ystem
ZEUS Utilities Manual

NN

Ilinnlindinlnm

m—— T

0)))

#3-325@-01
May., 1983

Copyright 1981, 1983 by Zilog Inc. All rights reserved. No
part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of Zilog.

The information in this publication 1is subject to change
without notice.

Zilog assumes no responsibility for the use of any circuitry
other than circuitry embodied in a Zilog product. No other
circuit patent licenses are implied.

ZEUS UTILITIES MANUAL

Software Release 3.2

16/14/83

UTILITIES Zilog UTILITIES

Preface

This manual and the related manuals below provide the com-
plete technical documentation for the System 80@0 and the
ZEUS operating system.

Title Zilog Part Number

Zeus Software Documents:

Zeus Reference Manual #3-3255
Zeus Languages/Programming Tools Manual #3-3249
Zeus Utilities Manual @3-3250

Zeus Administrator Documents:

Zeus Administrator Manual 33-3254
(Model 11)
Zeus Administrator Manual @3-3246

(Model 21/31)

System 8000 Hardware Documents:

System 8000 Hardware Reference Manual #3-3227
(Model 11)

System 8000 Hardware Reference Manual #3-3237
(Model 21/31) ‘ v

System 8090® and zrUS® are registered trademarks of Zilog
Inc. ‘

iii Zilog iii

UTILITIES

iv

Zilog

Zilog

UTILITIES

iv

UTILITIES Zilog

TABLE OF CONTENTS

Basic ZEUS Interaction:

ZEUS for Beginners
LEearn ..ceeececcecccscosonscsoce

® & 0 0 00

An Introduction to the C Shell

The ZEUS Shellcc00ee0

Text File Editing:

The ZEUS Line-Oriented Editors

Text Editor, ed ...cceceees

Text Editor, eX ...ceeeeee.
Introduction to

Display Editing with vi ...

Text Formatting:

Nroff/Troff Reference Manual
MM - Memorandum Macros

e e 0 00 00

e e o 0 0 00

Writing Papers with Nroff using Me .
Typing Documents on the ZEUS System

A Troff Tutorialcecee.

Tbl - A program to Format Tables ...

Stream Editors:

SED: A Non-interactive Text Editor

Awk: A Pattern Scanning
and Processing Language ...

Intersystem Communication:

ZEUS Communication Package ..
UUCP Installation000.

File System Integrity:

File System Integritycee.
System Accounting:

The ZEUS Accodnting System ..
Source Control:

Source Code Control System...

v Zilog

® o 8 0 s 00

UTILITIES

ceesscssscscsessZEUS
ceceecsecesess LEARN
ceeee..CSH
«+++SHELL

ooooo.oED

'.'IOOOVI

++...NROFF/TROFF
..l...l.l....'MM

e o 0o 0 0

.+.ME
.+ .MS

.TROFF

.. TBL

.FSCK

ee+ess ACCT

eeees.8CCS

INTRO Zilog INTRO

SECTION 1
INTRODUCTION TO ZEUS UTILITIES

This volume contains manuals and tutorials describing the
basic non-programming utility programs of 2EUS. For a
description of the Language and Programming utilities, refer
to the ZFUS Languages/Programming Tools Manual (vart number
P3-3249),

The entries in this volume are:

INTRO
ACCT
AWK
COMM
CSHFLL
FD

X
FSCK
LEARN
ME

MM

MS
NROFF
SCCs
SED
SHELL
TBL
TROFF
ouce
VI
ZEUS FOR BEGINNERS

l.1. Utilities Sections by Topic

Introductory Material

Intro -- An Introduction to the ZEUS System
ZFUS for Beginners -- A Basic Introduction
The Shells
Cshell -- The C Shell from UC Berkeley
Shell -- The Bourne Shell from Bell Laboratories

1-1 Zilog | 1-1

INTRO Zilog INTRO

Interactive Editors
Fd -- The Basic line editor
Ex -- An expanded line editor
Vi -- The visual mode of the Ex editor
Non-interactive Editors
Awk -- A nattern scanning and processing language
Sed -- A non-interactive stream editor
Text Formatters
Nroff -- For terminal and line nrinter output
Troff -~ For CAT phototypesetter output
Text Formatting Macro Packages
Me -- The vackage from UC Rerkeley
Mm -- A package from Bell Laboratories
Ms -- A package from Bell Labhoratories
Text Formatting Pre-processors

Tbl -- For formatting tables

Other Extended Programs

Acct -- The system accounting package

Comm -- The Zeus communications package
Fsck -- A File System Checking package
Learn -- Computer aided learning program
Sccs -- Source Code Control System package
Uucp -- Unix to Unix Communication package

Basic ZFUS Interaction

ZEUS for Beginners describes the basics of logging in, run-
ning programs, creating and modifying files, etc.

Learn is an computer-aided instruction program for practice
in using ZFRUS.

N

1-2 zilog 1-

INTRO Zilog INTRO

The ZFEUS mechanism for running programs is 1itself a user
program called a shell., Commonly used under ZEUS is csh,
described in An Introduction to the C Shell. 2An alternative
is sh (known simply as The Shell, or The Bourne Shell); it
is described in The ZEUS Shell.

Text Fntry and Editing

There are three utilities for maintaining text files. They
are the command-line oriented editors ed, and ex and the
screen oriented editor vi. They are described in The ZEUS
Line-oriented Text Editor, ed; The Ex Reference Manual and
Introduction to Display Editing with vi.

Text Formatters and Macro Packages

Troff is a macro-oriented typesetting program; nroff approx-
imates troff on typewriter-like devices. The Nroff/Troff
Reference Manual describes these nrograms. These text pro-
cessing programs are used with a macro packages such as
those described in Typing Documents on the ZEUS System using
the -ms Macros with Troff and Nroff, Writing Papers with
Nroff using Me, and the MM - Memorandum Macros.

A Troff Tutorial describes problems of typesetting docu-

ments. Tbl -- A Program to Format Tables provides an intro-
duction to creating tables with Nroff,

Non-Interactive Fditors

SED: A Non-interactive Text Editor describes a program
which edits input of indefinite length; commands are similar
to those of ed.

AWK: A Pattern Scanning and Processing Language describhes a
stream editor with a powerful command language.

Inter-System Communications

ZEUS Communication4Package describes a communications path
between ZEUS and remote systems.

UUCP Installation describes a program that 1links to other

ZEUS systems (or any other system that can run UUCP) via tty
port-to-port connections or transient telephone connections.

1-3 Zilog ‘ 1-3

INTRO Ziloaq INTRO

File System Integrity

File System Integrity Program (FSCK) Reference Manual
describes how file systems can be protected against corruon-
tion upon reboot.

Source Code Control

Source Code Control System (SCCS) describes a method of con-
trolling the various versions of a file. Fach time a change
is made to the file, the changes are recorded so that any
version of the file since its creation can be reconstructed.

ZENS Accounting System

The ZEUS Accounting System provides a method to collect
information about the system; who uses it, what gets used,
and how much.

1-4 Zilog 1-4

THE PWB/ZEUS ACCOUNTING SYSTEM

The information in this section is based on an article
originally written by Henry S. McCreary of Bell Laboratories.

ACCT Zilog ACCT

ii Zilog ii

ACCT zilog
Table of Contents

SECTION 1 THE PWB/ZEUS ACCOUNTING SYSTEM ..
l.1. ADSEract ..oeeceosssssccsssoscssnnsns
1.2. Introduction ...eeeecceocesosnsonne
1.3. Files and Directories +ieeeeeeesess
1.4. Daily Operationceeececccnvons
1.5. Setting up the Accounting System .
1.6. RUNACCE tienesesvovecescsooccssocccs
1.7. Recovering from Failureceooee
1.8. Restarting runacct ..ieieeeeecsnees
1.9. Fixing Corrupted Files ...eevecens
1.10. Editing the Holidays File
10110 Su‘nmary @ & B 0 S 4 & 5 0 0 B 6 P OSSP e

APPENDIXA ATTACHMENTI.....O...l..'......
Files in the /usr/adm Directory ...¢.....
Files in the /usx/adm/acct/nite Directory
Files in the /usr/adm/acct/sum Directory
Files in the /ust/adm/acct/fiscal Directory

APPENDIX B

APPENDIX C ATTACHEMENT 3

iii

ATTACHMENT 2

Format of wtmp files (utmp.h)

Definitions (acctdef.h) ...

Format of pacct files (acct.h) ..

Format of tacct

Format of ctmp file (ctmp.h)

* o 0 o n o

Zilog

files (tacct.h) .

.

.

¢ o 0 00

ACCT

-
I
-

| I |

el el e i
I
OO OOIdWNNHH

d
=

TYTVY
W N

OJCUriUtDG:J
B wwN -

iii

ACCT Zilog ACCT

SECTION 1
THE PWB/ZEUS ACCOUNTING SYSTEM

1.1. Abstract

The PWB Accounting System provides methods to collect per-
process resource utilization data, record connect sessions,
monitor disk wutilization, and charge fees to specific
logins. A set of C programs and shell procedures is pro-
vided to reduce this accounting data into summary files and
reports. This memorandum describes the structure, implemen-
tation, and management of this accounting system.

1.2. Introduction

The PWB/ZEUS accounting system was originally designed by
John Mashey. Several modifications and additions have been
made to make the system easier to manage, and to make it
less susceptible to corrupted data or system errors. The
following list is a synopsis of the actions of the account-
ing system:

) At process termination the ZEUS Kernal writes one
record per process in ./usr/adm/pacct in the form of
acct.h. See Attachment 2 for a description of data

files.
& The login and init programs record connect sessions by
writing records into /usr/adm/wtmp. Date changes,

reboots, and shutdowns are also recorded in this file.

o The disk utilization program acctdusg, breaks down disk
usage by login.

) Fees for file restores, etc,'can;be charged to specific
logins with the chargefee shell procedure.

& Each day the runacct shell procedure 1is executed via
cron to reduce accounting data, produce summary files
and reports. See Attachment 3 for a sample report out-
put.

o The monacct procedure can be executed on a monthly or
fiscal period Dbasis. It saves and restarts summary
files, generates a report, and cleans up the sum direc-
tory. These saved summary files could be used to
charge users for ZEUS usage. ‘

1-1 Zilog 1-1

ACCT Zilog ACCT

1.3. Files and Directories

The /usr/lib/acct directory contains all of the C programs
and shell procedures necessary to run the accounting system.
The adm login (UID 6) is used by the accounting system and
has the following directory structure:

/usr/adm

—— s s . o . R W R R e A = e —m

nite sum fiscal

The /usr/adm directory contains the active data collection
files. For a complete explanation of the files used by the
accounting system, see Attachment 1. The nite directory
contains files that are re-used daily by the runacct pro-
cedure. The sum directory contains the cumulative summary
files updated by runacct. The fiscal directory contains
periodic summary files created by monacct.

1.4. Daily Operation

When ZEUS is switched into multi-user mode,
/usr/lib/acct/startup is executed which does the following:

] The acctwtmp program adds a "boot" record to
/usr/adm/wtmp. This record is signified by using the
system name as the login name in the wtmp record.

o Process accounting is started via turnacct. Turnacct
on executes the accton program with the argument
/usr/adm/pacct.

o The remove shell procedure is executed to cleanup the
saved pacct and wtmp files left in the sum directory by
runacct.

The ckpacct procedure is run via cron every hour of the day
to check the size of /usr/adm/pacct. If the file grows past
1000 blocks (default), turnacct switch is executed. While
ckpacct is not absolutely necessary, the advantage of having
several smaller pacct files becomes apparent when trying to
restart runacct after a failure processing these records.

The chargefee program can be used to bill users for file
restores, etc. It adds records to /usr/adm/fee which are
picked up and processed by the next execution of runacct and

1-2 Zilog 1-2

ACCT zilog ACCT

merged into the total accounting records.

Runacct is executed via cron each night. It processes the
active accounting files, /usr/adm/pacct?, /usr/adm/wtmp,
/usr/adm/acct/nite/disktacct, and /usr/adm/fee. It produces
command summaries and usage summaries by login.

When the system is shut down using /etc/down, the shutacct
shell procedure 1is executed. It writes a shutdown reason
record into /usr/adm/wtmp and turns process accounting off.

This is also executed in /etc/rc_csh before accounting 1is
started 1is case the system was not brought down using
/etc/down. :

The system administrator can execute Jusr/lib/acct/prdaily
to print the previous day's accounting report.

1.5. Setting up the Accounting System

In order to automate the operation of this accounting sys-
tem, several things need to be done:

1. If not already present, add .this line to the
/etc/rc_csh file after the line that zeros out the utmp
file.

/bin/su - adm -c /usr/lib/acct/startup

2. If not already present, add this line to /etc/down to
turn off the accounting before the system is brought
down:

/usr/lib/acct/shutacct

This should also be added to /etc/rc_csh right after
file systems are mounted.

3. Three entries should be made in /usr/lib/crontab so
that cron will automatically start some shell pro-
cedures.

g 4 * * 1-6 /bin/su - adm -c
"/usr/lib/acct/runacct 2> Jusr/adm/acct/nite/fd2log"

g 2 * * 4 /bin/su - adm -c "fusr/lib/acct/sdisk"

5 * ¥ ¥ * /bin/su - adm -c "/usr/lib/acct/ckpacct"

1-3 Zilog 1-3

ACCT Zilog ACCT

4. The PATH shell variable in adm's .cshrc should be set
to:

PATH=/usr/lib/acct:/bin:/usr/bin

5. Make an entry in the /etc/passwd file for wuser "adm".
This user has to have uid of 6 and belong to group 4.

6. Make an entry in the /etc/group file for the "adm"
group. This group has a gid of 4. "zeus" and "daemon"
need to belong to this group.

example: "adm::4:zeus, adm, daemon"

1.6. Runacct

Runacct is the main daily accounting shell procedure. It is
normally initiated via crom during non-prime time hours.
Runacct processes connect, fee, disk, and process accounting
files. It also prepares daily and cumulative summary files
for use by prdaily or for billing purposes. The following
files produced by runacct are of particular interest.

nite/lineuse Produced by acctconl, which reads the wtmp
file, and produces usage statistics for each
terminal line on the system. This report is
especially useful for detecting bad lines.
If the ratio between the number of logoffs to
logins exceeds about 3/1, there is a good
possibility that the line is failing.

nite/daytacct This file is the total accounting file for
' the previous day in tacct.h format.

sum/tacct This file is the accumulation of each day's
nite/daytacct, which can be used for billing
purposes. It is restarted each month or fis-
cal by the monacct procedure.

sum/daycms Produced by the acctcms program, it contains
the daily command summary. The ASCII version
of this file is nite/daycms.

sum/cms The accumulation of each day's command sum-
maries. It is restarted by the execution of
monacct. The ASCII version is nite/cms.

1-4 Zilog 1-4

ACCT Zilog ACCT

sum/loginlog Produced by the lastlogin shell procedure, it
maintains a record of the last time each
login was used.

sum/rprt .MMDD Each execution of runmacct saves a copy of the
output of prdaily.

Runacct takes care not to damage files in the event of
errors. A series of protection mechanisms are used that
attempt to recognize an error, provide intelligent diagnos-
tics, and terminate processing in such a way that runacct
can be restarted with minimal intervention. It records its
progress by writing descriptive messages into the file
active. Files used by runacct are assumed to be in the nite
directory unless otherwise noted.

All diagnostic output during the execution of rumacct is
written into £d42log. To prevent multiple invocations, in
the event of two crons or other problems, runacct will com-
plain if the files lock and lockl exist when invoked. The
lastdate file contains the month and day runacct was last
invoked, and is used to prevent more than one execution per
day.

If runacct detects an error, a message 1is written to
/dev/console, mail 1is sent to root and adm, the locks are
removed, diagnostic files are saved, and execution is ter-
minated.

In order to allow rumacct to be restartable, processing is
broken down into separate reentrant states. This is accom-
plished by using a case statement inside an endless while
loop. Each state is one case of the case statement. A file
is used to remember the last state completed. When each
state completes, statefile 1is updated to reflect the next
state. In the next loop through the' while, statefile is
read and the case falls through to the next state. When
runacct reaches the CLEANUP state, it removes the locks and
terminates. States are executed in the following order:

SETUP The command turnacct switch is executed. The
process accounting files, /usr/adm/pacct?,
are moved to /usr/adm/Spacct.MMDD. The
/usr/adm/wtmp file is moved to

/usr/adm/acct/nite/wtmp.MMDD with the current
time added on the end.

WTMPFIX The wtmp file in the nite directory is
checked for correctness by the wtmpfix pro-
gram, Some date changes will cause acctconl
to fail, so wtmpfix attempts to adjust the

1-5 Zilog 1-5

ACCT

CONNECT

CONNECT

PROCESS

MERGE

FEES

DISK

MERGETACCT

CMS

USEREXIT

CLEANUP

7ilog ACCT

time stamps in the wtmp file if a date change
record appears.

Connect session records are written to ctmp
in the form of ctmp.h. The lineuse file is
created, and the reboots file 1is created
showing all of the boot records found in the

wtmp file.

Ctmp is converted to ctacct.MMDD which are
connect accounting records, Accounting
records are in tacct.h format.

The acctprcl and acctprc2 programs are used
to convert the process accounting files,
/usr/adm/Spacct.MMDD, into total accounting
records in ptacct?MMDD. The Spacct and
ptacct files are correlated by number so that
if runmacct fails, the unnecessary reprocess-
ing of Spacct files will not occur. One pre-
caution should be noted; when restarting
runacct in this state, remove the last ptacct
file because it will not be complete,

Merge the process accounting records with the
connect accounting records to form daytacct.

Merge in any ASCII tacct records from the
file fee into daytacct.

On the day after the sdisk procedure runs,
merge disktacct with daytacct.

Merge daytacct with sum/tacct, the cumulative
total accounting file. Each day, daytacct is
saved in sum/tacctMMDD, so that sum/tacct can
be recreated in the event it becomes cor-
rupted or lost.

Merge in today's command summary with the
cumulative command summary file sum/cms.
Produce ASCII and internal format command
summary files.

Any installation dependent (local) accounting
programs can be included here.

Clean up temporary files, run prdaily and
save its output in sum/rprtMMDD, remove the
locks, then exit.

Zilog 1-6

ACCT Zilog ACCT

1.7. Recovering from Failure

The runacct procedure can fail for a variety of reasons;
usually due to a system crash, /usr running out of space, or
a corrupted wtmp file. If the activeMMDD file exists, check
it first for error messages. If the active file and lock
files exist, check fd2log for any mysterious messages. The
following are error messages produced by runacct, and the
recommended recovery actions:

ERROR: locks found, run aborted

The files lock and lockl were found.. These files must be
removed before runacrt can restart.

ERROR: acctg already run for date :
check /usr/adm/acct/nite/lastdate

The date in lastdate and today's date are the same. Remove
lastdate.

ERROR: turnacct switch returned rc=?

Check the integrity of turnacct and accton. The accton pro-
gram must be owned by root, and have the setuid bit set.

ERROR: Spacct?.MMDD already exists
file setups probably already run

Check status of files, then run setups manually.

ERROR: /usr/adm/acct/nite/wtmp.MMDD already exists,
run setup manually

Self-explanatory.
ERROR: wtmpfix errors see /usr/adm/acct/nite/wtmperror

Wtmpfix detected a corrupted wtmp file. Use fwtmp to
correct the corrupted file.

ERROR: connect acctg failed: check /usr/adm/acct/nite/log

The acctconl program encountered a bad wtmp file. Use fwtmp
to correct the bad file.

ERROR: Invalid state, check /usr/adm/acct/nite/active

The file, statefile, is probably corrupted. Check statefile
and read active before restarting.

1-7 Zilog 1-7

ACCT Zilog ACCT

1.8. Restarting runacct

Runacct called without arguments assumes that this 1is the
first invocation of the day. The argument MMDD is necessary
if rumacct is being restarted, and specifies the month and
day for which runacct will rerun the accounting. The entry
point for processing is based on the contents of statefile.
To override statefile, include the desired state on the com-
mand line.

Examples:

To start runacct: '
nohup runacct 2> /usr/adm/acct/nite/fd2log&

To restart runacct:
nohup runacct 0641 2> /usr/adm/acct/n1te/fd21og&

To restart runacct at a specific state:
nohup runmacct @641 WTMPFIX 2> /usr/adm/acct/nite/fd2logé&
1.9. Fixing Corrupted Files

Unfortunately, this accounting system is not entirely fool-

proof. Occasionally a file will become corrupted or lost.
Some of the files can simply be ignored or restored from the
filesave backup. However, certain files must be fixed in

order to maintain the integrity of the accounting system.

The wtmp files seem to cause the most problems in the day to
day operation of the accounting system. When the date is
changed when ZEUS is in multi-user mode, a set of date
change records 1is written into /usr/adm/wtmp. The wtmpfix
program is designed to adjust the time stamps in the wtmp
records when a date change is encountered. Some combina-
tions of date changes and reboots, however, will slip
through wtmpfix and cause acctconl to fail. The following
steps show how to patch up a wtmp file.

cd /usr/adm/acct/nite

fwtmp < wtmp.MMDD > xwtmp

vi xwtmp
(delete corrupted records or
delete all records from the

beginning up to the date change)

fwtmp -ic < xwtmp > wtmp.MMDD

1-8 zilog 1-8

ACCT Zilog ACCT

If the wtmp file is beyond repair, create a null wtmp file,
This will prevent any charging of connect time. Acctprcl
won't be able to determine which login owned a particular
process, but it will be charged to the login that is first
in the password file for that userid.

If the installation is using the accounting system to charge
users for system resources, the integrity of sum/tacct is
quite important. Occasionally, mysterious tacct records
will appear with negative numbers, duplicate userids, or a
userid of 65535. First check sum/tacctprev with prtacct.
If it looks ok, the latest sum/tacct.MMDD should be patched
up, then recreate sum/tacct. A simple patchup procedure is:

cd /usr/adm/acct/sum
acctmerg -v < tacct.MMDD > xtacct
vi xtacct
(remove the bad records
write duplicate uid records
to another file)
acctmerg -i < xtacct > tacct.MMDD
acctmerg tacctprev < tacct:ﬂggg > tacct
Remember that the monacct procedure removes all the

tacct.MMDD files; therefore, sum/tacct can be recreated by
merging these files together.

1.10. Editing the Holidays File

Every year on the day after Christmas, the following message
will appear in log:

*** EDIT /usr/lib/acct/holidays with NEW HOLIDAYS

Edit /usr/lib/acct/holidays, change the year 1in the first
line to the new year. Change the holiday dates to the new
ones for the year. The file must end with a '-1' as the
last line.

1.11. Summary

The PWB accounting system was designed from a 2ZEUS system
administrator's point of view. Every possible precaution

1-9 zilog 1-9

ACCT Zilog ACCT

has been taken to ensure that the system will run smoothly
and without error. It is important to become familiar with
the C programs and shell procedures. The manual pages
should be studied, and it is advisable to keep a printed
copy of the shell procedures handy. This accounting system
should be easy to maintain, provide valuable information for
the administrator, and provide accurate breakdowns of the
usage of system resources for charging purposes.

1-19 Zilog 1-10

ACCT

Zilog ACCT

APPENDIX A
ATTACHMENT 1

Files in the /usr/adm Directory

diskdiag

dtmp

fee

pacct

pacct?

Spacct? .MMDD

wtmp

diagnostic output during the execution of
disk accounting programs

output from the acé¢tdusg program

output‘ from the chargefee program, ASCII
tacct records

active process accounting file

process accounting files switched via tur-

nacct

process accounting files for MMDD during exe-
cution of runacct

active wtmp file for recording connect ses-
sions

Files in the /usr/adm/acct/nite Directory

active

cms

ctacct.MMDD

ctmp

daycms

daytacct

disktacct

fd2log

used by runacct to record progress and print
warning and error messages. activeMMDD same
as active after runacct detects an error
ASCII total command summary used by prdaily

connect accounting records in tacct.h format

output of acctconl program, connect session
records in ctmp.h format

ASCII daily command summary used by prdaily

total accounting records for one day in
tacct.h format

disk accounting records in tacct.h format,
created by dodisk procedure

diagnostic output during execution of runacct
(see cron entry)

Zilog A-1

ACCT

lastdate

lock lockl
lineuse
log
1ogMMDD

reboots

statefile

tmpwtmp

wtmperror

wtmperrorMMDD

wtmp . MMDD

Zilog ACCT

last day runacct executed in date +3m3d for-
mat

used to control serial use of runacct

tty line usage report used by prdaily
diagnostic output from acctconl

same as log after runacct detects an error

contains beginning and ending dates from
wtmp, and a listing of reboots

used to record current state during execution
of runacct

wtmp file corrected by wtmpfix
place for wtmpfix error messages

same as wtmperror after runacct detects an
error

previous day's wtmp file

Files in the /usr/adm/acct/sum Directory

cms

cmsprev

daycms
loginlog
pacct .MMDD
rprt .MMDD

tacct

tacctprev

total command summary file for current fiscal
in internal summary format

command summary file without latest update

command summary file for yesterday in inter-
nal summary format

created by lastlogin

concatenated version of all pacct files for
MMDD, removed after reboot by remove pro-
cedure

saved output of prdaily program

cumulative total accounting file for current
fiscal

same as tacct without latest update

Zilog A-2

ACCT 7ilog ACCT

tacct.MMDD total accounting file for MMDD

wtmp .MMDD saved copy of wtmp file for MMDD, removed
after reboot by remove procedure

Files in the /usr/adm/acct/fiscal Directory

cms? total command summary file for fiscal ? in
internal summary format

fiscrpt? report similar to prdaily for fiscal ?
tacct? total accounting file for fiscal ?

A-3 Zilog A-3

ACCT zilog ACCT

APPENDIX B
ATTACHMENT 2

Format of wtmp files (utmp.h)
/*

/* Format of /etc/utmp and /usr/adm/wtmp
*

struct utmp {

char ut_line[8]; /* tty name /*
char ut_name[8]; /* user id /*
long ut_time; /* time on /*

Definitions (acctdef.h)
/*

* defines, typedefs, etc. used by acct programs

*/
/*

* following taken from (or modified versions of) <sys/types.h>
* / ‘
typedef unsigned short dev_t;

typedef unsigned int ino_t;
typedef long off t;
typedef long time_t:
/*

* acct only typedefs
*/

typedef unsigned short wuid_t;

#define LSZ 8 /* sizeof line name */
#define NSZ 8 /* sizeof login name */
g *
1

#define P prime time */
#define NP /* nonprime time */
/*
* limits which may have to be increased if systems get larger
/*

#define SSIZE 1000 /* max number of sessions in 1 acct run */
#define TSIZE 100 /* max number of line names in 1 ac/t run */
#define USIZE 500 /* max number of distinct login names

in 1 acct run */

B-1 Zilog B-1

ACCT

#define
#define

#define
#define
#define
#define
#define

EQN(sl,

CPYN(s1,

s2)
s2)

SECS(tics)
MINS(secs)
MINT(tics)
KCORE (clicks)
SECSINDAY

Zilog

(strncmp(sl,
strncpy(sl,

((double)
((double)
((double)
{ (double)

86400L

Format of pacct files (acct.h)

/*

* Accounting structures

/*

typedef unsigned short comp t;

struct
{

char
char
short
short
dev t
time t
comp_t
comp t
comp t
comp t
comp t
comp_t
char

}:

extern
extern

#define
#define
#define

acct

ac_flag;
ac stat;
ac_uid;
ac_gid;
ac_tty;

ac_btime;
ac_utime;
ac stime;
ac_etime;

ac_mem;
ac_io;
ac rw;

ac_comm[8];

/*

struct acct

struct

inode

AFORK 01

ASU

a2

ACCTF0300

ACCT

s2,
s2,

sizeof(sl))
sizeof(sl))

tics)/649.
secs)/649.
tics)/3690.
clicks/16)

/* "floating point" */

Accounting flag */

Exit status */

Accounting user ID */
Accounting group ID */
control typewriter */
Beginning time */
Accounting user time */
Accounting system time */
Accounting elapsed time */
memory usage */

command name */

acctbuf;
*acctp:

/* inode of accounting file */

/* has -executed fork, but no exec */
/* used super-user privileges */
/* record type: @0 = acct */

Format of tacct files (tacct.h)

B-2

/.
+/

total accounting (for acct period), also for day

Zilog

B-2

ACCT Zilog ACCT

struct tacct {
uid t ta uid; /* userid */
char ta_name[8]; /* login name */
float ta_cpul2]; /* cum. cpu time, p/np (mins) */
float ta kcore[2]: /* cum kcore-minutes, p/np */
float ta con[2]; /* cum. connect time, p/np, mins */
float ta du; /* cum. disk usage */
long ta pc; /* count of processes */

unsigned short ta_sc; ~/* count of login sessions */
unsigned short ta_dc: /* count of disk samples */
unsigned short ta_fee; /* fee for special services */

Format of ctmp file (ctmp.h)

/*
/* connect time record (various intermediate files)
%
struct ctmp f{
dev t ct_tty; /* major minor */
uid t ct uid; /* userid */
char ct name[8]; /* login name */
long ct_con[2]; /* connect time (p/np) secs */
time_t ct_start; /* session start time */

B-3 Zilog B~3

ACCT zilog ACCT

APPENDIX C
ATTACHEMENT 3

Jun 8 ©4:14 1979 DAILY REPORT FOR pwba Page 1
from Thu Jun 7 06:00:48 1979

to Fri Jun 8 @4:90:28 1979

2 shutdown

2 pwba

TOTAL DURATION IS 1320 MINUTES

LINE MINUTES PERCENT # SESS

ON 4 OFF
tty@d 479 36 9 9 30
tty47 341 26 4 4 33
tty44 298 23 3 3 29
tty46 336 25 9 9 33
console 1198 83 14 14 21
tty@5 448 34 3 3 22
tty@d6 439 33 9 9 31
ttyd7 421 32 6 6 24
tty42 53 4 5 5 20
tty®9 385 29 11 11 33
ttyld 336 25 10 10 31
ttyd8 464 35 2 2 19
tty26 544 41 6 6 24
ttyl2 252 19 5 5 25
ttyl3 258 20 3 3 21
ttyld 156 12 6 6 26
ttyl7 145 11 1 1 16
ttyl8 39 3 5 5 24
ttyl5 228 17 5 5 25
tty25 794 53 6 6 25
tty2l @ 2 @ 7 16
ttylo 10 1 1 1 17
tty28 25 2 2 2 18
tty22 o @ 2 %) 15
tty23 @ @ o 4} 15
tty24 @ @ @ o 16
tty27 481 36 3 3 20
tty28 426 32 5 5 24
tty29 302 23 6 6 25
tty3@ 257 20 11 11 28
ttyd® 380 29 5 5 21
tty4l 343 26 3 3 21
ttyds @ 2 %} % 15
ttyll 365 28 7 7 25
ttyd3d 3 % 1 1 17

c-1 7ilog ' c-1

ACCT

ttylé
tty3l
ttyd?2
TOTALS

213
250
62
19544

s W

Zilog

Zilog

20
18

846

ACCT

ACCT 7ilog ACCT

Jun 8 04:14 1979 DATLY USAGE REPORT FOR pwba Page 1

10GIN CPU (MINS) KCORE-MINS CONNECT (MINS) DISK #OF #OF #DISK FERE
UID NAME PRIME NPRIME PRIME NPRIME PRIME NPRIME BLOCKS PROCS SESS SAMPLES

0 TOTAL 388 103 12414 2934 9251 1056 0 16164 174 0 0
0 root 47 41 1003 924 67 30 0 2360 8 0 0
4 adm 7 19 48 652 0 0 0 842 0 0 0
19 games 0 0 4 0 0 0 0 28 0 0 0
22 mhb 0 0 1 1 1 1 0 14 2 0 0
37 abs 0 0 4 0 0 0 0 3 0 0 0
37 absjrk 14 0 284 0 423 0 0 1588 4 0 0
68 rje 3 3 24 21 0 0 0 179 0 0 0
71 ? 0 0 0 0 0 0 0 12 0 0 0
150 jac 7 0 156 5 281 2 0 510 13 0 0
173 ? 0 0 0 0 0 0 0 16 0 0 0
180 ? 0 0 0 0 0 0 0 4 0 0 0
185 ? 0 0 0 0 0 0 0 2 0 0 0
217 denise 0 0 2 0 31 0 0 32 3 0 0
217 kof 0 0 2 0 1 0 0 7 1 0 0
219 ? 0 0 0 0 0 0 0 12 0 0 0
1001 hsm 5 0 189 0 179 0 0 92 2 0 0
2001 systst 0 1 5 28 476 64 0 99 5 0 0
2002 mwfp 1 0 7 5 270 62 0 93 3 0 0
2003 als 1 0 23 0 100 0 0 99 3 0 0
205 eric 0 0 3 0 13 0 0 21 1 0 0
2006 hoot 0 0 2 0 16 0 0 8 1 0 0
2009 agp 47 0 2040 0 444 0 0 492 2 0 0
2009 fsrepl 2 0 60 0 36 0 0 95 1 0 0
2011 pdw 0 0 1 0 4 0 0 11 1. 0 0
2012 pubst 0 0 1 0 28 0 0 9 1 0 0
2014 cath 0 0 1 0 1 0 0 7 1 0 0
2022 rem 32 1 1227 91 576 4 0 226 3 0 0
2025 fld 55 23 2176 862 336 98 0 750 7 0 0
2027 krb 14 2 365 51 547 24 0 372 8 0 0
2028 text 0 0 1 0 3 0 0 13 1 0 0
2030 arf 8 0 238 0 317 0 0 315 3 0 0
2031 dp 12 0 480 3 459 6 0 220 6 0 0
2032 graf 2 0 49 0 23 0 0 118 1 0 0
2033 ecp 3 0 74 0 355 0 0 115 4 0 0
2040 leap 15 0 308 0 513 1 0 505 2 0 0
2041 dan 3 0 93 3 149 2 0 117 8 0 0
2051 ds52 2 2 19 40 375 601 0 611 8 0 0
2055 nuucp 0 0 15 9 17 1 0 10 3 0 0
2057 ech 1 0 28 0 63 0 0 68 2 0 0
2061 jew 4 3 99 70 37 34 0 869 4 0 0
2064 mjr 18 0 443 0 176 0 0 2065 3 0 0
265 rrr 0 0 6 0 7 0 0 23 1 0 0
2068 trc 0 0 7 0 10 0 0 29 1 0 0

C--3 Zilog C-3

ACCT Zilog

2075 herb 29 0 1178 1 384
2086 paul 1 0 14 0 152
2087 pris 0 0 0 10 0
2111 pwbes 2 3 60 85 64
2116 rbj 1 0 16 0 408
2121 teach 0 0 3 0 53
2123 msb 0 0 3 0 5
2124 mt 2 0 42 0 66
2126 dal 0 0 5 0 121
2127 m2 15 0 495 11 390

Jun 8 04:14 1979 DATLY USAGE REPORT FOR pwba Page 2

2128 jel 14 0 492 9 422
2130 sl 0 0 5 1 16
2130 s3 0 0 0 0 0
2135 jfn 0 1 0 12 0
2136 m2class 0 0 5 0 2
2140 star 4 0 213 12 20
2141 reg 5 0 245 25 470
2199 1llc 0 0 1 0 10
2999 stock 0 0 1 0 1
3001 whn 5 0. 93 0 253
3332 wvif 0 0 4 0 8

C-4 Zilog

NOOOOO%NON

—

cocoopwWOoRMO R

CO OO0 OO0O

[eNeNoloNoNoNoNoNeRo ol

249
28
13

185

222

24
260
17
602

523
42

33
18
170
181

17
414
39

ACCT

O WHNDRF & =W

—

L0 b e N = DN N OO

loNeoNoloNoNoNoNeNoNe)

oNoNoReNoNeNaoleNoNe N

OCOOCOOOCOOOO0O

[eReNoRoNoNoRoNo ool e

ACCT

ZilOg'M ‘

Jun 8 04:07 1979 DAILY COMMAND SUMMARY Page 1

COMMAND
NAME

TOTALS

nroff
troff
xnroff
a.out
egrep
m2find
cl

c0
m2edit
1d
acctoms
c2

sh

ed
acctprecl
du
diff
get
adb
tbl
dd
as2
sed
ps
make
delta
cpp
fsck
find
1s
xck
awk
wcico
acctcom
echo
ged
de
450
cat
ntd
mail

NMBER TOTAL TOTAL TOTAL MEAN MEAN

CMDS KCOREMIN

16164 15332.89

119
26
20
31

185

232

150

165
33
87
17

112

1834

524

3

145
49

151
22
24

9

155

597
51
89
25

172

3958.68
2483.38
732.03
623.53
574.83
555.79
519.04
413.10
340.92
317.38
294.75
289.69
276.98
253.13
231.28
219.35
175.53
152.96
148.10
143.43
139.24
129.33
115.46
109.69
102.94
90.23
89.37
86.94
86.64
82.47
79.44
78.83
75.55
75.21
66.10
57.27
56.92
48.03
45.49
41.52
39.95

CPU-MIN REAL-MIN

490.72 .

93.21

51.63
16.74
10.52
13.96
9.93
13.57
9.19
4.63
7.9%
6.49
9.13
26.77
14.46
6.67
19.91
6.04
4.28
4.07
2.44
10.15
9.82
4.19
5.92
2.87
2.27
2.69
1.30
5.05
5.78
10.49
1.37
1.42
2.81

37463.98

569.83
342.70
111.05
142.77
34.53
155.11
48.89
35.16
148.27
38.48
14.15
34.61
20444.24
2029.89
19.45
39.08
25.78
25.23
202.35
210.65
51.05
42,25
36.23
41.55
203.32
17.80
11.32
10.57
63.87
62.85
47.89
5.24
632.50
11.49
91.80
7.51
9.43
84.45
478.54
7.55
532.98

Zilog

SIZEK CPUMIN FACTOR

31.25

42.47
48,10
43.73
59.26
41.18
55.96
38.25
44.93
73.62
39.97
45.41
31.72
10.35
17.50
34.67
11.02
29.05
35.74
36.37
58.71
13.72
13.17
27.57
18.54
35.81
39.70
33.19
66.85
17.15
14.26

7.57
57.72
53.27
26.75

9.33
70.16
23.48

7.06

8.00
26.87
19.53

HOG

o
.o
O
—_

. e e o o e o o © o e o o o ° » @

OO PO PO P00 O0 0000000 POPO000000002000000
2 D o g ot .
REBREENSEISRISESEBESEIBIRSSRERIREBIEQIGH

.

0.08

0.00

ACCT

CHARS BLOCKS

TRNSFD

READ

322183844 1097670

67070052
37869304
13885248
382435
170625
6155937
4285724
3827309
1074914
17640896
2525427
3667050
3496613
18058108
2577344
716389
3740887
3634042
2313718
1536210
26006848
10500835
783825
2278056
1018461
2909269
3519054
27671849
565125
1811882
198016
355466
398693
1283776
168651
51832
15283
279451
8959500
59888
427217

130284
48989
22659

2758
8249
309%
16032
12170
14492
45797
5515
9681
71979
56039
2926
23695
11351
24917
9813
3433
294
X165
24497
8310
8664
9321
12155
2927
11161
29659
21995
3769
6377
3771
24253
426
20329
1700
27903
478
14377

ACCT Zilog ACCT

acctprc2 3 38.95 1.43 19.45 27.24 0.48 0.07 587336 87
sort 9% 38.72 1.09 9.73 35.41 0.01 0.11 375876 4433
pr 104 34.89 2.47 214.50 14.10 0.02 0.01 1060989 6572
haspmain 7 33.20 5.28 1244.54 6.29 0.75 0.00 63064 36635
ex 17 31.69 0.62 41.04 50.97 0.04 0.02 514624 3593
grep 213 28.73 2.98 21.01 9.64 0.01 0.14 2100229 14297

C-6 Zilog C-6

ACCT 7ilog : ACCT

Jun 8 04:07 1979 MONTHLY TOTAL COMAND SUMMARY Page 1

COMAND NUMBER TOTAL TOTAL TOTAL MEAN - MFAN HOG CHARS BLOCKS
NAME CMDS KCOREMIN CPU-MIN :REAI-MIN SIZE-K CPU-MIN FACTOR TRNSFD READ

TOTALS 553286 297698.78 10916.09 742924.94 . 27.27 0.02 0.01 820472546 26253312
nroff 1687 44681.55 995.92 5737.25 44.86 0.59 0.17 613403153 1089180
troff 1351 25692.15 583.69 . 4356.05 44.02 - 0.43 0.13 413163589 646243
spellpro 6466 17298.41 294.16 1893.79 58.81 0.05 0.16 334572640 853901
m2edit 654 13526.69 164.62 4238.58 82.17 0.25 0.04 54940426 427924
xaroff 397 10408.44 203.72 1496.32 51.09 0.51 0.14 215221419 301967
sort 7983 9292.34 226.01 2298.05 41.11 0.03 0.10 80108304 355963
cl 6139 8949.86 236.45 861.09 37.85 0.04 0.27 79897995 489661
1d 3244 8852.96 223.19 1128.09 39.67 0.07 0.20 493701995 1278119
sed 53134 8126.71 313.85 2241.78 25.89 0.01 0.14 23035033 1692990
m2find 2982 7984.45 140.18 1698.25 56.96 0.05 0.08 111330040 449604
c0 6586 7866.42 185.16 725.47 42.49 0.03 0.26 72595655 389426
ed 20083 7822.78 425.90 41898.18 18.37 0.02 0.01 483425634 1541326
tbl 660 7766.69 113.95 2458.55 68.16 0.17 0.05 50760094 83887
sh 40476 7499.67 635.00 383786.53 11.81 0.02 0.00 70525236 1421194
du 1941 6730.54 553.04 1128.44 12.17 0.28 0.49 20848359 628324
a.out 1483 5658.46 126.87 1868.87 44.60 0.09 0.07 16158675 80260
egrep 4801 5573.51 139.86 460.25 39.85 0.03 0.30 682369 237298
lint1 793 5325.66 71.23 425.67 74.76 0.09 0.17 9599001 131592
cat 21170 4657.53 236.59 4354.24 19.69 0.01 0.05 239180412 1023965
acctprel 42 3837.84 110.88 291.34 34.61 2.64 0.38 43954136 61123
c2 4067 3807.25 144.86 477.28 26.28 0.04 0.30 57519376 213521
grep 21212 3204.86 300.44 2727.87 10.67 0.01 0.11 139340583 899415
cpp 7469 3060.72 94.12 647.79 32.52 0.01 0.15 91471956 459882
getty 35556 2948.71 853.53 101107.45 3.45 0.02 0.01 34704751 263866
m2editDh 83 2707.27 28.79 361.84 94.02 0.35 0.08 2852202 33949
as2 6454 2698.74 218.96 910.59 12.33 0.03 0.24 213336016 705690
make 1858 2449.10 64.69 4388.86 37.86 0.03 0.01 24116259 175544
ps 1034 2384.14 128.29 1207.87 18.58 0.12 0.11 54873792 204172
acctems 294 2288.36 51.99 116.06 44.01 0.18 0.45 36124940 80523
uucico 815 2226475 40.42 11729.01 55.08 0.05 0.00 11086105 162558
1s 18876 2170.01 152.76 1538.09 14.20 0.01 0.10 32418106 691028
find 1705 2114.18 114.35 920.75 18.49 0.07 0.12 94631199 338600
ged 72 2026.43 28.54 317.21 71.01 0.40 0.09 1648636 10374
echo 84710 2018.23 190.14 1138.49 10.61 0.00 0.17 2926992 649200
cpio 127 1956.60 77.03 391.45 25.40 0.61 0.20 190822346 296302
maze 8 1620.42 44,80 128.25 36.17 5.60 0.35 120399 212
mail 4735 1474.38 76.92 14262.62 19.17 0.02 0.01 25719618 463748
get 1085 1358.03 37.59 234.97 36.13 0.03 0.16 31540008 178623
accteomn 165 1253.99 47.06 339.34 26.64 0.29 0.14 57405662 68949
yacc 58 1187.17 15.36 36.90 77.31 0.26 0.42 4096070 12093
col 638 1064.40 49.01 2199.00 21.72 0.08 0.02 23835395 16903

c-7 %ilog c-7

ACCT Zilog ACCT

line 27184 1036.03 93.14 1941.33 11.12 0.00 0.05 925447 296142
nroffl.2 29 909.83 17.71 56.97 51.38 0.61 0.31 11459920 18802
delta 264 904.54 23.07 254,06 39.21 0.09 0.09 24219141 87164
td 175 886.19 25.74 159.73 34.43 0.15 0.16 1990177 15792
ar 1434 872.65 61.87 309.07 14.11 0.04 0.20 189858731 428871
m2findD 144 864.29 12.54 344.13 68.94 0.09 0.04 1184947 28576
m 15319 857.97 85.65 754.20 10.02 0.01 0.11 453479 433903
acctdusg 1 819.77 39.30 170.10 20.86 39.30 0.23 1812480 39744
f77passl 155 779.13 7.97 29.09 97.70 0.05 0.27 990027 34702
diff 786 767.31 32.77 260.27 23.41 0.04 0.13 22940094 97214

Cc-8 Zilog Cc-8

ACCT

Jun

PI-00 -390
Y-8~
09-00-20
RO-20-aad
29-23-920
02-23-Bd
P2-00-20
P9-092-23
20-290-03
P9-30-00
PI-33-29
00-03-30
P0-00-00
P0-20-03
P0-20-00
Q9-33-29
PI-30 -0
P2-03-00
02-20-00
P2-233-0d
No-230-20
00-03-aa
PO-30-09
02-20~-39
20-20-20
23-09-00
20-30-08
20-20-39
oP-02~-920
PO-00-2a
20-03-00
P0-99-20
20-00-00
P0-00-08
09-23~-20
P9-30~2D
P9-29-09
29-03-03
PO-23-39
99-230-00
Po-03-30
29-00-20
20-090-20
9-20-09
PO-30-39
PO-03-00
Po-00-29
29-233-09

8 @4:37 1979

dii
absadm
absafr
abscas
absjcw
abspvg
abstbm
adm94
apb
archive
asc
badt
btb
bvl
bwk
chicken
class
cleary
cs

dbs
deby
dec
demo
dlt
dmr
docs
dug
ellie.
fsrep?2
gas
graphics
hjg
hlb
inst
jfm
jrh
ken
lco
learn
lppdw
1lrbb
ma j
mar
mash
meq
mifi
mlc
mmxr

Zilog

PP-00-00

02-00-00
00-00-99
G0-03-09
00-00-00
00-20~-09
NO-A9-00
PP-00-09
90-00-00
00-03-07
P3-20-00
@2-00-00
1 I, T, 1
PO-B0-Bd
00-20-00
03-00-00
03-20-00
00-00-00
00-00-040
00-30-30
00-20-20
79-06-04
79-06-04
79-36~-24
79-06-04
79-06-04
79-06-95
79-06-05
79-06-05
79-296-35
79-06-06
79-06-06
79-06-06
79-06-06
79-06-06
79-06-06
79-236-06
79-06-07
79-96-087
79-06-07.
79-96-07
79-06-07
79-06-07
79-06-07
79-26-07
79-06-07
79-26-97
79-06-07

Zilog

LAST LOGIN Page 1

rudd
s1l0
s2
s4-
s5

s6

s8

s9
scbsa
sijm
srb
sys
tgp
tld
ussc
uucpa
uvac
vav
wdr
willa
zooma
dws
ewb
kas
satz
uucp
bcm -
lprem
s7
sccs
conv
dck
dmt
emp
pah
sync
tad
ams
bin
dgd
haigh
hasp
jgw
leb
13k
mep
nhg
nws

79-36-038

79-06-038

79-06-08
79-06-08
79-06-08
79-96-08
79~-96-08
79-036-08
79-26-08
79-06-08
79-06-08
79-06-08
79-06-038
79-926-08
79-06-08
79-06-08
79-06-08
79~-06-08
79-06-08
79-036-28
79-06-08
79-06-28
79-06-@8
79-26-038
79-06-38
79-06-08
79-926-038
79-06-08
79-06-028
79-06-08
79-06-08
79-06-08
79-06-08
79-06-28
79-96-038
79-06-038
79-96-038
79-36-08
79-06-088
79-26-08
79-96-38
79-06-08
79-06-28
79-06~-38
79-06-038
79-36-08
79-86~-038
79-06-08

ACCT

adm
agp
als
arf
cath
dal
dan
denise
dp
ds52
ech
ecp
eric
£1d
fsrepl
games
graf
herbv
hoot
hsm
jac
jow
jel
jfn
ko€
krb
leap
l1lc
m2
m2class
mfp
mhb
mijr
msb
nuucp
paul
pdw
pris
pwbcs
pwbst
rbj
reg
rem
rje
rnt
root
rrr
sl

ACCT

P2-20-00
00-20-29
29-00-30
00-20-00
20-00-00
23-23-23
P2-00-09
00-30-29
79-06-028

Cc-10

mpf
plan
plum
pvg
rakesh
rfg
rlc
rrc
whm

Zilog

79-06-37
79-86-037
79-06-037
79-36-07
79-06-07
79-906-928
79-26-28
79-06-98

Zilog

gtrof
tbm
train
whr
wwe

?

abs
absjr

79-96-08
79-26-08
79-06-08
79-06-98
79-06-08
79-926-0@8
79-06-08
79-96-08

ACCT

s3
star
stock
systst
teach
text
trc
vif

Awk - A Pattern Scanning and Processing Language *

This information is based on an article
originally written by Alfred V. Aho,
Brian W. Kernighan, and Peter J. Weinberger,
Bell Laboratories.

AWK Zilog AWK

ii Zilog ii

AWK Zilog AWK

Table of Contents

SECTION 1 INTRODUCTION ..¢cececceccssescccccooocscocss 1-1

lclo Usage ® © 5 0 5 0 0 9 0 00 0 2 000 0 P 00O 0N OGO OO L0000

1-1
102. Program Structure ® 0 ® & & 0 0 6 O 00 6 A O 0PV SO O NS PO e e l 2
1.3. Records and FieldS .eeeeecessccosossscscscnsees 1-2
104. Printing ® © @ 0 0 0 5 0 0 P 0 O OO e P SE OO0 Ne eGSO NS P 13

SECTIONZ PATTERNS ® 0. 0. 0.0 0606 060 0 0 0 00 ¢ 009 0606000 0000000000000 2—1
BEGIN and EN[) ® ® ® 0 06 00060 000000000000 0008 0000000000

2-1
Regular EXPreSSiONS ceecesescscsssosccssssencocece 2-1
Relational EXpPresSions .ceececececccceccscccoes 22

2-3
2-3

Combinations of Patterns ® & & 6 86 8 0 ¢ 0 0 0 00 00 00 s 000 e 0
Pattern Range!s ® 9 9 @ 0.0 0 O 4 O O 0SSOSO OO N S Se0NG e e

NDNDNDNDN

e wh

SECTION3 ACTIONS ® © 6 © 0600 0 06060 0 402 000060609000 000000000000 3—1

Built-in FUnCtions .eeeeesecosscccsscosssccssee 3-1
Variables, Expressions, and Assignments 3-2
Field vVariables ceeeeececcecocsoccccsasssssncece 3—2
String Concatenation ...eeeeecececesoscsccccceceecs 3—3
3-4
3-4

Arrays ® © 9 000 0 ¢ 2000 00500 0000000000000 Neoe

WWwwwww
[]) L] L]

AU D WN =

. FlOW-Of-Cont[Ol Statemehts @ ®© 06 9 ¢ 0008 000000000000

SECTION4 DESIGN ® 8 0 0 6 0 0 0 0 808P GG OO L OO0 NN OSSN N 4—1

SECTIONS IHPLEMENTATION ® 06 06 06606 9000000000000 000 0600000000 5'—1

iii Zilog iii

AWK Zilog AWK

SECTION 1
INTRODUCTION

Awk is a programming language designed to make many common
information retrieval and text manipulation tasks easy to
state and to perform.

The basic operation of awk is to scan a set of 1input 1lines
in order, searching for lines which match any of a set of
patterns which the user has specified. For each pattern, an
action can be specified; this action will be performed on
each line that matches the pattern.

Readers familiar with the ZEUS program grep (see ZEUS Refer-

ence Manual, Section 1) will recognize the approach,

although in awk the patterns may be more general than in

grep, and the actions allowed are more involved than merely

printing the matching line. For example, the awk program
{print $3, $2}

prints the third and second columns of a table in that
order. The program

$2 ~ /A|BIC/

prints all input lines with an A, B, or C in the second
field. The program

$1 1= prev { print; prev = $1 }
prints all lines in which the first field is different from
the previous first field.
1.1. Usage
The command

awk program ([files]
executes the awk commands in the string program on the set
of named files, or on the standard input if there are no
files. The statements can also be placed in a file pfile,

and executed by the command

awk -f pfile ([files]

1-1 Zilog 1-1

AWK Ziloyg AWK

1.2. Program Structure

An awk program is a sequence of statements of the form:

pattern { action }
pattern { action }

Each line of input is matched against each of the patterns
in turn. For each pattern that matches, the associated
action is executed. When all the patterns have been tested,
the next line is fetched and the matching starts over.

Either the pattern or the action may be left out, but not
both. If there 1is no action for a pattern, the matching
line is simply copied to the output. (Thus a line which
matches several ©patterns can be printed several times.) If
there is no pattern for an action, then the action 1is per-
formed for every input line. A line which matches no pat-
tern is ignored.

Since patterns and actions are both optional, actions must
be enclosed in braces to distinguish them from patterns.

1.3. Records and Fields

Awk input is divided into "records" terminated by a record
separator. The default record separator is a newline, so by
default awk processes its input a 1line at a time. The
number of the current record is available in a variable
named NR.,

Each input record is considered to be divided into "fields".
Fields are normally separated by white space = blanks or
tabs - but the input field separator may be changed, as
described Dbelow. Fields are referred to as $1, $2, and so
forth, where $1 is the first field, and 8@ 1is the whole
input record itself. Fields may be assigned to. The number
of fields in the current record is available in a variable
named NF.

The variables FS and RS refer to the input field and record
separators; they may be changed at any time to any single
character. The optional command-line argument —-fc may also
be used to set FS to the character c.

If the record separator is empty, an empty input 1line is
taken as the record separator, and blanks, tabs and newlines
are treated as field separators.

1-2 Zilog 1-2

AWK Zilog AWK

The variable FILENAME contains the name of the current input
file.

l.4. Printing
An action may have no pattern, in which case the action is
executed for all 1lines. The simplest action is to print
some or all of a record; this is accomplished by the awk
command print. The awk program

{ print }
prints each record, thus copying the input to the output

intact. More useful is to print a field or fields from each
record. For instance,

print $2, $1
prints the first two fields 1in reverse order. Items
separated by a comma in the print statement will be

separated by the current output field separator when output.
Items not separated by commas will be concatenated, so

print $1 $2

runs the first and second fields together,

The predefined variables NF and NR can be used; for example
{ print NR, NF, $0 }

prints each record preceded by the record number and the
number of fields.

Output may be diverted to multiple files; the program

{ print $1 >"file.1"; print $2 >"file.2" }
writes the first field, $1, on the file file.l and the
second field on file file.2 The >>» notation can also be
used:

print $1 >>"foo"
appends the output to the file foo. (In each case, the out-
put files are created if necessary.) The file name can be a

variable or a field as well as a constant; for example,

print $1 >$2

1-3 Zilog 1-3

AWK Zilog AWK

uses the contents of field 2 as a file name.

Naturally there is a limit on the number of output files;
currently it is 14.

Similarly, output can be piped 1into another process for
instance,

print | "mail bwk"
mails the cutput to bwk.

The variables OFS and ORS may be used to change the current

output field separator and output record separator. The
output record separator is appended to the output of the

print statement.

Awk also provides the printf statement for output format-
ting:

printf format expr, expr, ...

formats the expressions in the list according to the specif-
ication in format and prints them. For example,

printf "%8.2f %1@¢1d\n", $1, $2

prints $1 as a floating point number 8 digits wide, with two
after the decimal point, and $2 as a 1@-digit long decimal
number, followed by a newline. No output separators are
produced automatically; you must add them yourself, as in
this example. The version of printf is identical to that
used with C.

1-4 Zilog 1-4

AWK Zilog AWK

SECTION 2
PATTERNS

A pattern in front of an action acts as a selector that
determines whether the action is to be executed. A variety
of expressions may be used as patterns: regular expressions,
arithmetic relational expressions, string-valued expres-
sions, and arbitrary boolean combinations of these.

2.1. BEGIN and END

The special pattern BEGIN matches the beginning of the
input, before the first record is read. The pattern END
matches the end of the input, after the last record has been
processed. BEGIN and END thus provide a way to gain control
before and after processing, for initialization and wrapup.

As an example, the field separator can be set to a colon by
BEGIN { FS = """ }

Or the input lines may be counted by
END { print NR }

If BEGIN is present, it must be the first pattern; END must
be the last if used.

2.2. Regular Expressions

The simplest regular expression is a literal string of char-
acters enclosed in slashes, like

/smith/

This is actually a complete awk program which will print all
lines which contain any occurrence of the name "smith"., If
a line contains "smith" as part of a larger word, it will
also be printed, as in

blacksmithing

Awk regular expressions include the regular expression forms
found in the ZEUS text editor ed (see ZEUS Reference Manual,
Section 1) and grep (without back-referencing). In addi-
tion, awk allows parentheses for grouping, |l for

N
|
o

2-1 Zilog

AWK Zilog AWK

alternatives, + for "one or more", and ? for "zero or one",
all as in lex. Character <classes may be abbreviated:
[a-2A-Z@-9] is the set of all letters and digits. As an
example, the awk program

/[Aalho| [Ww]leinberger| [Kk]lernighan/
will print all lines which contain any of the names

Aho," "Weinberger" or "Kernighan," whether capitalized or
not.

Regular expressions (with the extensions listed above) must
be enclosed in slashes, Jjust as in ed and sed. Within a
regular expression, blanks and the regular expression meta-
characters are significant. To turn of the magic meaning of
one of the regular expression characters, precede it with a
backslash. An example is the pattern

IN/ <*N\//

which matches any string of characters enclosed in slashes.

One can also specify that any field or variable matches a
regular expression (or does not match it) with the operators
~ and !~., The program

$1 ~ /[jJdlohn/

prints all lines where the first field matches "john" or
"John". Notice that this will also match "Johnson", "St.
Johnsbury", and so on. To restrict it to exactly [jJlohn,
use

$1 =~ /"[jJlohns/

"

The caret refers to the beginning of a line or field; the
dollar sign § refers to the end.

2.3. Relational Expressions
An awk pattern can be a relational expression involving the
usual relational operators <, <=, ><==, l=, >=, and >. An
example 1is

$2 > $1 + 100

which selects lines where the second field is at least 100
greater than the first field. Similarly,

2-2 Zilog 2-2

AWK Zilog AWK

NF ¢ 2 == 0
prints lines with an even number of fields.

In relational tests, if neither operand is numeric, a string
comparison is made; otherwise it is numeric. Thus,

$1 >= "g"
selects lines that begin with an s, t, u etc. In the
absence of any other information, fields are treated as
strings, so the program

$1 > $2

will perform a string comparison.

2,4. Combinations of Patterns

A pattern can be any boolean combination of patterns, using
the operators || (or), && (and), and ! (not). For example,

$1 >= "s" && $1 < "t" && S1 != "smith"
selcts lines where the first field begins with "s", but |is
not "smith". && and || guarantee that their operands will

be evaluated from left to right; evaluation stops as soon as
the truth or falsehood is determined.

2.5. Pattern Ranges

The "pattern" that selects an action may also consist of two
patterns separated by a comma, as in

patl, pat2 { «00 }
In this case, the action is performed for each line between
an occurrence of patl and the next occurrence of pat2
(inclusive). For example,

/start/, /stop/
prints all lines between start and stop, while

NR == 180, NR == 200 { ... }

does the action for lines 100 through 208 of the input.

2-3 Zilog 2-3

AWK Zilog AWK

SECTION 3
ACTIONS

An awk action is a sequence of action statements terminated
by newlines or semicolons. These action statements can be
used to do a variety of bookkeeping and string manipulating
tasks.

3.1. Built-in Functions

Awk provides a "length" function to compute the length of a
string of characters. This program prints each record, pre-
ceded by its length:

{print length, $0}

length by itself is a "pseudo-variable" which vyields the
length of the current record; length(argument) is a function
which yields the 1length of its argument, as in the
. equivalent

{print length($9), $0}
The argument may be any expression.

Awk also provides the arithmetic functions sqrt, 1log, exp,
and int, for square root, base e logarithm, exponential, and
integer part of their respective arguments.

The name of one of these built-in functions, without argu-
ment or parentheses, stands for the value of the function on
the whole record. The program

length < 10 || length > 20

prints lines whose length is less than 10 or greater than
20.

The function substr (s, m, n) produces the substring of s
that begins at position m (origin 1) and is at most n char-
acters long. If n is omitted, the substring goes to the end
of s. The function index(sl, s2) returns the position where
the string s2 occurs in sl, or zero if it does not.

The function sprintf(f, el, e2, ...) produces the value of

the expressions el, e2, etc., in the printf format specified
by £. Thus, for example,

3-1 Zilog 3-1

AWK Zilog AWK

X = sprintf("%8.2f %1914", $1, $2)

sets x to the string produced by formatting the values of $1
and $2.

3.2. Variables, Expressions, and Assignments

Awk variables take on numeric (floating point) or string
values according to context. For example, in

x =1
is clearly a number, while in
x = "smith"

it is clearly a string. Strings are converted to numbers
and vice versa whenever context demands it. For instance,

R = "3IN 4 wyw

assigns 7 to x. Strings which cannot be interpreted as
numbers in a numerical context will generally have numeric
value zero, but it is unwise to count on this behavior.

By default, variables (other than built-ins) are initialized
to the null string, which has numerical value zero; this
eliminates the need for most BEGIN sections. For example,
the sums of the first two fields can be computed by

{ s1 += $1; s2 += $2 }
END { print sl1, s2 }

Arithmetic is done internally in floating point. The arith-
metic operators are +, -, *, /, and % (mod). The C incre-
ment ++ and decrement —-- operators are also available, and
so are the assignment operators +=, -=, *=, /=, and %=,
These operators may all be used in expressions.

3.3. PField variables

Fields in awk share essentially all of the properties of
variables; they may be used in arithmetic or string opera-
tions, and may be assigned to. Thus one can replace the
first field with a sequence number like this:

{ $1 = NR; print }

or accumulate two fields into a third, like this:

3-2 Zilog 3-2

AWK Zilog AWK

{ $1 = $2 + $3; print $¢ }
or assign a string to a field:

{ 1£ (83 > 1000)
$3 = "too big"
print
}

which replaces the third field by "too big" when it is, and
in any case prints the record.

Field references may be numerical expressions, as in
{ print $i, $(i+l), $(i+n) }

Whether a field is deemed numeric or string depends on con-
text; in ambiguous cases like

if (sl == $2) LI A 4
fields are treated as strings.
Each input line is split into fields automatically as neces-
sary. It 1is also possible to split any variable or string
into fields:

n = split(s, array, sep)
splits the the string s into arrayl[l], ..., array[n] . The
number of elements found is returned. If the sep argument
is provided, it is used as the field separator; otherwise FS
is used as the separator.
3.4. String Concatenation
Strings may be concatenated. For example

length($1 $2 $3)

returns the length of the first three fields. Or in a print
statement,

print $1 " is " $2

prints the two fields separated by "is". Variables and
numeric expressions may also appear in concatenations.

3-3 Zilog 3-3

AWK Zilog AWK

3.5. Arrays

Array elements are not declared; they spring into existence
by being mentioned. Subscripts may have any non-null value,
including non-numeric strings. As an example of a conven-
tional numeric subscript, the statement

x[NR] = $0

assigns the current input record to the NR-th element of the
array X. In fact, it 1is possible in principle (though
perhaps slow) to process the entire input in a random order
with the awk program

{ x[NR] = $90 }
END { ... program ... }

The first action merely records each input line in the array
X.

Array elements may be named by non-numeric values, which
gives awk a capability rather like the associative memory of
Snobol tables. Suppose the input contains fields with
. values like apple, etc. Then the program

/apple/ { x("apple"]++ }
/orange/ { x["orange"]++ }
END { print x["apple"], x["orange"] }

increments counts for the named array elements, and prints
them at the end of the input.

3.6. Flow-of-Control Statements

Awk provides the basic flow-of-control statements if-else,
while, for, and statement grouping with braces, as in C. We
showed the if statement in Section 3.3 without describing
it. The condition 1in ©parentheses is evaluated; if it is
true, the statement following the if is done. The else part
is optional.

The while statement is exactly like that of C. For example,
to print all input fields one per line,

i=1

while (i <= NF) {
print $i
++i

}

3-4 Zilog 3-4

AWK Zilog AWK

The for statement is also exactly that of C:

for (i = 1; 1 <= NF; i++)
print $i

does the same job as the while statement above.

There is an alternate form of the for statement which |is
suited for accessing the elements of an associative array:

for (i in array)
statement
does statement with i set in turn to each element of array.
The elements are accessed in an apparently random order.
Chaos will ensue if i is altered, or if any new elements are
accessed during the loop.

The expression in the condition part of an if or while, or
for can include relational operators like <, <=, >, >=, ==
("is equal to"), and != ("not equal to"); regular expression
matches with the match operators ~ and !™; the logical
operators ||, &&, and !; and of course parentheses for
grouping.

The break statement causes an immediate exit from an enclos-
ing while or for; the continue statement causes the next
iteration to begin.

The statement next causes awk to skip 1immediately to the
next record and begin scanning the patterns from the top.
The statement exit causes the program to behave as if the
end of the input had occurred. :

Comments may be placed in awk programs: they begin with the
character # and end with the end of the line, as in

print x, vy # this is a comment

3-5 Zilog 3-5

AWK Zilog AWK

SECTION 4
DESIGN

The ZEUS system already provides several programs that
operate by passing input through a selection mechanism.
Grep, the first and simplest, merely prints all lines which
match a single specified pattern. Egrep provides more gen-
eral patterns, i.e., regular expressions in full generality;
fgrep searches for a set of keywords with a particularly
fast algorithm. Sed provides most of the editing facilities
of the -editor ed, applied to a stream of input. None of
these programs provides numeric capabilities, logical rela-
tions, or variables.

Lex provides general regular expression recognition capabil-
ities, and, by serving as a C program generator, is essen-
tially open-ended in its capabilities. The use of lex, how-
ever, requires a knowledge of C programming, and a lex pro-
gram must be compiled and loaded before use, which
discourages its use for one-shot applications.

Awk is an attempt to fill in another part of the matrix of
possibilities. It provides general regular expression capa-
bilities and an implicit input/output 1loop. But it also
provides convenient numeric processing, variables, more gen-
eral selection, and control flow in the actions. It does
not require compilation or a knowledge of C. Finally, awk
provides a convenient way to access fields within lines; it
is unique in this respect.

Awk also tries to integrate strings and numbers completely,
by treating all quantities as both string and numeric,
deciding which representation is appropriate as late as pos-
sible. In most cases the user can simply ignore the differ-
ences.,

Most of the effort in developing awk went into deciding what
awk should or should not do (for instance, it doesn't do
string substitution) and what the syntax should be (no
explicit operator for concatenation) rather than on writing
or debugging the code. The syntax is powerful but easy to
use and well adapted to scanning files. For example, the
absence of declarations and implicit initializations, while
probably a bad idea for a general-purpose programming
language, is desirable in a language that is meant to be
used for tiny programs that may even be composed on the com-
mand line.

4-1 Zilog 4-1

AWK Zilog AWK

In practice, awk usage seems to fall into two broad
categories. One 1is what might be called "‘report genera-
tion'' - processing an input to extract counts, sums, sub-
totals, etc., This also includes the writing of trivial data
validation programs, such as verifying that a field contains
only numeric information or that certain delimiters are
properly balanced. The combination of textual and numeric
processing is invaluable here.

A second area of use is as a data transformer, converting
data from the form produced by one program into that
expected by another. The simplest examples merely select
fields, perhaps with rearrangements.

4-2 Zilog 4-2

AWK Zilog AWK

SECTION 5
IMPLEMENTATION

The actual implementation of awk uses the language develop-
ment tools available on the ZEUS operating system. The
grammar is specified with yacc; the lexical analysis is done
by lex; the regular expression recognizers are deterministic
finite automata constructed directly from the expressions.
An awk program is translated into a parse tree which is then
directly executed by a simple interpreter.

Awk was designed for ease of wuse rather than processing
speed; the delayed -evaluation of variable types and the
necessity to break input into fields makes high speed diffi-
cult to achieve in any case. Nonetheless, the program has
not proven to be unworkably slow.

As might be expected, awk is not as fast as the specialized
tools wc, sed, or the programs in the grep family, but is
faster than the more general tool lex. The tasks are about
as easy to express as awk programs as programs in these
other languages; tasks involving fields are considerably
easier to express as awk programs.

5-1 Zilog 5-1

ZEUS COMMUNICATIONS PACKAGE

COMM Zilog COMM

ii Zilog ii

COMM + Zilog COMM

Preface

This document describes the ZEUS Communications Package, a
communication path between ZEUS and Zilog development tools.

In this document, the term "development system" refers to a
standard Z8(TM) or Z80@A(TM) Development Module or to Z-SCAN
800P(TM). The term "remote system" refers to a System
8000 (TM) executing the ZEUS Operating System. The term
"local system" refers to an MCZ(TM) or a 2DS system execut-
ing the RIO Operating System.

The LOAD/SEND function in ZEUS is analogous to the MCZ/ZDS
LOAD/SEND function. Refer to the Z8000 Development Module
Hardware Reference Manual (@#3-3080¢) for specific 1informa-
tion.

iii Zilog iii

COMM Zilog COMM

iv Zilog iv

COMM

SECTION 1

SECTION 2 FUNCTIONAL DESCRIPTION

2.1,

2'

SECTION

2.

3. l.

3.

SECTION

2.

401.

4

2.

Zilog

Table of Contents

INTRODUCTION

® 6 2 0060000000600 0000000009000

Upload/Download Functional Description
File Transfer Functional Description

3 INVOCATIO“ AND OPERATION ® ® 6 & 5 0 0 0 0 0 000 0 0 0 0

Upload/Download Invocation and Operation

File Transfer Invocation and Operation

4 TERMINATION

Upload/Download Termination

File Transfer

e o o 00 0 00

® 5 8 0 0.0 0085 0 06 0600006800000 0000000 000

Termination

Zilog

®© 060 00 00000 0000600000

® 06 0 0000000000600 000000

COMM

COMM Zilog COMM

SECTION 1
INTRODUCTION

The ZEUS Communications Package gives the ZEUS user a com-
munication path between ZEUS and the development tools
offered by Zilog (the Z8 and Z80@@ Development Modules and
Z-SCAN 80089) .

The upload/download capability includes the LOAD command,
which 1loads a ZEUS file to development tool memory, and the
SEND command, which transfers the contents of development
tool memory to a ZEUS file. These facilities also interface
with existing PROM programming products, giving the user
PROM programming capability.

The package also provides a general-purpose file transfer
capability for transferring files between a local system and
a remote system. This includes software that executes under
both ZEUS and the RIO Operating System.

NOTE
This software package is not designed for communi-

cation between two ZEUS systems. For this capa-
bility, use the programs uucp, uux, and uulog.

1-1 Zilog 1-1

COMM Zilog COMM

SECTION 2
FUNCTIONAL DESCRIPTION

2.1. Upload/Download Functional Description

The LOAD command downloads a 78000 program to a development
system from a ZEUS file. The binary data in the file is
converted to Tektronix format and is transmitted to the
development system. An acknowledgment from the development
system causes the next record to be downloaded £from ZEUS.
If an acknowledgment is not received, the current record is
retransmitted up to ten times. After continued nonac-
knowledgment, a record with an error message is sent, and
the program aborts.

Possible error messages are:

/ABORT

/UNABLE TO OPEN FILE
/FILENAME ERROR
/INCORRECT FILE TYPE
/ERROR IN READING FILE
/CHECKSUM ERROR

The SEND command transfers the contents of development sys-
tem memory to a ZEUS file. The SEND program opens the file
and sends an acknowledgment to the development system to
start transmission. If the file cannot be opened, an
abort-acknowledgment. is sent, and the program aborts. An
acknowledgment 1is sent after each good record received. If
the ASCII code double slash (//) is received from the
development system, the program aborts.

Possible error messages are:

/ABORT

/OPEN FILE ERROR
/FILE WRITE ERROR
/CHECKSUM ERROR

2.2. File Transfer Functional Description

The file transfer software copies files residing on the
remote system to files residing on the local system, and
vice versa. On invocation of the file transfer command
(Section 3), the remote system transmits a sequence of

2-1 Zilog 2-1

COMM Zilog COMM

characters to the 1local system to initiate the file
transfer. A file is transferred one record at a time, along
with a checksum to guarantee the accuracy of the data. For
each successful transmission, an acknowledgment is sent, and
a period (.) is displayed on the terminal to inform the user
that the transfer is proceeding. If a nonacknowledgment is
sent, the record is retransmitted up to ten times, after
which the program proceeds to the next file. An error mes-
sage is displayed for each retransmission that is necessary,
unless the nonfatal error messages are suppressed in the
command invocation (Section 3). A message is printed after
each successful transmission that includes the file name.
At the conclusion of the program, a message informs the user
of the number of successful and unsuccessful transmissions.
A control-x causes the current file transfer to terminate,
and the program proceeds to the next file on the list. The
termination message counts that file as an unsuccessful
transfer (Section 4.2). Pressing the escape key (ESC)
aborts the program.

Possible messages are:

Normal transmission:
<filename>
. (one . for every record for positive feedback)

Error messages:
checksum error ... retry
<filename> ... transmission aborted

ZEUS file names cannot be longer than 14 characters, but RIO
file names can be as 1long as 32 characters. For file
transfers from the local system to the remote system, only
the first 14 characters of the file name are used. Path
names can be specified; they apply only to the file name on
the remote system., On the local system, all files to be
uploaded must be in the working directory, and all down-
loaded files are created in the working directory (this does
not apply to the MCZ/ZDS systems).

NOTE

If a duplicate file name exists on the target
system, the contents of pre-—existing files are
automatically overwritten unless the ([-q] option
is specified as part of the command (Section 3).
If the [-q] option 1is specified, the user is
queried for a replacement name.

2-2 Zilog 2-2

COMM Zilog

Possible message is:

replace <filename> (y/n)?

2-3 Zilog

COMM

COMM Zilog COMM

SECTION 3
INVOCATION AND OPERATION

3.1. Upload/Download Invocation and Operation

The LOAD command is given to the development system as fol-
lows:

LOAD file

The development system Monitor program transmits the command
line to ZEUS exactly as it is entered, and the ZEUS program
(LOAD) opens the file specified by <filename>. The Monitor
on a 28008 Development Module or Z-SCAN requires that
<filename> be all uppercase on the remote system. If "load
prog" 1is entered, the remote system searches for the file
PROG. The binary data in the file 1is transmitted to the
development system. Pressing ESC aborts the LOAD command.

The SEND command is given to the development system as fol-
lows:

SEND file start.addr end.addr [entry.addr]

This command transfers the contents of development system
memory to a ZEUS file specified by <filename>. The develop-
ment system transmits the command to ZEUS exactly as input,
causing execution of the SEND program. SEND opens the file
<filename> and stores in it the binary data received from
the development system. Pressing ESC aborts the SEND com-
mand.

3.2. File Transfer Invocation and Operation

File transfer is accomplished in three steps. 1In the first
step, control is transferred from the local system to the
remote system by entering the following command to the local
system.

remote [rate]

This command starts a program on the local system, which
places the wuser in remote mode. In this mode, all charac-
ters entered from the keyboard are sent to the S58¢99, and
all characters from the 85800# (except for character
sequences that initiate file transfers and the return to
local mode) are sent to the terminal screen. Therefore, the

3-1 Zilog 3~-1

COMM Zilog COMM

terminal is essentially operating as an S800@ terminal, and
any ZEUS command can be executed. The default communication
rate is 9608 baud. Standard baud rates that can be speci-
fied for the MCZ/ZDS are 50, 75, 110, 150, 300, 600, 1200,
2400, 4800, 9600, 19,2808, and 38,4040.

The second step in file transfer involves two commands: put-
file and getfile, which are invoked as follows:

putfile [-qfbB] file.l ([(-blfile.2]
getfile [-qfbB] file.l [[-b]file.2]

The command putfile transfers files from the remote system

to the local system; getfile transfers files from the local
system to the remote system.

The [-g] option specifies that transfer of a file to the
target system where a file of the same name already exists
causes a query to the user (Section 2.2). If this option is
not given, the file is automatically overwritten.

The [-£f] option suppresses the nonfatal error message
"checksum error ... retry.”

The [-b] option preceding a file name indicates a binary
file and suppresses translation of ZEUS new line characters
into RIO's carriage returns (and vice versa) for that file
only. The type defaults to ASCII for the next file. This
differs from the [-q] and [-f] options, which apply to the
remainder of the line following the point at which they are
invoked.

The [-B] option specifies that every file that follows is
binary.

A list of files can be specified on the command 1line. A
control-x aborts the transfer of a single file and proceeds
to the next file. Pressing ESC aborts the entire transfer
at any point.

The third step returns the user to the local system from the
remote system. The command is:

local [-1]
The [-1] option causes a logout to be given to the remote
system. It is necessary to log in after the next remote
command .

3-2 Zilog 3-2

COMM Zilog COMM

SECTION 4
TERMINATION

4.1. Upload/Download Termination

After completion of the loading process, the program's entry
point is displayed on the terminal, and the development sys-
tem returns to Monitor mode. The LOAD program terminates
and returns control to the ZEUS Operating System.

After completion of the sending process, the program's entry
point is stored in the ZEUS file, and the development system
returns to Monitor mode. The SEND program terminates and
returns control to the ZEUS Operating System.

If there is a user or program abort during either the 1load-
ing or sending process, an error message is printed (Section
2), the development system returns to Monitor mode, and the
program returns control to the ZEUS Operating System.

4.2, File Transfer Termination

After completion of the file transfer, the 1local system
returns to remote mode, enabling the user to continue to
execute ZEUS commands. One of the following messages is
printed on the terminal:

putfile:<nl> successful transfers <n2> unsuccessful transfers
getfile:<nl> successful transfers <n2> unsuccessful transfers

An unsuccessful file transfer does not cause the program to
terminate abnormally. If the program is aborted via the
escape key, it does not transfer any more files, and ter-
minates in a normal fashion.

4-1 Zilog 4-1

THE C SHELL

This information is a summary and expansion of information
found in the ZEUS Reference Manual and other sources..

C SHELL zZilog C SHELL

ii Zilog ii

C SHELL

SECTION 1 AN

1.1. Wwhat is a Shell?

1’2'

Zilog

Table of Contents

INTRODUCTION TO THE C SHELL

SECTION 2 TYPING COMMANDS TO THE C SHELL ..

NNNNNDDNNODNDN

VNN ODNDNNDNDNONDNDNe o ¢ ¢ o o

N
.
=

.9.1. Input Redirection -~ <
Input Within a Script -- <<
Output Redirection -- >
Adding to the End of A File -- >> .
Standard Error Redirection —-- >%
Overriding Noclobber -- >!
Output, Error, and Noclobber --
Appending and Standard Error --
Appending and Noclobber -- >>!

Q Appending, Noclobber,

pes ® @ 6 0. 06 00006 0 0 00 5P L 0L 00O SO e 40 PO e

WO WO WO WO WO WYY

e ¢ «

s« ©

* o o e o

The ZEUS Prompt ...eeevcae
Command SYNtax ..eeeceecons
Simple Commands .ecseeness
Compound Commands

3

® ¢ o 00 0000

6 4 000 00

o 0 00 0 00 00

Running a Command in Background
Running a Command in a Subshell
Conditional Command OperatorsS c.....
Command Substitutioncececececes
Input/Output Control ...eeeeececsoes

HH\O&\]@U"!&U)N

SECTION 3 FILENAME SUBSTITUTION
AN INTRODUCTION TO METACHARACTERS

iii

3.]—.
3.2.
3.3,

¢« 0 0 0 0 00

Exrror --

.
.
3
3
3
.

*® 0 s 0 0

® 0 0 02 0 0.0 6 800060000 0000 0000

Conventions in this Document

* o 00000900000

* o e e
.
.
.

e o o o

e o o o
.

* e o o

e s 8 00 0 0

® 08 0 00050000

>&!
>>&

* o 00

>>&!

Characters for FllenamesS ..ceceseocscscosse

The Full Metacharacter Set

Zilog

C SHELL

.

e o ® o o . . . e o & e o .
e o & « o o e« & 9 o e e

.

e o o e o
* e o o o

o e 00

@ ® 9 @ g0 00 00000005000

Quoting -- Preventing Metacharacter Expansion

iii

C SHELL

SECTION 4 THE HISTORY FUNCTION

vblhvhl-hnh.h

.1
2.
3
4
5
.6

.
.
.
.

Zilog

® &8 0 0 0 0 s 0 05 0 0680 0 008000

Command HiStOTY seeeseeecocssssosanssnnsoccsaos

Common Forms of Use for the History Function

Accessing Previous Commandseeesooccsssos

Modifying Previous Commandsceesvaes
Modifying Previous Command Words

Magic Characters in History Function

LR)

o o @

SECTION 5 THE C SHELL BUILT-IN COMMAND STRUCTURE .

SECTION 6 THE C SHELL PROGRAMMING LANGUAGE

iv

5.
5

.
N =

(S,
L]
w
Uittt TULTOITLTULTLILOTUI U1 UL e

6.1.

6.3‘
6.4.
6.5.

. .

Introduction to C Shell Commands
General Purpose Commands from the Prompt
Ql. Cd ® 6 5 0 2 & 6 & B S 4 B8 0B S B O Ve eE N eSS N o

eChO ® ® 0 0 2 2 U S 8 S 5 0 0 OB LSS E TSSO e e

glOb ® 6 8 0 0 0 2 4 O S 0 G 0 PO LGS G e e 0

e NiStOrY +tiiieeeeroneesesosoccacnnnces
«5. NICEe Liiitieteessssssssasscsasssnsans
. rehash ..iveeriesetersanssnccsnnoans
B o = o = -
8. time .iviiiererevsesnsssccossnsssanas

umaSk ® ©@ 0. 2 9 5 0 U 5 O P PO O 0ES S P E S 0N e e o

Walt e e o 0 0 0 ® 5 5 0.0 06 000 0600068000000 000

ronmental Commandb from the Prompt .
alias / unalias
L 5 5
logout ..eeevecennnses
set / unsSet ...ttt ieiineensassnaan
SetenvV / eNV tieeesaseosrsoocsanssnss

e SOULCE teseseesasssasossscssanccncss

unalias / alias ...

unset / set c.iieecenes

The At Sign -- @

hS e

2.
En

@(D\Jm(ﬂ¢hwlvk4<PJG)&~40\W>>U)N

3
3

2
2
2.
2,
2
2.
2
2.
3
3
3

2.
3.
3
3

3.

. . *
e o o
.

.

.

.

.

.

.

.

.

.

.

.

¢ o 0

e o »

.

foreach and end groUP cseeescecssecsessccses
6.2. while and end grouUpP ..veeeeecccsccccocns

The if, else, endif GroUP .cceevesreeses
The Switch Groud ..e.eeseseecosoossccoasns
Independent Flow Control Statements

605.1| break @ @ 0 5 8 5 0 0 8 0 0 00 000 e eI e s s e e

6.5.2. continue ® & 8 6 & 0 & s 2 e 0 s 0 ® @ 3 & 6 4 6 2 ¢ 2 6 6 0 06 0 0 0

653. goto ® 8 @ 6 3 0 0 0 0 5 8 P IO S G S L e e s e e e o0

6.
6.6.
6.
6
6

54. Shlft LR I } ® 6 06 00 065 8 00 06 00 002000800000

ndependent Shell Script Commandsccec0..

exec © % 6 0 ¢ 8 0 06 5 L P P E DB S Eee I e N e e e e

I

6.1.

e6.2. NONUP ¢t evecesecetasescosssosocscsscas
6.3.

Onintr ® ® 9 8 00 v 000 e s L e e e e e s s e

Zilog

C SHELL

L] L]

L L]
NN

N NN
N
WDV N

.
(S,]
1
-

.. 5-=1
«e 5-1
es 5=2
es 5=2
.. 5-=3
ee 5-3
.+ b5-4
«s 5-6
.. 5-6
ese 5=7
«s» 5-8
5-9

-10

2

=

L]
.
CEURURCES
11
R
oW

LR 5-18
.. 5—'19

ees 5-19

STRUCTURE

LR 5"'2G
.. 5=20

.

N
1

P

«e 6-1
.. 6-3
e 6-4
.. 6-4
6-6
.. 6-6
6-7
6-7
6-7
ese 6-=7
.. 6-8
.. 6-8
.. 6-8

iv

C SHELL Zilog C SHELL

6-7c Example Shell Scripts 0.‘.‘.0...“.D.l...‘l.i.!.: 6-9

~
1
[

SECTION 7 SHELL VARIABLESvcccoerterocscssoscaconnns

defined C shell Variables ‘00'...."0.'00'!‘.

argV~oo-.oco'o'000-..000000000000"00000600

r

Child ® 8 0 5 0 ¢ 0 00 2 P PN S S SO L NS ELS I OELCEOEIEBNCEOSIOITE

@ChO (vt evaseitocersensssosscrososnsssnescssss
NiStOrY teveeeeeresossesosecssosessanssscaas
HOME . i itveesessosscssnsssosscssossssscscsns
e 00 Yo of =1L I I
MALl teteeceenseasbocnosesosssosssonasssassss
NOCLlOobbeY it ieievosacssososssnssssssasasnas
NOJlOD v eeveeseeecscsnsssassasosssssosasssns

NONOMALCH s i vt seovsscovcssossossossvsnocnss

path CIE BN A X R R I B R I I I I I Y I I I O K R A I I B I A AR)

. L3 L]
HEFHFRRFFOOIOAUE S W — O
i

N e * o ¢ s & o o
L T B |

* o * e o o
.

NNNNONONNNNa
i
HRNWOWOJANU U W

i
o

prompt LA DX I IR ZE 2N BRI BN IR K 2N IE I K 2 I I I IR I I I I B 7
' 7

Shell ® 0 80 6 0 06 0 0 2 0 00 0 0 0 0 0L 0L O L L E PN EE PO SU OO

W
o & o o

StAtuUS tivieeeeccncscscncsacosssscnsnsnenss 1-12
EOLM ot eeeeveroecssersoosonensosnessnsnecnse =12
EIMe it evveosescosonssoisssscsssascnsases 1—13
lol7. VErDOSE ceveseosoneososcsscssssossrsonssess 1—14
2. Predefined Variables -- Default Vvalues 7-15
3. User-defined Variableseeeeseosesvcsosssess 71-15
4. User-defined Variable Substitutions ..ceeceeses 7-16
5. Using Modifiers in variable Substitutions 7-17

e el el e el el el el el el ad el el i
ul
.

e}
[e)}
L]

SECTION 8 THE CSH COMMAND AND C SHELL SCRIPTS 8-1

|

»1. The Csh Commandcececoosrsocssscnsssosssansaes
. Invoking Csh to Execute a Shell Scriptc..
. Using C Expressions in SCripts teeeviececososeoss”
. Examples of Shell Scripts using Operators
8.4.1. And and Or OperatorsS .eeeescvscersesoscssne
8.4.2, Relational, Equality OperatorsS ..ceeevecas
8.4.3. Shift OperatorsS .tceeessessescssonsoassansas
8.4.4. Math ODCratoOrS .teieeeecccssccssccssrnsoccsan
8.4.5. Other OperatoOrsS ..ceesecsssoessscssasacses
8.5. File INQUiry OpPEratorS ceveeesesosccscsscssnsnans
8.6. Options to the Csh Command ..eeeveessescccensons
8.7. Comment Lines in the Shellcieeescrecccnces

0 0 0

I2
‘3
-4

11
NROOOIO D WH

00 00 00 o 00 0 W W W D
I |

@ o
I
e

\% Zilog v

C SHELL

Zilog C SHELL

SECTIONg CSHELL FILES 4 8 8 6 @ 0 8 0 % 6 " 0 S S O S BSOS S O S0

9.1

.

Xe]
.
N

WO OWOWOWOWOW:*s OO
NNNNNMNNNNNNNDOHEFHN

t

¢ s & e * o * a2 (T e
OB WNHIT oD
e« o s o e o ¢ o (Do

E-Up FileS suieivreeeeossnssssscocnsosssosnss
T/ eCSNEC vt eeeescssssnoncsssssosssnenonas
B = T B 1 o

t Related C Shell FileS .ieeeesoasorosnnvens
B o T < §
B = X o
/DiIN/Sh tiiieeeeeerecvesasasssnssannsccascas
/bin/CSh tiiiceeererieesossssoasssssscssssas
/Aev/NULll L et cr et errcs vt veeerssessensanee
/Jetc/cshprofile ..ciieeeeevsnsnoscnssnsenns
/etc/passwWd .ttt eirensearrsssssesensasas
8% 1) = 728 =

SECTION lg THE ENVIRONHENT ® ® 8 0 00 00 0 00 00 00O s o

10.1.
19.2.

10.2.1.
10.2.2.
190.2.3.
10.2.4.
19.2.5.
10.2.6.
19.2.7.

Environment VariablesS ...ivieecescossscccsnsss
Environment Variables Explainedccceesevsse

19.2.8. TZ

EXINIT oecoecoscsoevacsscssscosossssancnonas
HOME svcovecocsssonssscsvssssccasosnccsscsss
LOGNAME s .ivceveceecoccocsscssssscsncsonsnsce
PATH cceceesocecescssconscosssccssssncsonsese
SHELL seeevevrvesocesosccsosrsscsssnassoncae

TERM ® S 5 6 0 0 B A S O SO SV GO VLR OE SISO

TERMCAP ® 8 2 5 0 06 0 0 0 0 P P E PP OGSO PN SO e e e s

® 6 0 6 ° 0 0 O I 0V E SN O P S GOSN E e e

APPENDIXA GLOSSARY ® @ & & & 5 8 & & 6 5 H S O 0 0 O B B P S S OO S S e PO e

APPENDIX B C SHELL ERROR MESSAGES .ccccevecossnsassees

vi

B.1l.
B 2.

Error Messages Explainedceeeeeosnscccnscss

The List

® 6 8 @ 0 0 2 0 8 P G P S N S SV G S P TSSOSO OB Le N s

Zilog

(e}
i
—

| B I I | I T T I |
MWW JITIJAAEN -

O WO WWYWWWWWYWYWO W
I

19-1

10-1
19-2
19-2
10-3
19-~-3
10-4
10-4
10-4
12-5
18-5

vi

C SHELL

Table

NN N
1
wN -

WWwwwww
! [
AU W N

NG RN TS
1
Ul WN -

o n
|
N =

[e)We))
[
N

|

WO NN
| I 1
W BdWN

|

vii

Zilog

List of Tables

Conditional Command Operator Summary ...

Command Structure Summary

Filename Substitution Character Summary
Metacharacter Summary

Quoting Devices

® 06 0 0 0006 00 000 00

Input and OQutput Redirection Summary ...

® 5 8 @ 00 0 0000000008 00

C SHELL

® o 0 0

S 6 0 6 06 0 0 5 0 60 5 S0 00 00PN

Quoting Device SUMMALY eeeeeocisososssasscsense

The Effect of Quoting Devices
List of Metacharacters that Must Be Escaped

Common Forms of History Manipulation

Accessing Previous Commands

Accessing Previous Command Words
Modifying Previous Command Words
Metacharacters in History Substitutions

Built-in Command
Built-in Command

Built-in Command
Built-in Command

C Shell Predefined variables
Variable Substitution Syntax
Metacharacters in Variable Substitution
Variable Substitution Modifier Table

Relational Operators in C Shell Scripts
File Inquiry Operators

Summary
Summary

Summary
Summary

Options to the Csh Command
Shell Script Shell Indicators

® o 00 00 00 00 0 8 00

® 5 0 800000000 000

Group 1
Group 2

Group 3
Group 4

o o e

o e 0

LR)

e % s 000 00 0 0 ¢

® e 0 0 000 0 0 0 0

e

® 5 6 0 0 00 020 0o

e o & 0

SpeCial Files © ¢ 9 5 9 0.0 0 0 8 20 e e PO e e

Environment Variables

Zilog

e o 0 0 000 0 00

o o o oo

e o o o
¢ o ¢ o
e o o 9

® @ 0 0. 0 00 0 00 0060 0000000 o0

2-6
2-14
2-15

3-5
3-22
3-23
3-23
3-23
3-24

4-2
4-7
4-10
4-13
4-16

vii

C SHELL Zilog C SHELL

viii Zilog viii

C SHELL Zilog C SHELL

List of Illustrations

Figure
5-1 Representation of the Fork ProcesSsS ..eec¢eees. 5-15
6-1 A Basic ForeacCh LOODP ceteeescecessossesonscse 6-9
6-2 A Basic While LOOP eteeeeccosveososoconnsoccssss 6=10
6-3 An If Statement in a Foreach LOOD .eseeeseess 6-11
6-4 An Enhanced If Statementcciieeveeresseses H=-12
6-5 A Switch Statement in a Foreach LooD 6-14
6-6 A Break Statement ...cececccscescsssccssescass 6-16
6-7 An Example of the Continue Statement 6-18
6-8 An Example of the Goto Statementc.ccceee. 6-20
6-9 An Example of the Shift Statement¢¢.... 6-21

8-1 Trutll Table € ® 0 0 0 00 200006 000600000000 000008000 8""5
9-1 A Sample “/.cshrc File ..iiieeeecosssosccssnoces 9-2
9"2 A Sample ~/.lOgiﬂ File ® 6 0 2 0 0 00 0 9 0 0000000 s 9"'4
9"'3 A Sample ~/.10gOUt File ® 6 0 0 00 000000000000 000 9‘-6
9-4 A Sample ~/.eXtC File ® 0 5 8 009000000000 0000° 0000 9—7

ix Zilog ix

C SHELL Zilog C SHELL

SECTION 1
AN INTRODUCTION TO THE C SHELL

1.1. What is a Shell?

A shell is an interactive program that interprets and exe-
cutes commands. It is the software interface between com-
mands typed at the terminal, and the functions of. the com-
puter. '

The shell also determines the qualities of each operating
environment. The options and variables set for the shell
become the options and variables established for each com-
mand.

Upon login, the operating system (ZEUS) initiates a C Shell
process for the user. This interactive process is the user's
login shell, it is the parent process for all subsequent
processes (known as child processes). The login shell is an
environment that defines the basic parameters of interaction
between the user and the operating system.

The login shell defines the home directory for the user, it
defines the path to any commands .that may be used, the
prompt given to the user to indicate that: the system is
ready for another command, the shell to be used, and the
type of terminal in use. '

If no modifications are made to that environment, its param-
eters default to a limited set of qualities.

Each user can customize this environment to suit individual
taste, need, and/or application. The qualities of the shell
environment can be altered by establishing new shell vari-
ables, or by changing existing shell variables.

ZEUS supports two shell programs each with its own set of
commands and variables. The default shell program for ZEUS
is the C Shell (written by William Joy at the University of
California, Berkeley).

The second shell program is the Bourne .Shell (also known as
"the shell" because it was the first). The Bourne Shell was
written by S. R. Bourne of Bell Laboratories. (see sh(1l) and
The Bourne Shell in the Zeus Utilities Manual).

The C shell is moderately more powerful than the Bourne
Shell bhecause of its enhanced command structure and its use

1-1 Zilog 1-1

C SHELL Zilog C SHELL

of conventional C programming syntax. Either shell program
will serve as the 1login shell, and either program can be
called interactively from the terminal.

1.2. Conventions in this Document

Bold
Information in Bold is typed literally -~ commands such
as 1ls are typed into the terminal just as they appear
on paper. In the following example, the command date is
typed exactly as it is shown:

date

Underlined

In the examples, underlined words are sample words only
-~ not the literal word. They can or must be replaced
by words of the user's own choosing. In the following
example:

date > filename

the filename must be replaced by the name of a file
created by the user, or to which the user has access.

Outside of examples, words are underlined to illustrate
that they have special meaning in the ZEUS operating
system, but are not necessarily commands. For example,
the term pipe refers to both the vertical bar " | "
character and the process of feeding the output of one
command into the input of the next command. However the
word pipe is not a command. The names of pre-defined C
shell variables are also highlighted in underlining.

Underlining is also used to highlight words in a bold
expression, as in a section header.

command (1)

A word followed by a single number in parentheses as in
1s(1l) is a command, the word in bold is the command and
the number in parenthesis " (1) " refers to the docu-
mentation section in the ZEUS Reference Manual.

In this case, refer to Section 1 of the ZEUS Reference

Manual. The commands in the Reference Manual are
arranged alphabetically within each section.

1-2 Zilog 1-2

C SHELL Zilog C SHELL

quotes

Special characters are printed in bold and within
quotes as in "?" to distinguish them from document
text.

Examples:

The examples used in this document are drawn from the
Zilog Systems Publications System 8@0@¢. In many cases
the file names, user names, and file system configura-
tion will be different from any other installation.

Each user may obtain different data from the examples,
depending upon the installation.

An example of a command takes the following format:
command operator filename

It is indented from the body of the text and separated

from the text above and below by a blank line. In some

cases a simple example may occur within the body of the
text, e.g. to show the 1s(1l) command.

Variable Names

When variables are called, either at the terminal or in
a shell script, they are preceded by a dollar sign "$"
as in the command:

echo $PATH
when variables are explained in the text, they are

referred to without the dollar sign prefix. See echo(l)
and Section 14.

SYNOPSIS:

The synopsis line(s) demonstrates the syntax of a given
command illustrating where the options, flags, or keys
are placed (if any), and where the filename 1s placed
(if any). The following example demonstrates a
"SYNOPSIS:" section:

SYNOPSIS:

date > filename

Zilog 1-3

C SHELL Zilog C SHELL

If more than one line appears, it means that the item
being explained is used more than one way.

Square brackets []

Within the SYNOPSIS line, square brackets indicate that
the material they enclose is optional, it can appear in
the command, but is not mandatory. In the example:

echo [-n] string

the " -n " flag is optional. It can appear, but can be
omitted. In the acutal command typed into the terminal,
only the options are typed, not the braces.

Ellipsis ...

Three dots in a row " ... " indicates that the preced-
ing element can be repeated any number of times. In the
following example:

command {iteml,item2,...}

the ellipsis indicates that there can be any number of
items between the braces.

DEFAULT ¢

ALSO

In the DEFAULT section, the value that exists for a
variable (unless another is specified) is shown.

SEE:
If reference is made to Section 3 -- Filename Substitu-
tion it refers +to Section 3 of this document. The

"ALSO SEE:" section also refers to other documents in
the ZEUS Utilities Manual, and other manuals in the
ZEUS and System 8000 collection.

Capital Letters

Capital letters are used in proper names, and at the
beginning of new sentences. If a sentence begins with a
command name that command name will be capitalized even
though all built in ZEUS commands must be typed in
lower case letters.

The rnames of environment variables such as PATH are
named in all capital letters by convention.

Zilog 1-4

C SHELL Zilog C SHELL

Split.Words

Some expressions are really two words, but must be
written (typed into the computer) as one word because
of the way the computer interprets Dblank spaces. 1In
such cases, the expression can be presented as two
words separated by a dot or an underbar (instead of a
space character) as in:

command.l
or
READ ME

this conforms to the convention for naming files that
is popular with experienced ZEUS users.

zilog 1-5

C SHELL ' Zilog C SHELL

‘SECTION 2
TYPING COMMANDS TO THE C SHELL

Commands are typed into the computer in response to a
"Eromgt". .
2.1. The ZEUS Prompt

A prompt is a signal from the computer that it is ready to
accept user input. It prompts the user to type a command.

On the ZEUS system, the default user prompt 1is a percent
sign' " g ".

2.2. Command Syntax

Many commands in the ZEUS system consist of a single word
followed by a "RETURN" character. These are known as simple
commands, and are entered with the following syntax:

command

An example of a simple command is the date command, which is
entered as:

date

and produces results similar to:

—— i s — ot

Most commands can be modified to supply more or Dbetter
information. Modification takes the form of one or more
arguments in the form of options, flags, keys, or filenames.

Commands with arguments are typed into the terminal keyboard
with the following syntax:

command option flag key and/or filename

Each command determines its own syntactic requirements, i.e.
the author of the program writes the syntactic requirements
into the body of the program.

2-1 Zilog 2-1

C SHELL Zilog C SHELL

Some programs require that a minus sign " = " begin an
option, flag, or key. The 1s(l). program requires that
options begin with a minus sign. The " 1 " option provides a

long listing of the files, it is typed as:

ls -1
Other programs make the minus sign optional. The tar(l)
(tape archiver) program options don't use the initial minus
sign. The " t " option provides the table of contents for
the files in the tape archive, it is typed as:

tar t

Some programs, like the tar program require that an option,

flag or key be the second argument to the command; others,

like the 1ls program, make the arguments optional.

Multiple words in a command are separated by blanks (spaces

or tabs), or semi-colons, with the first word indicating the

action and the remaining words serving as arguments as in:
1s -1

where the " -1 " flag is an argument to the 1ls command
instructing the computer to provide a long list.
2.3. Simple Commands
SYNOPSIS:

command
A command is an instruction to the computer. A simple com-
mand consists of one or more characters typed into a com-
puter terminal at the "prompt". The command is terminated

with a "RETURN" character.

A command consists of at least one word that specifies an
action to be taken. For example:

1s

is the command requesting a list of the files and direc-
tories in the current working directory. See 1ls(1).

The 1ls command produces results in the following format:

2-2 Zilog 2-2

C SHELL Zilog C SHELL

csh.gl csh.#3 csh.#5 csh.f7 csh.9A csh.9T
csh.@2 csh.@4 csh.d6 csh .28 csh.9B temp

each name refers to a file or a directory in the current
directory.
2.4. Compound Commands
SYNOPSIS:
command.l; command.2
Sequences of commands can be separated by a semi-colon, and
are then executed sequentially, as in:
1s; who ; pwd; date
producing results in the format:

csh.g1 csh.g3 ¢csh.@5 csh.@7 csh.9A csh.oT
csh.02 csh.04 csh.06 csh.28 csh.9B temp

patty ttyd Nov 23 08:04
deck tty2 Nov 23 ©9:38
carol tty8 Nov 23 #8:17
craig tty9 Nov 23 @8:36

/z/deck/Util/New.csh
Tue Nov 23 14:14:35 PST 1982

See 1s(1), who(l), pwd(1l), and date(1l).

2.5. Running a Command in Background
SYNOPSIS:
command &

Because some commands take several minutes to complete the
ZEUS system provides a mechanism for running several com-
mands at once by detaching the commands from their depen-
dency upon the terminal -- this is known as running the com-
mands detached or in background.

Control of the terminal is returned to the user while the
command continues to execute in another part of the com-
puter. A command runs in background when it 1is followed

with an ampersand (" & "). Error diagnostics, unless other-
wise instructed, return to the standard error output device
-- the terminal. For example a command to compile a C

2-3 Zilog 2-3

C SHELL Zilog C SHELL

program called test.c takes the following form:

cc tqu.E &

(See cec(l) in the 7Zeus Reference Manual (ZRM) for wore
information on the C compiler.)

Verification that the compile process is running comes from

the ps(l) command. The full exchange would take the follow-
ing form:

% cc test.c &

2999
% ps
PID TTY TIME CMD
1309 2 P:19 csh
2999 2 B:98 cc
3002 2 @:83 ps

The cc test.c & command starts a compile process. A process
identification number appears on the screen, followed
immediately by the next prompt. The ps command 1is entered
as soon as the prompt appears, even if the previous process
is still running and the current processes are displayed.

2.6. Running a Command in a Subshell
SYNOPSIS:

(command)
Commands in parentheses are always executed in a subshell.
In the following example, running the command in a subshell
prevents cd from affecting the current shell.
Thus the command:

(cd; pwd)

prints the name of the home directory, leaving the current
working directory untouched, while the command:

2-4 zilog 2-4

C SHELL Zilog C SHELL

cd ; pwd

changes the current working directory to the home directory
and then prints the name of that directory, leaving the cur-
sor in the home directory. This command structure is useful
as a temporary escape from the current working directory.

ALSO SEE:

cd(1)

2.7. Conditional Command Operators
SYNOPSIS:

command. 1 && command.2
command.1l || command.?2

An operator is a symbol that changes the way a command
works. In mathematical commands (like be(l), and dec(l) the
on-line calculators), the standard math operators are "+",
mat, "*" agnd "/" for "add, subtract, multiply and divide"
respectively.

The following two operators are "logical" operators, the
logical "and" operator, (&&) and the logical "or" operator
(Il). These operators separate two commands on a single
line, and determine whether one or the other, both or nei-
ther command is executed.

The determination is based on whether or not the first com-
mand executes successfully. If the first command executes
without an error it is said to have executed successfully,
and returns a status code of zero "@".: If it executes unsuc-
cessfully it returns a non-zero exit status, usually a "1".

Unfortunately, the "¢" means "false" and the "1" means
"true" to the C shell, and to these conditional operators,
thus, the syntax of the operators seems somewhat reversed
when used on commands .

The following table demonstrates the results of these opera-
tors.

2-5 zilog 2-5

C SHELL 7ilog C SHELL

Table 2-1 Conditional Command Operator Summary

First Second
command operator command
executes executes
yes "or" = yes

no "or" = no

no && "and" = yes
yes && "and" = no

In the command:

1s || date
the C shell executes both 1ls and date
In the command:

bogus.command || fake.command

the C shell tries to execute bogus.command and failing, does
not attempt to execute fake.command.

In the command:

bogus.command && ls

the C Shell tries to execute bogus.command and failing, exe-
cutes ls.

Finally, in the command:

ls && bogus.command

the C shell executes the 1ls command, and succeeding, does
not attempt to execute bogus.command. ALSO SEE:

Section 7 -- Shell variables -~ the Status Vatriable
Section 8.4.1 -- C Shell Scripts -- And and Or Operators
2.8. Command Substitution

SYNOPSIS:

“command*

2-6 | Zilog 2-6

C SHELL Zilog C SHELL

A command inside back quotes will be executed and the output
of the command replaces the command itself.

For example, the command:
echo "Today is ‘date™"

produces output similar to:

2.9. Input/Output Control

The ZEUS system has three channels of communication between
the user and the computer, one standard input channel and
two channels of output, the standard output and .the error
output.

By default (unless otherwise specified) input comes into the
computer via the terminal keyboard. This is the standard
input. Output goes from the computer to the terminal screen
and 1is the standard output. Any errors resulting from the
execution of a program produces an error message to the ter-
minal screen. This is the standard error.

There are circumstances in which input must come into a pro-
gram from some other sources (e.g. from a file). Likewise,
there may be a need to redirect the output and the error
messages.

Although the standard input, output and error channels
default to the keyboard and the terminal screen, they can be
changed using greater than ("»") and 1less than ("<") the
following sections demonstrate the redirection syntax.

2.9.1. Input Redirection -- < :
SYNOPSIS:

command < com.list

The file com.list is opened and its contents are used as
input for the command. As in:

wce < text.file

which uses text.file as the input for the word count command

2-7 zilog 2-7

C SHELL Zilog C SHELL

wc(l). This produces results in the following format:

474 2055 12623

The first number is the number of lines, the second number
is the number of words, and the last number is the number of
characters in the file.

Another example is to create a file called com.file with
ex(l) editor commands, e.g. a command to remove all the
leading blank spaces from all the lines. The command:

ex test ¢ com.file

invokes the ex editor on the file test, but instead of tak-
ing editor commands from the standard input (the keyboard),
the commands are read from the fille com.file.

ALSO SEE:

wc(l) ex(l) and The Ex Reference Manual in the ZEUS Utili-
ties Manual.

2.9.2. Input Within a Script -- <<:
SYNOPSIS:

comménd << label

A shell script is a file of commands that are executed one
at a time by the shell, just as if they were typed into the
the terminal at the prompt. In most cases, commands within a
shell script draw input either from the terminal or from
other files, but in some cases it may be necessary to draw
input from the shell script itself. (See Section 8 -- The
Csh Command and C Shell Scripts)

The double less than symbol permits a shell script to take
data from within its own text (rather than relying on data
from external files).

This is most useful in the context of editor scripts; con-
sider the following shell script:

2-8 Zilog 2-8

C SHELL Zilog C SHELL

deblank -- remove blank lines
ex test << 'EOF'

g/"s/d

W

q
' EOF'

In the example, the line:
ex text << "EOF’

means that the file test is edited with the ex editor, and
that the command input for ex comes from the body of the
shell script, rather than from some external source (like
another file).. The " << 'EOF' " notation means that the
input is taken "up to "EOF'". Single quotes around " 'EOF' "
prevents any variables from from being expanded to the con-
tents they contain. (See Section 7 -- Shell Variables)

ALSO SEE:

ex(1l) and The EX Reference Manual in the Zeus Utilities
Manual.

2.9.3. Output'Redirection - >
SYNOPSIS:

command > testl

The file testl is used as output. If the file does not
exist, it 1is <created:; if the file -exists, it is over-
written, and its previous contents are erased. The command:

ls -1 > test2

puts the output of the 1s -1 command into a file named
test2.

NOTE

A file is always erased (if it exists) before the
new information is written into it.

The command

cat filel > file2

2-9 zilog 2-9

C SHELL Zilog C SHELL

erases any information in file2 before putting the contents
of filel into it.

NOTE

To prevent the accidental erasure of a file, the
noclobber variable can be set with the command:

set noclobber

ALSO SEE:

Section 2.9.6 "Overriding noclobber" for examples, and Sec-
tion 7.1 for more details on Predefined C Shell Vvariables
(noclobber) and cat(l).

2.9.4. Aadding to the End of A File -- >> :

SYNOPSIS:

command >> file

The double greater than sign construction (" >> ") adds the
output of command to the end of file instead of erasing file
first.
If file does not exist it is created automatically.
For example, if filel consists of 3 lines:
Now is the time
for all good people
to come to the aid of their party
and file2 consists of 1 line:
The quick brown fox jumps over the lazy dog
Then the command:
cat filel >> file2
produces a new file2 that contains 4 lines:
The quick brown fox jumps over the lazy dog
Now is the time
for all good people
to come to the aid of their party

Note that the contents of filel have been appended to the

2-10 Zilog 2-10

C SHELL Zilog C SHELL

end of file2.

2.9.5. Standard Error Redirection —-- >& :
SYNOPSIS:
command .>& file
The greater than sign followed by an ampersand (" >& ")

routes error messages into the specified file along with the
standard output.

Given the command:

cat bogus.file > new.file

if bogus.file does not exist, an error returns:

cat: cannot open bogus.file

using the greater than sign, ampersand construction, the
command :

cat bogus.file >& new.file

redirects any error messages to the file new.file, and can
be examined as any other text file.
2.9.6. Overriding Noclobber —- >1:
SYNOPSIS: | |

command >! file
If file exists and the C shell Qafiable noclobber is set, a
command using the simple form of output redirection (" > ")

fails and an error message results. In the command:

cat filel > file2

if file2 exists, the_command produces the error message:

file2: File exists.

The noclobber variable inhibits accidental destruction of
files. In this case, the greater than sign, combined with
the exclamation point (" >! ") form of redirection can be

2-11 Zilog 2-11

C SHELL Zilog - C SHELL

used to suppress this check.
The command:

cat filel >1 file2
succeeds, file2 is overwritten by filel even if file2 exists
and the noclobber is set. The command produces no error
message.
2.9.7. Output, Error, and Noclobber -- >&l :
SYNOPSIS:

command >&! file
This form combines the ampersand (" & ") and exclamation
point (" 1 ") constructions mentioned above, directing error
output to the file, and overriding the noclobber variable if
it is set.
2.9.8. Appending and Standard Error —- >>& :
SYNOPSIS: |

command >>& file
This form combines the "Adding to the End of a File" (double
greater +than construction) with the "Redirecting the Stan-
dard Error" (ampersand), appending the output of command and
any error messages to the end of file.
2.9.9. Appending and Noclobber - >>1 :
SYNOPSIS:

command >>1 file

This form combines the "Adding to the End of a File" (double
greater than construction) with the "Overriding the
Noclobber variable" (exclamation point), appending the out-
put of command to the end of file without regard to the
noclobber variable (if it is set).

2-12 Zilog 2-12

C SHELL Zilog C SHELL

2.9.10. Appending, Nbclobber,‘Error -— >>&! =
SYNOPSIS:
command >>&! file
Appends the output at the end of file. If the variable
noclobber is set, it is ignored, and the standard error is
also appended.
2.19. Pipes
SYNOPSIS:

command | command

A sequence of simple commands separated by a vertical bar
" | " also known as a pipe forms a pipeline. The output of
each command in a pipeline becomes the input of the next.
This example:

who | grep chuck

takes the output of the who(l) command and pipes it through
the command grep(l) to extract the line with the word chuck
if that line exists.

This command is equivalant to redirecting the output of the
who command into a temporary file and then running the com-
mand grep chuck on that temporary file and removing the tem-
porary file as in the sedquence:

who > temp
grep chuck temp
rm temp

The command:
who

produces a list in the following format:

karen ttyd Nov 23 @08:04
chuck tty2 Nov 23 ©9:38
mike tty6 Nov 23 14:5@
carol tty8 Nov 23 08:17

george tty9 Nov 23 ©8:36

2-13 zilog 2-13

C SHELL Zilog C SHELL

The output is redirected to a file with the command:
who > temp
The line with the word chuck is extracted with the command:

grep chuck temp

to produce the output:

chuck tty2 Nov 23 ©9:38

and the temporary file is removed with the command:

rm temp
All of this can be accomplished with the pipe mechanism as
in the command:

who | grep chuck

which produces the desired output:

chuck tty2 Nov 23 99:38

The following tables show summaries of the command structure
and I/0 redirection characters.

Table 2-2 Command Structure Summary

command Simple command

command flag Command with an option argument

command filename Command with a filename argument
command; command Compound command

command & Running a- command in background

(command) Running a command in a subshell

‘command*® Command substitution

2-14 Zilog 2-14

C SHELL

Zilog

C SHELL

Table 2-3 Input and Output Redirection Summary
Symbol Meaning
< Take input from
<< Take input up to
> Redirect output
>& Redirect output and error
>1 Redirect output -- override noclobber if set
>&! Redirect output and error; override noclobber
>> Append output
> & Append output and error
>>1 Append output and override no clobber
>>&! Append output and error; override noclobber
| from first command is input for second

Output

Zilog

C SHELL Zilog C SHELL

SECTION 3
FILENAME SUBSTITUTION _
AN INTRODUCTION TO METACHARACTERS

3.1. Characters for Filenames

The C shell provides a method of shorthand communication.
In the case of filenames, the shell provides a number of
special characters (known as metacharacters, magic charac-
ters, or wild-card characters) that will expand to the names
of files and directories according to specific rules.

The process is also referred to as pattern matching and
filename expansion. When a metacharacter is used, names of
the files and directories are scanned to see if the pattern
set by the metacharacter is matched by any of those file
and/or directory names.

The true qualities of a metacharacter are revealed with the
echo command. The command:

echo metacharacter

will return the pattern the metacharacter stands for.

- That pattern matching takes place under the following rules:

Asterisk -- *
SYNOPSIS:
command *
The asterisk is a very powerful character. It |is
shorthand for "any pattern”™ in file and directory
names. For example, the command: :
ls *
lists all files and directories. The command:

1s a*

lists all files and directories that begin with the
letter "a". Lastly, the command:

ls /z/deck/U*/*

3-1 Zilog 3-1

C SHELL Zilog C SHELL

lists all the files and directories under the directory
or directories in /z/deck that begin with the letter
Ilull. B

Question Mark -- ?

SYNOPSIS:

command ?

' 'The question mark is shell shorthand for ‘"any single
character”. Thus the command:

1s 2272

lists all the files and directories with three (and
only three) character names. For example, the files:

abc dog psl

match the string "???" while the following files do
not:

filel jj make.p test.c

The characters can be letters, numbers, or any other
legitimate (non-metacharacter) filename character.
Similarly, the command:

1s csh.??

will produce a list of the files and directories that
start with "csh." and end with any two characters. For
example, the files:

csh.@l csh.@2 csh.@3

match, while the files:

csh.l csh.test csh.A

do not.
Pattern/range -- [A-Z]
SYNOPSIS:

command [beginning of range-end of rangel

Sguare brackets define a range of characters that match

3-2 Z2ilog 3-2

C SHELL Zilog C SHELL

any single character falling within that range (alpha-
betical or numeric).

1s csh.@g[1-9]

lists any file starting with "csh.@" and ending with a
number 1 through 9. e.g. csh.@l csh.@2 csh.@3 csh.g4
csh.@5 csh.@6 csh.97 csh.@8 csh.g9. The command: -

—_— ——— — ——— ——

ls csh.[1-31[1-9]

will list all the files from "ecsh.ll" to "csh.39".
Other characters can also be specified in the range =--
the range proceeds along the ASCII numbering scheme.
With the exception of special characters, the ASCII
ordering sequence runs from 0-9, A-Z, and a-z. Thus
the full range of alpha-numeric characters (and some
non-alpha~numeric characters) 1is covered with the
expression @-z.

ALSO SEE:

ascii(7)

Abbreviation -- {A,B,C}
SYNOPSIS:

command {item.l,item.2,...}

The braces refer to a selection of characters or
strings -- any one of which may or may not match a file
or directory. The command:

ls file.af{b,c,d}e
lists the files:

file.abe file.ace file.ade

if they exist, similarly, the command:
1s /usr/man/manl/{csh,ls,dog}.1
matches the files:
/usr/man/manl/csh.1

/usr/man/manl/ls.1
/usr/man/manl/dog.1

3-3 Zilog 3-3

C SHELL Zilog C SHELL

The selection of characters or strings need not be in a
range, or in any particular order. They need not be the
same length. but they must be separated by commas with
no spaces between them.

Tilde —-- ~
SYNOPSIS:

command ~
command “user.name

The tilde serves as an abbreviation and refers to the
user's home directory reading the name of the directory
from the HOME variable..
The command:

s -1 ©
expands to this user's home directory:

1s -1 /z/deck
When followed by a name, the shell searches for a user
with that name and substitutes their home directory;

thus the command

1s -1 “carol

expands to

1s -1 /z/carol
If the tilde "™" is followed by a name, other than a
name in the password file, or a slant "/", it is taken
as a literal tilde by the shell. For example, in the
command: :

cat “filename

the shell 1looks for a file with the exact name
"“filename".

A summary of the filename expansion characters appears in
the table below.

ALSO SEE:

Section 19.1 -- Environment Variables.

3-4 zilog 3-4

C SHELL Zilog C SHELL

Table 3-1 Filename Substitution Character Summary

* Any string

? Any single character

[A-Z] Any character in the range A to Z
{p,B,C} Any element from the set A, B, or C

Home directory or user name.

3.2. The Full Metacharacter Set

Filename expansion is one example of the way the shell uses
special characters. Each of the following characters has
some special meaning to the shell and/or the ZEUS operating
system.

The list below describes these characters in their order of
appearance 1in the ASCII ordering scheme, and their special
meaning in the C Shell, the History Function and the operat-
ing system.

Space "' '

SYNOPSIS:

command space arguments

command tab arguments
The space character delimits words in commands. When a
compound command is typed, the Shell uses blank space
-- the space or tab characters -- to distinguish the
various components. This process of separating a com-

mand into specific words is known as "parsing" the com-
mand. The command:

1s -1 /tmp /z /usr/spool
is understood by the Shell because the component parts
are broken into recognizable bits by the delimiting
spaces.
Exclamation point * ! '

SYNOPSIS:

Icharacter, number or string

The exclamation point is used in the Shell to initiate

3-5 zilog 3-5

C SHELL Zilog C SHELL

a call to the shell's history mechanism (See Section
4) . Previously tvped commands are numbered from one,
saved 1in a thistory 1list and can be re-invoked using
this device. The command:

l1s
searches back through the history list to find and exe-
cute the most recent command that begins with the
string 1ls. The command:

13

searches back through the history list to find and exe-
cute command number "3". The exclamation point is also
used in a variety of programs to call the shell.

ALSO SEE:

Section 4 -~ The History Function

Double gquote ' " °

SYNOPSIS:

command "string"

The double quotes character (") is used on either side
of an expression to inhibit the expansion of various
other special characters. The command:

echo *
expands the asterisk metacharacter "*" to all file and
directory names in the current directory, while the
command :

echo "*"
merely echos the asterisk.

ALSO SEE:

Section 3.3 =~- Quoting -~ Preventing Metacharacter
Expansion.

Pound Sign ' # '

SYNOPSIS:

comment

Zilog 3-6

C SHELL Zilog C SHELL

The Pound Sign is used as the first character in a
shell script to indicate that the C Shell is to be used
to execute the script. The pound sign is also used
inside the body of a shell script to begin a comment --
the pound sign tells the C shell to ignore the rest of
the line. 1Inside the body of a shell script, the line:

this is a comment line

will be ignored by the shell.
ALSO SEE:

Section 8 -- Shell Scripts

Dollar Sign ' § °

SYNOPSIS:

command $variable
command §$S

The Dollar Sign has special meaning in a variety of
circumstances. When used with a variable name, as in
the command

echo $prompt

it refers to the shell variable ‘"prompt". When used
with the history mechanism, as in the command:
1

it refers to the last element of the last command. If
the last command is:

1s -1 /z/joe/file.1
the command:

cat 1§
produces the results as if the command had been:

cat /z/joe/file.1l

ALSO SEE:
Section 7 -- Shell Variables
Section 4 -- The History Function

Zilog 3-7

C SHELL Zilog C SHELL

Ampersand ' & '

SYNOPSIS:
command &
IN:s/%x/&/

command && command

In the first case, the Ampersand, used at the end of a
command runs the command in background -- control of
the terminal is returned to the terminal even if the
command is not completed. The command:

cc tesg.c &

begins a compile process and immediately returns a
prompt. At that point another command can be issued,
eaven while the compile process is still running.

In the second case the Ampersand also stands for "the
string just substituted" in a history substitution.

In the third case, the ampersand is used as the logical
"and" operator in conditional commands.

ALSO SEE:

Section 2.5 -- Running a Command in Background
See Section 4 -- The History Function

See Section 2.7 -- Conditional Command Operators

Single quote "'"

SYNOPSIS:

command ‘'string’

The single quote is another quoting device used by the
shell to inhibit or prevent expansion of special char-
acters. The command:

echo S$Sprompt
produces:

3

while using double quotes, as in the command:

Zilog 3-8

C SHELL Zilog C SHELL

Left

echo "$prompt"
also produces:
%

To prevent the string "$prompt" from being expanded by
the shell, single quotes must be used. The command:

echo '$prompt’
produces:

Sprompt

ALSO SEE:

Section 3.3 ~-- Quoting -~ Preventing Metacharacter
Expansion.

Parenthesis ' ('
SYNOPSIS:

(command) ‘
foreach variable (list)

In the first case, a command issued within parentheses
is always executed in a subshell. It is rather like a
temoporary escape into another working environment, for
example, if the present working directory is /tmp and
the following command is issued:

(cd ; pwd)

the C Shell creates a new C Shell and executes the com-
mand within that new shell. The subshell dies and con-
trol returns to the parent shell from which the command
was issued. The present working directory remains /tmp.
This is significantly different from the command:

cd ; pwd

which causes the present working directory to change to
the home directory.

In the second case, parenthesis are used to delimit a
word list in shell loops, as in the statement:

Zilog 3-9

C SHELL Zilog C SHELL

foreach 1 (1 2 3 4)

The parentheses indicate to the shell that the list "1
2 3 4" is to be used as the loop control mechanism.
This also applies to the if, while, and switch state-
ments, covered later.

ALSO SEE:
Section 2.6 -- Running a Command in a Subshell
Section 6 -- The C Shell Programming Language Structure

Right Parenthesis ') °

SYNOPSIS:

{ command)
foreach variable (list)
while (expression)

The right parenthesis ends a loop control mechanism, or
a subshell command. :

Asterisk ¥ * !

Plus

SYNOPSIS:
command *

The Asterisk is a filename expansion character, it
matches any pattern.

ALSO SEE:

Section 3.1 -- Characters for Filenames
Sign ' + '

SYNOPSIS:

number + number
variable++

In the on-line calculators (dc(l) and bc(l)) and in the
math functions of C Shell scripts, the plus sign is
used in the addition function. 1In the body of a shell
script, the line:

Q@ X=(6 + 6)

gives the variable "X" the value of 12. The plus sign

Zilog 3-19

C SHELL Zilog C SHELL

is also used to increment variables, as in the state-
ment:

@ i++

which increments the value of i by 1 each time the
statement is executed.

In the following shell script, the variable i is incre-
mented within a loop:

the name of this file is "test.file"
Q@ i=1
while (1) '
echo §i
Q@ i++
end

It is executed with the command:
csh test.file

and it produces the following output:

NoOobdbwnhe

until an interrupt (the DELETE key) is hit.

ALSO SEE:

Section 5.3.9 -- The "At Sign" @

Comma ’

SYNOPSIS:

command {iteml,item2}

The comma is used to delimit elements within braces. In
the command:

zilog 3-11

C SHELL Zilog C SHELL

the commas are necessary dividers between the digits 3,
5, and 7.

ALSO SEE:

be(l), de(l)
Section 7 -- Shell Vvariables.

Minus ' - °

SYNOPSIS:

number - number
@ variable-=
command ~(flag, option, or key)

Like the plus sign, the minus sign is used as the sub-
traction operator within shell scripts. It is also used
as a variable decrementer. The following shell script:

the name of this file is test.file.2

@ i=15
while (1)
echo $i
Q@ i--
end

The shell script is executed with the c¢sh command as in
the example above, and it produces the following out-
put:

15
14
13
12
11
19
9

until an interrupt (the DELETE key) is encountered.
Of special importance to the shell, the minus sign is
used to initialize flags, options, or keys for many
Shell commands as in:

1s -1

ALSO SEE:

Zilog 3-12

C SHELL Zilog C SHELL

Section 5.3.9 -- The "At Sign" @

Section 2 -- Typing Commands to the C Shell
bot ' .’

SYNOPSIS:

command .
.filename

Though not specifically a function of the C Shell, the
period (always referred to as "dot") is used by the
operating system to mark the current working directory.
The command to copy (cp(l)) a file to the current
directory takes the following syntax:

cp /tmp/karen .
This command is shorthand for the command

cp /tmp/karen (current working directory)

When used as the first character in a filename, the dot
makes the filename transparent to a standard 1ls command
("dot" files will show up with the "-a" option, as in
"g _a") .

In the second case, there are several "dot files" that
are of special importance to the shell. The .login file
is read by the Shell at login, the .cshrc file is read
each time a new C Shell is invoked (forked), and the
.exrc file is read by the ex editor to establish basic
options, etc.

Filenames that begin with a dot are not 1listed with the
standard 1ls command, but are listed with the -a (all) option
as in the command 1s -a.
ALSO SEE:
Section 9 -- C Shell Files
Dot-dot ' .. '

SYNOPSIS:

command ..
Like "dot", "dot-dot" is used by the operating system

to mark a location in the file system, specifically,
the parent directory to the present working directory.

3-13 Zilog 3-13

C SHELL zilog C SHELL

Slant

If the present working directory is " /z/deck ", the
command:

cd ..
changes the current working directory to " /z ". Both
dot "." and dot-dot ".." appear as directory names with
the command " 1s -a ".
ALSO SEE:
Section 9 -- C Shell files.
l‘/l
SYNOPSIS:

command /path

The forward slash character, referred to as "slant" |is
used as a path delimiter to locate files. In the path,

/usr/spool/mail /user .name
the slants separate directory and filenames.
If the first character in a pathname to a file is a
slant, the shell starts from the root of the file sys-
tem (the directory named "/") to locate the file., For
example, if the present working directory is /tmp, the
command:

1s -1 /z/paula/temp

will locate only one file with that exact path, while
the command:

1s -1 z/paula/temp

will look for a file named /tmp/z/paula/temp. If the
first character in a path name is not a slant, the
shell starts from the current working directory to
match the file.

Colon ' : '

SYNOPSIS:

tidentifier:modifier

Zilog 3-14

C SHELL zZilog C SHELL

In combination with the history mechanism, the colon is
used to modify previous commands. The command:

!1:s/who/date/

will repeat command number 1, substituting the word
date for the word who.

ALSO SEE:

Section 4 -- The History Function
Semi-colon ' ; '

SYNOPSIS:

command; command

The semi colon is a command separator. The command:
1s;who;pwd;date

can be typed on a single line and parsed into its indi-
vidual parts by the shell.

Less Than " <
SYNOPSIS:

command < file
if (variable < variable)

In the first case, the "less than" sign is used to
redirect input from file into the command.

In the second case, math operations use this character
as the relational operator "less than", as in the
expression:

if (Sa < Sb) then

ALSO SEE:

Section 2.9.1 -- Input Redirection and 2.9.3 -- Output
Redirection

Equals * = '

3-15 Zilog : 3-15

C SHELL Zilog C SHELL

SYNOPSIS:

set variable=value
if (variable == variable) then

Shell variables are established with the set command
using the syntax shown in the first case.

In the second case, math operations within shell
scripts use the double "equals" character means "equal
to" as in the expression:

if ($a == S$b) then

ALSO SEE:

Section 7 -- Shell variables

Greater Than ' > '

SYNOPSIS:

command > file
if (variable > variable) then

In the first case the '"greater than" character
redirects the output of command to file.

In the second case, as a math operator within a shell
script, this character means "greater than" as in the
line:

if (%a > $b) then

ALSO SEE:

Section 2.9.1 -- Input Redirection and 2.9.3 -- Output
Redirection

Section 7 -- Shell variables

Question Mark ' ? '

SYNOPSIS:

Zilog 3-16

C SHELL zilog C SHELL

In the first case, the question mark is used as a
filename substitution character, it matches any single
character in a filename. In the example above, the com-
mand will affect filenames with a single character.

The question mark is also used to delimit strings in
the history mechanism. The command:

1?string?
extracts the most recent command with string in it.
ALSO SEE:

Section 3.1 -~ Characters for Filenames
Section 4 -- The History Function.

At Sign ' @ °

SYNOPSIS:

@ variable=number

This character sets variables with numeric values
rather than string values, such that math operations
can be performed on them. The command:

Q@ x=(6 + 6)

sets the variable "x" to the number 12, while the com-
mand

set x=(6 1+ 6)

sets X to the character string "6+6".

A space must separate the at sign from the rest of the vari-

able assignment.
ALSO SEE:
Section 5.3.9 -- The "At Sign" @
Left Bracket ' ['
SYNOPSIS:

command [range]

Svariable[subscript]
3-17 Zilog 3-17

C SHELL Zilog C SHELL

command [rangel
Svariable[subscript]

The left and right brackets are used to delimit a range
of characters used for pattern matching in filename
expansions.

They are also used to subscript a variable -- to iso-
late a component of a variable with multiple elements.'

If the variable "X" is set to the set of characters " a
bcde " with the command:

set X=(a b c 4 e)

the third element of the set, "c", is addressed with
the command:

echo $X[3]

ALSO SEE:

Section 3.1 -- Characters for Filenames
Section 7.4 -~ User-defined Variable Substitutions

Right Bracket *] !

SYNOPSIS:

command [range]
Svariable[subscript]

The right bracket is used to close a range value or a
subscript value.

ALSO SEE:
Section 3.1 -- Characters for Filenames
Section 7.4 -- User-defined Variable Substitutions

Backslash "' \ '

SYNOPSIS:

command \metacharacter

The backslash character escapes the magic qualities of
the special characters in this section. The command:

Zilog 3-18

C SHELL Zilog C SHELL

Up Arrow

Back

translation.

*

ALSO SEE:

Section 3.3 ~-- Quoting -- Preventing Metacharacter
Expansion. ‘

[|
SYNOPSIS:

lidentifier:"
“stringl”string2”

The up arrow (sometimes referred to as a "caret" or a
"hat") is used by the History function and is shorthand
for "the first element". The command:

15:°
refers to argument number 1 in the 5th command.

In the second case, the up arrow is also a substitution
device in the history mechanism. Given a command:

1s -1 /z/sisan

the next command:

produces the correct command:
1s -1 /z/susan

This mechanism is much like the ":s8" substitution
mechanism in the history function.

ALSO SEE:
Section 4 -- The History Function
quotes ' *

SYNOPSIS:

command ‘command®

7ilog 3-19

C SHELL Zilog C SHELL

Left

SYNOPSIS:

command ~command®

Commands placed inside back quotes are executed and the
output of the command replaces the statement in back
quotes, For example, the command:

echo “date’

produces

ALSO SEE:

Section 2.8 -- Command Substitution
Braces ' { '

SYNOPSIS:

command {stringl,string2}
command ${variable}word

The left and right braces delimit abbreviations in
filename expansion and insulates variables when used in
juxtaposition to other words.

If the variable "X" is set to the number "4" the fol-
lowing command:

echo ${X}9%ers

results in:
49%ers

as opposed to the command:
echo $X%ers

which results in the error:
X9ers: Undefined variable.

The braces prevent the surrounding text from affecting
the "X" variable.

Zilog 3-20

C SHELL Zilog C SHELL

ALSO SEE:
Section 3.1 -- Characters for Filenames
Section 7 -- Shell Variables

Vertical Bar (pipe) ' | '

SYNOPS1IS:
command command
command || command

The single vertical bar acts as ia pipeline, connecting

the output of the command on the left side to the input
of the command on the right side.

In the second case, the double bar wmechanism is used as
the logical "or" command operator.

ALSO SEE:
Section 2.19 -- Pipes
Section 2.7 -- Conditional Command Operators

Tilde * = °
SYNOPSIS:

command
command ~user .name

The tilde is a filename expansion character. It expands
to the home directory. .

The following table summaries C shell metacharacters.

ALSO SEE:

Section 3.1 -- Characters for Filenames

3-21 Zilog 3-21

C SHELL Zilog C SHELL

Table 3-2 Metacharacter Summary

Char: Meaning: Context:

space Delimits words Commands

[Accesses history History

" Quoting mechanism Commands

Comment line Shell scripts

S Last element History

3 String isolation History

& Background command Prompt

& Pattern substitution History

& Logical "and" operator Commands

(Begins string Command loops

(Begin subshell Commands

) Ends string Command loops

) End subshell Commands

* All characters Filenames

+ Addition Shell scripts

++ Variable incrementer Shell scripts

. Range delimiter Commands

- Flag Commands

- Subtraction Shell scripts

- Variable decrementer Commands

. Current Directory Filenames

. "dot" files Filenames

/ Path delimiter Filenames

H History modifier History

: Command delimiter Commands

< Input redirect Commands

= Equals Shell scripts

> Output Redirect Commands

? Any single character Filenames

@ Math operations Shell scripts

C Begins range Filenames

] Ends range Filenames

\ Escapes metacharacters Commands

s First argument History

* Quoting device Commands

* Command Substitution Command

{ Begins abbreviations Filenames

} Ends abbreviations Filenames

| Pipe mechanism Commands

0| Logical "or" operator Commands

~ Home Filenames

Zilog

C SHELL Zilog C SHELL

3.3. Quoting -- Preventing Metacharacter Expansion

There are situations in which metacharacters should not be
expanded. For example, a shell script that includes both an
editor command with dollar sign "$" and a variable name with
a dollar sign.

In these cases, the dollar sign in the editor command must
be quoted so that its significance is taken literally by the
shell, not expanded.

There are 4 quoting devices available on the ZEUS system as
the following table illustrates:

Table 3-3 Quoting Devices

The backslash \
Double quotes "
Right quote
The noglob option set noglob

The following rules apply to quoting devices:

Table 3-4 Quoting Device Summary

Quotes Quotes
Character: Symbol: Variables: Filenames:
The backslash \ yes yes
Double quotes " no yes
Right quote ! yes yes

Noglob n/a no yes

The following table shows the effect of the available quot-
ing devices.

Table 3-5 The Effect of Quoting Devices

Command: \ " ! noglob
echo * * * * *
echo $HOME SHOME /z/deck SHOME /z/deck

3-23 Zilog 3-23

C SHELL zilog C SHELL

The following table shows which characters must be escaped
when used in commands if their meaning is to be taken
literally. Unescaped, they are used as command operators, or
expanded to file and directory names:

Table 3-6 List of Metacharacters that Must Be Escaped

ampersand
asterisk
backslash

dollar sign
exclamation point
greater than sign
left brace

left bracket

left parenthesis
single quote mark
less than sign <
question mark ?
quote mark "
right brace }
right bracket]
right parenthesis)
back quote '
semi-colon

tilde

up arrow

vertical bar (pipe)

PV =y~ N

3-24 Zilog 3-24

C SHELL Zilog C SHELL

SECTION 4
THE HISTORY FUNCTION

4.1. Command History
Commands typed into the terminal are numbered sequentially
from 1 and are saved in memory on a history list, The size
of the history list is controlled by the history variable.
See 7.1.4 -- history.
the command:

set history=15

which can be entered at the prompt or entered in the .cshrc
or .login file will keep a list of the last 15 commands.

No commands are stored if the history variable is unset. The
history variable is unset by default.

The command:
history

displays the current history list in the following format:

5 vi temp

6 ls

7 more temp

8 history

9 cat csh.g9l
10 cat csh.gl > temp.2
11 more temp.2
12 who

13 vi temp.2

14 echo Sprompt
15 who > temp.3
16 cat temp.3
17 ls -1la

18 vi temp.3

19 history

Note that the list contains the last 15 commands. When the
number of commands on the list exceeds 15, the oldest com-
mand drops (irretrievably) off the end of the list. In
other words, 1if the history variable is set to 15, command
number 16 pushes command number 1 off the list.

4-1 Zilog 4-1

C SHELL Zilog C SHELL

Commands from the history list can be recalled and manipu-
lated at the prompt. The exclamation point "1" is used to
initiate a call to the history function.

4.2. Common Forms of Use for the History Function
Table 4-1 below demonstrates the 7 most common uses of the
history function. Since these commands fall into different

categories, the explanation of each form is repeated in sub-
sequent sections.

Table 4-1 Common Forms of History Manipulation

Syntax: Explanation: Example:
11 Repeat the last command 11
In Repeat command number n . 16
Istring Repeat command starting with string Ils
18 Last argument of previous command ls I§
1* All arguments except #0 1ls 1| *
“x%y® Substitute y for x “wrong“right”
Il:n Argument number n 1s 115:2
Double exclamation points -- 11}
SYNOPSIS:

11

The double exclamation point means "repeat the last

command again". The last command (from the list above)
is history, +the command 11l produces the following
exchange:

4-2 zilog 4-2

C SHELL Zilog C SHELL

g U

history
6 ls
7 more temp
8 history
9 cat csh,dl
19 cat c¢csh.@1 > temp.2
11 more temp.2
12 who
13 vi temp.2
14 echo $prompt
15 who > temp.3
16 cat temp.3
17 1s -la
18 vi temp.3
19 history
20 history

Exclamation point; number -- In
SYNOPSIS:
in

An exclamation point and some number means "repeat com-
mand number". The command:

16

repeats command number 6 from the history list. In this
case (from the above list) the command 1s.

Exclamation point; string -- lIstring
SYNOPSIS:
Istring
An exclamation point and a string means ‘"repeat the
command that begins with string". The command:
v

will search out the most recent command beginning with
the letter "v". In this case, the command is:

vi temp.3

Zilog ’ 4-3

C SHELL Zilog C SHELL

Exclamation point; Dollar sign -- 1§
SYNOPSIS:
command 1$
In addition to full command lines, portions of those 1lines,
the individual words (arguments to the command) can be mani-

pulated.

The exclamation point, dollar sign combination refer to the
last argument of the previous command, thus if a command:

ls -1 /z/hank/temp
the next command:
cat I$

produces the command:

cat /z/hank/temp

Exclamation point; Asterisk -- I¥*
SYNOPSIS:
command 1*
The exclamation point, asterisk combination means "the

second argument to the last argument", thus given the
command:

ls /z/joe/work /z/zubes/art
the command:

cat ¥
produces the command:

cat /z/joe/work /z/zubes/art

Double up-arrows -- “stringl®string2”®

SYNOPSIS:

“stringl®string2®

4-4 Zilog 4-4

C SHELL Zilog C SHELL

The up-arrow works as a string substitution device for
previous commands. Given the erroneous command:

cat /z/curl/letter

the command:

“curl®carol”™

produces the command:

cat /z/carol/letter

The trailing up-arrow can be omitted if the last char-
acter of the string is a RETURN.

Double exclamation point; number -- !l:n
SYNOPSIS:

[command] lidentifier:n

The call to the history function (an exclamation point
followed by the identifier associated with the desired
command), followed by a colon and a number is a call to
the numbered argument of that command. For example,
given the command:

1s /z | we
which lists all the files and directories in the direc-
tory /z and pipes the results through the word count
(we(l)) command. The subsequent command:

cd ll:1

produces the command:

cd /z

4.3. Accessing Previous Commands

Saved commands (events) from the history list can be called
up and executed again with a variety of commands, all of
which begin with the exclamation point.

Commands, or events are recorded in order by their event

number. Each event can be tracked by making the event number
a part of the prompt. This 1is done by placing an

4-5 Zilog 4-5

C SHELL Zilog C SHELL

exclamation point (which must be escaped) "\!" in the prompt
string.

Adding the line:
set prompt="g\1 "

to the “/.cshrc or “~/.login file produces the following
prompt for the first command:

31

The number will increment by one for each command.

11 repeats the immediately previous command. In the case
below, the last command (command number 5) is history.

In is short for "repeat command number n"

For example, if the history list is:

ls

who

pwd
date
history

b W

The pwd(l) command can be executed again by typing the
command:

13

l-n means execute the command n commands back from the
current command.

pwd (the third command back from the current command)
can also be executed with the command:

1-3

Istring
means "execute the most recent command with the prefix
string."

The history function will search back through the his-
tory 1list and look for the most recent occurrence of a
command beginning with the 1letter (or string of

4-6 Zilog 4-6

C SHELL Zilog C SHELL

letters) in string. The command
Ip

will also produce the pwd command from the history list
example shown above.

12string?

will match a command with sgtring in an event argument;
trailing "?" can be omitted if nothing follows

1?2wd?

will also produce the pwd from the sample history list.

Table 4-2 Accessing Previous Commands

Syntax Explanation Example

! Repeat the last command bl
n Repeat command number n 13

l-n Repeat the. command n
commands back 1-4
Istring Repeat the command starting

with the string strin Ip
1?string? Repeat the command containing

the string string 1?2wdz

4.4. WModifying Previous Commands
Portions of previous commands can be isolated and manipu-
lated at the prompt. It is possible to access both an indi-
vidual command, and individual arguments to that command.
Arguments within each event are numbered sequentially from
zero and can be selected from an event by the sequence "ln:"
followed by one of the argument designators listed in Table
4—3 .

For example, given command number 1 as:

%3l 1s; who; pwd; date

4-7 Zilog 4-7

C SH

ELL

Zilog

The arguments are numbered as follows:

Argument: @

Word

1ls

1s is the

semi-colon
who is the
semi-colon
pwd is the
semi-colon
date

is the

1
’
is
is

is

2

who
the
the

the

3

14

4
pwd

zero-th
first
second
third
fourth
fifth
sixth

The following examples demonstrate
mechanism to access arguments from

!11:n refers to the nth argument from command number

(L]

el

(1]
>

11:28

command :

11:1

5 6
H date

argument,
argument,
argument,
argument,
argument,
argument,
argument.

the use

C SHELL

history

within that command.

produces and tries to execute the first
ment (in this case the semi-colon):

°
r

{the up arrow)

refers to the first argument in command number

command

11:°

Produces and tries to execute the first
the command string:

.
r

command:

11:=8

produces and executes

date

Zilog

refers to the last argument of command

command

1. The

argu-

1. The

semi-colon of

1. The

C SHELL Zilog) C SHELL

11:n-m '
is a range of arguments from number n to number m. The
command:

11:2-4

produces and executes the second, third, and fourth
command arguments; who the semi-colon, and pwd:

who; pwd
11:-n ‘
abbreviates the range of arguments from number @ to
number n. The command:

11:-3

produces and executes the zero-th, first, second and
third arguments from the first command:

1ls; who;

l1:* abbreviates the range of arguments from number 1 to the
last argument or nothing if there is only one argument
in the event. The command:
11:*

produces and executes the first, second, third, fourth,
fifth and sixth arguments of command number 1:

; who; pwd; date
11:n*
abbreviates the range of arguments from number n to the
last argument. The command:
11:2%*

produces and executes the second, third, fourth, fifth,
and sixth arguments.

who; pwd; date

I1:n-
like !1:n* but omitting the last argument (argument
"$"). It abbreviates the range of arguments from number

4-9 zilog 4-9

C SHELL * Zilog C SHELL

n to the next-to-last argument. The command:
11:2-

produces and executes the second, third, fourth, and
fifth argument from command number 1:

who; pwd:;

Table 4-3 Accessing Previous Command Words

Syntax Explanation Example
IN:n Command N, argument n 11:2
IN:™ Command N, first argument 11:°
IN:$ Command N, last argument 11:$
IN:n-m Command N, argument n through m 11:3-5
IN:=n Command N, argument @ through n 11:-3
IN:* Command N, argument 1 to the last 11:%
IN:n* Command N, argument n to the last 11:3%
IN:n- Command N, argument n to last-l 11:3-

4.5. Modifying Previous Command Words

In addition to calling and modifying commands from the his-
tory 1list, and calling and modifying arguments within the
individual commands, portions of arguments can also be
called out and manipulated separately.

Given the command:

%1 1s -1 /z/deck/Util/Cshell/csh.@1l

the following modifiers are defined:

th Remove a traiiing path name component, leaving the
head. The command:

11:z:h
produces:

ls -1 /z/deck/Util/Cshell

4-10 Zilog 4-10

C SHELL zilog C SHELL

:r Remove a trailing .xxx component, leaving the root
name. The command:

11l:r
produces:

1s -1 /z/deck/Util/Cshell/csh

:t Remove all leading path name components, leaving the
tail. The command:

11:t
produces:
ls -1 csh.gl
:p Print the new command but do not execute it. The com-
mand:
11:p
produces

1s -1 /z/deck/Util/Cshell/csh.@1

but does not execute it.

:s/stringl/string2

Substitute string2 for stringl; trailing "/" can be
omitted if new line follows; "/" is not a unique delim-
iter

The command:

11:s/Cshell/Shell/

produces and executes:

1s -1 /z/deck/Util/Shell/csh.@1l

:q Quote the substituted arguments, preventing further
substitutions.

Given command number 1 as:

4-11 zilog 4-11

C SHELL

X

s &

zilog

1s -1 /z/deck/Util/Shell/csh.@l

and given the substitution:

11:s/csh.@1/csh*/

The following command:

l1:q

produces:

1s -1 /E/deck/Util/Shell/csh*

however, in this case the asterisk is taken

it 1is not expanded.

bility):

2 1 1s -1 csh.d1

-rw-r—--r-- 1

% 2 ll:s/csh.

ls -1 csh.*

-rw=r—--r-- 1
-rw=r—--r-- 1
-rw~r=—--r-- 1
-rw-r=-r-- 1
-rW-r=—=r=-= 1
-rw—r=-=r-- 1
-rW=r==Y=— 1

$ 3 12:q

1s -1 csh.*

deck system
@1/csh.*/

deck system
deck system
deck system
deck system
deck system
deck system
deck system

csh.* not found

Like g, but break into

new lines.

15459

15459
18238
13347

3316
30814

2395
45153

Oct

Oct
Oct
Oct
Oct
Oct
Oct
Nov

13

13
13
13
13
13
13

arguments at blanks,

Repeat the previous substitution.

11:&

Zilog

cC

SHELL

literally,
Consider the following exchange
(spaces have been added to the output to improve reada-

12:49

12:49
12:50
12:59
12:50
12:51
12:51
17:59

tabs,

csh.g1

csh.@1
csh.@2
csh.@3
csh.04
csh.2A
csh.9T
csh.ref

and

C SHELL Zilog C SHELL

Table 4-4 Modifying Previous Command Words

Syntax: Explanation: Example:
In:h take the head of the pathname 11:h
In:r leave the root of the filename Il:xr
In:t leave the tail of the pathname 11:t
In:p print but don't execute 11:p
In:s/X/Y/ replace X with Y 11:s/unix/zeus/
ln:q quote substituted arguments 11:q
In:x quote, break substituted arguments 11:x

fn:& repeat previous substitation 11:&

Unless preceded by a ":g", the modification is applied only
to the first modifiable argument.

A backslash character "\" must be used to escape a slash "/"
character if it is used in the left side of the substitution
string -- i.e. if it is part of stringl in the example
below:

11:s/stringl/string2/

4.6. Magic Characters in History Function
& The ampersand character "&" in the right side of the
substitution statement is replaced by the text from the
left side of the statement. For example, if the first
command is
%1 1s /z/deck/Util

a substitution using the ampersand can be used as fol-
lows:

11:s/Util/&.plus/
resulting in the command:
1s /z/deck/Util.plus
null Nothing (a null) in the left string uses the previous
string from a previous substitution command i.e.

11:s//Memos/

4-13 7ilog 4-13

C SHELL zilog C SHELL

substitutes the previous string "Util" for the string
"Memos" producing the command:

1ls /z/deck/Memos
The string used initially (in this case "Util") must be
present in the command string called with the null or

the error

Modifier failed

will result.
1$ A history reference can Dbe given without an event

specification; for example, "1$" refers to the last

argument in a command string.
Given the command:

l1s -1 /z/deck/Util/Cshell/csh.@1
The command:

cat 1I$

produces:

cat /z/deck/Util/Cshell/csh.@1

In this case, the reference is to the previous command.
Thus,
12string?” 1§

gives the first and last arguments from the command
matching ?string?.

Simple command substitutions are made at the prompt
with the up arrow key (usually a shift or "upper-case"
6 on the keyboard). The erroneous command:

cat /usr/lab/news/zeus

Can be fixed with the command:

“lab”®1ib*

4-14 zilog 4-14

-

{} A history substitution can be surrounded with left

C SHELL Zilog C SHELL

and

right brackets "{" and "}" to insulate it from the

characters which follow. Thus, after
1ls /z/cheryl
enter
1{1}/temp
to do
1s /z/cheryl/temp
as opposed to the commaﬁd:
11/temp

which looks for a command starting

1/temp
2 produces the argument matched by the immediately
preceding ?string? . Given the command:

cd /z/deck/Util/Shell
The command:

1ls [?2Shell?%
will produce the the command

1ls /z/deck/Util/Shell

The following table shows a summary of metacharacters
in the history substitution function.

4-15 Zilog

used

C SHELL Zilog C SHELL

Table 4-5 Metacharacters in History Substitutions

Character: Meaning:

\ Escapes magic qualities

& The string just substituted

// (null) the string just searched for
1$ The last element of the last command
?x? String search for "x"

“xy”" Substitution routine

{x} Search insulators

3 Element search

4-16 Zilog 4-16

C SHELL zilog C SHELL

SECTION 5
THE C SHELL BUILT-IN COMMAND STRUCTURE

The C Shell makes an excellent operating environment because
it provides a number of improvements over previous shells.
In particular, the <C shell provides a built-in command
language using the structure of the C Programming Language.

This section covers general purpose commands that are used
either at the prompt (i.e. from the command line) or from
within the body of a shell script. The next section covers
the C Shell programming language.

5.1. Introduction to C Shell Commands

There are 38 built-in C Shell commands. These commands fall
into four major categories.

The first ten are general purpose commands. The second ten
deal with establishing or altering the working environment.
Together these 20 commands form a set of commands that 1is
both useful from within the body of a shell script, and when
typed directly to the terminal.

The next section presents commands which deal specifically
with programming. The 15 commands in this set are used to
control the flow of operations within a shell script.

The last set of three commands are general purpose commands
that are useful almost exclusively from within the body of a
shell script. :

For more detailed information on the C Programming Language,
as a means of understanding the basic structure and syntax
of the C shell programming language, refer to The C Program-
ming Language by Brian W. Kernighan and Deanis M. Ritchie.
(1978, Prentice Hall 1Inc., Englewood Cliffs, New Jersey
27632) .

5.2. General Purpose Commands from the Prompt

Built-in commands are a part of the C shell itself, not
separate programs executed by the C shell. The following
built-in commands are useful both in the body of a C Shell
script and when typed at the proampt.

5-1 Zilog 5-1

C SHELL Zilog C SHELL

5.2.1. cd:
SYNOPSIS:

cd
cd name

Without an argument, cd changes the current working direc-
tory to the user's home directory. Cd reads the HOME vari-
able to determine the user's home directory.

With a path name as an argument, <cd changes the current
working directory to the directory name. Error messages are
produced if the target name is not a valid directory name,
or 1if the wuser 1is not permitted access to that directory
(see chmod(1l)) .

Verification of the current working directory 1is derived
from the pwd(l) command.

ALSO SEE:

cd(l), pwd(l), chmod(l) and
Section 7.1.5 -~ home

5.2.2. echo:
SYNOPSIS:
echo [-n] string

The words in string are printed (echoed) on the terminal.
This 1is wuseful 1in generating output from a shell script.
Echo can also be used to verify the true properties of the
shell's variables and metacharacters. For example, the com-
mand:

echo *
expands the metacharacter asterisk (" * ") to all the file
names in the current working directory (see Section 3--
Filename Substitution) and prints the list in the following
format:

csh.fl csh.02 csh.83 csh.@4 csh.@5 csh.9A c¢sh.9T

The -n option inhibits a newline at the end of the output
string. From within the body of a shell script, the

5-2 Zilog 5-2

C SHELL Zilog C SHELL

commands:

echo -n Hello
echo \ Roberta

produces the.output:

Hello Roberta
Note that the "hard space" (the "\ " sequence) is needed to
put a space between the strings. Normally echo ignores lead-
ing and trailing blank spaces (space or tab characters).
ALSO SEE:

echo(l) and echo2(1)

And the echo variable in Section 7.1 -- Predefined
C Shell variables. :

5.2.3. glob:
SYNOPSIS:

glob string
The glob command is much like the echo command except that
words are not sepacrated by spaces, and no newline ends the
string. This command is useful for programs which use the
shell to expand a list of words.
The command:

glob *

produces the results:

csh.f@lcsh.f@2csh.f3csh.f4csh.P5¢csh.9Acsh,.9T

5.2.4. history:
SYNOPSIS:
history
The history command displays a record of past commands. The

length of the history 1list 1is determined by the history
variable (See Section 7.1 -- Predefined C Shell variables).

5-3 Zilog 5-3

C SHELL Zilog C SHELL

The history variable can be set to 15 (for example) with the
command :

set history=15
With the history variable set to 15 the command:
history

produces a history list of the last 15 commands. Results
are produced in the following format:

1 alias
2 alias 11 'ls -1'
3 foreach 1 (1 2 3 4)

15 history

When command number 16 is reached the list will begin with
command number 2, etc. There are no diagnostic messages.
(See Section 4 -- The History Function).

5.2.5. nice:
SYNOPSIS:

nice

nice -number

nice command

nice —-number command

The nice value sets the priority of a command in the
system's Central Processing Unit (CPU). The nice value of
each job is seen with the command:

ps -1

which produces results that look like:

5-4 7zilog 5-4

C SHELL Zilog C SHELL

WCHAN

... CPU PRI NI ADDR 87 TTY TIME COMD
e g 30 20 £5 15 dadls 2 @:16 csh
e g 30 20 5d3 9 debc 2 @:91 sh

e g 30 29 4b1l 9 ded8 2 @:32 csh
N g 28 29 6la 8 e886 2 @:099 script
e o 39 20 bb 14 df4g 2 1:30 vi

oo 9 3¢ 29 77e 9 dfe4 2 @:92 csh
cee 3 26 20 692 8 327a 2 0:00 script
.. 101 56 20 786 11 2 3:92 ps

NOTE: The first 5 columns have been omitted to make the out-
put fit the space. Refer to ps(l) for details.

The nice value (shown in column 3 in the example) can be
increased, making the Jjob run at a lower system priority,
with the nice command.

Without an argument, nice increments the nice value for the
current shell by 7. With an argument, in the form:

nice -N

The nice value is increased by N, which may be any number up
to 249.

With a command as a second argument in the form:
nice -N command
The nice value of command is increased by N.
There is no way for a normal user (anyone but the superuser,
ZEUS) to "un-nice" a process; only the superuser can set a

negative nice number (increase the priority of a command).
ZEUS can issue that command in the form:

nice --N

The first argument to nice must be either a minus sign - or
a command.

ALSO SEE:

nice(1l)

5-5 Zilog 5-5

C SHELL Zilog C SHELL

5.2.6. rehash:

SYNOPSIS:

rehash

The C Shell maintains a sorted list (a hash table) of all
the commands - available to the user. This list is created
upon login, and when a new C Shell is invoked (forked). The
hash table 1is stored in memory and contains a list of all
the filenames (commands) in the directories named in the
user's search path.

When a new command is created (as in the case of a new shell
script), it does not appear in the hash table even though it
is in a directory in the search path. This is true unless
the new command (file) 1is 1in the user's current working
directory.

A new command is installed into the hash table, when it is
located in a directory named in the user's PATH, and the
hash table is rehashed with the rehash command.

The message:

command.name: command not found.

will appear if the command is not installed into the hash
table or is not in the current working directory.

ALSO SEE:

Section 7.1.11 -- path

5.2.7. repeat:
SYNOPSIS:
repeat N command
The specified command is repeated N times.
The command:
repeat 5 1ls

produces results in the format:

5-6 Zilog 5-6

C SHELL Zilog C SHELL

csh.91l csh.02 csh.93 csh.%4 csh.@5 csh.9%A csh.9T
csh.91l csh.®2 csh.93 csh.04 cshn.05 csh.9A csh.9T
csh.@l csh.02 csh.03 csh.94 csh.#5 csh.9A ¢sh.9T
csh.d1l csh.f2 ¢csh.83 csh.@4 csh.95 csh.9A ¢sh.9T
csh.f91l csh.%2 csh.@3 c¢sh.94 csh.85 csh.9A c¢sh.9T

Error diagnostics are repeated.

5.2.8. time:
SYNOPSIS:

time
time command

With no argument, a summary of time used by the current
shell and its child processes is printed. The command

time
produces results that look like:
F.1u @.3s F:10 3%

The first column reports the user seconds, the second column
reports the system seconds, the third column is real time,
and the last column reports the percentage of total system
capacity used by the command.

If arguments are given, the specified simple command 1is
timed and produces a time summary as described above.

The command:
time 1ls

produces results that look like:

csh.gl csh.04 csh.07 csh.9B junk
csh.f2 csh .05 csh.@8 csh.9C make.out
csh.93 csh.06 csh.9A csh.9T temp

@.1u 0.2s 0:91 23%

The time command produces results even if the command being
timed produces an error.

ALSO SEE:

time (1)

5-7 Zilog 5-7

C SHELL Zilog C SHELL

5.2.9. umask:
SYNOPSIS:
umask

umask N

The umask value determines the default file protection mode
for new files. (See chmod(l))

Without an argument, the umask command displays the current
umask value.

With a number argument, the umask value is set to N. The
command :

umask @26

will result in new files with the following protection mode
(as displayed with the 1ls -1 command):

—TW=L ———— 1l deck system @ Dec 1 14:15 temp

Umask codes for new files are as follows:

a90 = —~rW=rw-rw-—
111 = —~rW=LW=-YwW-
222 = ==L ==f==
333 = ~Y==Y—=F=--
444 = —-—Wm—W——W—
555 = —We— =W~
666 = =0 mmmemmmm——-
777 = 00 eeeemm—ma——-

Note that the execution bit (the "x" bit) 1is never set.
This 1is a protection against accidental execution of text
files which can result in unintended (and potentially des-
tructive) consequences.

Umask codes for directories will set the execution bit if
desired. The specific codes are as follows:

003 = AdrwXIrwXIrwx
111 = drw-rw-rw-
222 = dr-xr-xr-x
333 = dr--r—--r—-
444 = d=-WX~-WX-WX
555 = d=-w==w——-w~
666 = d==X==~X-~=X
777 = e R

5-8 Zilog 5-8

C SHELL Zilog C SHELL

If umask is unset it defaults to @92.
ALSO SEERE:

chmod (1)

5.2.10. wait:
SYNOPSIS:
wait

The walit command causes the terminal to freeze until all
background (child) processes terminate.

An interrupt will disrupt the wait. If a wait is interrupted
the process identification number and the command name atre
displayed. Consider the following exchange:

sleep 200 &
27233
wait
(interrupt)
27233 sleep
wait: Interrupted.

In the above example a command (sleep 20@¢) is run in back-
ground (&). A process identification number returns (27233),
then the wait command is issued.

The wait is interrupted (the interrupt character DELETE or
RUB does not show), the process identification number is
displayed along with the command name (27233 sleep) and the
diagnostic message walt: Interrupted. on the next line.

ALSO SEE:

wait (1)

The following table shows the commands in Group 1.

5-9 Zilog 5-9

C SHELL Zilog C SHELL

Table 5-1 Built-in Command Summary -- Group 1

GROUP 1

GENERAL PURPOSE COMMANDS USEFUL FROM THE PROMPT:

cd Change working directory

echo Print a string on the terminal

glob Like echo =- but no spaces separate words
history Print command history list

nice Set the running priority of a command
rehash Re-sort the search path for commands
repeat Repeat a command

time Time the execution of a command

umask Set the execution bits on new files

wait Wait for background jobs to finish

5.3. Environmental Commands from the Prompt

This set of commands is wused to . customize the working
environment. These commands are used to create and remove
shorthand commands (aliases) for 1long .commands, set and
unset C Shell variables, and shorthand words for file or
directory names. :

5.3.1. alias / unalias:
SYNOPSIS:
alias namé long command
alias name

alias
unalias name

The alias command establishes wuser-defined shorthand for
long commands. With the syntax alias name long command the
command creates an alias name for the command long command.
The command:

alias h history

creates the alias h which is used as the command history.
The command:

h

5-19 Zilog 5-10

C SHELL zilog C SHELL

now produces the same output as the command:

history
(history remalns a valid command) . In this context, the
alias command produces no output. Verification that h is the
alias for history can be derived from the next commands.
With one argument, alias displays the alias for that argu-
ment 1if one exists. With the h alias established, the com-
mand:

alias h
produces the output:

history
Without an argument, alias displays a list of the current
aliases. With the alias established above, the command:

alias

produces a listing in the following format:

h history

unalias is used to remove an alias (see unalias below)

Looping can occur in an alias that calls itself -- as in the
command :

alias 1s 'pwd; 1s'
Each call to 1ls attempts to execute pwd and then 1s which
calls the alias again. This is true unless the first word of
the alias is the command itself, for example, the alias:
alias 1ls'ls; pwd'

works without a loop error.

The problem of looping is prevented by the C shell which
produces the error message:

Alias loop

upon a call to a looped alias (although the alias can be
established). The alias must be removed with the command:

5-11 71ilog 5-11

C SHELL Zilog C SHELL

unalias alias name

EXAMPLE 1: .

To establish an alias called "1s" for the longer command "1s
-1" the following alias command is used:

alias 1s "1s -1"
The command
1s /z/carol
will produce output as if the command typed is:

ls -1 /z/carol

EXAMPLE 2:

Aliases accept input as well. For example, a file name can
be passed to an aliased command.

The expression " \!* " like its counterpart in the history
mechanism expression means "argument number 1 to the last
word" (Refer to Section 4 -- The History Function). This
expression substituted all the arguments typed at the com-
mand line (except for argument number @ -- the command
itself) into the aliased command. Thus, the command:

alias print 'pr \!* | lpr"
creates an alias called print that calls pr(l), accepts one
or motre arguments (file names) as input, and pipes the out-
put of that command through 1lpr(l). The alias is used with
the syntax:

print file.l

The results are the same as if the following command had
been entered.

pr file.l | 1lpr

the \!* expression is replaced by arguments 1 through the
last (argument zero in this case is the word print).

-12 Zilog 5-12

(93]

C SHELL Zilog C SHELL

5-'302~ exit:
SYNOPSIS:

exit
exit (N)

Exit is comparable to logout(l). It is a means of terminat-
ing the current working environment (the shell) by killing
the process associated with that shell. Exit is a permanent
termination of +the current working shell, as opposed to a
temporary escape (fork) which keeps the escaped shell pro-
cess active until the user returns to it.

If the current working shell is the user's login shell, exit
executes the user's .logout file (if it exists) and logs the
user off the system. If the ignoreexit variable is set, the
error message:

Can't exit, ignoreexit is set

is returned. (See Section 7.1 on Predefined C Shell Vari-
ables)

If the ignoreeof is set, a control-D command returns the
error message:

Use "exit" to logout.

In either case, if the current shell is not the login shell,
a logout(l) command returns the error message:

Not login shell.
I1f both ignoreexit and ignoreeof variables are set, and the

current shell 1is not the login shell, the only way to exit
that shell is to unset one of the variables. The command:

unset ignoreeof

permits the control-D (the "end-of-file" eof) to terminate
the current shell. The command

unset ignoreexit
permits the exit command to terminate the current shell.

The exit command by itself leaves the current shell with the
value of the status variable.

5-13 Zilog 5-13

C SHELL 7ilog C SHELL

This value is shown with the command:
echo $status

This command displays the number status code of the current
shell, "g" 1is the normal exit status, "1" or any non-zero
number coanstitutes an abnormal exit status -- e2.g. if a com-
mand fails.

With a number argument, exit leaves the shell setting the
status variable to the specified number N. This is useful
in tracing the progress of C shell scripts. The parenthesis
surrounding the N are necessary.

See logout(1l)

The notion of shells and the process of forking new shells
is usually very confusing to new users. The illustration
helow is an attempt to present a graphic representation of
various levels of shell interaction.

The situation depicted in the illustration could arise in
the following manner:

(1) The user logs in. This is the first, or login shell.

(2) The user enters the editor vi to edit a file. In so
doing, the wuser has forked a new shell -- it is this
new shell which is running vi. The new shell dies as
soon as the user leaves the vi program.

In this case, someone else writes a message to the user
within the write program. The user wants to write back
to this other person without leaving the vi editor.

(3) From within the vi program, the user forks a temporary
escape with either the :csh command, or the :iwrite
command (see The Ex Reference Manual).

(4) It is possible to fork yet another shell from within
the write program, e.g. to use the desk calculator pro-
gram dc.

(5) Upon leaving each of these programs, the shell which

runs that program dies until the user exits the login
shell which logs the user off the system.,

5-14 Zilog 5-14

C SHELL

Zilog

C SHELL

NEW SHELL #3

NEW SHELL #2

NEW SHELL #1

LOGIN SHELL

Figure 5-1 Representation of the Fork Process

Zilog

C SHELL Zilog C SHELL

5.3.3. 1logout:
SYNOPSIS:
logout
Logout terminates a login shell, executing the contents of
the ~/.logout file (if it exists). Especially useful if

ignoreeof is set, inhibiting a control-D command.

Logout can only be executed from the 1login shell, if the
current shell is any other shell, the error message:

Not login shell.
returns.
ALSO SEE:

Section 9.2.1 -- The "/.logout file

5.3.4. set / unset:
SYNOPSIS:

set

set variable=word

set variable=(wordlist)
set variable[index]=word

unset variable

The set command without an argument shows the value of all
shell variables in the following format:

(] /z/deck/Util/Sh.1

U /z/deck/Util/New.csh

argv ()

exinit set number wm=20 | version
history 50

home /z/deck

ignoreeof

ignoreexit 1

mail /usr/spool/mail/deck

path (. /usr/bin /bin /z/deck/bin /etc)
prompt deck # ! >

shell /bin/csh

status @

term vtl0d

5-16 Zilog 5-16

C SHELL zilog C SHELL

Variables that have other than a single word as value print
as a word list enclosed in parentheses.

C Shell variables can be established with the command:

set variable=word

which sets variable to word. Variable can be a predefined C
Shell variable (See Section 7.1 Predefined C Shell Vari-
ables), or a user-defined variable.

Variables can also be set to a list of words, like an array
with the syntax:

set variable=(wordlist)

For example, the variable X can be set to all the filenames
beginning with the letters "csh" in the current directory
with the command:

set X=csh¥*

Verification that X contains the list comes from the com-
mand:

echo $X
which produces output in the following format.
csh.@1 csh.@2 ésh.03 csh.@4 c¢sh.@5 csh.096 csh.9B

Each component part of this list can be addressed with a
bracketed subscript, as in the command:

echo $X[3]
which echos the third element of the list:

csh.@3
These individual elements of a list can be altered in the
same way that they are addressed -- with a subscript value.

The command syntax is:

set variable[N]=word

which sets the Nth component of variable to word; for exam-
ple, the following command resets the value of the 3rd com-
ponent of the X variable to the word test:

17

5-17 zilog 5

C SHELL Zilog C SHELL

set X[3]=test

this component must already exist,

Verification can be seen in the following commands:
echo $X

reports all the elements in the variable X (which is an
array of words):

csh.@1l csh.@2 test csh.@4 csh.@5 csh.@6 csh.9B
The command:

echo $X[3]
reports the value of the 3rd element of that array:

test
Variables are removed from the variable list with the unset
command:

unset variable
These set arguments can be repeated to set multiple values
in a single set command. Variable expansion happens for all
arguments hefore any setting occurs.
ALSO SEE:

Section 7 -- Shell variables, and
Section 3.2 Metacharacters ([, and])

5.3.5. setenv / env:
SYNOPSIS:

setenv NAME=value
env

The setenv command works 1like the set command, it sets
environment variables while set sets shell variables. See
Section 10 for a discussion of the eanvironment and its vari-
ables.

18

(O}

-18 Zilog 5

C SHELL Zilog ' C SHELL

The command

setenv NAME=value

sets the value of environment variable NAME to value,.

Predefined environment variables are:

LOGNAME Login name

EXINIT Ex editor initialization variables
HOME Home directoty

PATH Search path for commands

SHELL Shell being used

TERM Type of terminal

TZ Timezone

Env prints the values of the environment variables currently
set. Refer to Section 1 for a description of the environ-
ment and its environment variables.

ALSO SEE:

env(l)
Section 10 -- The Environment

5.3.6. source:
SYNOPSIS:
source file.name

The shell reads commands from file.name and'implements them
in the current shell (as opposed to forking a new shell).

The source command implements changes made to the .login and
.cshrc files. Source output cannot be re-directed.

ALSO SEE:

Section 10 for a discussion of how the C
Shell executes commands.

5.3.7. unalias / alias:

SYNOPSIS:

5-19 Zilog 5-19

C SHELL Zilog C SHELL

unalias pattern

All aliases whose nam2s wmatch the specified pattern are dis-
carded. Thus all aliases ars removed with the command:

unalias *

ALSO SEE:

Section 5.3.1 -- alias / unalias

5.3.8. unset / set:
SYNOPSIS:

unset pattern

All variables whose names match the specified pattern are
removed. All variables are removed with the command:

unset *
this can have undesirable side-effects.
ALSO SEE:

Section 5.3.4 -- set / unset

5.3.9. The At Sign -- @:
SYNOPSIS:

@ variable=(number operator number)

The at sign sets variables that use math functions. The
variable holds the product of the math function rather than
the operative string itself.
For example the command:

set x=(6 + 6)

yields the results of an echo $x command as:

5-20 Zilog 5-20

C SHELL Zilog

@ x=(6 + 6)
produces the results:

12

C SHELL

Note the at sign is sensitive to syntax. The spaces separat-

ing the numbers are essential.

Table 5-2 Built-in Command Summary -- Group 2

GROUP 2

ENVIRONMENTAL COMMANDS USEFUL FROM THE PROMPT:

alias Substitute word for long command

env Print the current environment variables
printenv Print the current environment variables
exit Terminate a shell (logout)

logout Exit from the login shell

set Establish a shell variable

setenv Establish an environment variable
source Execute a script in the current shell
unalias Remove an alias

unset Unset a shell variable

Q@ Like "set" but uses math functions

5-21 Zilog

C SHELL Zilog C SHELL

SECTION 6
THE C SHELL PROGRAMMING LANGUAGE STRUCTURE

The C Shell can be considered a programming language because
of the powerful flow control mechanisms it supports.

The syntax of the C Shell language is much like that of the
C Programming Language. (See The C Programming Language by
Brian Kernighan and Dennis Ritchie). Table 6~1 summaries the
commands in the C Shell programming language.

6.1. foreach and end group
SYNOPSIS:

foreach name (list)

command
end

When the foreach command is typed at the prompt, and the
name and list are typed with the appropriate syntax, a new
prompt (a question mark) appears to indicate that a C shell
loop is in progress.

At the prompt ("?") one or more command statements can be
entered. The loop is initiated when the word end is typed on
a line by itself at the "?" prompt. At that point, the word
list is expanded (if it is a magic character) and the com-
mand is executed once for each element in the 1list. Execu-
tion continues until the list is exhausted.

The programming structure of the foreach loop (and all con-
trol structures of the C shell) makes use of conventional C
programming syntax. The example below demonstrates a simple
foreach loop and the data it produces.

6-1 7ilog 6-1

C SHELL Zilog C SHELL

foreach i (1 2 3 4)
echo $i
end

W N)) oe

In this example the arbitrary variable "i" is first set to
the character "1", then the command echo $i is executed.
when the end statement is encountered, control passes Dback
to the foreach statement which checks to see if there are
any more items in list. If there is another item, "i" is
set to that item and the loop repeats until there are no
more items in the list between the parenthesis.

In each successive pass of the 1loop, "$i" refers to the
current value of the "i" as established in the foreach
statement. At the first iteration of the loop, i is set to
the character "1". At the second iteration, 1 is set to the
character "2", and so on.

Any character or string can be used for a name, and any
character or string can be used for list. Magic characters
will expand unless quoted.

For example, the command:
foreach i (*)

will expand " S$i " to each file name in the current working
directory. One example of this process might be:

foreach i (csh.??)
echo $i

ls -1 8i

end

W) J o9

This command will echo the name of the files starting with
"csh." followed by 2 single characters, and return a long
listing of that file for each:matching file in the current
directory, producing results similar to:

6-2 Zilog 6-2

C SHELL Zilog C SHELL

csh.@l 1

~rw-r--r-~- 1 deck system 13620 Nov 4 15:85 csh.@l
csh.92

~rw-r—--r-- 1 deck system 14537 Nov 4 13:24 csh.@2
csh.@3

-rw-rw-r—-- 1 deck system 24776 Nov 4 15:11 csh.d3
csh.@4

-rw-rw-r-- 1 deck system 8996 Nov 4 11:06 csh.24
csh.@5

-rw-r--r-- 1 deck system 6631 Nov 3 17:04 csh.d5
csh.9A

-rw-rw-r-- 1 deck system 3481 Nov 4 14:42 csh.9A
csh.9T

~rw=-r--r-- 1 deck system 2995 Nov 3 17:14 csh.9T

Both foreach and end must appear alone on separate lines.
The built-in command continue can be used to continue the
loop prematurely and the built-in command break to terminate
it prematurely. When this command is read from the termi-
nal, the 1loop is read through before any statements in the
loop are executed.

See Example 1 in Section 6.7

6.2. while and end group
SYNOPSIS:

while (expression)

command
end

While the specified expression evaluates nonzero, the com-
mands between the while and the matching end are executed.
Break and continue can be used to terminate or continue the
loop prematurely. The while and end must appear on separate
lines. Prompting occurs here the first time through the
loop as for the foreach statement if the input is a termi-
nal. —

See Example 2 in Section 6.7

6-3 zilog 6-3

C SHELL Zilog C SHELL

6.3. The if, else, endif Group

SYNOPSIS:

if (expression.l) then

command.l

else if (expression.2) then

command. 2
else
command .3
endif
If is a loop control statement generally useful for making
decisions within the while and foreach loop structures.
If expression.l evaluates true, command.l is executed. Com-
mand.l must be a simple command, not a pipeline, a command
list, or a command list within parentheses. Input/output

redirection occurs when the command is executed even if
expression.l is false (this is a bug).

If expression.l is not true, the else if condition 1is
tested, and 1If expression.2 is true, the commands in com-
mand.2 to the second else are executed. This process contin-
ues down the script.

Any number of else-if pairs are possible; only one endif is
needed. The else part is likewise optional. The words else
and endif must appear at the beginning of lines; the if must
appear at the beginning of a line or after an else.

See Example 3 and Example 4 in Section 6.7

6.4. The Switch Group

SYNOPSIS:

6-4 Zilog 6-4

C SHELL Zilog C SHELL

switch (string)
case labell:

command

breaksw
case labeig:

command

breaksw
default

command

endsw

Switch is generally useful in the context of a foreach or
while statement.

Each case label is successively matched against the speci-
fied string. If the case label matches the string, the
associated command is executed.

The file metacharacters "*, 2?2, [, and]" can be used in the
case labels. If none of the labels match before a default
label is found, the execution begins after the default
label.

Each case label and the default label must appear at the
beginning of a line. The command breaksw causes execution
to continue after the endsw. Otherwise, control falls
through case labels and default 1labels, as in C. If no
label matches and there is no default, execution continues
after the endsw.

See Example 5 in Section 6.7

Table 6-1 summarizes the third group of commands.

6-5 zilog 6-5

C SHELL Zilog C SHELL

Table 6-1 Built-in Command Summary =-- Group 3

GROUP 3

LOOP CONTROL COMMANDS USEFUL WITHIN A SCRIPT:

foreach Initiate a foreach loop

end End of a foreach or while loop
while Initiate a while loop

end End of a foreach or while loop

The If group:

if Initiate an if loop
else Alternative decision in an if statement
endif End of an if loop

The Switch group:

switch Switch to the next iteration of the variable
case Label in a switch statement

breaksw Causes a break from a switch

default Default case in a switch statement

endsw End of an switch loop

Independent loop control commands:

break Drops out of the nearest loop

continue Continue execution of nearest loop

goto Jump to a new location

shift Go to the next argument in the argument variable
6.5. Independent Flow Control Statements
6.5.1. Dbreak:
SYNOPSIS:

break

Causes execution to resume after the end of the nearest
enclosing foreach or while. The remaining commands on the
current line are executed. Multi-level breaks are thus pos-
sible by writing them all on one line.

Zilog 6-6

C SHELL Zilog C SHELL

See Example 6 in Section 6.7

6.5.2. continue:
SYNOPSIS:
continue

Continue execution of the nearest enclosing while or
foreach. The rest of the commands on the current line are
executed.

See Example 7 in Section 6.7

6.5.3. goto:
SYNOPSIS:
goto word

The specified word is file name and command expanded +to
yield a string of the form label. The shell rewinds its
input as much as possible and searches for a 1line of the
form label: possibly preceded by blanks or tabs. Execution
continues after the specified line.

See Example 8 in Section 6.7

6.5.4. shift:
SYNOPSIS:

shift
shift variable

The members of argv are shifted to the 1left, discarding
argv[1]. It 1is an error for argv not to be set or to have
less than one word as value. The second form performs the
same function on the specified variable.

See Example 9 in Section 6.7

6.6. Independent Shell Script Commands

67 zilog 6-7

C SHELL Zilog C SHELL

6.6.1. exec:
SYNOPSIS:
exec command

The specified command is executed in place of the current
shell.

For example, the command:

exec date
executes the date command, and then terminates the shell. If
the command is executed from the login shell, the command

will log the user off the system. The -logout file (if it
exists) will not execute. .

6.6.2. nohup:
SYNOPSIS:

nohup
nohup command

In a dial-up situation, when a terminal is connected to the
system with a modem through the telephone lines, hanging up
the telephone from the terminal end results in a logout.

Nohup (no hang-up) cause telephone hangups to be ignored for
the remainder of a shell script allowing the script to con-
tinue. The shell script must be running detached (in back-
ground) .

The nohup command, with a command argument causes the speci-
fied command to be run with hangups ignored.

6.6.3. onintr:

SYNOPSIS:

onintr -
onintr label

The onintr (on interrupt) command controls the action of the

shell script when an interrupt signal (usually the DELETE
key) is encountered from the keyboard.

6-8 Zilog 6-8

C SHELL Zilog C SHELL

With a minus sign argument, all interrupts are ignored.

With a label argument, onintr causes the shell to execute a
goto label when an interrupt is received.

See Example 4 in Section 6.7

The following table summarizes the fourth group of commands.

Table 6-2 Built-in Command Summary -- Group 4

GROUP 4

GENERAL PURPOSE COMMANDS, USEFUL WITHIN A SCRIPT:

exec Causes execution of a command with no return
nohup No Hangup in a dial-up phone situation
onintr Goto a new label on receiving an interrupt signal

6.7. Example Shell Scripts
NOTE

In these shell script examples, words in bold are
the actual command text. Lines beginning with a
pound sign are comments only and. may be omitted
from the script.

EXAMPLE 1 -- Foreach

#

foreach i (%) The variable "i" is set to all
the filenames in the current
working directory

echo $i within the loop, each iteration
of the variable "i" is printed
on the screen

end of the loop

Figure 6-1 A Basic Foreach Loop

This C shell script produces output in the following format:

6-9 Zilog 6-9

C SHELL Zilog C SHELL

csh.01
csh.@2
csh.g3
csh.f4
csh.@5
csh.g6
csh.g7
csh.@8
csh.@9
tenmp

EXAMPLE 2 -- While

#
while (1) $# "1" is always true, therefore
$# this is an endless loop
echo "This is an endless loop"
The string is printed forever
or until it is interrupted
end # end of the while loop

Figure 6-2 A Basic While Loop

This C Shell script produces the following output:

This is an endless loop
This is an endless loop
This is an endless loop
This is an endless loop
This is an endless loop
This is an endless loop
This is an endless loop
This is an endless loop
This is an endless loop

until an interrupt (the DELETE key) is encountered.

6-10 Zilog 6

19

C SHELL Zilog C SHELL

EXAMPLE 3

#
foreach i (*)

The variable "i" is
set to all filenames
in the current working directory

if ($i == temp) then

If this iteration of "$i" is
a file named "temp", then do
the following:

echo "Here is the temp file"

Print the string

If "$i" is not temp, then do
the following:

ENg

Print the filename

endif

Necessary end of the conditional
"if" statement

end

= SERE %

End of the "foreach" loop

— |
Figure 6-3 An If Statement in a Foreach Loop

The above C Shell script produces output in the following
format:

csh.g1l
csh.02
csh.93
csh.d4
csh.@5
csh.@6
csh.g7
csh.?8
csh.99
Here is the temp file

6-11 Zilog 6-11

C SHELL Zilog C SHELL

EXAMPLE 4, An "if" conditional statement within a "while"

loop, -- "onintr" and "set" using the math
statement "@" are also demonstrated
#

Establishes "hook" as the label
to "goto" on interrupt

onintr hook

Initializes the variable "a"
to "@" at the beginning of
the "while" loop

set a=@

while (1) "1" is always true, this is

an endless loop

B S H= H= = + I3k

if ($a < 5) then

If the variable "a" is less
than 5, then perform the next step

echo "The number is less than 5"
Print the string
else
If the number 1is not less than 5
then perform the next step:
echo "The number is 5 or greater"”

- # Print the string

endif # End of the "if" conditional statement
Q@ a++ # Set "a" to "a+l" (increment "a")
end # End of the "while" loop
hook: # the label identified in the
"onintr" statement. If an interrupt
is encountered, perform the following:
echo "Interrupt encounter -- Good bye"

Print the string

Figure 6-4 An Enhanced If Statement

The above C Shell script produces output in the following
format:

6-12 Zilog : 6-12

C SHELL Zilog C SHELL

The number is less than
The number is less than
The number is less than
The number is less than
The number is less than
The number 1is or greater
The number is 5 or greater
The number is or greater
The number is or greater
The number is or greater
The number is or greater
The number 1is or greater
The number is or greater
The number is or greater

oo

)]

(200, IR0, N0, IS, RO O]

.

Interrupt encounter -- Good bye

6-13 Zilog -13

(o)}

C SHELL

Zilog C SHELL

$# EXAMPLE 5, A "switch" statement nested in a "foreach"
loop —- use of the metacharacter "?" is also demonstrated
foreach i (%) # Sets the variable "i" to all
the filenames in the current
directory.
switch ($i) # Check this iteration of "$i"
to see if it meets the following
conditions.
case ?222?: # If the filename in "$i" has four
characters, perform the following:

echo " §i

breaksw

case ??

22272:
#

echo " $i

breaksw
default
ech
endsw
end
Figure 6-5

is a four character name
Print the string
And exit out of this case test.

If the filename in "$i" has five
characters, perform the following:

is a five character name "
Print the string

And exit out of this case test.

If the filename in "$i" has six
characters, perform the following:

is a six character name "

does not match

five or six character name”

e ————
.

Print the string
And exit out of this case test.
if the filename in "Si"
any of the above criteria, perform the
following:
o " $i is not a four,

Print the string
And exit out of the whole switch loop
End of the "foreach" loop.

A Switch Statement in a Foreach Loop

Zilog 14

C SHELL Zilog

C SHELL

The above C shell script produces output in the following
format. (NOTE: output will vary with the filenames in the

current working directory).

OUT@1l is a five character
OUT@2 is a five character
OoUT@3 is a five character
a.out is a five character
all.tables is not a four,
csh.@1 is a six character

csh.@2 is a six character’
csh.@3 is a six character
five or six character name

echo.test is not a four,

name
name
name
name
five
name
name
name

or six character name

tax is not a four, five or six character name
temp is a four character name

6-15 Zilog

15

C SHELL Zilog C SHELL

EXAMPLE 6: A Break statement in a While loop
#
while (1)
This sets up an endless loop
echo -n " enter x: "
The echo statement prompts
$# for input from the the terminal

set x = “gets’
the "set" expression sets the
variable "x" to whatever is
entered at the terminal (the
input is captured with the
“gets’ expression)

if ($x == 'a') then
If the input is the letter
"a" then proceed to the break
statement.

break # goes to the "end" statement

echos the last statement "it
broke" and drops out of the loop
else If the input is not the letter
"a" then proceed back to the
nearest loop statement (while).

He He 3 H =

echo "it did not break”
returns to the
beginning of the while loop

endif
ends the "if" branch

end
ends the "while" loop .

echo "it broke”
demonstrates the break

Figure 6-6 A Break Statement

The above C Shell script produces an exchange in the follow-
ing format:

6-16 Zilog 6-16

C SHELL Zilog C SHELL

enter x: b

it did not break
enter X: cC

it did not break
enter Xx: a

it broke

NOTE: that the "b", "c", and "a" characters are input from
the keyboard in response to the "enter x:" prompt.

6-17 zilog 6-17

C SHELL Zilog C SHELL

EXAMPLE 7 -- Prompting for input, getting input, evaluating
the input with an if statement, and demonstrating
the continue statement. Onintr is also demonstrated.
#
while (1)
$ sets up an endless loop

echo -n "enter x:"
as in the example above, this
prompts for input from the
terminal

set x = “gets®
this set the variable "x" to
whatever is entered with the
“gets’ command

if (8x == "a') then
If the input is "a" continue

echo "it continued”
This demonstrates the continuation
$# if the input is "a"

continue
goes to beginning of the enclosing
while loop and starts over

endif
$# ends the "if" statement if
the input is not "a"

echo "it did not continue”
$ the if statement does not continue

exit

if the input is not "a" the
"exit" command terminates the
"while" loop

HH H S

end the "while" 1loop

Figure 6-7 An Example of the Continue Statement

The above C shell script produces an exchange in the follow-
ing format:

6-18 Zilog 6-18

C SHELL zilog

enter Xx:a

it continued

enter x:a -

it continued

enter x:a

it continued

enter x:b

it did not continue

NOTE: As in the previous example,
are input from the keyboard.

6-19 zilog

the

lla

and

Ilbll

C SHELL

characters

C SHELL Zilog C SHELL

EXAMPLE 8 -- The Goto statement within a foreach
loop. This shell script tests each filename for the

name "temp". When the "temp" file is encountered, control
goes to the label "branch".

foreach i1 (*)

. sets a "foreach" loop with the controlling
list variable "i" which is set to all the
files in the current directory.

HH 3 =

if ($1i == temp) then
tests each filename to see if it matches
the word "temp"

goto hook
$# if it matches, control jumps
to the label "hook"

else if ($i != temp)
if the filename does not match the
word "temp" control drop to the next
} statement

echo "$i is not the temp file "
echos that the filename is
not "temp"

endif
ends the "if" branch statement
end
ends the "foreach" loop
hook:
the destination of the "goto" label
echo "Here is the temp file -- end loop *

reports finding the "temp" file and
drops out of the loop

e e e e e]
Figure 6-8 An Example of the Goto Statement
The above C shell script produces output 1in the following

format. Note that the output is dependent upon the filenames
in the current working directory.

6-20 Zilog 6

20

C SHELL Zilog C SHELL

csh.@l is not the temp file
csh.f2 is not the temp file
csh.@3 is not the temp file
csh.04 is not the temp file
csh.05 is not the temp file
csh.f96 is not the temp file
csh.@7 is not the temp file
csh.p8 is not the temp file
Here is the temp file -- end loop

EXAMPLE 9 -- The Shift statement
#
set a = (¥)

$ sets the variable "a" to the list of all filenames
in the current working directory. If the files
are "csh.@l csh.d2 csh.@#3 and csh.@4" then
echo $Sa
$# the list will echo:
$ csh.d1 csh.f2 csh.@3 csh.g4

shift a

shifting drops the leftmost element to produce:
echo $a

csh.02 csh.23 csh.g4
shift a

shifting drops the leftmost element to produce:
echo $a

csh.P3 csh.g4

Figure 6-9 An Example of the Shift Statement
The output will look something like the following:
csh.f@l csh.@2 csh.@3 csh.g4

csh.@2 csh.93 csh.g4
csh.03 csh.94

6-21 Zilog

[=))
i

21

C SHELL 7ilog C SHELL

SECTION 7
SHELL VARIABLES

7.1. Predefined C Shell Variables

The ZEUS working environment can be customized in a number
of ways, this section explains the use of C shell variables.

17 variable names are predefined by the C Shell. These
variables control many of the C shell's built-in functions.

Section 7.3 presents a discussion of user-defined variables.

7.1.1. argv:
SYNOPSIS:
(Not set at the terminal)

Argv is short for "argument variable". Each command typed
to the prompt is Dbroken into arguments (parsed) and each
argument in the command is numbered from zero and placed in
the argument variable for execution. - In the command:

there are 3 arguments:

argument @ is the command itself, 1s
argument 1 is the =1
argument 2 is the filename file.@l

The C shell keeps track of the arguments in the the variable
argv () At login, argv is set to zero by the C shell. This
value is reset at each command to the names of the arguments
given for each command.

To demonstrate the argv variable, the following file named
test is a C shell script and contains six lines:

test

echo $argv
echo S$argv[1l]
echo S$argv[2]
echo $argv[3]
echo $argv[4]

7-1 zilog 7-1

C SHELL Zilog C SHELL

The first line of the file contains a pound sign (to indi-
cate that it is a C shell script) and the name of the file
test.

The rest of the file contains command lines designed to
demonstrate the properties of the argv variable. The second
line is a command to echo the full contents of the argv
variable, the second line is a command to echo argument 1 of
the argv variable, the third line is a command to echo argu-
ment 2, etc.

Once the file has been created it must be made executable
with the command:

chmod 777 test

(See chmod(1l) in the ZEUS Reference Manual) and then exe-
cuted with three arguments as follows:

test a b ¢
producing the following results:

abc

a

b

C

Subscript out of range.

the script command echo $argv prints out the full contents
of the argv variable -- the first argument to the last argu-
ment in argv (all arguments except the zero-th argument).
The expression argv[*] can also be used. The following echo
commands print out the specific components of the command
arguments -- the first, second, and third arguments. Note
that a call to the fourth argument ($argv[4]) produces the
error:

Subscript out of range.

Each component of argv can also be accessed with the syntax:

SN
where N is a number corresponding to the position of the

argument in the argument list. Thus the script could have
been written:

7-2 : Zilog 7-2

C SHELL zilog C SHELL

§ test

echo $*
echo $0
echo $1
echo $2
echo $§3
echo S4

Executing the script again with three arguments:
test a b ¢
produces the following results:

a b c
test

[oamv]

(¢}

The difference is two-fold. First, a call to the command
itself (argument number zero) $8 is possible, and second, a
call to a subscript value that is out of the range of the
number of arguments does not produce an error, only a blank
line.

DEFAULT:

argv={()

ALSO SEE:

Section 5.2.2 =~ echo and 5.2.9 =- umask

7.1.2. child:
SYNOPSIS:
(Not set at the terminal)

The child variable holds the number of the last background
process.

This is useful in stopping a job running in background. The
command :

kill -9 $child

7-3 zilog 7-3

C SHELL Zilog C SHELL

will terminate the last background job.
DEFAULT:

unset by default

ALSO SEE:

Section 2.5 ~-- Running a Command in Background

7.1.3. echo:
SYNOPSIS:
set echo

The echo variable controls whether or not commands are
echoed (printed) immediately after they are typed at the
prompt. When set, the echo variable produces results in the
following format:

%3 1s
ls
csh.@l csh.@g2 csh.@3 csh.@4 csh.@g5

The echo variable is also set when the " -x " command 1line
option is given to a c¢sh(l) command. As in the command:

csh -x test
For non-built-in commands, all expansions occur before echo-
ing. Built-in commands are echoed before command and file
name substitution.
DEFAULT:

unset by default
ALSO SEE:

echo(l), echo2(1l)
Section 5.2.2 -- echo

7-4 Zilog 7-4

C SHELL Zilog C SHELL

7.1.4. history:
SYNOPSIS:
set history=N
The history variable controls the number of commands stored
in memory on the history list. Numbers that are too large

can run the C shell out of memory. The last executed com-
mand is always saved on the history list.

DEFAULT:

unset by default

ALSO SEE:

Section 4 -- The History Function

7.1.5. home:
SYNOPSIS:

set home=/path/home.directory

The home variable refers to the home directory. It is set
(initially) by an entry in the /etc/passwd file which is
created when the account is created. It can be reset at the
prompt, or in a script.

The home variable is used to establish the destination for
the ¢d command (when used without an argument). It is also
used to establish the wvalue of the metacharacter tilde

u ~ n
.

Home can be set to any directory, but it is most useful when
it points to the home directory.

DEFAULT :

home=/path/home.directory

ALSO SEE:
Section 1@ -- Environment Variables (HOME)
Section 3 -- Metacharacters (~) and (/)

7-5 Zilog 7-5

C SHELL Zilog C SHELL

7.1.6. 1ignoreeof:
SYNOPSIS:
set ignoreeof

The ignoreeof variable determines how the C shell handles
end-of-file signals (control D) from the terminal.

If it is set, the ignoreeof variable prevents the parent
(login) shell from being killed by accidental control-Ds.

If ignoreeof is set, and a control-D is entered, an error
message returns with: ‘

Use "logout" to logout.

This variable is useful in programs where control-Ds must be
entered at the terminal.

DEFAULT:

unset by default

ALSO SEE:

Section 5 -- Built-in Commands (logout, exit)

7.1.7. mail:
SYNOPSIS:

set mail=/path/directory
set mail=(N /path/directory)

Note that parentheses must surround a word list with embed-
ded spaces.

The mail variable sets a procedure that checks the directory
/path/directory every N seconds for new mail.

If N is omitted, the shell checks the file every 5 minutes.
Checking is done after each command past N seconds (thus no

checking 1is done in a lengthy program like vi(l); instead,
the check is performed after leaving vi).

7-6 Zilog 7-6

C SHELL Zilog C SHELL

Upon finding new mail, the C shell reports

You have new mail.
Several files can be specified, and if there are multiple
mail files, the C shell specifies the mail file name with:

New mail in name.

DEFAULT:

mail=/usr/spool/mail/name

ALSO SEE:

mail(l)

7.1.8. noclobber:
SYNOPSIS:

set noclobber
If the noclobber variable is set, restrictions are placed on
output redirection to insure that files are not accidentally
destroyed. An attempt to redirect output to an existing
file (e.g. test) as with the command:

who > test
results in the error message:

test: File exists.
In addition, restrictions are placed on appending (" >> ")
redirections to insure that the named output files refer to
existing files. An attempt to append information to a non-

existent file (e.g. new.file), as with the command:

1s »> new.file

results in the error message:

new.file: No such file or directory.

7-7 Zilog 7-7

C SHELL Zilog C SHELL

DEFAULT:

unset by default

ALSO SEE:

Section 2 == Input and Output Redirection

7-1.9. noglobdb:
SYNOPSIS:

set noglob
If set, the noglob variable inhibits file name expansion --
the metacharacters described in Section 3.1 will not expand
to matching filenames. The command:

echo *
will return:

*

This is useful in C shell scripts not dealing with file
names, or in a situation where metacharacters need to be
passed unexpanded.

DEFAULT:

unset by default

ALSO SEE:

Section 3 -~ Filename expansion

7-1.19. nonomatch:
SYNOPSIS:
set nonomatch
With the nonomatch unset, a command using a filename expan-

sion metacharacter that fails to match a filename as in a
situation where there are no files that begin with the

7-8 Zilog 7-8

C SHELL Zilog ; C SHELL

letter "a". The command:
ls a*

retutns the error:
No match.

but if the nonomatch variable is set, it is not an error for
a file name expansion to not match any existing files.

Instead, the pattern is returned with the message:
a* not found.

It is still an error for the primitive pattern to be mal-
formed; for example the command: :

echo [
still returns the error:

Missing].

DEFAULT:

unset by default

ALSO SEE:

Section 3 -- Filename Substitution

7.1.11. path:
SYNOPSIS:
set path=/directory...
At login, the shell searched down the directories specified
in the path to create a hash table 0f the files listed in

each directory. This hash table becomes the list of commands
that are known to the shell.

This is true, except for dot " ., " which specifies the
current working directory. Dot, (the current working direc-
tory) if listed in the path var;able, is always searched and
hashed for each command. Thus, it should always be included

7-9 Zilog 7-9

C SHELL Zilog C SHELL

in the path variable.

If there is no path variable, only commands which specify a
full path name will execute as in the command:

/bin/1ls

The default search path is ., /bin, and /usr/bin. For the
super~user, the default search path is /etc, /bin, and
/usr/bin.

The C shell will search first in the current working direc-
tory (indicated with a dot " . "), if the C shell finds a
file name that is identical to the name of the command, the
C shell will attempt to execute the file as if it were a
program. If the file does not execute properly, the C shell
will report the error on the standard error channel (which
is usually the terminal) with the syntax:

command: Command not found.

If the file is not found in the current directory the C
shell 1looks in the next directory (in this case /bin). The
/bin directory holds the most common ZEUS commands. If the
command/file 1is found in /bin it is executed, if it is not,
the C shell searches in /usr/bin where the "next-most-
common" ZEUS commands reside. -

Other directories can be included in the search path. If the
path contains spaces, it must be surrounded with
parentheses.

DEFAULT:

path=(. /bin /usr/bin)

ALSO SEE:

Section 5 -- Built-in Commands (Rehash)

7-1.12. prompt:
SYNOPSIS:
set prompt=string

The prompt is the signal from the C Shell that the operating
system has finished the last command and is ready to accept

7-10 zilog 7-19

C SHELL Zilog C SHELL

another command.
The default prompt for regular users 1is the percent sign
" % ", the default prompt for the super-user (ZEUS) is a
pound sign " # "
The prompt variable can be modified to provide more useful
information. The most common example is to place the command
number within the prompt. The command:

set prompt=" ¢ \! "
will produce the prompt:

$ 1

Note that quotes must be used if the prompt string contains
a space.

The number will increment by 1 for each command. The command
number is wuseful information when 'used with the history
function (See below).

DEFAULT:

prompt=%

ALSO SEE:

Section 4 ~- The History Function

7.1.13. shell:
SYNOPSIS:

set shell=/path/shell.name

The shell variable sets the shell to be used at 1login,
either /bin/csh for the C Shell, or /bin/sh for the Bourne
Shell.

This variable is set (initially) in the /etc/passwd file
when the account is created and can be reset either at the
prompt or in the body of a C shell script.

DEFAULT:

shell=/bin/csh

7-11 zilog 7-11

C SHELL Zilog C SHELL

ALSO SEE:

csh(l) and sh(1l)

7.1.14., status:
SYNOPSIS:
(Not set at the terminal)

The status variable holds the exit status returned by the
last command.

When a command executes successfully (without erctor), it
sets the status variable to 0.

If a command fails to execute properly (e.g. if there is a
syntax error, or some othet form of error), the command will
leave the status variable with some value other than @.

This variable is useful in C shell scripts to report errotrs
on the execution of C shell script commands.

Note: The command set will always show the status variable
to have a value of @ because the set command executes suc-
cessfully. The true value of the status variable can be seen
with the command:

echo $status

DEFAULT:

status=0

ALSO SEE:

Section 5 -- Built-in commands (exit)

7.1.15. term:
SYNOPSIS:

set term=terminal.type

The term variable sets the type of terminal expected by the

7-12 Zilog 7-12

C SHELL Zilog C SHELL

system. This information is important to programs that use
specific commands to manipulate the cursor (e.g. the visual
editor vi(l)).

The shell matches the two-character code from the term vari-
able with the terminal description line in the /etc/termcap
file. A sample of the first line of the terminal description
code for the VTZ 2/10 is shown below:

vz|vtz|mcz—2/6ﬂ|vtz—2/lﬁ

The term variable is initially set in /etc/ttytype file but
can be reset at the prompt or in the body of a C Shell
Script.

Using the two-character code found in the term variable, the
C shell then matches that code to the entry in the
/etc/termcap file to initialize the "terminal-to-ZEUS"
software interface.

DEFAULT:

term=vz

ALSO SEE:

The /etc/termcap file on-line
and termcap(5).

7.1.16. time:
SYNOPSIS:
set time=N

The time variable controls the automatic timing of commands.
If 1t is set, any command which takes more than "N " CPU
seconds results in a line showing user time, system time,
real time, and a utilization percentage (ratio of user time
plus system time to real time).

The output is in the following format: (output of the time
command is the last line of the example)

7-13 . Zilog 7-13

C SHELL Zilog C SHELL

% ps
PID TTY TIME CMD
23399 2 J:26 -csh
25207 2 @:93 ps
P.2u 2.8s B:05 60%
DEFAULT:

unset by default

ALSO SEE:

time(1l).
Section 5 - Built-in commands (time)

7.1.17. verbose:
SYNOPSIS:
set verbose
The verbose variable functions like the echo variable. When

it is set, each command is echoed, as in the following exam-
ple:

% 1ls
1ls
csh.9l csh.@2 csh.83 csh.94 csh.@5 csh.96 c¢sh.07

The verbose variable is also set by the -V command line

option to the csh command, as in:
csh -v test

the verbose variable causes the arguments of each command to
be printed after history substitution (unlike the echo vari-
able which causes arguments to be printed before history
substitution). B

DEFAULT:

unset by default

ALSO SEE:

7-14 Zilog 7-14

C SHELL Zilog C SHELL

Section 3 -- FWilename Substitution
Section 4 -- History Function
7.2. Predefined variables -~ Default Values

If no other values are established for these initial C shell
variables, the following "default" properties are set by the
C shell (or a function of the C shell) at login.

The set command reveals the following list of predefined C
shell variables and their default value.

argv 0]

home /path/home.directory
path (. /bin /usr/bin)
prompt %

shell /bin/csh
status #
term vz

Table 7-1 C Shell Predefined variables

Name: Function:

argv Tracks command arguments

child Records the number of last background command
echo Echos each command

history Sets the length of the history memory
home Sets the home directory

ignoreeof Sets response to control-D commands

mail Sets mailbox and frequency of mail checks
noclobber Sets file over-write protection

noglob Sets filename expansion inhibitor
nonomatch Sets "no match" error override

path Sets search path for commands

prompt Sets prompt :

shell Sets shell (/bin/csh or /bin/sh)

status Tracks exit status of commands

term Sets terminal type

time Sets frequency of "time" report command
verbose Sets verbose echoing of command lines

7.3. User-defined Variables

In addition to the built-in variables supplied with the C
Shell, non-built-in variables can be established and

7-15 Zilog 7-15

manipulated by each user.

A variable can be any character string of characters, and
can be set to anything -- numbers, letters, file or direc-
tory names, strings of numbers and letters, etc.

One handy trick is to set a directory name to a single
letter variable, as in the following example:

set M=/usr/doc/man/manl
With M set, the command:
cd SM
is the same as the command
cd /usr/doc/man/manl
Another trick is to set a variable to the date, as with the
command :
set DATE=‘date’
The variable DATE can then be manipulated in any number of
creative ways.
7.4. User-defined Variable Substitutions
SYNOPSIS:

set name=value
set name[N]=value

Any word or character string can be set as a C shell vari-
able.

Given the command to set a variable named DATE to the date
with the command:

set DATE=‘date’
to see the contents of the DATE variable, the command:
echo $DATE

produces the output:

7-16 7ilog 7-16

C SHELL Zilog C SHELL

Fri Dec 17 17:24:08 PST 1982

NOTE: Variables must be called with a dollar sign before the
name.

Each element in the string can be referenced with a sub-
script selector appended to the variable name as in:

echo $DATE[3]
to produce the third word in the string:

17

To check the number of words in the DATE variable, the com-
mand:

echo $#DATE
produces:

6
As part of a sequence of commands in the body of a C shell
script it may be useful to determine whether a variable has
been set or not, thus the command:

echo S$?DATE

will yield a "1" if DATE is set, and "@" if it is not set.

Table 7-2 Variable Substitution Syntax

Syntax: Meaning:

S$name The variable name

${name} Insulate name from surrounding characters
$name[N] Argument N of name

${name[N]} Argument N of name

S$#name Give number of words in the variable
${#name} Give number of words in the wvariable
$?name Substitute "1" if name is set "@" if not
$number Same as $argv[number]

${number} Same as ${argv[number]}

17

7~17 Zilog 7

C SHELL Zilog C SHELL

Table 7-3 Metacharacters in Variable Substitution

Character: Meaning:

$N Same as §Sargv[N]

$9 Command file name (zeroth argument)

$20 1 if current input filename is known, @ if not
$* Same as Sargv[*]

$s Process I.D. number of parent shell

7.5. Using Modifiers in Variable Substitions

The modifiers ":h", ":t" and ":r", apply to variables the
way that they apply to commands.

For example, if the capital letter U is set to the directory
/z/deck/Util/New.csh, the following commands apply. First,
the command to echo the full variable:

echo $U
/z/deck/Util/New.csh

The :h modifier strips off the trailing filename (/New.csh)
leaving the head: ’

echo $U:h
/z/deck/Util

The :r modifier strips off the trailing filename suffix (the
csh portion after the dot) leaving the root:

echo $U:r
/z/deck/Util/New

The :t modifier strips off the head (/z/deck/Util) 1leaving
the tail portion of the name:

echo $U:t
New.csh

If insulating braces " { } " appear in the command form, the
modifiers must appear within the braces.

18

7-18 Zilog 7

C SHELL Zilog C SHELL

Table 7-4 Variable Substitution Modifier Table

Modifier: Effect:

:h Head only
st Tail only
ir Root only
ALSO SEE:
See Section 4.5 -- Modifying Previous Command Words
Section 5 -- Built in Commands (modifiers)

Zilog 7-19

C SHELL Zilog C SHELL

SECTION 8
THE CSH COMMAND AND C SHELL SCRIPTS

8.1. The Csh Command
SYNOPSIS:
csh

csh [-option] filename
filename

The C shell can be invoked at the prompt as a command. Used
as a command, and without an argument, as in the command:

csh

the parent C shell (the login shell) creates (forks) a new C
shell (referred to as a child process), re-reads and re-
executes the contents of the ~/.cshrc file (but not the
“/.login file) and begins a new environment with a new his-
tory list.

By itself, the csh command creates a new working environment
with the default values (those established in the environ-
ment and in the “/.cshrc file). This is useful in a situa-
tion where the user wishes to clear any new variables,
aliases, or history references from the immediate working
environment in order to test a shell script or some other
shell manipulation without logging off the system and then
logging back on. The csh command is of greater utility when
invoked from within a running program (e.g. vi(l), more(l)
and write(l)).

See Section 9.2 -- Other Related C Shell Files

8.2. Invoking Csh to Execute a Shell Script
SYNOPSIS:
csh filename
With a filename argument, where filename is the name of the
file containing one or more commands (the file is known as a

script or shell script), the C Shell attempts to execute the
file.

8-1 7ilog 8-1

C SHELL Zilog C SHELL

For example, given a file named test having the following
lines:

1s
who
pwd
date

all commands in the file will be executed in succession with
the command

csh test

to produce the results:

csh.g1

csh.02

csh.23

csh.d4

csh.d5

csh.@6

csh.oT

refer.sheet

karen ttyd Nov 1 48:109
cheryl console Nov 1 14:02
deck tty2 Nov 1 18:37
mike tty6 Nov 1 14:43
carol tty8 Nov 1 #8:35
george tty9 Nov 1 28:35

/z/deck/Util/New.csh
Mon Nov 1 15:19:39 PST 1982

the csh command creates (forks) a new C shell (also referred
to as a child process). This new C shell reads and executes
the contents of the ~/.cshrc file and then reads through the
contents of the shell script, line by line, and executes
each command in its turn (Spaces between the sections of
output have been added to clarify the example).

When all the lines have been read, the new C shell (the
child) dies and control returns to the parent (login) C
shell (See Section 10 for a discussion of this process).

Executing a shell script with the csh command is equivalent
to making the shell script executable with the chmod(1l) com-
mand and typing the name of the file as if it were a com-
mand. This is demonstrated in the following example:

8-~2 Zilog 8-2

C SHELL Zilog C SHELL

chmod 777 filename
filename

8.3. Using C Expressions in Scripts

Shell scripts can become far more complex than a collection
of single 1line commands. A number of built-in commands can
be used in expressions using operators similar to those of
the C programming language (Refer to the book The C Program-
ming Language by Brian Kernighan and Dennis Richie).

These expressions can be used with the @(set), exit, ig, and
while commands. Table 8-1 shows the available operators:

Table 8-1 Relational Operators in C Shell Scripts

Character: Meaning:

11 Logical "or"
Logical "and"

| Bitwise inclusive "or"

- Bitwise exclusive "or"

& Bitwise "and"

= I= Equal to; Not Equal to

<= >= < > Less than or equal to, Greater than
or equal to, Less than, Greater than

<< >> Shift operators

+ - Add, Subtract

* / 2 Multiply, Divide, Modulo

1 Negation

~ Complement

() Parenthesis -- bracket expressions

Precedence increases from top to bottom. Operators on the
same line are left to right associative.

NOTE
The "equal to" and "not equal to" operators ("

==" and " !=") compare arguments as strings; all
other operators operate on numbers.

The expression:

if $argv[l] == temp

8-3 7ilog 8-3

C SHELL Zilog C SHELL

will try to match the contents of Sargv[1l] with a file named
temp, while the expression

if Sargvl[l] >= temp
will produce a syntax error.

Null or missing arguments are considered "@". Thus, 1if the
variable a is set to "1", the expression:

if (Sa >) echo hi
will echo "hi".

The result of all expressions are strings which represent
decimal numbers.

All operators must be separated from the surrounding text
with spaces except the following characters:

ampersand "&"
pipe n l 1"
less than e
greater than "y
parenthesis "(" and ")"

which can be placed next to the operands, as in the example:

#
set a=4
if ($a>3) who
which executes the who command.
8.4. Examples of Shell Scripts using Operators
8.4.1. And and Or Operators:
The following operators are useful 1in conditional expres-—
sions where the values of expressions and commands need to

be evaluated -- "true" and/or "false".

The following "truth table" illustrates results of these
operators:

8-4 Zilog 8-4

C SHELL Zilog C SHELL

@ = false

1l = true

a = left side of the operator
b = right side of the operator

&

ab | && °

g 0 1) 1)]

g 1 1 /] 1

10 1 /) 1

11 1 1]

Figure 8-1 Truth Table
Using the following syntax:

if (expression.a operator expression.b) command

and with the logical "or" operator "l " if expression.a is
"true" -- giving it a value of "1", and expression.b is
"false" -- giving it a value of "@g", then the net result of
these two expressions is "true" (giving it a value of "1" --
see the third line of the table above) and an attempt will
be made to execute command.

Consider the following shell scripts:
I Logical "or"
#
set a=1
set b=9
if (Sa == 1 || $b == 1) who
" This script executes the who command.
&& Logical "and"
#
set a=1
set b=9
if ($a == 1 && $b == 9) who
This script executes the who command.

| Bitwise inclusive "or"

8-5 Zilog 8-5

C SHELL Zilog

#

set a=1

set b=9

if (Sa == 1| $b == 1) who

This script executes the who command.

Bitwise exclusive "or"
¥
set a=1
set b=9
if (sa == 1 ° 8b == 1) who

This script executes the who command.
Bitwise "and"

set a=1

set b=9

if ($a == 1 & $b == 9) who

This script executes the who command.

8.4.2. Relational, Equality Operators:

Equal to

#
set a=1
if ($a == 1) who

This script executes the who command.

Not Egual to

set a=1
if ($a 1= 9) who
This script executes the who command.

Less than or equal to

]
set a=1l
if ($a <= 9) who

This script executes the who command.

zZilog

C SHELL

C SHELL Zilog C SHELL

Greater than or equal to

#
set a=1
if ($a >= 1) who
This script executes the who command.

Less than

E
set a=1
if ($a < 1) who

This script executes the who command.
Greater than
#

set a=l
if ($a > @) who

This script executes the who command.

8.4.3. Shift Operators:

<<

>>

Left Shift operators Shifting is a binary operation.
Essentially, shifting a number left 1 is the same as
mutilpying by 2. By the same token, shifting a number
left 3 (m << 3) is the same as multiplying that
number by 8 (2 to the 3rd).

Q@ x=2
@ y=($x << 1)
if ($y == 4) who

This script executes the who command.
Right Shift operators Shifting right is dividing by

two, shifting right 3 (n »>> 3) is the same as divid-
ing by 8 (2 to the 3rd.)

¥

Q@ x=4

@ y=($x >> 1)

if ($y == 2) who

This script executes the who command.

Zilog 8-7

C SHELL Zilog C SHELL
8.4.4. Math Operators:
+ Addition
#
@ a=1+3
if (Sa == 4) who
This script executes the who command.
NOTE
Note the use of the at sign "@" in the context of
a math operation. This assigns a decimal number to
the variable, rather than assigning a string to
the variable.
- Subtraction
#
@ a=9-1
if ($a == 8) who
This script executes the who command.
* Multiplication
@ a=2*4
if ($a == 8) who
This script executes the who command.
/ Division
$
Q@ a=8/2
if ($a == 4) who
This script executes the who command.
3 Modulo
#
Q@ a=9%4
if ($a == 1) who
This script executes the who command.
8-8 Zilog 8-8

C SHELL Zilog C SHELL

8.4.5. Other Operators:

] Negation

¥
set a=1
if (Ssa = 9) who
This script executes the who command.

() Parenthesis -- bracket expressions

#

set a=1

set b=9

if (Sa ==1 & $b == 9) who

This script executes the who command.

8.5. File Inquiry Operators

File inquiry operators are used to test the qualities of a
given file. When used with an if statement, the expression
is used with the following synopsis:

if (-operator filename) command

In the above example, if the file filename meets the condi-
tions set by the operator, the following command is exe-
cuted.

The exclamation point "! " is used to test if the condition
is not met, as in the synopsis:
*

if (| -operator filename) command

The following file ingquiry operators are available.

8-9 Zilog 8-9

C SHELL Zilog C SHELL

Table 8-2 File Inquiry Operators

Character: Meaning:

read access
write access
execute access
existence
ownership

zero size
plain file
directory

QL NOMDMS<EHN

If the file does not exist or 1is inaccessible, then all
inquiries return "@" (the value of a false expression).

If more detailed status information is required, the command
should be executed outside of an expression and the variable

status examined (see Section 7.1 -- '"Predefined <C Shell
Variables"™ The Status Variable).

An example of a file inquiry operator used in a shell script
is:

if (-e test) echo "The test file is here"

If the file named "test" exists 1in the current working
directory, this script will echo "The test file is here".
8.6. Options to the Csh Command

SYNOPSIS:

csh —-option filename

-c Commands are read from the (single) following argument
that must be present,. Any remaining arguments are
placed in argv.

-e The C shell exits if any invoked command terminates
abnormally or yields a nonzero exit status.

~-f The C shell starts faster, because it neither searches

for nor executes commands from the file ~/.cshrxc in the
invoker's home directory.

8-10 Zilog 8-10

C SHELL

Zilog C SHELL

The C shell is interactive and prompts for 1its top-

level

input, even if it appears to not be a terminal.

Shells are interactive without this option 1if their
“inputs and outputs are terminals. and outputs are ter-

minals.

Commands are parsed, but not executed. This

aids in syntactic checking of C shell scripts.

-s Command input is taken from the standard input.

-t A single line of input is read and executed. A \ can
be used to escape the new line at the end of this line
and continue onto another line.

-v Causes the verbose variable to be set, with the effect
that command 1input 1is echoed after history substitu-
tion.

-X Causes the echo variable to be set, so that commands
are echoed immediately before execution.

-V Causes the verbose variable to be set even before
.cshrc is executed.

-X Causes the echo variable to be set before .cshrc is
executed. After processing of flag arguments, if argu-
ments remain but neither the -c¢, -i, -s, or -t options
are given, the first argument (argument O -- the name
of the C shell script) is taken as the name of a file
of commands to be executed. The C shell opens this
file, and saves its name for possible re-substitution
by $@. The C shell executes a standard (Bourne) shell
if the first character of a script is not a pound sign
"§". the remaining arguments are placed in the
variable argv.

Table 8-3 Options to the Csh Command

Option: Meaning:

-C single argument only

-e exit on error

~f faster (doesn't read ~/.cshrc)

-1 interactive -- prompts for input

-5 take commands from standard input

-t read and execute single line of input

-V verbose -- echo commands after history

-X verbose -- echo commands before history

-~V verbose variable set before ~“/.cshrc is read

-X verbose set before “/.cshrc and before history subs
8-11 Zilog 8-11

C SHELL Zilog C SHELL

8.7. Comment Lines in the Shell

In general, for the C shell, a word beginning with a pound
sign "#" causes that word and all the following characters
up to a new-line to be ignored.

As the first character, in the first column on the first
line of a shell script, the pound sign means "use the C
shell (/bin/csh) to execute this script." Other characters
in the first position mean other things. Please refer to the
following chart for the specific meanings:

Table 8-4 Shell Script Shell Indicators

First Line in Script: Meaning:

#1sh Use the "Bourne" shell -- /bin/sh

#lcsh Use the "C" shell -- /bin/csh

#1 Error, can't determine which shell

#1/xxx Use the shell in the file /xxx

X Any character other than "#" uses /bin/sh

8-12 Zilog 8-12

C SHELL Zilog ‘ C SHELL

SECTION 9
C SHELL FILES

9.1l. Start-up Files

The letters "rc" append certain filenames. These initials
stand for "read command". Thus the file “/.cshrc is the
"csh read command" file. Each time the C shel (csh) is

invoked it reads and executes the contents of this file.

"Re" files are read at different times by the shell (and
other programs) to perform different tasks. The file named
"/etc/xrc_csh" is read each time the ZEUS operating system is
booted (Refer to the System Administrator Manual for more
details). Another "rc" files is "7 /.exrc" which is read each
time the ex(l) editor or vi(l) editor is called.

In addition to the "rc" files, there are a number of other
files that hold importance for the C shell.

Table 9.1 shows the built-in files that are important to the

system. Other files can be defined and used by each user as
needed.

Table 9-1 Special Files

~/.cshrc
~/.login
~/.logout
~/.exrc
~/.profile
/bin/sh
/bin/csh
/dev/null
/etec/cshprofile
/etc/passwd
/etc/group
/tmp/sh*

There are no clear rules for the implementation of the ini-
tialization files (7/.cshrc, “/.login, ~/.logout and
“/.exrc). The examples provided are merely suggestions,
they have been presented to suggest a limited range of pos-
sibilities, some experienced users prefer much more ela-
borate files, It is a matter of taste.

9-1 Zilog 9-1

C SHELL "Zilog C SHELL

NOTE

The convention " ~/.file " refers to the fact that
the file must be in the user's home directory.
Either the C Shell, or the operating system
(ZEUS) 1looks in that specific directory for the
particular file.

9.1.1. ~/.cshrc:

The "7 /.cshrc" file is read at the execution of each C
shell. At login, the ""/.cshrc" file is read before the
"“/.login" file.

The ~/.cshrc file should contain commands that are needed
for every shell,

$# “/.cshrc file

set ignoreeof

set history=15

set mail=(5 /usr/spool/ma11/deck)
set prompt- *whoami® # >

stty erase “H kill °X

umask 2
set U="/Util/New.csh
alias h history

alias bye logout

Figure 9-1 A Sample ~/.cshrc File

.cshrc file
The ~/.cshrc file is read by the C shell, thus it must
begin with a pound sign. The ".cshrc" label is ignored
as a comment. :

set ignoreeof
The ignoreeof variable makes the C shell ignore
accidental control-Ds and thus, accidental "logout's
ALSO SEE:
Section 7.1 -- Predefined C Shell variables

set history=15

The history variable controls the size of the history
list.

9-2 Zilog 9-2

C SHELL Zilog ' C SHELL

ALSO SEE:
Section 7.1 -- Predefined C Shell variables.
Section 4 -- The History Function

set mail=(5 /usr/spool/mail/deck)

The mail variable sets the frequency of new mail checks
(in "this case, 5 seconds between checks). The second
argument sets the location of the mailbox. The time
variable can be 1left out, but if it is included, the
expression must be enclosed in parentheses.

ALSO SEE:

Section 7.1 -- Predefined C Shell Variables.

set prompt="‘whoami® # \! >"

stty

The prompt variable sets the ZEUS "ready" signal to the
user. In this case, the prompt consists of: the
"*whoami®" command which, since it is enclosed in
backquotes 1is replaced by login name of the user; a
pound sign, the Dbackslash- exclamation point is
replaced by a number that increments by 1 with each
command; and a "greater than sign" which is used here
to show the end of the prompt -- in this context it has
no special (metacharacter) meaning. Other features of
the prompt could include special terminal screen attri-
butes (reverse video, flashing, etc.)

ALSO SEE:

Section 7.1 -- Predefined C Shell Variables.

erase “H kill °X ‘

stty(l) is a command external to the C Shell (it is not
a built in command) which sets various terminal charac-
teristics Here, the erase character 1is set to a
control-H (the traditional backspace key), and the kill
character is set to control-X.

ALSO SEE:

stty (1)

umask 2

The built-in command umask sets the file protection
mode for newly created files. A umask value of 2 sets a
file protection mode which permits read and write per-
mission for the wuser, the group, and read permission
for everyone else (rw-rw-r--).

Zilog 9-3

C SHELL Zilog C SHELL

ALSO SEE:

Section 5.2 ~-- General Purpose Commands from the
Prompt.

set U="/0Util/New.csh
This is a user-defined variable. The command cd 8U is

the same as cd ~/0til/New.csh. $U is a shorthand
notation,

ALSO SEE:

Section 7.3 -- User-defined variables
alias h history

alias bye 1logout :
If an alias is needed from within a sub-shell, the

alias command should be placed in the “/.cshxc file
since each new shell begins with its own alias list
(aliases that are set in the "/.login file will not be
exported to new shells).

ALSO SEE:

Section 5.3 -- Environmental Commands from Prompt.

9.1.2. “/.logim:

The “/.login file is read by the shell at login just after
the ~/.cshrc file. It is read once at login thus it should
contain commands that either export across shells (see Sec-
tion 1¢ for a discussion of the Environment Variables and
e2xporting), or commands that are needed only once at the
beginning of the session at the terminal (in this category
might fall a reminder program or a calendar(l) program.)

.login file

setenv EXINIT "set number wm=24 | version"
setenv HOME /z/deck

setenv PATH .:/usr/bin:/bin:"/bin:/usr/games
setenv SHELL /bin/csh

set prompt="g% "

echo " "

cat “/.reminder

echo " "

calendar

Figure 9-2 A Sample “/.login File

9-4 Zilog 9-4

4

C SHELL Zilog C SHELL

.login file
The .login file is also a shell script, read by C
shell, thus it must begin with a pound sign. The
".login" label is ignored as a comment.

setenv EXINIT "set number wm=20 | version™

The EXINIT variable takes the place of ~/.exrc file --
it 1is read by the ex command to pre-set ex options. In
this case, the number and word margin options are set,
and the version command is executed. The EXINIT vari-
able is faster than the ~/.exrc file since it is
exported with each new shell and need not be re-read
each time the editor is called.

ALSO SEE:
Section 10.2 -- Environment Variables Explained.

setenv HOME /z/deck
The HOME variable is set to this user's home directory.

ALSO SEE:
Section 10.2 -- Environment Variables Explained.
setenv PATH .:/usr/bin:/bin:”/bin:/usr/games
The PATH variable is set to a number of directories
with useful commands in them.
ALSO SEE:
Section 16.2 -- Environment Variables Explained.
setenv SHELL /bin/csh
The SHELL variable sets the login shell to be the C
Shell.
ALSO SEE:
Section 10.2 -- Environment Variables Explained.
set prompt="g "

The first prompt is set to the default: the percent
sign.

ALSO SEE:

Section 7 -- Shell variables.

9-5 Zilog 9-5

C SHELL Zilog C SHELL

This command simply provides a space between any exist-
ing material on the screen (like the message of the
day) and the material that follows.

cat 7/.reminder
This user has created a reminder file for upcoming
events. This command reads that file at each login.
echo w "

This command provides another blank line.

calendar
This command executes the user's calendar.

ALSO SEE:
calendar (1)
9.2. Other Related C Shell Files
9.2.1. ~/.logout:
The “/.logout file is read by login shell, at 1logout. 1t

should contain any information the user needs just before
leaving the terminal session.

$# .logout file
who

echo " "

date

echo " "

cd; calendar

Figure 9-3 A Sample ~/.logout File
$.logout file
The .logout file is a shell script, read by C shell,
thus it must begin with a pound sign. The ".logout

file" label is ignored as a comment.

who At logout, the who command informs the user of the
other users left on the system.

echo " "

Blank line.

9-6 Zilog 9-6

C SHELL Zilog ' C SHELL

date The date command.
echo " "
Blank line.

cd; calendar
The cd; calendar command executes the calendar in this
user's home directory for information on the next day's
schedule.

9.2.2. ~/.exrc:

The ~/.exrc file is read when the ex or vwvi editors are
called. The shell -variable EXINIT performs the same func-
tion.

The “/.exrc file is read by the ex or vi editors, not the C
shell, thus no comment lines are available.

SEE ALSO:

Ex Reference Manual in the Zeus Utilities Manual for the
available ex and vi options.

set number
set wm=20

set noredraw

set slowopen

set showmatch
version

Figure 9-4 A Sample ~/.exrc File

9.2.3. /bin/sh:

This file contains the Bourne shell, for shell scripts not
starting with a pound sign "#"

ALSO SEE:
The Bourne Shell in the Zeus Utilities Ménual

9.2.4. /bin/csh: This file contains the C shell, for shell
scripts starting with a pound sign "§"

ALSO SEE:

csh(l).

9-7 Zilog 9-7

C SHELL Zilog C SHELL

ALSO SEE:
csh(l).
9.2.5. /dev/null:

This system file is the source of empty files. Any output
directed to this file is lost.

9.2.6. /etc/cshprofile:

The /etc/cshprofile file is like the ~/.cshrc file, except
it 1is read at the system level, before the "/.cshrc file is
read. It contains parameters - for each C Shell operating
environment. It is read by the login shell, before ~/.cshrc
file.

ALSO SEE:

cshrc(5).

9.2.7. /etc/passwd:

This system file is the source of home directories and other
basic login information.

ALSO SEE:

passwd (5)
Zeus Administrator Manual

9.2.8. /tmp/sh*:

Temporary file for " << " input.

In programs that take input from the body of a shell script
with the double 'less than' signs, the shell makes a copy of
the input and places it in a new file named /tmp/shNNNN,
where NNNN is some number assigned by the shell and used to
distinguish one /tmp/sh file from any other.

The input for the shell script is then read from this tem-
porary file in /tmp.

ALSO SEE:

Section 2.9.2 -- Input Within a Script

9-8 Zilog 9-8

C SHELL Zilog C SHELL

SECTION 10
THE ENVIRONMENT

The Environment is a list of variables that are available to
all the programs executed by the shell which created the
environment variables.

Every time a shell is created (forked), it reads in the
variables set in the environment. Each shell, thus inherits
these environment variables and their values.

Environment variables can be considered "global" wvariables,
while C shell variables can be considered "local" variables.
Like C shell variables, there are pre-defined environment
variables and user-defined environment variables,

Because environment variables are inherited they need be set
only once at login in the "/.login file which is read at the
beginning of each 1login session. These -variables are
exported to all subsequent shells, they are available to all
subsequent programs without the need to re-set them for each
program.

Environment variables are established with the following
syntax:

setenv NAME value

This command can be given at the prompt, or written into one
of the "start-up" files (the "/.login file is recommended
since the command needs to be read -only once). Naming
environment variables with all capital letters is merely a
useful device to tell the two kinds of variables apart.
Environment variables can be named with any string of char-
acters,

19.1. Environment Variables

Environment variables are useful where a variable must be
used across a number of different shells.

The table below shows the predefined environment variables
and their meaning:

19-1 Zilog 10-1

C SHELL Zilog C SHELL

Table 19-1 Environment Variables

EXINIT Ex editor initialization variables
HOME Home directory

LOGNAME Login name

PATH Search path for commands

SHELL Shell being used

TERM Type of terminal

TERMCAP File from which the TERM is read
TZ Timezone

14.2. Environment Variables Explained

In the ZEUS operating system, environment variables are read
by each new C shell and given corresponding values with a
corresponding named transliterated into lower case. These
new '"name/value" pairs become new C shell variables avail-
able locally to the new shell.

14.2.1. EXINIT:
SYNOPSIS:
setenv EXINIT options

EXINIT stands for "ex initialization"; the EXINIT variable
initializes the ex editor options.

One example of a command to set the EXINIT variable is:
setenv EXINIT "set number wm=26 showmatch | version"

which sets the editors 1line number function, sets the
"wrap-margin" function to 20 spaces from the right margin,
sets the "showmatch" options (which highlights matching
brackets, parenthesis, and braces), and prints the "version"
of the editor each time ex or its visual counterpart vi are
called.

Note that multiple commands are set in quotes, and that the
set routine is piped through the version command.

The EXINIT variable performs the same function as its prede-
cessor, the ~/.exrc file, however, it is faster since the
EXINIT variable is automatically a part of the ex environ-
ment, while the ~/.exrc file must be read each time the edi-
tor is called.

19-2 Zilog 19-2

C SHELL Zilog ' C SHELL
DEFAULT:
unset

SEE ALSO:

The EX Reference Manual in the ZEUS Utilities Manual

1g.2.2. HOME:
SYNOPSIS:

setenv HOME /path/home.directory

The HOME variable serves the same function as the home vari-
able 1in the C shell. It established the location for the cd
command, and the file name for the tilde """ when it is used
as a metacharacter.

If the home variable is not set (either in the ~/.cshrc
file, the ~/.login file, or at the prompt) the home variable

takes its value from the HOME variable. That is, the value
of HOME 1is exported to each new C shell as it is created

(forked) .
Regardless of the shell invoked, each new process inherits
the values of all set environment variables. Both shells
read (and inherit) the values set in the environment.
DEFAULT:

HOME /path/users.home.directory

Unless otherwise set, the HOME variables +takes its wvalue
from the home directory field of the /etc/passwd file.

1¢6.2.3. LOGNAME:
SYNOPSIS:
setenv LOGNAME name

The LOGNAME variable holds the user's login name.

19-3 Zilog 19-3

C SHELL Zilog C SHELL

16.2.4. PATH:
SYNOPSIS:

setenv PATH /path/directory:/path/directory

The PATH variable serves the same function as the path vari-
able for the C shell.

EXAMPLE:

setenv PATH .:/usr/bin:/bin:"/bin:/etc:/usr/games

DEFAULT:

PATH .:/usr/bin:/bin

16.2.5. SHELL:
SYNOPSIS:

setenv SHELL /path/shell.program

The SHELL variable serves the same function as the shell
variable for the C shell.

EXAMPLE:

setenv SHELL /bin/csh

DEFAULT:
SHELL /bin/csh

Unless otherwise set, the SHELL variables takes its wvalue
from the shell field of the /etc/passwd file.

19.2.6. TERM:
SYNOPSIS:

setenv TERM terminal.type

The TERM variable serves the same function as the term vari-
able for the C shell.

10-4 zilog 10-4

C SHELL Zilog | C SHELL

EXAMPLE:

setenv TERM vz

DEFAULT:
TERM vz

Unless otherwise set, the TERM variables takes 1its value
from the /etc/ttytype file.

18.2.7. TERMCAP:
SYNOPSIS:

setenv TERMCAP /path/directory

The TERMCAP variable holds the name of the file used to
establish the TERM commands.

EXAMPLE:

setenv TERMCAP “/bin/new.termcap

DEFAULT:
unset

Although the TERMCAP variable is unset by default, the TERM
value is taken from the file /etc/termcap.

19.2.8. TZ:
SYNOPSIS:
setenv TZ timezone

The TZ variable holds the timezone of the machine, in hours,
measured from Greenwich mean time.

EXAMPLE:
setenv TZ PSTBPQE
DEFAULT:

set at each site in the /etc/rc csh file

19-5 Zilog 18-5

C SHELL Zilog : C SHELL

APPENDIX A
GLOSSARY

Important terms presented in this document are listed in
this Appendix. References of the form (2.5) or (Section 2)
indicate that more information is available in Section 2.5
or Section 2 of this document. References of the form pr(l)
indicate that the command pr is documented in Section 1 of
the ZEUS Reference Manual.

Dot . '
The current directory is a file that has the name " "
(referred to as Dot) as well as the name printed by the
command pwd. The current directory 1is usually the
first component of the search path contained in the
variable path. Thus, commands that are in . are found
first (7.1.11). The period character is also used to

separate components of file names (3.2).

The dot character . at the beginning of a component of
a path name is treated specially and is not matched by
the file name expansion metacharacters question wark
" 2", asterisk " * ", 6 and the left and right brackets
" [" and "] " pairs (3.1).
Dot-Dot .. :
Bach directory has a file " .. " referred to as dot-
dot, which is a reference to the directory immediately
above in the file system hierarchy. This directory 1is
known as the parent directory. After changing direc-
tories with cd, for example,
cd paper

it is possible to return to the parent directory by
entering

cd ..

The current directory is printed by pwd (3}2).

A-1 Zilog A-1

C SHELL Zilog C SHELL

alias
An alias specifies a shorter or different name for a
ZEUS command, or a transformation on a command to be
performed in the shell., The shell command alias estab-
lishes aliases and can print their current values. The
command unalias is used to remove aliases (5.3.1).

argument
Commands in ZEUS receive a 1list of argument words.
Thus, the command

echo a b c

consists of a command name echo and three argument
words a, b, and c. (5.2.2).

argv The list of arguments to a command written in a shell
script or shell procedure 1is stored in a variable
called argv within the shell. This name is taken from
the conventional name in the C programming language
(The C Programming Language by Brian W. Kernighan and
Dennis M. Ritchie Zilog part # ©3-3161).

background
A background command is a command that runs while the
shell executes other commands. It is also known as a
"detached" command, because it is "detached" from its
dependence upon the terminal. (2.5).

bin A directory containing binaries of programs and shell
scripts to be executed is typically called a bin direc-
tory. The standard system bin directories are /bin,
which contains the most heavily used commands, and
/usx/bin, which contains most of the other user pro-

grams. Binaries can be placed in any directory. The

A-2 Zilog A-2

C SHELL Zilog ‘ C SHELL

name of the directories should be a component of the
variable

break
exit from loops within the control structure of the
shell (6.5.1).

built-in
A command executed directly by the shell is called a
built-in command. Most commands in ZEUS are not built
into the shell, but exist as files in /bin directories.
These commands are accessible because the directories
in which they reside are named in the path variable.

case A case command is used as a label in a switch statement
in the shell's control structure, similar to that of
the language C (6.4).

cat The cat program prints out specified files on the stan-
dard output (the terminal). It is usually used to look
at the contents of a single file on the terminal
(cat(l)).

cd The cd command changes the workiﬁg directory. With no
arguments, <cd changes the user's working directory to
be the user's home directory (7.1.5).

cmp It is usually used on binary files, or to see 1if two
files are identical (cmp(l)). For comparing text
files, use the program diff, described in 4Aiff(1l).

command ,
A function performed by the system, either by the shell
or by a program residing in a file in the ZEUS system,
is called a command.

command substitution
The replacement of a command enclosed in back quote ()
characters by the text output by that command is
referred to as command substitution.

component
A part of a path name between slash (/) characters is

A-3 Zilog A-3

C SHELL Zilog C SHELL

called a component of that path name. A variable that
has multiple strings as its value is said to have
several components; each string is a component of the
variable.

continue
A built-in command that causes execution of the enclos-
ing foreach or while loop to cycle prematurely. Similar
to the continue command in the C programming language
(6.5.2) .

core dump
When a program terminates abnormally, the system places
an image of 1its current state in a file named core.
The core dump can be examined with the system debuggers
adb(l) to determine what went wrong with the program.
I1f, for a system program, the shell produces a message

of the form:

command: Segmentation violation -- Core dumped

(where "Segmentation violation" is only one of several
possible messages).

cp The copy (cp(l)) program copies the contents of one
file into another file.

.cshrc
The file .cshrc in the home directory is read by each
shell as it begins execution. It is usually used to
change the setting of the variable path and to set
effect globally (9.1.1).

date The date(l) command prints the current date and time.

debugging
Debugging is the process of correcting mistakes in pro-
grams and shell scripts. The shell has several options
and variables that can be used to aid in shell debug-

ging.

default
The label default: is used within shell switch

A-4 Zilog A-4

C SHELL Zilog C SHELL

statements to label the code to be executed if none of
the case labels matches the value switched (6.4).

DELETE
The DELETE or RUBOUT key on the terminal is wused to
generate a ZEUS interrupt signal that stops the execu-
tion of most programs (6.6.3).

detached
A command that runs while the shell is executing other
commands 1is referred to as detached or "running in
background" (2.5). -

diagnostic :
An error message produced by a program is often
referred to as a diagnostic. Most error messages are
not written to the standard output (the terminal),
since the output of that is often directed away from
the terminal (2.9.3). Instead, error messages are
written to the diagnostic output, which usually appears
on the terminal (2.9.5).

directory
A structure that contains files is called a directory.
The home directory is the directory in which the user
is placed upon loggin in (7.1.5).

echo The echo command prints strings (arguments). (5.2.2) .

else The else command is part of the "if-then-else-endif"
control command construct (6.3).

EOF An end-of-file is generated whenever a command reads to
the end of a file that it has been given as input. It
can also be generated at the terminal with a control-d.
Commands receiving input from a pipe receive an EOF
when the command sending them input completes. Most
commands terminate when they receive an EOF. The shell
has an option to ignore EOF from a terminal input,
which makes it possible to avoid logging out acciden-
tally by typing too many control-d's (7.1.6).

A-5 Zilog A-5

C SHELL Zilog C SHELL

escape
A backward slash (\) character used to prevent the spe-
cial meaning of a metacharacter is said to escape the
character from its special meaning. Thus,

echo *
echoes the character *, while
echo *

echoes the names of the file in the current directory.
In this example, \ escapes * (3.3).

/etc/passwd
This £file contains information about the accounts
currently on the system. It consists of a line for
each account with fields separated by colons ":"

(9.1.9). This file can be examined by entering
cat /etc/passwd

The command grep is often used to search for informa-
tion in the file. See passwd(5) and grep(l) for more
details.

exit The exit command, which is built into the shell, is
used to force termination of a shell script (5.3.2).

exit status
A command that uncovers a problem can reflect this
problem back to the command that invoked it by return-
ing a nonzero number as its considered normal termina-
tion. The exit command can be used to force a shell
command script to give a nonzero exit status (7.1.14).

expansion

Replacing shell input strings that contain metacharac-
ters with other strings is referred to as the process
of expansion. For example, replacing the word * with a
sorted list of files in the current directory is a file
name expansion. Replacing the characters !! with the
text of the last command is a history expansion.
Expansions are also referred to as substitutions (Sec-
tion 3).

expressions
Expressions are used in csh to control the conditional
structures used in writing shell scripts and in calcu-
lating values for these scripts. The operators avail-
able in c¢sh expressions are those of the C language

A-6 Zilog A-6

C SHELL Zilog C SHELL

(Section 6).

extension

File names often consist of a root name and an exten-
sion, separated by the period character (.). By con-
vention, groups of related files often share the same
root name. Extensions are added to differentiate among
files within the group. Thus, if prog.c is a C pro-
gram, the object file for this program would be stored
in prog.o. Similarly, a paper written with the -ms
nroff macro package might be stored in paper.ms, while
a formatted version of this paper might be kept in
paper.out and a list of spelling errors in paper.errs.

file.name

BEach file in ZEUS has a name consisting of up to 14
characters, not including the slash character (/),
which is used in path name building. Most file names
do not begin with the period character. They contain
only letters and digits, with perhaps a period separat-
ing the root portion of the file name from an exten-
sion., '

file name expansion

File name expansion uses the metacharacters *, 2, [,
1, {, and } to provide a convenient mechanism for nam-
ing files. Using file name expansion makes it easy to
name all the files in the current directory, or all
files that have a common root name. Other file name
expansion mechanisms use the metacharacter ~ and allow
files in other users' directories to be named easily
(3.1).

flag Many ZEUS commands accept arguments that are not the

names of files or other users, but are used to modify
the action of the commands. These are referred to as
flag options and, by convention, ‘consist of one or more
letters preceded by the hyphen (-) character (2.2).
For example, the 1ls list file command has an option to
list the sizes of files. This is specified

1s -1

Zilag A-7

C SHELL Zilog C SHELL

foreach
The foreach command is used in csh scripts and at the
terminal to specify repetition of a sequence of com-
mands while the value of a given c¢sh variable falls
within a specified range (6.1).

getty '
The getty program determines the speed .at which the
terminal is to run when the user first logs in. 1It
displays the initial system banner and login.

goto The csh command goto is used in csh scripts to transfer
control to a given label (6.5.3).

grep The grep command searches through a 1list of argument
files for a specified string. For example,

grep roberta /etc/passwd

prints each line in the file /etc/passwd that countains
the string roberta. Actually, grep scans for regular
expressions in the sense of the editors ed(l) and ex(1l),
Grep stands for "globally find regular expression and
print".

hangup
When a user hangs up a phone line, a hangup signal is
sent to all running processes on the user's terminal,
causing them to terminate execution prematurely. To
allow commands to continue running after logging off a
dialup, use the command nohup (6.6.2).

head The head command prints the first few lines of one or
more files. Run the head program with a group of file
names as arguments to get a general idea of the

A-8 Zilog A-8

C SHELL Zilog C SHELL

contents of the files (head(l)).

history

home

if

The history function of csh allows previous commands to
be repeated. Csh has a history list where these com-
mands are kept, and a history variable that controls
how long the list is. (Section 4).

directory

Each user has a home directory, that is given in the
password file, The user is placed in the home directory
when first logging in. The cd command with no argu-
ments returns the user to this directory. The name of
this directory is recorded in the shell variable home.

The if command is a conditional command wused in c¢sh
command scripts to determine what course of action to
take next (6.3).

ignoreeof

Normally, the user's shell exits, printing 1logout if
the user types a control-d at a % prompt. This is the
usual way to log off the system. The user can set the
ignoreeof variable in the ignoreeof in the .login file,
and then use logout to log out. This is useful to
avoid accidentally 1logging off by typing too many
control-d characters. (7.1.6) .

input

Information taken from the terminal or from files |is
called input. Commands normally read input from their
standard input which is, by default, the terminal. The
metacharacter "less than" "<" followed by a file name
can be used to cause input to be read from a file.
Many commands also read from a file specified as an
argument. Commands placed in pipelines are read from
the output of the previous command in the pipeline.
The leftmost command in a pipeline reads from the ter-
minal if its input is not redirected and if a file name
is not given to use as standard input. Special mechan-
isms exist for supplying input to commands in csh
scripts (2.9.1).

Zilog A-9

C SHELL Zilog C SHELL

interrupt

An interrupt is a signal that causes most programs to
stop execution. It is generated by pressing the RUB or
DEL key. Certain programs such as csh and the editors
handle an interrupt in special ways, usually by stop-
ping what they are doing and prompting for another com-
mand. While csh is executing another command and wait-
ing for it to finish, csh does not respond to inter-
rupts. (2.5).

kill The kill program terminates processes (kill(l)).

.login
The file .login in the user's home directory is read by
csh each time the user logs 1n to ZEUS; the commands
there are executed (9.1.2).

logout
The logout command causes a login shell to exit. Nor-
mally, a 1login shell exits when control-d is pressed,
generating an EOF. If ignoreeof has been set in the
.login file, control-d does not work, and it is neces-
sary to use the command logout to log off the ZEUS sys-
tem (5.3.3).

.logout _
When a user logs off of ZEUS, the shell prints 1logout
and executes commands from the file .logout in the
user's home directory.

1pr The command 1lpr is the line printer command. The stan-
dard input of 1lpr is spooled and printed on the ZEUS
line printer. 1It is possible to give 1lpr a 1list of
file names as arguments to be printed. It is common to
use lpr as the last component of a pipeline (lpr(l)).

A-10 Zilog A-10

C SHELL Zilog C SHELL

ls The list file (ls) command is one of the most commonly
used ZEUS commands. With no argument file names, it
displays the names of the files in the current direc-
tory. It has a number of useful flag arguments. It
can also be given the names of directories as argu-
ments, in which case it lists the names of the files in
these directories (ls(1l)).

mail The mail program is used to send and receive messages
from other ZEUS users (mail(l)).

make The make command 1is wused to maintain one or more
related files and to organize functions to be performed
on these files. Its primary use is maintaining a single
program consisting of several source files. In many
ways, make is easier to use, and more helpful, than
shell command scripts (make(l)).

makefile ,
The file containing the commands for make 1is called
makefile.

metacharacter

Many characters that are neither 1letters nor digits
have special meaning, either to the shell or to ZEUS.
These characters are called metacharacters. It is
necessary to enclose these characters in quotes if they
are used in arguments to commands and no special mean-
ing 1is required. An example of a metacharacter is the
character >, which is used to indicate placement of
output into a file. For the purposes of the history
mechanism, most unguoted metacharacters form separate
words (Section 3). Appendix A of this document lists
the metacharacters. ‘

mkdir
The mkdir command is used to create a new directory
(mkdir(1l)).

modifier
A modifier is a part of a command line that changes the
way the original command is interpreted. Substitu-
tions, with the history mechanism (keyed by the

A-11 Zilog A-11

C SHELL Zilog C SHELL

character !), or of variables using the metacharacter
$, are often subjected to modifications, which are
indicated by placing the character : after the substi-
tution and following this with the modifier itself
(Section 4).

noclobber
The csh variable noclobber can be set in the file >
output redirection metasyntax of the shell (2.9.6 and
7.1.8).

nohup
The shell nohup command is used to run background com-
mands to completion even if the user logs off before
these commands complete (6.6.2).

nroff
The standard text formatter on ZEUS is the program
nroff. Using nroff and one of the available macro
packages for it, it 1is possible to have documents
automatically formatted and prepared for phototypeset-
ting using the typesetter program troff (nroff(l)).

onintr
The onintr command is built into the C Shell and 1is
used to control the action of a shell command script
when an interrupt signal is .received (6.6.3).

output
Many commands in ZEUS produce data that is called out-
put. This output is usually placed on what is known as
the standard output, which is normally connected to the
user's terminal. The shell has a syntax using the
metacharacter > for redirecting the standard output of
a command to a file (2.9). Using the pipe mechanism

A-12 Zilog A-12

C SHELL Zilog C SHELL

and the metacharacter |, it is also possible for the
standard output of one command to become the standard
input of another command (2.1¢). Some commands do not
direct their output to the standard output. The line
printer command (lpr), for example, diverts its output
to the line printer. The write command places its out-
put on another user's terminal (write(l)). Commands
also have a diagnostic.output. where they write their
error messages. Normally, these go to the terminal
even 1if the standard output has been sent to a file or
another command. However, it is possible to direct
error diagnostics along with standard output using a
special metanotation (2.9.5).

path

path

A-13

The csh variable path gives the names of the direc-
tories in which it searches for the commands it is
given. It always checks first to see if the named com-
mand 1is built into the shell. If it is, it does not
need to search for the command, as it can -perform it
internally. If the command is not built 1in, csh
searches for a file with the name given in each of the
directories in the path variable, left to right. Since
the normal definition of the path variable is

path (. /bin /usr/bin)

Csh normally looks in the current directory, and then
in the standard system directories, /bin and /usr/bin,
for the named command (7.1.11 and 10.3.3). If the com-
mand cannot be found, csh prints an error diagnostic.
Scripts of C shell commands are executed using another
shell ¢to interpret them if they have execute bits set.
This is normally true because a command of the form

chmod 755 script

is executed to turn on these execute bits (chmod(l)).

name
A list of names, separated by slash (/) characters
forms a path name. Each component between successive
"slant" (/) characters names a directory in which the
next component file resides. Path names that begin

Zilog A-13

C SHELL Zilog C SHELL

with the character / are interpreted relative to the
root directory 1in the file system. Other path names
are interpreted relative to the current directory as
reported by pwd. The last component of a path name can
name a directory; however, it usually names a file,

pipeline

pr

A group of commands that are connected together with
the standard output of each connected to the standard
input of the next 1is called a pipeline. The pipe
mechanism used to connect these commands is indicated

by the vertical bar (|) metacharacter (2.1@).

The pr command prepares listings of the contents of
files with headers that give the name of the file and
the date and time at which the file was last modified

(pr(l)).

printenv

The printenv command is used on ZEUS systems to print
the current setting of variables in the environment.

process

An instance of a running program is called a rocess
(ps(l)). The numbers used by kill and printed by wait
are unique numbers generated for these processes by
ZEUS. They are useful in kill commands, which can be
used to stop background processes (kill(l)).

program

A program (usually synonymous with command) is a binary
file or csh command script that performs a useful func-
tion.

prompt

pPs

Many programs print a prompt on the terminal when they
expect input. For example, the editor ex(l) prints a
colon (:) when it expects input. The shell prompts for
input with a percent sign (%), and occasionally with a
question mark (?), when reading commands from the ter-
minal (7.1.12). The csh variable prompt can be set to
a different value to change the shell's main prompt.
This is primarily used when debugging the shell
(7.1.12).

The ps command shows the processes a user is currently
running. Each process is shown with its unigque process
number, an indication of the terminal name it is
attached to, and the amount of CPU time it has used so
far. The command is identified by printing some of the
words used when it was invoked (ps(l)). Login shells

Zilog A-14

C SHELL Zilog C SHELL

(such as the csh obtained when logging in) are shown as

pwd The pwd command prints the full path name of the
current working directory.

quit The quit signal, generated by a control-\, terminates
programs that are Dbehaving abnormally. It normally
produces a core image file (core(5)).

guotation
The process that prevents metacharactetrs from being
interpreted with special meaning, usually by using the
single quote (') character in pairs or by using the
backslash (\) character, is referred to as gquotation.

redirection
The routing of input or output from or to a file Iis
known as redirection of input or output (2.9).

repeat
The repeat command iterates another command a specified
number of times (5.2.6).

RUB The RUB or DEL key generates an interrupt signal that

is used to stop programs or to cause them to return and
prompt for more input (6.6.3).

A-15 Zilog A-15

C SHELL Zilog C SHELL

script
Ssequences of csh commands placed in a file are <called
shell command scripts. It is often possible to perform
simple tasks using these scripts without writing a pro-
gram by using the shell to selectively run other pro-
grams (Section 6).

set The built-in set command assigns new values to shell
variables and displays the values of the current vari-
ables. Many csh variables have special meaning to c¢sh
itself (5.3.4).

setenv
On ZEUS systems, variables in the environment
environ(5) can be changed by using the setenv built-in
command (Section 10). The printenv command can be used
to print the value of the variables in the environment.

shell
A shell is a command language interpreter. It is pos-
sible for users to write and run their own shells, as
shells are no different from any other programs in
terms of system response. This document deals with the
details of one particular shell, called csh.

shell script
See script (Sections 5 and 6).

sort The sort program sorts a sequence of lines in ways that
can be contrxolled by argument flags (sort(l)).

source
The source command causes csh to read commands from a
specified file. It is useful for reading files such as
.cshrc after changing them (5.3.6).

special character
See metacharacters and Appendix A of this document.

standard
The standard input and standard output of commands are
often referred to. See input and output (2.9).

A-16 Zilog A-16

C SHELL 71ilog C SHELL

status

A command normally returns a status when it finishes.
By convention, a status of zero indicates that the com-
mand succeeded. Commands can return nonzero status to
indicate that some abnormal event has occurred. The
csh variable status is set to the status returned by
the last command. It is most useful in shell scripts
(7.1.14).

substitution
Csh implements several substitutions where segquences
indicated by metacharacters are replaced by other
sequences. Examples of this are 'history substitution
keyed by the metacharacter !, and variable substitution
indicated by $. Substitutions are also referred to as
expansions (3.1).

switch
The switch command of csh allows the shell to select
one of a number of sequences of commands based on an
argument string. It is similar to the switch statement
in the C language (6.4).

termination

When a command being executed finishes, it is said to
terminate. Commands normally terminate when they read

an EOF from their standard input. It is also possible
to terminate commands by sending them an interrupt or
quit signal. The kill program terminates commands
specified by their process numbers.

then The then command is part of c¢sh's if-then-else-endif
control construct used in command scripts (6.3)

time The time command measures the amount of CPU and real
time consumed by a specified command (5.2.8).

troff

The troff program is used to typeset documents. See
also nroff (troff(l)).

A-17 Zilog A-17

C SHELL Zilog C SHELL

unalias
The unalias command removes aliases (5.3.7).

unset
The unset command removes the definitions of ¢sh vari-
ables (5.3.8).

variable expansion
See variables and expansion (Section 7).

variables
Variables in csh hold one or more strings as value.
The most common use of variables is in controlling the

behavior of the shell. See path, noclobber, and
ignoreeof for examples. Variables such as argv are

also used in writing csh command scripts (7.1.1).

verbose
The verbose csh variable causes commands to be echoed
after they are history expanded. This is often useful
in debugging c¢sh scripts. The verbose variable is set
by the shell's command line option (7.1.17).

wait The built-in command wait causes csh to pause, and not
prompt, until all commands run in the background have
terminated (5.2.10).

A-18 7ilog A-18

C SHELL Zilog C SHELL

while
The while built-in control construct 1is used in <c¢sh
command scripts (6.2).

word A group of characters that forms an argument to a com-
mand is called a word. Many characters that are nei-
ther letters, digits, -, ., or / form words by them-
selves, even if they are not surrounded by blanks. Any
sequence of characters can be made into a word by sur-
rounding it with single quote (') characters, except
for the single quote character itself and !, which
require special treatment. :

working directory
Any directory a user is currently working in is called
a working directory. This directory name is printed by
the pwd command, and the files listed by 1ls are the
ones in this directory. The user can change working
directories using the cd command. (3.2 - Dot)

write
The write command is used to communicate with other
users who are logged in to ZEUS (write(l)).

ZEUS ZEUS provides facilities that allow csh to invoke other
programs, such as editors and text formatters.

A-19 Zilog A-19

C SHELL Zilog C SHELL

APPENDIX B
C SHELL ERROR MESSAGES

B.1. Error Messages Explained

The following is an annotated partial list of error messages
are produced by the C Shell as a response to various input
errors.

The full list of error messages follows in the next section.

<< terminator not found
In the context of a C shell script, this error indi-
cates that the label used to indicate the end of input
is not a part of the script. The following example
would cause such an error:

test
ex test << EOF

g/"$/d
w
q

The solution is to put the terminator EOF at the end of
the script. See section 2.9 Input/Output Control.

Alias loop
If an alias is established that calls itself, an alias
loop 1is created. The following two commands create an
alias loop:

alias 1ls list
alias list 1s

Both aliases can be established, but an attempt to exe-
cute either will result in the error message. This
error is resolved by wunaliasing the alias that has
created the error message with the command:

unalias alias.name

See Section 5.3 Environmental Commands from the Prowmpt
for details on the alias command.

Ambiguous
This error is created when a filename metacharacter --
nxn w~e o omwaw 35 used in such a manner that refers to a
number of files or directories in a situation that

B-1 Zilog B-1

C SHELL Zilog C SHELL

requires a single file or directory, as in the command:
cd *

The error message:
*: Awmbiguous.

results. The solution is to replace the metacharacter
with a more specific file or directory name.

Arguments too long
This error is usually associated with metacharacter
expansion. It can result from the following command:

echo /[*/*/*
The solution is to provide a more specific argument.

Cannot determine type of shell to use
This error results from a symbol in the first column of
the first line of a shell script that does not indicate
which shell is to be used in executing the script. The
following script will cause the error:

¥
who

Specifying a shell with a legitimate character will
resolve the error. See Section 8.6 "Comment lines in
the Shell".

Can't from terminal
Some commands cannot be executed from a terminal. For
example, the built-in command onintr will produce the
error message:

onintr: Can't from terminal

if it is attempted from a terminal. Commands that pro-
duce this error are intended for use within the body of
a shell script. See Section 6 The C Shell Programming
Language Structure.

Can't make pipe
The space provided for temporary files used in pipes in
the root "/". 1If it fills up, there is no space left
for the files needed by the pipe mechanism.

The solution is to clear out space in the root.

B-2 Zilog B-2

C SHELL Zilog C SHELL

Command not found
If the shell can't locate the command, or if the com-
mand name has been mistyped, this error results. The
error will also result if the command is not installed
in the shell's hash table of commands. See Section
5.2.6 rehash.

Divide by @
This error results from a math operation within a shell
script involving division by 4.

end not found
Both the foreach and while shell script loops require a
closing end statement.

endif not found
The if, else structure requires an endif statement. See
Section 6.3

endsw not found
The switch structure requires an endsw statment. See
Section 6.4

Expression syntax
Various syntactic errors can produces this error mes-
sage. The following if statement:

if (a > b) echo HI
produces the error:

if: Expression syntax
because the alpha characters "a" and "b" cannot be com-
pared with the math operator greater-than " > "

Improper mask
The "mask" refers to the umask file protection mode
code.

Improper then
Refers to the then statment in an if-then context.

Interrupted
Indicates a program interupt. If a DELETE is hit in the
beginning of an ex command, this error will result.

Invalid wvariable

An error occurs in calling or assigning variables. The
solution is to call or assign the variable correctly.

B-3 zilog B-3

C SHELL Zilog C SHELL

label not found
In the context of a shell script with a goto label con-
struct, the 1label must appear in the script. It is an
error for the label to be missing.

Missing)
In the context of a

foreach (list)
or
while (list)

statements, the 1list must be enclosed within two
parenthesis. It is an ervror for one parenthesis to be
missing.

Missing]
In the context of a

command [range]

command, the range must be enclosed within two Dbrack-
ets. It is an error for one brackets to be missing.

Missing }
In the context of a

command { list }

command, the list must be enclosed within two Dbraces.
It is an error for one braces to be missing.

Missing file name

Mod by 6
In a math operation involving the modulo function
" fB% ", the right hand side of the equation cannot be
zZero.

No file for $90
Argument zero is the name of the file being executed.
In the file test with the following lines:

test
echo $0

execution with the command:
csh test

(or changing the execution bits with the chmod command

B-4 zilog B-4

C SHELL Zilog C SHELL

and executing it by name) results in the response:
test
the same command from the prompt:
echo $9
results in the message.
No home , ;
Any command that depends upon the $HOME variable (e.g.

the cd command) will produce an error message if the
SHOME variable is not set.

No match
When using filename expansion metacharacters charac-
ters: (n 3% ||’ n [u' "] n' " { u' n } n’ n ? n) it

is an error for no filename to match (unless the
nonomatch C Shell variable is set).

No more processes
Only a limited number of background jobs can be run by
any single ‘"parent" (login) process. An attempt to
initiate additional jobs in background (detached)
result in this error.

No more words
An attempt to address words past the end of the list in
a word 1list, perhaps in a foreach, while, or case
statement.

non-ascii shell script
An attempt to execute a file as a shell script if it is
comprised of non-ascii characters.

Not in while/foreach
In shell scripts, this error may result from an attempt
to adress an argument out of the while or foreach loop.

Not login shell
An attempt to logout from a subshell (any shell other
than the login shell) produces this error.

The solution is to exit out of any subshell and then
issue the logout command.

Out of memory
The C shell can run out of memory.

B-5 Zilog B-5

C SHELL Zilog C SHELL

Output redirection not allowed
Commands that do not provide for output redirection
(such as the source command) produce an error in the
following format:

source: Output redirection not allowed.

Pathname too long
If a pathname is too long, this message results. The
solution 1is to change directory to a closer directory
and access the file(s) from there.

Subscript error
An attempt to subscript a variable with an illegal sub-
script value.

Subscript out of range
In the script:

$ test
echo $argvl1l]
echo $argv[2]
echo $argv[3]
echo S$argv[4]
given with the command:
test a b ¢
the statement
echo $argv[4]
will produce the error:
subscript out of range
because there are only 3 arguments.
Syntax error

then/endif not found

Too dangerous to alias that
An attempt to alias the word alias with the command:

alias alias a

results in this error. If the word alias needs to Dbe
aliased, the problem can be avoided with the command:

B-6 Zilog B-6

C SHELL Zilog C SHELL

alias a alias
accomplishing the same results.

Too few arguments
Some commands require a specific number of arguments.

Too many arguments
Some commands require a specific number of arguments

Too many)'s
The statement:

foreach i (a b c))
produces the error.

Undefined variable
An attempt to use an undefined variable produces this
error.

LY

Unmatched
Commands with an unclosed backquote, as in:

echo ‘date
produce this error.
Unmatched %c
This is a catch-all error, it refers to any command
which requires two parts of the statment. The error
results if the second part is missing.

Variable syntax
A syntax error.

Word too long
Some times the C shell cannot cope with a word that
contains too many characters.

Words not ()'ed
Words in a 1list, not enclosed with the necessary
parenthesis, as in the command:

foreach i a bc 4

produces the error:

foreach: Words not ()'ed

B-7 Zilog B-7

C SHELL Zilog C SHELL

~— Core dumped

$s: File exists

%s: non-ascii shell script
: Event not found

<< terminator not found
Alarm clock
Alias loop
Ambiguous
Ambiguous input redirect
Ambiguous output redirect
Arg list too long
Argument too large
Arguments too long

Bad | arg selector
Bad ! form
Bad ! modifier:

Bad : mod in S

Bad address

Bad file number

Bad substitute

Bad system call

Badly formed number
Badly placed (

Badly placed ()'s
Block device required
Broken pipe

Bus error

Can't. << within ()'s
Can't exit, ignoreexit is set
Can't from terminal
Can't make pipe
Cannot determine type of shell to use
Command not found
Cross-device link
Data transfer error
Device busy

Device write protected
Divide by @

EMT trap

End of data

End of media

Error @

Exec format error
Exit status %s
Expansion buf ovflo
Expression syntax
File exists

File table overflow
File too large

B-8 Zilog B-8

C SHELL Zilog C SHELL

Floating exception

I/0 error

IOT trap

Illegal instruction
Illegal seek

Improper mask

Improper then

Interrupted

Interrupted system call
Invalid argument

Invalid null command
Invalid variable

Is a directory

Killed

Line overflow

Missing)

Missing]

Missing file name
Missing name for redirect
Missing }

Mod by @

Modifier failed

Mount device busy

New mail

No args on labels

No children

No file for $0

No home

No match

No media

No more processes ,
No more processes, waiting for current ones to complete.
No more words

No output

No prev lhs

No prev search

No prev sub

No space left on device
No such device

No such device or address
No such file or directory
No such process

Not a directory

Not a typewriter

Not enough core

Not in while/foreach

Not login shell

Not owner

Out of memory

Output redirection not allowed
Pathname too long

B-9 Zilog B-9

C SHELL %ilog

Permission denied

Quit

Read-only file system
Result too large

Rhs too long

Segmentation violation

Sig %4

Subscript error

Subscript out of range
Subst buf ovflo

Syntax error

Terminated

Text file busy

Too dangerous to alias that
Too few arguments
Too many ('s

Too many)'s

Too many arguments
Too many links

Too many open files
Too many words from
Trace/BPT trap
Undefined variable
Unknown error
Unknown user: %s
Unmatched

Unmatched %c
Unmatched °

Use "exit" to leave csh.
Use "logout" to logout.
Variable syntax

Word too long

- Words not ()'ed

You have %smail.

end not found

endif not found

endsw not found

label not found
non-ascii shell script

a8

source: Output redirection not allowed

then/endif not found

B-19 Zilog

Cc

SHELL

*

THE ZEUS LINE-ORIENTED TEXT EDITOR, ed*

This information is based on articles originally written
by Brian W. Kernighan, Bell Laboratories.

ED

ii

Zilog

Zilog

ED

ii

ED Zilog ED

Preface

Although most text manipulation on the ZEUS Operating System
is done with the screen-oriented editor, vi, some special
circumstances warrent the use of the line editor, ed. This
document 1is a tutorial guide to help beginners get started
with ed and to introduce experienced users to its more com-
plex options.

Sections 1-12 are oriented mostly for beginners. These sec-
tions cover Dbasic commands or basic uses of more complex
commands. When a subsection of a command is for experienced
users, it 1is 1labeled as such. Beginners should be aware
that more information is presented in these subsections than
they need for basic tasks and that concepts are used in
these explanations that have not yet been introduced in the
regular text. Sections 13-23 offer experienced users more
complex commands and describe ways that commands act on each
other. Basic commands are summarized in the Appendix.

The recommended way for both beginners and experienced users
to learn ed is to read this document, simultaneously using
ed to follow the examples, then to read the description in
Section 1 of the ZEUS Reference Manual. Experiment with ed.
The only sure way of seeing how a command works 1is to try
it. The exercises cover material not completely discussed
in the text. A learn(l) script, %learn editor, is also
available for ed.

The end-of-line character varies between terminals. This
character is the RETURN key on most terminals, and is
referred to in this text as RETURN.

This document is an introduction and a tutorial. For this
reason, no attempt is made to cover more than a part of the
facilities that ed offers. Also, there is not enough space
to explain basic ZEUS procedures; read ZEUS for Beginners to
learn how to log in to ZEUS and what a file 1is.

iii Zilog iii

iv

Zilog

Zilog

ED

iv

ED

SECTION
SECTION
2.1.
2.2,
SECTION

SECTION

SECTION

SECTION

6.1.’
6.2.
6.3.

SECTION

SECTION

Zilog

Table of Contents

1 GETTING S;TARTED ® @ 0 6 00 0 5 00 00O OO0 SO E R OO e o0

2 READING TEXT FROM A FILE WITH 'e'

Basic Uses‘...C.I......‘...Q.,...'...
Advanced Uses ® 0 6 60 000060 0 0 00 000 OP OSSO Qe N0 0O

3 READING TEXT FROM A FILE WITH °'r' ...ccceee

4 PRINTING THE CONTENTS OF THE BUFFER

Pri nt Command ® 5 0 060 0 9 0 0.0 00 806006000000 000 000000
SpeCific Lines I R I R I I I N R R A A A I A AR
Current Li ne ® & 0 0 0 % 5 0000 0000 000000 N '. o o 0 & 00
Advanced Comtmands ® @ 0 & 5 000 5 00000 OO R e T. . /.‘. ® o 0 o 0

5 DELETING LINES ...'..Q......-...'..'.'....O...

6 MODIFYING TEXT ® ® O 0 0 0 O 0 O 00500 P OSSO OSSO NS NS

Substitute Command ® 0 0 0000 0000000000009 0800000
Basic Modification .,.....OOQOQf......I.‘...'...
Advanced MOdification ® 9000000000000 0000009300000

7 CONTEXT S‘BARCHING ..O.....I‘...O...'.,OQ‘Q....

8 CHANGING AND INSERTING TEXT ;...............

Zilog

ED

1-1

| |
—

DD DD W
U]
BN -

ED

Zilog

SECTION 9 MOVING TEXT ..ocecceececescsscscccocnosnnsassosns

SECTION 16 USING SPECIAL CHARACTERS ...ccevcvceocccnse

19.1.
19.2.
10.3.
19.4.
19.5.
19.6.
19.7.
19.8.

General .ce.eeesoccee
Period ..iecececesn
Backslash ..eceeess
Dollar Sign
Circumflex ceecees
Asterisk ecececessos
Brackets .ciceecses
Ampersand ...ceeee

® 0 0 6 O 00 S 00 P OO HE O LGOS
LI I IR A B I N B I BT N B R IR I IR I RN R N)
® © 06 0 2 00 00 0060 0000000000008 00
® ® O U 8 0 0000 F SO0 8BGO LSS s N0
® ® 0 065 00069 00 00 0060000000000
. 0.0 ® 8 9 80 0 0 3 00000006t sN LR
® & 6 0 8 0000 060 000000500000 000000

® 0 6 5 0 0 0 0 0 0 06000 E O E NN

SECTION 11 USING GLOBAL COMMANDS ® & 0 & @ 0 5 00 05 0 8N O e 000

11.1.
11.2.
11.3.
11.4.

Global g Cereeeees
Global v ceeceecns

® B O 6 0 5 5 5 0600000000080 000000000

Advanced Global CommandS seeecescescscsosossss

Advanced Multiline

Global Commands e.seeoeecssee

SECTION 12 SUBSTITUTING NEW LINES ...cciccccecoccccces

SECTION 13 MANIPULATING LINES ® 0 & 0 6 00 OO 0O Ot e oSO N e

1301.

Join Lines .eeeoes

® © 0 6 0 06000000 09 0 0500000000000

13.20 Rearrange Lines ® © 0 8 & 0.0 0 0 0 5O N OB OO SO e PN D>

SECTION 14 MANIPULATING ADDRESSES ...cecevcsccccnncocns

1401. Line Addressing ® €. 0 © 0 0 0 0 5 000006 0000000000800 000

14. 2.

Address Arithmetic

© 0 060 005 0850000000000 00000 000

SECTION 15 DOING REPEATED SEARCHES;.....

SECTION 16 USING DEFAULT LINE REFERENCESccccccece

vi

Zilog

ED

9-1

19-1

10-1
18-1
19-2
19-3
19-4
19-4
19-6
19-7

11-1
11-1
11-1

11-1
11-2

12-1

13-1

13-1

13-1

14-1

14-1

14-1

15-1

l16-1

vi

ED

SECTION 17 USING THE SEMICOLON

SECTION 18

SECTION 19 MANIPULATING FILES

SECTION 20

19.1.
19.2.
19.3.
19.4.
19.5.
19.6.
19.7.
19.8.
19.9.
19.149.
19.11.
19.12.

20.1.
20.2.
20.3.
20.4.

Gene

Remove a File

Zilog

® 5 6 0 65 0000006000000 0000

INTERRUPTING THE EDITOR

® ® ® 006 00000000000 00

® 6 06 0060600506060 000080000000

ral ® 6 0 9 & 0 0 0 0 80 00 000 0 000N eSO OO LCL SO e

Change the Name of a File
COpyaFilEa ‘Q..Q.....Q....l...'.........'...‘

® ® 06 0 000000 000000000

® © 5 0 0 6 0 00 06 00 P 00 0E O L LSS OSSP

Put Two or More Files Together ...ceccececees
Adding Text to the End of a File .cieeeceesss
Insert One File into Another ...cceeeeccscscce
Write Part of a File

Move

® ® ® 0 060609 0006000000000 0000

LineS ® 0 6 0 6 0 00 05 0 00 00 0055 0000000000000

Mark a Line .eeeeoes
Copy Lines .eieevesn
Temporary Escape ...

SUPPORTING TOOLS .

General eceveececcncocce

Grep

® o 0606060060 060000000

Editing Scripts

Sed

® 606000000 00000000

.
.
.
.

.

3

o o 0

o o 0

® 2 & 0600 0020000000000

® o 0 000600 0000000000

® @ 0 00 000000000090 00

® © 6. 0000000000000 00

® © © 060 0695 0000000006000 0000

® 0 0 060000000600 00000009000

APPENDIX A SUMMARY OF COMMANDS AND LINE NUMBERS

vii

Zilog

.

.

.

ED

17-1

18-1

19-1

19-1
19-1
19-1
19-2
19-2
19-2
19-3
19-3
19-4
19-5
19-5
19-6

20-1
20-1
20-1
20-2
20-2

A-1

vii

ED Zilog ED

SECTION 1
GETTING STARTED

Ed is a line-oriented text editor--an interactive program
for creating and modifying text on a line-by-line basis,
using directions typed at a terminal. The text is often a
document like this one, a program, or data for a program.

In ed terminology, the text being worked on is said to be
"kept in a buffer." Think of the buffer as a work space, or
as the information to be edited.

Tell ed what to do to the text by typing instructions called
"commands." Most commands consist of a single letter that
must be typed in lowercase. Type each command on a separate
line. Ed makes no response to most commands, it simply car-
ries them out. Enter a RETURN after every ed command line.

The prompt character, either a $ or a %, appears after 1log-
ing into the system. Invoke ed by typing

ed (followed by a RETURN)
after the prompt. Ed is now waiting for commands.
When ed starts, it is like a blank piece of paper--there is
no text or information present. Text must be supplied by
typing it into ed, or by reading it into ed from a file.
The first command is append, written as the letter

a

by itself. It means "append (add) text lines to the buffer,
as they are typed in." Appending 1is like writing fresh
material on a piece of paper.

To enter lines of text into the buffer, type an a (followed
by a RETURN), followed by the lines of text, like this:

a
Now is the time
for all good men
to come to the aid of their party.

.

1-1 Zilog 1-1

ED Zilog ED

The only way to stop appending is to type a line that con-
tains only a period. If ed is not responding, it is prob-
ably because the . was omitted.

After the append command, the buffer contains the three
lines

Now is the time
for all good men
to come to the aid of their party.
The a and . are not there because they are not text.

To add more text, issue another a command and continue typ-
ing.

An error in the commands typed to ed results in the response
?
This is a cue to look for an error.

To save text for later use, write the contents of the buffer
into a file. Use the write command

w
followed by the file name to be written on. This copies the
buffer's contents into the specified file and destroys any
previous information in the file. To save the text in a
file named junk, for example, type

w junk
Leave a space between w and the file name. Ed responds by
printing the number of characters it wrote out. In this
case, ed responds with

68

Blanks and the return character at the end of each line are
included in the character count.

1-2 Zilog 1-2

ED Zilog ED

Writing a file makes a copy of the text. The contents of
the buffer are not disturbed, so lines can be added to it.
This is an important point. Ed always works on the buffer
copy of a file, not the file itself. No change in the con-
tents of a file takes place until ed receives a w command.
Writing out the text to a file from time to time as it is
being created is a good idea. If the system <crashes, only
the text 1in the buffer is lost, but any text written in a
file is safe.

To terminate a session with ed, save the text by writing it
into a file, using the w command. Then type the command

q

which stands for quit. The shell responds with the prompt

character $ or $%. At this point, the buffer with all its

text is no longer present. To protect the buffer from an

accidental erasure, ed displays ? if it receives a quit com-

mand that was not preceded by a w command. At that point,

either write the file or type another q to get out of ed.
Exercise 1

Enter ed and create some text using

a
o v e teXt e v

Write it out using w. Then leave ed with the g command, and
print the file to see that everything worked. To print a
file, type

pr filename
or

cat filename

in response to the prompt character. Try both.

1--3 Zilog 1-3

ED Zilog | ED

SECTION 2
READING TEXT FROM A FILE WITH 'e'

2.1. Basic Uses

The most common way to get text into the buffer is to read
it from a file in the file system. This is done to edit
text saved with the w command in a previous session. The
edit command e fetches the entire contents of a file into
the buffer. -

If the three lines "Now is the time ..." have been saved
with a w command, the ed command

e junk

fetches the entire contents of the file Jjunk into the
buffer, and responds

68

which is the number of characters in junk. Remember that if
anything was already in the buffer, it iIs deleted first.

Using the e command to read a file 1into the buffer elim-
inates the need to use a file name after a subsequent w com-
mand; ed retains the last file name used in an e command,
and w writes on this file. Thus, a good way to operate is
with the following set of commands:

ed

e file

[editing session]
w

q

Simply enter w from time to time; the file name used at the
beginning is updated with w.

To find out what file name ed is working on, type the file

command £f. In this example, an
£
prompts ed to reply

junk

2-1 zilog 2-1

ED Zilog ED

2.2. Advanced Uses
The command

e newfile
says "edit a new file called newfile without 1leaving the
editor." The e command clears the buffer and reads in
newfile. It is the same as the g command followed by a
reentry of ed with a new file name, except that if ed
retained a pattern, then a command like // still works.
Entering ed with the command

ed file
has ed read file into the buffer and hold the name of the

file. Any subsequent e, r, or w commands that do not con-
tain a file name refer to this file. Thus, the commands

ed filel
e.. (editing) ...

w (writes back in filel)

e file2 (edit new file, without leaving editor)
«e.. (editing on file2) ...

w (writes back on file?2)

do a series of edits on various files without leaving ed; it
is not necessary to type the name of any file more than
once.

To change the name of the hold file, use f as follows:

ed precious
f Jjunk

es. (editing) ...
w

This reads the file precious into the buffer, then changes
the name of the hold file junk. The w command applies the
editing changes to the junk file, leaving the precious file
untouched.

2-2 Zilog 2-2

ED Zilog ED

SECTION 3
READING TEXT FROM A FILE WITH 'r'

To read a file into the buffer without destroying anything
that is already there, use the read command r. The command

r junk

reads the file junk into the buffer by adding it to the end
of whatever is already in the buffer. Doing a read after an
edit, that is, entering

e Jjunk
r junk

puts a duplicate copy of the text after the current copy.
The buffer now contains the following six lines:

Now is the time

for all good men

to come to the aid of their party.
Now is the time

for all good men

to come to the aid of their party.

The r command displays the number of characters read 1in
after the reading operation is complete.

Exercise 2

Experiment with the e command. Try reading and printing
various files. Ed may respond with ?name, where name is the
name of a file. This means that the file does not exist,
typically because the file name is spelled wrong, or reading
the file 1is not allowed. Try alternately reading and
appending to see that they work similarly. Verify that

ed filename
is equivalent to

ed
e filename

3-1 Zilog 3-1

ED Zilog ED

SECTIOg 4
PRINTING THE CONTENTS OF THE BUFFER

4.1. Print Command

Use the print command p to display the entire or partial
contents of the buffer at the terminal.

4.2. Specific Lines
Specify the lines where printing is to begin and end,
separated by a comma, and followed by the letter p. Thus,

to print the first two lines of the buffer (that is, lines 1
through 2), enter

1,2p (starting line=1, ending line=2 p)
Ed responds with.
Now is the time

for all good men

To print all the lines in the buffer, ed provides a short-
hand symbol for "line number of the last 1line in the
buffer"-~-the dollar sign ($). Use the command:

ll$p

to print all the lines in the buffer, line 1 to 1last 1line.
To stop the printing before it is finished, push the DEL
(delete) key. Ed responds with

?
and waits for the next command.

To print the last line of the buffer, it would be possible
to use

$/5pP

However, ed lets this be abbreviated to $p. Any single line
can be printed by typing the line number followed by a p.
Thus,

1p

4-1 zilog 4-1

ED Zilog ED

produces the response

Now is the time
which is the first line of the buffer.
It is possible to abbreviate even further by entering the
line number without the letter p. So $ causes ed to print
the last line of the buffer.
The $ can be used in combinations such as

$“ll$p
which prints the last two lines of the buffer.

Exercise 3
Create some text using the a command and experiment with the
command. Verify that line @ or a line beyond the end of

the buffer cannot be printed and that attempts to print a
buffer in reverse order by typing

3,1p

also fail.

4.3. Current Line

Suppose the buffer contains the six lines as above, that the
command 1,3p was issued, and that ed has printed the three
lines. Typing

P (no line numbers)
causes ed to print

to come to the aid of their party.
which is the third line of the buffer. It is also the last
or most recent line that had actions performed on it. This
p command can be repeated without line numbers, and ed con-
tinues to print line 3.
Ed maintains a record of the last line that had actions per-
formed on it so that it can be used instead of an explicit

line number. This most recent line is referred to by the
shorthand symbol dot (.).

4-2 Zilog 4-2

ED Zilog ED

Dot is a line number in the same way that $§ is. It means
"the <current 1line" or "the 1line that most recently had
action on it," and can be used in several ways. One possi-
bility is to type

This prints all the lines from and including the current
line through the end line of the buffer. 1In this example,
these are lines 3 through 6.

Some commands change the value of dot, and others do not.
The p command sets dot to the number of the last line
printed; the last command sets dot to six.

Dot is most useful in combinations such as:

This means "print the next line" and is a handy way to step
slowly through a buffer.

The command

means "print the line before the current line." This allows
the line number to go backwards. Another useful command is

which prints the previous three lines.

Remember that all these commands change the value of dot.
To find out what dot is at any time, type

Ed responds by printing the value of dot.

To summarize, p can be preceded by zero, one, or two line
numbers. If there 1is no line number given, ed prints the
current line; that is, the line that dot refers to. If
there is one line number given with or without the letter p,
it prints that line and sets dot there. If there are two
line numbers, it prints all the lines in that range and sets
dot to the last line printed. If two 1line numbers are
specified, the first cannot be bigger than the second (Exer-
cise 2).

Typing a single return prints the next 1line and is
equivalent to Typing a - is equivalent to .-1lp.

4-3 Zilog 4-3

ED Zilog ED

4.4. Advanced Commands

For the experienced user, the 1list command (l) gives
slightly more information than p. In particular, 1 makes
characters visible that are normally invisible, such as tabs
and backspaces. With 1, each tab appears as > and each
backspace appears as <. This command makes it much easier
to correct typing mistakes that insert extra spaces adjacent
to tabs, or insert a backspace followed by a space.

The 1 command also provides for displaying 1long lines on
short terminals. Any line that exceeds 72 characters is
displayed on multiple lines, and each folded 1line, except
the last, is terminated by a backslash.

Occasionally, the 1 command prints a string of numbers pre-
ceded by a backslash, such as \@7 or \16. These combina-
tions make visible characters that normally do not print,
such as form feed. Each such combination is a single char-
acter value of the nonprinting character in octal. Delete
these characters unless they produce the desired result on
the specific device used for ed output.

4-4 Zilog | 4-4

ED Zilog ED

SECTION 5
DELETING LINES

Suppose the buffer contains two copies of junk as in Section
6. To get rid of the three extra lines in the buffer, use
the delete command d The lines to be deleted are specified
for 4 exactly as they are for p:

starting line, ending line d

Thus the command
4,s%d

deletes line 4 through the end. There are now three lines
left, which can be checked by entering 1,$p The $ now is
line 3. Dot is set to the next line after the 1last 1line
deleted, unless the last line deleted is the last line in
the buffer. In that case, dot is set to $.

Exercise 4

Experiment with a, e, r, w, p, and d. Be sure to understand
how dot, $, and line numbers are used.

Next, try using line numbers with a, r, and w as well. Ver-
ify that:

& a appends lines after the line number specified rather

than after dot

® r reads a file in after the line number specified and
not the end of the buffer

& w writes out exactly the lines specified, not the whole
buffer

These variations are sometimes handy. For instance, a file
can be inserted at the beginning of a buffer by entering

gr filename

Lines can be inserted at the beginning of the buffer by
entering

ga

5-1 Zilog 5-1

ED Zilog ED

SECTI?N 6
MODIFYING TEXT

6.1. Substitute Command
One of the most important commands is the substitute command
S
which changes individual words or letters within a 1line or
group of lines. It 1is used, for example, for correcting
spelling mistakes and typing errors. This command has the
most complexity of any ed command and can provide the
greatest use.
6.2. Basic Modification
Suppose that line 1 reads
Now is th time
The e has been left off the. Use s to fix this as follows:
1s/th/the/

This says: "in line 1, substitute for the characters th the
characters the." To verify that it works, type

P
and get
Now is the time

Dot must have been set to the line where the substitution
took place, since the p command printed that line. Dot is
always set this way with the s command.

The general way to use the substitute command is

starting-line, ending-line s/change this/to this/

A string of characters between the first pair of slashes is
replaced by a string between the second pair in all the
lines between starting-line and ending-line. Only the first
occurrence on each 1line 1is changed. To change every
occurrence, see Exercise 5. The rules for line numbers are

Zilog 6-1

N
|
[

ED Zilog ED

the same as those for p, except that dot is set to the last
line changed. 1If no substitution took place, dot is not
changed. This causes ? to appear as a warning.

Thus, enter

1,$s/speling/spelling/

to correct the first spelling mistake on each 1line 1in the
text.

If no line numbers are given, the s command assumes "make
the substitution on line dot," so it makes changes only on
the current line. This leads to the very common sequence

s/something/something else/p

which makes some correction on the current 1line, and then
prints it.

It is also possible to type

s/something//
to change the first string of characters to nothing, that
is, remove them. This is useful for deleting extra words in
a line or for removing extra letters from words. For
instance, in the line

Nowxx is the time
type

S/Xx//p
to get

Now is the time
In ed, two adjacent slashes (//) mean no characters, not a
blank.

Exercise 5

Experiment with the substitute command. Verify that the
substitute command changes only the first occurrence of the

first string. For example, enter:

a
the other side of the coin

s/the/on the/p

6-2 Zilog 6-2

ED Zilog ED

to get
on the other side of the coin

To change all occurrences, add a g (for "global") to the s
command, like this:

S/ oo / oe. /9P

Try other characters instead of slashes to delimit the two
sets of characters in the s command. Any character except
blanks or tabs will work. &.1lp The following characters
have special meanings:

- . $ L] * \ &

Read Section 13 for an explanation of their use.

6.3. Advanced Modification

Either form of the s command can be followed by p or 1 to
print or list the contents of the line. The commands’

s/this/that/p
s/this/that/1
s/this/that/gp
s/this/that/gl

are all legal, and mean slightly different things. Also, ed
does not recognize pg as being equivalent to gp.

Any s command can be preceded by one or two line numbers to
specify that the substitution is to take place on a group of
lines. Thus, the command

l,$s/mispell/misspell/

changes the first occurrence of mispell to misspell in every
line of the file, but the command

1,$s/mispell/misspell/g
changes every occurrence in every line.

Adding a p or 1 to the end of any of these substitute com-
mands prints only the last line that was changed.

The undo command (u) "undoes" the 1last substitution: the

last line that was substituted can be restored to its previ-
ous state by typing the command

6--3 Zilog 6-3

ED Zilog ED

SECTION 7
CONTEXT SEARCHING

Suppose the original three lines of text are in the buffer:

Now is the time
for all good men
to come to the aid of their party.

To find the line that contains their, use context searching.
This specifies a line, regardless of what its number is, by
specifying some of its contents.

Say "search for a line that contains this particular string
of characters" by typing

/string of characters/

For example, the ed command
/their/

is a context search to find the next occurrence of the char-
acters between slashes (their). It also sets dot to that
line and prints the line for verification:

to come to the aid of their party.
"Next occurrence" means that ed starts 1looking for the
string at line .+1, searches to the end of the buffer, then
continues at line 1 and searches to line dot. That is, the
search "wraps around" from §$ to 1. It scans all the lines
in the buffer until it either finds the desired line or gets

back to dot again. If the given string of characters cannot
be found in any line, ed types the error message

?

To search for the desired line and substitute with one com-
mand, enter

/their/s/their/the/p
which yields
to come to the aid of the party.

There are three parts to that command: context search for

7-1 Zilog 7-1

ED Zilog ED

the desired line, make the substitution, and print the line.

Context searches are interchangeable with line numbers and
can be used by themselves to find and print a desired line,
or as line numbers for some other command, 1like s. They
were used both ways in the previous examples.

With the buffer lines

Now is the time
for all good men
to come to the aid of their party.

the ed line numbers

/Now/+1
/good/
/party/-1

are all context search expressions, and all refer to the
same line (line 2). To make a change in line 2, enter

/Now/+1s/good/bad/
or

/good/s/good/bad/
or

/party/-1s/good/bad/

The choice is dictated by convenience. To print all three
lines, enter

/Now/,/party/p
or
/Now/,/Now/+2p

or by any number of similar combinations. The first of
these is better if the number of lines involved is unknown.

Ed also provides a shorthand for repeating a context search
for the same string. For example, the ed line number

/string/

finds the next occurrence of string. If this 1is not the
desired line, the search must be repeated. This can be done

by typing

7-2 Zilog 7-2

ED Zilog ED

//

This shorthand stands for the most recently used context
search expression. It can also be used as the first string
of the substitute command, as in

/stringl/s//string2/

which finds the next occurrence of stringl and replaces it
with string2.

Exercise 6
Experiment with context searching. Try a body of text with

several occurrences of the same string of characters, and
scan through it using the same context search.

Use context searches as line numbers for the substitute,
print, and delete commands. Context searches are used less
frequently with r, w, and a, but try them.

Try context searching using ?text? instead of /text/. This
scans lines in the buffer In reverse order (end to begin-
ning). This is useful when a desired string of characters
is passed while going forward.

Again, the following characters have special meaning:

" . $ [1 * \ &

Read Section 13 for an explanation of their use.

7-3 Zilog 7-3

ED Zilog ED

SECTION 8
CHANGING AND INSERTING TEXT

This section discusses the change command and the insert
command. Both of these commands operate on a group of one
or more lines.

The change command is written as
c

and replaces a number of lines with different lines that are
typed in at the tevminal. For example, to change lines .+1
through $ to something else, type

.+1,8$c
... type the lines of text here ...

The lines typed between the ¢ command and the . take the
place of the original lines between start line and end line.
This is useful for replacing a line or = several 1lines that
have errors in them. It is possible to replace a single
line with several lines.

If only one line is specified in the ¢ command, Jjust that
line is replaced. The dot ends the input and works like the
dot in the append command; it must appear by itself on a new
line. If no line number is given, line dot is replaced and
the value of dot is set to the last line typed in.

Insert (i) is similar to append. For instance

/string/i
.+ type the lines to be inserted here ...

inserts the given text before the next 1line that contains
the string. The text between i and dot is inserted before
the specified line., If no line number is specified, dot is
used and dot is set to the last line inserted.

Exercise 7

The change command is rather 1like the combination delete
followed by insert. Experiment to verify that

8-1 Zilog 8-1

ED Zilog ED

start, end d
i
o o text L N 4

is like

start, end c
LA R J text . s 0

These are not precisely the same if 1line § gets deleted.
Check this. What is dot?

Experiment with a and i to see that they are. similar, but
not the same, For instance,

line-number a
* e @ text e o 0

.

appends after the given line, while

line-number i
LR BN J text L

inserts before it. If no line number is given, i inserts
before line dot, but a appends after line dot.

8-2 Zilog 8-2

ED Zilog ED

SECTION 9
MOVING TEXT

The move command (m) moves a group of lines from one place
to another in the buffer. To put the first three lines of
the buffer at the end, enter:

1,3m$
The general format is

start line, end line m after this line

where after this line specifies where to put the text.

The lines to be moved can also be specified by context
searches. To reverse the two paragraphs

First paragraph
end of first paragraph.
Second paragraph

end of second paragraph.
type:
/Second/,/end of second/m/First/-1

The -1: moves the text before the line specified. Dot is
set to the last line moved.

9-1 Zilog 9-1

ED Zilog ED

SECTION 10
USING SPECIAL CHARACTERS

16.1. General

The following characters have special meaning to ed when
used in context searches and in the substitute command:

" $. (1 * \ &

19.2. Period

On the left side of a substitute command or in a search with
/+++/y the period (.) stands for any single character.
Thus, the search

/X.yY/

finds any line where x and y occur and are separated by a
single character, as in

X+y
X-y
XYy
X.y

This is useful in conjunction with the repetition character
(*). Thus, a* is a shorthand for any number of a's, and .*
matches any number of any characters. The expression

s/.*/stuff/
changes an entire line and

s/*,//

deletes all characters in the line up to and including the
last comma (.* finds the longest possible match).

Since the period matches a single character, there is a way
to deal with previously invisible characters printed by 1.

Suppose there is a line that, when printed with the 1 com-
mand, appears as

oo oo th\g?is e e o0

10-1 Zilog 10-1

ED Zilog ED

The character string \0@7 really represents a single charac-
ter (Section 7.4), so typing

s/th.is/this/
matches the character set between the h and the i, whatever
it is. Since the period matches any single character, the
command

s/«/+/

converts the first character on a line into a comma.

The period has several meanings, depending on its context.
The command

oS/e/s/
shows all three.
The first period is the number of the 1line being edited,
also called line dot. The second period is a special char-
acter that matches any single character on that 1line. The
third period 1is the only one that is a literal period. On
the right side of a substitution, a period is not special.
Applying this command to the line

Now is the time.
results with

.ow is the time.

19.3. Backslash
The backslash (\) turns off any special meaning that the
next character might have. In particular, \. converts .
from a "match anything” into a period, so it can be used to
replace the period in

Now is the time.
with a question mark like this:

s/\./?/

The pair of characters \. is interpreted by ed as a single
period.

19-2 Zilog 19-2

ED Zilog ED

The backslash can also search for lines that contain a spe-
cial character. To look for a line that contains

IPP

the search
/.PP/

is not adequate, because it finds a line
THE APPLICATION OF ...

since the . matches the 1letter A. However, the command
/\.PP/ finds only lines that contain .PP.

The backslash can also turn off special meanings for charac-
ters other than period. For example, to find a line that
contains a backslash, precede one backslash with another as
in /\\/ Similarly, search for a forward slash (/) with /\//

The backslash turns off the meaning of the immediately fol-
lowing /, so that it does not terminate the /.../ construc-
tion prematurely.

Any character can be used instead of slash to delimit the
elements of an s command, but slashes must be used for con-
text searching. ~For instance, in a line that contains many
slashes, such as //exec //sys.fort.go // etc... a colon can
be used as the delimiter. To delete all the slashes, type
s:/::q

Exercise 8

Find two substitute commands to convert the line \x\.\y into
the line \x\y

Here are several solutions to verify.
s/\\\.//

S/Xeo/X/
S/..¥/Y/

18.4. Dollar Sign

Dollar sign ($) stands for the end of the line. To add the
word time to the end of the line

Now is the

10-3 Zilog 10-3

ED Zilog ED

use the dollar sign s/$/ time/ to get
Now is the time

A space must appear before time in the substitute command,
or the result is

Now is thetime
To convert the line

Now is the time, for all good men,
into
Now is the time, for all 'good men.

the command needed is s/,$/./ The § sign here provides con-
text to make specific which comma is meant. Without it, the
s command operates on the first comma, to produce

Now is the time. for all good men,
As another example, to convert

Now 1is the time.
into
Now is the time?

use s/.$/?/

The dollar sign has multiple meanings depending on context.
In the line $s/$/$/ the first dollar sign refers to the last
line of the file, the second refers to the end of that line,
and the third is a literal dollar sign to be added to that
line.

10.5. Circumflex

The circumflex (") stands for the beginning of the line. To
look for a line that begins with the, use /"the/ to narrow
the context and arrive at the desired word more easily.

The other use of " inserts text at the beginning of a 1line.
The command s/°/ / places a space at the beginning of the
current line.

Special characters can be combined. To search for a 1line
that contains only the characters .PP use the command

/"\.PP$/

10-4 Zilog 10-4

ED Zilog ED

1.6. Asterisk
A character followed by an asterisk (*) stands for a vari-
able number of consecutive occurrences of that character. A
line can look like this:

text X ’ y text

where text stands for a lot of text and there is an undeter-
mined number of spaces between the x and the y.

To replace all the spaces at once, use
s/x *y/x y/

Thus x *y means "an X, as many spaces as there are then a
Y'"

The asterisk can be used with any character, not just space.
If the original example were

text X--=-—---- y text

then all - signs can be replaced by a single space with the
command

s/x=*y/x y/
To change a line entered as text X.......y text

turn off the special meaning of dot (a match of any single
character) with a backslash, as in

s/x\.*y/x y/
The because \.* means "as many periods as possible."

There are times when the pattern .* 1is exactly what is
needed. For example, to change

Now is the time for all good men
into
Now is the time.

use .* to remove everything after the for with the command

s/ for.*/./

Zero is a legitimate number of possible occurrences. For
example, for a line

text Xxy text x y text

10-5 Zilog 19-5

ED Zilog ED

the command s/x *y/x y/ was entered. The first Xy matches
this pattern, since it consists of an x, zero spaces, and a
y. The result is that the substitute acts on the first xy,
and does not touch the later one, which actually contains
some intervening spaces.

The way around this is to specify a pattern 1like /x *y/
which describes an X, a space, then as many more spaces as
possible, that is, one or more spaces, then a y.

The command to convert an x into y s/x*/y/g when applied to
the 1line abcdef produces yaybycydyeyfy This is because zero
is a legal number of matches. There are no x's at the
beginning of the 1line, and no-x gets converted to a Y.
There are no x's between a and b, so the non-x (zero charac-
ters) 1is converted into y. This process continues down the
string. To solve the problem, write s/xx*/y/g where xx* 1is
one or more Xx's.

16.7. Brackets

The brackets ([]) match any element of the character class
within them.

To delete any numbers that appear at the beginning of all
lines of a file, use the construction

[#123456789]*
This matches zero or more digits. Thus, the command
1,$s/°[08123456789]1*//
deletes all digits from the beginning of all lines.
Any characters can appear within a character <class. The
only special <characters inside the brackets are "~ in the
initial position and - between characters; even the
backslash does not have a special meaning.
To search for special characters, for example, use
/L8 [1/

Within [...], the [is not special. To get a] into a char-
acter class, make it the first character.

To abbreviate the digits, use [8-9]. Similarly, [a=-2]

stands for the lowercase letters, and [A-Z] for uppercase
letters.

19-6 Zilog 10-6

ED Zilog ED

Specify a class that means "none of the following charac-
ters" by beginning the class with a circumflex. For exam-
ple,

["0-9]
stands for any character except a digit. To find the first

line that does not begin with a tab or space, search with
command

/" [” (space) (tab)]/

Within a character class, the © has a special meaning only
if it occurs at the beginning. As an exercise, verify that

VA S V4

finds a line that does not begin with a circumflex.

19.8. Ampersand
The ampersand (&) is used to save typing. Suppose the line
Now is the time
must be changed to
Now is the best time
The command s/the/the best/ can be used, but it is redundant
to repeat the the. The ampersand eliminates that repeti-
tion. On the right side of a substitute, the ampersand
means "whatever was just matched," so the command s/the/&
best/ && stands for the. For example, to parenthesize a
line, regardless of its length, use s/.*/(&)/

The ampersand can occur more than once on the right side:
s/the/& best and & worst/ makes the original line into

Now is the best and the worst time
and s/.*/&? &!!1/ converts the original line into
Now is the time? Now is the time!!

To get a literal ampersand, use the backslash to turn off
the special meaning. The command

s/ampersand/\&/

19-7 Zilog 19-7

ED Zilog ED

converts the word into the symbol. Ampersand has 1its spe-
cial meaning only on the right side of a substitute command,

not on the left side.

19-8 Zilog 19-8

ED Zilog ED

SECTION 11
USING GLOBAL COMMANDS

11.1. Global g

Global commands operate on the entire buffer instead of an
individual line.

The global command (g) executes one ot more ed commands on
all 1lines 1in the buffer that match some specified string.

For example

g/peling/p
prints all lines that contain peling. More usefully,

g/peling/s//pelling/gp

makes the substitution everywhere on the line, then prints
each corrected line. Compare this to

1,8s/peling/pelling/gp

which prints only the 1last 1line substituted. Another
difference 1is that the g command does not give a ? if it
does not find peling, but the s command does.

Use these examples to see the difference between the global
command g and the g following a substitute command. These

's occur at different places in the command line and have
different meanings.

11.2. Global v

The v command is the same as g, except that the commands are
executed on every line that does not match the string fol-
lowing v. For example:

v/ /d

deletes every line that does not contain a blank.
11.3. Advanced Global Commands

The global commands g and v perform one or more editing com-
mands on all 1lines that elther contain (with g) or do not

11-1 Zilog 11-1

ED Zilog ED

contain (with v) a specified pattern.

The pattern that goes between the slashes can be anything
used in a line search or in a substitute command; the same
rules and limitations apply.

The command g/"\./p prints all the formatting commands in a
file because these 1lines begin with a dot. (Section 13
describes use of backslash to escape dot.)

The command that follows g or v can be anything. So g/"\./d
deletes all 1lines that begin with . and g/"$/d deletes all
empty lines.

Probably the most useful command that can follow a global is
the substitute command to change and print each affected
line for verification. For example, to change the word zeus
to ZEUS everywhere and verify that it worked, enter
g/zeus/s//ZEUS/gp The // in the substitute command means
"the previous pattern," in this case, zeus. The p command
is done on every line that matches the pattern, not just
those on which a substitution took place.

The global command operates by making two passes over the
file. On the first pass, all lines that match the pattern
are marked. On the second pass, each marked line is exam-
ined, dot 1is set to that line, and the command executed.
This means that it is possible for the command that follows
a or v to use addresses or set dot. The command g/ "\.PP/+
prints the line that follows each .PP command. Remember
that + means "one line past dot." The command
g/topic/?°\.SH?1 searches for each line that contains topic,
scans backwards wuntil it finds a line that begins .SH (a
section heading) and prints the line that follows that, thus
showing the section headings under which topic is mentioned.

Finally, g9/°\.EQ/+,/"\.EN/-p prints all the 1lines between
lines beginning with .EQ and .EN formatting commands.

The g and v commands can also be preceded by line numbers to
search only those in the range specified.

11.4. Advanced Multiline Global Commands

It is possible to do more than one command under the control
of a global command, although the syntax for expressing the
operation is often cumbersome. As an example, suppose the
task is to change x to y and a to b on all lines that con-
tain thing. Then the commands

11-2 Zilog 11-2

ED Zilog ED

g/thing/s/x/y/\
s/a/b/

are sufficient. The backslash (\) signals the g command
that the set of commands continues on the next line and ter-
minates on the first line that does not end with \. A sub-
stitute command cannot be used to insert a new line within a
g command.

To match the last pattern that was actually executed, use:

g/x/s/x/y/\
s/a/b/

To execute a, ¢, and i commands under a global command, add
a backslash at the end of each line except the last. Thus,
to add a .nf and .sp command before each .EQ line, type

g/"\.EQ/i\
.nf\

.SPp
There is no need for a final line containing a . to ter-

minate the i command unless there are further commands under
the global.

11-3 Zilog 11-3

ED Zilog ED

SECTION 12
SUBSTITUTING NEW LINES

Ed provides a facility for splitting a single line into two
or more shorter lines by substituting a new line. As the
simplest example, suppose a line is unmanageably 1long. If
it looks 1like

text Xy text
it can be broken between the x and the y like this:

s/xy/x\
y/

This is actually a single command, although it is typed on
two lines. The \ at the end of a line makes the following
new line there no longer special.

Make a single line into several lines with this same mechan-
ism. The word very 1in a long line can be underlined by
splitting very onto a separate line and preceding it with
the roff formatting command .ul.

text a very big text
The command

s/ very /\
Lul\

very\
/

converts the line into four shorter 1lines, preceding the
word very by the line .ul, and eliminating the spaces around

the very.

When a new line is substituted, dot points at the last 1line
created.

12-1 Zilog 12-1

ED Zilog ED

SECTION 13
MANIPULATING LINES

13.1. Join Lines

Lines can be joined together with the j command. If dot is
set to the first of the lines

Now is
the time

The j command joins them. A blank has been added at the
beginning of the second line because the command itself does
not cause blanks to be added.

By itself, a j command joins line dot to 1line dot+l. Any
contiguous set of lines can also be joined by specifying the
starting and ending line numbers. For example, 1,$jp Jjoins
all the lines into one line and prints it.

13.2. Rearrange Lines

Lines can be rearranged by tagging the pieces of the pattern
by enclosing them between \(and \) and then rearranging the
pieces. On the 1left side of a substitution, whatever
matched that part is remembered and available for use on the
right side. On the right side, the symbol \1 refers to
whatever matched the first pair, \2 to the second pair, and
so on.

For example, to convert a file of 1lines that consist of
names in the form

Smith, A. B.
Jones, C.

to a file in the form

A. B. Smith
C. Jones

use the command 1,$s/°\([",1*\), *\(.*\)/\2 \1/ The first
\(...\) matches the last name (any string up to the comma)
and is referred to on the right side with \1l. The second
\(...\) is whatever follows the comma and any spaces, and is
referred to as \2.

13-1 Zilog 13-1

ED Zilog ED

When this type of editing is performed, use the global com-
mands or v followed by p to print each substitution as it

is made.

13-2 Zilog 13-2

ED Zilog ED

SECTION 14
MANIPULATING ADDRESSES

14.1. Line Addressing

Line addressing is the method used to specify what lines are
to be affected by editing commands. Constructions like
1,8s/x/y/ start on line 1 and specify a change on all lines.

14.2. Address Arithmetic

Line numbers such as . and $ can be combined with + and - in
a process called address arithmetic. For example, $-1 is a
command to print the next-to-last line of the current file
(that 1is, one line before 1line $). To see how much was
entered in a previous editing session, use $-5,8$p to print
the last six lines.

The command .-3,.+3p prints from three 1lines before the
current line to three lines after. The + can be omitted, so
the command .-3,.3p is identical in meaning.

The - and + can be used as line numbers by themselves. The
- by itself 1is a command to move up one line in the file.
Several minus signs can be strung together to move back that
many lines. For example, --- moves up three lines, as does
-3. Thus -3,+3p is also identical to the previous examples.

Since - is shorter than -1, constructions such as
-,.8/bad/good/ are useful. This changes bad to good on the
previous line and on the current line.

The + and - can be used in combination with searches using
/ese/ and ?...?, and with $§. The search /thing/-- finds the
line containing thing, and positions dot two 1lines before
it.

14-1 Zilog 14-1

ED Zilog ED

SECTION 15
DOING REPEATED SEARCHES

The construction // is a shorthand for "the previous thing
that was searched for," whatever it was. This can be
repeated as many times as necessary. The search can also go
backwards. The command ?? searches for the same thing, but
in the reverse direction.

The // can also be used as the left side of a substitute
command to mean the most recent pattern. The command

/horrible thing/
s//goo0d/p

finds the line contafning horrible thing, prints the 1line,
changes horrible thing to good, and prints the changed line.

To go backwards and change a line, enter
??s//good/

The & can be used on the right side of a substitute to
stand for the character that was matched. The command

//s//& &/p

finds the next occurrence of whatever was searched for last,
replaces it with two copies of itself, then prints the line.

15-1 Zilog 15-1

ED Zilog ED

SECTION 16
USING DEFAULT LINE REFERENCES

One of the most effective ways to speed up editing is always
knowing what 1lines will be affected by a command and the
value of dot when a command finishes,

If a search command
/thing/

is issued, dot points at the next line that contains thing.
No address is required with commands

s to make a substitution on that line
P to print it

1 to list it

o] to delete it

a to append text after it

c to change it

i to insert text before it

If no match occurs, the position of dot is unchanged. This
is also true if dot is at the only thing when the command is
issued. The same rules hold for seE?EE%s that use ?2...7;
the only difference is the direction of the search.

The delete command 4 leaves dot pointing at the 1line that
followed the last deleted 1line. If line $ gets deleted,
however, dot points at the new last line.

The line-changing commands a,c, and i all affect the current
line. If no line number is given with them, a appends text
after the current line, ¢ changes the current 1line, and i
inserts text before the current line.

Commands a,c, and i move dot to the last line entered. For
example, the commands

16-1 Zilog 16-1

ED Zilog ED

a
* e 9 text LI BN
.ss botch ... (minor error)
s/botch/correct/ (fix line)
a

«ees MOre text ...

can be given without specifying any line number for the sub-
stitute command or for the second append command. Alterna-
tively, use

a

e o o text . o ®
... horrible botch ... (major error)

c ({replace entire line)
ees fixed line ...

The r command reads a file into the text being edited,
either at the end if no address is given, or after the
specified line if there is an address. In either case, dot
points at the last line read. Remember that @r reads a file
in at the beginning of the text.

The w command writes the entire file. If the command is
preceded by one line number, that line is written. 1If it is
preceded by two line numbers, that range of lines is writ-
ten. The w command does not change dot; the current line
remains the same, regardless of what 1lines are written.
This is true even if there is a command such as

/"\.AB/,/"\.AE/w abstract
involving a context search.

The s command positions dot on the last line that changed.
If there were no changes, then dot is unchanged.

With the text

x1
X2
x3

the command
-, +8/X/Y/P .

prints the third line, which is the last one changed. With
the three lines

16-2 Zilog 16-2

ED Zilog

x1
y2
y3

the same command changes and prints only the first line
positions dot there.

16-3 Zilog

ED

and

16-3

ED Zilog ED

SECTION 17
USING THE SEMICOLON

In ed, the semicolon (;) can be used like comma, except that
a semicolon forces dot to be set where the line numbers are
being evaluated. 1In effect, the semicolon moves dot. &.1p
Searches with /.../ and ?...? start at the current line and
move forward or backward until they either find the pattern
or return to the current line. Suppose, for example, that
the buffer contains lines like this:

Starting at line 1, the command

/a/./b/p
would be expected to print all the lines from the ab to the
bc. Instead, both searchs start from the same point and

they both find the line that contains ab. The result is to
print a single line. Worse, if there had been a line with a
b in it before the ab line, the print command would be 1in
error, since the second line number would be less than the
first; it is illegal to try to print lines in reverse order.

The comma separator for line numbers does not set dot as

each address is processed. Instead, each search starts from
the same place. Thus, in this example, the command

/a/i/b/p
prints the range of lines from ab to bc. After the a is
found, dot 1is set to that line, then b is searched for,
starting beyond that 1line.

To find the second occurrence of thing, enter

/thing/;//

17-1 Zilog 17-1

ED Zilog ED

This finds the first occurrence of thing, sets dot to that
line, then finds the second and prints only that.

Closely related 1is searching for the second previous
occurrence of something, as in

?something?;??

As an exercise, try printing the third or fourth occurrence
in either direction.

To find the first occurrence of something in a file, start-
ing at an arbitrary place within the file, use 0;/thing/
This starts the search at line 1.

17-2 Zilog 17-2

ED Zilog ED

SECTION 18
INTERRUPTING THE EDITOR

Pressing the INTERRUPT, DELETE, RUBOUT, or BREAK key while
ed is doing a command restores the state in effect before
the command began. An interrupt during reading or writing a
file, making substitutions, or deleting lines stops the com-
mand in an unpredictable state and does not always change
dot.

Printing does not change dot until the printing 1is done.
Thus, if the DELETE key is pressed while a file is being
printed, dot is still where it was when the p command was
started. -

18-1 Zilog 18-1

ED Zilog ED

SECTION 19
MANIPULATING FILES

19.1. General

In addition to editor commands, other commands exist to
manipulate files. Manipulating files includes changing the
name of a file, making a copy of a file somewhere else, mov-
ing a few lines from one place to another in a file, insert-
ing one file in the middle of another, splitting a file into
pieces, and splicing two or more files together.

19.2. Change the Name of a File
To change a file name, use mv.

mv oldname newname

This program moves the file from the old name to the new
name. For example, to <change a file named memo into one
called paper, enter

mv memo paper

NOTE
If there is already a file with the new name, its
present contents are overwritten by the informa-
tion from the old file. Also, a file cannot be
moved to itself. So
mv x X
is illegal.
19.3. Copy a File
Copy a file with the cp command. The format of cp is
cp original copy

to copy original into copy. To save a file called good
choose a name (here savegood) then type

19-1 Zilog 19-1

ED Zilog ED

- cp good savegood
This copies good onto savegood, so that there are two ident-
ical copies of the file good. 1If savegood previously con-
tained something, it is overwritten.
To restore the original state of good, enter
mv savegood good
which erases savegood, or

cp savegood good

to retain a safe copy.

19.4. Remove a File
To remove a file forever, use the rm command. The entry
rm savegood

permanently erases the file called savegood.

19.5. Put Two or More Files Together

Collecting two or more files into one is performed with cat
(short for concatenate).

To combine the files filel and file2 into a single file
called bigfile, enter

cat filel file2 >bigfile
The > before bigfile means to take the output of the cat
command and .put it into bigfile. As with cp and mv, any-
thing that was already in bigfile is destroyed.
More than two files can be combined. The command

cat filel file2 file3 ... >bigfile

collects many files.
19.6. Adding Text to the End of a File

To add one file to the end of another, use the >»> construc-
tion. This 1is identical to >, except that instead of

19-2 Zilog 19-2

ED Zilog ED

overwriting the old file, it simply adds text at the end.
Thus, enter

cat goodl >>gocd
to add goodl to the end of good. If good did not previously
exist, this makes a copy of goodl called good.
19.7. Insert One File into Another
Suppose that a file called memo needs the file called table

to be inserted Jjust after the reference to Table 1. That
is, in memo somewhere is a line that says

Table 1 shows that ... and the data contained in table
goes there.

Edit memo, find Table 1, and add the file table by entering

ed memo

/Table 1/

Table 1 shows that ... [response from ed]
.r table

The critical line is the last one; the r command reads the
file table and inserts it immediately after the referenced
line. ‘

19.8. Write Part of a File

It is possible to split into a separate file the table from
the previous example. In the file being edited, there are
the lines

.TS
ess[lots of stuff]
.TE

To isolate the table in a separate file called table, first
find the start of the table (the .TS line), then write out
the table

/"\.TS/

. TS [ed prints the line it found]
«¢+/"\.TE/wWw table

&.)1

All these steps can be consolidated with

/"\.TS/;/"\.TE/w table

19-3 Zilog 19-3

ED Zilog ED

The w command can write out a group of lines instead of

the whole file.
In fact, a single line can be written by giving

one line number instead of two. For example, if there is

complicated 1line that is going to be needed later,
to avoid retyping it.
Enter

a
...lots of stuff...
...complicated line...
W temp

a

...more stuff...

.r temp

a

...more stuff...

19.9. Move Lines

To move a paragraph from its present position in a paper to
the end, use the editor move command (m).

The m command takes up to two line numbers in front that
tell what lines are to be affected. It is also followed by
a line number that tells where the lines are to go. Thus

linel, 1line2 m line3

says to move all the lines between 1linel and 1line2 after
line3.

If dot is at the first line of the paragraph beginning with
.PP, type

-’/A\'PP/—mS

The order of two adjacent lines can be reversed by position-
ing the first one after the second. If dot is at the first
line, the command

m+
moves line dot to a position one line after the first 1line.

If dot 1is at the second line, the command m-- interchanges
the two lines.

19-4 Zilog 19-4

save

ED Zilog ED

The m command is more succinct and direct than writing,
deleting, and rereading. The main difficulty with the m
command is that if patterns are used to specify both the
lines being moved and the target, they must be specified
properly. Doing the job a step at a time makes it easier to
verify at each step that the desired result is accomplished.
Issue a w command before doing any complicated commands. If
there is an error, it is easy to back up.

19.16. Mark a Line

Ed provides a facility for marking a line with a particular
name to later reference it by name, regardless of its line
number. This can be handy for moving lines and for keeping
track of them as they move. The mark command is k. The
command kx assigns the name x to the current line, where x
is any single lowercase letter. (To mark a line for which
the line number is known, precede the k with the 1line
number.) Refer to the marked line with the address

'x

For example, to move a block of text, find the first line
of the block to be moved, and mark it with ka.

Then find the last line and mark it with kb.

Now position dot where the text is to go and enter

'a, 'bm.

Only one line can have a particular mark name associated
with it at any given time.

19.11. Copy Lines

Ed provides another command, called t (for transfer) for
making a copy of a group of one or more lines., This is
often easier than writing and reading.

The t command is identical to the m command, except that in-
stead of moving lines it duplicates them at the place named.
Thus 1,t duplicates the entire file that is being edited.

A more common use for t is for creating a series of 1lines
that differ only slightly. For example, type

19-5 Zilog 19-5

ED Zilog ED

- a !
cessseessss X sassssses (long line)
t. (make a copy)
s/x/y/ (change it a bit)
t. (make third copy)
s/y/z/ (change it a bit)

and so on.
19.12. Temporary Escape
The escape command (!) provides a way to temporarily 1leave
the editor for a ZEUS command and immediately return to the
editor.
Entering

tany ZEUS command
suspends the current editing state and executes the command
asked for, When the command finishes, ed prints another

prompt and editing can be resumed. Any ZEUS command, in-
cluding another ed, can be entered following the escape.

19-6 Zilog 19-6

ED Zilog ED

SECTION 20
SUPPORTING TOOLS

20.1. General

There are several tools and techniques based on the editor.
In this section are some introductory examples of these
tools.

20.2. Grep

To find all occurrences of some word or pattern in a set of
files, use the program grep. The search patterns described
in the document are often called "regular expressions," and
"grep" stands for

g/re/p (get / regular expression / print)

That describes exactly what grep does--it prints every line
in a set of files that contains a particular pattern. Thus
grep 'thing' filel file2 file3 ... finds thing wher-
ever it occurs in any of the files listed. Grep also indi-
cates the file in which the line was found for any further
file manipulation. ‘

The pattern represented by thing can be any pattern that can
be wused in ed. Always enclose the pattern in single quotes
if it contains any nonalphabetic characters. These charac-
ters carry special meaning in the ZEUS command interpreter
(Section 15).

There is also a way to find lines that do not contain a pat-
tern. The command

grep -V .thing“ filel filez LI Y

finds all lines that do not contain thing. The -v must
occur in the position shown. Given grep and grep -v, it is
possible to do things like selecting all lines that contain
some combination of patterns. For example, to get all lines
that contain x but not y, use grep x file... | grep -v
y The notation | is a pipe command, which causes the output
of the first command to be used as input to the second com-

mand.

20-1 Zilog 20-1

ED Zilog ED

20.3. Editing Scripts

To execute a complicated set of editing operations on a set
of files, make wup a script, that is, a file that contains
the operations to perform. Then apply this script to each
file.

For example, to change every Zeus to ZEUS and every bad to
good in a large number of files, put into the file script
the lines

g/Zeus/s//ZEUS/g
g/bad/s//good/g
w

q

Now enter

ed filel <script
ed file2 <script

This causes ed to take its commands from the prepared
script.

20.4. Sed

Sed (stream editor) processes unlimited amounts of input.
Sed copies its input to its output, applying one or more
editing commands to each line of input.

As an example, to change Zeus to ZEUS as in the previous
example without rewriting the files, use the command

sed 's/Zeus/ZEUS/g' filel file2 ...

This applies the command s/Zeus/ZEUS/g to all lines from the
files specified and copies all lines to the output. The
advantage of using sed is that it handles 1input too 1large
for ed. All the output can be collected in one place, and
either saved in a file or piped into another program.

If the editing transformation is so complicated that more
than one editing command is needed, commands can be supplied
from a file with a slightly more complex syntax. To take
commands from a file, for example, use sed -f cmdfile
input-files...

20-2 Zilog 20-2

ED Zilog ED

APPENDIX A
SUMMARY OF COMMANDS AND LINE NUMBERS

The general form of ed commands is the command name, perhaps
preceded by one or two line numbers, and, in the case of e,
r, and w, followed by a file name. Only one command is
allowed per line, but a p command can follow commands other
than e, r, w, and g. '

a: Append (add) lines to the buffer at 1line dot wunless a
different 1line is specified. Appending continues until dot
is typed on a new line. Dot 1is set to the 1last 1line
appended.

c: Change the specified lines to the new text that follows.
The new lines are terminated by a dot, as with a. If no
lines are specified, line dot is changed. Dot is set to the
last line changed.

d: Delete the 1lines specified. If none are specified,
delete 1line dot. Dot is set to the first undeleted line,
unless $ is deleted, in which case dot is set to §.

e: Edit new file. Previous contents of the buffer are
deleted.

f: Print current filename. If a name follows f, the current
name is set to it.

g: The command
g/~---/commands

executes the commands on those lines that contain ---, which
can be any context search expression.

i: Insert lines before specified line or dot until a dot is
typed on a new line. Dot is set to the last line inserted.

m: Move lines specified to a position after the line speci-
fied after m. Dot is set to the last line moved.

p: Print specified lines. If none are specified, print line
dot. A single line number is equivalent to line number p.
A single return prints .+1 (the next line).

g: Quit ed. Deletes all text in buffer if it is given twice
in a row without first giving a w command.

A-1 Zilog A-1

ED Zilog ED

r: Read a file into the end of the buffer unless a different

location is specified. Dot is set to last line read.
s: The command

s/stringl/string2/
substitutes the characters string2 for stringl in the speci-
fied lines. If no lines are specified, it makes the substi-
tution in line dot. Dot is set to the last line in which a
substitution took place (if no substitution took place, dot
is not changed). s changes only the first occurrence of
stringl on a line. To change all occurences, type a g
after the final slash.
v: The command

v/---/commands

executes commands on those lines that do not contain ---,
which can be any context search expression.

w: Write out buffer onto a file. Dot is not changed.

.=: Print value of dot. The = by itself prints the value of

S.

!: The line
!command-line

causes command-line to be executed as a ZEUS command.

J————- /: Context search. Search for next line that contains
this string of characters and print it. Dot is set to the
line where string was found. Search starts at .+1, wraps
around from $ to 1, and continues to dot, if necessary.

?————- ?: Context search in reverse direction. Start search
at .-1, scan to 1, and wrap around to $. '

A-2 Zilog A-2

"EX REFERENCE MANUAL"™

This information is based on an article written by
William Joy and revised for versions 3.5/2.13 by
Mark Horton.

EX

ii

Zilog

Zilog

EX

ii

EX

SEC

Zilog

Table of Contents

TIONl INTRODUCTION ® @ 0 200005 0 9000 0 PSP LELEEIEEDLIEGEDS

1.1
1.2. File
2.1,

Starting ex ® 9 5 5 0 5 0 0 0 C P OGO O PN PP 000NN IND

Manipulation seeeeececcenssseessccssccccas
Current File teeeecesveecssosssscsenccnnsss
Alternate File ceevsecceeserssscnsscenconsas
Filename Expansion ..ceescecevecrscsessscanes
Multiple Files and Named Buffers ..eceeese
Re@d ONlY ccevecesescoscsossocnssecosasccsnse

l|3. Exceptional Conditions ® & 0 0 06 0060 00 000000048000 000

1.3.1.
1'3.2.

U

o
. L]
o s e e

0501.

-
.
(>}

.l.
'20

e

Errors and Interrupts ® & & 6 5 0 0 0000000
Recovering from Hangups and Crashes

Editing MOdGES ® 6 0 8 0 0 0 0 05 0 90 00 00 0PSO L E LI
Command Strl.lcture ® 9 &5 8 0. 065 06085 06050 0e 00Nl 0.

Command ParametersS ..ceececcccesccsccssscns
Command{ Variants ® ® 0 0 0 O 9 G O F OO OO S OP SN e N
Flags after CommandS seeeeescsccocosoccnnee
CommentsS ceceeesocscssosccsacnosonssncscssansoas
Multiple Commands per Line .ceeescececcece
Reporting Large ChangesS .eesesccccssscsass

ommand AdAreSSiNg seeesceserescscssosccccsccccs

Addressing Primitives ® 9 & & @ 2 0 & 2 6" "0 0" e " O
Combining Addressing Primitives

SECTIONZ EDIT COMMANDS ® 9 5 00 200 0800000 0800008000000 00

2.1. Command Descriptions ® 8.0 & 0 6 0 H SO O PO H S 0P 0000
2.2. Regular Expressions and
Substitute Replacement Patterns ..eeeeescssssesoccscs

2.2.1.
2.2.2,
2.2.3.
2.2.4.
2.2.5.

Regular EXPresSSionsS seeecsscesssesssossnses
Magic and NomagicC ceeececeocvccoccvcvosocsas
Basic Regular Expression Summarty eceeeeecss
Combining Regular Expression Primitives ..
Substitute Replacement Patterns .eceeeecese

SECTION3 OPTIONS ® © 6.0 660 8 06060060000 0606006005000 0 0080000000

iii

Option Descriptions ® 8 6.6 0 00600 0600 000 9600000008500

Autoindent ...ceeceeccccecscescososccsssascas
AUutoprint teeeeeececesocasscooscsosnacsssans
AULOWTite tueeeoccoocosccosssososssscncccnas
BeaUtify .ceeeeescecvecssscsoscscosnncnonsnssss

Zilog

EX

st
I
[

=
L T I I I |
WWNNN -

| I U T I O
NN OO T D b D W

=t o b et b b e b e b e b
I

iii

EX

el el el e el el el o el e el el el e e S e el I o T S o I Sy Sy Sy S U P P W

L] L] L] . . L] . L] L]

s @ & s ¢ ¢ e o « s o s e ®

WWWWWWwWwWwWwWwwWwwWwWwWwwwwwwWww wwww ww www w

Zilog

Directory ® 8 8 0 0 8 0 6 00 00 B OGP S S0 PO OO O PO G E S OO
Error BellS .eeeessesosecvsoscssssassosonesse
Hard TabsS seeeeetesocscosrsoscssossscsensose
Ignore CasSe .oeeeeesescsssssconcocnscsonnncs

LiSp LI K K I I I BN I I I I B I I I T B I T I Y I N Y I

WWWWWWWiNNDNNODONNODNNON DR R R RO 06U

L] List CIE IR BN SR A E 2 I I B B 2 B B I Y I I DN B I B B I I IR I

[. o [.

l. MAgiC tvevsevoeossvsnsscesssconssssonsnons
NUMDbEr teeeveecesesscossssnosssenassnasces
OPEN tieeveesccoscocssccsoscsoconconosnssssnss
OPtimize severievecncsccoscecoonnsnosococss
ParagraphsS .ceseeeeesssccssccoscsocncsncne
Ptompt ® 0 & 2 9 0 OO 0P 0NN PP OPEEN LSO PN SODS

Read On].y ® 0 5 0 5 5 0 50 0P VOB OO0

Redraw ® @ & 0 0 0 0 0 8 2 B 60 S0P L L e NN OEE SN

RePOTrt toieeevecssesosossnccossscscsssscscsns
SCfOll ® @ 2 2 5 0 0 8 O PSSP PEEE S SN NE RN
SeCLioNS tieieiescoessoncasosssssosnssscnns
Shell (tierteeeeenoessosscvsesssocnssnsscscs
Shiftwidth (ceevsersvesscesassesssscsnasas
ShowmatCh sveeeecsscecessesnssssesssnsoccsns
Slowopen * 9 0 & 0 6 5 0 0 P F OO 8O B O e Nt
TAbSLOD eenesecesssscecsoscnsnsnosssnnnsns
Taglength ..ceecececcccnsoosssessssescccss
TEYEYPE ceetonssassssscccsnssocscsconnoces

Term 0 2 5 0.5 0900 2 0 0 5 000 PP OO0 L L L L e e

NOUdWNNH QWO S WN
® o & o ¢ o 6 o ° o e o ® & o o

[0 o]
.

® e & e © s ® o =® * e o

Terse LRI B R Y Y NI I IR IR I I Y IR I I I B I IR I I I S I)

- 0
* o o

warn $ 0600500000000 0000000000000000000000

[y
[}

WindOW seosveecoosssssacssssccocsssssnssosns
WrapSCaAN cvescscoescoscsoscssosscsssssocssoes
Wrapmargin ceeeesceccescecocsscocosscscocss
Writeany ceeeeceesccecoscscscssccccssoscssonse
Limitations ceeeieeececccessessccennnnnnns

“ o ¢ o o o
SN bW
e o o &

SECTION 4 EX/EDIT COMMAND SUMMARY Ceteeeeeeeeteateanes

4.1.
4.2.
4.3.
4.4,
4.5.

SECTION

iv

The Editor Buffer ...ceveecessssescscsccoscasasns
Editing: Command and Text Input ModeS ..cceeees
Line Numbers and Command Syntax ..ceeeececssscess
Open and Visual ModeS ..eeeeccesccccsoscssconsos
Special Characters eseceseeccccscescsscssscsssss

5 COMMANDSUMMARY ® 8 0 5 5 9 0P S P O OGS PO 0SSSEN S EB OO

Zilog

EX

wWwww
| |

L T A R B A
U &S DD WWWWWN N

TR LA T T I
(o iiecReolie JLN RN DN EEN [EN e W)W o) We) We We WS

WWWWwWwWwWwwwWwwwwWwuwWwwwwwWwwwwww Www
|

4-1
4-1
4-2
4-2
4-3

iv

EX Zilog EX

SECTION 1
INTRODUCTION

1.1. Starting ex

Each instance of the editor has a set of options which can
be set to tailor it to your 1liking. The command edit
invokes a version of ex designed for more casual or begin-
ning users by changing the default settings of some of these
options. To simplify the description which follows, we
assume the default settings of the options,.

When invoked, ex determines the terminal type from the TERM
variable in the environment. 1If there is a TERMCAP variable
in the envivonment, and the type of terminal described
matches the TERM variable, that description is used. Also
if the TERMCAP variable contains a pathname (beginning with
a /) the editor will seek the description of the terminal in
that file (rather than the default /etc/termcap).

If there is a variable EXINIT in the environment, then the
editor will execute the commands in that variable; other-
wise, if there is a file .exrc in your HOME directory ex
reads commands from that fTile, simulating a C shell ("Csh™)
source command. Option setting commands placed in EXINIT or
.exrc will be executed before each editor session.

A command to enter fIex has the following format

ex [-] [-v] [-t tag] [-r]
[-1] [-wn] [-x] [-R] [+
command] name ...

where parameters within "[]" are optional. The most common
case edits a single file with no parameters; that is,

ex name

The - command line option suppresses' all interactive-user
feedback (eg. prompts) and is useful in processing editor
scripts in command files.

The -v option is is equivalent to using vi rather than ex.

The -t option is equivalent to an initial tag command, edit-
ing the file containing the tag and positioning the editor
at its definition.

1-1 Zilog 1-1

EX Zilog EX

The -r option is used for recovery after an editor or system
crash, retrieving the last saved version of the named file
or, 1f no file is specified, typing a list of saved files.
(See Section 1.3.2.)

The -1 option sets up for editing LISP, setting the
showmatch and lisp options.

The -R option sets the readonly option at the start. (See
Section 1.2.5.)

Name arguments indicate files to be edited.

A +command argument indicates that the editor should begin
by executing the specified command. If command is omitted,
it defaults to "$", positioning the editor at the last 1line
of the first file initially. Other useful commands here are
scanning patterns of the form "/pat" or line numbers, e.g.
"+190" starting at line 104.

1.2. PFile Manipulation
1.2.1. Current File:

Ex is normally editing the contents of a single file, whose
name 1is recorded in the current file name. Ex performs all
editing actions in a buffer (actually a temporary file) into
which the text of the file is initially read. Changes made
to the buffer have no effect on the file being edited unless
and until the buffer contents are written to the file with a
write command. After the buffer contents are written, the
previous contents of the written file are no longevr accessi-
ble. When a file is edited, its name becomes the current
file name, and its contents are read into the buffer.

The current file is almost always considered to be edited.
This means that the <contents of the buffer are logically
connected with the current file name, so that writing the
current buffer contents to that file, even if it exists, is
a reasonable action. TIf the current file is not edited then
ex will not normally write on it if it already exists.

1.2.2. Alternate File:

Each time a new value is given to the current file name, the
previous current file name is saved as the alternate file

name. Similarly if a file is mentioned but does not become
the current file, it is saved as the alternate file name.

1-2 Zilog 1-2

EX Zilog EX

1.2.3. Filename Expansion:

Filenames within the editor can be specified using the nor-
mal shell expansion conventions. In addition, the character
*%' in filenames is replaced by the current file name and
the character ‘#' by the alternate file name. This makes it
easy to deal alternately with two files and eliminates the
need for retyping the name supplied on an edit command after
a No write since last change diagnostic is received.

l1.2.4. Multiple Files and Named Buffers:

If more than one file is given on the command 1line, the
first file is edited as described above. The remaining
arguments are placed with the first file in the argument
list. The current argument list can be displayed with the
args command. The next file in the argument 1list can be
edited with the next command. The argument list can also be
redefined by specifying a list of names to the next command.
These names are expanded, the resulting 11st of names
becomes the new argument list, and ex edits the first file
on the list.

Ex has a group of named buffers for saving blocks of text
while wediting, and especially when editing more than one
file. These are similar to the normal buffer, except that a
limited number of operations are available on them; the
bhuffers have names a through z. It is also possible to
refer to A through Z; the upper case buffers are the same as
the lower, but commands append to named buffers rather than
replacing, if upper case names are used.

1.2.5. Read Only:

It is possible to use ex in readonly mode to look at files
that you have no intention of modifying. This mode protects
you from accidently overwriting the file. Read only mode is
on when the readonly option is set. It can be turned on
with the —R command line option by the view command 1line
invocation, or by setting the readonly option. It can be
cleared by setting noreadonly. It 1is possible to write,
even while in read only mode, by indicating that you really
know what you are doing. You can write to a different file,
or can use the "w!" command even while in read only mode.

1-3 ' Zilog 1-3

EX ‘ Zilog EX

1.3. Exceptional Conditions
l1.3.1. Errors and Interrupts:

When errors occur, ex (optionally) vrings the terminal bell
and, in any case, prints an error diagnostic. However, if
the primary input is from a file, (as in editor script),
editor processing terminates.

If an interrupt signal is received, ex prints "Interrupt"
and returns to its command level. If the primary input is a
file, then ex exits when this occurs.

1.3.2. Recovering from Hangups and Crashes:

If a hangup signal is received and the buffer has been modi-
fied since it was last written out, the editor attempts to
preserve the buffer.

Also, if the system crashes, the system attempts to preserve
the buffer. The next time you log in you should be able to
recover the work you were doing, losing at most a few 1lines
of changes from the last point before the hangup or editor
crash. To recover a file use the —-r option. 1If editing the
file resume, change to the directory where you were when the
crash occurred, giving the command

ex -r resume

After checking that the retrieved file is indeed ok, you can
write it over the previous contents of that file.

You will normally get mail from the system telling you when
a file has been saved after a crash. The command

ex -r

will print a list of the files which have been saved for
you, In the case of a hangup, the file will not appear in
the 1list, although it can be recovered.

1.4. Editing Modes
Ex has five distinct modes. The primary mode is command
mode. Commands are entered in command mode when a ‘:'

prompt is present, and are executed each time a complete
line is sent.

1-4 Zilog 1-4

EX Zilog EX

In text input mode, ex gathers input lines and places them
in the file. The append, insert, and change commands use
text input mode. No prompt is prlnted in text input mode.
This mode is left by typing a *.' alone at the beginning of
a line, and command mode resumes.

The last three modes are open and visual modes, entered by
the commands of the same name, and, within open and visual
modes, text insertion mode. Open and visual modes allow
local editing operations to be performed on the text in the
file. The open command displays one line at a time on any
terminal while wvisual works on CRT terminals with random
positioning cursors, using the screen as a (single) window
for file editing changes. These modes are described in
Introduction to Display Editing with Vi.

1.5. Command Structure

Most command names are English words, and initial prefixes
of the words are acceptable abbreviations. The ambiguity of
abbreviations is resolved in favor of the more commonly used
commands. As an example, the command substitute can be
abbreviated ‘s' while the shortest available abbreviation
for the set command is “se'.

le5.1. Command Parameters:

Most commands accept prefix addresses specifying the lines
in the file upon which they are to have effect. The forms
of these addresses are discussed below. A number of com-
mands also can take a tralllng count specifying the number
of lines to be involved in the command. Thus, the command
"1gp" prints the tenth line in the buffer while "delete 5"
will delete five lines from the buffer, starting with the
current 1line, Some commands take other information or
parameters; this information 1is given after the command
name.,

l1.5.2. Command Variants:

A number of commands have two distinct variants. The vari-
ant form of the command is invoked by placing an “!' immedi-
ately after the command name. Some of the default wvariants
can be controlled by options; in this case, the “1I' serves
to toggle or override the default.

1-5 Zilog 1-5

EX Zilog EX

1.5.3. Flags After Commands:

The flag commands “#' (abbreviation for the ‘nu' command),
‘p' (print command), and “1' (list command) can be placed
after many commands. In this case, the flag command is exe-
cuted after the primary command completes. Since ex nor-

mally prints the new current line after each change, “p' is
rarely necessary.

Any number of ‘+' or “-' characters can also be given with
these flags. If they appear, the specified offset is
applied to the current line value before the flag command is
executed.

l1.5.4. Comments:

It is possible to give editor commands which are ignored.
This 1is useful when making complex editor scripts for which
comments are desired. The comment character is the double
quote: "', Any command line beginning with *®' is ignored.
Comments beginning with "' can also be placed at the ends
of commands, except in cases where they could be confused as
part of text as in shell escapes or the substitute and map
commands.

1.5.5. Multiple Commands per Line:

More than one command can be placed on a line by separating
each pair of commands by a " |' character. However, the glo-
bal (“g') commands, comments, and the shell escape “!' nmust
be the last command on a line, as they are not terminated by
a “|'.

1.5.6. Reporting Large Changes:

Most commands which change the contents of the editor buffer
give feedback if the scope of the change exceeds a threshold
given by the report option (Section 3.1.19). This feedback
helps to detect undesirably large changes so that they can
be quickly and easily reversed with an undo. command.
After commands with more global effect such as global or
visual, you will be informed if the net change in the number
of 1lines 1in the buffer during this command exceeds this
threshold.

1-6 Zilog 1-6

EX 7ilog EX

1.6. Command Addressing
1.6.1. Addressing Primitives:

. The current line. Most commands leave the current line
as the last 1line which they affect. The default

address for most commands is the current line, thus °.
is rarely used alone as an address.

n The nth line in the editor's buffer, lines being num-
bered sequentially from 1.

S The last line in the buffer.

2 An abbreviation for Hl;$", the entire buffer.

+n -n

"An offset relative to the current buffer 1line. The
forms ‘.+3' ‘+3' and ‘+++' are all equivalent; if the
current line is line 100, they all address line 103.

/pat/ ?pat?
Scan forward and backward respectively for a line con-
taining pat, a regular expression (Section 2.2.1). The

scans normally wrap around the end of the buffer. If
all that is desired is to print the next line contain-
ing pat, then the trailing / or ? can be omitted. If

pat is omitted or explicitly empty, the last regular
expression specified is located. The forms ‘/' and ‘?'
scan using the last regular expression used in a scan;
after a substitute, ‘//' and “??' would scan using the
substitute's regular expression.

Marking with quotes
Before each non-relative motion of the current line 1is

marked with a tag, subsequently referred to as "' (two
forward quotes). This makes it easy to refer or return
to this previous context. Marks can also be esta-

blished by the mark command, using single lower case
letters x and the marked lines referred to as "'x.'

1.6.2. Combining Addressing Primitives:

Addresses to commands consist of a series of addressing
primitives, separated by ., or ;. Such address lists are
evaluated left-to-right. When addressés are separated by
addressing expression before the next address is inter-
preted. If more addresses are given than the command
requires, all but the last one or two are ignored. If the
command takes two addresses, the first addressed line must

1-7 Zilog 1-7

EX Zilog

Null address specifications are permitted in a 1list of
addresses. The default in this case is the current line .;
thus *,100' is equivalent to ‘.,100'. It 1is an error to
give a prefix address to a command when none is required.

1-8 Zilog 1-8

EX Zilog EX

SECTION 2
EDIT COMMANDS

2.1. Command Descriptions

The following form is a prototype for all ex commands:

[address] command [!] [parameters]
[count] [flags]fR [!] [parameters]

[count] [flags]

All parts within the brackets "[]" are optional; the degen-
erate case 1is the empty command which prints the next line
in the file. For sanity with use from within wvisual mode,
ex ignores a : preceding any command.

In the following command descriptions, the default addresses
are shown in parentheses. The parentheses are not, however,
part of the command.

(-«) append abbr: a
text

reads the input text and places it after the specified line.
After the command, ‘'.' addresses the last line input or the
specified line if no lines were input. If address ‘@' |is
given, text is placed at the beginning of the buffer.

al
text

The variant flag to append toggles the setting for the
autoindent option during the input of text.

args

The file names from the "ex" command line are printed. The
current file name is delimited by ‘[' and *]°'.

cd directory

The c¢d command is a synonym for chdir.

2-1 Zilog 2-1

EX Zilog EX

({ « , «) change count abbr: c¢
text

Replaces the specified 1lines with the input text. The
current line becomes the last line input, i1f no lines were
input; the command is the same as delete.

c!
text

The variant toggles autoindent during the change.

chdir directory

The specified directory becomes the current directory. If
no directory 1is specified, the current value of the home
option is used as the target directory. After a chdir ~the
current file 1is not considered to have been ed