified, no error
messages are printed.

m do not restore the modification times. The mod time is
the time of extraction.

q do a quick extract. It retrieves only the first
occurrence of the file from the archive and immediatly
exits. This is a modifier to the x option and must
always be used with the x option.

v print the name of each file preceded by the function
letter. With the t function, v gives more information
about the tape entries than just the name.

w wait for user confirmation. If y is given, the action
is performed.

If the 'x' option is usea with this option, then the

Bell 2

TAR (1) Zilog TAR (l)

FILES

user can optionally give a filename (following the y
answer) for tar to extract into. For example the fol­
lowing sequence of statements:

tar xw file.name
x file~name: y file.namel

causes tar to put the file named 'file.na~e' from the
tape (archive) into the file named 'file.namel' in the
present working directory.

/dev/ct? /dev/rct?
/tmp/tar*

SEE ALSO
ct (4) •

DIAGNOSTICS
Bad key characters and tape read/write errors.
Not enough memory is available to hold the link tables.

LIMITATIONS
There is no way to ask for the n-th occurrence of a file.

Tape errors are handled ungracefully.

The u option can be slow.

The b option must not be used with archives that are going
to be updated (r or u option) • The current tape driver can­
not backspace raw tape. If the archive is on a disk file
the b option should not be used, as updating an archive
stored in this manner can destroy it.

The current limit on file name length is 100 characters.

If f is used with c, it will create the file specified by f
if it does not exist.

3 Bell 3

TB L (1) Zilog TBL (1)

NAME
tbl - format tables for nroff or troff

SYNOPSIS
tbl [!_:i les

DESCRIPTION
Tbl is a preprocessor for formatting tables for 1oroff (1) or
troff (l). The input files are copied to the standard out­
put, except for lines between .TS and .TE command lines,
which are assumed to describe tables and reformatted.
Details are given in the reference manual.

If no a1:guments are given, tbl reads the standard input, so
it may be used as a filter. When it is used with eqn(l) or
neqn(l) the tbl command should be first, to minimize the
volume of data passed through pipes.

EXAMPLES
As an example, letting \t represent a tab (which should be
typed as a genuine tab) the input

.TS
c s s
c c s
c c c
1 n n.
Household Population
Town\tHouseholds
\tNumber\tSize
Bedminster\t789\t3.26
Bernards Twp.\t3087\t3.74
Bernardsville\t2018\t3.30
Bound Brook\t3425\t3.04
Branchburg\tl644\t3.49
.TE;

yields:
Household Population

Town

Bedminster
Bernards Twp.
Bernardsville
Bound Brook
Branchburg

Households
Number Size
789 3.26
3087 3.74
2018 3.30
3425 3.04
1644 3.49

SEE ALSO
eqn (1) , nroff (1) , troff (1) •

TBL F'or Formatting Tables in the ZEUS Utilities Manual.

1 Bell 1

TEE(l) Zilog TEE(l)

NAME
tee - pipe fitting

SYNOPSIS
tee [-a] -i file]

DESCRIPTION
Tee transcribes the standard input to the standard output
and makes copies in the fil~s.

OPTIONS
-a causes the output to be appended to the files rather

than overwriting them.

-i ignores interrupts.

EXAMPLE

1

The command:

code < /etc/passwd I tee temp

translates the file /etc/passwd with the code program,
printing the results on the terminal, and putting a second
copy in the file temp.

Bell 1

TE:S ·r (1) Zilog TEST(l)

NAME
test - evaluate files, strings, and numbers

SYNOPSIS
test expr

DESCRIPTION

1

Test evaluates the expression expr, and if its value is true
then r~~turns zero exit status; otherwise, a nonzero exit
status is returned. Test returns a nonzero exit if there
are no arguments.

The following primitives are used to construct expr:

-r file true if the file exists and is readable.

-w file true if the file exists and is writable.

-x file true if the file exists and is executable.

-f file true if the file exists and is not a d i1::ectory.

-d file true if the file exists and is a directory.

-c file true if the file exists and is a character special
file.

-b file true if the file exists and is a block special
file.

-u file true if the file exists and its set-user-ID bit is
set.

-g file true if the file exists and its set-group-ID bit is
set.

-k file true if the file exists and its sticky bit is set.

-s file true if the file exists and has a size greater than
zero.

-t [fildes]
true if the open file whose file descriptor number
is fildes (1 by default) is associated with a ter­
minal device.

-z sl true if the length of string sl is zero.

-n sl true if the length of the string ~ is nonzero.

sl = s2 true if the strings sl and s2 are equal.

Bell 1

Zilog TES'r (1)

sl != s2 true if the strings~ and s2 are·not equal.

sl true if sl is not the null string.

nl -eq n2
true if the integers nl and n2 are algebraically
equal. Any of the comparisons -ne, -gt, -ge, -lt,
or -le can be used in place of -eq.

These primaries can be combined with the following opera­
tors:

! unary negation operator

-a binary and operator

-o binary or operator

(expr)
parentheses for grouping.

-a has higher precedence than -o.

All the operators and flags are separate arguments to test.
Parentheses are meaningful to the shell and must be escaped.

SEE ALSO
csh (1) , ex pr (1) , find (1) , sh (1) •
The C Shell in the ZEUS Utilities Manual

2 Bell 2

TIME(l) Zilog TIME(l)

NAME
time - time a command

SYNOPSIS
time -v] command (csh internal and /bin/time)

DESCRIPTION
The given command is executed; after it is complete, time
prints the time spent in the system, the time spent in exe­
cution of the command, the elapsed time during the command,
and percentage used of cpu time to real time. Times are
reported in seconds.

OPTIONS
-v A verbose version of the co1nmand' s output is printed.

EXAMPLES
An output of this command is:

%timE~ cc file.c
3.3u 3.5s 0:19 35%

An output using the -v option is:

%time -v cc file.c
3.3 user-sec., 3.5 system-sec., 00:19 real-time, 35% of capacit

The times are printed on the diagnostic output stream.

SEE ALSO
c sh (1) ,, sh (1) , ti me (lC) •

LIMITATIONS

1

Elapsed time is accurate to the second, while the CPU times
are mE~asured to the 60th second. Thus the sum of the CPU
times can be up to a second larger than the elapsed time.

Bell l

TIME(lC) Zilog TIME(lC)

NAME
time - time a command

SYNOPSIS
time -v] command (csh internal anj /bin/time)

DESCRIPTION
The given command is executed; after it is complete, time
prints the time spent in the system, the time spent in exe­
cution of the command, the elapsed time during the command,
and percentage used of cpu time to real time. Times are
reported in seconds.

OPTIONS
-v A verbose version of the command's output is printed.

EXAMPLES
An output of this command is:

%time cc file.c
3.3u 3.Ss 0:19 35%

An output using the -v option is:

%time -v cc file.c
3.3 user-sec., 3.5 system-sec., 00:19 real-time, 35% of capacity

The times are printed on the diagnostic output stream.

SEE ALSO
csh(l), sh(l), time(l).
The C Shell in the ZEUS Utilities Manual -- - ---

LIMITATIONS

1

Elapsed time is accurate to the second, while the CPU times
are measured to the 60th second. Thus the sum of the CPU
times can be up to a second larger than the elapsed time.

UCB l

1rIMEX { 1) Zilog TIMEX(l)

NAME
timex - time a command and generate a system activity report

SYNOPSIS
timex command

DESCRIPTION
·rhe given command is executed; after its execution, timex
prints the elapsed time, the time spent executing command,
and the time spent in the system, as time(l) does. It also
reports system activity that occurred during command execu­
tion, including CPU utilization, I/O activity, system
switching and swapping, and file system access. All system
activity is reported, not just that due to comma.nd-.-

The output of timex is written on standard error.

SEE ALSO
time(l), time(lC), sar (M).

1 Bell 1

TOUCH(l) Zilog TOUCH(l)

NAME
touch - update access and modification times of files

SYNOPSIS
touch -a cm mmddhhmm[yy]] file ••.

DESCRIPTION
Touch causes the access and modification times of each file
to be updated. If no time is specified (see date (1)) the
current time is used. The return code from touch is the
number of files for which the times could not be success­
fully modified (including files that did not exist and were
not created) •

OPTIONS
-a causes touch to update only the access time.

-c causes touch not to attempt to create a file that does
not exist; The default is to create one.

--m causes touch to update only the modification time. The
default option is -am (both access and modification
times are updated) .

EXAMPLES

1

% date
Mon Jan 17 15:28:37 PST 1983

% ls -1
total 2
-rw-rw-rw- 1 carolh
-rw-rw-rw- 1 carolh

% touch 1ist2; touch

% ls -1
total 2
-rw-rw-rw- 1 carolh
-rw-rw-rw- 1 carolh

% touch -c list3

% ls -1
total 2
-rw-rw-rw- 1 carolh
-rw-rw-rw- 1 carolh

% touch list3

% ls -1
total 3
-rw-rw-rw- 1 carolh

-m

49 Oct 26 09:19 listl
75 Oct 21 14:22 list2

12311000 listl

49 Dec 31 10:00 listl
75 Jan 17 15:28 list2

49 Dec 31 10:00 listl
75 Jan 17 15:28 list2

49 Dec 31 10:00 listl

Bell 1

TOUCH(l)

-rw-rw-rw- 1 carolh
-rw-r--r-- 1 carolh

Zilog

75 Jan 17 15:28 list2
0 Jan 17 15:29 list3

TOUCH(l)

DIAGNOSTICS
The exit
touched.
status is

status
If all

0.

is the number of files unsucessfully
files were sucessfully touched, the exit

2 Bell 2

TR (1) Zilog TR(l)

NAME
tr - translate characters

SYNOPSIS
tr [-eds stringl [string2]]

DESCRIPTION
Tr copies the standard input to the standard output with
substitution or deletion of selected characters. Input
characters found in stringl are mapped into the correspond­
ing characters of string2. Any combination of -eds can be
used:

-e Complements the set of characters in
respect to characters whose ASCII
through 377 octal.

stringl with
codes are 001

-d Deletes all input characters in stringl.

-s Squeezes all strings of repeated output characters
that are in string2 to single characters.

Abbreviation conventions can be used for ranges of charac­
ters or repeated characters:

[a-z]

[a*!!.l

Stands for the characters whose ASCII codes run from
character a to character z.

Stands for n repetitions of a. If the first digit
of n is 9, n is considered octal; otherwise, n is
taken to be decimal. A zero or missing n is taken
to be huge; this is used for padding strTng2.

The escape character \ can be used as in the shell to remove
special meaning from any character. A\ followed by 1, 2,
or 3 octal digits stands for the character whose ASCII code
is given by those digits.

The following example creates a list of all the words in
filelr one per line in file2, where a word is taken to be a
maximal string of alphabetics. The strings are quoted to
protect the special characters from interpretation by the
shell; 012 is the ASCII code for newline.

tr -cs "[A-Z] [a-z]" "[\012*]" <filel >file2

SEE ALSO
ed(l), sh(l), ascii(7).

LIMITATIONS

1

Won't handle ASCII NUL in stringl or string2; always deletes
NUL from input.

Bell 1

TROFF{l) Zilog TROFF(l)

NAME
troff, nroff - text formatting and typesetting

SYNOPSIS
troff imnoqrsabfptw] [file]

nroff imnoqrsehT] file

DESCRIPTION'
Troff formats text in the named files for printing on a
Graphic Systems C/A/T phototypesetter; nroff for
typewriter-like devices. Their capabilities are described
in the Nroff/Troff user'~ Manual.

If no file argument is present, the standard input is read.
An argument consisting of a single minus (-) is taken to be
a file name corresponding to the standard input.

If the file /usr/adm/tracct is writable, troff keeps photo­
typesetter accounting records there. The integrity of that
file can be secured by making troff a "set user-id" program.

OPTIONS
-i Read standard input after the input files

exhausted.
are

1

-mname Prepend the macro file /usr/lib/tmac/tmac.name to the
input files.

-nN Number first generated page N.

-olist Print only pages whose page numbers appear in the
comma-separated list of numbers and ranges. A range
N-M means pages N through M; an initial -N means from
the beginning to page N; and a final N- means from N
to the end.

-q Invoke the simultaneous input/output mode of the rd
request.

-raN

-sN

Set register ~ (one-character) to N.

Stop every ! pages. Nroff halts prior to every N
pages (default N=l) to allow paper loading or chang­
ing, and resumes-upon receipt of a new line. Troff
stops the phototypesetter every N pages, produce a
trailer to allow changing cassettes~ and resumes when
the typesetter's start button is pressed.

Nroff only

-e Produce equally-spaced words in adjusted lines, using

Bell 1

TROFF(l) Zilog TROFF(l)

FILES

full terminal resolution.

-h Use output tabs during horizontal spacing to speed
output and reduce output character count. Tab set­
tings are assumed to be every eight nominal character
widths.

-Tname Prepare output for specified terminal. Known names
are 37 for the (default) Teletype Corporation Model
37 terminal, tn300 for the GE TermiNet 300 (or any
terminal without half-line capability), 3888 for the
DASI-3008, 380 for the DASI-300, and 458 for the
DASI-450 (Diablo Hyterm).

Troff only

-a Send a printable ASCII approximation of the results
to the standard output.

-b Report whet.her the phototypesetter is busy or avail­
able. No text processing is done.

-f Refrain from feeding paper and stopping
typesetter at the end of the run.

photo-

-pN Print all characters in point size N while retaining
all prescribed spacings and motions~ to reduce photo­
typesetter elasped time.

-t Direct output to the standard output instead of the
phototypesetter.

-w Wait until phototypesetter is available, if currently
busy.

/usr/lib/suftab
/tmp/ta*
/usr/lib/tmac/tmac.*
/usr/lib/term/*
/usr/lib/font/*
/dev/cat
/usr/adm/tracct

suffix hyphenation tables
temporary file
standard macro files
terminal driving tables for nroff
font width tables for troff
phototypesetter
accounting statistics for /dev/cat

SEE ALSO

2

cw { 1) , col { 1) , eqn (1) , man { 7) , me { 7) , ms { 7) , tbl { 1) •

Nroff/Troff user's Manual
A TROFF Tutorral --
~r1ting Papers with Nroff Using -ME
all in the ZEUS---u:i:Tl1t1es Manual

Bell 2

TRUE(l) Zilog

NAME
true, false - provide truth values

SYNOPSIS
true

false

DESCRIPTION

TRUE(l)

True returns status indicating success. False returns
status indicating failure. They are typically used in input
to the C Shell, csh(l) or the Bourne Shell, sh(l).

EXAMPLES
Here are some examples:

for sh (1):

while true
do

command
done

for csh (1):

SEE ALSO

while({ true })

command
end

c sh (1) , sh (1)

DIAGNOSTICS
True has exit status zero, false nonzero.

1 Bell 1

TSORT(l) Zilog TSORT(l)

NAME
tsort - topological sort

SYNOPSIS
tsort [file]

DESCRIPTION
Tsort produces an ordered list of items consistent with a
partial ordering of items mentioned in the input file. If
no file is specified, the standard input is understood.

The input consists of pairs oE items (nonempty strings)
separated by blanks. Pairs of different items indicate ord­
ering. Pairs of identical items indicate presence, but not
ordering.

SEE ALSO
lorder(l).

DIAGNOSTICS

1

Odd data: there is an odd number of fields in the input
file.

Bell 1

TTY(l)

NAME
tty - get terminal name

SYNOPSIS
tty

DESCRIPTION

Zilog

Tty prints the pathname of the user's terminal.

EXAMPLES
% tty
/dev/tty05

DIAGNOSTICS

TTY (1)

"Not a tty" if the standard input file is not a terminal.

l Bell 1

UIMAGE(l) Zilog UIMAGE(l)

NAME
uimage - Zobj to a.out translator

SYNOPSIS
uimage filel [-o file2]

DESCRIPTION
Uimage translates Zobj object files produced by plzcg(l) to
a.out format object files. The input file is in Zobj format
and the default output file is a.out. With the -v option
(verbose mode), more information is given about what is
being done. Uimage is invoked automatically by the plz com­
piler driver, plz(l). It works on nonsegmented Zobj object
files only.

FILES
/tmp/t* temporary files

SEE ALSO
objdu(l), plzcg(l), plzsys(l), plz(l), a.out(5)

DIAGNOSTICS.

1

Files produced by the code generator plzcg(l), must be error
free.

Bad input files causes errors about nonexistent or incorrect
Zobj opcodes.

Zilog 1

UMASK(lC) Zilog UMASK(lC)

NAME
umask - set file-creation mode mask

SYNOPSIS
umask [nnn]

D.ESCRIPTION
The user file-creation mode mask is set to nnn. The three
octal digits refer to read/write/execute f;ermissions for
owner_, group, and others, respectively (see chmod(2) and
umask(2)). The value of each specified digit: is subtracted
from the corresponding "digit" specified by the system for
the creation of a file (see creat(2)).

If nnn is omitted, the current value of the mask is printed.

Umask is recognized and executed by the shell.

EXAMPLE

1

% umask 000

% cat /dev/null > umask.00

% ls -1 umask.000
-rw-rw-rw- 1 deck 0 Mar 13 12:23 umask.000

The other umask values are as follows:

-rw-rw-rw- 1 deck 0 Mar 13 12:23 umask.111
-r--r--r-- 1 deck 0 Mar 13 12:23 umask.222
-r--r--r-- 1 deck 0 Mar 13 12:23 umask. 333
--W--'il--W- 1 deck 0 Mar 13 12:23 umask. 444
- -W ·- ·-'W - -W - 1 deck 0 Mar 13 12:23 umask.555
----------- 1 deck 0 Mar 13 12:23 umask. 666
----- - -·--- 1 deck 0 Mar 13 12:23 umask.777

If two digits are specified, as in:

•::>
'5 umask 22

The first (owner) permission bits are untouched and the
second and third fields are affected as in the following
file:

-rw-r--r-- 1 deck 0 Mar 13 12:23 umask.22

If only a single number is specified, it affects the last
field (the "others" permission bits) as in the command:

~; umask 2

UCB 1

UMASK(lC) Zilog UMASK(lC)

The following file permission bits result:

-rw-rw-r-- 1 deck 0 Mar 13 12:23 umask.2

In other words, umask 922 removes group and others write
permission (files normally created with mode 777 become mode
755; files created with mode 666 become mode 644).

SEE ALSO

2

chmod (1) , sh (1) , chmod (2) , chown (1) , crea t (2) , umask (2) ,
chmog (M) •
The C Shell in the ZEUS Utilities Manual

UCB 2

UNAME(l) Zilog UNAME(l)

NAME
uname - print the name of current ZEUS

SYNOPSIS
uname [-anrsv]

DESCRIPTION
Uname prints the current system name of ZEUS on the standard
output file. It is mainly useful to determine what system
one is using.

OPTIONS

SEE

1

-a print all the available information.

-n print the nodename (name that the system is known by to
a communications network) •

-r print the operating system release.

-s print the system name (default) •

-v print the operating system version.

ALSO
uname(2).

Bell 1

UNGET(l) Zilog UNGET(l)

NAME
unget - undo a previous get of an secs file

SYNOPSIS
unget [-rSID] ·-S] -n] files

DESCRIPTION
Unget undoes the effect of a get -e done prior to creating
the intended new delta. If a directory is named, unget
behaves as though each file in the directory were specified
as a named file, except that non-SCCS files and unreadable
files are silently ignored. If a name of - is given, the
standard input is read with each line being taken as the
name of an secs file to be processed.

OPTIONS
Keyletter arguments apply independently to each named file.

-n

-rSID

-s

Causes the retention of
which would normally
current directory.

the gotten file
be removed from the

Uniquely identifies which delta is no
longer intended. (This would have been
specified by get as the "new delta"). The
use of this keyletter is necessary only if
two or more outstanding gets for editing on
the same SCCS file were done by the same
person (login name). A diagnostic results
if the specified SID is ambiguous, or if it
is necessary and omitted on the command
line.

Suppresses the printout, on the standard
output, of the intended delta's SID.

SEE ALSO
delta(l), get(l), sact(l).
SCCS -- Source Code Control System in the ZEUS Utilities
Manual

DIAGNOSTICS
Use help(l) for explanations.

1 Bell 1

UNIQ (1) Zilog UNIQ (1)

NAME
uniq - report repeated lines in a file

SYNOPSIS
uniq -cdu [+!!_] -n [infile [outfile JI]

DESCRIPTION
Uniq reads infile comparing adjacent lines. In the normal
case, the second and succeeding copies of repeated lines are
removed; the remainder is written on outfile. Repeated
lines must be adjacent in order to be found (iee sort(l)).
The normal mode output is the union of the -u and -d mode
outputs.

The n arguments specify skipping an initial portion of each
line-in the comparison:

-n

+n

The first n fields together with any
each are ignored. A field is defined
nonspace, nontab characters separated
spaces from its neighbors.

The first n characters are ignored.
skipped before characters.

blanks before
as a string of

by tabs and

Fields are

OPTIONS
-c Supersedes -u and -d and generates an output report in

default style but with each line preceded by a count of
the number of times it occurred.

-d One copy of just the repeated lines is to be written.

-u The lines that are not repeated in the original file
are output.

SEE ALSO
so r t (1) , comm (1) , d i f f (1) , d i f f 3 (1) , bd i ff (1) •

1 Bell 1

uN r·rs (1) Zilog UNI'I'S (1)

NAME
units - conversion program

SYNOPSIS
units

DESCRIPTION
Units converts quantities expressed in
scales to their equivalents in other
interactively in this fashion:

You have: inch
You want: cm

""""""*2. 540!~0e+00
3:-9371fle-0l

various
scales.

standard
It works

A quantity is specified as a multiplicative combination of
units optionally preceded by a numeric multiplier. Powers
are indicated by suffixed positive integers, division by the
usual sign:

You have: 15 pounds force/in2
You want: atm

~.02069e+00
9:-i9730e-0l

Units only does multiplicative scale changes. Thus it can
convert Kelvin to Rankine, but not Centigrade to Fahrenheit.
Most familiar units, abbreviations, and metric prefixes are
recognized, together with a generous leavening of exotica
and a few constants of nature includipg:

pi
c
e
g
force
mole
water
au

ratio of circumference to diameter
spe~ed of 1 ight
charge on an electron
acceleration of gravity
same as g
Avogadro's number
pressure head per unit height of water
astronomical unit

'Pound' is a unit of mass. Compound names are run together,
e.g. 'lightyear' o British units that differ from their US
counterparts are prefixed thus: 'brgallon'. Currency is
denoted 'belgiumfranc', 'britainpound', For a complete
list of units, 'cat /usr/lib/units'.

FILES
/usr/lib/units

1 1

USERS(l) Zilog

NAME
users - compact list of users who are on the system

SYNOPSIS
users

DESCRIPTION

USERS(l)

Users lists the login names of the users currently on the
system in a compact, one-line format.

FILES
/etc/utmp

SEE ALSO
who (1), whodo (1), who is (1), whoami (1).

1 Zilog 1

UUCP (1) Zilog UUCP(l)

NAME
uucp, uulog, uuname - ZEUS to ZEUS copy

SYNOPSIS
uucp [cCdefmn] source-file ••. destination-file

uulo9 [su]

uuname

DESCRIPTION
Uucp copies files named by the source-file arguments to the
destination-file argument. A file name can be a path name
on your machine, or can have the form:

system-name!path-name

where system-name is taken from a list of system names which
uucp knows about. Shell metacharacters ?*[] appearing in
path-name are expanded on the appropriate system.

Path names can be one of:

(1) a full path name;

(2) a path name preceded by -user where user is a login
name on the specified system and i~placed by that
user's login directory;

(3) a path name preceded by -;user where user is a login
name on the specified system and is replaced by that
user's directory under PUBDIR;

(4) anything else is prefixed by the current directory.

If the result is an erroneous path name for the remote sys­
tem the copy will fail. If the destination-file is a direc­
tory, the last part of the source-file name is used. If a
simple -user destination 1s inaccessible to uucp, data is
copied to--a-9pool directory and the user is notified by
mail (1) •

Uucp preserves execute permissions across the transmission
and gives 0666 read and write permissions (see chmod(2)).

OPTIONS
-c Use the source file when copying out rather than copy-

ing the file to the spool direqtory (default) .

-C Copy the source file to the spool directory.

-d Make all necessary directories for the file copy

1 Bell 1

UUCP (1) Zilog UUCP(l)

(default) •

-esys
--s,~nd the uucp command to system ~ to be executed

there. (Note this will only be successful if the
remote machine allows the uucp command to be executed
by /usr/l ib/uucp/uuxqt.)

-f Do not make intermediate directories for the file copy.

-m Send mail to the requester when the copy is complete.

-nuser
--Notify user on the remote system that a file was sent.

Uulog maintains a summary log of uucp and uux(l) transac­
tions in the file /usr/spool/uucp/LOGFILE by gathering
information from partial log files named
/usr/spool/uucp/LOG.*.?. (These files will only be created
if the LOGFILE is being used by another process.) It removes
the partial log files.

The options cause uulog to print logging information:

-ssys
P:r:int information about work involving system sys.

-uuser
Print information about work done for the specified
user.

Uuname lists the uucp names of known systems. The -1 option
returns the local system name.

FILES
/usr/spool/uucp

spool directory

/usr/spool/uucppublic

/usr/lib/uucp/*

public directory for receiving and sending
(PUB DIR)

other data and program files

SEE ALSO
mail(l), uux(l).

WARNING

2

The domain of remotely accessible files can (and for obvious
security reasons, usually should) be severely restricted.
You will very likely not be able to fetch files by path

Bell 2

UUCP(l) Zilog UUCP(l)

name; ask a responsible person on the remote system to send
them to you. For the same reasons you will probably not be
able to send files to arbitrary path names. As distributed,
the remotely accessible files are those whose names begin
/usr/spool/uucppublic (equivalent to -nuucp or just -) •

LIMITATIONS

3

All files received by uucp will be owned by uucp.
The -m option only works sending files or receiving a single
file. (Receiving multiple files specified by special shell
characters ?*(] will not activate the -m option.)

Bell 3

UUSTA·r (l) Zilog UUSTAT(l)

NAME
uustat - uucp status inquiry and job control

SYNOPSIS
uustat [jkmosuvy]

DESCRIPTION
uustat displays the status of, or cancels, previously speci­
fied uucp commands, or provides general status on uucp con­
nections to other systems.

OPTIONS
-chour Remove the status entries which are older than

hour hours. This can only be initiated by the
user uucp or the super-user.

1

-jal~

-kjobn

-mmch

-oh our

-ssys

-uuser

-v

Report the status of all the uucp requests.

Kill the uucp request whose job number is jobn.
The killed uucp request must belong to the person
issuing the uustat command or issued by the
super-user.

Report the status of accessibility of machine mch.
If mch is specified as all, then the status of--afl
machines known to the local uucp are provided.

Report the status of all uucp requests older than
hour hours.

Report the status of all uucp requests which com­
municate with remote system ~·

Report the status of all uucp requests issued by
user.

Report the uucp status verbosely. If this option
is not specified, a status code is printed with
each uucp request.

Report the status of all uucp reque!sts younger
than hour hours.

When no options are given, uustat outputs the status of all
uucp requests issued by the current user. Only one of the
options -c, -j, -k, -m, or the rest of other opt.ions can be
specified.

For example, the command

uustat -uhdc -smhtsa -y72 -v

Bell 1

UUSTAT(l) Zilog UUSTA'r (1)

prints the verbose status of all uucp requests issued by
user hdc to communicate with system mhtsa within the last 72
hours-.-The meanings of the job request status are:

job-number user remote-system command-time status-time
status

where status can be either an octal number or a verbose
description. The octal code corresponds to the following
description:
OCTAL STATUS
00001 the copy failed, but the reason cannot be deter-

mined
00002 permission to access local file is denied
00004 permission to access remote file is denied
00010 bad uucp command is generated
00020 remote system cannot create temporary file
00040 cannot copy to remote directory
00100 cannot copy to local directory
00200 local system cannot create temporary file
00400 cannot execute uucp
01000 copy succeeded
02000 copy finished, job deleted
04000 job is queued
The meanings of the machine accessibility status are:

system-name time status

where time is the latest status time and status is a self­
explanatory description of the machine status.

FILES
/usr/spool/uucp spool directory

/usr/lib/uucp/L_stat
system status file

/usr/lib/uucp/R stat
- request status file

SEE ALSO
uucp(!).

2 Bell 2

UUX(l) Zilog uux (1)

NAME
uux - zeus to zeus command execution

SYNOPSIS
uux [-] command-string

DESCRIPTION
Uux will gather 0 or more files from various systems, exe­
cute a command on a specified system and send standard out­
put to a file on a specified system.

The command-string is made up of one or more arguments that
look like a shell command line, except that the command and
file names may be prefixed by system-name!. A null system­
name is interpreted as the local system.

File names may be one of

(1) a full pathname;

(2) a pathname preceded by -xxx; where xxx is a userid
on the specified system and--r8 replaced by that user's
login directory;

(3) anything else is prefixed by the current directory.

Any special shell characters such as <>;I should be quoted
either by quoting the entire command-string, or quoting the
special characters as individual arguments.

OPTIONS
Cause the standard input to the uux command to be the
standard input to the command-string.

EXAMPLES

FILES

uux "!diff usg!/usr/dan/fl pwba!/a4/dan/fl > !fi.diff"

will get the fl files from the usg and pwba machines, exe­
cute a diff command and put the results in fl.diff in the
local directory. Note that'!' is a csh metacharacter and
needs to be escaped by "" when running uux from the csh.

/usr/uucp/spool - spool directory
/usr/uucp/* - other data and programs

SEE ALSO
uucp(l).

WARNING

1

An installation may, and for security reasons generally
will, limit the list of commands executable on behalf of an

Bell 1

UUX(l) Zilog UUX(l)

incoming request from uux. Typically, a restricted site will
permit little other than the receipt of mail via uux.

LIMITATIONS

2

Only the first command of a shell pipeline may have a
system-name!. All other commands are executed on the system
of the first command.

The use of the shell metacharacter * will probably not do
what you want it to do.

The shell tokens << and >> are not implemented.

There is no notification of denial of execution on the
remote machine.

Bell 2

VAL(l) Zilog VAL (1)

NAME
val - validate secs file

SYNOPSIS
val -
val [-imname]

[·-rSID]
[·-S-] -
[·-ytype]

files --

DESCRIPTION

KEYS

1

Val determines if the specified file is an SCCS file meeting
the characteristics specified by the optional argument list.
Arguments to val can appear in any order. The arguments
consist of keyletter arguments, which begin with a -, and
named files.

Val ha:s a special argument, -, which causes reading of the
standard input until an end-of-file condition is detected.
Each line read is independently processed as if it were a
command line argument list.

Val generates diagnostic messages on the standard output for
each command line and file processed and also n~turns a sin­
gle 8-bit code upon exit as described below.

The 8-bit code returned by val is a disjunction of the pos­
sible '~rrors, i.e., can be interpreted as a bit string where
(moving from left to right) set bits are interpreted as fol­
lows:

bit 0 = missing file argument
bit 1 = unknown or duplicate keyletter argument
bit 2 = corrupted secs file
bit 3 = can't open file or file not SCCS
bit 4 = SID is invalid or ambiguous
bit 5 = SID does not e>eist
bit 6 = %Y%, -y mismatch
bit 7 = %M%, -m .mismatch

Note that val can process two or more files on a given com­
mand line and in turn can process multiple command lines
(when reading the standard input). In these cases an aggre­
gate code is returned - a logical OR of the codes generated
for each command line and file processed.

The keyletter arguments are defined as follows. The effects
of any keyletter argument apply independently to each named
file on the command line.

Bell 1

VAL(l) Zilog VAL (1)

-mname
~~The argument value name is compared with the secs %M%

keyword in file.

-rSID
~-The argument value SID (SCCS IDentification String) is

an secs delta number. A check is made to determine if
the SID is ambiguous (e.g., rl is ambiguous because it
physTCally does not exist but implies 1.1, 1.2, etc.
which may exist) or invalid (e.g., rl.0 or rl.1.0 are
invalid because neither case can exist as a valid delta
number). If the SID is valid and not ambiguous, a
check is made~ to determine if it actually exists.

-s The presence of this argument silences the diagnostic
message normally generated on the standard output for
any error that is detected while processing each named
file on a giv·en command line.

-ytype
The argument value ~ is compared with the secs %Y%
keyword in file.

S.EE ALSO
admin (1), delta (1), get (1), prs (1).

DIAGNOSTICS
Use help(!) for explanations.

LIMITATONS
Val can process up to 50 files on a single command line.
Any number above 50 will produce a core dump.

2 Bell 2

VI (1) Zilog VI (1)

NAME
vi - screen oriented (visual) display editor based on ex

SYNOPSIS
vi [-·t tag [-r] [-R [+[command]] [-1.] name •••

DESCRIPTION!
Vi (visual) is a display oriented text editor based on
ex(l). Ex and vi run the same code; it is possible to get
to the command mode of ex from within vi and vice-versa. In
addition, a "read-only" version of vi, view, is available
for file perusing.

Vi looks at the environment of the shell to find out on
which type of terminal the editing session is to take place.
If the c shell (csh(l)) is running, the command printenv
displays that environment; if the shell (sh(l)) is running,
the command set does the display.

Introduction to Display Editing with Vi provide full details
on using v1.

OPTIONS
-1 This sets up vi for LISP editing; that is, the editing

options, showmatch and lisp are set.

-r This option is used to recover
editor or system crash; the
retrieved.

named
last

files after an
saved version is

-R This option is used to invoke the "read only" version
of vi; this is the same as using the "view" command.

-t tag
--rJihe cursor will be positioned at the definition of tag

immediately after vi is entered.

+[command]
The editor begins by executing the command, command; if
command is omitted, then the editor be9ins with the
cursor positioned at the last line of the file.

name Name of the file(s) to be edited.

EXAMPLES

1

To change the terminal type under the c shell to, type vtz-
2/10, E:nter

setenv TERM vtz
To change the type under the shell, type

set TERM=vtz
export TERM

UCB 1

VI (1) Zilog VI (1)

FILES
See ex(l)

SEE ALSO
ex (1), edit (1), termcap(S), environ(S), termlist(7).
"Introduction to pisplay Editing with Vi" in the ZEUS Utili­
ties Manual

LIMITATIONS

2

Software tabs using •T work only immediately after the
autoindent.

Left and right shifts on intelligent terminals do not make
use of insert and delete character operations in the termi­
nal.

The wrapmargin option examines at output columns when blanks
are typed. If a long word passes through the margin and
onto the next line without a break, then the line is not
broken.

Insert/delete within a line is slow if tabs are present on
intelligent terminals.

Saving text on deletes in the named buffers is inefficient.

The source command does not work when executed as :source;
there is no way to use the :append, :change, and :insert
commands, since it is not possible to give more than one
line of input to a : escape. To use these on a :global,
enter g to ex command mode, execute ,them, and then reenter
the screen editor with vi or open.

If the temporary file exceeds 128K characters, vi will not
attempt to edit the file and exits immediately.

UCB 2

VL.S (1) Zilog VLS (1)

NAME
vls - 1"visually" list files and directories

SYNOPSIS
vls [-h file

DESCRIPTION

1

Vls is a version of ls(l) that lists files and directories
in "sc:ceen" format. The display is equivalent to an "ls -F"
listinq where directories are indicated by appending a "/"
to the filename in the listing; also, executable files are
indicated by appending an "*".

After the display is output, cursor manipulation is permit­
ted by using the following keys:

down arrow
j
CTRL-j move the cursor down the screen

up arrow
k
CTRL-k move the cursor up the screen

f
w

b

move the cursor forward (to the right)

move the cursor backward (to the left)

If the cursor is placed over an item, typing the following
keys performs various list functions:

right arrow
1 change to cursored directory and list

left arrow
h

L

change to directory
hierarchy and list

"above"

give long format listing

in the dirctory

Other miscellaneous commands are:

:n

:q

?<CR>

<CR>

list the next item given in the command line

quit

display "help" file

If there is more than one page of display, type
carriage return to view the next page.

Zilog l

VLS(l) Zilog VLS(l)

OPTIONS
-h Turns off "highlighting" of the cursored item;

"highlighting" is on by default.

FILES
/usr/lib/screen/vlshelp

SEE ALSO
ls(l).

LIMITATIONS

"help" file

Paging back to a previous page is not implemented.

2 Zilog 2

VNEWS (1) Zilog VNEWS (1)

NAME
vnews - "visually" display the news items

SYNOPSIS
vnews -h]

DESCRIPTION
vnews is a version of news(l) that lists the news items in
"screen" format.

The "news titles" are displayed in three columns and cursor
manipulation is permitted by using the following keys:

down arrow
j
CTRL-j move the cursor down the screen

up arrow
k
CTRL-k move the cursor up the screen

f
w

b

move the cursor forward (to the right)

move the cursor backward (to the left)

Typing the following keys performs the functions described:

right arrow
1 display the news item

:q quit

?<CR> display "help" file

OPTIONS
-h Turns off "highlighting" of the cursored item;

"highlighting" is on by default.

FILES
/usr/lib/screen/vnewshelp

SEE ALSO
news (1) •

LIMITATIONS

"help" file

Paging back to a previous page is not implemented.

1 Zilog 1

VTZSET(l) Zilog VTZSE'r (1)

NAME
vtzset - set up vtz terminal function keys

SYNOPSIS
vtzset file

DESCRIPTION

1

vtzset is a user interface for programming the function keys
on the VTZ terminal. The input file should contain the
"definitions" for any or all of the ~programmable keys.
The format of these definitions is:

key sequencE~

Key is defined as::

pf 1 for the PF! key
pf 2 for the PF2 key
pf 3 for the PF3 key
pf 4 for the PF4 key
1 for the 1 key
2 for the 2 key
3 for the 3 key
4 for the 4 key
5 for the 5 key
6 for the 6 key
7 for the 7 key
8 for the 8 key
9 for the 9 key
0 for the 0 key

for the - key
for the I key
for the . key

enter for the enter key
u for the up-arrow key
d for the down-arrow key
1 for the left-arrow key
r for the right-arrow key
" u for control up-arrow ,.. a for control down-arrow
" 1 for control left-arrow
" r for control right-arrow
u for shift up-arrow
D for shift down-arrow
L for shift left-arrow
R 'for shift right-arrow
"u for control shift up-arrow
""o for control shift down-arrow
""L for control shift left-arrow
""R for control shift right-arrow

Zilog 1

VTZSET(l) Zilog VTZSET(l)

Sequence is defined as a sequence of 0 to 6 characters. For
special characters, the following notation should be used:

\n for
\r for
\ for
\E! for
\t for
\\ for
"'char

newline
carriage return
space (i.e. backslash followed by a space)
escape
tab
backslash

for a control char

FILES
/usr/lib/vtz/numpad
/usr/lib/vtz/vipad

number pad "definitions" file
vi (1) commands "definitions" file

LIMITATIONS
Because vtzset requires the terminal to be in raw mode, it
cannot be used while remote(l) on another system.

2 Zilog 2

WAIT(lC) Zilog WAIT(lC)

NAME
wait - await completion of process

SYNOPSIS
wait

DESCRIPTION
All child processes are waited for. It the shell is
interactive, then an interrupt can disrupt the wait, when
the shell prints names and process numbers of all children
known to be outstanding.

The shell waits until all processes started with & have com­
pleted, and report on abnormal terminations.

Because the wait(2) system call must
parent process, the shell itself
creating a new process.

be executed in the
executes wait, without

SEE ALSO
c sh (1) , sh (1) , wait (2) •

LIMITATIONS

1

Not all the processes of a three- or more-stage pipeline are
children of the shell, and thus cannot be waited for.

UCB 1

WC(l) Zilog WC (1)

NAME
wc - word count

SYNOPSIS
we [-clw [file

DESCRIPTION
We counts lines, words, and characters in file, or in the
standard input if no name appears. A word is a maximal
string of characters delimited by spaces, tabs, or new
lines.

OPTIONS
-c Gives only the character count.

-1 Gives only the line count.

-w Gives only the word count.

EXAMPLES
% WC whatis.1

29 120 641 whatis.l

% WC -c whatis.l
641 whatis.l

% WC -1 whatis.l
29 whatis.l

% WC -w whatis.l
120 whatis.1

l Bell 1

WHAT(l) Zilog WHA 1r (1)

NAME
what - identify SCCS files

SYNOPSIS
what files

DESCRIPTION
What searches the given files for all occurrences of the
pattern that get(l) substitutes for %Z% (@(I)) and prints
out what follows until the first -, >, new-line,'\, or null
character.

What is intended to be used in conjunction with the secs
command get(l), which automatically inserts identifying
information, but it can also be used where the information
is inserted manually.

EXAMPLES
For example, if the C program in file f.c contains

char ident[] = "@(#)identification information";

and f .c is compiled to yield f.o and a.out, then the command

what f.c f .o a.out

will print

f .c:
identification information

f .o:
identification information

a.out:
identification information

SEE ALSO
get(l), help(l).

DIAGNOSTICS
Use help(l) for explanations.

LIMITATIONS

1

It's possible that an unintended occurrence of the pattern
@(i) could be found just by chance, but this causes no harm
in most cases.

Bell 1

WHATIS{l) Zilog WHA'rIS (1)

NAME
whatis - describe what a command is

SYNOPSIS
whatis name .••

DESCRIPTION
Whatis looks up a given command and gives the header line
from the manual section. You can then run the man{l) com­
mand to get more information. If the line starts
"name {SE~ction) ••• " you can do "man section name" to get the
documentation for it.

EXAMPLE
% whatis we
WC (1)

FILES
/usr/lib/whatis Data base

SEE ALSO
apropos(l), makewhatis(l).

1 UCB

- word count

1

WHERE IS (1) Zilog WHEREIS(l)

NAME
whereis - locate source, binary, and or manual for program

SYNOPSIS
whereis [-bms] [-u] [-BMS dir • • . -£] file ••.

DESCRIPTION
Whereis locates source/binary and manuals sections for
specified files. The supplied file is first stripped of
leading pathnamE~ components and any----rslngle) ·trailing exten­
sion of the form ".ext", e.g. ".c". Whereis then attempts
to locate the desired program in a list of standard places.

Finally, the -B -M and -S flags may be used to change or
otherwise limit the places where whereis searches.

OPTIONS
-b Search only for binaries.

-£ Terminate the last such directory list and signal the
start of file names.

-m Search only for manual sections.

-s Search only for sources.

-u Used to search for unusual entries. A file is said to
be unusual if it does not have one entry of each
requested type. Thus "whereis -m -u *" asks for those
files in the current directory which have no documenta­
tion.

EXAMPLE

Fif .. ES

The following finds all the files in /usr/bin which are not
documented in /usr/man/manl with source in /usr/src/cmd:

cd /usr/bin
whereis -u -M /usr/man/manl -s /usr/src/cmd -f *

/usr/src/*
/usr/{doc,man}/*
/lib, /etc, /usr/{lib,bin}
/z/bin

LIMITATIONS

1

Since the program uses chdir(2) to run faster, pathnames
given with the -B -Mand -S must be full; i.e. they must
begin with a "/".

UCB 1

WHILE:(lC) Zilog WHILE(lC)

NAME
while - c Shell flow control statement for loop initiation

SYNOPSIS
while c:express ion)

command

end

DESCRIPTION
While the specified expression evaluates nonzero, the com­
mands between the while and the matching end are executed.
Break and continue can be used to terminate or continue the
loop prematurely. The while and end must appear· on separate
lines. Prompting occurs here the first time through the
loop as for the foreach statement if the input is a termi­
nal.

EXAMPLE

while (1) # "l" is always true, therefo~e

this is an endless loop

echo "This is an endless loop"

The string is printed forever
or until it is interupted

end # end of the while loop

SEE ALSO

1

break(lC), breaksw(lC), continue(lC), foreach(lC), if(lC),
onintr (lC), switch (lC),
The C Shell in the ZEUS Utilities Manual

UCB 1

WHO(l) Zilog WHO(l)

NAME
who - print the login names of those currently on the sys­
tem

SYNOPSIS
who [-g] [who-file [am I]

DESCRIPTION
Who, without an argument, lists the login name, terminal
name, and login time for each current ZEUS user.

Without an argument, who examines the /etc/utmp file to
obtain its information. If a file is given, that file is
examined. Typically the given file is /usr/adm/wtmp, which
contains a record of all the logins since it was created.
The·n who 1 ists log ins, logouts, and crashes since the crea­
tion of the wtmp file. Each login is listed with user name,
terminal name (with /dev/ suppressed), and date and time.
When an argume!nt is given, logouts produce a similar line
without a user name. Reboots produce a line with x in the
place of the device name, and a fossil time indicative of
when the system went down.

With two arguments, as in "who am I" and "who are you", who
tells who you are logged in as.

OPTIONS
-g Give the group to which you belong is printed.

* Give the same
for terminctls

EXAMPLE
% who
pete
paul
henry
craig
bet ta
harold
carolh
naushik

FILES
/etc/utmp

SEE ALSO

tt:yb
tt:yf
tt:ym
ttyo
tt:yt
ttyv
tty05
ttyl2

information as who plus the logout
not logged in.

Sep 15 17:10
Oct 8 09:04
Oct 8 14:37
Oct 8 15:28
Oct 8 09:21
Aug 19 14:52
Oct 8 13:06
Oct 6 16:33

who is (1) , whodo (1) , users (1) , getu id (2) , utmp (5) .

1 Bell

time

1

WHOAMI (1) Zilog

NAME
whoami - print effective current user id

SYNOPSIS
whoami

DESCRIPTION

WHOAMI (1)

Whoami prints who you are. It works even if the su command
has been issued to switch to another user name, while "who
am I" does not work since it uses /etc/utmp.

EXAMPLES
% whoami
carolh

% who am i
carolh tty05

FILES
/etc/passwd

SEE ALSO

Oct 8 15:40

who(l), whodo(l), whois(l), users(!), ps(l).

DIAGNOSTICS
If the message "/etc/passwd file is corrupt" appears, one of
the following may have occurred after you logged in:

1) /etc/passwd file was removed
2) your user id was removed from the /etc/passwd file

1 UCB 1

WHQDO(l) Zilog WHODO(l)

NAME
whodo - print names and process status for current users

SYNOPSIS
whodo

DESCRIPTION
Whodo produces merged, reformatted, and dated output from
the who(l) and ps(l) commands.

EXAMPLES
% whodo
Tue Nov 2 14:09:38 PST 1982
0 karen 12:23

0 59 0:05 -csh
0 422 1:34 vi +1100 wdc.03
10 49 0:00 - 2
11 50 0: 100 - 2
12 431 0:00 - 2
13 52 0: 100 - 3
14 53 0:00 - 2

2 deck 11:49
2 42 0:19 -csh
2 195 0: 55 vi csh.03
4 43 0:00 - 2

8 carol 12: 28
8 47 0:08 -csh
8 490 0:00 script
8 491 0:01 csh -i
8 492 0:00 script
8 493 0:01 /bin/sh /bin/whodo
8 494 0: 10 5 ps -a

9 george 12:24
9 48 0:06 -csh
9 231 0:01 vi o.l.9t
co 36 0: ~06 /etc/update
co 38 0:06 /etc/cron
co 479 0:00 - 2

SEE ALSO
ps(l), who(!), whois(l), whoami (1), users(l).

1 Bell 1

WHOIS(l) Zilog WHOIS(l)

NAME
whois - access the user information database

SYNOPSIS
who is name [-a name [-m]

DESCRIPTION
Whois accesses a database containing information such as
login name, actual name of the user, office phone and other
similiar data. The database information is accessed by
entering the login name or the actual user's name. It is
also possible to modify your entry in the database file or
to add your own entry if one does not already exist.

The commands have the following meanings:

whois name

whois -a name

whois -:m

prints only those users whose login names
have been specified from the database file.

prints the user whose actual name is 'name'.

adds new user to the database. Otherwise
one can modify his/her information in the
database to any field except the Login name
field. See the examples section.

When the system is trying to match a name, the fields are
converted to lowercase and compared.

When a name is specified the pattern matching syntax of the
shell ·rs-supported. This means*, ? and [] work. These
symbols must be enclosed in quotes to avoid interpretation
by the shell. See csh(l) or sh(l).

EXAMPLES

1

To get the information about the login name lindy:

% ·w.rho is 1 indy

Lo~~ in name
Actual user:
Office phone:
Home phone:
Group:
Mi :SC:

lindy
John Lindquist
4394

The following example displays the information about the
actual user, John Lindquist. Because the name contains a
blank it must be enclosed in quotes.

% whois -a "John Lindquist"

Zilog 1

WHOIS(l} Zilog WHO IS (1)

2

Login name
Actual user
Off ice phone
Home phone
Group
Misc

lindy
John Lindquist
4394

This example is the same as the previous, but using pattern
matching.

% whois -a "*lind*" Login name lindy
Actual user John Lindquist
Office phone 4394
Home phone
Group
Misc

To modify the database enter:

% whois -m

No name is entered in this case. An entry can be modified
only by the person who owns it.

Login name
Actual user
Office phone
Home phone
Group
Misc

OK? no
Field? off ice

Off ice phone

Login name
Actual user
Off ice phone
Home phone
Group
Misc

OK? y

lindy
John Lindquist
4421

4394

lindy
John Lindquist
4394

The above example describes how to modify a record in the
database file. Note that when supplying the field name any
un-ambiguous abbreviation of the field name can be used.
For example, fo:r~ off ice, an "o" could have been used.

Zilog 2

WHOIS(l) Zilog WHOIS(l)

DIAGNOSTICS

FILES

Following is a list of the error messages and their mean­
ings.

Whois database is in use; try again later

Someone is modifying the database. In order to do this
they must have exclusive use of it during the opera­
tion.

You cannot modify the login name field

An attempt was made to modify the login name field.
All fields but login can be modified; login cannot

•••• : No such user

The user looked for does not exist in the database
file.

unknown flag

A flag has been specified which is not known to the
system.

contains separator (:)

The information placed into a field contains the
separator character used to separate characters in the
database. This can't be done.

No action taken

Nothing has happened.

Usage: whois

Unknown options were specified.

/etc/who is
/etc/owhois

database file
old copy of the database file

SEE ALSO
who (1), whodo (1), whoami (1), whois (5).
The C Shell in the ZEUS Utilities Manual for meta-character
(pattern matching) syntax.

DIAGNOSTICS
Self-explanatory or explained above.

3 Zilog 3

WRITE(l) Zilog WRI'r E (1)

NAME
write - write to another user

SYNOPSIS
write user ttyname]

DESCRIPTION
Write copies lines from a terminal to that of another user.
When first called, it sends the message

Message from name ttyname •••

The recipient of the message writes back at this point.
Communication continues until an end of file is read fro~
the terminal or an interrupt is sent. At that point write
writes EOT on the other terminal and exits.

To write to a user who is logged in more than once, the
ttyname argument is used to indicate the appropriate termi­
nal name.

Permission to write can be denied or granted by the mesg
command. At log on, writing is allowed. Certain commands,
in particular nroff and pr(l), disallow messages.

If the character ! is found at the beginning of a line,
write calls the shell to execute the rest of the line as a
command.

The following protocol is suggested for using write. On the
first write to another user, wait for a response before
starting to send. Each party should end each message with a
distinctive signal such as o for over. Oo for over and out
is suggested whEm conversation is to be terminated.

write is better suited to a single message being sent. For
a lengthy, two-way conversation, use talk.

EXAMPLE

FILES
/etc/utmp
/bin/sh

SEE ALSO

Message from bradf tty6 •.•
This is a test of the write command.
0

EOF

to find user
to execute !

ma i 1 (1) , mesg (1) , ta 1 k (1) , who (1) •

1 Bell 1

XARGS(l) Zilog XARGS(l)

NAME
xargs - construct argument list(s) and execute command

SYNOPSIS
xargs [options] [command [initial-arguments]]

DESCRIPTION
Xargs combines the fixed initial-arguments with arguments
read from standard input to execute the specified command
one or more times. The number of arguments read for each
command invocation and the manner in which they are combined
are de£ermined by the options specified.

Command (can be a shell file) is searched for, using one's
$PATH. - If command is omitted, /bin/echo is used.

Arguments read from standard input are defined as contiguous
strings of characters delimited by one or more blanks, tabs,
or new-lines; empty lines are always discarded. Blanks and
tabs can be embedded in an argument if escaped or quoted.
Characters enclosed in quotes (single or double) are taken
literally and the delimiting quotes are removedQ Outside of
quoted strings, a backslash (\) will escape the next charac­
ter.

Each argument list is constructed starting with the
initial-arguments, followed by some number of arguments read
from s£andard input (Exception: see -i flag). Options -i,
-1, and -n determine how arguments are selected for each
command invocation. When none of these options are coded,
the initial-arguments are followed by arguments read con­
tinuou~ly from standard input until an internal buffer is
full. Then, command is executed with the accumulated args.
This process is repeated until there are no more args. The
last flag has precedence.

OPTIONS
-eeof st:r

-ireplstr

1

Eofstr is taken as the logical end-of-file
string. Underbar () is ass:umed for the
logical EOF string if--e is not coded. -e
with no eofstr coded turns off the logical
EOF string capability (underbar is taken
literally). Xargs reads standard input
until either end-of-file or the logical EOF
string is encountered.

Insert mode: command is execute·d for each
line from standard input. The entire line
is taken as a single arg and inserted in
initial-arguments for each occurrence of
replstr. A maximum of 5 arguments in
initial-arguments can each contain one or

Bell 1

XARGS(l)

-lnumber

-nnumber

-p

-ssize

-t

-x

2

Zilog XARGS(l)

more instances of replstr. Blanks and tabs
at the beginning of each line are ignored.
Constructed arguments can not be larger than
255 characters, and option -x is also
forced. {} is assumed for replstr if not
specified.

Command is executed for each non-empty
number lines of arguments from standard
input. The last invocation of command is
with fewer lines of arguments if fewer than
number remain. A line is considered to end
with the first new-line unless the last
character of the line is a blank or a tab; a
trailing blank or tab signals continuation
through the neKt non-empty line. If number
is omitted, 1 is assumed. Option -x is
forced.

Execute command using as many standard input
arguments as possible, up to number argu­
ments maximum. Fewer arguments will be used
if their total size is greater than size
characters, and for the last invocation----rf
fewer than number arguments remain. If
option -x is also coded, each number argu­
ment must fit in the size lim1tat1on, else
xargs terminates execution.

Prompt mode: The user is asked whether to
execute command for each invocation. Trace
mode (-t) is turned on to print the command
instance to be executed, followed by a ? •••
prompt. A reply of y (optionally followed
by anything) will execute the command; any­
thing else (including a carriage return)
skips that particular invocation of command.

The maximum total size of each argument list
is set to size characters; size must be a
positive integer less than or equal to 470.
If -s is not coded, 470 is taken as the
default. The character count for size
includes one extra character for each argu­
ment and the count of characters in the com-
mand name.

Trace mode: The command and each constructed
argument list are echoed to file descriptor
2 just prior to their execution.

Causes xargs to terminate if any argument

Bell 2

XARGS(l) Zilog XARGS(l)

list would be greater than size characters;
-x is -forced by the options ~ind -1. When
neither of the options -i, -1, or -n are
coded, the total length of all arguments
must be within the size limit.

Xargs will terminate if it either receives a return code of
-1 from, or if it cannot execute, command. WhE:m command is
a shell program, it should explicitly exit (see sh(l)) with
an app1~opr ia te value to avoid returning with -1.

EXAMPLES

3

To move all files from directory $1 to directory $2, and
echo each move command just before doing it:

ls $1 I xargs -i -t mv $1/{} $2/{}

To combine the output of the parenthesized commands onto one
line, which is then echoed to the end of file ~)g:

(logname; date; echo $0 $*) I xargs >>log

The user is asked which files in the current directory are
to be archived. xargs archives them into arch one at a
time, or many at a time.

1. ls xargs -p -1 ar r arch
2. 1 s xargs -P -1 I xargs ar r arch

To execute diff (l) with successive pairs of arguments origi­
nally typed as shell arguments:

echo $* I xargs -n2 diff

Bell 3

XQ (1)

NAME

Zilog XQ (1)

xq - examine or delete requests from the line printer
spooler

SYNOPSIS
xq [-d seq [·-q que:dev I -s]]

DESCRIPTION

1

Xq is the part of the general queuing system that allows
examination and deletion of items in the queue area. With no
options, xq lists the devices, queues and requests along
with accompanying statuses, for all entries in the queue
system. The information listed for queues and devices is:

Q:DEV queue name:device name (device name printed only
for device entries)

STATUS
current status. Statuses are:

READY - ready for printing

RUNNING - currently printing

OFFLINE - device is offline and cannot be used

DOWN - queue or device is down. No entries
will be accepted for down queues, and no
files will be printed on down devices

PRIORITY
Current priority of queue. No requests with a
priority less than this will be allowed to print.

FORM current form mounted (blank if standard form)
(not implemented)

ACTIVE
sequence number of the active entry

PAGES DONE
number of pages that have alrl~ady been printed

% DONE
percent file done

The information listed for requests is:

SEQN Sequence number assigned to this request (will
remain constant until the request is printed or
deleted from the queue)

Zilog 1

XQ(l) Zilog XQ (1)

USER User who submitted the request

Q:DEV Queue (and device if specified) to be used in
printing.

REQUEST
Name of file to be printed (if not suppressed)

Status of request - Statuses are:

READY - ready to be printed when a device
becomes free.

DISPCHD - in the process of being sent to a
printer

RUNNING - request currently being processed

FORM Form to be printed on (blank if standard form)
(not implemented)

BLKS Length of request (in blocks)

Number of copies to be printed

TIME Time request was submitted

TO Destination of request (if supplied)

OPTIONS

2

Other options can be used to delete entries from the print
queue. These options are:

-d (SE~ql ist)
Remove the indicated request(s) from the queue. Seqlist
is the list of sequence numbers to be removed. Sequence
numbers can be found using the listing form of xq.

-q ~e:dev
This option indicates which queue and device the -s
option will effect. It must precede the -s option on the
command line.

-s Stop printing. Causes printing on specified device to
stop immediately. The -q que :dev opt ion must be given,
and the request being processed must be owned by the user
making the stop request.

The -sand -d options cannot be used together.

Zilog 2

XQ (1) Zilog

FILES
/usr/spool/queuer/activeconfig
/usr/spool/queuer/logfile
/usr/spool/queuer/statusdir
/usr/spool/queuer/requestdir
/tmp/queuer

SEE ALSO
pr (1) , n q (1) , back end (M) , dq u e u er (M) , x q (M) •

DIAGNOSTICS

XQ (1)

If any part of the spooling syste~ appears to have inconsis­
tancies, xq(l) will print an error and log it in the spooler
error log file.

3 Zilog 3

XSTR (1) Zilog XSTR (1)

NAME
xstr - extract strings from C programs to implement shared
strings

SYNOPSIS
xstr -c] [-] file

DESCRIPTION

1

Xstr maintains a file strings into which strings in com­
ponent parts of a large program are hashed. These strings
are replaced with references to this common area. This
serves to implement shared constant strings, most useful if
they are also read-only.

The command

xstr -c name

extracts the strings from the C source in name, replacing
string references by expressions of the form (&xstr[number])
for some number. An approporiate declaration of xstr is
prepended to the file. The resulting C text is placed in
the file x.c, to then be compiled. The strings from this
file are- placed in the strings data base if they are not
then~ already. Repeated strings and strings which are suf­
fices of existing strings do not cause changes to the data
base ..

After all components of a large program have been compiled a
file xs.c declaring the common xstr space can be created by
a command-of the form

xstr

This xs.c file should then be compiled and loaded with the
rest of- the program. If possible, the art~ay can be made
read-only (shared) saving space and swap overhead.

Xstr can also be used on a single file. A command

xstr name

creates files x.c and xs.c as before, without using or
affecting any strings fITe-in the same directory.

It may be useful to run xstr after the C preprocessor if any
macro definitions yield strings or if there is conditional
code which contains strings which may not, in fact, be
needed. xstr reads from its standard input when the argu­
ment '-• is given. An appropriate command sequence for run­
ning xstr after the C preprocessor is:

UCB 1

XSTR(l) Zilog XSTR(l)

FILES

cc -E name.c I xstr -c -
cc -c x.c
mv x.o name.o

xstr does not touch the file strings unless new items are
added, thus make(l) can avoid remaking xs.o unless truly
necessary.

strings
x.c
xs.c
/tmp/xs*

Data base of strings
Massaged C source
C source for definition of array 'xstr'
Temp file when 'xstr name' doesn't touch strings

SEE ALSO
mkstr(l).

LIMITATIONS

2

If a string is a suffix of another string in the data .base,
but the shorter string is seeo first by xstr both strings
will be placed in the data base, when just placing the
longer one there will do.

UCB 2

YACC(l) Zilog YACC (1)

NAME
yacc - yet another compiler-compiler

SYNOPSIS
yacc -dv] grammar

DESCRIPTION
Yacc converts a context-free grammar into a set of tables
for a simple automaton that executes an lr(l) parsing algo­
rithm. The grammar can be ambiguous; specified precedence
rules are used to break ambiguiti8s.

The output file, ~.tab.~, must be compiled by the C compiler
to produce a program yyparse. This program must be loaded
with the lexical analyzer program, yylex, as w1ell as main
and yyerror, an error handling routine. These routines must
be sup~lied by the user. Lex(l) is useful for creating lex­
ical analyzers usable by yacc.

OPTIONS
-d the file y.tab.h is generated with the define state­

mE~nts that associate the yacc-assigned tokE~n codes with
the user-declared token names. This allows source
files other than y.tab.£ to access the token codes.

FILES

-v the file ~.output is prepared. This file contains a
description of the parsing tables and a report on con­
flicts generated by ambiguities in the grammar.

y.output
y.tab.c
y.tab.h
yacc.tmp, yacc.acts
/usr/lib/yaccpar
/lib/liby.a

defines for token names
temporary files
parser prototype for C programs
library with default main and yyerror

SEE ALSO
lex(l).
LR Parsing by A. v. Aho and s. c. Johnson, Computing Sur­
veys,J·une, 19 7 4.
YACC - Yet Another Compiler Compiler in the ZEUS Languages /
Prograroming Tools Manual

DIAGNOSTICS
The number of reduce-reduce and shift-reduce conflicts is
reported on the standard output; a more detailed report is
found in the y.output file. If some rules are not reached
from the start symbol, this is also reported.

f.,IMITATIONS
Only one yacc process can be active in a given directory at
a time.

1 Bell 1

300(1) Zilog 300(1)

NAME
300, 300s - handle special functions of DASI terminals

SYNOPSIS
309 [-dc,l,t]
311s [-d:£,I,IJ

[-n]
[-E:J

[+12]
[+12]

DESCRIPTION
300 supports special functions and optimizes the use of the
DASI 300 (GSI 300 or OTC 300) terminal. 309s performs the
same functions for the DASI 300s (GSI 300s or DTC 300s) ter­
minal.

300s converts half-line forward, half-line reverse, and
full-line reverse motions to the correct vertical motions.
It also draw Gre•ek letters and other special symbols. Use
of 12-pitch text is permitted. Printing time is reduced 5
to 70%.

399 can be used to print equations neatly, in the sequence:

neqn file I nroff I 308

WARNING: If your terminal has a PLOT switch, make sure it is
turned ON before 388 is used.

OPTIONS

1

-d£,_!.,!_ Controls delay factors.

The default setting is -dJ,99,30. DASI 300 termi­
nals sometimes produce peculiar output when faced
with very long lines, too many tab characters, or
long strings of blankless, non-identical charac­
ters.

One null (delay) character is inserted in a line
for every set of t tabs, and for every contiguous
string of c non-blank, non-tab characters.

If a line is longer than 1 bytes, l+(total
length)/20 nulls are inserted at the end of that
line. Items can be omitted from the end of the
list, implying use of the default values. Also, a
value of zero for t (c) results in two null bytes
per tab (characte~) .- The former may be needed for
C programs, the latter for files like /etc/passwd.

Because terminal behavior varies according to the
specific characters printed and the load on a sys­
tem, the user may have to experiment with these
values to get correct output.

Bell 1

300(1) Zilog 3 00 (1)

2

-n

The -d option exists only as a last resort for
those few cases that do not otherwise print prop­
erly. For example, the file /etc/passwd may be
printed using -d3,39,5. The value -d9,l is a good
one to use for C programs that have many levels of
indentation.

Note that the delay control interacts heavily with
the prevailing carriage return and line-feed
delays. The stty(l) modes nl9 cr2 or nll cr3 are
recommended for most uses.

Controls the size of half-line spacing.

A half-line, by default, is equal to 4 vertical
plot increments. Because each increment equals
1/48 of an inch, a 10-pitch line-feed requires 8
increments, while a 12-pitch line-feed needs only
6.

The first digit of n overrides the default value,
allowing for indivTdual taste in the appearance of
subscripts and superscripts.

For example, nroff {1) half-lines could be made to
act as quarter-lines by using -2. The user can
also obtain appropriate half-lines for 12-pitch, 8
lines/inch mode by using the option -3 alone, hav­
ing set the PITCH switch to 12-pitch.

+12 Permits use of 12-pitch, 6 lines/inch text. DASI
300 terminals normally allow only two combinations:
10-pitch, 6 lines/inch, or 12-pitch, 8 lines/inch.
To obtain the 12-pitch, 6 lines per inch combina­
tion, the user should turn the PITCH switch to 12,
and use the +12 option.

309 can be used with the nroff -s flag or .rd requests, when
it is necessary to insert paper manually or change fonts in
the middle of a document. Instead of hitting the return key
in these cases, you must use the line-feed key to get any
response.

In many (but not all) cases, the following sequences are
equivalent:

nroff -T300 files

and

nroff files I 300

Bel 1 2

300(1) Zilog 3 00 (1)

nroff -T300-12 files

and

nroff files I 300 +12

The use of 319 can thus often be avoided unless special
delays or options are required; in a few cases, however, the
additional movement optimization of 319 may produce better­
aligned output.

The neqn(eqn(l)) names of, and resulting output for, the
Greek and special characters supported by 319 are shown in
greek(7).

SEE ALSO
450(1), eqn(l), mesg(l), stty(l), tabs(l), tbl (1), troff(l),
greek (7) •

LIMITATIONS

3

Some special characters cannot be correctly printed in
column 1 because the print head cannot be moved to the left
from there.

If your output contains Greek and/or reverse line-feeds, use
a friction-feed platen instead of a forms tractor; although
good enough for drafts, the latter has a tendency to slip
when reversing direction, distorting Greek characters and
misaligning the first line of text after one or more reverse
line-feeds.

Bell 3

450 (1) Zilog 4 50 (1)

NAME
450 - handle special functions of the DASI 450 terminal

SYNOPSIS
458

DESCRIPTION~

458 supports special functions and optimizes the use of the
DASI 450 terminal, or any terminal that is functionally
identical, such as the DIABLO 1620 or XEROX 1700.

459 converts half-line forward, half-line reverse, and
full-line reverse motions to the correct vertical motions.
It also draws Greek letters and other special symbols in the
same manner as 300(1). 458 can be used to print equations
neatly, in the sequence:

neqn file I nroff I 458

WARNING: make sure that the PLOT switch on your terminal is
ON before 458 is used. The SPACING switch should be put in
the desired position (either 10- or 12-pitch). In either
case, vertical spacing is 6 lines/inch, unless dynamically
changed to 8 lines per inch by an appropriate escape
sequence.

451 can be used with the nroff (l) -s flag or .rd requests,
when it is necessary to insert paper manually or change
fonts in the middle of a document. Instead of hitting the
return key in these cases, use the line-feed key to get any
response.

In many (but not all) cases, the use of 458 can be elim­
inated in favor of one of the following:

nroff -T450 files
or

nroff -T450-12 files •••

The use of 451 can often be avoided, unless special delays
or options are required; in a few cases, however, the addi­
tional movement optimization of 451 may produce better­
al igned output.

The neqn(eqn(l)) names of, and resulting output for, the
Greek and special characters supported by 458 are shown in
greek (7) •

SEE ALSO

1

300(1), eqn(l), mesg(l), stty(l), tabs(l), tbl(l), troff{!),
greek (7) •

Bell 1

450(1) Zilog 450(1)

LIMITATIONS

2

Some special characters cannot be correctly printed in
column 1 because the print head cannot be moved to the left
from there.

If your output contains Greek and/or reverse line-feeds, use
a friction-feed platen instead of a forms tractor~ although
good enough for drafts, the latter has a tendency to slip
when reversing direction, distorting Greek characters and
misaligning the first line of text after one or more reverse
line-feeds.

Bell 2

INTR0(2) Zilog INTR0(2)

NAME
intro, errno
numbers

introduction to system calls and error

SYNOPSIS
finclude <errno.h>

DESCRIPTION

1

Section 2 of this manual lists all the entries into the sys­
tem. Most of these calls have an error return. An error
condition is indicated by an otherwise impossible returned
value. Almost always this is -1; the in~ividual sections
specify the details. An error number is also made available
in the external variable errno. Errno is not cleared on
successful calls, so it should be tested only after an error
has occurred.

There is a table of messages associated with each error, and
a routine for printing the message; See perror(3).

As well, the external variable deverr may be set with error
numbers which relate to I/O devices. If errno is 5 or 6
then deverr should be checked to determine, further the
nature of the error. The possible error numbers are not
recited with each writeup in section 2, since many errors
are possible for most of the calls.
Here is a list of the error numbers, their names as defined
in <errno.h>, and the messages available using perror.

0 Error 0
Unused.

1 EPERM Not owner
Typically this error indicates an attempt to modify a
file in some way forbidden except to its owner or
super-user.. It is also returned for attempts by ordi­
nary users to do things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the
file should exist but doesn't, or when one of the
directories in a path name does not exist.

3 ESRCH No such process
The process whose number was given to signal and ptrace
does not exist, or is already dead.

4 EINTR Interrupted system call
An asynchronous signal (such ~s interrupt or quit) ,
which the user has elected to catch, occurred during a
system call. If execution is resumed after processing
the signalr it will appear as if the interrupted system

ZEUS 1

INTR0(2) Zilog INTR0(2)

2

call returned this error condition.

5 EIO I/O error
Some physical I/O error occurred during a read or
write. This error may in some cases occur on a call
following the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice that does
not exist, or beyond the limits of the device. It may
also occur when a cartridge tape is prematurely pulled
out of the tape drive or no mag tape is loaded on a
drive.

7 E2BIG Arg list too long
An argument list longer than 5120 bytes is presented to
exec.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it
has the appropriate permissions, does not start with a
valid magic number, see a.out(S).

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a
read (resp. write) request is made to a file that is
open only for writing (resp. reading).

10 ECHILD No children
Wait and the process has no living or unwaited-for
children.

11 EAGAIN No more processes
In a fork, the system's process table is full or the
user is not allowed to create any more p~ocesses.

12 ENOMEM Not enough core
During an exec or break, a program asks for more core
than the system is able to supply. This is not a tem­
porary condition; the maximum core size is a system
parameter.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden
by the protection system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting
to access the arguments of a system call. This is usu­
ally the result of a bad address passed to 'the operat­
ing system as the address of the arguments.

ZEUS 2

INTR0(2) Zilog INTR0(2)

3

15 ENOTBLK Block device required
A plain file was mentioned where a block device was
required, operating system mount.

16 EBUSY Mount device busy
An attempt to mount a device that was already mounted
or an attempt was made to dismount a device on which
there is an active file (open file, current directory,
mounted-on file, active text segment).

17 EEXIST File exists
~An existing file was mentioned in an inappropriate con­
text, e.g. link.

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system
call to a device; e.g. read a write-only device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is
required, for example in a path name or as an argument
to chdir.

21 EISDIR Is a directory
An attempt to write on a directory.

22 EINVAL Invalid argument
Some invalid argument: dismounting a non-mounted dev­
ice; mentioning an unknown signal in signal; reading or
writing a file for which seek has generated a negative
pointer; passing a bad argument to ioctl. Also set by
math functions, see intro(3).

23 ENFILE File table overflow
The system's table of open files is full, and tem­
porarily no more opens can be accepted.

24 EMFILE Too many open files
Customary configuration limit is 20 per process.

25 ENOTTY Not a typewriter
The file mentioned in stty or gtty is not a terminal or
one of the other devices to which these calls apply.

26 ETXTBSY Text file busy
An attempt to execute a pure-pr6cedure program that is
currently open for writing (or reading!). Also an
attempt to open for writing a pure-procedure program
that is being executed.

ZEUS 3

INTR0(2) Zilog INTR0(2)

4

27 EFBIG File too large
The size of a file exceeded the maximum (about l.0E9
byties) •

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free
space left on the device.

29 ESPIPE Illegal seek
An lseek was issued to a pipe. This error should also
be issued for other non-seekable devices.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a
device mounted read-only.

31 EMLINK Too many links
An attempt to make more than 32767 links to a file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read
the data. This condition normally generates a signal;
the error is returned if the signal is ignored.

33 EDOM Math argument
The argument of a function in the math package (3M) is
out of the domain of the function.

34 ERANGE Result too large
The value of a function in the math package (3M) is
unrepresentable within machine precision.

35 EDEADLOCK Deadlock imminent
During a lkdata system call, either granting of this
blocking lock will cause a deadlock condition in which
case the process must release some lock or the system
configurable number of locks is already allocated.

36 ENOSEG No such segment
During a mkseg system call, a segment greater than 127
was used. During a break system call, a segment was
used which not allocated to the program dwas used. Or
during a mkseg system call, a segment was requested
which was already allocated.

37 ENOPROF Profiling failed
When using the profile system call on a segmented pro­
gram, the system call failed because there were more
than 10 code segments in the program to be profiled.

The following is a list of device error numbers, t:heir names
as defined in <errno.h>, and the messages available using

ZEUS 4

INTR0(2) Zilog INTR0(2)

perror.

0 OGEN General error
An error which does not fall into one of the catagories
below. A general, device specific, error.

1 DNUNIT No such unit
The device requested does not exist or is not on line.

2 DIO I/O error
A physical error occured during an I/O operation.

3 DBUSY Device busy
The device has not completed the previous I/O operation
before a request to the device was issued for the I/O
operation which generated this error.

4 DPROT Write protected
The device was physically write protected. This can
occur when the write wring is missing from a mag tape
or when a cartridge tape is set in "safe mode".

5 DNMEDIA No media
The device has no storage media. This can occur if no
cartridge is installed in the cartridge tape drive or
if no magnetic tape is installed in the mag tape drive.

6 DEDATA End of data
This can occur on the cartridge tape drive when a read
was attempted on a blank tape.

SEE ALSO
intro(3)

ASSEMBLER

5

The Z8000 assembly language interface is given for each sys­
tem call.

Return values appear in register r4 or rr4 if the return
value is a long. An erroneous call is always indicated by
turning on the carry bit of the program status word. The
value -1 is returned in r4 as well.

The external variable errno is set after the system call to
indicate the error.

ZEUS 5

ACCESS(2) Zilog ACCESS(2)

NAME
access - determine accessibility of file

SYNOPSIS
int access(file, mode)
char *~ame; int mode;

DESCRIPTION

1

Access checks the given file for accessibility according
mode, which is 4 (read)~(write) or 1 (execute) or a
b1nation thereof. Specifying mode 0 tests whether
directories leading to the file can be searched and the
exists.

to
com­

the
file

An appropriate error indication is returned if file cannot
be found or if any of the desired access modes is not
granted. Access to the file is denied if one or more of the
following are true:

A component of the path prefix is not at directory.
[ENOTDIR]

Read, write, or execute (search) pe:rmission is
requested for a null pa th name. [ENOENT]

The named file does not exist. [ENOENT]

Search permission is denied on a component of the path
prefix. [EACCES]

Write access is requested for a file on a read-only
file system. [EROFS]

Write access is requested for a pure procedure (shared
text) file that is being executed. [ETXTBSY]

Permission bits of the file mode do not permit the
requested access. [EACCES]

File points outside the process's allocated address
space. [EFAULT]

This call is useful to set-UID programs, since the user and
group IDs (with respect to which permission is checked) are
the real UID and GID of the process.

Only access bits are checked. A directory can be announced
as writable by access, but an attempt to open it for writing
fails (although files can be created there); a file can look
executable, but exec(2) fails unless it is in proper format.

Bell 1

ACCESS(2) Zilog ACCESS(2)

RETURN VALUE
If the requested access is permitted, a value of 0 is
returned. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

SEE ALSO
stat(2).

ASSEMBLER
CONSTANT ACCESS .- 33

!* filename, mode
!* (if segmented:

clr r4,r4
SC #ACCESS

!* return value in
!* carry flag set

2 Bell

in r0, rl respectively * !
filename, mode in rr0, r 2)

r4 * !
if error * !

2

* !

ACCT (2) Zilog ACCT (2)

NAME
acct - turn accounting on or off

SYNOPSIS
int acc:t(file)
char *~'.ile_; __

DESCRIPTION
The system is prepared to write a record in an accounting
file for each process as it terminates. This call, with a
poIOter to a null-terminated string naming an e'cisting file
as argument, turns on accounting; records for each terminat­
ing process are appended to file. An argument of 0 (0L for
segmented programs) causes---accounting to bf;~ turned off.
Termination can be caused by one of two things: an exit call
or a signal; see exit(2) and signal(2). The file must exist
and the effective user IO of the calling process must be
super-user to use this call.

It is erroneous to turn on accounting when it is already on.

The accounting file format is given in acct(5).

DIAGNOSTICS

1

Acct will fail if one or more of the following are true:

The effective user IO of the calling process is not
super-user. [EPERM]

An attempt is being made to enable accounting when it
is already enabled. [EBUSY]

A component of the path prefix is not a directory.
[E:NOTDIR]

One or more components of the accounting file's path
name do not exist. [ENOENT]

A component of the path prefix denies search permis­
sion. [EACCES]

The file named by file is not an ordinary file.
[E:ACCES]

Mode permission is denied for the named accounting
file. [EACCES]

The named file is a directory. [EISDIR]

The named file resides on a read-only file system.
[E:ROFS]

Bell 1

ACCT(2) Zilog ACCT(2)

File points to an illegal address. [EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Other­
wise, a value of -1 is returned and errno is set to indicate
the error.

LIMITATIONS
No accounting is produced for programs running when a crash
occurs. Nonterminating programs are never accounted for.

SEE ALSO
acct (5), sa (1).

ASS.EMBLER
CONSTANT ACCT := 51

!* filename in r0 *!
!* (if segmented: filename in rr0) *!

clr r4
SC #ACCT

!* return value in r4 *!
!* carry flag set if error *!

2 Bell 2

ALARM(2} Zilog ALARM(2}

NAME
alarm - schedule signal after specified time

SYNOPSIS
unsigned alarm (seconds)
unsigned seconds;

DESCRIPTION
Alarm causes signal SIGALRM, (signal(2)) to be sent to the
invoking process in a number of seconds given by the argu­
ment. Unless caught or ignored, the signal terminates the
process ..

Alarm requests are not stacked; successive calls reset the
alarm clock. If the argument is 0, any alarm request is
cancelled. Because the clock has a 1-second resolution, the
signal can occur up to one second early. Due to scheduling
delays, resumption of execution of when the signal is caught
can be delayed an arbitrary amount. The longest specifiable
delay time is 65535 seconds.

RETURN VALUE
The return value is the amount of time previously remaining
in the alarm clock.

SEE ALSO
pause(2), signal (2), sleep(3).

ASSEMBLER
CONSTANT ALARM := 27

!* seconds in r0 *!
SC #ALARM

1* return value in r4 *!

1 Bell 1

BRK{2) Zilog BRK { 2)

NAME
brk, sbrk - change core allocation

SYNOPSIS
char *brk (addr)
char *addr;--

char *sbrk (incr)
int incr;

DESCRIPTION
Brk sets the system's idea of the lowest location not used
by the program (called the break) to addr (rounded up to the
next multiple of 256 bytes). For example, if the original
break is at location 0xl2ac and the user program requests
0x400 more bytes via sbrk(0x400), sbrk returns 0xl2ac and
the user may now address up to location 0xl6ff. At this
point, a brk(0xl501) would allow the user to address up to
0xl5ff. Locations greater than addr and below the stack
pointer are not in the address space and thus cause a memory
violation if accessed.

In the alternate function sbrk, incr more bytes are added to
the program's data space and a pointer to the start of the
new area is returned.

When a program begins execution via exec, the break is set
at the highest location defined by the program and data
storage areas. Therefore, only programs with growing data
areas need to use these calls.

Brk and sbrk will fail without making any change in the
allocated space if such a change would result in more space
being allocated than is allowed by a system-imposed maximum
(see ulimit(2)).

RETURN VALUE
Upon successful completion, brk returns a value of 0 and
sbrk returns the old break value. Otherwise, a value of -1
is returned and errno is set to indicate the error.

SEE ALSO
sgbrk(2), ssgbrk(2), exec(2), malloc(3), end(3).

DIAGNOSTICS
-1 is returned and errno is set to ENOMEM if fulfilling the
request would i:esult in more space being allocated than is
allowed.

ASSEMBLER
CONSTANT BREAK .- 17

1 Bell 1

BRK(2} Zilog BRK(2)

2

!* new break value in r0 *!
clr r4
SC #BREAK

!* return value in r4 *!
!* carry flag set if error *!

BREAK performs the function of brk. The name of the routine
differs from that in c.

Sbrk is implemented in terms of brk. To use sbrk, the pro­
gram must keep track of the current break value and add the
argument of sbrk to it before calling brk. This current
break value is initially equal to the variable end and
after successive calls to brk or sbrk must be changed to the
address (the argument to brk) or the current break value
plus the increment, respectively.

Bell 2

CHDIR(2) Zilog CHDIR(2)

NAME
chdir - change working directory

SYNOPSIS
int chdir (dirname)
char *dirname;

DESCRIPTION
Dirname is the address of the pathname of a directory, ter­
minated by a null byte. Chdir causes this directory to
become the current working directory, the starting point for
path names not beginning with /.

SEE ALSO
cd (lC) , chroot (2) •

DIAGNOSTICS
Chdir will fail and the current working directory will be
unchanged if one or more of the following are true:

A component of the path name is not a directory.
[ENOTDIR]

The named directory does not exist. [ENOENT]

Search permission is denied for any component of the
path name. [EACCES]

Path points outside the process's allocated address
space. [EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Oth­
erwise, a value of -1 is returned and errno is set to indi­
cate the error.

ASSEMBLER
CONSTANT CHOIR := 12

! * non-segmented: dirname in r0 * !
! * (if segmented: dirname in rr0) * !

clr r4
SC #CHOIR

! * return value in r4 * !
! * carry flag set if error * !

1 Bell 1

CHOWN{2) Zilog CHOWN{2)

NAME
chown - change owner and group of a file

SYNOPSIS
int chown (path, owner, group)
char *path;
int owl1er, group;

DESCRIPTION
Path points to a path name naming a file. The owner ID and
group ID of the named file are set to the numeric values
contained in owner and group respectively.

Only processes with effective user ID equal to the file
owner or super-user may change the ownership of a file.

If cho'm is invoked by other than the super-use:r:, the set­
user-ID and set-group-ID bits of the file mode, 04000 and
02000 respectively, will be cleared.

Chown will fail and the owner and group of the named file
will remain unchanged if one or more of the following are
true:

A component of the path prefix is not a directory.
[1rnoTDI R]

The named file does not exist. [ENOENT]

Search permission is denied on a component of the path
p1:efix. [EACCES]

The effective user ID does not match the owner of the
file and the effective user ID is not super-user.
(gPERM]

The named file resides on a read-only file system.
[IrnOFS]

Path points outside the process's allocated address
space. [EFAULT]

RETURN VALUI~

Upon successful completion, a value of 0 is returned. Oth­
erwise, a value of -1 is returned and errno is set to indi­
cate the error.

SEE ALSO
chmod{2).

ASSEMBLER
CONSTANT CHOWN .- 16

1 Bell 1

CHOWN(2) Zilog CHOWN(2)

'" non-segmented: path in r0 * !
'" non-segmented owner in rl * !
'" non-segmented group in r2 * !
~" (if segmented: path in rr0) * !
'" (if segmented: owner in r2 * !
l" (if segmented: group in r3 * !

clr r4
SC #CHOWN

! '" return value in r4 *!

! '" carry flag set if error * !

2 Bell 2

CREA'r (2) Zilog CREAT(2)

NAME
creat - create a new file

SYNOPSIS
int c1:eat (file, mode)
char tC'file;--
int mode;

DESCRIPTION
Creat creates a new file or prepares to rewrite an existing
file, given as the address of a null-terminated string. If
the file did not exist, the file's owner ID is set to the
process's effective user ID, the file's group ID is set to
the process's effective group ID, and the low-order 12 bits
of the file mode are set to the value of mode modified as
follows:

All bits set in the process's file mode creation mask
a.re cleared. See umask(2).

'I'he "save text image after execution bit" of the mode
is cleared.

See chmod(2) for the construction of the mode ctrgument.

If the file did exist, its mode and owner remain unchanged
but it is truncated to 0 length.

The file is also opened for writing, and its file descriptor
is returned.

The mode given is arbitrary; it need not allow writing.
This~feature is used by programs that deal with temporary
files of fixed names. The creation is done with a mode that
forbids writing. If a second instance of the program
attempts a creat, an error is returned and the program knows
that the name is unusable for the moment.

SEE ALSO
write(2), close(2), chmod(2), umask(2).

DIAGNOSTICS

1

Creat will fail if one or more of the following are true:

A component of the path pref ix is not a directory.
[ENOTDIR]

A component of the path pref ix does not
[ENOENT]

exist.

Search permission is denied on a component of the path
prefix. [EACCES]

Bell 1

CREAT(2) Zilog CREAT (2)

The path name is null. [ENOENT]

The file does not exist and the directory in which the
file is to be created does not permit writing.
[EACCES]

The named file resides or would reside on a read-only
file system.. [EROFS]

The file is a pure procedure (shared text) file that is
being executed. [ETXTBSY]

The file exists and write permission is
[EACCES]

denied.

The named file is an existing directory. [EISDIR]

There are already too many files open. [EMFILE]

File points outside the process's allocated address
space. [EFJWLT]

RETURN VALUE
Upon successful completion, a non-negative integer, namely
the file descriptor, is returned. Otherwise, a value of -1
is returned and I errno is set to indicate the error.

ASSEMBLER

2

CONSTANT CREAT := 8
!* filename, mode in r0, rl respectively*!
!* (segmented: filename, mode in rr0, r2) *!

SC #CREAT
!* return value in r4 *!
!* carry flag set if error *!

Bell 2

DUP(2) Zilog DUP (2)

NAME
dup, dup2 - duplicate an open file descriptor

SYNOPSIS
int dup (fildes)
int fildes;
dup2~Lides, fildes2)
int fildes, fildes2;

DESCRIPTION
Given a file descriptor returned from an open(2), pipe(2),
or creat(2) call, dup allocates another file descriptor
synonymous with the original. The new file descriptor is
returned. It has the following in common with the original:

Same open file (or pipe).

Same file pointer.
one file pointer.)

(i.e., both file descriptors share

Same access mode (read, write or read/write).

The new file descriptor is set to remain open across exec(2)
system calls. See fcntl(2).

The file descriptor returned is the lowest one available.

In the second form of the call, fildes is a file descriptor
referring to an open file, and fildes2 is a non-negative
integer less than the maximum value allowed for file
descriptors. Dup2 causes fildes2 to refer to the same file
as fildes. If fildes2 already referred to an open file, it
is close;(! first.

SEE ALSO
creat(2), close(2), exec(2), fcntl(2), open(2), pipe(2).

DIAGNOSTICS
oup will fail if one or more of the following are~ true:

Fildes is not a valid open file descriptor. [EBADF]

Twenty (20) file descriptors are currently
[EMF ILE]

open.

RETURN VALUE
Upon successful completion a non-negative integer, namely
the file descriptor, is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

ASSEMBLER
CONSTANT DUP := 41

1 Bell 1

DUP(2) Zilog DUP(2)

! 'A: fildes, fildes2 in r0, rl respectively * !
set r0,#6 !* dup2 calls only * !
SC #DUP

! 'A: return value in r4 * !
! *' carry flag set if error * !

The dup2 entry is implemented by in an OR condition 0100
with fildes.

2 Bell 2

EXEC (2) Zilog EXEC(2)

NAME
execl, execv, execle, execve, execlp, execvp
file

execute a

SYNOPSIS
int execl (file, arg0, argl, .•• , argn, ~)
char *!ile, *arg0, *argl, ••• , *argn;

int execv (file, argv)
char *!ile, *argvIT;

int execle (file, arg0, argl, ••• , argn, 0,
char *!ile, *arg0, *argl~., *argn, *envp[

int execve (file, argv, envp);
char *!ile, *argv[~]-,-*envp[];

int execlp (file, arg0, argl, •.• , argn, ~)
char *!ile, *arg0, *argl, .•• , *argn;

int execvp (file, argv)
char * ! i le' * argv c---r;

DESCRIPTION

]_

Exec in all its forms overlays the calling process with
file, then transfers to the entry point of the core image of
the file. There can be no return from a successful exec;
the calling core image is lost.

File descriptors open in the calling process remain open in
the new process, except for those whose close-on-exec flag
is set; see fcntl(2). For those file descriptors that
remain open, the file pointer is unchanged.

Ignored signals remain ignored across these calls, but sig­
nals that are caught (signal(2)) are reset to their default
values.

Profiling is disabled for the new process; see profil(2).

Each user has a real user ID and group ID and an effective
user ID and group ID. The real ID identifies the person
using the system; the effective ID determines the access
privileges. Exec changes the effective user and group ID to
the owner of the executed file if the file has the set­
user-ID or set-group-ID modes. The real user ID is not
affected.

The new process also inherits the following attributes from
the calling process:

Bell 1

CHDIR(2) Zilog CHDIR(2)

NAME
chdir - change working directory

SYNOPSIS
int chdir (dirname)
char *dirname;

DESCR.I PT ION
Dirname is the address of the pathname of a directory, ter­
minated by a null byte. Chdir causes this directory to
become the current working directory, the starting point for
path names not beginning with /.

SEE ALSO
cd (lC) , chroot (2) •

DIAGNOSTICS
Chdir will fail and the current working directory will be
unchanged if one or more of the following are true:

A component of the path name is not a directory.
[ENOTDIR]

The named directory does not exist. [ENOENT]

Search permission is denied for any component of the
path name. [EACCES]

Path points outside the process's allocated address
space. [EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Oth­
erwise, a value of -1 is returned and errno is set to indi­
cate the error.

ASSEMBLER
CONSTANT CHOIR := 12

!* non-segmented: dirname in r0 * !
!* (if segmented: dirname in rr0) * !

clr r4
SC #CHOIR

!* return value in r4 * !
!* carry flag set if error * !

1 Bell 1

CHMOD(2) Zilog CHMOD(2)

NAME
chmod -· change mode of file

SYNOPSIS
int chmod (name, mode)
char *name;--
int mode;

DESCRIPTION
The file whose name is given as the null-terminated string
pointed to by name has its mode changed to mode!. Modes are
constructed by combining with OR some of the foflowing octal
values:

04000 set user ID on executioA
02000 set group ID on execution
01000 save text image after execution
00400 read by owner
00200 write by owner
00100 execute (search on directory) by owner
00070 read, write, execute (search) by group
00007 read, write, execute (search) by others

If an executable file is set up for sharing (-n option of
ld(l)) then mode 1000 prevents the system from abandoning
the swap-space image of the program-text portion of the file
when its last user terminates. Thus, when the next user of
the file executes it, the text need not be read from the
file system but can simply be swapped in, saving time.
Ability to set this bit is restricted to the super-user
since swap space is consumed by the images. It is recom­
mended only for heavily used commands.

Only the owner of a file (or the super-user) can change the
mode. Only the super-user can set the 1000 mode.

SEE ALSO
chmod(l), chown(2), mknod(2).

DIAGNOSTIC

1

Chmod will fail and the file mode will be unchanged if one
or more of the following are true:

A component of the path prefix is not a directory.
[ENOTDIR]

The named file does not exist. [ENOENT]

Search permission is denied on a component of the path
prefix. [EACCES]

The effective user ID does not match the owner of the

Bell 1

CHMOD(2) Zilog CHMOD(2)

file and the effective user ID is not super-user.
[EPERM]

The named file resides on a read-only file system.
[EROFS]

Name points outside the process's allocated address
space. [EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Oth­
erwise, a value of -1 is returned and errno is set to indi­
cate the error.

ASSEMBLER
CONSTANT CHMOD := 15

!* filename, mode in r0, rl respectively * !
!* (if segmented: filename, mode in rr0, r 2)

clr r4
SC #CHMOD

!* return value in r4 *!
! * carry flag set if error * !

2 Bell 2

* !

CHOWN{2) Zilog CHOWN(2)

NAME
chown - change owner and group of a file

SYNOPSIS
int chown (path, owner, group)
char *path;
int owr1er, group;

DESCRIPTION
Path points to a path name naming a file. The owner ID and
group ID of the named file are set to the numeric values
contained in owner and group respectively.

Only processes with effective user ID equal to the file
owner or super-user may change the ownership of a file.

If chown is invoked by other than the super-use1:, the set­
user-ID and set-group-ID bits of the file mode, 04000 and
02000 respectively, will be cleared.

Chown will fail and the owner and group of the named file
will remain unchanged if one or more of the following are
true:

A component of the path prefix is not a directory.
(gNOTDIR]

The named file does not exist. [ENOENT]

Search permission is denied on a component of the path
p1:efix. [EACCES]

The effective user ID does not match the owner of the
file and the effective user ID is not super-user.
[BPERM]

The named file resides on a read-only file system.
(gROFS]

Path points outside the process's allocated address
space. [EFAULT]

RETURN VALOll!:
Upon successful completion, a value of 0 is returned. Oth­
erwise, a value of -1 is returned and errno is set to indi­
cate the error.

SEE ALSO
chmod (:2) •

ASSEMBLER
CONSTANT CHOWN := 16

1 Bell 1

CHOWN(2) Zilog CHOWN(2)

"r non-segmented: path in r0 * !
'ir non-segmented owner in rl * !
"r non-segmented group in r2 * !
~r (if segmented: path in rr0) * ! ,, (if segmented: owner in r2 * !
'" (if segmented: 9roup in r3 * !

clr r4
SC #CHOWN

! "" return value in r4 *!
! 7r carry flag set if error * !

2 Bell 2

CHROOT(2) Zilog CHROOT(2)

NAME
chroot - change root directory

SYNOPSIS
int chroot (dirname)
char *dirname;

DESCRIPTION
Dirname is the address of the pathname of a directory, ter­
minated by a null byte. Chroot sets the root directory, the
starting point for path names beginning with /. The call is
restricted to the super-user.

SEE ALSO
cd (1) , chd i r (2) •

DIAGNOSTICS
Chroot will fail and the root directory will
unchanged if one or more of the following are true:

remain

Any component of the path name is not a directory.
[ENOTDIR]

The named directory does not exist. [ENOENT]

The effective user ID is not super-user. [EPERM]

Dirname points outside the process's allocated address
space. [EFAULT]

RETURN VALU:E
Upon successful completion, a value of 0 is returned. Oth­
erwise, a value of -1 is returned and errno is set to indi­
cate the error.

ASSEMBLER
CONSTANT CHROOT := 61

!* dirname in r0 * !
! * (if segmented: dirname in rr0) *!

clr r4
SC #CHROOT

! * return value in r4 * !
!* carry flag set if error * !

1 Bell 1

CLOSE(2) Zilog CLOSE(2)

NAME
close - close a file

SYNOPSIS
int close (fildes)
int f ildes; -

DESCRIPTION
Given a file descriptor such as returned from an open(2),
creat(2), dup(2), or pipe(2) call, close closes the associ­
ated file. A close of all files is automatic on exit, but
since there is a limit on the number of open files per pro­
cess, close is necessary for programs that deal with many
files.

Files are closed upon termination of a process, and certain
file descriptors can be closed by exec(2) (ioctl (2)).

SEE ALSO
creat(2), dup(2), open(2), pipe(2), exec(2),
ioctl (2) •

fcntl(2),

DIAGNOSTICS
Close will fail if fildes is not a valid open file descrip­
tor. [EBADF]

RETURN VALUE
Zero is returned if a file is closed; -1 is returned for an
unknown file descriptor and errno is set to indicate the
error.

ASSEMBLER
CONSTANT CLOSE := 6

!* fildes in r0 *!
clr r4
SC #CLOSE

!* return value in r4 *!
!* carry flag set if error *!

1 Bell 1

CREA'r (2) Zilog CREAT{2)

NAME
creat - create a new file

SYNOPSIS
int c1~eat (file, mode)
char ":file;
int mode;

DESCRIPTION
Creat creates a new file or prepares to rewritE~ an existing
file, given as the address of a null-terminated string. If
the file did not exist, the file's owner ID is set to the
process's effective user ID, the file's group ID is set to
the process's effective group ID, and the low-order 12 bits
of the file mode are set to the value of mode modified as
follows:

All bits set in the process's file mode creation mask
are cleared. See umask(2).

'I'he "save text image after execution bit" of the mode
is cleared.

See chmod (2) for the construction of the mode ctrgument.

If the file did exist, its mode and owner remain unchanged
but it is truncated to 0 length.

The file is also opened for writing, and its file descriptor
is returned.

The mode given is arbitrary; it need not allow writing.
This~feature is used by programs that deal with temporary
files of fixed names. The creation is done with a mode that
forbids writing. If a second instance of the program
attempts a creat, an error is returned and the program knows
that the name is unusable for the moment.

SEE ALSO
wr it e (2) , c 1 o s e (2) , chm od (2) , um ask (2) •

DIAGNOSTICS

1

Creat will fail if one or more of the following are true:

A component of the path pref ix is not a directory.
[ENOTDIR]

A component of the path prefix does not
[ENOENT]

exist.

Search permission is denied on a component of the path
prefix. [EACCES]

Bell 1

CREAT(2) Zilog CREA'r (2)

The path name is null. [ENOENT]

The file does not exist and the directory in which the
file is to be created does not permit writing.
[EACCES]

The named file resides or would reside on a read-only
file system. [EROFS]

The file is a pure procedure (shared text) file that is
being executed. [ETXTBSY]

The file exists and write permission is
[EACCES]

denied.

The named file is an existing directory. [EISDIR]

There are al ready too many files open. [EMF I LE]

File points outside the process's allocated address
space. [EFl~ULT]

RETURN VALUE
Upon successful completion, a non-negative integer, namely
the file descriptor, is returned. Otherwise, a value of -1
is returned and I errno is set to indicate the error.

ASSEMBLER

2

CONSTANT CREAT := 8
!* filename, mode in r0, rl respectively*!
! ~~ (segmented: filename, mode in rr0, r2) * !

sc #CREAT
!* return value in r4 *!
!* carry flag set if error *!

Bell 2

DUP(2) Zilog DUP (2)

NAME
dup, dup2 - duplicate an open file descriptor

SYNOPSIS
int dup (fildes)
int f ildes;
dup2----cflldes, fildes2)
int fil~.es, fildes2;

DESCRIPTION
Given a file descriptor returned from an open(2), pipe(2),
or creat(2) call, dup allocates another file descriptor
synonymous with the original. The new file descriptor is
returned. It has the following in common with the original:

Same open file (or pipe).

Same file pointer.
one file pointer.)

(i.e., both file descriptors share

Same access mode (read, write or read/write).

The new file descriptor is set to remain open ac1:oss exec(2)
system calls. See fcntl(2).

The file descriptor returned is the lowest one available.

In the second form of the call, fildes is a file descriptor
referring to an open file, and fildes2 is a non-negative
integer less than the maximum value allowed for file
descriptors. Dup2 causes fildes2 to refer to the same file
as fildes. If fildes2 already referred to an open file, it
is closE~ first.

SEE ALSO
creat (2), close (2), exec (2), fcntl (2), open (2), pipe (2).

DIAGNOSTICS
Dup will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADF]

Twenty (20) file descriptors are currently
[EMF ILE]

open.

RETURN VALUE
Upon successful completion a non-negative integer, namely
the file descriptor, is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

ASSEMBLER
CONSTANT DUP := 41

1 Bell 1

DUP(2) Zilog DUP(2)

! * fildes, fildes2 in r0, rl respectively * !
set r0,#6 !* dup2 calls only * !
SC #DUP

! * return value in r4 * !
!* carry flag set if error * !

The dup2 entry is implemented by in an OR condition 0100
with fildes.

2 Bell 2

EXEC (2) Zilog EXEC(2)

NAME
execl, execv, execle, execve, execlp, execvp
file

execute a

SYNOPSIS
int execl (file, arg0, argl, .•. , argn, 0)
char *!ile, *arg0, *argl, ••• , *argn;

int execv (file, argv)
char *!ile, *argv[];

int execle (file, arg0, argl, ••. , argn, !,
char *!ile, *arg0, *argl, ••• , *argn, *envp[

int execve (file, argv, envp);
char *!ile, *argv[] , *envp[] ;

int execlp (file, arg0, argl, ... , argn, !)
char *!ile, *arg0, *argl, ••. , *argn;

int execvp (file, argv)
char *!ile, *argv[~]-;-

DESCRIPTION

1

Exec in all its forms overlays the calling process with
file, then transfers to the entry point of the core image of
the file. There can be no return from a successful exec;
the calling core image is lost.

File descriptors open in the calling process remain open in
the new process, except for those whose close-on-exec flag
is set; see fcntl(2). For those file descriptors that
remain open, the file pointer is unchanged.

Ignored signals remain ignored across these calls, but sig­
nals that are caught (signal(2)) are reset to their default
values.

Profiling is disabled for the new process; see profil(2).

Each user has a real user ID and group ID and an effective
user ID and group ID. The real ID identifies the person
using the system; the effective ID determines the access
privileges. Exec changes the effective user and group ID to
the owner of the executed file if the file has the set­
user-ID or set-group-ID modes. The real user ID is not
affected.

The new process also inherits the following attributes from
the calling process:

Bell 1

EXEC(2) Zilog EXEC(2)

nice value (see nice(2))
process ID
parent process ID
process group ID
tty group ID (see exit(2) and signal(2))
trace flag (see ptrace(2) request 0)
time left until an alarm clock signal (see alarm(2))
current working directory
root directory
file mode creation mask (see umask(2))
file size limit (see ulimit(2))
utime, stime, cutime, and cstime (see times(2))

From C, two interfaces are available. Execl is useful when
a known file with known arguments is being called; the
arguments to execl are the character strings constituting
the file and the arguments; the first argument is conven­
tionally the same as the file name or its last component. A
0 argument must end the argument list. Remember that a 0L
must end the argument list in the case of a segmented pro­
gram making the call to execl.

The execv version is useful when the number of arguments is
unknown in advance; the a~guments to execv are the name of
the file to be eKecuted and a vector of strings containing
the arguments. The last argument string must be followed by
a 0 pointer, which must be a 0L in the case of a segmented
program making the call to execv.

When a C program is executed, it is called as follows:

main(argc, argv, envp)
int argc;
char **argv, **envp;

where argc is th•: argument count and argv is an array of
character pointers to the arguments themselves.

Argc is at least one and the first member of the array
points to a string containing the name of the file.

Argv is directly usable in another execv because argv argc
] is 0.

Execlp and execlvp are called with the same arguments as
execl and execv but dupli~ate the shell's actions in search­
ing for an executable file in a list of directories. The
directory list is obtained from the environment.

ARGUMENTS

2

The file argument: is a pointer to the file to be executed.
The path prefix for this file is obtained by a search of the

Bell 2

EXEC(2) Zilog EXEC(2)

FILES

directories passed as the environment line "PATH =" (see
environ(?)). The environment is supplied by the shell (see
sh (1)) .

The pointers arg0, argl address null-terminated
strings.. These strings constitute the argument list avail­
able to the new process. Conventionally, arg0 i:s the name
of the file.

Argv is an array of character pointers to null-terminated
strings. These strings constitute the argument list avail­
able to the new process. By convention, argv must have at
least one member, and it must point to a string that is the
same as file (or its last component). Argv is tierminated by
a null pointer.

Envp is a pointer to an array of strings that constitute the
environment of the process. Each string consists of a name,
an =, and a null-terminated value. The array of pointers is
terminated by a null pointer. In the case of a segmented
program doing the exec, all nulls will be two words of 0.
The shell (sh(l)) passes an environment entry for each glo­
bal shell variable defined when the program is called.

See environ(S) for some conventionally used names. The C
run-time start-off routine places a copy of envp in the glo­
bal cell environ, which is used by execv and execl to pass
the environment to any subprograms executed by the current
program. The exec routines use lower-level routines as fol­
lows to pass an environment explicitly:

execle(file, arg0, argl, •.• , argn, 0, environ);
execve(file, argv, environ);

/bin/sh shell, invoked if command file found by execlp or
execvp

SEE ALSO
fork (2), environ (5).

DIAGNOSTICS

3

Exec will fail and return to the calling process if one or
more of the following are true:

One or more components of the new process file's path
name do not exist. [ENOENT]

A component of the new process file's path prefix is
not a directory. [ENOTDIR]

Search permission is denied for a directory listed in
the new process file's path prefix. [EACCE:S]

Bel 1 3

EXEC(2) Zilog EXEC(2)

The new process file is not an ordinary file. [EACCES]

The new process file mode denies execution permission.
[EACCES]

The new process file has the appropriate access permis­
sion, but has an invalid magic number in its header.
[ENOEXEC]

The new process file is a pure procedure (shared text)
file that is currently open for writing by some pro­
cess. [ETXTBSY]

The new process requires more memory than is allowed by
the system-imposed maximum MAXMEM. [ENOMEM]

The number of bytes in the new process's argument list
is greater than the system-imposed limit of 5120 bytes.
[E2BIG]

The new process file is not as long as indicated by the
size values in its header. [E:FAULT]

Path, argv, or envp point to an illegal address.
[EFAUL~

RETURN VALUE
If exec returns to the calling process an error has
occurred; the return value will be -1 and errno will be set
to indicate the error.

LIMITATIONS
If execvp is called to execute a file that is a shell com­
mand file, and if it is impossible to execute the shell, the
values of argv [~JI and argv [-,!_] are modified before return.

ASSEMBLER

4

CONSTANT EXECE .- 59

environ LABEL

'***********1f***************************************' . .
!* execl (filename, arg0, argl, ••• , 0) *!
!* execute a file - linear argument transmission *!
!* environment passed automatically *!
'***********"***************************************' . .

!* filename in r0 *!
!* pointer to top of stack*!
!* in rl *!
!* (arg0 at top *!

Bell 4

EXEC(2)

5

Zilog EXEC(2)

'* argl below it, *!
* 0 below all args *!
* that is, pushed first) * !
* (segmented: same as above only use ~

* rr0 and rr2. Zero pushed on stack i

* is a long) * !
ld r2, environ * envp pointer *!

* (segmented: ldl rr4 , __ environ) * !
SC #EXECE

!* return value in r4 *!
!* if returns, error*!

!***!
!* execv (filename, argv) *!
!* execute a file - vectored argument transmission*!
!* environment passed automatically *!
!**·~********!

!* filename, argv in r0 * !
!* rl respectively * !
!* (segmented: filename,, argv in
!* rr0, rr2) * !

ld r2, environ !* envp pointer * !
! * (segmented: ldl rr4, environ) --

SC #EXECE
!* return value in r4 * !
!* if returns, error * !

!**~'********!
!* execle (filename, arg0, argl, , 0, env) *!
!* execute a file - linear argument transmission *!
!***!

* filename in r0 *!
* pointer to top of stack *!
* in rl *!
* (arg0 at top, *!
* argl below it, •.• *!l
* 0 below all args, *!
* pushed first) *!

* !

* !

* (segmented: filename, pointer *!
* in rr0, rr2. Push a long zero) * !

ld r 2, r 1
ld r3,#32768
cl:r· r4

* note: for segmented programs, the *!
* appropriate assembly language should

!* be used to leave rr4 pointing to *!
cpir r4,@r2,r3,z !* environ instead of r2 *!
SC #EXECE

!* return value in r4 *!

Bell 5

EXEC(2)

6

Zilog EXEC(2)

!* if returns, error *!

!***!
!* execve (filename, argv, env) *!
!* execute a file - vectored argument transmission*!
!***!

!* filename, mode, env in *!
!* r0,rl,r2, respectively*!
!* (segmented: filename, mode, env *!
!* in rr0, rr2, rr4) *!

SC #EXECE
!* return value in r4 *!
!* if returns, error *!

Bell 6

Zilog EXIT (2)

NAME
exit - terminate process

SYNOPSIS
exit (status)
int st.at us;

exit (status)
Tnt status;

DESCRIPTION
Exit is the normal means of terminating a process. Exit
closes all the process's files and notifies the parent pro­
cess if it is executing a wait. The low-order eight bits of
status are available to the parent process; see wait(2).

If the parent process of the calling process is not execut­
ing a wait, the calling process is transformed into a zombie
process. A zombie process is a process that only occupies a
slot in the process table, it has no other space allocated
either in user or kernel space. The process table slot that
it occupies is partially overlaid with time accounting
information (see <~/proc.~>) to be used by times(2).

The parent process ID of all of the calling process's e~ist­
ing child processes and zombie procQsses is set to 1. This
means the initialization process (see intro(2)) inherits
each of these processes.

An accounting record is written on the accounting file if
the system's accounting routine is enabled; see acct(2).

If the process ID, tty group ID, and process group ID of the
calling process are equal, the SIGHUP signal is sent to each
processes that has a process group ID equal to that of the
calling process. This call can never return.

The C function exit can cause
final sys exit. The function

cleanup actions before the
exit circumvents all cleanup.

SEE ALSO
signal(2), wait(2). WARNING See WARNING in signal(2).

ASSEMBLER
CONSTANT XIT .- 1

!* status in r0 *!
SC #XIT !* no return * !

1 Bell 1

FCNTL(2) Zilog FCNTL(2)

NAME
fcntl - file control

SYNOPSIS
#include <fcntl.h>

int fcntl (fildes, cmd, arg)
int fildes, cm~, arg;

DESCRIPTION

1

Fcntl provides for control over open files. Fildes is an
open file descriptor obtained from a creat(2), open(2),
dup(2), fcntl, or pipe(2) system call.

The cmds available are:

F DUPFD

F GETFD

F SETFD

F GETFL

F SETFL

Return a new file descriptor as follows:

Lowest numbered available file descriptor greater
than or equal to arg.

Same open file (or pipe) as the original file.

Same file pointer as the original file (i.e., both
file descriptors share one file pointer).

Same access mode (read, write or read/write).

Same ffle status flags (i.e., both file descriptors
share the same file status flags).

The close-on-exec flag associated with the new file
descriptor is set to remain open across exec(2) sys­
tem calls.

Get the close-on-exec flag associated with the file
descriptor fildes. If the low-order bit is B the
file will remain open across exec, otherwise the file
will be closed upon execution of exec.

Set the close-on-exec flag associated with fildes to
the low-order bit of~ (9.or 1 as above).

Get file status flags.

Set file status flags to arg. Only certain flags can
be set; see fcntl(7).

Bell 1

FCNTL (2) Zilog FCNTL(2)

Fcntl will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADF]

Cmd is F DUPFD and 20 file descriptors are currently
open. [EMF ILE]

Cmd is F DUPFD and arg is negative or greate1: than 20.
[EINVAL]

RETURN VALUE
Upon successful completion, the value returned depends on
cmd as follows:

F DUPFD

F GJ~TFD

F Sl~TFD

F G:ETFL

F SETFL

A new file descriptor.

Value of flag (only the low-order bit is
defined).

Value other than -1.

Value of file flags.

Value other than -1.
Otherwise, a value of -1 is returned and errno is set to
indicate the error.

SEE ALSO
close(2), exec(2), open(2), fcntl(7).

2 Bell 2

FORK(2) Zilog FORK(2)

NAME
fork - spawn new process

SYNOPSIS
int fork ()

DESCRIPTION
Fork is the only way new processes are created.
process's image is a copy of the caller of fork.
differences are:

The child process has a unique process ID.

The new
The only

The child process has a different parent process ID
(i.e., the process ID of the parent process).

The child process's utime(2} stime(2) cutime, and
cstime are set to B; see times(2).

Fork returns a value of B to the child process.

Fork returns the process ID of the child process to the
parent process. This process ID is used by wait(2).

Files open before the fork are shared, and have a common
read-write pointer. This is the way that standard input and
output files are passed and also how pipes are set up.

Only the super-user can take the last process-table slot.

DI.AGNOSTICS
Fork will fail and no child process will be created if one
or more of the following are true:

The system-imposed limit on the total number of
processes under execution would be exceeded. [EAGAIN]

The system-imposed limit
processes under execution
exceeded. [EAGAIN]

on
by

the total number of
a single user would be

RETURN VALUE
Upon successful completion, fork returns a value of 0 to the
child process and returns the process ID of the child pro­
cess to the parent process. Otherwise, a value of -1 is
returned to the parent process, no child process is created,
and errno is set to indicate the error.

SEE ALSO
exec (2) , wait (2) •

l Bell 1

FORK(2)

ASSEMBLER

2

Zilog FORK(2)

CONSTANT FORK .- 2

sc #FORK
<instruc> !* new process returns here, parent UserID in

r4 .•• this instruction must be 1 word, and
is usually a "jr" instruction *!

<instruc> !* old process returns here, child process ID
in r4, carry flag set if error *!

Bell 2

GETPI0(2) Zilog GETPID(2)

NAME
getpid, - get process IDs
getpgrp - get group process IDs
getppid - get parent process IDs

SYNOPSIS
int getpid ()
int getpgrp ()
int getppid ()

DESCRIPTION
Getpid returns the process ID of the calling process.

Getpgrp returns the process group ID of the calling process.

Getppid returns the parent process ID of the calling pro­
cess.

SEE ALSO
exec (2), fork (2)" intro (2), setpgrp(2), signal (2),
mktemp(3).

ASSEMBLER
CONSTANT GETPID := 20

SC #GETPID
!* pid returned in r4, carry flag set if error *!

1 Bell 1

GETUID(2) Zilog GETUID(2)

NAME
getuid - get user identity
getgid - get group identity
geteuid - get effective user identity
getegid - get effective group identity

SYNOPSIS
int gE:!tuid ()

int gE~teuid ()

int 9E:!tgid()

int gE~tegid ()

DESCRIPTION
Getuid returns the real user ID of the current process,
geteuid the effective user ID. The real user ID identifies
the person who is logged in, and the effective user ID
determines access permission.

Getgid returns the real group ID, getegid the effective
group ID.

SEE ALSO
setuid(2).

ASSEMBLER
CONSTANT GETUID := 24

SC #GETUID
!* real user ID in r4, effective user ID in r5 *!

CONSTANT GETGID := 47

SC #GETGID
!* real group ID in r4, effective group ID in rs *!

1 Bell 1

IOCTL(2) Zilog IOCTL(2)

NAME
ioctl - input / output control device

SYNOPSIS
#include <sys/ioctl.h>

ioctl (fildes, request, arg)

DESCRIPTION
Ioctl performs a variety of functions on character special
files (devices). The writeups of various devices in Section
4 discuss how ioctl applies to them.

Ioctl will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADF]

Fildes is not associated with a character special dev­
ice. [ENOTTY]

Request or arg is not valid. See tty(4). [E INVAL]

RETURN VALUE
If an error has occurred, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
tty(4).

1 Bell 1

KILL(2) Zilog KILL(2)

NAME
kill - send signal to a process

SYNOPSIS
kill (p:id I Sig);
int p.id ,,-sig;

DESCRIPTION
Kill sends the signal (sig) to the process or group of
processE:!S specified bYthe the process ID (~~). See sig­
nal (2) for a list of signals. If sig is 0 (the null signal
) , error checking is performed but no signal is actually
sent. 'rhis can be used to check the validity of pid.

The sending and receiving processes must have the same
effective user ID (unless the process is sending to itself),
otherwise this call is restricted to the super-user.

If the process number is 0, the signal is sent to all other
processes in the sender's process group (tty(4)).

If the process number is -1, and the user is not the super­
user, the signal is sent to all other processes in the
sender's process group excluding process! and E,;rocess .!·

If the process number is -1, and the user is the super-user,
the signal is broadcast universally except to processes 0
and 1, the scheduler and initialization processes, (
init(M)). If pid is negative but not -1, ~will be sent
to all processes whose process group ID is equal to the
absolute value of pid. Processes can send signals to them-
selves. --

DIAGNOSTICS
Kill will fail and no signal will be sent if one or more of
the following are true:

si~~ is not a valid signal number. [EINVAL]

No process can be found corresponding to that specified
by pid. [ESRCH]

The sending process is not sending to itself, its
effective user ID is not super-user, and its effective
user ID does not match the real user ID of the receiv­
ing process. [EPERM]

RETURN VALUE

1

Upon successful completion, a value of 0 is returned. Oth~
erwise, a value of -1 is returned and errno is set to indi­
cate th~a error.

Bell 1

KILL(2) Zilog KILL(2)

SEE ALSO
kill (1), getpid (2), setpgrp(2), signal (2).

ASSEMBLER
CONSTANT KILL := 37

! * process ID in r0, signal in rl * !
clr r4
SC #KILL

!* return value in r4 *
!* carry flag set if error * !

2 Bell 2

LINK(2) Zilog LINK(2)

NAME
link - link to a file

SYNOPSIS
int link (filel, file2)
char *filel, *file2;

DESCRIPTION
A link to filel is created; the link has the name filel.
Either name can be an arbitrary path name. Zero is returned
when a link is made.

SEE ALSO
ln(l), unlink(2) ..

DIAGNOSTICS
Link will fail and no link will be created if one or more of
the following are true:

A component of either path prefix is not a directory.
[ENOTDIR]

A component of either path prefix does not exist.
[ENOENT]

A component of either path prefix denies search permis­
sion. [EACCES]

The file named by filel does not exist. [ENOENT]

The link named by file2 exists. [EEXIST]

The file named by filel is a directory and the effec­
tive user ID is not super-user. [EPERM]

The link named by file2 and the file named by filel are
on different logical devices (file systems) .. [EXDEV]

f ile2 points to a null path name. [ENOENT]

The requested link requires writing in a directory with
a mode that denies write permission. [EACCES]

The requested link requires writing in a directory on a
read-only file system. [EROFS]

Path points outside the process's allocated address
space. [EFAULT]

RETURN VALUE

1

Upon successful completion, a value of 0 is returned. Oth­
erwise, a value of -1 is returned and errno is set to

Bell 1

LINK(2) Zilog LINK(2)

indicate the error.

SJE:E ALSO
link(lM), unlink(2).

ASSEMBLER

2

CONSTANT LINK := 9

clr r4
sc #LINK

!* filel, file2 in r0, rl respectively *!
! * (s e gm en t ed : f i 1 e 1 , f i le 2 in r r 0 , r r 2) * !

!* return ~alue in r4 *!
!* carry flag set if error *!

Bell 2

LKDATA(2) Zilog LKDATA(2)

NAME
lkdata, unlk - lock and unlock data against concurrent
access

SYNOPSIS
linclude <sys/lockblk.h>

long lkdata (fildes, flag, lkblk);
int fildes, flag; --
struct lockblk *lkblk;

long unlk (fildes, flag, lkblk);
int fildes, flag; --
struct lockblk *lkblk;

DESCRIPTION

1

Lkdata locks regions of files against access by other
processes. The locking process must have write permission
on the file or have the file open for writing. A process
that attempts an access forbidden by another process's lock
sleeps until the other process terminates or removes the
lock.

Fildes is an open file descriptor that identifies the file
to be locked (open(2)).

Flag is the bitwise or of the following constants.

Constant Value Function
LKHONLY 0 Read-only lock
LKE:XCLUSIVE 1 Exclusive lock
LKUSP 0 Lock region begins at

read/write pointer
LKE~XP 2 Lock region beginning speci-

f ied by lkblk.
LKBLOCKING 0 Block if region not available
LKNOBLOCK 4 Return error if 1:eg ions not

available

A lock is either exclusive or read-only; an exclusive lock
forbids other processes all access to the locked region; a
read-only lock forbids all access except reading~

If flag specifies no blocking and part of th~~ specified
region is already locked by another process, lkdata returns
with an EACCES error (intro(2)). If flag specifies block­
ing and part of the specified region is already locked by
another process, lkdata does not return until the whole
region is available. If a blocking lock would cause
deadlock (two process waiting indefinitely for each other),
lkdata returns with an EDEADLOCK error.

Zilog 1

LKDATA(2) Zilog LKDATA(2)

2

If flag specifies LKUSP, the locked region begins relative
to the read/write pointer, using the offset in the lkblk
structure. (lseek(2)). If instead flags specifies LKEXP,
the locked region is specified solely by lkblk.

The third argument points to a structure that specifies the
length and origin of the lock region.

$ lklen specifies the length of the locked region. If
lklen is set to 0, the entire file past the starting
point of the lock, including the entire region past the
end of file is locked: other processes are not even
permitted to append to the file.

lkoff and lkwhnce specify the beginning of the locked
region.)f lkwhnce is 0, the locked region begins at
lkoff bytes from the beginning of the file. If lkwhnce
is 1, the locked region begins at lkoff bytes from the
read/write pointer. If lkwhnce is 2, the locked region
begins at lkoff bytes from the end of the file. A
negative lkoff is permitted as long as the specified
region does not begin before the beginning of the file.
An illegal negative offset returns EINVAL.

It is permitted to lock a region past the end of the file;
if this is done, only the locking process can extend the
file into that region. In particular, if the first byte
past the end of the file is locked, no other process can
append to the file. Thus appends to the file can be locked
out by locking the entire file (setting len to 0) or by
locking the first byte past the end of the file.

If the same process locks two overlapping regions the two
regions are merged into a single region. If one of the
regions is read-only and the other is exclusive, the over­
lapping region is exclusive.

Unlk unlocks regions of a file that may have been locked by
lkdata. Unlk has no effect on bytes not previously locked
and restores normal access to bytes previously locked. If
part of the specified region is locked by another process,
unlk will successfully unlock its processes' own locks
without affecting locks held by other processes. It is not
an error to unlock a region that includes bytes that are not
locked or to unlock just part of a single locked region.

A file is also unlocked upon the last close(2) of that file
by the associated process.

The arguments to unlk have the same
lkdata, although in flag LKRONLY
ignored. ~~

Zilog

meaning as those
and LKEXCLUSIVE

to
are

2

LKDATA(2) Zilog LKDATA(2)

Here are the declarations in /usr/incl ude/~.~/lockblk • .!:!, :

struct lockblk {
long lklen; /*length of region to

/*offset of 1st byte,
/* flag=2,3,6,7

lkwhnce;/*whence flag ala lseek,
/* flag=2,3,6,7

long lkoff;

int

}

#define LKRONLY 0 /* Request is for ct
#define LKEXCLUSIVE 1 /* Request is for am

lock
only w/

only w/

read-only
exclusive

#define LKUSP 0 /* Use current seek pointer
#define LKEXP 2 /* Use explicit offset
#define LKBLOCKING 0 /* Block if request cannot be

/* immediately honored
#define LKNOBLOCK 4 /* Do not block, but return an

I* if the request

lock
loc

err

/* cannot immediately be honored

static long
lkdata(fd,flag,lk)
int fd;
int flag;
struct lockblk *lk;
{

int stat;
long temp;

switch(lk->lkwhnce
{

case 0:
return(lk->lkoff >= 01 ? lk->lkoff
break;

case 1:

-11);

return((temp =lk->lkoff+tell(fd)) >= 01? temp
break;

}

case 2:
temp= tell(fd);
lseek(fd,temp,01);
return(temp);
break;

default:
return(-11);

}

Zilog 3

LKDATA(2) Zilog LKDATA(2)

static long
unlk(fd,flag,lk)
int fd;
int flag;
struct lockblk *lk;
{

return(lkdata(fd,flag,lk));
}

SEE ALSO
unlk(2), lseek(2).

DIAGNOSTICS
If successful, the call returns the offset of the beginning
of the locked region. If unsuccessful, the call returns -1.

An EDEADLOCK error (intro(2)) is overcome by removing the
lock that is causing the deadlock. One sure way to overcome
EDEADLOCK is for the process receiving the error to remove
its locks one by one until the lkdata call no longer returns
EDEADLOCK.

LIMITATIONS
The lockblk structure cou1d have been a union, but it com­
plicates the implementation for only marginal advantage.

The access control checks for this call are somewhat dif­
ferent than those for other calls. In particular, if the
file is open only for reading, lkdata checks whether the
process currently has write permission to the file. This,
can lead to inconsistency in the application of the access
control rules. For example, consider a setuid program.
While operating under the effective uid, it can lock a file
opened only for reading but writable by the effective uid.
If it reverts to its real uid, the file may no longer be
writable and subsequent locking calls fail. There is no
inconsistency if the file is opened for reading and writing.
A similar inconsistency exists if the access permissions on
the file are changed after a process opens it for reading
only.

ASSEMBLER
CONSTANT LKDATA := 49

!* fdes, flag, lkblk in r0, rl and r2 *!
!* (if segmented: fdes, flag, in r0, rl, *!

!* lkblk in rr2) *!
sc #LKDATA

!* return value in rr4, carry flag set if error *!

4 Zilog 4

LOCK (2) Zilog LOCK (2)

NAME
lock - lock a process in primary memory

SYNOPSIS
lock (_!: 1 ag)

DESCRIPTION
If the flag argument is nonzero, the process executing this
call is--ri'ot swapped except if it is required to grow. If
the argument is zero, the process is unlocked. This call
can be executed only by the super-user.

I.IMITATIONS
Locked processes interfere with the compaction of primary
memory and can cause deadlock. This system call is not con­
sidered a permanent part of the system.

ASSEMBLER

1

CONSTANT LOCK := 53

clr r4
SC #LOCK

!*

!*
!*

flag in r0 *!

return value in r4 *!
carry flag set if error *!

Bell 1

LSEgK(2) Zilog LSEEK(2)

NAME
l~eek - move read/wri~e pointer

SYNOPSIS
long !seek (fildes, offset, whence)
long offset; __ _
int fildes, whE~nce;

DESCRIPTION
The file descriptor refers to a file
writing. The read (alternatively
file is set as follows:

open for reading or
write) pointer for the

$ If whence is 0, the pointer is set to offset
bytes.

$ If whence is 1, the pointer is set to its current
location plus offset.

If whence is 2, the pointer is set to the size of
the~:rre--plus offset.

The returned value is the resulting pointer location.

Seeking far beyond the end of a file then writing creates a
gap that occupies no physical space and reads as zeros.

SEE ALSO
open(2), creat(2), fseek(3), dup(2), fcntl(2).

DIAGNOSTICS
Lseek will fail and the file pointer will remain unchanged
if one or more of the following are true:

Fildes is not an open file descriptor. [EBADF]

Fildes is associated with a pipe or fifo. [ES PIPE]

Whence is not 0, 1 or 2. [EINVAL and SIGSYS signal]

The resulting file pointer would be negative. [EINVAL]

Some devices are incapable of seeking. The value of the
file pointer associated with such a device is undefined.

RETURN VALUE
Upon successful completion, a non-negative integer indicat­
ing the file pointer value is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

LIMITATIONS
Lseek should not be used for terminals or modems. It may

1 Bell 1

LSEEK(2) Zilog LSEEK(2)

produce undefined results for other character special files.

ASSEMBLER
CONSTANT LSEEK := 19

!* fildes in r0, high byte of offset in rl, *!
!* low byte of offset in r2, whence in r3 *!

subl rr4,rr4
SC #LSEEK

!* return value in rr4, carry flag set if error *!

2 Bell 2

MDMCTL(2) Zilog MDMCTL(2)

NAME
mdmctl - configure port for modem or terminal line.

SYNOPSIS
mdmctl (request, &ismodem, flag)
int request;
long ismodem;
int flag;

DESCRIPTION

1

The mdmctl sysbem call is used to configure the system
hardware and software to communicate with modems or termi­
nals. For the purpose of this system call, modems are
defined as Data Communications Equipment which require a
seven wire interface to the System 8000. Terminals are
defined as Data Terminal Equipment which require a three
wire connection to a System8000. These connections are a
subset of the R:~-232-f specification for such equipment.

Ports which are configured as modems have the following
characteristics. When an open(2) is attempted on such
ports, usually by the INIT(M) process, the System8000 will
raise its DSR (Data Set Ready) line, and it's CTS (Clear to
Send) line.--rrhc: open(2) sleeps until the DTR (Data Terminal
Ready) line is asserted. When the DTR line is dropped for
more than 1/60 of a second, a hangup Slgnal SIGHUP is sent
to all processes in that modem's process group. This signal
will terminate these processes unless they catch this sig­
nal.

Terminals use only three lines, TxD (Transmited Data), RxD
(Received Data), and GND (SignalGround). The open(2) will
never sleep in this configuration. Interrupts from the
other modem control lines are disabled. Nor will the Sys­
tem8000 assert any other modem control lines. Since inter­
rupts are disabled, system performance may be improved
because of the reduced overhead of processing interrupts
from noise on the other modem control lines.

Mdmctl is used in the following manner:
Ismodem is the address of a long. It's value is the bitwise
or of the lines which should be modems. Thus if lines zero
and two are to be modems there would be a one in bit posi­
tion zero and two (starting from the right, the least signi­
ficant position). Ismodem for such a case would be 0x5L.
Request is one of TIOCMCG or TIOCMCS which are defined in
<sys/~.E_>.
TIOCMCG causes the current setting.to be placed into loca­
tion denoted by ismodem.
TIOCMCS reconfigures the lines to the setting found at the
location denoted by ismodem disabling or enabling interrupts
from the lines as appropriate.

Zilog 1

MDMCTL(2) Zilog MDMCTL(2)

Flag is unused at this time. It should be set to zero.

SEE ALSO
open(2), tty(4), signal(2), init(M).
System 8000 Hardware Reference Manual.

ASSEMBLER
CONSTANT MDMCTL:= 62

!* request in r0, segment of addr in rl, *!
!* offset of addr in r2, flag in r3 *!

subl rr4,rr4
SC #MDMCTL

!* return value in rr4, carry flag set if error

2 Zilog 2

MKNOD(2) Zilog MKNOD(2)

NAME
mknod - make a directory or a special file

SYNOPSIS
int mknod (file,, mode, dev)
char *file;--
int mode, dev;

DESCRIPTION
Mknod creates a new file. The mode of the new file (includ­
ing directory and special file bits) is initialized from
mode, which is constructed by summing some of the following
values.

0xf000 file type: one of the following:
0xl000 fifo special
0x2000 character special
0x4000 directory
0x6000 block special
0x8000 or 0x0000 ordinary file

0x800 set user ID on execution
0x400 set group ID on execution
0x200 save text image after execution
0xlff access permissions; see umask(2)

Values of mode other than those above are undefined and
should not--se-used.

The file's owner ID is set to the process's effective user
ID. The file's group ID is set to the process's effective
group ID.

The low-order 9 bits of mode are modified by the process's
file mode creation mask: all bits set in the process's file
mode creation mask are cleared. (See umask(2)). If mode
indicates a block or character special file, dev is a confi­
guration dependent specification of a character-or block I/O
device. If mode does not indicate a block special or char­
acter special device, dev is ignored.

Mknod may be invoked only by the super-user for file types
other than FIFO special.

DIAGNOSTICS

1

Mknod will fail and the new file will not be created if one
or more of the following are true:

The process's effective user ID is not super-user.
[gpERM]

A component of the path prefix is not a directory.

Bell 1

MKNOD(2) Zilog MI<NOD(2)

[ENOTDIR]

A component of the path prefix does not
[E!NOENT]

exist.

The directory in which the file is
located on a read-only file system.

file exists. [EEXIST]

to be created
[EROFS]

is

Name points outside the process's allocated address
space. [EFAULT]

RETURN VALUE
Upon successful completion a value of 0 is returned. Other­
wise, a value of -1 is returned and errno is set to indicate
the error.

The first block pointer of the i-node is initialized from
dev.

LIMITATIONS
For ordinary files and directories, dev is normally zero.
In the case of a special file, dev specifies which special
file.

Mknod can be invoked only by the super-user.

SEE ALSO
mkd i r (1) , mknod (lM) , chmod (2) , exec (2) , umask (2) , f i 1 sys (5) ,
mknod(M).

ASSEMBLER
CONSTANT MKNOD := 14

!* name, mode, dev in *!
!* r0, rl, r2 respectively*!
!* (segmented: name, mode, dev in rr0, r2, r3) *!

clr r4
sc #MKNOD

!* return value in r4 *!
!* carry flag set if error *!

2 Bell 2

MKSEG(2) Zilog MKSEG(2)

NAME
mkseg - make a segment

SYNOPSIS
char *mkseg (segno,size);
unsigned segno;--sTze;

DESCRIPTION
The mkseg system call creates a new, unnamed, private seg­
ment and returns a pointer to it. The segment is created as
size bytes, rounded up to the nearest 256 byte boundary. The
initial contents are all 0's. The process issuing the mkseg
call must be operating in segmented mode.

The segno parameter specifies a preferred segment number.
Valid segment numbers range from 4-62 and 66-127. If there
is no preferred segment number, a value of 0 means that the
system will assign the next free segment.

SEE ALSO
s g b r k (2) , e K ec (2) , s g st a t (2) , s 1 d (1) •

DIAGNOSTICS
The mkseg call returns a ~lL on an error if:

* the segment will not fit into memory [ENOMEM],

* the preferred segment number is illegal [ENOSEG] ,

* too many segments would exist for the process [ENOSEG],

* or the preferred segment is already allocated.
[ENOSEG]

ASSEMBLER
CONSTANT MKSEG := 55

!* segno, size in * !
! * r0, rl respectively * !

ldl rr4, #0
SC #MKSE:G

!* return value in rr4 * !
!* carry flag set if error * !

1 Bell 1

MOUNT(2} Zilog MOUNT (2}

NAME
mount, umount - mount or remove file system

SYNOPSIS
int mount (special, directory, rwflag)
char *special, *directory;
int rwf: lag;

int amount (special)
char *special;

DESCRIPTION
Mount announces to the system that a removable file system
has be!en mounted on the block-structured special file spe­
cial. From then on, references to directory refer to the
root file on the newly mounted file system. Special and
directo~ are pointers to the appropriate path names.

Directo~ must exist already. Directory must be a directory
(unless the root of the mounted file system is not a direc­
tory). Its old contents are inaccessible while the file
system is mounted.

The rwflag argument determines whether the file system can
be written on; if it is 0 writing is allowed, if nonzero, no
writing is done. Physically write-protected and magnetic
tape file systems must be mounted read-only or errors will
occur when access times are updated, whether or not any
explicit write is attempted.

Umount announces to the system that the special file is no
longer to contain a removable file system. The associated
file reverts to its ordinary interpretation.

SEE ALSO
mount (M) , um o u n t (2) •

DIAGNOSTICS

1

Mount will fail if one or more of the following are true:

The effective user ID is not super-user. [EPERM]

Any of the named directories do not exist. [ENOENT]

A component of a path prefix is not a directory.
[ENOTDIR]

Special is not a block special device. [ENOTBLK]

The device associated with special does not exist.
[ENXIO]

Bell 1

MOUNT(2) Zilog MOUNT(2)

Directory is not a directory. [ENOTDIR]

Special or directory points outside the process's allo­
cated address space. [EFAULT]

Directory is currently mounted on, is someone's current
working directory or is otherwise busy. [EBUSY]

The device associated with special
mounted. [EBUSY]

is currently

RETURN VALUE
Upon successful completion a value of 0 is returned. Other­
wise, a value of -1 is returned and errno is set to indicate
the error.

ASSEMBLER

2

CONSTANT MOUNT := 21

!* special, mode, rwflag in *!
!* r0, rl, r2 respectively*!
!* (segmented: special, mode, rwflag in *!
! * rr0, rr2 and r4) * !

clr r4
SC #MOUNIT

!* return value in r4 *!
!* carry flag set if error *!

CONSTANT UMOUNT := 22

! * special in r0 * !
! * (segmented: special in rr0) * !

clr r4
SC #UMOUNT

! * return value in r4 * !
!* carry flag set if error * !

Bell 2

NICE(2) Zilog NICE(2)

MAME
nice - set program priority

SYNOPSIS
int nice (incr)
int inc~,;

DESCRIPTION
The scheduling priority of the process is augmented by incr.
Pos i ti vie priori ties get less service than normal. Priority
10 is recommended to long-running programs.

Negative increments are ignored except on behalf of the
super-user. The priority is limited to the range -20 (most
urgent) to 20 (least).

The priority of a process is passed to a child process by
fork(2). For a privileged process to return to normal
priority from an unknown state, nice should be called suc­
cessively with arguments -40 (goes to priority -20 because
of truncation), 20 (to get to 0), then 0 (to maintain compa­
tibility with previous versions of this call).

DIAGNOSTICS
Nice will fail and not change the nice value if incr is
negativE~ and the effective user ID of the callin9 prO'CeSs is
not SUpE:!r-user. [EPERM]

RETURN VALUE
Upon successful completion, nice returns the new nice value
minus 2i~. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

SEE ALSO
nice(l) ..

ASSEMBLER
CONSTANT NICE .- 34

!* incr in r0 *!
SC #NICE

!* return value in r4 *!
!* carry flag set if error *!

1 Bell 1

OPEN(2) Zilog OPEN(2)

NAME
open - open for reading or writing

SYNOPSIS
#include <fcntl.h>
int open (file, oflag[, mode])
char *file_; __
int of~ modE:;

DESCRIPTION

1

Open opens file for reading (if the optional mode is 0),
writing (if ttl'e optional mode is 1) or for both reading and
writing (if the optional mode is 2). File is a path name.
Open sets thE! file status flags according to the value of
oflag. Oflag values are constructed by or-ing flags from
the following list (only one of the first three flags below
may be used) :

0 RDONLY Open for reading only.

0 WRONLY Open for writing only.

0 RDWR Open for reading and writing.

O NDELAY This flag may affect subsequent reads and writes.
See read(2) and write(2).

When opening a FIFO with 0 RDONLY or 0 WRONLY set:

If 0 NDELAY is set:

An open for reading-only will return without
delay. An open for writing-only will return
an error if no process currently has the file
open for reading.

If 0 NDELAY is clear:

An open for reading-only will block
process opens the file for writing.
for writing-only will block until a
opens the file for reading.

until a
An open
process

When opening a file associated with a communication
line:

If 0 NDELAY is set:

The open will return without waiting for car­
rier.

If 0 NDELAY is clear:

Bell l

OPEN(2) Zilog OPEN(2)

The open will block until carrier is present.

O APPEND If set, the file pointer will be set to the end of
the file prior to each write.

O CREAT If the file exists, this flag has no effect. Oth­
erwise, the file's owner ID is set to the process's
effective user ID, the file's group ID is set to
the process's effective group ID, and the low-order
12 bits of the file mode are set to the value of
mode modified as follows (see creat(2)):

All bits set in the process's file mode crea­
tion mask are cleared. See umask(2).

The "save text image after execution bit" of
the mode is cleared. See chmod(2).

Warning: if the mode parameter is not provided in
the "implicit creat" case, the mode of the new file
is undefined.

O TRUNC If the file exists, its length is truncated to 0
and the mode and owner are unchanged.

0 EXCL If O EXCL and O CREAT are set, open will fail if
the file exists~

The file is positioned at the beginning (byte 0). The
returned file descriptor must be used for subsequent calls
for other input/output functions on the file.

The new file descriptor is set to remain open across exec
system calls. See fcntl(2).

No process may have more than 20 file descriptors open
simulta.neously.

DIAGNOSTICS

2

The named file is opened unless one or more of the following
are true:

A component of the path prefix is not a directory.
[E:NOTDIR]

O CREAT is not set and the named file does not exist.
[E.NOENT]

A component of the path prefix denies search permis­
sion. [EACCES]

Oflag permission is denied for the named file.

Bell 2

OPEN(2) Zilog OPEN(2)

[EACCES]

The named file is a directory and oflag is write or
read/write. [EISDIR]

The named file resides on a read-only file system and
of lag is write or read/write. [EROFS]

Twenty (20) file descriptors are currently
[EMF ILE]

open.

The named file is a character special or block special
file, and the device associated with this special file
does not exist. [ENXIO]

The file is a pure procedure (shared text) file that is
being executed and oflag is write or read/write.
[ETXTBSY]

File points outside the process's allocated address
space. [EFAULT]

O CREAT and O EXCL are set, and the named file exists.
[EEXIST]

0 NDELAY is set, the named file is a FIFO, 0 WRONLY is
set, and no process has the file open for reading.
[ENXIO]

RETURN VALUE
Upon successful completion, a non-negative integer, namely a
file descriptor, is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO
creat(2), read(2), write(2), dup(2), close(2).

ASSEMBLER
CONSTANT OPEN := 5

! * filename, oflag, and mode in r0, r 1, * !
! * and r2 respectively * !
!* (segmented : filename, oflag, and mode * !
!* in rr0, r 2, r3 respectively) * !

SC #OPEN
!* return value in r4 * !
!* carry flag set if error * !

3 Bell 3

PAUSE(2) Zilog PAUSE(2)

NAME
pause - stop until signal

SYNOPSIS
pause ()

DESCRIPTION
Pause never returns normally. It is used to give up control
while waiting for a signal from kill(2) or alarm(2). The
signal received must not cause termination or be currently
set up to be ignored by the calling process. If the signal
is caught by the calling process (see signal(2)) and control
is passed back from the signal catching function, the cal­
ling process resumes execution from the point of suspension;
pause returns a value of -1 and errno is set to EINTR.

SEE ALSO
kill(l), kill(2), alarm(2), signal(2), setret(3)1.

ASSEMBLER
CONSTANT PAUSE := 29

sc #PAUSE

1 Bell 1

PIPE(2) Zilog PIPE(2}

NAME
pipe - create an interprocess channel

SYNOPSIS
int pipe (fildes)
int fildes[2];

DESCRIPTION
The pipe system call creates an Input/Output mechanism
called a pipe. The file descriptors returned can be used in
read and write operations. When the pipe is written using
the descripto1~ fildes[l], up to 5120 bytes of data are buf­
fered before the writing process is suspended. A read using
the descriptor fildes[0J picks up the data. Writes with a
count of 5120 bytes or less are treated as a unit; no other
process can intersperse data.

It is assumed that after the pipe has been set up, two or
more cooperating processes, created by subsequent fork
calls, pass data through the pipe with read and write calls.

The shell has a syntax to set up a linear array of processes
connected by pipes.

Read calls on an empty pipe (no buffered data) with only one
end (all write file descriptors closed) returns an end-of­
file.

SEE ALSO
sh(l), csh(l), read(2), write(2), fork(2).

DIAGNOSTICS
The function value zero is returned if the pipe was created;
-1 if too many files (more than 20) are already open.
[EMFILE]

A signal is generated if a write on a pipe with only one end
is attempted.

LIMITATIONS
Should more than 5120 bytes be necessary in any pipe among a
loop of processes, deadlock occurs.

ASSEMBLER

1

CONSTANT PIPE := 42

SC :fl:PIPg
!* read file descriptor in r4 *!
!* write file descriptor in rs *!

Bell 1

PROFIL(2) Zilog PROFIL(2)

NAME
profil - execution time profile

SYNOPSIS
profil (buff, bufsiz, offset, scale)
sprofil ~no, buff, bufsiz, offset, scale)
char *buff; --
int se~gno, bufsiz, offset, scale;

DESCRIPTION
These calls are used to create a buffer of profiling infor­
mation that can tell the user where a program is spending
it's time. The sprofil(2) call is used only by segmented
programs. The segno is the segment number of the code that
is to be profiled. If a segmented program has many code
segments, a separate call to sprofil(2) for each segment
must be made. Non-segmented programs must use the profil(2)
call.

Buff points to an area of core whose length (in bytes) is
given by bufsiz. For sprofil remember that buff is a long
(segmented) address. After the call, the user's program
counter (pc) is examined each clock tick (60th second);
offset is subtracted from it, and the result multiplied by
scale. If the resulting number corresponds to a word inside
buff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point frac­
tion. with binary point at the left: 0177777(8) gives a 1-1
mapping of pc's to words in buff; 077777(8) maps each pair
of instruction words together:- 02(8) maps all instructions
onto the beginning of buff (producing a non-interrupting
core clock) •

Profiling is turned off by giving a scale of 0 or 1. It is
rendered ineffective by giving a bufsiz of 0. Profiling is
turned off when an exec is executed, but remains on in child
and parent both after a fork. Profiling may be turned off
if an update in buff would cause a memory fault.

RETURN VALUlg
0: no ·~rror
A -1 is returned by sprofile if:

The segment number is out of the given range, unused,
or a data segment [ENDSEG].

more than 10 code segments are being profiled [ENDPROF]

SEE ALSO
monito1r(3), prof(l), mon.out(S).

1 Bell 1

PROFIL(2)

ASSEMBLER

2

Zilog PROFIL(2)

CONSTANT PROFIL := 44

!* buf in r0, bufsiz in rl, offset in r2, scale in r3 *
SC #PROFIL

! return in r4, carry bit set on error !

CONSTANT SPROFIL := 52

!* segno in r0, buff in rl, r2 *!
!* bufsiz in r3, offset in r4, scale in rs *!

SC #SPROFIL
! return in r4, carry bit set on error

Bell 2

P'fRACE (2) Zilog PTRACE(2)

NAME
ptrace - process trace

SYNOPSIS
iinclude <signal.h> (if non-segmented parent)
linclwie <ssignal.h> (if segmented parent)

ptrace (request, pid, addr, data)
int *addr; --- ---- ----
int recj\iest, pid, addr, data;

sptrac•e (request, pid, addr, data)
int *addr;

DESCRIPTION

1

Ptrace allows a parent process to control the execution of a
child process, and examine and change its core image. Its
primary use is for the implementation of breakpoint debug­
ging.

Sptrace is the version of ptrace that should be used if a
segmented child is to be traced. (It does not matter what
the parent is.) Similarly, if a non-segmented child is to
be traced, use ptrace. The only difference between the two
calls is that sptrace must have a 32-bit "addr" as a parame­
ter whereas ptrace must have a 16-bit parameter "addr". The
compiler will produce addresses corresponding to the type
(segmented or non-segmented) of the parent; it is up to the
user. to make sure the address length is correct.

There are four arguments whose interpretation depends on a
request argument. Generally, pid is the process ID of the
traced process, which must be a child (no more distant des­
cendant) of the tracing process. A process being traced
behaves normally until it encounters some signal whether
internally generated like "privileged instruction" or exter­
nally generated like "interrupt." (See signal(2) for the
list.) Then the traced process enters a stopped state and
its parent is notified via wait(2). When the child is in
the stopped state, its core image can be examined and modi­
fied using ptrace. If desired, another ptrace request c~n
then cause the child either to terminate or to continue,
possibly ignoring the signal.

The value of the request argument determines the precise
action of the call:

0 This request is the only one used by the child process;
it declares that the process is to be traced by its
parent. All the other arguments are ignored. Either
the ptrace or sptrace system call can be issued; how­
ever, the third argument must be a word if ptrace is

Bell 1

PTRACE(2) Zilog PTRACE (2)

2

used and a long if sptrace is used. Peculiar results
occur if the parent does not expect to trace the child.

1,2 The word in the child process's address space at addr is
returned. If information and data (I and D) space are
separated, request 1 indicates I space and, 2 indicates
D space. Addr must be even. The child must be stopped.
The input data is ignored.

3 The word of the system's per-process data area
corresponding to addr is returned. Addr must be even
and less than the size of the per-process data area.
This space contains the registers and other information
about the process; its layout corresponds to the user
structure in the system.

4,5 The given data is written at the word in the process's
address spacE;-corresponding to addr, which must be even.
No useful value is returned. If! and D spaces are
separated, request 4 indicates I space, 5 D space.
Attempts to write in procedure fail if another process
is executing the same file.

6 The process's system data is written, as it is read with
request 3. Only the general registers and certain bits
of the processor status word can be written in this way.
The program counter is not allowed to be changed.

7 The data argument is taken as a signal number and the
chil~ eKecution continues at location addr as if it
had incurred that signal. Normally the signal number is
either 0 to indicate that the signal that caused the
stop should be ignored, or that value fetched out of the
process's image indicating which signal caused the stop.
If addr is (int *)l then execution continues from where
it stopped.

8 The traced process terminates.

9 Execution continues as in request 7; however,
instruction is executed, then execution stops.
nal number f:r~om the stop is S IGTRAP. This is
the mechanism for implementing breakpoints.

only one
The sig­
part of

As indicated, these calls (except for request 0) can be used
only when the subject process has stopped. The wait call is
used to determine~ when a process stops; in such acase the
"termination" status returned by wait has the value 0177 to
indicate stoppagE~ rather than genuine termination.

To forestall possible fraud, ptrace inhibits the set-user-ID
facility on subsequent exec(2) calls. IE a traced process

Bell 2

PTRACE(2) Zilog PTRACE(2)

calls exec, it stops before eKecuting the first instruction
of the new image showing signal SIGTRAP.

SEE ALSO
wait(2'.), signal (2), adb(l), szdb(l).

DIAGNOSTICS
The vallue -1 is returned if request is invalid,. pid is not a
tracea.ble process, addr is out of bounds, or ~ata specifies
an illegal signal number.

LIMITATIONS
The error indication, -1, is a legitimate function value;
errno, (INTR0(2)), can be used to clarify.

It is not but should be possible to stop a process on
occurrence of a system call; in this way a completely con­
trolled environment could be provided.

ASSEMBLER
CONSTANT PTRACE .- 26

! * request in r0, pid in r 1, addr in r2 * !
!* data in r3 * !
! * (segmented: parameters in r0, rl, rr 2~, r4, respectiv

SC #PTRACE
! * return value in r4 * !
!* carry bit set on error * !

3 Bell 3

READ(2) Zilog READ(2)

NAME
read - read from file

SYNOPSIS
read (fildes, buffer, nbytes)
char *buffer; ~----
int fildes, nbytes;

DESCRIPTION
A file descriptor is a word returned from a successful
open(2) creat(2) dup(2), or pipe(2) call. Buffer is the
location of nbytes contiguous bytes into which the input is
placed. It is not guaranteed that all nbytes bytes are
read; for example~, if the file refers to a typewriter, at
most one line is returned. In any event, the number of
characters read is returned.

If the returned value is 0, then end-of-file has been
reached.

When attempting to read from an empty pipe (or FIFO):

If O NDELAY is set, the read will return a 0.

If 0 NDELAY is clear, the read will block until data is
written to the file or the file is no longer open for
writing.

When attempting to read a file associated with a tty that
has no data currently available:

If O_NDELAY is set, the read will return a 0.

If O NDELAY is clear, the read will block until data
beco~es available.

DIAGNOSTICS
Read will fail if one or more of the following are true:

Fildes is not a valid file descriptor open for reading.
[EBADF]

Buffer points outside the allocated address space.
[EFAULT]

Many conditions generate an error; for example physical
I/O errors, bad buffer address, out of range nbytes,
file descriptor not that of an input file.

RETURN VALUE

1

Upon successful completion a non-negative
returned indicating the number of bytes

Bell

integer is
actually read.

1

READ(2) Zilog READ (2)

Otherwise, a -1 is returned and errno is set to indicate the
error.

SEE ALSO
open(2), creat(2), dup(2), pipe(2).

ASSEMBLER

2

CONSTANT READ := 3

sc #READ

!* fildes, buffer, nbytes in
!* r0, rl, r2 respectively*!
!* (segmented: r0, rr2, r4, respectively) *!

!* return value in r4 *!
!* carry flag set if error *!

Bell 2

SETPGRP(2) Zilog SET PG RP (2)

NAME
setpgrp - set process group ID

SYMOPSIS
int setpgrp {)

DESCRIPTION
Setpgrp sets the process group ID of the calling process to
the process ID of the calling process and returns the new
process group ID.

The system call getpid returns the value of the current pro­
cess group.

RETURN VALUE
Setpgrp returns the value of the new process group ID.

SEE ALSO
exec (2) , fork (2) , get pi d (2) , intro (2) , k i 11 (2) , s i g na 1 (2) •

1 Bell l

SETUID(2) Zilog SETUID(2)

NAME
setuid, setgid - set user and group ID

SYNOPSIS
int setuid (uid)
int uid;;

int set~Jid (gid)
int g id;;

DESCRIPTION
The user ID (group ID) of the current process is set to the
argument. Both the effective and the real ID are set.
These calls are only permitted to the super-user or if the
argument is the real ID.

SEE ALSO
getuid (:2) •

DIAGNOSTICS
Setuid will fail if the real user (group) ID of the calling
process is not equal to uid (gid) and its effective user ID
is not super-user. [EPER~

RETURN VALUE
Zero is returned if the user (group) ID is set; -1 is
returned otherwise.

ASSEMBLER.

1

CONSTANT SETUID := 23

! user ID in r0
SC #SETUID

! return in r4, carry bit set if error

CONSTANT SETGID := 46

! group ID in r0
sc #SETGID

! return in r4, carry bit set if error

Bell 1

SGBRK(2) Zilog SGBRK(2)

NAME
sgbrk - change the size of a data segment

SYNOPSIS
char *sgbrk (addr)
char *addr

char *ssgbrk (siegno, incr)
unsigned segno-;--rncr

DESCRIPTION
These system calls are the segmented versions of the brk(2)
and sbrk(2) calls and are not legal for non-segmented users.
The sgbrk system call changes the size of a presently known,
non-sharable, writable data segment. The addr argument is a
segmented address, with the offset equal to the desired new
size of the data segment. The new segment size is rounded
up to the next 256 byte boundary past the offset given by
the caller. If addr is a 0L, then sgbrk returns the current
high data address of the program. Otherwise, sgbrk returns
a segmented pointer to the new area on a successfull call,
or a -lL if the call failed.

The ssgbrk system call changes the size of a presently
known, non-sharable, writable data segment by the given
increment. The user must provide the segment number; segno.
A segmented address is returned which is a pointer to the
start of the requested area. If incr is 0, the returned
address points to the current endOfthe data segment.

If a segment is sharable with other processes, its size may
not be changed. Additionally, a segment must be writable to
change its size~ This restriction is to prevent alteration
of shared text setuid/setgid programs.

SEE ALSO
mkseg(2), exec(2), sld(l).

DIAGNOSTICS
Both of these calls return a -lL on an error. Common errors
are; the segment size exceeding 64K bytes, the program size
exceeding the system's limits, or illegal segment number.

ASSEMBLER

1

Note that the sgbrk call is implemented in terms of the
brk (2) call.

CONSTANT SGBRK := 17

!* new break value in rr0 *!
clr rr4
sc #SGBRK

!* return value in rr4 *!

Zilog 1

SGBRK{2) Zilog SGBRK{2)

!* carry flag set if error *!

CONSTANT SSGBRK := 45

!* segment number in r0 * !
! * increment in rl * !

cl ·r rr4
SC #SSGBRK

!* return value in rr4 * !
!* carry flag set if error * !

2 Zilog 2

SGSTA·r (2) Zilog SGSTA'r (2)

NAME
sgstat - get highest segmented code address

SYNOPSIS
sgstat (&buffer)
struct {

char segno ;
unsigned size

} buffer[l0] --

DESCRIPTION
The sgstat system call returns information in buffer that
describes code segments for the calling process. The calling
program must be segmented. The size is in bytes. The
buffer table is filled with the first 10 code segment
numbers and si ZE~s (in bytes) • If there are less than 10
code segments, the table is filled out with values of -1.
This call is used in conjunction with profiling by the moni­
tor (3) routine •

DIAGNOSTICS
The sgstat call should never return an error condition.

ASSEMBLER
CONSTANT SGSTAT := 56

!* buffer address in rr0 *!
clr rr4
SC #SGSTAT

!* return value in rr4 *!

1 Zilog l

SIGNAL(2) Zilog SIGNAL(2)

NAME
signal - catch or ignore signals

SYNOPSIS
#include <signal.h>(non-segmented)
tincludle <ssignal.h>(segmented)

(*signal (s ig, func)) ()
(*func) ();

DESCRIPTION

1

A signal is generated by some abnormal event, initiated
either by user at a terminal (quit, interrupt), by a program
error (bus error), or by request of another program (
kill(2)). Normally all signals cause termination of the
receiving process, but a signal call allows them either to
be ignored or to cause an interrupt to a specified location.
Here is the list of signals with names as in the include
file.

SIGHUP 1
SIGINT 2
s I GQ u I 'I1 3 *
SIGILL 4*
SIGTRAP 5*
SIGIOT 6*

SIGEMT 7*
SIGFPE 8*
SIGKILL 9
SIGBUS
SIGSEGV
SIGSYS
SIGPIPE;

10*
11*
12*
13
14
15
16

S IGALRM
SIGTERM.

hangup
interrupt
quit
privileged instruction (not reset when caught)
trace trap (not reset when caught)
software IOT instruction
(hardware IOT trap not possible)
EMT instruction (not used)
floating point exception
kill (cannot be caught or ignored)
bus error (impossible on 88000)
segmentation violation
bad argument to system call
write on a pipe or link with no one to read it
alarm clock
software termination signal
unassigned

The starred signals in the list above cause a core image if
not caught or ignored.

Note that there are two include files, one for the non­
segmented case and one for the segmented case. The return
value as well as the second argument to signal is an integer
in the non-segmented case and a long in the segmented case.

If func is SIG DFL, the default action for signal ~ is
reinsta'ted; this default is termination, some!times with a
core image. If func is SIG IGN the signal is ignored. Oth­
erwise when the signal occurs func is called with the signal
number as argument. A return from the function continues
the process at the point it was interrupted. Except as

Bell 1

SIGNAL(2) Zilog SIGNAL(2)

indicated, a signal is reset to SIG DFL after being caught.
Thus, if it is desired to cat~h every such signal, the
catching routine must issue another signal call.

When a caught signal occurs during certain system calls, the
call terminates prematurely. This can occur during a
read(2) or write(2) on a slow device (like a teletype; but
not a file); and during pause(2) or wait(2). When such a
signal occurs, the saved user status is arranged in such a
way that when return from the signal-catching takes place,
it appears that the system call returned an error status.
The user's program can then, if it wishes, reexecute the
call.

The value of signal is the previous (or initial) value of
func for the pairticular signal.

After a fork(2), the child inherits all signals.
resets all caught signals to default action.

Exec(2)

ARGUMENTS

2

~ can be assiqned any one of the following except SIGKILL:

SIGHUP 01
SIGINT
SIGQUIT 03*
SIGILL

SIGTRAP 05*
SIGIOT
SIGEMT 07*
SIGFPE
SIGKILL 09
SIGBUS 10*
SIGSEGV 11*
SIGSYS
SIGPIPE 13
SIGALRM 14
SIGTERM 15
SIGUSRl 16
SIGUSR2 17
SIGCLD 18
SIGPWR 19

hangup
02interrupt
quit
04*illegal instruction
(not reset when caught)"
trace trap (not reset when caught)
06*IOT instruction
EMT instruction
08*floating point exception
kill (cannot be caught or ignored)
bus error
segmentation violation
12*bad argument to system call
write on a pipe with no one to read it
alarm clock
software termination signal
user defined signal 1
user defined signal 2
death of a child (see WARNING below)
power fail (see WARNING below)

See below for the significance of the asterisk in
the above list.

Fune is assigned one of three values: SIG DFL, SIG IGN, or a
f'UnCtion address. The actions prescribed-by these-values of
are as follows:

Bell 2

SIGNAL(2) Zilog SIGNAL{2)

SIG DFL - terminate process upon receipt of a signal

3

Upon receipt of the signal sig, the receiving pro­
cess is to be terminated with the following conse­
quences:

All of the receiving process's open file
descriptors will be closed.

If the parent process of the receiving process
is executing a wait, it will be notified of
the termination of the receiving process and
the terminating signal's number will be made
available to the parent process; see wait.

If the parent process of the receiving process
is not executing a wait, the receiving process
will be transformed into a zombie process (see
exit(2) for definition of zombie process).

The parent process ID of each of the receiving
process's existing child processes and zombie
processes will be set to 1. This means the
initialization process (see intro(2)) inherits
each of these processes.

An accounting record will be written on the
accounting file if the system's accounting
routine is enabled; see acct(2).

If the receiving process's process ID, tty
group ID, and process group ID are equal, the
signal SIGHUP will be sent to all of the
processes that have a process group ID equal
to the process group ID of the receiving pro­
cess.

A core image will be made in the current work­
ing directory of the receiving process if ~
is one for which an asterisk appears in the
above list and the following conditions are
met:

The effective user ID and the real
user ID of the receiving process are
equal.

An ordinary file named core exists and
is writable or can be created. If the
file must be created, it will have the
following properties:

Bell 3

SIGNAL(2) Zilog SIGNAL(2)

SIG IGN - ignore signal

a mode of 0666 modified by the
file creation mask (see
umask (2))

a file owner ID that is the
same as the effective user ID
of the receiving process

a file group ID that is the
same as the effective group ID
of the receiving process

The signal sig is to be ignored.

Note: the signal SIGKILL cannot be ignored.

function address - catch signal
Upon receipt of the signal sig, the receiving pro­
cess is to execute the slgnal-catching function
pointed to by func. The signal number sig will be
passed as the only argument to the signal-catching
function.

Upon return from the signal-catching function, the
receiving process will resume execution at the
point it was interrupted and the value of func for
the caught signal will be set to SIG OFL unless
the signal is SIGILL, SIGTRAP, SIGCLD, or SIGPWR.

When a signal that is to be caught occurs during a
read(2), write(2) open(2) or an ioctl(2) system
call on a slow device (like a terminal~ but not a
file), during a pause system call, or during a
wait system call that does not return immediately
due to the existence of a previously stopped or
zombie process, the signal catching function will
be executed and then the interrupted system call
will return a -1 to the calling process with errno
set to EINTR.

Note: the signal SIGKILL cannot be caught.

DIAGNOSTICS

4

Signal will fail if one or more of the following are true:

Sig is an illegal signal number, including SIGKILL.
[E INVAL]

Fune points to an illegal address. [EFAULT]

Bell 4

SIGNAL(2) Zilog SIGNAL (2)

RETURN VALUH
The value (int)-1 is returned if the given signal is out of
range. A -lL is returned in the segmented case"

LIMITATIONS
If a repeated signal arrives before the last one can be
reset, there is no chance to catch it.

The type specification of the routine and its func argument
are problematical.

ASSEMBLER
CONSTANT SIGNAL := 48

!* signal # in r0, label in rl *!
!* (segmented: signal # in r0, label in rr2) *!

SC #SIGNAL
!* previous label returned in r4 *!
!* carry bit set on error !

If label is 0, default action is reinstated. If label is
odd-,--t:he signal is ignored. Any other even label specifies
an address in the process where a signal handl irlg"" roui tne is
located.

SEE ALSO
k i 11 (1) , k i 11 (2) , pa use (2) , ptr ace (2) , wait (2) •

WARNING

5

Two other signals that behave differently than the signals
described above exist in this release of the system; they
are:

SIGCLD 18 death of a child
(not reset when caught)"

SIGPWR 19 power fail (not reset when caught)

There is no guarantee that, in future releases of Zilog,
these signals will continue to behave as described below;
they are included only for compatibility with other versions
of UNIX. Their use in new programs is strongly discouraged.

For these signals, func is assigned one of
SIG DFr., SIG IGN, --or- a function address.
prescribed by-these values of are as follows:

SIG DFL - ignore signal
The signal is to be ignored.

SIG IGN - ignore signal

three
The

values:
actions

The signal is to be ignored. Also, if ~ is
SIGCLD, the calling process's child pt:ocesses will

Bell 5

SIGNAL(2) Zilog SIGNAL(2)

not create zombie processes when they terminate;
see E!xit.

function address - catch signal
If the signal is SIGPWR, the action to be taken is
the same as that described above for func equal to
function address. The same is true if the signal
is SIGCLD except, that while the process is exe­
cuting the signal-catching function any received
SIGCC.D signals wi 11 be queued and the signal­
catching function will be continually reentered
until the queue is empty.

The SIGCLD affects two other system calls (wait and exit
in the following ways:

wait

exit

If the func value of SIGCLD is set to SIG IGN and
a wati t lS executed, the wait wi 11 block unti 1 al 1
of the calling process's child processes ter­
minate; it will then return a value of -1 with
errno set to ECHILD.

If in the exiting process's parent process the
func value of SIGCLD is set to SIG IGN, the exit­
ing process will not create a zombie process.

When processing a pipeline, the shell makes the last pro­
cess in the pipeline the parent of the proceeding
processes. A process that may be piped into in this
manner (and thus become the parent of other processes)
should take care not to set SIGCLD to be caught.

LIMITATIONS

6

The signals are all inherited from the PDP-11, so some names
and some functions are inappropriate to the System 8000.

Bell 6

STAT(2) Zilog STA 1r (2)

NAME
stat, fstat - get file status

SYNOPSIS
finclude <sys/types.h>
linclude <sys/stat.h>

int stat (file, bu£)
char *file_; __
struct- stat *buf;

int fsi:at (fildes, buf)
int fildes;
struct stat *buf;

DESCRIPTION

1

Stat obtains detailed information about file. Fstat obtains
the same information about an open file known by the file
descriptor from a successful open(2) creat(2) dup(2), or
pipe(2) call.

File points to a null-terminated string naming a file; buf
~thE~ address of a buffer into which information is placed
concerning the file. It is unnecessary to have any permis­
sions with respect to the file, but all directories leading
to the file must be searchable. The layout of the structure
pointed to by buf as defined in <stat.h> is given below.
St modE:_ is encoded according to the #define statements.

struct stat
{

} ;

#def inE~
#define
#def i m~
#def .i OE~
#define
#def.im~
#definE~
#def .i OE~

dev t
ino t
unsTgned
short
short
short
dev t
off-t
time t
time t
time t

st dev;
st-ino;

short st-mode;
st-nlink;
st-uid;
st-gid;
st-rdev;
st-size;
st=atime;
st_mtime;
st_ctime;

S IFMT
S IFDIR
S-IFCHR

/* type of file */
/* directory */
/* character special */
/* block special */
/* regular */

S IFBLK
S-IFREG
S-IFMPC
S-IFMPB
S-ISUID

0170000
0040000
0020000
0060000
0100000
0030000
0070000
0004000

/* multiplexed char special */
/* multiplexed block special */
/* set user id on execution */

Bell 1

STAT(2) Zilog STAT(2)

#define s ISGID 0002000 /* set group id on execution */ -#define s ISVTX 0001000 /* save swapped text even after use
#define s - !READ 0000400 /* read permission, owner */ -#define s IWRI'I' 0000200 /* write permission, owner */ -#define s I EXEC 0000100 I* execute/search permission, owner

The mode bits 0000070 and 0000007 encode group and others
permissions (chmod(2)). The defined types, ino t, off t,
time t, name various width integer values; dev t encodes
ma]or and minor device numbers; their exact definitions are
in the include file <sys/types.h> (types(S)).

When fildes is associated with a pipe, fstat reports an
ordinary file with restricted permissions. The size is the
number of bytes queued in the pipe.

St atime is the time the file
when a directory is searched.
was last written or created.
owner, group, link count,
both by writing and changing

was last read: it is not set
St mtime is the time the file

It is not set by changes of
or mode. St ctime is set both

the i-node.

DIAGNOSTICS
Stat will fail if one or more of the following are true:

A component of the path pref ix is not a directory.
[ENOTDIR]

The named file does not exist. [ENOENT]

Search permission is denied for a component of the path
prefix. [EACCES]

Buf or path points to an in val id address. [EFAULT]

Fstat will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADF]

Buf points to an invalid address. [EFAULT]

RETURN VALUE
Upon successful completion a value of 0 is returned. Other­
wise, a value of -1 is returned and errno is set to indicate
the error.

SEE ALSO
ls(l), filsys(S).

ASSEMBLER
CONSTANT STAT := 18

2 Bell 2

*/

*I

STAT(2)

3

Zilog STAT(2)

!* name in r0, buf in rl * !
! * (segmented : name in rr0, buf in rr2)*!

clr r4
SC #STAT

1* return value in r4 * !
!* carry flag set if error * !

CONSTANT FSTAT := 28

clr r4
sc #FSTAT

!* fildes in r0, buf in rl*!
!* (segmented: fildes in r0, buf segment*!
! * number in r 1 , bu f o ff set in 1: 2) * !

!* return value in r4 *!
!* carry flag set if error *!

Bell 3

STIME(2)

NAME
stime - set time

SYNOPSIS
int stime (!£)
long *!2;

DESCRIPTION

Zilog STIME(2)

Stime sets the system's idea of the time and date. Time,
pointed to by !E_, is measured in seconds from 0000 GMT Jan
1, 1970. Only tne super-user can use this call.

SEE ALSO
date(l), time(2}, ctime(3).

DIAGNOSTICS
Stime will fail if the effective user ID of the calling pro­
cess is not super-user. [EPERM]

RETURN VALUE
Zero is returned if the time was set; -1 if user is not the
super-user.

ASSEMBLER
CONSTANT STIME := 25

!* time in rr0 *!
clr r4
SC #STIME

!* return value in r4 *1
!* carry flag set if error *!

1 Bell 1

SYNC(2)

NAME
sync - update super-block

SYNOPSIS
sync ()

DESCRIPTION

Zilog SYNC (2)

Sync causes all information in core memory that should be on
disk to be written out. This includes modified super
blocks, modified i-nodes, and delayed block I/O.

It is used by programs which
example icheck(M) df (M) etc.

SEE ALSO
sync(M), update(M).

LIMITATIONS

examine a file system, for
It is mandatory before a boot.

The writing, although scheduled, is not necessarily complete
upon return from sync.

ASSEMBLER
CONSTANT SYNC := 36

SC #SYNC

1 Bell 1

TIME(2) Zilog TIME(2)

NAME
time, ftime - get date and time

SYNOPSIS
long time ((long •:» I)

long time (tloc)
long *tloc;--

finclude <sys/types.h>
f include <sys/timeb.h>
ftime(~)
struct t1meb *~;

DESCRIPTION
Time returns the time since 00:00:00 GMT, Jan. 1, 1970,
measured in seconds.

If tloc is nonnull, the return value is also stored in the
place to which tlr0c points.

The ftime entry fills in a structure pointed to by its argu­
ment, as defined by sys/timeb.h:

/*
* Structure
*/

returned by ftime system call

struct timeb {
time t tim1e;
unsigned short millitm;
short timezone;
short dstflag;

} ;

The structure contains the time since the beginning of the
system, up to 1000 milliseconds of more-precise interval,
the local timezone (measured in minutes of time westward
from Greenwich), and a flag that, if nonzero, indicates that
Daylight Saving time applies locally during the appropriate
part of the year.

DIAGNOSTICS
Time will fail if tloc points to an illegal address.
[EFAULT]

RETURN VALUE
If sucessful, time returns the time (a long value, measured
in seconds). Otherwise it returns -1 and errno is set to
indicate the error.

SEE ALSO
date(l), stime(2), ctime(3).

1 Bell 1

TIME(2)

ASSEMBLER

2

Zilog

CONSTANT FTIME:= 35

Cl I'

SC

1* tp in r0 *!
!* (segmented: tp in rr0) *!
r4
#FTIME

TIME(2)

.... 1* return value in r4, carry flag set if error*!

CONSTANT TIME:= 13

SC #TIME
!* time since 1970 in rr4 *1

Bell 2

TIMES (2) Zilog TIMES (2)

NAME
times - get process times

SYNOPSIS
long times(buffer)
struct tbuffer *~uffer;

DESCRIPTION
Times returns time and accounting information for the
current process and for the terminated child processes of
the current process. All times are in 1/HZ seconds, where
HZ=60 in North America.

After the call, the buffer appears as follows:

struct tbuf fer {

} ;

long proc user time;
long proc-system time;
long child user time;
long child=s:ystem_time;

The children times are the sum of the children's process
times and their children's times.

Utime is the CPU time used while executing instructions in
the user space of the calling process.

Stime is the CPU time used by the system on behalf of the
calling process.

Cutime is the sum of the utimes and cutimes of the child
processes.

Cstime is the sum of the stimes and cstimes of the child
processes.

Times will fail if buffer points to an illegal address.
[EFAULT]

RETURN VALUE
Upon successful completion, times returns the elapsed real
time, in 60ths of a second, since an arbitrary point in the
past (e.g., system start-up time). This point does not
change from one invocation of times to another. If times
fails, a -1 is returned and errno is set to indicate the
error.

SEE ALSO
exec (2) , fork (2) , t i me (2) , w a i t (2) •

1 Bell 1

TIMES(2) Zilog TIMES(2)

ASSEMBLER
CONSTANT TIMES := 43

!* buffer in r0 *!
!* (segmented: buffer in rr0) *!

clr rr4
sc #TIMES

!* return value in rr4 *!
1* carry flag set if error *!

2 Bell 2

ULIMIT(2) Zilog ULIMIT(2)

NAME
ulimit - get and set user limits

SYNOPSIS
long ulimit (cmd, newlimit)
int cmd; ---
long---ri'ewlimi t;

DESCRIPTION
This function provides for control over process limits. The
cmd values available are:

1 Get the process's file size limit. The limit is in
units of 512-byte blocks and is inherited by child
processes. Files of any size can be read. The default
limit on writable file ~izes is 5900 blocks.

2 Set the process's file size limit to the value of newl­
imit. Any process may decrease this limit, but only a
process with an effective user ID of super-user may
increase the limit. Olimit will fail and the limit
will be urichanged if a process with an effective user
ID other than super-user attempts to increase its file
size limit. [EPERM]

3 Get the maximum possible break value. See brk(2).

RETURN VALUE
Upon successful completion, a non-negative value is
returned. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

SEE ALSO
brk(2), write(2).

ASSEMBLER

1

CONSTANT ULIMIT := 64

clr rr4

l* cmd in r0, high word of new limit *!
!* in rl, low word of newlimit in r2 *!

SC #ULIMIT
1* return value in rr4 *!
l* carry flag set if error *!

Bell 1

UMASK(2) Zilog UMASK (2)

NAME
umask - set file creation mode mask

SYNOPSIS
umask (complmode)
int com.plmode;

DESCRIPTION
Umask sets a mask used whenever a file is created
creat(2) or mknod(2). The actual mode (chmod(2)) of
newly created file is the logical and of the given mode
the complement of the argument-.-Only the low-order
bits of the mask (the protection bits) participate.
other words, the mask shows the bits to be turned off
files are created.

by
the
and

nine
In

when

The previous value of the mask is returned by the call. The
value is initially 0 (no restrictions). The mask is inher­
ited by child processes.

The value of complmode is constructed
some of the following hexadecimal
desired protection:

0xl00 read by owner
0x80 write by owner
0x40 execute by owner
0x20 read by group
0xl0 write by group
0x08 execute by group
0x04 read by others
0x02 write by others
0x01 execute by others

by OR'ing together
values to produce the

RETURN VALUB
The previous value of the file mode creation mask is
returnE?d.

SEE ALSO
mkd ir (JL) , mknod (1) , sh (1) , chmod (2) , crea t (2)1 , mknod (2) ,
open (2) •

ASSEMBLER
CONSTANT UMASK := 60

!* complmode in r0 *!
sc #UMASK

!* return value in r4 *!

1 Bell 1

UMOUNT(2) Zilog UMOUNT(2)

NAME
umount - unmount a file system

SYNOPSIS
int umount (spec]~
char *spec;

DESCRIPTION
Umount requests that a previously mounted file system con­
tained on the block special device identified by spec be
unmounted. ~ is a pointer to a path name. After
unmounting ~ file system, the directory upon which the
file system was mounted reverts to its ordinary interpreta­
tion.

Umount may be imroked only by the super-user.

DIAGNOSTICS
Umount will fail if one or more of the following are true:

The process~s effective user ID is not super-user.
[EPERM]

Spec does not exist. [ENXIO]

Spec is not a block special device. [ENOTBLK]

Spec is not mounted. [EINVAL]

A file on !.P.ec is busy. [EBUSY]

Spec points outside the process's allocated address
space. [EF~~ULT]

RETURN VALUE
Upon successful completion a value of 0 is returned. Other­
wise, a value of -1 is returned and errno is set to indicate
the error.

SEE ALSO
mount(lM), mount(2).

ASSl~MBLER

CONSTANT UMOUNT := 22

! *' spec in r0 *I
l *' (segmented: spec in rr0) *!

clr r4
SC #UMOUN'I1

l* return value in r4 *!
1* carry flag set if error *I

1 Bell 1

UNAME(2) Zilog UNAME(2)

NAME
uname - get name of current Zilog system

SYNOPSIS
t includE~ <sys/utsname. h>

int uname (name)
struct utsname *name;

DESCRIPTION
Uname stores information identifying the current Zilog sys­
tem in the structure pointed to by name.

Uname uses the structure defined in <sys/utsname .. h>:

struct utsname {

} ;

char sysname[9];
char nodename[9];
char release[9];
char version[9];

extern struct utsname utsname;

Uname returns a null-terminated character string naming the
current Zilog system in the character array sysname. Simi­
larly, nodename contains the name that the sys tern-Ts known
by on a-communications network. Release and version further
identify the operating system.

Uname will fail if name points to an invalid address.
[EFAULT]

RETURN VALUE
Upon successful completion,
returned. Otherwise, -1 is
indicate the error.

SEE ALSO
uname(l).

ASSEMBLER
CONSTANT UNAME := 57

a non-negative value is
returned and errno is set to

!* name in r0 * !
!* (segmented : name in rr0) * !

cl·t rr4
SC #UNAME

!* return value in rr4 *!
!* carry flag set if error * 1

1 Zilog 1

UNLINK(2) Zilog UNLINK(2)

NAME
unlink - remove directory entry

SYNOPSIS
unlink (file)·
char *file;

DESCRIPTION
File points to a null-terminated string. Unlink removes the
entry for the file pointed to by file from its directory.
If this entry was the last link to the file, the contents of
the file are freed and the file is destroyed. If, however,
the file was open in any process, the actual destruction is
delayed until it is closed, even though the directory entry
has disappeared. Write permission is not required on the
file itself. It is illegal to unlink a directory (unless
you are the super-user) •

SEE ALSO
rm (1) , 1 ink (2) •

DIAGNOSTICS

1

The named file is unlinked unless one or more of the follow­
ing are true:

A component of the path prefix is not a directory.
[ENOTDIR]

The named file does not exist. [ENOENT]

Search permission is denied for a component of the path
prefix. [EA.CCES]

Write permission is denied on the directory containing
the link to be removed. [EACCES]

The named file is a directory and the effective user ID
of the process is not super-user. [EPERM]

The entry to be unlinked is the mount point for a
mounted file system. [EBUSY]

The entry to be unlinked is the last link to a pure
procedure (shared text) file that is being executed.
[ETXTBSY]

The directory entry to be unlinked is part of a read­
only file system. [EROFS]

File points outside the process's allocated address
space. [EFAULT]

Bell 1

UNLINK(2) Zilog UNLINK(2)

RETURN VALUE:
Zero is normally returned; -1 indicates that the file does
not exist, that its directory cannot be written, or that the
file contains pure procedure text that is currently in use.
Errno is set to indicate the reason.

ASSEMBLER
CONSTANT UNLINK := 10

!* filename in r0 *!
!* (segmented: filename in r0) *!

clr r4
SC #UNLINK

!* return value in r4, carry flag set if error

2 Bell 2

UTIME(2) Zilog UTIME(2)

NAME
utime - set file times

SYNOPSIS
tinclude <sys/types.h>
int utime (file, times)
char *file;--
struct utimbuf *~l:imes;

DESCRIPTION
The utime call uses the accessed and updated times in that
order from the structure referred to by times to set the
corresponding recorded times for file.

If times is NOLL, the acces$ and modification times of the
file are set to the current time. A process must be the
owner of the file or have write permission to use utime in
this manner.

If times is not NULL, times is interpreted as a pointer to a
utimbuf structure and the access and modification times are
set to the values contained in the designated structure.

The times in the following structure are measured in seconds
since 00:00:00 GMT, Jan. 1, 1970.

struct utimbuf {
time t actime; /* access time */
time-t modtime;/* modification time */

} ;

The caller must be the owner of the file or the super-user.
The inode-changed time of the file is set to the current
time.

DIAGNOSTICS

1

Utime will fail if one or more of the following are true:

The named file does not exist. [ENOENT]

A component of the path prefix is not a directory.
[ENOTDIR]

search permission is denied by a component of the path
prefix. [EACCES]

The effective user ID is not super-user
owner of the file and times is not NULL.

and not
[EPERM]

the

The effective user ID is not super-user and not the
owner of the file and ~imes is NOLL and write access is
denied. [EA~CCES]

Bell 1

UTIME(2) Zilog UTIME(2)

The file system containing the file is mounted read­
only. [EROFS]

_T_im_e_s is not NULL and points outside
allocated address space. [EFAULT]

the~ process's

File points outside the process's allocated address
space. [EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Oth­
erwise, a value of -1 is returned and errno is set to indi­
cate thE~ error.

SEE ALSO
stat (2) •

ASSEMBLER
CONSTANT UTIME := 30

!* file, timep in r0, rl respectively*!
!* (segmented: file, timep in r1:0, rr2) *!

ch: r4
SC #UTIME

!* return value in r4 *!
!* carry flag set if error *!

2 Bell 2

WAIT(2) Zilog WAIT(2)

NAME
wait - wait for process to terminate

SYNOPSIS
int wait (status)!
int *status;

int wait((int *) 8)

DESCRIPTION
Wait causes its caller to delay until a signal is received
or one of its child processes terminates. If any child has
terminated since the last wait, return is immediate; if
there are no children, return is immediate with the error
bit set (a value of -1 returned). The normal return yields
the process ID of the terminated child. In the case of
several children" several wait calls are needed to learn of
all the deaths.

If (int) status is nonzero, the high byte of the word pointed
to receives the low byte of the argument of exit when the
child terminated.. The low byte receives the termination
status of the process. See signal(2) for a list of termina­
tion statuses (signals); 0 status indicates normal termina­
tion. A special status (0x7f) is returned for a stopped
process which has not terminated and can be restarted (
ptrace(2)). If the seventh bit (0x80) of the termination
status is set, a core image of the process was produced by
the system.

If the parent process terminates without waiting on its
children, the initialization process {process ID = 1) inher­
its the childrenD

SEE ALSO
exit(2), fork(2) 1, signal(2).

DIAGNOSTICS
Wait will fail and return immediately if one or more of the
following are true:

The calling process has no existing unwaited-for child
processes. [ECHILD]

Status points to an illegal address. [EFAULT]

RETURN VALUE

1

If wait returns due to the receipt of a signal, a value of
-1 is returned to the calling process and errno is set to
EINTR. If wait rE~turns due to a stopped or terminated child
process, the process ID of the child is returned to the cal­
ling process. Otherwise, a value of -1 is returned and

Bell 1

WAIT(2) Zilog WAIT (2)

errno is set to indicate the error.

ASSEMBLER
CONSTANT WAIT := 7

sc #WAIT
!* return value in rr4 *!
!* carry flag set if error *!

2 Bell 2

WRITE(2) Zilog WRITE(2)

NAME
write - write on a file

SYNOPSIS
write (fildes, buffer, nbytes)
char *buffer;

DESCRIPTION
A file descriptor is a word returned from a successful
open(2) creat(2) dup(2), or pipe(2) call.

Buffer is the address of nbytes contiguous bytes that are
written on the output file. The number of characters actu­
ally written is returned. It is an error if this is not the
same as requested.

If the O APPEND flag of the file status flags is set, the
file poTnter will be set to the end of the file prior to
each write.

If the file being written is a pipe (or FIFO), no partial
writes will be permitted. Thus, the write will fail if a
write of nbyte bytes would exceed a limit.

If the file being written is a pipe (or FIFO) and the
O NDELAY flag of the file flag word is set, then write to a
full pipe (or FIFO) will return a count of 0. Otherwise
(O NDELAY clear), writes to a full pipe (or FIFO) will block
uniil space becomes available.

Writes which are multiples of 512 characters long and begin
on a 512-byte boundary in the file are more efficient than
any others.

SEE ALSO
creat (2), open (2), pipe (2).

DIAGNOSTICS

1

Write will fail and the file pointer will remain unchanged
if one or more of the following are true:

Fildes is not a valid file descriptor open for writing.
[EBADF]

An attempt is made to write to a pipe that is not open
for reading by any process. [EPIPE and SIGPIPE signal]

An attempt was made to write a file that exceeds the
process's file size limit or the maximum file size.
See ulimit(2). [EFBIG]

Buffer points outside the process's allocated address

Bell 1

WRI'rE (2) Zilog WRITE(2)

space. [EFAULT]

RETURN VALUE
Upon successful completion the number of bytes actually
written is returned. Otherwise, -1 is returned and errno is
set to indicate the error.

ASSEMBLER

2

CONS 1rANT WRITE : = 4

!* fildes, buffer, nbytes in *!
!* r0, rl, r2 respectively *!

!* (segmented: fildes in r0, segment number *!
!* of buffer in rl, offset of buffer in r2, *!
!* nbytes in r3) *!

sc #WRITE
!* return value in r4 *1
1* carry flag set if error *!

Bell 2

INTR0(3) Zilog INTR0(3)

NAME
intro - introduction to library functions

SYNOPSIS
finclude <stdi10.b>
tinclude <math.b>

DESCRIPTION
This section describes functions that are found
libraries. (Functions that directly invoke
primitives are described in Section 2.)

NOTE

in various
ZEUS system

Care must be taken when using any library function
to read or write files that might be locked
against access by another process. Many functions
automatically buffer input/output in one-block
buffers~ that is, if any part of a 512-byte disk
block is needed, the whole block is read. If any
byte in a block is locked against access buffered
access on any other byte in that block causes the
accessing process to sleep until the access is
unlocked.

Record locking is primarily used by COBOL pro­
grams. System files that are routinely locked by
system prc19rams are i.ndicated in Section 5.

FILES
/lib/libc.a /lib/slibc.a /lib/libm.a /lib/slibm.a

SEE ALSO

1

nm(l), ld(l), cc(l), intro(2), sld(l), scc(l)

For a description of ZEUS record locking, see lkdata(2). To
turn off buffering for Standard I/O Package functions, see
setbuf (3).

Zilog l

A64L(3) Zilog A64f..,(3)

NAME
a641, 164a - convert between long and base-64 ASCII

SYNOPSIS
long a64JL (s)
char *s ;:

char * 16~la (.!_)
long 1

DESCRIPTION
These cout:ines are used to maintain numbers stoced in base-
64 ASCI!o This is a notation by which long integers can be
represented by up to six characters; each character
represents a "digit" in a radix-64 notation.

The characters used to represent "digits" are: • for 0, /
for 1, I through 9 for 2-11, A through Z for 12-37, and a
through z for 38-63.

A641 takes a pointer to a null-terminated base-64 represen­
tation and returns a corresponding long value. L64a takes a
long argument and returns a pointer to the corresponding
base-64 representation.

LIMITATIONS

1

The value returned by 164a is a pointer into a static
buffer, the contents of which are overwritten by each call.

Bell 1

ABORT(3) Zilog ABORT(3)

NAME
abort - generate IOT fault

DESCRIPTION
Abort sends an IOT signal that normally terminates the pro­
cess with a memory dump which can be used for debugging.
(An !OT trap cannot occur in the hardware; this is a
software trap.)

SEE ALSO
adb (1), signal (2), exit (2).

DIAGNOSTICS
"!OT trap - core~ dumped" from the she 11 •

1 Bell 1

ABS (3) Zilog

NAME
abs - integer absolute value

SYNOPSIS
int abs (i

int .!..;

DESCRIPTION
Abs returns the absolute value of its integer operand.

SEE ALSO
floor(3) for fabs.

LIMITATIONS

ABS(3)

The returned value is what the hardware gives on the largest
negative integer. On the Z8000, 0x8000 returns 0x8000.

1 Bell 1

ASSERT{3) Zilog ASSERT(3)

NAME
assert - program verification

SYNOPSIS
tinclude <assert.h>

assert expression

DESCRIPTION
Assert is a macro that indicates expression is expected to
be true at this point in the program. It causes an exit(2)
with a diagnostic comment to the standard error when expres­
sion is false (return of 0). Compiling with the cc(l)
preprocessor opt:ion -DNDEBOG effectively deletes assert from
the program.

DIAGNOSTICS

1

"Assertion failed: file f line n." F is the source file and
n the source linie number-of the-assert statement.

Bell 1

ATOF(3) Zilog ATOF(3)

NAME
atof, atofs, atofd, _atof, atoi, atol
numbers

convert ASCII to

SYNOPSIS
float atiofs (nptr)
char *nptr;

double atof (.!!_E!:r)
char *nptr;

double atofd(nptr)
char *!!e_tr; --

_atof (E.2tr)
char *nptr;

int atoi(nptr)
char *nptr;

long atol(nptr);
char *nptr_; __

DESCRIPTION
These functions convert a string pointed to by nptr to
floating, integer, and long integer representation respec­
tively. The first unrecognized character ends the string.
A value is returned according to the following convention:
atofs returns in rr2, atofd and atof return in rq4, and
atof returns in f 0. Atoi returns an integer value and atol

returns a long value.

In its various forms, atof recognizes an optional sequence
of tabs and spaces, an optional sign, then a numeric string.
For finite numbers, the numeric string consists of a string
of digits containing an optional decimal point, then an
optional exponent consisting of the letter e or E followed
by an optional sign and an integer.

A numeric string beginning with the letter I denotes signed
infinity. A NAN (Not-A-Number) string has the form
"NAN(xx>~xxx) ." The x's are hexadecimal digits to be mapped
into the leading 24 significant bits of the NAN. Atoi and
atol recognize an optional string of tabs and spaces, then
an optional sign, then a string of digits.

SEE ALSO
scan:E(3)l.

LIMITATIONS

1

All the aliases do not but should collapse into a single
routine (called atof here) that returns an extended value in

Zilog 1

ATOF{3) Zilog ATOF{3)

2

f0. Also, a variant of atof should be created to subsume
the task of !ecogn1z1ng floating-point strings, something
now left to other parsers.

Zilog 2

BSEARCH (3) Zilog BSEARCH (3)

NAME
bsearch - binary search

SYNOPSIS
char *b:search (key, base, nel, width, compar)

char *key;
char *base;
int ner;-width;
int (*compar) () ;

DESCRIPTION
Bsearch is a binary search routine generalized from Knuth
(6.2.1) Algorithm B. It returns a pointer to a table indi­
cating the location where a datum may be found. The table
must have been sorted in increasing order. The first argu­
ment, ~.~' is a pointer to the datum in the table. The
second argument, base, is a pointer to the base of the
table. The third argument, nel, is the number of elements
in the table. The fourth argument, width, is the width of
an element in bytes. The last argument, compar, is the name
of the comparison routine. It is called with two arguments
which are pointers to the elements being compared. The rou­
tine must return an integer less than, equal to, or greater
than 0, according to whether the first argument considered
is less than, equal to, or greater than the second.

DIAGNOSTICS
Zero is returned if the key can not be found in the table.

SEE ALSO
1 sea r ch (3) , qs or t (3) •

l Bell 1

CONV (3) Zilog CONV(3)

NAME
toupper, tolower·, toascii - character translation

SYNOPSIS
I include <ctype.h>

int to upper (c)
int c;

int to lower (c)
int £i

int _toupper (£)
int £i

int tolower (£)
int £i

int toascii (c)
int c;

DESCRIPTION
Toupper and tolower have as domain the range of getc: the
integers from -1 through 255. If the argument of toupper
represents a lower-case letter, the result is the
corresponding upper-case letter. If the argument of tolower
represents an upper-case letter, the result is the
corresponding lower-case letter. All other arguments in the
domain are returned unchanged.

toupper and tolower are macros that accomplish the same
thing as toupper and tolower but have restricted domains and
are faster. toupper requires a lower-case letter as its
argument; its-result is the corresponding upper-case letter.

tolower requires an upper-case letter as its argument; its
result is the corresponding lower-case letter. Arguments
outside the domain cause garbage results.

Toascii yields its argument with all bits turned off that
are not part of a standard ASCII character; it is intended
for compatibility with other systems.

SEE ALSO
ctype(3).

1 Bell 1

CRYPT (3) Zilog CRYPT(3)

NAME
crypt, e'etkey, encrypt - DES encryption

SYNOPSIS
char *ci~ypt (key, salt)
char *kE~, *salt;

setkey c~~ey)
char *kE~;

encrypt 1(block, edflag)
char *block;
int edfJLag;

DESCRIPTION
Crypt is the password encryption routine. It is based on
the National Bureau of Standards' Data Encryption Standard
(DES), with variations intended to frustrate use of hardware
implementations of the DES for key search.

The first argument to crypt is a user's typed password. The
second is a two-character string chosen from the set [a-zA­
Z0-9 ./]. The salt string disturbs the DES algorithm in one
of 4096 different ways, after which the password is used as
the key to encrypt repeatedly a constant string. The
returned value points to the encrypted password, in the same
alphabet as the salt. The first two characters are the salt
itself.

The oth•ar entries provide rather primitive acc•~ss to the
actual DES algorithm. The argument of setkey is a character
array of length 64 containing only the characters with
numerical value 0 and 1. If this string is divided into
groups of eight, the low-order bit in each gro~p is ignored
and leads to a 56-bit key that is set into the machine.

The argument to the encrypt entry is likewise a character
array of length 64 containing 0' s and l's. 'The argument
array is modified in place to a similar array representing
the bits of the argument after having been subjected to the
DES algorithm using the key set by setkey. If edflag is 0,
the argument is encrypted; if nonzero, it is decrypted.

SBE ALSO
crypt(l), passwd(l), login(l), getpass(3), passw:d(5).

£,IMITATIONS

1

The return value points to static data whose content is
overwritten by each call.

Bell 1

CTERMID(3) Zilog CTERMID(3)

NAME
ctermid - generate file name for terminal

SYNOPSIS
finclude <stdio.h>

char *ctermid(s)
char *~; -

DESCRIPTION

NOTES

Ctermid generates a string that refers to the controlling
terminal for the current process when used as a file name.

If (int)~ is zero, the string is stored in an internal
static area, the contents of which are overwritten at the
next call to ctE~rmid, and the address of which is returned.
If (int)s is non-zero, then s is assumed to point to a char­
acter array of at least L ctermid elements; the string is
placed in this: array and the value of s is returned. The
manifest constant L ctermid is defined in-<stdio.h>.

The difference between ctermid and ttyname{3) is that
ttyname must be handed a file descriptor and returns the
actual name of the terminal associated with that file
descriptor, while ctermid returns a magic string (/dev/~)
that will refer to the terminal if used as a file--name.
Thus ttyname is useless unless the process already has at
least one file open to a terminal.

SEE ALSO
ttyname(3).

1 Bell 1

CTIME (3) Zilog CTIME(3)

NAME
ctime, localtime, gmtime, asctime, tzset - convert date and
time to ASCII

SYNOPSIS
char *ctime (clock)
long *clock;

#include <time.h>

struct 1tm *localtime (clock)
long *clock;

struct 'tm *gmtime {clock)
long *c:tock;

char *asctime {tm)
struct tm *tm;

tzset {

DESCRIPTION

1

Ctime converts a time pointed to by clock such as returned
by tim1e(2) into ASCII and returns a point·er to a 26-
character string in the following form. All the fields have
constant width.

Sun Sep 16 01:03:52 1973\n\0

Localtime and gmtime return pointers to structur·es contain­
ing the broken-down time. Localtime corrects for the time
zone and possible daylight savings time; gmtime converts
directly to GMT, which is the time the ZEUS system uses.
Asctime converts a broken-down time to ASCII and returns a
pointer to a 26-character string.

The structure declaration from the include file is:

struct
int
int
int
int
int
int
int
int
int

} ;

tm { /* see ctime(3) */
tm sec;
tm-min;
tm-hour;
tm-mday;
tm-mon;
tm-year;
tm-wday;
tm-yday;
tm=isdst;

These quantities give the time on a 24-hour clock, day of
month (1-31), month of year (0-11), year - 1900, day of week

Bell 1

CTIME(3) Zilog CTIME(3)

(Sunday = 0), day of year (0-365), and a flag that is non­
zero if daylight saving time is in effect.

The external long variable timezone contains the difference,
in seconds, between GMT and local standard time (in EST,
timezone is 5*60*60); the external variable daylight is
non-zero if and only if the standard U.S.A. Daylight Savings
Time conversion should be applied. The program knows about
the peculiarities of this conversion in 1974 and 1975; if
necessary, a table for these years can be extended.

If an environment variable named TZ is present, asctime uses
the contents of the variable to override the default time
zone. The value of TZ must be a three-letter time zone
name, followced by a number representing the difference
between local time and Greenwich time in hours, followed by
an optional three-letter name for a daylight time zone. For
example, the setting for New Jersey would be ESTSEDT. The
effects of setting TZ are thus to change the values of the
external variables timezone and daylight; in addition, the
time zone names contained in the external variable

char *tzname[2] = {"EST", •EoT"};

are set from the environment variable. The function tzset
sets the external variables from TZ; it is called by asctime
and may also be called explicitly by the user.

SEE ALSO
time(2), getenv(3), environ(?).

LIMITATIONS

2

The return values point to static data whose content is
overwritten by each call.

Bell 2

CTYPE(3) Zilog CTYPE-(3)

NAME
isalpha, isupper, islower, isdigit, isxdigit,
isspace , ispunct, isprint, isgraph, iscntrl,
character classification

isalnum,
isascii -

SYNOPSIS
#include <ctype.h>

int isalpha (£)
int c· _,

DESCRIPTION
These macros classify ASCII-coded integer values by table
lookup. Each is a predicate returning nonzero for true,
zero for false. Isascii is defined on all integer values;
the rest are defined only where isascii is true and on the
single non-ASCII value EOF (see stdio(3)).

isalpha

is upper

is lower

isdigit

isxdigit

isalnum

isspace

ispunct

isprint

isgraph

iscntrl

isascii

c is a letter -
c is an upper case letter -·

c is a lower case letter

c is a digit [0-9]

c is a hexidecimal digit [0-9], [A-F] or [a­
f]

c is an alphanumeric

c is a space, tab, carriage return, new-line,
vertical tab, or form-feed

c is a punctuation character (neither control
nor alphanumeric)

c is a printing character, code 040 (space)
~hrough 0176 (tilde)

c is a printing character, like isprint
except false for space

c is a delete character (0177) or ordinary
control character (less than 040).

c is an ASCII character, code less than 0200

SEE ALSO
ascii (7).

1 Bell 1

CURSES{3) Zilog CURSES{3)

NAME
curses - screen functions with "optimal" cursor motion

SYNOPSIS
cc [flags] files -lcurse,s -ltermlib [libraries]

sec [flags files -!curses -ltermlib [libraries]

DESCRIPTION
These routines give the user a method of updating screens
with reasonable optimization. They keep an image of the
current screen and the user sets up an image of a new one.
Then the refresh{) tells the routines to make the current
screen look---rlke the new one. In order to initialize the
routines, the routine initscr{) must be called before any of
the other routines that deal with windows and screens are
used.

Also, be sure to include the header file,
/usr/include/curses.h in your source program.

FILES
/usr/lib/libcurses.a /usr/lib/slibcurses.a

SEE ALSO
Screen Updating and Cursor Movement Optimization: ! Library
Package , in the~ ZEUS Languages / Programming Tools Manual.
termcap{5), ioct:l{2), setenv {in csh{l)).

FUNCTIONS

1

addch{ch) add a character to stdscr
addstr(str) add a string to stdscr
box(win,vert,hor) draw a box around a window
clear{) clear stdscr
clearok(scr,boolf) set clear flag for scr
clrtobot() clear to bottom on stdscr
clrtoeol{) clear to end of line on stdscr
delwin(win) delete win
echo() set echo mode
erase() erase stdscr
getch{) get a char through stdscr
getstr(str) get a string through stdscr
gettmode{) get tty modes
getyx(win,y,x) get {y,x) co-ordinates
inch() get char at current {y,x) co-ordinate~
initscr() initialize screens
leaveok(win,boolf) set leave flag for win
longname{termbuf ,name) get long name from termbuf
move(y,x) move to (y,x) on stdscr
mvcur(lasty,lastx,newy,newx) actually more cursor
newwin(lines,cols,beg x,beg y) create a new window
nl() - - set newline mapping

UCB 1

CURSES(3) Zilog CURSES(3)

noecho() unset echo mode
nonl() unset newline mapping
noraw() unset raw mode
overlay(winl,win2) overlay winl on win2
overwrite(winl,win2) overwrite winl on top of win2
printw(fmt,argl,arg2, •••) printf on stdscr
raw() set raw mode
refresh() make current screen look like stdscJ
restty() reset tty flags to stored value
savetty() stored current tty flags
scanw{fmt,argl,arg2, •••) scanf from stdscr
scroll{win) scroll win one line
scrollok(win,boolf) set scroll flag
setterm(name) set term variables for name
subwin{win,lines,cols,beg y,beg x)create a subwindow win
unctrl(ch) - printable version of ch
waddch(win,ch) add char to win
waddstr (win ,str) add string to win
wclear(win) clear win --
wclrtobot(win) clear "'t"()bottom of win
wclrtoeol(win) clear to end of line:-On win
werase(win) erase win
wgetch(win) get a char through win
wgetstr (win,str) get a string througFi'Win
winch(win) get char at current (y,x) from win
wmove(win,y,x) set current (y,x) co-ordinates on w
wprintw{win,fmt,argl,arg2, •••) printf on win
wrefresh(win) make screen--r<>ok like win
wscanw(win,fmt,argl,arg2, •••) scanf through win

2 UCB 2

CUSERID(3) Zilog CUSERID(3)

NAME
cuserid - character login name of the user

SYNOPSIS
finclude <stdio.h>

char *cuserid (~)
char *s;

DESCRIPTION
Cuserid generates a character representation of the login
name of the owner of the current process. If (int)s is
zero, this representation is generated in an internal static
area, the address of which is returned. If (int)s is non­
zero, s is assumed to point to an array of at least
L cuserid characters; the representation is left in this
array. The manifest constant L cuserid is defined in
<stdio.h>.

DIAGNOSTICS
If the login name cannot be found, cuserid returns NULL; if
~ is non-zero in this case, \8 will be placed at *s.

SEE ALSO
getlogin(3), getpwuid(3).

LIMITATIONS

1

Cuserid uses getpwnam(3); thus the results of a user's call
to the latter will be obliterated by a subsequent call to
the former.
The name cuserid is rather a misnomer.

Bell 1

DISASM(3) Zilog DISASM(3)

NAME
disasm, disinit - disassemble Z8000 instructions

SYNOPSIS
linclude <disasm.b>

disinit(getfunc,symfunc,flag)
unsigned *(getfunc) ();
int * (symfunc) () ;
int flag;

ADDR *disasm(adr,space,insptr)
ADDR *adr;

int spa.ce;
INSTR*fnsptr;

On cc(l) or scc(l) command include a -lz8891 option to
access proper library archive file.

DESCRIPTION

1

These functions are used to disassemble binary words into
the equivalent Z8000 assembly instructions. The routines
handle segmented and non-segmented code, and floating point
instructions. Disinit is called before disasm to initialize
the various parameters that the disassembly routines
require. The different structures, variables, and constants
used to communicate with disasm as defined in <disasm.h>
are:

/* @[$]disasm.h 1.1
/* disasm/disinit

12/11/81 17:07:54 - Zilog Inc */
•••• disassembler include file*/

typedef struct address { char a_segno;
long a offset;

} ADDR; -

typedef struct instr { char *d opcode;
char *d operand[i];
char *d=comment;

} INSTR;

#define NON SEG 0
#define SEG- 1

#define !SYMBOL 0
#define DSYMBOL 1

int
ADDR

disinit();
*d isasm () ;

Zilog 1

DISASM(3) Zilog DISASM(3)

2

Getfunc is the address o.f a routine that disasm wi 11 use to
request words to be disassembled. The calling sequence is:

getfunc(adr,space)
ADDR *adr;
int space;

where adr is a pointer to a structure containing the address
of the--word Clisasm is requesting and space is an integer
value containinsr the value passed to disasa (see below).

Symfunc is the atddress of a routine that disasm calls in
order to allow the calling routine to translate hexadecimal
addresses to symbolic representations. Its calling sequence
is:

symfunc(adr,~~,s)
ADD'if""*a~
int symtfpe'.;
char *E!_;

where adr indicates the address to be translated. Symtype
contains either !SYMBOL or DSYMBOL (defined in <disasm .. h>)
indicating whether the address should be considered to be in
I-Space or D-Space. S is a string pointer into which the
function should copy the-null-terminated string associated
with the address given. For programs that do not handle
symbols, a simple function containing

sprintf(s,"%%%04X",adr->a_offset); /* non-seg. example*/

is sufficient.

Flag indicates whether the information is to be interpreted
as segmented or non-segmented code. The only valid values
for this parameter are SEG and NON SEG (defined in
<disasm.h> and any others will give undelined results.

Disasm is the routine that actually does the disassembly.
Adr is the address of an ADDR structure that contains the
starting address of the instruction to be disassembled.
Space is an integer contairiing information to indicate in
what space the words to be disassembled reside. The
disassembler doE~s not use this parameter in any way except
to pass it to getfunc. Ins~tr is the address of an INSPTR
structure (defined in <d1sasm.h>) into which disasm will
return the disassembled instruction. It contains five
null-terminated character string fields: an opcode, four
operands, and a comment. The opcode field contains the
standard ZILOG mnemonic for the decoded instruction (see
note on errors below) • In the case of extended processing
unit (epu) instructions, if it is determined that the code

Zilog 2

DISASM(3) Zilog DISASM(3)

does not represent a valid floating point instruction, the
generalized form suggested in chapter 3 of Z8000 Assembly
Language Programming, published by Osborne/Mc Graw-Hill, is
used.

The four operand fields contain between zero and four null­
terminated strings containing the translated operands. If
any operand does not exist for a particular instruction, the
first character of that field will be a null. The last
field, comment, contains auxiliary information. For
instance, the disassembly of the system call instruction sc
IS contains a comment field containing the string "! open !"
indicating that a system call number five is the ZEUS
open(2) system call.

Disasm r·eturns a pointet' to an ADDR structut'e con ta in ing the
address of the beginning of the next instruction in the case
of successful completion, and a null in the case of an
error. An error is indicated when disasm is unable to
translate the given code into an instruction. In this case
the opcode field will contain a string of the form %xxxx
where xxxx is the hexadecimal representation of the word
given to disasm. In an error situation, all fields except
the opcode are guaranteed to start with a null.

FILES
/usr/lib/libz8000.a /usr/lib/slibz8000.a

SEE ALSO
adb(l).

DIAGNOSTICS
A null is returned instead of a pointer when instruction
cannot be disassembled.

LIMITATIONS

3

Disasm will always disassemble valid instructions correctly.
It may, however, misinterpret invalid binary sequences to be
valid instructions. This is most noticeable in floating
point instructions where some bits contain constant fields
other than the opcode.

Zilog 3

DM(3) Zilog DM(3)

NAME
abs, atoi, close, creat, exit, getc, getchar, goodmagic,
length, longswap, lseek, open, printf, putc, putchar, read,
swab, swap, write - Z8000 development module library

SYNOPSIS
abs (i)

1

.. t '"'I"'
lD .!_i

atoi(s, len, result)
char *s;
int len;
int *result;

close(fd)
int fa;

crea t (name, mode~)
char *name;
int mode;

getc (fd)
int faT

getchar ()

goodmagic(magic)
int magic;

length(s)
char *!!i

longswap(lptr)
long *lptr;

lseek(fd, offset, whence)
int ta;- ·
long offset;
int whence;

open(name, mode)
char *name;--
int mode;

printf (frmt
char *frmt;

' ~ ...])

putc(ch, fd)
char ch;

.int fd;

putcbar(.£)

Zilog 1

DM(3)

char _£;

read (fd ,. addr, cnt)
int fd; cnt;
char---. add r ; ·

swab(from, to, len)
int *frC>m, *to;~­
int len;-

swap(i)
int .!_;

int wri t:e (fd, addr, cnt)
int fd, cnt;
char--.addr;

Zilog OM (3)

DESCRIPTION

2

The file /usr/lib/slibdm.a is a library containing functions
for use --With the segmented C compiler. The file
/usr/lib/libdm.a is a library containing functions for use
with the! nonsegmented c compiler. These routines are set up
to enable a program running on a development module to open,
create, read, write and close files on the host S8000.
While a program is running on the development module, the
SYS(3) program is run on the S8000 (see load(l)). The I/O
routines in this package communicate with the SYS program to
perform the functions described. A brief description of
each routine follows:

Abs is used to determine the absolute value of its argument.

Atoi converts its argument from asc11 to integer. The
result is returned at the address specified by the third
argument:.

Open, ci:eat, and close are ZEUS-style file access calls to
files on the host system. The SYS program interprets these
calls and opens files on behalf of the program running on
the deve!lopment module. The arguments to these calls are the
same as the equivalent ZEUS calls, open(2), creat(2) and
close(2).

Getc,. C.JE!tchar, putc, putchar and printf are ZEUS-style stan­
dard i/o calls to get and put characters. Lseek performs
seeks within files. Read and write are ZEUS-style read and
write functions. These calls perform i/o by communicating
with the SYS program on the host. See getc(3), lseek(3),
putc(3), printf (3) read(2) and write(2) for complete expla­
nations.

Zilog 2

DM(3)

FU.ES

Zilog OM (3)

Goodmagic determines if the value passed is a valid object
module magic number. See goodmagic(3) for complete details.

Length is passed a null-terminated string. A null is a zero
byte. It returns the number of bytes preceeding the null,
or 256 if no null is encountered in the first 256 bytes.

Longswap, swab amd swap are byte-swapping routines. See
swab(3) and swap{3) for complete details.

The loader optic•n -ldm can be used to access the 1 ibrar ies,
both segmented and nonsegmented. The entry point to a seg­
mented program should be specified -e start for a segmented
program, -e startup for a nonsegmented program. See ld(l)
and sld (1) •

/usr/lib/libdm.a
/usr/lib/slibdm.a

nonsegmented library
segmented library

SEE ALSO

3

ld(l), load(l), sld(l), close(2), creat(2), lseek{2),
open(2), readl(2), write(2), getc(3), goodmagic(3),
printf (3), putc(3), swab(3), swap{3).

Zilog 3

ECVT (3) Zilog ECVT(3)

NAME
ecvt, _._ecvt, fcvt, _fcvt, gcvt, _gcvt - output conversion

SYNOPSIS
char *E~cvt(value, ndigit, decpt, sign)
double value;
int ndi-9...!.!, *decpt, *sign;

char *fcvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *~rcvt(value, ndigit, buf)
double value;--
int ndj~;
char *!>uf;

DESCRIPTION
Bcvt converts the value to a null-terminated, rounded string
of ndiqit ASCII digits (limited to 19) and returns a p~inter
to ~The position of the decimal point relative to the
beginning of the string is stored indirectly through decpt
negative means to the left of the returned digits. If the
sign of the result is negative, the word pointed to by sign
is nonzero, otherwise it is zero.

Fcvt is; identical to ecvt, except that the correct digit has
been rounded for Fortran F-format output with ndigits frac­
tion digits. No more than 19 integer and fraction digits
can be converted.

Gcvt converts the value to a null-terminated ASCII string in
buf and returns a pointer to buf. It produces a string,
ready for printing, with ndigit significant digits. Fortran
F format is used, if reasonable; otherwise E format is used.

SEE ALSO
printf(3).

DIAGNOSTICS
If the total number of siginificant digits requested in fcvt
exceeds 19 the digit string is set to ?????????.

LIMITATIONS

l

The return values of ecvt and fcvt are static buffers whose
content is overwritten by each call; thus the routines are
not reemtrant.

Zilog 1

END(3) Zilog END (3)

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
The address of etext is the first address above the program
text, edata above the initialized data region, and end above
the uninitialized data region.

When execution begins, the program break coincides with end,
but many functions reset the program break, among them the
routines of brk(2), malloc(3), standard input/output
(stdio (3)), and the profile (-p) option of cc(l). The
current value of the program break is reliably returned by
sbrk (0) (brk (2)1).

SEE ALSO
brk(2), malloc(3).

1 Bell 1

EXP(3) Zilog EXP(3)

NAME
exp, log, 10910, pow, sqrt - exponential functions

SYNOPSIS
#include <math.h>

double ce_!p (x)
double .:~;

double log<.!.>
double -~;

double logll(_!)
double .!i

double ,[>OW(_!, y)
double .!' y;

double sqrt(_!)
double .!i

DESCRIPTION
Exp returns the exponential function of x.

Log returns the natural logarithm of .!i log HJ returns the
base 10 logarithm.

Pow returns x raised to the power of ~·

Sqrt returns the square root of x.

SEE ALSO
hypo t (3) , s i n h (3) , intro (2) •

DIAGNOSTICS

1

Exp and pow return a huge value when the correct value would
overflow; errno is set to ERANGE. Pow returns 0 and sets
errno to EDOM when the second argument is negative and non­
integral and when both arguments are 0.

Log returns 0 when x is zero or negative; errno is set to
EDOM ..

Sqrt returns 0 when x is negative; errno is set to EDOM.

Zilog 1

FCLOSE(3) Zilog FCLOSE (3)

NAME
fclose, fflush - close or flush a stream

SYNOPSIS
#include <stdioDh>

fclose(stream)
FILE *stream;

fflusb(stream)
FILE *stream;

DESCRIPTION
Pclose causes any buffers for the named stream to be emp­
tied, and the file to be closed. Buffers allocated by the
standard input/output system are freed.

Pclose is performed automatically upon calling exit(2).

Fflush causes any buffered data for the named output stream
to be written to that file. The stream remains open.

SEE ALSO
close(2), fopen(3), setbuf(3).

DIAGNOSTICS

1

These routines return EOP if stream is not associated with
an output file, or if buffered data cannot be transferred to
that file.

Bell 1

FERROR(3) Zilog FERROR(3)

NAME
ferror, feof, clearerr, fileno - stream status inquiries

SYNOPSIS
tinclude~ <stdio .h>

feof (strearn)
FILE *st:reirn;

ferror(stream)
FILE *st:ream;

cleareri~ (stream)
FILE *stream;

fileno(stream)
FILE *stream;

DESCRIPTION
Peof returns nonzero if end of file has been read on stream;
it returns zero otherwise.

Ferror returns nonzero if an error has occurred reading or
writing the named stream; it returns zero otherwise. Ferror
does not clear the error status: once ferror returns
nonzero it continues to return nonzero until the stream is
closed or clearerr is used to reset the error status.

Clearerr resets the error status on the stream. Subsequent
calls to ferror with the same stream name argument return
zero until another error occurs.

Fileno returns the integer file descriptor associated with
the stre~am open (2)) •

These functions are implemented as macros; they cannot be
redecla1:ed.

SEE ALSO
fopen (3) , open (2) •

1 Bell 1

FLOOR(3) Zilog FLOOR(3)

NAME
floor, fabs, ceil, fmod - absolute value, floor, ceiling
functions

SYNOPSIS
#include <math .. h>

double fabs(_!)
double(_!);

double floor(_!)
double x;

double ceil(_!)
double _!i

double fmod (_!, y)
double x, y;

DESCRIPTION
Fahs returns the absolute value l.!f.

Floor returns the largest integer not greater than x.

Ceil returns the smallest integer not less than x.

Fmod returns th•~ number f such that x = ~ + !_, for some
integer, i, and!<=!_ <-y.

SEE ALSO
abs(3).

1 Zilog 1

FOPEN(3) Zilog FOPEN(3)

NAME
fopen, £reopen, fdopen - open a stream

SYNOPSIS
tinclude <stdio.b>

FILE *fopen(filename, ~)
char *filename, *~;

FILE *fre!open(filename, ~, stream)
char *filename, *type;
FILE *stream;

FILE *fdo•pen(fildes, ~)
char *!lEe;

DESCRIPTION

1

Fopen opems the file named by file-~ and associates a
stream with it. Fopen returns a pointer to be used to iden­
tify the stream in subsequent operations.

~ is a character string having one of the following
values:

"r" open for reading

"w" create for writing

"a" appErnd: open for writing at end of file, or create for
writing

"r+" open for update (reading and writing)

"w+" create for update

"a+" appE:rnd: open or create for update at end of :Ei le

Freopen substitutes the named file in place of the open
stream. It returns the original value of stream. The 0~1-
ginal stream is closed, regardless of whether the open ulti­
mately succeeds.

Freopen is typically used to attach the preopened constant
names stdio, stdout, and stderr to specified files.

Fdopen associates a stream with a file descriptor obtained
from open(2), dup(2), creat(2), or pipe(2). The~ of the
stream must agree with the mode of the open file.

When a file is opened for update, both input and output may
be done on the resulting stream. However, output may not be
directly followed by input without an intervening fseek or

Bell 1

FOPEN(3) Zilog FOPEN(3)

rewind, and input may not be directly followed by output
without an intervening fseek, rewind, or an input operation
which encounters end of file.

SEE ALSO
open (2) , f c 1 o s e (3) •

DIAGNOSTICS
Popen and freopen return the pointer NULL if filename cannot
be accessed.

LIMITATIONS
Fdopen is not portable to systems other than ZEUS.

2 Bell 2

FREAD (3) Zilog FREAD(3)

NAME
fread, fwrite - buffered binary input/output

SYNOPSIS
#include <stdio.h>

fread((char *)E.!!:., sizeof(*E!!_), nitems, stream)
FILE *stream;
int ptr, nitems;

fwrite((char *)ptr, sizeof(*E.!!:.), nitems, stream)
FILE *stream; ~-
int ptr, nitems;

DESCRIPTION
Fread reads, into a block beginning at .E!E,r nitems of data
of the ty·pe of *E!!_ from the named input stream. It returns
the number of items actually read.

Fwrite appends at most nitems of data of the type of *~
beginning at ~ to the named output stream. It returns the
number of items actually written.

SEE ALSO
read(2), write(2), fopen(3), getc{3), putc(3), gets(3),
puts (3) , pr intf (3), scanf (3) •

DIAGNOSTICS
Fread and fwrite return 0 upon end of file or error.

1 Bell 1

FREXP(3) Zilog FREXP(3)

NAME
frexp, ldexp, modf - split into mantissa and exponent

SYNOPSIS
double frexp(value, eptr)
double value;
int *eptr;

double ldexp(value, exp)
double value;~~-
int ~;

double modf (value, iptr)
double value~rptr-;~-

DESCRIPTION

1

Frexp returns the mantissa of a double value as a double
quantity, x, of magnitude less than 1 and stores an integer
n such that-value = x*2**n indirectly through eptr.

Ldexp returns the quantity value*2**exp.

Modf returns thE~ positive fractional part of value and
stores the inte9er part indirectly through iptr.

Zilog 1

FSEEK(3) Zilog FSEEK(3)

NAME
fseek, ftell, rewind - reposition a stream

SYNOPSIS
#include <stdio.h>

fseek(stream, offset, ptrname)
FILE *stream;
long offset;
int ptrrlame;

long ftell(stream)
FILE *stream;

rewind(st:ream)

D.ESCRIPTION
Fseek sets the position of the next input or output opera­
tion on the stream. The new position is at the signed dis­
tance offset bytes from the beginning, the current position,
or theend of the file, according as ptrname has; the value
0, 1, or 2.

Fseek undoes any effects of ungetc(3).

Ftell returns the current value of the offset relative to
the beginning of the file associated with the named stream.
It is measured in bytes on ZEUS; on some other V7 Unix sys­
tems it is the only foolproof way to obtain an offset for
fseek.

Rewind(s11:ream) is equivalent to fseek(stream, 0L, -~).

SEE ALSO
lseek(2), fopen(3).

DIAGNOSTICS
Fseek returns -1 for improper seeks.

1 Bell 1

GAMMA (3) Z.i log GAMMA(3)

NAME
gamma - log gamma function

SYNOPSIS
#include <math.h>
extern int signgam;

double gamma (x)
double x;

DESCRIPTION
Gamma returns (GAMMA) • The sign of (GAMMA) is returned in
the external in~eger signgam. The following C program frag­
ment might be used to calculate Gamma

y =gamma (x);
if (y > 88,.0)
{

l

perror ("progname");
exit t(1) ;

y = exp (y) * signgam;

DIAGNOSTICS

1

For negative integer arguments, a huge value is returned,
and errno is set: to EDOM (see INTR0(2)).

Bell 1

GETC (3) Zilog GETC(3)

NAME
getc, getchar, fgetc, getw - get character or word from
stream

SYNOPSIS
#include <stdio.h>

int getc (stream
FILE * st.ream;

int getchar ()

int fgetc (stream
FILE * stream;

int getw (stream
FILE * stream;

DESCRIPTION
Getc returns the next character from the named input stream.

Getchar() is identical to getc(stdin).

Fgetc saves object text and behaves like getc, but is a
genuine function, not a macro.

Getw returns the next word from the named input stream. It
returns the constant EOF upon end of file or error, but feof
and ferror(3) must be used to check the success of getw.
Getw assumes no special alignment in the file.

SEE ALSO
f open (3) ,, put c (3) , gets (3) , scan f (3) , fr ea d (3) , u n g etc (3)

DIAGNOSTICS
These functions return the integer constant EOF at end of
file or upon read error.

A stop w:ith message "Reading bad file" means an attempt has
been made to read from a stream that has not been opened for
reading by fopen.

LIMITATIONS

1

The end-of-file return from getchar in ZEUS is incompatible
with that in UNIX editions 1-6. (ZEUS is derived from UNIX
seventh edition.)

Because it is implemented as a macro, getc treats a stream
argwnent with side effects incorrectly. In particular,
getc(*f++); does not work.

Bell 1

GETENV(3) Zilog

NAME
getenv - value for environment name

SYNOPSIS
char *getenv(name)
char *name; ---

DESCRIPTION

GETENV (3)

Getenv searches the environment list (environ(?)) for a
string of thE~ form namr.=value and returns value if such a
string is present, otherwise 0 (NULL).

SEE ALSO
en v i r on (7) , ex •ec (2) •

1 Bell 1

GETGRENT(3) Zilog GETGRENT(3)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent - get group
file information
linclude <grp.h>

struct group *getgrent();

struct group *getgrgid(gid) int gid;

struct group *getgrnam(name) char *name;

int setgrent ();

int endgrent ();

DESCRIPTION

1

Each call to getgrent, getgrgid and getgrnam reads one or
more lines from a single input stream opened from the group
file. The function places the contents of the last line
read in a structure and returns a pointer to this structure.
Getgrent reads a single line; getgrgid reads until its argu­
ment is matched by the numeric group ID field of the last
line read; getgrnam reads until its argument string is
matched by the name field of the last line read.

Setgrent rewinds the input stream: subsequent calls to get­
grent, getgrid, or getgrnam start from the beginning of the
file.

Endgrent closes the input stream. This can bE! used to
prevent the process from running out of file descriptors.

Getgrentu getgrid, and getgrnam point to a structure of type
group~ This is the declaration of group:

struct group { /* see
char *gr name; -char *gr passwd;
int gr gid;
char **gr_mem;

} ;

The membe!rs of this structure

gr name
- The group's name.

gr passwd

getgrent(3)

are:

- The group's encrypted password.
gr gid

- The numerical group-ID.
gr mem

*/

- Null-terminated vector of pointers to the individual

Bell 1

GETGRENT(3) .Zilog GETGRENT(3)

member natmes.

FILES
/etc/group - group file

SEE ALSO
getlogin (3), getpwent (3), group(S).

DIAGNOSTICS
A null pointer (0) is returned on end of file, search
failure, or error.

LIMITATIONS

2

The pointer returned points to a static structure; informa­
tion in this structure must be copied if it is to be saved.

Bell 2

GETLOGIN(3) Zilog GETLOGIN(3)

NAME
getlogin - get login name

SYNOPSIS
char *getlogin();

DESCRIPTION
Getlogin returns a pointer to the login name as found in
/etc/utmp. It is used in conjunction with getpwnam to
locate the correct password file entry when the same user ID
is shared by several login names.

If getlogin is called within a process that is not attached
to a typewriter, it returns NULL. The correct procedure for
determining the login name is to first call getlogin and if
it fails, to call getpwuid.

FILES
/etc/utmp

SEE ALSO
getpwent(3), getgrent(3), utmp(S).

DIAGNOSTICS
Returns NULL (0) if name not found.

LIMITATIONS
The retu1m values point to static data whose content is
overwritten by each call.

1 Bell 1

GETOPT(3) Zilog GETOPT(3)

NAME
getopt - get option letter from argv

SYNOPSIS
int getopt (ar2.£, argv, optstring)
int argc; -
char **argv;
char *opts tr in~i;

extern char *optarg;
extern int optind;

DESCRIPTION
Getopt returns the next option letter in ar~v that matches a
letter in optstring. Optstring is a string of recognized
option letters; if a lettbr is followed by a colon, the
option is expected to have an argument that may or may not
be separated from it by white space. Optarg is set to point
to the start of the option argument on return from getopt.

Getopt places in optind the a~gv index of the next argument
to be processed. Because opt1nd is external, it is normally
initialized to zero automatically before the first call to
getopt.

When all options have been processed (i.e. up to the first
non-option ar9ument) , getopt returns EOF. The special
option -- may be used to delimit the end of the options; EOF
will be returned, and -- ~ill be skipped.

DIAGNOSTICS
Getopt prints an error message on stderr and returns a ques­
tion mark (?) when it encounters an option letter not
included in optstring.

EXAMPLE
The following code fragment shows how one might process the
arguments for a command that can take the mutually exclusive
options a and b, and the options f and o, both of which
require arguments:

main (argc, argv)
int argc;
char **ar9v;
{

int c;
extern int optind;
extern char *optarg;

while ((c = getopt (argc, argv, "abf:o:")) != EOF)

1 Bell 1

GETOPT(3)

}

Zilog

switch (c) {
case 'a' :

if (bflg)
errflg++;

else
aflg++;

break;
case 'b':

if (aflg)
errflg++;

else
bproc();

break;
case 'f':

ifile = optarg;
break;

case 'o' :
ofile = optarg;
bufsiza = 512;
break;

case'?':
errflg++;

}
if (errflg) {

}

fprintf (stderr, "usage: ••• ");
exit (2);

for (; opt ind < argc; opt ind++) {
if (access (argv[optind], 4)) {

Bell

GETOPT(3)

2

NAME
getpass - read a password

SYNOPSIS
char *getpass(prompt)

char *prompt;

DESCRIPTION

Zilog GETPASS(3)

Getpass reads a password from the file /dev/tty, or if that
cannot be opened, from the standard input,--after prompting
with the null-terminated string prompt and disabling echo­
ing. A pointer is returned to a null-terminated string of
at most eight characters.

FILES
/dev/tty

SEE ALSO
crypt (3) •

LIMITATIONS
The return value points to static data whose content is
overwritten by each call.

1 Bell 1

GET PW (3)

NAME
getpw - get name from UID

SYNOPSIS
getpw (uid, buf)
char *buf;
int uid;

DESCRIPTION

Zilog GET PW (3)

Getpw searches the password file for the (numerical) uid,
and fills in buf with the corresponding line; it returns
nonzero if uid----Cannot be found. The line is null­
terminated.

FILES
/etc/passwd

SEE ALSO
getpwent(3), passwd(5).

DIAGNOSTICS
Nonzero return on error.

1 Bell 1

GET PW ENT (3) Zilog GETPWENT(3)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent - get pass­
word file entry

SYNOPSIS
#include <pwd.h>

struct passwd *getpwent();

struct passwd *getpwuid(uid)
int uid;

struct passwd *getpwnam(~)
char *name;

int setpwent();

int endpwent();

DESCRIPTION
Getpwent, getpwuid, and getpwna.m each return a pointer to an
object with the following structure containing the broken­
out- fields of a line in the password file.

struct

} ;

passwd
char
char
int
int
char
char
char
char
char

{ /* see getpwent(3)
*pw name;
*pw-passwd;
pw uid;
pw=gid;
pw age;
*pw comment;
*pw-gecos;
*pw-dir;
*pw_shell;

*/

The fields ~-pomment, and pw gecos are unused; the others
have meanings described in passwd(5).

Getpwent reads the next line after opening the file if
necessary; setpwent rewinds the file; endpwent closes it.

Getpwuid and gc~tpwnam search from the beg inning unti 1 a
matching uid or name is found, or until EOF is encountered.

FILES
/etc/passwd

SEE ALSO
getlogin(3), getgrent(3), passwd(5).

1 Bell 1

GETPWENT(3) Zilog GETPWENT(3)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

LIMITATIONS
All information is contained in a static area and must . be
copied if it is to be saved.

2 Bell 2

GETS(3) Zi.log GETS(3)

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#include <stdio.h>

char *gets(~)
char *s;

char *fgets(~, n, stream)
char *s;
FILE *stream;
int _!!i

DESCRIPTION
Gets reads a string into s from the standard input stream
stdin. The string is terminated by a new line character,
that is replaced in~ by a null character. Gets returns its
argument.

Fgets reads n-1 characters, or up to a new line character,
whichever comes first, from the stream into the string s.
The· last character read into s is followed by a null chara~­
ter. Fgets returns its first-argument.

SEE ALSO
puts (3), getc (3), scanf (3), fread (3), ferror (3).

DIAGNOSTICS
Gets and fgets return the constant pointer NULL upon end of
file or error.

LIMITATIONS
Gets deletes a new line, and fgets keeps it.

1 Bell 1

GOODMAGIC(3) Zilog GOODMAGIC(3)

NAME
goodmagic - determine magic number validity

SYNOPSIS
extern int swap flg;

goodmagic(magic);
int magic;

DESCRIPTION
Goodmagic determines if magic is a valid a.out(S) magic
number. If the value is not valid, 0 is returned. If magic
appears to be a byte-swapped magic number, swap flg is non­
zero. If magic is valid, the value returned is in 'the range
1 through 6. Values 1 through 3 are nonsegmented magic
numbers N MAGICl, N MAGIC3, and N MAGIC4 respectively;
values 4 through 6 are-returned for segmented magic numbers
S_MAGICl, S_MAGIC3, and S MAGIC4.

SEE ALSO
a.out(5).

DIAGNOSTICS

1

Goodmagic returns 0 if magic is not a valid a.out(5) magic
number.

Zilog 1

I-IYPO'r (3M) Zilog

NAME
hypot 1 cabs - euclidean distance

SYNOPSIS
iinclude <math.h>

double hypot(~ 1 y)
double _!1 -:t_;

double cabs(z)
struct T double _!1 ~;} ~;

DESCRIPTION
Hypot and cabs return

sqrt(x*x + y*y) 1

taking precautions against unwarranted overflows.

SEE ALSO
exp(3).

1 Zilog

HYPO'r {3M)

1

ISADDINDEX(3) Zilog ISADDINDEX(3)

NAME
isaddindex - add an index to a C-ISAM file

SYNOPSIS
#include <isam.h>

isaddindex(isfd, keydesc)
int isfd;
struct keydesc *keydesc;

DESCRIPTION
Isadddindex adds an index to the C-ISAM file indicated by
the isfd parameter. The index is defined in the keydesc
structure. This call executes only if the C-ISAM file has
been opened for exclusive access, and for both input and
output.

There is no limit to the number of indices added through the
isaddindex call. However, the maximum number of parts
defined for an index is eight. Also, the maximum number of
bytes in an index is 118.

FILES
/usr/include/isam.h
/usr/lib/libcisam.a

SEE ALSO

1

i s b u i 1 d (3) , i s de 1 index (3) , i s i n de x in f o (3) , i so pen (3) •
C-Isam Programmer's Guide in the Zeus Languages/Programming
Tools Manual

Zilog 1

I SAUD I 'r (3) Zilog ISAUDIT(3)

NAME
isaudit - audit trail maintenance for a C-ISAM file

SYNOPSIS
#include <isam.h>

isaudit(isfd, filename, mode)
int isfcr;-
char *fITenamE~;
int mode; -

DESCRIPTION

1

Isaudit is used to perform operation relative to the audit
trail of a C-ISAM file.

Before an audit trail can be started, the name of the audit
trail file must be recorded by C-ISAM. It is recorded with
the mode parameter equalling AUDSETNAME and with the
filename- parameter pointing to the name of the audit-trail
file. The name can be any valid pathname, up to 64 bytes
long. This mode can be used to change the name of the audit
trail file, and create an audit trail file with a new name,
if -the current audit trail is inactive (see below).

Once this audit trail file name has been recorded in C-ISAM,
the user can activate and deactivate the audit trail at will
by using the values AUDStART and AUDSTOP for the mode param­
eter, respectively. (The filename parameter is ignored in
both these cases.) When the audit trail is active, all
modifications will be written to the audit trail file, even
if the modifications are generated by a different process!
It will remclin active until it is deactivated, even after
the originating process is terminated.

If an audit trail file is deactivated, and later activated
again, any new modifications to the file will be appended to
the existing audit trail data from the previous period of
activation.

If the mode parameter equals AUDINFO, the isaudit call is
used to query the status of the audit trail. If the first
byte of the record array is (hex) 01, then the audit trail
is active; if it is (hex) 00, then the audit trail is not
active.

The mode parameter can be set to AUDGETNAME to have C-ISAM
return the name of the audit trail file (specified by isfd),
presuming it has been previously set. The name wfIT--be
returned in the filename parameter.

Zilog 1

ISAUDIT(3) Zilog ISAUDIT(3)

The format of the audit trail file is as follows:

A one character code (see below)
The date and time in long format (see time(2))
The process id (int)
The user id (int)
The contents of the record

The code is as follows:

A - addition of a record
D - deletion of a record
R - results of a read
W - record being written

The audit trail file is needed to store all modifications to
the file. Thus an isrewcurr call will generate two entries
in the audit trail file: an entry with an 'R' code giving
the record before it was updated, and an entry with a 'W'
code, giving the new record that replaced it.

FILES
/usr/include/isam.h
/usr/lib/libcisam.a

SEE ALSO

2

C-Isam Programmer's Guide in the Zeus Languages/Programming
Tools Manual

Zilog 2

ISBUILD(3) Zilog ISBUILD(3)

NAME
isbuild - define a C-ISAM file

SYNOPSIS
#include <isam.h>

isbuild (filename, record1ength, keydesc, mode)
char *filename;
int recordlength;
struct keydesc *keydesc;
int mode;

DESCRIPTION
Isbuild defines and creates a C-ISAM file. It causes two
operating system files to be created and initialized. One
of these two files, named by appending .dat to the filename
para.meter, will hold the data. The other, named by append­
ing ".idx" to the filename parameter, will hold the diction­
ary and the indices.

The filename parameter shbuld point to a null-terminated
character string no more than ten characters long.

After isbuild has complet~d successfully, the C-ISAM file
will remain open for further processing. The isbuild func­
tion returns a C-ISAM file descriptor, used for all opera­
tions on the open file.

The keydesc points to a structure containing a description
of the file's primary index. Alternate indices may be added
later using isaddindex.

Mode specifies the user's access intentions (input, output,
or---both) and the user•s locking requirements (exclusive,
manual, or automatic). The mode will be ISEXCLLOCK, ISMANU­
r....OCK, or ISAU'POLOCK arithmetically added to ISINPUT, ISOUT­
PUT' or Is INOU'r.

LIMITATIONS

FILES

Filenames are limited to ten or less characters.

/usr/include/isam.h
/usr/lib/libcisam.a

SEE ALSO

1

isaddindex(3), isindexinfo(3), isopen(3).
C-Isam Programmer's Guide in the Zeus Languages I Program­
ming Tools Manual

Zilog 1

ISCLOSE(3) Zilog

NAME
isclose - close a C-ISAM file

SYNOPSIS
#include <isam.h>

isclose(isfd)
int iisfd;-

DESCRIPTION

I SC LOSE (3)

Isclose is used to close a C-ISAM file. Any locks that are
held for the file by the process issuing the isclose call
are released.

FILES
/usr/include/isam.h
/usr/lib/libcisam.a

SEE ALSO
isbuild(3), islock(3), isopen(3).
C-Isam Progra~mer's Guide in the Zeus Languages / Program­
ming Tools Manual

1 Zilog 1

ISDELETE(3) Zilog ISDELETE(3)

NAME
isdelete, isdelcurr - de~ete the current record from a C­
ISAM file

SYNOPSIS
#include <isam.b>

isdelete(isfd, record)
int isfd;--
charre"Cord [];

isdelcurr{isfd)
int isfd; --·

DESCRIPTION
Both isdelete and isdelcurr delete records from C-ISAM
files. Isdelcurr will delete the current record. Isdelete
will locate the specified record and delete it. In order to
use isdelete the primary key must be unique. The primary
key value of the desired record must be placed at their
correct positions in the the I/O buffer pointed to by the
record parameter.

To use isdelcurr the record must previously have been
located with an isread or isstart

Isfd is the C-·ISAM file descriptor returned when the file
was opened.

The file must be open for both input and output. The
appropriate values will be deleted from the index file for
each index defined.

FILES
/usr/include/isam.h
/usr/lib/libcisam.a

SEE ALSO

1

isread (3), isstart (3).
C-Isam Programmer's Guide in the Zeus Languages/Programming
Tools Manual

Zilog 1

ISDELINDEX(3) Zilog

NAME
isdelindex - remove an index from a C-ISAM file

SYNOPSIS
iinclude <isam.h>

isdelindexi(isfd, keydesc)
int isfd;
struct keydesc *keydesc;

DESCRIPTION

ISDELINDEX(3)

Isdelindex removes an existing index from an C-ISJ~M file.
The index to be removed will be identified by the keydesc
structure. All indices may be deleted except the primary
index. This call will only execute if the C-ISAM file has
been opened for exclusive access, both input and output.

FILES
/usr/include/isam.h
/usr/lib/libcisam.a

SEE ALSO
isaddindex(3).
C-Isam Proqrammer's Guide in the Zeus Languages/Programming
Tools Manual

1 Zilog 1

ISERASE(3) Zilog ISERASE(3)

NAME
iserase - remove a C-ISAM file and any associated audit
trail fil·~

SYNOPSIS
#include <isam.h>

iserase(filename)
char *filename'.;

DESCRIPTION
Iserase removes the filename.idx and filename.dat files that
comprise the C-ISAM file, as well as any audit trail file
for the C-ISAM file, if it exists. The file should not be
open when it is erased.

FILES
/usr/include/isam.h
/usr/lib/libcisam.a

SEE ALSO

1

isaudit (3), isbuild (3).
C-Isam Programmer's Guide in the Zeus Languages I Program­
ming Tools Manual

Zilog 1

ISINDEXINF0(3) Zilog ISINDEXINF0(3)

NAME
isindexinfo - access a C-ISAM file's directory information

SYNOPSIS
tinclude <isam.h>

isindexinfo(isfd, buffer, number)
int isfd; --
int nUmber;
struct keydesc *buffer;
or
struct dictinfo *buffer;

DESCRIPTION
Isindesinfo gives the caller access to information about the
C-ISAM file such as information about the defined indexes,
their location within the record, their length and whether
duplicate values are allowed.

Information about a particular index is obtained by specify­
ing the number of the index using the number parameter. Gen­
eral information such as the number of indexes, index record
size, and data record size is obtained by calling isindex­
info with the number parameter set to 0 and reading the
buffer into a structure of type dictinfo.

Buffer can contain information in the format of either key­
desc or dictinfo depending on whether the number parameter
I'SE>ositive or 0. As indexes are added and deleted the
number of a particular index may vary. However, if the
number of indexes indicated in dictinfo are examined, review
of all of the indexes is guaranteed.

FILES
/usr/include/isam.h
/usr/lib/libcisam.a

SEE ALSO

1

isaddindex(3), isbuild(3), isdelindex(3).
C-Isam Programmer's Guide in the Zeus Languages I Program­
ming Tools Manual

Zilog 1

ISLD (3) Zilog ISLD(3)

NAME
lddbl, ldfloat:, ldint, ldlong - C-ISAM load routines

SYNOPSIS
f include <isan11.h>

double lddbl (I~)
char *p_;

float ldfloat(E,)
char *E,;

int ldint(p_)
char *E,;

long ldlong (.E~)
char *E.i

DESCRIPTION
These routines load a byte string into a numeric field. The
byte field need not be word-alligned. The parameter E.
points to the byte string.

These routines require the C-ISAM library.

FILES
/usr/include/isam.h
/usr/lib/libcisam.a

SEE ALSO
isst(3).
C-Isam Programmer's Guide in the Zeus Languages / Program­
ming Tools Manual

1 Zilog 1

IS LOCK (3) Zilog ISLOCK (3)

NAME
islock - read-lock a C-ISAM file

SYNOPSIS
#include <isam.h>

islock(isfd)
int isfd; -

DESCRIPTION
Islock will lock the entire file that is specified by isfd.
(isfd is the ISAM file descriptor returned by isbuild or
isopen when the file was opened.) This is a "read" lock,
other processes will be able to read the file but not update
it, as long as they were opened for manual locking, not
automatic locking.

FILES
/usr/include/isam.h
/usr/lib/libcisam.a

SEE ALSO

l

isclose(3) ,, isunlock(3).
C-Isam Programmer's Guide in the Zeus Languages / Program­
ming Tools Manual

Zilog 1

ISOPEN(3) Zilog ISOPEN(3)

ISO PEN
isopen - open a C-ISAM ftle for processing

SYNOPSIS
finclude <isa111.h>

isopen(filename, mode)
char * f i lenamE~;
int mode; -

DESCRIPTION
Isopen opens a C-ISAM file for processing. It returns the
C-ISAM file descriptor to be used in subsequent accesses to
the C-ISAM file.

The filename parameter must point to a null-terminated
string, which is the file name of the C-ISAM file to be pro­
cessed.

Mode specifies the user'~ access intentions (input, output,
~both) anal the user's locking requirements (exclusive,
manual, or automatic). The mode will be ISEXCLLOCK, ISMANU­
LOCK, or ISAUTOLOCK arithmetically added to ISINPUT, ISOUT­
PCJT, or ISINOUT.

This call automatically positions the current record pointer
to the first record in order of the primary index. If
another ordering is desired, the isstart call can be used to
select another index, after the file is opened.

FILES
/usr/include/isam.h
/usr/lib/libcisam.a

SEE ALSO

1

isbuild(3), isclose(3), isstart(3).
C-Isam Programmer's Guide in the Zeus Languages I Program­
ming Tools Manual

Zilog 1

ISREAD(3) Zilog IS READ (3)

NAME
isread - read records from a C-ISAM file

SYNOPSIS
#include ·~isam.b>

isread(isfd, buffer, mode)
int isfd; -
charOUf'fE!r [];
int mode;

DESCRIPTION
Isread reads records sequentially or randomly as indicated
by the mode parameter.

When sequE:mtial processing is desired, mode indicates that
the current (ISCURR), first (ISFIRST), last (ISLAST), next
(ISNEXT), or previous (ISPREV) record is to be read. The
result will be read into the buffer.

When rand•::>m selection is desired, mode indicates that the
record b::> be returned has a value that is equal to
(ISEQUAL), greater than (ISGREAT), or greater than or equal
to (ISGTEQ) the specified search value. The search value is
placed in the buffer array in the correct byte positions for
the key, as defined in the index's keydesc when the index
was created. Isread will fill in the buffer with the
results of the search.

If manual locking was specified when the file was opened,
the record can be read-locked before being read, by adding
the value ISLOCK to the mode. The record will remain locked
until unlocked with the isrelease call.

Following isopen or isbuild calls or an isstart call to the
start of a file, either isnext or iscurr will give the first
record.

LIMITATIONS
Isread can not be used for partial string searches.
this, Isstart must be used.

FILES
/usr/include/isam.h
/usr/lib/libcisam.a

SEE ALSO

To do

i s bu i 1 d (3) , i s 1 o ck (3) , i so pen (3) , i s re 1 ease (3) , i s star t (3) •
C-Isam Programmer's Guide in the Zeus Languages I Program­
ming Tools Manual

1 Zilog 1

ISRELF.:ASE(3) Zilog

NAME
isrelease - unlock records in a C-ISAM file

SYNOPSIS
#include <isam.h>

isrelease(isfd)
int isfd; --·

DESCRIPTION

ISRELEASE(3)

Isrelease unlocks records which have been manually locked
using the isread call. All locked records in the file indi­
cated by isfd will be unlocked.

FILES
/usr/include/isam.h
/usr/lib/libcisam.a

SEE ALSO
isclose(3), islock(3), isread (3).
C-Isam Programmer's Guide in the Zeus Languages / Program­
ming Tools Manual

1 Zilog 1

ISRENAME(3) Zilog

NAME
isrename - rename a C-ISAM file

SYNOPSIS
#include <isam.h>

isrename(oldname, newname)
char *oldname;-
char *newname_;

DESCRIPTION

ISRENAME(3)

Isrename will rename the file specified by the oldname
parameter to the name specified by the newname parameter.
The name parameters must he null terminated strings.

LIMITATIONS
No name may be longer than 10 characters.

FILES
/usr/include/isam.h
/usr/lib/libcisam.a

SEE ALSO
C-Isam Programmer's Guide in the Zeus Languages / Program­
ming Tools Manual

1 Zilog 1

I SREWRITE (3) Zilog ISREWRITE(3)

NAME
isrewrite - rewrite a record in a C-ISAM file
isrewcurr - rE~write the current record in a C-ISAM file

SYNOPSIS
tinclude <isain.h>

isrewrite(isfd, record)
int isfd; ---
char -record [] ,;

isrewcurr(isfd, record)
int isfd; ---
char -record [] ,;

DESCRIPTION
Isrewrite and isrewcurr change one or more values for a C­
ISAM record file. Isrewturr will rewrite the current record
(obtained after an isreaa or isstart call.) Isrewrite will
locate the record and rewrite it.

The buffer pointed to by record will contain the new value
for the record. The primary key can not be changed.

In order to call isrewrite the primary key must be unique.
The value of the primary key in the buffer pointed to by
record is used to locate the record.

Changed secondary index values will cause modification of
the appropriate index files.

These calls will not change the position of the current­
record po inte1~.

FILES
/usr/include/isam.h
/usr/lib/libcisam.a

SEE ALSO
isdelete(3).
C-Isam Programmer's Guide in the Zeus Languages / Program­
ming Tools Manual

l Zilog 1

ISST(3) Zilog ISST(3)

NAME
stdbl, stfloat, stint, stlong, - C-ISAM store routines

SYNOPSIS
tinclude <Jlsam.h>

stdbl (d, p)1
double d;
char *p;

stfloat(f, p)
float f;
char *p;

stint (i, Pl~
int i;
char *p;

stlong (1, p)
long l;
char *p;

DESCRIPTION
These routines store a numeric value into
The byte field need not be word-alligned.
points to i:he byte string.

They can only be used with C-ISAM.

FILES
/usr/include/isam.h
/usr/lib/libcisam.a

SEE ALSO
isld(3).

a byte string.
The pai=ameter E

C-Isam Programmer's Guide in the Zeus Languages I Program­
ming Tools Manual

1 Ziloa 1

ISSTART(3) Zilog ISSTART(3)

NAME
isstart - select the current index and record within an C­
ISAM file

SYNOPSIS
isstart(isfd, keydesc, length, record, mode)
int isfd_; __
struct deSdesc *keydesc;
int lengt ;
char record[];
int mode;

DESCRIPTION
Isstart selects the current index and record to be used for
subsequent operations in an C-ISAM file. (When an C-ISAM
file is created with isbuild or opened with isopen the
current index is the primary index and the current record is
the first record.)

The keydesc is used to designate the desired index. It must
be either the primary index, or an index that was previously
added using the isaddindex call.

The mode will indicate which record should become the
current record. If ISFIRST or ISLAST modes are selected,
the length and record parameters are not needed. (Islast
will position on the end of the file following the last
record.)

If the current record is to be selected by way of key
search, the record buffer must have the search values
inserted in it at the co.rrect offsets within the record. In
this case, the length parameter contains 0 if the entire key
is being used for comparison, or a positive value k if only
the first "k" bytes of the key are being compared.

In this case the mode may be ISEQUAL (to find the
record with a key value equal to that supplied in the
buffer), ISGREAT (to find the first record with a key
greater than that supplied in the record buffer), or
(to find the first record with a keyvalue greater or
to that supplied in the record buffer).

first
record
value

ISGTEQ
equal

LIMITATIONS
If mode is ISFIRST or ISLAST, the parameters' length and
record are unneeded and are not used by the isstart call.

FILES
/usr/include/isam.h
/usr/lib/libcisam.a.

1 Zilog 1

ISSTART(3) Zilog ISSTART(3)

SEE ALSO
i s bu i 1 d (3) , i so pen (3) , i s read (3) •
C-Isam Programmer's Guide in the Zeus Languages I Program­
ming Tools Manual

2 Zilog 2

ISUNIQUEID(3) Zilog ISUNIQUEID(3)

NAME
isuniqueid - obtain a unique ID for a C-ISAM file

SYNOPSIS
#include <isam.b>

isuniqueid(isfd, uniqueid)
int isfd; ~~
long"1t\iiliqueid;

DESCRIPTION
Isuniqueid obtains a long integer that is guaranteed to be
unique for a C-ISAM file. This is useful if a unique iden­
tifier for each record is desired, and the file doesn't have
a natural one.

Often a programmer may want to use the calls which require a
unique primary index, but may have no reasonably-sized por­
tion of the data rE~cord which is guaranteed to be unique.
In such a case, a portion of the record could contain the
serially-incremented four-byte long integer obtained by
isuniqueid. It is the responsibility of the programmer to
place the unique long integer in the record buffer using
stlong before a write or rewrite call is made.

FI LBS
/usr/include/isam.h
/usr/lib/libcisam.a

SEE ALSO

1

C-Isam Programmer's Guide in the Zeus Languages / Program­
ming Tools Manual

Zilog 1

IS UNLOCK (3) Zilog

NAME
isunlock - unlock a C-ISAM file

SYNOPSIS .
f include <isam.b>

isunlock(isfd)
int isfd;

DESCRIPTION

IS UNLOCK (3)

Isunlock releases an existing file-level lock for the file
specified by the file descriptor isfd.

FILES
/usr/include/isam.h
/usr/lib/libcisam.a

SEE ALSO
isclose(3), islock(3).
C-Isam Programmer's Guide in the Zeus Languages / Program­
ming Tools Manual

1 Zilog 1

I SWR rrr F.! (3) Zilog ISWRITE(3)

NAME
iswrite - write a record into an C-ISAM file

SYNOPSIS
#include <isam.h>

iswrite(isfd, record)
int isfd_; __
charre'Cord[];

DESCRIPTION
Iswrite writes the record passed to it in the record parame­
ter to the C-TSAM file. The appropriate values will be
written to the index file for each index that is defined.

Iswrite does not change the position of the current record
pointer.

FILES
/usr/include/i~am.h
/usr/lib/libcisam.a

SEE ALSO

1

C-Isam Programmer's Guide in the Zeus Languages I Program­
ming Tools Manual

Zilog 1

J0(3M) Zilog J0 (3M)

NAME
j0, jl, jn, y0, yl, yn - bessel functions

SYNOPSIS
linclude <math.h>

double jl(x)
double _!;

double jl(x)
double _!;

double jn(n, x)
double .!T

double yl(x)
double _!;

double yl(x)
double _!;

double yn(n, x)
double xT

DESCRIPTION
These functions calculate Bessel functions of the first and
second kiltlds for real arguments and integer orders.

DIAGNOSTICS

1

Negative .arguments cause y0, yl, and yo to t:eturn a huge
negative value and set errno to EDOM.

Bell 1

L3TOL(3) Zilog L3TOL(3)

NAME
13tol, ltol3 - convert between three-byte integers and long
integers

SYNOPSIS
13tol (lp, cp, n)

long * lpj;
char *EE;;
int n;

ltol3(cp, lp, n)
.char *cp;:
long *lp;;
int !!i-

DESCRIPTION
L3tol converts a list of n three-byte integers packed into a
character st:i:: ing pointed to by 92 into a 1 ist of long
integers pointed to by .!...e·
Ltol3 performs the reverse conversion from long integers
(lp) to three-·byte integ~rs (cp) •

These functions are useful for file system maintenance since
disk addresses are three bytes long.

SEE ALSO
f i 1 sys (5) •

1 Bell 1

LOGNAME(3) Zilog LOGNAME(3)

NAME
logname - login name of user

SYNOPSIS
char * lo~rname ();

DESCRIPTION
Logname returns a pointer to the null-terminated login name;
it extracts the $LOGNAME variable from the user's environ­
ment.

This routine is kept in /usr/lib/libPW.a.

E'ILES
/etc/profile

SEE ALSO
env (1) , 1 og in (1) , prof i 1 e (5) , environ (7) •

1 Bell 1

LS EARCH (3) Zilog LSEARCH (3)

NAME
lsearch - linear search and update

SYNOPSIS
char *!search (key, base, nelp, width, compar)
char *key;
char *base;
int *nelp;
int wTdtii;
int (*compar) ();

DESCRIPTION
Lsearch is a linear search routine generalized from Knuth
(6.1) Algorithm Q. It returns a pointer to a table indicat­
ing the location where a datum can be found. If the item
does not occur, it is added at the end of the table. The
first argument, key, is a pointer to the datum to be located
in the tablE~. The second argument, base, is a pointer to
the base of the table. The third argument, ne~p, is the
address of an integer containing the number of items in the
table. It is incremented if the item is added to the table.
The fourth argument, width, is the width of an element in
bytes. The last argument, compar, is the name of the com­
parison routine. It is called with two arguments which are
pointers to the elements being compared. The routine must
return zero if the items are equal and non-zero otherwise.

£,IMITATIONS
Unpredictable events can occur if there is not enough room
in the table to add a new item.

SEE ALSO
bsearch(3), qsort(3).

1 Bell 1

MALLOC(3) Zilog MALLOC(3)

NAME
malloc, free, realloc, calloc - main memory allocator

SYNOPSIS
char *malloc(size)
unsigned size_; __

free (ptr)
char *ptr_;

char *realloc(ptr, size)
char *E.!!.i --
unsigned size;

char *calloc(nelem, elsize)
unsigned nelem, elsize;

DESCRIPTION

1

Malloc and free provide a simple general-purpose me1nory
allocation package. Malloc returns a pointer to a block of
at least size bytes beginning on a word boundary.

The argument to free is a pointer to a block previously
allocated by malloc; this space is made available for
further allocation, but its contents are left undisturbed.

Disorder results if the space assigned by malloc is overrun
or if some random number is handed to free.

Malloc allocates the first sufficiently large contiguous
reach of free space found in a circular search from the last
block allocated or freed, coalescing adjacent free blocks as
it searches. It calls sbrk(2) to get more memory from the
system when there is no suitable space already free.

Realloc changes the size of the block pointed to by £!E. to
size bytes and returns a pointer to the block that is possi­
bly moved. The contents is unchanged up to the lesser of
the new and old sizes.

Realloc also works if ptr points to a block freed since the
last call of malloc, realloc, or calloc; thus SE~quences of
free, malloc, and realloc exploit the search strategy of
malloc to do storage compaction.

Calloc allocates space for an array of nelem elements of
size elsize. The space is initialized to zeros.

Each of the allocation routines returns a pointer to space
suitably aligned (after possible pointer coeccion) for
storage of any type of object.

Bell 1

MALLOC(3) Zilog MALLOC(3)

DIAGNOSTICS
Malloc, realloc, and calloc return a null pointer (0) if
there is no available memory or if the arena has been
detectably corr~pted by storing outside the bounds of a
block. Therefore the user should explicitly check return
values and abort his prograffi if he receives a null pointer
to avoid unexpected results.

LIMITATIONS

2

When realloc returns 0, the block pointed to by £!.!. can be
destroyed.

Bell 2

MKTEMP(3) Zilog

NAME
mktemp - make a unique file name

SYNOPSIS
char *mk:temp (template)

cha.r *template;

DESCRIPTION

MKTEMP (3)

Mktemp replaces template by a unique file name, and returns
the address of the template. The template is a file name
with six trailing X's, that are replaced with the current
process ID and a unique letter..

The letters are chosen to avoid file name duplication.

SEE ALSO
getpid (2).

LIMITATIONS
It is possible to run out of letters.

1 Bell 1

M 0 NI •r 0 R (3) Zilog MONITOR(3)

NAME
monitor - prepare execution profile

SYNOPSIS
monitor(lowpc, highpc, buffer, bufsize,

int (*lowpc) () , (*b1ghpc) () ;
short buffer[] ;
int bufSiz,nfunc;

nfunc)

DESCRIPTION
An executable program created by cc
includes calls for monitor with default
needn't be called explicitly except to
over profiling.

-p' automatically
parameters; monitor
gain fine control

Monitor is an interface to profil(2). Lowpc and highpc are
the addresses of two functions; buffer is the address of a
(user supplied) array of bufsize short integers. Monitor
arranges to record a histogram of periodically sampled
values of the program counter, and of counts of calls of
certain functions, in the buffer. The lowest address sam­
pled is that of lowpc and the highest is just below highpc.
At most nfunc call counts can be kept; only calls of func­
tions compiled-with the p~ofiling option -p of cc(l) are
recorded. For the results to be significant, especially
where there ar.e small, heavily used routines, it is sug­
gested that the buffer be no more than a few times smaller
than the range of locations sampled.

To profile the entire program, it is sufficient to use

extern etiext ();

monitor((int)2, etext, buf, bufsize, nfunc);

Etext lies just above all the program text, see end(3).

To stop execution monitoring and write the results on the
file men.out, use

monitor(0);

then prof (l) can be used to examine the results.

FILES
men.out

SEE ALSO
cc (1) , prof (1) " prof i 1 (2) , mon. out (5) •

1 8ell 1

MP (3)

NAME

Zilog MP(3)

itom, madd, msub, mult, mdiv, min, mout, pow, gcd, rpow
multiple precision integer arithmetic

SYNOPSIS
typedef struct { int len; short *val; } mint;

madd(a, b, c)
msub(a, b, c)
mult(a, b, £>
mdiv (a, ~, g, !,)
min(a)
mout{a)
pow (a~ b , !!! , c)
gcd(a, b, c)
rpow {a ,-b ,-c)
msqrtTa, -b, -r)
mint *~, ·*_£,-*_£, *!!!, *g, *!.i

sdi v (~, _!!, ~, !,)
mint *a, *g;
int n;
short *!:.;

mint *itom(n) int n; ___ -

DESCRIPTION

FILES

These routines perform arithmetic on integers of arbitrary
length. The integers are stored using the defined type
mint. Pointers to a mint should be initialized using the
function itom, which sets the initial value to n. After
that, space is managed automatically by the routines.

madd, msu.b, mult, assign to their third arguments the sum,
difference, and product, respectively, of their first two
arguments. mdiv assigns the quotient and remainder, respec­
tively, to its third and fourth argQments. sdiv is like
mdiv exce·pt that the divisor is an ordinary integer. msqrt
produces the square root and remainder of its first argu­
ment. rpow calculates a raised to the power b, while pow
calculate~s this reduced modulo m. min and mout do decimal
input and output.

The functions are obtained with the loader option -lmp.

/usr/lib/libmp.a
/usr/lib/slibmp.a

DIAGNOSTICS
Illegal operations and running out of memory produce
messages and core images.

1 Bell l

NLIST(3) Zilog NLIST(3)

NAME
nlist - get entries from name list

SYNOPSIS
finclude <nlh;t.h>

nlist(filename, nl)
char *fifename;
struct nl1st nl[];

DESCRIPTION
Nlist examines the name list in the given executable output
file and selectively extracts a list of values. The name
list consists of an array of structures containing names,
types and values. The list is terminated with a null name.
Each name is looked up in the name list of the file. If the
name is found, the type and value of the name are inserted
in the next two fields. If the name is not found, both
entries are set to 0.

The ~tructure is different than the actual symbol table
entry for a.out(5). The actual structure is:

struct nlist {
char
long
char

} ;

*nl name;
nl value;
nl=type;

This subroutine is useful for examining the system name list
kept in the file /zeus. In this way, programs can obtain
system addresses that are up to date.

SEE ALSO
a.out(5).

DIAGNOSTICS

1

All type entries are set to 0 if the file cannot be found or
if it is not a valid name list.

Bell 1

PERROR(3) Zilog PERROR(3)

NAME
perror, deverr, sys_errlist, sys_nerr, errno - system error
messages

SYNOPSIS
perror(s)
char *.!;

int deverr;
int sys nerr;
char *sys errlist[];
int errno;

DESCRIPTION
Perror produces a short error message on the standard error
file describing the last error encountered during a call to
the system from a C program. First, the argument string s
is printed, then a colon, then the message and a new line~
Most usefully, the argument string is the name of the pro­
gram that incurred the error. The error number is taken
from the external variable errno or deverr (intro(2)), that
is set when errors occur but not cleared when nonerroneous
cal ls are made·.

To simplify variant formatting of messages, the vector of
message strings sys errlist is provided; errno or deverr is
used as an index in this table to get the message string
without the new line. Sys nerr is the number of messages
provided for in the table; it-must be checked because new
error codes can be added to the system before they are added
to the table.

SEE ALSO
intro (2) •

1 Bell 1

POPEN(3) Zilog POP EN (3)

NAME
popen, pclose - initiate I/O to oc from a process

SYNOPSIS
#include <stdio.h>

FILE *popen(command, type)
char *command, *~;

int pclose(stream)
FILE *stream; ~-

DESCRIPTION
The arguments to popen are pointers to null-terminated
strings containing respectively a shell command line and an
I/O mode, either r for reading or w for writing. It creates
a pipe between -the calling process and the command to be
executed. The value returned is a stream pointer that can
write to the standard input of the command or read from its
standard outpuit.

A stream opened by popen should be closed by pclose, which
waits for the associated process to terminate and returns
the exit status of the command.

Because open files are shared, a type r command is used as
an input filter, and a type was an output filter.

SEE ALSO
pi pe (2) , f open (3) , f c 1 o s e (3) , system (3) , w a i t (2) •

DIAGNOSTICS
Popen returns a null pointer if files or processes cannot be
created, or the shell cannot be accessed.

Pclose returns -1 if stream is not associated with a popened
command.

LIMITATIONS

1

Buffered reading before opening an input filter sometimes
leaves the standard input of that filter mispositioned.
Similar problems with an output filter forestalled by care­
ful buffer flushing, for example, with fflush (fclose(3)).

Bell 1

PRINTF(3) Zilog PRINTF(3)

NAME
printf, fprintf, sprintf - output formatters

SYNOPSIS
iinclude <stdio.h>

int printf (format [, arg])
char * for1mat;

int fprintf (stream, format [, arg] •.•)
FILE *str;eam;
char * for1mat;

int sprintf (s, format [, arg])
char *s, *format;

DESCRIPTION

1

The following description pertains to the printf routines
normally included by the C compiler. These routines do not
completely conform to System 3 specifications: they maintain
Version 7 UNIX's interpretation of the capitalized conver­
sion characters D, O, U, and X as specifying conv1:?rsion of
long arguments. See printf (3x) for a description of rou­
tines that do follow System 3 specifications.

Printf places output on the standard output stream stdout.
Fprintf places output on the named output stream. Sprintf
places ''output'', followed by the null character (\9) in
consecutive bytes starting at *s; it is the user's responsi­
bility to ensure that enough storage is available. Each
function returns the number of characters transmitted (not
including the \8 in the case of sprintf), or a negative
value if an output error was encountered.

Each of these functions converts, formats, and prints its
args unde:r control of the format. The format is a character
string that contains two types of objects: plain characters,
which are simply copied to the output stream, and conversion
specifications, each of which results in fetching of zero or
more arg:s. The results are undefined if there arE~ insuff i­
cient ~s for the format. If the format is exhau8ted while
~s remain, the excess ~s are simply ignored.

Each conversion specification is introduced by the character
%. After the %, the following appear in sequence:

Zero or more flags, which modify the meaning of the
conversion specification.

An optional decimal digit string specifying a minimum
field width. If the converted value has fewer charac­
ters-than the field width, it will be padded on the

Bell l

PlUNTF (3) Zilog PRINTF(3)

2

left (or right, if the left-adjustment flag (see below)
has been given) to the field width;

A precision that gives the minimum number of digits to
appear for the d, o, u, or x conversions, the number of
digits to appear after the decimal point for the e and
f conversions, the maximum number of significant digits
for the g conversion, or the maximum number of charac­
ters to be printed from a string in s conversion. The
precision takes the form of a period (.) followed by a
decimal digit string: a null digit string is treated as
zero.

An optional 1 specifying that a following d, o, u, or x
conversion character applies to a long integer arg.
Capitalizing d, o, u, or x has the same effect.

A character that indicates the type of conversion to be
applied.

A field width or precision may be indicated by an asterisk
(*) instead of: a digit string. In this case, an integer ~
supplies the field width or precision. The ~ that is
actually converted is not fetched until the conversion
letter is seen, so the ~s specifying field width or preci­
sion must appE~ar before the ~ (if any) to be converted.

The flag characters and their meanings are:
The result of the conversion will be left­
justified within the field.

+ The result of a signed conversion will always
begin with a sign (+ or -} •

blank If the first character of a signed conversion is
not a sign, a blank will be prepended to the
result. This implies that if the blank and +
flags both appear, the blank flag will be ignored.

I This flag specifies that the value is to be con­
verted to an ''alternate form.'' For c, d, s, and
u conversions, the flag has no effect. For o
conversion, it increases the precision to force
the first digit of the result to be a zero. For x
conversion, a non-zero result will have Bx
prepended to it. For e, -E, f, g, and G conver­
sions, the result will always contain a decimal
point, even if no digits follow the point (nor­
mally, a decimal point appears in the result of
these conversions only if a digit follows it).
For g and G conversions, trailing zeroes will not
be removed from the result (which they normally
are) •

Bell 2

PRINTF(3) Zilog PRINTF(3)

3

The conversion characters and their meanings are:

d,o,u,x

f

e,E

g,G

c
s

%

The integer arg is converted to signed decimal,
unsigned octal, decimal, or hexadecimal notation
respectively. The precision specifies the minimum
number of digits to appear; if the value being
converted can be represented in fewer digits, it
will be expanded with leading zeroes. The default
precision is 1. The result of converting a zero
value with a precision of zero is a null string
(unless the conversion is o or x and the I flag is
present) • ~-

The float or double arg is converted to decimal
no tat ion in the style '' [-] ddd .ddd'' , where the
number of digits after the decimal point is equal
to the precision specification. If the precision
is missing, 6 digits are output; if the prec1s1on
is explicitly 0, no decimal point appears.
The float or double arg is converted in the style
''[-]d.ddde+dd'', where there is one digit before
the decimal-point and the number of digits after
it is equal to the precision; when the precision
is missing, 6 digits are produced; if the preci­
sion is zero, no decimal point appears. The E
format code will produce a number with E instead
of e introducing the exponent. The exponent
always contains exactly two digits.
The float or double ~ is printed in style f or e
(or in style E in the case of a G format code) ,
with the precision specifying the number of signi­
ficant digits. The style used depends on the.
value converted: style e will be used only if the
exponent resulting from the conversion is less
than -4 or greater than the precision. Trailing
zeroes are removed from the result; a decimal
point appears only if it is followed by a digit.
The character arg is printed.
The ~ is taken to be a string (character
pointer) and characters from the string are
printed until a null character (\I) is encountered
or the number of characters indicated by the pre­
cision specification is reached. If the precision
is missing, it is taken to be infinite, so all
characters up to the first null character are
printed.
Print a %; no argument is converted.

In no case does a non-eKistent or small field width cause
truncation of a field; if the result of a conversion is
wider than the field width, the field is simply expanded to
contain the conversion result. Characters generated by
printf and fprintf are printed as if putchar had been called

Bell 3

PRit~·rF (3) Zilog PR INT~, (3)

(see putc (3S)).

EXAMPLES
To print a date and time
10:02'', where weekday
terminated strings:

in
and

the form ''Sunday, July 3,
month are pointers to null-

pr in tf ("%s, %s %d, % • 2d: % • 2d", weekday, month, day,
hour, min);

To print pi to 5 decimal places:

printf("pi = %.Sf", 4*atan(l.0));

SEE ALSO
ecvt(3), putc (3), scanf (3), stdio (3), printf (3x)

4 Bell 4

PRINTF(3X) Zilog PR IN'rF (3X)

NAME
printf, fprintf, sprintf - System 3 output formatters

SYNOPSIS
#include <stdio.h>

int printf(format [, arg] •••)
char *format;

int fprintf(stream,format [, ~] •••)
FILE *stream;
char *format;

int sprintf(s,format [, arg] •••)
char *~, format;"

DESCRIPTION

1

The following describes the System 3 version of printf and
its related routines. These routines are not normally
included by the C compiler, which instead uses the routines
described in printf (3). This System 3 version differs from
the other only in its interpretation of the capitalized
conversion character X and in not allowing the conversion
characters D, O, and U.

Printf places output on the standard output stream stdout.
Pprintf places output on the named output stream. Sprintf
places ''output'', followed by the null character (\8) in
consecutive bytes starting at *s; it is the user's responsi­
bility to ensure that enough storage is available. Each
function returns the number of characters transmitted (not
including the \I in the case of sprintf), or a negative
value if an output error was encountered.

Each of these functions converts, formats, and prints its
args under control of the format. The format is a character
string that contains two types of objects: plain characters,
which are simply copied to the output stream, and conversion
specifications, each of which results in fetching of zero or
more args. The results are undefined if there are insuffi­
cient args for the format. If the format is exhausted while
~s remain, the excess args are simply ignored.

Each conversion specification is introduced by the character
%. After the %, the following appear in sequence:

Zero or more flags, which modify the meaning of the
conversion specification.

An optional decimal digit string specifying a minimum
field width. If the converted value has fewer charac­
ters-than the field width, it will be padded on the

Bell 1

PRINT!!"' (3X) Zilog PR INTF (3X)

2

left (or right, if the left-adjustment flag (see below)
has been given) to the field width;

A precision that gives the minimum number of digits to
appear for the d, o, u, x, or X conversions, the number
of digits to appear after the decimal point for the e
and f conversions, the maximum number of significant
digits for the g conversion, or the maximum number of
characters to be printed from a string in s conversion.
The precision takes the form of a period (.) followed
by a decimal digit string: a null digit string is
treated as zero.

An optional 1 specifying that a following d, o, u, x,
or X conversion character applies to a long integer

~-

A character that indicates the type of conversion to be
applied.

A field width or precision may be indicated by an asterisk
(*) instead of a digit string. In this case, an integer ~
supplies the field width or precision. The ~ that is
actually converted is not fetched until the conversion
letter is seen, so the args specifying field width or preci­
sion must appe·ar before the ~ (if any) to be converted.

The flag characters and their meanings are:

+

blank

I

The result of the conversion will be
justified within the field.

left-

The result of a signed conversion will always
begin with a sign (+ or -) •

If the first character of a signed conversion is
not a sign, a blank will be prepended to the
result. This implies that if the blank and +
flags both appear, the blank flag will be ignored.

This flag specifies that the value is to be con­
verted to an ''alternate form.'' For c, d, s, and
u conversions, the flag has no effect. For o
conversion, it increases the precision to force
the first digit of the result to be a zero. For x
(X) conversion, a non-zero ~esult will have Ix
(IX) prepended to it. For e, E, f, g, and G
conversions, the result will always contain a
decimal point, even if no digits follow the point
(normally, a decimal point appears in the result
of these conversions only if a digit follows it).
For g and G cdnversions, trailing zeroes will not

Bell 2

PRINTF(3X) Zilog PR INT.F (3X)

3

be removed from the result (which they normally
are) •

The conversion characters and their meanings are:

d,o,u,x,x The integer ~ is converted to signed decimal,
unsigned octal, decimal, or hexadecimal notation
(x and X), respectively; the letters abcdef are
used for x conversion and the letters ABCDEF for X
conversion. The precision specifies the minimum
number of digits to appear; if the value being
converted can be represented in fewer digits, it
will be expanded with leading zeroes. The default
precision is 1. The result of converting a zero
value with a precision of zero is a null string
(unless the conversion is o, x, or X and the t
flag is present) •

f The float or double ~ is converted to decimal
notation in the style'' [-]ddd.ddd'', where the
number of digits after the decimal point is equal
to the precision specification. If the precision
is missing, 6 digits are output; if the precision
is explicitly 0, no decimal point appears.

e,E The float or double ~ is converted in the style
'' [-]d.ddde+dd'', where there is one digit before
the decimal-point and the number of digit.s after
it is equal to the precision; when the precision
is missing, 6 digits are produced; if the preci­
sion is zero, no decimal point appears. The E
format code will produce a number with E instead
of e introducing the exponent. The exponent
always contains exactly two digits.

9,G The float or double ~ is printed in style f or e
(or in style E in the case of a G format code) ,
with the precision specifying the number of signi­
ficant digits. The style used depends on the
value converted: style e will be used only if the
exponent resulting from the conversion is less
than -4 or greater than the precision. Trailing
zeroes are removed from the result; a decimal
point appears only if it is followed by a digit.

c The character ~ is printed.

s The ~ is taken to .be a string (character
pointer) and characters from the string are
printed until a null character (\~) is encountered
or the number of characters indicated by the pre­
cision specification is reached. If the precision

Bell 3

PRINTF(3X) Zilog PRINTF(3X)

is missing, it
cha1:acters 1Jp to
printed.

is taken to be infinite, so all
the first null character are

% Print a %; no argument is converted.

In no case does a non-existent or small field width cause
truncation of a field; if the result of a conversion is
wider than the field width, the field is simply expanded to
contain the conversion result. Characters generated by
printf and fprintf are printed as if putchar had been called
(see putc (3)) ..

EXAMPLES
To print a date and time
10:02'', where weekday
terminated strings:

in
and

the form ''Sunday, July 3,
month are pointers to null-

printf("%s, %s %d, %.2d:%.2d", weekday, month, day,
hour, min);

To print £! to 5 decimal places:

printf ("pi = %. 5f", 4*atan (1.0));

FILES
/lib/doprnt.o
/lib/cnvt.o

SEE ALSO

System 3 printf library
System 3 cnvt library routine

ecvt(3), putc(3), scanf(J), stdio(3), printf(3).

4 Bell

routine

4

pu·rc (3 > Zilog PUTC (3)

NAME
putc, putchar, fputc, putw - put character or word on a
stream

SYNOPSIS
#include <stdio.h>

int putc(c, stream)
char c; -
FILE *stream;

putchar(~)

fputc(c, stream)
FILE *stream;

putw(w, stream)
FILE *stream;

DESCRIPTION
Putc appends the character c to the named output stream. It
returns the character written.

Putchar(c) is defined as putc(£, stdout).

Fputc saves on object text and behaves like putc, but is a
genuine function rather than a macro.

Putw appends word (that is, int) w to the output stream and
returns the word written. Putw-neither assumes nor causes
special alignment in the file.

The standard stream stdout is normally buffered if and only
if the output does not refer to a terminal; this default is
changed by setbuf (3). The standard stream stderr is by
default unbuffered unconditionally, but use offreopen (
fopen(3)) causes it to become buffered. Setbuf, sets the
state to whatever is desired. When an output stream is
unbuffered, information appears on the destination file or
terminal as soon as written. When it is buffered, many
characters are saved up and written as a block. Fflush (
fclose(3)) is used to force the block out early.

SEE ALSO
f open (3) , f c 1 o s e (3) , g etc (3) , puts (3) , pr i n t f (3) , f read (3) .

DIAGNOSTICS
These functions return the constant EOF upon error. Since
this is a good integer, use ferror(3) to detect putw errors.

LIMITATIONS
Because it is implemented as a macro, putc treats a stream

1 Bell 1

PUTC(3) Zilog

2

argwnent with side effects improperly.
putc(c, *f++); does not work.

Hell

PUTC(3)

In particular

2

PUT PW ENT (3) Zilog PUT PWEWr (3)

NAME
putpwent - write password file entry

SYNOPSIS
#include <pwd.h>

int putpwent (E_, !_)
struct passwd *2;
FILM *!_;

DESCRIPTION
Putpwent is the inverse of getpwent(3). Given a pointer to
a passwc~ structure created by getpwent (or getpwuid(3) or
getpwnam1[3)), putpwent writes a line on the stream f which
matches t:he format of /etc/passwd.

DIAGNOSTICS

1

Putpwent returns non-zero if an error was detected during
its operation, otherwise zero.

Bell 1

PUTS(3) Zilog

NAME
puts, fputs - put a string on a stream

SYNOPSIS
iinclude <stdio.h>

puts (s)

char *!!i

fputs(s, stream)
char *s;
FILE *stream;

DESCRIPTION

PUTS (3)

Puts copies the null-terminated string s to the standard
output stream ~tdout and appends a new line character.

Fputs copies the null-terminated string !! to the named out­
put stream.

Neither routine copies the terminal null character.

SEE ALSO
f open (3) , gets (3) , put c (3) , pr in t f (3) , fer r o r (3) , fr ea d (3) •

LIMITATIONS
Puts appends a new line, but fputs does not.

1 Bell 1

PWB(3) Zilog PWB(3)

NAME
any, anystr, balbrk, cat, clean up, curdir, dname, fatal,
fdfopen, giveup, imatch, index,-lockit, move, patoi , patol,
rename, repeat, satoi, seisigl, setsig, sname, strend,
substr, trnslat, unlockit, userdir, userexit, username, ver­
ify, xalloc, xcreat, xfree, xfreeall, xlink, xmsg, xopen,
xpipe, xunlink, xwrite, zero, zeropad - library routines
from the PWB library

SYNOPSIS

1

any (c,st1:)
char :£, * ~i'tr;

anystr (strl,str2)
char *strJ~*str2;

balbrk (str,open,clos,end)
char *str .~*open, *clos, *end;

char *cat (dest,sourcel,source2,source3 ••• sourcen,0)
char *des1:,---.Sourcel, *source2, *source3, *source~;

clean_upO

curdir (~lth)
char *patl!;

char *dnaTI~(pathname)
char *pathname;

fatal (ms~[}
char *msg;:

giveup (dump)
int dump;

imatch (£.!:efix,str)
char *prefix, *str;

index (s t 1: 1 , st r 2)
char *str:~, *str2;

lockit (lockfile,count,pid)
char *lockfile; --
unsign~::ount ,pid;

char *move(a,b,n)
char *a, '~b; - -
unsigned !~;

Ziloq 1

PWB(3) Zilog

2

patoi (str)
char *str;

long patol (st!_)
char *str;

rename (oldname,newname)
char *oldname, *newname;

char *repeat (result,str,repfac)
char *result, *str;
unsigned repfac_; __

char *satoi (!tr,.!£)
char *str;
int *.!.£;

setsigl ()

setsig ()

char *sname
char *str;

char *strend
char *str;

(!tr)

(str)

char *substr (_str,result,origin,len)
char *str, *result;
int orTgTn; --~~
unsigned len;

char *trnslat (str,old,new,result)
char *str, *ol~~new, *result;

unlockit (lockfile,pid)
char *lockf ile;
unsigned pid;

char *userdir(uid)
int uid; ·--

userexit (code)
int code;

char *username (uid)
int uid;

char *verify (strl,str2)
char *strl, *s~tr2;

Zilog

PWB (3)

2

PWB(3) Zilog PWB (3)

xalloc (s b~e)
unsigned size;

xcreat (name,mode)
char *name;~ -­
int mode;

xfree (ptr)i
char *ptr;

xfreeall ()

x 1 ink (:f 1, f 2)
char *fl, *f2;

xmsg (file,,func)
char *file *func· __ ,, __ ,
xopen (name,, mode)
char *name;
int mode;

xpipe (t)
int *!;-

xunl ink (f)
char *!_; -

~writ7 (fildes,buffer,nbytes)
int f i ldes ;:
char *buf fE~r;
int nbytes ;:

char *zero(~ 1 cnt)
char *ptr;
int cnt;

char *zeropad(str)
char *str;

DESCRIPTION

3

any returns a 1 if character c is equal to any character in
the st:ring str; else returns 0.

anystr
returns the offset (in strl) of the first character
matche~d from str2. U-no character matches -1 is
returned.

balbrk
finds the offset, in string str, of the first of the
characters in the string end occurring outside of a

Zilog 3

PWB(3) Zilog PWB(3)

4

balanced string. ~ balanced string contains matched
occurrences of any character in the string open and the
corresponding character in the string clos. Balanced
strings may be nested. In addition to the characters
in end, the null character is implicitly an end charac­
ter-.- Unmatched members of open or clos result in an
error retu1~n (a value of -1 is returne~

Example 1:

s = "a[bc=2]=3;
0 = "({[11;
c = ")}]";
e = n=";

balbrk(s,o,c,e) re~urns 7.

Example 2:

s = "'a[bc=2=3";

with o,c, and e as in Example 1, balbrk(s,o,c,e) returns -1

cat concatenates strings. First, string source! is copied
to string dest. Then subsequent sourcek strings are
concatenated (by copying) onto the end of dest. The
space for dest must be allocated by the caller (i.·e.
dest is taken to be the address of an area of memory
large enough to hold~ the result) • The address of the
result (i.e., dest) is returned.

repeat

satoi

sname

copies the string str to the string result. Then str is
copied repfac -1 times onto the end of result. AS-With
cat() (see above) , allocation of space for result is
the caller's responsibility. Result is returned.

is similar to patoi (see below), except that the
integer value is stored through the integer pointer .!.E_,
and a pointer to the first non-numeric character
encountered is returned.

returns a pointer to the "simple" name of path name
str; i.e., a pointer to the first character after the
last "/" instr. If stir does not contain a "/", a
pointer to the original string is returned.

st rend

Zilog 4

PWB(3) Zilog PWB (3)

5

returns a pointer to the end (null byte) of the string
str

trnslat
copies string str to string result replacing any char­
acte!r found instring old with the corresponding char­
acte!r from string new; result is returned.

zero sets to zero the area of memory cnt bytes long, start­
ing at address E!!.; ~ is returned.

zero pad
replaces initial blanks with "0" characters in string
str; str is returned.

dname
returns a pointer to the name of the directory that
contains the file pointed to by pathname. Dname is the
complement of sname() (see above). If pathname is a
simple name (e.g. "fil·e"), a pointer to "." is
returned. If pathname is "/zeus", a pointer to "/" is
returned. If pathname is "/bin/who", a pointer to
"/bin" is returned, etc. The string pointed to by
pathname is modified by dname; pathname is returned.

imatch

index

patol

returns 1 if string prefix is a prefiK of string str;
else returns 0.

returns the offset of the first occurrence of str2 in
strl if string str2 is a substring of string .strl, oth­
erwTse -1 is retut:nea ..

converts an ASCII string to a long integer. The string
str is taken to be a string of decimal digits; the
numeric value represented by str is returned. Converts
positive numbers only. Returns -1 if a non-numeric
character is encountered.

move copies the first n characters from string a to string
b.

patoi
converts an ASCII string to an integer. the string str
is taken to be a string of decimal digits; the numeric
value represented by str is returned. Converts posi­
tive numbers only. Returns -1 if a non-numeric charac­
ter is encountered.

subs tr

Zilog 5

PWB(3) Zilog PWB(3)

copies at most len characters from the string str
starting at str[origin] to the string pointed to by
result. Sufficient space must exist for that string;
result is returned. There is no checking for the rea­
sonableness of the arguments. The copying of str to
result stops if 1:!ither the specified number (i.e-.-,-len,
which is taken as an unsigned integer) characters have
been copied, or if the end of str (i.e., a null byte)
is :found. A large value of len (e.g., -1) will usually
cause all of str to be copied:-

verify
checks to see if string strl contains any characters
not in st1~ing str2. It returns the offset of the first
such character lnStrl; else returns -1.

Error Handling Routines

6

The error set of subroutines consist of a general-purpose
error handling routine called fatal(), and general-purpose
signal-setting and signal-catching routines called setsig()
and setsigl(), respectively. There are also two additional
routines called clean up and userexit, which may be called
by fatal or setsigl. Default versions of these two addi­
tional routines are supplied in the library. Users may
define their ·own clean_up and userexit routines.

The include filE~, /usr/include/fatal.h contains definitions
needed to use fatal:-These definitions are:

extern int
extern char
extern int
extern int
extern ·ret

Ff lags;
*Ffile;
Fvalue;
(*Ffunc) ();

buf Fjmp (10];

define FTLMSG
define FTLCLN
define F'rLE'UNC
define FTLACT
define FTL~fMP
define FTLgXIT
de.fine FTLRET

0100000
040000
020000

077
02
01

0

define FSAVE(val)
define FRS'I~R()

SAVE (Ff lags ,old Ff lags): Ff lags = val;
RS1'R(Fflags,old=Fflags);

clean_up
is a default clean_up routine provided to resolve
external references. It simply returns. User-supplied
clean up routines are often used for removing temporary
files-; etc.

Zilog 6

PWB (3) Zilog PWB (3)

7

fatal
is a general-purpose error handler. Typically, low­
level subroutines that detect error conditions (an open
or create routine, for example) return as a value a
call of fatal with an appropriate message string. For
example:

return(fatal("can't do it"));

Higher-level routines control the execution of fatal via the
global Fflags. The macros FSAVE() and FRSTR() in
"/usr/include/fatal.h" can be used by higher-level subrou­
tines to save and restore the Fflags value.

The argument to fatal is a pointer to a message string. The
action of fatal is driven completely from the Fflags vari­
able, which is interpreted as explained below.

The FTLMSG bit controls the writing of the message on file
descriptor 2. The message is preceded by the string
"ERROR:", unless the global character pointer Ffile is non­
zero, in which case the message is preceded by a string
equi valE:mt to:

s = sprintf(space, "ERROR [%s] :", Ffile);

A new-line character is written after the user-supplied mes­
sage.

If the l~TLCLN bit is on, clean_up is called with an argument
of 0 (see above).

If the FTLFUNC bit is on, the function pointed to by the
global function pointer Ffunc is called with the user­
supplied message pointer as an argument. This feature can
be used to log these messages.

The FTLAC '1' b its deter m in e how fat a 1 sh o u 1 d return • I f the
:E'TLJMP bit is one, longret(Fjmp) (see setret{3)) is calle<l.
If the FTLEXIT bit is one the value of userexit(l) is passed
as an argument to exit(2) (see below). If-none of the
FTLACT bits is on (the default value for Fflags is 0), the
g 1 obal variable Fval ue (initialized to -1) is returned.

If all fatal globals have their default values, fatal simply
returns -1.

setsig
sets signals. All signals not already ignored or caught
are made to be c~ught by the signal catching routine
set:sigl

Zilog 7

PWB(3) Zilog PWB (3)

setsigl
catches signals set by setsigl. If a signal other than
hangup interrupt or quit is caught, a "user-oriented"
help(l) message to be printed on file descriptor 2. If
hangup, interrupt, or quit is caught, subsequent
occurrences of that signal will be ignored. Termina­
tion is similar to the FTLCLN and FTLEXIT options of
fatal, in that clean up(sig) (where s1g is the signal
number) and exit(userexit(l)) are called.

If the file "dump.core" exists in the current direc­
tory, the !OT signal is set to 0 and abort(3) is called
to produce a core dump (after calling clean_up, but
before calling userexit),

userexit(code)
is a---aefault userexit
external references.
user-supplied userexit
ging usage statistics.

routine provided to resolve
It returns the value of code.

routines are often used for log-

System Call Interface Routines

8

These routines provide interfaces to system calls. In addi­
tion, the routines process ~rror conditions and call fatal.

curdir
places the complete pathname of the current directory
in string path. Returns 0 on success, non-zero on
failure. On successful return, the current directbry
is the same as it was on entry; on failure return, the
current directory is not known.

fdfopen
provides a file-descriptor interface to the Section 3
input/output routines. The first argument is a file
descriptor (from open(2), creat(2), or pipe(2)) and the
second is the read/write mode (0 or 1, respectively).
A file pointer (see fopen(3)) is returned on success,
andNULL on failure (typically, because there are no
file structures available).

giveup
changes dirE~ctory to "/" if argument is 0,
sets !OT signal to system default (0), and
calls aborti(3).

Thus, if giveup is called with a 0 argument, and the
file "/core" is not writable (or if the file "/core"
doesn't exist, and the directory"/" is not writable),
no core dump will be produced.

lockit

Zilog 8

PWB { 3) Zilog PWB (3)

9

lock it
is a process semaphore implemented with files; typi­
cally, used to establish exclusive use of a resource
(usually a file). The file's name is lockfile. Lockit
tries count times to create lockf1le mode 444. It
sleeps 10 seconds between tries. If lockfile is
created, the number pid (typically, the process ID of
the current process) is written (in binary; i.e., as
two bytes) into lockfile, and 0 is returned. If lock­
file exists and hasn't been modified within the last 60
seconds, and if it is either empty, or if its first two
bytes, interpreted as a binary number, are not the pro­
cess ID of any existing process, lockfile is removed
and lockit tries again to make lockfile. After count
tries, or if the reason for the creation of lockfile
failing is something other than EACCES (see INTR0(2)),
locki t returns - L See al so unlocki t, below.

rename
renames oldname to be newname; it can be thought of as:

mv oldname newname

It calls xlink (see below).

unlock it
is meant to be used to remove a lockfile created by
lockit. It verifies that the pid specified is contained
in the first two bytes of the--ri"amed lockfile, and then
removes the lockfile. If the pids match, and the file
is success-fully removed, unlock1t returns 0; otherwise,
-1 is returned.

userdir
returns user's login directory name. The argu~ent must
be an integer user ID. Oserdir returns a pointer to
the login directory on success, 0 on failure. It
remembers its argument and the returned login directory
name for subsequent calls.

usernam·e
returns user's login name. The argument must be an
integer user ID. Username returns a pointer to the
login name on success, a pointer to the string
representation of the user ID on failure. Logname(3)
is an alternative to this routine.

xalloc, xfree, xfreeall
handle the allocation of and freeing of memory. Xalloc
and xfree are used in the same way as malloc(3) and
free(3). The function xfreeall() frees all memory
allocated by xalloc (it calls brk(2)). Xalloc returns

Zilog 9

PWB(3) Zilog PWB(3)

10

value of fatal on failure. Xfree and xfreeall don't
return anything. Xalloc uses a "first fit" strategy.
Xfree always coalesces continuous free blocks. Xalloc
always allocates 2-byte words. Xalloc actually allo­
cates one more word than the amount requested. The
extra word (the first word of the allocated block) con­
tains the size (in bytes) of the entire block. This
size is used by xfree to identify continuous blocks,
and is used by xalloc to implement the first fit stra­
tegy. Bad things will happen if that first (size) word
is overwritten. Worse things happen if xfree is called
with a garbage argument.

xcreat

xlink

is used in the same way as creat(2). xcreat requires
write permission in the pertinent directory in all
cases, and the created file is guaranteed to have the
specified mode and be owned by the effective user (
xcreat does· this by first unlinking the file to be
created); xcreat returns a file descriptor on success,
and the value of fatal on failure.

is used in the same way as link(2). It is an interface
to link that handles all error conditions. It returns
0 on success, and the value of fatal on failure.

xmsg is used by the other x -routines to generate an error
message based on errno (see INTR0(2)). It calls fatal
with the appropriate error message. The second argu­
ment is a pointer to the ceiling function's name (a
string). There are predefined messages for the most
common errors. Other errors cause a message like:

xopen

xpipe

str = sprintf(space, "error= %d, function= %s",
errno, funcname)

to be passed to fatal.

is used in the same way as open(2). It is an interface
to open(2) that handles all error conditions. It
returns a file descriptor on success, and the value of
fatal on failure.

is used in the same way as pipe(2). It is an interface
to pipe that handles all error conditions. It returns
0 on success, and the value of fatal on failure.

xunlink
is used in the same way as unlink(2). It is an

Zilog 10

PWB(3) Zilog PWB(3)

is used in the same way as unlink(2). It is an inter­
Eace to unlink that handles all error conditions. It
returns 0 on success, and the value of fatal on
failure.

xwrite

11

is used in the same way as write(2). It is an inter­
face to write(2) that handles all error conditions. It
returns the number of bytes written on success, and the
value of fatal on failure.

Zilog 11

QSORT(3) Zilog QSOR'r (3)

NAME
qsort - quicker sort

SYNOPSIS
qsort(base, nel, width, compar)

char *base;
int (* COmPa r) () ;
int nel, widtl~_;

DESCRIPTION
Qsort is an implementation of the quicker-sort algorithm.
The first argwnent is a pointer to the base of the data; the
second is the number of elements; the third is the width of
an element in bytes; the last is the name of the comparison
routine to be called with two arguments which are pointers
to the elements being compared. The routine must return an
integer less than, equal to, or greater than 0 according as
the first argumcent is to be considered less than, equal to,
or greater than the second.

SEE ALSO
sort(l), bsearch(3), lsearch(3), strcmp(3).

1 Bell 1

RAND (3) Zilog RAND{3)

NAME
rand, srand - random number generator

SYNOPSIS
srand(seed)
int se'E~a;

rand ()

DESCRIPTION

1

Rand uses a multiplicative congruent random number generator
with period 28329 to return successive pseudo-random numbers
in the range from 0 to 32767.

The generator is reinitialized by calling srand with 1 as an
argument. It is set to a random starting point by calling
srand with any argument.

Bell 1

READSYM(3) Zilog READSYM(3)

NAME
readsym - read next symbol from name list

SYNOPSIS
tinclude <stdio.h>
tinclude <s.out.h>

readsym(sym, stream)
struct {~- -~~-

struct s nlist bol;
char extra[l28];

} *sym;~--- ~-

FILE *stream;

DESCRIPTION
Readsym copies the next complete symbol from stream into the
supplied ~· .stream is assumed to be posi t1oned at a sym­
bol boundary within the name list of an a.out(S) format
object module. Sym must be large enough to store the larg­
est possible symbol, which is 127 characters plus control
information. Readsym returns the number of extra s nlist
slots the symbol occupies. This number ranges between i for
a symbol of less than eight characters to 9 for a symbol of
127 characters.

SEE ALSO
a.out(5) nlist(3).

DIAGNOSTICS

1

Readsym returns -1 for read past end of file or invalid
data.

Zilog 1

REGEX(3) Zilog REGE.X(3)

NAME
regex, regcmp - regular expression compile/execute

SYNOPSIS
char *regcmp(stringl [,string2, •••] ,0);
char *.string!, *str1ng2, ... , -

char *regex(re,subject[,ret0, •••]);
char *_re, *subject, *ret0, ••• ;

DESCRIPTION

1

Regcmp compiles a regular expression and returns a pointer
to the compiled form. Malloc(3) is used to create space for
the vector. It is the user's responsibility to free
unneeded space so allocated. A zero return from regcmp
indicates an incorrect argument. Regcmp(l) has been written
to generally preclude the need for this routine at execution
time.
Regex executes a compiled pattern against the subject
string. Additional arguments are passed to receive values
back. Regex returns zero on failure or a pointer to the
next unmatched character on success. A global character
pointeir locl points to where the match began. Regcmp and
regex were mostly borrowed from the editor, ed(l) however,
the syntax and semantics have been changed slightly. The
following are the valid symbols and their associated mean­
ings.

[] * e A

$

These symbols retain their current meaning.

Matches the end of the string, \n matches the
new-line.

Within brackets the minus means through. For
example, [a-z] is equivalent to [abcd~ •• xyz]. The
- can appear as itself only if used as the last or
first character. For example, the character class
expression [)-] matches the characters] and -.

+ A regular expression followed by + means one or
more times. For example, (1-9]+ is equivalent to
[0-9] (9-9]*.

{m} {m,} {m, u}
Integer values enclosed in {} indicate the number
of times the preceding regular expression is to be
applied. m is the minimum number and u is a
number, less than 256, .which is the maximum. If
only mis present (e.g., {m}), it indicates the
exact-number of times the regular expression is to
be applied. {m,} is analogous to {m,infinity}.
The plus (+) and star (*) operations are

Bell 1

REGEX(3) Zilog REGEX(3)

equivalent to {l,} and {0,} respectively.

(•••)$~The value of the enclosed regular expression is to
be returned. The value will be stored in the

(. . .)

(n+l)th argument following the subject argument.
At -present, at most ten enclosed regular expres­
sions are allowed. Regex makes its assignments
unconditionally.

Parentheses are used for grouping. An operator,
e.g. *, +, {}, can work on a single character or
a regular expression enclosed in parenthesis. For
example, (a* (cb+) *) $0.

By necessity, all the above defined symbols are special.
They must, therefore, be escaped to be used as themselves.

EXAMPLES
Example 1:

FILES

2

char *cursor, *newcursor, *ptr;

newcursor =: reg ex ((ptr=regcmp (""'\n", 0)) ,cursor);
free(ptr);

This example will match a leading new-line in the subject
string pointed at by cursor.

Example 2:
char ret0[9];
char *newcursor, *name;

name= regcmp("([A-Za-z][A-za-z0-9]{0,7})$0",0);
newcursor =: regex(name,"123Testing321" ,ret0);

This example will match through the string ''Testing3'' and
will return the address of the character after the last
matched character (cursor+ll). The string "Testing3" will
be copied to the~ cha.racter array ret0.

Example 3:
#include "file.i"
char *string, *newcursor;

newcursor = regex(name,string);

This example applies a precompiled regular expression in
file.i (see regcmp(l)) against string.

/usr/lib/libPW.a
/usr/lib/slibPW.a

Bell 2

REGEX(3) Zilog REGEX(3)

SEE ALSO
ed (1), regcmp(l), free (3), malloc (3).

LIMITATIONS:

3

·rhe user program may run out of memory if regcm.p is called
iteratively without freeing the vectors no longer required.
The following user-supplied replacement for malloc(3) re­
uses the same vector saving time and space:

/* user's program */

malloc(n) {
static int rebuf[256];

return &rebuf;
}

Bell 3

SCANF(3) Zilog SCANF(3)

NAME
scanf, fscanf, sscanf - formatted input conversion

SYNOPSIS
#include <stdio.h>

scanf (format [, pointer
char *format;

. . .)

fscanf (stream, format [, pointer] .••)
FILE * stre·am;
char *format;

sscanf (s, format [, pointer
char *~, *fOrmat;

. . .)

DESCRIPTION

1

Scanf reads from the standard input stream stdin. Fscanf
reads from the named input stream. Sscanf reads from the
character string s. Each function reads characters, inter­
prets them according to a format, and stores the results in
its arguments. Each expects as arguments a control string
format and a set of pointer arguments indicating where the
converted input will be stored.

The control string usually contains conversion specifica­
tions that are used to direct interpretation of input
sequences. The control string contains:

1. Blanks, tabs, or new lines that match optional
white space in the input.

2. An ordinary character (not %) that must match the
next character of the input stream.

3. Conversion specifications, consisting of the char­
acter %, an optional assignment suppressing charac­
ter *, an optional numerical maximum field width,
and a conversion character.

A conversion specification directs the conversion of the
next input field; the result is placed in the variable
pointed to by the corresponding argument, unless assignment
suppression was indicated by *· An input field is defined
as a string of nonspace characters; it extends to the next
inappropriate character or until the field width, if speci­
fied, is exhausted.

The conversion character indicates the interpretation of the
input field; the corresponding pointer ar9ument must usually
be of a restricted type. The following conversion charac­
ters are legal:

Bell 1

SCANF(3) Zilog SCANF(3)

2

% a single % is expected in the input; no assignment
is done.

d a decimal integer is expected; the corresponding
argument must be an integer pointer.

o an octal integer is expected; the corresponding
argument must be a integer pointer.

x a hexadecimal integer is expected; the correspond­
ing argwnent must be an integer pointer.

s a character string is expected; the corresponding
argument must be a character pointer pointing to an
array of characters large enough to accept the
string and a terminating \0, which will be added.
The input field is terminated by a space character
or a new line.

c a character is expected; the corresponding argument
should be a character pointer. The normal skip
over space characters is suppressed in this case;
to read the next nonspace character, use %ls. If a
field width is given, the corresponding argument
must refer to a character array, and the indicated
number of characters is read.

f a floating point number is expected; the next field
is converted accordingly and stored through the
corresponding argument, which should be a pointer
to a float. The input format for floating point
numbers is specified under atof (3).

e same as f

[indicates a string not to be delimited by space
characters. The left bracket is followed by a set
of characters and a right bracket; the characters
between the brackets define a set of characters
making up the string. If the first character is
not circumflex (A), the input field is all charac­
ters until the first character not in the set
between the brackets. If the first character after
the left bracket is A' the input field is all char­
acters until the first character that is in the
remaining set of characters between the brackets.
The corresponding argument must point to a charac­
ter array.

The conversion characters d, o, and x can be capitalized or
preceeded by 1 to indicate which a pointer to long rather
than to int i s in the a r gum en t 1 is t • S i 1n i la r l y , the

Bell 2

SCANF(3) Zilog SCANF(3)

conversion characters e or f can be capitalized or preceded
by 1 to indicate a pointer to double rather than to float.
The conversion characters d, o and x can be preceded by h to
indicate a pointer to short rather than to int.

The scanf functions return the number of successfully
matched and assigned input items. This is used to decide
how many input items were found. The constant EOF is
returned upon end of input. This is different from 0, which
means that no conversion was done; if conversion was
intended, it was frustrated by an inappropriate character in
the input.

For example, the call

inti; float x; char name[50];
scanf ("%d%f%s", &i, &x, name);

with the input line

25 54.32E-l thompson

assigns to i the value 25, x the value 5.432, and name con­
tains thompson\0. or,

inti; float x; char name[50];
scanf("%2d%f%*d%[1234567890]", &i, &x, name);

with input

56789 0123 56a72

assigns 56 to i, 789.0 to x, skip 0123, and place the string
56\0 in nam8. -The next cail to getchar returns a.

SEE ALSO
atof (3), getc (3), printf (3).

DIAGNOSTICS
The scanf functions return EOF on end of input, and a short
count for missing or illegal data items.

LIMITATIONS

3

The success of literal matches and suppressed assignments is
not directly determinable.

Bell 3

SCREEN{3) Zilog SCREEN(3)

NAME
getkey, gonormal, goraw, wbackspace, wbackword, wcolon,
wforspace, wforword, wgetword, whelp, whighlight, wleft,
wmesg, wmvcursor, wpageback, wpagefor, wresscrn, wright,
wsavescrn, wscrolb, wscrolf - Screen Interface Library

SYNOPSIS

1

#include <curses.h>
linclude <screen.h>

get key ()

gonorm.al ()

goraw()

wbackspace(win, ~, bottom)
WINDOW *win;
int top,l)Qttom;

or
backspace(top, bottom)

int top, bottom;

wbackword(win, top, bottom)
WINDOW *wi~
int top,lX>ttom;

or
backword(top, bottom)

int top, bottom;

wcolon(win)
WINDOW *win;

or
colon ()

wforspace(win, top, bottom)
WINDOW *wi~
int top,lX>ttom;

or
forspace(top, bottom)

int top, bottom;

wforwo1~d {win, top, bottom)
WINDOW *win;
int top,-i:>ottom;

or
forword(top, bottom)

int top, bottom;

wgetwo1~d {win, str)
WINDOW *wTn;
char *str;

Zilog 1

SCREEN(3) Zilog

2

or
get word (str)

char *str;

whelp(win, file)
WINDOW *win;
char *file;-

or
help (file)

char *file;:

whighlight(win, flag)
WINDOW *win_; __
int flag;-

or
highlight(flag)

int flag;

wleft(win, top, bottom)
WINDOW *win;
int top ,bc)ttom;

or
left(top, bottom)

int top, bc)ttom;

wmesg(win, str, data)
WINDOW *win_; __

or

char *str;­
char *data;

mesg(str, data)
char *str;
char *data;

wmvcursor(win, c, ~' bottom)
WINDOW *wiii;
char c; --
int top, bottom;

or
mvcursor(c, top, bottom)

char-c;--
int .!£2, bottom;

wpageback(win)
WINDOW *wi1~;

or
pageback ()

wpagefor (win,· fp, top)
WINDOW *wiin;
FILE *fp;-
int top;

Zilog

SCREEN(3)

2

SCREEN{3) Zilog SCREEN (3)

or
page for (fp, top)

FILE*f~
int top;

wresscrn(win)
WINDOW *win;

or
resscrn ()

wright(win, top, bottom)
WINDOW *win;
:int top,bOttom;

or
right(top, bottom)

:int top, bottom;

wsave:;crn (win)
WINDOW *win;

or
savescrn ()

wscrolb(win)
WINDOW *win;

or
scrolb ()

wscrolf (win)
WINDOW *win;

or
scroljE ()

DESCRIPTION

3

The Screen Interface Library is designed to aid the program­
mer in writing "screen-oriented" or "display" programs. This
set of routines uses the terminal capability data base
(/etc/termcap) for terminal independence and the "Curses"
library (/usr/lib/libcurses.a for nonsegmented programs and
/usr/lib/slibcurses.a for segmented programs) for screen
updating functions.

The major features of the library include terminal setup,
cursor manipulation using the arrow keys, single character
input, "highlighting" of the cursored item, paging, scrol­
ling, saving and restoring displays, obtaining the word on
which the cursor lies, handling "help" files, and general
" 1 as t 1 in e" hand 1 in g • Pr og r a mm er s f am il i a r w i th the
"CursE~s" library will recognize the "window-orientation" of
these routines so that displays are not limited to the stan­
dard terminal screen.

Zilog 3

SCREEN (3) Zilog SCREEN (3)

4

When using the Screen Interface Libr3ry, the user program
must include the header files,

#include <curses.h>
#include <screen.h>

The command lines for nonsegmented and segmented C compila­
tion are:

cc file.c -lscreen -lcurses -ltermlib
sec file.c -lscreen -lcurses -ltermlib

The remainder of this section contains descriptions of the
routines available in the Screen Interface Library; if
applicable, there are two calling sequences available (one
for a "window" and one for "stdscr"):

get key()

This routine gets a single character input from
the keyboard. If any of the arrow keys is typed,
the standard definition found in
/usr/include/screen.h (i.e. LEFT, DOWN, UP, and
RIGHT) is returned. The following list contains
the aliases for the arrow keys:

left - h, CTRL-h, backspace

down - j, CTRL-j

up - k, CTRL-k

right - 1, CTRL-1, space

Alternatively, if none of the arrow keys is typed,
the character typed is returned. In addition, if
a carriage return is typed, the character "\r" is
returned. This is because some terminals generate
a "line feed" or "\n" character for the down
arrow; therefore, a distinction must be made
between the RETURN key {which is "mapped" to "line
feed") and the doYln arrow key.

gonormal {)

This routine resets standard output back to its
"normal" mode and resets " rawmode" back to E'ALSE
(= 0) •

Zilog 4

SCREEN(3)

5

Zilog SCREEN (3)

goraw ()

This routine sets standard output for CBREAK mode;
in addition, it sets the "Curses" flag, " rawmode"
to TRUE (=l) •

wbackspace(win, top, bottom)
WINDOW *win;
int top, bottom;

or

backspace(top, bottom)
int top, bottom;

This routine moves the cursor to the left until a
space is reached on the display. If the cursor is
at the leftmost position of the "top" line, the
cursor is "wrapped around" to the last word of the
rightmost column.

wbackword(win, top, bottom)
WINDOW *win;
int top, bottom;

or

backword(top, bottom)
int top, bottom;

This routine moves the cursor to the beginning of
the previous word (to the left) on the display. If
the cursor is at the leftmost position of the
"top" 1 ine, the cursor is "wrapped around" to the
last word of the rightmost column.

wcolon (win)
WINDOW *win;

or

colon{)

This routine handles the "colon" commands {the
colon is echoed on the last line of "win"). A
character followed by a carriage return is the
expected typein; the routine returns the charac­
ter typed.

Zilog 5

SCREgN(3)

6

Zilog SCREEN(3)

wforspace(win, top, bottom)
WINDOW *win;
int top, bottom;

or

forspace(top, bottom)
int top, bottom;

This routine moves the cursor to the right until a
space is reached on the display. If the cursor is
at thE~ "bottom" line of the rightmost column, the
curso1: is "wrapped around" to the "top" of the
leftmost column.

wforword(win, top, bottom)
WINDOW *win;
int top, bottom;

or

forword(top, bottom)
int top, bottom;

This routine moves the cursor to the beginning of
the next word (to the right) on the display. If
the cursor is at the "bottom" line of the right­
most column, the cursor is "wrapped around" to the
"top" of the leftmost column.

wg et word (w i n , st r)
WINDOW *win;
char *str;

or

getword (str)
char *str;

This routine gets a word from the display and puts
the string in "str"; if the word is "highlighted"
in thE! dis play, the "standout" mode bit in each
character is masked out and returned in "str".

whelp (win, file)
WINDOW *win;
char *file;

Zilog 6

SCREEN (3)

7

Zilog SCREEN (3)

or

help(file)
char *file;

This routine opens the given help file, "file",
and displays its contents; following the display,
the original screen is restored. If the help file
cannot be opened or if there was a problem restor­
ing the original screen, the routine returns ERR;
otherwise, the routine returns OK.

whighlight(win, flag)
WINDOW *win;
int flag;

or

highlight(flag)

This routine puts the word at the current cursor
position in "standout" mode (thus, "hi9hl ighting"
the word) if "flag" is TRUE. If "flag" is FALSE,
"standout" mode is turned off for the word at the
current position.

wleft(win, top, bottom)
WINDOW *win;
int top, bottom;

or

left(top, bottom)
int top, bottom;

This routine moves the cursor one position to the
left. If the cursor is at the leftmost position
of the "top" line, the cursor is "wrapped around"
to the last word of the rightmost column.

wmesg(win, str, data)
WINDOW *win;
char *str;
char *data;

or

mesg(str, data)

Zilog 7

SCREEN(3)

8

char
char

*str;
*data;

Zilog SCREEN(3)

This routine outputs the "printf"-formatted mes­
sage, "str", on the last line of "win" or
"stdscr". It is noted here that a "newline" or
"\n" is not required since the message is output
on the last line of the window. Any additional
data to be output (for example, for a "%s" in
"mesg") , is stored in the variable, "data". If
there is no additional data (that is, "str" is a
simple informational message) , "data" should con­
tain NULL. After outputting the message, the cur­
sor is returned to the current position.

wmvcursor(win, c, top, bottom)
WINDOW *win;
char
int

or

c;
top, bottom;

mvcursor(c, top, bottom)
char c;
int top, bottom;

This routine uses the given character, "c", to
move the cursor appropriately about "win" within
the display limits of the "top" and "bottom" line.
The valid values for "c" (and therefore, valid
cursor movements) are DOWN, UP, FORWARD (or WORD)
or BACKWARD as defined in /usr/include/screen.h
(see APPENDIX B). If the "bottom" line limit is
exceeded, the cursor will be moved to the "top" of
the next column to the right or to the "top" of
the leftmost column; therefore, there is cursor
"wraparound". After the movement is performed, the
routine ·returns OK. If "c" represents an invalid
cursor movement~ the routine returns the value
ERR. If the global flag, "hilite", is set,
"highlighting" of the word at the current cursor
position is handled automatically.

wpageback (win)
WINDOW *win;

or

pageback ()

Zilog 8

SCREEN(3)

9

Zilog SCRt:E:N(3)

'l'his routine outputs the previous "page" of the
file associated with the pointer, "fp"; this has
not been implemented yet.

wpagefor(win, fp, top)
WINDOW *win;
FILE *fp;
int top;

or

pagefor (fp, top)
FILE *fp;
int top;

This routine outputs a page of the file associated
w i th the po inter , " f p" . I f the n Utn be r o f 1 i n es i n
"win" is exceeded, the prompt

Type Af for next page

is output. If "Af"
returns; otherwise,
output.

wresscrn(win)
WINDOW *win;

or

resscrn ()

is not typed, the routine
the next "page" of data is

This routine tests the global flag, "scrnflg" (set
to TRUE in "wsavescrn") and checks whether the
contents of the WINDOW "sc.rn" will fit on "win".
If so, the contents of "scrn" is overwritten onto
"win" and the routine returns OK; otherwise, the
routine returns ERR.

wright(win, top, bottom)
WINDOW *win;
int top, bottom;

or

right(top, bottom)
int top, bottom;

Zilog 9

SCRElrn (3) Zilog SCREEN (3)

This ro~tine moves the cursor one position to the
right. If the cursor is at the "bottom" line of
the rightmost column, the cursor is "wrapped
around" to the "top" of the leftmost column.

wsavescrn(win)
WINDOW *win;

or

savescrn ()

This 1rnutine saves the contents of "win" in the
global WINDOW, "scrn" (found in
/usr/include/screen.h), which is allocated memory
in this routine. If there is a problem with the
allocation, this routine returns ERR. Otherwise,
the global flag "scrnflg" is set to TRUE, the con­
tents of "win" is saved, and the routine returns
OK.

wscrolb(win)
WINDOW *win;

or

scrolb ()

This routine performs scrolling backward on "win";
this has not been implemented yet.

wscrolf (win)
WINDOW *win;

or

scrolf()

This routine performs scrolling forward on "win";
this has not been implemented yet.

FILES
/usr/lib/libscreen.a /usr/lib/slibscreen.a

SEE ALSO
vls(l), vnews(l), termcap(3), curses(3).

"Screen Updating and Cursor- Movement Optimization", "The

10 Zilog 10

SCREEN(3) Zilog SCREEN (3)

Screen Interface Library" in the Zeus Languaiges I Program­
ming Tools ~anual

LIMITATIONS

11

Routines wscrolf (or scrolf), wscrolb (or scrolb) and wpage­
back (or pageback) have not been implemented yet.

The termcap capabilities, "kl, kd, ku, kr and kh", are not
recognized by the Screen Interface Library at the present
time.

Zilog 11

SEGMON(3) Zilog SEGMON(3)

NAME
segmon (segmented monitor) - prepare execution profile

SYNOPSIS
struct segs {

}

char segnc~;
uns~gned £lighpc;
unsigned lowpc;

segmon(sbuff ,cntsiz)
struct seqs sbuff[];
int cntili~;

DESCRIPTION
An executable program created by sec -p' automatically
includes calls for seg~on with default parameters; segmon
needn't be called explicitly except to gain fine control
over profiling.

Segmon is an interface to sprofil(2). It arranges to record
a histogram of periodically sampled values of the program
counter, and of counts of calls of certain functions, in a
particular segment. Shuff is a structure which contains
information on the segments to be profiled. Segno contains
the segment number; hi$ihpc and lowpc are the high and low
offsets that are within segment segno that make up the sam­
ple range. The lowest address sampled is that of lowpc and
the highest is just below highpc. At most cntsiz call
counts can be kept; only calls of functions CQmp1led with
the profiling option -p of scc(l) are recorded.

To profile a program with multiple segments, sbuff must be
filled with the segment information that the user requires.
The user may call sgstat(2) with the address of sbuff. In
turn sgstat will fill sbuff with information concerning the
text segments (lowpc is set to 0, highpc is set to size of
the text segment) • Or the user may define his/her own
parameters. Note, that the maximum amount of text segments
that can be profiled is 10. In addition to the limit, the
segno after the last used segno must be set to 0xff in order
to indicate there are no more segments to be profiled. Thus
if there are 5 segments to be profiled, sbuff[S].segno must
be set to 0xff. -

EXAMPLES
An example using sgstat:

sgstat (sbuff);

segmon(sbuff ,cntsiz)

1 Zilog 1

SEGMON(3) Zilog SEGMON(3)

FILES

To stop execution monitoring and write the results to the
Eile mon.out(5), use

sbuff[0].segno = 0xff;
segmon(sbuff,0);

then sprof(l) can be used to examine the results.

men.out

SEE ALSO
mon.out(5), sgstat(2), sprof (1), sprofil (2), scc(l).

2 Zilog 2

sg·rsUE'(3) Zilog SETBUF(3)

NAME
setbuf - assign buffering to a stream

SYNOPSIS
#include <stdio.h>

setbuf (stream, buf)
FILE *stream;~
char *buf;

DESCRIPTION
Setbuf is used after a stream has been opened but before it
is read or written. It causes the character array buf to be
used instead of an automatically allocated buffer. --If buf
is the constant pointer NULL, input/output is completely
unbuffered.

A constant BUFSIZ tells how big an array is needed:

char buf[BUFSIZ];

A buffer is normally obtained from malloc(3) upon the first
getc or putc(3) on the file. Output streams directed to
terminals and the standard error stream stderr are normally
not buffered.

SEE ALSO
fopen(3), getc(3), putc(3), malloc(3).

1 Bell 1

SETRE'r { 3) Zilog SETRE'r { 3)

NAME
setret, longret - nonlocal goto

SYNOPSIS
#include <setret.b>

setreit:. (en v)
1rnt buf ~;

longrE:!t(env, val)
1r:et-buf env;
int-val;--

DESCRIPTIOH
These routines deal with errors and interrupts encountered
in a low-level subroutine of a program.

Setret saves its stack environment in env for later use by
longret. It returns value 0.

Longret restores the environment saved by the last call of
setret. It then returns so that execution continues as if
the call of setret had just returned the value val to the
function that invoked setret, which must not return in the
interim. All accessible data have values as of the time
longret was called.

Longret and setret are like longjmp and setjmp routines on
other V7 Unix systems. The only difference is that there
must not be any declaration of register variables in the
routine that calls setret.

SEE ALSO
signal (2).

l Zilog 1

SIN(3) Zilog SIN (3)

NAME
sin, cos, tan, asin, acos, atan, atan2 - trigonometric func-
tions

SYNOPSIS
#include <math.h>

double sin(.~)
double .!i

double cos(_!)
double _!i

double asin (_~)
double _!i

double acos (~)
double .!i

double atan(_!)
double _!i

double atan2(_!, 1)
double _!1 y_;

DESCRIPTION
Sin, cos and tan return trigonometric functions of radian
arguments. The magnitude of the argument should be checked
by the caller to make sure the result is meaningful.

Asin returns the arc sin in the range -pi/2 to pi/2.

Acos returns the arc cosine in the range 0 to pi.

Atan returns the arc tangent of x in the range -pi/2 to
pi/2.

Atan2 returns the arc tangent of _!/y_ in the range -pi to pi.

DIAGNOSTICS
Arguments of magnitude greater than 1 cause asin and acos to
return value 0; errno is set to EDOM. The value of tan at
its singular points is a huge number, and errno is set to
ERANGE.

LIMITATIONS

1

The value of tan for arguments greater than about 2**31 is
garbage.

Bell 1

SINH(3) Zilog SINH(3)

NAME
sinh, cosh, tanh - hyperbolic functions

SYNOPSIS
#include <math.h>

double sinh (_!)
double _!i

double cosh(_!)
double _!i

double tanh(_!)
double _!i

DESCRIPTION
These functions compute the designated hyperbolic functions
for real arguments.

DIAGNOSTICS

1

Sinh and cosh return a huge value of appropriate sign when
the correct value would overflow.

Bell 1

SLEEP(3) SLEEP(3)

NAME
sleep - suspend execution for interval

SYNOPSIS
sleep(seconds)

unsigned seconds;

DESCRIPTION
The current process is suspended from execution for the
number of seconds specified by the argument. The actual
suspension time can be up to 1 second less than that
requested, because scheduled wakeups occur at fixed 1-second
intervals, and an arbitrary amount longer because of other
activity in the system.

The routine is implemented by setting an alarm clock signal
and pausing until it occurs. The previous state of this
signal is saved and restored. If the sleep time exceeds the
time to the alarm signal, the process sleeps only until the
signal would have occurred, and the signal is sent 1 second
later.

SEE ALSO
alarm(2), pause(2).

1 Bell 1

SSIGNAL(3) Zilog SSIGNAL(3)

NAME
ssignal, gsignal - software signals

SYNOPSIS
#include <signal.h>

int rtssignal (sig' action)) (
int sig, (*action) () ;

int gsignal (sig)
hit sig; --

DESCRIPTION

1

and implement a software facility similar to This facility
is used by the standard C Library to enable the user to
indicate the disposition of error conditions, and is also
made available to the user for his own purposes.

Software signals made available to users are associated with
integers in the inclusive range 1 through 15. An action for
a software signal is established by a call to ssignal, and a
software signal is raised by a call to gsignal. Raising a
software signal causes the action established for that sig­
nal to be taken.

The first argument to ssignal is a number idemtifying the
type of signal for which an action is to be established. The
second argument defines the action; it is eithe!r the name of
a (user defined) action function or one of the manifest con­
stants SIG DFL (default) or SIG IGN (ignore). Ssignal
returns the action previously established for that signal
type; if no action has been established or the signal number
is illegal, ssignal .returns SIG_DFL.

Gsignstl raises the signal identified by its argument, ~:

If an action function has been established for sig,
then that action is reset to SIG DFL and the action
function is entered with argument s~g. Gsignal returns
the value returned to it by the action function.

If the action for sig is SIG_IGN, gsignal returns the
value 1 and takes no other action.

If the action for ~ is SIG_DFL, gsignal returns the
value 0 and takes no other action.

If ~ has an illegal value .or no action was ever
specified for ~' gsignal returns the value 0 and
takes no other action.

Bell 1

SSIGNAL(3) Zilog SSIGNAL(3)

NOTES

2

There are some additional signals with numbers outside the
range 1 through 15 which are used by the standard C Library
to indicate error conditions. Thus, some signal numbers
outside the range 1 through 15 are legal, although their use
may interfere with the operation of the standard C Library.

Bell 2

STDI0(3) Zilog STOI0(3)

NAME
stdio - standard buffered input/output package

SYNOPSIS
#include <stdio.h>

l~ILE *stdin;
l~ILE *stdout;
I~ILE *stderr;

DESCRIPTIOli
The functions declared in the linclude file, <stdio.h> con­
stitute an efficient user-level buffering scheme. The in-
1 ine macros getc and putc(3) handle characters quickly. The
higher level routines gets, fgets, scanf, fscanf, fread,
puts, fputs, printf, fprintf, fwrite fgetc, fputc, getw, and
putw all use getc and putc; they can be freely intermixed.

A file with associated buffering is called a stream, and is
declared to be a pointer to a defined type FILE. Popen(3)
creates certain descriptive data for a stream and returns a
pointer to designate the stream in all further transactions.
There are three normally open streams with constant pointers
declared in the include file and associated with the stan­
dard open files:

::;tdin
!:;tdout
stderr

standard input file
standard output file
standard error file

A constant pointer NULL (0) designates no stream at all.

An integer constant EOF (-1) is returned upon end of file or
error by integer functions that deal with streams.

Any routine that uses the standard input/output package must
include the header file <stdio.h> of pertinent macro defini­
tionso The functions and constants are declared in the
include file and need no further declaration. The constants
and the following functions are implemented as macros; rede­
claration of these names is perilous: getc, getchar, putc,
putchar, feof, ferror, fileno.

SEE ALSO
open (2) , c 1 o s e (2) , read (2) , w r i t e (2) •

DIAGNOSTICS

1

The value EOF is returned uniformly to indicate that a FILE
pointer has not been initialized with fopen, input (output)
has been attempted on an output (input) stream, or a FILE
pointer designates corrupt or otherwise unintelligible FILE
data.

Bell 1

STRING(3) Zilog STRING(3)

NAME
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen,
strchr, strrchr, strpbrk, strspn, strcspn, strtok, index,
rindex - string operations

SYNOPSIS

1

char *strcat (sl, s2)
char *~, *-~-~)-

char *strncat (sl., s2, _!!)
char * s 1, * s 2;
int n;

int strcmp (sl, ~~)

c bar * s 1 , * s 2 ;

int strncmp (sl, .s2, n)
char *sl, *s2;
int E_;- -

char *strcpy (sl, s2)
char *sl, *s2;

char *strncpy {sl, s2, !!_)
char *~, *s2; ~
int E_;

int strlen (_~)
char *2_;

char *strchr (~, £)
char *~, _£;

char *strrchr (~, £)
char *~, £i

char *strpbrk (sl 1r s2)
char *sl, *~;

int strspn (sl, s'~)
char *sl, *s2;

int strcspn (sl, ~2)
char *sl, *s2;

char *strtok (sl, s2)
char *sl, *~;-

char *index(~, £)
char *~, _£;

Bell 1

STRING(.3) Zilog STHING(3)

char *rindex(~, £)
char ;r ~;

DESCRIPTION

2

These functions operate on null-terminated strings. They do
not check for overflow of any recei~ing string~

Streat appends a copy of string s2 to the end of string sl.
St.rncat copies at most n characters. Both return a pointer
to the null-terminated r~sult.

Strcmp compares its arguments and returns an integer greater
than, equal to, or less than 0, according as sl is lexico­
graphically greater than, equal to, or less than s2.
Strncrnp makes the same comparison but looks at at mostn
characters.

Strcpy copies string s2 to sl, stopping after the null char­
acter has been moved-.- Strncpy copies exactly n characters,
truncating or null-padding s2; the target may not be null­
terminated if the lengthof s2 is n or more.. Both return
sl.

Strlen returns the number of non-null characters in s.

Strchr (strrchr) returns a pointer to the first (last)
occurrence of character c in string s, or NULL if c does not
occur in the string. The null characte.r termTnating a
string is considered to be part of the string.

Strpbrk returns a pointer to the first occurrence in string
sl of any character from string s2, or NULL if no character
from s2 exists in sl.

Strspn (strcspn) returns the length of the initial segment
of string sl which consists entirely of characters from (not
from) string s2.

Strtok considers the string sl to consist of a sequence of
zero or more text tokens separated by spans of one or more
characters from the separator string s2. The first call
(with pointer sl specified) returns apointe1: to the first
character of thefirst token, and will have written a NULL
character into sl immediately following the r~~turned token.
Subsequent callswith zero Eor the first argument, will work
through the string sl in this way until no tokens remain.
The separator string s2-may be different .ft:o.n call to call.
When no token remains-rn ~' a NUL(. is returned.

Index (rindex) returns a pointer to the first (last)
occurrence of character c in string ~' or zero if c does not
occur in the string.

Bell 2

STRING(3) Zilog STRING(3)

LIMITATIONS

3

Strcmp uses native character comparison, which is signed on
PDP-lls, unsigned on other machines.

All string movement is performed character by character
starting at the left. Thus overlapping moves toward the
left will work as expected, but overlapping moves to the
right may yield surprises.

Bell 3

SWAB{3) Zilog SWAB (3)

NAME
swab - swap bytes

SYNOPSIS
swab(from, to, nbytes)

char *from, *to;
int nby-te$; -

DESCRIPTION

1

Swab copies nbytes bytes pointed to by from to the position
pointed to by to, exchanging adjacent even and odd bytes.
It is useful for carrying binary data between S8000 and
PDP-11. Nbytes should be even.

Bell 1

SWAP(.3) Zilog SWAP(3)

NAME
swap - swap routines - swap
longswap - swap routines - swap
swapsegt - swap routines - swap

SYNOPSIS
#include <a.out.h>

int val;
val = swap (val) 1:

long val;
longswap (&val);

struct segt s segt;
swapsegt (&s seg~);

DESCRIPTION
Swap is used as a function to swap both bytes of an integer
val.

Longswap is given the address of a long value (val) and
swaps both of its words.

Swapsegt is given the address to a
(s segt) and swaps its word values.
has the following structure:

segment table entry
A segment table entry

struct segt {

}

char sg segno; /* segment number */
char sg._coff; /* offset/256 for code section */
char si=doff; /* offset/256 for data section */
char sg boff; /* offset/256 for bss section */
unsigned sg code; /* size of the code portion */
unsigned sg-data; /* size of the data portion */
unsigned sg-bss; /* size of the bss portion */
int sg atr;- /* attributes */
long s9__unused; /* unused */

These routines are generally used in conjunction with
swap f lg in order to determine whether bytes must be swapped
for the PDPll.

SEE ALSO
a.out(5), goodmagic(3).

1 Zilog 1

SYMSCAN(3) Zilog SYMSCAN (3)

NAME
symscan - scan name list

SYNOPSIS
#include <stdio.h>
linclude <nlist.h>

symscan(nl, stream)
struct nl1st *nl;
PILE *stream; -

DESCRIPTION
Symscan searches stream for the next occurrence! of the sym­
bol identified by nl. Nl is one element of the same struc­
ture used by nlist(3). One field of this structure points
to a null-terminated string that defines the search object.
If the symbol is found, the other fields of the structure
are set appropriately. If the symbol is not found, the
nl type field is set to 0. Unlike nlist, symscan returns
both external and nonexternal symbols. If the program finds
a local symbol of the same name, symscan can be called again
to find the next occurrence of a symbol with the same name.
Stream is assumed to be positioned at a symbol boundary
w1thi~ the name list of an a.out(5) format object module.

SEE ALSO
a • out { 5) , n 1 is t (3) , reads ym (3) •

DIAGNOSTICS

1

Symscan returns nl type field zero if the symbol was not
found, or if the input was invalid.

Zilog 1

SYS (3) Zilog SYS (3)

NAME
SYS - system call relay program

SYNOPSIS
execl ("/bin/SYS", "SYS", 9);

DESCRIPTION
The SYS program runs on a host concurrently with a program
on a satellite Development Module (DM). The program running
on the DM must have been downloaded by load(l), that exe­
cutes SYS as the last step of the loading process.

SYS runs even if the satellite system calls are not util­
ized. It is terminated by a normal exit from the downloaded
program.

SEE ALSO
load(l), exec(2).

LIMITATIONS

l

Abnormal termination of a program leaves SYS still running
on the host. In this case, RUBOUT stops the execution of
SYS on the host.

Zilog 1

SYSTEM(3) Zilog SYSTEM(3)

NAME
sysb~1n - issue a shell command

SYNOPSIS
system(string)

char *string;

csystem(string)
char *string;

DESCRIPTION
System causes the string to be given to sh(l) as input as if
the string had been typed as a command at a terminal. The
current process waits until the shell has completed, then
returns the exit status of the shell.

Csystem cause the string to be give to csh(l) instead of the
shell. The current process waits until the cshell has com­
plete, then returns the exit status in the same manner as
the shell.

SEE ALSO
pope n (3) , ex ec (2) , w a i t (2) •

DIAGNOSTICS
Exit status 127 indicates the shell could not be executed.

1 Bell 1

TERMLI 13 (3) Zilog TERMLIB(3)

NAME
tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs - terminal
independent operation routines

SYNOPSIS
char PC;
char *BC;
char *UP;
short ospeed;

tgetent(bp, name)
char *bp-,-*nam~;

tgetnum (id)
char *id;

tgetf lag (id)
char *id;-

char *
tgetstr(id, area)
char *id-,-** arc~a;

char *
tgoto(cm, destcol, destline)
char *cm;
int destcol, destline;

tputs(.£E_, affcnt, outc)
register char *cp;
int af fcn~ -
int (*outc) ();

DESCRIPTION

1

These functions extract and use capabilities from the termi­
nal capability data base termcap(5).

Tgetent extracts the entry for terminal name into the buffer
at .e£· ~ is a character buffer of sIZel024 and must be
retained throu9h all subsequent calls to tgetnum, tgetflag,
and tgetstr. Tgetent returns -1 if it cannot open the
termcap file, 0 if the terminal name given does not have an
entry, and 1 if all goes well. It looks in the environment
for a TERMCAP variable. If found and the value does not
begin with a slash, and the terminal name is the same as the
environment string TERM, the TERMCAP string is used instead
of reading the termcap file. Alternatively, if the TERMCAP
variable does not begin with a slash and the terminal name
is not the same as the TERM variable, then /etc/termcap is
used to find TERM's description. If it does begin with a
slash, the string is used as a path name rather than
/etc/termcap. 'l~his speeds up entry into programs that call

Zilog 1

TERMLIB(3) Zilog TERMLIB{3)

FILES

tgetent helps debug new terminal descriptions, and helps to
make one for the terminal if the file /etc/termcap cannot be
writ te·n.

Tgetnum gets the numeric value of capability id, returning
-1 if is not given for the terminal. Tgetflag-returns 1 if
the specified capability is present in the terminal's entry,
0 if it is not. Tgetstr gets the string value of capability
id, placing it in the buffer at area, advancing the area
pointe~r. It decodes the abbreviations for this field
described in termcap(S), except for cursor addressing and
padding information.

Tgoto returns a cursoc addressing string decoded from cm to
go to column destcol in line destline. It uses the e>eternal
variables UP (from the up capability) and BC {if be is given
rather than bs) if necessary to avoid placing \n-,-"'D, or""@
in the~ returned string. Programs that call tgoto must turn
off the x·rABS bit (s) , s i nee tgoto can now output a tab.
Programs using termcap must always turn off XTABS. If a %
sequence is given that is not understood, then tgoto returns
the string OOPS.

Tputs decodes the leading padding information of the string
cp; affcnt gives the number of lines affected by the opera­
ITon, or 1 if this is not applicable. Outc is a routine
called with each character in turn. The external variable
ospeed must contain the output speed of the terminal as
encodE!°d by stty (in ioctl (2)) • The ex tern at 1 variable PC
must contain a pad character to be used (from the pc capa­
bil it.~{) if a null (""@) is inappropriate.

/usr/lib/libtermlib.a nonsegmented library
/usr/lib/slibtermlib.a segmented library
/etc/termcap default data base

SEE ALSO
ex (1) 1• termcap(5), tty(4), ioctl (2).

2 Zilog 2

'11MPFILE (3) Zilog TMPr., I LE (3)

NAME
tmpfile - create a temporary file

SYNOPSIS
#include <stdio.h>

FILE *tmpfile ()

DESCRIPTION
Tmpfile creates a tempora.ry file and returns a corresponding
FILE pointer. Arrangements are made so that the file will
automatically be deleted when the process using it ter­
minates. The file is opened for update.

FILES
/usr/tmp directory for temporary files

SEE ALSO
creat(2), unlink(2), fopen(3), mktemp(3), tmpnam(3).

1 Bell 1

TMPNAM(3) Zilog TMPNAM(3)

NAME
tmpnam - create a name for a temporary file

SYNOPSIS
#include <stdio.h>

char 11~tmpnam (_~)

char *~;

DESCRIPTION

FILES

Tmpnam generates a file name that can safely be used for a
temporary file. If (int)s is zero, tmpnam leaves its result
in an internal static area and returns a pointer to that
area. The next ~all to tmpnam will destroy the contents of
the area. If (int)s is nonzero, s is assumed to be the
address of an array of at least L tmpnam bytes; tmpnam
places its result in that array and returns s as its value.
Tmpnam generates a different file name -each time it is
called. Files created using tmpnam and either fopen(2) or
creat(2) are only temporary in the sense that they reside in
a directory intended for temporary use, and their names are
unique. It is the user's responsibility to use unlink(2) to
remove the file when its use is ended.

/usr/tmp directory for temporary files

SEE ALSO
creati[2), unlink(2), fopen(3), mktemp(3).

LIMITATIONS

1

If called more than 17, 576 times in a single p1:ocess, tmpnam
will start recycling previously used names.
Between the time a file name is created and the file is
opened, it is possible for some other process to create a
file with the same name. This can never happen if that
other process is using tmpnam or mktemp, and the file na.mes
are chosen so as to render duplication by other means
unl i kE~ly.

Bell 1

TTYNAME(3) Zilog TTYNAME (3)

NAME
ttyname, isatty, ttyslot - find name of a terminal

SYNOPSIS
char *ttyname(fildes)

isatty(fildes)

ttyslot()

DESCRIPTION

FILES

Ttyname returns a pointer to the null-terminated path name
of the terminal device associated with file descriptor
fildes.

Isatty returns 1 if fildes is associated with a terminal
device, 0 otherwise.

Ttyslot returns the number of the slot in the utmp(5) file
for the control terminal of the current process.

/dev/*
/etc/utmp

SEE ALSO
ioctl (2) , utmp (5) •

DIAGNOSTICS
Ttyname returns a null pointer (0) if fildes does not
describe a terminal device in directory /dev.

Ttyslot returns -1 if the slot is not found.

LIMITA'rIONS

1

The return value points to static data whose content is
overwritten by each call.

Bell 1

UNGETC (3) Zilog UNGETC(3)

NAME
ungetc - push character back into input stream

SYNOPSIS
#include <stdio.h>

ungetc(£, stream)
FILE *stream;
char £i

DESCRIPTION
Ungetc pushes the character c back on an input stream. That
character is returned by the-next getc call on that stream.

One character of pushback is guaranteed provided something
has been read from the stream and the stream is actually
buffered. Attempts to push EOF are rejected.

Fseek(3) erases all memory of pushed-back characters.

SEE ALSO
getc (3), setbuf (3), fseek(3).

DIAGNOSTICS
Ungetc returns EOF if it cannot push a characb~r back.

1 Bell 1

ACU(4) Zilog ACU(4)

NAME
acu - automatic dialing out unit

DESCRIPTION

1

An Acu is a modem that contains an automatic dialer that
will allow a System 8000 to be connected to the telephone
network.
The Acu is used by uucp(l) and cu(l). Currently uucp(l) and
cu(l) only have the capabilities to dial-out using a Ventel
212-plus. Thie; particular modem has a interactive feature
that allows the user to do much more than just dialing one
number.

The Ventel 212-plus must be connected to one of the serial
I/O ports with a NULL modem cable. Such a cable can be pur­
chased from many suppliers. The serial I/O port must be
disabled in the /etc/inittab file.
A brief list of the commands that the Ventel 212-plus under­
stands is:

H Display the help messages.

K Dial from the keyboard.

Sl-85
Store/Cha.nge numbers.

1-5 Dial a stored number.

R Re-dial last number.

F Re-dial forever.

D Display stored numbers.

c Clear numbers.

B busy out.

Q Quit.

Because of the nature of both uucp(1) and cu(l), not all of
the Ventel features are used. The sequence that cu(l) fol­
lows when talking to the Ventel 212-plus is:

1. Send two carriage returns. This lets the Ven tel
212-plus recognize your transmission speed.

2. Send the K command. This means dial from the key-
board.

3. Send the telephone number. This step is difficult

Zilog 1

ACU(4) Zilog ACU(4)

because the speed at which the Ventel 212-plus
accepts each digit of the telephone number is much
slower than the rate at which the System 8000
transmits them.

For a more complete definition of the caplabliti.es of the
Ventel 212-plus, please refer to the Ventel 212-plus,
Integral Dialer, Users Manual Supplement.

SEE ALSO
cu(l), uucp(!)

2 Zilog 2

CT{4) Zilog CT(4)

NAME
ct - cartridge tape intertace

DESCRIPTION

1

The files ct0, ctl, •.. iefer to the cartridge tape units.
When opened for reading or writing, the tape is not rewound.
When closed, it is rewound unless the 0200 bit is on. If
the tape was open for writing, an end-of-file is written,
and the next four feet of tape are erased (indicating end­
of-tape). If the tape is not to be rewound, the tape is
backspaced to after the filemark.

Exiting a program which has opened a tape device automati­
cally closes the device, even if there is no explicit close
of the device. If the tape was opened for writing, an end­
of-file is written at the current location, and the next
four feet of tape are erased. Therefore, one should not del
out of programs which have opened a tape device for writing
unless truncation is desired. It is generally desirable to
be at the end of the tape upon close of the tape device if
it was opened for writing.

The ct files allow reads and writes of arbitrary length.
Seeks are also supported. These files are intended to allow
tape files to be accessed similarly to other files to a cer­
tain extent.

The files rct0, rctl, .•• refer to the raw interface.
These are useful to read and write long records and on the
ZEUS system. Tar(l), for example, uses the raw interface.
The rest of this discussion continues to refer to the raw
device names. Except that seeks are not supported on the
raw device, the nonraw device can be accessed similarly by
dropping the r from the device name.

The cartridge tape unit has the capability of accessing each
of the four tracks on a tape individually. The files
rct0a, ••• , rct0d, rctla, refer to the individual
tracks on a tape.

The lowest four bits of the minor device number select the
tape track to be used. The next two bits specify the drive.
Bit 6 specifies which of up to two controllers is to be
used. If bit 7 is on, the tape is not rewound on close.
The minor device number has no necessary connection with the
file name.

The name of the raw tape device is rct~, where n is the
drive number. A leading n (for example, nrct0)-specifies
the no-rewind device, and a trailing letter in the range a-d
indicates single-track operation.

Zilog 1

CT(4)

FILES

Zilog CT (4)

Each read or write call to a raw tape device reads or writes
the next record on the tape. In the write case, the record
has the same length as the buffer given. During a read, the
record size is passed back as the number of bytes read, pro­
vided it is not greater than the buffer size. If the record
is long, the extra data is skipped over without notifica­
tion. The buffer must begin on a word boundary. Writes can
be of any length. The buffer length for reads must be even;
if the record is shorter, the actual length (even or odd)
will be returned. Seeks are ignored on the raw device. A
zero count is returned when a tape mark is read. When the
no-rewind device is closed and reopened, the tape head is
positioned at the beginning of the next tape file.

The following ioctl calls are available for performing for­
ward and backward file and record spacing, respectively, on
the raw tape device:

linclude <ct.h>
ioctl(fildes, CTIOFF, n)
ioctl(fildes, CTIOFR, n)
ioctl(fildes, CTIOBF, n)
ioctl(fildes, CTIOBR, n)

where fildes is a file descriptor returned from an open of
the raw tape device, and n is an integer specifying the
number of files or records to -space forward or backward.
These calls do not affect the seek pointer. An attempt to
move past the logical end of tape using CTIOFF will return
an end of data error in errno; an attempt to move before the
logical beginning of tapeUSTng CTIOFR or CTIOBR will return
an end of media error. CTIOBF and CTIOBR will not cross
over a filemark. ioctl returns the number of blocks or
files skipped, or -1 if an end of data or end of media error
has occurred.

/dev/rct?,
/dev/nrct?,
/dev/ct?,
/dev/nct?
/dev/rct?[a-d],
/dev/nrct?[a-d],
/dev/ct?[a-d],
/dev/nct?[a-d]

SEE ALSO
dd(l), tar(l), ioctl(2).

LIMITATION'S

2

In raw I/O, there is not but should be a way to write an EOF
mark explicitly.

Zilog 2

DEVNAMES(4} Zilog DEVNAMES(4}

NAME
root, rroot, usr, rusr, tmp, rtmp, z, rz, tardev, dumpdev
and resdev

DESCRIPTION
The files root, rroot, usr, rusr, tmp, rtmp, z and rz, found
in /dev, are links to the default devICes for thefilesys­
tems /, /usr, /t.mp and /z. The following table shows these
files an~the-default devices to which they are linked for
different types of disks:

Devices
5-1/4 inch 8 inch SMD

Files Disk Disk Disk

/dev/root /dev/md2 /dev/zd2 /dev/smd2
/dev/rroot /dev/rmd2 /dev/rzd2 /dev/rsmd2

/dev/usr /dev/md0 /dev/zd0 /dev/smd0
/dev/rusr /dev/rmd0 /dev/rzd0 /dev/rsmd0

./dev/tmp /dev/md3 /dev/zd3 /dev/smd3

FILES

1

/dev/rtmp /dev/rmd3 /dev/rzd3 /dev/rsmd3

/dev/z /dev/md4 /dev/zd4 /dev/smd4
/dev/rz /dev/rmd4 /dev/rzd4 /dev/rsmd4

The files tardev and resdev are used by tar(l} and reserv(l}
their default devices. The file dumpdev is used by dump(M)
and restor(M) as their default device. These files should
be linked to the appropriate raw tape device. If not
linked, /dev/rct0 is used by default. For example, if the
9-track tape---aevice is to be the default dump device, then
the following link should be made:

ln /dev/rmt0 /dev/dumpdev

/dev/root
/dev/rroot
/dev/usr
/dev/rusr
/dev/tmp
/dev/rtmp
/dev/z
/dev/rz
/dev/tardev
/dev/dumpdev
/dev/resdev

Zi1og 1

DEVNAMES(4) Zilog DEVNAMES(4)

SEE ALSO
reserv(l), tar(l), dump(M), makenewfs(M), mfs(M), rc(M),
rester (M).

2 Zilog 2

ICP (4) Zilog ICP(4)

NAME
icp - general Intelligent Communication Processor interface

DESCRIPTION

1

An ICP device driver implements a protocol independent
access method to ICP controller boards and general control
functions of an ICP. It is also the link between a ZEUS Pro­
tocol Driver and an associated ICP Protocol Driver. All
communication between the protocol driver pair passes
through the ICP device driver.

The ICP is an exclusive open device, i.e. only one process
may use the control functions (open(2), close(2), read(2),
write(2), ioctl(2)) at a time.

The ICP is viewed as any other special file under ZEUS. For
example, a user· can read memory using hd(l) to get a dump of
an ICP's memory contents.

The files /dev/icp* are the special files which allow access
to the ICPs(up~ 8 maximum) installed on a system.

Each ICP has 9 ports and logical port numbers, which
represent to the ports of all ICPs ranging from 0 to 71.

Several ioctl(2) calls apply to ICPs. Most use the follow­
ing structure (defined in <icpio.~>):

tdef ine ICP PMAX 9

struct icpquery {

};

char icpq_istate;

struct {
char icpq_pstate;

char icpq pp;
} iport(ICP_PMAX]; -

A few ioctl calls have the form:

#include <icpio.h>

ioctl(fildes, code, arg)
int fildes.;
int code;
struct icpquery *arg;

The applicable codes are:

START PP

Zilog

/* state of the ICP

/* function to perform */
/* on port */
/* protocol on port */

1

ICP{4) Zilog ICP(4)

2

This command looks through the icpquery structure
passed to it for protocols other than the NULL proto­
col. Upon finding one, it then associates the given
protocol with the port {iport[x]). If successful, it
will start the protocol running on this specific port
on the ICP. This command may return an error under the
following conditions:

the icpquery structure pointer passed is null;
the protocol may not be associated with this port;
the ICP has a hardware error;
or there has been a system memory fault.

If the indicated protocal is started sucessfully, the
appropriate icpq-pstate will be equal to the value P ASSOC,
otherwise the protocal count not be started and icpq-:-pstate
will be equal to P_NOASSOC.

STOPP:P
·rhis command looks through the icpquE:!ry structure
passed to it for protocols other than the NULL proto­
col. Upon finding one, it then attempts to dis­
associate the given protocol with the port (iport[x]).
If successful, it will stop the protocol running on
this specific port on the ICP. This command may return
an error on the following conditions:

the icpquery structure pointer passed is null;
the protocol may not be dis-associated with this por
the ICP has a hardware error;
or there has been a system memory fault.

The values that the various members of the query structure
may contain are:
icpq-istat ICP RUNNING

ICP ISOPEN
ICP-ERROR
ICP-SOFTERR
ICP-ACK

icpq-pp the protocol that is active on this port
otherwise NULLPROTO. Defined protocal

QUERY

values are in "icpio.h"

This command fills the icpquery structure passed to it
(rather, the pointer is passed to it), with the state
of an ICP, and the protocols that are running on the
ICP. This command will fail under these conditions:

the icpquery structure pointer is null;
or there was a system memory fault.

Additional ioctl calls have the form:

Zilog 2

ICP(4) Zilog

tinclude <icpio.h>

ioctl(fildes, code, 8)
int fildes.;
int code;

ICP (4)

START I

STOP I

Removes reset from an ICP controller board, and
attempts to set it running. Also resets any hardware
error indication, if there was a previous hardware
error. This command will return an error if the ICP
cannot be started.

This unconditionally stops an ICP controller board.
There is no error indication returned if the ICP is
already stopped.

FILES
/dev/icp*

SEE ALSO
ioctl (2), icpload (M), icpcntrl (M).

3 Zilog 3

LP(4) Zilog LP (4)'

NAME
lp - line printer driver

DESCRIPTION

1

The files lp, lp2 refer to line printer ports.

ZEUS can accommodate up to three line printers, depending on
the hardware configuration. The printers can have either a
Centronics or Data Products interface. During SYSGEN the
kernel can be configured to have no line printers.

The default configuration is for Centronics line printer. A
Data Products interface will need a different hardware con­
figuration. Refer to the System 8000 hardware reference
manual for details.

The device files /dev/lp and /dev/lp2 refer to the line
print.er drivers. Eachhas a major device number of 9 and a
minor device number that depends on the kind of printer and
port used.

The line printers are accessed by the line printer spooler
lp(l) or by the ioctl(2) system call.

The ioctl system call is used to modify some parameters of
the line printer driver. This call uses the following
structure and commands which are defined in

/usr/_include/sgtty .~:

#define SHOWLPR
#define SETLP

/*

(('l' << 8)
(('l' << 8)

0)
1)

* This is the structure of the
* arquments to the lpr ioctl program
*/

struct lparms

{

} ;

int
:int
:int

lines;
cols;
indent;

/* number of lines per page
/*number of columns per page
/*default indentation for
/*line printer

The way the the system call is implemented is similar to the
tty (2) i oc t 1 ca 11 •

Zilog 1

*/
*/
*/
*/

LP(4)

2

Zilog

#include <sgtty.h>

struct lparms args

if ((fd = open ("/dev /lp", 2)) < 0)
printf ("can't open /dev/lp\n");

rtn = (ioctl(fd, SHOWLPR, &args));
rtn = (ioctl (fd, SETLP, &args));

LP (4)

If the command SHOWLPR is issued to the line printer, the
line printer driver will return to the user's lparms struc­
ture the parameters: lines per page, columns per page, and
standard indent.

Lines per page is defined as the number of lines printed
before an FF character (0xC) is output.

Columns per page means the number of characters printed
before a "carriage return" is output. For Data Products
printers this is a '\n' character (0xA) which causes a line
feed and carriage return to be emitted. For Centronics
printers the line printer driver must emit a '\r' (0xD) and
'\n' (0xA) to emit a carriage return and line feed. If the
Centronics printer has an "automatic line feed" option, it
emits a line feed for '\r' (0xD). This should be disabled
to allow underlining.

Indent is the default indentation for all output to /dev/lp.
Note that the the length of the line printed will be colS-­
indent thus lines longer than this are truncated rather than
shifted to the right.

The command SETLP allows the system administrator to set
these values in the line printer driver to accommodate
printers with different characteristics. The default values
set at compile time for lines, cols and indent are 66, 130,
and 1 respectively.

The following is a description of how the line printer
driver handles some special characters.

'\n' (0xA) - Newline: This is output 'as is' for Data Pro­
ducts printers. For Centronics printers, a '\r' is output
also.
'\r' (0xD) - Carriage Return: This is output 'as is'.
'\f' (0xC) - Form Feed: This output 'as is' for Data Pro­

ducts printers and appended with a '\r' for Centronics
printers.

'\b' (0x8) - Backspace: A '\r' is emitted and spaces are
printed up to the previous character printed.
'\t' (0x9) - Horizontal Tab: Blanks are output to the

nearest multiple of four.

Zilog 2

LP(4)

FILES
/dev/lp
/dev/lp2
/usr/include/sgtty~h

Zilog LP (4)

SEE ALSO
ioctl (2), tty (4).

Zeus _System Administrators Manual,
System 8000 Hardware Reference Manual Manual

LIMITATIONS

3

There is no way at this time of choosing CR/LF default for
automatic LF printers.

Zilog 3

MD(4) Zilog MD(4)

NAME
md - 5.25" Winchester disk

DESCRIPTION

FILES

The md device provides the interface to 5.25-inch Winchester
disk drives.

The files md0 ... md9 refer to sections of disk drive 0.
The files mdl0 ... mdl9 refer to drive 1 etc. This allows a
large disk----E<>be broken up into more manageable pieces.

The origin and size of the pseudo-disks on each drive as
delivered from the factory are as follows:

disk
0
1
2
3
4
5-9

start
0

5000
7000

13000
17000
unassigned

length
5000
2000
6000
4000

11000

Note that these values can be changed by using sysgen(M).

The md files access the disk via the system's normal buffer­
ing mechanism and can be read and written without regard to
physical disk records. There is also a raw interface that
provides for direct transmission between the disk and the
user's read or write buffer. A single read or write ca~l
results in exactly one I/O operation and therefore raw I/O
is considerably more efficient when many words are transmit­
ted. The names of the raw files begin with rmd and end with
a number which selects the same disk section as the
corresponding md file.

In raw I/O the buffer must begin on a word boundary.

/dev/md*, /dev/rmd*

LIMITATIONS

1

In raw I/O read and write{2) truncate file offsets to 512-
byte block boundaries, and write scribbles on the tail of
incomplete blocks. Thus, in programs that are likely to
access raw devices, read, write and lseek(2) should always
deal in 512-byte multiples.

Zilog 1

MEM(4) Zilog MEM (4)

NAME
mem, kmem -· memory

DESCRIPTION

FILES

1

Mem is a special file that is an image of the memory of the
computer. For example, it examines and even patches the
system. Kmem is the same as mem except that k~~rnel virtual
memory rather than physical memory is accessed.

Byte addresses are interpreted as memory addresses.
ences to nonexistent locations return errors.

Refer-

Examining and patching device registers is likely to lead to
unexpected results when read-only or write-only bits are
present.

On the System 8000, the kernel instruction space begins at
physical location 0. Kernel data space starts at the next
256-byte boundary following the kernel instruction space.

The per-process data for the current process begins at ker­
nel virtual memory address 0xF800.

/dev/mem, /dev/kmem.

Bell 1

MT(4) Zilog MT (4)

NAME
mt - Zilog streaming magnetic tape interface

DESCRIPTION

1

The files mt0, ••• , mt7 refer to the streaming magnetic tape
control and transports at 1600bpi. The files mtl, ••• , mt7
are designated normal-rewind on close, and the files nmt4,
••• , nmt7 are no-rewind on close. When opened for reading
or writing, the tape is assumed to be positioned as desired.
When a file is closed, a double end-of-file (double tape
mark) is written if the file was opened for writing. If the
file was normal-rewind, the tape is rewound. If it is no­
rewind and the file was open for writing, the tape is posi­
tioned before the second EOF just written. If the file was
no-rewind and opened read-orily, the tape is positioned after
the EOF following the data just read. Once opened, reading
is restricted to between the position when opened and the
next EOF or the last write. The EOF is returned as a zero­
length read. By judiciously choosing mt files, it is possi­
ble to read and write multi-file tapes.

A standard tape consists of several 512 byte records ter-
minated by an EOE'. To the extent possible, the system makes
it possible, if inefficient, to treat the tape like any
other file. Seeks have their usual meaning and it is possi­
ble to read or write a byte at a time.

The mt files discussed above are useful when it is desired
to access the tape in a way compatible with ordinary files.
When foreign tapes are to be dealt with, and especially when
long records are, to be read or writ ten, the "raw" inter face
is appropriate. The associated files are named rmt8, ••• ,
rmt7 Each read or write call reads or writes the next record
on the tape. In the write case the record has the same
length as the buffer given. During a read, the record size
is passed back as the number of bytes read, up to the buffer
size specified. In raw tape I/O, seeks are ignored. An EOF
is returned as a zero-length read, with the tape positioned
after the EOF, so that the next read will return the next
record.

In addition, the files smt0, ••• , smt7 represent short inter
record gap (.6in) rather th~n the default (l.2in) gap. This
applies only to writing. Either length gap can be read with
either option. The files fmt&, ••• , fmt7 represent the high
speed mode of the drives which is 100ips rather than the
default 12.5ips.

Any combination of these options are available through one
of the /dev/*mt? files.

Zilog 1

MT (4)

2

Zilog MT (4)

The minor device number of the device special files deter­
mines which combination of the above options applies to
them. The minor device number is formed by 'anding' the
bits of the desired options. Each bit position in the minor
device number represents an option.

The rightmost two bits, bits 0 and 1, represent one of
four controllers.
The next three bits, bits 2, 3, and 4, represent one of
eight tape drives for each controller.
The next position, bit 5, if on, represents high speed
mode.
The next position, bit 6, if on, means the tape is to
be rewound on close.
The next position, bit 7, denotes long gap if on, short
gap if off.

These bits are only relevent when using the mknc•d(M) command
to create new device files for nine track mag. tape drives.
The device files for all combinitions of options for four
tape drives are automaticaly created by using the makemt(M)
command.

Streaming automatically occurs when there are several reads
or writes and the data does not need to be read in from the
disk. If the tape drives do not stream, then the drive must
reposition the tape after each block read or written.

There are several ioctl(2) system calls which apply to the
nine track tape drive. The calls apply to an open /dev/*mt*
special file. The syntax of the calls is:

ioctl(fd, REQUEST, count);

Fd is a valid file descriptor of a /dev/*mt* file.
REQUEST is one of the options below.
Count applies to certain of the requests below.

MTSKBF - Skips forward the number of tape blocks specified
by the count field. This command will not skip over file
marks or past the end of tape mark. The tape blocks may be
of any size.

MTSKBR - Skips backward the specified number of tape blocks.
This command will not skip back over file marks or before
the beginning of tape mark. The tape blocks may be of any
size.

MTSKFF - Skips forward the number of files (as determined by
file marks) specified by the count field. The tape is posi­
tioned at the beginning of the next file. The tape will not
skip past the end of tape mark.

Zilog 2

MT(4)

FILES

3

Zilog MT(4)

MTSKFR - Skips backward the number of files (as determined
by .file marks) specified by the count field. The tape is
positioned at the beginning of the appropriate file. The
tape will not skip past the beginning of tape mark.

MTWFM - Writes a file mark at the current position. If the
short gap device is used the file mark will have a short gap
before it rather than a long gap. This command does not
take a count.

MTSE -
from
mark.

Security erase. The tape is erased at high speed
the current position to one meter past the end of tape
This command does not take a count.

MTRWD - Rewind the tape. Leave the tape positioned at the
load point. This command does not take a count.

MTRWDUL - Rewind and unload the tape, leave the drive off
line. The tape is completely rewound from the current posi­
tion. This command does not take a count.

MTOL - Put the drive on line. This command does not take a
count.

/dev/mt
/dev/rmt
/dev/smt
/dev/fmt
/dev/srmt
/dev/frmt
/dev/fsmt

Zilog 3

NULL(4) Zilog

NAME
null - data sink

DESCRIPTION
Data written on a null special file is discarded.

Reads from a null special file always return 0 bytes.

FILES
/dev/null

1 Bell

NULL(4)

1

SMD(4) Zilog SMD(4)

NAME
smd - Storage module disk

DESCRIPTION
The smd device provides the interface to disks conforming tp
the Storage Module Device industry standard.

The files smd0 ... smd9 refer to sections of disk drive 0.
The files srndT0 ... --smdl9 refer to drive 1 etc. This allows
a large disk to be broken up into more manageable pieces.

The origin and size of the pseudo-disks on each drive as
delivered from the factory are as follows:

disk start length
0 0 12000
1 12000 3200
2 15200 I 6000
3 21200 6000
4 27200 104739
5-9 unassi<:Jned

Note that these values can be changed by using sysgen(M).

The smd files aecess the disk via the system's normal
buffering mechanism and can be read and written without
regard to physical disk records. There is also a raw inter­
face that provides for direct transmission between the disk
and the user's r•~ad or write buffer. A single read or write
call results in exactly one I/O operation and therefore raw
I/O is considerably more efficient when many words are
transmitted. ThE:! names of the raw files begin with rsmd and
end with a number which selects the same disk section as the
corresponding smd file.

In raw I/O the buffer must begin on a word boundary.

FILES
/dev/smd*
/dev/rsmd*

LIMITATIONS

1

In raw I/O read and write(2) truncate file offsets to 512-
byte block boundaries, and write scribbles on the tail of
incomplete blocks. Thus, in programs that are likely to
access raw devices, read, write and lseek(2) should always
deal in 512-byte multiples.

Zilog 1

TTY(4) Zilog TTY(4)

NAME
tty - general terminal interface

DESCRIPTION

1

This section describes both a particular special file and
the general nature of the terminal interface.

The file /dev/tty is, in each process, a synonym for the
control terminal associated with the process group of that
process, if any. It is useful for programs or shell
sequences that wish to be sure of writing messages on the
terminal no matter how output has been redirected. It can
also be used for programs that demand the name of a file for
output, when typed output is desired and it is tiresome to
find out what terminal is currently in use.

As for terminals in general: all of the asynchronous commun­
ications ports use the same general interface, no matter
what hardware is involved. The remainder of this section
discusses the common features of this interface.

When a terminal file is opened, it normally causes the pro­
cess to wait until a connection is established. In prac­
tice, users' programs seldom open these files; they are
opened by getty(8) and become a user's standard input, out­
put, and error files. The very first terminal file opened
by the process group leader of a terminal file not already
associated with a process group becomes the control terminal
for that process group. The control terminal plays a spe­
cial role in handling quit and interrupt signals, as dis­
cussed below. The control terminal is inherited by a child
process during a fork(2). A process can break this associa­
tion by changing its process group using setpgrp(2).

A terminal associated with one of these files ordinarily
operates in full-duplex mode. Characters may be typed at
any time, even while output is occurring, and are only lost
when the system's character input buffers become completely
full, which is rare, or when the user has accumulated the
maximum allowed number of input characters that have not yet
been read by some program. Currently, this limit is 256
characters. When the input limit is reached, all the saved
characters are thrown away without notice.

Normally, terminal input is processed in units of lines. A
line is delimited by a new-line (ASCII LF) character, an
end-of-file (ASCII EOT) character, or an end-of-line charac­
ter. This means that a program attempting to read will be
suspended until an entire line has been typed. Also, no
matter how many characters are requested in the read call,
at most one line will be returned. It is not, however,
necessary to read a whole line at once; any number of

Bell 1

TTY(4) Zilog TTY(4)

2

characters may be requested in a read, even one, without
losing information.

During input, erase and kill processing is normally done.
By default, the character <BS> erases the last character
typed, except that it will not erase beyond the beginning of
the line. By default, the character AX kills (deletes) the
entire input line, and optionally outputs a new-line charac­
ter. Both these characters operate on a key-stroke basis,
independently of any backspacing or tabbing that may have
been done. Both the erase and kill characters may be
entered literally by preceding them with the escape charac­
ter (\). In this case the escape character is not read.
The erase and kill characters may be changed.

Certain characters have special functions on input. These
functions and their default character values are summarized
as follows:

INTR

QUIT

ERASE

KILL

EOF

NL

(Rubout or ASCII DEL) generates an interrupt signal
which is sent to all processes with the associated
control terminal. Normally, each such process is
forced to terminate, but arrangements may be made
either to ignore the signal or to receive a trap to
an agreed-upon location; see signal(2).

(Control-I or ASCII FS) generates a quit signal.
Its treatment is identical to the interrupt signal
except that, unless a receiving process has made
other arrangements, it will not only be terminated
but a core image file (called core) will be created
in the current working directory:-

(ASCII BS) erases the preceding character. It will
not erase beyond the start of a line, as delimited
by a NL, EOF, or EOL character.

(Control-x) deletes the entire line, as delimited by
a NL, EOF, or EOL character.

(Control-a or ASCII EOT) may be used to generate an
end-of-file from a terminal. When received, all the
characters waiting to be read are immediately passed
to the program, without waiting for a new-line, and
the EOF is discarded. Thus, if there are no charac­
ters waiting, which is to say the EOF occurred at
the beginning of a line, zero characters will be
passed back, which is the standard end-of-file indi­
cation.

(ASCII LF) is the normal line delimiter. It can not
be changed or escaped.

Bell 2

TTY(4) Zilog TTY(4)

3

EOL (ASCII NUL) is an additional line delimiter, like

STOP

START

NL. It is not normally used.

(Control-s or ASCII DC3) can be used to temporarily
suspend output. It is useful with CRT terminals to
prevent output from disappearing before it can be
read. While output is suspended, STOP characters
are ignored and not read.

·(Control-q or ASCII DCl) is used to resume output
which has been suspended by a STOP character. While
output is not suspended, START characters are
ignored and not read. The start/stop characters can
not be changed or escaped.

The character values for INTR, QUIT, ERASE, KILL, EOF, and
EOL may be changed to suit individual tasteso The ERASE,
KILL, and EOF characters may be escaped by a preceding \
character, in which case no special function is done.

When the carrier signal from the data-set drops, a baogup
signal is sent to all processes that have this terminal as
the control terminal. Unless other arrangements have been
made, this signal causes the processes to terminate. If the
hangup signal is ignored, any subsequent read returns with
an end-of-file indication. Thus programs that read a termi­
nal and test for end-of-file can terminate appropriately
when hung up on.

When one or more characters are written, they are transmit­
ted to the terminal as soon as previously-written characters
have finished typing. Input charactezs are echoed by put­
ting them in the output queue as they arrive. If a process
produces characters more rapidly than they can be typed, it
will be suspended when its output queue exceeds some limit.
When the queue has drained down to some threshold, the pro­
gram is resumed.

Several ioctl(2) system calls apply to terminal files. The
primary calls use the following structure, defined in
<termio·.h>:

#define
struct

unsigned
unsigned
unsigned
unsigned
char
unsigned

} ;

NCC 8
termio {

~ho rt
short
short
short
c.line;
cnar

Bell

c iflag; /* input modes */
c-oflag; /* output modes */
c-cflag; /* control modes */
c:lflag; /* local modes */

/*_line di·scipline */
c~cc[NCC]; /*control chars*/

3

TTY(4) Zilog TTY(4)

4

The special control characters are defined by the array
c cc. The relative positions and initial values for each
function are as follows:

0 INTR DEL
1 QUIT FS
2 ERASE BS
3 KILL ""'X
4 EOF EOT
5 EOL NUL
6 reserved
7 reserved

The c iflag field describes the basic terminal input con­
trol:

IGNBRK
BRKINT
IGNPAR
PARMRK
INPCK
I STRIP
INLCR
IGNCR
ICRNL
IUCLC
IXON
IXANY
I XO FF

0000001
000(H302
0000004
000,rn10
0000020
000,rn40
000CH00
000,n00
000G~4 00
0001000
0002000
0004000
0010000

Ignore break condition.
Signal interrupt on break.
Ignore characters with parity errors.
Mark parity errors.
Enable input parity check.
Strip character.
Map NL to CR on input.
Ignore CR.
Map CR to NL on input.
Map upper-case to lower-case on input.
Enable start/stop output control.
Enable any character to restart output.
Enable start/stop input control.

If IGNBRK is setv the break condition (a character framing
error with data all zeros) is ignored, that is, not put on
the input queue and therefore not read by any process. Oth­
erwise if BRKINT is set, the break condition will generate
an interrupt signal and flush both the input and output
queues. If IGNPAR is set, characters with other framing and
parity errors are ignored.

If PARMRK is set,, a character with a framing or parity error
which is not ignored is read as the three character
sequence: 0377, 0, x, where x is the data of the character
received in error. To avoid ambiguity in this case, if
!STRIP is not set, a valid character of 0377 is read as
0377, 0377. If PARMRK is not set, a framing or parity error
which is not ignored is read as the character NUL (0) •

If INPCK is set, input parity checking is enabled. If INPCK
is not set, input parity checking is disabled. This allows
output parity generation without input parity errors.

If !STRIP is set, valid input characters are first stripped
to 7-bits, otherwise all 8-bits are processed.

Bell 4

TTY(4) Zilog TTY(4)

5

If INLCR is set, a received NL character is translated into
a CR character. If IGNCR is set, a received CR character is
ignored (not read). Otherwise if ICRNL is set, a received
CR character is translated into a NL character.

If IUCLC is set, a received upper-case alphabetic character
is translated into the corresponding lower-case character.

If IXON is set, start/stop output control is enabled. A
received STOP character will suspend output and a received
START character will restart output. All start/stop charac­
ters are ignored and not read. If IXANY is set, any input
character, will restart output which has been suspended.

If IXOFF is set, the system will transmit START/STOP charac­
ters when the input queue is nearly empty/full.

The initial input control value is ICRNL, !STRIP, IGNPAR,
IXON, BRKINT.

The ~flag field specifies the system treatment of output:

OPOST
OLCUC
ONJ:.,CR
OCRNL
ON OCR
ONLRET
OF ILL
OFDEL
NLDLY
NL!~

NLl
CRDLY
CRt~

CRl
CR2
CR3
TABDLY
rrAB0
TABl
TAB2
TAB3
BSDLY
BS'J
BSl
VTDLY
VT~J

VTl
f!,FDL Y
FF"
FFJL

0000001
0000002
0000004
0000010
0000020
0000040
0000100
0000200
0000400
0
0000400
0003000
0
0001000
0002000
0003000
0014000
0
0004000
0010000
0014000
0020000
0
0020000
0040000
0
0040000
0100000
0
0100000

Postprocess output.
Map lower case to upper on output.
Map NL to CR-NL on output.
Map CR to NL on output.
No CR output at column 0.
NL performs CR function.
Use fill characters for delay.
Fill is DEL, else NUL.
Select new-line delays:

Select carriage-return delays:

Select horizontal-tab delays:

Expand tabs to spaces.
Select backspace delays:

Select vertical-tab delays:

Select form-feed delays:

Bell 5

TTY{4) Zilog TTY(4)

6

If OPOST is set, output characters are post-processed as
indicated by the remaining flags, otherwise characters are
transmitted without change.

If OLCUC is set, a lower-case alphabetic character is
transmitted as the corresponding upper-case character. This
function is often used in conjunction with IUCLC.

If ONLCR is set, the NL character is transmitted as the CR­
NL character pair. If OCRNL is set, the CR character is
transmitted as the NL character. If ONOCR is set, no CR
character is transmitted when at column 0 (first position) •
If ONLRET is set, the NL character is assumed to do the
carriage-return function; the column pointer will be set to
0 and the delays specified for CR will be used. Otherwise
the NL character is assumed to do just the line-feed func­
tion; the column pointer will remain unchanged. The column
pointer is also set to 0 if the CR character is actually
transmitted.

The delay bits specify how long transmission stops to allow
for mechanical or other movement when certain characters are
sent to the terminal. In all cases a value of 0 indicates
no delay. If OFILL is set, fill characters will be
transmitted for delay instead of a timed delay. This is
useful for high baud rate terminals which need only a
minimal delay. If OFDEL is set, the fill character is DEL,
otherwise NOL.

If a form-feed or vertical-tab delay is specified, it lasts
for about 2 seconds.

New-line delay lasts about 0.10 seconds. If ONLRET is set,
the carriage-return delays are used instead of the new-line
delays. If OFILL is set, two fill characters will be
transmitted.

Carriage-return delay type 1 is dependent on the current
column position, type 2 is about 0.10 seconds, and type 3 is
about 0.15 seconds. If OFILL is set, delay type 1 transmits
two fill characters, and type 2 four fill characters.

Horizontal-tab delay type 1 is dependent on the current
column position. Type 2 is about 0.10 seconds. Type 3
specifies that tabs are to be expanded into spaces. If
OFILL is set, two fill characters will be transmitted for
any delay.

Backspace delay lasts about 0.05 seconds. If OFILL is set,
one fill character will be transmitted.

Bell 6

TTY(4) Zilog TTY(4)

7

The actual delays depend on line speed and system load.

The initial output control value is TAB3, OPOST, ONLCR.

The c cflag field describes the hardware control of the ter­
m i na 1-=-·--

CBAUD 0000017 Baud rate:
B0 0 Hang up
875 0000002 75 baud
8110 0000003 110 baud
8134 0000004 134.5 baud
8150 0000005 150 baud
8200 0000006 200 baud
B300 0000007 300 baud
B600 0000010 600 baud
Bl200 0000011 1200 baud
Bl800 0000012 1800 baud
B2400 0000013 2400 baud
84800 0000014 4800 baud
B9600 0000015 9600 baud
819200 0000016 19200 baud
EXT 0000017 External
CSIZE 0000060 Character size:
css 0 5 bits
CS6 0000020 6 bits
CS7 0000040 7 bits
CS8 0000060 8 bits
CS TO PB 0000100 Send two stop bits, else on•e.
CREAD 0000200 Enable receiver.
PARE NB 0000400 Parity enable.
PARO DD 0001000 Odd parity, else even.
HUPCL 0002000 Hang up on last close.
CLOCAL 0004000 Local line, else dial-up.

The CBAUD bits specify the baud rate. The zero baud rate,
B0, is used to hang up the connection. If B0 is specified,
the data-terminal-ready signal will not be asserted. Nor­
mally, this will disconnect the line. For any particular
hardware, impossible speed changes are ignored.

The CSIZE bits specify the character size in bits for both
transmission and reception. This size does not include the
parity bit, if any. If CSTOPB is set, two stop bits are
used, otherwise one stop bit. For example, at 110 baud, two
stops bits are required.

If PARENB is set, parity generation.and detection is enabled
and a parity bit is added to each character. If parity is
enabled, the PARODD flag specifies odd parity if set, other­
wise even parity is used.

Bell 7

TTY(4) Zilog TTY(4)

8

If CREAD is set, the receiver is enabled.
characters will be received.

Otherwise no

If HUPCL is set, the line will be disconnected when the last
process with the line open closes it or terminates. That
is, the data-terminal-ready signal will not be asserted.

If CLOCAL is set, the line is assumed to be a local, direct
connection with no modem control. Otherwise modem control
is assumed.

The initial hardware control value after open is B9600, CS7,
CREAD, HUPCL, CSTOPB.

The c lflag field of the argument structure is used by the
line discipline to control terminal functions. The basic
line discipline (0) provides the following:

ISIG
I CANON
XCASE
ECHO
EC HOE
EC HOK
ECHONL
NOE'LSH

0000001
0000002
0000004
0000010
0000020
0000040
0000100
0000200

Enable signals.
Canonical input (erase and kill processing)
Canonical upper/lower presentation.
Enable echo.
Echo erase character as BS-SP-BS.
Echo NL after kill character.
Echo NL.
Disable flush after interrupt or quit.

If !SIG is set, each input character is checked against the
special control characters INTR and QUIT. If an input cha·r­
acter matches one of these control characters, the function
associated with that character is performed. If !SIG is not
set, no checking is done. Thus these special input func­
tions are possible only if ISIG is set. These functions may
be disabled individually by changing the value of the con­
trol character to an unlikely or impossible value (e.g.
0377) •

If !CANON is set, canonical processing is enabled. This
enables the erase and kill edit functions, and the assembly
of input characters into lines delimited by NL, EOF, and
EOL. If !CANON is not set, read requests are satisfied
directly from the input queue. A read will not be satisfied
until at least MIN characters have been received or the
timeout value TIME has expired. This allows fast bursts of
input to be read efficiently while still allowing single
character input. The MIN and TIME values are stored in the
position for the EOL and first reserved characters respec­
tively. The time value represents tenths of seconds.

If XCASE is set, and if !CANON is set, an upper-case letter
is accepted on input by preceding it with a\ character, and
is output preceded by a \ character. In this mode, the

Bell 8

TTY(4) Zilog TTY(4)

9

following escape sequences are generated on output and
accepted on input:

fo1:: use: ,-
1 \!

\A
{ \(
} \)
\ \\

For example, A is input as \a, \n as \\n, and \N as \\\n.

If ECHO is set, characters are echoed as received.

When !CANON is set, the following echo functions are possi­
ble. If ECHO and ECHOE are set, the erase character is
echoed as ASCII BS SP BS, which will clear the last charac­
ter from a CRT screen. If ECHOE is set and ECHO is not set,
the erase character is echoed as ASCII SP BS. If ECHOK is
set, the NL character will be echoed after the kill charac­
ter to emphasize that the line will be deleted. Note that
an escape character preceding the erase or kill character
removes any special function. If ECHONL is set, the NL
character will be echoed even if ECHO is not set. This is
useful for terminals set to local echo (so-called half
duplex)~ Unless escaped, the EOF character is not echoed.
Because EOT is the default EOF character, this prevents ter­
minals that respond to EOT from hanging up.

If NOFLSH is set, the normal flush of the input and output
queues associated with the quit and interrupt characters
will not be done.

The initial line-discipline control value is !SIG, !CANON,
ECHO, ECHOE, ECHOK, ECHONL.

The primary ioctl(2) system calls have the form:

ioctl (fildes, command, arg)
struct termio *arg;

The commands using this form are:

TC GE TA

TC SETA

Get the parameters associated with the termi­
nal and store in the termio structure refer­
enced by arg.

Set the parameters associated with the termi­
nal from the structure referenced by arg.
The change is immediate.

Bell 9

TTY(4) Zilog TTY (4)

FILES

TCSETAW

TCSETAF

Wait for the output to drain before setting
the new parameters. This form should be used
when changing parameters that will affect
output.

Wait for the output to drain, then flush the
input queue and set the new parameters.

Additional ioctl{2) calls have the form:

ioctl (fildes, command, arg)
int arg;

The commands using this form are:

TCSBRK

TC XO NC

TCFLSH

/dev/tty
/dev/tty*
/dev/console

Wait for the output to drain.
then send a break (zero
seconds) •

If arg is 0,
bi ts--for 0. 2 5

Start/stop control. If arg is 0, suspend
output; if 1, restart suspended output.

If arg is 0, flush the input queue; if 1,
flush the output queue; if 2, flush both the
input and output queues.

SEE ALSO
st t y (1) , i oc t 1 (2) •

10 Bell 10

ZD(4) Zilog ZD(4)

NAME
zd - Winchester disk

DESCRIPTION

FILES

1

The zd device provides the interface to disk drives. Two
sizes of drives are currently supported: 24 MB (mega bytes)
and 32 MB.

The files zd0 ... zd9 refer to sections of disk drive 0.
The files zdl0 ... zdl9 refer to drive 1 etc. This allows a
large disk~be broken up into more manageable pieces.

The origin and size of the pseudo-disks on «~ach drive as
delivered from the factory are as follows:

Note

24 MB Drive

disk
0
l
2
3

start
0

10000
13200
18200
23200

length
10000

3200
.5000
5000

20000 4
5-9 unassigned

32 MB Drive

disk start length
0 0 12000
1 12000 3200
2 15200 6000
3 21200 6000
4 27200 30400

that these values can be changed by usinq sysgen(M).

The zd files access the disk via the system's normal buffer­
ing mechanism and can be read and written without regard to
physical disk records. There is also a raw interface that
provides for direct transmission between the disk and the
user's read or write buffer. A single read or write call
results in exactly one I/O operation and thE~refore raw I/O
is considerably more efficient when many words are transmit­
ted. The names of the raw files begin with r~~d and end with
a number which selects the same disk SE~ction as the
corresponding zd file.

In raw I/O the buffer must begin on a word boundary.

/dev/zd*
/dev/rzd*

Zilog 1

ZD(4) Zilog ZD(4)

LIMITATIONS

2

In raw I/O read and write(2) truncate file offsets to 512-
byte block boundaries, and write scribbles on the tail of
incomplete blocks. Thus, in programs that are likely to
access raw devices, read, write and lseek(2) should always
deal in 512-byte multiples.

Zilog 2

l\.OUT(S) Zilog A.OUT(S)

NAME
a.out - System 8000 object code format

SYNOPSIS
#include <s.out.h>

DESCRIPTION

1

A.out is the output file of the assembler as(l) and the link
editors ld(l) and sld(l). Both programs make a.out execut­
able if there are n1ei ther errors nor unresolved external
references. This format is a departure from the format used
for PDP-11 programs. It has been upgraded to handle. ZS,
Z80, and segmented and nonsegmented Z8000 machine code. It
also is referred to as "s.out" in several places, to distin­
guish it from the PDP-11 format. Layout information as
given in the includ•e file is:

/* The object module~ header structure is as defined below * /
/* for S.OUT object file formats. */

struct s_exec {

} i

int s_ma9ic;
long s imsize;
long s-bss;
unsigned s=se9t;
unsigned
long
unsigned
unsigned
unsigned

s_syms;
s entry;
s-flag;
s-coctesz;
s-unused;

/* Magic number */
/* Size of memory image section */
/* Size of bss sections */
/* Size of segment table section */
/* Size of symbol table section */
/* Entry point address */
/* Flags word */
/* 8-bit padded code size */
/* Unused */

/'* The valid magic numbers for the s.out are defined . */
/* below. Valid a.out magic numbers (defined in */
/* a.out.h) are : e807, e810, and e811 */

#define
#define
#define
#define
#define
#define
#define
#define
#define

S MAGIC!
S MAGIC3
S-MAGIC4
N-MAGICl
N-MAGIC3
N-MAGIC4
X-MAGICl
X-MAGIC3
X-MAGIC4

0xE607
0xE611
0xE605
0xE707
0xE711
0xE705
0xE507
0xE511
0xE505

/* Segmented executable */
/* Segmented separate I & D */
/* Segmented overlay */
/* Nonsegmented executable */
/* Nonsegmented separate I & D */
/* Nonsegmented overlay file */
/* 8-bit executable */
/* 8-bit separate I & D */
/* 8-bit overlay */

/* Valid flags in the s_flag field are defined as follows: */

#define
#define
#define
#define

SF STRIP
SF-OPREP
SF Z8
SF-Z80

0x0001
0x0002
t"x0004
t"x0080

/* Reloc info has been stripped */
/* Changed by OPREP program */
/* Z8 program */
/* Z80 program */

Zilog 1

A.OUT(S) Zilog A.OUT(S)

2

#define SF SEND 0x0010 /* module created by SEND */

/*.The segment table is an array of the following structure. *
/* Each entry relates to one segment in the pro9ram. For file*
/* types with magic numbers S MAGIC! and S MAGIC3, there are *
/* 128 entries maximum. For-file types S-MAGIC4, there are*
/* 256 entries maximum. For the remaining file types, *
/* th.ere is always one entry in the segment table. *

struct segt [
char sg_segno; /* Segment number */
char sg coff; /* Offset/256 for code section */
char sg-doff; /* Offset/256 for data section */
char sg-boff; /* Offset/256 for bss section */
unsigned sg-code; /* Size of the code portion */
unsigned sg=data; /* Size of the data portion */
unsigned sg_bss; /* Size of the bss portion */
int sg atr; /* Attributes, defined below */
long sg=unused; /* Unused */

} i

/* These definitions apply to the sg_atr field in the */
/* segment table*/

#define
#define
#define
#define
#define
#define
#define
#define

SG CODE
SG DATA
SG BSS
SG-STAK
SG-OCODE
SG-ODATA
SG-OBSS
SG BOUND

0x0001
0x0002
0x0004
0x0008
0x0010
0x0020
0x0040
0x0080

/* Segment contains code */
/* Contains initialized data */
/* Contains uninitialized data */
/* The segment grows downward */
/* Code section is offset */
/* Data section is offset */
/* Bss section is offset */
/* Segment number bound to */

/* this section */

/* The symbol table is an array containing entries with */
/* information on symbols. All entries are fixed size with */
/* the symbol having <= 8 characters. If a longer name */
/* is used, the first character of the name has the high bit*/
/* se~t and is interpreted as the length of the name rather * /
/* th.an a character. The "overflow" characters are put into*/
/* the following storage areas and padded out with zeros to */
/* fill a symbol table entry exactly. Names shorter than */
/* eight characters are also padded with zeros. */

#define
#define

SHORTNAME 8
LONGNAME 127

/* Length of normal sized name */
/* Max characters in a long name */

struct s nlist [
long sn value; /* Value */
char sn_type; /* Type field */
char sn segt; /* Segment table entry # */
char sn=name[SHORTNAME]; /* Symbol name padded with Q

Zilog 2

A.OUT(S) Zilog A.OUT(S)

3

} ;

/* These definitions apply to the sn_type field in the
/* symbol table */

#define N UNDF 0 /* Undefined */
#define N ABS 0x01 /* Absolute */
#define N DATA 0x03 /* Data symbol */
#define N-BSS 0x04 /* Bss symbol */
#define N-TYPE 0xlF /* Mask for type */
#define N-REG 0xl4 /* Register name */
#define N FN 0xlF /* File name */
#define N-EXT 0x20 /* External bit, or'ed in

#define N CODE 0x02 /* Code symbol */
#define N SN 0xlE /* Section name */
#define N-SEG 0x40 /* Segmented bit, or'ed in
#define LONGMASK 0x007F /* Strip off long bit */

/* Complete s.out header structure */

struct s head {
s exc; /* s.out header */

*/

*/

*/

struct s exec
struct segt segtable[2]; /* nonsegmented seg table */

The file has fiv•e sections: a header, the segment table, the
program and data text, relocation information, and a symbol
table (in that order). The last two may be empty if the
program was loaded with the "-s" option of ld(l) or if the
symbols and relocation have been removed by strip(!).

In the header the sizes of each section are given in bytes.
The sizes of the code and data in the file are always even.
If a size in the header is odd, the real size is the rounded
up size. For example, a size of hexadecimal FFFF in the
sg code field of a segment table entry implies a real size
of- hexadecimal 10000. The size of the header is not
included in any of the other sizes.

For 8-bit processors (X_MAG!Cl, X_MAGIC3, and X MAGIC4), the
memory image in the obj¢ct file can be padded for word
alignment. In this case the s imsize field differs from the
size of the rE~sul ting object code and cannot be used to
determine memory requirements. For 8-bit separate I & D
files, the padded code size can be obtained from the
s codesz field. The memory requirement information must be
obtained from the segment table.

This format can be used for files intended to run on the
ZEUS system, and for programs that are to be downloaded to
target hardware. When an a.out file is loaded into memory

Zilog 3

A.OUT(S) Zilog A.OUT(S)

4

by ZEUS for execution, three logical segments are set up:
the text segment, the data segment {with uninitialized data,
which :starts off as all 0, following initialization), and a
stack. The text segment begins at 0 in the image; the
header is not loaded. If the magic number in the header is
N MAGICl, it indicates that the text segment is not to be
write-protected and shared, so the data segment is irrunedi­
ately contiguous with the text segment. If the magic number
is N MAGIC3, the text segment is pure, write-protected, and
share~, and instruction and data space are separated; the
text and data segment both begin at location eJ. If the
magic number is N MAGIC4, the text segment is OVE~rlaid on an
existinq {N MAGIC3 or N MAGIC4) text segment and the exist­
ing data. segment is preserved. For segmented files, the
above holds true except that there can be more than one seg­
ment in each category {text, data, and bss).

The stack ·will occupy the highest possible locations in the
image: from FFFE{hex) and growing downwards. The stack is
automatically extended as required. Data segments are only
extended as requested by brk{2) or sgbrk{2).

The start of the segment table in the file is lB{hex); the
start of the text segment is 18+Ss {the size of the segment
table); the start of the data segment is 18+Ss+St {the size
of the text); the start of the relocation information is
18+Ss+St+Sd {the size of the memory image); the Btart of the
symbol table is 18+Ss+2*{St+Sd) if the relocation informa­
tion is present, 18+Ss+St+Sd if not.

The layout of a symbol table entry and the principal flag
values that distinguish symbol types are given in the
include file. Other flag values can occur if an assembly
language program defines machine instructions.

If the first character of a symbol name has a value greater
than 127 {its high order bit 1), the symbol name is longer
than eigrht characters. The low order seven bits of this byte
are taken as the length of the name, includinsr the length
byte. A long name always occupies an integral number of
s nlist entries. This means that a long name can be padded
out with zeros until the next entry is filled. The pad bytes
are not included in the length.

If a symbol's type is undefined external, and the value
field is non-zero, the symbol is interpreted by the loader
ld{l) as the name of a common region whose size is indicated
by the value of the symbol.

The value of a word in the text or data portions which is
not a reference to an undefined external symbol is exactly
that value which will appear in memory when the file is

Zilog 4

A.OUT(S) Zilog A.QUT{S)

5

executed. If a word in the text or data portion involves a
reference to an undefined external symbol, as indicated by
the relocation information for that word, then the value of
the word as stored in the file is an offset from the associ­
ated external symbol. When the file is processed by the
loader and the external symbol becomes defined, the value of
the symbol will be added into the word in the file.

If relocation information is present, it amounts to one word
per word of program text or initialized data. There is no
relocation information if the "relocation info stripped"
flag in the header is on.

Each relocation word is interpreted as follows:

Relocation bits for Z8000 object files

Bit 3 = 1: External reference
Bits 2-0:

000 offset part (or other 16 bit value)
001 segment part
010 short segmented address
011 12 bit relative address (CALR)
100 16 bit relative address (LDR, LDAR)

Bits 15-4:
Symbol number starting from 0

Bit 3 = 0: Resolved reference
Bits 2-1:

00
01
10

absolute
code reference
data :reference

11 bss reference
Bit 0 = 1: segmented reference

Bits 15-8:
segment table entry #

Bits 6-4:
000 offset part (or other 16 bit value)
001 segment part
010 short segmented address
011 12 bit relative address (CALR)
100 16 bit relative address (LDR, LOAR)

Bit 0 = 0: non-segmented reference
Bits 15-4:

unused

Relocation bits for 8-bit object files

Bit 3 = 1: External reference
Bits 2-0:

000 word value
001 byte value

Zilog 5

A.OUT(S) Zilog

010 high byte of word value
011 low byte of word value

Bits 15-4:
Symbol number starting from 0

Bit 3 = 0: Resolved reference
Bits 2-0:

0 00
0HJ
100
110

Bits 6-4:

absolute
code reference
data reference
bss reference

000 word value
001 byte value
010 high byte of word value
011 low byte of word value

Bits 15-7:
unused

SEE ALSO
as(l), ld{l}, nm(l}, objdu(l}, objhdr(l}.

6 Zilog

A..OUT(S)

6

ACCT(S) Zilog ACCT(5)

NAME
acct - per-process accounting file format

SYNOPSIS
finclude <sys/acct.h>

DESCRIPTION

1

Files produced as a result of calling acct(2) have records
in the form de.fined by <sy,s/acct.h>, whose contents are:

/* @[$]acct.h 2.4 03/07/83 17:56:39 - Zilog Inc */
/*
* Accounting structures
*/

typedef ushort comp t; /* "floating point" */
/* 13-bit fraction, 3-bit exponent */

struct acct
{

char ac_flag; /* Accounting flag */
char ac stat; /* Exit status */ -ushort ac uid; /* Accounting user ID */
ushort ac-gid; /* Accounting group ID */
dev t ac=tty; /* control typewriter */
time t ac_btime; /* Beginning time */ -comp t ac utime; /* acctng user time in clock ticks - -comp t ac stime; /* acctng system time in clock tick - t - etime; /* acctng elapsed time in clock tic;-comp ac - -
comp t ac_mem; /* memory usage */ -comp t ac io; /* chars transferred */ - - /* blocks read written */ comp t ac rw; or
char - - comm [8] ; /* command */ ac name -} ;

extern struct acct acctbuf;
extern struct inode *acctp; /* inode of accounting file */

#define
#define
#define

AFORK 01
ASU 02

ACCT:!~' 0300

/* has executed fork, but no exec */
/* used super-user privileges */

/* record type: 00 = acct */

In ac flag, the AFORK flag is turned on by each fork(2) and
turned off by an exec(2). The ac comm field is inherited
from the parent process and reset by any exec. Each time
the system charges the process with a clock tick, it also
adds the current process size to ac mem, computed as fol­
lows:

(data siz•:) + (text size) / (number of in-core

Bell 1

ACCT { 5) Zilog ACCT { 5)

processes using text)

The value of ac mem/ac stime can be viewed as an approxima­
tion to the mean process size, as modified by text-sharing.

The following structure represents the total accounting for­
mat used by the various accounting commands:

/*
* total accounting (for acct period} , also for day
*/

struct tac ct {

} ;

uid t
char
float
float
float
float
long
unsigned
unsigned
unsigned

ta uid;
ta-name[8];
ta-cpu[2];
ta-kcore[2];
ta-con[2];
ta-du;

/*
/*
/*
/*
I*
/*
I* ta-pc;

short
short
short

ta sc;
ta=dc;
ta_fee;

userid */
login name */
cum. cpu time, p/np (mins) */
cum kcore-minutes, p/np */
cum. connect time, p/np, mins *,
cum. disk usage */
count of processes */
/* count of login sessions */
/* count of disk samples */
/* fee for special services */

SEE ALSO
acctcom(l}, acct(2), acct(M).

LIMITATIONS

2

The ac mem value for a short-lived command gives little
information about the actual size of the command, because
ac mem can be incremented while a different command (e.g.,
the shell} is being executed by the process.

Bell 2

AR (5) Zilog AR (5)

NAME
ar - archive (library) file format

SYNOPSIS
#include <ar.h>

DESCRIPTION
The archive command ar is used to combine several files into
one. Archives are used mainly as libraries to be searched
by the link-editor ld.

A file produced by ar has a magic number at the start, fol­
lowed by the constituent files, each preceded by a file
header. The magic number and header layout as described in
the include file are:

/* @[$]ar.h 1.1 12/11/81 17:07:41 - Zilog Inc */
0177545 =ltdef ine

struct

} ;

char
long
char
char
int
long

ARMAG
ar hdr {
ar-name[14];
ar-date;
ar-uid;
ar-gid;
ar=mode;
ar_size;

The name is a null-terminated string; the date is in the
form of time (2) ;; the user ID and group ID are numbers; the
mode is a bit pattern per chmod(2); ·the size is counted in
bytes.

Each file begins on a word boundary; a null byte is inserted
between files if necessary. Nevertheless the size given
reflects the actual size of the file exclusive of padding.

Notice there is no provision for empty areas in an archive
file.

SEE ALSO
a r (1) , 1 d (1) , nrn (1) •

LIMITATIONS
Coding user and group IDs as characters is a botch.

1 Bell 1

CORE(S) Zilog CORE(S)

NAME
core - format of core image file

DESCRIPTIOlttl
ZEUS writes a memory image of a terminated process when any
error occurs. (See signal(2) for the list of reasons.) The
most common errors are memory violations, illegal instruc­
tions, and user-generated quit signals. The memory image,
called core, is written in the process's working directory,
provided normal access controls apply.

The first 2048 bytes of the memory image are a copy of the
system's per-user data for the process, including the regis­
ters as they were at the time of the fault. The remainder
represents the actual contents of the user's me~mory when the
image was written. If a user program is separate I & D, the
code segment(s) are not dumped, just the data segment(s). In
the combined I & D case, all user segments are dumped. In
both cases the user's stack appears in the core file after
all the user segments.

The debugger adb(l)
images.

is sufficient to deal with memory

SEE ALSO
adb (1), signal (2).

LIMITATIONS
The name core is a throwback to an earlier era.

1 Bell 1

CPIO(S) Zilog CPIO(S)

NAME
cpio - format of cpio archive

DESCRIPTION
The header structure, when the c option is not used,
struct {

short h magic,
h dev,-
h-ino,
h-mode!,
h-uid,
h-gid,
h-nlink,
h-rdev,
h-mtime[2],
h-namesize,
h-filesize[2];

char h name{h_namesize rounded to word]:
} Hdr:

When the c option is used, the header information is
described by the statement below:

is:

sscanf(Chdr, 11 %60%60%60%60%60%60%60%60%lllo%60%60%s 11
,

&Hdr.h magic,&Hdr.h dev,&Hdr.h ino,&Hdr.h mode,
&Hdr.h-uid,&Hdr.h gI"d,&Hdr.h nlink,&Hdr.h-rdev,
&LongtTme, &Hdr. h_namesize, &Long file, Hdr. h_name):

Longtime and Lot1gfile are equivalent to Hdr.h mtime and
Hdr.h filesize, respectively. The contents of each file is
recorded in an E~lement of the array of varying length struc­
tures, archive, together with other items describing the
file. Every insitance of h magic contains the constant
070707 (octal). The items h dev through h mtime have mean­
ings explained in stat(2). The length of the null­
terminated path name h name, including the null byte, is
given by h namesize.

The last record of the archive always contains the name
TRAILER111. Special files, directories, and the trailer are
recorded with h filesize equal to zero.

SEE ALSO
cpio (1) , find (1)I , stat (2) .

1 Bell 1

CSHRC(S) Zilog CSHRC(S)

NAME
cshrc, cshprofile, login - setting up an environment at
login time

DESCRIPTION

FILES

users of the C-shell, csh, can set up a consistent environ­
ment before a session begins. If the home directory con­
tains a file named .login, that file will be executed (via
the C-shell's source command) only at login time. If a
second file, .cshrc, exists in the home directory, this file
also will be executed. The .cshrc file will be executed
before the .login file. The difference is that the .cshrc
file is executed by every shell, not just the login shell.

If the file /etc/cshprofile exists, it will be executed for
every C-shelllJser at login before either the .login or the
.cshrc are executed.

$home/.cshrc
$home/.login
/etc/cshprof ile

SEE ALSO

1

csh(l), login(l), printenv(l), sh(l), su(l), profile(5),
environ (7), term (7).

Zilog 1

DIR(5) Zilog DIR(S)

NAME
dir - format of directories

SYNOPSIS
#include <sys/dir.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, save that
no user may write into a directory. The fact that a file is
a directory is indicated by a bit in the flag word of its
i-node entry see, filsys(S). The structure of a directory
entry as given in the incl.ude file is:

/* @[$]dir.h 2.1 05/13/82 13:50:31 - Zilog Inc*/
#ifndef DIRSIZ
#define DIRSIZ 14
#end if
struct direct
{

} ;

ino t
char

d ino;
d=name[DIRSIZ];

By convention, the first two entries in each directory are
for'.• and' •• '. The first is an entry for the directory
itself. The second is for the parent directory. The mean­
ing of' •• ' is modified for the root directory of the master
file system and for the root directories of removable file
systems. In the first case, there is no parent, and in the
second, the system does not permit off-device references.
Therefore in both cases ' ' has the same meaning as ' '

SEE ALSO
f i 1 sys (5) •

1 Bell 1

DUMP(5) Zilog DUMP(5)

NAME
dump, ddate - incremental dump format

SYNOPSIS
finclude <sys/types.h>
tinclude <sys/ino.h>
#include <dumprestor.h>

DESCRIPTION

1

Tapes used by dump and restor(M) contain:

$ a header record

$ two groups of bit map records

$ a group of records describing directories

$ a group of records describing files

The format of the header record and of the first record of
each description as given in the include file <~umprestor.~>
is:

#define NTREC
#def inE:! MLEN
#definE~ MSIZ

#define TS TAPE
#def inE;! TS I NODE
#def im~ TS-BITS
#def i nE~ TS-ADDR
#de:f ine TS END
#definE~ TS-CLRI
#def inE! MAGIC
#def inE! CHECKSUM
struct
{

int
time t
time-t
int
daddr t
ino t­
int­
int
struct
int
union
{

8
16
4096

1
2
3
4
5
6
(int)60011
(int)84446
spcl

c type;
c-date;
c-ddate;
c-volume;
c-tapea;
c=inumber;
c magic;
c-checksum;
dTnode c_dinode;
c_count;

struct
{
char c_dev[30];

Bell 1

OUMP(5) Zilog DUMP (5)

2

char c string[BSIZE-30];
}c dinfo;
char c_addr[BSIZE];

- }c block;
} spcl;-

struct
{

} ;

char
char
time t

id ates

id name [16] ;
id incno;
id:=ddate;

NTREC is the number of 512 byte records in a physical tape
block. MLEN is the number of bits in a bit map word. MSIZ
is the number of bit map words.

The TS entries are used in the c type field to indicate
header type. 'I1he types and their meanings are as follows:

TS_TAPE Tape volume label
TS !NODE

A file or directory follows. The c dinode field is
a copy of the disk inode and contains bits telling
file type.

TS BITS A bit map follows. This bit map has a one bit for
each inode that was dumped.

TS ADDR A subrecord of a file description. See the follow­
ing c addr entry.

TS END End of tape record.
TS-CLRI A bit map follows. This bit map contains a zero bit

for all inodes that were empty on the file system
when dumped.

MAGIC All header records have this number in c magic.
CHECKSUM

Header records checksum to this value.

The fields of the header structure are as follows:

c type The type of the header.
c-date The date the dump was taken.
c-ddate The date the file system was dumped from.
c-volume The current volume number of the dump.
c-tapea The current number of this 512-byte record.
c-inumber

The number of the inode being dumped if this is
type TS !NODE.

c_magic This contains the value MAGIC above, truncated
needed.

c checksum
This contains whatever value is needed to make
record sum to CHECKSUM.

Bell

of

as

the

2

DUMP(5) Zilog DUMP(5)

c dinode This is a copy of the inode as it appears on the
f i 1 e sys t em (f i 1 sys (5)) •

c count The count of characters in c addr.
c-addr An array of characters describing the blocks of the

dumped file. A character is zero if the block
associated with that character was not present on
the file system; otherwise, the character is non­
zero. If the block was not present on the file
system, no block was dumped; the block is restored
as a hole in the file. If there is not sufficient
space in this record to describe all of the blocks
in a file, TS ADDR records are scattered through
the file, each one picking up where the last left
ofL

Each volume except the last ends with a tapemark (read as an
end of file).. The last volume ends with a TS END record and
then the tapemark.

The structure idates
/etc/ddate where dump
structure are:

describes an entry of the file
history is kept. The fields of the

id name The dumped filesystem is /dev/id nam.
id-incno The level number of the dump tape; (dump (M)).
id-ddate The date of the incremental dump in -System format

(~es (5)).

FILES
/etc/ddate

SEE ALSO
dump (M) , d um pd i r (M) , res tor (M) , f i 1 sys (5) , types (5) •

3 Bell 3

ENVIRON(5) Zilog ENVIRON(S)

NAME
environ - user environment

SYNOPSIS
extern char **environ;

DESCRIPTION
An array of strings called the environment is made available
by exec(2) when a process begins. These strings have the
form name=value. csh(l) and vi(l) internalize environment
variables and display them via the set command. The follow­
ing names are used by various commands:

PATH The sequence of directory prefixes that sh(l), time(l),
nice(l), etc., apply in searching for a file known by
an incomplete path name. The prefixes are separated by
:. login(l) sets PATH=:/bin:/usr/bin. csh(l) uses the
variable path.

HOME A user's login directory, set by login from the pass­
word file passwd(S). csh uses the variable home.

TERM The kind of terminal for which output is to be
prepared. This information is used by commands, such
as nroff(l) that exploit special terminal capabilities.
login sets TERM based on entries found in /etc/ttytype.
See term(7) for a list of terminal types.

Further names are placed in the environment by the exp~rt
command and name=value arguments· in sh(l), or by exec(2).
Do not conflict with certain shell variables that are fre­
quently exported by .profile files: MAIL, PSl, PS2, IFS.

SEE ALSO

1

csh(l), login(l), sh(l), exec(2), ttytype(5), term(7), term­
list(7).

Bell 1

FILSYS{5) Zilog FILSYS{5)

NAME
filsys, flblk, ino - format of file system volume

SYNOPSIS
#includ.e <sys/param.h>
tinclude <sys/types.h>
#include <sys/fblk.h>
tinclude <sys/filsys.h>
#include <sys/ino.h>

DESCRIPTION

1

Every file system storage volume has a common format for
certain vital information. Block 0 is 512-bytes and con­
tains the bootstrap program.

Each virtual file system on disk is divided into a certain
number of 512-byte blocks. Block 1 is the super block. The
layout of the super block as defined by the--Include file
<sys/filsys.h> is:

/*
* Structure of the super-block
*/

struct filsys {
unsigned short s isize; /* size in blocks of i-list */
daddr t s_fsize; /* size in blocks of entire volume
short- s nfree; /* number of addresses in s free * 1

daddr t s-free[NICFREE];/* free block list */ -
short- s-ninode; /* number of i-nodes in s inode */
ino t s-inode[NICINOD];/* free i-node list */
char s-flock; /* lock during free list manipulat:
char s-ilock; /* lock during i-list manipulation
char s-fmod; /* super block modified flag */
char s-ronly; /* mounted read-only flag */
time t s-time; /* last super block update */
dadd·r t s -tf ree; / * total free blocks* I
ino t- s-tinode; /*·total free inodes */
short s-m; /* interleave factor */
short s n; /* 11 11 */
char s-fname[6]; /* file system name */
char s-fpack[6]; /* file system pack name */
char s_mach; /* byte order flag (0 = native, */

/* 1 = foreign) */
} i

S isize is the address of the first block after the i-list,
that starts after the super block, in block 2. Thus the i­
list is s isize-2 blocks long. S fsize is the address of
the first block not potentially available for allocation to
a file. These numbers are used by the system to check for
bad block addresses; if an impossible block address is allo­
cated from the free list or is freed, a diagnostic is

Bell 1

2

Zilog FILSYS (5)

written on the on~line console. The free array is cleared,
to prevent further allocation from a corrupted free list.

The free list for each volume is maintained as follows:

The s free arr~ay contains, in s free [l], ,
s free[s nfree-1], up to NICFREE free block numbers. NIC­
FREE is a confiquration constant defined to be 50. S free
[0] is the biock address of the head of a chain of blocks
constituting the free list. The layout of each block of the
free chain as dE~fined in the include file <.~-~/fblk.!!> is:

struct fblk
{

} ;

int
daddr t

df nfree;
Cl(=free [NICFREE];

The fields df nfree and df free in a free block are used
exactly like s nfree and s free in the super block. To
allocate a bloci, decrement s nfree, and the new block
number is s free[s nfree}. If the new block address is 0,
there are no blocks left, so give an error. If s nfree
became 0, read the new block into s nfree and s free. To
free a block, check if s nfree is NICFREE; if so, copy
s nfree and the s free array into it, write it out, and set
s nfree to 0. In any event, set s free[s nfree] to the
freed block's address and increment s nfree.

S ninode is the number of free i-numbers in the s inode
array. To allocate an i-node, if s ninode i$ greater than
0, decrement it and return s inode[s ninode]. If it was 0,
read the i-list on disk and place the numbers of all free
inodes (up to NICINOD) into the s inode array, then try
again. (NICINOD is a configuration constant equal to 100.)
To free an i-node, provided s ninode is. less than NICINODE,
place its number into .s inode [s ninode] and increment
s ninode. If s ninode is already NICINODE, do not enter the
freed i-node--rnto any table. This list of i-nodes is only
to speed up the allocation process; the information as to
whether the inode is really free or not is maintained in the
inode itself.

S flock and s ilock are flags maintained in the core copy of
the file system while it is mounted and their values on disk
are immaterial. The value of s fmod on disk is likewise
immaterial; it is used as a flag to indicate that the super
block has changed and should be copied to the disk during
the next periodic update of file system information.
S ronly is a write-protection indicator; its disk value is
also immaterial.

Bell 2

FILSYS (5) Zilog FILSYS (5)

3

S time is the last time the super block of the file system
was changed. During a reboot, s time of the super block for
the root file system sets the system's time.

The fields s tfree, s tinode, s fname and s fpack are not
currently maintained.

I-numbers begin at 1, and the storage for i-nodes begins in
block 2. !·-nodes are 64 bytes long, so eight: of them fit
into a block. I-node 2 is reserved for the root directory
of the file system, but no other i-number has a built-in
meaning. Each i-node represents one file. The format of an
i-node as given in the include file <sys/ino.~> is:

/*
* Inode structure as it appears on
* a disk block.
*/

struct dinode
{

unsigned
short
short
short
off t
ch.ar
time t
time t
time-t

short di mode;
di nlink;
di-uid;
di-gid;
di-size;
di-addr [40];
di-atime;
d i-mtime;
di=ctime;

I*
/*
/*
/*
/*
I*
/*
I*

/* mode and type of file */
number of links to file */
owner's user id */
owner's group id */
number of bytes in file
disk block addresses */
time last accessed */
time last modified */
time created */

*/

} ;
#define
/*

INOPB 8 /* 8 inodes per block */

* the 40 address bytes:

*
*
*/

39 used; 13 addresses
of 3 bytes each.

Di mode tells the kind of file; it is encoded identically to
the st mode field of stat(2). Di nlink is the number of
directo~y entries (links) that refer to this i-node. Di uid
and di gid are the owner's user and group IDs. Size is the
numberc>f bytes in the file. Di atime and di mt:lme are the
times of last access and modification of the fJLle contents
(read, write or create) (times (2)); Di ctime records the
time of last modification to the inode or to the file, and
determines whether it should be dumped.

Special files are recognized by their modes and not by their
i-number. A block-type special fiie is one that can poten­
tially be mounted as a file system; a character-type special
file cannot, though it is not necessarily character­
oriented. For special files, the di addr field is occupied

Bell 3

FILSYS (5) Zilog FILSYS (5)

by the device code (types (5)). The device codes of block
and character special files overlap.

Disk addresses of plain files and directories are kept in
the array di addr packed into three bytes each. The first
10 addresses specify device blocks directly. The last three
addresses are singly, doubly, and triply indirect and point
to blocks of 128 block pointers. Pointers in indirect
blocks have the type daddr t (types (5)).

For block b in a file to exist, it is not necessary that all
blocks. less than b exist. A zero block number either in the
address words of the i-node or in an indirect block indi­
cates that the corresponding block has never been allocated.
Such a missing block reads as if it contained all zero
words.

SEE ALSO
stat(2), dir (5), types(5), dcheck(M), icheck(M), mount(M).

4 Bell 4

GROUP(S) Zilog GROUP(S)

NAME
group - group file

DESCRIPTIOI~

Group contains for each group the following information:

$ group name

& encrypted password

& numerical group ID

$ a comma separated list of all users allowed in the
group

This is an ASCII file. The fields are separated by
Each group is separated from the next by a new-line.
password field is null, no password is demanded.

colons;
If the

This file resides in directory /etc. Because of the
encrypted passwords, it can and does have general read per­
mission and can be used, for example, to map numerical group
!D's to names.

FILES
/etc/srroup

SEE ALSO
newgrp(l), passwd(l), crypt(3), passwd(5).

1 Bell 1

INITTAB(S) Zilog INITTAB(S)

NAME
inittab - control information for init

DESCRIPTION
When a state is entered, init reads the file /etc/inittab.
Lines in this file have the format:

state:id:flags:command

All lines in whi.ch the state field match init's current
state are recognized. If a process is active under the same
two character id as a recognized line, it may be terminated
(signal 15), kI'Iled (signal 9), or both by including the
flags t and k in the order desired. The signal is sent to
all processes in the process group associated with the id.
The command field is saved for later execution. The flag c
requires the command to be continuously reinvoked whenever
the process with that id dies. Otherwise the command is
invoked a maximum of one time in the current state.

FILES
/etc/inittab

1 Bell 1

MNTTAB(S) Zilog MNTTAB(S)

NAME
mnttab - mounted file system table

SYNOPSIS
struct: mnttab {

};

char mt dev[lfl];
char mt--filsys [lfl];
short - mt ro flg;
time t mt time;

DESCRI PTIOt;f
Mnttab resides in directory /etc and contains a table of
dev ice·s mounted by the mount(~ command.

Each entry is 26 bytes in length. The first 10 bytes are
the null-padded name of where the special file is mounted;
the next 10 bytes represent the null-padded root name of the
mounted special file; the rema1n1ng 6 bytes contain the
mounted special file's read/write permissions and date it
was mounted. ~~

The maximum number of entries in mnttab is based on the sys­
tem parameter Nmount located in the kernel, which defines
the number of allowable mounted special files.

SEE ALSO
mount(M).

1 Bell 1

MON.OUT(S) Zilog MON.OUT(S)

NAME
men.out - profile information

DESCRIPTION

1

Mon.out is a file containing profiling information. This
information is produced by either monitor(3) or segmon(3),
depending on whether the user program was compiled nonseg­
mented or segmented. Mon.out has two formats, one for non­
segmented code and one---ror-segmented code.

The format produced by monitor(3) is a file divided into 3
sections - a header, the routine counts, and the timing
information. The header is a fixed structure, whereas the
other sections vary in size depending on the number of rou­
tines profiled and the size of the sample range.

typedef short UNIT;
/* structure of the header */

struct hdr { /* header information */
UNIT *lowpc; /* low end of range */
UNIT *highpc; /* high end of range */
int ncount; /* number of routines counted */

} ;

/* strucure used for the routine counts */
struct cnt { /* routine information */

unsigned cvalue; /* number of times routine*/
/* is called */

long cncall; /* address to the routine */
/* being·counted */

} cbuf[350];

Although cbuf has a maximum size of 350 structures, the
number of structures is determined by the number of routines
counted (ncount). The rest of the file is timing informa­
tion, read one UNIT at a time until the end of file is
reached.

The format produced by segmon(3) is a bit different from the
above format. 'rhis is because the previous format is a pro­
file of only 1 segment and 1 sample range whereas this for­
mat must handle multiple segments and multiple sample
ranges. The file consists of routine counts, segment
headers, and timing information. The routine count section
consists of 2 parts a header and the actual count.

/* structure for the
struct rhdr {

long seqhdr;
long s i:2:e;

long ncount;

routine header*/
/* header information */
/* offset where seg headers start */
/* size of rountine section and */
/* seg headers section in bytes */
/* number of routines */

1

MON.OUT{5) Zilog MON.OUT(5)

long numseg;
}

/* structure for the
struct cnt {

unsigned long

long cncall;
} cbuf[350];

/* number of segments */

routine counts */
/* area for the routine counts

cvalue; /* no. of times routine
/* is called */
/* address of routine */

*/
*/

As in the above format the amount of information in cbuf is
determined by ncount. The structure used for the segment
header is:

struct shdr { /* segment header */
long lowpc; /* low end for range */
long highpc; /* high end for range */
long scale; /* scale of timing */
long segnum; /* segment number */
}

The number of segment headers depends on the number of seg­
ments being profiled. The timing section is read a UNIT at
a time until the end of file is reached.

EXAMPLE
If there were 3 segments and 10 routines profiled, the lay­
out would appear as:

routine header (rhdr)
routine information (cbuf[0])

routine information (cbuf[9])
segment header 1 (shdr)
segment header 2
segment header 3
timing information for seg header 1
(length determined by highpc - lowpc)

(of segment header 1)
timing information block for seg 2
timing information block for seg 3

SEE ALSO

2

prof (1), sprof (1), monitor (1), segmon (3), sprofil (2), pro­
f i 1 (2) , cc (1) , sec (1) .

2

MOTD(S) Zilog MOTD (5)

NAME
-motd - message of the day file

DESCRIPTION
Motd contains text that is printed on the terminal as a per­
son logs in (.BR login (1)). The file should be readable
and writable by everyone. A specific format is suggested
here. The file contains brief announcements of important,
impending events, such aa system availability or large-scale
changes. Next is a line introducing news items (news(l)).
Following that is one line for each news item. Each line
contains the date, title, and short description for each
news item. The last line indicates how to access a news
item. An example:

System down between 12 and 1 today for maintenance

The following are n~ws items of current interest:

3/14
3/12

news How to use the news program
meeting Agenda for Friday group meeting

For information on any news item type: news item

This file resides in directory /etc.

FILES
/etc/motd

SEE ALSO
login (1) , news (1) •

1 Zilog 1

PASSWD(S) Zilog PASSWD(S)

NAME
passwd - password file

DESCRIPTION

1

Passwd contains for each user the following information:

name (login name, contains no uppercase)

encrypted password

numerical user ID

numerical group ID

optional

initial working directory

program to use as shell

This is an ASCII file. Each field within each user's entry
is separated from the next by a colon. The optional field
can contain any desired information. Each user is separated
from the next by a new line. If the password field is null,
no password is demanded; if the shell field is null, the
shell itself (sh(l)) is used.

This file resides in directory /etc. Because of the
encrypte!d passwords, it has general read permission and can
be used, for example, to map numerical user ID's to names.

The encrypted password consists of 13 characters chosen from
a 64 character alphabet (., /, S-9, A-Z, a-z), except when
the password is null in which case the encrypted password is
also null. Password aging is effected for a particular user
if his encrypted password in the password file is followed
by a comma and a non-null string of characters from the
above alphabet. (Such a string must be introduced in the
first instance by the super-user.) The first character of
the age, M say, denotes the maximum number of weeks for
which cl -password is valid. A user who attempts to login
after his password has expired will be forced to supply a
new one. The next character, m say, denotes the minimum
period in weeks which must expire before the password may be
changed~ The remaining characters define the week (counted
from the beginning of 1970) when the password was last
changed. (A null string is equivalent to zero.) M and m have
numerical values in the range 0-63. If m = M = --0 (derived
from the string • or ••) the user will-be ~creed to change
his password the next time he logs in (and the ''age'' will
disappear from his entry in the password file) • If m > M

Bell 1

PASSWD (5) Zilog PASSWD(S)

(signified, e.9., by the string ./) only the super-user will
be able to change the password.

FILES
/etc/passwd

SEE ALSO
login(l), passwd(l), getpwent(3), crypt(3), group(5).

2 Bell 2

REMOTELINES(5) Zilog REMOTELINES(S)

NAME
remotelines, LCK - remote line control and lock files

DESCRIPTION

FILES

1

Remote is used to transfer control to a remote system run­
ning ZE:US or UNIX software. The system administrator is
responsible for creating and maintaining the file
"/usr/spool/uucp/remotelines" which contains the in.formation
detailing what systems are available and which devices are
to be used to connect to them. This file has one line for
every remote system known to remote(l).

Each line contains two or more entries. The first entry is
the system name string that remote(l) recognizes when it is
invoked. The second entry is the name of the device (usu­
ally a tty line) that connects to the remote system. The
third entry is an optional baud rate (the default is 9600).
The entries are separated by one tab or space. The first
line in the file will become the default if no system name
is given. An example would be:

pdpll /dev/tty3
rzeus /dev/tty4 4800

which defines two remote systems, a PDP 11, called 'pdpll',
accessed through /dev/tty3 and a remote zeus system, known
as 'rzeus', accessed through /dev/tty4 at 4800 baud. If no
system name was given remote(!) would default to 'pdpll'.
Note: it is necessary that the remotelines file be readable
by everyone, so a mode of 0664 (see chmod(l)) is required.

When remote(l) is invoked, it scans the remotelines file and
determin 1es- the entry to be used. It then checks to see if a
lock fil·e is present for each device for the desired system,
stopping when it finds a free one. The name of the lock
file is composed of the string 11 /usr/spool/uucp/LCK .. 11

appended with the name of the device to be used (all leading
path components removed). If this file is not pr•esent it is
assumed that the remote line is not in use. Remote(l) then
creates the file to lock out other requests for the line. It
then proceeds to access the proper device and begin the
remote operation. The system administrator is responsible
for making sure all devices defined as remote lines are con­
nected to other machines. It is also necessary to make the
line accessible to everyone by changing the mode to 0666
(see chmod(1)) and disabling it in /etc/ini ttab (see init­
tab(5)) .

/usr/spool/uucp/LCK .. *
/usr/spool/uucp/remotelines

Zilog

lock files
database of systems

1

REMOTELINES(S) Zilog REMOTELINES(S)

SEE ALSO
remote(l), putfile(l), getfile(l), local(l).

2 Zilog 2

SCCSFILE{5) Zilog SCCSFILE{5)

NAME
sccsfile - format of secs file

DESCRIPTION
An SCCS file is an ASCII file. It consists of six logical
parts: the checksum, the delta table (information about
each delta), user names {login names and/or numerical group
IDs of users who add deltas), flags {definitions of internal
keywords), comments (arbitrary descriptive information about
the file), and the body (the actual text lines intermixed
with control lines). --

Throughout an secs file there are lines beginning with the
ASCII SOH (start of heading) character (octal 001). This
character is hereafter referred to as the control character
and is represented graphically as ~ Any line described
below which is not depicted as beginning with the control
character is prevented from beginning with the control char­
acter.

Entries of the form DDDDD represent a five digit string (a
number between 00000 and 99999) .

Each logical part of an SCCS file is described in detail
below.

Checksum
The first line of an SCCS file. The form of the line is:

@hlDDDDD

The value of the checksum is the sum of all characters,
except those of the first line. The @h provides a magic
number of (octal) 064001.

Delta table

1

Consists of a variable number of entries of the form:
@s DDDDD/DDDDD/DDDDD
@d <type> <SCCS ID> yr/mo/da hr:mi:se <pgmr> DDDDD DODOO
@i DDDDD
@x DDDDD •••
@g DDDDD •••
@m <MR number>

@c <comments>

@e

Bell 1

SCCSFILE(S) Zilog SCCSFILE(S)

The first line ·(@s) contains the number of lines
inserted/deleted/unchanged respectively. The second line
(@d) contains the type of the delta (currently, normal: D,
and removed: R), the secs ID of the delta, the date and time
of creation of the delta, the login name corresponding to
the real user ID at the time the delta was created, and the
serial numbers of the delta and its predecessor, respec­
tively.

The @i, @x, and @g lines contain the serial numbers of del­
tas included, excluded, and ignored, respectively. These
lines are optional.

The @m lines (optional) each contain one MR number associ­
ated with the~ delta; the @c 1 i nes con ta in comm en ts assoc i­
a ted with the delta.

The @e line ends the delta table entry.

user names

Flags

2

The list of login names and/or numerical group IDs of users
who may add deltas to the file, separated by new-lines. The
lines containing these login names and/or numerical group
IDs are surrounded by the bracketing lines @u and @U. An
empty list allows anyone to make a delta.

Keywords used internally (see admin(l) for more information
on their use). Each flag line takes the form:

@f <flag> <optional text>

The following flags are defined:
@f t <type of program>
@f v <program name>
@f i
@f b
@f m <module name>
@f f <floor>
@f c <ceiling>
@f d <default-sid>
@f n
@f j
@f 1 <lock-releases>
@f q <user defined>

b The -b keyletter can be used on the get command to
cause a branch in the delta tree.

c Defines the "ceiling" release; the release above which
no deltas may be added.

Bell 2

SCCSFILE(S) Zilog SCCSFILE(S)

d Defines the default SID to be used when none is speci­
fied on a get command.

f Defines the "floor" release; the release below which no
deltas may be added.

i Controls the warning/error aspect of the "No id key­
words" message. When the i flag is not present, this
message is only a warning; when the i flag is present,
this message will cause a "fatal" error (the file will
not be gotten, or the delta will not be made).

j Causes get to allow concurrent edits of the same base
SID.

1 Defines a list of releases that are locked against
editing (get(l) with the -e keyletter).

m Defines the first choice for the replacement text of
the %M% identification keyword.

n Causes delta to insert a "null" delta (a delta that
applies no changes) in those releases that are skipped
when a deTia is made in a new release (e.g., when delta
5 .. 1 is made after delta-2.7, releases 3 and 4 are
skipped) • The absence of the n flag causes skipped
releases to be completely empty.

q Defines the replacement for the %0% identification key­
word.

t Defines the replacement for the %Y% identification key­
word.

v Controls prompting for MR numbers in addition to com­
ments; if the optional text is present it defines an MR
number validity checking program.

Comments

.Body

.3

Arbitrary text surrounded by the bracketing lines @t and @T.
The conwents section typically will contain a description of
the file's purpose •

The body consists of text lines and control lines. Text
lines don't begin with the control character, control lines
do. There are three kinds of control lines: insert,

Ide:l.ete!, and _end, represented by:

@I DDDDD
@D DODOO
@:E: DDDDD

Bell 3

SCCS"t?ILE (5) Zilog SCCSFILE(S)

respectively. The digit string is the serial
corresponding to the delta for the control line.

SEE ALSO
admin (1), delta (1), get (1), prs (1).

number

Source Code Control System User's Guide in the ZEUS Utili-
ties Manual ~--~- -~- -

4 Bell 4

SPOOL(S) Zilog SPOOL(S)

NAME
spool - information for writing backends for the Zeus
printer spooler

SYNOPSIS
#include, <spool .h>

DESCRIPTION

1

This section gives information on how to write backends for
the Zeus printer spooler.

Backends for the Zeus printer spooler are expected to copy
data from RFFD to SFFD while doing any filtering required.
When it is time to print something, d9ueuer(l) invokes the
backend, passing it status and printing information. Other
than copying input to output, there is only one other condi­
tion that backends must handle. The backends do not read
RFFD if a -B flag was passed to it by dqueuer. The dqueuer
generates the -B flag when the file to be printed cannot be
found. It is used by the dqueuer to cause system supplied
backends to indicate 'file not found' on a banner page by
itself. The backend handles flags and status passed to it
by the dqueuer.

Backends are also used to generate banner pages
pages for easy separation and identification
requests.

and
of

burst
print

Backends expect the following flags to be passed as argu­
ments when invoked. They are used for banner page informa­
tion by the system backends.

-B File not found.
-c x Print file x number of times.
-d dest Destination string
-f file File name being printed.
-F from 'from' is the user making the request.
-s time String with time that file was spooled
-t title Title requested

Any extra options included in the configuration file are
passed directly to the backend.

The spooling system also allows the backend to return cer­
tain statuses so that _!S(l) can monitor its progress. This
is done through the file on STATUSFD. The contents of this
file has the structure of Dstat (in the next section). The
only fields that the backend may access are Dpgsdone (number
of pages printed) and Dpercentd (percentage of file printed)
fields. Modification of other fields can cause unpredict­
able results. Use the OFFSET macro included in this file.

/* Macro definition to find the offset (in bytes)
of a certain element in a structure

Zilog 1

SPOOL(S) Zilog SPOOL(S)

*/
#define OFFSET(struct,item)
(off_t) ((char *)&(struct.item) - (char *)&struct)

The fields Dpgsdone and Dpercentd are printed by !_S(l).
They are originally set to -1, indicating that the backend
does not support these counters. No problems are caused by
not including this support. Do not try to read or write any
other fields of the Dstat structure. The spooler uses
record locking extensively, and even reading a field can
cause a deadlock situation.

Upon completion of processing, the backend exits. If the
exit returns a non-zero value, the spooler assumes an error
has occurred and tries to recover. If error logging is
enabled, a message is written and the code is returned into
the error file. It will then try to repeat the request. If
the error occurs more than twice, the dqueuer sets the dev­
ice status to DOWN. The Device may be reenabled by using
the command

xq -q q:dev -Ud
where g:dev is replaced with the queue
number. See xq(M) for more details.

name and device

REQUEST and STATUS IN:FORMATION

2

The directory /usr/spool/queuer/requestdir holds files that
contain request records. Each time nq is run, one file is
created. Each file contains one or more request records,
one for each file requested to be printed. The first field
in the file is an off t pointer to the first request record
in the file. The remainder of the records are arranged as a
link list. The structure definition is:

/* structure defining normal (print) requests */
struct normal {

ippid
char
char
int
int
char
char
struct
int
int
char
char
char
int
time t
char

bepid;
user[USERL];
from[USERL];
uid;

/*
/*
/*
/*
/*
/*
/*

pid of a backend if active */
owner of request */

gid;
qnam[QUEL];
dnam[DEVL];
opts noptions;
:seqno;
pri;
request[FILENL];/*
temp[FILENL]; /*
wdir[2*FILENL]; /*

loginid of user */
" " " */
" " " */

queue for request */
device for request */

file name of request */
file name if using cp */
working directory */

status;
dsptime;
:form[FORML];

/* time dispatched */

Zilog 2

SPOOL(S) Zilog SPOOL(S)

3

length;
copies;

long
int
time t
char
char
off t

time;
dest[FILENL];
title[FILENL];
nextstruct;

/* destination of output */
/* printed on banner page */

} ;

Qnam contains the queue desired. (If the default queue was
requeste~d, nq fills in the default name.) Dnam is the device
desired. If the first available device is desired, this
field is null.

Opts is a bit array that describes certain boolean options
that the user requested. The definition of the bit array
is:

/* define option struct */
struct opts {

unsigned burst l;
unsigned copy l;
unsigned encrypt l;
unsigned mail l;
unsigned rm l;
unsigned silent l;

} ;

Seqn contains the sequence number of this request.

Status contains READY, HELD, or DISPCHD depending upon the
status of this request. Form contains the string describing
the special form needed for this request.

The directory /usr/spool/queuer/statusdir contains the
status files for all queues and devices. The status file
name for queues is just the name of the queue. For example,
the name of the status file for a queue called lp would be
/usr/spool/queuer/statusdir/lp. The format of the status
file is defined by the following structure:

/* entries in queue status directory */
struct Qstat {

int
int
int
} ;

Qstatus;
Qpri;
Qselect;

The values for Qstatus, Qpri, and Qselect are defined by:

Zilog 3

SPOOL(5) Zilog SPOOL(5)

4

/* priority defines */
#define PRIR 0 /*
#define PRIN 1 /*
#define PRID 2 /*

rush
normal
deferred

*/
*/
*/

/* selection criteria defines */
#define SELF 0 /* fifo */
#define SELS l /* size */

/* valid statuses
don't use zero

*/

for queues, devices, and requests
used for certain checks

#define HELD l
ldef ine OFFLINE 2
#define DOWN 3
#define RUNNING 4
#define DISPCHD 5
#define READY 6

A description of the priority and selection criteria is
given in the system administrator manual.

In addition to the queue status files, one file is created
for each device known to the system. The name of the file
is the queue name appended with a colon and then the device
name. For example, the device 'mrm' on queue 'lp' would
have status file called /usr/spool/queuer/statusdir/lp:mrm.
The format of the status file is given by the following:

/* entries in device status directory */
struct Dstat {

int
int
char
time t

int

ippid

int
int
int
} ;

Dstatus;
Du id; /* UID of current request

current form on device
last time we were
dispatched */

Dform[FORML]; /*
last_dispatched; /*

retrys;

Dpid;

Dpgsdone;
Dseqn;
Dpercentd;

/* number of dispatch
retrys */

/* pid of backend active
on this device */

/* current sequence number

The Dstatus field contains one of the values described above
under queues. Last dispatched is set by the dqueuer just
before it dispatches a backend to this device and is used to
detect time outs on the device. ,Dpgsdone and Dprecentd are
values set by intelligent backends to indicate how much pro­
cessing has been completed.

Zilog 4

SPOOL (5) Zilog SPOOL(5)

One status file is created for each device and queue when
the configuration file is parsed and it is determined that
the required file does not already exist. In this case, the
initial values are taken from the configuration file. Once
the status file exists, reparsing the configuration file
will not affect it. Changes can be made using xq.

SEE ALSO
dqueuer (1), xq(l), xq(M), nq(l), backend (M).

Zilog 5

STRFILE (5) Zilog STRFILE(5)

NAME
strfile - software trouble report data base

DESCRIPTION
strf ile contains the following information on software trou­
ble reports:
{status}
{suspense date}
{internally assigned sequence number}
{title}
{submission date}
{program affected}
{priority}
{assignee}
{action required at suspense date}

This is an ASCII file with the free-form fields separated by
colon. To make sorts and selections easier suspense dates
are of the form MM/DD/YY.

FILES
/etc/strfile

SEE ALSO
str (M).

1 Zilog 1

TAR (5) Zilog TAR (5)

NAME
tar - tar tape format

DESCRIPTION
A tape written with the program tar(l) has a certain format:
each file on the tape is preceded with a header of informa­
tion • This header has the following structure.

struct header
{

} ;

char name[NAMSIZ];
char mode[8];
char uid[8];
char gid[8];
char size[l2];
char mtime[l2];
char chksum[8];
char linkflag;
char linkname[NAMSIZ];

Here, NAMSIZ currently is equal to 100. Each header block
is 512 bytes long. This structure takes less that 512 bytes
so the remainder are filled in with nulls.
Meaning of the fields:

name

mode

uid

gid

size

mtimE~

ch ks um

linkf:lag

linkname

The name of the file as typed on the command
line.

The mode the file had when it was written.
Refer to the description of st mode in stat(2)
for more information.,

Owner of the file

Group the owner is in

Size in bytes of the file

Last modified time

Checksum of the header

Set if this file has a link to another

The name of the file linked to this one

SEE ALSO
tar(l).

1 Bell 1

TERMCAP (5) Zilog TERMCAP(5)

NAME
termcap - terminal capability data base

SYNOPSIS
/etc/termcap

DESCRIPTION
Termcap is a data base describing terminals used, for exam­
ple, by vi(l). Terminals are described in termcap by giving
a set of capabilities which they have, and by describing how
operations are performed. Padding requirements and initial­
ization sequences are included in termcap.

Entries in termc~p consist of a number of colon separated
fields. The first entry for each terminal gives the names
known for the terminal, separated by I characters. The
first name is always two characters long and describes each
terminal type in /etc/ttytype. The second name given is the
most common abbreviation for the terminal, and the last name
given is a long name fully identifying the terminal. The
second name cannot contain any blanks; the last name can
contain blanks for readability.

CAPABILITIES

1

(P) indicates padding can be specified
(P*) indicates that padding is based on number of

1 ines affe!cted

Patd?
(P)
(P*)

(P)

(P)

Description
End alternate character set
Add new blank line
Terminal has automatic margins
Start alternate character set
Backspace if not AH
Terminal can backspace with AH
Back tab

Name
ae
al
am
as
be
bs
bt
bw
cc

Type
str
str
bool
str
str
bool
str
bool
str

Backspace wraps from column 0 to last columr
Command character in prototype if

cd
ce
ch

cl
cm
co
er
cs
CV

da
dB
db

str
str
str

str
str
num
str
str
str
bool
num
bool

(P*)
(P)
(P)

(P*)
(P)

(P*)
(P)
(P)

it can be set on terminal
Clear to end of display
Clear to end of line
Like cm but horizontal motion only,
line stays same
Clear screen
Cursor motion
Number of columns in a line
Carriage return, (default AM)
Change scrolling region (vtl00), like cm
Like ch but vertical only.
Display is retained above
Number of millisec of bs delay needed
Display is retained below

UCB 1

TERMCAP(S)

2

dc
de
dF
dl
dm
dN
do
dT
ed
ei
eo
ff
he
hd
ho
hu
hz
ic
if
im
in
ip
is
k0-k9
kb
kd
ke
kh
kl
kn
ko
kr
ks
ku
10-19
li
11
ma
mi
ml
mu
nc

nd
nl
ns
OS
pc
pt

se
sf

num
str
num
str
str
num
str
num
str
str
str
str
bool
str
str
str
str
str
str
bool
bool
str
str
str
str
str
str
str
str
num
str
str
str
str
str
num
str
str
bool
str
str
bool

str
str
bool
bool
str
bool

str
str

(P*)

{P*)

{P*)

{P)

{P*)

{P*)

(P)

Zilog TERMCAP(S)

Number of millisec of er delay needed
Delete character
Number of millisec of ff delay needed
Delete line
Delete mode {enter)
Number of millisec of nl delay needed
Down one line
Number of millisec of tab delay needed
End delete mode
End insert mode; give :ei=: if ic
Can erase overstrikes with a blank
Hardcopy terminal page eject {default AL)
Hardcopy terminal
Half-line down {forward 1/2 linefeed)
Home cursor {if no cm)
Half-line up {reverse 1/2 linefeed)
Hazeltine; cannot print -•s
Insert character
Name of file containing is
Insert mode (enter); give :im=: if ic
Insert mode distinguishes nulls on display
Insert pad after character inserted
Terminal initialization string
Sent by other function keys 0-9
Sent by backspace key
Sent by terminal down arrow key
Out of keypad transmit mode
Sent by home key
Sent by terminal left arrow key
Number of other keys
Termcap entries for other nonfunction keys
Sent by terminal right arrow key
Put terminal in keypad transmit mode
Sent by terminal up arrow key
Labels on other function keys
Number of lines on screen or page
Last line, first column {if no cm)
Arrow key map, used by vi version 2 only
Safe to move while in insert mode
Memory lock on above cursor
Memory unlock {turn off memory lock).
No correctly working carriage return
{DM2500,H2000)
Nondestructive space {cursor right)
Newline character {default \n)
Terminal is a CRT but does not scroll.
Terminal overstrikes
Pad character {rather than null)
Has hardware tabs
{may need to be set with is)
End stand out mode
Scroll forwards

UCB 2

TERMCAP (5) Zilog TERMCAP (5)

3

sg
so
sr
ta
tc
te
ti
UC
ue
ug
ul

up
us
vb
ve
vs
xb
xn
xr
XS

xt

AB

AL

AR

AS

CF
CN
NB

NM

NR

NS

ov

num
str
str (P)
str (P)
str
str
str
str
str
num
bool

str
str
str
str
str
bool
bool
bool
bool

bool

str

str

str

str

str
str
str

str

str

str

str

A Sample Entry

Number of blank chars left by so or se
Begin stand out mode
Scroll reverse (backwards)
Tab (other than AI or with padding)
Entry of similar terminal - must be last
String to end programs that use cm
String to begin programs that use cm
Underscore one char and move past it
End underscore mode
Number of blank chars left by us or ue
Terminal underlines even though
it does not overstrike
Upline (cursor up)
Start underscore mode
Visible bell (may not move cursor)
Sequence to end open/visual mode
Sequence to start open/visual mode
Beehive (fl=escape, f2=ctrl C)
A newline is ignored after a wrap (Concept)
Return acts like ce \r \n (Delta Data)
Standout not erased by writing over it
(HP 264?)
Tabs are destructive, magic so char
(Teleray 1061)
alternate intensity, normal video, blinking
(for RMCOBOL only)
alternate intensity, normal video, no blinking
(for RMCOBOL only)
alternate intensity, reverse video, no blinking
(for RMCOSOL only)
alternate intensity, rever~e video, blinking
(for RMCOBOL only)
cursor off (for RMCOBOL only)
cursor on (for RMCOBOL only)
normal intensity, normal video, blinking
(for RMCOBOL only)
normal intensity, normal video, no blinking
(for RMCOBOL only)
normal intensity, reverse video, no blinking
(for RMCOBOL only)
normal intensity, reverse video, blinking
(for RMCOBOL only)
overhead; the maximum number of screen positions
occupied by the above defined capabilities
(for RMCOBOL only)

The following entry describes the Concept-100 and is among
the more complex entries in the termcap file as of this
writing. (This particular entry for the Concept is out­
dated, and is used as an example only.)

UCB 3

TERMCAP(S) Zilog TERMCAP (5)

4

cllcl00lconceptl00:is=\EU\Ef\E7\E5\E8\El\ENH\EK\g\200\Eo&\200:\
:al=3*\EAR:am:bs:cd=l6*\EAC:ce=l6\EAS:cl=2*AL:\
:cm=\Ea%+ %+ :co#80:dc=l6\EAA:dl=3*\EAB:\
:ei=\E\200:eo:im=\EAP:in:ip=l6*:li#24:mi:nd=\E=:\
:se=\Ed\Ee:so=\ED\EE:ta=8\t:ul:up=\E;:vb=\Ek\EK:xn:

Entries can continue onto multiple lines by giving a \ as
the last character of a line. Capabilities in termcap are
of three types: Boolean capabilities that indicate that the
terminal has some particular feature, numeric capabilities
giving the size of the terminal or the size of particular
delays, and string capabilities that give a sequence to per­
form particular terminal operations.

Types of Capabilities

All capabilities have two-letter codes. For instance, the
fact that the Concept has automatic margins (that is, an
automatic return and line feed when the end of a line is
reached) is indicated by the capability am~ Hence the
description of the Concept includes am. Numeric capabili­
ties are followed by the character # and then the value.
Thus co that indicates the number of columns the terminal
has give~s the value 80 for the Concept.

Finally, string valued capabilities, such as ce (clear to
end of line sequence) are given by the two-character code,
an=, and a string ending at the next following :. A delay
in milliseconds can appear after the = in such a capability,
and padding characters are supplied by the editor after the
remainder of the string is sent to provide this delay. The
delay can be either an integer, for example, 20, or an
integer followed by an *, for example, 3*. A * indicates
that the padding required is proportional to the number of
lines affected by the operation, and the amount given is the
per-affected unit padding required. When a * is specified,
give a delay of the form 3.5 to specify a delay per unit to
tenths of milliseconds.

A number of escape sequences are provided in the string
valued capabilities for easy encoding of characters there. A
\E maps to an ESCAPE character, Ax maps to a control-x for
any appropriate x, and the sequences \n, \r, \t, \b, \f give
a new line, return, tab, backspace, and form feed respectiv­
ley. Finally, characters can be given as three octal digits
after a \, and the characters A and \ are given as \A and
\\. If it is necessary to place a : in a capability, it
must be escaped in octal as \972. If it is necessary to
place a null character in a string capability, it must be
encoded as \291. The routines that deal with termcap use C
strings, and strip the high bits of the output very late so

UCB 4

'rERMCAP (5) Zilog TERMCAP (5)

5

that a \219 comes out as a \998 would.

Preparing Descriptions

The most effect:ive way to prepare a terminal description is
by imitating the description of a similar terminal in
termcap and to build up a description gradually, using par­
tial descriptions with vi(l) to check that they are correct.
A very unusual terminal can expose deficiencies in the abil­
ity of the termcap file to describe it or expose bugs in vi.
To easily test a new terminal description, set the environ­
ment variable TERMCAP to a pathname of a file containing the
description being worked on and the editor looks there
rather than in /etc/termcap. TERMCAP can also be set to the
termcap entry itself to avoid reading the file when starting
up the editor. (This only works on version 7 systems.)

Basic Capabilities

The number of columns on each line for the terminal is given
by the co numeric capability. If the terminal is a CRT,
then the numbet:_ of 1 ines on the screen is given by the 1 i
capability. If the terminal wraps around to the beginning
of the next line when it reaches the right margin, then it
must have the am capability. If the terminal can clear its
screen, then thTS is given by the cl string capability. If
the terminal can backspace, then-rt must have the bs capa­
bility. An exception is when a backspace is accomplished by
a character other than AH in which case this character must
have the be string capability. If it overstrikes rather
than clearing a position when a character is struck over,
then it must have the os capability.

The local cursor motions encoded in termcap are·undefined at
the left and top edges of a CRT terminal. The editor never
attempts to backspace around the left edge, nor does it
attempt to go up locally off the top. The editor assumes
that feeding from the bottom of the screen causes the screen
to scroll up, and the am capability tells whether the cursor
sticks at the 1:ight edge of the screen. If the terminal has
switch selectable automatic margins, the termcap file usu­
ally assumes that this is on, that is, am.

These capabilities suffice to describe hardcopy and glass­
tty terminals. Thus the model 33 teletype is described as

t3l33ltty33:~o#72:os

while the Lear Siegler ADM-3 is described as

UCB 5

TERMCAP(5) Zilog TERMCAP (5)

6

cljadm3l3llsi adm3:am:bs:cl=AZ:li#24:co#80

Cursor Addressing

Cursor addressing in the terminal is described by a cm
string capability, with printf (3) like escapes %x in i~
These substitute to encodings of the current line or column
position, while other characters are passed through
unchanged. If the cm string is thought of as being a func­
tion, then its arguments are the line and the column to
which motion is desired, and the % encodings have the fol­
lowing meanings:

%d
%2
%3
%.
%+x
%>xy
%r
%i
%%
%n
%B
%D

as in printf, 0 origin
like %2d
like %3d
like %c
adds x to value, then %
if value > x adds y, no output
reverses order of line and column, no output
increments line/column (for 1 origin)
gives a single %
exclusive or row and column with 0140 (DM2500)
BCD (16*(x/10)) + (x%10), no output
Reverse coding (x-2*(x%16)), no output
(Delta Data)

Consider the HP2645, which, to get to row 3 and column 12,
needs to be sent \E&al2c03Y padded for 6 milliseconds. The
order of the rows and columns is inverted here, and that the
row and column are printed as two digits. Thus its cm capa­
bility is cm=6\E&%r%2c%2Y. The Microterm ACT-IV needs the
current row and column sent preceded by a AT, with the row
and column simply encoded in binary, cm=AT%.% •• Terminals
which use %. need to be able to backspace the cursor (bs or
be), and to move the cursor up one line on the screen-(up
introduced in following text). This is necessary because it
is not always safe to transmit \t, \n AD, and \r, as the
system may change or discard them.

A final example is the LSI ADM-3a, which uses row and column
offset by a blank character, thus cm=\E=%+ %+ •

Cursor Motions

If the terminal can move the cursor one position to the
right, leaving the character at the current position
unchanged, then this sequence should be given as nd (non­
destructive space). If it can move the cursor up aline on
the scr1~en in the same column, this should be given as up.

UCB 6

'rERMCAP (5) Zilog TERMCAP (5)

7

If the terminal has no cursor addressing capability, but can
home the cursor (to very upper left corner of screen) , then
this is given as ho; similarly a fast way of getting to the
lower left hand corner can be given as 11; this can involve
going up with ~ from the home position, but the editor
never does this itself (unless 11 does) because it makes no
assumption about the effect of moving up from the home posi­
tion.

Area Clears

If the terminal can clear from the current position to the
end of the line, leaving the cursor where it is, this should
be given as ce. If the terminal can clear from the current
position to the end of the display, then this should be
given as ed. The editor only uses cd from the first column
of a 1 ine-.-

Insert/Delete Line

If the terminal can open a new blank line before the line
where the cursor is, this should be given as al; this is
done only from the first position of a line. The cursor must
then appear on the newly blank line. If the terminal can
delete the line which the cursor is on, then this should be
given as dl; this is done only from the first positio~ on
the line tobE~ deleted. If the terminal can scroll the
screen backwards, then this can be given as sb, but al suf­
fices. If thE~ terminal can retain display memory above,
then the da capability should be given; if display memory
can be reta1nE~d below, then db should be given. These tel 1
the editor that deleting a line on the screen can bring non­
blank lines up from below or that scrolling back with sb can
bring down nonblank lines. ·

Insert/Delete Character

There are two kinds of intelligent terminals with respect to
insert/delete character that can be described using termcap.
The most common insert/delete character operations affect
only the characters on the current line and shift characters
off the end of the line. Other terminals, such as the Con­
cept 100 and the Perkin Elmer Owl, make a distinction
between typed and untyped blanks on the screen, shifting
upon an insert or delete only to an untyped blank on the
screen that is either eliminated, or expanded to two untyped
blanks. To find out the kind of terminal, clear the screen
then type text separated by cursor motions. Type abc def
using local cursor motions (not spaces) between the abc and

UCB 7

TERMCAP (5) Zilog TERMCAP(S)

8

the def. Then position the cursor before the abc and put
the terminal in insert mode. If typing characters causes
the rest of the line to shift and characters to fall off the
end, then the terminal does not distinguish between blanks
and untyped positions. If the abc shifts over to the def
that moves together around the end of the current line and
onto the next, this is have the second type of terminal, and
the capability in must be given (insert null). If the ter­
minal does somethTng different, then the editor must be
modified to get it to use the insert mode that the terminal
defines.

The editor handles both terminals that have an insert mode
and terminals that send a simple sequence to open a blank
position on the current line. Give as im the sequence to
get into insert mode, or give it an empty value if the ter­
minal uses a sequence to insert a blank position. Give as
ei the sequence to leave insert mode (give this, with an
empty value also if you gave im one). Now give as ic any
sequence needed to be sent just before sending the character
to be inserted. Most terminals with a true insert mode do
not give ic. Terminals that send a sequence to open a
screen position should give it here. (Insert mod,e is prefer­
able to the sequence to open a position on the screen if the
terminal has both.) If post-insert padding is needed, give
this as a number of milliseconds in _!E (a string option).
Any other sequence needed to be sent after an insert of a
single character can also given in .!..2·
It is occasionally necessary to move around while in insert
mode to delete characters on the same line, for example, if
there is a tab after the insertion position. If the termi­
nal allows motion while in insert mode, give the capability
mi to speed up inserting in this case. Omitting mi affects
only speed. Some terminals (notably Datamedia'$) must not
have mi because of the way their insert mode works.

Finally, specify delete mode by giving dm and ed to enter
and exit delete mode, and de to delete a sing.le character
while in delete mode.

Highlighting, Underlining, and Visible Bells

If the terminal has sequences to enter and exit standout
mode, these are given as so and se respectively. If there
are sevE~ral kinds of standout mode:inverse video, blinking,
or underlining (half bright is ·not usually an acceptable
standout mode unless the terminal is in inverse video mode
constantly). The preferred mode is inverse video by itself.
If the code to change into or out of standout mode leaves
one or two blank spaces on the screen, as the TV! 912 and

UCB 8

TERMCAP(5) Zilog TERMCAP (5)

9

Teleray 1061 do, this is acceptable.

Codes to begin underlining and end underlining are given as
us and ue respectively. If the terminal has a code to
underlinethe current character and move the cursor one
space to the right, such as the Microterm Mime, this can be
given as uc. (If the underline code does not move the cur­
sor to theright, give the code followed by a nondestructive
space.)

If the terminal has a way of flashing the screen to indicate
an error quietly (a bell replacement) then this is given as
vb; it must not move the cursor. If the terminal is placed
in a different mode during open and visual modes of ex, this
is given as vs and ve, sent at the start and end oY- these
modes respectively-.- These are used to change modes, for
example, from a underline to a block cursor and back.

If the terminal needs to be in a special mode when running a
program that addresses the cursor, the codes to enter and
exit this mode are given as ti and te. This arises, for
example, from terminals like-the Concept with more than one
page of memory. If the terminal has only memory relative
cursor addressing and not screen relative cursor addressing,
a one screen-sized window must be fixed into the terminal
for cursor addressing to work properly.

If the terminal correctly generates underlined charact~rs
with no special codes needed even though it does not over­
strike, then give the capability ul. If overstrikes are
erasable with a blank, then this must be indicated by giving
eo.

Keypad

If the terminal has a keypad that transmits codes when the
keys are pressed, this information is given. It is not pos­
sible to handle terminals where the keypad only works in
local; for example, the unshifted HP 2621 keys. If the
keypad can be set to transmit or not transmit, give these
codes as ks and ke. Otherwise the keypad is assumed to
always transmit:. The:-codes sent by the left arrow, right
arrow, up arrow, down arrow, and home keys are given as kl,
kr, ku, kd, and kh respectively. If there are function keys
such--as f0, fl,--:-:., f9, the codes they send can be given as
k0, kl, ••• , k9. If these keys have labels other than the
default f0 thr:-ough f9, the labels are given as HJ, 11, •.. ,
19. If there are other keys that transmit the same code as
the terminal expects for the corresponding function, such as
clear screen, the termcap 2-letter codes are given in the ko
capability; for example, :ko=cl,11,sf,sb:, says that the

UCB 9

TERMCAP(S) Zilog TERMCAP(5)

10

terminal has clear, home down, scroll down, and scroll up
keys that transmit the same thing as the cl, 11, sf, and sb
entries.

The ma entry is also used to indicate arrow keys on termi­
nals-that have single character arrow keys. It is obsolete
but still in use in version 2 of vi, run on some minicomput­
ers. This field is redundant with kl, kr, ku, kd, and kh.
It consists of groups of two characters. ---Yn each-group, the
first character is what an arrow key sends, the second char­
acter is the corresponding vi command. These commands are h
for kl,, i for kd, ~ for ku, !. for kr, and !:! for kh. For
example, the mime would be :ma=AKjAZkAXl: indicating arrow
keys left (AH), down (AK), up (AZ), and right (AX). (There
is no home key on the mime.)

Miscellaneous

If the terminal requires other than a null (zero) character
as a pad, then this is given as pc.

If tabs on the terminal require padding, or if the terminal
uses a character other than AI to tab, then this is given as
ta.

Hazeltine terminals that do not allow characters to be
printed must indicate hz. Datamedia terminals that echo
carriage-return line feed for carriage return and then
ignore a following line feed must indicate nc. Early Con­
cept terminals that ignore a line feed immediately after an
am wrap must indicate xn. If an erase-eol is required to
get rid of standout instead of merely writing on top of it,
xs must be given. Teleray terminals, where tabs turn all
characters moved over to blanks, must indicate xt. Other
specific terminal problems can be corrected by adding more
capabilities of the form xx.

Other capabilities include is, an initialization string for
the terminal, and if, the name of a file containing long
initialization stringS:- These strings are expected to prop­
erly clear and then set the tabs on the terminal. If both
are given, is is printed before if. This is useful where if
is /usr/lib/tabset/std but is clears the tabs first.

Similar Terminals

If there are two very similar terminals, one can be defined
as being just like the other with certain exceptions. The
string capability tc can be given with the name of the simi­
lar terminal. Thiscapability must be last and the combined
length of the two entries must not exceed 1024. Since

UCB 10

TERMCAP(5) Zilog TERMCAP (5)

FILES

termlib routines search the entry from left to right, and
since the tc capability is replaced by the corresponding
entry, the-capabilities given at the left override the ones
in the similar terminal. A capability can be cancelled with
xx@ where xx is the capability. For example, the entry

hnl2621nl:ks@:ke@:tc=2621:

defines a 262lnl that does not have the ks or ke capabili­
ties, and hence does not turn on the~unction key labels
when in visual mode. This is useful for different modes for
a terminal, or for different user preferences.

/etc/termcap file containing terminal descriptions
/etc/termcap.others file containing more terminal descrip­

tions (for supporting nonstandard ter-
minals)

The system administrator may want to arrange the
/etc/termcap file such that only the terminals attached to
the system or most likely to be attached to the system
reside in that file. Since the file is searched sequen­
tially, it is also a good idea to arrange the file with the
most common terminals at the front of the file. This makes
the intialization process for files searching /etc/termcap
more efficient. It is recommended that any terminal specif­
iers not used be placed in /etc/termcap.others for ba~kup
purposes.

SEE ALSO
ex(l), vi(l), termcap(3), ttytype(5).

LIMITATIONS

11

Vi allows only 256 characters for string capabilities,
the routines in termcap(3) do not check for overflow of
buffer. The total length of a single entry (excluding
escaped new lines) cannot exceed 1024.

and
this
only

The ma, vs, and ve entries are specific to the vi program.

Not all programs support all entries.
that are not supported by any program.

UCB

There are entries

11

TTYTYPE(5) Zilog TTYTYPE(5)

NAME
ttytype - terminal/types table

DESCRIPTIOM
Ttytype resides in the directory /etc and associates termi­
nal types with ports. There is one line per terminal port.
Each line contains two fields; a two-character terminal
capabilities code and the tty name for that port. The fields
are separated by a blank character. The two-character code
is found in /etc/termcap and is the first two characters
describing each entry in that file. A typical eight-user
confi9uration using vtz-2/10 and Adm31 terminals looks like
this:

vz console
vz ttyl
31 tty2
vz tty3
vz tty4
31 tty5
31 tty6
vz tty7

This file is read by login(l) to set up the environment
variable TERM. 'TERM' is used by vi(l) ,and ex(l).

FILES
/etc/t.tytype
/etc/termcap

SEE ALSO
login(l), termcap(S).

1 Zilog 1

TYPES(S) Zilog TYPES (5)

NAME
types - primitive system data types

SYNOPSIS
#include <sys/types.h>

DESCRIPTION
The data types defined in the include file are used in ZEUS
system code; some data of these types are accessible to user
code:

/* @[$]types.h 1.1
typedef long

12/11/81 17:21:31 - Zilog Inc */

typedef char *
typedef unsigned int
typedef long
typedef int
typedef int
typedef long

/* selectors and
#define major(x)
#define minor(x)
#define makedev(x,y)

daddr t; /* disk address */
caddr-t; /* core address */
ino tT /* i-node number */
time t; /* a time */
label t[9]; /*program status*/
dev t; /* device code */
off=t; /* offset in file */

constructor for device code */
(int) (((unsigned) x>>8))
(int) (x&0377)
(dev_t) ((x) <<8 j (y))

The form daddr t is used for disk addresses except in an i­
node on disk, ~ee filsys(S). Times are encoded in seconds
since 00:00:00 GMT, January 1, 1970. The major and minor
parts of a device code specify kind and unit number o_f a
device and are installation~dependent. Offsets are measured
in bytes from the beginning of a file. The label t vari­
ables are used to save the processor state while another
process is running.

SEE ALSO
adb(l), lseek(2), time(2), filsys(5).

1 Bell 1

UTMP(5) Zilog UTMP{S)

NAME
utmp, wtmp - login records

SYNOPSIS
#include <utmp.h>

DESCRIPTION

FILES

The ubmp file contains information about who is currently
usingZEUS. The file is a sequence of entries with the fol­
lowing structure declared in the include file:

/* @[$]utmp.h 1.1 12/11/81 17:09:29 - Zilog Inc */
struct utmp {

} ;

char ut line[8];
char ut-name[8];
long ut=time;

/* tty name */
/* user id */

/* time on */

This structure gives the name of the special file associated
with the user's terminal, the user's login name, and the
time of the login in the form of time{2).

The wt!!!.E, file records all logins and logouts. Its format is
exactly like utmp except that a null user name indicates a
logout on the associated terminal. The terminal name -
indicates that the system was rebooted at the indicated
time; the adjacent pair of entries with terminal names I and
} indicate the system-maintained time just before and just
after a date command has changed the system's time.

Wtmp is maintained by login{l) and init{M). Neither of
these programs creates the file, so if it is removed,
record-keeping is turned off. It is summarized by acct{M).

/etc/utmp
/usr/a.dm/wtmp

SEE ALSO
acct(M), login(l), who(l), init(M).

1 Bell 1

WHOIS(S) Zilog WHOIS(5)

NAME
whois - whois database file

DESCRIPTION

FILES

Whois contains an entry for each user. Each entry contains
the following information:

Login name
Actual user's name (full name)
Off ice phone~
Home phone
Group associated with
Miscellaneous comments

This is an ASCII file. Each field within each user's entry
is separated from the next by a colon. Each user is
separated from the next by a newline.

This file resides in the directory /etc.

/etc/who is

SEE ALSO
whois(l).

1 Zilog 1

Z SC { 5) Zilog zsc (5)

NAME
zsc - Zilog Source Control File conventions

DESCRI PTIOtil

1

A Zilog Source Control File contains all the information
necessary to re-create any version of an associated source
file. Text lines in more than one version of the source are
in the control file only once. This ensures that the work­
ing ve!rsion of the source is not destroyed in the develop­
ment process. This method avoids the usual practice of sav­
ing several versions of a file. It is less cumbersome and
wastes less disk storage.

The control file is a conventional ZEUS text file. Each
successive release of the source file is represented by a
release entry in the source file. The release entry con­
sists of one or more level entries, representing levels
within a release of the source file. A version is extracted
from a control file is assigned a version number of the form

rel. lev

where rel indicates that this is the rel'th release and lev
indicates that this is the lev' th level in release rel. (It
is possible to include the version number in the source
file.)

The first line of each release entry is a release line, con­
sisting of the the characters

ScR

The rE!lease line is immediately followed by the? first level
entry. Each level begins with a history line which resem­
bles:

&H isaac at Tue Sep 15 10:17:34 1981

The history line shows the user who entered the version into
the control file and shows when this was done.

Each history line is followed by zero or more comment lines
which resemble:

&C terminal-independent functions added

Comment lines hold documenting information entered by the
person who added the version to the control file.

Following the history and comment 1 ines are thE~ 1 ines which
show the differences between this version and the previous
version. (For version 1.1, these lines show the differences

Zilog 1

Z SC (5) Zilog zsc (5)

2

between the version and an empty file.) The difference line
are created by the diff program run with the -f option; see
diff(l).

The end of the difference lines and of the level entry is
indicated with a done line:

&D

The control file for a source code file called file is
called file+.

The following operations may be done on a Zilog Source Con­
trol file:

(1) Check in (add) a new version of the source file to the
contror-file. This is done with chkin(l).

(2) Check out (extract) a version of the source from the
contro-1-file. This is done with chkout(l); chkin also
checks out the same version it is told to check in,
unless the -r option is used.

(3) Check differences between the source file and a version
in the control file or between two versions in the con­
trol file. This is done with chkdiff(l).

A source file is checked out either editable or read-only.
An editable source file is meant to be modified and checked
back in, thus creating a new version. When an editable
source file is checked out, a lock file is created; without
a lock file a modified source file cannot be checked back in
to an existing control file. A read-only source file is
meant to be listed, compiled, or otherwise input to a pro­
gram. It must not be modified or ch~cked back in. Chkout
by default creates a read-only source file; used with the -e
option, chkout creates an editable source file. Chkin by
default replaces the editable source file with a read-only
source file; used with the -r option, the source file is
simply removed.

A read-only source file should contain information identify­
ing its version. This can be provided by including one or
more keywords in the file before it is first checked in. A
keyword is one of the following three-character sequences.
In a read-only source file, the keywords are expanded as
follows.

W This is expanded to a what string, which
which version of which module (file) this
this example,

Zilog

identifies
is. As in

2

zsc (5) Zilog zsc (5)

@[$]master.c 1.2

a what string has four elements: the four characters
@[$], to identify this as a what string; the name of
the source code file (module); a tab character; and the
version number (release). Enter W in the editable
source in such a way that the what string appears in
both the read-only source and the object file. For
1example, if

extern char version [] = "W";

appears in an editable C source

extern char Version[] = "@[$]master.c 1.2";

appears in the read-only source and the what string
appears in the object file.

Z Expands to the characters @[$] to designate user­
designed what strings.

R Expands to the version number (release) •

D Expands to date and time (MM/DD/YY HH:MM:SS) source
file was checked out.

The following procedure shows a possible use of the source
code control programs and illust~ates how they are used
together.

(1) Create the original source file, including W and any
other keywords that are appropriate.

(2} Check in the original source file. Chkin replaces the
original source file with a read-only source file, sub­
stituting keywords.

(3) Compile and test. If no further changes are indicated,
stop.

(4) Check out an editable source file of the latest ver­
sion, using the -e option of chkout.

(5) Edit indi6ated changes. Go to step 3.

SEE ALSO
chkin(l), chkout(l), chkdiff(l), diff(l).

LIMITATIONS

3

A read-only source file is protected only by its lack of
write permissions. Thus its status may go unnoticed until

Zilog 3

zsc (5) Zilog zsc (5)

the text editor refuses to overwrite it.

4 Zilog 4

ADVENTURE(6) Zilog ADVENTURE(6)

NAME
adventure

SYNOPSIS
adventure

DESCRIPTION
Adventure is a treasure hunt game. General directions are
given at the beginning of the game. The computer prompts
for answers and directions in response to the descriptions
given regarding location. Commands can be one or two words
long, but only the first five l~tters of each word are read.
Typing help produces a list of general hints. CTeating a
map while playing the game is very useful.

LIMITATIONS
The list of commands is limited. The list of hints is very
limited and general. One must be quite imaginative to
succeed.

FILES
/usr/games/adventure the program

1 Zilog 1

ARITHMETIC(6) Zilog ARITHMETIC(6)

NAME
arithmetic - provide drill in number facts

SYNOPSIS
arithmetic + - x I range]

DESCRIPTION
Arithmetic types out simple arithmetic problems, and waits
for an answer to be typed in. If the answer 1s correct, it
types back "Right!", and a new problem. If the answer is
wrong, it replies "What?", and waits for another answer.
Every twenty problems, it publishes statistics on correct­
ness and the time required to answer.

To quit the program, type an interrupt (delete).

The first optional argument determines the kind of problem
to be generated; + - x / respectively cause addition, sub­
traction, multiplication, and division problems to be gen­
erated. One or more characters can be given; if more than
one is given, the different types of problems will be mixed
in random order; default is + -

Range is a decimal number; all addends, subtrahends, differ­
ences, multiplicands, divisors, and quotients will be less
than or equal to the value of range. Default rat~ is 10.

At the start, all numbers less than or equal to range are
equally likely to appear. If the respondent makes a mis­
take, the numbers in the problem which was missed become
more likely to reappear.

As a matter of educational philosophy, the program will not
give correct answers, since the learner should, in princi­
ple, be able to calculate them. Thus the program is
intended to provide drill for someone just past the first
learning stage, not to teach number facts de novo. For
almost all users, the relevant ~tatistic should be time per
problem, not percent correct.

FILES
/usr/games/arithmetic the program

1 Zilog 1

BACKGAMMON(6)

NAME
backgammon - the game

SYNOPSIS
backgammon

DESCRIPTION

Zilog BACKGAMMON(6)

This program does what you expect. It will ask whether you
need instructions.

FILES
/usr/games/backgammon

1

the program

Zilog 1

CRAPS(6) Zilog CRAPS(6)

NAME
craps - the game of craps

SYNOPSIS
craps

DESCRIPTION

1

Craps is a form of the game of craps that is played in Las
Vegas. The program simulates the roller, while the user
(the player) places bets. The player may choose, at any
time, to bet with the roller or with the House~ A bet of a
negative amount is taken as a bet with the House, any other
bet is a bet with the roller.

The player starts off with a ''bankroll'' of $2,000.

The program prompts with:

bet?

The bet can be all or part of the player's bankroll. Any
bet over the total bankroll is rejected and the program
prompts with ''bet?'' until a proper bet is made.

Once the bet is accepted, the roller throws the dice. The
following rules apply (the player wins or loses depending on
whether the bet is placed with the roller or with the House;
the odds are even). The first roll is the roll immediately
following a bet.

1. On the first roll:

2. On subsequent rolls:

point

7

wins for the roller;

wins for the House;

is the point, roll again
(Rule 2 applies).

roller wins;

House wins;

roll again.

If a player loses the entire bankrqll, the House will offer
to lend the player an additional $2,000. The program will
prompt:

Bell 1

CRAPS(6) Zilog CRAPS (6)

marker?

A ''yes' ' (or '' y' ') consummates the loan. Any other reply
terminates the game.

If a player owes the House money, the House reminds the
player, before a bet is placed, how many markers are out­
standing.

If, at any time, the bankroll of a player who has outstand­
ing markers exceeds $2,000, the House asks:

Repay marker?

A reply of "yes" (or "y") indicates the player's wil­
lingness to repay the loan. If only 1 marker is outstand­
ing, it is immediately repaid. However, if more than 1
marker are outstanding, the House asks:

How many?

markers the player would like to repay. If an invalid
number is enter·ed (or just a carriage return), an appropri­
ate message is printed and the program will prompt with
''How many?'' until a valid number is entered.

If a player accumulates 10 markers (a total of $20,000 bor­
rowed from the House) , the program informs the player of the
situation and exits.

Should the bankroll of a player who has outstanding markers
exceed $50,000, the total amount of money borrowed will be
automatically repaid to the House.

Any player who accumulates $100,000 or more breaks the bank.
The program then prompts:

New game?

Any reply other than ''yes'' is considered ''no'' (except in
the case of ''bet?'' or ''How many?''). To exit, send an
interrupt (break), DEL, or control-D. The program will
indicate whether the player won, lost, or broke even.

MISCELLANEOUS
The random number generator for the die numbers uses the
seconds from the time of day. Depending on system usage,
these numbers, at times, may seem strange but occurrences of
this type in a real dice situation are not uncommon.

FILES
/usr/games/craps the program

2 Bell 2

FORTUNE(6) Zilog

NAME
fortune - print fortune cookie

SYNOPSIS
fortune

DESCRI PT I OJ~

FORTUNE(6)

.Fortu1rie emulates the well-known Chinese munchie-of-wisdom.
The program selects a line at random from a text file. Add
or delete fortunes by adding or removing lines from this
file.

FILES
/usr/games/lib/fortunes - wisdom file

DIAGNOSTICS
The System 8000 does not trap memory errors.

LIMITATIONS
Humor is subjective.

1 UCB 1

HANGMAN{6) Zilog HANGMAN{6)

NAME
hangman - word games

SYNOPSIS
hangman [diet]

vhm

DESCRIPTION
Hangman chooses a word at least seven letters long from a
word list. The user is to guess letters one at a time.

The optional argument names an alternate word list. The
special name '-a' gets a particular very large word list.

FILES
/usr/games/hangman
/usr/games/vhm
/usr/dict/words

DIAGNOSTICS

the program
the visual program
the regular word list

After each round, hangman reports the average number of
guesses per round and the number of rounds.

LIMITATIONS
Hyphenated compounds are run together.

1 Zilog 1

QUIZ(6) Zilog QUIZ(6)

NAME
quiz - test your knowledge

SYNOPSIS
quiz -i file -t] [ca tegoryl ca tegory2]I

DESCRIPTIOH
Quiz gives associative knowledge tests on various subjects.
It asks items chosen from categoryl and expects answers from
category2. If no categories are specified 1, quiz gives
instructions and lists the available categories.

Quiz tells a correct answer whenever you type a bare new-
1 ine. At the end of input, upon interrupt, or when ques­
tions run out, quiz reports a score and terminates.

The -1: flag specifies 'tutorial' mode, where missed ques­
tions are repeated later, and material is gradually intro­
duced as you learn.

The -i flag causes the named file to be substituted for the
default index file. The lines of these files have the syn­
tax:

line
category
alternate
p1: irnary
option

=
=
=
=
=

category newline I category':" line
alternate I category 'I' alternate
empty I alternate primary
character I ' [' category ']' I option
' { ' category ' } '

The first category on each line of an index file names an
information file. The remaining categories specify the
order and contents of the data in each line of the informa­
tion file. Information files have the same syntax.
Backslash '\' is used as with sh(l) to quote syntactically
significant characters or to insert transparent newlines
into a line. When either a question or its answer is empty,
quiz will refrain from asking it.

FILES
/usr/games/quiz.k/*

LIMITATIONS

1

The construct 'alab' doesn't work in an information file.
Use 'a { b} ' •

Zilog 1

WUMP(6) Zilog WUMP(6)

NAME
wump - the game of hunt-the-wumpus

SYNOPSIS
wump

DESCRIPTION
Wump plays the grame of 'Hunt the Wumpus.' A Wumpus is a
creature that lives in a cave with several rooms connected
by tunnels. You wander among the rooms, trying to shoot the
Wumpus with an arrow, meanwhile avoiding being eaten by the
Wumpus and falling into Bottomless Pits. There are also
Super Bats which are likely to pick you up and drop you in
some random room.

The program asks various questions which you answer one per
line; it will give a more detailed description if you want.

This program is based on one described in People'~ Computer
Company, ~, 2 (November 1973) •

FILES
/usr/games/wump the program

LIMITATIONS
It will never replace Space War.

1 Zilog l

ASCII (7) Zilog ASCII (7)

NAME
ascii - map of ASCII character set

SYNOPSIS
cat /usr/pub/ascii

DESCRIPTION
Ase ii is a map of the ASCII character set, to be printed as
needed. It contains:

00 nul 01 sc>h 02 stx 03 etx 04 eot 0S enq 06 ack 07 bel
08 bs 09 ht 0A nl 0B vt 0C np 00 er 0E so 0F si
10 dle 11 dcl 12 dc2 13 dc3 14 dc4 15 nak 16 syn 17 etb
18 can 19 em lA sub lB esc lC f s 10 gs lE rs lF us
20 sp 21 22 " 23 # 24 $ 25 % 26 & 27
28 (29) 2A * 2B + 2C 20 2E 2F I I

30 0 31 l 32 2 33 3 34 4 3S s 36 6 37 7
38 8 39 9 3A 3B . JC < 30 = 3E > 3F ? I

40 @ 41 1~ 42 B 43 c 44 0 4S E 46 F 47 G
48 H 49 I 4A J 48 K 4C L 40 M 4E N 4F 0
S0 p 51 C) 52 R S3 s S4 T 55 u S6 v S7 w
S8 x 59 y SA z SB [SC \ so] SE "' SF
60 ' 61 a 62 b 63 c 64 d 6S 66 f 67 e g
68 h 69 i 6A j 6B k 6C 1 60 m 6E n 6F 0

70 p 71 q 72 r 73 s 74 t 7S u 76 v 77 w
78 x 79 y 7A z 7B { 7C I 70 } 7E 7F del

FILES
/usr/pub/ascii

1 Bell 1

DMALIAS(7) Zilog DMALIAS(7)

NAME
dmalias - Z8000 Development Module protocol

SYNOPSIS
source /usr/pub/dmalias

DESCRIPTION
This cshell script is required for proper handshaking
between a Z8000 Development Module and the shell. Prior to
a LOAD or SEND command, this script should be sourced so
that the cshell will correctly accept the 'load' command
from the development module.

SEE ALSO
load (1),, send (1).

1 Zilog 1

F:NVIRON(7) Zilog ENVIRON(?)

NAME
environ - user environment

DESCRIPTION
An array of strings called the "environment" is made avail­
able by exec(2) when a process begins. By convention, these
strings have the form name=value. The following names are
used by various commands:

HOME Name of the user's login directory, set by login(!)
from the password file passwd(S).

PATH The sequence~ of directory prefixes that sh(1), time(1),
nice(l), nohup(l), etc., apply in searching for a file
known by an incomplete path name. The prefixes are
separated by colons " : ".

Login(!) sets PATH=:/bin:/usr/bin.

TERM The kind of terminal for which output is to be
prepared. This is used by commands, such as vi(l)
which can exploit special capabilities of that termi­
nal.

TZ Time zone information. The format is xxxnzzz where xxx
is standard. local time zone abbreviation, n is the
difference i.n hours from GMT, and zzz is the abbrevia­
tion for the daylight-saving local time zone, if any;
for example, ESTSEDT.

Further names can be placed in the environment by the export
command and name=:value arguments in sh(1), or by exec(2).

SEE ALSO
env(l), login(!), sh(l), exec(2), getenv(3), profile(S),
term (7).

LIMITATIONS

1

Avoid conflict with certain shell variables that are fre­
quently exported by .profile files: MAIL, PSl, PS2, IFS.

Bell 1

FCNTL(7) Zilog FCNTL (7)

NAME
fcntl - file control options

SYNOPSIS
#include <fcntl.b>

DESCRIPTION
The fcntl(2) function provides for control over open files.
This include file describes requests and arguments to fcntl
and op<m (2) •

/* Flag values accessible to open(2) and fcntl(2) */
/* (The first three can only be set by open) */
#define 0 RDONLY 0
#def inE~ 0-WRONLY 1
#def inE~ 0-RDWR 2
#define 0 NDELAY 04
#define 0 APPEND 010

/* Flag values accessible only
#define 0 CREAT 00400

#def im~
#define~

/* fcntl(2) requests
#define
#define~
#definE~
#define
#define~

F DUPFD
F GETFD
F-SETFD
F GETFL
F-SETFL

01000
02000

*/
0
1
2
3
4

/* Non-blocking I/O */
/* append (writes guaranteed */
/* at the end) */

to open(2) */
/* open with file create */
/* (uses third open arg)*/
/* open with truncation */
/* exclusive open */

/* Duplicate fildes */
/* Get fildes flags */
/* Set fildes flags */
/* Get file flags */
/* Set file flags */

SEE ALSO
f c n t 1 (2) , open (2) •

1 Bell 1

GREEK(7) Zilog GREEK(7)

NAME
greek - graphics for the extended TTY-37 type-box

SYNOPSIS
cat /usr/pub/greek [I greek -Tterminal]

DESCRIPTION

FILES

Greek gives the mapping from ASCII to the "shift-out" graph­
ics in effect between SO and SI on TELETYPE(Reg.) Model 37
terminals equipped with a 128-character type-box. These are
the default greek characters produced by nroff (l). The
filters of greek(l) attempt to print them on various other
terminals. The file contains:

alpha A A beta B B gamma \ \
GAMMA G G delta 0 0 DELTA w w
epsilon s s zeta Q Q eta N N
THETA T T theta 0 0 lambda L L
LAMBDA E E mu M M nu @ @

xi x x pi J J PI p p
rho K K sigma y y SIGMA R R
tau I I phi u u PHI F F
psi v v PSI H H omega c c
OMEGA z z nab la [[not
partial]] integral ""

/usr/pub/greek

SEE ALSO
300(1), 4014 (1)' 450(1), greek(l), hp(l), tc (1) , troff(l).

1 Bell 1

HIER{7} Zilog 8IER{7}

NAME
hier - file system hierarchy

DESCRIPTION

1

The following outline gives a quick tour through a represen­
tative directory hierarchy.

/ root
/dev/

/bin/

/lib/

/etc/

devices (4)
ct* cartridge tape, ct{4)
rct* raw cartridge tape, ct(4)
console

main console, tty(4)
tty* terminals, tty(4)
zd* disk, zd(4}
rzd* raw disk, zd{4)
md* disk, md(4)
rmd* raw disk, md(4}
smd* disk, smd(4}
rs:md*

raw disk, smd(4)

utility programs, cf /usr/bin/ (1)
as assembler first pass, cf /lib/as2
cc C compiler executive, cf /lib/c[012]

object libraries and other stuff, cf /usr/lib/
libc.a

system calls, standard I/O, etc. {2,3,38)
cpp C preprocessor
c[l234]

passes of cc(l}

essential data and dangerous maintenance utilities
passwd

password file, passwd(S)
group

group file, group(S}
motd message of the day, login(!)
mtab mounted file table, mtab(S}
ddate

dump history, dump(!)
ttys properties of terminals, ttys{S)
getty

part of login, getty(M}
init the parent of all processes, init{M)
re shell program to bring the system up
cron the clock demon, cron{M}

Zilog 1

HIER(7)

/tmp/

/usr/

mount
mount(M)

wall wall(M)

temporary files
e* used by ed(l)
ctm* used by cc(l)

Zilog HIER(7)

general-purpose directory, usually a mounted file
system
adm/ administrative information

wtmp login history, utmp(S)
message~s

hardware error messages
/usr/ bin/

2

utility programs, to keep /bin/ small
diet/

word lists, etc.
words

principal word list, used by look(l)
spell hist

games/
include/

history file for spell(l)

standard #include files
s.out.h

object file layout, a.out(S)
stdio.h

standard I/O, stdio(3)

sys/ system-defined layouts, cf /usr/sys/h
acct.h

process accounts, acct(S)
buf .h

internal system buffers

lib/ object libraries and stuff, to keep /lib/ small
atrun

scheduler for at(l)
tmac/

font/

macros for troff(!)
tmac.an

macros for man(7)
tmac.s

macros for ms(7)

fonts for troff(l)
R Times Roman
B Times Bold

Zilog 2

HIER(?) Zilog HIER(7)

/usr/ man/
volume 1 of this manual, man(l)

man0/
general
introduction to volume 1, ms' (7) format

manl/

spool/

chapter 1
as.l

delayed execution files
at/ used by at(l)
queuer/

uucp/

mail/

general purpose enqueing program
used by nq(l)

work files and staging area for uucp(!)
LOGFILE

summary log
LOG.*

... log fiLe for one transaction

mailboxes for mail(!)
uid mail file for user uid
uid.lock

lock file while uid is receiving
mail

secretmail/
mailboxes and keys for xsend(l)
uid.0

secretmail file for user
uid.key
~- key for decryption

taper/
reserve tape drive

SEE ALSO
find(!), grep(l), ls(l), ncheck(M).

LIMITATIONS
The position of files is subject to change without notice.

3 Zilog 3

MAN(7) Zilog MAN(7)

NAME
man - macros to nroff or troff manual entry

SYNOPSIS
nroff -man file

troff -man file

DESCRIPTION
These macros are used to lay out pages of this manual. A
skeleton page is found in the file /usr/man/man0'/xx.

Any text argument t is zero to six words. Quotes are used
to include blanks-in a word. If text is empty, the special
treatment is applied to the next input line with text to be
printed. In this way, .I is used to italicize a whole line,
or .SM followed by .B to make small bold letters.

A prevailing indent distance is retained between successive
indented paragraphs, and is reset to default value upon
reaching a nonindented paragraph. Default units for indents
i are ens.

Type font and size are reset to default values before each
paragraph, and after processing font and size setting mac­
ros.

These strings a1~e predefined by -man:

*R '(Reg)', trademark symbol in troff.

*S Change to default type size.

Fil.BS
/usr/lib/tmac/tmac.an
/usr/man/man0'/x>i:

SEE ALSO
troff(l), man(l).

LIMITATIONS
Relative indents do not nest.

REQUESTS
Request

• B t -.BI t

.BR t

• DT

1

Cause
Break
no
no

no

no

If no Explanation
Argument
t=n.t.l.*Text t is bold •
I=n.t.1. Join ~ords of t alternating bold and

italic.
t=n.t.l. Join words of t alternating bold and

Roman •
• Si li .•• Restore default tabs •

Bell 1

MAN{7) Zilog MAN (7)

.HP i yes _!_=p.i. * Set prevailing indent to i. Begin para-
graph with hanging indent:

• I t no t=n.t.l. Text t is italic.
.IB t no t=n.t.l. .Join words of t alternatin9 italic and -

bold.
.IP x i yes x="" Same as .TP with tag x.
.IR t- no t=n.t.l. Join words o_f t al ternatin~f italic and -Roman.
.LP yes Same as .PP.
.PD d no d=.4v Interparagraph distance is d.
.PP yes Begin paragraph. Set prevc:tTl ing indent

to . Si.
• RE yes End of relative indent. Se~t prevailing

indent to amount of starting .RS.
• RB t no t=n.t.l. Join words of t alternating Roman and

bold.
.RI t no t=n.t.l. Join words of t alternating Roman and

italic.
• RS i yes .!_=p. i. Start relative indent, move~ left margin

in distance i. Set prevailing indent to
.Si for nested indents.

.SH t yes t=n.t.l. Subhead.
.SM t no t=n.t.l. Text t is small.

Begin - named of chapter is .TH n c x yes page n c; x - - - extra commentary-; for e>cample, local,
for page foot. Set prevailing indent
and tabs to . Si.

.TP i yes _.!_ =p. i. Set prevailing indent to i. Begin
indented paragraph with hanging tag
given by next text line. If tag does
not fit, place it on separate line.

* n.t.l. = next text line; p.i. = prevailing indent

2 Bell 2

ME(7) Zilog ME (7)

NAME
me - macros for formatting manuscripts using nroff or troff

SYNOPSIS
nroff -me [options] file
troff -me [options] file

DESCRIPTION
This package of nroff and troff macro definitions provides a
canned formatting facility for technical papers in various
formats.

Output of the eqn(l) neqn(l) and tbl(l) preprocessors for
equations and tables is acceptable as input.

REQUESTS
.be Start a new column

.bp Start a new page

.ce Center the next N lines

.in Indent N spaces

.ip Begin a paragraph with indented body

.lp Begin a left-justified block-style paragraph

.np Begin an indented, numbered paragraph

.pp Begin an indented paragraph

.sh Give a section header

·~ Leave N lines of blank space

.ti Begin temporary indent of NFR spaces

.!£ Begin a title page

.ul Under-line the next N lines (italics in troff)

.le Revert to single column output

.2c Automatic two column out-put

FU.ES
/usr/lib

SEE ALSO
eqn (1), troff (1), refer (1), tbl (1).

1 Zilog 1

ME(7)

2

Zilog ME{7)

Writing Papers With Nroff Using -ME in the ZEUS Utilities
Manual

Zilog 2

MM(7) Zilog MM(7)

NAME
mm - the MM macro package for formatting documents

SYNOPSIS
mm [options] [files]

nroff -mm [opt i 01 n s] [f i I.es]

nroff -cm [optio,ns] [files]

mmt [options] [_!i:t.es]

troff · -mm [opt i o' n s] [f i le s]

troff -cm [opt i 01 n s] [£ i le s]

DESCRIPTION
This package provides a formatting capability for a wide
variety of documents. It is the standard package used by
the BTL typing pools and documentation centers. The manner
in which a document is entered and edited is essentially
independent of whether the document is to be eventually for­
matted at a terminal or phototypeset. See the references
below for further details.

OPTIONS

FILES

-cm Causes nroff (l) and troff (l) to use the compacted ver­
sion of the-macro package, thus speeding up the process
of loading.

-mm Results in the use of the non-compacted version of the
macro package.

/usr/lib/tmac/tmac.m

/usr/lib/macros/mm[nt]

/usr/lib/macros/cmp.[nt]. [dt] .m

/usr/lib/macros/ucmp.[nt] .m

pointer
compacted
package

to the non­
ve rs ion of the

non-compacted version of
the package

compacted version of the
package

initializers for the com­
pacted version of the
package

SEE ALSO
troff (1).

1 Bell 1

MS(7) Zilog MS(7)

NAME
ms - macros for formatting manuscripts using nroff or troff

SYNOPSIS
nroff --ms [options] file
troff --ms [options] file

DESCRIPTION
This package of nroff(l) and troff(!) macro definitions pro­
vides a canned formatting facility for technical papers in
various formats. When producing two-column output on a ter­
minal, filter the output through co1(1).

The macro requests are defined below. Many nroff and troff
requests are unsafe in conjunction with this package. How­
ever, these requests can be used after the first .PP:

.bp begin new page

.br break output line here

.sp n insert n spacing lines

.ls n (line spacing) n=l single, n=2 double space

.na no alignment of right margin

Output of the eqn, neqn, and tb1(1) preprocessors for equa­
tions and tables is acceptable as input.

FILES
/usr/lib/tmac/tmac.s

SEE ALSO
eqn(l), troff(!), tbl{l).

Typing Documents on the ZEUS System with Troff and Nroff in
the ZEUS Utilities Manual.

REQUESTS
Request

.1c

. 2c

. AB

. AE

.AI

.AT

.AU x 'i.. -

.B x

.Bl

1

Initial Cause Explanation
Value Break

YE~S yes One-column format on a new page.
no yes Two-column format .
no yes Begin abstract .

yes End abstract .
no yes Author's institution follows. Suppressed

in TM.
no yes Print "Attached" and turn off line fil-

ling.
no yes Author's name fol,.lows. x is location and

l. is extension, ignored except in TM.
no no Print x in boldface; if no argument

switch to boldface.
no yes Begin text to be enclosed in a box.

Bell 1

MS(7)

. B2 no

.BT date

. BX x no

. cs x •••

. CT no

. DA x nroff

. DE

.DS x no

.EN

.EQ x y_

.FE

.FS no

.I x no

.IP x y_ no

.KE

.KF no

. KS no

. LG no

. LP yes

.NH n

. NL yes

. OK
. PP no
.PT pg #

.QE

.QP

2

yes
no

no
yes

yes
no

yes
yes

yes

yes

yes
no

no

yes

yes

yes

yes
no
yes
yes

no
yes
yes

yes

yes

Zilog MS(?)

End text to be boxed, print it .
Bottom title, automatically invoked at
foot of page. May be redefined.
Print x in a box .
Cover sheet info if TM format, suppressed
otherwise. Arguments are number of text
pages, other pages, total pages, figures,
tables, references.
Print "Copies to" and enter no-fill mode .
Date line at bottom of page is x •

Default is today.
End displayed text. Implies .KE .
Start of displayed text, to appear verba­
tim line-by-line. x=I for indented
display (default), x=L for left-justified
on the page, x=C-for centered, x=B for
make left-justified block, then center
whole block. Implies .KS.
Space after equation produced by eqn or
neqn.

Precede equation: break out and add
space. Equation number is y_. The
optional argument x is I to indent equa­
tion (default), L to left-adjust the
equation, or C to center the equation.
End footnote.-
Start footnote. The note will be moved
to the bottom of the page.
Italicize x: if x missing, italic text
follows.
Start indented paragraph, with hanging
tag x. Indentation is y_ ens (default 5).
End keep. Put kept text on next page if
not enough room.
Start floating keep. If the kept text
must be moved to . the next page, float
later text back to this page.
Start keeping following text .
Make letters larger .
Start left-blocked paragraph .
Same as .SH, with section number supplied
automatically. Numbers are multilevel,
for example 1.2.3, where n tells what
level is wanted (default is-1).
Make letters normal size .
Other keywords for TM cover sheet follow .
Begin paragraph. First line indented .
Page title, automatically invoked at top
of page. May be redefined.
End quoted (indented and
material.

shorter)

Begin single paragraph which is indented

Bell 2

MS(7)

.QS

. R yes
• RE
.RP no

. RS

.SG x no

.SH

. SM no
• T.A x. . . 5 •••
. TE
• TH
. TL no
.TS x

. UL x

.ux

3

yes

no
yes

yes

yes

yes

no
no
yes
yes
yes
yes

no
no

Zilog MS(7)

and shorter.
Begin quoted (indented and shorter)
material.
Roman text follows .
End relative indent level .
Cover sheet and first page for released
paper. Must precede other requests.
Start level of relative indentation .
Following .!P's are measured from current
indentation.
Insert signature(s) of author(s), ignored
except in TM. x is the reference line
(initials of author and typist).
Section head follows, font automatically
bold.
Make letters smaller .
Set tabs in ens. Default is 5 10 15 ...
End table .
End heading section of table .
Title follows .
Begin table; if x is H table has repeated
heading. - -
Underline argument (even in troff) .
'UNIX'; first time used, add footnote

Bell 3

MV(7) Zilog MV(7)

NAME
mv - a macro package for making view graphs

SYNOPSIS
mvt [options] [files]
troff -mv [optiOinsr-[files]

DESCRIPTION
This package provides an easy-to-use facility for making
view graphs and projection slides in a variety of formats.
A dozen or so macros are provided that accomplish most of
the formatting tasks needed in making transparencies. All
of the facilities of troff(l), eqn(l), and tbl(l) are avail­
able for more difficult tasks. The output can be previewed
on most terminals, and, in particular, on the Tektronix 4014
and on the Versatec printer. See the reference below for
further details.

FILES
/usr/lib/tmac/tmac.v

SEE ALSO
eqn (1), mvt (1), tbl (1), troff (1).

1 Bell 1

REGEXP(7) Zilog REGEXP(7)

NAME
regexp - regular expression compile and match routines

SYNOPSIS
#define INIT declarations
ldefine GETC(} getc code
#define PEEKC()--peekc code
ldefine UNGETC(c) ungetc code
#define RETURN (pointer) return code
ldefir.te ERROR (val) error code

#include <regexp.h>

char ""~compile (instr ing, expbuf, endbuf, eof)
char 'll·instri~, *expbuf, *endbuf;

int step(str.ing, expbuf)
char~:s:Ering, *expbuf;

DESCRIPTION

1

This page describes general purpose regular expression
matching routines in the form of ed(l), defined in
/usr/i.nclude/regexp.!!_. Programs such as eol(l), sed(l),
grep(l), expr(l), etc., which perform regular expression
matching use this source file. In this way, only this file
need be changed to maintain regular expression compatibil­
ity.

The interface to this file is complex. Progra.ms including
this file must have the following five ma.eras declared
before! the 11 #include <regexp. h>" statement. These macros
are used by the compile routine.

GETC ()

PEEKC ()

UNGETC(£)

Return the value of the ne!xt character
in the regular expression pattern. Suc­
cessive calls to GETC() should return
successive characters of the regular
expression.

Return the next character in the regular
expression. Successive calls to PEEKC()
should return the same character (which
should also be the next character
returned by GETC()).

Cause the argument c to be returned by
the next call to GETC() (and PEEKC()).
No more that on~ character of pushback
is ever needed and this character is
guaranteed to be the last character read
by GETC(). The value of the macro
UNGETC(c) is always ignored.

Bell 1

REGEXP(7) Zilog REGEXP{7)

2

RETURN(pointer)

ERROR(val)

ERROR
11
16
25
36
41
42
43
44
45
46
49
50

This macro is used on normal exit of the
compile routine. The value of the argu­
ment pointer is a pointer to the charac­
ter after the last character of the com­
piled regular expression. This is use­
ful to programs which have memory allo­
cation to manage.

This is the abnormal return from the
compile routine. The argument val is an
error number (see table below for mean­
ings). This call should never return.

MEANING
Range endpoint too large.
Bad number.
"\digit" out of range.
Illegal or missing delimiter.
No remembered search string.
\ ~: \) imbalance.
Too many \ (.
More than 2 numbers given in \{ \}.
} expected after \.
First number exceeds second in \{ \}.
[] imbalance.
Regular expression overflow.

The syntax of the! compile routine is as follows:

compile(instring, expbuf, endbuf, eof)

The first parameter instring is never used explicitly by the
compile routine but is useful for programs that pass down
different pointers to input characters. It is sometimes
used in the HUT declaration (see below). Programs which
call functions to input characters or have characters in an
external array can pass down a value of ((char *) 0) for
this parameter.

The next parameter expbuf is a character pointer. It points
to the place where the compiled regular expression will be
placed.

The parameter endbuf is one more than the highest address
that the compile!d regular expression may be stored. If the
compiled expression doesn't fit in (endbuf-e'xpbuf) bytes, a
call to ERROR(50) is made.

The parameter eof is the character which marks the end of
the regular expre~ssion. For example, in ed{ 1), this charac­
ter is usually a /.

Bell 2

REGEXP(7) Zilog REGEXP(7)

3

Each program that includes this file must have a ldefine
statement for INIT. This definition will bE~ placed right
after the declaration for the function compile and the open­
ing curly brace ({). It is used for dependent declarations
and initializations. Most often it is used to set a regis­
ter variable to point to the beginning of the regular
expreBsion so that this register variable can he used in the
declarations for GETC(), PEEKC(} and UNGETC(). Otherwise it
can be used to declare external variables that might be used
by GETC (), PEEKC () and UNGE'rC (). See the example below of
the declarations taken from grep(l).

There are other functions in this file which pE~rform actual
regular expression matching, one of which is the function
step. The call to step is as follows:

E;tep (string, expbuf)

The first parameter to step is a pointer to a string of
characters to be checked for a match. This string should be
null terminated.

The S(~cond parameter expbuf is the compiled re9ular expres­
sion which was obtained by a call of the function compile.

The function step returns one, if the given string matches
the regular expression, and zero if the exprE~ssions do not
match.. If there is a match, two external character pointers
are set as a side effect to the call to step. The variable
set in step is locl. This is a pointer to the first charac­
ter that matched the regular expression. The variable loc2,
which is set by the function advance, points to the charac­
ter after the last character that matchee1 the regular
expression. Thus if the regular expression matches the
entire line, locl will point to the first character of
st~[and loc2 will point to the null at the Emd of string.

Step uses the external variable circf which is set by com­
pile if the regular expression begins with "'. If this is
set then step will only try to match the regular expression
to the beginning of the string. If more than one regular
expree1sion is to be compiled before the the fi.rst is exe­
cuted the value of circf should be saved for each compiled
expression and circf should be set to that saved value
before each call to step.

The function advance is called from step with the same argu­
ments as step. The purpose of st~p-IS to stE!p through the
string argument and call advance until advance returns a one
indical"ting a match or until the end of string is reached.
If one! wants to constrain string to the beginning of the
line in all cases, step need not be called, simply call

Bell 3

REGEXP(7) Zilog REGEXP(7)

advance.

When advance encounters a * or \{ \} sequence in the regular
expression it advances its pointer to the string to be
matched as far as possibie and will recursively call itself
trying to match the rest of the string to the rest of the
regular expression. As long as there is no match, advance
backs up along the string until it finds a match or reaches
the point in the string that initially matched the * or \{
\}. It is sometimes desirable to stop this backing up
before the initial point in the string is reached. If the
external charactE~r pointer locs is equal to the point in the
string at sometime during the backing up process, advance
will break out of the loop that backs up and will return
zero. This is used by ed(l) and sed(l) for substitutions
done globally (not just the first occurrence, but the whole
line). For example, expressions like s/y*//g do not loop
forever.

The routines ecm~ and getrange are trivial and are called by
the routines previously mentioned.

EXAMPLES
The following is an example of how the regular expression
macros and calls look from grep(l):

#define INIT register char *sp = instring;
#define GETC() (*sp++)
#define PEEKC() (*sp)
#define UNGETC(c) (--sp)
#define RETURN(c) return;
#define ERROR(c) regerr()

#include <regexp.h>

compile crrargv I expbuf I &expbuf[ESIZE] I I \0 I):

if(step(linebuf, expbuf))
succeed():

FILES
/usr/include/regexp.h

SEE ALSO
ed(l), grep(l), sed(l).

LIMITATIONS
The handling of circf is kludgy.
The routine ecmp· .is equivalent to the Standard I/O routine
strncmp and should be replaced by that routine.

4 Bell 4

STAT{?) Zilog STAT(?)

NAME
stat - data returned by stat system call

SYNOPSIS
#include <sys/types.h>
linclude <sys/stat.h>

DESCRIPTION
The system calls stat and fstat(2) return data whose struc­
ture is defined by this include file. The encoding of the
field st mode is defined in this file also.

struct stat
{

} ;

#define
#def in1e
#def in,e
#def in•e
#definre
#def in•e
#def i n1e
#def in•~
#def i n•e
#def in1~
#defin1e
#def inE~
#def in•e

dev t st_dev;
ino-t st ino;
unsTgned short st_mode;
short st nlink;
short st-uid;
short st-gid;
dev t st-rdev;
off-t st-size;
time t st-atime;
time--t st -mtime;
time--t st=ctime;

S IFMT 0170000
S IFDIR
S-IFCHR
S IFBLK
S-IFREG
S-IFMPC
S IFMPB

S ISUID 00°04000
S-ISGID 0002000
S ISVTX 0001000
S !READ 0000400
S-IWRITE
S-IEXEC 0000100

/* type of file */
0040000 /* directory */
0020000 /* character special */
0060000 /* block special· */
0100000 /* regular */
0030000 /* multiplexed char special */
0070000 /* multiplexed block special *1

/* set user id on execution */
/* set group id on execution *1
/* save swapped text even afteI
/* read permission, owner */

0000200 /* write permission, owner */
/* execute/search permission, c

FILES
/usr/include/sys/types.h
/usr/include/sys/stat.h

SEE ALSO
stat (2) •

1 Bell 1

TERM(7) Zilog TERM(7)

NAME
terminals- conventional names

DESCRIPTION
These names are used by certain commands and are maintained
as part of the shell environment (sh(l), environ(5)).

1620
1620-12
300
300-12
300s
300s-12
33
37
40-2
43
450
450-12
450-12-8
735
745
dumb
hp
4014
tnl200
tn300
vt05

DIABLO 1620 (and others using HyType II)
same, in 12-pitch mode
DASI/DTC/GSI 300 (and others using HyType I)
same, in 12-pitch mode
DASI/OTC 300/S
same, in 12-pitch mode
TELETYPE(Reg.) Model 33
TELETYPE Model 37
TELETYPE Model 40/2
TELETYPE Model 43
DASI 450 (same as Diablo 1620)
same, in 12-pitch mode
same, in 12-pitch, 8 lines/inch mode
Texas Instruments TI735 (and TI725)
Texas Instruments TI745
terminals with no special features
Hewlett-Packard HP264? series terminals
Tektronix 4014
General Electric TermiNet 1200
General Electric TermiNet 300
Digital Equipment Corp. VT05

Commands whose behavior depend on the terminal accept argu­
ments of the form -Tterm, where term is one of the names
given above. If no such argument is present, a command con­
sul ts the shell environment for the terminal type.

SEE ALSO
stty(l), tabs(l), plot(l), sh(l), environ(S) troff(!).

1 Bell 1

TERMLIST(7) Zilog TERMLIS·r (7)

NAME
terminal list - terminal names and codes

DESCRIPTION

1

This is a list of terminals supported in /etc/termcap and
/etc/tE~rmcap. others.

Under the heading "Terminal" is the manufacturer and model
of the terminal and under "Code" are the possible codes that
can be specified when setting up the terminal environment.
To set up the terminal environment, use the following com­
mand:

setenv TERM code

For example, for a vtz-2/10 terminal, the possible codes are
"vz", "vtz", "mcz-2/60" and "vtz-2/10"; therefore, any one
of these codes can be used in the "setenv" command.

In the following list, an asterisk (*) following the termi­
nal name indicates that the terminal description is in
/etc/tE:!rmcap.others. If this is the case, the tE:!rmcap entry
must be moved to /etc/termcap, or, the following command
must be specified:

S•:!tenv TERMCAP /etc/termcap .others

Otherwise, if no asterisk is indicated following the termi­
nal name, the terminal description is in /etc/termcap.

Zilog 1

1rERMLIST(7) Zilog TERMLIST(7)

2

NOTE

Some of the entries shown on the following pages have been
reformatted to fit the page. Refer to the file /etc/termcap
for the actual format of the file.

Terminal

Acts (skinny)*
Addrinfo*
Addrinfo
Adds Regent 25
Adds Regent 25*
Adds Regent 60*
Adds consul 980*
Adds regent 100 1~

Adds regent 20*
Adds regent 40*
Adds regent series*
Adds Viewpoint*
Ampex Dialogue B0*

Anderson Jacobson*
Ann Arbor*
Ann Arbor Ambassador 48

(destructive backspace)*
Ann Arbor Ambassador/48 lines*
Arpanet network"r
Beehive IIIm
Beehive super bee*
Beehive super bee (fixed)*
Beehive super Bee w/insert char*
Bill Croft homebrew*
Bussiplexer*
c. Itoh 101 w/initialization

c. Itoh 101 for 132-column

c. Itoh 101 w/o initialization
Carlock*
Carlock
Cdc456*
Cdc456tst
Cdil203*
CompucolorII*
Concept 100
Concept 100*
Concept 100 slow*

Zilog

Code

ms act5s
ia addrinfo
si
cR regent 25 I adds25
a3 regent25
a6 regent60 I regent200
ac a980
al regentl00
a2 regent20
a4 regent40
a0 regent
a7 viewpoint
MA ampex I d80 dialogue
I d1alogue80
Mc aj830 I aj832 aj
Ma aa I annarbor
MB aaadb

Mb aaa I ambas I ambassador
sa arpanet I network
bh bh3m I beehiveIIIrn
bs sbl I superbee I superb
b2 sb2 sb3
bi .superbeeic
qB be
sb bussiplexer
cs cit I citl01 I cl01
I Clt-101
cw l citw I citl0lw cl0lw
I c1t-10lw
en citn I citl0ln cl0ln
qc carlock I klc
cc klc I carlock
Ca cdc4S6 I cdc
Cc cdc456tst
Mi cdi I cdil203
MC compucolor I compucolorII
cl cl00 I conceptl00
co cl00 concept I conceptl00
cs cl00s I slowconcept

2

TgRMLIS·r (7) Zilog

3

Concept 100 rev slow*
Concept 100 rev video*
Concept 100 rev video
Concept 100 rev w/o arrows*
Concept 100 w/4 pages*
Concept 100 with 4 pages*
Ct82
Data General 6053*
Datagraphix 132a*
Datamedia 1520*
Datamedia 1520
Datamedia 1521*
Datamedia 2500*

Datamedia 2500
Datamedia 3025a*
Datamedia 3025a
Datamedia. 3045a*
Datamedia dt80/l*
Datamedia dt80/l with 132 char*
Datapoint 3360*
Dec gt4011:·
Dec gt40
Dec gt4211:·
Dec gt42
Dec vtl0Qf
Dec vtl00 132 cols*

Dec vtl0Qr/132 cols 14 lines*

Dec vtl0QJ w/o initialization
Dec vtl32*
Dec vt501'·
Dec vt50
Dec vt50h*
Dec vt50h
Dec vt52"~
Dec vt52
Decwr i te1: I*
Decwr i te1: I
Decwr i teI: I I*
Decwr i te1: I I
Delta Data 5000*
Diablo 1620*
Diablo 1640*
Diablo 3"0s
Dial up*
Digilog 333*
Dtc 300s"r

Ex3000*

Zilog

TERMLIST(7)

I slowconceptl00
cd cl00rvs
er cl00rv
er cl00rv I conceptl00rv
en cl00rv4pna
cR cl00rv4p
c4 cl004p
c8 swtp I ct82
Mg dg I dg6053
MD dl32 I datagraphix
00 dm1s2~ I ls20
cm dml520
Dl dml521 I 1521
D2 dm2500 datamedia2500
I 2 00
c2 I dm2500
03 dm3025
c3 dm3025
04 3045 ~ dm3045
05 dt80 dmdt80 I dm80
06 dta01 2 I amata0132
Md datapoint I dp3 I dp3360
d4 gt40
g0 gt40
d2 gt42
g2 gt42
dl vt100 I vt-·100 I pt100 I p
dt vtl00w I vt-100w I pt10~w
I pt-100w
ds I vtl00s I vt-100s I pt100s
I pt-100s
d0 vtl00n
d3 vtl32 I vt-132
as vt50
v0 vt50
dh vt50h
vh vt50h
dv vt52
v2 vt52
dI dwl
dw dwl
dw dw2 I dw3 I dw4
td dw2
ED delta I dd5000
A6 1620 I 450
A7 1640
pd dtc300s I dtc
sd du l diaiup
L3 dig1log I 333
Ad dtc300s 300 I 300s
I gsi I dtc
qb I ex3000

3

TERMLIST(7) Zilog

4

Execuport 4000*
Execuport 4080*
Exidy smart*
Exidy sorcerer as dm2500*
Fox 1HJ0
General Terminal 100A*
Gsi*
Gsi or pg
Hazeltine 1500*
Hazeltine 1500
Hazeltine 1510*
Hazeltine 1510
Hazeltine 1520*
Hazeltine 2000*
Hazeltine 2000
Hazeltine Esprit I*
Heathkit hl9

Heathkit w/keypad shifted
Heathkit w/keypad shifted

and underscore cursor
Heathkit with underscore cursor
Hewlett-Packard 2621*

Hewlett-Packard 2621 with
45 keyboard~~

Hewlett-Packard 2621 w/labels*
Hewlett-Packard 2621 w/o labels*
Hewlett-Packard 2626*

Hewlett-Packard 2640a*
Hewlett-Packard 2645
Hewlett-Packard 264aa

graphics terminal*
Hewlett-Packard 264x series*

Hewlett-Packard 48 line 2621*
IBM 3101-10*
!SC 8001*
!SC modified owl 1200*
Infoton 100
Infoton 200
Infoton 400
InfotonKAS
InfotonKAS*
Lear Siegler adm3
Lear Siegler adm3*
Lear Siegler adm31
Lear Siegler adm31*
Lear Siegler adm3a
Lear Siegler adm3a*

Zilog

TERMLIST(7)

e2 ep40 \ ep4000
el ep48 ep4080
qs sexidy
qe exidy I exidy2500
cf fox
i1 i100 I gt100 I gt100a
Gs gsi
pg gsi
HS hl500
h5 hl500
H6 hl510
h6 hl510
H8 hl520
H7 h2000
h7 h2000
H9 esprit I hazeltine esprit
kb hl9 I heath I hl9b
I heathkit
kB \ hl9bs
kU hl9us

ku I hl9u
h2 2621 I hp2621 I hp2621a
I hp2621p
2621a I 2621p
h3 I 2621k4s I hp2621k4s I k4s

hw l 262lwl l hp262lwl I 2621
hn 262lnl hp262lnl - 2621
h6 hp2626 hp2626a I hp2626p
I 2 26 I 262 p I 2626a
ha 2640 J hp2G40a I 2640a
cH 2645 hp2645
h8 hp264 I hp2648a I 2648a I 264

I h4 I· hp I hp264s I 2645
I hp2640b I 2640b
hb big2621
!9 ibm I ibm3101 I 3101 I i3101
!8 8001 I ISC8001
It in text
cl il00
i2 i200
i4 i400 I 400
ci InfotonKAS
ik infotonKAS
cl adm3 I 3
13 adm3 3
Cl adm31 31
11 adm31 31
ca adm3a 3a
la adm3a 3a

4

TERMLIST(7) Zilog

5

Lear Siegler adm3b
Lear Siegler adm42*
Mcz vdb
Mcz vdb*
Micro bee series*
Microterm
Microterm Mime2a (emulating

enhanced soroc iq120)*
Microterm Mime2a (emulating

enhanced vt52)*
Microterm act iv*
Microb=rm act v*
Microterm mimel*

Microb=rm5
Mimel

Mimel emulating 3a*
Mimel G:mulating enhanced 3a*
Mimel (half bright)*
Model 33 teletype*
Model 37 teletype*
Model 43 teletype*
NUC homebrew*
Netronics*
Omron 8025AG*
Owl 1200
Perkin Elmer 1100*
Perkin Elmer 1200*
Plasma panel*
Plugboard*
Qume Sprint 5*
Sol*
Soroc 120*
Southwest Technical Products

ct82*
Special*
TI silent 700*

TI silent 700
TI silent 745*
TI silent 745
Tektronix 4012*

Tektronix 4014*

Tektronix 4014
Tektronix 4014 in small font*

Tektronix 4023*

Zilog

TERMLIST(7)

cb
14
mz
mz
bm
c4
ms

mv

adm3b I 3b
adm42 42
mcz
mcz
microb I microbee
act4 I m:icroterm
mime2as

mime2a I mime2av

m4 microterm I act4
m5 microterm5 I acts
mm mime I mimei I mime2
I m1mei
mimeii
c5 I acts \ microterm5
c6 mime mimel I mimei
I m1meii
m3 mime3a
mx mime3ax
mh mimehb
T3 33 tty33 I tty
T7 37 tty37
T4 43 tty43
qN nucterm
qn netx I netronics
Mo omron
co owl
pf fox
po owl
Mp plasma
sp plugboard
Aq qume5 I qume
Ml
MS
Ms

soroc
swtp I ct82

qq t ccncrt I special
t3 ti I ti700 I ti733
I 1 s J t:i13s
ti t1700 I ti733
t4 ti14s 14s I 743
tI ti745
Xl tek I tek4012 I 4012
I tek4013 I 4013

I X2 I tek4014 I tek4015
I 40i4 1 401s

I gk I tk4014 I 4014
X3 tek4014sm I tek4015sm
I 4014sm
4015sm
X4 I tek4023 I 4023

5

TERMLIST(7) Zilog

Tektronix 4024/4025/4027*

Tektronix 4025 17 line window
in workspace*

Tektronix 4025 with "!"*
Tektronix 4025 w/17 line window*
Teleray 1061
Teleray 1061*
Teleray 1061 with fast PROMs*
Teleray 3700 (dumb)*
Teleray 3800 series*
Teletec Datascreen*
Televideo

Televideo (new)*

Televideo (old)*
Televideo 925*
Televideo 950*
Terak emulating Datamedia 1520*
Terminet 1200
Terminet 1200*
Terminet 300
Terminet 300*
Tty33
Tty37
Tty43
TtyWilliams
TtyWilliams*
Ubellchar*
Ubellchar
Unknown*
Unknown
Visual 200*
Visual 200 reverse video*
Visual 200 reverse video using

insert char*
Visual 200 using insert char*
vtz-2/10 or mcz-2/60
Xerox 1720*
Xitex sct-100
Xitex sct-100*
Zentec 30*

FILES
/usr/pub/termlist

SEE ALSO
ex(l), vi(l), environ(5).

6 Zilog

TERMLIST(7)

XS I tek4027 I 4025 I 4027

I 4024 I tek4~25 I tek4024
4025cu I 4027cu

X8 I 4025-17ws I 4027-17ws

Xe 4025ex I 4027ex
X7 4025-17 I 4027-17
ct tl061
y6 tl061 I tl0 I teleray
yf tl06lf
yl t3700 I teleray
y3 t3800
Mk teletec I tee
cT tvi920 I tvi912 I tvisp
I tvi
v2 I 912b I 912c I 920b
I 920c J tvi
vl tv1912 I 912 I 920 I tvi920
v3 925 I tvi925
vs tvi950 j950
Mt terak
T2 1200
g2 1200 I tn1200
T3 300
g3 300
t3 33
t7 37
t4 43

I tn300
tty33
tty37
tty43

dp
qw
qu
tu
SU
un
V2
Vr
VR

ttyWilliams
ubell
ubell I ubellchar
dumb I un I unknown
pb I aumb unknown
vi200 I visual

. vi 200rv
vi200rvic

Vt vi200ic
vz vtz I mcz-2/60 I vtz-2/10
xl xl720
ex xitex
qx xitex
Mz zen30 I z30

6

1rYPES (7) Zilog TYPES(?)

NAME
types - primitive system data types

SYNOPSIS
#include <sys/types.h>

DESCRIPTIOM
The data types defined in the include file are used in UNIX
system code; some data of these types are accessible to user
code:

typedef struct {
typedef long
typedef char *
typedef unsigned
typedef ushort
typedef char
typedef long
typedef long
typedef long
typedef int
typedef int
typedef long

int r[l]; } * physadr;
daddr t;
caddr-t;

short ushort;
ino_t;
cnt t;
saddr t;
paddr-t;
time t;
label t[9];
dev t;
off=t;

The form daddr t is used for disk addresses except in an i­
node on disk, see filesys(S). Times are encoded in seconds
since 00:00:00 GMT, January 1, 1970. The major and minor
parts of a device code specify kind and unit number of a
device and are installation-dependent. Offsets are measured
in bytes from the beginning of a file. The label t vari­
ables are used to save the processor state while another
process is running.

SEE ALSO
filsys(S).

1 Bell 1

ACCT (M) Zilog ACCT (M)

NAME
acct - overview of accounting and miscellaneous accounting
commands

SYNOPSIS
acctdisk

acctdusg [-p file] [-u !.!..!!1 > dtmp-file

accton [file]

acctwtmp [name[fine]] >> /usr/adm/wtmp

DESCRIPTION

1

Accounting software is structured as a set of tools (con­
sisting of both C programs and shell procedures) that can be
used to build accounting systems. Acctsh(M) describes the
set of shell procedures developed from C programs.

Connect time accounting is handled by various programs that
write records into /usr/adm/wtmp, as described in utmp(S).
The programs described-yo acctcon(M) convert this file into
session and charging records, which are then summarized by
acctmerg(M).

Process accounting is performed by the ZEUS kernel. Upon
termination of a process, one record per process is written
to a file (normally /usr/adm/pacct). The programs in
acctprc(M) summarize this data for charging purposes;
acctcms(M) is used to summarize command usage. Current pro­
cess data may be examined using acctcom(l).

Process accounting and connect time accounting (or any
accounting records described in acct(5)) can be merged and
summarized into total accounting records by acctaerg (see
tacct format in acct(S)). Prtacct (see acctsh(M)) is used
to format any or all accounting records.

Acctdisk reads lines that contain user ID, login name, and
number of disk blocks, and converts them to total accounting
records that can be merged with other accounting records.

Acctdusg reads its standard input (usually from find /
-print) and computes disk resource consumption (including
indirect blocks) by login.

Accton alone turns process accounting off. If file is
given, it must bE~- the name of an existing file, to which the
kernel appends process accounting records (see acct(2) and
acct (5)) •

Bell 1

ACCT {M) Zilog A.CC'r { M)

Acctwtmp writes a wtmp(5) record to its standard output.
The record contains the current time, name, and line. If
line is omitted, a value is emitted that ~inb~rpreted by
other programs as a reboot. For more precise accounting,
the following are recommended for use in reboot and shutdown
procedures, respectively:

acctwtmp uname >>/usr/adm/wtmp
acctwtmp reason >>/usr/adm/wtmp

OPTIONS
-p file is the name of the password file. This option is

no~needed if the password file is /etc/passwd.

FILES

-u records consisting of those file names for which
acctdusg charges no one are placed in file {a potential
source for finding users trying to avoid disk charges).

/etc/passwd
/usr/lib/acct

/usr/adm/pacct
/usr/adm/wtmp

used for login name to user ID conversions
holds all accounting commands listed in
section M of this manual
current process accounting file
login/logoff history file

SEE ALSO

2

acctcom(M),
acctcon{M),
runacct{M).

acct{2), acct(5), utmp(5), acctcms(M),
acctmerg{M), acctprc{M), acctsh{M), fwtmp{M),

The PWB/ZEUS Accounting System in the ZEUS Utilities Manual

Sell

ACCTCMS (M) Zilog ACCTCMS {M)

NAME
acctcms
records

command summary from per-process accounting

SYNOPSIS
acctcms [options] files

DESCRIPTION
Acctcms reads one or more files, normally in the form
described in acct{S). It adds all records for processes
that executed identically-named commands, sorts them, and
writes them to the standard output, normally using an inter­
nal summary format.

OPTIONS
-a Print output in ASCII rather than in the internal sum­

mary format. The output includes command name, number
of times executed, total kcore-minutes, total CPU
minutes, total real minutes, mean size {in K), mean CPU
minutes per invocation, and "hog factor", as in
acctcom(M). Output is normally sorted by total kcore­
minutes.

-c Sort by total CPU time, rather than total kcore­
minutes.

-j Combine all
"***other".

commands invoked only

-n Sort by number of command inv·ocations.

once under

-s Any file names encountered hereafter are already in
internal summary format.

EXAMPLES
A typical sequence for performing daily command accounting
and for maintaining a running total is:

acctcms file ••• >today
cp total previoustotal
acctcms -s today previoustotal >total
acctcms -a -s today

SEE ALSO

1

acctcom(M), acct(2), acct(5), utmp{S), acct(M), acctcon{M),
acctmerg{M), acctprc(M), acctsh(M), fwtmp(M), runacct{M).

Bell 1

ACCTCOM(M) Zilog ACCTCOM (M)

NAME
acctcom - search and print process accounting file(s)

SYNOPSIS
acctcom [[options] [file]]

DESCRIPTION
Acctcom reads file, the standard input, or /~Jsr/adm/pacct,
in the form described by acct(5) and writes selected records
to the standard output. Each record represents the execu­
tion of one process. The output shows:

COMMAND NAME
USER
'rTYNAME
START TIME
J~ND TIME
!REAL (SEC)
CPU (SEC)
MEAN SIZE (K)

and optionally, F (the fork/exec flag: 1 for fork without
exec) and STAT(the system exit status).

The command name is prepended with a I if it was executed
with super-user privileges. If a process is not associated
with a known terminal, a ? is printed in the T1rYNAME field.

If no files are specified and if the standard input is asso­
ciated with a terminal or /dev/null (as is the case when
using & in the shell), /usr/adm/Picct is read, otherwise the
standard input is read. -- --

If any file arguments are given, they are read in their
respective order. Each file is normally read forward, i.e.,
in chronological order by process completion time. The file
/usr/adm/pacct is usually the current file to be examined; a
busy i::;ystem may need several files, in which case all but
the current will be found in /usr/adm/pacct?.

OPTIONS
-b Read backwards, showing latest commands first.

-C time

-d mm/dd

-e time

1

Show only those processes that exceed time that
indicates the total CPU time.

Any time arguments following this flag are
assumea---to occur on. the given month and day,
rather than during the last 24 hours. This is
needed for looking at old files.

Show only those processes that existed on or

Bell 1

ACCTCOM(M) Zilog ACCTCOM (M)

2

-f

-g group

-h

-H factor

-i

-k

-1 line

before time. Using the same time for both -s
and -E:! shows the processes that existed at time.

Print the fork/exec flag and system exit status
columns in the output.

Show only processes belonging to group. The
group may be designated by either the group ID
or group name.

Instead of mean memory size, show the fraction
of total available CPU time consumed by the pro­
cess during its execution. This "hog factor" is
computed as:

(total CPU time)/(elapsed time).

Show only processes that exceed factor, where
factor is the "hog factor" as explained in
option -h above.

Print columns containing the I/O counts in the
output.

Instead of memory size, show total
minutes.

Show only processes belonging to
/dev /~Line.

kcore-

terminal

-m Show mean core size (the default).

-n pattern Show only commands matching pattern that may be
a regular expression as in ed(l) except that +
means one or more occurrences.

-0 time

-r

-s time

-t

-u user

Show only those processes with operating system
CPU t:ime exceeding time.

Show CPU factor (user time/(system-time + user­
time) .

Show only those processes that existed on or
after time, given in the form hr:min:sec. The
:sec or :min:sec may be omitted.- -- --

Show separate system and user CPU times.

Show only processes belonging to user that may
be specified by: a user ID, a login name that is
then converted to a user ID, a I which desig­
nates only those processes executed with super­
user privileges, or ? which designates only

Bell 2

ACCTCOM(M) Zilog ACCTCOM (M)

FILES

-v

those processes associated with unknown user
IDs.

Exclude column headings from the output.

Listing options together has the ~ffect of a logical and.

/etc/passwd
/usr/adm/pacct
/etc/9roup

SEE ALSO
ps(l), su(l), acct(2), acct(S), utmp(5), acct(M),
acctcms(M), acctcon(M), acctmerg(M), acctprc(M), acctsh(M),
fwtmp(M), runacct(M).

C.IMITATION:S

3

Acctcom only reports on processes that have teirminated; use
ps(l) for active processes.

Bell 3

ACCTCON (M) Zilog ACCTCON (M)

NAME
acctcon - connect-time accounting

SYNOPSIS
acctconl [options]

acctcon2

DESCRIPTION
Acctconl converts a sequence of login/logoff records read
from its standard input to a sequence of records, one per
login session. Its input should normally be redirected from
/usr/adm/wtmp. Its output is ASCII, giving device, user ID,
login name, prime connect time (seconds), non-prime connect
time (seconds), session starting time (numeric), and start­
ing date and time.

Acctcon2 expects as input a sequence of login session
records and converts them into total accounting records ·(see
tacct format in acct(S)).

OPTIONS

1

-1 file
-wile is created to contain a summary of line usage

showing line name, number of minutes used, percentage
of total elapsed time used, number of sessions charged,
number of logins, and number of logoffs. This file
helps track line usage, identify bad lines, and find
software and hardware oddities. Both hang-up and ter­
mination of the login shell generate a logoff record,
so that the number of logoffs is often twice the number
of sessions.

-o file
~le is filled with an overall record for the account­

ing period, giving starting time, ending time, number
of reboots, and number of date changes.

-p Print input only, showing line name, login name, and
time (in both numeric and date/time formats).

-t Acctconl maintains a list of lines on which users are
logged in. When it reaches the end of its input, it
emits a session record for each line that still appears
to be active. It normally assumes that its input is a
current file, so that it uses the current time as the
ending time for each session still in progress. The -t
flag causes it to use the last time found in its input,
assuring reasonable and repeatable numbers for non­
current files.

Bell 1

ACCTCON(M) Zilog ACCTCON (M)

EXAMPLES
These commands are typically used as shown below. The file
ctmp is created only for the use of acctprc(M) commands:

acctconl -t -1 lineuse -o reboots <wtmp I sort +ln +2 >ctmp
acctcon2 <ctmp I acctmerg >ctacct

FILES
/usr/adm/wtmp

SEE ALSO
acctcom(M), acct(2), acct(S), utmp(5), acct(M), acctcms(M),
acctmerg(M), acctprc(M), acctsh(M), fwtmp(M), runacct(M).

LIMITATIONS

2

The line usage report is confused by date changes. Use
wtmpfix (see fwtmp(M)) to correct this situation.

Bell 2

ACCTMERG(M) Zilog ACCTMERG(M)

NAME
acctmerg - merge or add total accounting files

SYNOPSIS
acctmerg [-aiptuv] [file]

DESCRIPTION
Acctmerg reads its standard input and up to nine additional
files, all in the tacct format (see acct(S)), or an ASCII
version. It merges these inputs by adding records whose
keys (normally user ID and name) are identical, and expects
the inputs to be sorted on those keys.

OPTIONS
-a Produce output in ASCII version of tacct.

-i Input files are in ASCII version of tacct.

-p Print input with no processing.

-t Produce a single record that totals all input.

-u Summarize by user ID, rather than user ID and name.

-v Produce output in verbose ASCII format, with more pre­
cise notation for floating point numbers.

EXAMPLES
The following sequence is useful for making "repairs" to ~ny
file kept in this format:

acctmerg -v <filel >file2
edit file2 as desired

acctmerg --r-<file2 >filel

SEE ALSO

1

acctcom(M), acct(2), acct(S), utmp(S), acct(M), acctcms(M),
acctcon(M), acctprc(M), acctsh(M), fwtmp(M), runacct(M).

Bell 1

ACCTPRC (M) Zilog ACCT PRC (M)

NAME
acctprc - process accounting

SYNOPSIS
acctprcl [ctmp]

acctprc2

DESCRIPTION
Acctprcl reads input in the form described by acct(5), adds
login names corresponding to user IDs, then writes for each
process an ASCII line giving user ID, login name, prime CPU
time (tics), non-prime CPU time (tics), and mean memory size
(in 64-byte units). If ctmp is given, it is expected to
contain a list of login sessions, in the form described in
acctcon(M), sorted by user ID and login name. If this file
is not supplied, it obtains login names from the password
file~ The information in ctmp helps it distinguish among
different login names that share the same user ID.

Acctprc2 reads records in the form written by acctprcl, sum­
marizes them by user ID and name, then writes the sorted
summaries to the standard output as total accounting
records.

EXAMPLES
These commands are typically used as shown below:

acctprcl ctmp </usr/adm/pacct I acctprc2 >ptacct

FILES
/etc/passwd

SEE ALSO
acctcom(M), acct(2), acct(S), utmp(S), acct(M), acctcms(M),
acctcon(M), acctmerg(M), acctsh(M), fwtmp(M), runacct(M).

LIMITATIONS

1

Although it is possible to distinguish among login names
that share user IDs for commands run normally, it is diffi­
cult to do this for those commands run from cron(M), for
example. More precise conversion can be done by faking
log in sessions on the console via the acctwtntp program in
acct(M).

Bell 1

ACCTSH(M) Zilog ACCTSH(M)

NAME
acctsh - shell procedures for accounting

SYNOPSIS
,chargefee login-name number

ckpacct [blocks]

dodisk

last login

monacct number

nulladm file

prctmp

prdaily

prtacct file [heading]

runacct [rnmdd] [mmdd state]

shutacct [reason]

startup

turnacct [on I off I switch]

DESCRIPTION

1

Chargefee is invoked to charge number dollars to login-name.
A record is written to /usr/adm/fee, to be merged with other
accounting records during the-Ilight.

Ckpacct is initiatied via cron. It periodically checks the
size of /usr/adm/Eacct. If the size exceeds blocks, 1000 by
default, turnacct will be invoked with argument switch.

Dodisk is invoked by cron to perform the disk accounting
functions.

Last login is invoked
/usr/adm/acct/sum/loginlog,
whfCh each person togged in.

by
which

runacct
shows the

to update
last date on

Monacct should be invoked once each month or each accounting
period. Number indicates which month or period it is. It
creates summary files in /usr/adm/acct/fiscal and restarts
summary file in /usr/adm/acct/sum. Nulladm creates file
with mode 644 and insures owner is adJn. It is called~
lastlogin, runacct, and turnacct.

Bell 1

ACCTSH(M) Zilog ACCTSH(M)

FILES

2

Prctmp can be used to print the session
mally /usr/adm/acct/nite/ctmp created
acctcon (Mn-:- -- --- --- ---

record file
by acctconl

(nor­
(see

Prdaily is invoked by runacct to print a report of the pre­
vious day's accounting. The report resides in
/usr/adm/acct/sum/rprt xxxx where xxxx is the month and day
of-the report-.-The daily accounting reports may be printed
with the command:

•cat /usr/adm./acct/sum/rprt*

as often as desired and they must be explicitly deleted when
no longer needed.

Prtacct can be used to format and print any total accounting
file.

Runac•:::t performs the accumulation of connect, process, fee,
and disk accounting on a daily basis. It also creates sum­
maries of command usage. For more information, see
runacet (M) .

Shutac:!ct should be invoked during a system shutdown to turn
process accounting off and append a 11 reae;on 11 record to
/usr/adm/wtmp. Startup should be called by rc::(B) to turn
theac::counting on whenever the system is brought up.

Turnacct is an interface to accton {see acct(M)) to turn
proceBs accounting on or off. The switch argument moves the
current /usr /adm/,acct to the next fn~e name in
/usr/adm/pacctCT-9 , turns accounting off, then turns it
back cm again. -This procedure is called by ckpacct via the
cron to keep the pacct file size smaller.

/usr/adm/fee

/usr /aldrn/pacct

/usr/adm/pacct[l-9]

/usr /a.drn/wtmp

/usr /a.drn/wtmp[1-9]

/usr/adm/acct/nite

/usr/lib/acct

/usr/adrn/acct/sum

accumulator for fees

current file for per-process accounting

used if pacct gets large and during
execution of daily accounting procedure

login/logoff summary

used during daily accounting procedure

working direqtory

holds all accounting corr~ands listed in
sub-class M of this manual
summary directory, should be saved

Bell 2

ACCTSH(M) Zilog ACCTSH(M)

SEE ALSO
acct(M), acctcms(M), acctcom(M), acctcon(M), acctmerg(M),
acctprc(M), fwtmp(M), runacct(M), acct(2), acct(5), utmp(S).

3 Bell 3

ADDUSER(M) Zilog ADDUSER(M)

NAME
adduser - add a new user to the system

SYNOPSIS
add user

DESCRIPTION

FILES

1

This shell procedure aids the system administrator in adding
a user to the system. It updates /etc/passwd and /etc/group
and creates various directories and--:ETles for the new user.
Adduser is interactive and prompts for all needed informa­
tion. The new user is assigned a uid that is the least used
uid already in /etc/passwd.

Adduser prompts for the new user's name, home directory
name, group at login, and other group names the user is also
belong to. The home directory name must be the full, expli­
cit pathname. The list of additional groups is used by
newgrp(l). An example session of adduser is:

New user's name: doug
Scanning for a uid number.
Home directory: /z/doug
Login shell (/bin/csh is the default): <er>
Default group at login ('other' is the default): <er>

Enter groups OTHER THAN the default group that 'doug'
should belong to. Enter one group name per line, with
a control-d to end. If the user should belong only to
her/his default group, just type control-d to the
question. Group: END

User:
Uid:
Gid:
Dir:
Login shell:

doug
76
1
/z/doug
/bin/csh

Okay to add (yes or no)? yes
doug: Added
New password:
Retype new password:

In n~sponse to the prompt "Okay to add (yes 01: no) ? ", if
anything other than a yes or a y is typed it will be inter­
preted an a no response.

/etc/group
/etc/passwd

group file
password file

Zilog 1

ADDUSER(M) Zilog ADDUSER(M)

/usr/spool/mail directory in which mailbox is created

SEE ALSO
mkdir(l), passwd(l), rmuser(M).

DIAGNOSTICS
Invalid inputs are rejected and re-requested.

LIMITATIONS

2

There is a tiny time window in which two simultaneously run­
ning copies of adduser might interact to their mutual harm.
No check is made on the succ~ss of giving the new user an
initial password. If the. password initialization fails,
(e.g. the password is not entered identically in response to
the two requests from passwd(l) for the new password) the
new user is left without a password, a possible security
flaw.

Adduser is a C-shell script and is slow.

Zilog 2

BACKEND{M) Zilog Bl-\CKEND{M)

NAME
lp, text - service line printer spooler print requests

SYNOPSIS
/usr/lib/lp [options]
/usr/lib/text [options]

DESCRIPTION

1

These programs are used by the spooling system to do the
actual copy of data from a print request to a printer dev­
ice. Lp is used to print requests on line printe!rs. Text is
used tc) print requests on text quality printers.

Each backend is started by dqueuer(M). The way backends are
started is controlled by the configuration file {see the
System Adminstrators Manual, Section 7) • A bac~:end program
inherits three open file descriptors from the dqueuer: RFFD
{read file), SFFD {device) and STATUSFD (status log).
Actual definitions of these variables can be found in
/usr/include/spool.h. The lp and text backends copy data
from file RFFD to file SFFD with minimal processing of
input. Statuses are written to file STATUSFD.

In addition to printing, the backends perform functions
required by the specific device being used. For instance,
lp filters backspaces and text can perform stty(l) calls
before printing. They also provide banner pages with
appropriate information.

When invoked, backends are passed a parameter list generated
by dqueuer(M). This list contains options generated by
dqueuer(M) and those options that may have been specified in
the configuration file. The options that dqueu.er generates
and that both backends recognize are:

-B Indicates that the file the dqueuer was to print could
not be found. In this case, RFFD is not open and should
not be used. This option is used to generate banner
pages that say the file could not be found, so it won't
appear that the file disappeared.

-c n
Indicates that the file must be printed multiple times.
The backend should create n copies of the output.

-d dest
Used· in a destination portion of the banner page. Dest is
a string of no other importance ~o the backend.

-f filename
Filename, printed on the banner page.

Zilog 1

BACKEND(M) Zilog BACKEND(M)

-F from
Indicates a 'from' string, for use on the banner page.

-s spool time
A string in ctime(3) format, indicating when the file was
spooled to be printed. This value is printed on banner
page.

-t title
A string used as a title on banner pages.

The backend also looks in a file called '/etc/sitefile' to
find a string to be printed near the page breaks on the
banner page. It uses the string of characters on the first
line of this file, up to the first white space. If this
file does ·not exist, an appropriate default is used.

The text backend accepts one additional option, that can
only specified through the configuration file. Its descrip­
tion follows:

-T [stty parameters]
Set terminal parameters. When a tty device is used as a
printer, it is disabled in the /etc/inittab file. When
this is done, the device is closed except when being used
to print upon. This causes ZEUS to reset all terminal
characteristics. The -T option is used to set these
characteristics so that printing can occur. The quoted
string is passed, unchanged except for removal of the
quotes, to stty(l). Thus, in the configuration file the
line

Dl,R,/dev/tty0,/usr/lib/text -T "1200"

would cause device 1 on the most recent queue to use stty
to set /dev/tty0 to 1200 BAUD before being used.

SEE ALSO
dqueuer(M)

2 Zilog 2

BOOT(M) Zilog BOOT(M)

NAME
boot - secondary bootstrapper

SYNOPSIS
boot

DESCRIPTION
Boot is invoked by the primary bootstrapper. For the Model
20, the primary bootstrap resides on block 0 (the boot
block) of the disk. For other models the primary
bootstrapper resides in PROM on the CPU board.

Its primary function is to load the kernel from disk into
memory during normal bootstrap operations, but it is also
capable of loading and executing a variety of stand-alone
programs from either disk or cartridge tape.

Boot must reside in the root of the first file system on the
disk~ As currently configured, this file system gets
mounted on /usr, so the fully-qualified pathname of the pri­
mary bootstrapper is /usr/boot.

A new secondary bootstrapper can be made using sysgen(M).

FILES
/usr/be>ot program

SEE ALSO
init(M).

1 Zilog 1

CHMOG{M) Zilog CHMOG(M}

NAME
chmog, chog - change mode, owner and group of a file

SYNOPSIS
chmog octal-mode user group file

chog user group f i.le

DESCRIPTION
Chmog will change the mode, owner and group of the listed
files to octal-mode, user, and group respectively. Chog
will change the owner and group of the listed files. The
user and group may be specified by either the user id, group
id or the user name or group name.

FILES
/etc/passwd
/etc/group
/etc/chmog
/etc/chog

SEE ALSO
chmod(l}, chmod(2), chgrp(l), chown(M).

1 Zilog 1

CHOWN(M) Zilog CHOWN (M)

NAME
chown, chgrp - change owner or group

SYNOPSIS
chown owner file

chgrp group file

DESCRIPTION
Chown changes the owner of the files to owner. The owner
may be either a decimal UID or a login name found in the
password file.

Chgrp changes the group-ID of the files to ~~· The group
may be either a decimal GID or a group name found in the
group-ID file.

FILES
/etc/passwd
/etc/qroup
/etc/chown
/etc/chgrp

SEE ALSO

user names and user ID numbers
group names and ID numbers
the program
the program

chown(2), passwd(S), group(S), chmog(M).

1 Bell 1

CHROOT(M) Zilog CHROOT(M)

NAME
chroot - change root directory for a command

SYNOPSIS
chroot newroot command

DESCRIPTION
The command is executed relative to the new root. The mean­
ing of any initial slashes (/) in path names is changed for
command and any of its children to newroot. The initial
working directory is newroot. The new root path name is
always relative to the current root: even if a chroot is
currently in effect, the newroot argument is relative to the
current root of the running process.

This command is restricted to the super-user.

EXAMPLES
The command syntax:

chroot newroot command > newf ile

creates the file newfile relative to the original root, not
the new one.

FILES
/etc/chroot

SEE ALSO
chdir (2).

LIMITATIONS

the program

Exercise extreme caution when referencing special files in
the new root file system.

1 Bell 1

CLRI(M) Zilog CLRI(M}

NAME
clri - clear i-node

SYNOPSIS
clri filesystem i-number

DESCRIPTION

FILES

Clri writes zeros on the i-nodes with the decimal i-numbers
on the filesystem. After clri, any blocks in the-affected
file will show up as 'missing' in an icheck(M) of the
f ilesystem.

Read and write permission is required on the specified file
system device. The i-node becomes allocatable.

The primary purpose of this routine is to remove a file
which for some reason appears in no directory. If it is
used to zap an i-node which does appear in a directory, care
should be taken to track down the directory entry and remove
it first. Otherwise, when the i-node is reallocated to some
new file, the old entry will still point to that file. At
that point removing the old entry will destroy the new file.
The new entry will again point to an unallocated i-node, so
the whole cycle is likely to be repeated again and again.

/etc/clri program

SEE ALSO
icheck(M).

LIMITATIONS
If the file is open, clri is likely to be ineffective.

1 Bell 1

CRON (M) Zilog CRON (M)

NAME
cron - clock daemon

SYNOPSIS
cron

DESCRIPTION
Cron executes commands at specified dates and times. It
follows the instructions in /usr/lib/crontab. Because cron
never exits, it should be executed only once. This is best
done by running cron from the initialization process through
the file /etc/re (see init(M)).

The file crontab consists of lines of six fields each. The
fields are separated by spaces or tabs. The first five are
integer patterns specifying the minute (0-59), hour (0-23),
day of the month (1-31), month of the year (1-12), and day
of the week (0-6, with 0=Sunday). Each of these patterns
can contain:

a number in the (respective) range indicated above;
two numbers separated by a minus (indicating an
inclusive range);
a list of numbers separated by commas (meaning all of
these numbers); or
an asterisk (meaning all legal values).

The sixth field is a string that is executed by the shell at
the specified time(s). A % in this field is translated into
a new-line character. Only the first line (up to a % or the
end of line) of the command field is executed by the shell.
The other lines are made available to the command as stan­
dard input.

Cron examines crontab once a minute to see if it has -----changed; if it has, cron reads it. It takes only a minute
for entries to become effective.

FILES
/usr/lib/crontab
/usr/lib/cronlog

SEE ALSO
sh(l), init(M).

DIAGNOSTICS
A history of all actions by cron
/usr/lib/cronlog.

LIMITATIONS

are recorded in

Cron reads crontab only when it has changed, but it reads
the in-core version of that table once a minute. A more

1 Bell 1

CRON (M) Zilog CRON (M)

2

efficient algorithm could be used. The overhead in running
cron is about one percent of the CPU, exclusive of any com­
mands executed by cron.

Bell 2

DATE (M) Zilog DATE (M)

NAME
date - print and set the date

SYNOPSIS
date -u] [!nmddhhmm [IT] [+format

DESCRIPTION

1

If the -u option is given, GMT time is printed.

If no argument is given, or if the argument begins with +,
the current date and time are printed. Otherwise, the
current date is set. The first mm is the month number; dd
is the day number in the month; hh is the hour number (24
hour system); the second mm is the minute number; IT is the
last 2 digits of the yearnumber and is optional. For exam­
ple:

date 10081~04 5

sets the date to Oct 8, 12:45 AM. The current year is the
default if no year is mentioned. The system operates in
GMT. Date takes care of the conversion to and from local
standard and daylight time.

If the argument begins with +, the output of date is under
the control of the user. The format for the output is simi­
lar to that of the first argument to printf (3). All output
fields are of fixed size (zero padded if necessary). Each
field descriptor is preceded by % and will be replaced in
the output by its corresponding value. A single % is
encoded by %%. All other characters are copied to the out­
put without change. The string is always terminated with a
new-line character.

Field Descriptors:
n insert a new-line character
t insert a tab character
m month of year - 01 to 12
d day of month - 01 to 31
y last 2 digits of year - 00 to 99
D date as mm/dd/yy
H hour - 00 to 23
M minute - 00 to 59
S second - 00 to 59
T time as HH:MM:SS
j Julian date - 001 to 366
w day of week - Sunday = 0
a abbreviated weekday - Sun to Sat
h abbreviated month - Jan to Dec
r time in AM/PM notation

Bell 1

DATE (M) Zilog

EXAMPLE
date '+DATE: %m/%d/%y%nTIME: %H:%M:%S'

would generate as output:

FILES

DATE: 08/01/76
TIME: 14:45:05

/bin/date the program

/usr/adm/wtmp to record time-setting

/dev/kmem
SEE ALSO

date(l]1, time(2), ctime(3), utmp(S)
DIAGNOSTICS

DATE (M)

No permission if you aren't the super-user and you try to
change the date.

2

bad conversion if the date set is syntactically incorrect.

bad format character if the field descriptor is not recog­
nizable;:--

Bell 2

DATEM(M) Zilog DATEM{M)

NAME
datem - friendly date and time setting

SYNOPSIS
datem

DESCRIPTION
Datem prompts for and sets the date and time.

Enter the date in either of the popular forms: dd-mo-IT_,
where dd is the day of the month, mo is the conventional
abbreviation for the month, and IT is the last two digits of
the year; or mm/dd/yy, where mm is the mm'th month of the
year, dd is the day of the month-,-and yy is the last two
digits of the year. Thus January 4, 1982, can be entered
either as 4-Jan·-82 or 1/ 4/82.

Enter the time using the 24-hour clock in
{Time is local time.) Thus 3:31 P.M. is
0:00, 8 a.m. is 08:00.

the form hh:mm.
15:31, midnight is

All impossible and some unlikely entries are rejected. An
empty date entry sets the time without changing the date.

If datem recei v•~S no reply in 5 minutes, it times out and
exits.

Datem is normally invoked by including it in /etc/re csh,
the ZEUS startup file.

FILES
/etc/datem the program

SEE ALSO
date { 1) , re { M) .

DIAGNOSTICS
Not superuser i:E anyone but superuser attempts to change
date and time.

LIMITATIONS
Doesn't review date or time.

l Zilog 1

DCHECK (M) Zilog DC HECK (M)

NAME
dcheck - file system directory consistency check

SYNOPSIS
de heck -i numbers] [f i lesystem]

DESCRIPTION
Dcheck reads the directories in a file system and compares
the link-count in each i-node with the number of directory
entries by which it is referenced. If the file system is
not specified, a set of default file systems is checked.

The -i flag is followed by a list of i-numbers; when one of
those i-numbers turns up in a directory, the number, the i­
number of the directory, and the name of the entry are
reporb:!d.

The program is fastest if the raw version of the special
file is used, since the i-list is read in large chunks.

FILES
/etc/dcheck program

SEE ALSO
filsys (5), clri (M), icheck(M), ncheck(M).

DIAGNOSTICS
When a file turns up for which the link-count and the number
of directory entries disagree, the relevant facts are
reported. Allocated files which have 0 link-count and no
entries are also listed. The only dangerous situation
occurs when there are more entries than links; if entries
are removed, so the link-count drops to 0, the remaining
entries point to thin air. They should be removed. When
there are more links than entries, or there is an allocated
file with neither links nor entries, some disk space may be
lost but the situation will not degenerate.

LIMITATIONS

l

Since dcheck is inherently two-pass in nature, extraneous
diagnostics may be produced if applied to active file sys­
tems.

Bell 1

DEVNM (M) Zilog DEVNM(M)

NAME
devnm - device name

SYNOPSIS
devnm [names JI

DESCRIPTION
Devnm identifies the special file associated with the
mounted file system where the argument name resides.

This command is most commonly used by /etc/re csh to con­
struct a mount table entry for the root device.

EXAMPLE
The command:

/etc/devmn I

produces

za2 I

if I is mounted on /dev/zd2.

FILES
/dev/zd*
/dev/md*
/dev/smd*
/etc/mnttab
/etc/devnm

SEE ALSO
setmnt(M).

1

program

Bell 1

DF(M) Zilog DF(M)

NAME
df - report nu~Jer of free disk blocks

SYNOPSIS
df [-t.] [-f] [file-systems]

DESCRIPTION
Df prints out the number of free blocks and free i-nodes
available for on-line file systems by examininig the counts
kept in the super-blocks; file-s7stems may be specified
either by device name (e.g.:-Jdev zdl) or by mounted direc­
tory name (e.g., /usr). If the-file-systems argument is
unspecified, the free space on all of the mounbed file sys­
tems is printed.

The -t flag causes the total allocated block figures to be
reported as well.

If the ·-f flag is given, only an actual count of the blocks
in the free list is made (free i-nodes are not reported).
With this option, df will report on raw devices.

FILES
/dev/zd,°"
/dev/md~~
/dev/smd*
/etc/mnttab

SEE ALSO
fsck(l), filesys(S), mnttab(S).

1. Bell 1

DOWN (M) Zilog DOWN (M)

NAME
down - take the system down

SYNOPSIS
down dtime]btime]

DESCRIPTION
Down is a Shell script that can be used to take the system
down in an orderly manner.

The arguments, dtime and btime, can be used to specify the
time, in minutes, until system shutdown and the time between
warning messages, respectively. If these arguments are not
specified the user is prompted for them.

At the appropriate times a message is sent to all logged in
users telling them how many minutes until system shutdown.
When the total time for system shutdown has elapsed all sys­
tem buffers are flushed and a kill -1 1 is issued. This is
done by invoking halt(M).

A line is added to the m~ssage-of-the-day file, saying that
the system will be taken down shortly. The previous con­
tents of the motd file are saved to be restored after the
system has been halted.

RESTRICTIONS

FILES

This command will work only if issued by Superuser. Down
will not let you take the system down any sooner than 5
minutes from the current time. If you specify a time until
shutdown that is less than 5 minutes down will assume 5
minutes, and tell you so. If you want to take the system
down now, but in an orderly manner, use halt(M).

/etc/motd message of the day file

/etc/motd.save message of the day file (saved)

SEE ALSO
kill(l), halt(M).

1 Zilog l

DQUEUER(M) Zilog DQUEUER(M)

NAME
dqueuer - process and remove print queue command requests
from n~q

SYNOPSIS
dqueuer [-rnk]

DESCRIPTION

1

Dqueuer takes requests from nq(l) and xq(M) and prints files
on a set of shared devices. It communicates with nq and xq
through signals and sets of control files. Dqu~mer is meant
to run at all times and is usually initiated at system boot
time through /etc/re.

All the devices under the control of dqueuer arE! defined by
the system administrator in /~/spool/queuer/config. (See
Section 7 of the System Administrator Manual.)

Dqueuer checks to see if the active configuration file,
/usr/spool/queuer/activeconfig, exists or if the -r option
(rereacrr-Ts set. In either case, it parses the raw confi­
guraticm file, /usr/spool/queuer/config, and creates the
active config file.

The active configuration file contains the same information
as the configuration file in a binary, machine convenient
format and also includes the pid of dqueuer if it is run­
ning. It is the active configuration file that n.q and xq use
to process their requests.

If the dqueuer is already running when the -r option is
given, the new process will signal the previous dqueuer and
exit immediately. The signal will cause the current dqueuer
process to reparse the configuration file and create the
active configuration file.

The -n option (no execute) can be used to print a summary of
the configuration file, to check for errors, without actu­
ally changing the active configuration file and without
bringing up the dqueuer.

The -k option kills the dqueuer, although outstanding back­
ends will finish their current file.

Dqueuer receives requests for service from nq and xq. These
programs create files in the directory
/usr/spool/queuer/requestdir with the appropriate informa­
tion, ru1d then send a signal to dqueuer. These files contain
the information neccessary for proc~ssing print requests.

Upon receipt of a signal from either nq or xq, dqueuer wakes
up and processes any outstanding requests it finds in the

Zilog 1

DQUEUER(M) Zilog DQUEUER(M)

FILES

request directory.

To actually print files, dqueuer must be supplied with a set
of 'backend' programs that are specifically written for each
device to be used. The names of these backends are supplied
to dqueuer through the configuration file. Two are supplied
with the queueing package, /usr/lib/lp for line printers and
/usr/lib/text for text quality typewriter devices.

/usr/spool/queuer/config
/usr/spool/queuer/activeconfig
/usr/spool/queuer/statusdir
/usr/spool/queuer/requestdir
/tmp/queuer
/usr/spool/queuer/logfile

SEE ALSO
nq (1) , xq (1) , lp (M) , spool (7) , xq (M) •

2 Zilog 2

DUMP(M) Zilog DUMP(M)

NAME
dump, sdump - incremental file system dump

SYNOPSIS
dump

[key [argument] [

DESCRIPTION

KEYS

1

Dump copies to magnetic tape all files changed after a cer­
tain date in the filesystem. Sdump is the segmented version.
It allows the 9 track tape drive to go into a higher rate of
reading and writing.

The default
/dev/dumpdev
default.--

destination device is /dev/dumpdev. If
does not exist, /dev/rct0 is used for the

Always perform dumps on quiescent filesystems. (Dumping
active f ilesystems may lead to unfortunate results upon res­
tor.)

The ~ey .specifies the date and other options about the dump.

a If the dump will span more than one tape, then dump
will abort before any data has been dumped and print a
mesi:;age to this effect onto the standard output device.

b Allow specification of blocksize to make the tape.

f Place the dump on the next argument file instead of
/de~~/ dumpdev

h The next argument is taken as a user comment and is
written onto the dump-tape header. 394 characters are
allowed for this comment.

n The next argument is taken as the filesystem name being
dumped and is is written onto the dump-tape header. 30
characters are allocated for this name.

S rrhe next argument is the length Of the tape in feet I
default is 450 feet for cartridge tape and 2400 feet
for mag tape.

u If the dump completes successfully, write the date of
the beginning of the dump on. file '/ etc/dda.te'. This
file records a separate date for each filesystem and
each dump level.

0-9 This. number is the 'dump level'. All files modified

Bell 1

DUMP(M) Zilog DUMP(M)

since the last date stored in the file '/etc/ddate' for
the same f:ilesystem at lesser levels will be dumped.
If no date is determined by the level, the beginning of
time is as:sumed; thus the option 0 causes the entire
filesystem to be dumped.

If no arguments are given, the key is assumed to be 9u and
the filesystem name and comment fields will contain nulls.
The tape length will default to 450 feet.

EXAMPLES
Start with a full level 0 dump

dump 0u filesys

Next, periodic level 9 dumps should be made on an exponen­
tial progression of tapes. (Sometimes called Tower of Hanoi
- 1 2 1 3 1 2 1 4 ... tape 1 used every other time, tape 2
used every fourth, tape 3 used every eighth, etc.)

dump 9u /dev/filesys

When the level 9 incremental approaches a full tape a level
1 dump should be made.

dump lu /dev/filesys

After this, the exponential series should progress as unin­
terrupted. These level 9 dumps are based on the level 1
dump which is based on the level 0 full dump. This progres­
sion of levels of dump can be carried as far as desired.

FILES
/etc/ddate: record dump dates of filesystem/level.

SEE ALSO
dumpdir(M), restor(M).

LIMITATIONS

2

Read errors on the filesystem are ignored.
the magtape are usually fatal. When
filesystem, always use the same name for
reads the /etc/ddate file to determine the
system was dumped, it considers '/dev/rzd0'
two different filesystems, for example.

Bell

Write errors on
doing a dump of a
it . When dump
last date a file

and '/dev/zd0'

2

FSCK (M) Zilog FSCK (M)

NAME
fsck - file system consistency check and interactive repair

SYNOPSIS
fsck [[-fnsSty] filesystem]

DESCRIPTION

1

Fsck audits and interactively repairs inconsistent condi­
tions for th~ named filesystems. If a file system is con­
sistent then the number of files, number of blocks used, and
number of blocks free are reported. If the file system is
inconsistent the operator is prompted for concurrence before
each correction is attempted. Most corrections lose data;
all losses are reported. The default action for each
correction is to wait for the operator to respond 'yes' or
'no'. Without write permission fsck defaults to -n action.

If no filesystems are given to fsck then a default list of
file systems is read from the file /etc/checklist.

Inconsistencies checked are as follows:

1. Blocks claimed by more than one inode or the free list.

2. Blocks claimed by an inode or the free list outside the
range of the file system.

3. Incorrect link counts.

4. Size checks:
Incorrect number of blocks in file.
Directory size not a multiple of 16 bytes.

5. Bad inode format.

6. Blocks not accounted for anywhere.

7. Directory checks:
Discrepency between number of directory entries and
inode link counts
Inode number out of range.

8. Super Block checks:
More than 65536 inodes.
More blocks for inodes than there are in the file sys­
tem.

9. Bad free block list format.

10. Total free block and/or free inode count incorrect.

Zilog 1

FSCK(M) Zilog FSCK{M)

Orphaned files and directories (allocated but unreferenced)
are, with the operator's concurrence, reconnected by placing
them in the "lost+found" directory. The name assigned is
the inode number. The only restriction is that the direc­
tory "lost+found" must preexist in the root of the filesys­
tem being checked and must have empty slots in which entries
can be made. This is accomplished by making "lost+found",
copying a large number of files to the directory, and then
removing them (before fsck is executed). (See the System
Administrator Manual for more information about making
"lost+found" directories.)

Checking the raw device is almost always faster.

OPTIONS
-f Echoes the output from the command into /tmp/fsck.err.

This option does not work if the filesystem being
fscked is /tmp or if /tmp isn't mounted.

2

-n

-s

Assume a no response to all questions.

Ignore the actual free list and (unconditionally) con­
struct a new one by rewriting the super-block of the
file system. The file system should be unmounted while
this is done, or extreme care should be taken that the
system is quiescent and that it is rebooted immediately
afterwards. This precaution is necessary so that the
old, bad, in-core copy of the superblock will not con­
tinue to be used, or written on the file system.

The free list can be created with optimal interleaving
according to the specification :

-sc:s space free blocks s blocks
cylinders of c blocks each.

apart in

If c:s is not given, the values used when the filesys­
tem- was created are used. If these values were not
specified, then £=72, ~=9 is assumed.

-s Conditionally reconstruct.the free list. This option
is like -s except that the free list is rebuilt only if
there were no discrepancies discovered in the file sys­
tem. It is useful for forcing free list reorganization
on uncontaminated file systems. -S forces -n.

-t If fsck cannot obtain enough memory to keep its tables,
it uses scratch files. If the -t option is specified,
the file named in the next argument is used as the
scratch file. Without the -t option, fsck prompts if
it needs a scratch file. The file should not be on the

Zilog 2

FSCK (M) Zilog FSCK (M)

file system being checked, and if it is not a special
file or did not already exist, it is removed when fsck
completes.

-y Assume a yes response to all questions.

FILES
/etc/checklist

contains default list of file systems to check.

/etc/fsck the program

SEE ALSO
dcheck(M), icheck(M), filesys(S).

LIMITATIONS
!node numbers for the "dot" directory, "
"parent" directory, " " in each directory
checked for validity.
The -b option of icheck(M) should be available.

3 Zilog

" and the
should be

3

FWTMP (M) Zilog FWTMP (M)

NAME
fwtmp, wtmpfix - manipulate wtmp records

SYNOPSIS
fwtmp [-ic]
wtmpf ix [f i les.J

DESCRIPTION
Fwtmp reads from the standard input and writes to the stan­
dard output, converting binary records of the type found in
wtmp to formated ASCII records. The ASCII version is useful
to enable editing, via ed(l) ,. bad records or general purpose
maintenance of the file. Wtmpfix examines the standard
input or named files in wtmp format, corrects the time/date
stamps to make the entrie.s consistent, and writes to the
standard output. A - can be used in place of files to indi­
cate the standard input. If time/date corrections are not
made, acctconl will fault when it encounters certain date
change records.

Each time the date is set while operating in multi-user
mode, a pair of date change records are written to
/~/adm/wtmp. The first record is the old date denoted by
in the name field. The second record specifies the new date
and is denoted by a { in the name field. Wtmpfix uses these
records to synchronize all time stamps in the file.

OPTIONS

FILES

-ic used to denote that input is in ASCII form, and output
is to be written in binary form.

/usr/adm/wtmp
/usr/include/utmp.h

SEE ALSO

1

acctcom(M), acct(2), acct(S), utmp(S), acct(M), acctcms(M),
acctcon(M), acctmerg(M), acctprc(M), acctsh(M), runacct(M).

Bell 1

GETTY (M) Zilog GETTY(M)

NAME
GETTY - set the modes of a terminal

SYNOPSIS
GETTY name type delay

DESCRIPTION

1

GETTY is normaLly invoked by INIT(M) as the first step in
allowing users to login to the system. Lines in
/etc/inittab tell INIT to invoke GETTY with the proper argu­
ments-.---

Name should be the name of a terminal in /dev (e.g., tty93);
type should be a single character chosen from -, B, 1, 2, 3,
4, 5, 6, or 7 (may vary locally) which selects a speed table
in GETTY, or !, which tells GETTY to update /etc/utmp and
exit; delay is relevant for dial-up ports only. --yt----speci­
fies the-t°ime in seconds that should elapse before the port
is disconnected if the user does not respond to the Zeus
login: request ..

First, GETTY types the Zeus login: message. The Zeus login:
message depends on the speed table being used, and may
include the characters that put the GE TermiNet 300 terminal
into full-duplex, take the DASI terminals out of the plot
mode, or put a TELETYPE(Reg.) Model 37 into full-duplex. If
the terminal type as given in /etc/ttytype can have its
screen cleared, the Zeus login: message will also contain
the characters that will clear the screen. The Zeus portion
of the login prompt, is obtained from the nodename field of
uname(2).

Then the user's login name is read, a character at a time.

While reading, GETTY tries to adapt to the terminal, speed,
and mode that is being used. If a null character is
received, it is assumed to be the result of a "break"
("interrupt"). The speed is then changed based on the speed
table that GETTY is using, and Zeus login: is typed again.
Subsequent breaks cause a cycling through the speeds in the
speed table being used.

The user's login name is terminated by a new-line or
carriage-return character. The latter results in the system
being set to treat carriage returns appropriately. If the
login name contains only upper-case alphabetic characters,
the system is told to map any future upper-case characters
into the corresponding lower-case characters.

Finally, login(l) is called with the user's login name as
argument.

Bell 1

GET'rY (M) Zilog GETTY (M)

FILES

Speed sequences for the speed tables:

Bll0; for 110 baud console TTY.
9 B300-Bl200-Bl50-6110; normal dial-up sequence

starting at B300. Useful as a default for dialup
lines accessed by a variety of terminals.

1 Bl50; no sequence. Optimized for a 150-baud Tele­
type model 37.

2 B9600; no sequence. Intended for an on-line 9600-
baud terminal.

3 Bl200-B300; normal dial-up sequence starting at
Bl200. Useful with Bell 212 datasets where most
terminals run at 1200-baud.

4 B300; for 300-baud terminals similar to the LA36
DECwriter.

5 B300-Bl200; normal dial-up sequence starting at
B300.

6 B2400; no sequence.
7 EXTA (19200); no sequence.

/etc/GETTY The program

SEE ALSO

BUGS

2

login(l), tty(4), inittab(S), utmp(5), INIT(M), uname(2),
ttytype(S).

Ideally, the speed tables would be read from a file, not
compiled into GETTY.

Bell 2

HALT (M) Zilog HALT (M)

NAME
halt - take the system down

SYNOPSIS
halt

DESCRIPTION

FILES

Halt is a Shell file to halt the system promptly. It gives
a 30-second warning, then system buffers are flushed and a
kill -1 1 is issued. After this has been done, halt
replace~s /etc/motd with /etc/motd.save if that file exists.

This command will work only if it is issued by Superuser.

/etc/halt the program

/etc/motd message of the day file

/etc/motd.save message of the day (saved) file

SEE ALSO
down (M) , w a 11 (M) , k i 11 (1) •

1. Zilog 1

ICHECK (M) Zilog ICHECK (M)

NAME
icheck - file system storage consistency check

SYNOPSIS
icheck -s] -b numbers] f ilesystem

DESCRIPTION
!check examines a file
blocks, and compares
maintained on the file
includes a report of

system, builds a bit map of used
this bit map against the free list

system. The normal output of icheck

The total number of files and the numbers of regular,
directory, block special and character special files.

The total number of blocks in use and the numbers of
single-, double-, and triple-indirect blocks and direc­
tory blocks.

The numbE~r of fre-e blocks.

The number of blocks missing; i.e. not in any file nor
in the free list.

The -s option causes icheck to ignore the actual free list
and reconstruct a new one by rewriting the super-block of
the file system. The file system should be dismounted while
this is done~; if this is not possible (for example if the
root file system has to be salvaged) care should be taken
that the syste~m is quiescent and that it is rebooted immedi­
ately afterwards so that the old, bad in-core copy of the
super-block will not continue to be used. Notice also that
the words in the super-block which indicate the size of the
free list and of the i-list are believed. If the super­
block has been curdled these words will have to be patched.
The -s option causes the normal output reports to be
suppressed.

Following the -b option is a list of block numbers; whenever
any of the named blocks turns up in a file, a diagnostic is
produced.

!check is faster if the raw version of the special file is
used, since it reads the i-list many blocks at a time.

FILES
/etc/icheck the program

Default file systems vary with installation.

SEE ALSO
filsys(S), clri(M), dcheck(M), ncheck(M).

1 Bell 1

IC HECK (M) Zilog ICH8CK (M)

DIAGNOSTICS
For duplicate blocks and bad blocks (which lie outside the
file system) icheck announces the difficulty, the i-number,
and the kind of block involved. If a read error is encoun­
tered, the block number of the bad block is printed and
icheck considers it to contain 0.

'Bad freeblock' means that a block number outside the avail­
able space was encountered in the free list.

'n dups in free' means that n blocks were found in the free
lTst which duplicate blocis either in some file or in the
earlier part of the free list.

LIMITATIONS

2

Since icheck is inherently two-pass in nature, extraneous
diagnostics may be produced if applied to active file sys­
tems.

It believes even preposterous super-blocks and consequently
can get core images.

Bell 2

ICPCNTRL(M) Zilog ICPCNTRL (M)

NAME
icpcntrl - start and stop ICP's and their protocols

SYNOPSIS
icpcntrl icp:fl:
[protocol:port~]

[-start [protocol:ports] [-stop

DESCRIPTION
Icpcntrl is used to control the running of an ICP 8/02 and
its protocols. If icpcntrl is invoked with only the icp
number, information is given about the protocols that are
currently active on the various ports.

When giving an protocol name, the name must be the "'offi­
cial' name by which the protocol is known (the name it was
loaded by, using icpload(M)). Currently the offical proto­
col names are:

itty Intelligent terminal protocol

OPTIONS
-start [protocol:ports]

Start an ICP 8/02 or an indicated protocol. If the
start option is given with no arguments, then only the
ICP is started.
When the information for the protocol and ports are
given, they have the following meanings:

protocol

ports

This is the "'official' name by which the protocol
is known.

This field gives the ports the indicated protocol
should be started on. The ports are given as a
range of ports or a comma separated list. An ICP
has 9 ports which range from 0 to 8.

-stop [protocol:ports]
Stop an ICP 8/02 or an indicated protocol. If the stop
option is given with no arguments, then the ICP is
stopped (a side-effect is that all protocols are
stopped ungracefully also).
The protocol and ports information has the same mean­
ings as in the start options.

FILES
/dev/icp*

SEE ALSO
icpload(M), icp(4).

1 'Zi log 1

ICPLOAD (M) Zilog ICPLOAD (M)

NAME
icpload - load and configure an ICP 8/02

SYNOPSIS
icpload icpl [[-k kernel] [-c ports: conf ig protocols

DESCRIPTION
Icpload configures ports and load protocols or kernels on
the ICP 8/02. If icpload is invoked with only the icp
number, information is given about the current port confi­
guration and loaded protocols.

When loalding protocols, the entry point of each protocol is
taken to be where it is loaded in the ICP 8/02 memory. The
name of the protocol object file, must be the 'official'
name by which the protocol is known. Only the 'tail' of the
path name is checked against the offical list of protocol
names. So, if /usr/protocols/itty is used, only the itty
portion is verified. Currently the offical protocol names
are:

itty Intelligent terminal protocol

OPTIONS

1

-c ports.: conf ig
since the ICP 8/02 has no way to determine what the
configuration of its various ports are, this option is
used to set that information into the ICP 8/02. Ports
are given as a range of ports or a comma separated
list. An ICP has 9 ports which range from 0 to 8.
Con!!g_ is the hardware configuration of the port, and
rs-one of the following:

A Asynchronous (all ports, exec pt 8) •

s Synchronous (ports 6 and 7 only) •

0 Olympic (ports 4 and 5 only) •

z Zn et (ports 6 and 7 only) •

p Parallel (port 8 only) •

When configuring a port its adjacent port must be given
the same configuration. Adjacent ports are defined as:

Zilog

0,1.
2,3
4,5
6,7

1

ICPLOAD (M) Zilog ICPLOAD (M)

-k kernel
Load the object module kernel as the kernel on the ICP
8/02. Because of various constraints the kernel object
module must be segmented. The kernel entry point is
where execution begins when the ICP 8/02 comes out of
reset. Loading a kernel also has the effect of zeroing
out the port configuration and loaded protocol informa­
tion.

FILES
/dev/icp*

SEE ALSO
icpcntrl (M) , icp (4) •

DIAGNOSTICS
All diagnostics are intended to be self-explanatory.

2 Zilog 2

INIT (M) Zilog I NI •r (M)

NAME
INIT - process control initialization

SYNOPSIS
!NIT ~.tate]

DESCRIPTION

1

INIT is invoked inside ZEUS as the last step in the boot
procedure. It is process number one, and is the ancestor of
every other process in the syste~. As such, it can be used
to control the process structure of the system. This is
done by the super-user invoking INIT

with an argument.

INIT has 9 states,
in state 1 during
ing auto-booting.
ing each state.
file /etc/inittab
which dE~fines the

this file have the

1 through 9~ it is invoked by the system
manual bootstrapping, and in state 2 dur­
It performs the same functions on enter-

When a state is entered, !NIT reads the

transition into each state.
format:

Lines in

state:id:flags:command

wheire

state is an integer from 1 to 9,

id is a two character identifier (i.e. co for console,
00 for tty00, etc) standing for some process that might
be active in that state,

fla9s are the characters t, k, c, or o,

command is the name of an executable file with its
opt]Lonal arguments.

All lines in which the state field matches INITts current
state are recognized. A process whose two character id
matches one on a recognized line may be terminated (signal
15), killed (signal 9), or both by including the flags t and
k in the order desired. The signal is sent to all processes
in the process group associated with the id. 'l~he command
field is saved for later execution (see beloW).

After reading /etc/inittab and signaling running processes
as requi1~ed, but before invoking any processes under the new
state, INIT invokes /etc/re with three arguments. /etc/re
performs housekeepin-g-such as removing temporary fileS'"';
mounting file systems, and starting ·daemons. The three
arguments that it receives are the current state, the
number of times this state has been entered previously, and

Bell 1

INI'r (M) Zilog INIT (M)

the prior state~.

When /etc/re has finished executing, INIT invokes all com­
mands waiting to be executed. (A command is considered to
be waiting to be executed if there is no process currently
running that has the same id as the command.) The flag c
(continuous) re~quires the command to be continuously rein­
voked whenever the process with that id dies. The flag o
(off) causes the command to be ignored. This is usefuy---f°or
turning lines off without extensive editing. Otherwise, the
command is invoked a maximum of one time in the current
state.

INIT invokes the command field read from /etc/inittab by
opening I for reading and writing on file descriptors 0, 1,
and 2, resetting all signals to system default, setting up a
new process group (setpgrp(2)), and execing:

/bin/sh -c exec command

EXAMPLES

2

The inittab line

l:co:c:/bin/csh </dev/console > /dev/console 2>&1

creates a single user environment when INIT 1 is invoked by
the super-user. It states that in state 1 (by convention
single-user mode) , a process with the arbitrary unique iden­
tifier co should be created. The program invoked for this
process should be the c-shell, taking its input from the
console and directing both its default output and error out­
put back to the console. When this process exits (i.e.
logout) it should be reinvoked.

Invoking INIT 2 when inittab contains the entry

2:co:c:/etc/getty console 2

attaches a login process to the console in multi-user state
(state 2) and sets its baud rate to 9600. the entry

2:05:c:/etc/getty tty05 2

sets up line /dev/tty05 for use by 9600 baud terminals,
while

1:05:k:/etc/getty

will ensure that it is not active on return (or entry) to
single-user mode.

Bell 2

INIT (M) Zilog INIT (M)

DIAGNOSTICS
When INIT can do nothing else because of a missing
/etc/inittab or when it has no children left, it will try to
execu~a shell on /dev/console. When the problem has been
fixed, it is necessary to change states, and teirminate the
shell.

f .. IMITAT IONS

FILES

INIT does not complain if the state-id pairs in /etc/inittab
are not unique. For any given pair, the last- one in the
Eile is valid.

/etc/INIT The program
/etc/inittab
/etc/re
/bin/sh
/dev/con:sole

SEE ALSO
login (1), sh (1), exec (2), setpgrp(2), inittab (5), getty(M).

3 Bell 3

INSTALL(M) Zilog INSTALL (M)

NAME
install - install commands

SYNOPSIS
install

[-c dira]
[-f dirb]
[-i]
[-n dire
[-o]--
[-s]
file
Tdlrx •••]

DESCRIPTION
Install is most commonly used in "makefiles"
to install a file (updated target file) in a
within a file system. Each file is installed
into the appropriate directo~retaining the
of the original command. The program prints
ling exactly what files it is replacing
where they are going.

(see make(l))
specific place
by copying it
mode and owner
messages tel-

or creating and

If no options or directories (dirx •••) are given, install
will search (using find(l)) a set of default directories (
/bin, /usr/bin, /etc, /lib, and /usr/lib , in that order)
for a --rr1e-·wit~thesame name-astile. When the first
occurrence is found, install issues a message saying it is
overwriting that file wi.th file, and proceeds to do so. If
the file is not found, the program states this and exits
without further action.

If one or more directories (dirx •••) are specified after
file, those directories will be searched before the direc­
tories specified in the default list.

OPTIONS
-c dira

-f dirb

1.

Installs a new command in the directory
specified in dira. Looks for file in dira
and installs itthere if not found. -U
found, install issues a message saying the
file already exists, and exits without
overwriting it. Can be used alone or with
the -s option.

Forces ~ to be installed in given direc­
tory, whether or not one already exists. If
it does not already exist, the mode and owner
of the new file will be set to 751 and bin,
respectively. If the file already exists,
the mode and owner will be that of the
already existing file. Can be used alone or

Bell 1

INSTALL (M) Zilog INS'rALL (M)

-i

-n di:rc

-o

-s

with the -o or -s options.

Ignores default directory list, searching
only through the given directories (dirx
•..). Can be used alone or with other
options, except -c and -f.

If file is not found in any of the searched
directories, it is put in the directory
specified in dire. The mode and owner of the
new file will be set to 755 and bin, respec­
tively. Can be used alone or with other
options, eKcept -c and -f.

If file is found, this saves the "found" file
by copying it to OLDfile in the directory in
which it was found. Can be used alone or
with other options, except -c.

Suppresses printing of
error messages. Can
any other options.

messages other than
be used alone or with

FILES
/etc/install the program

WARNING

2

Install is a Bourne shell script. If your login shell is the
c shell, install must be invoked as a shell script from
makefile as follows:

/bin/sh /etc/install file

This can be done easily as a make macro definition. For
example,

INS=/bin/sh /etc/install

and to execute install

$(INS) file

This is not necessary if your login shell is the Bourne
Shell, or if you use install from the command level of
either shell, or if it is invoked from command scripts.

Bell 2

LABELIT(M) Zilog LABELIT(M)

NAME
labelit - label file systems

SYNOPSIS
labelit special [fsname volume [-n]]

DESCRIPTION
Labelit can be used to provide initial labels for unmounted
disk or tape file systems. With the optional arguments
omitted, labelit prints current label values. The -n option
provides for initial labeling of new tapes only (this des­
troys previous contents). The fsnarne argument represents
the mounted name (e.g. root, usr, etc.) of the filsystem
being copied.

rrhe special argument should be the physical disk section or
tape (e.g. /dev/rzdl, /dev/rmt0, etc.)

Fsname and volname are recorded in the last 12 characters of
the superblock (char fsname[6], volname[6]).

FILES
/etc/log/filesave a record of file systems/volumes copied

SEE ALSO
filesys(S).

LIMITATIONS
Only device names beginning /dev/rmt are treated as tapes.

1 Bell l

LINK (M) Zilog LINK (M)

NAME
link, unlink - exercise link and unlink system calls

SYNOPSIS
link file! f ile2
unli.nk file

DESCRIPTION

FILES

Link and unlink perform their respective system
their arguments, abandoning all error checking.
mands can only be executed by the super-user.

/etc/link the program

/etc/unlink the program

SEE ALSO
rm (1) , 1 ink (2) , un 1 ink (2) •

LIMITATIONS
The programs cannot cross filesystem boundaries.

1 Bell

calls on
These com-

1

LP(M) Zilog LP(M)

NAME
lp, text - service line printer spooler print requests

SYNOPSIS
/usr/lib/lp [options]
/usr/lib/text [options]

DESCRIPTION

1

These programs are used by the spooling system to do the
actual copy of data from a print request to a printer dev­
ice. Lp is used to print requests on line printers. Text is
used to print requests on text quality printers.

Each backend is started by dqueuer(M}. The way backends are
started is controlled by the configuration file (see the
System Adminstrators Manual, Section 7). A backend program
inherits three open file descriptors from the dqueuer: RFFD
{read file), SFFD (device} and STATUSFD (status log).
Actual definitions of these variables can be found in
/usr/include/spool.h. The lp and text backends copy data
from file RF!i'D to file SFFD with minimal processing of
input. Statuses are written to file STATUSFD.

In addition to printing, the backends perform functions
required by the specific device being used. For instance,
lp filters backspaces and text can perform stty(l) calls
before printing. They also provide banner pages with
appropriate information.

When invoked, backends are passed a parameter list generated
by dqueuer(M). This list contains options generated by
dqueuer(M} and those options that may have been specified in
the configuration file. The options that dqueuer generates
and that both backends recognize are:

-B Indicates that the file the dqueuer was to print could
not be found. In this case, RFFD is not open and should
not be used. This option is used to generate banner
pages that say the file could not be found, so it won't
appear that the file disappeared.

-c n
Indicates that the file must be printed multiple times.
The backend should create n copies of the output.

-d dest
Used in a de!stination portion of the banner page. Dest is
a string of no other importance to the backend.

-f filename
Filename, printed on the banner page.

Zilog 1

LP(M) Zilog LP{M)

-F from
Indicates a 'from' string, for use on the banner page.

-s spool time
A string in ctime(3) format, indicating when the file was
spooled to be printed. This value is printed on banner
page.

-t title·
A stiing used as a title on banner pages.

The backend also looks in a file called 1 /etc/sitefile' to
find a string to be printed near the page breaks on the
banner page. It uses the string of characters on the first
line of this file, up to the first white space. If this
file does not exist, an appropriate default is used.

The text backend accepts one additional option, that can
only specified through the configuration file. Its descrip­
tion follows:

-T [stty parameters]
Set terminal parameters. When a tty device is used as a
printer, it is disabled in the /etc/inittab file. When
this is done, the device is closed except when being used
to print upon. This causes ZEUS to reset all terminal
characteristics. The -T option is used to set these
characteristics so that printing can occur. The quoted
string is passed, unchanged except for removal of the
quotes, to stty{l). Thus, in the configuration file the
line

Dl,.R,/dev/tty0,/usr/lib/text -T 11 1200 11

would cause device 1 on the most recent queue to use stty
to set /dev/tty0 to 1200 BAUD before being used.

SEE ALSO
dqueuer{M)

2 Zilog 2

MAKE KEY. (M) Zilog MAKEKEY (M)

NAME
makekey - generate encryption key

SYNOPSIS
/usr/lib/makekey

DESCRIPTION
Makekey improves the usefulness of encryption schemes
depending on a key by increasing the amount of time required
to search the key space. It reads 10 bytes from its stan­
dard input, and writes 13 bytes on its standard output. The
output depends on the input in a way intended to be diffi­
cult to compute (i.e. to require a substantial fraction of a
second) •

The first eight input bytes (the input key) can be arbitrary
ASCII characters. The last two (the salt) are best chosen
from the set of digits, upper- and lower-case letters, and
'.' and'/'. The salt characters are repeated as the first
two characters of the output. The remaining 11 output char­
acters are chosen from the same set as the salt and consti­
tute the output key.

The transformation performed is essentially the following:
the salt is used to select one of 4096 cryptographic
machines all based on the National Bureau of Standards DES
algorithm, but modified in 4096 different ways. using the
input key as key, a constant string is fed into the machine
and recirculated a number of times. The 64 bits that come
out are distributed into the 66 useful key bits in the
result.

Makekey is intended for programs that perform encryption
(e.g. ed and crypt(l)). Usually its input and output will
be pipes.

SEE ALSO
crypt (1) , ed (1) •

LIMITATIONS

1

Although it can be invoked from the prompt, makekey is used
mainly within the body of a program.

Bell 1

MAKENEWFS(M) Zilog MAKENEWFS (M)

NAME
makenewfs - construct and restore file system

SYNOPSIS
makenewf s

DESCRIPTION
Mak.enewfs is a C shell script which constructs the default
file system layout.

Makienewfs is intended to be run during the initial boot frorr
tape. It should be run in single user mode after the root
and /usr are restored from tape. Makenewfs makes the file
systems /tmp and /z. It then labels all the file systems.
Finally, it copies the secondary bootstrapper, boot, froro
the root file system to the first filesystem on the disk.

The program may be run to restore the disk after severe dam­
age to it has occurred. It is important to note that if
file systems /z or /tmp, are already on the disk THEY WILL
BE COMPLETELY DESTROYED. Therefore this pi:ogram should be
run only on initial boot or when the file syBtems have been
irreparably damaged.

In order to safeguard against malicious or unintentional
usage, the program is owned by zeus with mode 000. It is
necE~ssary to enter "chmod 700 /etc/makenewfs" before execut­
ing this program. The program will revert to mode 000 and
owner zeus upon termination.

SEE ALSO
mkfs (M) , rester (M).
The System Administrator Manual

LIMITATIONS

1

This program applies only to the default disk layout, and
standard Zilog distribution tape as specified in the Zeus
System Administrators Manual. It would have to be changed
for non-standard disk layouts or other dump tapes.

Zilog 1

MAKEWHA'rI S (M) Zilog MAKEWHATIS(M)

NAME
makewhatis - remake the data base for the whatis and apropos
commands

SYNOPSIS
makewhatis

DESCRIPTION
Makewhatis remakes the data base for the whatis and apropos
commands from the manual sections in /usr/man/*. It uses
getNAME(l) to eKtract relevant text from each manual entry
and then rearranges and sorts this output. Manuals sections
may be in either the old (version 6) or version 7 manual
formats.

FILES
/usr/lib/whatis

/etc/makewhatis

SEE ALSO
getNAME(l).

l

constructed data base

the program

UCB 1

MFS (M) Zilog MFS (M)

NAME
rnfs - mount all file systems
umfs - unmount all file systems

SYNOPSIS
mf s
umf s

DESCRIPTION
Mfs is a shell script used to mount all file systems in the
current configuration. It is intended that mfs be run after
fsck(M) has run successfully~ Note that if the system's
disk configuration is changed from the default, /etc/mfs
must be changed accordingly. Umfs is a shell script used~
un-mount all file systems in the current configuration.

FILES
/etc/mtab

/dev/zd*

/etc/mfs the program

/etc/umfs the program

SEE ALSO
fsck(M), mount(M), mtab(5).

LIMITATIONS

1

If mfs is not run before bringing the system up multi-user,
/usr will not mount correctly. This is because the system
creates several files in /usr after going multi-user and
keeps them open as longas the system is running. So in
order to mount /usr, the system must be brought back to sin­
gle usE~r mode.

Mfs/umfs will not mount/unmount /usr if cron(M) update(M) or
dequeuE~r(M) are running, or if accounting (acct(M)) is on.

Zilog 1

MKFS(M) Zilog MKFS (M)

NAME
mkfs - construct a file system

SYNOPSIS
mkfs special proto
mkfs special blocks interleave sectors

DESCRIPTION

1

Mkfs constructs a file system by writing on the special file
special according to the directions found in the remainder
of the command line. If the second argument is proto mkfs
constructs a filesystem according to the prototype file
proto. The prototype file contains tokens separated by
spaces or new lines.

The first token is the name of a file to be copied onto
block zero as the bootstrap program. The second token is a
number specifying the size of the created file system. Typ­
ically it will be the number of blocks on the device,
perhaps diminished by space for swapping.

The next token is the number of i-nodes in the i-list. The
next set of tokens comprise the specification for the root
file. File specifications consist of tokens giving the
mode, the user-id, the group id, and the initial contents of
the file. The syntax of the contents field depends on the
mode.

The mode token for a file is a 6 character string. The
first character specifies the type of the file. (The char­
acters -bed specify regular, block special, character spe­
cial and directory files respectively.) The second character
of the type is either u or - to specify set-user-id mode or
not. The third is g or - for the set-group-id mode. The
rest of the mode is a three digit octal number giving the
owner, group, and other read, write, execute permissions,
see chmod(l).

Two decimal number tokens come after the mode; they specify
the user and group !D's of the owner of the file.

If the file is a regular file, the next token is a pathname
whence the contents and size are copied.

If the file is a block or character special file, two
dee imal numbE~r tokens follow which give the major and mi nor
device number~;.

If the file is a directory, mkfs makes the entries • and ••
and then reads a list of names and (recursively) file
specifications for the entries in the directory. The scan
is terminated with the token $.

Bell 1

MKFS (M) Zilog MKFS (M)

FILES

If the second argument is blocks, mkfs builds a file system
with a single empty directory on it. The size of the file
system is the value of blocks interpreted as a decimal
number. The number of i-nodes is calculated as a function
of the filesystem size.

A sample prototype specification follows:

/usr/diag/uboot
4872 55
d--777 3 1
usr d--·777 3 1

$

sh ---755 3 1 /bin/sh
ken d--755 6 1

$
b0 b--644 3 1 0 0
c0 c--644 3 1 0 0
$

/etc/mkfs the program

SEE ALSO
di r (5) , f i 1 sys (5) •

C.IMITATIONS
There should be some way to specify links.

2 Bell 2

MKMT (M) Zilog MKMT (M)

NAME
mkmt - make special files for magnetic tape devices

SYNOPSIS
mkmt [mt(!J [mtl] mt2] mt3]

DESCRIPTION

FILES

Mkmt makes appropriate special files in /dev for the various
kinds of tape access associated with a particular nine track
magnetic tape unit. It can be used to simplify the task of
creating all the tape special files. For example, mkmt mUJ
would make the following special files:

/dev/mt0 /dev/rmt0 /dev/nmt0 /dev/fmt0 /dev/smt0
/dev/frmt0 /dev/nrmt0 /dev/srmt0 /dev/fnmt0 /dev/snmt0
/dev/fsmt0 /dev/fnrmt0 /dev/snrmt0 /dev/fsrmt0 /dev/fsnmt0
/dev/fsnrmt0

/etc/mkmt the program

SEE ALSO
mknod (M) , mt (4) •

1 Zilog 1

MKNOD{M) Zilog MKNOD{M)

NAME
mknod - build special file

SYNOPSIS
mknod name [c] [b] major minor
mknod name p

DESCRIPTION

1

Mknod makes a directory entry and corresponding i-:node for a
special file.

Mknod can also be used to create fifo's {a.k.a namied pipes)
(second case in SYNOPSIS above). This use of Mknod can be
used by any user. The first case can be used only by
members of the 'system' group. It is used to create special
device files.

The first argument is the name of the entry. In the first
case, th•e second is b ---rt° the special file is block-type
{disks, tape) or c if it is character-type {other devices).
The last two arguments are numbers specifying the !najor dev­
ice type and the minor device {e.g. unit, drive, or line
number), which may be either decimal or octal. ~ leading 0
for the major and minor device numbers mean that they are. in
octal.

The assignment of major device numbers depends on the posi­
tion of the driver in dispatch tables in the kernel. The
major device numbers for current drivers is as follows:
Device Character Dev. Block Dev.

ZD
CT
SMD
MT
MD
ERR
MEM
TTY
SIO
LP
PTC {unet)
P'rS (unet)
UP (unet)
uu (unet)
UD (unet)
Ul (user defined
U2 (user defined
U3 (user defined
U4 (user defined
us (user defined

Major Number Major Number

dev)
dev)
dev)
dev)
dev)

0
1
2
3
4
5
6
7
8
9,
11
12
13
14
15
16
17
18
19
20

Bell

10

0
1
8
9
10

2
3
4
5
6

1

MKNOD(M) Zilog MKNOD(M)

U6 (user defined dev) 21 7

The minor device number is device dependent. For disks, the
minor device number is the number of the file system. The
first digit (dE~cimal) corresponds to the drive number and
the second di.git (decimal) is the order of the file system
on the disk. Por ttys, the minor device number is the
number of the port. For other devices the numbers represent
options passed to the drivers (eg. no-rewind for tapes).

FILES
/etc/mknod the program

SEE ALSO
mknod (1) , rnknod (2) •

2 Bell 2

MKTAPE: (M) Zil.og MKTAPE {M)

NAME
mktape - make special files for cartridge tape devices

SYNOPSIS
mktape [9] [1] [2 [3]

DESCRIPTION
Mktape makes appropriate special files in /dev for the vari­
ous kinds of tape access associated with a particular unit.
It can be used to simplify the task of creating all the tape
special files since a total of 20 are required per tape
unit. For example the command:

mkt:ape 1

would make the following special files:

- non-·raw
/dev/ctl /dev/ctla /dev/ctlb /dev/ctlc /dev/ctld

- raw
/dev/rctl /dev/rctla /dev/rctlb /dev/rctlc /dev/rctld

- no rewind
/dev/nctl /dev/nctla /dev/nctlb /dev/nctlc /dev/nctld

- no rewind raw
/dev/nrctl /dev/nrctla /dev/nrctlb /dev/nrctlc /dev/nrctld

FILES
/etc/mktape the program

SEE ALSO
mknod(M).

1 Zilog 1

MOUNT (M) Zilog MOUNT (M)

NAME
mount, umount - mount and dismount file system

SYNOPSIS
mount [special directory [-r]]

umount special

DESCRIPTION
Mount announc·es to the system that a removable file system
is present on the device special. The directory must exist
already; it becomes the name of the root of the newly
mounted file system.

These commands maintain a table of mounted devices. If
invoked with no arguments, mount prints the table.

The optional last argument indicates that the file is to be
mounted read-only. Physically write-protected and magnetic
tape file systems must be mounted in this way or errors will
occur when access times are updated, whether or not any
explicit write is attempted.

Umount announces to the system that the removable file sys­
tem previously mounted on device special is to be removed.

FILES
/etc/mnttab mount table

/etc/mount the program

/etc/umount the program

SEE ALSO
mount(2), mnttab(S).

DIAGNOSTICS
Mount issues a warning if the file system to be mounted is
currently mounted under another name.

Umount complains if the special file is not mounted or if it
is busy. The file system is busy if it contains an open
file or some user's working directory.

LIMITATIONS

1

Some degree of validation is done on the file system, how­
ever it is generally unwise to mount garbage file systems.

Bell 1

MVDIR (M) Zilog MVDIR(M)

NAME
mvdir - move a directory

SYNOPSIS
mvdir dirname name

DESCRIPTION
Mvdir renames directories within a file system. Dirname
must be a directory; name must not exist. Neither name can
be a sub-set of the other (/x/y cannot be moved to /x/y/z,
nor v ic1e versa) .

Only the super-user can use mvdir.

FILES
/etc/mvdir

SEE ALSO
mkd i r (1) •

LIMITATIONS

the program

Directories cannot be moved across filesystems

1 Bell 1

NCHECK (M) Zilog NC HECK (M)

NAME
ncheck - generate names from i-numbers

SYNOPSIS
ncheck -i numbers] [-as] f ilesystem]

DESCRIPTION
Ncheck generates a pathname vs. i-number list of all files
on the file system specified. Names of directory files are
followed by'/.'. The -i option reduces the report to only
those files whose i-numbers follow. The -a option allows
printing of the names '.' and ' •• ', which are ordinarily
suppressed. The -s option reduces the report to special
files and files with set-user-ID mode; it is intended to
discover concealed violations of security policy.

The report is in no special order, so sorting may be desir­
able.

SEE ALSO
sort (1), dcheck (M), icheck (M).

DIAGNOSTICS

1

When the filesystem structure is improper, '??' denotes the
'parent' of a parentless file and a pathname beginning with
' ' denotes a loop.

Bell 1

PS TAT (M) Zilog PSTA·r (M)

NAME
pstat - print system facts

SYNOPSIS
pstat [-aixptuf suboptions] file

DESCRIPTION

1

Pstat interprets the contents of certain system tables. If
file is given, the tables are sought there, otherwise in
/dev/mem and /dev/kmem. (System core images not currently
supporte;d). The required namelist is taken from /zeus.
Options are

-a Under -p, describe all process slots rather than just
active ones.

-i Print the inode table with the these headings:

LOC The core location of this table entry.
FLAGS Miscellaneous state variables encoded thus:

L locked
u update time (filsys(S)) must be corrected
A access time must be corrected
M file system is mounted here
W wanted by another process (L flag is on)
T contains a text file
c changed time must be corrected

CNT Number of open file table entries for this inode.
DEV Major and minor device number of file system in which

this inode resides.
INO !--number within the device.
MODE Mode bits, see chmod(2).
NLK Number of links to this inode.
UID User ID of owner.
SIZ/DEV

Number of bytes in an ordinary file, or major and
minor device of special file.

-x Print the text table with these headings:

LOC The core location of this table entry.
~LAGS Miscellaneous state variables encoded thus:

T ptrace(2) in effect
W text not yet written on swap device
L loading in progress
K locked
w wanted (L flag is on)

DADDR Disk address in swap, measured in multiples of 512
bytes.

CADDR Core address, measured in multiples of 256 bytes.

Zilog 1

PSTAT(M) Zilog PSTAT(M)

2

SIZE Size of text segment, measured in multiples of 256
bytes.

IPTR Core location of corresponding inode.

CNT Number of processes using this text segment.

CCNT Number of processes in core using this text segment.

-p Print process table for active processes with these
headings:

LOC
s

F

PR
SG
UID
TIM
CPU
NI
PGRP

PIO
PPID
ADDR

SZE
WCHN
LINK
TEXTP

CLKT

-t

The core location of this table entry.
Run state encoded thus:
0 no process
1 waiting for some event
3 runnable
4 being created
5 being terminated
6 stopped under trace
Miscellaneous state variables, or-ed together:
001 loaded
002 the scheduler process
004 locked
008 swapped out
010 traced
020 used in tracing
040 locked in by lock(2).
Scheduling priority, see nice(2).
Signals received (signals 1-16 coded in bits 0-15),
Real user ID.
Time resident in seconds; times over 127 coded as 127.
Weighted integral of CPU time, for scheduler.
Nice level, see nice(2).
Process number of root of process group (the opener of
the controlling terminal).
The process ID number.
The process ID of parent process.
If in core, the physical address of the 'u-area' of
the process measured in multiples of 256 bytes. If
swapped out, the position in the swap area measured in
multiples of 512 bytes.
Size of process image in multiples of 256 bytes.
Wait channel number of a waiting process.
Link pointer in list of runnable processes.
If text is pure, pointer to location of text table
entry.
Countdown for alarm(2) measured in seconds.

Print table for terminals (sio ports) with these head­
ings:

Zilog 2

PS TAT (M} Zilog PS TAT (M)

FILES

RAW Number of characters in raw input queue.
CAN Number of characters in canonicalized input queue.
OUT Number of characters in output queue.
!MODE Input mode flags
OMODE Output mode flags
CMODE Control mode flags
LDMODE

Line discipline mode flags
IOADDR

IO address.
CTCADDR

CTC address.
DEL Number of delimiters (newlines) in canonicalized input

COL
STATE

PGRP

-u

-f

LOC
FLG

CNT
IPTR
OFFS

queue.
Calculated column position of terminal.
Miscellaneous state variables encoded thus:
W waiting for open to complete
O open
s has special (output) start routine
C carrier is on
B busy doing output
A process is awaiting output
X open for exclusive use
H hangup on close
Process group for which this is controlling terminal.

print information about a user process; the next argu­
ment is its address as given by ps(l). The process
must be in main memory, or the file used can be a user
core image and the address 0.

Print the open file table with these headings:

The core location of this table entry.
Miscellaneous state variables encoded thus:
R open for reading
W open for writing
p pipe
Number of processes that know this open file.
The location of the inode table entry for this file.
The file offset, see lseek(2).

/zeus
/dev/mejn
/dev/km•em

namelist
default source of user structure
default source of kernel data tables

SEE ALSO
ps(l), stat(2), filsys(S)

3 Zilog 3

QUOT(l) Zilog QUOT (1)

NAME
quot - summarize file system ownership

SYNOPSIS
quot -ncf] f ilesystem

DESCRIPTION
Quot prints the number of blocks in the named files~stem
currently owned by each user. If no filesystem is name , no
default name is assumed.

OPTIONS

FILES

-n To produce a list of all files and their owners, use
the pipeline:

ncheck f ilesystem I sort +en

Note that the -n option is meaningless without this
command :string ..

-c Print three columns giving file size in blocks, number
of files of that size, and cumulative total of blocks
in that size or smaller file.

-f Print count of number of files as well as space owned
by each user.

/etc/passwd to get user names

SEE ALSO
ls(l), du(l).

LIMITATIONS

1

Holes in files are counted as if they actually occupied
space.

Quot will ignore any uids greater than 1000.

Bell 1

RC {M) Zilog RC {M)

NAME
re - "read command" startup control script
re csh - "read command" Cshell multi-user startup script

SYNOPSIS
re
re esh

DESCRIPTION
Re is invoked by !NIT when the system changes states {e.g.
from multi-user mode to single-user mode, and vise versa).
Re esh in invoked by re when the system goes to multi-user
mode. Re csh is a shell script, and as such can easily be
altered to-suit the particular needs of a system. Gen­
erally, commands in re_csh perform miscellaneous functions
such as checking the consistency of the disk, mounting file
systems, etc.

INIT invokes re with three arguments: target :state, the
number of times the state has been entered and the last
state. This allows re to invoke other programs selectively
depending on the specified state transition {e.g. re csh
should be invoked when the system goes multi-user) • If the
system is booted to a multi-user state automatically, the
last state is "0".

PILES
/etc/re the program

/etc/rc_csh the program

SEE ALSO
!NIT {M) •

'J~HE PROGRAMS

l

The re file:

"@[$]re 2.11 03/28/83 09:21:03 - Zilog Inc"
"This is the re control script. !nit invokes this script
"and then for the other important states where real work
"occur::; we use csh { 1) scripts"

TZ=PST8PDT
export TZ
trap "INIT l" 2

"In al 1 cases i/o is re-directed to the console'''

"zero out the mount table if this.is a bootup"
if [$3 :: "0"]

then /bin/cat /dev/null > /etc/mnttab
/etc/devnm I I grep root I /etc/setmnt

Zilog 1

RC (M)

2

Zilog RC (M)

case ${1-2} in
1)

2)

*)

esac
)

echo
uname -sn
echo Single-user Mode
if [$3 = "2"]

then /etc/killall
f i
/etc/umfs > /dev/null 2>&1
; ;

if $1 !=: $3]
then exec re csh

f i
; ;

echo "Unknown state for init:" $*
; ;

The re csh filE~:

"@[$]re csh 2.18 03/28/83 09:21:04 - Zilog Inc"
echo-
uname -sn
echo "Multi-user Startup"
echo

Check for filesystem consistency
/etc/fsck -y /dev/root
/etc/fsck -y /dev/rusr /dev/rtmp
/etc/fsck -y -t /scratch /dev/rz

Set the date
/etc/datern

Now mount the filesystems
/etc/mf s

Give the user a chance to interrupt, then go multi-user
/bin/echo -n 'The date the system knows is ' ; date
echo 'Going multi-user in 30 seconds'

configure system for correct modem/tty configuration
/etc/ttyconfig -t 0-7

Remove the remote lock file

Zilog 2

RC(M)

3

Zilog

cat /dev/null > /usr/spool/uucp/LCK •• tmp
rm -f /usr/spool/uucp/LCK .• *

Save the su and cron log files
if { -e /usr/adm/sulog) then

mv /usr/adm/sulog /usr/adm/osulog
end if
if { -e /usr/lib/cronlog) then

mv /usr/lib/cronlog /usr/lib/ocronlog
end if

zero out utmp file
cat /dev/null > /etc/utmp

exit 0

Zilog

RC(M)

3

RESERVRC(M) Zilog RESERVRC(M)

NAME
reservrc - reserv install and remove utility

SYNOPSIS
reservrc [-i][-r]

DESCRIPTION

KEYS

Reservrc installs or removes the reserv(l) utility for the
system

Reserv runs under the Zeus operating system as a utility.
The actions of reserv depend on what keys the user entered
on the command line. There is no other user interaction
after the program has been invoked. Reserve lets the user
know what has happened both by messages sent to stdout and
by values left in the 'status' shell variable.

The primary function of reserv is to reserve the tape drive
for a user. With programs such as tar(l) or dump(M), the
device must first be opened to use a tape. There are 20
virtual tape devices for a given drive. For example, tar
could open /dev/nrct0 (no rewind, raw, cartridge tape #0) or
/dev/ct0a (cooJ~ed cartridge tape #0, track a).

Before tar can open any of these, reserv must be run to
reserve drive #0.

The unreserved state of the device is permissions set to 000
and owner set to 'bin' for each virtual device. This prohi­
bits anyone from opening the device. Reserv reserves the
device by changing (for all virtual devices) permissions to
0600 and owner to the person running reserv at the time.
This allows only the owner to open the device. A fork(2) is
performed, the parent is killed and the child continues to
execute. It is the child who does all of the queueing and
abandoning. Thus for every person on the queue and the per­
son who has possession of the tape drive, there is a process
running.

-i Installs reserv
11 /etc/reservrc
script.

into the
-i" should

system. The line
be added to the /etc/re

-r Removes reserv from the system. The line
11 /etc/reservrc -i 11 should be removed from the
/etc/re script. All tape drives must be free before
this i:3 executed.

FILES
/etc/reservrc

1 Zilog 1

RESERVRC{M)

/etc/re

/ etc/rc_,_csh

/usr/spool/reserv/*

SEE ALSO
rc{M), reserv{l).

2

Zilog RESERVRC{M)

Zilog 2

RESTOR(M) Zilog RESTOR {M)

NAME
rester, srestor - incremental file system restore

SYNOPSIS
restor key [.argument • . •]

DESCRIPTION

KEYS

1

com­
the 9

and
If

The

Restor is used to read magtapes dumped wit~ the dump
mand. Srestor is the segmented version. It allows
track tape drive to run at a higher rate if reading
writing. The default source device is /dev/dumpdev.
/dev/dumpdev does not exist, then /dev/rct0 -r5 used.
key specifies what is to be done. ~- -~-

Key is one of the characters rRtxl optionally combined with
f, w, d and v.

f Use the first argument as the name of the tape instead
of the /dev/rct0.

r or R The tape is read and loaded into the file system
specified in argument. This should not be done lightly
{see below). If the key is R restor asks which tape of
a multi volume set to start on. This allows restor to
be interrupted and then restarted (an icheck -s must be
done before restart) •

x Each file on the tape named by an argument is
extracted. The file name has all 'mount' prefixes
removed; for example, /usr/bin/lpr is named /bin/.!£!_ on
the tape. The file extracted is placed in a file with
the same name. All necessary directories are automati­
cally created with reference to the present working
directory. In order to keep the amount of tape read to
a minimum" the following procedure is recommended:

Mount volume 1 of the set of dump tapes.

Type the restor command.

Restor will announce whether or not it found the files,
and rewind the tape.

It then p1:ompts you to "mount desired volume that con­
tains file of the last volume if you aren't sure". It
then asks for the volume number that you just mounted.
Type the number of the volume you choose. On a mul­
tivolume dump the recommended procedure is to mount the
last through the first volume in that order. Restor
checks to see if any of the files requested are on the
mounted tape (or a later tape, thus the reverse order)

Eell 1

RESTOR(M) Zilog RESTOR(M)

2

dump or the number of files being restored is large,
respond to the query with '1 1 and restor will read the
tapes in sequential order.

If you have a hierarchy to restore you can use the '-1'
option to produce the list of names and a tape.

w Causes restor to prompt the user with the filename to
be restored inunediatly before it is extracted. It
waits for a confirmation. If a word beginning with 'y'
is given, the file is extracted into the original
filename; if a word beginning with 'y' followed by
another word, this second word is taken as the filename
to which the file will be extracted. Any other
response is taken as negative, that file won't be
extracted.

t Print the filesystem name, user comments made at dump
time, the date the tape was written and the date the
filesystem was dumped from.

l Does everything the '-t' option does plus lists the
name:s of the files that are on the dump.

v Only meaningful when used with the '-1' option. This
gives a verbose listing of the filenames including the
owner group, permissions, and date of last modifica­
tion.

d Take~ the next argument as the position (starting with
l} of the file on the tape with respect to the current
position of the tape. This enables the user to restor
from a dump even though it isn't the first file on the
tape:. For example the corrunand 'res tor -dx 3 filename'
will cause restor to space to the third file on the
tape (assuming the tape was rewound prior to the com­
mand.} to do the extracting.

The r option should only be used to restore a complete dump
tape onto a clear file system or to restore an incremental
dump tape! onto this. Thus

/etc/mkfs /dev/zd0 7000
restor r /dev/zd0

is a typical sequence to restore a complete dump. Another
restor can be done to get an incremental dump in on top of
this.

A dump followed by a mkfs and a restor is used to change the
size of a file system.

Bell 2

RESTOR(M) Zilog RESTOR(M)

FILES
/tmp/rst*

/etc/restor the program

SEE ALSO
dump(M), mkfs(M).

DIAGNOSTICS
There are various diagnostiqs involved with reading the tape
and writing the disk. There are also diagnostics if the i­
list or the free list of the file system is not large enough
to hold the dump.

LIMITATIONS

3

There is redundant informatton on the tape that could be
used in case of tape reading problems. Unfortunately, res­
tor doesn't use it.

Bell 3

RMUSER (M) Zilog RMUSER (M)

NAME
rmuser - remove a user from the system

SYNOPSIS
rmuser name

DESCRI PTIOlY
This shell procedure aids the system administrator in remov­
ing a user to the system. It handles the updating of
/etc/passwd and /etc/group and produces a list of all the
files in the system owned by the departing user for screen­
ing and eventual disposition. Only the user's mailbox file
is deleted, all other files are untouched. The procedure is
interactive and prompts for all needed information.

FILES
/etc/qroup group file, name is removed from all groups

/etc/passwd password file, name's password is changed

files~name file containing list of all files owned by
name /etc/rmuser the program

SEE ALSO
passwd(l).

DIAGNOSTICf;
If name is not found in the procedure exits with a com­
plaint::-

LIMITATIONS

1

If the departing user has access to other user's passwords
(e.g. bin, root) these should be changed also.

Files owned by name in unmounted file systems are not
included in files.name for obvious reasons.

No check is made on the success of changing the user's pass­
word.

Zilog 1

RUNACCT (M) Zilog RUNACCT(M)

NAME
runacct - run daily accounting

SYNOPSIS
runacct mmdd [state]]

DESCRIPTION

1

Runacct is the main daily accounting shell procedure. It is
normally initiated via cron(M). Runacct processes connect,
fee, disk, and process accounting files. It also prepares
summary files for prdaily or billing purposes.

Runacct takes care not to damage active accounting files or
summary files in the event of errors. It records its pro­
gress by writing descriptive diagnostic messages into
active. When an error is detected, a message is written to
/dev/console, mail (see mail(l)) is sent to zeus and adm,
and runacct terminates. Runacct uses a series of lock files
to protect against re-invocation. The files lock and lock!
are used to preve!nt simultaneous invocation, and lastdate is
used to prevent more than one invocation per day.

Runacct breaks its processing into separate, restartable
states using statefile to remember the last state completed.
It accomplishes this by writing the state name into sta­
tefile.

Runacct then looks in statefile to see what it has done and
to determine what to process next. States are executed in
the following order:

SETUP

WTMPFIX

CONNECTl

CONNECT2

PROCESS

MERGE

FEES

DISK

Move active accounting files into working files.

Verify integrity of wtmp file, correcting date
changes if necessary.

Produce connect session records in ctmp._!! for­
mat.

Convert ctmp.~ records into tacct.~ format.

Convert process accounting records into tacct.h
format.

Merge the connect
records.

and process accounting

Convert output of chargefee into tacct.h format
and merge with connect and process accounting
records.

Merge disk accounting records with connect,

Bell 1

RUNACCT (M) Zilog RUNACCT (M)

process, and fee accounting records.

MERGETA.CCT Merge the daily total accounting records in day­
tacct with the summary total accounting records
in /~/adm/acct/sum/tacct.

CMS Produce command summaries.

USEREXIT

CLEANUP

Any installation-dependent accounting programs
can be included here.

Cleanup temporary files and exit.

To restart runacct after a failure, first check the active
file for diagnostics, then fix up any corrupted data files
such as pacct or wtmp. The lock files and lastdate file
must be removed before runacct can be restarted. The argu­
ment mmdd is necessary if runacct is being restarted, and
specifies the month and day for which runacct will rerun the
accounting. Entry point for processing is based on the con­
tents of statefile; to override this, include the desired
state on the command 1 ine to designate where· processing
should begin.

EXAMPLES

FILES

To start runacct.
nohup runacct 2> /usr/adm/acct/nite/fd2log &

To restart runacct.
nohup runacct 0601 2>> /usr/adm/acct/nite/fd2log &

To restart runacct at a specific state.
nohup runacct 0601 MERGE 2>> /usr/adm/acct/nite/fd2log
&

/usr/lib/acct/runacct
/usr/adm/wtmp
/usr/adm/pacct[l-9]
/usr/src/cmd/acct/tacct.h
/usr/src/cmd/acct/ctmp.h
/usr/adm/acct/nite/active
/usr/adm/acct/nite/daytacct
/usr/adm/acct/nite/lock
/usr/adm/acct/nite/lockl
/usr/adm/acct/nite/lastdate
/usr/adm/acct/nite/statefile
/usr/adm/acct/nite/ptacct[l-9]. mmdd

SEE ALSO

2

acctcom(M), acct(2), acct(5), utmp(5), acct(M), acctcms(M),
acctcon(M), acctmerg(M), acctprc(M), acctsh(M), cron(M),

Bell 2

RUNACCT (M) Zilog RUNACCT(M)

fwtmp(M).
The PWB/ZEUS Accounting System in the ZEUS Utilities Manual

DIAGNOSTICS
Self explanatory.

LIMITATIONS

3

Normally it is not a good idea to restart runacct in the
SETUP state. Run SETUP manually and restart via:

runacct mmdd WTMPFIX

If runacct failed in the PROCESS state, remove the last
ptacct file because it will not be complete.

Bell 3

SETLP (M) Zilog SE'rLP. (M)

NAME
setlp - set line printer parameters

SYNOPSIS
setlp [-lwsd]

DESCRIPTION
Setlp displays and changes the line printer parameters:
number of columns, lines per page, and indent (number of
blanks before first column). If no options are given, setlp
displays the current parameter settings.

These are the options.

-1 number
-·The number of lines is set to the decimal number given.

-w number
-The number of columns is set to the decimal number

given.

-s number
-·The starting column (numbered from 0) is set to the

decimal number given.

-d devname
The device file set or examined is devname. If this
option is missing, the device file used is /dev/.!E_.

SEE ALSO
i oc t 1 (2) ' st t y (1) •

1 Zilog 1

SETMNT (M) Zilog SETMNT (M)

NAME
setmnt - establish mnttab table

SYNOPSIS
setmnt

DESCRIPTION
Setmnt creates the /etc/mnttab table (see mnttab(S)), which
is needed for both the mount(M) and umount(M) commands.
Setmnt reads standard input and creates a mnttab entry for
each line. Input lines have the format:

f ilesys node

where filesys is the name of the file system's special file
(e.g., /dev/rz??) and node is the root name of that file
system. Friesy~ and node beC'Ome the first two strings in
the mnttab(5) entry.

FILES
/etc/mnttab

/etc/setmnt t:he program

SEE ALSO
mnttab (5) •

LIMITATIONS

1

Do not make filesys or node longer than 32 characters.
Setmnt silently enforces-a.-n upper limit on the maximum
number of mnttab entries; this limit is based on the system
parameter Nmount in the kernel

Bell 1

SHUT (M) Zilog SHUT (M)

NAME
shut - warns of system shutdown

SYNOPSIS
shut dtirne btirne]

DESCRIPTION
Shut is called by the shell file "down". It sends warning
messages to users. The optional arguments, dtirne and btirne,
specify the time, in minutes, until system shutdown and the
time between error messages, respectively. If the arguments
are not supplied the user is prompted for them. At the
appropriate times messages are broadcast to all logged-on
users until the final warning message is sent then the pro­
gram ,exits.

At the five minute mark shut begins to issue warnings at 1
minute intervals.

FILES
/etc/utmp

SEE ALSO
down(M).

DIAGNOSTICS
Diagnostics are intended to be self-explanatory.

1 Zilog 1

STR (M) Zilog STR (M)

NAME
str - software trouble report input program

SYNOPSIS
str [-1

DESCRIPTION
This program is used for the initial capture of software
trouble reports. It prompts the user for all needed infor­
mation. The user also has the option of entering the edi­
tor, vi(l) is the default editor. The user may enter the
editor at the beginning of the Problem Description field or
just before submitting the trouble report.

Each submitted trouble report is assigned a sequence number,
and is reflected in a master tracking file.

OPTIONS
-1 Produce a line printer listing upon completion of the

trouble report.

FILES
/usr/lib/problems/strfile

Data base for tracking trouble report progress

/usr/lib/problems/seqno
File containing the last used sequence number

/usr/lib/problems
Directory :in which problem reports are kept

/usr/lib/problems/scrb date
File containing date of next review meeting

SEE ALSO
strfile(5), strprint(M).

1 Zilog 1

STRPRINT {.M) Zilog STRPRINT{M)

NAME
strprint - software trouble report listing program

SYNOPSIS
strp1:int

DESCRIPTION
This shell procedure is used for printing a copy of all
software trouble reports on the line printer. Each trouble
report is printed on a separate page. Each installation
should periodically send a a copy of the output from this
program to Zilog. Also, this listing should be made avail­
able to users so that they become aware of any software
trouble reports about the system.

FILES
/etc/strfile

data base for tracking trouble report progress

/etc/seqno
file containing the last used sequence number

/etc/problems
directory in which problem reports are kept

/etc/scrb date
File-containing date of next review meeting

SEE ALSO
strfile{5), str {M).

1 Zilog 1

SYNC (M) Zi.log

NAME
sync - update the super block

SYNOPSIS
sync

DESCRIPTION

SYNC(M)

Sync executes the sync system primitive. If the system is
to be stopped,. sync must be called to insure file system
integrity. See sync(2) for details.

SEE ALSO
sync(2), update(M).

1 Bell 1

SYSGEN(M) Zilog SYSG~N (M)

NAME
sysgeni generate a Zeus kernel

SYNOPSIS
sysgen [-f £i le] [-d {!.!. ~ 31}]

DESCRIPTION
Sysgen is a Zeus kernel generation utility. Sysgen allows a
user to interactively modify certain kernel parameters, con­
figure up to 4 disk drives, include user written device
drivers, add line printers, tape drives, or UNET into the
Zeus kernel that is generated. This is a System
Administrator's function that is outlined in more detail in
the System Administrator Manual. The resulting kernel file
is named zeus unless the -f option is used.

The -d option tells sysgen to use default answers to all the
questions normally asked. The -d 11 option is for the Model
11, the -d 21 option is for the Model 21, and the -d 31
option is for the Model 31.

FILES
/etc/sysgen

/usr/sys/conf/z.save.c

/usr/sys/h/sysparm.h

DIAGNOSTICS
The user must have write permission in /usr/sys/conf.

SEE ALSO
Zeus System Administrator Manual

1 Zilog 1

TEXT(M) Zilog TEXT(M)

NAME
lp, text - service line printer spooler print requests

SYNOPSIS
/usr/lib/lp [options]
/usr/lib/text [options]

DESCRIPTION

1

These programs are used by the spooling system to do the
actual copy of data from a print request to a printer dev­
ice. Lp is used to print requests on line printers. Text is
used to print requests on text quality printers.

Each backend is :started by dqueuer(M). The way backends are
started is controlled by the configuration file (see the
System Adminstrator Manual). A backend program inherits
three open filce descriptors from the dqueuer: RFFD (read
file), SFFD (device) and STATUSFD (status log). Actual
definitions of these variables can be found in
/usr/include/spool.h. The lp and text backends copy data
from file RFFD to file --SFFD with minimal processing of
input. Statuses are written to file STATUSFD.

In addition to printing, the backends perform functions
required by the specific device being used. For instance,
lp filters backspaces and text can perform stty(l) calls
before printing. They also provide banner pages with
appropriate information.

When invoked, backends are passed a parameter list generated
by dqueuer(M). This list contains options generated by
dqueuer(M) and those options that may have been specified in
the configuration file. The options that dqueuer generates
and that both backends recognize are:

-B Indicates that the file the dqueuer was to print could
not be found. In this case, RFFD is not open and should
not be used. This option is used to generate banner
pages that say the file could not be found, so it won't
appear that the file disappeared.

-c n
Indicates that the file must be printed multiple times.
The backend should create n copies of the output.

-d dest
Used in a destination portion of the banner page. Dest is
a string of no other importance to the backend.

-f filename
Filename, printed on the banner page.

Zilog 1

Zilog TEXT(M)

-F from
Indicates a 'from' string, for use on the banner page.

· -s spool time
A str~ing in ctime (3) format, indicating when the file was
spooled to be printed. This value is printed on banner
page.

-t ti tlE~
A str=-ing used as a title on banner pages.

The bacx:end also looks in a file called • /etc/sitefile' to
find a string to be printed near the page breaks on the
banner page. It uses the string of characters on the first
line of this file, up to the first white space. If this
file does not exist, an appropriate default is used.

The text backend accepts one additional option, that can
only specified through the configuration file. Its descrip­
tion follows:

-T [stty parameters]
Set terminal parameters. When a tty device isi used as a
printer, it is disabled in the /etc/inittab file. When
this is done, the device is closed except when being used
to print upon. This causes ZEUS to reset all terminal
characteristics. The -T option is used to set these
characteristics so that printing can occur. The quoted
string is passed, unchanged except for removal of the
_quotes, to stty (1). Thus, in the configuration file the
line

Dl,R,/dev/tty0,/usr/lib/text -T "120e1 11

would cause device 1 on the most recent queue to use stty
to SE!t /dev/tty0 to 1200 BAUD before being US€!d.

SEE ALSO
dqueuer(M)

2 Zilog 2

TTYCONFIG(M) Zilog TTYCONFIG(M)

NAME
ttyconfig - configure ports for terminal or modem line

SYNOPSIS
ttyconfig [-m i>orts -t ports]

DESCRIPTION
Ttyconfig is used by the System Administrator to configure
ports for use with a terminal or modem. Typical use of
ttyconfig is in the startup script /etc/re.

If ttyconfig is invoked with no arguments, it reports the
current settings of the ports. The options have the follow­
ing meanings:

-m Configure the user supplied list of ports for use with a
modem.

-t Configure the user supplied list of ports for use with a
terminal.

The syntax for specifying a list of ports for the above
options is a range of ports or a comma separated list. For
example, to configure the ports 1 to 6 for use with a termi­
nal the command line would read:

ttyconf ig -t 1-6

To configure the ports 0 to 4 and 15 for use with a modem
the command 1 inE~ would read:

ttyconfig -m 0-4,15

The initial state when the system is booted, is that all
ports are configured for use with terminals.

SEE ALSO
mdmctl(2).

DIAGNOSTICS

1

Diagnostics are issued for invalid options, invalid ports or
ranges, and not being able to get or set the port configura­
tion.

Zilog 1

UPDATE (M) Zilog

NAME
update - periodic buffer flush

SYNOPSIS
update

DESCRIPTION

UPDA'rE (M}

Update causes a sync every 30 seconds. Since Utpdate never
exits, it should only be executed once. This is best done
by running update from the file /etc/rc_csh see init(M}.

FILES
/etc/update

SEE ALSO
sync (2) •

1

the program

Bell 1

UPKEEP(M) Zilog UPKEEP(M)

NAME
upkeep - directory maintenance

SYNOPSIS
upkeep [-mdfsli] [directory]

DESCRIPTION

1

upkeep maintains a .contents file and its corresponding
directory. The .contents file is used as a master file. It
contains information on what files (and their corresponding
mode, user ID, group ID) should be in the directory. The
flags have the following meanings:

-i Initialize the .contents file with current specified
directory.

-1 List .contents file

-d Report the difference between .contents file and its
corresponding directory.

-f Fast update of directory, change the directory to match
.contents file, produces a change report.

-s Slow updatE~, same action as fast update, except before
each change action, a confirmation request will be
display on the terminal and user can confirm or deny
action interactively.

-m Modification of .contents file and directory. In this
mode upkeep accepts the user specified file name and
performs one of the following requested actions:

add - add file to .contents file. File must be in the
directory before this operation can be performed.

delete
- delete file from .contents and directory.

change
change mode, uid and/or gid of file in .contents

to be same as in directory.

Bell 1

UPKEEP (M) Zilog UPKEEP (M)

FILES

2

correct
- correct the mode, uid and/or gid of file in
directory to be same as in .contents.

A ctl-D answer to an interactive prompt terminates the pro­
gram. Only owner or super user can make .contents/directory
changes.

.contents
/tmp/upk.axxxxx

Bell 2

WALL (M) Zilog

NAME
wall - write to all users

SYNOPSIS
wall

DESCRIPTION
Wall reads its standard input until an end-of-file.
sends this message, preceded by 'Broadcast Message
all logged in users.

WALL (M)

It then
, to

The sender should be super-user to override any protections
the users may have invoked.

FILES
/etc/wall

/dev/tty?

/etc/utmp

SEE ALSO

the program

mesg (1), write (l).

DIAGNOSTICS
"Cannot send to " name" if the terminal is write-protected
(see mesg (1)) •

LIMITATIONS

1

Some protection should be possible to avoid interfering with
communications occurring over a terminal line.

Bell 1

XQ (M)

NAME

Zilog XQ (M)

xq - examine or delete requests from the line printer
spoole1~

SYNOPSIS
xq option option]

DESCRIPTION

1

Xq is the part of the general queuing system that allows
examination and deletion of items in the queue area. The
system administrator and the system group are capable of
executing all commands described in xq(l) with the added
capability of affecting requests that are not their own. In
order to allow this the user should use the following modif­
ier on the command line before his request, to indicate he
wishes to exercise a system command:

-<> When used on the xq command line before a '-d' or
'-s' option, to another user. The user must be
super-user or system group.

With no options, xq acts as described in xq giving a status
list of all the queues and devices.

Additional options can be used to control operation of
dqueuer(M) and the queues and devices involved. In cases
where the option acts upon a queue or queue:device pair, the
'-q' modifier described in xq must be given. The default
queue and device will not be assumed. Only one option may
be given per xq command. Additional options are:

-b backup device. Causes a device to backup its output one
pagE! (used when a printer has become fouled, or needs new
papE!r 1 oaded.)

-Dd
Down device. Sets a device to the 'DOWN' state. This
is commonly used if a printer is temporarily incapaci­
tated, or if it desired to interrupt normal service. A
device designated as 'DOWN' will continue to print a file
in progress, but will not be selected for printing addi­
tional requests.

-Dq
Down queue. Sets a queue to 'DOWN' state. No requests
to this queue will be accepted while its status is
'DOWN', nor can any devices on this queue be accessed.
This step should only be used.if all devices on a queue
are likely to be down for an extended period of time.

-s[kd]
Quit printing. Causes printing on specified device to

Zilog 1

XQ (M) Zilog XQ (M)

stop immediately. If 'k' is specified, the file
currently printing will be kept, otherwise it is deleted
from the queue. If 'd' is specified, the status of the
device affected will be set to 'DOWN' to temporarily
prevent future printing.

-r Restart. Restart indicated queue:device. Causes the
current file on the indicated device to restart printing
at the beginning. This command is used to start over
requests when a printer has become fouled.

-Ud

-Oq

Up device. Makes a device available for print selection.
(see '-Dd')

Up queue. Makes a queue available for print requests.
(see '-Dq')

Fil.ES
/usr/spool/queuer/activeconfig
/usr/spool/queuer/logfile
/usr/spool/queuer/statusdir
/usr/spool/queuer/requestdir
/tmp/queuer

active configuration file

SEE ALSO
nq(l), xq(l), lp(M), dqueuer(M).

DIAGNOSTICS

2

If any part of the spooling system appears to have incon­
sistencies, xq will print an error and log it in the spooler
error log file.

Zilog 2

PERMUTED INDEX

This alphabetical index is based on the NAME line of the
ZEUS Reference Manual. It contains one Index entry for each
significant word in each NAME line.

For example, the NAME line.for the csh(l) command reads:

csh, - a command interpreter with C-like syntax

The permuted index ·shows 5 entries for the csh command
listed alphabetically under the listings:

C-like,
command,
csh,
interpreter,
and syntax.

the listings are shown below:

csh, - a command interprete~ with
C-1 ike syntax •..••••..•••••••••••••.••• · .•••..••••••

csh, - a
command interpreter with C-like •••••••••••••••••••

syntax
csh, - a command interpreter with •••••••••••.•••••

C-1 i ke synta>c
csh, - a command

interpreter with C-like syntax •....•••.•.•••.•••.•
a command interpreter with C-lika

syntax csh, -

To use the permuted index, look for the desired word or
topic at the left-most side of the page. The command entry
is listed at the right-most side of the page. The number in
parenthesis to the right of the word indicates the ZEUS
Reference Manual section that the entry appears in.

csh(l)

csh(l)

csh(l)

csh(l)

csh(l)

Permuted Index

intro - introduction to Section
1 commands i. •••••••••••••••

tail - print the last
10 lines of a file·

printf, fprintf, sprintf - System
3 output formatters

300, 300s - handle special ••.•••••••••••.•••••••••
functions of DASI terminals

300,
300s - handle special functions •••••...........••.

of DASI terminals
diff 3 -

3-way differential file•••• , ••......••..•.•
comparison

450 - handle special functions of .•.•.......•.•••.
the DASI 450 terminal

special functions of the DASI
450 terminal •••.••••••••••••••••.•••.• 450 - handle

md -
5.25" Winchester disk ••••••••••••••.•••••••.•••••••

a.out - System
8 0 0 0 obj ec t code format • . • . • . • .

- load and configure an ICP
8/02 : icpload

Permuted Index

intro{l)

tail{l)

printf.x{3)

diff3(1)

-450(1)

-450(1)

md { 4)

a.out(S)

icpload(M)

Page 1

Permuted Index

ld - nonsegmented Z8000 and
8-bit loader

a641, 164a - convert: between long ..•...••...•...•.
and base-64 ASCII

abort - generate IOT fault••.•.••••.......•

abs - integer absolute value ..•.•.•••.•••••••••.••

abs, atoi, close, creat, exit, ..•..........••.....
getc, getchar, goodmagic,/

abs - integer
absolute value ...•.....•.•......•...•............•

floor, fabs, ceil, fmod -
absolute value, floor, ceiling/

unlock data against concurrent
access ...•................. lkdata, unlk - lock and

access - determine accessibility .•................
of file

isindexinfo -

Page 2

ld { 1)

a641{3)

abort(3)

abs (3)

drn (3)

abs(3)

floor(3)

lkdata(2)

access(2)

access a C-ISAM file's directory •........••••....• isindexinfo(3)
information

touch - update
access and modification times of

files
whois -

access the user information•........•
database

access - determine
accessibility of file •........••••••.••••.••.....•

csplit - split file
according to contextual arguments ...•.•••••••.....

acctcon - connect-time
i:iccounti ng .•••.••••..•••.•.••••••••••••.•.•••..•••

acctprc - process
1:iccounting .•••..•.•...•••.••••.••••.•....••.•.•..•.

acctsh - shell procedures for
a.ccounting •••...•••.•••••......••••••.••.•.......•

touch(l)

whois(l)

access(2)

csplit{l)

acctcon(M)

acctprc(M)

acctsh(M)

Permuted Index

runacct - run daily
accou11ting •••••••••••••..•••••.•••• ,. •••••••••••••••

acct - overview of
accounting and miscellaneous •.••••••••••••••••••••

accounting/
of accounting and miscellaneous

accounting commands ••••.•••••••••.••••• /- overview

acct - per-process
accounting file format .••••••.••••••••.••..•••.•••

- search and print process
accounting file(s) •••••••••••••••••••••••.• acctcom

acctmerg - merge or add total
accounting files •.•....•••••••.•••••••••••••••.•••

acct - turn
accounting on or off ••••••••••••••••••••••••••••••

command summary from per-process
accounting records ••.•••••••••••••••••••• acctcms -

acct - overview of accounting and •••••••••••••••••
miscellaneous accounting/

acct - per-process accounting •••••••••••••••••••••
file format

acct - turn accounting on or off ••••••••••••••••••

acctcms - command summa:ry f rorn ••••••••.•••••••••••
per-process accounting records

acctcorn - search and print ••••••••••••••••••••••••
process accounting file(s)

acctcon - connect-time accounting •••••••••••••••••

acctmerg - merge or add total •••••••.••••.••••••••
accounting files

acctprc - process accounting .•••.•••••••••••••••••

acctsh - shell procedur1es for ••••••••••••••••••.••
accounting

Page 3

runacct (M)

acct(M)

acct(M)

acct(5)

acctcom(M)

acctmerg(M)

acct(2)

acctcms(M)

acct (M)

acct(S)

acct(2)

acctcms(M)

acctcom(M)

acctcon(M)

acctmerg(M)

acctprc(M)

acctsh(M)

Permuted Index

give the time to human-reasonable
accuracy daytime -

sin, cos, tan, asin,
acos, atan, atan2 ·-trigonometric .•.••.••.••••••..

functions
- print current SCCS file editing

activity•......•..•••••.•.•..•..••..••..• sact

a command and generate a system
activity report •..•.•.•.•••....•.•.••• timex - time

ln - link a filename to an
actual file

acu - automatic dialing out unit •••••.••.•••••••••

ad-b - debugger •

adduser -
add a new user to the system ••.•••••..••••.••.••..

isaddindex -

Page 4

daytime (1)

sin (3)

sact(l)

timex(l)

ln (1)

acu (4)

adb (1)

adduser(M)

add an index to a C-ISAM file..................... isaddindex (3)

acctmerg - merge or
add total accounting files •.••••.•..••••••.•••.•••

- get highest segmented code
address ••••••..•••••...••..•••••.•...••••••• sgstat

adduser - add a new user to the ••...•••••••.••.•.•
system

admin - create and administer ••••••.•.•••••.••••••
SCCS files

admin - create and
administer SCCS files .•••••..••••.••••..••••.•••.•

alarm - schedule signal after .•.••••••••.••••••.••
specified time

brk, sbrk - change core
allocation •.•..••.•••..••.•...•.••..•••..••.••.•.•

realloc, callee - main memory
allocator ••.•.•.....•.•••.•.•.•..••.• rnalloc, free,

acctmerg(M)

sgstat(2)

adduser (M)

admin (1)

admi n (1)

alarm(2)

brk(2)

rnalloc(3)

Permuted Index

flow - flow
analysis of C programs .•...••••••....••••••.••••.•

error -
analyze and disperse compiler ...•••.•.•.•.•••.••••

error messages
sort - sort

and/or merge files .•••••.•.••..••••...•..•..•.••.•

any, anystr, balbrk, cat, .••••••••••.•.•.•••••.•••
clean_up, curdir, dname, fatal,/

any,
anystr, balbrk, cat, clean up, •••...•.•.•.••••••••

curdir, dname, fatal,/ -

a.out - System 8000 object code •••••••••••••••••••
format

uimage - Zobj to
a.out translator •••••••..••.••.••••.•.•••••••..•..

apropos - locate commands by ..•••••••.•.••••••.•••
keyword lookup

the data base for the whatis and

Page 5

flow (1)

error(l)

sort(l)

pwb (3)

pwb (3)

a.out(S)

uimage(l)

apropos(!)

apropos commands ••••...••••.••••.•••..••• /- remake makewhatis(M)

ar - archive and library ••••••••••••.•••••••••••••
maintainer

ar - archive (library) file •.•••.••••...••••••••••
format

be -
arbitrary-precision arithmetic ••••.••...••••••••••

language
cpio - format of cpio

archive .. .

ar -
archive and library maintainer •.•••••••.•.•..•••.•

ar -
archive (library) file format •..•.•.•.•..•••.••...

tar - tape
archiver

cpio - copy file
archives in and out•••••••••••••..•......••.

ar (1)

ar (5)

be (1)

cpio(S)

ar (1)

ar (5)

tar (1)

cpio(l)

Permuted Inidex

arswap - convert
archives to new format •.....•••.•••..••••.•.•.••••

ranlib - convert
archives to random libraries .••..••.•..••.••.•.•.•

xargs - construct
argument list(s) and execute••..••••••••••••••

command
file according to contextual

arguments .••.•••. ~ ...•••.••••.••.••. csplit - split

expr - evaluate
arguments as an expression•..••.••••.•••••••••

echo2 - echo (print)
arguments to standard error .•.••••••••.•.•••.•....

echo - echo (print)
arguments to the standard output ...••..••••••••.••

(termina 1)
getopt - get option letter from

argv .. .

rpow - multiple precision integer
arithmetic •••••••..•••••.•••• /min, mout, pow, gcd,

be - arbitrary-precision
arithmetic language .••.•.••••.••••.•.•••••••••••••

arswap - convert archives to new ••••.•••.••••.••••
format

ascii - map of ASCII character •••..•.•••••••.•••••
set

ascii - map of
ASCII character set •••••••••••..•..••••••..•••••••

atof, atoi, atol - convert
ASCII to numbers •.••••• -:'" ••.•••••.•• /atofs, atofd,

ctime, localtime, gmtime,
asctime, tzset - convert date and .•••.••••••.•..••

time/

asin, acos, atan,
trigonometric/

atan2
sin, cos, tan,

-
help -

ask for hel,r?············ .. ·························

Page 6

arswap(l)

ranlib(l)

xargs(l)

csplit(l)

expr(l)

echo2(1)

echo(l)

getopt(3)

mp (3)

be (1)

arswap(l)

ascii (7)

ascii(7)

atof (3)

ctime(3)

sin(3)

help (1)

Permuted Index

as - PLZ/ASM
assembler •.....•.•••.•..••.•.•••••••••.••••••••••••

cas - invoke
assembler .. .

assert - program verification •••••••••••••••••••••

setbuf -
assign buffering to a s.tream ••••••••••••••••••••••

/- remove a C-ISAM file and any
associated audit trail file ••••••••••••.••••••••••

sin, cos, tan, asin, acos,
atan, atan2 - trigonometric/ ••••••••••..••••••.•••

sin, cos, tan, asin, acos, atan,
atan2 - trigonometric functions ••••••••••••..•••••

atof, atofs, atofd, atof, atoi, ••••••••••••••••••
atol - convert ASCII to numbers

atof, atofs, atofd,
atof, atoi, atol - convert ASCII •••••••••••••••••
to numbers

atof, atofs,
atofd, atof, atoi, atol - ••••••••••••••••••••••••

convert ASCII to/
atof,

atofs, atofd, atof, atoi, atol - ••••.••••••••••••
convert ASCII to numbers

atof, atofs, atofd, atof,
atoi, atol - convert ASCII to/ •••••••••••••• :-•••••

abs,
atoi, close, creat, exit, getc, •••••••••••••••••••

getchar, goodmagic, length,/
atof, atofs, atofd, atof, atoi,

atol - convert ASCII to numbers .•••••. ~ •••••••••••

a C-ISAM file and any associated
audit trail file •••.••••••••••••••••..••• /- remove

isaudit -
audit trail maintenance for a ..•••••••••••••••••••

C-ISAM file
acu -

automatic dialing out unit •.••••••••••.•••••.•••••

Page 7

as (1)

cas (1)

assert(3)

setbuf (3)

iserase(3)

sin(3)

sin(3)

atof (3)

atof (3)

atof (3)

atof (3)

atof (3)

dm (3)

atof (3)

iserase(3)

isaudit(3)

acu (4)

Permuted Index

awk - pattern scanning and •..••...•..••••.•.••..••
processing language

spool - information for writing
backends for the Zeus printer/ •••....•..••••••••.•

any, anystr,
balbrk, cat, clean up, curdir, .•••....••.••.•••••.

dname, fatal,/ -

banner - make posters ••.•••••..•.•••••..••••••••••

of manual for whatis/apropos data
base •..••.•••.•..•.•.•• getNAME - get NAME sections

- software trouble report data
base •....••.••••.•.••••••••..•••••••..••••• strfile

- terminal capability data

Page 8

awk (1)

spool(5)

pwb (3)

banner(l)

getname (1)

strfile(5)

base .•..•••..•••••••••••.•••••••••••••••••• termcap termcap(5)

makewhatis - remake the data
base for the whatis and apropos/ •••.•••.•.•••••••• makewhatis(M)

164a - convert between long and
base-64 ASCII a641,

oriented (visual) display editor
based on ex •••••...•••••••••••••••••••• v1 - screen

basename, dirname - deliver •.•••••.•...••••..•.•••
portions of path names

be - arbitrary-precision ••••••••••.•••••••••••••••
arithmetic language

bdiff - the diff program for very .••.•••••.•••••.•
large files

cb - C program
beaut i fie r ••...•.•••••••••....•....•.•••••.•••••••

j0, jl, jn, y0, yl, yn -
bessel ft1nct.ions .••.•.•.••••••••••••...•••••••••••

whereis - locate source,
binary, and or manual for program •...••.••••••.•••

print strings in object or other
binary file .•.•.••.•••••••....•.•••.•.•.• strings -

a641 (3)

vi (1)

basename(l)

be (1)

bd if f (1)

cb (1)

j 0 (3)

whereis(l)

strings (1)

Permuted Index

fread, fwrite - buffered
binary input/outpu~ ••••••••••••••••••••.••••••••••

bsearch -
binary search ••••••••••••••••••.•••••.••••••••••••

slink - memory
binder for downloading object •••••••••••••••••••••

modules.
/- remove symbols and relocation

bits and header (optional) ••••••••••••••••••••••••

sync - update the super
b 1 oc k ••••••.•••••••••.••.••••••.•.•..••••.••••••••

df - report number of free disk
blocks

sum - sum and count
blocks in a file ••••••••••••••••••••••••••••••••••

boot - secondary bootstrapper ••••••••••••••••••••

boot - secondary
bootstrapper ••••••••••••••••••••••••••••••••••••••

sh - shell, the
Bourne shell command programming ••••••••••••••••••

language

brk, sbrk - change core ••••••.•••••••••••••••••••.
allocation

bsearch - binary search •••••••••••••••••••••••••••

update - periodic
buffer flush ••••••••••••••••••••••••••••••••••••••

fread, fwrite -
buffered binary input/output •••••••••.••••••••••••

stdio - standard
buffered input/output package •.•••••••••••••••••••

setbuf - assign
buffering to a stream •..••••••••••••••••••••••••.•

mknod -
build special file •.•...••••••••••••.•••••••••••••

Page 9

fread(3)

bsearch(3)

slink(l)

strip(l)

sync (M)

df (M)

sum (1)

boot(M)

boot(M)

sh (1)

brk (2)

bsearch (3)

update(M)

fread(3)

stdio(3)

setbuf (3)

mknod (1)

Permuted Index

mknod -
build special file •••....•.••••.•....•••••.•..•..•

swab - swap
bytes .. .

cc - 88000
C compiler $ •••••••••••••••••••••••••

sec - 88000 segmented
C co.mpiler

ctags - maintain a tags file for
C or Fortran programs •••••.•••.•••••••••••••••••••

cb -
C program bceautifier ••••••••••••.••••.•••••.••••••

lint - a
C program v E~ r if i er ••.•..•••••••.•••..•••••••••••••

flow - flow analysis of
C programs

xstr - extract strings from
C programs to implement shared/ •••••••••••••••••.•

cxref - a simple
C routine rE:!ferencing program •.••••••••••••.••••••

error message file by massaging
C source •••.••.•.•••••.•••.••••.• mkstr - create an

hypot,
cabs - euclidean distance ••••••••.••••••••••••••••

cal - print calendar ••.••••••••••••••.•.••••••••.•

de - desk
calculator

cal - print
ca 1 end a r ••• i• ••••••••••••••••••••••••••••••••••••••

calendar - reminder service ••....••••••.•••••..•••

- data returned by stat system
call ... stat

Page 10

mknod(M)

swab(3)

cc (1)

sec (1)

ctags(l)

cb (1)

lint(l)

flow (1)

xstr(l)

cxref (1)

mkstr(l)

ca 1 (1)

de (1)

ca 1 (1)

calendar(l)

stat(7)

Permuted Index

cu -
call another ZEUS system ..•••.•••••••••••••.••• ~ ••

SYS - system
call relay program ••••••••••••••••••••••••••••••••

malloc, free, realloc,
calloc - main memory allocator •••••••••..•••••••••

- exercise link and unlink system
calls ••..••••••••••••••..••••••••••••• link, unlink

errno - introduction to system
calls and error numbers ••••••••••••••••••••• intro,

termcap - terminal
capability data base ••••.•••••••••••••••••••••••••

mktape - make special files for
cartridge tape devices ••.••••••••••••••.••.•••••••

ct -
cartridge tape interface ••••••••••••••••••••••••••

cas - invoke assembler ••••••••.•••••••••••••••••••

edit - text editor for new or
casual users ••••••••••.•••••••••••••••••••••••••••

cat - concatenate and print files •••••••••••••••••

any, anystr, balbrk,
cat, clean up, curdir, dname, ..•••••••••••••••••••

fatal,/ -
signal -

catch or ignore signals ••••••••••••••••••••.••••••

cb - C program beautifier •••••••••••••••••••••••••

cc - S8000 C compiler ••••••••••••.••••••••••••••••

cdc - change the delta commentary •••••••••••••••••
of an secs delta

floor, fabs,
cei 1, fmod - absolute value, ..••••••.•••••••••••••

floor, ceiling/

Page 11

cu (1)

sys(3)

malloc (3)

link(M)

intro (2)

termcap(S)

mktape(M)

ct (4)

cas (1)

edit (1)

cat (1)

pwb (3)

signal(2)

cb (1)

cc (1)

cdc (1)

floor(3)

Permuted Index

fmod - absolute value, floor,
ceiling functions ••..•• ~··············ffabs, ceil,

delta - make a delta
(change) to an secs file •••••••••••••••••••.••.•••

pipe - create an interprocess
channel

ungetc - push
character back into input stream ••..••••••.••.••••

/isgraph, iscntrl, isascii -
character classification ••.••••••.••••••••••••••••

cuserid -
character login name of the user ..••••••.•••••••••

getc, getchar, fgetc, getw - get
character or word from stream •••••••••••••••••••••

putc, putchar, fputc, putw - put
character or word on a stream •••••••••••••••.•••••

ascii - map of ASCII
character set ••••••••••••••..•••••••••••••••••••••

toupper, tolower, toascii -
character translation •.•••••••••••••••••••••••••••

tr - translate
characters .. .

rev - reverse the
characters on a line .•••••••••••••••••••••••••••••

code - print
characters with their octal ••••••.••••••..••••••••

equivalents.

chdir - change working directory ••••••••••••.•••••

file system directory consistency
check •••••••••.••.•••••••..••••••••••••••• dcheck -

- file system storage consistency
check .. icheck

fsck - file system consistency
check and interactive repair •••.•••••••••••••••.••

Page 12

floor(3)

delta(l)

pipe(2)

ungetc(3)

ctype(3)

cuserid(3)

getc(3)

putc(3)

ascii(7)

conv(3)

tr (1)

rev (1)

code (1)

chdir(2)

dcheck (M)

icheck (M)

fsck(M)

Permuted Index

chkin -
check in file to Zilog Source .•••••.•••.••••••••••

Control file
chkout -

check out file from Zilog Source ••••••••••••••••••
Control file

cw,
checkcw - prepare constant-width •.••••••••••••••••

text for troff
eqn, neqn,

checkeq - typeset mathematics ••••••••••••••••••••

pwck, grpck - password/group file
checkers . ••..•.•..•..•••.•...•..•.••.•.•...••..••.

chgrp - change group ••••••••••••••••••••••••••••••

chown,
chgrp - change owner or group •••••••••••••••••••••

chkdiff - list differences ••••••••••••••••••••••••
between versions of a source/

chkin - check in file to Zilog ••••••••••••••••••••
Source Control file

chkout - check out file from ••••••••••••••••••••••
Zilog Source Control file

chkwhat - print Zilog Source ••••••••••••••••••••••
Control what strings

chmod - change mode •••••••••••••••••••••••••••••••

chmod - change mode of f i 1 e •••••••••••••••••••••••

chmog, chog - change mode, owner ••••••••••••••••••
and group of a file

chmog,
chog - change mode, owner and ••••••••••••••••••.••

group of a file

chown - change owner and group of •••••••••••••••••
a file

chown - change the owner-name of ••••••••••••••••••
a file

Page 13

chkin(l)

chkout(l)

cw (1)

eqn (1)

pwck(l)

chgrp(l)

chown(M)

chkdiff (l)

chkin(l)

chkout(l)

chkwhat(l)

chmod(l)

chmod (2)

chmog (M)

chmog (M)

chown(2)

chown (1)

Permuted Index

chown, chgrp - change owner or .•.....•.••....•.•••
group

chroot - change root directory ••••.•••••••.••.••••

chroot - ch.ange root di rectory .•.•.•••.••.••••••••
for a command

isaddindex - add an index to a

Page 14

chown(M)

chroot(2)

chroot(M)

C-ISAM file•..••.••..•.•••..•.•..•..••..••..•• isaddindex(3}

- audit trail maintenance for a
C- I SAM f i 1 e • • • • • • • • • . • • • • • • . . • . • • . . • • . . • i s a u d i t isaudit(3}

isbuild - define a
C- I S AM f i 1 e isbuild(3}

isclose - close a
C- I S AM f i 1 e ,, . isclose(3}

delete the current record from a
C-ISAM file~ .••••.•••..•••.••••••••••• /isdelcurr - isdelete(3}

- remove an index from a
C-ISAM file .•.••.•..•••••••••.•••..••••• isdelindex isdelindex(3}

islock - read-lock a
C - I S AM f i 1 e •1 •

isread - read records from a
C - I S AM f i 1 e ..

isrelease - unlock records in a
C - I S AM f i 1 e .

isrename - rename a
C - I S AM f i 1 e .

- rewrite the current record in a
C-ISAM file .•.•.••••.••••.••.•.•••• /file isrewcurr

index and record within an
C-ISAM file .•••..•••.•••..•.• /- select the current

- obtain a unique ID for a

islock(3}

isread(3}

isrelease(3}

isrename(3}

isrewrite(3}

isstart(3}

C-ISAM file ..••.•.•••.•.••..••••.•.•..•• isuniqueid isuniqueid(3}

isunlock - unlock a
C - I S AM f i 1 e . isunlock(3}

Permuted Index

iswrite - write a record into an
C - IS AM f i 1 e • •••••••••••••.•••

iserase - remove a
C-ISAM file and any as:sociated ••••••••••••••••••••

audit trail/
isopen - open a

C-ISAM file for processing ••••••••••••••••••••••••

isrewrite - rewrite a record in a
C-ISAM file isrewcurr - rewrite/ ••••••••••••••••••

isindexinfo - access a

Page 15

iswrite(3)

iserase(3)

isopen(3)

isrewrite(3)

C-ISAM file's directory/ ••••••••••••.••••••••••••• isindexinfo(3)

lddbl, ldfloat, ldint, ldlong -
C-ISAM load routines ••••••••••••••••••••••••••••••

stdbl, stfloat, stint, stlong, -
C-ISAM store routines •••••••••••••••••••••••••••••

iscntrl, isascii - character
classification .••••••••••••••••• /isprint, isgraph,

any, anystr, balbrk, cat,
clean_up, curdir, dname, fatal,/ ••••••••••••••••••

clri -
c 1 ear i - node ••••••••••.•••••••••• • ••••••••••••••••

ferror, feof,
clearerr, fileno - stream status ••••••••••••••••••

inquiries
csh, ·- a command interpreter with

C-like syntax

cron -
clock daemon ••••••••••. , ••••••••••••••.••••••••••••

close - close a file •••••••••••••••••••••••••••••

isclose -
close a C-ISAM file •••••••••••••••••••••••••••••••

close
close a file ••••••••••••.•••••••••••••••••••••••••

abs, atoi,
close, creat, exit, getc, ••••••••.••.•••••••••••••

getchar, goodmagic,/

isld(3)

isst(3)

ctype(3)

pwb (3)

clri(M)

ferror(3)

csh (1)

cron(M)

close(2)

isclose(3)

close(2)

dm (3)

Permuted Index

fclose, fflush -
close or flush a stream ..•.•.....••.••••.•.••..•••

clri - clear i-node •••••.•••.•...••••.••••••.•••••

cmp - compare two files •••••••••..•.•••...••••.•••

code - print characters with •••••••••••.•..•••••••
their octal equivalents.

sgstat - get highest segmented
code address •••...•••••.••.••••••••..••.••••••••••

a.out - System 8000 object
code format

plzcg - plz/sys S8000
code genera tot'

list - terminal names and
codes .•• ~ •••••.••••••.•.••••••.•••••.••••• term in a 1

col - nroff post-processing
filter for printer output

comb - combine secs deltas ••••••••••••••••••••••••

comb -
combine SCCS deltas •.•••.•••••••••••••••••••••••••

comm - select or reject 1 ines •••.•.•••••••••••••.•
common to two sorted files

- change root directory for a
c 0 mm and • • • • • • • • • • • • • • . • • • • • • • • • • • • • • . • • • • • • • ch r 0 0 t

system - issue a shell
command • ••• t1 ••••••••••••••••••••••••••••••••••••••

time - time a
command • ••• " ••••••••••••••••••••••••••••••••••••••

argument list(s) and execute
command xargs - construct

timex - time a
command and generate a system .••.•.••••••.••••••••

activity report

Page 16

fclose(3)

clri (M)

cmp (1)

code(l)

sgstat(2)

a.out(S)

plzcg(l)

termlist(7)

col (1)

comb(l)

comb(l)

comm(l)

chroot (M)

system(3)

time(l)

xargs(l)

timex(l)

Permuted Index Page 17

nice, nohup - run a
command at low priority •••••••••••••••••••••••••••

/control script re csh - "read
comm and " cs he 11 mu 1 t i - user I :

env - set environment for
command execution

uux - zeus to zeus
command execution

rsh - restricted shell
(command interpreter)

csh, - a
command interpreter with C-like •••••••••••••••••••

syntax
whatis - describe what a

command is ••••••••••••..•••••••••••••••••••••••••••

getopt - parse
command options •••••••..•••••••••••••••••••••••••••

at - execute
command or shell script file at a •••••••••••••••••

later time
sh - shell, the Bourne shell

command programming language ••••••••••••••••••••••

- process and remove print queue
command requests from ••••••••••••••••••••.• dqueuer

re - "read
read/" command" startup control script ••••••••••••

rc_csh - "read/
acctcms -

command summary from pE~r-process ••••••••••••••••••
accounting records

and miscellaneous accounting
commands ••••••••••••••••••• /overview of accounting

install - install
commands ••••••••••••••••••••••••••••••••• o ••••••••

intro - introduction to Section 1

nice(l)

t:C (M)

env (1)

uux(l)

rsh (1)

csh (1)

what is (1)

getopt (1)

at(l)

sh (1)

dqueuer(M)

re (M)

acctcms(M)

acct (M)

install (M)

c o mm a n d s • i n t r o (1)

base for the whatis and apropos
commands • ., •••••••••••••••••••••• /- remake the data makewhatis(M)

Permuted Index

apropos - locate
commands by keyword lookup .•..••.•.••••••••.••••.•

cdc - change the delta
commentary of an SCCS delta ...•.•••••••••.•••••••.

comm - select or reject lines
common to two sorted files •..••••••••••.••••••••••

talk
communicate with another user .••..•.•••.••.•••••••

icp - general Intelligent
Communication Processor interface •••••••••••••.•••

users -
compact list of users who are on .•.•••.••••••••••.

the system
cmp -

compare two files ••••••••••••••••••••••••.••••••••

sccsdiff -
compare two versions of an secs

file
diff - differential file

comparer

diff3 - 3-way differential file
compa r 1 son ••

dircmp - directory
comparison ••••••••••.•••••••••••••••••••••••••••••

regcmp - regular expression
compile .. .

regexp - regular expression
compile and match routines ••••.•••••••••••••••••••

regcmp - regular expression
compile/execute •••••••••••••••••••••.••••••• regex,

cc - 88000 c
compiler .. .

plzsys - plz/sys
compiler

sec - S8000 segmented C
comp i 1 er ... 1•

Page 18

apropos(l)

cdc (1)

comrn(l)

talk(l)

icp(4)

users(!)

cmp (1)

sccsdiff (l)

di ff (1)

diff3(1)

dircmp(l)

regcmp(l)

regexp(7)

regex(3)

cc (1)

plzsys(l)

sec (1)

Permuted Index

plz - plz/sys
compiler driver , •••••••••••••••••••••••••••

error - analyze and disperse
compiler error messages •••••••••• ~················

yacc - yet another
compiler-compiler •••••••••••••••• •' ••••••••••••••••

pack, peat, unpack -
compress and expand files ••••••••••••.••••••••••••

login - sign on to the
computer ••••••••••••••••••••••• ·• • •' ••••••••••••••••

learn - on-line
computer-aided instruction ••••••••••••••••••••••••

cat -
concatenate and print files •••••••••••••••••••••••

- lock and unlock data against
concurrent access ••••••••••••••••••••• lkdata, unlk

icpload - load and
configure an ICP 8/02.~···························

mdmctl -
configure port for modem or •••••••••••••••••••••••

terminal line.
ttyconf ig -

configure ports for terminal or •••••••.•.•••••••••
modem line

acctcon -
connect-time accounting •••••••••••••••••••••••••••

dcheck - file system directory
consistency check •••••.•••••••••••••••••••••••••••

icheck - file system storage
consistency check •••••••••••••••••.•••••••••••••••

fsck - file system
consistency check and interactive •••••••••••••••••

repair
cw, checkcw - prepare

constant-width text for troff •••••••••••••••••••••

mkfs -
construct a file system •••••••••••••••••••••••••••

Page 19

plz(l)

error(l)

yacc(l)

pack(l)

login(l)

learn(l)

cat (1)

lkdata (2)

icpload(M)

mdmctl(2)

ttyconfig(M)

acctcon(M)

dcheck (M)

icheck(M)

fsck(M)

cw (1)

mkfs (M)

Permuted Index

makenewf s -
construct and restore file system •.•...•.••••..••.

xargs -
cons tr u c t argument 1 i s t (s) and • • • • • . • • • • • • • • • • • • • •

execute command
remove nroff/troff, tbl, and eqn

constructs ••••••••••••.•••••.••••••••••••• deroff -

ls - list the
contents of a directory •.•.•••••••••.•••••••••••••

csplit - split file according to
co n t ex t u a 1 a r g um en t s •

fcntl - file
control ,

- uucp status inquiry and job
control uustat

remotelines, LCK - remote line

Page 20

makenewfs(M)

xargs(l)

deroff (l)

1 s (1)

csplit(l)

fcntl(2)

uustat (1)

control and lock files •••••.••••••..•••.•••••••••• remotelines(5)

ioctl - input I output
control device •.•••.•••••••••.••••••••.•••••••••••

- check in file to Zilog Source
Cont r o 1 f .i 1 E~ ••••••••••••••••••••••••••••••••• ch kin

check out file from Zilog Source
Control file .•••••••••••.••••.•••••••••••• chkout -

zsc - Zilog Source
Control File conventionso•••••····················

inittab -
control information for init •••••••.••••••••••••••

INIT - process
control initialization •••••.•••••••••••••.•••.••••

fcntl - file
control options ••.••••••••••••••••••.••.•.•••••• ~.

re - "read command" startup
control script re csh - "read/ ..•.•.••••••••••.•••

remote - transfer
control to a remote ZEUS/UNIX ..••••.•..•••.•••••.•

system

ioctl (2)

chkin(l)

chkout (1)

zsc (5)

inittab(5)

init(M)

fcntl(7)

re (M)

remote(l)

Permuted Index

local - return
control to local system •••••••••••••••••••••••••••

chkwhat - print Zilog Source
Control what strings •••.••••••••••••••••••••••••••

dog -
controlled output flow filter for •••••••••••••••••

CRT previewing
terminals-

conventional names •••.••••••••••••••••••••••••••••

zsc - Zilog Source Control File
conventions ••••••.••••••••••••••• '• ••••••••••••••••

fcvt, fcvt, gcvt, gcvt - output
conversion ••.••••.••••• :-•••••••••••• :-.ecvt, _ecvt,

fscanf, sscanf - formatted input
conversion ••••••••••••••••••••••• 1o •••••••••• scanf,

units -
conversion program ••••..•••••••••••••••••••••••••••

dd -
convert and copy a file •••••••••••••••••••••••••••

arswap -
convert archives to new format ••••••••••••••••••••

ranlib -
convert archives to random ••••••••••••••••••••••••

libraries
atofsv atofd, atof, atoi, atol -

con v er t AS C I I to n umbel~ s • • • • • • • :-• • • • • • • . • • • • • at o f ,

a641, 164a -
convert between long and base-64 ••••••••••••••••••

ASCII
13tol, ltol3 -

convert between three-byte ••.•••••••••••••••••••••
integers and long/

/gmtime, asctime, tzset -
convert date and time to/ •••••••••••.•••••••••••••

uulog, uuname - ZEUS to ZEUS
copy .. uucp,

dd - convert and
copy a file •••••••••••••••••••••• •'• •••••••••••••••

Page 21

local(l)

chkwhat(l)

dog (1)

term (7)

zsc (5)

ecvt(3)

scanf (3)

units(l)

dd (1)

arswap(l)

ranlib(l)

atof (3)

a641(3)

13tol(3)

ctime(3)

uucp(l)

dd (1)

Permuted Index

cp -
copy a file into another or into ...•..•.•.••••••••

a directory
cpio -

copy file archives in and out .•.•••..•••••••••••.•

script - make a file
copy of all terminal interactions ••..•••.•.•••••••

core - format of core image file •.•••••••.••••••••

brk, sbrk - change
core allocat:ion •••••.••••••••.••...•••••••.•••.•••

core - format of
core image file ••••••••••..••••..•..•••.••••••••••

sin,
cos, tan, asin, acos, atan, atan2 •.••.••.••••.•.••

- trigonometric functions
sinh,

cosh, tanh - hyperbolic functions •..•.••••••••.•••

wc - word
count ,

sum - sum and
count blocks in a file •••••••.••••.•.•••••••••.•.•

cp - copy a file into another or •••••...•••••••..•
into a directory

cpio - copy file archives in and ..•••••••.••••••••
out

cpio - format of cpio archive

cpio - format of
cpio archivE~ .•..•••••....•.••••••••••••.••••••••••

creat - create a new file ••.••••••.•.•.•..•••••.•

abs, atoi, close,
creat, exit, getc, getcbar,••.••....•..•.••.•.

goodmagic,/
tmpnam -

create a name for a temporary •••..••.••..••••.••••
file

Page 22

cp (1)

cpio(l)

script(l)

core(5)

br k (2)

core(5)

sin(3)

sinh(3)

WC (1)

sum (1)

cp (1)

cpio(l)

cpio(5)

cpio(5)

creat(2)

dm (3)

tmpnam(3)

Permuted Index

creat
create a new file •••••••••••••••• •'• ••••••.••••••••

tmpfile -
create a temporary file •••••••••••••••••••••••••••

mkstr -
create an error message file by •••••••••••••••••••

massaging C source
pipe -

create an interprocess channel ••••••••••••••••••••

admin -
create and administer secs files ••••••••••••••••••

umask - set file
creation mode mask ••••••••••••••••••••••••••••••.•

cref - make cross-reference •••••••••••••••••••••••
listing

cron - clock daemon •••••••••••••••••••••••••••••••

cref - make
cross-reference listing •••••••••••••••••••••••••••

controlled output flow filter for
CRT previewing ••••••••••••••••••••••••••••••• dog -

page - file perusal filter for
crt viewing •••••••••••••••••••••• •'• •••••••••• more,

crypt - encode/decode •••••••••••••••••••••••••••••

crypt, set key, encrypt - DES ••••••••••••••••••••••
encryption

csh, - a command interpreter with •••••••••••••••••
C-like syntax

/script rc_csh - "read command"
Cshell multi-user startup script ••••••••••••••••••

cshrc,
cshprofile, login - setting up an ••••••••.••••••••

environment at login time

cshrc, cshprofile, login- •••••••••••••.••••••••••
setting up an environment at/

Page 23

crea t (2)

tmpfile(3)

mkstr(l)

pipe(2)

admin (1)

umask(2)

cref(l)

cron (M)

cref(l)

dog (1)

more(!)

crypt (1)

crypt(3)

csh (1)

re (M)

cshrc(S)

cshrc(S)

Permuted Index

csplit - split file according to ••...••..•••••••••
contextual arguments

ct - cartridge tape interface •.....•••••••••••.•••

ctags - maintain a tags file for •.•.••••••••••••••
C or Fortran programs

ctermid - generate file name for ••..••••••••••••••
terminal

ctime, localtime, gmtime, •••••••••••••••••••••••••
asctime, tzset - convert date/

cu - call another ZEUS ••.••..•••••••••••••••••••••
system

/anystr, balbrk, cat, clean up,
curdir, dname, fatal, fdfopen,/ .•••••••••••••• --:- •••

isstart - select the
current index and record within .••••••••••••••••••

an C-ISAM/
isdelete, isdelcurr - delete the

current record from a C-ISAM file ••••.••••••••••••

/file isrewcurr - rewrite the
cur rent record i n a C- I s AM f i 1 e • • • • • • • • • • • • • • • • • • •

uname - get name of
current Zilog system ..•••••••••••••..•.•.•••.•••••

sact - print
current SCCS file editing ••.•.••••..•••••.••.•.•••

activity
whoami - print effective

current user id ••••.••••.•.•••••••••••••••••••••••

names and process status for
current users ••••.•••••••.••••••••••• whodo - print

uname - print the name of
current ZEUS ••...••••••.•.•••••••.••••••••••••••••

- print the login names of those
currently on the system •.••.•.•••••.••••••..•. who

Page 24

csplit(l)

ct(4)

ctags(l)

ctermid (3)

ctime(3)

cu (1)

pwb (3)

isstart(3)

isdelete(3)

isrewrite(3)

uname(2)

sact(l)

whoami(l)

whodo(l)

uname(l)

who (1)

Permuted Index

screen functions with "optimal"
cursor motion ••••••••••••••••••• •'• ••••••.• curses -

cuserid - character login name of •••••••••••••••••
the user

cut - cut out selected fields of ••••••••••••••••••
each line of a file

cut -
cut out selected fields of each •••••••••••••••••••

line of a file

cw, checkcw - prepare •••••••••••••••••••••••••••••
constant-width text for troff

cxref - a simple C routine ••••••••••••••••••••••••
referencing program

cron - clock
daemon • ••••••••••••••• n •••••••••••••••••••••••••••

runacct - run
daily accounting ••••••..•••••••••••••••••••••••••••

- handle special functions of the
DASI 450 terminal •••••••••••••••••••••••••••••• 450

- handle special functions of
DASI terminals ••••••••••••••••••••••••••• 300, 300s

prof - display profile
data

sprof - display profile
a a ta

lkdata, unlk - lock and unlock
data against concurrent access ••••••••••••••••••••

of manual for whatis/apropos
data base ••••••••••••••••••••• /- get NAME sections

strfile - software trouble report
data base •.•..•••..•..••••••••••• •'• ..•.•••••••••.•

termcap - terminal capability
data base •••••••••.••••••••••••••.••••••••••••••••

makewhatis - remake the

Page 25

curses(3)

cuserid(3)

cut(l)

cut { 1)

cw { 1)

cxref (1)

cron{M)

runacct{M)

-450(1)

-300(1)

prof{l)

sprof {l)

lkdata(2)

getname{l)

strfile{5)

termcap(5)

data base for the whatis and ••••••.••••••••••••••• makewhatis{M)
apropos/

Permuted Index

stat -
data returned by stat system call ...•..•••••.•••••

sgbrk - change the size of a
data segmen1: ••••.••.•...••••••••.••••..•••.•••••••

null -
data s i_n k .. .

types - primitive system
data types

types - primitive system
data types

- access the user information
database ••••.•••.•••••.•.•••.••••..•.•••••••• who is

whois - whois
database file •••••••••••..••••••••••••••••••.•••••

join - relational
database operator .••••••••••••••••••••••.•••••••••

date - print and set the
date

date - print and set the date ••.••••••••••••••••••

date - print the date and time ••••.•••••••••••••••

date - print the
date and tiTne ••••••••.•••••••••.••••••.•.•••••••••

time, ftime - get
date and time ••••••••••••••••.••••••••••••••••••.•

datem - friendly
date and time setting •.•••••••••••••••••••••••••••

/gmtime, asctime, tzset - convert
date and time to ASCII .•••••••.•••.••••••••••••.••

datem - friendly date and time •••••••••••••••••.••
setting

daytime - give the time to •• ~·····················
human-reasonable accuracy

Page 26

stat(?)

sgbrk (2)

null (4)

types(5)

types(?)

whois(l)

whois(5)

join(l)

date (M)

date (M)

date(l)

date(l)

time(2)

datem (M)

ct ime (3)

datem (M)

daytime(!)

Permuted Index

de - desk calculator ••••.••...••••••••••••••••..•.

dcheck - file system directory •••.•••••••..••.••••
consistency check

dd - convert and copy a file •.•••••••••••.•••.•••.

dump,
ddate - incremental dump format •••••.•••••••••••..

adb -
debugger •••••••••.••••••••••••.•• •, ••.•••••••••••••

reset - reset terminal modes to
default values •••.•••••••••••••••.••..•.••••••••••

isbuild -
de f i n e a C- I SAM f i 1 e ••

xq - examine or
delete requests from the line •••••••••••••••••••••

printer spooler
xq - examine or

delete requests from the line ••••••.•••.•••••••.••
printer spooler

isdelete, isdelcurr -
delete the current record from a ••••••••••••••••••

C-ISAM/
basename, dirname -

deliver portions of path names •••••••••••••••.••••

the delta commentary of an secs
delta •••.•••••.••••••••••••••••••••••• cdc - change

delta - make a delta (change) to •••••••.••••••••.•
an SCCS file

delta - make a
delta (change) to an secs file •••••••••.••.•.•••••

cdc - change the
delta commentary of an SCCS delta ••••..••.••••.•.•

rmdel - remove a
delta from an secs file ••••••••••••••.••••••••••••

comb - combine secs
deltas o •••••••••• ~ ••••••••••••••••

Page 27

de (1)

dcheck (M)

dd (1)

dump (5)

adb (1)

reset(l)

isbuild(3)

xq (1)

xq(M)

isdelete(3)

basename(l)

cdc (1)

delta(l)

delta(l)

cdc (1)

rmdel(l)

comb (1)

Permuted Index

mesg - permit or
deny messages

deroff - remove nroff/troff, tbl, .•.•••.••••••••••
and eqn constructs

crypt, setkey, encrypt -
DES encryption ...•.•..•••••.••••••.•.••••.••••••••

whatis -
describe what a command is ..•.••••••.•••••••••••••

dup2 - duplicate an open file
descriptor ..••••• o •••••••••••••••••••••••••••• dup,

de -
desk calculator •••.•.•••••.•.•.••••••••.••••••••••

access -
determine accessibility of file •.•••••••••••••••••

file -
determine file type .••••.•••••••••••••••••••••••••

isrio -
determine if terminal is a RIO ..•••.••••••••••••••

System
goodmagic -

determine magic number validity •..••••••••••••••••

perror,
deverr, sys errlist, sys nerr, •••.••••••••••••••••

errno - s"ystem error/ -
ioctl - input / output control

device

devnm -
dev~ice name •••••.•••••••••..••••••••..•••.••••••••

special files for magnetic tape
devices ..•••.••.•..••••.•••••.••••••.•• mkmt - make

special files for cartridge tape
devices ••••.•.•••••••.••••..•••••.••• mktape - make

devnm - device name •.•..•.•••••••••••..•••••••••••

d f - report n umber o f f re e d i s k • . • • • • . • • . • • • • . • • • •
blocks

Page 28

mesg(l)

deroff (1)

crypt(3)

whatis(l)

dup (2)

de (1)

access(2)

file(l)

isrio (1)

goodmagic(3)

perror(3)

ioctl(2)

devnm(M)

mkmt (M)

mktape(M)

devnm(M)

df (M)

Permuted Index

acu - automatic
dialing out unit ••••••••••••••••••••••••••••••••••

diff - differential file comparer •••••••••••••••••

bdiff - the
diff program for very large files •••••••••••••••••

diff3 - 3-way differential file •••••••••••••••••••
comparison

sdiff - side-by-side
difference program ••••••••••••••••••••••••••••••••

diffmk - mark
differences between files •••••••••••••••••••••••••

chkdiff - list
differences between versions of a •••••••••••••••••

source file
diff -

differential file comparer ••••••••••••••••••••••••

diff 3 - 3-way
differential file comparison ••••••••••••••••••••••

diffmk - mark differences between •••••••••••••••••
files

dir - format of directories •••••••••••••••••••••••

dircmp - directory comparison •••••••••••••••••••••

dir - format of
d i r ec t 0 r i e s •

mv - move or rename files and
directories •••••••••••••••••••••••••••••••••••••••

vls - "visually" list files and
direct 0 r i es •••••••••••••••••••••••••••••••••••••••

chdir - change working
directory •••

chroot - change root
di rectory

Page 29

acu(4)

diff (1)

bdiff (l)

diff3 (1)

sd if f (1)

diffmk(l)

chkdiff (l)

diff (1)

diff3(1)

diffmk(l)

dir (5)

d ircmp (1)

dir (5)

mv (1)

vls(l)

chdir(2)

chroot(2)

Permuted Index

a file into another or into a
directory •.•..•••••.•.•....•.•••••.•••••• cp - copy

ls - list the contents of a
a irecto·ry. 11 •••••••••••••••••••••••••••••••••••••••

mkdir - make a
a i rec t 0 r y • ti •••••••••••••••••••••••••••••••••••••••

mvdir - move a
d i rec t 0 r y • q• •••••••••••••••••••••••••••••••••••••••

dircmp -
directory comparison .••.••••.••••••..•.•••••.•••••

dcheck - file system
directory consistency check ••••.•.••.•.•••••••.•••

unlink - remove
di rectory E~ntry .•••••••••••.•••••••••.••••••••••••

chroot - change root
directory for a command •.••••..••••••••••••••••.••

/- access a C-ISAM file's

Page 30

cp (1)

1 s (1)

mkdir(l)

mvdir(M)

d ircmp (1)

dcheck(M)

unlink(2)

chroot(M)

directory information •••••••••••••••.••••••••••••• isindexinfo(3)

upkeep -
directory maintenance ••••••••••••••.••••••••••••••

pwd - print present working
directory name ••..•••••••••••••••••.••••••.•••••••

mknod - make a
directory or a special file ••••••.••••••••••.•••••

basename,
dirname - deliver portions of ••••.••••••••••••••••

path names

disasm, disinit - disassemble ••..••.•••.••••••••••
Z8000 instructions

disasm, disinit -
disassemble Z8000 instructions •••.•..••••••.••••••

disasm,
disinit - disassemble Z8000 ••.••••.•••••••••••••••

instructions
md - 5.25" Winchester

a is k .. .

upkeep(M)

pwd (1)

mknod (2)

basename(l)

disasm(3)

disasm(3)

disasm(3)

md (4)

Permuted Index

smd - Storage module
a is k ••

zd - Winchester
disk

df - report number of free
disk blocks •••••••••••••••••••••••••••••••••••••••

du - summarize
disk usage ••

mount, umount - mount and
dismount file system ••••••••••••••••••••••••••••••

error - analyze and
disperse compiler error messages ••••••••••••••••••

vi - screen oriented (visual)
display editor based on ex ••••••••••••••••••••••••

printenv -
display environment variables •••••••••••••••••••••

prof -
display profile data ••••••••••••••••••••••••••••••

sprof -
display profile data ••••••••••••••••••••••••••••••

vnews - "visually"
display the news items ••••••••••••••••••••••••••••

hypot, cabs - euclidean
distance

dmal ias - Z 8 00 0 Development •••••••••••••••••••••••
Module protocol

/balbrk, cat, clean up, curdir,
dname, fatal, fdfopen, giveup,/ ••••••• : •••••••••••

MM macro package for formatting
d 0 c um en t s • .• • • • • • • • mm - the

dog - controlled output flow ••.•••••••••••••••••••
filter for CRT previewing

LOAD -
Download to Z8000 or Z8 •••••••••••••••••••••••••••

Development Module

Page 31

smd(4)

zd(4)

df (M)

du (1)

mount (M)

error(!)

vi (1)

printenv(l)

prof(l)

sprof (1)

vnews(l)

hypot (3)

dmalias(7)

pwb (3)

mm (7)

dog (1)

load (1)

Permuted Index

slink - memory binder for
downloading object modules .••..•.••.•..••••.••••••

dqueuer - p:rocess and remove •••••••••••.••••••.•••
print queue command requests/

reserv - tape
drive reserving system •••••••••.••••••••••••••••••

lp - line printer
driver

plz - plz/sys compiler
driver e•••••••••••••••••••••••••

du - summarize disk usage •.•••.•••••••••••••••••••

sdump - incremental file system
dump ••••••..•••••••••••••••••.••••••••••••••• dump,

objhdr - object module header
a ump • •.•••••.•••••••••••••.•••••••••••••••••••••••

ad, hd - octal or hex
dump • •.•••••.•••••••••••

dump, ddate - incremental dump ••••••••••••••••••••
format

objdu -
dump for object and load modules ..••••••••••••••••

dump, ddate - incremental
dump format •..••••••••••••.•••••••••••••••••••••••

dump, sdump - incremental file •••••••••••••.••••••
system dump

rusr, tmp, rtmp, z, rz, tardev,
dumpdev and resdev ••••.••..••••••••••• /rroot, usr,

dup, dup2 - duplicate an open ••••••••••••••••••..•
file descriptor

dup,
dup2 - duplicate an open file .••••••••••••••••••••

descriptor
dup, dup2 -

duplicate an open file descriptor ••••••.••••••••••

Page 32

slink(l)

dqueuer (M)

reserv(l)

lp (4)

plz(l)

du (1)

dump (M)

objhdr(l)

ad (1)

dump (5)

objdu(l)

dump (5)

dump (M)

devnames(4)

dup (2)

dup (2)

dup (2)

Permuted Index

echo - echo (print) ar9uments to ••••••••••••••••••
the standard output (terminal)

echo2 -
echo (print) arguments to •••••••••••••••••••.•••••

standard error
echo -

echo (print) arguments to the •••••••••••••••••••••
standard output/

echo2 - echo (print) arguments to •••••••••••••••••
standard error

ecvt, _ecvt, fcvt, _fcvt, gcvt, •••••••••••••••••••
_gcvt - output conversion

ecvt,
ecvt., f cvt, f cvt, gcvt, _gcvt - ••••••••••••.•••••

- output conversion

e d - t ex t ed i tor •

end, etext,
edata - last locations in program •••••••••••••.•••

ex,
edit - text editor ••••••••••••••••.••••••••••••••••

edit - text editor for new or •••••••••••••••••••••
casual users

sact - print current secs file
editing activity ••••••••••••••••••.••••••••••••••••

ed - text
editor I ••••••••••••••••

ex, edit - text
editor

sed - stream
editor ,

screen oriented (visual) display
editor based on ex •••••••••••••••••••••••••••• v1 -

edit - text
editor for new or casual users ••••••••••••••••••••

whoami - print
effective current user id •••••••••••••••••••••••••

Page 33

echo (1)

echo2(1)

echo(l)

echo2 (1)

ecvt(3)

ecvt(3)

ed (1)

end(3}

ex(l)

edit (1)

sact(l)

ed (1)

ex (1)

sed (1)

vi (1)

edit (1)

whoami (1)

Permuted Index

/user identity getegid - get
effective group identity ••.•••••••••••••••••••••.•

/get group identity geteuid - get
effective user identity getegid/ •••••••••.••••••••

grep,
eg rep , f g rep - search a f i 1 e for • . • • • • • • • • • • • • • • ••

a pattern
crypt -

encode/deco<le •••••••••.••••••.•.•.••••••••••••••••

crypt, setkey,
encrypt - DES encryption ••.•••••••••••••••••••••••

crypt, setkey, encrypt - DES
encryption •..•••••••••••••.••••••••••••••••••••••••

makekey - generate
encryption l~ey •••••••••••..•••••••••••••••••••••••

end, etext, edata - last .•••••••••••••••••••••••••
locations in program

/getgrgid, getgrnam, setgrent,
endgrent - get group file/ ••••••.•••••••••••••••••

/getpwuid, getpwnam, setpwent,
endpwent - get password file/ •••••••••••••••••••••

nq - print
enque i ng pr c>g ram •••••••••••••••••••••.••••••••••••

nlist - get
entries frorn name list

endpwent - get password file
entry ••••••••••••••••••••••••• /getpwnam, setpwent,

- macros to nroff or troff manual
entry ••••••••.••••••••••••••••••.•••••••••••••• man

putpwent - write password file
entry .. .

unlink - remove directory
entry .. .

env - set environment for command •••••••••••••••••
execution

Page 34

getuid(2)

getuid (2)

grep(l)

crypt(l)

crypt(3)

crypt(3)

makekey(M)

end (3)

getgrent(3)

getpwent(3)

nq (1)

nlist(3)

getpwent(3)

man(7)

putpwent(3)

unlink(2)

env(l)

Permuted Index

environ - user environment •.•••.•....•.......•••..

environ - user environment •••••••••.•••.•••.•.••.•

environ - user
environment •.•••••••••.••••••••• ,• •••.••.••••••••••

environ - user
environment ••••••••••.•••••..•••.•.•••.••••••.•.••

cshprofile, login - setting up an
environment at login time •••••••••••••••.••• cshrc,

env - set
environment for command execution •••••••••••••••••

getenv - value for
environment name •••••••.•••••.•• ,• ••••••••••••••••.

printenv - display
environment variables ••••••.•••••••.••••••••••••••

- remove nroff/troff, tbl, and
eqn constructs ••••••••••••••••••••••••••.••• deroff

eqn, neqn, checkeq - typeset •••••••••••••••••••••
mathematics

print characters with their octal
equivalents .•••.•••••••••••••••• , ••••••.••••• code -

intro,
errno - introduction to system ••••••••.•••••••••••

calls and error numbers
/deverr, sys_errlist, sys_nerr,

errno - system error messages •••••••••••••••••.•••

(print) arguments to standard
error ••.••••••••••.••.•••.••••••...••. echo2 - echo

error - analyze and disperse ••••..•••.••••••••••••
compiler error messages

mkstr - create an
error message file by massaging c

source
- analyze and disperse compiler

error messages •••..••.••••••••••.••.••.•••••. error

Page 35

environ(S)

environ(?)

environ(S)

environ(?)

cshrc(S)

env (1)

getenv(3)

printenv(l)

deroff (1)

eqn (1)

code (1)

intro(2)

perror(3)

echo2(1)

error(l)

mkstr(l)

error(l)

Permuted IndE=x

sys nerr, errno - system
error messagE~s •.•••..••...•.. -:- .•••••• /sys_errl ist,

introduction to system calls and
error numbers •..••..••••.••••••••••• intro, errno -

spellin, spellout - find spelling
errors .. s~pe 11 ,

- find possible typographical
e r r o r s • • • • .. • .. • . • • • . • . • typo

setmnt -
establish mnttab table .•••.••••.•••..•••••••••••••

end,
etext, edata - last locations in •••••••.••.•••.•••

program
hypot, cabs -

euclidean distance ••.•••••.•••••••.••••.••••.•••••

expr -
evaluate arguments as an ..•••.••••••••••••••••••••

expression
test -

evaluate files, strings, and .•••••••••••••••.•••••
numbers

(visual) display editor based on
ex ••••••..••••••.••••••••••••• v1 - screen oriented

ex, edit - text editor ••••••••••••••••••••••••••••

xq
examine or delete requests from •••••••••••••••••••

the line printer spooler
xq

examine or delete requests from •••••••••••••••••••
the line printer spooler

execl, execv, execle, execve, .•••••••••.•••.••••••
execlp, execvp - execute a file

execl, execv,
execle, execve, execlp, execvp - .•••••••••••••.••

execute a file
execl, execv, execle, execve,

execlp, execvp - execute a file ••.••.••••••••••••

execle, execve, execlp, execvp
execute a file ••... @••···············execl, execv,

Page 36

perror(3)

intro(2)

spell(l)

typo(l)

setmnt(M)

end (3)

hypot (3)

expr(l)

test(l)

vi (1)

ex (1)

xq (1)

xq (M)

exec (2)

exec(2)

exec(2)

exec(2)

Permuted Index

- construct argument list(s) and
execute command ••..••••••.•..••••.••••••••••• xargs

at -
execute command or shell script ••.•••••.•.••••••.•

file at a later time
env - set environment for command

e x e c u t i o n • '• • • • • • • • • • • • • • • • • • •

uux - zeus to zeus command
execution .•••.••••••••••••••••. '• •••••••••••••.••••

sleep - suspend
execution for an interval •••••••••••••.•••••••••.•

sleep - suspend
execution for interval ••••••••••••••••.•••••••••••

monitor - prepare
execution profile •••••••••••••.•••••••.•••••••••••

(segmented monitor) - prepare
execution profile •••••••••••••.••••••••••••• segmon

profil -
execution time profile ••••••••••••••••••••••••••••

execl,
execv, execle, execve, execlp, .•.•••••••••••••••••

execvp - execute a file
execl, execv, execle,

execve, execlp, execvp - execute .•••••••.•••••.••
a file

execv, execle, execve, execlp,
execvp - execute a file .•••••.••••••••••.•• execl,

link, unlink -
exercise link and unlink system •.••••.•••••..•••••

calls

exit - terminate process •••.••.•••••.••.••••••••••

abs, atoi, close, creat,
exit, getc, getchar, goodmag ic, •.••.•.•••..•••••••

length,/

exp, log, logl0, powv sqrt- •••••..••..••••.••••••
exponential functions

expand - expand tabs to spaces ••••••..••.•••••••••

Page 37

xargs(l)

at (1)

env(l)

uux (1)

sleep(!)

sleep(3)

monitor(3)

segmon(3)

profil(2)

exec(2)

exec(2)

exec(2)

link(M)

exit(2)

dm (3)

exp (3)

expand(!)

Permuted Index

pack, peat, unpack - compress and
1expand files •..•.•• , .•••.•••.••••••••••..••••••••••

expand -
expand tabs to spaces .••.••••••••••••••.••••••••••

modf - split into mantissa and
exponent ••••••••••••••••••••••••••••• frexp, ldexp,

exp, log, logl0, pow, sqrt -
exponential functions ••••••••••••••••••.••••••••••

expr - evaluate arguments as an •••••••••••••••••••
expression

expr - evaluate arguments as an
express ion •..••••••••••••••.••••••••••••.•••••••••

regcmp - regular
expression compile .•••••••••••.•••.•••••••••••••••

regexp - regular
expression compile and match ••••••••••••••••••••••

routines
regex, regcmp - regular

express ion compi 1 e/execute ••••..••••••••••••••••••

greek - graphics for the
extended TTY-37 type-box •••••••••••••••••••.••••••

xstr -
extract strings from C programs ••••••••.••••••••••

to implement shared/
floor,

fabs, ceil, fmod - absolute •••••••••••.•.•••.•••••
value, floor, ceiling/

pstat - print system
facts

true,
false - provide truth values ••••••••••••••••••••••

/cat, clean up, curdir, dname,
fat a 1 , fa f ope~ n , g i v e up , i match , 7.

abort - generate !OT
fault ,

/information #include <grp.h>
struct group *getgrent();/ ..•••••••••••••••.••••••

Page 38

pack(l)

expand(l)

frexp(3)

exp (3)

expr(l)

expr(l)

regcmp(l)

regexp(7)

regex(3)

greek(7)

xstr(l)

floor(3)

pstat (M)

true(l)

pwb (3)

abort(3)

getgrent(3)

Permuted Index

struct group *getgrent();
struct group/ ••....•....••••.•••.••..••.•• /<grp.h>

- get group file information
#include <grp.h> / •••..••••••.••••••••••• /endgrent

fclose, fflush - close or flush a ••••••.•..•••••••
stream

fcntl - file control ••••••...•••.••.•..•.•••••••.•

fcntl - file control options •.•••••••.•..••.••.•••

ecvt, ecvt,
fcvt, fcvt, gcvt, _gcvt - output ••••••••••• ~ •••••

conversion
ecvt, ecvt, fcvt,

_fcvt, gcvt, _gcvt - output ••••••••••• ~ •••.•••••••
conversion

/clean up, curdir, dname, fatal,
fdfopen, giveup, imatch,-index,/ ••.•••.•••••••••••

fopen, freopen,
fdopen - open a stream ••••••••••••••••••••••••••••

ferror,
feof, clearerr, fileno - stream .••••••••••••••••••

status inquiries

ferror, feof, clearerr, fileno
stream status inquiries

-
fclose,

fflush - close or flush a stream •.•••••••••••.••••

getc, getchar,
fgetc, getw - get character or •••••.••••••••••••••

word from stream
gets,

fgets - get a string from a •••••••••••.•••.•.•••••
stream

grep, egrep,
fgrep - search a file for a .••.•••••••....•••••••.

pattern
cut - cut out selected

fields of each line of a file ••••••••••....••..•.•

*getgrgid(gid) int
9-• •••••••••••••••••••••••••••••• / struct group

Page 39

getgrent(3)

getgrent (3)

fclose(3)

fcntl(2)

fcntl(7)

ecvt(3)

ecvt(3)

pwb (3)

fopen (3)

ferror(3)

ferror(3)

fclose(3)

getc(3)

gets(3)

grep(l)

cut (1)

getgrent(3)

Permuted Index

- determine accessibility of
file •••... ~ ..•••.••..•.•.•.••.••.•••.••.•••. access

between versions of a source
file •.•••••...•••••••••. chkdiff - list differences

in file to Zilog Source Control
file •....•...•..•.•.•••••..•.••••.•••• chkin - check

file from Zilog Source Control
file •••...• n••••••••••••••••••••chkout - check out

chmod - change mode of
file

change mode, owner and group of a
file •.•• , chmog, chog -

- change the owner-name of a
file fl •••••••••••••••••••••••••••••••••••• chown

- change owner and group of a
file -.................... chown

close - close a
f i 1 e

core - format of core image
f i 1 e

creat - create a new
f i 1 e

selected fields of each line of a
file ••••••••••••••.•••••••••••••••••• cut - cut out

dd - convert and copy a
file fl••·····························

make a delta (change) to an SCCS
file delta -

execlp, execvp - execute a
file •••.••.•••••••.•••••••• /execv, execle, execve,

get - get a version of an SCCS
f i 1 e

group - group
f i 1 e,

Page 40

access(2)

chkd iff (1)

chkin(l)

chkout(l)

chmod (2)

chmog (M)

chown(l)

chown(2)

close(2)

core(S)

creat(2)

cut (1)

dd (1)

delta(!)

exec(2)

get (1)

group(S)

Permuted Index Page 41

- add an index to a C-ISAM
file - •••••••• isaddindex isaddindex(3)

trail maintenance for a C-ISAM
file - ••• isaudit - audit isaudit(3)

isbuild - define a C-ISAM
file.• .. •• e •••• e e. •.(I. e e e e •• e •• e\. e e • ••• e e e e ••• e e. e isbuild (3)

isclose - close a C-ISAM
file.. isclose(3)

the current record from a C-ISAM
file /isdelcurr - delete isdelete(3)

- remove an index from a C-ISAM
file isdelindex isdelindex(3)

and any associated audit trail
file •••••••••••••••••.•••••• /- remove a C-ISAM file iserase(3)

islock - read-lock a C-ISAM
fil.e ,

- read records from a C-ISAM
file .. isread

- unlock records in a C-ISAM
f i 1 e ••••••••••••••••••••••••••••.••••••••• is re 1 ease

isrename - rename a C-ISAM
f i 1. e •'

the current record in a C-ISAM
file ••••••••••••••••••••• /file isrewcurr - rewrite

index and record within an C-ISAM
file ••••••••••••••••••••••••• /- select the current

- obtain a unique ID for a C-ISAM

islock(3)

isread(3)

isrelease(3)

isrename(3)

isrewrite(3)

isstart(3)

file •••••••••••••••••••••••••••••••••••• isuniqueid isuniqueid (3)

isunlock - unlock a C-ISAM
file , isunlock(3)

- write a record into an C-ISAM
f i 1 e •••••••••.•••••••.••••••••••.••••••••••• is write iswrite(3)

link - link to a
file •'• link(2)

Permuted Index

link a filename to an actual
f i 1 e 1 n

mknod - build special
f i 1 e

- make a directory or a special
f i 1 e •••.••..•••..• •••••••••• mknod

mknod - build special
:1:i1e ••••••••••••••••••• •

motd - message of the day
1:i1e

passwd password
f i 1 e ..•••••••••••

files or subsequent lines of one
file ••••••••••••••.••• /rnerge same lines of several

prs print an secs
file ,

read read from
f i 1 e

a delta from an secs
file ••••••• rrnde 1 remove

compare two versions of an SCCS
f i 1 e ••••.••.••.• ••.••••• sccsdiff

sccsfile format of secs
file t>•••• .

size size of an object
file ••••••••••••

strings in object or other binary
print file •••••••••••• • •••••••••• strings

sum sum and count blocks in a
'file •••.••••••••••

print the last 10 lines of a
f i 1 e • •••••••••••••• ta i 1

trnpfile create a temporary
file ~···················

Page 42

ln (1)

mknod (1)

mknod (2)

mknod (M)

motd(S)

passwd(S)

paste(!)

pr s (1)

read(2)

rrndel(l)

sccsdiff (l)

sccsfile(S)

size(l)

strings (1)

s urn (1)

tail(l)

trnpfile(3)

Permuted Index

- create a name for a temporary
f i-1 e •••••••••••••• -•••••••••••• •' ••••••••••••• tmpnam

- undo a previous get of an SCCS
file ••••••••••••••••••••••••••• , •••••••••••••• unget

uniq - report repeated lines in a
file ••••.••••••.•••••••.••..••• I •••••••••••••••••••

val - validate SCCS
file •'•

whois - whois database
file I •••••••••••••••••••

write - write on a
f i 1 e · .. · · · · · · · ·

file - determine file type ••••••••••••••••••••••••

csplit - split
file according to contextual ••••••••••••••••••••••

arguments
iserase - remove a C-ISAM

file and any associated audit •••••••••••••••••••••
trail/

cpio - copy
file archives in and out ••••••••••••••••••••••••••

- execute command or shell script
file at a later time •••••••••••••••••••••••••••• at

mkstr - create an error message
file by massaging C source ••••••••••••••••••••••••

pwck, grpck - password/group
file checkers •••••••••••••••••••••••••••••••••••••

diff - differential
file comparer •••••••••••••••••••••••••••••••••••••

diff 3 - 3-way differential
file comparison •••••••••••••••••••••••••••••••••••

fcntl -
file control •••••••• , .•••••••••••••••••••••••••••••

f cntl -
file control options~·····························

Page 43

tmpnam (3)

unget{l)

uniq{l)

val(l)

whois{S)

write(2)

file{l)

csplit(l)

iserase(3)

cpio(l)

at (1)

mkstr(l)

pwck(l)

diff (1)

diff3(1)

fcntl(2)

fcntl(7)

Permuted Index

zsc - Zilog Source Control
File conventions ••••.••••..•••••••••.••••••••••••••

script - make a
file copy of all terminal •••••.•••••••••.•.••.•.••

interactions
umask - set

file creation mode mask •••••••••••••••••.•••••••••

dup, dup2 - duplicate an open
file descriptor

sact - print current secs
file editing activity •••••••..••••••••••••.•••••••

setpwent, endpwent - get password
file entry .•..•••••••••••••••• /getpwuid, getpwnam,

putpwent - write password
file entry .•••••••••••••••••••••••••••••••••••••••

grep, egrep, fgrep - search a
file for a pattern ••••••••••••••••••••••••••••••••

ctags - maintain a tags
file for C or Fortran programs ••••••••••••••••••••

isopen - open a C-ISAM
file for processing .••••••••••••••••••••••••••••••

acct - per-process accounting
file format

ar - archive (library)
f i 1 e format •••.•••.•.•••••••••••••••••••••••••••••

chkout - check out
file from Zilog Source Control ••••••••••••••••••••

file
/setgrent, endgrent - get group

file information #include/ ••••••••••••••••••••••••

cp - copy a
file into another or into a •.•••••••••••••••••••••

directory
split - split a

file into pieces ••••••••••••••••••••••••••••••••••

/- rewrite a record in a C-ISAM
file isrewcurr - rewrite the/ •.•••••••••••••.•••••

Page 44

zsc (5)

script{l)

umask(2)

dup (2)

sact(l)

getpwent(3)

putpwent(3)

grep{l)

ctags(l)

isopen(3)

acct (5)

ar (5)

chkout(l)

getgrent(3)

cp (1)

split(l)

isrewrite(3)

Permuted Index

mktemp - make a unique
file name 4 ••••••••••••••••••••••••••••••

ctermid - generate
file name for terminal ••••••••••••••••••••••••••••

more, page -
file perusal filter for crt •••••••••••••••••••••••

viewing
stat, fstat - get

file status

makenewfs - construct and restore
file system

mkfs - construct a
file system

mount, umount - mount or remove
file system •••••••••..•••••••••••••••••••••••••••••

umount - mount and dismount
file system mount,

umount - unmount a
f i 1 e system

f sck -
file system consistency check and •••••••••••••••••

interactive repair
dcheck -

file system directory consistency •••••••••••••••••
check

dump, sdump - incremental
file system dump ••••••••••••••••••••••••••••••••••

hier -
file system hierarchy •••••••••••••••••••••••••••••

quot - summarize
file system ownership •••••••••••••••••••••••••••••

rester, srestor - incremental
file system restore •••••••••••••••••••••••••••••••

icheck -
file system storage consistency •••••••••••••••••••

check
mnttab - mounted

f i 1 e sys t em tab 1 e •

Page 45

mktemp(3)

ctermid(3)

more(l)

stat(2)

makenewfs(M)

mkfs(M)

mount (2)

mount (M)

umount (2)

fsck (M)

dcheck(M)

dump (M)

hier(7)

quot (M)

res tor (M)

icheck(M)

mnttab(S)

Permuted Index

filsys, flblk, ino - format of
f i 1 e sys t em v o 1 um e • • • • . • • • • • • • • • • • • . • • • • • • • • • • • • • •

labelit - label
file systems: •••.••••••••••••••••••••••••••••••••••

file systems umfs - unmount all
file systems •••.••••••••••••••••••• mfs - mount all

mfs - mount all
file systems: umfs ·- unmount all •••••••••••••••••••

file syste~ms
utime - set

file times •••••.••••••••••••••••••••••••••••••••.•

chkin - check in
file to Zilog Source Control file •••••••••••••••••

file - determine
f i 1 e type .. .

ln - link a
filename to an actual file .•••.•••••••••••••••••••

ferror, feof, clearerr,
fileno - stream status inquiries ••.•••••••••••••••

and print process accounting
file(s) ••••••••••••••••••••••••••• acctcom - search

- merge or add total accounting
files •••••••••••.••••••••••••••••••••••••• acctmerg

- create and administer SCCS
f i 1 es •• a dm in

- the diff program for very large
f i 1 es It ••••••••••••••• bd i ff

cat - concatenate and print
files ... e•••

crop - compare two
files .. .

reject lines common to two sorted
files ••••••.•••••••••••••••••••••• comm - select or

diffmk - mark differences between
files 11••··················

Page 46

f i 1 sys (5)

labelit(M)

mf s (M)

.mfs (M)

utime (2)

chkin(l)

file(l)

ln (1)

ferror(3)

acctcom(M)

acctmerg (M)

admin(l)

bdiff (1)

cat(l)

cmp (1)

comm(l)

di f fmk (1)

Permuted Index Page 4 7

find - find
files , find (1)

unpack - compress and expand
files •••••••••••••••••••••••••• , •••••••• pack, peat, pack(!)

- remote line control and lock
files •••••••••••••••••••••••••••.• remotelines, LCK remotelines(S)

rm, rmdir - remove (unlink)
files .. . rm (1)

sort - sort and/or merge
fi:Les .••••••••••••••••••••••.•..•.••••..•.•••••.•• sort(l)

access and modification times of
files •••••••••••••••••••••••••• ~ •••• touch - update touch(!)

what - identify SCCS
files 1••·········•·················· what(l)

mv - move or rename
files and directories ••••••••••••••••••••••••••••• mv (1)

vls - "visually" list
files and directories ••••••••••••••••••••••••••••• vls(l)

isindexinfo - access a C-ISAM
file's directory information •••••••••••••••••••••• isindexinfo(3)

mktape - make special
files for cartridge tape devices ••••••••••••••••••

mkmt - make special
files for magnetic tape devices •••••••••••••••••••

pr - format
files for printer output ••••••••••••••••••••••••••

getf ile - transfer
files from local to remote system •••••••••••••••••

putfile - transfer
files from remote to local system •••••••••••••••••

/- merge same lines of several
files or subsequent lines of one/ •••••••••••••••••

test - evaluate
files, strings, and numbers •••••••••••••.•••••••••

mktape(M)

mkmt (M)

pr (1)

getfile(l)

putfile(l)

paste(!)

test(l)

Permuted Ind,ex

f i 1 sys, f 1b1 ~I<, i no - format of ••••...••••••••.••.•
file system volume

greek - select terminal
filter

nl - line numbering
filter

dog - controlled output flow
filter for CRT previewing •••••.••.•••••..••••..•••

more, page - file perusal
filter for crt viewing

col - nroff post-processing
filter for printer output ••••••••• ~···············

find - find f i 1 es

find -
find files «>••••···················"·······

hyphen -
find hyphenated words ••••••••••••••••.••••••••••••

look -
find lines in a sorted list •.••••••.••••••••••.•••

ttyname, isatty, ttyslot -
find name of a terminal •••.••.••••••.••.••••••••••

lorder -
find ordering relation for an ..•••••.•••••••••••••

object library
typo -

find possible typographical •••••••••••••••••••.•••
errors

spell, spellin, spellout -
find sp,ellin1g errors •••••..•..••••••••••••••••.•.•

tee - pipe
fi tti.ng .. .

filsys,
flblk, ino - format of file ••..••••••••••••••••.••

system volume
ceil, fmod - absolute value,

floor, ceiling functions •••••••••••••••.•••• /fabs,

Page 48

filsys (5)

greek(l)

nl (1)

dog (1)

more(l)

co 1 (1)

find (1)

find (1)

hyphen (1)

look(l)

ttynarne(3)

lorder (1)

typo(l)

spell(l)

tee (1)

filsys(5)

floor(3)

Permuted Index

floor, fabs, ceil, fmod - ••••••• ~ •••••••••••••••••
absolute value, floor, ceiling/

flow - flow analysis of c •••••••••••••••••••••••.•
programs

flow -
flow analysis of C programs •••••••••••••••••••••••

dog - controlled output
flow filter for CRT previewing ••••••••••••••••••••

update - periodic buffer
fll.:tsh ••..••••.••..••..••••••••••••.•••.•••••••..•••

fclose, fflush - close or
flt1sh a stream ••••••..•••••••••••••••••••••••••••••

floor, fabs, ceil,
fmod - absolute value, floor, •••••••••••••••••••••

ceiling/

fopen, freopen, fdopen - open a •••••••••••••••••••
stream

fot:k - spawn new process •••••••••••••••••••••••••

- per-process accounting file
format ... acct

a .. out - System 8000 object code
format ct • •1 •••••••••••••••••••••••••••••

ar - archive (library) file
format " .. I •••••••••••••••••••••••••••••

arswap - convert archives to new
format It •• I •••••••••••••••••••••••••••••

dump, ddate - incremental dump
f 01:mat •• •••••••••••• •1 •••••••••••••••••••••••••••••

tar - tar tape
format 1••···························

pr -
format files for printer output •••••••••••••••••••

core -
format of core image file •••••••••••••••••••••••••

Page 49

floor(3)

flow(l)

flow(l)

dog (1)

update(M)

fclose(3)

floor(3)

fopen (3)

fork(2)

acct(S)

a.out(S)

ar (5)

arswap(l)

dump (5)

tar (5)

pr (1)

core(5)

Permuted Index

cpio -
format of cpio archive ••••••••••••••••••••••••••••

dir -.
format of directories •••••••..••.•••••••••••••••••

filsys, flblk, ino -
format of file system volume .•••••••••••••••••••••

sccsf ile -
format of S(~CS file .••••••••••••••...•••••••••••••

tbl -
format tables for nroff or troff ••••••••••.•••••••

scanf, fscanf, sscanf -
formatted input conversion ••••••••••••••••••••••••

printf, fprintf, sprintf - output
formatters .. .

sprintf - System 3 output
formatters •.••.••••••••••••••••••• printf, fprintf,

troff, nroff - text
formatting and typesetting ••••••••••••••••••••••••

mm - the MM macro package for
formatting documents ••••••••••••••••••••••••••••••

me - macros for
formatting manuscripts using ••••••••••••••••••••••

nroff or troff
ms - macros for

formatting manuscripts using ••••••••••••.•••••••••
nroff or troff

- maintain a tags file for C or
Fortran pro9rams •.••••••••••••••••••.•••••••• ctags

printf,
fprintf, sp1~intf - output •••••••••••••••••••••••••

formatters
printf,

fprintf, sprintf - System 3 •••••••.•••••••••••••••
output formatters

putc, putchar,
fputc, putw - put character or ••.•••••••••••••••••

word on a stream
puts,

fputs - put a string on a stream ••••••••••••••••••

Page 50

cpio(5)

dir (5)

filsys(5)

sccsfile(5)

tbl(l)

scanf (3)

printf (3)

printf.x(3)

troff (1)

mm (7)

me(7)

ms(7)

ctags(l)

printf (3).

printf.x(3)

putc(3)

puts(3)

Permuted Index

fread, fwrite - buffered binary •••••••••••••••••••
input/output

malloc,
free, realloc, callee - main ••••••••••••••••••••••

memory allocator
fopen,

freopen, fdopen - open a stream •••••••••••••••••••

f rexp, ldexp, mod f - split into •••••••••••••••••••
mantissa and exponent

datem -
friendly date and time setting ••••••••••••••••••••

scanf,
fscanf, sscanf - formatted input ••••••••••••••••••

conversion

fsck - file system consistency ••••••••••••••••••••
check and interactive repair

fseek, ftell, rewind - reposition •••••••••••••••••
a stream

stat,
fstat - get file status •••••••••••••••••••••••••••

fseek,
ftell, rewind - reposition a ••••••••••••••••••••••

stream
time,

ftime - get date and time •••••••••••••••••••••••••

gamma - log gamma
function •••••••••••••. , •••••••••• ~ •••••••••••••••••

vtzset - set up vtz terminal
function keys ••••••••••••••••••• •' •••••••••••••••••

logl0, pow, sqrt - exponential
functions ••••••••••••••••••••••• •'• ••••••• exp, log,

- absolute value, floor, ceiling
functions •••••••••••••••••••••••• ,/fabs, ceil, fmod

intro - introduction to library
functions ••••••••••••••••••••••••.••••••••.••••••••

j0, jl, jn, y0, yl, yn - bessel
functions ••••••••••••••••••••••• •'• ••••••••••••••••

Page 51

fread(3)

malloc(3)

fopen (3)

frexp(3)

datem(M)

scanf (3)

fsck(M)

fseek(3)

stat (2)

fseek(3)

time(2)

gamma(3)

vtzset(l)

exp (3)

floor (3)

intro(3)

j 0 (3)

Permuted Index

acos, atan, atan2 - trigonometric
functions ••••.•••••••••••••••• sin, cos, tan, asin,

sinh, cosh, tanh - hyperbolic
functions ••.••••••••••••••••••••••••••••••••••••••

300, 300s - handle special
functions of DASI terminals •••••••••••••••.•••••••

450 - handle special
functions of the DASI 450 •••••••••••••••••••••••••

terminal
curses - screen

functions with "optimal" cursor •••••••••••••••••••
motion

fread,
fwrite - buffered binary ••••••••••••••••••••••••••

input/output

fwtmp, wtmpfix - manipulate wtmp ••••••••••••••••••
records

gamma - log gamma function ••••••••••••••••••••••••

gamma - log
gamma function •••••••••••••••••••••••.••••••••••••

/msub, mult, rndiv, min, mout, pow,
gcd, rpow - multiple precision/ ••••••.••••••••••••

ecvt, _ecvt, fcvt, _fcvt, gcvt,
_gcvt - output conversion •••••••••••••••••••••••••

ecvt, _ecvt, fcvt, _fcvt,
gcvt, _gcvt - output conversion •••••••••••••••••••

timex - time a command and
generate a system activity report •••••••••••••••••

sysgen
generate a Zeus kernel •••••••••••••••••••••.••••••

makekey -
generate encryption key •••.•••••••••••••••••••••.•

ctermid -
generate file name for terminal •••••••••••••••••••

abort -
generate IO~r fault •••••.••••••••••••••••••••••••••

Page 52

sin(3)

sinh(3)

curses(3)

fread (3)

fwtmp(M)

gamma(3)

gamma(3)

mp (3)

ecvt(3)

ecvt (3)

timex(l)

sysgen(M)

makekey(M)

ctermid(3)

abort(3)

Permuted Index

ncheck
generate names from i-numbers •••••••••••••••••••••

lex -
generate programs for simple ••••••••••••••••••••••

lexical tasks
ptx -

generate the permuted index •••••••••••••••••••••••

plzcg - plz/sys 88000 code
generator •••

rand, srand - random number
gen,erator •••

getc, getchar, fgetc, getw - get ••••••••••••••••••
character or word from stream

abs, atoi, close, creat, exit,
getc, getchar, goodmagic, length,/ ••••••••••••••••

getc,
getchar, fgetc, getw - get ••••••••••••••••••••••••

character or word from/
atoi, close, creat, exit, getc,

getchar, goodmagic, length,/ •••••••••••••••••• abs,

/- get effective user identity
getegid - get effective group/ ••••••••••••••••••••

getenv - value for environment .•••••••••••••••••••
name

/getgid - get group identity
geteuid - get effective user/ •••••••••••••••••••••

getfile - transfer files from •••••••••••••••••••••
local to remote system

getuid - get user identity
getgid - get group identity/ ••••••••••••••••••••••

/<grp.h> struct group
*getgrent(); struct group/ •••••••••••••••••••

getg rent, getg rg id, getg rnam, •.•.••••••••••••••••••
setgrent, endgrent - get group/

getgrent,
getgrg id, getgrnam, setgrent, •••••••••••••••••••••

endgrent - get group/

Page 53

ncheck(M)

lex (1)

ptx (1)

plzcg(l)

rand(3)

getc(3)

dm (3)

getc(3)

dm (3)

getuid(2)

getenv(3)

getuid(2)

getfile(l)

getuid(2)

getgrent(3)

getgrent(3)

getgrent(3)

Permuted Index

/*getgrent(); struct group
*get gr g id (g id) int I

getgrent, getgrgid,
getgrnam, setgrent, endgrent - •.••••••••••••••••••

get group/

getkey, gonormal, goraw, ••••••••••••••••••••••••••
wbackspace, wbackword, wcolon,/

getlogin - get login name •••••••••••••••••••••••••

getNAME - get NAME sections of .•••••••••••••••••••
manual for whatis/apropos data/

getopt - get option letter from •••••••••••••••••••
argv

getopt - parse command options ••••••••••••••••••••

getpass - read a password •••••••••••••••••••••••••

getpid, - get process s-lIDs
getpgrp - get group process/ ••••••••••••••••••••••

getpid, - get process s-lIDs ••••••••••••••••••••••
getpgrp - get group process/

/- get group process IDs
getppid - get parent process/ •••••••••••••••••••••

getpw - get name from UID •••••••••••••••••••••••••

getpwent, getpwuid, getpwnam, •••••••••••••••••••••
setpwent, endpwent - get/

getpwent, getpwuid,
getpwnam, setpwent, endpwent - ••••••••••••••••••••

get password/
getpwent,

getpwuid, getpwnam, setpwent, •••••••••••••••••••••
endpwent: - get/

gets - get: a string from standard •••••••••••••••••
input

gets, fgets - get a string from a •••••••••••.•••••
stream

Page 54

getgrent(3)

getgrent(3)

screen(3)

get log in (3)

getname(l)

getopt(3)

getopt (1)

getpass(3)

getpid(2)

getpid(2)

getpid(2)

getpw(3)

getpwent(3)

getpwent(3)

getpwent(3)

gets(l)

gets(3)

Permuted Index

GETTY - set the modes of a ••••••••••••••••••••••••
·terminal

getuid - get user identity getgid •••••••••••••••••
- get group identity geteuid -/

getc, getchar, fgetc,
getw - get character or word from •••••••••••••••••

stream
/curdir, dname, fatal, fdfopen,

giveup, imatch, index, lockit,/ •••••••••••••••••••

ctime, localtime,
gmtime, asctime, tzset: - convert ••••••••••••••••••

date and time/
getkey,

gonormal, goraw, wbackspace, ••••••••••••••••••••••
wbackword, wcolon,/

goodmagic - determine magic •••••••••••••••••••••••
number validity

/creat, exit, getc, getchar,
goodmagic, length, longswap,/ •••••••••••••••••••••

getkey, gonormal,
goraw, wbackspace, wbackword, •••••••••••••••••••••

wcolon,/
setret, longret - nonlocal

goto , fl!••················

gpasswd - change group password •••••••••••••••••••

greek -
graphics for the extended TTY-37 ••••••••••••••••••

type-box
- a macro package for making view

graphs ... mv

greek - graphics for the extended ••••••••••• ~ •••••
T'l?Y-37 type-box

greek - select terminal filter ••••••••••••••••••••

grep, egrep, fgrep - search a •••••••••••••••••••••
file for a pattern

maintain, update, and regenerate
groups of programs make -

Page 55

getty(M)

getuid(2)

getc(3)

pwb (3)

ctime(3)

screen(3)

goodmagic(3)

dm (3)

screen(3)

setret(3)

gpasswd (1)

greek(7)

mv (7)

greek(7)

greek (1)

grep(l)

make (1)

Permuted Index

pwck,
grpck - password/group file .••.•••.•••••••••••••••

checkers
/file information #include

<grp.h> struct group/ •..••••..•••••••••••••••

ssignal,
gsignal - software signals •.••••.•••••••••••••••••

halt - take the system down ••.•..•••.•••••••••••••

300, 300s -
handle special functions of DASI .•.•••••••••..••••

terminals
450 -

handle special functions of the ••.•••••..••.•••.••
DASI 450 terminal

od,
hd - octal or hex dump •••.•••••••••••••••.••••.••

objhdr - object module
header dump

symbols and relocation bits and
header (optional) •••••••••••••••••••••••• /- remove

help - .ask for
he 1 p ••.••••. ., •••••••••••.•..••••..•••••.••••..•••••

help - ask for help ••••••••••••••••••••••••••.••••

od, hd - octal or
hex dump • •. o ••••••••••••••••••••••••••••••••••••••

hier - file system hierarchy ••••••••••••••••••••••

hier - file system
hierarchy .. .

sgstat - get
highest segmented code address ••••••.•••.•.••.••••

daytime - give the time to
human-reasonable accuracy

sinh, cosh, tanh -
hyperbolic functions ••••••.••••••••.••••••••••••••

Page 56

pwck (1)

getgrent(3)

ssignal(3)

halt(M)

od (1)

objhdr (1)

strip(l)

help (1)

help(l)

od (1)

hier(7)

hier(7)

sgstat (2)

daytime(l)

sinh(3)

Permuted Index

hyphen - find hyphenated words ••••••••••••••••••••

hyphen - find
hyphenated words •••••••••••••••• ~ •••••••••••••••••

hypot, cabs - eucl ideatn distance ••••••••••••••••••

icheck - file system storage ••••••••••••••••••••••
consistency check

icp - general Intelligent •••••••••••••••••••••••••
Communication Processor/

icpload - load and configure an
I c p 8 I 0 2 •.•••••••••••••.•••.••.• •' ••••••••.••••••••

icpcntrl - start and stop ICP's •••••.•••••••••••••
and their protocols

icpload - load and configure an •••••••••••••••••••
ICP 8/02

icpcntrl - start and stop
ICP's and their protocols •••••••••••••••••••••••••

setgid - set user and group
ID •••••••••••••••••••••••••••••• •'• ••••••• • ·.setuid,

- print effective current user
id •' whoami

id - print user and group •••••••••••••••••••••••••
IDs and names

isuniqueid - obtain a unique

Page 57

hyphen(!)

hyphen(l)

hypot{3)

icheck(M)

icp(4)

icpload(M)

icpcntrl(M)

icpload(M)

icpcntrl(M)

setuid(2)

whoarni(l)

id (1)

ID for a C-ISAM file •••••••••••••••••••••••••••••• isuniqueid(3)

su - substitute user
ID temporarily ••••••••••••••••••••••••••••••.•••••

what -
identify secs files •••••••••••••••••••••••••••••••

getegid - get effective group
identity •••••••••••••••••• /effective user identity

/geteuid - get effective user
identity getegid - get effective/ •••••••••••••••••

SU (1)

what(l)

getuid(2)

getuid(2)

Permuted Index

/user identity getgid - get group
identity geteuid - get effective/ •••••...••••••.••

getuid - get user
identity getgid - get group .•••..•....•.•.••••.••.

identity/
isrio - determine

if terminal is a RIO System •••••••••••••...•••••••

signal - catch or
ignore sign.a ls ••••••.••••••••••••••••••••••••••.••

core - format of core
image file ••••••..•••••••.••••••••••••.•••••••••••

/dname, fatal, fdfopen, giveup,
imatch, index, lockit, move,/ •••••••.•••••••••••••

strings from C programs to
implement shared strings •••••••.•••••••.•• /extract

dump, ddate -
incremental dump format ••••••.•••••••••••.••••••••

dump, sdump -
incremental file system dump ••..••..••••••••••••••

rester, srestor -
incremental file system restore •••••••.•••••••••••

/tgetstr, tgoto, tputs - terminal
independent operation routines ••••...•.•.•••••••••

ptx - generate the permuted
index .. .

isstart - select the current
index and record within an C-ISAM/ •••••.••••••••••

isdelindex - remove an

Page 58

getuid(2)

getuid(2)

isrio (1)

signal (2)

core(S)

pwb (3)

xstr(l)

dump (5)

dump (M)

rester (M)

termlib(3)

ptx (1)

isstart(3)

index from a C-ISAM file .•..•••••••••......••••••• isdelindex(3)

/fatal, fdfopen, giveup, imatch,
index, lockit, move, patoi ,/ •••••••••••••••••••••

/strpbrk, strspn, strcspn, strtok,
index, rindex - string operations •••••••••••••.•••

isaddindex - add an

pwb (3)

string (3)

index to a C-ISAM file .••.••.•••••••••••.••••••••• isaddindex(3)

Permuted Index

inittab - control information for
init .. .

!NIT - process control ••••••••••••••••••••••••••••
initialization

!NIT - process control
initialization •••••••..••••••••••••••••••••••••••••

papen, pclose -
initiate I/Oto or from a process •••••••••••••••••

inittab - control information for •••••••••••••••••
init

filsys, flblk,
ino - format of file system •••••••••••••••••••••••

volume
clri - clear

i - nod e • • • • • • • • • • • • • • • •. • • • • • • • • • • •. • • • • • • • • • • • • • • • • •

gets - get a string from standard
input

ioctl -
input/ output control device •••••••••••••••••••••

scant, fscanf, sscanf - formatted
input conversion ••••••••••••••••••••••••••••••••••

str - software trouble report
input program •••••••••••••••••••••••••••••••••••••

ungetc - push character back into
inpt.1t stream ••••••••••••••••••••••••••••••••••••••

fread, fwrite - buffered binary
input/output ••••••••••••••••••••••••••••••••••••••

stdio - standard buffered
input/output package •••••••••••••••••••••.••••••••

clearerr, fileno - stream status
inquiries •••••••••••••••••••••••••••• ferror, feof,

uustat - uucp status
inquiry and job control •••••••••••••••••••••••••••

install - install commands ••••••••••••••••••••••••

Page 59

inittab(S)

init(M)

init(M)

popen(3)

inittab(S)

filsys(S)

clri(M)

gets(!)

ioctl (2)

scanf (3)

str (M)

ungetc(3)

fread(3)

stdio (3)

ferror (3)

uustat(l)

install (M)

Permuted Index

reservrc - reserv
install and remove utility ••.•••••.••••••.••••••.•

install -
install com1mands

learn - on-line computer-aided
instruction .. .

disinit - disassemble Z8000
instructions disasm,

group *getgrgid(gid)
int .9.· •••••••••••••••••••••••••••••••• / struct

abs -
integer absolute value ••••••••••••••••••••••••••••

gcd, rpow - multiple precision
integer arithmetic .•••••••••••••••••••• /mout, pow,

three-byte integers and long
integers •••••••••••••••••• /ltol3 - convert between

· - convert between three-byte
integers and long integers •••••••••••••••••• /ltol3

icp - general
Intel! igent Communication

Processor/
make a file copy of all terminal

interactions ••••••••••••••••••••••.••••••• script -

file system consistency check and
interactive repair •••••••••••••••••••••••••• fsck -

ct - cartridge tape
interface ••••••••••••••••••••••••••••••••.••••••••

Communication Processor
interface ••••••••••••••••••• /- general Intelligent

- Zilog streaming magnetic tape
interface •.••••••..•••••••••••••••••••••••.•••••• int

tty - general terminal
interface ••••••••..••••.•..••••••••••••••.••••••••••

rsh - restricted shell (command
interpreter) ••••.•••••••••••••••••••••••..•••..•••

Page 60

reservrc(M)

install (M)

learn(l)

disasm(3)

getgrent(3)

abs (3)

mp (3)

13tol(3)

13tol(3)

icp(4)

script(l)

fsck(M)

ct (4)

icp(4)

mt (4)

tty(4)

rsh(l)

Permuted Index

csh, - a command
interpreter with C-like syntax ••••••••••••••••••••

pipe - create an
interprocess channel ••••••••••••••••••••••••••••••

sleep - suspend execution for an
ii:1terval ••••••••••• ,, ••••••••••••••••••••••••••••••

sleep - suspend execution for
interval ••

intro - introduction to library •••••••••••••••••••
functions

intro - introduction to Section 1 •••••••••••••••••
commands

intro, errno - introduction to ••••••••••••••••••••
system calls and error numbers

intro -
introduction to library functions •••••••••••••••••

intro -
introduction to Section !•..................•

commands
intro, errno -

introduction to system calls and ••••••••••••••••••
error numbers

ncheck - generate names from
i-numbers •••

cas -
invoke assembler ••••••••••••••••••••••••••••••••••

popen, pclose - initiate
I/Oto or from a process ••••••••••••••••••••••••••

ioctl - input / output control ••••••••••••••••••••
device

abort - generate
I ·OT fa u 1 t ..•.•........•.•...... • .•.•.••....•....•••

Page 61

csh (1)

pipe(2)

sleep(l)

sleep(3)

intro(3)

intro(l)

intro(2)

intro(3)

intro(l)

intro(2)

ncheck(M)

cas (1)

popen(3)

ioctl(2)

abort (3)

isaddindex - add an index to a •••••••••••••••••••• isaddindex(3)
C-ISAM file

/islower, isdigit, isxdigit,
isalnum, isspace , ispunct,/ •.•••••••••••••••••••• ctype(3)

Permuted Index

isalpha, isupper, islower, ••.••••.••••.•••••••.•••
isdigit, isxdigit, isalnum,/

isprint, isgraph, iscntrl,
isascii - character/ .•••.•••••••••••••• /, ispunct,

ttyname,
isatty, ttys lot - find name of a ••••••••••••••••.•

terminal

isaudit - audit trail maintenance •••••.••••••••.••
for a C-ISAM file

isbuild - define a C-ISAM file~···················

isclose - close a C-ISAM file •••..••••••••••••••••

/, ispunct, isprint, isgraph,
iscntrl, isascii - character/ •••••••••••••••••••••

isdelete,
isdelcurr - delete the current ••••••••••••••••••••

record from a C-ISAM/

isdelete, isdelcurr - delete the •••.••••••••••••••
current record from a C-ISAM/

Page 62

ctype(3)

ctype(3)

ttynarne(3)

isaudit(3)

isbuild (3)

isclose(3)

ctype (3)

isdelete (3)

isdelete(3)

isdelindex - remove an index from ••••••••••••••••• isdelindex(3)
a C-ISAM file

isalpha, isupper, islower,
isdigit, isxdigit, isalnum,/ ••••••••••••••••••••••

iserase - remove a C-ISAM file •••••••••••••••••••.
and any associated audit trail/

/isspace , ispunct, isprint,
isgraph, iscntrl, isascii -/ ••••••••••.••••••..•••

ctype(3)

iserase(3)

ctype (3)

isindexinfo - access a C-ISAM ••••••••••••••••••••• isindexinfo(3)
file's directory information

islock - read-lock a C-ISAM file •••••••.••• ~ •••••.

isalpha, isupper,
islower, isdigit, isxdigit, ••••.••••••••••••••••••

isalnum,/

isopen - open a C-ISAM file for .•••••••••••.•....•
processing

islock(3)

ctype(3)

isopen(3)

Permuted Index

/isalnum, isspace , ispunct,
isprint, isgraph, iscntil,/~ ••••••••••••.••••••••••

/isxdigit, isalnum, isspace ,
ispunct, isprint, isgraph,/ •••••••••••••••••••••••

is read - read records from a •••••••••• ~ •••••••••••
C-ISAM file

isrelease - unlock records in a •••••••••••••••••••
C ·- I SAM f i 1 e

isrename - rename a C-ISAM file •••••••••••••••••••

/rewrite a record in a C-ISAM file
isrewcurr - rewrite the current/ ••••••••• ~ ••••••••

isrewrite - rewrite a record in a •••••••••••••••••
C-ISAM file isrewcurr - rewrite/

isrio - determine if terminal is ••••••••••••••••••
a RIO System

/isdigit, isxdigit, isalnum,
isspace , ispunct, isprint,/ ••••••••••••••••••••••

isstart - select the current ••••••••••••••••••••••
index and record ~ithin an/

system ~
issue a shell command •••••••••••••••••••••••••••••

Page 63

ctype(3)

ctype(3)

isread(3)

isrelease(3)

isrename(3)

isrewrite(3)

isrewrite(3)

isrio{l)

ctype{3)

isstart{3)

system{3)

isuniqueid -- obtain a unique ID ••••••••••••••••••• isuniqueid{3)
for a C-ISAM file

isunlock - unlock a C-ISAM file •••••••••••••••••••

isalpha,
isupper, islower, isdigit, ••••••••••••••••••••••••

isxdigit, isalnum,/

iswrite - write a record into an ••••••••••••••••••
C-ISAM file

/isupper, .is lower, isdigit,
isxdigit, isalnum, isspace ,/.~ •••••••••••••••••••

news - print news
items · 1 •••••••••••••••••

isunlock{3)

ctype(3)

iswrite(3)

ctype{3)

news{l)

Permuted Index

- "visually" display the news
i terns ••.•••.••.•••••••••.•••••••••••••••.•••• vnews

itom, madd, msub, mult, mdiv, .••••••••••••••••••••
min, mout, pow, gcd, rpow -/

j0, jl, jn, y0, yl, yn - bessel •••.••••••••••.••••
functions

j0,
jl, jn, y0, yl, yn - bessel ••..••••••••.•.•.••••••

functions
j0, jl,

jn, y0, yl, yn - bessel functions •••••••••••••••••

join - relational database •••••••••••••.•••.••••••
operator

sysgen - generate a Zeus
kernel

makekey - generate encryption
key . .•••..•.••...•. • • • · • • • • • • • • • • • • · • • · · • • • • · · · · • ·

- set up vtz terminal function
keys ••.••••..••.••••••••••••••••••••••••••••• vtzset

apropos - locate commands by
keyword 1 o o k: up • . • ••

k i 11 - send s i gna 1 to a process ••••••••••••••••••

kill - send a signal to a process ••.••••••••••••••

mem,
kmem - memc1ry •••.••••.••••••••••••••••.•••••••.••

13tol, ltol3 - convert between ••••••••••••••••••••
three-byte integers and long/

a641,
164a - convert between long and ••••••••.••••••••••

base-64 ASCII
labelit -

label file systems •.••••••••••••••••••••••••••••••

labelit - label file systems •••••...••••••••••••••

Page 64

vnews(l)

mp (3)

j 0 (3)

j 0 (3)

j 0 (3)

join (1)

sysgen (M)

makekey(M)

vtzset (1)

apropos(l)

kill(2)

kill (1)

mem (4)

13tol(3)

a641 (3)

labelit(M)

labelit(M)

Permuted Index Page 65

- pattern scanning and processing
language •••..•••••••••••••••••••••••••••••••••• awk awk (1)

- arbitrary-precision arithmetic
language ••.••••••••••••••••••••••••••••••••••••• be be (1)

Bourne shell command programming
language ••••••••••••••••••••••••••• sh - shell, the sh (1)

bdiff - the diff program for very
large files ••••••••••••••••••••••••••••••••••••••• bd iff (1)

remotelines,
LCK - remote line control and ••••••••••••••••••••• remotelines(5)

lock files

ld - nonsegmented Z8000 and 8-bit •••••••••••••••••
loader

lddbl, ldfloat, ldint, ldlong - •••••••••••••••••••
C-ISAM load routines

frexp,
. ldexp, modf - split into mantissa •••••••••••••••••

and exponent
lddbl,

ld f 1 oat, ld int, 1d1 ong - C- IS AM •••••••••••••••••••
load routines

lddbl, ldfloat,
ldint, ldlong - C-ISAM load •••••••••••••••••••••••

routines
lddbl, ldfloat, ldint,

ldlong - C-ISAM loa.d routines •••••••••••••••••••••

learn - on-line computer-aided ••••••••••••••••••••
instruction

/exit, getc, getchar, goodmagic,
length, longswap, lseek, open,/ •••••••••••••••••••

getopt - get option
letter from argv ••••••••••••••••••••••••••••••••••

lex - generate programs for ••••••••••••.••••••••••
simple lexical tasks

- generate programs for simple
lexical tasks •••••••••••••••••••••••••••••••••• lex

- convert archives to random
libraries ••••••••••••••••••••••••••••••••••. ranlib

ld (1)

isld(3)

frexp(3)

isld (3)

isld (3)

isld{3)

learn (1)

dm (3)

getopt(3)

lex (1)

lex(l)

ranlib(l)

Permuted IndE~X

write - Z8000 development module
library •.•.•••••••.••••••••••••• /read, swab, swap,

ordering relation for an object
library ••••••••••••••••••••••••••.••• lorder - find

ar - archive
(library) file format ••••.•••••••.••••••••••••••••

intro - introduction to
library fLtnctions •••...•••••••••••••••••••••••••••

ar - archive and
library .maintainer •..•••••••••••••••••••.••••••.•••

ulimit - get and set user
:limits .. .

port for modem or terminal
line ••••••••••••••• $ •••••••••••• mdmctl - configure

rev - reverse the characters on a
line o••••••••••••••••••••••••••••••

ports for terminal or modem
line •.•.••••••••••••••••••••• ttyconfig - configure

1 ine - read one 1 ine from the •••••••••••••••••••••
terminal

remotelines, LCK - remote

Page 66

dm (3)

lorder(l)

ar (5)

intro(3)

ar (1)

ulimit(2)

mdmctl(2)

rev (1)

ttyconfig (M)

1 ine (1)

line control and lock files ••••••••••••••••••••••• remotelines(S)

line - read one
line from the terminal •••••••••••••••••••••••••••• line(l)

nl -
line numbering filter ••••••...•••••••••••.•••••••• nl(l)

- cut out selected fields of each
line of a file •..••.••••••••••••••••.•..••••••• cut cut (1)

lp -
line printer 1driver •.••••••••.••••...••••••••••••• lp (4)

setlp - set
line printer parameters ••••••••••••••••••.•••••••• setlp(M)

lpr
line printer spooler .••••••••••••••••••••••.•••••• lpr (1)

Permuted Index

or delete requests from the
line printer spooler •••••••••••••••••••• /- examine

or delete requests from the
line printer spooler •••••••••••••••••••• /- examine

lp, text - service
line printer spooler print ••••••••••••••••••••••••

requests
lp, text - service

line printer spooler print ••••••••••••••••••••••••
requests

lp, text - service
line printer spooler print ••••••••••••••••••••••••

requests
lsearch -

linear search and update ••••••••••••••••••••••••••

comm - select or reject
lines common to two sorted files ••••••••••••••••••

uniq - report repeated
lines in a file

look - find
lines in a sorted list ••••••••••••••••••••••••••••

tail - print the last 10
lines of a file

head - give first few
1 i nes of a st r earn ••..••••••••••••••••••••••••••••••

of several files or subsequent
lines of one file /same lines

paste - merge same
lines of several files or •••••••••••••••••••••••••

subsequent/

link - link to a file •••••••••••••••••••••••••••••

ln
link a filename to an actual file •••••••••••••••••

link, unlink - exercise
link and unlink system calls ••••••••••••••••••••••

link -
l:ink to a file •••••.••••••••••••••••••••••••••••••

Page 67

xq (1)

xq (M)

backend (M)

lp (M)

text (M)

lsearch(3)

comm (1)

uniq (1)

look(l)

tail(l)

head (1)

paste(l)

paste(l)

link(2)

1 n (1)

link(M)

link(2)

Permuted Ind,~x

link, unlink - exercise link and ••••••••••••••••••
unlink system calls

1 int - a C p1::-ogram verifier ••••••.••••••••••••••••

look - find lines in a sorted
1 ist @ •••••••••••••••••••••••••••••••••••••

nlist - get entries from name
list 11·•··············~·····················

nm - print name
list .. .

- read next symbol from name
1 i s t r e ad s yin

symscan - scan name
1 is t

terminal
list - terminal names and codes •••••••.•••••••••••

chkdiff -
list differences between versions .•.••••••••••••••

of a source file
vls - "visually"

list files and directories ••••••••••••••••••••••••

users - compact
list of users who are on the ••••••••••••••••••••••

system
ls

list the contents of a directory •••.•••••••.••••••

cref - make cross-reference
~l is t_i ng

- software trouble report
listing program •••••.•••••••.••••••••••••• strprint

xargs - construct argument
list(s) and execute command •••••••••••••••••••••••

lkdata, unlk - lock and unlock •••••••••••••••.••••
data against concurrent access

ln - link a filename to an ••.••.•••.•••.•••••.•••
actual file

Page 68

link(M)

lint(l)

look(l)

nlist(3)

nm (1)

readsym(3)

symscan(3)

termlist(7)

chkdiff (1)

vls(l)

users(l)

ls(l)

cref(l)

strprint(M)

xargs(l)

lkdata(2)

ln (1)

Permuted Index

LOAD - Download to Z8000 or Z8 ••••••••••••••••••••
Development Module

icpload -
load and configure an ICP 8/02 •••.••.••..•••••.•••

objdu - dump for object and
load modules .••••.••••••••••••••••••.•••.••••..•••

ldfloat, ldint, ldlong - C-ISAM
load routines ..•••••••••••••••••••.••••••••• lddbl,

ld - nonsegmented Z8000 and 8-bit
1 oade r •••••••••••••••••••••••• , ••••••••••••••.•••••

sld - segmented Z8000
loader •••••••••••••••••••••••• , •••••••.•••••.•••••••

local - return control to local •••••••••••••••••••
system

local - return control to
local system •••••••••••••••••• '• •••••••••••••••••••

- transfer files from remote to
local system ••••.••••••••••••••••••.•.••••• putfile

getfile - transfer files from
local to remote system ••••••••••••••••••••••••••••

ctime,
localtime, gmtime, asctime, tzset •••••••••••••••••

- convert date and time/
apropos -

locate commands by keyword lookup ••••••.••••••••••

whereis -
locate source, binary, and or ••••••••.••••••••••••

manual for program
end, etext, edata - last

locations in program ••••••••••••••••••••••••••••••

lock - lock a process in primary ••••••.•••••••••••
memory

lock -
lock a process in primary memory •••••••••.••••••••

lkdata, unlk -
lock and unlock data against ••••••...••.••.•••••••

concurrent access

Page 69

load(l)

icpload(M)

objdu(l)

isld(3)

ld (1)

sld(l)

local(l)

local(!)

putfile(l)

getfile(l)

ctime(3)

apropos(!)

whereis(l)

end(3)

lock(2}

lock(2}

lkdata(2)

Permuted IndE:!X Page 70

LCK - remote line control and
lock files •• ~ ••••••..••••••••••••••••• remotelines, remotelines(5)

/fdfopen, giveup, imatch, index,
lockit, move, patoi , patol,/ ••••••••.••••••••••••

gamma -
1 o g g a mm a fun c t i on •

newgrp -
log in to a new group •••••.•••••••••••••••••••••• ~

exp,
log, logl0, pow, sqrt- •••••••••••••••••••••••••• ~

exponential functions
exp, log,

logl0, pow, sqrt - exponential ••••••••••••••••••••
functions

login - sign on to the computer ••••••••••••••••••

cshrc, cshprofile,
login - setting up an environment •••••••••••••••••

at login time
getlogin - get

log in name .. .

logname - get
log in name . . di •••••••••••••••••••••••••••••••••••••

cuserid - character
login name of the user ••••••••••••••••••••••••••• ~

logname -
login name of user ••••••••••••••••••••••••••••••••

who - print the
login names of those currently on •••••••••••••••••

the system
passwd - change

log in passwo1:d •••.••••••••••••••••••••.•••••••••••

utmp, wtmp -
login record~; ••••••••••••••.••••••••••••••••••.•••

- setting up an environment at
login time •. ~ ••••••••••••••••••• /cshprofile, login

logname - get login name •••.••••••••••.•••.•.•••••

pwb (3)

gamma (3)

newgrp (1)

exp (3)

exp (3)

login(l)

cshrc(S)

getlogin(3)

logname(l)

cuserid(3)

logname(3)

who (1)

passwd(l)

utmp (5)

cshrc (5)

logname(l)

Permuted Index

log name - log in name of user ••••••••••••••••••••••

setret,
longret - nonlocal goto •.••••••••••••••••.••••••••

swap - swap routines - swap
longswap - swap routines - swap/ .••••..•••••••••••

/getc, getchar, goodmagic, length,
longswap, lseek, open, print£,/ •••.•••••••••••••••

look - find lines in a sorted ••••••••••••••••.••••
list

- locate commands by keyword
lookup .••.••.••••••••••••••••••••••••.••••• apropos

lorder - find ordering relation •••••••••••••••••••
for an object library

nice, nohup - run a command at
low priority ••.•••••••••••••••••••••••••••••••••••

lp - line printer driver ••••••••••••••••••••••••••

lp, text - service line printer •••••••••••••••••••
spooler print requests

lp, text - service line printer •••••••••••••••••••
spooler print requests

lp, text - service line printer •••••••••••••••••••
spooler print requests

lpr - line printer spooler •••••••••••••••••.•••••

ls - list the contents of a .•••••••••••••••••••••
directory

lsearch - linear search and •••••••••••.•.•••••••••
update

lseek - move read/write pointer ••••••.••••••••••••

/goodmagic, length, longswap,
lseek, open, printf, putc,/ •.•••.•••••••••••••••.•

Page 71

logname(3)

setret(3)

swap(3)

dm (3)

look (1)

apropos (1)

lorder (1)

nice(l)

lp(4)

backend(M)

lp (M)

text (M)

lpr(l)

ls (1)

lsearch (3)

lseek(2)

drn (3)

Permuted Index

13tol,
ltol3 - convert between •.•••••••••.•••.•.•••••••••

three-byte integers and/

m4 - macro processor ••..•••.••••••••••••••••••••.•

mm - the MM
macro package for formatting ••••••••••••••••••••••

documents
mv - a

macro package for making view .•••••••••••••..•••••
graphs

m4 -
m~acro processor

me -
macros for formatting manuscripts •••••.••••.••••••

using nroff or troff
ms -

macros for formatting manuscripts •••••••••••••••••
using nroff or troff

man -
macros to nroff or troff manual •••••••••••••••••••

entry
itom,

madd, msub, mult, mdiv, min, .•••.•••.••••••.••••••
mout, pow, gcd, rpow -/

goodmagic - determine
magic number validity .••••••••••••••••••••••••••••

mkmt - make special files for
magnetic tape devices •••••••••••••••••••••••••••••

mt - Zilog streaming
magnetic tape interface •••••••••••••••••••••••••••

mail, rmail - send and receive
ma i 1 among u SE~r s ••••••••••••••••••••••••••••••••••

mai 1, rrnai 1 - send and receive ••••••••••••••••••••
mail among users

malloc, free, realloc, callee -
main memory allocator ••••..•••••••••••••••••••••••

ctags -
maintain a tags file for C or ••••••••••••••..•••••

Fortran pro9rams
make -

maintain, update, and regenerate •••••.•••••••..•••
groups of programs

Page 72

13tol(3)

m4 { 1)

mm {7)

mv (7)

m4 { 1)

me (7)

ms (7)

man (7)

mp (3)

goodmagic{3)

mkmt (M)

mt (4)

ma i 1 (1)

mail (1)

malloc(3)

ctags(l)

make(l)

Permuted Index

ar - archive and library
maintainer ••

upkeep - directory
maintenance •••••••••••..•.•••••••••••••••••••••••••

isaudit - audit trail
maintenance for a C-ISZ:~M file •••••••••••••••••••••

make - maintain, updatE~, and ••••••••••••••••••••••
regenerate groups of programs

delta -
make a delta (change) to an secs

file
mkdir

make a directory

mknod -
make a directory or a special •••••••••••••••••••••

file
script -

make a file copy of all terminal ••••••••••••••••••
interactions

mkseg -
make a segment ••••••••..•••••••••••••••••••••••••••

mktemp -
make a unique file name •••••••••••••••••••••••••••

cref -
make cross-reference listing ••••••••••••••••••••••

banner -
make posters ••••••••••.•••••••••••••••••••••••••••

mktape -
make special files for cartridge ••••••••••••••••••

tape devices
mkmt -

make special files for magnetic •••••••••••••••••••
tape devices

makekey - generate encryption key •••••••••••••••••

makenewfs - construct and restore •••••••••••••••••
file system

Page 73

ar (1)

upkeep(M)

isaudit(3)

make(l)

delta(l)

mkdir (1)

mknod(2)

script (1)

mkseg(2)

mktemp(3)

cref(l)

banner (1)

mktape(M)

mkmt (M)

makekey(M)

makenewfs(M)

makewhatis - remake the data base ••••••••••••••••• makewhatis(M)
for the whatis and apropos/

Permuted IndE~x

malloc, free, realloc, calloc - ••...••.•••••••.•..
main memory allocator

man - macros to nroff or troff •••••.•.•.•..•••.•.•
manual entry

man - print sections of this •••••.••.•.••••.••••..
manual

fwtmp, wtmpfix -
manipulate wtmp records .•.•••••••.••.•••.••••••••.

frexp, ldexp, modf - split into
mantissa and exponent ••••••••••••.••.•••••....••••

man - print sections of this
manual ! •••••••••••••••••••••••••••••••

man - macros to nroff or troff
rnanual entry

- locate source, binary, and or
manual for program .•••..•••••.••••••••••••• whereis

getNAME - get NAME sections of
manual for whatis/apropos data/ •••••.•••••••••.•••

me - macros for formatting
manuscripts using nroff or troff

ms - macros for formatting
manuscripts using nroff or troff

ascii -
map of ASCII character set ••.••••••.••••..•.•.•.•.

diffmk -
mark differences between files ••••••••••••••••••••

umask - set file creation mode
mask ••

- create an error message file by
massaging C source .••..•.•••.••••.•••••••.•.• mkstr

- regular expression compile and
match routines •.•.••.••••••...•.•••••••••••• regexp

eqn, neqn, checkeq - typeset
mathematics .•..•••••.••.•••.•.•..•••.•.•••••.••.•••

Page 74

malloc(3)

rnan(7)

man (1)

fwtmp(M)

frexp(3)

man (1)

man (7)

whereis(l)

getname(l)

me(7)

ms(7)

ascii(7)

diffmk (1)

umask(2)

mkstr(l)

regexp(7)

eqn (1)

Permuted Index

md - 5.25" Winchester disk ••.•••••. ~··············

itom, madd, msub, mult,
mdiv, min, mout, pow, gcd, rpow - .•••••••••.••••••

multiple/

mdmctl - configure port for modem ••...••.•.••.•..•
or terminal line.

mem, kmem - memory •.••••••••••• ~ •••..••••.•••••••

lock - lock a process in primary
memory ••••••••••••••••••••••••••• 1

•••••••••••••••••

mem, kmem
memory •, 'Iii' •••••••••••••••• , •••••••••••• • •••••

free, realloc, calloc - main
memory allocator .•..••••.••••••• •'• ••••..•.• malloc,

slink -
memory binder for downloading ••••••••.••.••••••••.

object modules.
sort - sort and/or

merge files ••••.•.••.•••••••.••• •'• •••••••.••••••••

acctmerg ~

merge or add total accounting •••••••.•••••••••••••
files

paste -
merge same lines of several files •••.•••••.•••••••

or subsequent lines of/

mesg - permit or deny messages ••••••••••••••••••••

mkstr - create an error
message file by massaging C ••••••••••.••.•••••...•

source
motd -

message of the day file ..•••••••.•••••..••••.•••••

and disperse compiler error
messages •.••••••••.•••.•••.••••.••• error - analyze

mesg - permit or deny
messages •.•.••••••••••.•••••.•.•••••••..••••••.•.•

sys nerr, errno - system error
messages •.••.••••••••• ~: ••••• /deverr, sys_errlist,

Page 75

md (4)

mp (3)

mdmctl (2)

mem (4)

lock(2)

mem (4)

malloc(3)

slink(l)

sort(l)

acctmerg(M)

paste(l)

mesg (1)

mkstr(l)

motd(S)

error(l)

mesg(l)

perror(3)

Permuted Index

mfs - mount all file systems umfs ••••.•••••••.••••
- unmount all file systems

itom, madd, msub, mult, mdiv,
min, mout, pow, gcd, rpow -/ •••••••.•••.••••••••••

acct - overview of accounting and
miscellaneous accounting commands ••.•...••••••••••

mkdir - make a directory •••••••••••.••••••••.••••

mkfs - construct a file system •••.•.••••••••••••••

mkmt - make special files for ••.••••••••••••••••••
magnetic tape devices

mknod - build special file ••••••••••••••••••••••••

mknod - build special file ••••••••••••••••••••••••

mknod - make a directory or a •••••••••••••••••••••
special file

mkseg - make a segment ••••••••••••••••••••••••••••

mkstr - create an error message •••••••••••••••••••
file by massaging C source

mktape - make special files for ••••..••••••••••.••
cartridge tape devices

mktemp - make a unique file name •••.••••••••••••••

mm - the MM macro package for .•••.••••••••••••••••
formatting documents

mm - the
MM macro package for formatting ••••••••.••••••••••

documents

mnttab - mounted file system •••.••••.•••••••••••••
table

setmnt - establish
rnnttab table

Page 76

mf s (M)

mp (3)

acct(M)

mkdir(l)

mkfs(M)

mkmt (M)

mknod(l)

mknod(M)

mknod (2)

mkseg(2)

mkstr (1)

mktape (M)

mktemp(3)

mm (7)

mm (7)

mnttab(S)

setmnt (M)

Permuted Index

chmod - change
modeo••·············•••o••·························

umask - set file creation
mode ·mask

chmod - change
mode of file ••••••••••..•••••••••••••••••••••••••••

chmog, chog - change
mode, owner and group of a file •••••••••••••••••••

- configure ports for terminal or
modem line ttyconfig

mdmctl - configure port for
modem or terminal line

GETTY - set the
modes of a terminal

reset - reset terminal
modes to default values •••••••••••••••••••••••••••

frexp, ldexp,
modf - split into mantissa and ••••••••••••••••••••

exponent
touch - update access and

modification times of files ••••••••••••• ~ •••••••••

to Z8000 or Z8 Development
Module LOAD - Download

to the Zilog Z8000 Development
Module SEND - Uploader

smd - Storage
module disk •••••••••••..•••••••••••••••••••••••••••

objhdr - object
module header dump

swap, write - Z8000 development
module library /read, swab,

dmalias - Z8000 Development
Module protocol

objsu - object
module underscore stripper ••••••••••••••••••••••••

Page 77

chmod(l)

umask(2)

chmod (2)

chmog(M)

ttyconfig(M)

mdmctl(2)

getty(M)

reset(l)

frexp (3)

touch (1)

load(l)

send(l)

smd(4)

objhdr (1)

dm (3)

dmalias(7)

objsu(l)

Permuted Index

objdu - dump for object and load
mod u 1 es •••

binder for downloading object
modules ••.....•••••••••••••.•••••••• slink - memory

monitor - pr 1epare execution •••••••••••••••••••••••
profile

segmon (segmented
monitor) - prepare execution .•••••.•••••••••••••••

profile

men.out - profile information •••••••••••••••••.•••

more, page - file perusal filter ••••••••••••••••••
for crt vi•ewing

motd - message of the day file •••.••••••••••••••••

functions with "optimal" cursor
motion •.••••••••••••••••••••••••••• curses - screen

mf s -
mount all file systems umfs - •.•••••••••••••••••••

unmount all file systems
mount, umount -

mount and dismount file system •••••••.•••.••••.•••

mount, umount -
mount or remove file system ••••••.•••.•.••.•••••••

mount, umount - mount and •••••••••••••••••••••••••
dismount file system

mount, umount - mount or remove •••••••••••••••••••
file system

mnttab -
mounted file system table .••••••••••••••••••••••••

/madd, msub, mult, mdiv, min,
mout, pow, gcd, rpow - multiple/ ••••••••••••••••••

mvdir -
move a directory •.••••••••••••••••••••••••••••.•••

mv
move or rename files and .•......•••••••••••••.••••

directories

Page 78

objdu(l)

slink(!)

monitor(3)

segmon(3)

mon.out(5)

more(l)

motd (5)

curses(3)

mfs (M)

mount(M)

mount(2)

mount (M)

mount(2)

mnttab(5)

mp (3)

mvdir(M)

mv (1)

Permuted Index

/giveup, imatch, index, lockit,
move, patoi, patol, rename,/ •••.••••••••••••••••.

lseek -
move read/write pointer •••••••••••••••••••••••••••

ms - macros for formatting ••.•••••.•••••••••••••••
manuscripts using nroff or troff

itom, madd,
msub, mult, mdiv, min, mout, pow, •••••••••••••••••

gcd, rpow - multiple/

mt - Zilog streaming magnetic •••••••••••••••••••••
tape interface

itom, madd, msub,
mult, mdiv, min, mout, pow, gcd, •••.••••••••••••••

rpow -/
mdiv, min, mout, pow, gcd, rpow -

multiple precision integer/ •••••.••••••••••• /mult,

re csh - "read command" Cshell
multi-user startup scrl~t •••••••••••••••••• /script

mv - move or rename files and •••.••••••••••••••••
directories

mv - a macro package for making •••••••••••••••••••
view graphs

mvdir - move a directory ••••••••••••••••••••••••••

devnm - device
name • •••••••••••••••••••••••••••••.••••••••••••••••

getenv - value for environment
name • •••••••••••••••••••••••••••••.••••••••••••••••

getlogin - get login
name ••••••••••••••••••••••••••••••.••••••••••••••••

logname - get login
name ••••••••••••••••••••••••••••• e: ••••••••••••••••

mktemp - make a unique file
name ••••••••••••••••••••••••••••••.••••••••••••••••

- print present working directory
name .•.•••••••••••••.•.•••••••••••.•••••.•••••• pwd

Page 79

pwb (3)

lseek(2)

ms (7)

mp (3)

mt (4)

mp (3)

mp (3)

re (M)

mv (1)

mv (7)

mvdir(M)

devnm(M)

getenv(3)

getlogin(3)

logname(l)

mktemp(3)

pwd (1)

Permuted Index

tty - get terminal .
name • ...

tmpnam - create a
name for a temporary file .•••.•••.•.•..•••••••.•••

ctermid - generate file
name for terminal •••••••..•••••••••..•••••••••••••

getpw - get
name from UID

nlist - get entries from
name list ••.••••••••••••••••..••••••••••••••••••••

nm - print
name 1 is t .•.••••••.••••.•••••••••.••••••••••••••••

readsym - read next symbol from
name 1 i s·t ••...••••••••••••••••••••••••••••••••••••

symscan - scan
name 1 is t

ttyname, isatty, ttyslot - find
name of a terminal

uname - get
name of current Zilog •.•...•••••••••••••••••••••••

system
uname - print the

name of current ZEUS ••••••••••••••••••••••••.•••••

cuserid - character login
name of the user

logname - login
name of user •••••••••••.••••••.••••.••••••••.•••••

getNAME - get
NAME sections of manual for ..•••••••••••••.•••••••

what is/apropos/
- deliver portions of path

names •.•••••••••••••••••••••.•.•• basename, dirname

user and group IDs and
names •••.••••••..•••••••••••.•••••••••.• id - print

terminals- conventional
names •••••••••••••••••••••••••••••••••••••.••.••••

Page 80

tty(l)

tmpnam(3)

ctermid(3)

getpw(3)

nlist(3)

nm (1)

readsym (3)

symscan(3)

ttyname(3)

uname(2)

uname(l)

cuserid(3)

logname(3)

getname(l)

basename(l)

id (1)

term (7)

Permuted Index

terminal list - terminal
names and codes •••.•••..••••••••••••••••••.••••••••

whodo - print
names and process status for •••••••••••.••••••••••

current users
ncheck - generate·

names from i-numbers

who - print the login
names of those currently on the •••••••••••••••••••

system

ncheck - generate names from •••••••••••.•••••••••
i-numbers

eqn,
neqn, checkeq - typeset ••••••••••••••••••••••••••

mathematics

newgrp - log in to a new group ••••••••••••••••••••

news - print news items •••••••••••••••••••••••••••

news - print
news i terns .. .

vnews - "visually" display the
news i terns · ••••••••

nice - set program priority •••••••••••••••••••••••

nice, nohup - run a command at ••••••••••••••••••••
low priority

nl - line numbering filter ••••••••••••••••••••••••

nlist - get entries from name •••••••••••••••••••••
list

nm - print name list

nice,
nohup - run a command at low •.••••••••••••••••••••

priority
setret, longret -

nonlocal goto

Page 81

termlist(7)

whodo(l)

ncheck(M)

who (1)

ncheck (M)

eqn (1)

newgrp(l)

news (1)

news(l)

vnews(l)

nice(2)

nice(l)

nl(l)

nlist{3)

nm (1)

nice(l)

setret{3)

Permuted Index

ld -
nonsegmented Z 8000 and 8-bi t •••.••.•••••.•••••••••

loader

nq - print enqueing program •.•.••••••••••••••••••

troff,
nroff - text formatting and •••••••••••••••••••••••

typesetting
for formatting manuscripts using

nroff or troff •••••••.••••••••••••••••• me - macros

for formatting manuscripts using
nroff or troff ••••••••••••••••••••••••• ms - macros

tbl - format tables for
nroff or trc>ff ••••••••••••••••••••••••••••••••••••

man - macros to
nroff or troff manual entry ••••..•••••••••••••••••

col -
nroff post-processing filter for ••••••••••••••••••

printer output
deroff - remove

nroff/troff, tbl, and eqn .•••••.••••••••••••••••••
constructs

null - data sink •••••••••••••••••••.••••••••••••••

nl - line
numbering filter ••••••••••••••••••••••••.•••••••••

atoi, atol - convert ASCII to
numbers ••.••••••••••••••••••• /atofs, atofd, _atof,

to system calls and error
numbers .•••••••.••••••.•••••• /errno - introduction

- evaluate files, strings, and
numbers •••••••••••••••••••••••••••••.••••••••• test

objdu - dump for object and load ••••••••••••••••••
modules

objdu - dump for
object and load modules .•..•••••••••••.•.•••••••••

a.out - System 8000
object code format ••••••••••••••••••••••••••••••••

Page 82

ld (1)

nq (1)

troff (l)

me (7)

ms (7)

tbl (1)

man(7)

co 1 (1)

deroff (1)

null(4)

nl(l)

atof (3)

intro (2)

test(l)

objdu(l)

objdu(l)

a.out(S)

Permuted Index

size - size of an
object file ••••••.••••. , •••••••••••••.•••••••••••••

- find ordering relation for an
object library •••••• ~•o•••••••••••••••••••••lorder

objhdr -
object module header dump .••••••••••••••••.•••••••

objsu -
object module underscore stripper •••••••••••••••••

- memory binder for downloading
object modules •••••••• o••••••••••••••••••••••slink

strings - print strings in
object or other binary file •••••••.•••••••••••••••

objhdr - object module header •••••••••••••••••••••
dump

objsu - object module underscore ••••••••••••••••••
stripper

isuniqueid -

Page 83

size(l)

lorder(l)

objhdr (1)

objsu(l)

slink(l)

strings(l)

objhdr(l)

objsu(l)

obtain a unique ID for a C-ISAM ••••••••••••••••••• isuniqueid(3)
file

- print characters with their
octal equivalents code code (1)

od, hd
octal or hex dump od (1)

od, hd - octal or hex dump ••••••••••••••••••••••• od (1)

learn -
on-line computer-aided learn(l)

instruction

open - open for reading or •••••••••••••••••••••••• open(2)
writing

isopen -
open a C-ISAM file for processing •••.••••••••••••• isopen(3)

fopen, freopen, fdopen -
open a stream fopen (3)

dup, dup2 - duplicate an
open file descriptor dup (2)

Permuted Inde·x

open -
open for reading or writing ••.•••••.••••••••••••••

/length, long swap, ls eek,
open, printf, putc, putchar, •••••••••••••••.••••••

read,/
tputs - terminal independent

operation routines ••.••••.•.••••••••••••••• /tgoto,

strtok, index, rindex - string
operations •••.•••••••••.•. ~ •••••• /strspn, strcspn,

join - relational database
operator

curses - screen functions with
"optimal" cursor motion .••.•••••••.•.•••••••••••••

getopt - get
option letter from argv •••••••••••••••••••••••••••

and relocation bits and header
(optional) /- remove symbols

fcntl - file control
options .. .

getopt - parse command
opt ions

stty - set the
options for a terminal ••••••••••••••••••••••••••••

larder - find
ordering relation for an object ••.••••••••.•••••••

library
vi - screen

oriented (visual) display editor ••••••••••.•••••••
based on ex

filter for printer
output .••••••••••.•••••••• /- nroff post-processing

pr - format files for printer
output .. .

ioctl - input I
output control device ••.•••.•••.•..••.••••••••••••

ecvt, fcvt, fcvt, gcvt, gcvt -
output conversion-:-- .•••••••••.• -:-- •••••••••••. -; • ecvt,

Page 84

open(2)

dm (3)

termlib(3)

string(3)

join(l)

curses(3)

getopt(3)

strip(l)

fcntl(7)

getopt (1)

stty(l)

lorder(l)

vi(l)

col (1)

pr (1)

ioctl(2)

ecvt(3)

Permuted Index

dog - controlled
output flow filter for CRT ••••••••.••••••••••••••••

previewing ·
printf, fprintf, sprintf -

output formatters •••••••••••••••••••••••••••••••••

fprintf, sprintf - System 3
output formatters •••••••••••••••••••••••••• printf,

(print) arguments to the standard
output (terminal) •••••••••••••••••••••• echo - echo

acct -
overview of accounting and ••••••••••••••••••••••••

miscellaneous accounting/
chmog, chog - change mode,

owner and group of a file •••••••••••••••••••••••••

chown - change
owner and group of a file •••••••••••••••••••••••••

chown, chgrp - change
owner or group ••••••••••••••••••••••••••••••••••••

chown - change the
owner-name of a file ••••••••••••••••••••••••••••••

quot - summarize file system
ownership •••

pack, peat, unpack - compress and •••••••••••••••••
expand files

- standard buffered input/output
package •••••••••••••••••••••••••••••••••••••• stdio

mm - the MM macro
package for formatting documents ••••••••••••••••••

mv - a macro
package for making view graphs ••••••••••••••••••••

more,
page - file perusal filter for ••••••••••••••••••••

crt viewing
setlp - set line printer

parameters ••••••••••••..•••••••••••••••••••••••••••

/IDs getppid - get
parent process IDs •••• ~···························

Page 85

dog(l)

printf (3)

printf.x(3)

echo (1)

acct (M)

chmog (M)

chown(2)

chown(M)

chown(l)

quot (M)

pack(!)

stdio (3)

mm (7)

mv (7)

more(l)

setlp(M)

getpid (2)

Permuted Index

getopt -
parse command options •••••••••••••••••••••••••••••

passwd - change login password ••••••••••.•••••.•••

passwd - password file •••••.••••.••••••.••••••••••

getpass - read a
password . •••••••••••••••••••..••.•••••••••••••••••

gpasswd - change group
password • ••••••••••••••••••••••••••••.••••••••••••

passwd - change login
.Password .•.••••••.•••••••••••••••.••••.•••••••.•••

passwd -
password file· •••••••••.•••••••••••••••••••••••••••

setpwent, endpwent - get
password file entry •••••••••••••••.••••• /getpwnam,

putpwent - write
password file entry .••••••••••••••..•••••••••.••••

pwck, grpck -
password/group file checkers •.••••••••••••••••••••

paste - merge same 1 ines of •••••••••••••••••••••••
several files or subsequent/

dirname - deliver portions of
path names •••••••..•••••••••••••••••••••• basename,

/imatch, index, lockit, move,
patoi , patol, rename, repeat,/ •••••.••••.••••.•••

/index, lockit, move, patoi ,
patol, rename, repeat, satoi,/ .•••.•.•.•••••••••••

fgrep - search a file for a
pattern .•••••••••••.••••••••.••••••••• grep, egrep,

awk -
pattern scanning and processing ••••••••••••.••.•••

language

pause - stop until signal ••.....•••••••.•••.••••••

Page 86

getopt(l)

passwd (1)

passwd(S)

getpass(3)

gpasswd(l)

passwd(l)

passwd(S)

getpwent(3)

putpwent(3)

pwck (1)

paste(l)

basename(l)

pwb (3)

pwb (3)

grep(l)

awk (1)

pause(2)

Permuted Index

pack,
peat, unpack - compress and •••••••••••••••••••••••

expand files
popen,

pclose - initiate I/O to or from ••••••••••••••••••
a process

update -
periodic buffer flush.o•••••••••••••••••••••••••••

mesg -
permit or deny messages •••••••••••••••••••••••••••

ptx - generate the
permt1ted index ••••••••..•••••••••••••••••••••••••••

acct -
per-process accounting file •••••••••••••••••••••••

format
acctcms - command summary from

per-process accounting records ••••••••••••••••••••

perror, deverr, sys errlist, ••••••••••••••••••••••
sys nerr, errno --system error/

- more, page - file
perusal filter for crt viewing ••••••••••••••••••••

tc -
phototypesetter simulator •••••••••••••••••••••••••

split - split a file into
pieces ••••••••••••••••..•••••••••••••••••••••••••••

pipe - create an interprocess •••••••••••••••••••••
channel

tee -
pipe fitting ••••••••••..•••••••••••••••••••••••••••

plz - plz/sys compiler driver •••••••••••••••••••••

as -
PL ZIA SM a s s em b 1 e r • • • • • •. •

plzcg - plz/sys 88000 code ••••••••••••••••••••••••
generator

plzsys - plz/sys compiler •••••••••••••••••••••••••

Page 87

pack(l)

popen(3)

update(M)

mesg (1)

ptx (1)

acct(S)

acctcms(M)

perror(3)

more(l)

tc (1)

split(l)

pipe(2)

tee (1)

plz(l)

as (1)

plzcg(l)

plzsys(l)

Permuted IndE!X

plzsys -
pl z/sys compiler

plz -
plz/sys compiler driver ••••••• ~···················

plzcg -
pl z/sys S 8 00 0 code genera tor ••••••••••••••••••••••

lseek - move read/write
pointer

popen, pclose - initiate I/O to ••.•.••••••••••••••
or from a process

mdmctl - configure
port for modem or terminal line •••••••••••••••••••

basename, dirname - deliver
portions of path names •.••..••.•••••.•••••••••••••

ttyconfig - configure
ports for terminal or modem line ••••••••••.•••••••

banner - make
J?Osters • •••••••••••••••••••••• v • ••••••••••••••••••

col - nroff
post-processing filter for ••••••••••••••••••••••••

printer output
msub, mult, mdiv, min, mout,

pow, gcd, rpow - multiple/ •••••••••••••••••• /madd,

exp, log, log 10,
pow, sqrt - exponential functions •••••••••••••••••

pr - format files for printer •••••••••••••••••••••
output

/mout, pow, gcd, rpow - multiple
precision integer arithmetic •.••••••••••••.•••••••

cw, checkcw -
prepare constant-width text for ••••••••••••••..•••

troff
monitor -

prepare execution profile •.•..••••••••••••••••••••

segmon (segmented monitor) -
prepare execution profile ••.•••••.••••••••.•••••.•

Page 88

plzsys(l)

plz(l)

plzcg(l)

lseek(2)

popen(3)

mdmctl(2)

basename (1)

ttyconfig(M)

banner(l)

co 1 (1)

mp (3)

exp (3)

pr (1)

mp (3)

cw (1)

monitor(3)

segmon(3)

Permuted Index:

output flow filter for CRT
previewing •••••••••••••••••••••••• dog - controlled

unget - undo a
previous get of an SCCS file ••••••••••••••••••••••

lock - lock a process in
primary memory ••••••••••••••••••••.••••••••••••••••

types -
primitive system data types •••••••••••••••••••••••

types -
primitive system data types •••••••••••••••••••••••

prs -
print an SCCS file ••••••••••••••••••••••••••••••••

date -
print and set the date ••••••••••••••••••••••••••••

echo2 - echo
(print) arguments to standard •••••••••••••••••••••

error
echo - echo

(print) arguments to the standard •••••••••••••••••
output (terminal)

cal -
print calendar ••••••••••••••••••••••••••••••••••••

code -
print characters with their octal •••••••••••••••••

equivalents.
sact -

print current secs file editing •••••••••••••••••••
activity

whoami -
print effective current user id •••••••••••••••••••

nq
print enqueing program~···························

cat - concatenate and
print files •••••••••••..•••••••••••••••••••••••••••

nm -
pr int name 1 ist

whodo -
print names and process status ••••••••••••••••••••

for current users

Page 89

dog (1)

unget(l)

lock (2)

types(S)

types(?)

pr s (1)

date(M)

echo2(1)

echo(l)

cal (1)

code(l)

sact(l)

whoami (1)

nq (1)

cat (1)

nm (1)

whodo(l)

Permuted Index

news -
print news items •••.•.•••.••.••••••••.••.••••••••• ·

pwd -
print present working directory •••••••••••••••••••

name
acctcom - search and

print process accounting file(s) ••••••••••••••••••

dqueuer - process and remove
print queue command requests from •••••••••••••••••

- service line printer spooler
print requests ••••••••.••••••••••••••••••• lp, text

- service line printer spooler
print requests ••••••••••••••.•.••••••••••• lp, text

- service line printer spooler
print requests •.•••••••••.•••••••••••••••• lp, text

man -
print sections of this manual. ••••••••••••.•••••••

strings -
print strings in object or other ••••••••••••••••••

binary fil4:
pstat -

print system facts ••••••••••••••••••••••••••••••••

date -
print the date and time •••••••••••••••••••••••••••

tail -
print the last 10 lines of a file •••.•••••••••••••

who
print the login names of those ••••••••••••••••••••

currently on the system
uname -

print the name of current ZEUS ••••••••••••••••••••

id -
print user and group IDs •••••••••••••••.••••••••••

and names
chkwhat -

print Zilog Source Control what •••••••••••••••••••
strings

printenv - display environment ••••••••.•••••••••••
variables

Page 90

news (1)

pwd (1)

acctcom(M)

dqueuer (M)

backend(M)

lp (M)

text (M)

man(l)

strings(l)

pstat(M)

date(l)

tail (1)

who(l)

uname (1)

id (1)

chkwhat(l)

printenv(l)

Permuted Index

lp - line
pr i n t er d r i .v er • • • • • • • • .. •

nroff post-processing filter for
printer output •••••••• ~······················col -

pr - format files for
printer output ••••••••..•••••••••••••••••••••••••••

setlp - set line
pr i n t er parameter s . • . • .. • . • . . . • • • . • • • • • . • • • .

lpr - line
printer spooler •••••••..•••••••••••••••••••••••••••

for writing backends for the Zeus
printer spooler ••••••• ~··········•··/- information

or delete requests from the line
printer spooler xq - examine

or delete requests from the line
printer spooler xq - examine

lp, text - service line
printer spooler print requests ••••••••••••••••••••

lp, text - service line
printer spooler print 1=equests ••••••••••••••••••••

lp, text - service line
printer spooler print 1=eques ts ••••••••••••••••••••

printf, fprintf, sprintf - output •••••••••••••••••
formatters

printf, fprintf, sprintf - System •••••••••••••••••
3 output formatters

/length, longswap, lseek, open,
printf, putc, putchar, read,/ •••••••••••••••••••••

nohup - run a command at low
priority ••••••••••••••. , •••••••••••••••••••••• nice,

nice - set program
priority ,•................

acctsh - shell
procedures for accounting •••••••••••••••••••••••••

Page 91

lp(4)

col(l)

pr (1)

setlp(M)

lpr(l)

spool(S)

xq (1)

xq(M)

backend(M)

lp (M)

text (M)

printf (3)

printf .x(3)

dm (3)

nice(l)

nice(2)

acctsh(M)

Permuted Index

exit - terminate
process• IA •••••••••••••••••• ~ ••••••••••••

fork - spawn new
process . .•.••...••.....•.•••..•••.•.•••.••••.•••••

kill - send a signal to a
process . •...•••.•.•..•.••..•.•••••••.•.•.•••••••..

kill - send signal to a
process • ••••....••...•.•..•••.••••••••••.••.•..•••

- initiate I/O to or from a
process ••.••••••••••••••••••••••••••• popen, pclose

/s-lIDs getpgrp - get group
process IDs getppid -/ ••••••••••..•••••••••••••••

acctprc -
process accounting ••••••••••••••••••••••••••••.•••

acctcom - search and print
process accounting file(s) •••••••••••ao•••••••••••

dqueuer -
process and remove print queue ••••••••••••••••••••

command requests from
INIT -

process control initialization ••••.•••••••••••••••

setpgrp - set
process grou:p ID ••..••••••••••••••••••••••••••••••

lock - lock a
process in primary memory ••••••••••••••••.••••••••

IDs getppid - get parent
process IDs ••••••••••••.••••••••••••••••• /process

getpid, - get
process s -1 I D s get pg r p - get • • . . • • • • • • • • • • • • • • • • • •

group process/
ps - report

process s ta t·us

whodo - print names and
process status for current users •.••••.•.•.•.•••••

times - get
process t ime:s ..••••••••••••••..••••..•••.•••••••••

Page 92

exit(2)

fork(2)

kill (1)

kill(2)

popen(3)

getpid(2)

acctprc(M)

acctcom(M)

dqueuer (M)

init(M)

setpgrp(2)

lock(2)

getpid (2)

getpid(2)

ps (1)

whodo (1)

times (2)

Permuted Index Page 93

wait - wait for
process to terminate ••••••••••••.•••••••••.•••••••• wait(2)

ptrace -
process tr ace ••••••••••••••••••.•••••.•••••••••••• ptrace(2)

isopen - open a C-ISAM file for
processing •• isopen(3)

awk - pattern scanning and
processing language .•••.•••••••••••••••••••••••••• awk(l)

m4 - macro
processor m4 (1)

gene,ral Intel 1 igent Communication
Processor interface •••••••••••• •,• •••••••••••• icp - icp(4)

prof - display profile data ••••••••••••••••••••••• prof(l)

profil - execution time profile ••••••••••••••••••• profil (2)

monitor - prepare execution
profile .. . monitor(3)

profil - execution time
profile , profil(2)

monitor) - prepare execution
prof i 1 e segmon (segmented segmon (3)

prof - display
profile data " ••••••.•••••••••••• prof (1)

sprof - display
profile data sprof (l)

mon.out -
profile information.~··········•·················· mon.out(5)

- shell, the Bourne shell command
programming language ..•••••••••• , •••••••••••••••• sh sh (1)

prom - prom
programming utility •..•••••••••• , ••••••••.•••••••••• prom(l)

a tags file for C or Fortran
programs ••••••••••••.•••••••••• ~ •• ctags - maintain ctags(l)

Permuted Inde~:

flow - flow analysis of C
programs.~··

update, and regenerate groups of
programs ••.•••••..•••••••••••.•••• make - maintain,

lex - generate
programs for simple lexical tasks ••.••••••••••••••

xstr - extract strings from C
programs to implement shared/ •••••••••••••••••••••

prom - prom programming utility •••.•••••••••••••••

prom -
prom programming utility ..•••••.••••••••••••••••••

- Z8000 Development Module
protocol •••••••••••••.••••••••••••••••••••• dmalias

- start and stop ICP's and their
protocols •••••.••.•••••••••••••••••••••••• icpcntrl

true, false -
provide truth values ••••••••••••••••.•••••••••••••

prs - print an secs file ••••••••••••••••••••••••••

ps - report process status ••••••••••••••••••••••••

pstat - print system facts ••••••••••••••••••••••••

ptrace - process trace ••••••••••••••••••••••••••••

ptx - generate the permuted index •••..••••••••••••

ungetc -
push character back into input ••••••••••••••••••••

stream

putc, putchar, fputc, putw - put ••••••••••••••••••
character or word on a stream

/longswap, lseek, open, printf,
putc, putchar, read, swab, swap,/ •••••••••••.•.•••

Page 94

flow(l)

make(l)

lex(l)

xstr(l)

prom(l)

prom(l)

dmalias(7)

icpcntrl (M)

true(l)

pr s (1)

ps (1)

pstat (M)

ptrace(2)

ptx(l)

ungetc(3)

putc(3)

dm (3)

Permuted Index

putc,
putchar, fputc, putw - put ••••••••••••••••••••••••

character or word on a/
/lseek, open, printf, putc,

putchar, read, swab, swap, write ••••••••••••••••••
-I

putfile - transfer files from •••••••••••••••••••••
remote to local system

putpwent - write password file ••••••••••••••••••••
entry

puts, fputs - put a string on a •••••••••••••••••••
stream

putc, putchar, fputc,
putw - put character or word on a •••••••••••••••••

stream

pwck, grpck - password/group file •••••••••••••••••
checkers

pwd - print present working •••••••••••••••••••••••
directory name

qsort - quicker sort ••••••••••••••••••••••••••.•••

/- process and remove print
queue command requests from •••••••••••••••••••••••

qsort -
quicker sort ••••••••••••••••••••••••••••••••••••••

quot - summarize file system ••••••••••••••••••••••
ownership

rand, srand - random number •••••••••••••••••••••••
generator

ranlib - convert archives to
random libraries ••••.••••••••••••••••••.••••••••••

rand, srand -
r a n do m n um be r gene r a to r • • • • • _. •

ranlib - convert archives to ••••••••••••••••••••••
random libraries

read/ 91 re - "read command" startup •••••••••••••••
control script re csh - "read/

Page 95

putc(3)

dm (3)

putfile(l)

putpwent(3)

puts(3)

putc(3)

pwck (1)

pwd (1)

qsort(3)

dqueuer (M)

qsort(3)

quot(M)

rand(3)

ranlib(l)

rand(3)

:ranlib(l)

:re (M)

Permuted IndE~X

/command" startup control script
re csh - "read command" Cshell/ •••.•••••••••••••••

read - read from file ••••••.••••••..•••.••••••••••

getpass -
read a passwc>rd •.•.••..•••••••••••••••••••••••.•••

/startup control script re csh -
".read comtnanCl" Cshel 1/ :-.... .

re
read/" "read command" startup control •••••••••••••

script rc_csh - "read/
read -

read from file ••••••••••••••••••••••••••••••••••••

readsym -
read next .. symbol from name list •••••••••••••••••••

line -
read one line from the terminal ••••••••••••.••.•••

isread. -
read records from a C-ISAM file •••••••••••••••••••

/open, printf, putc, putchar,
iread, swab, swap, write - Z 8000/ ••••••••••••••••••

open - open for
1~eading or writing ••••••••••••••••••••••••••••••••

islock -
read-lock a C-ISAM file ••••••••••••••••••••.••••••

readsym - read next symbol from •••••••••••••••••••
name list

!seek - move
read/write pointer •••••••••••••.••••••••.••••.••••

malloc, free,
realloc, calloc - main memory ••••••••••••••..•••••

allocator
mail, rmail - send and

receive mail among users ••••••••••••••••••••••••••

/isdelcurr - delete the current
record from a C-ISAM file ••.••.•••••••.•••••••••••

Page 96

re (M)

read(2)

getpass(3)

re (M)

re (M)

read (2)

readsym (3)

line(l)

isread(3)

dm (3)

open(2)

islock(3)

readsym(3)

lseek(2)

malloc(3)

mail(!)

isdelete(3)

Permuted Index

isrewcurr - rewrite the current
record in a C-ISAM file ••.••••••••••••••••••• /file

isrewrite - rewrite a
record in a C-ISAM file isrewcurr •••••.•••••••••••

- rewrite/
iswrite - write a

record into an C-ISAM file ••••••••••••••••••••••••

/- select the current index and
record within an C-ISAM file ••••••••••••••••••••••

from per-process accounting
records ••.•••••••••••••••••••••• /- command summary

fwtmp, wtmpfix - manipulate wtmp
records ••••••••••••• o •••••••••••• •, ••••••••••••••••

utmp, wtmp - login
records •••

isread - read
records from a C-ISAM file ••••••••••••••••••••••••

isrelease - unlock
records in a C-ISAM file ••••••••••••••••••••••••••

cxref - a simple C routine
referencing program ••• ,, •••••••••••••••••••••••••••

regcmp - regular expression •••••••••••••••••••••••
compile

regex,
regcmp - regular expression •••••••••••••••••••••••

compile/execute
make - maintain, update, and

regenerate groups of programs •••••••••••••••••••••

regex, regcmp - regular •••••••••••••••••••••••••••
expression compile/execute

regexp - regular expression •••••••••••••••••••••••
compile and match routines

regcmp -
regular expression compile ••••••••••••••••••••••••

regexp -
regular expression compile and ••••••••••••••••••••

match routines

Page 97

isrewrite(3)

isrewrite(3)

iswrite(3)

isstart(3)

acctcms(M)

fwtmp(M)

utmp (5)

isread(3)

isrelease(3)

cxref(l)

regcmp(l)

regex(3)

make(l)

regex(3)

regexp(7)

regcmp (1)

regexp (7)

Permuted Index

regex, regcmp -
regular expression ••••.•••••••••••••••••••••••••••

compile/execute
comm - select or

reject lines common to two sorted •••••••••••••••••
files

lorder - find ordering
relation fo:r an object library ••••••••••••••••••••

join -
relational database operator ••••••••••••••••••••••

SYS - system call
relay progr<::tm •••••••••••••••••••••••••••••••••••••

strip - remove symbols and
relocation bits and header/

makewhatis -

Page 98

regex(3)

comm(!)

lorder(l)

join(l)

sys(3)

strip(l)

remake the data base for the •••••••••••••••••••••• makewhatis(M)
whatis and apropos/

calendar -
reminder se1~vice ••••••••••••••••••••••••••••••••••

remote - transfer control to a ••••••••••••••••••••
remote ZEUS/UNIX system

remotelines, LCK -

calendar(!)

remote(l)

remote line control and lock •••••••••••••••••••••• remotelines(S)
files

- transfer files from local to
remote system •••••••••••••••••••••••••••••• getfile

putfile - transfer files from
remote to local system •••••••••••••.••••••••••••••

remote - transfer control to a
remote ZEUS/UNIX system •••••••••••••••••••••••••••

getfile(l)

putfile(l)

remote(l)

remotelines, LCK - remote line •••••••••••••••••••• remotelines(5)
control and lock files

iserase -
remove a C-ISAM file and any ••••••••.•••••••••••••

associated audit trail/
rmdel -

remove a delta from an ••••••••••••••••••••••••••••
secs file

rmuser -
remove a user from the system •••••••••••••.•••••••

iserase(3)

rmdel (1)

rmuser(M)

Permuted Index Page 99

isdelindex -
remove an i~dex from a C-ISAM ••••••••••••••••••••• isdelindex(3)

file
unlink -

remove directory entry ••••••••••••••••••••••••••••

mount, umount - mount or
remove file system ••••••••••••••••••••••••••••••••

deroff -
remove nroff/troff, tbl, and eqn ••••••••••••••••••

constructs
dqueuer - process and

remove print queue command ••••••••••••••••••••••••
requests/

strip
remove symbols and relocation •••••••••••••••••••••

bits and header/
rm, rmdir

remove (unlink) files •••••••••••••••••••••••••••••

reservrc - reserv install and
remove utility ••••••••••••••••••••••••••••••••••••

isrename -
rename a C- I S AM f i 1 e • • • • • • • • • • • • , • • • . • • • • • • • • • • • • • •

mv - move or
rename files and directories ••••••••••••••••••••••

/lockit, move, patoi , patol,
rename , repeat , sat o i , s e i s i g 1 , I

consistency check and interactive
repair •••••••••••••••••••••••••• fsck - file system

/move, patoi , patol, rename,
repeat, satoi, seisigl, setsig,/ ••••••••••••••••••

uniq - report
repeated lines in a file ••••••••••••••••••••••••••

and generate a system activity
report •••••••••••••••••••••• t ime,x - time a command

strfile - software trouble
report data base ••••••••••••••••••••••••••••••••••

str - software trouble
report input program ••••••••••••••••••••••••••••••

unlink (2)

mount(2)

deroff (l)

dqueuer (M)

strip(!)

rm (1)

reservrc(M)

isrename(3)

mv (1)

pwb (3)

fsck(M)

pwb (3)

uniq(l)

timex(l)

strfile(S)

str (M)

Permuted Inde~x

strprint - software trouble
report listing program •.•••••• ~···················

df -
.report number of free disk blocks •••.••.••••••••••

ps -
report process status ••••.••••••••••.•••••••••••••

uniq -
report repeated lines in a file •••••••••••••••••••

fseek, ftell, rewind -
reposition a stream

line printer spooler print
1:equests •••••••••••••••••••••••• lp, text - service

line printer spooler print
1:eques ts •••••••••••••••••••••••• lp, text - service

line printer spooler print
requests ••••••••.••••••••••••••• lp, text - service

and remove print queue command
requests from •••••••••••••••••••• dqueuer - process

xq - examine or delete
requests from the line printer .•••••••••••••••••••

spooler
xq - examine or delete

requests from the line printer ••••••••••••••••••••
spooler

rtmp, z, rz, tardev, dumpdev and
resdev ••••••••••••••••••••• /rroot, usr, rusr, tmp,

reserv - tape drive reserving •••••••••••••••••••
system

reservrc -
reserv install and remove utility ••••••••••.••••••

reserv - tape drive
reserving system ••••••••••••••••••••••••••••••••••

reservrc - reserv install and ••.••••••••••••••••••
remove utility

reset - reset terminal modes to ••.••••••••••••••••
default values

Page 100

strprint(M)

df (M)

ps (1)

uniq (1)

fseek(3)

backend(M)

lp(M)

text (M)

dqueuer(M)

xq (1)

xq (M)

devnames(4)

reserv(l)

ireservrc (M)

reserv(l)

reservrc(M)

reset(l)

Permuted Index

reset -
reset terminal modes to default •••••••••••••••••••

values

restor, srestor - inc1i::emental •••••••••••••••••••••
file system restore

srestor - incremental file system
restore ••••••••••••••..••••••••••••••••••••• res tor,

makenewf s - construct and
res tore file sys tern ••.•••••••••••••••.••••••••••••

rsh -
restricted shell (comrnand •••••••••••••••••••••••••

interpreter)
local -

return control to local system ••••••••••••••••••••

stat - data
returned by stat system call ••••••••••••••••••••••

rev - reverse the characters on a •••••••••••••••••
line

rev -
reverse the characters on a line ••••••••••••••••••

fseek, ftell,
rewind - reposition a stream ••••.••••••••••••••••••

isrewrite -
rewrite a record in a C-ISAM file •••••••••••••••••

isrewcurr - rewrite/
/in a C-ISAM file isrewcurr -

rewrite the current record in a/ ••••••••••••••••••

/strspn, strcspn, strtok, index,
rindex - string operations ••••••••••••••••••••••••

- determine if terminal is a
RIO System ••••••••••••••••••••••••••••••••••• i sr io

rm, rmdir - remove (unlink) ••••••••••••••••••••••
files

mail,
rmail - send and receive mail •••••••••••••••••••••

among users

rm de 1 - remove a de 1 t.a from an ••••••••••••••••••••
SCCS file

Page 101

reset(l)

restor (M)

restor(M)

makenewfs(M)

r sh (1)

local(l)

stat(7)

rev(l)

rev (1)

fseek(3)

isrewrite(3)

isrewrite(3)

string (3)

isrio(l)

rm (1)

mail(l)

rmdel(l)

Permuted Inde:)(

rm,
rmdir - remove (unlink) files ••••••••••••••••••••

rmuser - remove a user from the •••••••••••••••••••
system

chroot - change
root di rec·tory •••••••••••••.••••••••••••••••••••••

chroot - change
root directory for a command •••••••••••••••••.••••

root, rroot, usr, rusr, tmp, ••.•••••••••••••••••••
rtmp, z, rz, tardev, dumpdev and/

cxref - a simple C
routine refere~ncing program •••••••••••••••••.•••••

ldint, ldlong - C-ISAM load
routines •.•••••••••••••••••••••••.• lddbl, ldfloat,

stint, stlong, - C-ISAM store
routines ••••••••••••••••••••••••••• stdbl, stfloat,

expression compile and match
routines •••••••••••••••••••••••••• regexp - regular

- terminal independent operation
routines •••••••••••••••••••• /tgetstr, tgoto, tputs

routines - swap swapsegt - swap
routines - swap •••••••••••••••• ~ •• /longswap - swap

swap - swap
routines - swap longswap - swap •••••••••••••••••••

routines - swap/
/routines - swap longswap - swap

routines - swap swapsegt - swap/ ••••••••••••••••••

/mult, mdiv, min, mout, pow, gcd,
rpow - multiple precision integer/ ••••••••••••••••

root,
rroot, usr, rusr, tmp, rtmp, z,•.....••..•.•..

rz, tardev, dumpdev and/

rsh - restricted shell (command •••••••••••••••••••
interpreter)

root, rroot, usr, rusr, tmp,
rtmp, z, rz, tardev, dumpdev and/ •••••••••••••••••

Page 102

rm (1)

rmuser (M)

chroot(2)

chroot(M)

devnames(4)

cxref (l)

isld(3)

isst(3)

regexp(7)

termlib(3)

swap(3)

swap(3)

swap(3)

mp (3)

devnames(4)

r sh (1)

devnames(4)

Permuted Index Page 103

nice, nohup -
run a command at low priority •••••••••••••••••••••

runacct -
run daily accounting ••••••••••••••••••••••••••••••

runacct - run daily accounting ••••••••••••••••••••

root, rroot, usr,
rusr, tmp, rtmp, z, rz, tardev, •••••••••••••••••••

dumpdev and/
/rroot, usr, rusr, tmp, rtmp, z,

rz, tardev, dumpdev and resdev ••••••••••••••••••••

convert between long and base-64
A SC I I ••••••••••••••••••••••••••••••••• a 6 41 , 16 4 a -

tzset - convert date and time to
AS C I I • , • I gm t i me , a s c t i me ,

setpgrp - set process group
ID • ••••••••••••••••••••••••••••• 1 • •••••••••••••••••

getppid - get parent process
IDs ••••••.••••••••••••••••••••••••••• /process IDs

id - print user and group
IDs and names •••••••••••••••••••••••••••••••••••••

getpid, - get process
s -1 I D s g et pg r p - get g r o up •

process/
/getpgrp - get group process

IDs getppid - get parent/ •••••••••••••••••••••••••

rmdel - remove a delta from an
SCCS file•..•.•....•.•...•.....•••......

cu - call another
ZEUS system •••••••••••••••••••••••••••••••••••••••

uname - get name of current
Zilog system ••••••••••••••••••• •,• •••••••••••••••••

cc -
58000 C compiler •••••••••••••••• , ••••••••••••••••••

plzcg - plz/sys
88000 code generator ••••••••••••••••••••••••••••••

nice(!)

runacct (M)

runacct (M)

devnames(4)

devnames(4)

a641(3)

ctime (3)

setpgrp(2)

getpid(2)

id (1)

getpid(2)

getpid(2)

rmdel (1)

cu (1)

uname(2)

cc (1)

pl zcg (1)

Permuted IndE~x

sec -
88000 segmented c compiler ••••••••••••••••••••••••

sact - print current secs file ••••••••••••••••••.•
editing activity

paste - merge
.same lines of several files or ••••••••••••••••••••

subsequent lines/
/patoi , patol, rename, repeat,

satoi, seisigl, setsig, sname,/ •••••••••••••••••••

brk,
sbrk - change core allocation •••••••.••••.••••••••

symscan -
~>can name 1 is t

scan£, fscanf, sscanf - formatted •••••••••••••••••
input conversion

awk - pattern
scanning and processing language •••••••••••.••••••

sec - S8000 segmented c compiler •••••••••.••••••••

change the delta commentary of an
secs delta ••.•••••••••••••••••••••••••••••••• cdc -

comb - combine
SCCS deltas

- make a delta (change) to an
secs file ••••.••••••••••.•.•••••••••••••••••• delta

get - get a version of an
SCCS file ,

prs - print an
SCCS file ,•..................

- compare two versions of an
secs file •••• " ••••••..•••.•••••••••••••..• sccsdiff

sccsfile - format of
SCCS file co ••••••••••••••••••••••••••••••••••••

unget - undo a previous get of an
secs file •1 ••••••••••••••••••••••••••••••••••••

Page 104

sec (1)

sact(l)

paste(l)

pwb (3)

brk (2)

symscan(3)

scanf (3)

awk (1)

sec (1)

cdc (1)

comb (1)

delta(!)

get (1)

pr s (1)

sccsdiff (l)

sccsfile(5)

unget(l)

Permuted Index

val - validate
secs file "··········~·················

sact - print- current
secs file editing activity •.••••••••••••••••••••••

admin - create and administer
SCCS files 411 •••••••••• , •••••••••••••••••

what - identify
SCCS files , ,

sccsdiff - compare two versions •••••••••••••••••••
of an SCCS file

sccsfile - format of secs file ••••••••••••••••••••

alarm -
schedule signal after specified •••••••••••••••••••

time
curses -

screen functions with "optimal" •••••••••••••••••••
cursor motion

vi -
screen oriented (visual) display~ ••••.••••••••••••

editor based on ex
Cshell multi-user startup

read command"" script ••••••••••• ,. /- "read command"

script - make a file copy of all ••••••••••••••••••
terminal interactions

at - execute command or shell
script file at a later time •••••. • •••••••••••••••••

/"read command" startup control
S rl.pt c h "red o nd"/ c re s - a c mma •••••••••••••••••••

sdiff - side-by-side difference •••••••••••••••••••
program

dump,
sdump - incremental file system •••••••••••••••••••

dump
bsearch - binary

search • •••••••••••.•••••.••••••• ,• •••••••••••••••••

grep, egrep, fgrep -
search a file for a pattern •••••••••••••••••••••••

Page 105

val(l)

sact(l)

admin (1)

what (1)

sccsd iff (1)

sccsfile(S)

alarm (2)

curses(3)

vi(l)

re (M)

script(l)

at (1)

re (M)

sd i ff (1)

dump (M)

bsearch (3)

grep(l)

Permuted Indiex

acctcom -
search and print process •••••••••.•.••••.•••.•••••

accounting file(s)
!search - linear

search and update •••••••••••••••••••••••.•••••••••

boot
secondary bootstrapper •••••.•••••••••••••••.••••••

intro - introduction to
Sect ion 1 con1mands •.••••••••••••••••••.•••••••••••

getNAME - get NAME
sections of manual for/ •••.•..•••••••••••••••••.••

man - print
sections of this manual .•••••.••.•.•••••••••••••••

sed - stream editor •.•.•••..•••••••••••••••••••.••

mkseg - make a
:segment • ••

sgbrk - change the size of a data
!3egment . ••••••••••. o ••••••••••••••••••••••••••••••

sec - 88000
segmented C compiler •••••••••••••••••.••••••••••••

sgstat - get highest
segmented cod 1e address •••••••.••••••••••••••••••••

segmon
(segmented monitor) - pre pa re .•••••.••••••••••••••

execution profile
sld -

segmented Z8000 loader ••••.••••••••.••••••••••••••

segmon (segmented monitor) - •••••••.••••••••.•••••
prepare execution profile

/, patol, rename, repeat, satoi,
seisigl, sets:ig, sname, strend,/ ••••••••••••••••••

comm -
select or rej E~ct 1 i nes common to ••.•.•.••••..•••••

two sorted files
greek -

select terminal filter •••••..•••••••.•••••••••••••

Page 106

acctcorn(M)

lsearch(3)

boot (M)

intro(l)

getname(l)

man (1)

sed(l)

mkseg(2)

sgbrk(2)

sec (1)

sgstat(2)

segmon(3)

sld (1)

segmon(3)

pwb (3)

comm (1)

greek(l)

Permuted Index

isstart -
select the current index and ••••••••••••••••••••••

record within an/
cut - cut out

selected fields of each line of a •••••••••••••••••
file

SEND - Uploader to the Zilog ••••••••••••••••••••••
Z8000 Development Module

kill -
send a signal to a process ••••••••••••••••••••••••

mail, rmail -
send and receive mail among users •••••••••••••••••

kill
send signal to a process ••••••••••••••••••••••••••

ascii - map of ASCII character
set 1• •••••••••••••••••

env -
set environment for command •••••••••••••••••••••••

execution
umask -

set file creation mode mask •••••••••••••••••••••••

utime -
set file times ••••••••••••••••••••••••••••••••••••

setlp -
set line printer parameters •••••••••••••••••••••••

setpgrp -
set process group ID ••••••••••••••••••••••••••••••

nice -
set program priority ••••••••••••••••••••••••••••••

tabs -
set tabs on a term i na 1 •••••••••• , •••••••.••••••••••

date - print and
set the date •••••••••••••••••••• , ••••••••••••••••••

GETTY -
set the modes of a te,rminal •••••••••••••••••••••••

stty -
set the options for a terminal ••••••••••••••••••••

Page 107

isstart(3)

cut (1)

send (1)

kill (1)

ma i 1 (1)

kill(2)

ascii(7)

env (1)

umask(2)

utirne(2)

setlp(M)

setpgrp(2)

nice(2)

tabs(l)

date(M)

getty(M)

stty(l)

Permuted Ind,ex

stime -
set time

vtzset -
set up vtz terminal function keys •••••••.••.••••••

setuid, setgid -
set user and group ID •••••••••••••••••••••••••••••

ulimit - get and
set user limits •••••••••••••••••••••••••••••••••••

setbuf - assign buffering to a ••••••••••••••••••••
stream

setuid,
setg id - set user and group ID ••••••••••••••••••••

getgrent, getgrgid, getgrnam,
setgrent, endgrent - get group/ •••••••••••••••••••

crypt,
setkey, encrypt - DES encryption ••••••••••••••••••

setlp - set line printer •••••• ~···················
parameters

setmnt - establish mnttab table ••••..•••••••••••••

setpgrp - set process group ••••••••••• ~ •••••••••••
ID

getpwent, getpwuid, getpwnam,
setpwent, endpwent - get password/ ••••••••••••.•••

setret, longret - nonlocal goto •••••••••••••••••••

/rename, repeat, satoi, seisigl,
setsig, sname, strend, substr ,/ •••••••••••••••••••

datem - friendly date and time
setting .. .

cshrc, cshprofile, login -
setting up an environment at ••••••••••••••••••••••

login/

setuid, setgid - set user and •••.•••••••••••••••••
group ID

Page 108

stime(2)

vtzset(l)

setuid(2)

ulimit(2)

setbuf (3)

setuid(2)

getgrent(3)

crypt(3)

setlp(M)

setmnt (M)

setpgrp (2)

getpwent(3)

setret(3)

pwb (3)

datem(M)

cshrc(5)

setuid(2)

Permuted Index

sgbrk - change the size of a data •••••••••••••••••
segment

sgstat - get highest segmented ••••••••••••••••••••
code address

sh - shell, the Bourne shell ••••••••••••••••••••••
command programming language

from C programs to implement
shared strings •••••.. o••········I- extract strings

system - issue a
shell command ••••••••..•••••••••• , •••••••••••••••••

rsh - restricted
shell (command interpreter) •••••••••••••••••••••••

sh - shell, the Bourne
shell command programming •••••••••••••••••••••••••

language
acctsh -

shell procedures for accounting •••••••••••••••••••

at - execute command or
shell script file at a later time •••••••••••••••••

sh -
shell, the Bourne shell command •••••••••••••••••••

programming language

shut - warns of system shutdown •••••••••••••••••••

shut - warns of system
shutdown

sdiff -
side-by-side difference program •••••••••••••••••••

login
sign on to the computer ••••••••• , ••••••••••••••••••

pause - stop until
s i g na 1 •,

signal - catch or ignore signals •••••••••••••.••••

al.arm - schedule
signal after specified time •••••••••••••••••••••••

Page 109

sgbrk(2)

sgstat (2)

sh (1)

xstr(l)

system (3)

rsh(l)

sh (1)

acctsh(M)

at (1)

sh (1)

shut (M)

shut (M)

sd if f (1)

login(l)

pause(2)

signal (2)

alarm(2)

Permuted Index

kill - send a
signal to a process ••.••••••••••••••••••••••••.•••

kill - send
signal to a process ••••••••••••••••.••••••••••••••

signal - catch or ignore
signals .. .

ssignal, gsignal - software
signals .. .

cxref - a
simple C routine referencing ••••••••••••••••••••••

program
lex - generate programs for

simple lexical tasks •••••••••.••••••••••••••••••••

tc - phototypesetter
simulator.~

sin, cos, tan, asin, acos, atan, ••••••••••••••••••
atan2 - trigonometric functions

sinh, cosh, t:anh - hyperbolic ••••••••••••••.••••••
functions

null - data
sink

size - size of an object file •••••••••••••••••••••

sgbrk - change the
size of a data segment ••••••••••••••••••••••••••••

size -
size of an object file ••.•••••••••••••••••••••••••

sld - segmented Z8000 loader •••••••••.••••••••••••

sleep - suspend execution for an ••••••••.•••••••••
interval

sleep - suspend execution for ..•••••••••••••••••••
interval

slink - memory binder for •••••••••••••••••••••••••
downloading object modules.

Page 110

kill (1)

kill (2)

signal(2)

ssignal(3)

cxref(l)

lex(l)

tc (1)

sin(3)

sinh(3)

null(4)

size (1)

sgbrk(2)

size(l)

s ld (1)

sleep(!)

sleep (3)

slink(l)

Permuted Index

smd - Storage module disk •••••••••••••••••••••••••

/repeat, satoi, seisigl, setsig,
sname, strend, substr, trnslat,/ ••••••••••••••••••

ssignal, gsignal -
software signals ••••••••••••••••••••••••••••••••••

strfile -
software trouble report data base •••••••••••••••••

str -
software trouble report input •••••••••••••••••••••

program
strprint -

software trouble report listing •••••••••••••••••••
program

qsort - quicker
sort t•••••••••••·················

tsort - topological
sort (............................ .

sort - sort and/or merge files ••••••••••••••••••••

sort -
sort and/or merge files •••••••••••••••••••••••••••

or reject lines common to two
sorted files ••••••••••••••••••••••••• comm - select

look - find lines in a
sor·te<1 list •••••••••••••••••••••.••••••••••••••••••

error message file by massaging C
source ••••••••••••••••••••••••••• mkstr - create an

whereis - locate
source, binary, and or manual for •••••••••••••••.•

program
chkin - check in file to Zilog

Source Control file ••••••••••••••••.••••••••••••••

- check out file from Zilog
Source Control file ••••••••••••• , •••••••••••• chkout

zsc - Zilog
Source Control File conventions •••••••••••••.•••••

Page 111

smd (4)

pwb (3)

ssignal(3)

strfile(S)

str (M)

strprint(M)

qsort(3)

tsort(l)

sort(l)

sort(l)

comm (1)

look(l)

mkstr(l)

whereis(l)

chkin(l)

chkout(l)

zsc (5)

Permuted Index

chkwhat - print Zilog
Source Control what strings .••••••••••••••••••••••

differences between versions of a
source file~························chkdiff - list

expand - expand tabs to
spaces ••••.••••..••.••..••••••••••••.•.•.••••..•..

fork
spawn new process •••••••••••• ~····················

alarm - schedule signal after
specified time ••.•••••••••••••••••••••••••••••••••

spell, spellin, spellout - find •••••••••••••••••••
spelling errors

spell,
spellin, spellout - find spelling •••••••••••••••••

errors
spell, spellin, spellout - find

spelling errors ••••••••••••••••••••••••••••••••••.

spell, spellin,
spellout - find spelling errors •••••••••••••••••••

split - split a file into pieces ••••••••••••••••••

split -
split a file into pieces ••••••••••••••••••••••••••

csplit -
split file according to •••••••••••••••••.•.•••••••

contextual arguments
frexp, ldexp, modf -

split into mantissa and exponent ••••••••••••••••••

spool - info1:mation for writing •••••••••••••••••••
backends for the Zeus printer/

lpr - line printer
spooler "'

backends for the Zeus printer
spooler •.••• ~ ••••••••••••• /information for writing

requests from the line printer
spooler •••••.•••••••.•••••• xq - examine or delete

Page 112

chkwhat(l)

chkdiff(l)

expand(!)

fork(2)

alarm(2)

spell (1)

spell(l)

spell(l)

spell(l)

split(!)

split(!)

csplit(l)

frexp(3)

spool(S)

lpr (1)

spool(5)

xq (1)

Permuted Index

requests from the line printer
spooler •••••••••••••••••••• xq - examine or delete

lp, text - service line printer
spooler print requests ••••••••••••••••••••••••••••

lp, text - service line printer
spooler print requests ••••••••••••••••••••••••••••

lp, text - service line printer
spooler print requests ••••••••••••••••••••••••••••

printf, fprintf,
sprintf - output formatters •••••••••••••••••••••••

printf, fprintf,
sprintf - System 3 output •••••••••••••••••••••••••

formatters

sprof - display profile data ••••••••••••••••••••••

exp, log, logl0, pow,
sqrt - exponential functions ••••••••••••••••••••••

rand,
srand - random number generator •••••••••••••••••••

rester,
srestor - incremental file system •••••••••••••••••

restore
scanf, fscanf,

sscanf - formatted input ••••••••••••••••••••••••••
conversion

ssignal, gsignal - software •••••••••••••••••••••••
signals

stdio -
standard buffered input/output ••••••••••••••••••••

package
echo2 - echo (print) arguments to

standard error •••••••••••••••••• •,• ••••••••••••••••

gets - get a string from
standard input •••••••••••••••••• •,• ••••••••••••••••

- echo (print) arguments to the
standard output (terminal) •••••••••••••••••••• echo

icpcntrl -
start and stop ICP's and their ••••••••••••••••••••

protocols

Page 113

xq (M)

backend (M)

lp (M)

text (M)

printf (3)

printf .x(3)

sprof(l)

exp (3)

rand(3)

res tor (M)

scanf (3)

ssignal (3)

stdio (3)

echo2 (1)

gets(l)

echo(l)

icpcntr 1 (M)

Permuted Index Page 114

re - "read command"
read/" startup control script re csh - •••••••.••••

"read/
command" Cshell multi-user

read" startup script ••••••••••••••• /rc_csh - "read

stat - data returned by stat •••••••••.•.••••••••••
system call

stat, fstat - get file status •••••.•••••••••••••••

stat - data returned by
stat system call ••.•.•••••••••••••••••••••••••••••

ps - report process
status .. .

stat, fstat - get file
status

whodo - print names and process
status for current users ••••••••••••••••••••••••••

feof, clearerr, fileno - stream
status inquiries ••.•••••••••••••••••••••••• ferror,

uustat - uucp
status inquiry and job control ••••••••••••••••••.•

stdbl, stfloat, stint, stlong, - ••••••••••••••••••
C-ISAM store routines

stdio - standard buffered •••••••••••••••••••••••••
input/output package

stdbl,
stfloat, stint, stlong, - C-ISAM ••••••••••••••••••

store routines

stime - set time ••••••••••••••••••••••••••.•••••••

stdbl, stfloat,
stint, stlong, - C-ISAM store •••••••••••••••••••••

routines
stdbl, stfloat, stint,

stlong, - C-ISAM store routines •••••••••••••••••••

icpcntrl - start and
stop ICP's and their protocols ••••••••••••••••••••

l:C (M)

re (M)

stat(7)

stat(2)

stat(7)

ps (1)

stat(2)

whodo(l)

ferror(3)

uustat(l)

isst(3)

stdio(3)

isst (3)

stime(2)

isst(3)

isst (3)

icpcntrl(M)

Permuted Index

pause -
stop until signal .•.....•••••.•••••.•.•.••.....••.•

icheck - file system
storage consistency check •••••••••••.•••.•.•••••••

smd -
Storage module disk •••••••••••••••.•••.•.•••••••••

stfloat, stint, stlong, - C-ISAM
store routines ••..•••..••••••••••••••••.••.• stdbl,

str - software trouble= report •••.•.•••••••••••••••
input program

strcat, strncat, strcmp, strncmp, ..•••••••••••••••
strcpy, strncpy, strlen, strchr,/

/strncmp, strcpy, strncpy, strlen,
strchr, strrchr, strpbrk, strspn,/ ••••••••••••••••

strcat, strncat,
strcmp, strncmp, strcpy, strncpy, •.•••••••••.•••••

strlen, strchr,/
strcat, strncat, strcmp, strncmp,

strcpy, strncpy, strlen, strchr,/ ••..•••••••••••••

/strchr, strrchr, strpbrk, strspn,
strcspn, strtok, index, rindex -/ ••.•••.••••••••••

fclose, fflush - close or flush a
stream •••••••••••••••••••••••••••.••••••••••••••••

fopen, freopen, fdopen - open a
stream

ftell, rewind - reposition a
stream ••.•••••••••••••••••.••••••••••••••••• fseek,

getw - get character or word from
stream •••.•..••••.•••.••••••• getc, getchar, fgetc,

gets, fgets - get a string from a
s t r. e a.m • • • • • • • • • • • • • • .. • • • • • • • • • • ~ • • • • • • • • • • • • • • • • ~ •

head - give first few lines of a
stream ••••.••••••••. o •••••••••••••••••••••••••••••

putw - put character or word on a
stream •••.••..•••••••.••.•••• putc, putchar, fputc,

Page 115

pause(2)

icheck(M)

smd (4)

isst (3)

str (M)

string (3)

string(3)

string (3)

string(3)

string(3)

fclose(3)

fopen (3)

fseek(3)

getc(3)

gets(3)

head(l)

putc(3)

Permuted Index

puts, fputs - put a string on a
st r earn • ••••• ., •••••••••••••••••••••••••••••••••••••

setbuf - assign buffering to a
stream •••.••..•••....•.•.••...•.•.•..•.•.•••••••••

- push character back into input
stream .•••••••••••••••••••.••••••••••••••••• ungetc

sed -
stream ed i to1r .••••••••••••••••••••••••••••••.•••••

ferror, feof, clearerr, fileno -
stream status inquiries ••.••••••••••••••••••••••••

mt - Zilog
streaming magnetic tape interface •••••••••••••••••

/satoi, seisigl, setsig, sname,
strend, substr, trnslat, un •••••••••••••••••••••••

strfile - software trouble report •••••••••••••••••
data base

gets, fgets - get a
string from a. stream •••••••.••••••••••••••••••••••

gets - get a
string from standard input ••••••••••••••••••••.•••

puts, fputs - put a
string on a stream ••••••••••••••••••••••••••••••••

strcspn, strtok, index, rindex -
string operations •••..•••••••••••••••••••• /strspn,

- print Zilog Source Control what
strings •••••••••••••••••••••••••••••••••••• chkwhat

C programs to implement shared
strings •••••••••••••••••••• /- extract strings from

strings - print strings in object
or other binary file

test - evaluate files,
strings, and numbers •••••••••.••••••••••••••••••.•

xstr - extract
strings from C programs to ••••••••••••••••••••••••

implement shared/

Page 116

puts(3)

setbuf (3)

ungetc(3)

sed (1)

ferror(3)

mt (4)

pwb (3)

strfile(5)

gets (3)

gets(l)

puts(3)

string(3)

chkwhat(l)

xstr (1)

strings(!)

test(l)

xstr(l)

Permuted Index

strings - print
strings in object or other binary •••••••••••••.•••

file

strip - remove symbols and •••.••••.•...••••••••••
relocation bits and header/

objsu - object module underscore
stripper .. .

/strcmp, strncmp, strcpy, strncpy,
strlen, strchr, strrchr, strpbrk,/ ••••••••.•••••.•

strcat,
strncat, strcmp, strncmp, strcpy, •.•••••••••••••••

strncpy, strlen, strchr,/
strcat, strncat, strcmp,

strncmp, strcpy, strncpy, strlen, •••••••..••••.•••
strchr,/

/strncat, strcmp, strncmp, strcpy,
strncpy, strlen, strchr, strrchr,/ •••.•••••.••••••

/strncpy, strlen, strchr, strrchr,
strpbrk, strspn, strcspn, strtok,/ ••••••..••••••••

strprint - software trouble •••.••••••••.••••••••••
report listing program

/strcpy, strncpy, strlen, strchr,
strrchr, strpbrk, strspn,/ ••••••••••••••••••.••.••

/strlen, strchr, strrchr, strpbrk,
strspn, strcspn, strtok, index,/ ••.•••••••••••••••

/strpbrk, strspn, strcspn,
strtok, index, rinde}(: - string/ ••••••••••••••.•.••

/#include <grp.h>
struct group *getgrent (); I

struct group *getgrent();
struct group/ ••••••••••.•••.••••••••• /<grp.h>

stt:y - set the options for a •••••••••••••••••••.••
terminal

su - substitute user ID •••••••••••••••.••.•.•••••
temporarily

/same lines of several files or
subsequent lines of one file ••••.•...•••••••••••••

Page 117

strings(l)

strip(l)

objsu(l)

string(3)

string(3)

string(3)

string(3)

string(3)

strprint (M)

string(3)

string(3)

string (3)

getgrent (3)

getgrent(3)

stty(l)

SU (1)

paste(l)

Permuted IndE~X

SU

substitute user ID temporarily ••••••••••••••••••.•

seisigl, setsig, sname, strend,
substr, trnslat, un •.•••••••••••••••••••••• /satoi,

sum - sum and count blocks in a ••••.••••••••••••••
file

sum -
sum and count blocks in a file~···················

du -
:summarize disk usage •.••.•••••.•••••••••••••••••••

quot -
summarize file system ownership ••••••••••••••••.••

acctcms - command
summary from per-process •.•••••••••••••••••••••.••

accounting/
sync - update the

~; u p-e r b 1 o c k • . • • • • • • • • . • . • . • • . • . . • • • • • • • • • • • • • • . . • •

sync - update
super-block •••••••••••••••••••••••••••••••••••••••

sleep -
suspend execution for an interval ••.••••••••••••••

sleep -
suspend execution for interval ••••••••••••••••••••

swab - swap bytes •••••••••••••••••••••••••••••••••

printf, putc, putchar, read,
swab, swap, write - Z8000/ ••••••••••••.••••• /open,

swap swapsegt - swap routines -
swap •.••••••• " ••••••••• /longswap - swap routines -

swap - swap routines - swap ••••••.••••••••••••••••
longswap - swap routines - swap/

swab -
swap bytes • ...•••••••••••••••••••••.••.•••••••••••

swap - swap routines -
swap longswap - swap routines- ••••.••••••••••••••

swap/

Page 118

SU (1)

pwb (3)

sum (1)

sum (1)

du (1)

quot (M)

acctcms(M)

sync(M)

sync(2)

sleep(!)

sleep(3)

swab (3)

dm (3)

swap(3)

swap(3)

swab(3)

swap(3)

Permuted Index

swap routines - swap swapsegt -
swap routines - swap •••••••••.•.••••.•• /longswap -

swap -
swap routines - swap longswap - ••..•••••••••••••.•

swap routines - swap/
/swap routines - swap longswap -

swap routines - swap swapsegt -/ ••••••••••••.•••••

/swap longswap - swap routines -
swap swapsegt - swap routines-/ ••••••••••••••••••

/putc, putchar, read, swab,
swap, write - Z8000 development/ •••••.••••••••••••

/longswap - swap routines - swap
swapsegt - swap routines - swap •••...•••••••••••••

readsym - read next
symbol from name 1 ist .••••••.••• , •••••••••••..•••••

strip - remove
symbols and relocation bits and •.••••••••••••••••••

header/

symscan - scan name list •••••••••.••.•••••••••••••

sync - update super-block •••••••.••.••••••••.•••••

sync - update the super block •••••.•••••••••••••••

a command interpreter with C-like
syntax ••.••••..••••• ., .••••••••• "' •••••••••••• csh, -

SYS - system call relay program ••••••.••••••••••••

perror, deverr,
sys errlist, sys ner1:, errno - ••••••••••••••••.•••

system error/ -

sysgen - generate a Zeus kernel •••.•••••.••••••••

perror, deverr, sys errlist,
sys_nerr, errno - system error/ •••••.•••• : ••••••••

labelit - label file
systems •••••.•••••••..•••••••••• , ••••••••••••••••••

Page 119

swap(3)

swap(3)

swap(3)

swap(3)

dm (3)

swap(3)

readsym(3)

strip(l)

symscan(3)

sync (2)

sync (M)

csh (1)

sys (3)

perror(3)

sysgen (M)

perror(3)

labelit(M)

Permuted Index

systems umfs - unmount all file
systems ••••••••••• ., •.•••.••••• mfs - mount all file

mfs - mount all file
systems umfs - unmount all file •••••••••••••••••••

systems
mnttab - mounted file system

table

setmnt - establish mnttab
table

ttytype - terminal/types
table

tbl - format
tables for nroff or troff .••••••••••••••••••••••••

tabs - set tabs on a terminal •••••••••••••••••••••

tabs - set
tabs on a te1:m i na 1 .•••..•.•••.•...•..•••••••••..•.

expand - expand
tabs to spacE~s ••••••••••••••••••••••••••••••••••••

ctags - maintain a
tags file for C or Fortran •••••••.••••••••••••••••

programs

tail - print the last 10 lines of .••••••••••••••••
a file

talk - communicate with another •••••.••••••.•••••
user

sin, cos,
tan, asin, acos, atan, atan2 - ••••••••••••••••••••

trigonometric/
sinh, cosh,

tanh - hyperbolic functions •••••••••••••••••••••••

tar
·tape archiver

- make special files for magnetic
tape de v i c es • • • • • • • .. • • • • • • • • • . .. • • • • • • • • • • • • • • • m km t

make special files for cartridge
tape devices ••••••.••••••••••••••••••••••• mktape -

Page 120

mfs (M)

mfs (M)

mnttab(5)

se tron t (M)

ttytype(5)

tbl(l)

tabs(l)

tabs(!)

expand (1)

ctags(l)

tail(l)

talk(!)

sin(3)

sinh(3)

tar (1)

mkmt (M)

mktape(M)

Permuted Index

reserv
tape drive reserving system .•••••••••••••••••••

tar tar
tape format •••••••••••••••••••.• , •••

ct - cartridge
tape interface •••••• • • • • • • • • 1• • • • • • • • • • • • • • • • • •

mt Zilog streaming magnetic
tape interface •••••• •••••••••••• 1• •••••••••••••••••

tar tape archiver •••••••••••• ,• •••••••••••••••••

tar tar tape format ••••••••••• ,• •••••••••••

tar
tar tape format •••••

/usr, rusr, tmp, rtmp, z, rz,
tardev, dumpdev and resdev ••••••••••••••••••••••••

programs for simple lexical
tasks ••••••••••••••••••••••••••• , •••• lex - generate

tbl format tables for nroff or ••••••••••••••••••
troff

deroff remove nroff/troff,
tbl, and eqn constructs •••••••••••••••••••••••••••

tc - phototypesetter simulator ••••••••••••••••••••

tee - pipe fitting ••••••• ~
su - substitute user ID

temporarily •••••••••••••• ~
tmpfile - create a

temporary file ••••••• , ~
tmpnam - create a name for a

temporary file ••••••.. ~

termcap term i na 1 capab i 1 i ty •••••••••••••••••••••
data base

Page 121

reserv(l)

tar (5)

ct (4)

mt (4)

tar (1)

tar (5)

tar (5)

devnames(4)

lex (1)

tbl (1)

deroff (l)

tc (1)

tee (1)

SU (1)

tmpfile(3)

tmpnam (3)

termcap (5)

Permuted Index

special functions of the DASI 450
terminal •••••••••••••••••.•••.•••••••• 450 - handle

ctermid - generate file name for
terminal ••.••••••••••••••••••••••••••••.••••••••••

arguments to the standard output
{terminal) ••••••••••••••••••••• echo - echo {print)

GETTY - set the modes of a
terminal

line - read one line from the
terminal

stty - set the options for a
terminal .. .

tabs - set tabs on a
terminal ••.•..•••••••••••••••••••••••••••••••••••••

isatty, ttyslot - find name of a
terminal ttyname,

termcap -
terminal capability data base •••••••••••••••••••••

greek - select
terminal filter •••••••••••••••••••••••••••••••••••

vtzset - set up vtz
terminal function keys ••••••••••••••••••••••••••••

/tgetflag, tgetstr, tgoto, tputs -
terminal independent operation/ •••••••••••••••••••

script - make a file copy of all
terminal interactions •••••••••••••••••••••••••••••

tty - general
terminal inte!rface •••••••••••••••••••••.••••••••••

isrio - determine if
terminal is a RIO System ••••••••••••••••••••••••••

- configure port for modem or
terminal line ••••••••••••••.•••••••••••••••• mdmctl

terminal list - terminal names~···················
and codes

Page 122

ctermid{3)

echo(l)

getty {M)

line{l)

stty(l)

tabs(l)

ttyname(3)

termcap{S)

greek{l)

vtzset{l)

termlib{3)

script(!)

tty(4)

isrio{l)

mdmctl{2)

termlist{7)

Permuted Index

reset - reset
terminal modes to default values ••••••••••••••••••

tty - get
terminal name ••••••••••••••••••• , ••••••••••••••••••

terminal list -
terminal names and codes ••••••••••••••••••••••••••

ttyconf ig - configure ports for
terminal or modem line ••••••••••••••••••••••••••••

handle special functions of DASI
terminals •••••••••••. , •••••••••••••••••• 300, 300s -

terminals- conventional names •••••••••••••••••••••

ttytype -
terminal/types tableo•••••••••••••••••••••••••••••

wait - wait for process to
terminate o •••••••••• ~ ••••••••••••••••••

exit -
terminate process

test - evaluate files, strings, •••••••••••••••••••
and numbers

lp,
text - service line printer •••••••••••••••••••••••

spooler print requests
lp,

text - service line printer •••••••••••••••••••••••
spooler print requests

lp,
text - service line printer •••••••••••••••••••••••

spooler print requests
ed -

text editor •••••••••••••••••••• " ••••••••••••••••••

ex, edit -
text editor •••••••••••••••••••• " ••••••••••••••••••

edit -
text editor for new or casual ••.•••••••••••••••••••

users
checkcw - prepare constant-width

t ex t for tr o f f • • • • • • • • • • • • • • • • • ,• • • • • . • • • • • • • • • • cw ,

Page 123

reset(l)

tty(l)

termlist(7)

ttyconfig(M)

term(7)

ttytype(S)

wait(2)

exit(2)

test(l)

backend(M)

lp (M)

text (M)

ed (1)

ex (1)

edit (1)

cw (1)

Permuted Index

troff, nroff -
text formatting and typesetting •.•••.••••••••••.••

tgetent, tgetnum, tgetflag, •.•••••••••••••.•.•••••
tgetstr, tgoto, tputs - terminal/

tgetent, tgetnum,
tgetflag, tgetstr, tgoto, tputs - ..••••••.••••••••

terminal/
tgetent,

tgetnum, tgetflag, tgetstr, •••••••••..••••••••••.•
tgoto, tputs - terminal/

tgetent, tgetnum, tgetflag,
tgetstr, tgoto, tputs - terminal/ •••..••.•.•••••••

tgetnum, tgetflag, tgetstr,
tgoto, tputs - terminal/ .•••••••••••••••.• tgetent,

13tol, ltol3 - convert between
three-byte integers and long/ •••••••••••••••.•••••

- schedule signal after specified
time .. alarm

or shell script file at a later
time ••••••.•••••••••••••••••.• at - execute command

up an environment at login
time •••••••••••••••••• /cshprofile, login - setting

date - print the date and
time

stime - set
ti me ••

time, ftime - get date and
t. i me ••

time - time a command ••••••••••••••••••••••••••.••

time "'.""
time a comma 11ii ••••••••••••••••••••••••••••••••••• ~

timex -
time a command and generate a •••••••.•••.•••••.•••

system activity report

time, ftime - get date and time ••...••••.••••••.•.

Page 124

troff (l)

terml ib (3)

termlib(3)

termlib(3)

termlib(3)

termlib(3)

13tol(3)

alarm(2)

at (1)

cshrc(S)

date(l)

stime(2)

time(2)

time (1)

time(l)

timex(l)

time(2)

Permuted Index

profil - execution
t i me pro f i 1 e ••.•••••.••.••••..•••• ;• •••••••••••..••

datem - friendly date and
time setting· ••.•••••••••••••••••.••. • •••••••••••••••

daytime - give the
time to human-reasonable accuracy •••••••••••••••••

asctime, tzset - convert date and
time to ASCII ••••.•••••••••••••••••••••••• /gmtime,

timex - time a command and ••••••••••••••••••••••••
generate a system activity/

root, rroot, usr, rusr,
tmp, rtmp, z, rz, tardev, dumpdev •••••••••••••••••

and/

tmpfile - create a temporary file •••••••••••••••••

tmpnam - create a name for a ••••••••••••••••••••••
temporary file

toupper, tolower,
toascii - character translation •••••••••••••••••••

toupper,
tolower, toascii - character ••••••••••••••••••••••

translation
tsort -

to po logical sort ••• · •••••• · •••••••••.•••••• ~ •••••••• ·•

acctmerg - merge or add
total accounting files ••••••••••••••••••••••••••••

touch - update access and •••••••••••••••••••••••••
modification times of files

toupper, tolower, toascii - •••••••••••••••••••••••
character translation

/tgetflag, tgetstr, tgoto,
tputs - terminal independent/ •••••••••••••••••••••

tr - translate characters •••••••••••••••••••••••••

ptrace - process
trace ~················

Page 125

profil (2)

datem (M)

daytime (1)

ctime(3)

timex (1)

devnames(4)

tmpfile(3)

tmpnam (3)

conv(3)

conv(3)

tsort(l)

acctmerg(M)

touch(l)

conv(3)

terml ib (3)

tr (1)

ptrace(2)

Permuted Index

file and any associated audit
trail file.Q ••••••••.••••••••••• /- remove a C-ISAM

isaudit - audit
trail maintE~nance for a C-ISAM •••••••••••••••••••.

file
remote -

tr ans fer control to a remote ••••••••••••••••••••••
ZEUS/UNIX system

getfile -
transfer files from local to ••••••••••••••••••••••

remote system
putf ile -

transfer files from remote to •••••••••••••••••••••
local system

tr -
translate characters •.••••••••••••••••••••••••••••

tolower, toascii - character
translation ••••••••••••••••••••••••••••••• toupper,

uimage - Zobj to a.out
translator .. .

tan, asin, acos, atan, atan2 -
trigonometric functions •••••••••••••••••••••• /cos,

setsig, sname, strend, substr,
trnslat, un ••••••••••••••••••••••• /satoi, seisigl,

- prepare constant-width text for
troff •••••••••••••••••••••••••••••••••• cw, checkcw

manuscripts using nroff or
troff •••••••••••••••.••• me - macros for formatting

manuscripts using nroff or
troff •••••••••.••••••••• ms - macros for formatting

tbl - format tables for nroff or
troff

man - macros to nroff or
troff manual entry ••••••••.•••••••••••••••••••••••

troff, nroff - text formatting •••••••••.••••••••••
and typesetting

strfile - software
trouble report data base •.••••••••••••••••••••••••

Page 126

iserase(3)

i sa ud it (3)

remote (1)

getfile(l)

putfile(l)

tr(l)

conv(3)

uimage (1)

sin(3)

pwb (3)

cw (1)

me(7)

ms (7)

tbl (1)

man(7)

troff(l)

strfile(5)

Permuted Index

str - software
trouble report input program •..•••••••••••••••••••

strprint - software
trouble report 1 isting program ••••••••••••••••••••

true, false - provide truth •••••••••••••••••••••••
values

true, false - provide
truth values

tsort - topological sort ••••••••••••••••••••••••••

tty - general terminal interface ••••••••••••••••••

tty - get terminal name •••••••••••••••••••••••••••

greek - graphics for the extended
TTY-3 7 type-box

ttyconfig - configure ports for •••••••••••••••••••
terminal or modem line

ttyname, isatty, ttyslot - find •••••••••••••••••••
name of a terminal

ttyname, isatty,
ttyslot - find name of a terminal •••••••••••••••••

ttytype - terminal/types table ••••••••••••••••••••

file - determine file
type•................

graphics for the extended TTY-37
type-box •••••••••.••••• ,··········~·········9reek -

types - primitive system data
types •:

types - primitive system data
types •'

types - primitive system data •••••••••••••••••••••
types

Page 127

str (M)

strprint(M)

true (1)

true(l)

tsort(l)

tty (4)

tty(l)

greek(7)

ttyconfig(M)

ttyname(3)

ttyname(3)

ttytype(S)

file(l)

greek(7)

types(S)

types(7)

types(S)

Permuted Index

types - primitive system data •••••••••••••••••••••
types

eqn, neqn, checkeq
typeset mathematics •••••••••••••••••••••••••••••••

nroff - text formatting and
typesetting troff,

typo - find possible ••••.••••.••••••••••••••••••••
typographical errors

typo - find possible
typographical errors ••••••••••••••••••••••••••••••

/localtime, gmtime, asctime,
tzset - convert date and time to/ •••••••••••••••••

getpw - get name from
UID 41·••••••••••••••••••••••••••••••••••••••

uimage - Zobj to a.out translator •••••••••••••••••

ulimit - get: and set user limits .•••••••••••••••••

umask - set file creation mode ••••••••••••••••••••
mask

mfs - mount all file systems
umfs - unmount all file systems •••••••••••••••••••

mount,
umount - mount and dismount file ••••••••••••••••••

system
mount,

umount - mount or remove file •••••••••••••••••••••
system

umount - unmount a file system ••••••••••••••••••••

sname, strend, substr, trnslat,
un •••••• ~··~··············/satoi, seisigl, setsig,

uname - get name of current •••••••••••••••••••••••
Zilog system

uname - pr int the name of current .••.•••••••••••••
ZEUS

Page 128

types(7)

eqn (1)

troff (1)

typo (1)

typo (1)

ct ime (3)

getpw(3)

uimage(l)

ulimit(2)

umask(2)

mfs (M)

mount (M)

mount(2)

umount(2)

pwb(3)

uname(2)

uname (1)

Permuted Index

objsu - object module
underscore stripper ••••••••••••••• ,• •••••••••••••••

l.mget -
undo a previous get of an secs

file

unget - undo a previous get of an •••.•••••••••••••
SCCS file

ungetc - push character back into •••••••••••••••••
input stream

uniq - report repeated lines in a •••••••••••••••••
file

mktemp - make a
unique file name •••••••••••••••••• , ••••••••••••••••

isuniqueid - obtain a

Page 129

objsu(l)

unget(l)

unget(l)

ungetc (3)

uniq(l)

mktemp(3)

unique ID for a C-ISAM file ••••••••••••••••••••••• isuniqueid(3)

acu - automatic dialing out
unit •1 ••••••••••••••••

units - conversion program ••••••••••••••••••••••••

link,
unlink - exercise link and unlink~················

system calls

unlink - remove directory entry •••••••••••••••••••

rm, rmdir - remove
(unlink) files ••••••••••••••••••••••••••••••••••••

link, unlink - exercise link and
unlink system calls ••• ~···························

lkdata,
unlk - lock and unlock data •••••••••••••••••••••••

against concurrent/
isunlock -

unlock a C-ISAM file •• ti••········~················

lkdata, unlk - lock and
unlock data against concurrent ••••••••••••••••••••

access
isrelease -

u n 1 o ck records i n a C - JC s AM f i 1 e • • • • • • • • • • • • • • • • • • •

acu(4)

units(l)

link(M)

unlink(2)

rm (1)

link(M)

1 kdata (2)

isunlock(3)

lkdata (2)

isrelease(3)

Permuted Index

umount -
unmount a file system •••••.•••••••.•••••••••••.•••

- mount all file systems umfs -
unmount all file systems ••••••••••••••••••••••• mfs

pack, peat,
unpack - compress and expand •..•••••••.•••••••••••

files
lsearch - linear search and

update•...•...............................

update - periodic buffer flush ••••••••••••••••••••

touch -
update access and modification •.••••••••••••••••••

times of files
make - maintain,

update, and regenerate groups of ••••••••••••••.•••
programs

sync -
update super-block ••••••••••••••••••••••••••••••••

sync -
update the super block ••••••••••••••••••••••••••••

upkeep - directory maintenance ••••••••••••••••••••

SEND -
Uploader to the Zilog Z8000 •••••••••••••••••••••••

Development Module
du - summarize disk

usage • ••••••.••••••••••••.••..•..••..•..•..•••...•

- character login name of the
user ••••••••••••••••••••••••••••••••••••••• cuserid

logname - login name of
user • ••.••••.•••..••.••.•..•.•...........•.•.....•

talk - communicate with another
user • ••••.••..........•.....•••.•...•..•..•....••.

write - write to another
user •••.••....•.....................•.........•..•.

setuid, setgid - set
user and grot1p IO •••••••••••••••••••••••••••••••••

Page 130

umount (2)

mf s { M)

pack(l)

lsearch{3)

update { M)

touch{!)

make(l)

sync{2)

sync(M)

upkeep (M)

send(l)

du (1)

cuser id (3)

log name (3)

talk(l)

write(l)

setuid(2)

Permuted Index

id - print
user ·and group IDs and ••••••••••••••••••••••••••••

names
environ -

user environment ••••••••••••••••••••••••••••••••••

environ -
u s er en v i r o nm en t •

rmuser - remove a
user from the system •••••••.••••••••••••••••••••••

whoami - print effective current
user id .. .

su - substitute
user ID temporarily •••••••••••••••••••••••••••••••

/identity geteuid - get effective
user identity geteg id - get/ ••••••••••••••••••••••

getuid - get
user identity getgid - get group ••••••••••••••••••

identity geteuid -/
whois - access the

user information database •••••••••••••••••••••••••

ulimit - get and set
user limits •••••••••••••••••••••••••••••••••••••••

adduser - add a new
user to the system ••••••••••••••••••••••••••••••••

- text editor for new or casual
users ••• edit

- send and receive mail among
users •••••••••••••••••••••••••••••••••• mail, rmail

wall - write to all
users . .••••..•.•..••••••••••.•.••••••.•••••.••••••

and process status for current
users •••••••••••••••••••••••••• whodo - print names

users - compact list of users who •••••••••••••••••
are on the system

users - compact list of
users who are on the system •••••••••••••••••••••••

Page 131

id (1)

environ(S)

environ(?)

rmuser (M)

whoami (1)

SU (1)

getuid(2)

getuid(2)

whois (1)

ul imi t (2)

adduser (M)

edit (1)

mail(l)

wall(M)

whodo (1)

users(l)

users(l)

Permuted Index

macros for formatting manuscripts
using nroff or troEf ••.••••••••••.•••••••••••• me -

macros for formatting manuscripts
using nroff or troff ••••••••••••••.••.•••••••• ms -

root, rroot,
usr, rusr, tmp, rtmp, z, rz,

tardev, dumpdev and/
prom - prom programming

tltility)

- reserv install and remove
tit i 1 i ty ••••••••.•••••••••••••••••••••••••• reservrc

utime - set file times •••••••.••••••••.•••••••••••

utmp, wtmp - login records ••••••••••••••••••••••••

uustat -
uucp status inquiry and job ..•••••••••••••••••••••

control

uucp, uulog, uuname - ZEUS to .••••••••••••.•••••••
ZEUS copy

uucp,
uulog, uuname - ZEUS to ZEUS copy •••••••••••••••••

uucp, uulog,
uuname - ZEUS to ZEUS copy •.••••••••••••••••••••••

uustat - uucp status inquiry and ••••••••••••••••••
job control

uux - zeus to zeus command •.••••••••••••••••••••••
execution

val - validate secs file ••.•••••••••••••••••••••••

val -
validate SCCS file •.••••••••••••••••••••••••••••••

- determine magic number
validity ••..•.•.••••••••••••••••••• ~ ••••• goodmagic

abs - integer absolute

\ralue ·

Page 132

me (7)

ms (7)

devnames(4)

prom(l)

reservrc(M)

utime(2)

utmp (5)

uustat(l)

uucp(l)

uucp(l)

uucp(l)

uustat(l)

uux (1)

val (1)

val (1)

goodmagic(3)

abs (3)

Permuted Index

/fabs, ceil, fmod - absolute
value, floor, ceiling functions •••••••••••••.•••••

getenv -
value for environment name ••••••••••••••••••••••••

- reset terminal modes to default
v a 1 u es ••••••••••••••••••••••••• •' ••••••••••••• reset

true, false - provide truth
values :

printenv - display environment
variables •••••••••••.•••••••••• •' ••••••••••••••••••

assert - program
verification ••••••••••••••••••••••••••••••••••••••

lint - a C program
verifier I ••••••••••••••••••

get - get a
version of an SCCS file •••••••••••••••••••••••••••

/- list differences between
versions of a source file .••••••••••••••••••••••••

sccsdiff - compare two
versions of an secs file ••••••••••••••••••••••••••

v i - screen or i en t ed (v i s u a 1) •
display editor based on ex

mv - a macro package for making
view graphs ••••••••••••••••••••• ~ •••••••••••••••••

- file perusal filter for crt
viewing ••••••••••••••••••••••••• ~ ••••••• more, page

vi - screen oriented
(v i s u a 1) d i s p 1 a y ea i tor based on • • • • • • • • • • • • • • • • • •

vnews -
"visually" display the news .••••••••••••••••••••••

items
vls -

"visually" list files and •••••••••••••••••••••••••
directories

vls - "visually" list files and •••••••••••••••••••
directories

Page 133

floor(3)

getenv(3)

reset (1)

true(l)

printenv(l)

assert(3)

lint(l)

get (1)

chkdiff (l)

sccsdiff (l)

vi (1)

mv(7)

more(l)

vi (1)

vnews(l)

vl s (1)

vls(l)

Permuted Index

vnews - "visually" display the ••••.•.••••••.••••••
news items

ino - format of file system
v o 1 um e • . • . • • • . • • • . . • • • • • • . • • • • • • • . • • f i 1 sys , f lb l k ,

vtzset - set up
vtz terminal function keys ••••••••.••••.•••....•••

vtzset - set up vtz terminal •••••••••••••••.••••••
function keys

wait - wait for process to •••••••••.•••••••••.•.••
terminate

wait -
wait for process to terminate •••••••••••••••••••••

wall - write to all users ••.••••.••••••••••••••••

shut -
warns of systE?m shutdown ••••••••••••••••••••••••••

getkey, gonormal, goraw,
wbackspace, wbackword, wcolon,/ •••••••••.•••.•••••

/gonormal, goraw, wbackspace,
wbackword, wcolon, wforspace ,/ •••.••••.•.••••••.••

wc - word cou11t •••..•••••••••••••••••••••.••••••••

/goraw, wbackspace, wbackword,
wcolon, wforspace, wforword,/ •••••••••••••••••••.•

/wbackspace, wbackword, wcolon,
wforspace, wforword, wgetword,/ ••••••••••.•••.••••

/wbackword, wcolon, wforspace,
wforword, wgetword, whelp,/ ••.•••.•••••.•••.••••••

/wcolon, wforspace, wforword,
wgetword, whelp, whighlight,/ •••..•••.•.••.••••••.

whatis - describe what a command •.•••..••••.••••••
is

/- remake the data base for the

Page 134

vnews(l)

filsys(S)

vtzset(l)

vtzset(l)

wait(2)

wait (2)

wall (M)

shut (M)

screen(3)

screen(3)

WC (1)

screen(3)

screen(3)

screen(3)

screen(3)

whatis(l)

whatis and apropos commands •••••••••••••••..••.••• makewhatis(M)

Permuted Index

- get NAME sections of manual for
whatis/apropos data base •.••••••••••••••••• getNAME

/wforspace, wforword, wgetword,
whelp, whighl ight, wle~ft, wmesg ,/ ••.••••••••••••••

whereis - locate source, binary, ••••••••••••••••••
and or manual for program

/wforword, wgetword, whelp,
whighl ight, wleft, wmE~sg ,/ ••••••••••••••••••••••••

who - print the login names of •••••••••••••••••••
those currently on the system

users - compact list of users
who are on the system •••••••••••••••••••••••••••••

whoami - print effective current ••••••••••••••••••
user id

whodo - print names and process •.•••••••••••••••••
status for current users

whois - access the user •••••••••••••••••••••••••••
information database

whois - whois database file •••••••••••••••••••••••

whois -
whois database file •••••••••••••••••••••••••••••••

md - 5.25"
Winchester disk •••••••••••••••••••••••••••••••••••

zd -
Winchester disk •••••••••••••••••••••••••••••••••••

/wgetword, whelp, whighlight,
wleft, wmesg, wmvcursor,/ •••••••••••••••••••••••••

/whelp, whighlight, wleft,
wmesg, wmvcursor, wpageback,/ •••••••••••••••••••••

/whe~lp, whighl ight, wleft, wmesg,
wmvcursor, wpageback, wpagefor,/ ••••••••••••••••••

chdir - change
working directory •••••••••••••••••••••••••••••••••

Page 135

getname(l)

screen(3)

whereis(l)

screen(3)

who (1)

users(!)

whoami (1)

whodo (1)

whois(l)

whois(5)

whois(5)

md (4)

zd (4)

screen(3)

screen(3)

screen (3)

chdir (2)

Permuted Index

pwd - print present
working directory name •••••..•.••..•.•••••.•••••••

/wleft, wmesg, wmvcursor,
wpageback, wpagefor, wresscrn, •••••••••.••••••••••

wright,/
/wmesg, wmvcursor, wpageback,

wpagefor, wresscrn, wright,/ •••••..•••.•••••••.••.

/wmvcursor, wpageback, wpagefor,
wresscrn, wright, wsavescrn,/ •••••.•••••••••••.•.•

/wpageback, wpagefor, wresscrn,
wright, wsavescrn, wscrolb, •.•••••••••.•••••••••••

write - write to another user •••••..••.•••••.••••

write - write on a file •••••••••••••••••••••••••••

/putc, putchar, read, swab, swap,
write - Z800Qf development module/ •••••••••••••••••

iswrite -
write a record into an C-ISAM ••••••••••••••••.••••

file
write -

write on a file •.•..•.•••••.•••••••.•.••••••••••••

putpwent -
write password file entry •••••••.••.••••••••••••••

wall
write to all users .•..••••.•.•.•.•••.•••••.•••••••

write
write to another user ••••.•••••••.•••••••••••.••••

open - open for reading or
writing

spool - information for
writing backends for the Zeus .•••••.••••••••••••••

printer/
wpagefor, wresscrn, wright,

wsavescrn, wscrolb, .••••••••••••••••••• /wpageback,

wresscrn, wright, wsavescrn,
wscrolb, •.••••••••••••.••.••• /wpageback, wpagefor,

Page 136

pwd (1)

screen(3)

screen(3)

screen(3)

screen(3)

write (1)

write(2)

dm (3)

iswrite(3)

write(2)

putpwent(3)

wall (M)

write(l)

open (2)

spool(5)

screen(3)

screen(3)

Permuted Index

utmp,
wtmp - login records •.•.••••••••••••••••••••••••••

fwtmp, wtmpfix - manipulate
wtm1J records •••••••.••••••••••••••••••••••••••••••

fwtmp,
wtmpfix - manipulate wtmp records •••••••••••••••••

xargs - construct argument ••••••••••••••••••••••••
list(s) and execute command

xq - examine or delete requests ••••••••••••••••••
from the line printer spooler

xq - examine or delete requests ••.•••••••••••••••
from the line printer spooler

xstr - extract strings from C •••••••••••••••••••••
programs to implement shared/

j0, jl, jn,
y0, yl, yn - bessel functions •••••••••••••••••••••

j 0, j 1, j n, y0,
yl, yn - bessel functions •••••••••••••••••••••••••

ya cc - ye t · an o the r • • . • • • • • • • • • • • .• • • • • • • • • • • • • • • • • •
compiler-compiler

j0, jl, jn, y0, yl,
yn - bessel functions •••••••••••••••••••••••••••••

/rroot, usr, rusr, tmp, rtmp,
z, rz, tardev, dumpdev and resdev •••••••••••••••••

LOAD - Download to Z8000 or
Z8 Development Module •••••••••••••••••••••••••••••

ld - nonsegmented
Z8000 and 8-bit loader ••••••••••••••••••••.•••••••

SEND - Uploader to the Zilog
Z8000 Development Module ••••••••••••••••••••••••••

/read, swab, swap, write -
Z8000 development module library ••••••••••••••••••

dmalias -
Z8000 Development Module protocol •••••••••••••••••

Page 137

utmp(5)

fwtmp(M)

fwtmp(M)

xargs(l)

xq (1)

xq (M)

xstr(l)

j 0 (3}

j 0 (3)

yacc(l)

j 0 (3)

devnames(4)

load(l)

ld (1)

send(l)

dm (3)

dmalias(7)

Permuted Index

disasm, disinit - disassemble
Z8000 instructions

sld - segmented
:Z8000 loader ti ••••••••••••••••••••••••••••••

LOAD - Download to
Z8000 or Z8 Development Module ..•......•.•..••••••

zd - Winchester disk •.••••••••••••..••••••••••••••

uname - print the name of current
~~EUS ••••••••••••••• Cl ••••••••••••••••••••••••••••••

uux - zeus to
zeus command execution .••.•••••••••••••••••••••••.

uucp, uulog, uuname - ZEUS to
ZEUS copy••••••••••....••••••.•••••..•••••••••

sysgen - generate a
Zeus kernel •.•••••• o ••••••••••••••••••••••••••••••

for writing backends for the
Zeus printer spooler •.••.•••••••••••.• /information

uux -
zeus to zeus command execution •••.••••••••••••••••

uucp, uulog, uuname -
ZEUS to ZEUS copy ••••••.•••••.••••••••••.•••••••••

- transfer control to a remote
ZEUS/UNIX systern •••••••••••..•••••••••••.••• remote

chkin - check in file to
Zilog Source Control file •..•..•••••••.•••.••..•••

chkout - check out file from
Zilog Source Control file •.•••••••••••••••••••.•••

zsc -
Zilog Source Control File ...••.•••••••••.•••.•••••

conventions
chkwhat - print

Zilog Source Control what strings ••.••••••••••.•••

mt -
Zilog streaming magnetic tape. M •••••••••••••••••••

interface

Page 138

disasm(3)

sld (1)

load (1)

zd (4)

uname(l)

uux (1)

uucp(l)

sysgen(M)

spool(5)

uux (1)

uucp(l)

remote(l)

chkin(l)

chkout(l)

zsc (5)

chkwhat (1)

mt (4)

Permuted Index

SEND - Uploader to the
Zilog Z8000 Developm~nt Module ••••••••••••••••••••

uimage -
Zobj to a.out translator •••••••••••••••.••••••••••

zsc - Zilog Source Control File •••••••••••••••••••
conventions

Page 139

send (1)

uimage (1)

zsc(S)

Systems Publications

Reader's Comments

Your feedback about this document helps us ascertain your needs and fulfill them in the future. Pleas•
take the time to fill out this questionaire and return it to us. this information will be helpful to us and, iD
time, to future usern of Zilog products.

Company Name:

Address:

Title of this document:

Briefly describe application:

Does this publicatioici meet your needs? 0 Yes 0 No .If not, why not?

How are you using this publication?

0 As an introduction to the subject?

0 As a reference manual?

D As an instructor or student?

How do you find th'e material?

Excellent Good

Technicality 0 D

Organization 0 0

Completene~;s 0 0

What woulci have improved the material?

Other comments and suggestions:

Poor

0

0

0

--· - -- -

---------- --

If you found any mistakes in this document, please let us know what and where they are:

----------·-------------------------

-------- ----------

Ill II I
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 35 CAMPBELL, CA.

POSTAGE WILL BE PAID BY ADDRESSEE

Zilog
Sy11tems Publications

1315 Dell Avenue
Campbell, California 95008
Attn: l?ubllcations Manager

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED ST A TES

Zilog, Inc. 1315 Dell Ave., Campbell, California 95008 Telephone (408)370 .. 8000 TWX 910-338-7621

