
System 8000™
ZEUS Utilities Manual

03-3250-01

May, 1983

Copyright 1981, 1983 by Zilog Inc. All rights reserved. No
part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of Zilog.

The information in this publication is subject to change
without notice.

Zilog assumes no responsibility for the use of any circuitry
other than circuitry embodied in a Zilog product. No other
circuit pa.tent licenses are implied.

ZEUS UTILITIES MANUAL

Software Release 3.2

10/14/83

UTILI'r I ES Zilog UTILITIES

Pref ace

This manual and the related manuals below provide the com­
plete technical documentation for the System 8000 and the
ZEUS operating system.

Title

Zeus Software Documemts:

Zeus Reference Manual

Zeus Languages/Prog1:amming Tools Manual

Zeus Utilities Manual

Zeus Administrator Documents:

Zeus Administrator Manual
(Model 11)

Zeus Administrator Manual
(Model 21/31)

System 8899 Hardware~ Documents:

System 8000 Hardware Reference Manual
(Model 11)

System 8000 Hardware! Reference Manual
(Model 21/31)

Zilog Part Number

03-3255

03-3249

03-3250

03-3254

03-3246

03-3227

03-3237

System 8000® and ZEus® are registered trademarks of Zilog
Inc.

iii Zilog iii

UTILITIES Zilog UTILITIES

iv Zilog iv

UTILITIES Zilog UTILITIES

TABLE OF CONTENTS

Basic ZEUS Interaction:

ZEUS for Beginners ••••••••••.•..•••••.••••••.••••• ZEUS
Lea·rn ••••••••.•••••••••••••••••••••••.••••••••••• LEARN
An Introduction to the C Shell •••••••••.•••••.••••• CSH
The ZEUS Shell •••••.•.•••••.••.••••.•.••.•••••••• SHELL

Text File Editing:

The ZEUS Line-Oriented Editors
Text Editor, ed •••••••••••••••..•••...••••...•.•.. ED
Text Editor, ex ••••••.•••••••••••••.•.•••.••.••... EX

Introduction to
Display Editing with vi •••••••..•••••...••••••••.. VI

Text Formatting:

Nroff/Troff Reference Manual .••••.••..••••• NROFF/TROFF
MM - Memorandum Macros •••••.•••••••..•.•.•••••.•.••• MM
Writing Papers with Nroff using Me ••.•..•••.••.••••• ME
Typing Documents on the ZEUS System •.•••••••.•••••.. MS
A Troff Tutorial ••••...••••••.•.•...•.••••••.•••• TROFF
Tbl - A program to Format Tables •••••••••••.•..•..• TBL

Stream Editors:

SED: A Non-inter~ctive Text Editor •.••••.•.••••.•• SED
Awk: A Pattern Scanning

and Processing Language .••..•.•.•.•..••.•...•..•• AWK

Intersystem Communication:

ZEUS Communication Package ••••••••••..•••.••....•• COMM
UUCP Installation .•••.••••••.•••••.••.••.••.•....• UUCP

File System Integrity:

File System Integrity •••.•••••••.•.•••••••.••..•.• FSCK

System Accounting:

The ZEUS Accounting Sys tern ••••••••••.•••.••••••••• ACCT

Source Control:

Source Code Control System •••••.••••••••.•••••••••• sccs

v Zilog v

I~TRO

SECTION 1
INTRODUCTION TO ZEUS UTILITIES

INTRO

This volume contains manuals and tutorials describing the
basic non-programming utility programs of ZEUS. For a
descriotion of the Language and Programming utilities, refer
to the z~us Languages/Programming Tools Manual (oart number
~3-3249).

The entries in this volume are:

I~TRO

ACCT
AWK
COMM
CS HF LL
F.f)
FX
FSCK
LEARN
ME
MM
MS
NP OFF
secs
SEO
SHELL
TBL
TROFF
UUCP
VI
ZEUS FOR BEGINNERS

1.1. Utilities Sections by Topic

Introductory Material

Intro -- An Introduction to the ZEUS System
ZFUS for Beginners -- A Basic Introduction

The Shells

Cshell -- The C Shell from UC Berkeley
Shell -- The Bourne Shell from Bell Laboratories

1-1 Zilog 1-1

INTRO Zilog INTRO

Interactive Editors

Fd The Basic line editor
Ex An expanded line editor
Vi The visual mode of the Ex editor

Non-interactive Editors

Awk A nattern scanning and orocessing language
Sed A non-interactive stream editor

Text Formatters

Nroff
Troff

For termin~1 and line nrinter output
For CAT phototypesetter output

Text Formatting Macro Packages

Me The package from UC Berkeley
Mm A package from Bell Laboratories
Ms A package from Bell Laboratories

Text For~atting Pre-orocessors

Tbl -- For formatting t~bles

Other Extenden Programs

Acct The system accounting package
Comm The Zeus communications package
Fsck A File System Checking package
Learn -- Computer aided learning program
Secs Source Code Control System package
Uucp -- Unix to Unix Communication package

Basic ZEUS Interaction

ZEUS for Beginners describes the basics of logging in, run­
ning programs, creating and modifying files, etc.

Learn is an computer-ainea instruction program for practice
in using ZFUS.

1-2 Zilog 1-2

INTRO Zilog INTRO

Th e z F. US me ch an i sm for run n i n g programs i s i ts e 1 f a user
program called a shell. Commonly used under ZEUS is csh,
described in An Introduction to the C Shell. An alternative
is sh (known simply as The Shell, or The Bourne Shell); it
is described in The ZEUS Shell.

There are three utilities for maintaining text files. They
are the command-line orient~d editors ed, and ex and the
screen oriented editor vi. They are described in The ZEUS
Line-oriented Text Editor, ed; The Ez Reference Manual and
Introduction to Display Editing with vi.

!~xt Formatters and Macro Packages

Troff is a macro-oriented typesetting program; nroff approx­
imates tro~f on typewriter-like devices. The Nroff/Troff
Reference Manual describes these programs. These text pro­
cessing programs are used with a macro packages such as
those described in Typing Docwnents on the ZEUS System using
the -ms Macros with Troff and Nroff, Writing Papers with
Nroff using Me, and the MM - Memorandum Macros.

A Troff Tutorial describes problems of typesetting docu­
ments. Tbl -- A Program to Format Tables provides an intro­
duction to creating tables with Nroff.

Non-Interactive Fditors

SEO: A Non-interactive Text Editor describes a program
which edits input of indefinite length; commands are similar
to those of ed.

AWK: A Pattern Scanning and Processing Language describes a
stream editor with a powerful command language •

.!. n t er- S y st em Commun :i ca t i on s

ZEUS Communication J?ackage describes a 'communications path
between ZEUS and remote systems.

UUCP Installation dE~scrihes a program that links to other
ZEUS systems (or any other system that can run UUCP) via tty
port-to-port connections or transient telephone connections.

1--3 Zilog 1-3

INTRO Zilog I~TRO

Fi le syst•~m Integrity

Fi le Sys1t:em Integrity Program (FSCK) Referenc4e Manual
describes how file systems can be protected against corrup­
tion upon reboot.

Source Code Control

Source Code Control System (SCCS) describes a method of con­
trolling the various versions of a file. ~ach time a change
is made t-0 the file, the changes are recorded so that any
version of the file since its creation can be reconstructed.

ZFflS Accounting System

The ZEUS J~ccounting System prov ides a method tc' collect
information about the system~ who uses it, what gets used,
and how much.

1-4 Zilog 1-4

THE P1NB/ZEUS ACCOUNTING SYSTEM

The information in this section is based on an article
originally written by Henry s. McCreary of Bell Laboratories.

ACCT Zilog ACCT

ii Zilog ii

ACCT Zilog ACCT

Table of Contents

SECTION 1 THE PWB/ZEUS ACCOUNTING SYSTEM ••.••...••••• 1-1

1.1. Abstract ••o••••••••••••••••••••••••••••••••••• 1-1
1.2. Introductiori ••••••.•••••••••••••••••.••••••.•. 1-1
1.3. Files and Directories ••••••.•••..••••••••••••• 1-2
1 • 4 • Dai 1 y Opera t: ion • • . . • • • • • • • • • • • • • • • • • • • . • . • . • • • 1-2
1.5. Setting up the Accounting System •••••..••••••• 1-3
1. 6. Runacct • • • .. • • • • . • • • • • • . • 1-4
1.7. Recovering from Failure ••••••••.•••.•••••••..• 1-7
1.8. Restarting runacct •••••.•••.••••••••••••••••.. 1-8
1.9. Fixing Corrupted Files .••••.......••••••.••.•• 1-8
1.10. Editing the Holidays File •.••••••.••.••.••... 1-9
1 • 11 • S utnm a r y • • .. • 1-9

APPENDIX A ATTACHMENT 1 A-1

Files in the /usr/adm Directory •...•.•...••••...••• A-1
Files in the /usr/adm/acct/nite Directory •..•.....• A-1
Files in the /usr/adm/acct/sum Directory•..••• A-2
Files in the /usr/adm/acct/~iscal Directory••.• A-3

APPENDIX B ATTACHMENT 2•..............•...•.•... B-1

Format of wtmp files (utmp.h) ••.••••••••••.•••••••. B-1
Definitions (acctdef.h) .•.•.•••.•..•.....••••..•.•• B-2
Format of pacct files (acct.h) ••••••••••.•••.•••.•• B-3
Format of tacct files (tacct.h) .••...•••••..••.•••• B-3
Format of ctmp file (ctmp.h) •.•.••••••.•..•••.••••. B-4

APPENDIX C ATTACHEMENT 3 ••••••••••••••••••••••••••••• C-1

iii Zilog iii

ACCT Zilog ACCT

SECTION 1
THE PWB/ZEUS ACCOUNTING SYSTEM

1.1. Abstract

The PWB Accounting System provides methods to collect per­
process resource utilization data, record connect sessions,
monitor disk utilization, and charge fees to specific
logins. A set of C programs and shell procedures is pro­
vided to reduce this accounting data into summary files and
reports. This memorandum describes the structure, implemen­
tation, and management of this accounting system.

1.2. Introduction

The PWB/ZEUS accounting system was originally d~signed by
John Mashey. Several modifications and additions have been
made to make the system easier to manage, and to make it
less susceptible to corrupted data or system errors. The
following list is a synopsis of the actions of the account­
ing system:

$ At process termination the ZEUS Kernal writes one
record per process in /usr/adm/pacct in the form of
acct.h. See Attachment 2 for a description of data
files:-

1-1

The login and init programs record connect sessions by
writing records into /~/admiwtmp. Date changes,
reboots, and shutdowns ar~ also recorded in this file.

The disk utilization program acctdusg, breaks down disk
usage by login.

Fees for file restores, etc, can be charged to specific
logins with the chargefee shell procedure.

Each day the runacct shell procedure is executed via
cron to reduce accounting data, produce summary files
and reports. See Attachment 3 for a sample report out­
put.

The monacct procedure can be executed on a monthly or
fiscal period basis. It sav~s and restarts summary
files, generates a report, and cleans up the sum direc­
tory. These saved summary files could be used to
charge users for ZEUS usage.

Zilog 1-1

ACCT Zilog ACCT

1.3. Files and Directories

The /usr/lib/acct directory contains all of the C programs
and shell. procedures necessary to run the accounting system.
The adm login (UID 6) is used by the accounting system and
has the following directory structure:

/usr/adm -,-
acct -,-

. I
n1te sum f isca!

The /usr/~~dm directory contains the active data collection
files. For a complete explanation of the files used by the
accounting system, see Attachment 1. The nite directory
contains files that are re-used daily by the runacct pro­
cedure • 'rh e sum d ire ct or y cont a ins the cu.mu 1 at i v 1e summary
files updatecr--by runacct. The fiscal directory contains
periodic summary files created by monacct.

1.4. Daily Operation

When ZEUS is switched into multi-user mode,
/usr/lib/acct/startup is executed which does the following:

$ The acctwtmp program adds a "boot" rE~cord to
/usr/adm/wtmp. This record is signified by using the
system name as the login name in the wtmp record.

Process accounting is started via turnacct.
on executes the accton program with the
/usr/adm/~cct.

Turnacct
argument

The remove shell procedure is executed to cleanup the
saved pacct and wtmp files left in the sum di 1rectory by
runacct.

The ckpacct procedure is run via cron every hour of the day
to check the size of /usr/adm/pacct. If the file grows past
1000 blocks (default), turnacct switch is executed. While
ckpacct is not absolutely necessary, the advantage of having
several smaller pacct files becomes apparent when trying to
restart runacct after a failure processing these records.

The chargefee program can be used to bill users for file
restores, etc. It adds records to /usr/adm/fee which are
picked up and processed by the next execution ofr\macct and

1-2 Zilog 1-2

ACCT Zilog ACCT

merged into the total accounting records.

Runacct is executed via cron each night. It processes the
active accounting files, /~/adm/pacct?, /usr/adm/wtmp,
/usr/adm/acct/nite/disktacct, and /usr/adm/fee. It produces
command summaries and usage summaries bY"Togln.

When the system is shut down using /etc/down, the shutacct
shell procedure is executed. It writes a shutdown reason
record into /~/adm/wtmp and turns process accounting off.

This is also executed in /etc/rc_csh
started is case the system was
/etc/down.

before accounting is
not brought down using

The system administrator can execute /usr/lib/acct/prdaily
to print the previous day's accounting report.

1.5. Setting up the Accounting System

In order to automate the operation of this accounting sys­
tem, several things need to be done:

1. If not already present, add this line to the
/etc/rc_csh file after the line that zeros out the utmp
file.

/bin/su - adm -c /usr/lib/acct/startup

2. If not already present, add this line to /etc/down to
turn off the accounting before the system is brought
down:

3.

1-3

/usr/lib/acct/shutacct

This should also be added to /etc/rc_csh right after
file systems are mounted.

Three entries should be made in /usr/lib/crontab so
that cron will automatically sta~ some shell pro­
cedures.

0 4 * * 1-6 /bin/su - adm -c
"/usr/lib/acct/runacct 2> /usr/adm/acct/nite/fd2log"

0 2 * * 4 /bin/su - adm -c "/usr/lib/acct/sdisk"

5 * * * * /bin/su - adm -c "/usr/lib/acct/ckpacct"

Zilog 1-3

ACCT Zilog ACCT

4.· The PATH shell variable in adm's .cshrc should be set
to:

PATH=/usr/lib/acct:/bin:/usr/bin

5. Make an entry in the /etc/passwd file for user "adm".
This user has to have uid of 6 and belong to group 4.

6. Make an entry in the /etc/group file for the "adm"
group. This g.roup has a gid of 4. "zeus" and "daemon"
need to belong to this group.

example: "adm: :4:zeus, adm, daemon"

1.6. Runacct

Runacct is the main daily accounting shell procedure. It is
normally initiated via cron during non-prime time hours.
Runacct processes connect, fee, disk, and process accounting
files. It also prepares daily and cumulative summary files
for use by prdaily or for billing purposes. The following
files produced by runacct are of particular interest.

sum/tacct

sum/daycms

1-4

Produced by acctconl, which reads the wtmp
file, and produces usage statistics for each
terminal line on the system. This report is
especially useful for detecting bad lines.
If the ratio between the number of logoffs to
logins exceeds about 3/1, there is a good
possibility that the line is failing.

This file is the total accounting file
the previous day in tacct.h format.

for

This file is the accumulation of each day's
nite/daytacct, which can be used for billing
purposes. It is restarted each month or fis­
cal by the monacct procedure.

Produced by the acctcms program, it contains
the daily command summary. The ASCII version
of this file is nite/daycms.

The accumulation of each day's command sum­
maries. It is restarted by the execution of
monacct. The ASCII version is nite/cms.

Zilog 1-4

ACCT

sum/loginlog

ZilOg ACCT

Produced by the lastlogin shell procedure, it
maintains a r~cord of the last time each
login was used.

Each execution of runacct saves a copy of the
output of prdaily.

Runacct takes care not to damage files in the event of
errors. A series of protection mechanisms are used that
attempt to recognize an error, provide intelligent diagnos­
tics, and terminate processing in such a way that runacct
can be restarted with minimal intervention. It records its
progress by writing descriptive messages into the file
active. Files used by runacct are assumed to be in the nite
directory unless otherwise noted.

All diagnostic output during the execution of runacct is
written into fd2lo_9.. To prevent multiple invocations, in
the event of two crons or other problems, runacct will com­
plain if the files lock and lock! exist when invoked. The
lastdate file contains the month and day runacct was last
invoked, and is used to preve~t more than one execution per
day.

If runacct detects an error, a message is written to
/dev/console, mail is sent to root and adm, the locks are
removed, diagnostic files are saved, and execution is ter­
minated.

In order to allow runacct to be restartable, processing is
broken down into separate reentrant states. This is accom­
plished by using a c::ase statem~nt inside an endless while
lo6p. Each state is one case of the ease statement. A file
is used to remember the last state completed. When each
state completes, statefile is updated to reflect the next
state. In the next- loop through the while, statefile is
read and the caSE! falls through to the next state. When
runacct reaches the CLEANUP state, it removes the locks and
terminates. States are executed in the following order:

SETUP

WTMPFIX

1-5

The command turriacct switch is executed. The
proce~ss accounting files, /~/adm/pacct?,
are moved to /usr/adm/Spacct.MMDD. The
/usr/adm/wtmp TITe-- is moved to
/usr/adm/acct/nite/wtmp.MMDD with the current
time added on the end.

The wtmp file in the nite directory is
checkea-for correctness by the wtmpfix pro­
gram o Some dat~ chang~s will cause acctconl
to fail, so •tmpfix attempts to adjust the

Zilog 1-5

ACCT

CONNECT

CONNECT

PROCESS

MERGE

FEES

DISK

MBRGETACC'J~

CMS

USEREXIT

CLEANUP

1-6

Zilog ACCT

time stamps in the wtrnp file if a date change
record appears. ~~

Connect session records are written to ctrnp
in the form of ctrnp • .!:!_. The lineu:se file is
created, and the reboots file is created
showing all of the boot records found in the
~trnp file.

Ctrnp is converted to ctacct.MMDD
connect accounting records.
records are in tacct.h format.

which are
A,ccounting

The acctprcl and acctprc2 programs are used
to convert the process accounting files,
/usr/adrn/Spacct.MMDD, into total accounting
records in ptacct?MMDD. The .~.Pacct and
ptacct files are correlated by numbE:!r so that
if runacct fails, the unnecessary reprocess­
ing of Spacct files will not occur. One pre­
caution should be noted; when restarting
runacct in this state, remove the last ptacct
file because it will not be complete.

Merge the process accounting records with the
connect accounting records to form ~aytacct.

Merge in any ASCII tacct records from the
file fee into daytacct.

On the day after the sdisk procedure runs,
merge disktacct with daytacct.

Merge daytacct with surn/tacct, the cumulative
total accounting file. Each day, daytacct is
saved in surn/tacctMMDD, so that sum/tacct can
be recreated in the event it becomes cor­
rupted or lost.

Merge in today's command summary with the
cumulative command summary file sum/ems.
Produce ASCII and internal format: command
summary files.

Any installation dependent (local) accounting
programs can be included here.

Clean up temporary files, run prdaily and
save its output in ~/rprtMMDD, :remove the
locks, then exit.

Zilog 1-6

ACCT Zilog ACCT

1.7. Recovering from Failure

The runacct procedure can fail for a variety of reasons;
usually due to a system crash, /usr running out of space, or
a corrupted wtmp file. If the aet.TveMMDD file exists, check
it first for error messages. If the active file and lock
files exist, check fd2log for any myst~rious messages. The
following are error messages produced by runacct, and the
recommended recovery actions:

ERROR: locks found, run aborted

The files lock and lockl were found. These files must be
removed before runaCc=t can restart.

ERROR: acctg already run for date :
check /usr/adm/acct/nite/lastdate

The date in lastdate and today's date are the same.
lastdate.

ERROR: turnacct switch returned re=?

Remove

Check the integrity of turnacct and accton. The accton pro­
gram must be owned by root, and have the setuid bit set.

ERROR: Spacct?.MMDD already exists
file setups probably already run

Check status of files, then run setups· manually.

ERROR: /usr/adm/acct/nite/wtmp.MMDD already exists,
run setup ma·nually --

Self-explanatory.

ERROR: wtmpfix errors see /usr/adm/acct/nite/wtmperror

Wtmpfix detected a corrupted wtmp file.
correct the corrupted file.

Use fwtmp to

ERROR: connect acctg failed: check /usr/adm/acct/nite/~

The acctconl program encountered a bad wtmp file. Use fwtmp
to correct the bad file.

ERROR: Invalid state, check /~/adm/acct/nite/active

The file, statefile, is probably corrupted. Check statefile
and read active before restarting.

1-7 Zilog 1-7

ACCT Zilog ACCT

1~8. Restarting runacct

Runacct called without arguments assumes that this is the
first invocation of the day. The argument MMDD is necessary
if runacct is being restarted, and specifies the month and
day for which runacct will rerun the accounting. The entry
point for processing is based on the contents of statefile.
To override statefile, include the desired state on the com­
mand 1 inE~.
Examples::

To start runacct:
nohup runacct 2> /usr/adm/acct/nite/fd2log&

To restart runacct:
nohup runacct 0611 2> /usr/adm/acct/nite/fd2l<>g&

To restart runacct at a specific state:
nohup runacct 0611 WTMPFIX 2> /usr/adm/acct/nite/fd2log&

1.9. Fixing Corrupted Files

Unfortunately, this accounting system is not entirely fool­
proof. Occasionally a file will become corrupted or lost.
Some of the files can simply be ignored or restored from the
filesave backup. However, certain files must be fixed in
order to maintain the integrity of the accounting system.

The wtmp files seem to cause the most problems in the day to
day operation of the accounting system. When the date is
changed when ZEUS is in multi-user mode, a set of date
change t·ecords is written into /usr/adm/wtmp. 'rhe wtmpfix
program is designed to adjust the time-stamps in the wtmp
records when a date change is encountered. Some combina­
tions of date changes and reboots, however, will slip
through wtmpfix and cause acctconl to fail. The! following
steps show how to patch up a wtmp.file.

1-8

cd /usr/adm/acct/nite

fwtmp < wtmp.MMDD >· xwtmp

vi xwtmp

(delete corrupted records or
delete all records from the
beginning up to the date change

fwtmpi -ic < xwtmp > wtmp.MMDD

Zilog 1-8

ACCT Zilog ACCT

If.the 'ftrnp file is beyond rep~ir, create a null wtmp file.
This will prevent any charging of connect time. Acctprcl
won't be able to determine which login owned a particular
process, but it will be charged to the login that is first
in the password file for that dserid.

If the installation is using the accounting system to charge
users for system resources, the integrity of sum/tacct is
quite important. Occasionally, mysterious tacct records
will appear with negative numbers, duplicate userids, or a
userid of 65535. First check surn/tacctprev with prtacct.
If it looks ok, the latest su~/tacct~MMDD should be patched
up, then recreate sum/tacct.---X simple patchup procedure is:

cd /usr/adm/acct/sum

acctmerg -v < talcct .MMDD > xtacct

vi xtacct

(remove the bad records
write duplicate uid records
to another file)

acctmerg -i < xt:acct > tacct.MMDD

acctmerg tacctp1~ev < tacct. MMDD > tacct

Remember that the monacct procedure removes all the
tacct.MMDD files; therefore, sum/tacct can be recreated by
merging these files together. ~-

I.le. Editing the Holidays File

Every year on the day after Christmas, the following message
will appear in log:

*** EDIT /usr/li.b/acct/holidays with NEW HOLIDAYS

Edit /usr/lib/acct/holidays, change the year in the first
line to the new year. Change the h6liday dates to the new
ones for the year. The file must end with a '-1' as the
last line.

1.11. Summary

The PWB accounting system was designed from a ZEUS system
administrator's point of view. Every possible precaution

1-9 Zilog 1-9

ACCT Zilog ACCT

has been taken to ensure that the system will run smoothly
and without error. It is important to become familiar with
the c programs and shell procedures. The manual pages
should be studied, and it is advisable to keep a printed
copy of the shell procedures handy. This accounting system
should be easy to maintain, provide valuable information for
the administrator, and provide accurate breakdowns of the
usage of system resources for charging purposes.

1-10 Zilog 1-10

ACCT Zilog

APPENDIX.A
ATTACHMENT 1

ACCT

Files in the /usr/adm Directory

diskdiag

dtmp

fee

pacct

pacct?

Spacct?.MMDD

wtmp

diagnostic output during the execution of
disk accounting programs

output from the acbtdusg program

output from the chargefee program, ASCII
tacct r•:!cords

active process accounting file

process accounting files switched via tur­
nacct

process accounting files for MMDD during exe­
cution of runacct

active wtmp file for recording connect ses­
sions

Files in the /usr/adm/iacct/nite Directory

active

ems

ctacct.MMDD

ctmp

daycms

daytacct

disktacct

fd2log

A-1

used by runacct to record progress and print
warning and error messages. activeMMDD same
as actbre after runacct detects an error

ASCII total command summary used by prdaily

connect accounting records in tacct.h format

output of acctconl program, connect session
records in ctmp.h format

ASCII daily command summary used by prdaily

total accounting records for one day in
tacct.h format

disk accounting records in tacct.h format,
created by dodisk procedure

diagnostic output during execution of runacct
(see cron entry)

Zilog A-1

ACCT

lastdate

1ock lockl

line use

log

logMMDD

reboots

statefile

tmpwtmp

wtmperror

Zilog ACCT

last day runacct executed in date +%m%d for­
mat

used to control serial use of runacct

tty line usage report used by prdail}:

diagnostic output from acctconl

same as log after runacct detects an error

contains beginning and ending dates from
wtmp, and a listing of reboots

used to record current state during execution
of runacct

wtmp file corrected by wtmpfix

place for wtmpf ix error messages

wtmperrorM.MDD same as wtmperror after runacct detects an
error

wtmp.MMDD previous day's wtmp file

Files in th.e /usr/adm/acct/sum Directory

ems

cmsprev

daycms

loginlog

pacct.MMDD

rprt.MMDD

tac ct

tacctprev

A-2

total command summary file for current fiscal
in internal summary format

command summary file without latest update

command summary file for yesterday in inter­
nal summary format

created by lastlogin.

concatenated version of all pacct files for
MMDD, removed after reboot by remove pro­
cedure

saved output of prdaily program

cumulative total accounting file for current
fiscal

same as tacct without latest update

Zilog A-2

ACCT

tacct.MMDD

wtmp.MMDD

Zilog ACCT

total accounting file for MMDD

saved copy of wtmp file for MMDD, removed
after reboot by remove procedur_e __

Files in the /usr/adm/acct/fiscal Directory

ems?

fiscrpt?

tacct?

A-3

total command summary file for fiscal ? in
internal summary format

report similar to prdaily for fiscal ?

total accounting file for fiscal ?

Zilog A-3

ACCT Zilog

APPEN:DIX B
ATTACHMENT 2

ACCT

Format of wtmp file!s (utmp.h)

/*
/* Format of /etc/utmp and /usr/adm/wtmp
*/

struct utmp {
char
char
long

} i

ut line[B];
ut-name[B];
ut_time;

/* tty name /*
/* user id /*
/* time on /*

Definitions (acctdef .h)

B-1

/*
* defines, typedefs, etc. used by acct programs

*/

/*
* following taken from (or modified versions of) <sys/types.h>

*/
typedef unsigned short
typedef unsigned int
typedef long
typedef long

/*
* acct only typedefs

*/

dev t;
ino-t;
off-t;
time t;

typedef unsigned short uid t;

#define LSZ
#define NSZ
#define P
#define NP

/*

8
8
0
1

/* sizeof line name */
/* sizeof login name */
/* prime time */
/* nonprime time */

* limits which may have to be increased if systems get larger
/*
#define SSIZE 1000 /* max number of sessions in 1 acct run */
#define •rsIZE 100 /* max number of line names in 1 ac/t run */
#define USIZE S00 /* max number of distinct login names

in 1 acct run */

Zilog B-1

ACCT Zilog ACCT

#define EQN(sl, s2) (strncmp(sl, S2 I sizeof(sl)) -- 0)
#define CPYN(sl, s2) strncpy(sl, s2, sizeof(sl))

#define SECS(tics) ((double) tics)/60.
#define MINS(secs) { {double) secs)/60.
#define MINT(tics) ({double) tics)/3600.
#define KCORE{clicks) { {double) clicks/16)
#define SECSINDAY 86400L

Format of pacct files (acct.h)

/*
* Accounting structures

/*

typedE~f unsigned short comp_t; /* "floating p1oint 11 */

struct acct
{
char
char
short
short
dev t
time t
comp t
comp t
comp=t
comp t
comp-1:.
comp-t
char-
h

ac_flag;
ac stat;
ac-uid;
ac -gid;
ac-tty;
ac-btime;
ac=utime;
ac stime;
ac=etime;
ac_mem;
ac_io;
ac rw;
ac=conun[B];

/* Accounting flag */
/* Exit status */
/* Accounting user ID */
/* Accounting group ID */
/* control typewriter */
/* Beginning time */
/* Accounting user time */
/* Accounting system time */
/* Accounting elapsed time */
/* memory usage */

/* command name */

extern struct acct acctbuf;
extern struct inode *acctp; /* inode of accounting file */

#define AFORK 01
#define ASU 02
#define ACCTF0300

/* has·executed fork, but no exec*/
/* used super-user privileges */
/* record type: 00 = acct */

Format of tacct files (tacct.h)

/*
*

*/
total accounting {for acct period), also for day

B-2 Zilog B-2

ACCT Zilog ACCT

struct tacct {

}:

uid t ta uid; /* userid */
char ta-name[8]; /* login name */
float ta-cpu[2]; /* cum. cpu time, p/np (mine) */
float ta-kcore[2]; /* cum kcore-minutes, p/np */
float ta-con[2]; /* cum. connect time, p/np, mins */
float ta-du; /* cum. disk usage */
long ta-pc; /* count of processes */
unsigned short ta sc; /* count of login sessions */
unsigned short ta-de; /* count of disk samples */
unsigned short ta=fee; /* fee for special services */

Format of ctmp file (ctmp.h)

/*
* connect time record (various intermediate files)

/*
struct ctmp {

dev t ct tty; /* major minor */
uid-t ct -uid; /* user id */
char ct-name[S]; /* login name */
long ct -con[2]; /* connect time (p/np) secs */
time t ct start; /* session start time */

}; -

B-3 Zilog B-3

ACCT

Jun
from
to
2
2

TOTAL

LINE

tty04
tty47
tty44
tty46

Zilog

APPENDIX C
ATTACHEMENT 3

8 04:14 1979 DAILY REPORT FOR pwba Page 1
Thu Jun 7 06:00:48 1979
Fri Jun 8 04:00:28 1979

shutdown
pwba

DURATION IS 1320 MINUTES

MINUTES PERCENT # SESS # ON # OFF

479 36 9 9 30
341 26 4 4 33
298 23 3 3 29
336 25 9 9 33

console 1100 83 14 14 21
tty05 448 34 3 3 22
tty06 439 33 9 9 31
tty07 421 32 6 6 24
tty42 53 4 5 5 20
tty09 385 29 11 11 33
ttyl0 336 25 HJ 10 31
tty08 464 35 2 2 19
tty26 544 41 6 6 24
ttyl2 252 19 5 ·s 25
ttyl3 258 20 3 3 21
ttyl4 156 12 6 6 26
ttyl7 145 11 1 1 16
ttyl8 39 3 5 5 24
ttyl5 228 17 5 '5 25
tty25 704 53 6 6 25
tty21 0 0 0 0 16
ttyl9 10 1 1 1 17
tty20 25 2 2 2 18
tty22 0 0 0 0 15
tty23 0 0 0 0 15
tty24 0 0 0 0 16
tty27 481 36 3 3 20
tty28 426 32 5 5 24
tty29 302 23 6 6 25
tty30 257 20 11 11 28
tty40 380 29 5 5 21
tty41 343 26 3 3 21
tty45 0 0 0 0 15
ttyll 365 28 7 7 25
tty43 3 0 1 1 17

C-1 Zilog

ACCT

C-1

ACCT

ttyl6
tty31
tty02
TOTALS

C-2

213
250
62
10544

16
19
5

3
4
1
174

Zilog

Zilog

3
4
l
174

20
18
3
846

ACCT

C-2

ACCT Zilog ACCT

Jun 8 Ql-1-: 14 1979 MILY USAGE BEPOlU FOR pwba Page 1

UXIN CPU (MINS) KCORE-MINS OONNECT (MINS) DISK ti OF ti OF ti DISK FEE
UID NAME PRIME NPRil1E PRIME NPRIME PRIME NPRIME BI.OCiffi PROCS SESS SAMPLES
0 'IDTAL 388 103 12414 2934 9251 1056 0 16164 174 0 0
0 root 47 41 1003 924 67)J 0 2360 8 0 0
4 adm 7 19 48 652 0 0 0 842 0 0 0
19 gana; 0 0 4 0 0 0 0 28 0 0 0
22 mhb 0 0 1 1 1 1 0 14 2 0 0
37 abs 0 0 4 0 0 0 0 3 0 0 0
37 absjrk 14 0 284 0 423 0 0 1588 4 0 0
68 rje 3 3 24 21 0 0 0 179 0 0 0
71 ? 0 0 0 0 0 0 0 12 0 0 0
150 jac 7 0 156 5 281 2 0 510 13 0 0
173 ? 0 0 0 0 0 0 0 16 0 0 0
180 ? 0 0 0 0 0 0 0 4 0 0 0
185 ? 0 0 0 0 0 0 0 2 0 0 0
217 denise 0 0 2 0 31 0 0 32 3 0 0
217 kof 0 0 2 0 1 0 0 7 1 0 0
219 ? 0 0 0 0 0 0 0 12 0 0 0
1001 hsm 5 0 189 0 179 0 0 92 2 0 0
2001 systst 0 1 5 28 476 64 0 99 5 0 0
2CX)2 mf p 1 0 7 5 270 62 0 93 3 0 0
2003 als 1 0 23 0 100 0 0 99 3 0 0
2CX)5 eric 0 0 3 0 13 0 0 21 1. 0 0
2006 hoot 0 0 2 0 16 0 0 8 1 0 0
20)9 agp 47 0 2040 0 444 0 0 492 2 0 0
2009 fsrepl 2 0 60 0 36 0 0 95 1 0 0
2011 pdw 0 0 1 0 4 0 0 11 1 0 0
2012 pwbst 0 0 1 0 28 0 0 9 1 0 0
2014 ca th 0 0 1 0 1 0 0 7 1 0 0
2022 ran 32 1 1227 91 576 4 0 226 3 0 0
2025 fld 55 23 2176 862 336 98 0 7r:IJ 7 0 0
2027 krb 14 2 365 51 547 24 0 372 8 0 0
2028 text 0 0 1 0 3 0 0 13 1 0 0
2030 arf 8 0 288 0 317 0 0 315 3 0 0
2031 dp 12 0 480 3 459 6 0 220 6 0 0
2032 graf 2 0 49 0 23 0 0 118 1 0 0
2033 ecp 3 0 74 0 355 0 0 115 4 0 0
2040 leap 15 0 308 0 513 1 0 505 2 0 0
2041 dan 3 0 93 3 149 2 0 117 8 0 0
2051 ds52 2 2 19 40 375 601 0 611 8 0 0
2055 mrucp 0 0 15 9 17 1 0 10 3 0 0
2057 ech 1 0 28 0 63 0 0 68 2 0 0
2061 jcw 4 3 99 70 37 34 0 869 4 0 0
2064 mjr 18 0 443 0 176 0 0 2065 3 0 0
2065 rrr 0 0 6 0 7 0 0 23 1 0 0
2068 trc 0 0 7 0 10 0 0 29 1 0 0

C--3 Zilog C-3

ACCT Zilog ACCT

2075 herb 29 0 1178 1 384 2 0 249 5 0 0
2086 paul 1 0 14 0 152 0 0 28 1 0 0
2087 pris 0 0 0 10 0 2 0 13 1 0 0
2111 IM:cs 2 3 60 85 64 86 0 185 4 0 0
2116 rbj 1 0 16 0 408 0 0 222 1 0 0
2121 teach 0 0 3 0 53 0 0 50 2 0 0
2123 msb 0 0 3 0 5 0 0 24 1 0 0
2124 mt 2 0 42 0 66 0 0 260 3 0 0
2126 dal 0 0 5 0 121 0 0 17 1 0 0
2127 m2 15 0 495 11 390 2 0 602 10 0 0

Jun 8 04:14 1979 DAIIX USAGE REPORT FOR pwba. Page 2

2128 jel 14 0 492 9 422 14 0 523 8 0 0
2130 sl 0 0 5 1 16 0 0 42 2 0 0
21]) s3 0 0 0 0 0 2 0 9 1 0 0
2135 jfn 0 1 0 12 0 11 0 33 2 0 0
2136 m2class 0 0 5 0 2 0 0 18 1 0 0
2140 star 4 0 213 12 ~ 3 0 170 7 0 0
2141 reg 5 0 245 25 470 4 0 181 1 0 0
2199 Uc 0 0 1 0 10 0 0 7 1 0 0
2999 stock 0 0 1 0 1 0 0 17 1 0 0
nn whn 5 o. 93 0 253 0 0 414 3 0 0
3332 vjf 0 0 4 0 8 0 0 39 1 0 0

C-4 Zilog C-4

ACC'l' Zilog ACCT

Jun 8 01 .. :07 1979 DAILY c:cMMAND SU1MARY Page 1

CXM1AND NUMBER 'IDTAL 10TAL 'IDTAL MEAN MEAN ax; CHARS BLOCKS
NAME CMOS KCOREMIN CPU-MIN REAL-MIN

' :
SIZE-K CPl}-MIN FACIOR 'IRNSFD READ

'IDIALS 16164 15332~89 490.72. 37463 •. 98 31.25 0.03. 0.01. 322183844 1097670

nroff 119 3958.68 93.21 569.83 42.47 0.78 0.16 67010052 1))284
troff 26 2483.38 51.63 342.70 48.10 1.99 0.15 37869))4 48989
xnroff 20 732.03 16.74 111.os 43.73 Q.84 0.15 13885248 22659
a.out 31 623.53 10 .. 52 142.77 59.26 o.34 0.01 382435 2758
egrep 185 574.83 13.96 31 ... 5·3 41.18 0.08 0.40 170625 8249
m2f ind 232 555.79 9.93 155.11 55.96 0.04 0.06 6155937))994
cl 150 519.04 13.57 48.89 38.25 0.09 0.28 4285724 16032
co 165 413.10 9.19 35.16 44.93 0.06 0.26 3827))9 12170
m2edit 33 340.92 4.63 148.27 73.62 0.14 0.03 1074914 14492
ld 87 317.38 7.94 38.48 39.97 Oo09 0.21 17640896 45797
acctcms 17 294.75 6.49 14.15 45.41 0.38 0.46 2525427 5515
c2 112 289.69 9.13 34.61 31.72 0.08 0.26 3667050 9681
sh 1834 276.98 26.77 20444.24 10.35 0.01 o.oo 3496613 71979
ed 524 253.13 14.46 2029.89 17.50 0.03 0.01 10058108 56039
acctprcl 3 231.28 6.67 19.45 34.67 2.22 0.34 2577344 2926
du 145 219.35 19.91 39.08 11.02 0.14 0.51 716389 23695
diff 49 175.53 6.04 25.78 29.05 0.12 0.23 3740887 11351
get 151 152.96 4.28 25.23 35.74 0.03 0.17 3634042 24917
adb 22 148.10 4.07 202.35 36.37 0.19 0.02 2313718 9813
tbl 24 143.43 2.44 210.65 58.71 0.10 0.01 1536210 3433
dd 9 139.24 10.15 51.05 13.72 1.13 0.20 26006848 294
as2 155 129.33 9.82 42.25 13.17 0.06 0.23 10500835))165
sed 597 115.46 4.19 36.23 27.57 0.01 0.12 783825 24497
ps 51 109.69 5.92 41.55 18.54 0.12 0.14 2278056 8310
nake 89 102.94 2.87 203.32 35.81 0.03 0.01 1018461 8664
delta 25 90.23 2.27 17.80 39.70 0.09 0.13 2909269 9321
cpp 172 89.37 2.69 11.32 33.19 0.02 0.24 3519054 12155
f sck 16 86.94 1.)) 10.57 66.85 0.08 0.12 27671849 2927
find 52 86.64 5.05 63.87 17.15 0.10 0.08 565125 11161
ls 706 82.47 5.78 62.85 14.26 0.01 0.09 1811882 29659
xck 2 79.44 10.49 47.89 7.57 5.25 0.22 198016 21995
awk 22 78.83 1.37 5.24 57.72 ~0.06 0.26 355466 3769
uucico 60 75.55 1.42 632.50 53.27 0.02 o.oo 398693 6377
acctcom 9 75.21 2.81 11.49 26.75 0.31 0.24 1283776 3771
echo 2814 66.10 7.08 91.00 9.33 o.oo 0.08 168651 24253
ged 3 57.27 0.82 7.51 70.16 0.27 0.11 51832 426
de 284 56.92 2.42 9.43 23.48 0.01 0.26 15283 20329
450 7 48.03 6.80 84.45 7.06 0.97 0.08 279451 1700
cat 749 45.49 5.69 478.54 8.00 0.01 0.01 8959500 27~3
ntd 6 41.52 1.55 7.55 26.87 0.26 0.20 59888 478
mil 202 39.95 2.05 532.98 19.53 0.01 o.oo 427217 14377

C-·5 Zilog C-5

ACCT Zilog ACCT

acctprc2 3 38.95 1.43 19.45 27.24 0.48 0.01 587336 87
sort 94 38.72 1.09 9.73 35.41 0.01 0.11 375876 4433
pr 104 34.89 2.47 214.50 14.10 0.02 0.01 1060989 6572
haspnain 7 33.Xl 5.28 1244.54 6.29 0.75 o.oo 63064 36635
ex 17 31.69 0.62 41.04 50.97 0.04 0.02 514624 3593
grep 213 28.73 2.98 21.01 9.64 0.01 0.14 2100229 14297

C-6 Zilog C-6

ACCT Zi.log ACCT

Jllll 8 04:07 1979 M:>NTHLY 'IDrAL CXM1AND SlM1ARY Pp.ge 1

OM1AND M.JMBER 'IDTAL TOTAL 1UrAL MEAN MEAN H)G CHARS BLOCKS
NAME CMOS KO)REMIN CPD-MIN REAL-MIN .SIZE-K CPTJ-MIN FACTOR TRNSFD READ

'IDTALS 553286 297698.78 10916.09 742924•94 27.27 0.02 0.01 820472546 26253312

nroff 1687 44681.55 995.92 5737 .25 44.86 0.59 0.17 613403153 1089180
troff 1351 25692.15 583.69 4356.05 44.02 . 0.43 0.13 413163589 646243
spell pro 6466 17298.41 294.16 1893.79 58.81 0.05 0.16 334572640 853901
m2edit 654 13526.69 164.62 4238.58 82.17 0.25 0.04 54940426 427924
xnroff 397 10408.44 203.72 1496.32 51.09 0.51 0.14 215221419))1967
sort 7983 9292.34 226.01 2298.05 41.11 0.03 0.10 80108))4 355963
cl 6139 8949.86 236.45 861.09 37.85 o.04 0.27 79897995 489661
ld 3244 8852.96 223.19 1128.09 39.67 0.07 0.20 493701995 1278119
sed 53134 8126.71 313.85 2241 • .78 25.89 0.01 0.14 23035033 1692990
m2find 2982 7984.45 140.18 1698.25 56.96 o.os 0.08 111330040 449604
cO 6586 7866.42 185.16 725.47 42.49 0.03 0.26 72595655 389426
ed 2))83 7822.78 425.90 41898.18 18.37 0.02 0.01 483425634 1541326
tbl 660 7766.69 113.95 2458.55 68.16 0.17 0.05 50760094 83887
sh 40476 7499.67 635.00 383786.53 11.81 0.02 o.oo 70525236 1421194
du 1941 6730.54 553.04 1128.44 12.17 0.28 0.49 20848359 628324
a.out 1483 5658.46 126.87 1868.87 44.60 0.09 0.07 16158675 00260
egrep 4001 5573.51 139.86 460.25 39.85 0.03 0.30 6823696 237298
lint! 793 5325.66 71.23 425~67 74.76 0.09 0.17 9599001 131592
cat 21170 4657.53 236.59 4354.24 19.69 0.01 0.05 239180412 1023965
acctprcl 42 3837.84 110.88 291.34 34.61 2.64 0.38 43954136 61123
c2 4067 3807.25 144.86 477.28 26.28 0.04 0.30 57519376 213521
grep 21212 3204.86 3'.)().44 2727.87 10.67 0.01 0.11 139340583 899415
cpp 7469 3060.72 94.12 647 • .79 32.52 0.01 0.15 91471956 459882
getty 35556 2948.71 853.53 101107 .45 3.45 0.02 0.01 34704751 263866
m2editD 83 2707.27 28.79 361.84 94.02 Q.35 0.08 2852202 33949
as2 6454 2698.74 218.96 910.59 12.33 0.03 0.24 213336016 705690
rreke 1858 2449.10 64.69 4388.86 37.86 0.03 0.01 24116259 175544
ps 1034 2384.14 128.29 1207.87 18.58 0.12 0.11 54873792 204172
acctcm> 294 2288.36 51.99 l16.06 41+.0l 0.18 0.45 36124940 80523
trueico 815 2226.75 40.42 11729.01 55.08 o.os o.oo 11086105 162558
ls 18876 2170.01 152.76 1538.09 14.20 0.01 0.10 32418106 691028
find 1705 2114.18 114.35 920.75 18.49 0.07 0.12 94631199 338600
ged 72 2026.43 28.54 317.21 11.01 0.40 0.09 1648636 10374
echo 84710 2018.23 190.14 1138.49 10.61 o.oo 0.17 2926992 6492'.X)
cpio 127 1956.60 77.03 391.45 25.40 0.61 0.20 190822346 296302
rraze 8 1620.42 44.80 128.25 36.17 5.00 0.35 120399 212
mail 4735 1474.38 76.92 14262.62 19.17 0.02 0.01 25719618 463748
get 1085 1358.03 37.59 234.97 36.13 0.03 0.16 315400)8 178623
acctcom 165 1253.99 47.06 339 •. 34 26.64 0.29 0.14 57405662 68949
yacr. 58 1187 .17 15.36 36.,90 77.31 0.26 0.42 4096070 12093
col 638 1064.40 49.01 2199.,00 21.72 0.08 0.02 23835395 169)3

C-7 Zilog C-7

ACCT Zilog ACCT

line 27184 1036.03 93.14 1941.33 11.12 o.oo o.os 925447 296142
nroffl.2 29 909.83 17.71 56.97 51.38 0.61 0.31 11459920 18002
delta 264 904.54 23.07 254.06 39.21 0.09 0.09 24219141 87164
td 175 886.19 25.74 159.73 34.43 0.15 0.16 19~)177 15792
ar 1434 872.65 61.87])9.07 14.11 o.04 0.20 189858731 428871
m2f ind.D 144 864.29 12.54 344.13 68.94 0.09 0.04 1184947 28576
rm 15319 857.97 85.65 754.20 10.02 0.01 o. u 453479 433903
acctdusg 1 819.77 39.]) 170.10 20.86 39.l) 0.23 18124ID 39744
f77passl 155 779.13 7.97 29.09 97.70 0.05 0.27 990)27 34702
dif f 786 767.31 32.77 260.27 23.41 0.04 0.13 22940094 97214

C-8 Zilog C-8

Zilo9 ACCT

Jun 8 04:07 1979 LJ\.Srr LOGIN Page 1

00-00-00 dii 00-00-00 rudd 79-06-08 adm
00-00-00 absadm 00-00-00 sl0 79-06-08 agp
00-00-00 absafr 00-00-00 s2 79-06-08 als
00-00-00 abscas 00-00-00 s4 79-06-08 arf
00-00-00 absjcw 00-00-00 · s5 79-06-08 ca th
00-00-00 abspvg 00-00-0kJ s6 79-06-08 dal
00-00-00 abstbm 00-00-00 s8 79-06-08 dan
00-00-00 adm94 00-00-00 s9 79-06-08 denise
00-00-00 apb 00-00-00 scbsa 79-06-08 dp
00-00-00 archive 00-00-00 sjm 79-06-08 ds52
00-00-00 asc 00-00-00 srb 79-06-08 ech
00-00-00 badt 00-00-00 sys 79-06-08 ecp
00-00-00 btb 00-00-00 tgp 79-06-08 eric
00-00-00 bvl 00-00-00 tld 79-06-08 f ld
00-00-00 bwk 00-00-00 ussc 79-06-08 f srepl
00-00-00 chicken 00-00-00 uucpa 79-06-08 games
00-00-00 class 00-00-00 uvac 79-06-08 graf
00-00-00 cleary 00-00-00 vav 79-06-08 herb
00-00-00 cs 00-00-00 wdr 79-06-08 hoot
00-00-00 dbs 00-00-00' willa 79-06-08 hsm
00-00-00 de by 00-00-00 zooma 79-06-08 jac
00-00-00 dee 79-06-04 dws 79-06-08 jcw
00-00-00 demo 79-06-04' ewb 79-06-08 jel
00-00-00 dlt 79-06-04

1

kas 79-06-08 jfn
00-00-00 dmr 79-06-04 satz 79-06-08 kof
00-00-00 docs 79-06-04 uucp 79-06-08 krb
00-00-00 dug 79-06-05 bcm 79-06-08 leap
00-00-00 ellie. 79-06-05' lprem 79-06-08 llc
00-00-00 fsrep2 79-06-05 s7 79-06-08 m2
00-00-00 gas 79-06-05 SCCS 79-06-08 m2class
00-00-00 graphics 79-06-06 conv 79-06-08 mfp
00-00-00 hjg 79-06-06 dCJ(79-06-08 mhb
00-00-00 hlb 79-06-06 dmt 79-06-08 mjr
00-00-00 inst 79-06-06 emp 79-06-08 :msb
00-00-00 jfm 79-06-06 pah 79-06-08 nuucp
00-00-00 jrh 79-06-06' sync 79-06-08 paul
00-00-00 ken 79-06-06 tad 79-06-08 pdw
00-00-00 lco 79-06-07 ams 79-06-08 pr is
00-00-00 learn 79-06-07 bin 79-06-08 pwbcs
00-00-00 lppdw 79-06-07. dgd 79-06-08 pwbst
00-00-00 lrbb 79-06-07 haigh 79-06-08 rbj
00-00-00 maj 79-06-07 hasp 79-06-08 reg
00-00-00 mar 79-06-07 jgw 79-06-08 rem
00-00-00 mash 79-06-07 leb 79-06-08 rje
00-00-00 meq 79-06-07 ljk 79-06-08 rnt
00-00-00 mifi 79-06-07 mep 79-06-08 root
00-00-00 mlc 79-06-07 nhg 79-06-08 rrr
00-00-00 mmr 79-06-07 nws 79-06-08 sl

C-9 Zilog1 C-9

ACCT Zilog ACCT

00-00-00 mpf 79-06-07 qtrof 79-06-08 s3
00-00-00 pla.n 79-06-07 tbm 79-06-08 star
00-00-00 plum 79-06-07 train 79-06-08 stoc:k
00-00-00 pvgr 79-06-07 whr 79-06-08 systst
00-00-00 rake sh 79-06-07 wwe 79-06-08 teach
00-00-00 rf9 79-06-08 ? 79-06-08 text
00-00-00 rlc 79-06-08 abs 79-06-08 trc
00-00-00 rrc: 79-06-08 absjr 79-06-08 vjf
79-06-08 whm

C-10 Zilog C-10

Awk - A Pattern Scanning and Processing Language *

This information is based on an article
originally written by Alfred v. Aho,

Brian w. Kernighan, and Peter J. Weinberger,
Bell Laboratories.

AWK Zilog AWK

ii Zilog ii

AWK Zilog

Table of Contents

SECTION 1 INTRODUCTION ~
1.1. Usage .
1. 2. Program Structure
1. 3. Records and F'ields
1. 4. Printing

SECTION 2 PATTERNS ~ .
2 .1. BEGIN and END
2.2. Regular Expre!ssions
2.3. Relational Expressions
2.4. Combinations of Patterns
2.5. Pattern RangE~s

SECTION 3 ACTIONS . ~ ~ .
3 .1.
3.2.
3.3.
3.4.
3.5.
3.6.

. Built-in Functions
Variables, Expressions, and
Field variables •••••••••
String Concatenation •••

Assignments
Ar rays •••••..•••••••• • •
Flow-of-Control Statements

SECTION 4 DESIGN • • 0 •

SECTION 5 IMPLEMENTATION .

iii Zilog

AWK

1-1

1-1
1-2
1-2
1-3

2-1

2-1
2-1
2-2
2-3
2-3

3-1

3-1
3-2
3-2
3-3
3-4
3-4

4-1

5-1

iii

AWK Zilog

SECTION 1
INTRODUCTION

AWK

Awk is a programming language designed to make many common
information retrieval and text manipulation tasks easy to
state and to perform.

The basic operation of awk is to scan a set of input lines
in order, searching for line.s which match any of a set of
patterns which the user has specified. For each pattein, an
action can be specified; this action will be performed on
each line that matches the pattern.

Readers familiar with the ZEUS program ~ (see ZEUS Refer­
ence Manual, Section 1) will recognize the approach,
although in awk the patterns may be more general than in
2ep, and the actions allowed are more involved than merely
printing the matching line. For example, the awk program

{print $3, $2}

prints the third andl second columns of a table in that
order. The program

$2 - /AIBIC/

prints all input lines with an A, B, or c in the second
field. The program

$1 != prev { print; prev = $1 }

prints all lines in which the first field is different from
the previous first field.

1.1. Usage

The command

awk program [files]

executes the awk commands in the string program on the set
of named files, or on the standard input if there are no
files. The statements can also be placed in a file pfile,
and executed by the command

awk -f pfile [files]

1-1 Zilog 1-1

AWK Zilog

1.·2. Program Structure

An awk program is a sequence of statements of the form:

pattern { action }
pattern { action }

AWK

Each line of input is matched against each of the patterns
in turn. For each pattern that matches, the associated
action is executed. When all the patterns have been tested,
the next 1 ine is fetched and· the matching sta1'.'ts over.

Either the patter.n or. the action may be left out, but not
both. If there is no action for a pattern, the matching
line is simply copied to the output. {Thus a line which
matches several patterns can be printed sever.al times.) If
there is no pattern for an action, then the action is per­
formed for every input line. A line which matches no pat­
tern is ignored.

Since patterns and actions are both optional, actions must
be enclosed in braces to distinguish them from patterns.

1..3. Recoir.ds and Fields

Awk input is divided into "records" terminated by a record
separator. The default record separator is a newline, so by
default awk processes its input a line at a time. The
number of - the cur.rent record is avai 1 able in a var. i able
named NR ..

Each input record is considered to be divided into "fields".
Fields an~ normally separated by white space blanks or.
tabs - but the input field separator may be changed, as
described below. Fields are refer.red to as $1, $2, and so
forth, where $1 is the fir.st field, and $0 is the whole
input record itself. Fields may be assigned to. The number
of fields in the current record is available in a variable
named NF.

The variables FS and RS refer to the input field and record
separators; they may be changed at any time to any single
character. The optional command-line argument -fc may also
be used to set FS to the character c.

If the record separator is empty, an empty input line is
taken as the record separator, and blanks, tabs and newlines
are treated as field separators.

1-2 Zilog 1-2

AWK Zilog AWK

The variable FILENJ\J4E contains the name of the cur.rent input
file.

1. 4. Printing

An action may have no patter.n, in which case the action is
executed for all lines. The simplest action is to pr.int
some or all of a record; this is accomplished by the awk
command print. The awk program

{ pr.int }

prints each record, thus copying the input to the output
intact. More useful is to pr.int a field or fields from each
record. For instance,

print $2, $1

prints the first two fields in reverse order. Items
separated by a comma in the print statement will be
separated by the current output field separator. when output.
Items not separated by commas will be concatenated, so

print $1 $2

runs the first and second fields together..

The predefined variables NF and NR can be used; for. example

{ pr.int NR, NF, $0 }

prints each record preceded by the record number and the
number of fields.

Output may be diverted to multiple files; the pr.ogram

{ pr.int $1 >"file.1"; pr.int $2 >"file.2" }

writes the fir.st field, $1, on
second field on file file.2
used:

print $1 >>"foo"

the file file.I and the
The >> notation can also be

appends the output to the file foo. (In each case, the out­
put files are cr.eated if necessary.) The file name can be a
variable or. a field as well as a constant; for example,

print $1 >$2

1-3 Zilog 1-3

AWK Zilog AWK

uses the contents of field 2 as a file name.

Naturally there is a limit on the number of output files;
currently it is 10.

Similarly, output can be piped into another process for
instance,

print I "mail bwk"

mails the output to bwk.

The variables OFS and ORS may be used to change the current
output field separator and output record separator. The
output record separator. is appended to the output of the
print statement.

Awk also provides the printf statement for output format­
ting:

pr.intf for.mat expr., expr, •••

formats the expressions in the list according to the specif­
ication in format and prints them. For example,

printf "%8.2f %10ld\n", $1, $2

prints $1 as a floating point number 8 digits wide, with two
after the decimal point, and $2 as a 10-digit long decimal
number, followed by a newline. No output separators are
produced automatically; you must add them your.self, as in
this example. The version of printf is identical to that
used with c.

1-4 Zilog 1-4

AWK

SECTION 2
PATTERNS

AWK

A pattern in front of an action acts as a selector that
deter.mines whether the action is to be executed. A variety
of expressions may be used as patterns: regular. expressions,
arithmetic relational expressions, string-valued expres­
sions, and arbitrary boolean combinations of these.

2.1. BEGIN and END

The special pattern BEGIN matches the beginning of the
input, before the first record is read. The pattern END
matches the end of the input, after the last recor.d has been
processed. BEGIN and END thus provide a way to gain control
before and after. processing, for. initialization and wr.apup.

As an example, the field separator. can be set to a colon by

BEGIN { FS = ":" }

Or. the input lines may be counted by

END { pr.int NR }

If BEGIN is present, it must be the fir.st pattern; END must
be the last if used.

2.2. Regular Expressions

The simplest regular expression is a literal string of char­
acters enclosed in slashes, like

/smith/

This is actually a complete awk program which will print all
lines which contain any occli"CT.ence of the name "smith". If
a line contains "smith" as part of a larger word, it will
also be printed, as in

blacksmithing

Awk regular expressions include the regular. expression for.ms
found in the ZEUS text editor ed (see ZEUS Reference Manual,
Section 1) and flep (without back-referencing). In addi­
tion, awk a ovis parentheses for grouping, 11 for

2-1 Zilog 2-1

AWK Zilog AWK

alternatives, + for. "one or more", and ? for "zero or. one",
all as in lex. Character classes may be abbreviated:
[a-zA-Zl-9] iSthe set of all letters and digits. As an
example, the awk program

I [Aa] ho I [Ww] einberger. I [Kk] ernighan/

will print all lines which contain any of the names

Aho," "Weinberger" or "Kernighan," whether capitalized or.
not.

Regular expressions (with the extensions listed above) must
be enclosed in slashes, just as in ed and sed. Within a
regular expression, blanks and the r.egu!ar expression meta­
char.acters are significant. To turn of the magic meaning of
one of the regular expression characters, precede it with a
backslash. An example is the pattern

/\/.*\//

which matches any string of characters enclosed in slashes.

One can also specify that any field or variable matches a
regular. expression (or does not match it) with the operators
- and 1-. The program

$1 - I l[jJ] ohn/

prints all lines where the first field matches "john" or
"John". Notice that this will also match "Johnson", "St.
Johnsbury", and so on. To restrict it to exactly [jJ]ohn,
use

$1 - /"' [jJ] ohn$/

The caret A refers to the beginning of a line or field; the
dollar sign $ refers to the end.

2.3. Relational Expressions

An awk pattern can be a relational expression involving the
usuar- relational operators <, <=, ><==, !=, >=, and >. An
example is

$2 > $1 + 100

which selects lines where the second field is at least 100
greater than the first field. Similarly,

2-2 Zilog 2-2

AWK Zilog AWK

NF % 2 == 0

prints lines with an even number of fields.

In relational tests, if neither operand is numeric, a string
compar.ison is made; otherwise it is numeric. Thus,

$1 >= "s"

selects lines that begin with an s,
absence of any other information,
strings, so the program

t, u etc. In the
fields are treated as

$1 > $2

will per.form a string comparison.

2~4. Combinations of Patterns

A pattern can be any boolean combination of patterns, using
the oper.ators 11 (oir.), && (and), and ! (not). For example,

$1 >= "s" && $1 < "t" && $1 != "smith"

selcts lines where the fir.st field begins with "s", but is
not "smith". && and II guarantee that their. operands will
be evaluated from left to right; evaluation stops as soon as
the truth or. falsehood is deter.mined.

2.5. Pattern Ranges

The "pattern" that selects an action may also consist of two
patterns separated by a comma, as in

patl, pat2 { . . . }

In this case, the action is per.formed for. each line between
an occurrence of patl and the next occurrence of pat2
(inclusive). For. example,

/start/, /stop/

prints all lines between star.t and stop, while

NR == 100, NR == 200 { ••• }

does the action for. lines 100 through 200 of the input.

2-3 Zilog 2-3

AWK Zilog

SECT~ON 3
ACTIONS

AWK

An awk action is a sequence of action statements terminated
by newlines or semicolons. These action statements can be
used to do a variety of bookkeeping and string manipulating
tasks.

3.1. Built-in Functions

Awk provides a "length" function to compute the length of a
string of char.acteJ".'S. This program p:r.ints each record, pre­
ceded by its length:

{print length, $0}

length by itself is a "pseudo-variable" which yields the
length of the currcrnt record; length(argument) is a function
which yields the length of its argument, as in the
equivalent

{pr.int length($0), $0}

The argument may bE~ any expression.

Awk also provides the arithmetic functions sqrt, log, exp,
and int, for. square root, base e logarithm, exponential, and
integer part of their respective arguments.

The name of one of these built-in functions, without argu­
ment or parentheses, stands for the value of the function on
the whole record. The program

length< 10 II length> 20

prints lines whose length is less than 10 or greater than
20.

The function substr(s, m, n) produces the substring of s
that begins at position m (origin 1) and is at most n char­
acters long. If n is omitted, the substring goes to the end
of s. The function index(sl, s2) returns the position where
the siring s2 occurs in sl, or zero if it does not.

The function sprintf(f, el, e2, •••) produces the value of
the expressions el, e2, etc., in the printf format specified
by f. Thus, for example,

3-1 Zilog 3-1

AWK Zilog AWK

x = sprintf("%8.2f %10ld", $1, $2)

sets x to the string produced by formatting the values of $1
and $2.

3.2. Var.iclbles, Expr.essions, and Assignments

Awk variables take on numeric
values accetrding to context.

x = 1

is clearly a number, while in

x = "smith"

(floating point)
For. example, in

or string

it is clearly a string. Strings are converted to numbers
and vice versa whenever. context demands it. For. instance,

x = "3" + "4"

assigns 7 to x. Strings which cannot be interpreted as
numbers in a n um e r i ca 1 context w i 11 genera 11 y ha v ei n um er i c
value zero, but it is unwise to count on this behavior..

By default, variables {other than built-ins) are initialized
to the null string, which has numerical value zero; this
eliminates the need for most BEGIN sections. For example,
the sums of the fir.st two fields can be computed by

{ sl += $1; s2 += $2 }
END { pr.int sl, s2 }

Arithmetic is done internally in floating point. The arith­
metic operators are+,-,*,/, and% {mod). The C incre­
ment ++ and decrement -- operators are also available, and
so are the assignment operators +=, -=, *=, /=, and %=,
These operators may all be used in expressions.

3.3. Field Variables

Fields in awk share essentially all of the properties of
va-riables;-they may be used in arithmetic or string opera­
tions, and may be assigned to. Thus one can replace the
first field with a sequence number like this:

{ $1 = NR; pr.int }

or accumulate two fields into a third, like this:

3-2 Zilog 3-2

AWK Zilog AWK

{ $1 = $2 + $3; pr.int $0 }

or. assign a string to a field:

{ if ($3 > 1000)
$3 = "too big"

pr.int
}

which replaces the thir.d field by "too big" when it is, and
in any case pr.ints the record.

Field references may be numerical expressions, as in

{print $i, $(i+l), $(i+n) }

Whether a field is deemed numeric or. str.ing depends on con­
text; in ambiguous cases like

if ($1 == $2) •••

fields are treated as strings.

Each input line is split into fields automatically as neces­
sary. It is also possible to split any var.i~ble or. string
into fields:

n = split(s, ar.r.ay, sep)

splits the the string s into array[!], ••• , array[n] • The
number of elements found is returned. If the sep argument
is provided, it is used as the field separator; other.wise FS
is used as the separator.

3.4. String Concatenation

Strings may be concatenated. For example

length($! $2 $3)

returns the length of the fir.st three fields. Or. in a print
statement,

print $1 " is " $2

prints the two fields separated by "is". Variables and
numeric expressions may also appear in concatenations.

3-3 Zilog 3-3

AWK Zilog AWK

3.5. Ar.rays

Array elements are not declared; they spring into existence
by being m•entioned. Subscr-ipts may have any non-null value,
including non-numeric strings. As an example of a conven­
tional numeric subscript, the statement

x [NR] :: $0

assigns the current input record to the NR-th element of the
array x. In fact, it is possible in principle (though
perhaps slow) to process the entire input in a random order.
with the awk program

{ x[NR] = $0 }
END { ••• program ••• }

The first action merely records each input line in the array
x.

Array elements may be named by non-numeric values, which
gives awk a capability rather- like the associative memory of
Snobol'°tables. Suppose the input contains fields with
values like apple, etc. Then the program

/apple/
/orangE~/
END

{ x["apple"]++ }
{ x["orange"]++ }
{ pr.int x["apple"], x["orange"] }

increments counts for the named array elements, and prints
them at the end of the input.

3.6. Flow-of-Control Statements

Awk provides the basic flow-of-control statements if-else,
wh i 1 e , for. , and statement g r o up i ng w i th braces , as in C • We
showed the if statement in Section 3.3 without describing
it. The condition in parentheses is evaluated; if it is
true, the statement following the if is done. The else part
is optional.

The while statement is exactly like that of C. For.example,
to pr.int all input fields one per line,

3-4

i = 1
while (i <= N.F) {

pr.int $1
++i

}

Zilog 3-4

AWK Zilog AWK

The for. statement i c• ... also exactly that of C:

for. (i = l; i <-· -- NF; i++)
pr.int $i.

does the same job ac· -.> the while statement above.

Ther.e is an alternate form of the for. statement which is
suited for accessing the elements of an associative array:

for (i in array)
statement

does statement with i set in turn to each element of ar.r.ay.
The elements are accessed in an apparently random order.
Chaos will ensue if i is altered, or if any new elements are
accessed during the loop.

The expression in the condition part of an if or while, or
for can include relational operators like <, <=, >, >=, -­
("is equal to"), and != ("not equal to"); regular expression
matches with the match operators - and !-; the logical
operators II,&&, and !; and of course parentheses for
grouping.

The break statement causes an lmmediate exit from an enclos­
ing while or for..; the contlnue statement causes the next
iteration to begin.

The statement next causes awk to skip immediately to the
next record and beg in scanning the patterns fro111 the top.
The statement exit causes the program to behave as if the
end of the input had occurred.

Comments may be placed in awk programs: they begin with the
character I and end with the end of the line, as in

print x, y # this is a comment

3-5 Zilog 3-5

AWK Zilog

SECTIPN 4
DESIGN

AWK

The ZEUS system already provides several programs that
operate by passing input through a selection mechanism.
Grep, the first and simplest, merely prints all lines which
match a single specified pattern. Egrep provides more gen­
eral patterns, i.e., regular expressi6ns in full generality;
fgrep searches for a set ·of keywords with a particularly
fast algorithm. Sed provides mo~t of the editing facilities
of the editor ea; applied to a stream of input. None of
these programs provides numeric capabilities, logical rela­
tions, or variables.

Lex provides general regular expression recognition capabil­
ities, and, by serving as a C program generator, is essen­
tially open-ended in its capabilities. The use of lex, how­
ever, requires a knowledge of C programming, and a--rex pro­
gram must be compiled and loaded before use,~-which
discourages its use for one-shot applications.

Awk is an attempt to fill in another part of the matrix of
possibilities. It provides general regular expression capa­
bilities and an implicit input/output loop. But it also
provides convenient numeric processing, variables, more gen­
eral selection, and control flow in the actions. It does
not require compilation or a knowledge of c. Finally, awk
provides a convenient way to access fields within lines; ~
is unique in this respect.

Awk also tries to integrate strings and numbers completely,
by treating all quantities as both string and numeric,
deciding which reprc~sentation is appropriate as late as pos­
sible. In most cases the user can simply ignore the differ­
ences.

Most of the effort in developing awk went into deciding what
awk should or should not do (ror instance, it doesn't do
string substitution) and what the syntax should be (no
explicit operator for concatenation) rather than on writing
or debugging the code. The syntax is powerful but easy to
use and well adapted to scanning files. For example, the
absence of declarations and implicit initializations, while
probably a bad idea for a general-purpose programming
language, is desirable in a language that is meant to be
used for tiny programs that may even be composed on the com­
mand line.

4-1 Zilog 4-1

AWK Zilog AWK

In practicE~, awk usage seems to fall into two broad
categories. One is what might be called ''report genera­
tion'' - processing an input to extract counts, sums, sub­
totals, etc~ This also includes the writing of trivial data
validation programs, such as verifying that a field contains
only numeric information or that certain delimiters are
properly balanced. The combination of textual and numeric
processing is invaluable here.

A second area of use is as a data transformer, converting
data from the form produced by one program into that
expected by another. The simplest examples merely select
fields, perhaps with rearrangements.

4-2 Zilog 4-2

AWK Zilog

SECTION 5
IMPLEMENTATION

AWK

The actual implementation of awk uses the language develop­
ment tools available on t~ ZEUS operating system. The
grammar is specified with yacc; the lexical analysis is done
by lex; the regular expres'STOrl recognizers are deterministic
finite automata constructed directly from the expressions.
An awk program is translated into a parse tree which is then
directly executed by a simple interpreter.

Awk was designed for ease of use rather than processing
speed; the delayed evaluation of variable types and the
necessity to break input into fields makes high speed diffi­
cult to achieve in any case. Nonetheless, the program has
not proven to be unworkably slow.

As might be expected, awk is not as fast as the specialized
tools we, sed, or the programs in the grep family, but is
faster than the more general tool lex. The tasks are about
as easy to express as awk programs as programs in these
other languages; tasks involving fields are considerably
easier to express as awk programs.

5-1 Zilog 5-1

ZEUS COMMUNICATIONS PACKAGE

COMM Zilog COMM

ii Zilog ii

COMM · Zilog COMM

Pref ace

This document describes the ZEUS Communications Package, a
communication path between ZEUS and Zilog development tools.

In this document, the term "development system" refers to a
standard Z8(TM) or Z8000(TM) Development Module or to Z-SCAN
8000(TM). The term "remote system" refers to a System
8000(TM) executing the ZEUS Operating System. The term
"local system" refers to an MCZ(TM) or a ZDS system execut­
ing the RIO Operating System.

The LOAD/SEND function in ZEUS is analogous to the MCZ/ZDS
LOAD/SEND function. Refer to the Z8000 Develo~ment Module
Hardware Reference Manual (03-3080) for specif 1c informa-
tion. ·

iii Zilog iii

COMM Zilog COMM

iv Zil9g iv

COMM Zilog COMM

Table of Contents

SECTION 1 INTRODUCTION • 1-1

SECTION 2 FUNCTIONAL DESCRIPTION ••••••••••••••••••••• 2-1

2.1. Upload/Download Functional Description •••••••• 2-1
2.2. File Transfer Functional Description •••••••••• 2-1

SECTION 3 INVOCATION AND OPERATION •••••••.•.••••••••• 3-1

3.1. Upload/Download Invocation and Operation •••••• 3-1
3.2. File Transfer Invocation and Operation •••••••• 3-1

SECT I ON 4 TERMINATION • . • . • 4-1

v

4.1. Upload/Download Termination ••••••••••••••••••• 4-1
4.2. File Transfer Termination ••••••••••••••••••••• 4-1

Zilog v

COMM Zilog

SECTION 1
INTRODUCTION

COMM

The ZEUS Communications Package gives the ZEUS user a com­
munication path between ZEUS and the development tools
offered by Zilog (the ZS and Z8000 Development Modules and
Z-SCAN 8000) •

The upload/download capability includes the LOAD command,
which loads a ZEUS file to development tool memory, and the
SEND command, which transfers the contents of development
tool memory to a ZEUS file. These facilities also interface
with existing PROM programming products, giving the user
PROM programming capability.

The package also provides a general-purpose file transfer
capability for transferring files between a local system and
a remote system. This includes software that executes under
both ZEUS and the RIO Operating System.

1-1

NOTE

This software package is not designed for communi­
cation between two ZEUS systems. For this capa­
bility, use thE~ programs uucp, uux, and uulog.

Zilog 1-1

COMM Zilog

SECTION 2
J?UNCTIONAL DESCRIPTION

2ol. Upload/Download Functional Description

COMM

The LOAD command downloads a 28000 program to a development
system from a ZEUS file. The binary data in the file is
converted to Tektronix format and is transmitted to the
development system.. An acknowledgment from the development
system causes the next record to be downloaded from ZEUS.
If an acknowledgment is not received, the current record is
retransmitted up to ten times. After continued nonac­
knowledgment, a record with an error message is sent, and
the program aborts.

Possible error messages are:

/ABORT
/UNABLE TO OPEN FILE
/FILENAME ERROR
/INCORRECT FILE TYPE
/ERROR IN READING FILE
/CHECKSUM ERROR

The SEND command transfers the contents of development sys­
tem memory to a ZEUS file. The SEND program opens the file
and sends an acknowledgment to the development system to
start transmission. If the file cannot be opened, an
abort-acknowledgment is sent, and the program aborts. An
acknowledgment is sent after each good record received. If
the ASCII code double slash (//) is received from the
development system, the program aborts.

Possible error messages are:

/ABORT
/OPEN FILE ERROH
/FILE WRITE ERROR
/CHECKSUM ERROR

2.2. File Transfer Functional Description

The file transfer software
remote system to files
vice versa. On invocation
(Section 3), the remote

2-1

copies files residing on the
residing on the local system, and
of the file transfer command
system transmits a sequence of

Zilog 2-1

COMM Zilog COMM

characters to the local system to initiate the file
transfer. .~ file is transferred one record at a time, along
with a checksum to guarantee the accuracy of the data. For
each successful transmission, an acknowledgment is sent, and
a period (.) is displayed on the terminal to inform the user
that the transfer is proceeding. If a nonacknowledgment is
sent, the record is retransmitted up to ten times, after
which the program proceeds to the next file. An error mes­
sage is displayed for each retransmission that is necessary,
unless the nonfatal error messages are suppressed in the
command invocation (Section 3). A message is printed after
each successful transmission that includes the file name.
At the conclusion of the program, a message informs the user
of the number of successful and unsuccessful transmissions.
A control-x causes the current file transfer to terminate,
and the program proceeds to the next file on the list. The
termination message counts that file as an unsuccessful
transfer (Section 4.2). Pressing the escape key (ESC)
aborts the program.

Possible messages are:

Normal transmission:
<filename>

(one • for every record for positive feedback)

Error messages:
checksum error ••• retry
<filename> ••• transmission aborted

ZEUS file names cannot be longer than 14 characters, but RIO
file names can be as long as 32 characters. For file
transfers from the local system to the remote system, only
the first 14 characters of the file name are used. Path
names can be specified; they apply only to the file name on
the remote system. On the local system, all files to be
uploaded must be in the working directory, and all down­
loaded files are created in the working directory (this does
not apply to the MCZ/ZDS systems).·

2-2

NOTE

If a duplicate file name exists on the target
system, the contents of pre-existing files are
automatically overwritten unless the [-q] option
is specified as part of the command (Section 3).
If the! [-q] option is specified, the user is
queried for a replacement name.

Zilog 2-2

COMM Zilog COMM

Possible message is:

replace <filename> (y/n)?

2-3 Zilog 2-3

COMM Zilog

SEC'rION 3
INVOCATION AND OPERATION

3.1. Upload/Download' Invocation and Operation

COMM

The LOAD command is given to the development system as fol­
lows:

LOAD file

The development system Monitor program transmits the command
line to ZEUS exactly as it is entered, and the ZEUS program
(LOAD) opens the file specified by <filename>. The Monitor
on a 28000 Development Module or. Z-SCAN requires that
<filenam~> be all uppercase on the remote system. If "load
~rog" is entered, the remote system searches for the file
PROG. The binary data in the file is transmitted to the
development system. Pressing ESC aborts the LOAD command.

The SEND command is given to the development system as fol­
lows:

SEND file star.t •. addr end.~ [entry.addr]

This command transfers the contents o;f development system
memory to a ZEUS file specified by <filename>. The develop­
ment system transmits the command to ZEUS exactly as input,
causing execution of the SEND program. SEND opens the file
<filename> and stores in it the binary data received from
the development system. Pressing ESC aborts the SEND com­
mand.

3.2. File Transfer. Invocation and Operation

File transfer. is accomplished in three steps. In the first
step, control is transferred from the local system to the
remote system by entering the following command to the local
system.

r.emote [:rate]

This command starts a program on the local system, which
places the user in remote mode. In this mode, all charac­
ters entered from the keyboard are sent to the S8000, and
all characters from the 88000 (except for character.
sequences that initiate file transfers and the return to
local mode) are sent to the terminal screen. Therefore, the

3-1 Zilog 3-1

COMM Zilog COMM

terminal is essentially operating as an 88000 terminal, and
any ZEUS command can be executed. The default communication
rate is 9600 baud. Standard baud rates that can be speci­
fied for the MCZ/ZDS are 50, 75, 110, 150, 300, 600, 1200,
2400, 4800, 9600, 19,200, and 38,400.

The second step in file transfer involves two commands: put­
file and getfile, which ar.e invoked as follows:

putfile [-qfbB] file.l [[-b]file.2]
getfile [-qfbB] file.I [[-b]file.~]

The command putfile transfers files fr.om the remote system
to the loca'l""System; getfile tr.ansfer.s files from the local
system to the remote system.

The [-q] option specifies that transfer. of a file to the
target system where a file of the same name already exists
causes a query to the user (Section 2.2). If this option is
not given, the file is automatically overwritten.

The [-f] option suppresses the nonfatal error. message
"checksum err.or ••• retry."

The [-b] option preceding a file name indicates a binary
file and suppresses translation of ZEUS new line characters
into RIO's carriage returns (and vice versa) for. that file
only. The type defaults to ASCII for the next file. This
differs from the [-q] and [-f] options, which apply to the
remainder of the line following the point at which they are
invoked.

The [-B] option specifies that every file that follows is
binal'."y.

A list of files can be specified on the command line. A
control-x aborts the transfer of a single file and proceeds
to the next file. Pressing ESC aborts the entire transfer.
at any point.

The third step returns the user. to the local system from the
remote system. The command is:

local [-1]

The [-1] option causes a logout to be given to the remote
system. It is necessary to log in after. the next remote
command.

3-2 Zilog 3-2

COMM Zilog

SECTION 4
TERMINATION

COMM

4.L. Upload/Download Termination

After completion of the loading process, the program's entry
point is displayed on the terminal, and the development sys­
tem returns to Monitor mode. The LOAD program terminates
and returns control to the ZEUS Operating System.

After completion of the sending process, the program's entry
point is stored in the ZEUS file, and the development system
returns to Monitor mode. The SEND program terminates and
returns control to the ZEUS Operating System.

If there is a user or program abort during either the load­
ing or sending process, an error message is printed (Section
2), the development system returns to Monitor mode, and the
program returns control to the ZEUS Operating System.

4.2. File Transfer Termination

After completion of the file transfer, the local system
returns to remote mode, enabling the user to continue to
execute ZEUS commands. One of the following messages is
printed on the terminal:

putfile:<nl> successful transfers <n2> unsuccessful transfers
getfile:<nl> successful transfers <n2> unsuccessful transfers

An unsuccessful file transfer does not cause the program to
terminate abnormally. If the program is aborted via the
escape key, it does not transfer any more files, and ter­
minates in a normal fashion.

4-1 Zilog 4-1

THE C SHELL

This information is a summary and expansion of information
found in the ZEUS Reference Manual and other sources.

C SHELL Zilog C SHELL

ii Zilog ii

C SHELL Zilog C SHELL

Table of Contents

SECTION 1 AN INTRODUCTION TO THE C SHELL•... ·..... 1-1

1.1. What is a Shell? •••••••••••••••••••••••••••••• 1-1
1.2. Conventions in this Document •••••••••••••••••• 1-2

SECTION 2 TYPING COMMANDS TO THE C SHELL•. 2-1

2.1. The ZEUS Prompt •••.••••••••••••••••••••••••••.
2. 2. Command Syntax •••••.••••••••••••••••••••.•••••
2.3. Simple Commands •••••••••••.•••••••••••••••••••
2.4. Compound Commands .••••••••••••••••••••••••••••
2.5. Running a Command in Background •••••••••••••••
2.6. Running a Command in a Subshell •••••••••••••••
2.7. Conditional Command Operators •••••••••••••••••
2.8. Command Substitution ••••••••••••••••••••••••••
2.9. Input/Output Control ····~·····················

2.9.1. Input Redirection -- < ••••••••••••••••••
2.9.2. Input Within a Script -- << ••••••••••••••
2. 9. 3. Output Redirection -- > ••••.••••.••..•••
2.9.4. Adding to the End of A File -- >> •••.•••
2.9.5. Standard Error Redirection -- >& ••••••••
2 • 9 • 6 • Over r id in g Noc 1 oboe r - - > ! • • • .
2.9.7. Output, Error, and Noclobber -- >&! •••••
2.9.8. Appending and Standard Error -- >>& ••••.
2.9.9. Appending and Noclobber -- >>! •.•••••.•.
2.9.10. Appending, Noclobber, Error -- >>&!

2 • 1 0 • P i p e ~ • • • • • • • • • • • • • • • ., •

2-1
2-1
2-2
2-3
'2-3
2-4
2-5
2-6
2-7
2-7
2-8
2-9

2-10
2-11
2-11
2-12
2-12
2-12
2-13
2-13

SECTION 3 FILENAME SUBSTITUTION

iii

AN INTRODUCTION TO METACHARACTERS 3-1

3.1. Characters for Filenames •••••••••••••••••••••• 3-1
3.2. The Full Metacharacter Set •••••••••••••••••••• 3-5
3.3. Quoting -- Preventing Metacharacter Expansion • 3-23

Zilog iii

C SHELL Zilog

SECTION 4 THE HISTORY FUNCTION

4 .1.
4. 2.
4. 3.
4. 4.
4. 5.
4.6.

Command History
Common E'orms of Use
Accessing Previous
Modifying Previous
Modifying Previous
Magic Characters in

Eor the History
Commands ••.••
Commands

Function

Command Words •••••
History Function

SECTION 5 THE C SHELL BUILT-IN COMMAND STRUCTURE

5.1. Introduction to C Shell Commands •.•••..•
5.2. General Purpose Commands from the Prompt

5. 2. 1. cd
5.2.2.
5.2.3.
5.2"4.
5.2.5.
5.2.6.
5.2.7.
5.2.8.
5.2.9. umask

echo
glob
history
nice
rehash
repeat
time

5.2.10. wait
5.3. Environmental Commands from the Prompt

5.3.1. alias / unalias
5.3.2. exit •••.••••
5.3.3. logout ••••••
5.3.4. set I unset
5.3.5. setenv I env
5.3.6.
5.3.7.
5.3.8.
5.3.9.

source ••••••.
unalias / alias
unset I set
The At Sign @

SECTION 6 THE C SHELL PROGRAMMING LANGUAGE STRUCTURE

iv

f oreach and end
while and end
The if, else,

group
group
endif Group

6 .1.
6.2.
6. 3.
6.4. The Switch Group .••••••••
6.5. Independent Flow Control Statements

6. 5. 1. break
6.5.2. continue
6.5.3. goto ••••.
6.5.4. shift

6.6. Independent Shell Script Commands
6.6.1.
6.6.2.
6.6.3.

exec
nohup
oni.ntr .. ~.

Zilog

C SHELL

4-1

4-1
4-2
4-5
4-7

4-10
4-13

5-1

5-1
5-1
5-2
5-2
5-3
5-3
5-4
5-6
5-6
5-7
5-8
5-9

5-10
5-10
5-13
5-16
5-16
5-18
5-19
5-19
5-20
5-20

6-1

6-1
6-3
6-4
6-4
6-6
6-6
6-7
6-7
6-7
6-7
6-8
6-8
6-8

iv

C SHELL Zilog C SHELL

6.7. Example Shell Scripts

SECTION 7 SHELL VARIABLES
7.1. Predefined C Shell V3riables

7.1.1.
7.1.2.
7. L 3.
7.1.4.
7.1.5.
7.1.6.
7.1.7.
7. L 8.

argv.
child .••••.
echo
history
home.
ignoreeof
mail •••••
noclobb 1er

7.1.9. noglob
nonomatch
path
prompt
shell

7.1.10.
7.1.11.
7.1.12.
7.1.13.
7.1.14. status

...

7.1.15. term ••••••••
7. 1. 16. ti rne

• •

. .

...

7.1.17. verbose •••••• • ••••
7.2. Predefined Variables Default Values
7 .. 3. user-defined variables •••••••••••••.•..
7.4. User-defined Variable Substitutions
7.5. Using Modifiers in variable Substitutions

SECTION 8 THE CSH COMMAND AND C SHELL SCRIPTS

v

The Csh Command 8 .1.
8.2.
8.3.

Invoking Csh to Execute a Shell Script
Using C Expressions in Scripts •••• ~ •••

8.4. Examples of Shell Scripts using Operators
8.4.1. And and Or Operators •••••••••••.•••••
8.4.2. Relational, Equality Operators
8.4.3. Shift Operators •••••
8.4.4. Math Operators
8.4.5. Other Operators

8.5. File Inquiry Operators
8.6. Options to the Csh Command
8.7. Comment Line:s in the Shell

Zilog

.........

6-9

7-1

7-1
7-1
7-3
7-4
7-5
7-5
7-6
7-6
7-7
7-8
7-8
7-9

7-10
7-11
7-12
7-12
7-13
7-14
7-15
7-15
7-16
7-17

8-1

8-1
8-1
8-3
8-4
8-4
8-6
8-7
8-8
8-9
8-9

8-10
8-12

v

C SHELL Zilog C SHELL

SECTION 9 C SHELL FILES

9.1. Start-up Files
9.1.1. -; .. cshrc
9 • 1. 2. - Io 1 og in

9.2. Other Related C Shell
9.2.1. -;.logout
9.2.2. -;oexrc ..••.
9.2.3. /bin/sh
9.2.4. /bin/csh
9.2.5. /dev/null
9.2.6. /etc/cshprofile
9.2.7. /etc/passwd
9.2.8. /tmp/sh*

Files

SECTION HJ THE ENVIRONMENT
10.1. Environment
10.2. Environment

Variables
variables Explained

10.2.1.
10.2.2.
10.2.3.
10.2.4.
10.2.5.
10.2.6.
10.2.7.
10.2.8.

EX IN IT
HOME
LOGNAME
PATH ••••.
SHELL
TERM
TERMC~P

TZ •••••

APPENDIX A GLOSSARY ••••• ft ••••••••••••••••••••••••••••

APPENDIX B C SHELL ERROR MESSAGES

vi

B .1.
B.2.

Error Messages
The Li st ..•..

Explained

Zilog

....................

9-1

9-1
9-2
9-4
9-6
9-6
9-7
9-7
9-7
9-8
9-8
9-8
9-8

10-1

10-1
10-2
10-2
10-3
10-3
10-4
10-4
10-4
10-5
10-5

A-1

B-1

B-1
B-8

vi

C SHELL

Table
2-1
2-2
2-3

3-1
3-2
3-3
3-4
3-5
3-6

4-1
4-2
4-3
4-4
4-5

5-1
5-2

6-1
6-2

Zilog C SHELL

List of Tables

Conditional Command Operator summary ••.••.•• 2-6
Command Structure Summary ••••••••••••••••••• 2-14
Input and Output Redirection Summary ••.••••• 2-15

Filename Substitution Character Summary .•.••
Metacharacter Summary •••••••••••••••••••••••
Quoting Devices ••••••••••••••.••••••••••••••
Quoting Device Summary ••••••••••••••••••••••
The Effect of Quoting Devices •••••••••••••••
List of Metacharacters that Must Be Escaped .

Common Forms of History Manipulation .•..•••.
Accessing Previous Commands •••.•••••••.•••.•
Accessing Previous Command Words ••••••••••••
Modifying Previous Command Words .•••.•••••••
Metacharacters in History Substitutions •••••

Built-in Command
Built-in Command

Built-in Command
Built-in Command

Summary
Summary

Summary
Summary

Group 1
Group 2

Group 3
Group 4

3-5
3-22
3-23
3-23
3-23
3-24

4-2
4-7

4-10
4-13
4-16

5-10
5-21

6-6
6-9

7-1 C Shell Predefined variables •••••••••••••••• 7-15
7-2 Variable Substitution Syntax ••••••••••.••••• 7-17
7-3 Metacharacters in Variable Substitution ••••• 7-18
7-4 Variable Substitution Modifier Table •••••••• 7-19

8-1 Relational Operators in C Shell Scripts ••••• 8-3
8-2 File Inquiry Operators •••••••••••••••••••••• 8-10
8-3 Options to the Csh Command •••••••••••••••••• 8-11
8-4 Shell Script Shell Indicators ••••••••••••••• 8-12

9-1 Special Files ••••••••••••••••••••••••••••••• 9-1

10-1 Environment Variables ····················~·· 10-2

vii Zilog vii

C SHELL Zilog C SHELL

viii Zilog viii

C SHELL Zilog C SHELL

List of Illustrations

Figure
5-1 Representation of the Fork Process •••••••••• 5-15

ix

6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9

8-1

A Basic Foreach Loop •••••••••••••••.••••••••
A Basic While Loop •••••••••.•••••....••.••••
An If Statement in a Foreach Loop •••••••••••
An Enhanced If Statement ••••••••••••••••••••
A Switch Statement in a Foreach Loop ••••••••
A Break Statement ••.••••••••.•••••••.•••••••
An Example of the Continue Statement ••••••••
An Example of the Goto Statement •••.•••••••.
An Example of the Shift Statement •••••••••••

Trut11 Table •••.•••••••••••••••••••••••••••••

6-9
6-10
6-11
6-12
6-14
6-16
6-18
6-20
6-21

8-5

9-1 A Sample -;.cshrc File ••.•••••••..•••••••••• 9-2
9-2 A Sample -;.login File ••••••••.••.••••••.••• 9-4
9-3 A Sample -;.logout File ••••••••••.••.••••••• 9-6
9-4 A Sample -;.exrc File •••••••••••••••••••••.. 9-7

Zilog ix

C SHELL Zilog C SHELL

SECTION 1
AN INTRODUCTION TO THE C SHELL

1.1. What is a Shell?

A shell is an interactive program that interprets and exe­
cutes commands. It is the software interface between com­
mands typed at the berminal, and the functions of the com­
puter.

The shell also determines the qualities of each operating
environment. The options and variables set for the shell
become the options and variables established for each com­
mand ..

Upon login, the operating system (ZEUS) initiates a C Shell
process for the user. This interactive process is the user's
login shell, it is the parent process for all subsequent
processes {known as child processes). The login shell is an
environment that defines the basic parameters of interaction
between the user and the operating system.

The login shell defines the home directory for the user, it
defines the path to any commands that may be used, the
EE_ompt given to the user to indicate that· the system is
ready for another command, the shell to be used, and the
type of terminal in use.

If no modifications are made to that environment, its param­
eters default to a limited set of qualities.

Each user can customize this environment to suit individual
taste, need, and/or application. The qualities of the shell
environment can be altered by establishing new shell vari­
ables, or by changing existing shell variables.

ZEUS supports two shell programs each with its own set of
commands and variables. The default shell program for ZEUS
is the C Shell (written by William Joy at the University of
California, Berkeley).

The second shell program is the Bourne .shell (also known as
"the shell" because it was the first). The Bourne Shell was
written by s. R. Bourne of Bell Laboratories. (see sh(l) and
The Bourne Shell in the Zeus Utilities Manual).

The c shell is moderately more powerful than the Bourne
Shell because of its enhanced command structure and its use

1-1 Zilog 1-1

C SHELL Zilog C SHELL

of' conventional C programming syntax. Either shell program
will serve as the login shell, and either program can be
called interactively from the terminal.

1.2. Conventions in this Document

Bold

Information in Bold is typed literally -- commands such
as ls are typed into the terminal just as they appear
on paper. In the following example, the command date is
typed exactly as it is shown:

date

Underlined

In the examples, underlined words are sample words only
not the literal word. They can or must be replaced

by words of the user's own choosing. In the following
example:

date > filename

the filename must be replaced by the name of a file
created by the user, or to which the user has access.

Outside of examples, words are underlined to illustrate
that they have special meaning in the ZEUS operating
system, but are not necessarily commands. For example,
the term pipe refers to both the vertical bar 11 I 11

character and the process of feeding the output of one
command into the input of the next command. However the
word pipe is not a command. The names of pre-defined C
she11--variables are also highlighted in underlining.

Unde.rlining is also used to highlight words in a bold
expression, as in a section header.

command(!)

1-2

A word followed by a single number in parentheses as in
ls(l) is a command, the word in bold is the command and
the number in parenthesis 11 (1) 11 refers to the docu­
mentation section in the ZEUS Reference Manual.

In this case, refer to Section 1 of the ZEUS Reference
Manual. The commands in the Reference Manual are
arranged alphabetically within each section.

Zilog 1-2

C SHELL Zilog C SHELL

quotes

Special characters are
quotes as in "?" to
text.

printed in bold and within
distinguish them from document

Examples:

The examples used in this document .are drawn from the
Zilog Systems Publications System 8000. In many cases
the file names, user names, and file system configura­
tion will be different from any other installation.

Each user may obtain different data from the examples,
depending upon the installation.

An example of a command takes the following format:

command opE~rator filename

It is indented from the body of the text and separated
from the text above and below by a blank line. In some
cases a simple example may occur within the body of the
text, e.g. to show the ls(l) command.

Variable Names

When variables are called, either at the terminal or in
a shell script, they are preceded bya dollar sign 11 $ 11

as in the command:

echo $PATH

when variables are explained in the text, they are
referred to without the dollar sign prefix. See echo(l)
and Section 10.

SYNOPSIS:

1-3

The synopsis line(s) demonstrates the syntax of a given
command illustrating where the ·options, flags, or keys
are placed (if any}, and where the filename is placed
(if any). 'I'he following example demonstrates a
"SYNOPSIS:" section:

SYNOPSIS:

date > filEmarne

ZilOg 1-3

C SHELL Zilog C SHELL

If more than one line appears, it means that the item
being explained is used more than one way.

Square brackets []
Within the SYNOPSIS line, square brackets indicate that
the material they enclose is optional, it can appear in
the command, but is not mandatory. In the example:

E!.cho [-n] string

the ... -n 11 flag is optional. It can appear, but can be
omitted. In the acutal command typed into the terminal,
only the options are typed, not the braces.

Ellipsis
Three~ dots in a row " ••• " indicates that thE~ preced­
ing element can be repeated any number of timE~s. In the
following example:

command {iteml,item2, ... }

the Edlipsis indicates that there can be any number of
items between the braces.

DEFAULT:

In the DEFAULT section, the value that exists for a
variable (unless another is specified) is shown.

ALSO SEE:

If reference is made to Section 3 -- Filename Substitu­
tion it refers to Section 3 of this document. The
"ALSO SEE:" section also refers to other documents in
the ZEUS Utilities Manual, and other manuals in the
ZEUS and System 8000 collection.

Capital LE!tters

1-4

Capital letters are used in proper names, and at the
beginning of new sentences. If a sentence begins with a
commamd name that command name will be capitalized even
thougrh all built in ZEUS commands must be typed in
lower case letters.

The names of environment variables such as PATH are
named in all capital letters by convention.

Zilog 1-4

C SHELL Zilog C SHELL

Split.Words

1-5

Some expressions are really two words, but must be
written (typed into the computer) as one word because
of the way the computer interprets blank spaces. In
such cases, the expression can be presented as two
words separated by a dot or an underbar (instead of a
space character) as in:-

command.l
or

READ ME

this conforms to the convention for naming files that
is popular with experienced ZEUS users.

Zilog 1-5

C SHELL Zilog C SHELL

'SECTION 2
TYPING COMMANDS TO THE C SHELL

Commands are typed into the computer in rasponse to a
"prompt".

2.1. The· ZEUS Prompt:

A prompt is a signal from the computer that it is ready to
accept user input. It: prompts· the user to type a command.

On the ZEUS system, the default user prompt is a percent
sign " % "

2.2. Command Syntax

Many commands in the ZEUS system consist of a single word
followed by a "RETURN" character. These are known as simple
commands, and are entered with the following syntax:

command

An example of a simple command is the date command, which is
entered as:

date

and produces results similar to:

Tue Nov 23 14:14:35 PST 1982
~- --- -- -- -- -- ~- ----

Most commands can be modified to supply more or better
information. Modification takes the form 0£ one or more
arguments in the form of options, flags, keys, or filenames.

Commands with arguments are typed into the terminal keyboard
with the following syntax:

command option flag key and/or filename

Each command determines its own syntactic requirements, i.e.
the author of the program writes the syntactic requirements
into the body of the program.

2-1 Zilog 2-1

C SHELL Zilog C SHELL

Some programs require that a minus sign " 11 begin an
option, flag, or key. The ls(l) program requires that
options b•egin with a minus sign. The 11 1 " option provides a
long listing of the files, it is typed as:

ls -1

Other pro9rams make the minus sign optional. The tar(l}
(tape archiver} program options don't use the initial minus
sign. The " t 11 option provides the table of contents for
the files in the tape archive, it is typed as:

tar t

Some programs, like the tar program require that an option,
flag or key be the second argument to the command; others,
like the ls program, make the arguments optional.

Multiple words in a command are separated by blanks {spaces
or tabs}, or semi-colons, with the first word indicating the
action and the remaining words serving as arguments as in:

ls -1

where the 11 -1 '" flag is an argument to the ls command
instructing the computer to provide a long list.

2.3. Si~ple Commands

SYNOPSIS:

command

A command is an instruction to the computer. A simple com­
mand consists of one or more characters typed into a com­
puter terminal at the "prompt". The command is terminated
with a "RETURN" character.

A command consists of at least one word that specifies an
action to be taken. For example:

ls

is the command requesting a list of the files and direc­
tories in the current working directory. See ls(l).

The ls command produces results in the following format:

2-2 Zilog 2-2

C SHELL

csh. en
csh.02

csh.03
csh.04

Zilog

csh .•05
csh.06

csh.07
csh.08

csh.9A
csh.9B

C SHELL

csh.9T
temp

each name refers to a file or a directory in the current
directory.

2.4. Compound Commands

SYNOPSIS:

command.l; command.2

Sequences of commands can be separated by a semi-colon, and
are then executed sequentially, as in:

ls: who : pwd: date

producing results in the format:

csh.01 csh.03 csh.05 csh.07
csh.02 csh.04 csh.06 csh.08
patty tty0 Nov 23 08:04
deck tty2 Nov 23 09:38
carol tty8 Nov 23 08:17
craig tty9 Nov 23 08:36
/z/deck/Util/New.csh
Tue Nov 23 14:14:35 PST 1982

See ls{l), who{l), pwd{l), and date{l).

2.5. Running a Conun.and in Background

SYNOPSIS:

command &

csh.9A
csh.9B

csh.9T
temp

Because some commands take several minutes to complete the
ZEUS system provides a mechanism for running several com­
mands at once by detaching the commands from their depen­
dency upon the terminal -- this is known as running the com­
mands detached or in background.

Control of the terminal is returned to the user while the
command continues to execute in another part df the com­
puter. A command runs in background when it is followed
with an ampersand {" & "T. Error diagnostics, unless other­
wise instructed, return to the standard error output device

the terminal. For example a command to compile a C

2-3 Zi~og 2-3

C SHELL Zilog C SHELL

program called test.£ takes the following form:

cc test.c &

(See cc(l) in the Zeus Reference Manual {ZRM) for more
information on the C compiler.)

Verification that the compile process is running comes from
the ps(l) command. The full exchange would take the follow­
ing form:

% cc test.c &
2999
% ps

PID TTY TIME
1309 2 0:19
299~} 2 0:00
300i 2 0:03

CMD
csh
cc
ps

The cc test.c & command starts a compile process. A process
identification number appears on the screen, followed
immediately by the next prompt. The ps command is entered
as soon as the prompt appears, even if the previous process
is still running and the current processes are displayed.

2.6. Running a Command in a Subshell

SYNOPSIS:

(command)

Commands in parentheses are always executed in a subshell.
In the following example, running the command in a subshell
prevents c~d from affecting the current shell.

Thus the command:

(cd: pwd)

prints thE~ name of the home directory, leaving thee current
working directory untouched, while the command:

2-4 Zilog 2-4

C SHELL Zilog C SHELL

cd ; pwd

changes the current working directory to the home directory
and then prints the name of that directory, leaving the cur­
sor in the home directory. This command structure is useful
as a temporary escape from the current working directory.

ALSO SEE:

cd(1)

2.1. Conditional Command Operators

SYNOPSIS:

command.! && command.2
command . 1 I I COnlinand . 2

An operator is a symbol that changes
works. In mathematical commands (like
on-line calculators}, the standard math
II

11
1

11 * 11 and 11
/

11 :Eor "add, Subtract,
respectively.

the way a command
bc(l}, and dc(l} the
operators are "+",
multiply and divide"

The following two operators are "logical" operators, the
logical "and" operator, (&&} and the logical "or" operator
<II}. These operators separate two commands on a single
line, and determinE~ whether one or the other, both or nei­
ther conunand is executed.

The determination is based on whether or not the first com­
mand executes successfully. If the first command executes
without an error it is said to have executed successfully,
and returns a status code of zero "0". If it executes unsuc­
cessfully it returns a non-zero exit status, usually a "l".

Unfortunately, the "'~" means 11 false" and the 11 l 11 means
"true" to the C shell, and to these conditional operators,
thus, the syntax of the operators seems somewhat reversed
when used on commands.

The following table demonstrates the results of these opera­
tors.

2-5 Zilog 2-5

C SHELL Zilog C SHELL

Table 2-1 Conditional Command Operator Summary

First Second
command
executes

operator command
executes

--=====:::::==---==========---::::::::::.:::::::::==-----------
yes
no

no
yes

In the command:

ls 11 date

11

"or"
"or"

&& "and"
&& "and"

= yes
= no

= yes
= no

the C shell executes both ls and date

In the command:

bogus.command I I fake.command

the C shell tries to execute bogus.command and failing, does
not attempt to execute fake.command.

In the command:

bogus.command && ls

the C Shell tries to execute bogus.command and failing, exe­
cutes ls.

Finally, in the command:

ls && bogus.command

the C shell executes the ls command,
not attempt to execute bogus.command.

and succeeding,
ALSO SEE:

Section 7 -- Shell variables -- the Status variable
Section 8~4.1 -- C Shell Scripts And and Or Operators

2.8. Command Substitution

SYNOPSIS:

'command'

2-6 Zilog

does

2-6

C SHELL Zilog C SHELL

A command inside back quotes will be executed and the output
of the command replaces the command itself.

For example, the corrmand:

echo "Today is '·date' 11

produces output similar to:

Today is Fri Dec 10 _!2:16:00 PST 1982

2.9. Input/Output Control

The ZEUS system has three channels of communication between
the user and the computer, one standard input channel and
two channels of output, the standard output and ,the error
output.

By default (unless otherwise specified) input comes into the
computer via the terminal keyboard. This is the standard
input. Output goes from the .computer to the terminal screen
and is the standard output. Any errors resulting from the
execution of a program produces an error message to the ter­
minal screen. This i.s the standard error.

There are circumstances in which input must come into a pro­
gram from some other sources (e.g. from a file). Likewise,
there may be a need to redirect the output and the error
messages.

Although the standard input, output and error channels
default to the keyboard and the terminal screen, they can be
changed using 'ifreate~r than (11 >") and ~ . than (11 < 11

) the
following sections demonstrate the redirection syntax.

2 .. 9. 1. Input RedirE~ction -- < :

SYNOPSIS:

command < com~list

The file com.list is opened and its contents are used as
input for the--command. As in:

wc < text.file

which uses text. file~ as the input for the word count command

2-7 Zilog 2-7

C SHELL Zilog C SHELL

wc(l). This produces results in the following format:

474 2055 12623

The first number is the number of lines, the second number
is the number of words, and the last number is the number of
characters in the file.

Another example is to create a file called com.file with
ex(l) editor commands, e.g. a command to remov~ll the
leading blank spaces from all the lines. The command:

ex test < com.file

invokes the ex editor on the file test, but instead of tak­
ing editor commands from the standard inI;>ut (the keyboard),
the commands are read from the file com.file.

ALSO SEE:

wc(l) ex(l) and The Ex_ Reference Manual in the ZEUS Utili­
ties Manual.

2.9.2. Input Within a Script -- <<:

SYNOPSIS:

command << label

A shell script is a file of commands that are executed one
at a timeJ:>Y""the shell, just as if they were typed into the
the terminal at the prompt. In most cases, commands within a
shell script draw input either from the terminail or from
other files, but in some cases it may be necessary to draw
input from the shell script itself. (See Section 8 -- The
Csh Command and C Shell Scripts)

The double less than symbol permits a shell script to take
data from within its own text (rather than relying on data
from exte~nal files).

This is most useful in the context of editor scripts; con­
sider the following shell script:

2-8 Zilog 2-8

C SHELL Zilqg C SHELL

I deblank -- remove blank lines
ex test << 'EOF'
g/A.$/d
w
q
'EQF.'

In the example, the line:

ex text << 'EOF'

means that the file test is edited with the ex editor, and
that the command input for ex comes from the body of the
shell script, rather than from some external source (like
another file).. The 11 < < • EOF • " notation means that the
input is taken "up to 'EOF'". Single quotes around " 'EOF' "
prevents any variables from from being expanded to the con­
tents they contain. (See Section 7 -- Shell Variables)

ALSO SEE:

ex(l) and The EX Reference Manual in the Zeus Utilities
Manual.

2.9.3. Output Redirection -- >

SYNOPSIS:

command > testl

The file testl is used as output. If the file does not
exist, it is created~ if the file exists, it is over­
written, and its previous contents are erased. The command:

ls -1 > test2

puts the output of the ls -1 command into a file named
test2.

NOTE

A file is always erased (if it exists) before the
new information is written into it.

The command

cat filel > file2

2-9 Zilog 2-9

C SWE·Vf,, Zilog C SHELL

erases any information in file2 before putting the contents
of filel into it.

NOTE

To prevent the accidental erasure of a file, the
noclobber variable can be set with the command:

set noclobber

ALSO SEE:

Section 2.9.6 "Overriding noclobber" fo~ examples, and Sec­
tion 7.1 for more details on Predefined C Shell variables
(noclobber) and cat(l).

2.9.4. Mlding to the End of A File -- >> :

SYNOPSIS:

command >> file

The double greater than sign construction (" >> ") adds the
output of command to the end of file instead of erasing file
first.

If file does not exist it is created automatically.

For example, if file! consists of 3 lines:

Now is the time
for all good people
to come to the aid of their party

and file2 consists of 1 line:

The quick brown fox jumps over the lazy dog

Then the command:

cat file! >> file2

produces a new file2 that contains 4 lines:

The quick brown fox jumps over the lazy dog
Now is the time
for all good people
to come to the aid of their party

Note that the contents of filel have been appended to the

2-10 Zilog 2-10

C SHELL Zilog C SHELL

end of f ile2.

2.9.5. Standard Error Redirection -- >&

SYNOPSIS:

command.>& file

The greater than sign followed by an ampersand (" >& ")
routes error messages into. the ,specified file along with the
standard output.

Given the command:

cat bogus.file > ~.file

if bogus.file does not exist,, an error returns:

cat: cannot open ·bogus.file

using the greater than sign, ampersand construction, the
command: --

cat bogus.file >& new.file

redirects any error 1nessages to the file ~·file, and can
be examined as any other text file.

2.9.6. Overriding Noclobber -- >!:

SYNOPSIS:

command >! file

If file exists and the C shell variable noclobber is set, a
command using the simple form of output redirection (" > ")
fails and an error message results. In the command:

cat f ilel > f ile2

if !_i le2 ex is ts, the; .command produqes the error message:

file2: File exists.

The noclobber variable inhibits accidental destruction of
files. In this case, the greater than sign, combined with
the exclamation point (" >! ") form of redirection can be

2-11 Zilog 2-11

C SHELL Zilog· C SHELL

used to suppress this check.

The command:

cat file! >1 file2

succeeds,
and the
message.

file2 is overwritten by file! even if file2 exists
noclobber is set. The command produces no error

2.9.7. Output, Error, and Noclobber -- >&I :

SYNOPSIS:

command >&I file

This form combines the ampersand (11 & 11
) and exclamation

point (" 1 ") constructions mentioned above, directing error
output to the file, and overriding the noclobber variable if
it is set.

2.9.8. AJPpending and Standard Error -- >>& :

SYNOPSIS:

command >>& file

This form combines the "Adding to the End of a File" (double
greater than construction) with the "Redirecting the Stan­
dard Error" (ampersand), appending the output of conunand and
any error messages to the end of file.

2.9.9. ~ppending and Noclobber - >>I :

SYNOPSIS:

command >>1 file

This form combines the "Adding to the End of a File" (double
greater than construction) with the "Overriding the
Noclobber variable" (exclamation point), appending the out­
put of command to the end of file without regard to the
noclobber variable (if it is set).~~

2-12 Zilog 2-12

C SHELL Zilog C SHELL

2 . 9. HJ. Appending, Noc lobber, Error -- > > & I :

SYNOPSIS:

command >>&! file

Appends the output at the end of file. If the variable
noclobber is set, it is ignored, and the standard error is
also appended.

2.HJ. Pipes

SYNOPSIS:

command I command

A sequence of simple commands separated by a vertical bar
11 I " also known as a pipe forms a pipeline. The output of
each command in a pipeline becomes the input of the next.
This example:

who I grep chuck

takes the output of the who(l) command and pipes it through
the command grep(l) to extract the line with the word chuck
if that line exists.

This command is equivalant to redirecting the output of the
who command into a temporary file and then running the com­
mand grep chuck on that temporary file and removing the tem­
porary file as in the sequence:

who > temp
grep chuck temp
rm temp

The command:

who

produces a list in the following format:

karen tty0 Nov 23 08:04
chuck tty2 Nov 23 09:38
mike tty6 Nov 23 14:50
carol tty8 Nov 23 08:17
george tty9 Nov 23 08:36

2-13 Zilog 2-13

C SHELL Zilog C SHELL

The output is redirected to a file with the conunand:

who > temp

The line with the word chuck is extracted with the command:

grep chuck temp

to produce the output:

chuck Nov 23 09:38

and the temporary file is removed with the command:

All of this can be accomplished with the pipe mechanism as
in the command:

who I grep chuck

which produces the desired output:

chuck Nov 23 09:38

The following tables show summaries of the command structure
and I/O redirection characters.

2-14

Table 2-2

command
command flag
comma.nd filename
command; command
command &
(command)
'command'

Command Structure Summary

Simple command
Command with an option argrument
Command with a filename argument
Compound command
Running a command in background
Running a command in a subshell
Command substitution

Zilog 2-14

C SHELL Zilog C SHELL

Table 2-3 Input and Output Redirection Summary

2-15

Symbol

<
<<
>
>&
>I
>&!
>>
>>&
>>!
>>&!
I

Meaning

Take input from
Take input up to
Redirect output
Redirect output and error
Redirect output -- override noclobber if set
Redirect output and error; override noclobber
Append output
Append output and error
Append output and override no clobber
Append output and error; override noclobber
Output from first command is input for second

Zilog 2-15

C SHELL Zilog C SHELL

SECTION 3
FILENAME SUBSTITUTION

AN INTRODUCTION TO METACHARACTERS

3.1. Characters for Filenames

The C shell provides a method of shorthand communication.
In the case of filenames, the shell provides a number of
special characters (known as metacharacters, magic charac­
ters, or wild-card characters) that will expand to the names
or-files and dTreeto:ries according to specific rules.

The process is also referred to as pattern matching and
filename expansion. When a metacharacter is used, names of
the files and directories are scanned to see if the pattern
set by the metacharacter is matched by any of those file
and/or directory names.

The true qualities of a metacharacter are revealed with the
echo command. The command:

echo metacharacter

will return the pattern the metacharacter stands for.

·That pattern matching takes place under the following rules:

Asterisk -- *

3-1

SYNOPSIS:

command *

The asterisk is a very powerful
shorthand for "any pattern" in
names. For example, the command:

ls *

character. It is
file and directory

lists all files and directories. The command:

ls a*

lists all files and directories that begin with the
letter "a". Lastly, the command:

ls /~/deck/~~*/*

Zilog 3-1

C SHELL Zilog C SHELL

lists all the files and directories under the directory
or directories in /z/deck that begin with the letter
"U".

Question Mark ?

SYNOPSIS:

command ?

The question mark is shell shorthand for "any single
character". Thus the command:

ls ???

lists all the files and directories with three (and
only three) character names. For example, the files:

abc dog ~

match the string "???r' while the following files do
not:

filel ii make.£ test.£

The characters can be letters, numbers, or
legitimate (non-metacharacter) filename
Similarly, the command: ·

ls csh.??

any other
eharacter.

will produce a list of the files and directories that
start with "csh. 11 and end with any two characters. For
example, the files:

csh.01 csh.02 csh.03

match, while the files:

csh.l csh.test csh.A

do not.

Pattern/range [A-Z]

SYNOPSIS:

command [beginning of range-end of range]

Square brackets define a range of characters that match

3-2 Zilog 3-2

C SHELL Zi1og C SHELL

any single character falling within that range (alpha­
betical or numeric).

ls csh.0[1-9] -- - - -
lists any file starting with "csh.0" and ending with a
number 1 through 9. e.g. csh.01 csh.02 csh.03 csh.04
csh.05 csh.06 csh.07 csh.08 csh.09. Thecommand:. ~- --

ls csh. [.!.-~.J[.!_-9]

will list all the files from 11 csh.ll" to "csh.39".
Other characters can also be specified in the range -­
the range proceeds along the ASCII numbering scheme.
With the exception of special characters, the ASCII
ordering sequence runs from 0-9, A-Z, and a-z. Thus
the full range of alpha-numeric characters (and some
non-alpha-numeric characters) is covered with the
expression 0-z .

. ALSO SEE:

ascii(7)

Abbreviation

3-3

SYNOPSIS:

command {item . .!_,item.~, ••• }

The braces refier to a selection of characters or
strings -- any one of which may or may not match a file
or directory. The command:

ls file.a{b,c,d}e

lists the files:

file.abe file.ace file.ade

if they exist, similarly, the command:

ls /usr/man/manl/{csh,ls,dog}.l

matches the files:

/usr/man/manl/csh.l
/usr/man/manl/ls.l
/usr/man/manl/dog.l

Zilog 3-3

C SHELL Zilog C SHELL

The selection of characters or strings need not be in a
range, or in any particular order. They need not be the
same length. but they must be separated by commas with
no spaces between them.

Tilde -- ...

SYNOPSIS:

command -
command -user.name

The tilde serves as an abbreviation and refers to the
user's home directory reading the name of the directory
from the HOME variable.

The command:

ls -1 -

expands to this user's home directory:

ls -1 /z/deck

When followed by a name, the shell searches for a user
with that name and substitutes their home directory;
thus the command

ls -1 -carol

expands to

ls -1 /z/carol

If the tilde is followed by a name, other than a
name in the password file, or a slant "/", it is taken
as a literal tilde by the shell. For example, in the
command:

cat -filename

the shell looks for a file with the exact name
"-filename".

A summary of the filename expansion characters appears .in
the table below.

ALSO SEE:

Section 10.1 -- Environment Variables.

3-4 Zilog 3-4

C SHELL Zilog C SHELL

Table 3-1

*
?
[A-Z]

!~'~'_g)

Filename Substitution Character Summary

Any string
Any single character
Any character in the range A to Z
Any element ~rom the set A, B, or C
Home ilirectory or user name. ·

J.2. The Ful1 Metacharacter Set

Pilename expansion is: one ex~mple of the way the shell uses
special characters. Each of the following characters has
some special meaning to the shell and/or the ZEUS operating
system.

The list below describes these characters in their order of
appearance in the ASCII ordering scheme, and their special
meaning in the C Shell, the History Function and the operat­
ing system.

Space •

SYNOPSIS:

command space arguments
command tab arguments

The space character delimits words in commands. When a
compound command is typed, the Shell uses blank space
-- the space or tab characters -- to distinguish the
various components. This process of separating a com­
mand into specific words is known as "parsing" the com­
mand. The command:

ls -1 /tmp /z /usr/spool

is understood by the Shell because the component parts
are broken into recognizable bits by the delimiting
spaces.

Exclamation point • 1

SYNOPSIS:

!character, number or string

The exclamation point is used in the Shell to initiate

3-5 Zilog 3-5

C SHELL Zilog C SHELL

a call to the shell's history mechanism (See Section
4). Previously typed commands are numbered from one,
saved in a history list and can be re-invoked using
this device. The command:

lls

searches back through the history list to find and exe­
cute the most recent command that begins with the
string ls. The command:

13

searches back through the history list to find and exe­
cute command number 11 3 11

• The exclamation point is also
used in a variety of programs to call the shE~ll.

ALSO SEE:

Section 4 -- The History Function

Double quote • ti I

SYNOPSIS:

command "string"

The double quotes character (") is used on either side
of an expression to inhibit the expansion of various
other special characters. The command:

echo *

expands the asterisk metacharacter 11 * 11 to all file and
directory names in the current directory, while the
command:

echo 11 * 11

merely echos the asterisk.

ALSO SEE:

Section 3.3
Expansion.

Quoting Preventing Metacharacter

Pound Sign • # •

SYNOPSIS:

comment

3-6 Zilog 3-6

C SHELL Zilog C SHELL

The Pound Sign i.s used as the first character in a
shell script to indicate that the C Shell is to be used
to execute the s:cript. The pound sign is also used
inside the body of a shell script to begin a comment -­
the pound sign tells the C shell to ignore the rest of
the line. Inside the body of a shell script, the line:

t this is a comment line

will be ignored by the shell.

ALSO SEE:

Section 8 Shell Scripts

Dollar Sign • $ '

3-7

SYNOPSIS:

command $variable
command 1r

The Dollar Sign has special meaning in a variety of
circumstances. When used with a variable name, as in
the command

echo $prompt

it refers to the shell variable "prompt". When used
with the history mechanism, as in the command:

1$

it refers to the last element of the last command. If
the last command is:

the command:

cat 1$

produces the results as if the command had been:

cat /~/joe/~ile . .!_

ALSO SEE:

Section 7
Section 4

Shell Variables
The History Function

Zilog 3-7

C SHELL Zilog C SHELL

Ampersand. ' & '

SYNOPSIS:

command &

!N:s/x/&/

command && command

In the first case, the Ampersand, used at the! end of a
command runs the command in background -- control of
the terminal is returned to the terminal even if the
command is not completed. The command:

cc test.c &

begins a compile process and immediately returns a
prompt. At that point another command can be issued,
even while the compile process is still running.

In the second case the Ampersand also stands for "the
string just substituted'' in a history substitution.

In the third case, the ampersand is used as the logical
"and" operator in conditional commands.

ALSO SEE:

Section 2.5 -- Running a Command in Background
See Section 4 -- The History Function
See Section 2.7 -- Conditional Command Operators

Single quote "'"

3-8

SYNOPSIS:

command •string'

The single quote is another quoting device used by the
shell to inhibit or prevent expansion of special char­
acters. The command:

echo $prompt

produces:

%

while using double quotes, as in the command:

Zilog 3-8

C SHELL Zilog C SHELL

echo "$prompt"

also produces:.

%

To prevent the~ string "$prompt" from being expanded by
the shell, single quotes must be used. The command:

echo '$prompt'

produces:

$prompt

ALSO SEE:

Section 3.3
Expansion.

Quoting Preventing Metacharacter

Left Parenthesis • (•

3-9

SYNOPSIS:

(command)
foreach variable (list)

In the first C'ase, a comniand issued within parentheses
is always ex:ecuted in a subshell. It is rather like a
temoporary escape into another working environment, for
example, if the present working directory is /bnp and
the following command is issued:

(cd : pwd)

the C Shell creates a new C Shell and executes the com­
mand within that new shell. The subshell dies and con­
trol returns to the parent shell from which the command
was issued. The present working directory remains /tmp.
This is significantly different from the command:

cd : pwd

which causes the present working directory to change to
the home directory.

In the second case, parenthesis are used to delimit a
word list in shell loops, as in the statement:

Zilog 3-9

C SHELL Zilog C SHELL

foreach i (1 2 3 4)

The parentheses indicate to the shell that the list "l
2 3 4" is to be used as the loop control mechanism.
This also applies to the if, while, and switch state­
ments, covered later.

ALSO SEE:

Section 2.6 -- Running a Command in a Subshell
Section 6 -- The c Shell Programming Language Structure

Right Parenthesis •) •

SYNOPSIS:

(command)
foreach variable (list)
while (expression -)---

The right parenthesis ends a loop control mechanism, or
a subshell command.

Asterisk • * '
SYNOPSIS:

command *
The Asterisk is a filename expansion character, it
matches any pattern.

ALSO SEE:

Section 3.1 -- Characters for Filenames

Plus Sign ' + '

3-10

SYNOPSIS:

number + number
variable++

In the on-line calculators (dc(l) and bc(l)) and in the
math functions of C Shell scripts, the plus sign is
used in the addition function. In the body of a shell
script, the line:

@ X={ 6 + 6)

gives the variable "X" the value of 12. The plus sign

Zilog 3-10

C SHELL Zilog C SHELL

is also used to increment variables, as in the state­
ment:

@ i++

which increments the value of i by 1 each time the
statement is executed.

In the following shell script, the variable i is incre­
mented within a loop:

the namie of this file is "test. file"
@ i=l
while (I)

end

echo $i
@ i++

It is executed with the command:

csh test.file

and it producc:?s the following output:

1
2
3
4
5
6
7

until an interrupt (the OELETE key) is hit.

ALSO SEE:

Section 5.3.9 -- The "At Sign" @

Comma ' , •

3-11

SYNOPSIS:

command {2L teml, i tem2}

The comma is used to delimit elements within braces. In
the command:

Zilog 3-11

C SHELL Zilog C SHELL

the commas are necessary dividers between the digits 3,
5, and 7.

ALSO SEE:

bc(l), dc(l)
Section 7 -- Shell Variables.

Minus • - •

3-12

SYNOPSIS:

number - number
@variable--
command -Tflag, option, or key)

Like the plus sign, the minus sign is used as the sub­
traction operator within shell scripts. It is also used
as a variable decrementer. The following shel 1 iscript:

the name of this file is test.file.2
@ i=lS
while (1)

end

echo $i
@ i--

The shell script is executed with the csh command as in
the example above, and it produces the following out­
put:

15
14
13
12
11
10
9

until an interrupt {the DELETE key) is encountered.

Of special importance to the shell, the minus sign is
used to initialize flags, options, or keys for many
Shell commands as in:

ls -1

ALSO SEE:

Zilog 3-12

C SHELL Zilog C SHELL

Dot '

Section 5.3.9 -- The "At Sign" @
Section 2 -- Typing Commands to the C Shell

SYNOPSIS:

command •
• filename

Though not specifically a function of the C Shell, the
period (always referred to as "dot") is used by the
operating system to mark the current working directory.
The command to copy (cp(l)) a file to the current
directory takes the following syntax:

cp /tmp/ka.ren •

This command is shorthand for the command

cp /tmp/kairen (current working directory)

When used as the first character in a filename, the dot
makes the filemame transparent to a standard ls command
("dot" files will show up with the "-a" option, as in
"ls -a") .

In the second case, there are several "dot files" that
are of special importance to the shell. The .login file
is read by the Shell at login, the .cshrc file is read
each time a new C Shell is invoked (forked), and the
.exrc file is read by the ex editor to establish basic
opti.ons, etc.

Filenames that begin with a dot are not listed with the
standard ls command, but are listed with the -a (all) option
as in the command ls -a.

ALSO SEE:

Section 9 C Shell Files

Dot-dot '

SYNOPSIS:

command

Like "dot", "dot-dot" is used by the operating system
to mark a location in the file system, specifically,
the parent directory to the present working directory.

3-13 Zilog 3-13

C SHELL Zilog C SHELL

If the present working directory is " /z/deck
command:

cd ••

" the

changes the current working directory to " /z ". Both
dot "." and dot-dot " " appear as directory names with
the command " ls -a "

ALSO SEE:

Section 9 -- C Shell files.

Slant • / '

SYNOPSIS:

command /path

The forward slash character, referred to as "slant" is
used as a path delimiter to locate files. In the path,

/usr/spool/mail/user.name

the slants separate directory and filenames.

If the first character in a pathname to a file is a
slant, the shell starts from the root of the file sys­
tem (the directory named "/") to locate the file. For
example, if the present working directory is /tmp, the
command:

ls -1 /~/paula/temp

will locate only one file with that exact path, while
the command:

ls -1 ~/paula/temp

will look for a file named /tmp/z/paula/temp. If the
first character in a path name is not a slant, the
shell starts from the current working directory to
match the file.

Colon • : '

SYNOPSIS:

!identifier:modifier

3-14 Zilog 3-14

C SHELL Zilog C SHELL

In combination with the history mechanism, the colon is
used to modify previous commands. The command:

will repeat command number 1, substituting the word
date for the word who.

ALSO SEE:

Section 4 The History Function

Semi-colon ' ;

SYNOPSIS:

command; command

The semi colon is a command separator. The command:

ls;who;pwd;date

can be typed on a single line and parsed into its indi­
vidual parts by the shell.

Less Than • < •

SYNOPSIS:

command < file
if (variable < variable)

In the first case, the "l,ess than" sign is used to
redirect input from file into the command.

In the second case, math operations use this
as the relational operator "less than",
expression:

if ($a < $b) then

ALSO SEE:

character
as in the

Section 2.9.1 -- Input Redirection and 2.9.3 -- Output
Redirection

Equals ' = '

3-15 Zilog 3-15

C SHELL Zilog C SHELL

SYNOPSIS:

set variable=value
if (variable == variable) then

Shell variables are established with the set command
using the syntax shown in the first case.

In the second case, math operations within shell
scripts use the double "equals" character means "equal
to" as in the expression:

if $a == $b) then

ALSO SEE:

Section 7 -- Shell variables

Greater Than ' > '

SYNOPSIS:

command > file
if (varia~> variable) then

In the first case the "greater than"
redirects the output of command to file.

character

In the second case, as a math operator within a shell
script, this character means "greater than" as in the
line:

if $a > $b) then

ALSO SEE:

Section 2.9.l -- Input Redirection and 2.9.3 -- Output
Redirection
Section 7 -- Shell variables

Question Mark • ? •

SYNOPSIS:

3-16 Zilog 3-16

C SHELL Zilog C SHELL

In the first case, the question mark is used as a
filename substitution character, it matches any single
character in a filename. In the example above, the com­
mand will affect filenames with a single character.--

The question mark is also used to delimit strings in
the history mechanism. The command:

!?string?

extracts the most recent command with string in it.

ALSO SEE:

Section 3.1 -- Characters for Filenames
Section 4 -- The History Function.

At Sign ' @ '

SYNOPSIS:

@ variable=number

This character sets variables with numeric values
rather than string values, such that math operations
can be performed on them. The command:

@ x= (6 + 6)

sets the variable "x" to the number 12, while the com­
mand

set x=(6 + 6)

sets x to the character string "6+6".

A space must separate the at sign-from the rest of the vari­
able assignment.

ALSO SEE:

Section 5.3.9 The "At Sign" @

Left Bracket • ['

3-17

SYNOPSIS:

command [range]
$var1ableTSUb5cript]

Zilog 3-17

C SHELL Zilog C SHELL

command [range]
$variable[subscript]

The left and right brackets are used to delimit a range
of characters used for pattern matching in filename
expansions.

They are also used to subscript a variable -- to iso­
late a component of a variable with multiple elements.'

If the variable "X" is set to the set of characters " a
b c d e " with the command:

set X=(a b c d e)

the third element of the set, "£", is addressed with
the command:

echo $X(3]

ALSO SEE:

Section 3.1
Section 7.4

Characters for Filenames
User-defined Variable Substitutions

Right Bracket • J •

SYNOPSIS:

command [range]
$variable[subscript]

The right bracket is used to close a range value or a
subscript value.

ALSO SEE:

Section 3.1
Section 7.4

Characters for Filenames
User-defined variable Substitutions

Backslash • \ •

3-18

SYNOPSIS:

command \metacharacter

The backslash character escapes the magic qualities of
the special characters in this section. The CQmmand:

Zilog 3-18

C SHELL Zilog C SHELL

translation.

*

ALSO SEE:

Section 3.3
Expansion.

Quoting Preventing Metacharacter

Up Arrow ' A •

SYNOPSIS:

lidentifier:A
"'string! Asi:ring2""

The up arrow (sometimes referred to as a "caret" or a
"hat") is used by the History function and is shorthand
for "the first element". The command:

1 5: A

refers to argument number 1 in the 5th command.

In the second case, the up arrow is also a substitution
device in the history mechanism. Given a command:

ls -1 /z/sisan

the next command:

A• A A

1 u

produces the correct command:

ls -1 /z/susan

This mechanism is much like the ":s" substitution
mechanism in the history function.

ALSO SEE:

Section 4 The History Function

Back quotes ' ' '

SYNOPSIS:

command 'command'

3-19 Zilog 3-19

C SHELL Zilog C SHELL

SYNOPSIS:

command 'command'

Commands placed inside back quotes are executed and the
output of the command replaces the statement in back
quotes. For example, the command:

echo 'date'

produces

Wed Dec 8 15:01:48 PST 1982

ALSO SEE:

Section 2.8 Command Substitution

Left Braces ' { '

3-20

SYNOPSIS:

command {strin 1,string2}
command $ variable}word

The left and right braces delimit abbreviations in
filename expansion and insulates variables when used in
juxtaposition to other words.

If the variable "X" is set to the number "4" the fol­
lowing command:

echo ${X}9ers

results in:

49ers

as opposed to the command:

echo $X9ers

which results in the error:

X9ers: Undefined variable.

The braces prevent the surrounding text from affecting
the "X" variable.

Zilog 3-20

C SHELL Zi log C SHELL

ALSO SEE:

Section 3.1 -- Characters for Filenames
Section 7 -- Shell variables

vertical Bar (pipe) • I '
SYNOPSIS:

command I command
command II command

The single vertical bar acts as :a pipeline, connecting
the output of the command on the left side to the input
of the command on the right side.

In the second case, the double bar mechanism is used as
the logical "or" command operator.

ALSO SEE:

Section 2.10 -- Pipes
Section 2.7 -- Conditional Command Operators

Tilde • - •

SYNOPSIS:

command -
command -user.name

The tilde is a filename expansion character. It expands
to the home directory.

The following table summaries·c shell metacharacters.

ALSO SEE:

Section 3.1 -- Characters for rilenames

3-21 Zilog 3-21

C SHELL

3-22

Char:

space
1
II

$
%
&
&
&&
(
(
)
)

*
+
++
•

I . . .
I

<
=
>
?
@
[
]
\
A

'
'
{
}
I
II

Zilog

Table 3-2 Metacharacter Summary

Meaning:

Delimits words
Accesses history
Quoting mechanism
Comment line
Last element
String isolation
Background command
Pattern substitution
Logical "and" operator
Begins string
Begin subshell
Ends string
End subshell
All characters
Addition
Variable incrementer
Range delimiter
Flag
Subtraction
Variable decrementer
Current Directory
"dot" files
Path delimiter
History modifier
Command delimiter
Input redirect
Equals
Output Redirect
Any single character
Math operations
Begins range
Ends range
Escapes metacharacters
Fir.st argument
Quoting device
Command Substitution
Begins abbreviations
Ends abbreviations
Pipe mechanism
Logical "or" operator
Home

Zilog

Context:

Commands
History
Commands
Shell scripts
History
History
Prompt
History
Commands
Command loops
Commands
Command loops
Commands
Filenames
Shell scripts
Shell scripts
Commands
Commands
Shell scripts
Commands
Filenames
Filenames
Filenames
History
Commands
Commands
Shell scriptE1
Commands
Filenames
Shell scripts1
Filenames
Filenames
Commands
History
Commands
Command
Filenames
Filenames
Commands
Commands
Filenames

C SHELL

3-22

C SHELL Zilog C SHELL

3.3o Quoting -- Preventing Metacharacter Expansion

There are situations in which metacharacters should not be
expanded. For example, a shell script that includes both an
editor command with dollar sign 11 $ 11 and a variable name with
a dollar sign.

In these cases, the dollar sign in the editor command must
be quoted so that its significance is taken literally by the
shell, not expanded.

There are 4 quoting devices available on the ZEUS system as
the following table illustrates:

The backslash
Double quotes
Right quote

Table 3-3

The noglob option

Quoting Devices

\
II

set noglob

The following rules apply to quoting devices:

Table :3-4 Quoting Device Summary

Quotes Quotes
Character: Symbol: Variables: Filenames:

--=========== ---------- ========== ----------
The backslash \ yes yes
Double quotes II no yes
Right quote yes yes
Noglob n/a no yes

The following table shows the effect of the available quot­
ing devices.

Table 3-5 The Effect of Quoting Devices

Command: \ II noglob
-- ====:.::==== =·:=·= =·========================= ===== =:=::: ==== ----

echo * * * * *
echo $HOME $HOME /z/deck $HOME /z/deck

3-·23 Zilog 3-23

C SHELL Zilog C SHELL

The following table shows which characters must be escaped
when used in commands if their meaning is to be taken
literally. Unescaped, they are used as command opera.tors, or
expanded to file and directory names:

3-24

Table 3-6 List of Metacharacters that Must Be Escaped

ampersand
asterisk
backslash
dollar sign
exclamation point
greater than sign
left brace
left bracket
left parenthesis
single quote mark
less than sign
question mark
quote mark
right brace
right bracket.
right parenthesis
back quote
semi-colon
tilde
up arrow
vertical bar (pipe)

&

*
\
$
I
>
{
[
(
'
<
? ..
}
]
)
I

. , -
A

Zilog 3-24

C SHELL Zilog C SHELL

SECTION 4
THE HISTORY FUNCTION

4.1. Command History

Commands typed into the terminal are numbered sequentially
from 1 and are saved in memory on a history list. The size
of the history list is controlled by the history variable.
See 7.1.4 -- history.

the command:

set history=l5

which can be entered at the prompt or entered in the .cshrc
or .. login file will keep a list of the la.st 15 commands.

No commands are stored if the history variable is unset. The
history variable is unset by default.

The command:

history

displays the current history list in the following format:

5 vi temp
6 ls
7 mor 1e temp
8 history
9 cat csh.01
10 cat csh.01 > temp.2
11 more temp.2
12 who
13 vi temp.2
14 echo $prompt
15 who > temp.3
16 cat temp.3
17 ls -la
18 vi temp.3
19 history

Note that the list contains the last 15 commands. When the
number of commands on the 1 ist exce;eds 15, the oldest com­
mand drops (irretrievably) off the end of the list. In
other words, if the history variable is set to 15, command
number 16 pushes command number 1 off the list.

4-1 Zilog 4-1

C SHELL Zilog C SHELL

Commands from the history list can be recalled and manipu­
lated at the prompt. The exclamation point 11 1 11 is used to
initiate a call to the history function.

4.2. Conunon Forms of Use for the History Function

Table 4-1 below demonstrates the 7 most common uses of the
history function. Since these commands fall into different
categories, the explanation of each form is repeated in sub­
sequent sections.

Table 4-1 Common Forms of History Manipulation

Syntax:

11
In
!string
1$
l*
A A A x y
ll:n

Explanation:

Repeat the last command
Repeat command number n

Example:

1 1
16

Repeat command starting with string
Last argument of previous command

!ls
ls 1 $
ls 1 *

"'wrong""right""
All arguments except #0
Substitute y for x
Argument number n ls 115:2

Double exclamation points -- 11

4-2

SYNOPSIS:

11

The double exclamation point means "repeat the last
command again". The last command (from the list above)
is history, the command 11 produces the following
exchange:

Zilog 4-2

C SHELL Zilog C SHELL

% 1 1
history

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

ls
more temp
history
cat csh.01
cat csh. en > temp. 2
more temp.2
who
vi temp.2
echo $prompt
who > temp.3
cat temp.3
ls -la ·
vi temp.3
history
history

Exclamation point: number -- In

SYNOPSIS:

In

An exclamation point and some number means "repeat com­
mand number". The command:

16

repeats command number 6 from the history list. In this
case (from the above list) the c'ornmand ls.

Exclamation point; string -- !string

4-3

SYNOPSIS:

I string

An exclamation point and a string means "repeat the
command that biegins with string". The command:

Iv

will search out the most recent command beginning with
the letter "v''.. In this case, the command is:

vi temp.3

Zilog 4-3

C SHELL Zilog C SHELL

Exclamation point: Dollar sign -- 1$

SYNOPSIS:

command 1$

In addition to full command lines, portions of thos1e lines,
the individual words (arguments to the command) can be mani­
pulated.

The exclamation point, dollar sign combination refe!r to the
last argument of the previous command, thus if a command:

the next command:

cat 1$

produces the command:

cat /~/hank/temp

Exclamation point: Asterisk -- 1*

SYNOPSIS:

command 1*

The exclamation point, asterisk combination mE~ans "the
second argument to the last argument", thus given the
command:

ls /~/joe/work /~/zubes/art

the command:

cat 1*

produces the command:

Double up-arrows

SYNOPSIS:

4-4 Zilog 4-4

C SHELL Zilog C SHELL

The up-arrow works as a string substitution device for
previous commands. Given the erroneous command:

cat /~/curl/letter

the command:

Acurl Acarol '"

produces the command:

cat /~/carol/letter

The trailing up·-arrow can be omitted if the last char­
acter of the string is a RETURN.

Double exclamation point: number -- ll:n

SYNOPSIS:

[command] l:identifier:n

The call to the history function {an exclamation point
followed by the identifier associated with the desired
command}, followed by a colon and a number is a call to
the numbered argument of that command. For example,
given the command:

ls /z wc

which lists all the files and directories in the direc­
tory /z and pipes the results through the word count
{wc{l}} command. The subsequent command:

cd 11:1

produces the command:

cd /z

4.3. Accessing Previous Conunands

Saved commands (events) from the history list can be called
up and executed aqain with a variety of commands, all of
which begin with the exclamation point.

Commands, or events are recorded in order by their event
number. Each event can be tracked by making the event number
a part of the EE_Ompt. This is done by placing an

4-5 Zilog 4-5

C SHELL Zilog C SHELL

exclamation point (which must be escaped) "\!" in the prompt
string.

Adding the line:

set prompt="%\! 11

to the -;.cshrc or -/.login file produces the following
prompt for the first command:

%1

The number will increment by·one for each command.

II repeats the immediately previous command. In the case
below, the last command (command number 5) is history.

In is short for "repeat command number .!!"

For example, if the history list is:

1 ls
2 who
3 pwd
4 date
5 history

The pwd(l) command can be executed again by typing the
command:

13

1-n means execute the command n commands back from the
current command.

pwd (the third command back from the current command)
can also be executed with the command:

1-3

I string

4-6

means "execute the most recent command with the prefix
string."

The history function will search back through the his­
tory list and look for the most recent occurrence of a
command beginning with the letter (or string of

Zilog 4-6

C SHELL Zilog C SHELL

letters) in stri~. The command

Ip

will also produce the pwd command from the history list
example shown above.

!?string?

will match a corrunand with string in an event argument;
trailing 11 ? 11 can be omitted if nothing follows

l?wd?

will also produce the pwd from the sample history list.

Table 4-2 Accessing Previous Commands

Syntax

1 1
ln
1-n

!string

!?string?

Explanation

Repeat the last command
Repeat command number n
Repeat the. command n
commands back
Repeat the command starting
with the string string
Repeat the command containing
the string string

Example

1 !
! 3

1-4

lp

!?wd?

4.4. Modifying Previous Conunands

Portions of previous commands can be isolated and manipu­
lated at the prompt. It is possible to access both an indi­
vidual command, and individual arguments to that command.

Arguments within each event are numbered sequentially from
zero and can be selected from an event by the sequence "ln:"
followed by one of the argument designators listed in Table
4-3.

For example, given command number 1 as:

%1 ls: who: pwd; date

4-7 Zilog 4-7

C SHELL Zilog C SHELL

The arguments are numbered as follows:

Argument: 0 1 2 3 4 5 6
Word ls ; who . pwd . date , ,

ls is the zero-th argument,
semi-colon is the ---n-rst argument,
who is the second argument,
semi-colon is the third argument,
pwd is the fourth argument,
semi-colon is the fifth argument,
date is the sixth argument.

The following examples demonstrate the use of the history
mechanism to access arguments from within that command.

! l:n refers to the nth argument from command numbe·r 1. The
command:

!1:1

produces and tries to execute the first command argu­
ment (in this case the semi-colon):

. ,

!l:A (the up arrow)
refers to the first argument in command numbe·r 1. The
command:

!l:A

Produces and tries to execute the first semi-colon of
the command string:

!1:$ refers to the last argument of command number 1. The
command:

!1:$

produces and executes

date

4-8 Zilog 4-8

C SHELL Zilog C SHELL

ll:n-m

11:-n

is a range of arguments fr:om number n to number m. The
command:

!1:2-4

produces and executes the second, third, and fourth
command arguments; who the semi-colon, and pwd:

who: pwd

-abbreviates the range of arguments from number 0 to
number n. The command:

11:-3

produces and executes the .zero-th, first, second and
third arguments from the first command:

ls: who;

11:* abbreviates the range of arguments from number 1 to the
last argument or nothing if there is only one argument
in the event. The command:

!l:n*

!l:n-

4-9

11:*

produces and executes the first, second, third, fourth,
fifth and sixth arguments of command number 1:

: who: pwd: date

abbreviates the range of arguments from number n to the
last argument. 'The command:

11:2*

produces and exiecutes the second, third, fourth, fifth,
and sixth argumcents.

who: pwd: date

like ll:n* but omitting the last argument (argument
"$"). It abbreviates the range of arguments from number

Zilog 4-9

C SHELL Zilog C SHELL

n to the next-to-last argument. The command:

11:2-

produces and executes the second, third, fourth, and
fifth argument from command number 1:

who; pwd;

Table 4-3 Accessing Previous Command Words

Syntax Explanation E:xample

IN:n Command N, argument n I. 1: 2
IN:~ Command N, first argument 11:

IN:$ Command N, last argument J, 1: $
IN:n-m Command N, argument n through m 11:3-5
IN:=n- Command N, argument 0 through n J, 1 :-3
IN:* Command N, argument 1 to·the last 11:*
IN:n* Command N, argument n to the last J, 1: 3*
IN:n- Command N, argument n to last-1 I. 1: 3-

4.5. Modifying Previous Conunand Words

In addition to calling and modifying commands from the his­
tory list, and calling and modifying arguments within the
individual commands, portions of arguments can also be
called out and manipulated separately.

Given the command:

the following modifiers are defined:

:h Remove a trailing path name component, lE~aving the
head. The command:

ll:h

produces:

ls -1 /~/deck/Util/Cshell

4-10 Zilog 4-10

C SHELL Zilog C SHELL

:r Remove a trailing .xxx component, leaving the root
name. The comm.and:

ll:r

produces:

ls -1 /z/deck/Util/Cshell/csh

:t Remove all leading path name components, leaving the
tail. The conunand:

ll:t

produces:

ls -1 csh.01

:p Print the new command but do not execute it. The com­
mand:

ll:p

produces

but does not execute it.

:s/stringl/string2

Substitute string2 for stringl; trailing "/" can be
omitted if new line follows; 11

/
11 is not a unique delim­

iter

The command:

l!:s/Cshell/Shell/

produces and executes:

ls -1 /z/deck/Util/Shell/csh.01

:q Quote the substituted arguments, preventing further
substitutions.

Given command number 1 as:

4-11 Zilog 4-11

C SHELL Zilog C SHELL

and given the substitution:

ll:s/csh.01/csh*/

The following conunand:

11 :q

produces:

ls -1 /z/deck/Util/Shell/csh*

however, in this case the asterisk is taken literally,
it is not expanded. Consider the following exchange
(spaces have been added to the output to improve reada­
bility):

% 1 ls -1 csh. en

-rw-r--r-- 1 deck system 15459 Oct 13 12:49 csh.01

% 2 ll:s/csh.01/csh.*/

ls -1 csh. *

-rw-r--r-- 1 deck system 15459 Oct 13 12:49 csh.01
-rw-r--r-- 1 deck system 18238 Oct 13 12:50 csh.02
-rw-r--r-- 1 deck system 13347 Oct 13 12:50 csh.03
-rw-r--r-- 1 deck system 3316 Oct 13 12:50 csh.04
-rw-r--r-- 1 deck system 30814 Oct 13 12:51 csh.9A
-rw-r--r-- 1 deck system 2395 Oct 13 12:51 csh.9T
-rw-r--r-- 1 deck system 45153 Nov 9 17:59 csh.ref

% 3 12:q

ls -1 csh. *
c sh . * not found

:x Like q, but break into arguments at blanks, tabs, and
new lines.

:& Repeat the previous substitution.

11:&

4-12 Zilog 4-12

C SHELL Zilog C SHELL

Table 4-4 Modifying Previous Command Words

Syntax:

!n:h
!n:r
!n:t
!n:p
ln:s/X/Y/
!n:q
!n:x
!n:&

Explanation:

take the head of the pathname
leave the root of the filename
leave the tail of the pathname

Example:

1 l:h
!l:r
!l:t
11 :p print but don't execute

replacE~ X with Y !l:s/unix/zeus/
quote substituted arguments
quote, break substituted arguments
repeat previous substit~tion

!l:q
ll:x
!l:&

Unless preceded by a 11 :9 11
, the modification is applied only

to the first modifiable argument.

A backslash character "\" must be used to escape a slash "/"
character if it is used in the left side of the substitution
string -- i.e. if it is part of string! in the example
below:

ll:s/stringl/string2/

4.6. Magic Characters in History Function

& The ampersand character "&" in the right s.ide of the
substitution statement is replaced by the text from the
left side of the! statement. For example, if the first
command is

a substitution using the ampersand can be used as fol­
lows:

!l:s/Util/&.plus/

resulting in the command:

ls /z/deck/Util.plus

null Nothing (a null) in the left string uses the previous
string froma}?revious substitution command i.e.

!l:s//Memos/

4-13 Zilog 4-13

C SHELL Zilog C SHELL

1$

substitutes the previous string 11 Util" for the string
"Memos" producing the command:

ls /z/deck/Memos

The string used initially (in this case "Util") must be
present in the command string called with the null or
the error

Modifier failed

will result.

A history reference can be
specification; for example,
argument in a command string.

given
"1$"

without an event
refers to the last

Given the command:

ls -1 /z/deck/Util/Cshell/csh.01

The command:

cat 1$

produces:

4-14

cat /z/deck/Util/Cshell/csh.01

In this case, the reference is to the previous c·ommand.

'11hus,

l?string?A 1$

gives the first and last arguments from the command
matching ?string?.

Simple conunand substitutions are made at the prompt
with the up arrow key (usually a shift or "upper-case"
6 on the keyboard). The erroneous command:

cat /usr/lab/news/zeus

Can be fixed with the command:

Zilog 4-14

C SHELIJ Zilog C SHELL

{} A history substitution can be surrounded with left and
right brackets "{" and "}" to insulate it from the
characters which fallow. Thus, after

%

ls /z/cheryl

enter

!{l}/temp

to do

ls /z/cheryl/temp

as opposed t~ the command:

11/temp

which looks for a command starting

produces the a.rgument matched by the
preceding ?strin~? . Given the command:

cd /z/deck/Util/Shell

The conunand:

ls !?Shell?%

will produce the the command

ls /z/deck/Util/Shell

immediately

The following table shows a summary of metacharacters used
in the history substitution function.

4-15 Zilog 4-15

C SHELL

4-16

Table 4-5

Character:

\
&

II
!$
?x?
""'x'"'y""'
{x}
%

Zilog C SHELL

Metacharacters in History Substitutions

Meaning:

Escapes magic qualities
The string just substituted
(null) the string just searched for
The last element of the last command
String search for "x"
Substitution routine
Search insulators
Element search

Zilog 4-16

C SHELL Zilog C SHELi:..

SECTION 5
THE C SHE:LL BUILT-IN COMMAND STRUCTURE

The C Shell makes an excellent operating environment because
it provides a number of improvements o~er previous shells.
In particular, the C shell provides a built-in command
language using the structure of the C Programmin:J Language.

This section covers general purpose commands that are used
either at the prompt {i.e. from the command line) or from
within the body of a shell script. The next section covers
the C Shell programming language.

5.1. Introduction to C Shell Commands

There are 38 built-in C Shell commands. These commands fall
into four major categories.

The first ten are general purpose commands. The second ten
deal with establishing or altering the working environment.
Together these 20 crnnmands form a set of commands that is
both useful from within the body of a shell script, and when
typed directly to the terminal.

The next section presents commands which deal specifically
with programming. The 15 commands in this set are used to
control the flow of operations within a shell script.

The last set of three commands are general purpose commands
that are useful almost exclusively from within the body of a
shell script.

For more detailed information on the C Programming Language,
as a means of understanding the .basic structure and syntax
of the C shell programming langu-age, refer to The _g_ Program­
ming Language by Brian w. Kernighan and Dennis M. Ritchie.
(1978, Prentice Hall Inc., Englewood Cliffs, New Jersey
07632) •

5.2. General Purpose Commands from the Prompt

Built-in commands are a part of the C shell itself, not
separate programs executed by the C shell. The following
built-in commands are useful both in the body of a C Shell
script and when typed at the prompt.

5-1 Zilog 5-1

C SHELL Zilog C SHELL

5.2.1. cd:

SYNOPSIS:

cd
cd name

Without an argument, cd changes the current working direc­
tory to the user's home directory. Cd reads the !IOME vari­
able to determine the user's home directory.

With a path name as an argument, cd changes the current
working directory to the directory name. Error messages are
produced if the target name is not a valid directory name,
or i.E the user is not permitted access to that Cl ir•:ctory
(see chmod(l)).

Verification of the current working directory is derived
from the pwd(l) command.

ALSO SE:E:

cd(l), pwd(l), chmod(l) and
Section 7.1.5 -- home

5.2.2. echo:

SYNOPSIS:

echo [-n] string

The words in string are printed (echoed) on the terminal.
This is useful in generating output from a shell script.
Echo can also be used to verify the true properties of the
shell's variables and metacharacters. For example, the com­
mand:

echo *

expands the metacharacter asterisk (" * ") to all the file
names in the current working directory (see Section 3-­
Filename Substitution) and prints the list in the following
format:

csh.01 csh.02 csh.03 csh.04 csh.05 csh.9A csh.9T

The -n
string.

5-2

option
From

inhibits a newline at the end of the output
within the body of a shell script, the

Zilog 5-2

C SHELL Zilog C SHELL

commands:

echo -n Hello
echo \ Roberta

produces the.output:

Hello Roberta

Note that the "hard space" (the "\ " sequence) is needed to
put a space between the strings. Normally echo ignores lead­
ing and trailing blank spac~s (space or tab characters).

ALSO SEE:

echo{l) and echo2(1)
And the echo variable in Section 7.1 -- Predefined
C Shell Variables.

5.2.3. glob:

SYNOPSIS:

glob string

The glob command is much like the echo command except that
words are not sepacated by spaces, and no newline ends the
string,. This command is useful for programs which use the
shell to expand a list of words.

The command:

glob *

produces the results:

csh.0lcsh.02csh.03csh.04csh.05csh.9Acsh.9T

5.2.4. history:

SYNOPSIS:

history

The history command displays a record of past commands. The
length of the history list is determined by the history
variable (See Sect1o'fl7":"l -- Predefined C Shell variables).

5-3 Zilog 5-3

C SHELL Zilog C SHEf_,f.J

The history variable can be set to 15 (for example) with the
command:

set history=lS

With the histor~ variable set to 15 the command:

history

produces a history list of the last 15 commands.
are produced in the following format:

1 alias
2 alias 11 'ls -1'
3 f oreach i (1 2 3 4)

15 history

Results

When command number 16 is reached the list will begin with
command number 2, etc. There are no diagnostic messages.
(See Section 4 -- The History Function).

5.2.5. nice:

SYNOPSIS:

nice
nice -number
nice command
nice ·-number command

The nice value sets the priority of a command in the
system's Central Processing Unit (CPU). The nice value of
each job is seen with the command-:

ps -1

which produces results that look like:

5-4 Zilog 5-4

C SHELL Zilog C SHELL

CPU PRI NI ADDR sz WC HAN T~Y TIME COMO
0 30 20 f 5 15 ddl8 2 0:16 csh
0 30 20 5d3 9 debc 2 0:01 sh
0 30 20 4bl 9 ded8 2 0:02 csh
0 28 20 6la 8 e886 2 0:00 script
0 30 20 bb 14 df 48 2 1:30 vi
9 30 20 77e 9 df 64 2 0:02 csh
0 26 20 692 8 327a 2 0:00 script

101 56 20 706 11 2 0:02 ps

NOTE: The first 5 columns have been omitted to make the out­
put fit the space. Refer to ps(l) for details.

The nice value (shown in column 3 in the example) can be
increased, making the job run at a lower system priority,
with the nice command.

Without an argument, nice increments the nice value for the
current shell by 7. With an argument, in the form:

nice -N

The nice value is increased by ~, which may be any number up
to 20.

With a command as a second argument in the form:

nice -N command

The nice value of command is increased by N.

There is no way for a normal user (anyone but the superuser,
ZEUS) to "un-nice" a process; only the superuser can set a
negative nicenumber (increase the priority of a command).
ZEUS can issue that command in the form:

nice --N

The first argument to nice must be either a minus sign - or
a command.

ALSO SEE:

nice (1)

5-5 Zilog 5-5

C SHELL Zilog C SHELL

5.2.6. rehash:

SYNOPSIS:

rehash

The C Shell maintains a sorted list (a hash table) of all
the commands available to the user. This list is created
upon login, and when a new C Shell is invoked (forked). The
hash table is stored in memory and contains a list of all
the filenames (commands) in the directories named in the
user's search path.

When a new command is created (as in the case of a new shell
script), it does not appear in the hash table even though it
is in a directory in the search path. This is true unless
the new command (file) is in the user's current working
directory.

A new command is installed into the hash table, when it is
located in a directory named in the user's PATH, and the
hash table is rehashed with the rehash command.

The message:

command.name: command not found.

will appear if the command is not installed into the hash
table or is not in the current working directory.

ALSO SEE:

Section 7.1.11 -- path

5.2.7. repeat:

SYNOPSIS:

repeat N command

The specified command is repeated N times.

The command:

repeat 5 ls

produces results in the format:

5-6 Zilog 5-6

C SHELL Zilog C SHELL

csh. 01 csh.02 csh.03 csh.04 csh.05 csh.9A csh. 9'r
csh.01 csh.02 csh.03 csh.04 csh.05 csh.9A csh.9T
csh. 01 csh.02 csh.03 csh.04 csh.05 csh.9A csh.9T
csh.01 csh.02 cs:h.03 csh.04 csh.05 csh.9A csh.9T
csh.01 csh. 02 cs.h.03 csh.04 csh.05 csh.9A csh.9T

Error diagnostics are re pea t:=d.

5.2 .. 8. time:

SYNOPSIS:

time
time command

With no argument, a summary of time used by the current
shell and its child processes is printed. The command

time

produces results that look like:

0.lu 0.3s 0:10 3%

The first column reports the user seconds, the second column
reports the system seconds, the third column is real time,
and the last column reports the percentage of total system
capacity used by the command.

If arguments are given, the specified simple command is
timed and produces a time summary as described above.

The command:

time ls

produces cesults that look like:

csh.01 csh.04
csh.02 csh.05
csh.03 csh.06
0.lu 0.2s 0:01 23%

csh.07
csh.08
csh.9A

csh.9B
csh.9C
csh.9T

junk
make.out
temp

The time command produces results even if the command being
timeJ produces an error.

ALSO SEE:

time (1)

5-7 Zilog 5-7

C SHELL

s.·2. 9. umask:

SYNOPSIS:

umask
umask N

Zilog C SHELI.J

The umask value determines the default file protection mode
for new files. (See chmod(l))

Without an argument, the umask command displays the current
umask value.

With a number argument, the umask value is set to N. The
command:

umask 026

will result in new files with the following protection mode
(as displayed with the ls -1 command):

-rw-r----- 1 deck system 0 Dec 1 14:15 temp

Umask codes for new files are as follows:

000 = -rw-rw-rw-
111 = -rw-rw-rw-
222 = -r--r--r--
333 = -r--r--r--
444 = --w--w--w-
555 = --w--;·1-·-w-
666 = ----------
777 = ----------

Note that the execution bit (the "x" bit) is never set.
This is a protection against accidental execution of text
files which can result in unintended (and potentially des­
tructive) consequences.

Umask codes for directories will set the execution bit if
desired. The specific codes are as follows:

000 = drwxrwxrwx
111 = drw-rw-rw-
222 = dr-xr-xr-x
333 = dr--r--r--
444 = d-wx-wx-wx
555 = d-w--w--w-
666 = d--x-·-x--x
777 = d---------

5-8 Zilog 5-8

C SHELL Zilog C SHELL

If umask is unset it defaults to 002.

ALSO SEE:

chmod(l)

5.2.10. wait:

SYNOPSIS:

wait

The wait command causes the terminal to freeze until all
background (child) processes terminate.

An interrupt will disrupt the wait. If a wait is interrupted
the process identification number and the command naine are
displayed. Consider the following exchange:

sleep 200 &
27233
wait

27233 sleep
wait: Interrupted.

(interrupt)

In the above example a command (sleep 298) is run in back­
ground (&). A process identific,ation number returns (27233),
then the wait command is issued.

The wait is interrupted (the interrupt character DELETE or
RUB does not show), the process identification number is
displayed along with the command name (27233 sleep) and the
diagnostic message wait: Interrupted. on the next line.

ALSO SEE:

wait(l)

The following table shows the commands in Group 1.

5-9 Zilog 5-9

C SHELL Zilog C SHELL

Table 5-1 Built-in Command Summary -- Group 1

GROUP 1

GENERAL PURPOSE COMMANDS USEFUL FROM THE PROMPT:

cd Change working directory
Print a string on the terminal echo

glob
history
nice
rehash
repeat
time
umask
wait

Like echo -- but no spaces separate words
Print command history list
Set the running priority of a command
Re-sort the search path for commands
Repeat a command
Time the execution of a command
Set the execution bits on new files
Wait for background jobs to finish

5.3. Environmental Commands from the Prompt

This set of commands is used . to customize the working
environment. These commands are used to create and remove
shorthand commands (aliases) for long commands, set and
unset c Shell variables, and shorthand words for file or
directory names.

5.3.1. alias I unalias:

SYNOPSIS:

alias name lo.ng. command
alias name
alias
unalias name

The alias command establishes user-defined shorthand for
long commands. With the syntax alias name long command the
command creates an alias name for the command long' command.
The command:

alias h history

creates the alias h which is used as the command history.
The command:

h

5-10 Zilog 5-10

C SHELL Zilog C SHELL

now produces the same output as the command:

history

(history rema1ns a valid command). In this context, the
alias command produces no output. Verification that h is the
alias for history can be derived from the next corrunands.

With one argument, a.lias displays the alias for that argu­
ment if one exists. With the h alias established, the com­
mand:

alias h

produces the output:

history

Without an argument, alias displays a list of the current
aliases. With the alias established above, the command:

alias

produces a listing in the following format:

h history

unalias is used to remove an alias (see unalias below)

Looping can occur in an alias that calls itself -- as in the
command:

alias ls 'pwd; ls'

Each call to ls attempts to execute pwd and then ls which
calls the alias again. This is true unless the first word of
the alias is the command itself, for example, the alias:

alias ls'ls; pwd'

works without a loop error.

The problem of looping is prevented by the C shell which
produces the error message:

Alias loop

upon a call to a looped alias (although the alias can be
established). The-afias must be removed with the command:

5-11 Zilog 5-11

C SHELL Zilog C SHELL

unalias alias name

EXAMPLE 1: •
To establish an alias called "ls" for the longer command "ls
-1" the following alias command is used:

alLas ls 'ls -1'

The command

ls /z/carol

will produce output as if the command typed is:

ls -1 /z/carol

EXAMPLE 2:

Aliases accept input as well. For example, a file name can
be passed to an aliased command.

The expression " \!* " like its counterpart in thie history
mechanism expression means "argument number 1 to the last
word'' (Refer to Section 4 -- The History Function) • This
expression substituted all the arguments typed at the com­
mand line (except for argument number 0 the command
itself) into the aliased command. Thus, the command:

alias print 'pr \!* I lpr'

creates an alias called print that calls pr(l), accepts one
or more arguments (file names) as input, and pipes the out­
put of that command through lpr(l). The alias-rs-used with
the syntax:

The results are the same as if the following command had
been entered.

pr file.1 f lpr

the \!* expression is replaced by arguments 1 through the
last (argument zero in this case is the word print).

5-12 Zilog 5-12

C SHELL

5. ·J. 2. exit:

SYNOPSIS:

exit
exit (~)

Zilog C SHELL

Exit is comparable to logout(l). It is a means of terminat­
ing the current working environment (the shell) by killing
the process associated with that shell. Exit is a permanent
termination of the~ current working shell, as opposed to a
temporary escape (fork) which keeps the escaped shell pro­
cess active until the user returns to it.

If the current working shell is the user's login shell, exit
executes the user's .logout file (if it exists) and logs the
user off the system .. If the ignoreexit variable is set, the
error message:

Can't exit, ignoreexit i~ set

is returned. (See Section 7.1 on Predefined C Shell Vari­
ables)

If the ignoreeof is set, a control-D command returns the
error message:

Use "exit" to logout.

In either case, if the current shell is not the login shell,
a logout(!) command returns the error message:

Not login shell.

If both ignoreexit and ignoreeof variables are set, and the
current shell is not the login shell, the only way to exit
that shell is to unset one of the variables. The command:

unset ignoreeof

permits the control·-D {the "end-of-file" eof) to terminate
the current shell. The command

unset ignoreexit

permits the exit command to terminate the current shell.

The exit command by itself leaves the current shell with the
value of the status variable.

5-13 Zilog 5-13

C SHELL Zilog C SHELL

This value is shown with the command:

echo $status

This command displays the number status code of the current
shell, "0" is the norinal exit status, "l" o.t; an:t non-zero
number constitutes an abnormal exit status -- e.g. if a com­
mand fails.

With a number argument, exit leaves the shell setting the
status variable to the specified number N. This is useful
in tracing the progress of C shell scripts: The parenthesis
surrounding the N are necessary.

See logout(l)

The notion of shells and the process of forking new shells
is usually very confusing to new users. The illustration
below is an attempt to present a graphic representation of
various levels of shell interaction.

The situation depicted in the illustration could arise in
the following manner:

(1) The user logs in. This is the first, or login shell.

(2) The user enters the editor vi to edit a file. In so
doing, the user has forked a new shell -- it is this
new shell which is running vi. The new shell dies as
soon as the user leaves the vi program.

In this case, someone else writes a message to the user
within the write program. The user wants to write back
to this other person without leaving the vi editor.

(3) From within the vi program, the user forks a temporary
escape with either the :csh command, or the :!write
command (see The Ex Reference Manual) •

(4) It is possible to fork yet another shell from within
the write program,-e:9. to use the desk calculator pro­
gram de.

(5) Upon leaving each of these programs, the shell which
runs that program dies until the user exits the login
shell which logs the user off the system.

5-14 Zilog 5-14

C SHELL Zilog C SHELL

NEW SHELL #3

NEW SHELL #2

NEW SHELL #1

LOGIN SHELL

LOGIN t "

Figure 5-1 Representation of the Fork Process

5-·15 Zilog 5-15

C SHELL Zilog C SHELL

5.3.3. logout:

SYNOPSIS:

logout

Logout terminates a login shell, executing the contents of
the -;.logout file (if it exists). Especially useful if
ignoreeof is set, inhibiting a control-Q command.

Logout can only be executed from the login shell, if the
current shell is any other shell, the error message:

Not login shell.

returns.

ALSO SEE:

Section 9.2.1 -- The -;.logout file

5.3.4. set I unset:

SYNOPSIS:

set
set variable=word
set variable=(W'Ordlist)
set variabl~[index]=word

unset variable

The set command without an argument shows the value of all
shell variables in the following format:

5-16

s
0
argv
exinit
history
home
ignoreeof
ignoreexit
mail
path
prompt
shell
status
term

/z/deck/Util/Sh.1
/z/deck/Util/New.csh
()
set number wm=20 I version
50
/z/deck

1
/usr/spool/mail/deck
{. /usr/bin /bin /z/deck/bin /etc)
deck # ! '>
/bin/csh
0
vt100

Zilog 5-16

C SHELL Zilog C SHELL

Variables that have other than a single word as value print
as a word list enclosed in parentheses.

C Shell variables can be established with the command:

set variable=word

which sets variable to word. Variable can be a predefined C
Shell variable (See Section 7.1 Predefined C Shell Vari­
ables), or a user-defined variable.

Variables can also be set to a list of words, like an array
with the syntax:

set variable=(wordlist)

For example, the variable X can be set to all the filenames
beginning with the letters ucsh" in the current directory
with the command:

set X=csh*

Verification that X contains the list comes from the com­
mand:

echo $X

which produces output in the following format.

csh.01 csh.02 csh.03 csh.04 csh.05 csh.06 csh.9B

Each component part of this list can be addressed with a
bracketed subscript,, as in the command:

echo $X[3]

which echos the third element of the list:

csh.03

These individual elements of a. list can be altered in the
same way that they are addressed -- with a subscript value.
The command syntax is:

set variable[~]==word

which sets the Nth component of variable to word; for exam­
ple, the following command resets the valueOfthe 3rd com­
ponent of the X variable to the word test:

5-17 Zilog 5-17

C SHELL Zilog C SHELL

set x (.31 =test

this component must already exist.

Verification can be seen in the following commands:

echo $X

reports all the elements in the variable X (which is an
array of words) :

csh.01 csh.02 test csh.04 csh.05 csh.06 csh.9B

The command:

echo $X[3]

reports the value of the 3rd element of that array:

test

variables are removed from the variable list with the unset
command:

unset variable

These set arguments can be repeated to set multiple values
in a single set command. Variable expansion happens for all
arguments before any setting occurs.

ALSO SEE~

Section 7 -- Shell variables, and
Section 3.2 Metacharacters ([, and])

5.3.5. setenv I env:

SYNOPSIS:

setenv NAME=value
env

The setenv command works like the set command, it sets
environment variables while set sets shell variables. See
Section 10 for a discussion of the environment and its vari­
ables.

5-18 Zilog 5-18

C SHELL z i log. C SHELL

The command

setenv NAME=value

sets the value of environment variable NAME to value,.

Predefined environment variables are:

Login name LOGNAHE
EXINIT
HOME
PATH
SHELL
TERM

Ex editor initialization variables
Home directory

TZ

Search path for commands
Shell being used
Type ·of terminal
Timezone

Env prints the values of the environment variables currently
set. Refer to Section 10 for a description of the enviro~­
ment and its environment variables.

ALSO SEE:

env (1)
Section 10 -- The Environment

5.3.6. source:

SYNOPSIS:

source file. name·

The shell reads commands from file.name and implements them
in the current shell (as opposed to forking a new shell).

The source command implements changes made to the .login and
.cshrc files. Source output cannot be re-directed.

ALS.O SEE:

Section 10 for a discussion of how the C
Shell executes commands.

5.3.7. unalias I alias:

SYNOPSIS:

5-19 Zilog 5-19

C SHELL Zilog C SHELL

unalias pattern

All aliases whose names match the specified pattern are dis­
carded. Thus all aliases are removed with the command:

unalias *

ALSO SEE:

Section 5.3.1 -- alias/ unalias

5.3.8. unset I set:

SYNOPSIS:

unset pattern

All variables whose names match the specified pattern are
removed. All variables are removed with the command:

unset *

this can have undesirable side-effects.

ALSO SEE:

Section 5.3.4 -- set / unset

5.3.9. The At Sign -- @:

SYNOPSIS:

@variable=(number operator number)

The at sign sets variables that use math functions. The
variable holds the product of the math function rather than
the operative string itself.

For example the command:

set x= (6 + 6)

yields the results of an echo $x command as:

6 + 6

5-20 Zilog 5-20

C SHELL Zilog C SHELL

@ x=(6 + 6)

produces the results:

12

Note the at sign is sensitive to syntax. The spaces separat­
ing the numbers are essential.

Table 5-2 Built-in Command Summary -- Group 2

GROUP 2

ENVIRONMENTAL COMMANDS USEFUL FROM THE PROMPT:

alias
env
printenv
exit
logout
set
setenv
source
unalias
unset

@

5-21

Substitute word for long command
Print the current environment variables
Print the current environment variables
Terminate a shell (logout)
Exit from the login shell
Establish a shell variable
Establish an environment variable
Execute a script in the current shell
Remove an alias
Unset a shell variable
Like nset" but uses math functions

Zilog 5-21

C SHELL Zilog C SHELL

SECTION 6
THE C SHELL PROGRAMMING LANGUAGE STRUCTURE

The c Shell can be considered a programming language because
of the powerful flow control mechanisms it supports.

The syntax of the C Shell language is much like that of the
C Programming Laniguage. (See The ~ Programming Language by
Brian Kernighan and Dennis Ritchie). Table 6-1 summaries the
commands in the c Shell programming language.

6.1.. foreach and end group

SYNOPSIS:

foreach name { list)

command

end

When the foreach command is typed at the prompt, and the
name and list are typed with the appropriate syntax, a new
prompt (a question mark) appears to indicate that a C shell
loop is in progress.

At the prompt ("?") one or more command statements can be
entered. The loop is initiated when the word end is typed on
a line by itself at the 11 ? 11 prompt. At that point, the word
list is expanded (if it is a magic character) and the com­
mand is executed once for each element in the list. Execu­
tion continues until the list is exhausted.

The programming structure of the foreach loop (and all con­
trol structures of the c shell) makes use of conventional C
programming syntax. The example below demonstrates a simple
foreach loop and the data it produces.

6-1 Zilog 6-1

C SHELL

% f oreach i (1 2 3 4)
? echo $i
? end
1
2
3
4

Zilog C SHELL

In this example the arbitrary variable "i" is first set to
the character "l", then the command echo $i is executed.
When the end statement is encountered, control passes back
to the foreach statement which checks to see if there are
any more items in list. If there is another item, "i" is
set to that iteffiand the loop repeats until there are no
more items in the list between the parenthesis.

In each successive pass of the loop, "$i" refers to the
current value of the "i" as established in the foreach
statement. At the first iteration of the loop, 1 is set to
the character "l". At the second iteration, i is set to the
character "2", and so on.

Any character or string can be used for a name, and any
character or string can be used for list. Magic characters
will expand unless quoted.

For example, the command:

foreach i (*)

will expand " $i " to each file name in the current working
directory. One example of this process might be:

% foreach i (csh.??)
? echo $i
? ls -1 $i
? end

This command will echo the name of the files starting with
"csh." followed by 2 single characters, and return a long
listing of that file for each;matching file in the current
directory, producing results similar to:

6-2 Zilog 6-2

C SHELL Zilog C SHELL

csh.01
I

-rw-r--r-- 1 deck system 13620 Nov 4 15:05 csh.01
csh.02
-rw-r--r-- 1 deck system 14537 Nov 4 13:24 csh.02
csh.03
-rw-rw-r-- 1 deck system 24776 Nov 4 15:11 csh.03
csh.04
-rw-rw-r-- 1 deck system 8996 Nov 4 11:06 csh.04
csh.05
-rw-r--r-- 1 deck system 6631 Nov 3 17:04 csh.05
csh.9A
-rw-rw-r-- l deck system 3481 Nov 4 14:42 csh.9A
csh.9T
-rw-r--r-- 1 deck system 2995 Nov 3 17:14 csh.9T

Both f oreach and en<l must appear alone on separ,ate lines.

The built-in command continue can be used to continue the
loop prematurely and the built-in conunand break to terminate
it prematurely. WhEm this command is read from the termi­
nal, the loop is read through before any statements in the
loop are executed.

See Example 1 in Section 6.7

602. while and end group

SYNOPSIS:

while (expression)

command

end

While the specified expression evaluates nonzero, the com­
mands between the while and the matching end are executed.
Break and continue can be used to terminate or continue the
loop prematurely. The while and end must appear on separate
lines. Prompting occurs here the first time through the
loop as for the forea.ch statement if the input is a termi­
nal.

See Example 2 in Section 6.7

6-3 Zilog 6-3

C SHELL Zilog C SHELL

6.·J. The if, else, endif Group

SYNOPSIS:

if (expression.!) then

conunand.l

else if (expression.~) then

conunand.2

else

conunand.3

end if

If is a loop control statement generally useful for making
decisions within the while and foreach loop structures.

If expression.! evaluates true, conunand.l is executed. Com­
mand.! must be a simple command, not a-pipeline, a command
list,-or a command list within parentheses. Input/output
redirection occurs when the command is executed even if
expression.! is false (this is a bug).

If expression.! is not true, the else if condition is
tested, and Tf expression.2 is true, the-Commands in com­
mand.2 to the second else are-executed. This process contin­
ues down the script.

Any number of else-if pairs are possible; only one endif is
needed. The else part is likewise optional. The words else
and endif mustappear at the beginning of lines; the if must
appear at the beginning of a line or after an else.

See Example 3 and Example 4 in Section 6.7

6.4. The Switch Group

SYNOPSIS:

6-4 Zilog 6-4

C SHELL Zilog C SHELL

switch (string)

case labell:

command

breaksw

case label2:

command

breaksw

default

command

endsw

Switch is generally useful in the context of a foreach or
while statement.

Each case label is successively matched against the speci­
fied string. If the case label matches the string, the
associated command is executed.

The file metacharacters "*, ?, [, and]" can be used in the
case labels. If rione of the labels match before a default
Iab'el is found, the execution begins after the default
label.

Each case label and the default label must appear at the
beginning of a line. The command breaksw causes execution
to continue after the endsw. Otherwise, control falls
through case labels and default labels, as in c. If no
label matches and there is no default, execution continues
after the endsw.

See Example 5 in Section 6.7

Table 6-1 summarizes the third group of commands.

6-5 Zilog 6-5

C SHELL Zilog

Table 6-1 Built-in Command Summary -- Group 3

GROUP 3

LOOP CONTROL COMMANDS USEFUL WITHIN A SCRIPT:

f oreach
end

while
end

The If

if
else
end if

Initiate a foreach loop
End of a foreach or while loop

Initiate a while loop
End of a f oreach or while loop

group:

Initiate an if loop
Alternative decision in an if statement
End of an if loop

The Switch group:

C SHELL

switch
case
breaksw
default
endsw

Switch to the next iteration of the variable
Label in a switch statement
Causes a break from a switch
Default case in a switch statement
End of an switch loop

Independent loop control commands:

Drops out of the nearest loop
Continue execution of nearest loop
Jump to a new location

break
continue
goto
shift Go to the next argument in the argumEmt variable

6.5. Independent Flow Control Statements

6.5.1. break:

SYNOPSIS:

break

Causes execution to resume after the end of thE~ nearest
enclosing foreach or while. The remaining commands on the
current line are executed. Multi-level breaks are thus pos­
sible by writing them all on one line.

6-6 Zilog 6-6

C SHELL Zilog C SHELL

See Example 6 in Section 6.7

6.5.2. continue:

SYNOPSIS:

continue

Continue
foreach.
executed.

execution of the nearest enclosing while or
The rest of the commands on the cur;rent line are

See Example 7 in Section 6.7·

6.5 .. 3. goto:

SYNOPSIS:

goto word

The specified word is file name and command expanded to
yield a string--of the form label. The shell rewinds its
input as much as possible and searches for a line of the
form label: possibly preceded by b1anks or tabs. Execution
continues after ·the specified line.

See Example 8 in Section 6.7

6.5.4. shift:

SYNOPSIS:

shift
shift variable

The members of argv are shifted to the left, discarding
argv[_~). It is an error for argv not to be set or to have
less than one word as value. The second form performs the
same function on th~3 specified variable.

See Example 9 in Section 6.7

6 .. 6.. Independent Shell Script Commands

6-7 Zilog 6-7

C SHELL Zilog C SHELL

6.·6.1. exec:

SYNOPSIS:

exec conunand

The specified conunand is executed in place of thE:! current
shell.

For example, the command:·

exec date

executes the date command, and then terminates the shell. If
the conunand is executed from the login shell, the command
will log the user off the system. The . logout filE~ (if it
exists) will not execute.

6.6.2. nohup:

SYNOPSIS:

nohup
nohup command

In a dial-up situation, when a terminal is connectE~d to the
system with a modem through the telephone lines, hanging up
the telephone from the terminal end results in a logout.

Nohup (no hang-up) cause telephone hangups to be i9nored for
the remainder of a shell script allowing the script to con­
tinue. The shell script must be running detached (in back­
ground).

The nohup command, with a command argument causes the speci­
fied conunand to be run with hangups ignored.

6.6.3. onintr:

SYNOPSIS:

onintr
onintr label

The onintr (on interrupt) command controls the action of the
shell script when an interrupt signal (usually the DELETE
key) is encountered from the keyboard.

6-8 Zilog 6-8

C SHELL Zilog C SHELL

With a minus sign argument, all interrupts are ignored.

With a label argument, onintr causes the shell to execute a
goto label when an interrupt is received.

See Example 4 in Section 6.7

The following table summarizes the fourth group of commands.

Table 6-2 Built-in Command Summary -- Group 4

GROUP 4

GENERAL PURPOSE COMMANDS, USEFUL WITHIN A SCRIPT:

exec
nohup
onintr

Causes execution of a command with no return
No Hangup in a dial-up phone situation
Goto a new label on receiving an interrupt signal

6e7. Example Shell Scripts

NOTE

In these shell script examples, words in bold are
the actual command text. Lines beginning with a
pound sign are comments only and. may be omitted
from the script.

EXAMPLE l -- Foreach

foreach i (*) # The variable "i" is set to all

the filenames in the current
working directory

echo $i # within the loop, each iteration
of the variable "i" is printed
on the screen

end # end of the loop

Figure 6-1 A Basic Foreach Loop

This C shell script produces output in the following format:

6-9 Zilog 6-9

C SHELL Zilog

This

csh.01
csh.02
csh.03
csh.04
csh.05
csh.06
csh.07
csh.08
csh.09
temp

EXAMPLE 2

while (1)

While

"l" is always true, therefore
this is an endless loop

echo •This is an endless loop•

end

c Shell

This is
This is
This is
This is
This is
This is
This is
This is
This is

Figure

The string is printed forever
or until it is interrupted

end of the while loop

6-2 A Basic While Loop

script produces the following output:

an endless loop
an endless loop
an endless loop
an endless loop
an endless loop
an endless loop
an endless loop
an endless loop
an endless loop

until an interrupt (the DELETE key) is encountered.

6-10 Zilog

C SHELL

6-10

C SHELL Zilog C SHELL

EXAMPLE 3 -- If

f oreach i (*) # The variable "i" is

set to all filenames
in the current working directory

if ($i -- temp) then

If this iteration of "$1" is
a file named "temp", then do
the following:

echo "Here is the temp file•

else

echo $i

Print the string

If "$i" is not temp, then do
the following:

Print the filename

endif # Necessary end of the conditional
"if" statement

end # End of the "fo'reach" loop

Figure 6-3 An If Statement in a Foreach Loop

The above C Shell script produces output in the following
format:

6-11

csh.01
csh.02
csh.03
csh.04
csh.05
csh.06
csh.07
csh.08
csh.09
Here is the temp file

Zilog 6-11

C SHELL Zilog C SHELL

EXAMPLE 4, An "if" conditional statement within a 11 while 11

loop, -- 11 onintr 11 and 11 set 11 using the math
statement 11 @11 are also demonstrated

onintr hook # Establishes "hook" as the label
to "goto" on interrupt

set a=0

while (1)

Initializes the variable "a"
to 11 0 11 at the beginning of
the "while" loop

"l" is always true, this is
an endless loop

i:f ($a < 5) then

If the variable "a" is less
than 5, then perform the n 1ext step

echo "The number is less than 5 11

Print the string
else

If the number is not less than 5
then perform the next step:

echo 16 The number is 5 or.greater"

Print the ~tring

end if # End of the "if" conditional statement

@ a++ # Set "a" to II a+l" {increment "a")

end # End of the "while" loop

hook: # the label .identified in the
11 onintr 11 statement. If an interrupt
is encountered, perform the following:

echo '"Interrupt encounter -- Good bye"

Print the string

Figure 6-4 An Enhanced If Statement

The above C Shell script produces output in the following
format:

6-12 Zilog 6-12

C SHELL Zilog C SHELL

The number is l(ess than 5
The number is less than 5
The number is less than 5
The number is l•ess than 5
The number is l1ess than 5
The number is 5 or greater
The number is 5 or greater
The number is 5 or greater
The number is 5 or greater
The number is 5 or greater
The number is 5 or greater
The number is 5 or greater
The number is 5 or greater
The number is 5 or greater

Interrupt encounter -- Good bye

6·-13 Zilog 6-13

C SHELL Zilog C SHELL

6-14

EXAMPLE 5, A "switch" statement nested in a "foreach"
loop -- use of the metacharacter "?" is also demonstrated

foreach i (*)

switch ($i)

case ????:

echo •

breaksw

case ?????:

echo •

breaksw

Sets the variable "i" to all
the filenames in the current
directory.

Check this iteration of "$ i"
to see if it meets the following
conditions.

If the filename in II $i H has four
characters, perform the following:

$i is a four character name "
Print the string

And exit out of this case test.

If the filename in If$ i II has five
characters, perform the following:

$i is a five character name "
Print the string

And exit out of this case test.

case ??????: # If the filename in "$i" has six
characters, perform the following:

echo • $i is a six character name •
Print the string

breaksw

default

And exit out of this case test.

if the filename in "$i" does not match
any of the above criteria, perform the
following:

echo • $i is not a four, five or six character name•

Print the string

endsw # And exit out of the whole switch loop

end # End of the "foreach" loop.

Figure 6-5 A Switch Statement in a Foreach Loop

Zilog 6-14

C SHELL Zilog C SHELL

The above C shell script produces output in the following
format. (NOTE: output will vary with the filenames in the
current working directory).

6·-15

OUT01 is a five character name
OUT02 is a five character name
OUT03 is a five character name
a.out is a five character name
all.tables is not a four, five or six character name
csh.01 is a six character name
csh.02 is a six character name
csh.03 is a six character name
echo.test is not a four, five or six character name
tax is not a four, five·or six character name
temp is a four character name

Zilog 6-15

C SHELL Zilog C SHELL

EXAMPLE 6: A Break statement in a While loop

while (1)

end

This sets up an endless loop
echo -n • enter x: •

set x = 'gets'

The echo statement prompts
for input from the the terminal

the "set" expression sets the
variable "x" to whatever is
entered at the terminal (the
input is captured with the
'gets' expression)

if ($x 'a') then
If the input is the letter
"a" then proceed to the break
statement.

break # goes to the "end" statement

else

echos the last statement "it
broke" and drops out of the loop

If the input is not the letter
"a" then proceed back to the
#nearest loop statement (while).

echo •it did not break•
returns to the
beginning of the while loop

end if
ends the "if" branch

ends the "while" loop.

echo •it broke•
demonstrates the break

Figure 6-6 A Break Statement

The above C Shell script produces an exchange in the follow­
ing format:

6-16 Zilog 6-16

C SHELL

enter x: b
it did not break
enter x: c

it did not break
enter x: a

it broke

Zilog C SHELL

NOTE: that the "b", "c", and "a" characters are input from
the keyboard in response to the "enter x:" prompt.

6--1 7 Zilog 6-17

C SHELL Zilog C SHELL

EXAMPLE 7 -- Prompting for input, getting input, evaluating
the input with an if statement, and demonstrating
the continue statement. Onintr is also demonstrated.

while (1)

end

sets up an endless loop

echo -n •enter x:"
as in the example above, this
prompts for input from the
terminal

set x = 'gets'
this set the variable "xn to
whatever is entered with the
'gets' command

if ($x -- 'a') then

end if

If the input is "a" continue

echo •it continued•
This demonstrates the continuation
if the input is "a"

continue
goes to beginning of the enclosing
while loop and starts over

ends the "if" statement if
the input is not "a"

echo •it did not continue•

exit

the if statement does not continue

if the input is not "a" the
"exit" command terminates the
"while" loop

end the "while" loop

Figure 6-7 An Example of the Continue Statement

The above C shell script produces an exchange in the follow­
ing format:

6-18 Zilog 6-18

C SHELJ_,

enter x:a
it continued
enter x:a
it continued
enter x:a
it continued
enter x:b
it did not continue

Zilog C SHELL

NOTE: As in the previous example, the "a" and 11 b 11 characters
are input from the keyboard.

6-·19 Zilog 6-19

C SHELL Zilog C SHELL

EXAMPLE 8 -- The Goto statement within a foreach
loop. This shell scrfpt tests each filename for the
#name "temp". When the "temp" file is encountered, control
#goes to the label "branch".

f oreach i (*)

end

hook:

sets a "foreach" loop with the controlling
list variable "i" which is set to all the
files in the current directory.

if ($i == temp) then
tests each filename to see if it matches
the word "temp"

goto hook
if it matches, control jumps
to the label "hook"

else if ($i != temp)

endif

if the filename does not match the
word "temp" control drop to the next
statement

echo •$i is not the temp file •
echos that the filename is
not "temp"

ends the "if" branch statement

ends the "foreach" loop

the destination of the "goto" label

echo •eere is the temp file -- end loop •
reports finding the "temp" file and
drops out of the loop

Figure 6-8 An Example of the Goto Statement

The above C shell script produces output in the following
format. Note that the output is dependent upon the filenames
in the current working directory.

6-20 Zilog 6-20

C SHELL Zilog C SHELL

csh.01 is not the! temp file
csh.02 is not the~ temp file
csh.03 is not the! temp file
csh.04 is not the temp file
csh.05 is not the temp file
csh.06 is not the temp file
csh.07 is not the~ temp file
csh.08 is not the temp file
Here is the temp file -- end loop

EXAMPLE 9 -- The Shift statement

set a =

echo $a

shift a

(*)
sets the variable "a" to the list of all filenames
in the current working directory. If the files
are "csh~01 csh.02 csh.03 and csh.04" then

the list will echo:
csh.01 csh.02 csh.03 csh.04

shifting drops the leftmost element to produce:
echo $a

csh.02 csh.03 csh.04
shift a

shifting drops the leftmost element to produce:
echo $a

csh.03 csh.04

Figure 6-9 An Example of the Shift Statement

The output will look something like the following:

csh.01 csh.02 csh.03 csh.04
csh.02 csh.03 csh.04
csh.03 csh.04

6-21 Zilog 6-21

C SHELL ZilOg

SECTION 7
SHELL VARIABLES

7.1. Predefined C Shell Variables

C SHELL

The ZEUS working environment can be customized in a number
of ways, this section explains the use of C shell variables.

17 variable names are predefined by the C Shell. These
variables control mctny of the C shell's built-in functions.

Section 7.3 presents a dis6ussion of user-defined variables.

1.1.1. argv:

SYNOPSIS:

(Not set at the terminal}

Argv is short for "argument.variable". Each command typed
to the prompt is broken into arguments (parsed} and each
argument in the command is numbered from zero and placed in
the argument variable for execotion. In the command:

ls -1 file.01

there are 3 arguments:

argument 0 is the command itself,· ls
argument 1 is the -1
argument 2 is the filename file.01

The C shell keeps track of the.arguments in the the variable
argv () At login, argv is set to zero by the C shell. This
value is reset at ea.ch command to the names of the arguments
given for each command.

To demonstrate the •:1.rgv variable, the following file named
test is a C shell script and contains six lines:

7-1

test
echo $argv
echo $argv[l]
echo $argv[2]
echo $argv[3]
echo $argv[4]

ZilQg 7-1

C SHELL Zilog C SHELL

The first line of the file contains a pound sign (to indi­
cate that it is a C shell script) and the name of the file
test.

The rest of the file contains command lines designed to
demonstrate the properties of the argv variable. The second
line is a command to echo the fu1r-contents of the argv
variable, the second line is a command to echo argument 1 of
the ar~ variable, the third line is a command to echo argu­
ment 2, etc.

Once the file has been created it must be made executable
with the command:

chmod 777 test

(See chmod(l) in the ZEUS Reference Manual) and then exe­
cuted with three arguments as follows:

test a b c

producing the following results:

a b c
a
b
c
Subscript out of range.

the script command echo $argv prints out the full contents
of the argv variable -- the first argument to the last argu­
ment in argv (all arguments except the zero-th argument).
The expressTon argv[*] can also be used. The following echo
commands print out the specific components of the~ command
arguments the first, second, and third arguments. Note
that a call to the fourth argument ($argv[4]) produces the
error:

Subscript out of range.

Each component of argv can also be accessed with the syntax:

where N is a number corresponding to the position of the
argument in the argument list. Thus the script could have
been written:

7-2 Zilog 7-2

C SHELL

I test
echo $*
echo $0
echo $1
echo $2
echo $3
echo $4

Zilog

Executing the script again with three arguments:

test a b c

produces the following results:

a b c
test
a
b
c

C SHELL

The difference is two-fold. Fiist, a call tQ the command
itself (argument number zero) $9 is possible, and second, a
call to a subscript value that is out of the range of the
number of arguments does not produce an error,· only a blank
line.

DEFAULT:

argv= ()

ALSO SEE:

Sect ion 5 • 2 • 2 - ·- echo and 5 • 2 • 9 - - um ask

7 .. L.2. child:

SYNOPSIS:

(Not set at the terminal)

The child variable holds the number of the last background
process.

This is useful in stopping a jbb running in background. The
command:

kill -9 $child

7-3 Zilog 7-3

C SHELL Zilog C SHELL

will terminate the last background job.

DEFAULT:

unset by default

ALSO SEE:

Section 2.5 -- Running a Command in Background

7.1.3. echo:

SYNOPSIS:

set echo

The echo variable controls whether or not commands are
echoed (printed) immediately after they are typed at the
prompt. When set, the echo variable produces results in the
following format:

% ls
ls
csh.01 csh.02 csh.03 csh.04 csh.05

The echo variable is also set when the " -x " command line
option is given to a csh(l) command. As in the command:

csh -x test

For non-built-in commands, all expansions occur before echo­
ing. Built-in commands are echoed before command and file
name substitution.

DEFAULT:

unset by default

ALSO SEE:

7-4

echo (1) , echo 2 (1)
Section 5.2.2 -- echo

Zilog 7-4

C SHELL Zilog C SHELL

7 .·1.4. history:

SYNOPSIS:

set history=~

The history variable~ controls the number of commands stored
in memory on the history list. Numbers that are too large
can run the C shell out of memory. The last executed com­
mand is always saved on the history list.

DEFAULT:

unset by default

ALSO SEE:

Section 4 -- The History Function

1.1.s. home:

SYNOPSIS:

set home=/path/!~-directory

The home variable re!fers to the home directory. It is set
(initially) by an entry in the /etc/passwd file which is
created when the account is created. --It can be reset at the
prompt, or in a script.

The home variable is used to establish the destination for
the cd command (whem used without an argument). It is also
used to establish t~e value of the metacharacter tilde
II - II

Home can be set to any directory, but.it is most useful when
it points to the home directory.

DEFAULT:

home=/path/horne .. directory

ALSO SEE:

7-5

Section 10 -- Environment Variables (HOME)
Section 3 -- Metacharacter• (-) and (/)

Zilog 7-5

C SHELL Zilog C SHELL

7.1.6. ignoreeof:

SYNOPSIS:

set ignoreeof

The ignoreeof variable determines how the C shell handles
end-of-file signals (control D) from the terminal.

If it is set, the ignoreeof variable prevents the parent
(login) shell from being killed by accidental control-Os.

If ignoreeof is set, and a control-D is entered, an error
message returns with:

Use "logout" to logout.

This variable is useful in programs where control-Os must be
entered at the terminal.

DEFAULT:

unset by default

ALSO SEE:

Section 5 -- Built-in Commands (logout, exit)

7.1.7. mail:

SYNOPSIS:

set mail=/path/directory
set mail=(~ /path/directory)

Note that parentheses must surround a word list with embed­
ded spaces.

The mail variable sets a procedure that checks the directory
/path/dfrectory every!! seconds for new mail.

If~ is omitted, the shell checks the file every 5 minutes.

Checking is done after each command past N seconds (thus no
checking is done in a lengthy program lTke vi(l); instead,
the check is performed after leaving vi) •

7-6 Zilog 7-6

C SHELL Zilog C SHELL

Upon finding new mail, the C shell reports

You have new mail.

Several files can be specified, and if there are multiple
mail files, the C shell specifies the mail file name with:

New mail in name.

DEFAULT:

mail=/usr/spool/mail/name

ALSO SEE:

mail(!)

1.1.a. noclobber:

SYNOPSIS:

set noclobber

If the noclobber variable is set, restrictions are placed on
output redirection to insure that files are not accidentally
destroyed. An attempt to redirect output to an existing
file (e.g. test) as with the command:

who > test

results in the error message:

test: File exists.

In addition, restrictions are placed on appending (" >> ")
redirections to insure that the named output files refer to
existing files. An attempt to append information to a non­
existent file (e.g. new.file), as with the command:

ls >> new.file

results in the error message:

new.file: No such file or directory.

7-7 Zilog 7-7

C SHELL Zilog C SHELL

DEFAULT:

unset by default

ALSO SEE:

Section 2 -- Input and Output Redirection

7.1.9. noglob:

SYNOPSIS:

set noglob

If set, the noglob variable inhibits file name expansion
the metacharacters described in Section 3.1 will not expand
to matching filenames. The command:

echo *

will return:

*
This is useful in c shell scripts not dealing with file
names, or in a situation where metacharacters need to be
passed unexpanded.

DEFAULT:

unset by default

ALSO SEE:

Section 3 -- Filename expansion

1.1.10. nonomatch:

SYNOPSIS:

set nonomatch

With the nonomatch unset, a command using a filename expan­
sion metacharacter that fails to match a filename as in a
situation where there are no files that begin with the

7-8 Zilog 7-8

•'

C SHELL Zilog C SHEL[,

letter "a". The command:

ls a*

returns the error:

No match.

but if the nonomatch variable is set, it is not an error for
a file name expansion to not match any existing files.

Instead, the pattern is returned with the message:

a* not found.

It is still an error for the primitive pattern to be mal­
formed; for example the command:

echo [

still returns the error:

Missing].

DEFAULT:

unset by default

ALSO SEE:

Section 3 -- Filename Substitution.

7.1.11. path:

SYNOPSIS:

set path=/direct~···

At login, the shell searched down the directories specified
in the path to create a hash table of the files listed in
each directory. This hash ta:t>T'e become.s the list of commands
that ~re known to the shell.

This is true, except for dot " " which specifies the
current working directory. Dot,, (the current working direc­
tory) if listed in the path variable, is always searched and
hashed for each command. Thus, it should always be included

7-9 Zilog 7-9

C SHELL Zilog C SHELL

in the path variable.

If there is no path variable, only commands which specify a
full path name will execute as in the command:

/bin/ls

The default search path is ., /bin, and /usr/bin. For the
super-user, the default search path is /etc, /bin, and
/usr/bin.

The C shell will search first in the current working direc-
tory (indicated with a dot 11

• "}, if the C shell finds a
file name that is identical to the name of the command, the
C shell will attempt to execute the file as if it were a
program. If the file does not execute properly, the C shell
will report the error on the standard error channel {which
is usually the terminal} with the syntax:

command: Command not found.

If the file is not found in the current directo:cy the C
shell looks in the next directory (in this case /bin}. The
/bin directory holds the most common ZEUS commands·-.--If the
command/file is found in /bin it is executed, if it is not,
the C shell searches in /usr/bin where the "next-most­
common 11 ZEUS commands reside-. - --

Other directories can be included in the search path. If the
path contains spaces, it must be surrounded with
parentheses.

DEFAULT:

path={. /bin /usr/bin)

ALSO SEE:

Section 5 -- Built-in Commands (Rehash)

1.1.12. prompt:

SYNOPSIS:

set prompt=string

The prompt is the signal from the C Shell that the operating
system has finished the last command and is ready to accept

7-10 Zilog 7-10

Zilog C SHELL

another command.

The default prompt for regular users is the percent sign
" % ", the default prompt for the super-user (ZEUS) is a
pound sign " i "

The prompt variable can be modified to provide more useful
information. The most common example is to place the command
number within the prompt. The command:

set prompt=" % \I "

will produce the prompt:

% 1

Note that quotes must. be used if the prompt string contains
a space.

The number will incn~ment by 1 for each command. The command
number is useful information when ' used with the history
function (See below).

DEFAULT:

prompt=%

ALSO SEE:

Section 4 -- The History Function

7.1.13. shell:

SYNOPSIS:

set shell=/path/~hell.name

The shell variable s•ets the sh~ll to be used at login,
either /bin/csh for the C Shell, or /bin/sh for the Bourne
Shell. -- --

This variable is set {initially) in the /etc/passwd file
when the account i:s created and can be reset either at the
prompt or in the body of a c shell script.

DEFAULT:

shell=/bin/csh

7-11 Zilog 7-11

C SHELL Zilog C SHELL

ALSO SEE:

csh(l) and sh(l)

7.1.14. status:

SYNOPSIS:

(Not set at the terminal)

The status variable holds the exit status returned by the
last command.

When a command executes success.fully (without error), it
sets the status variable to 0.

If a command fails to execute properly (e.g. if there is a
syntax error, or some other form of error), the command will
leave the status variable with some value other than 0.

This variable is useful in C shell scripts to report errors
on the execution of. C shell script commands.

Note: The command set will always show the status variable
to have a value of ~ because the set command executes suc­
cessfully. The true value of the status variable can be seen
with the command:

echo $status

DEFAULT:

status=9

ALSO SEE:

Section 5 -- Built-in commands (exit)

7.1.15. term:

SYNOPSIS:

set term=terminal.~

The term variable sets the type of terminal expected by the

7-12 Zilog 7-12

C SHELL Zilog C SHELL

system. This information is important to programs that use
specific commands to manipulate the cursor (e.g. the visual
ed i tor vi (1)) .

The shell matches the two-character code from the term vari­
able with the terminal description line in the /etc/termcap
file. A sample of the first line of the terminal description
code for the VTZ 2/18 is shown below:

vz!vtz!mcz-2/60lvtz-2/10

The term variable is initially set in /etc/ttytype file but
can be reset at the prompt or in the body of a C Shell
Script.

Using the two-character code found in the term variable, the
C shell then matches that code to the entry in the
/etc/termcap file to initialize the "terminal-to-ZEUS"
software interface.

DEFAULT:

term=vz

ALSO SEE:

The /etc/termcap file on-line
and termcap (5) • ·

7.1.16. time:

SYNOPSIS:

set time=N

The time variable controls the automatic timing of commands.
If it is set, any command which takes more than "N " CPU
seconds results in a line showing user time, system- time,
real time, and a utilization percentage (ratio of user time
plus system time to real time) •

The output is in the following format: (output of the time
command is the last line of the example)

7-13 Zilog 7-13

C SHELL

% ps
PID TTY TIME CMD

23399 2 0:26 -csh
25207 2 0:03 ps

0.2u 2.as 0:05 60%

DEFAULT:

unset by default

ALSO SEE:

time(!).

Zilog

Section 5 - Built-in commands (time)

7.1.17. verbose:

SYNOPSIS:

set verbose

C SHELL

The verbose variable functions like the echo variable. When
it is set, each command is echoed, as in the following exam­
ple:

% ls
ls
c~h.01 csh.02 csh.03 csh.04 csh.05 csh.06 csh.07

The verbose variable is also set by the 11 -v 11 command line
option to the csh command, as in:

csh -v test

the verbose variable causes the arguments of each command to
be printed after history substitution (unlike the 1echo vari­
able which causes arguments to be printed befor~ehistory
substitution).

DEFAULT:

unset by default

ALSO SEE:

7-14 Zilog 7-14

C SHELL Zilog C SHELL

Section 3
Section 4

Filename Substitution
History Function

7. 2. Predefined Vat·iables -- Default Values

If no other values are established for these initial C shell
v.::1riables, the following "default" properties are set by the
C shell (or a function of the C shell) at login.

The set command reve~als the following 1 ist of predefined C
shell variables and their default value.

() argv
home
path
prompt
shell
status
term

/path/home.directory
(:-?i)inTusr/bin)
%
/bin/csh
0
vz

Table 7-1

Name:

argv
child
echo
history
home
ignoreeof
mail
noclobber
noglob
nonomatch
path
prompt
shell
status
term
time
verbose

C Shell Predefined Variables

Func::tion:

Tracks command arguments
Records the number of last background command
Echos each command
Sets the length of the history memory
Sets the home directory
Sets response to control-D commands
Sets mailbox and frequency of mail checks
Sets file over-write protection
Sets filename expansion inhibitor
Sets "no match" error override
Sets search path for commands
Sets prompt
Sets shell (/bin/csh or /bin/sh)
irracks exit status of commands
Sets terminal type
Sets frequency of "time" report command
Sets verbose echoing of command lines

7e3. User-defined Variables

In addition to the built-in variables supplied with the C
Shell, non-built-in variables can be established and

7-15 Zilog 7-15

C SHELL Zilog C SHgLf.1

manipulated by each user.

A variable can be any character string of characters, and
can be set to anything -- numbers, letters, file or direc­
tory names, strings of numbers and letters, etc.

One handy trick is to set a directory name to a single
letter variable, as in the following example:

set M=/usr/doc/man/manl

With M set, the command:

cd $M

is the same as the command

cd /usr/doc/man/manl

Another trick is to set a variable to the date, as with the
conunand:

set DATE='date'

The variable DATE can then be manipulated in any number of
cre.=itive ways.

7.4. User-defined variable Substitutions

SYNOPSIS:

set name=value
set name[~]=value

Any word or character string can be set as a C shell vari­
able.

Given the command to set a variable named DATE to the date
with the conunand:

set DATE='date'

to see the contents of the DATE variable, the command:

echo $DATE

produces the output:

7-16 Zilog 7-16

C SHELL Zilog C SHELL

Fri Dec 17 17:24:08 PST 1982
--- --- -- -- -- --- ----r-

NOTE: Variables must be called with a dollar sign before the
name.

Each element in the string can be referenced with a sub­
script selector appended to the variable name as in:

echo $DATE[3]

to produce the third word in the string:

17

To check the number of words in the DATE variable, the com­
mand:

echo $#DATE

produces:

6

As part of a sequence of conunands in the body of a C shell
script it may be useful to determine whether a variable has
been set or not, thus the command:

echo $?DATE

will yield a 11 1" if DATE is set, and 11 8 11 if it is not set.

7-17

Table 7-2 Variable Substitution Syntax

Syntax:

$name
${name}
$name[N]
${name{N]}
$#name -
${#name}
$?name­
$number
${number}

Meaning:

The variable name
Insulate name from surrounding characters
Argument N of name
Argument N of name-
Give number of words in the variable
Give number of words in the variable
Substitute "l" if name is set "0" if not
Same as $argv[number]
Same as ${argv[number]}

Zilog 7-17

C SHELL Zilog C SHELL

Table 7-3 Metacharacters in Variable Substitution

Character: Meaning:

$N Same as $argv[N]
$0 Command file name (zeroth argument)
$?8 1 if current input filename is known, 0 if not
$* Same as $argv[*]
$$ Process I.D. number of parent shell

7.5. Using Modifiers in Variable Substitions

The modifiers ":h", ":t" and ":r", apply to variables the
way that they apply to commands.

For example, if the capital letter U is set to the directory
/z/deck/Util/New.csh, the following commands apply. First,
the command to echo the full variable:

echo $U
/~/deck/Util/New.csh

The :h modifier strips off the trailing filename (/New.csh)
leaving the head:

echo $U:h
/~/deck/Util

The :r modifier strips off the trailing filename suffix (the
csh portion after the dot) leaving the root:

echo $U:r
/~/deck/Util/New

The :t modifier strips off the head (/z/deck/Util) leaving
the tail portion of the name:

echo $U:t
New.csh -

If insulating braces " { } 11 appear in the command form, the
modifiers must appear within the braces.

7-18 Zilog 7-18

C SHELL Zilog C SHELL

Table 7-4 Variable Substitution Modifier Table

Modifier: Effect:

:h
:t
:r

Head only
Tail only
Root only

ALSO SEE:

7-19

See Section 4.5 -- Modifying Previous Command Words
Section 5 -- Built in Commands (modifiers)

Zilog 7-19

C SHELC Zilog

SECTIQN 8
THE CSH COMMAND AND C SHELL SCRIPTS

8ol. The Csh Command

SYNOPSIS:

csh
csh [-option] filename
filename

C SHELL

The C shell can be invoked at the prompt as a command. Used
as a command, and without an argument, as in the command:

csh

the parent C shell (the login shell) creates (forks) a new C
shell (referred to as a child process), re-reads and re­
executes the contents of the 4 /.cshrc file (but not the
-;.login file) and begins a new environment with a new his­
tory list.

By itself, the csh command creates a new working environment
with the default values (those established in the environ­
ment and in the -;.cshrc file). This is useful in a situa­
tion where the uier wishes to clear any new variables,
aliases, or history references from the immediate working
environment in order to test a shell script or some other
shell manipulation without logging off the system and then
logging back on. The csh command is of greater utility when
invoked from within a running program (e.g. vi(l), more(l)
and write(l)).

See Section 9.2 -- Other Related C Shell Files

8.2. Invoking Csh to Execute a Shell Script

SYNOPSIS:

csh filename

With a filename argument, where filename is the name of the
file containing one or more commands (the file is known as a
script or shell script), the C Shell attempts to execute the
file.

8-·1 Zilog 8-1

C SHELL Zilog C SHELL

For example, given a file named test having the following
lines:

ls
who
pwd
date

all commands in the file will be executed in succei:;sion with
the command

csh test

to produce the results:

csh.01
csh.02
csh.03
csh.04
csh.05
csh.06
csh.9T
refer.sheet

karen tty0
cheryl console
deck tty2
mike tty6
carol tty8
george tty9

Nov
Nov
Nov
Nov
Nov
Nov

/z/deck/Util/New.csh

Mon Nov 1 15:19:39

1 08:10
1 14:02
1 10:37
1 14:43
1 08:35
1 08:35

PST 1982

the csh command creates (forks) a
to as a child process). This new
the contents of the ~;.cshrc file
contents of the shell script,
each command in its turn (Spaces
output have been added to clarify

new C shell (also referred
C shell reads and executes
and then reads through the
line by line, and executes
between the sections of
the example).

When all the lines have been read, the new C shell (the
child) dies and control returns to the parent (login) C
shell (See Section 10 for a discussion of this process).

Executing a shell script with the csh command is ·~quivalent
to making the shell script executable with the chmod(l) com­
mand and typing the name of the file as if it wer•e a com­
mand. This is demonstrated in the following example:

8-2 Zilog 8-2

C SHELL Zilog

chmod 777 filename
filename

8.3. Using C Expressions in Scripts

Shell scripts can become far mo.re complex than a collection
of single line commands. A number of built-in commands can
be used in expressions using operators similar to those of
the C programming language (Refer to the book The C Program­
ming Language by Brian Kernighan and Dennis RichieT.

These expressions can be used with the @(set), exit, if, and
while commands. Table 8-1 shows the available operators:

Table 8-1 Relational Operators in C Shell Scripts

Character:

11
&&
I

A

&
-- !=
<= >= <

<< >>
+
* I %
1

()

>

Meaning:

Logical "or"
Logical "and"
Bitwise inclusive "or"
Bitwise exclusive "or"
Bitwise "and"
Equal to; Not Equal to
Less than or equal to, Greater than
or equal to, Less than, Greater than
Shift operators
Add, Subtract
Multiply, Divide, Modulo
Negation
Complement
Parenthesis -- bracket expressions

Precedence increases: from top to bottom. Operators on the
same line are left to right associative.

NO'?E

The "equal to" and "not equal to" operators "
=" and " !=") compare arguments as strings; all
other operators~ operate ~ numbers.

The expression:

if $argv[l] -- temp

8-3 Zilog 8-3

C SHELL Zilog C SHELL

will try to match the contents of $argv[.!_] with a file named
temp, while the expression

if $argv[l] >= temp

will produce a syntax error.

Null or missing arguments are considered 11 0 11
• Thus,,

variable a is set to 11 1 11
, the expression:

if ($a >) echo hi

will echo "hi".

if the

The result of all expressions are strings which represent
decimal numbers.

All operators must be separated from the surrounding text
with spaces except the following characters:

ampersand
pipe
less than
greater than
parenthesis

"&"
II I "
II (II

">II

II (II and II) II

which can be placed next to the operands, as in thE~ example:

t
set a=4
if ($a>3) who

which executes the who command.

8.4. Examples of Shell Scripts using Operators

8. 4·.1. And and Or Operators:

The following operators are useful in conditional expres­
sions where the values of expressions and commands need to
be evaluated -- "true" and/or "false".

The following "truth table" illustrates results of these
operators:

8-4 Zilog 8-4

C SHELL Zilog C SHELL

0 = false
1 = true
a = left side of the operator
b = right side of the operator

I 1

&
a b &&

0 0 0 0 ~'
0 1 1 0]_

1 0 1 0 1
1 1 1 1 ~'

Figure 8-1 Truth Table

Using the following syntax:

if (expression.~ operator expression.£) command

and with the logical~ "or" operator "~I" if expression.~ is
"true" -- giving it a value of 1", and expression.b is
"false" -- giving it a value of "0", then the net result- of
these two express ions is "true'' (giving it a value of "l"
see the third line of the table above). and an attempt will
be made to execute command.

Consider the following shell scripts:

11 Logical "or"

t
set a=l
set b=9
if ($a== 1 II $b == 1) who

This script executes the who command.

&& Logical "and"

8-5

t
set a=l
set b=9
if ($a == 1 && $b == 9) who

This script executes the who command.

Bitwise inclusive "or"

Zilog 8-5

t
set a=l
set b=9

Zilog

if ($a == 1 I $b == 1) who

This script executes the who command.

Bitwise exclusive "or"

t
set a=l
set b=9
if ($a. == 1 "" $b == 1) who

This script executes the who conunand.

& Bitwise "and"

t
set a=l
set b=9
if ($a == 1 & $b == 9) who

This script executes the who conunand.

8.4.2. Relational, Equality Operators:

- Equal to

I
set a=l
if ($a == 1) who

This script executes the who conunand.

1= Not Equal to

t
set a=l
if ($a 1= 9) who

Th.is script executes the who conunand.

<= Less than or equal to

t
set a=l
if ($a <= 9) who

This script executes the who command.

8-6 Zilog

C SHELL

8-6

C SHELL Zilog C SHELL

>=· Greater than or equal to

set a=l
if ($a >= 1) who

This script executes the who command.

< Less than

I
set a=l
if ($a < 1.) who

This script executes the who command.

> Greater than

i
set a=l
if ($a > 0) who

This script executes the who command.

8.4.3. Shift Operators:

<< Left Shift operators Shifting is a binary operation.

>>

8-7

Essentially, shifting a number left 1 is the same as
mutilpying by 2. By the same token, shifting a number
left 3 (n << 3) is the same as multiplying that
number by 8 (2 to the 3rd) .

I
@ x=2
@ y=($x << 1)
if ($y == 4) who

This script executes the Who command.

Right Shift operators Shifting
two, shifting right 3 (n >> 3
ing by 8 (2 to the 3rd.)

@ x=4
@ y=($x >> 1)
if ($y == 2) who

right is dividing by
) is the same as divid-

This script exe!cutes the who command.

Zilog 8-7

C SHELL Zilog C SHELL

8.4.4. Math Operators:

+ Addition

*

t
@ a=l+3
if ($a == 4) who

This script executes the who command.

NOTE

Note the use of the at sign "@" in the context of
a math operation. This assigns a decimal numbcer to
the variable, rather than assigning a strin9 to
the variable.

Subtraction

@ a=9-l
if ($a == 8) who

This script executes the who command.

Multiplication

t
@ a=2*4
if ($a == 8) who

This script executes the who command.

I Division

t
@ a=8/2
if ($a == 4) who

This script executes the who command.

% Modulo

I
@ a=9%4
:if ($a == 1) who

This script executes the who command.

8-8 Zilog 8-8

C SHELL Zilog

8.4.S. Other Operators:

1 Negation

t
set a=l
if ($a 1= 9) who

This script executes the who command.

() Parenthesis -- bracket expressions

t
set a=l
set b=9
if ($a == 1 & $b 9) who

This script executes the who command.

8.5. File Inquiry Operators

C SHELL

File inquiry operators are used to test the qualities of a
given file. When used with an if statement, the expression
is used with the following synopSTs:

t
if (-operator filename) command

In the above example, if the file filename meets the condi­
tions set by the operator, the following command is exe­
cuted.

The exclamation point 11 1 11 is used to test if the condition
is not met, as in the synopsis:

I
if (I -operator. filename) collimand

The following file inquiry operators are available.

8-9 Zilog 8-9

C SHELL Zilog

Table 8-2 File Inquiry Operators

Character:

r
w
x
e
0

z
f
d

Meaning:

read access
write access
execute access
existence
ownership
zero size
plain file
directory

C SHELL

If the file does not exist or is inaccessible, then all
inquiries return "0'" (the value of a false expression).

If more detailed status information is required, the command
should be executed outside of an expression and the variable
status examined (see Section 7.1 "Predefined C Shell
Variables" The Status Variable) •

An example of a file inquiry operator used in a shell script
is:

I
if (-e test) echo "The test file is here"

If the file named "test" exists in the current working
directory, this script will echo "The test file is here".

8.6. Options to the Csh Command

SYNOPSIS:

csh -option filename

-c Commands are read from the (single) following argument
that must be present. Any remaining arguments are
placed in argv.

-e The C shell exits if any invoked command terminates
abnormally or yields a nonzero exit status.

-f The C shell starts faster, because it neither searches
for nor executes commands from the file -;.cshrc in the
invoker's home directory.

8-10 Zilog 8-10

C SHELL Zilog C SHELL

-i The C shell is interactive and prompts for its top­
level input, even if it appears to not be a terminal.
Shells are interactive without this option if their
inputs and outputs are ter~inals. and outputs are ter­
minals. Commands are parsed, but not executed. This
aids in syntactic checking of C shell scripts.

-s Command input is taken from the standard input.

-t A single line of input is read and executed. A \ can
be used to escape the new line at the end of this line
and continue onto another line.

-v Causes the verbose variable to be set, with the effect
that commancr--input is echoed after history substitu­
tion.

-x Causes the echo variable to be set, so that commands
are echoed immediately before execution.

-v Causes the verbose variable to be set even before
.cshrc is executed.

-X Causes the echo variable to be set before .cshrc is
executed. After processing of flag arguments, if argu­
ments remain but neither the -c, -i, -s, or -t options
are given, the first argument (argument 0 -- the name
of the C shell script) is taken as the name of a file
of commands to be executed. The C shell opens this
file, and saves its name for possible re-substitution
by $0. The C shell executes a standard (Bourne) shell
if the first character of a script is not a pound sign
"t". All the remaining arguments are placed in the
variable argv.

8-11

Option:

-c
-e
-f
-i
-s
-t
·-v
-x
-v
-x

Table 8-3 Options to the Csh Command

single argument only
exit on error
faster (doesn't read -;.cshrc)
interactive -- prompts for input
take commands from standard input
read and execute single line of input
verbose -- echo commands after history
verbose -- echo commands before history
verbose variable set before -;.cshrc is read
verbose set before -;.cshrc and before history subs

Zilog 8-11

C SHELL Zilog C SHELL

8.7. Comment Lines in the Shell

In general, for the C shell, a word beginning with a pound
sign "I" causes that word and all the following characters
up to a new-line to be ignored.

As the first character, in the first column on the first
line of a shell script, the pound sign means "use the C
shell (/bin/csh) to execute this script." Other characters
in the first position mean other things. Please refer to the
following chart for the specific meanings:

8-12

Table 8-4 Shell Script Shell Indicators

First Line in Script: Meaning:

Use the "Bourne" shell -- /bin/sh
Use the "C" shell -- /bin/csh
Error, can't determine which shell
Use the shell in the file /xxx

#!sh
l!csh
i!
l!/xxx
x Any character other than "#HUsies /bin/sh

Zilog 8-12

C SHELL Zilog C SHELL

SECTION 9
C SHELL FILES

9.1. Start-up Files

The letters "re" appErnd certain filenames. These initials
stand for "read command". Thus the file -; .cshrc is the
"csh read command" file. Each time the C shell (csh) is
invoked it reads and executes the contents of this file.

"Re" files are read at different times by the shell (and
other programs) to perform different tasks. The file named
"/etc/re csh" is read each time the ZEUS operating system is
booted TRefer to the System Administrator Manual for more
details). Another "re" files is n-;.exrc" which is read each
time the ex(l) editor or vi(l) editor is called.

In addition to the ":re" files, there are a number of other
files that hold importance for the C shell.

Table 9.1 shows the built-in files that are important to the
system. Other files can be defined and used by each user as
needed.

Table 9-1 Special Files

-;.cshrc
-;.login
-;.logout
-;.exrc
-;.profile
/bin/sh
/bin/csh
/dev/null
/etc/cshprof ile
/etc/passwd
/etc/group
/tmp/sh*

There are no clear rules for the implementation of the ini­
tialization files (""/.cshrc, -;.login, -;.logout and
-;.exrc). The examples provided are merely suggestions,
they have been presented to suggest a limited range of pos­
sibilities, some experienced users prefer much more ela­
borate files. It is a matter of taste.

9-1 Zilog 9-1

C SHELL .Zilog C SHELL

NOTE

The convention " -;.file " refers to the fact: that
the file must be lnthe user's home directory.
Ei thert°he C Shel 1, or the operating s:ystern
(ZEUS) looks in that specific directory for the
particular file.

9.1.1. -;.cshrc:

The "-/.cshrc" file is read at the
shell. At login, the """/.cshrc"
"""/.login_" file.

execution of each C
file is read before the

The -;.cshrc file should contain commands that are needed
for every shell~

I -;.cshrc file
set ignoreeof
set history=15
set mail=(S /usr/spool/mail/deck)
set prompt="'whoami' I > n
stty erase AH kill Ax
umask 2
set u=-/Util/New.csh
alias h history
alias bye logout

Figure 9-1 A Sample ""/.cshrc File

I .cshrc file
The -;.cshrc file is read by the C shell, thus it must
begin with a pound sign. The ".cshrc" label is ignored
as a comment.

set ignoreeof
The ignoreeof variable makes the C shell ignore
accidental control-Os and thus, accidental "logout's"

ALSO SEE:

Section 7.1 -- Predefined C Shell Variables

set history=l5

9-2

The history variable controls the size of the history
list.

Zilog 9-2

C SHELL Zilog C SHELL

ALSO SEE:

Section 7.1 -- Predefined c Shell vaciables.
Section 4 -- The History Function

set mail={S /usr/spool/mail/deck)
The mail variable sets the frequency of new mail checks
(in this casE~, 5 seconds between checks). The second
argument sets the location of the mailbox. The time
variable can be left out, but if it is included, the
expression must be enclosed in parentheses.

ALSO SEE:

Section 7.1 -- Predefined C Shell Variables.

set prompt="'whoami"· # \! >"

The prompt variable sets the ZEUS "ready" signal to the
user. In this case, the prompt consists of: the
"'whoami'" command which, since it is enclosed in
backquotes is replaced by login name of the user; a
pound sign, the backslash- exclamation point is
replaced by a number that increments by 1 with each
command; and a "greater than sign" which is used here
to show the end of the prompt -- in this context it has
no special (metacharacter) meaning. Other features of
the prompt could include special terminal screen attri­
butes (reverse video, flashing, etc.)

ALSO SEE:

Section 7.1 -- Predefined c Shell variables.

stty erase ~H kill ~x
stty(l) is a command external to the C Shell (it is not
a built in comm1and) which sets various terminal charac­
teristics Here, the erase character is set to a
control-H (the traditional backspace key), and the kill
character is set to control-X.

ALSO SEE:

stty (1)

wnask 2

9-3

The built-in command umask sets the file protection
mode for newly created files. A umask value of 2 sets a
file protection mode which permits read and write per­
mission for the user, the group, and read permission
for everyone else (rw-rw~r--) •

Zilog 9-3

C SHELi".. Zilog C SHELL

ALSO SEE:

Section 5.2
Prompt.

General Purpose Commands from the

set u=-/Util/New.csh
This is a user-defined variable. The command cd $U is
the same as cd -;util/New.csh. $U is a shorthand
notation.

ALSO SEE:

Section 7.3 User-defined variables

alias h history

alias bye logout
If an alias is needed from within a sub-shell, the
alias command should be placed in the -;.cshrc file
since each new shell begins with its own alias list
(aliases that are set in the -;.login file will not be
exported to new shells).

ALSO SEE:

Section 5.3 Environmental Commands from Prompt.

9.1.2. -;.login:

The -;.login file is read by the shell at login just after
the -;.cshrc file. It is read once at login thus it should
contain commands that either export across shells (see Sec­
tion 10 for a discussion of the Environment variables and
exporting) , or commands that are needed only once at the
beginning of the session at the terminal (in this category
might fall a reminder program or a calendar(l) program.)

9-4

I .login file
setenv EXINIT "set number wm=29 I version"
setenv HOME /z/deck
setenv PATH .:/usr/bin:/bin:-/bin:/usr/games
setenv SHELL /bin/csh
set prompt="% "
echo " 11

cat -;.reminder
echo 11 11

calendar

Figure 9-2 A Sample -;.login File

Zilog 9-4

C SHELL Zilog C SHELL

t .login file
The ~login file is also a shell script, read by C
shell, thus it must begin with a pound sign. The
".login" label is ignored as a comment.

setenv EXINIT "set number wm=20 I version"

The EXINIT variable takes the place of -;.exrc file
it is read by the ex cornmand to pre-set ex options. In
this case, the number and word margin options are set,
and the versic>n command i'S"e"Xecuted. The EXINIT vari­
able is faster than the -;.exrc file since it is
eKported with each new shell and need not be re-read
each time the editor is· called.

ALSO SEE:

Section 10.2 Environment variables Explained.

setenv HOME /z/deck
The HOME variable is set to this user's home directory.

ALSO SEE:

Section 10.2 -- Environment variables Explained.

setenv PATH .:/usr/bin:/bin:-/bin:/usr/games
The PATH variable is set to a number of directories
with useful commands in them.

ALSO SEE:

Section 10.2 -- Environment variables Explained.

setenv SHELL /bin/csh
The SHELL variable sets the login shell to be the c
Shell.

ALSO SEE:

Section 10.2 -- Environment Variables Explained.

set prompt="% "

9-5

The first prompt is set to the default: the percent
sign.

ALSO SEe!:

Section 7 -- Shell Variables.

Zilog 9-5

C SHELL Zilog C SHELL

This command simply provides a space between any exist­
ing material on the screen (like the message of the
day) and the material that follows.

cat -;.reminder
This user has created a reminder file for upcoming
events. This command reads that file at each login.

echo .. "

This command provides another blank line.

calendar
This command executes the user's calendar.

ALSO SEE:

calendar(!)

9.2. Other Related C Shell Files

9.2.1. -;.logout:

The -;.logout file is read by login shell, at logout. It
should contain any information the user needs just before
leaving the terminal session.

I

I .logout file
who
echo n "

date
echo " "
cd; calendar

Figure 9-3 A Sample -;.logout File

.logout file
The .logout file is a shell script, read
thus it must begin with a pound sign.
file" label is ignored as a comment.

by C shell,
The ".logout

who At logout, the who command informs the user of the
other users left on the system.

echo II II

Blank line ..

9-6 Zilog 9-6

C SHELL Zi log C SHELL

date The date command.

echo n "

Blank line.

cd; calendar
The cd; calendar command executes the calendar in this
user's home directory for information on the next day's
schedule.

9.2.2. -;.exrc:

The -;.exrc file is read when the ex or vi editors are
called. The shell ·variable EXINIT performs the same func­
tion.

The -;.exrc file is read by the ex or vi editors, not the c
shell, thus no comment lines are available.

SEE ALSO:

Ex Reference Manual in the Zeus Utilities Manual for the
available ex and vi options.

set number
set wm=29
set noredraw
set slowopen
set showmatch
version

Figure 9-4 A Sample -;.exrc File

9.2.3. /bin/sh:

This file contains the Bourne shell, for shell scripts not
starting with a pound sign "I"

ALSO SEE:

The Bourne Shell in the Zeus Utilities Manual

9.2.4. /bin/csh: This file contains the C shell, for shell
scripts starting with a pound sign "I"

ALSO SEE:

csh (1) •

9-7 Zilog 9-7

C SHELL Zilog

ALSO SEE:

csh (1) •

9.2.5. /dev/null:

This system file is the source of empty files.
directed to this file is lost.

9.2.6. /etc/cshprofile:

C SHELL

Any output

The /etc/cshprofile file is like the -;.cshrc file~, except
it is read at the system level, before the -;.cshrc file is
read. It contains parameters· for each C Shell operating
environment. It is read by the login shell, before -;.cshrc
file.

ALSO SEE:

cshrc(5).

9.2.7. /etc/passwd:

This system file is the source of home directories and other
basic login information.

ALSO SEE:

passwd(5)
Zeus Administrator Manual

9.2.8. /tmp/sh*::

Temporary file for " << " input.

In programs that take input from the body of a shell script
with the double 'less than' signs, the shell makes a copy of
the input and places it in a new file named /tmp/shNNNN,
where NNNN is some number assigned by the shell and used to
distinguish one /tmp/sh file from any other.

The input for the shell script is then read from this tem­
porary file in /tmp.

ALSO SEE:

Section 2.9.2 -- Input Within a Script

9-8 Zilog 9-8

C SHELL Zilog

SECTION HI
THE ENVIRONMENT

C SHELL

The Environment is a list of variables that are available to
all the programs executed by the shell which created the
environment variables.

Every time a shell is created (forked}, it reads in the
variables set in the environment. Each shell, thus inherits
these environment variables and their values.

Environment variables can be considered "global" variables,
while C shell variables can be considered "local" variables.
Like c shell variables, there are pre-defined environment
variables and user-defined environment variables.

Because environment variables a~e inherited they need be set
only once at login in the -;.1o~in file which is read at the
beginning of each login ses~ion. These variables are
exported to all subsequent shells, they are available to all
subsequent programs without the need to re-set them for each
program.

Environment variables are established with the following
syntax:

setenv NAME value

This command can be given at the prompt, or written into one
of the "start-up" files (the -;.login file is recommended
since the command needs to be read only once). Naming
environment variables with all capital letters is merely a
useful device to tell the two kinds of variables apart.
Environment variables can be named with any string of char­
acters.

10.1. Environment Variables

Environment variables are useful where a variable must be
used across a number of different shells.

The table below shows the predefined ~nvironment variables
and their meaning:

10-1 Zilog 10-1

C SHELL Zilog C SHEJ:.,L

EXINIT
HOME
LOG NAME
PATH
SHELL
TERM
TERMCAP
TZ

Table 10-1 Environment Variables

Ex editor initialization variables
Home directory
Login name
Search path for commands
Shell being used
Type of terminal
File from which the TERM is read
Timezone

10.2. Environment Variables Explained

In the ZEUS operating system, environment variables are read
by each new C shell and given corresponding values with a
corresponding named transliterated into lower case. These
new "name/value" pairs become new C shell variables avail­
able locally to the new shell.

10.2.1. EXINIT:

SYNOPSIS:

setenv EXINIT options

EXINIT stands for "ex initialization"; the EXINIT variable
initializes the ex editor options.

One example of a command to set the EXINI.T variable is:

setenv EXINIT "set number wm=28 showmatch I version"

which sets the editors line number function, sets the
"wrap-margin" function to 20 spaces from the right margin,
sets the "showmatch" options {which highlights matching
brackets, parenthesis, and braces), and prints the "version"
of the editor each time ex or its visual counterpart vi are
called.

Note that multiple commands are set in quotes, and that the
set routine is piped through the version corrunand.

The EXINIT variable performs the same function as its prede­
cessor, the -;.exrc file, however, it is faster since the
EXINIT variable is automatically a part of the ex environ­
ment, while the -;.~file must be read each time the edi­
tor is called.

10-2 Zilog 10-2

C SHELL Zilog C SHELL

DE-FAULT:

unset

SEE ALSO:

The EX Reference Manual in the ZEUS Utilities Manual

H,. 2. 2. HOME:

SYNOPSIS:

setenv HOME /path/home.directory

The HOME variable se!rves the same function as the home vari­
able----rii the c shell. It established the location for the cd
conunand, and the file name for the tilde .. - .. when it is used
as a metacharacter.

If the home variable! is not set (either in the - /. cshrc
file, the -;.login file, or at the prompt) the home variable
takes its value from the HOME variable. That is~he value
of HOME is exported to each new C shell as it is created
(forked).

Regardless of the shell invoked, each new process inherits
the values of all set environment variables. Both shells
read (and inherit) the values set in the environment.

DEFAULT:

HOME /path/users.home.directory

Unless otherwise set, the HOME variables takes its value
from the home directory field of the /etc/passwd file.

18.2.3. LOGNAME:

SYNOPSIS:

setenv LOGNAME name

The LOGNAME variable holds the user's login name.

10-3 Zilog 10-3

C SHELL Zilog C SHELL

Hf. 2.4. PATH:

SYNOPSIS:

setenv PATH /path/directory:/path/directory

The PATH variable serves the same function as the ;eath vari­
able for the C shell.

EXAMPLE:

setenv PATH .:/usr/bin:/bin:-/bin:/etc:/usr/gairnes

DEFAULT:

PATH .:/usr/bin:/bin

10.2.5. SHELL:

SYNOPSIS:

setenv SHELL /path/shell.program

The SHELL variable serves the same function as the shell
variable for the C shell.

EXAMPLE:

setenv SHELI, /bin/ csh

DEFAULT:

SHELL /bin/csh

Unless otherwise set, the SHELL variables takes its value
from the shell field of the /etc/passwd file.

HJ • 2 • 6 • TERM:

SYNOPSIS:

setenv TERM terminal.~

The TERM variable serves the same function as the term vari­
able for the C shell.

10-4 Zilog 10-4

C SHELL Zilog C SHELL

EXAMPLE:

setenv TERM vz

DEFAULT:

TERM vz

Unless otherwise set, the TERM variables takes its value
from the /etc/ttytype file-.---

10.2.7. TERMCAP:

SYNOPSIS:

setenv TERMCAP /path/directory

The TERMCAP variable holds the name of the file used to
establish the TERM commands.

EXAMPLE:

setenv TERMCAP '"'/bin/new. termcap

DgFAULT:

unset

Although the TERMCAP variable is unset by default, the TERM
value is taken from the file /etc/termcap.

10.2.8. TZ:

SYNOPSIS:

setenv TZ timezone

The TZ variable holds the timezone of the machine, in hours,
measured from Greenwich mean time.

EXAMPLE:

setenv TZ PST8PDT

DEFAULT:

set at each sitE~ in the /~/re csh file

10-5 Zilog 10-5

C SHELL Zilog C SHELL

APPENQIX A
GLOSS

1

ARY

Important terms presented in this document are listed in
this Appendix. References of the form (2.5) or (Section 2)
indicate that more information .is available in Section 2.5
or Section 2 of this document. References of the form pr(l)
indicate that the command pr is documented in Section 1 of
the ZEUS Reference Manual.

Dot •
The current directory is a file that has the name " "
(referred to as Dot) as well as the name printed by the
command pwd. The--current directory is usually the
first component of the search path contained in the
variable path. Thus, commands that are in . are found
first (7.1.11). The period character is also used to
separate components of file names (3.2).

The dot character • at the beginning of a component of
a path name is treated specially and is not matched by
the file name expansion metacharacters question mark
" ? ", asterisk " * ", and the left and right brackets
" [" and "] " pairs (3.1).

Dot-Dot ••

A-1

Each directory has a file " •• "·referred to as dot­
dot, which is a reference to the directory immediately
above in the file system hierarchy. This directory is
known as the parent directory. After changing direc­
tories with cd, for example,

cd paper

it is possible to return to the parent directory by
entering

cd ••

The current directory is printed by pwd (3.2).

Zilog A-1

C SHELL Zilog C SHELL

A
alias

An alias specifies a shorter or different name for a
ZEUS command, or a transformation on a command to be
performed in the shell. The shell command alias estab­
lishes aliases and can print their current values. The
command unalias is used to remove aliases (5.3.1).

argument
Commands in ZEUS receive a list of argument words.
Thus, the command

echo a b c

consists of a command name echo and three argument
words a, b, and c. (5.2.2).

argv The list of arguments to a command written in a shell
script or shell procedure is stored in a variable
called argv within the shell. This name is taken from
the conventional name in the C programmin9 language
(The f Programming Language by Brian w. Kernighan and
Dennis M. Ritchie Zilog part # 03-3161).

B
background

A background command is a command thaf runs while the
shell executes other commands. It is also known as a
"detached" command, because it is "detached" from its
dependence upon the terminal. (2.5).

bin A directory containing binaries of programs and shell
scripts to be executed is typically called a bin direc­
tory. The standard system bin directories are /bin,
which contains the most "heavily used commands, and
/usr/bin, which contains most of the other user pro­
grams. Binaries can be placed in any directory. The

A-2 Zilog A-2

C SHELC Zilog C SHELL

break

name of the directories should be a component of the
variable

exit from loops within the control structure of the
shell (6. 5.1).

built-in
A command executed directly by the shell is called a
built-in command. Most commands in ZEUS are not built
into the shell, but exist as files in /bin directories.
These commands: are accessible because the directories
in which they I'eside are named in the path variable.

c
case A case command is used as a label in a switch statement

in the shell's control structure, similar to that of
the language C (6.4).

cat The cat program prints out specified files on the stan­
dard output (the terminal). It is usually used to look
at the contents of a single file on the terminal
(cat(l)).

cd The cd command changes the working directory. With no
arguments, cd changes the user's working directory to
be the user's~~ directory (7.1.5).

cmp It is usually used on binary files, or to see if two
files are idemtical (cmp(l)). For comparing text
files, use the program diff, described in diff(l).

command
A function performed by the system, either by the shell
or by a program residing in a file in the ZEUS system,
is called a command.

command substitution
The replacement of a command enclosed in back quote (')
characters by the text output by that command is
referred to as command substitution.

component
A part of a ~:h name between slash (/) characters is

A-3 Zilog A-3

C SHELL Zilog C SHELL

called a component of that path name. A variable that
has multiple strings as its value is said to have
several components; each string is a component of the
variable.

continue
A built-in command that causes execution of the enclos­
ing foreach or while loop to cycle prematurely. Similar
to the continue command in the C programming language
(6 .• 5.2).

core dump
When a program terminates abnoi:mally, the system places
an image of its current state in a file named core.
The core dump can be examined with the system debuggers
adb(U-tOdetermine what went wrong with the program.
If, for a system program, the shell produces a message
of the form:

~ommand: Segmentation violation -- Core dumped

(where "Segmentation violation" is only one of several
possible messages) •

cp The copy (cp(l)) program copies the contents of one
file into another file •

• cshrc
The file .cshrc in the home directory is read by each
shell as it begins eXee'Ution. It is usually used to
change the setting of the variable path and to set
effect globally (9 .1.1).

D
date The date(l) command prints the current date and time.

debugging
Debugging is the process of correcting mistakes in pro­
grams and shell scripts. The shell has several options
and variables that can be used to aid in shell debug­
ging~

default
The label default: is used within shell switch

A-4 Zilog A-4

C SHELL Zilog C SHELL

statements to label the code to be executed if none of
the case labels matches th~ value switched (6.4).

DELETE
The DELETE or RUBOUT key oh the terminal is used to
generate a ZEUS interrupt signal that stops the execu­
tion of most programs (6.6.3).

detached
A command that runs while .the shell is executing other
commands is referred to as detached or "running in
background" (2. 5).

diagnostic
An error message produced by a program is often
referred to as a diagnostic. Most error messages are
not written to the standard output (the terminal),
since the output of that is often directed away from
the terminal (2.9.3). Instead, error messages are
written to the diagnostic output, which usually appears
on the terminal (2. 9. 5).

directory
A structure that contains files is called a directory.
The home directory is the directory in which the user
is placed upon loggin in (7.1.5).

E
echo The echo command prints strings (arguments). (5.2.2).

else The else command is part
control command construct

of the
(6.3).

"if-then-else-endif"

EOF An end-of-file is generated whenever a command reads to
the----ena-o~file that it has been given as input. It
can also be generated at the terminal with a control-a.
Commands receiving input from · a pipe receive an EOF
when the command sending them input---COmpletes. Most
commands terminate when they receive an EOF. The shell
has an option to ignore EOF from a terminal input,
which makes it possible to avoid logging out acciden­
tally by typing too many control-d's (7.1.6).

A-5 Zilog A-5

C SHELL Zilog C SHELL

escape
A backward slash (\) character used to prevent the spe­
cial meaning of a metacharacter is said to ~scape the
character from its special meaning. Thus,

echo *

echoes the character *, while

echo *

echoes the names of the file in the current directory.
In this example,\ escapes* (3.3).

/etc/passwd
This file contains information about the accounts
currently on the system. It consists of a line for
each account with fields separated by colons ":"
(9.1.9). This file can be examined by entering

cat /etc/passwd

The command grep is often used to search for informa­
tion in the file. See passwd(5) and grep(l) for more
details.

exit The exit command, which is built into the shell, is
used to force termination of a shell script (5.3.2).

exit status
A command that uncovers a problem can reflect this
problem back to the command that invoked it by return­
ing a nonzero number as its considered normal termina­
tion. The exit command can be used to force a shell
command script to give a nonzero exit status (7.1.14).

expansion
Replacing shell input strings that contain metacharac­
ters with other strings is referred to as the process
of expansion. For example, replacing the word * with a
sorted list of files in the current directory is a file
name expansion. Replacing the characters !! with the
text of the last command is a history E~xpansion.
Expansions are also referred to as substitutions (Sec­
tion 3) .

expressions

A-6

Expressions are used in csh to control the conditional
structures used in writing shell scripts and in calcu­
lating values for these scripts. The operators avail­
able in csh expressions are those of the C language

Zilog A-6

C SHELL Zilog C SHELL

(Section 6) .

extension
File names often consist of a root name and an exten­
sion, separated by the p-er iod character (.) • By con­
vent ion, groups of related files often share the same
root name. Extensions are added to differentiate among
files within the group. Thus, if prog.c is a C pro­
gram, the object file fot this program would be stored
in prog.o. Similarly, a paper ~ritten with the -ms
nroff macro package might be stored in paper.ms, while
a formatted version of this paper might be kept in
paper.out and a list of spelling errors in paper.errs.

F
file.name

Each file in ZEUS has a name consisting of up to 14
characters, not including the· slash character (/),
which is used in path name building. Most file names
do not begin with the period character. They contain
only letters and digits, with perhaps a period separat­
ing the root portion of the file name from an exten­
sion.

file name expansion

flag

A-7

File name expansion uses the metacharacters *, ?,
], {, and} to provide a convenient mechanism for nam­
ing files. Using file name expansion makes it easy to
name all the files in the current directory, or all
files that have a common root name. Other file name
expansion mechanisms use the metacharacter - and allow
files in other users' directories to be named easily
(3.1).

Many ZEUS commands accept arguments that are not the
names of file~s or other users, 'but are used to modify
the action of the commands. These are referred to as
flag options and, by conv~ntion, consist of one or more
letters preceded by the hyphen (-) character (2.2).
For example, the ls list file command has an option to
list the sizes of files. This is specified

ls -1

Zilog A-7

C SHELL Zilog C SHELL

foreach
The foreach command is used in csh scripts and at the
terminal to specify repetition of a sequence of com­
mands while the value of a given csh variable falls
within a specified range (6.1).

G
getty

The getty program determines the speed .at which the
terminal is to run when the user first logs in. It
displays the initial system banner and login.

goto The csh command goto is used in csh scripts to transfer
control to a given label (6.5.3).

grep The grep command searches through a list of argument
files for a specified string. For example,

grep roberta /etc/passwd

prints each line in the file /etc/passwd that contains
the string roberta. Actua11-y;-grep scans for regular
expressions in the sense of the editors ed(l) and ex(l~
Grep stands for "globally find regular exprE~ssion and
print".

H
hangup

When a user hangs up a phone line, a hangup signal is
sent to all running processes on the user's terminal,
causing them to terminate execution prematurely. To
allow commands to continue running after logging off a
dialup, use the command nohup (6.6.2).

head The head command prints the first few lines of one or
more files. Run the head program with a group of file
names as arguments to get a general idea of the

A-8 Zilog A-8

C SHEl:...L Zilog C SHELL

contents of the files (head(l)).

history
The history function of csh allows previous commands to
be repeated. Csh has a history list where these com­
mands are kept, and a history variable that controls
how long the list is. (Section 4).

home directory

I

Each user has a home directory, that is given in the
password file. The user is placed in the home directory
when first logging in. The cd command with no argu­
ments returns the user to this directory. The name of
this directory is recorded in the shell variable home.

if The if command is a conditional command used in csh
command scripts to determine what course of action to
take next (6. 3).

ignoreeof
Normally, the ·user's shell exits, printing logout if
the user types a control-d at a % prompt. This is the
usual way to log off the system. The user can set the
ignoreeof variable in the ignoreeof in the .login file,
and then use logout to log out. This is useful to
avoid accidentally logging off by typing too many
control-d characters. (7.1.6).

input

A-9

Information taken from the terminal or from files is
called input. Commands normally read input from their
standard input which is, by default, the terminal. The
metacharacter "less than" "<" followed by a file name
can be used to cause input to be read from a file.
Many commands also read from a file specified as an
argument. Commands placed in pipelines are read from
the output of the previous command in the pipeline.
The leftmost command in a pipeline reads from the ter­
minal if its input is not redirected and if a file name
is not given to use as standard input. Special mechan-
isms exist for supplying input to commands in csh
scripts (2.9.1).

Zilog A-9

C SHELL Zilog C SHELL

in·terrupt
An interrupt is a signal that causes most programs to
stop execution. It is generated by pressing the RUB or
DEL key. Certain programs such as csh and the editors
handle an interrupt in special ways, usually by stop­
ping what they are doing and prompting for another com­
mand. While csh is executing another command and wait­
ing for it to finish, csh does not respond to inter-
rupts. (2. 5) •

K
kill The kill program terminates processes (kill(l)).

L
.login

The file .login in the user's home directory is read by
csh each time the user logs---ro-to ZEUS; the~ commands
there are executed (9.1.2).

logout
The logout command causes a login shell to exit. Nor­
mally, a login shell exits when control-d is pressed,
generating an EOF. If ignoreeof has been set in the
.login file, control-d does not work, and it is neces­
sary to use the command logout to log off the ZEUS sys­
tem (5 . 3 • 3) .

• logout
When a user logs off of ZEUS, the shell prints logout
and executes commands from the file .logout in the
user's home directory.

lpr The command lpr is the line printer command. The stan­
dard input of lpr is spooled and printed on the ZEUS
line printer. It is possible to give lpr a list of
file names as arguments to be printed. It is common to
use lpr as the last component of a pipeline (lpr(l)).

A-10 Zilog A-10

C SHELL Zilog C SHELL

ls The list file (ls) command is one of the most commonly
used ZEUS commands. With no argument file names, it
displays the names of the files in the current direc­
tory. It has a number of useful flag arguments. It
can also be given the names of directories as argu­
ments, in which case it lists the names of the files in
these directories (ls(l)).

M
mail The mail program is used to send and receive messages

from other ZEUS users (mail(l)).

make The make command is used to maintain one or more
related files and to organize functions to be performed
on these files. Its primary use is maintaining a single
program consisting of several source files. In many
ways, make is easier to use, and more helpful, than
shell command :scripts (make(l)).

makefile
The file containing the commands for make is called
makefile.

metacharacter

mkdir

Many characters that are neither letters nor digits
have special meaning, either to the shell or to ZEUS.
These characters are called metacharacters. It is
necessary to enclose these characters in quotes if they
are used in arguments to commands and no special mean­
ing is required. An example of a metacharacter is the
character >, which is used to indicate placement of
output into a file. For the purposes of the history
mechanism, most unquoted metacharacters form separate
words (Section 3). Appendix A of this document lists
the metacharacters.

The mkdir command is used to create a new directory
(mkd i r (1)) .

modifier

A-11

A modifier is a part of a command line that changes the
way the original command is interpreted. Substitu­
tions, with the history mechanism (keyed by the

Zilog A-11

C SHELL Zilog C SHELL

character l), or of variables using the metacharacter
$, are often subjected to modifications, which are
indicated by placing the character : after the substi­
tution and following this with the modifier itself
(Section 4) •

N
noclobber

The csh variable noclobber can be set in the file >
output redirection rnetasyntax of the shell (2.9.6 and
7.1.8).

nohup

nroff

The shell nohup command is used to run background com­
mands to completion even if the user logs off before
these commands complete (6.6.2).

The standard text formatter on ZEUS is the program
nroff~ Using nroff and one of the available macro
packages for it, it is possible to have documents
automatically formatted and prepared for phototypeset­
ting using the typesetter program troff (nroff(l)).

0
onintr

The onintr command is built into the C Shell and is
used to control the action of a shell command script
when an interrupt signal is .received (6.6.3).

output

A-12

Many commands in ZEUS produce data that is called out­
put. This output is usually placed on what is known as
the standard output, which is normally connected to the
user's terminal. The shell has a syntax using the
metacharacter > for redirecting the standard output of
a command to a file (2.9). Using the ~mechanism

Zilog A-12

C SHELL Zilog C SHELL

and the metacharacter I , it is also possible for the
standard output of one command to become the standard
input of anothe~r command (2 .10) • Some commands do not
direct their output to the standard output. The line
printer command (lpr), for example, diverts its output
to the line printer. The write command places its out­
put on another user's terminal (write(l)). Commands
also have a diagnostic output, where they write their
error messages. Normally, these go to the terminal
even if the standard output has been sent to a file or
another command. However, it is possible to direct
error diagnostics along with standard output using a
special metanot:ation (2.9.5).

p
pa.th The csh variable path gives the names of the direc­

tories in which it searches for the commands it is
given. It always checks first to see if the named com­
mand is built into the shell. If it is, it does not
need to search for the command, as it can perform it
internally. If the command is not built in, csh
searches for a file with the name given in each of the
directories in the path variable, left to right. Since
the normal definitiOO-Of the path variable is

path (. /bin /usr/bin)

Csh normally looks in the current directory, and then
in the standard system directories, /bin and /usr/bin,
for the named command (7.1.11 and 10.3.3). If the com­
mand cannot be found, c~h prints an error diagnostic.
Scripts of C shell commands are executed using another
shell to interpret them if they have execute bits set.
This is normally true because a command of the form

chmod 755 .script

is executed to turn on these execute bits (chmod(l)).

path name

A-13

A list of names, separated by slash (/)
forms a path name. Each component between
"slant" (/}Cha.racters names a directory in
next component file resides. Path names

Zilog

characters
successive
which the
that begin

A-13

C SHELL Zilog C SHELL

with the character I are interpreted relative to the
root directory in the file system. Other path names
are interpreted relative to the current directory as
reported by pwd. The last component of a path name can
name a directory; however, it usually names a file.

pipeline
A group of commands that are connected together with
the standard output of each connected to the standard
input of the next is called a pipeline. The pipe
mechanism used to connect these commands is indicated
by the vertical bar (!) metacharacter (2.10).

pr The pr command prepares listings of the contents of
files with headers that give the name of the file and
the date and time at which the file was last modified
(pr (1)) .

printenv
The printenv command is used on ZEUS systems to print
the current setting of variables in the environment.

process
An instance of a running program is called a process
{ps(l)). The numbers used by kill and printed by wait
are unique numbers generated for these processes by
ZEUS. They are useful in kill commands, which can be
used to stop background processes {kill(l)).

program
A program {usually synonymous with command) is a binary
file or csh command script that performs a useful func­
tion.

prompt
Many programs print a prompt on the terminal when they
expect input. For example, the editor ex(l) prints a
colon (:) when it expects input. The shell prompts for
input with a percent sign {%) , and occasionally with a
question mark (?), when reading commands from the ter­
minal {7.1.12). The csh variable prompt can be set to
a different value to change the shell's main prompt.
This is primarily used when debugging the shell
(7.1.12).

ps The ps command shows the processes a user is currently
running. Each process is shown with its unique process
number, an indication of the terminal name it is
attached to, and the amount of CPU time it has used so
far. The command is identified by printing some of the
words used when it was invoked {ps(l)). Login shells

A-14 Zilog A-14

C SHELL Zilog C SHELL

(such as the csh obtained ~hen logging in) are shown as

pwd The pwd command prints the full path name of the
current working directory~

Q
quit The quit signal, generated by a control-\,

programs that are behaving abnormally.
produces a core image file (core(5)).

quotation

terminates
It normally

The process that prevents m~tacharacters from being
interpreted with special Meaning, usually by using the
single quote (1

) character in pairs or by using the
backslash (\) character, is referred to as quotation.

R
redirection

The routing of input or output from or
known as redirection of input or output

repeat

to a
(2.9).

file is

The repeat command iterates another command a specified
number of times (5.2.6).

RUB The RUB or DEL key generates an interrupt signal that
is used to stop programs or to cause them to return and
prompt for more! input (6.6.3).

A-15 Zilog A-15

C SHELL Zilog C SHELL

s
script

Sequences of csh commands placed in a file are called
shell command scripts. It is often possible to perform
simple tasks using these scripts without writing a pro­
gram by using the shell to selectively run other pro­
grams (Section 6).

set The built-in set command assigns new values to shell
variables and displays the values of the current vari­
ables. Many csh variables have special meaning to csh
itself (5.3.4).

setenv

shell

On ZEUS systems, variables in
environ(S) can be changed by using
command (Section 10) • The printenv
to print the value of the variables

the environment
the setenv built-in
command can be used
in the environment.

A shell is a command language interpreter. It is pos­
sible for users to write and run their own shells, as
shells are no different from any other programs in
terms of system response. This document deals with the
details of one particular shell, called csh.

shell script
See script (Sections 5 and 6).

sort The sort program sorts a sequence of lines in ways that
can be controlled by argument flags (sort(l)).

source
The source command causes csh to read commands from a
specified file. It is useful for reading files such as
.cshrc after changing them (5.3.6).

special character
See metacharacters and Appendix A of this document.

standard

A-16

The standard input and standard output of commands are
often referred to. See input and output (2.9).

Zilog A-16

C SHELL Zilog C SHELL

status
A command normally returns a status when it finishes.
By convention, a status of zero indicates that the com­
mand succeeded. Commands can return nonzero status to
indicate that some abnormal event has occurred. The
csh variable status is set to the status returned by
the last command. It is. most useful in she 11 scripts
(7.1.14).

substitution
Csh implements several substitutions where sequences
indicated by metacharacters are replaced by other
sequences. Examples of this are histo~y substitution
keyed by the metacharacter !, and variable substitution
indicated by $. Substitutions are also referred to as
expansions (3.1).

switch
The switch command of csh .allows the shell to select
one of a number of sequences of commands based on an
argument string. It is similar to the switch statement
in the C language (6.4).

T
termination

When a command being executed finishes, it is said to
ter:minate. Commands normally terminate when they read
an EOF from their standard input. It is also possible
to terminate commands by sending them an interrupt or
quit signal. The kill program terminates commands
specified by their process numbers.

then The then command is part of csh's if-then-else-endif
control construct used in command scripts (6.3)

time The time command measures the amount of CPU and real
time consumed by a specified command (5.2.8).

troff
The troff program is used to typeset documents. See
also nroff (troff(l)).

A-17 Zilog A-17

C SHELL Zilog C SHELL

u
unalias

The unalias command removes aliases (5.3.7).

unset
The unset command removes the definitions of csh vari­
ables (5.3.8).

v
variable expansion

See variables and expansion (Section 7).

variables
Variables
The most
behavior
ignoreeof
also used

verbose

in csh hold one or more strings as value.
common use of variables is in controlling the
of the shell. See path, noclobber, and

for examples. variables such as argv are
in writing csh command scripts (7.1.1).

The verbose csh variable causes commands to be echoed
after they are history expanded. This is often useful
in debugging csh scripts. The verbose variable is set
by the shell's command line option (7.1.17).

w
wait The built-in command wait causes csh to pause, and not

prompt, until all commands run in the background· have
terminated (5.2.10).

A-18 Zilog A-18

,,

C SHELL Zilog C SHELL

while
The while built-in control construct is used in csh
command scripts (6.2).

word A group of characters that forms an argument to a com­
mand is called a word. Many characters that are nei­
ther letters, digits;--=, ., or/ form words by them­
selves, even if they are not surrounded by blanks. Any
sequence of characters can be made into a word by sur­
rounding it with single quote (') characters, except
for the single quote character itself and !, which
require special treatment.

working directory

write

Any directory a user is currently working in is called
a working directory. This directory name is printed by
the pwd command, and the files listed by ls are the
ones in this directory. The user can change working
directories using the cd command. (3.2 - Dot)

The write command is used to communicate with other
users who are logged in to ZEUS (write(l)).

z
ZEUS ZEUS provides facilities that allow csh to invoke other

programs, such as editors and text formatters.

A-19 Zilog A-19

C SHELL Zilog C SHELL

APPE~DIX B
C SHELL ERROR MESSAGES

B. 1. Error Message~s Explained

The following is an annotated partial list of error messages
are produced by the C Shell as a response to various input
errors.

The full list of error messages follows in the next section.

<< terminator not found
In the context of a C shell script, this error indi­
cates that the label used to indicate the end of input
is not a part of the script. The following example
would cause such an error:

test
ex test << EOF
g/~$/d
w
q

The solution i:s to put the terminator EOF at the end of
the script. Se•e section 2. 9 Input/Output Control.

Alias loop
If an alias is established that calls itself, an alias
loop is creatc~d. The following two commands create an
alias loop:

alias ls List
alias list ls

Both aliases can be established, but an attempt to exe­
cute either will result in the error message. This
error is resolved by unaliasing the alias that has
created the error message with the command:

unalias alias.name

See Section 5.3 Environmental Commands from the Prompt
for details on the alias command.

Ambiguous

B-·l

This error is created when a filename metacharacter
"*", 0

-
0

, "?" is used in such a manner that refers to a
number of files or directories in a situation that

Zilog B-1

C SHELL Zilog C SHELL.

requires a single file or directory, as in the command:

cd *

The error messa.ge:

*: Ambiguous.

results. The solution is to replace the metacharacter
with a more specific file or directory name.

Arguments too long
This error is usually associated with metacharacter
expansion. It can result from the following command:

echo /*/*/*

The solution is to provide a more specific argument.

Cannot determine type of shell to use
This error results from a symbol in the first column of
the first line of a shell script that does not indicate
which shell is to be used in executing the script. The
following script will cause the error:

#!
who

Specifying a shell with a legitimate character will
resolve the error. See Section 8.6 11 Comment lines in
the Shell".

Can't from terminal
Some commands cannot be executed from a terminal. For
example, the built-in conunand onintr will produce the
error message:

onintr: Can't from terminal

if it is attempted from a terminal. Commands that pro­
duce this error are intended for use within the body of
a shell script. See Section 6 The C Shell Programming
Language Structure.

Can't make pipe

B-2

The space provided for temporary files used in pipes in
the root "/ 11

• If it fills up, there is no :space left
for the files needed by the ~ mechanism.

The solution is to clear out space in the root.

Zilog B-2

Zilog C SHELL

Command not found
If the shell c.an 1 t locate the command, or if the com­
mand name has been mistyped, this error results. The
error will also result if the command is not installed
in the shell's hash table of commands. See Section
5.2.6 rehash.

Divide by 0
This error results from a math operation within a shell
script involving division by 0.

end not found
Both the foreaich and while shell script loops require a
closing end st.atement.

endif not found
The if, else structure requires an endif statement. See
Section 6.3

endsw not found
The switch structure requires an endsw statment. See
Section 6.4

Expression syntax
Various syntactic errors can produces this error mes­
sage. The following if statement:

if (a > b) echo HI

produces the error:

if: Expression syntax

because the alpha characters 11 a 11 and 11 b 11 cannot be com­
pared with the math operator greater-than " > 11

Improper mask
The "mask" refE~rs to the umask file protection mode
code.

Improper then
Refers to the then statment in an if-then context.

Interrupted
Indicates a program interupt. If a DELETE is hit in the
beginning of an ex command, this error will result.

Invalid variable

B-3

An error occurs in calling or assigning variables. The
solution is to call or assign the variable correctly.

Zilog B-3

C SHELL Zilog C SHELL

label not found
In the context of a shell script.with a ,9£tO ~abel con­
struct, the label must appear in the script. It is an
error for the label to be missing.

Missing)
In the context of a

foreach (list)
or

~hile (list)

statements,
parenthesis.
missing.

the
It

list must be enclosed within two
is an error for one parenthesis to be

Missing]
In the context of a

command [range]

command, the range must be enclosed within two brack­
ets. It is an error for one brackets to be missing.

Missing }
In the context of a

command { list }

command, the list must be enclosed within two braces.
It is an error for one braces to be missing.

Missing file name

Mod by 0
In a math operation involving the modulo function
11 fB% 11 the right hand side of the equation cannot be
zero.

No file for $0

B-4

Argument zero is the name of the file being executed.
In the file test with the following lines:

test
echo $0

execution with the command:

csh test

(or changing the execution bits with the chmoct command

Zilog B-4

C SHELL Zilog C SHELL

and executing it by name) results in the response:

test

the same command from the prompt:

echo $0

results in the message.

No home

No

Any command that depends upon the $HOME variable (e.g.
the cd command) will produce an error message if the
$HOME variable is not set.

match
When using filename expansion metacharacters charac-
ters: (II * II II [II II] II II { II II } II II ? II) it

' ' ' ' ' is an error for no filename to match (unless the
nonomatch c Sh1ell variable is set).

No more processes
Only a limited number of background jobs can be run by
any single "parent" (login) process. An attempt to
initiate additional job~ in background (detached)
result in this error.

No more words
An attempt to address words past the end of the list in
a word list, perhaps in a foreach, while, or case
statement.

non-ascii shell script
An attempt to execute a file as a shell script if it is
comprised of non-ascii characters.

Not in while/foreach
In shell scripts, this error may result from an attempt
to adress an argument out of the while or foreach loop.

Not login shell
An attempt to logout from a subshell (any shell other
than the login shell) produces this error.

The solution is to e.xit out of any subshell and then
issue the logout command.

Out of memory
The C shell can run out of memory.

B-5 Zilog B-5

C SHELL Zilog C SHELL

Output redirection not allowed
Conunands that do not provide for output redirection
(such as the source conunand) produce an error in the
following format:

source: Output redirection not allowed.

Pathname too long
If a pathname is too long, this message results. The
solution is to change directory to a closer directory
and access the file(s) from there.

Subscript error
An attempt to subscript a variable with an illegal sub­
script value.

Subscript out of range
In the script:

I test
echo $argv[l]
echo $argv[2]
echo $argv[3]
echo $argv[4]

given with the conunand:

test a b c

the statement

echo $argv[4]

will produce the error:

subscript out of range

because there are only 3 arguments.

Syntax error

then/endif not found

Too dangerous to alias that
An attempt to alias the word alias with the command:

alias alias a

results in this error. If the word alias needs to be
aliased, the problem can be avoided with the command:

B-6 Zilog B-6

C SHELL Zilog C SHELL

alias a alias

accomplishing the same results.

Too few arguments
Some commands require a specific number of. arguments.

Too many arguments
Some commands require a specific number of arguments

Too many) 's
The statement:

foreach i (ab c))

produces the error.

Undefined variable
An attempt to use an undefined variable produces this
error.

Unmatched '
Commands with an unclosed backquote, as in:

echo 'date

produce this error.

Unmatched %c
This is a catch-all error, it refers to any command
which requires two parts of ·the statrttent. The error
results if the second part is missing.

Variable syntax
A syntax error ..

Word too long
Some times the C shell cannot cope with a word that
contains too many characters.

Words not ()'ed
Words in a
parenthesis,

list, not enclosed
as~ in the command:

foreach i at b c d

produces the error:

foreach: Words not ()'ed

B-7 Zilog

with the necessary

B-7

C SHELL

B. ·2. The List

Core dumped
%s: File e:x:ists
%s: non-ascii shell script
: Event not found
<< terminator not found
Alarm clock
Alias loop
Ambiguous
Ambiguous input redirect
Ambiguous output redirect
Arg list too long
Argument too large
Arguments too long
Bad ! arg selector
Bad ! form
Bad ! modifier:
Bad : mod in $
Bad address
Bad file number
Bad substitute
Bad system call
Badly formed number
Badly placed (
Badly placed () 1 s
Block device required
Broken pipe
Bus error
Can't<< within (}'s

Zilog

Can't exit, ignoreexit is set
Can't from terminal
Can't make pipe
Cannot determine type of shell to use
Command not found
Cross-device link
Data transfer error
Device busy
Device write protected
Divide by 0
EMT trap
End of data
End of media
Error 0
Exec format error
Exit status %s
Expansion buf ovflo
Expression syntax
File exists
File table overflow
File too large

B-8 Zilog

C SHELL

B-8

C SHELL Zilog C SHELL

Floating exception
I/O error
!OT trap
Illegal instruction
Illegal seek
Improper mask
Improper then
Interrupted
Interrupted system call
Invalid argument
Invalid null command
Invalid variable
Is a directory
Killed
Line overflow
Missing)
Missing]
Missing file name
Missing name for redirect
Missing }
Mod by 0
Modifier failed
Mount device busy
New mail
No args on labels
No children
No file for $0
No home
No match
No media
No more processes
No more processes, waiting for current ones to complete.
No more words
No output
No prev lhs
No prev search
No prev sub
No space left on device
No such device
No such device or address
No such file or directory
No such process
Not a directory
Not a typewriter
Not enough core
Not in while/foreach
Not login shell
Not owner
Out of memory
Output redirection not allowed
Pathname too long

B-9 Zilog B-9

C SHELL

Permission denied
Quit
Read-only file system
Result too large
Rhs too long
Segmentation violation
Sig %d
Subscript error
Subscript out of range
Subst buf ovflo
Syntax error
Terminated
Text file busy

Zilog

Too dangerous to alias that ·
Too few arguments
Too many ('s
Too many) 's
Too many arguments
Too many links
Too many open files
Too many words from ''
Trace/BPT trap
Undefined variable
Unknown error
Unknown user: %s
Unmatched
Unmatched %c
Unmatched '
Use "exit" to leave csh.
Use "logout" to logout.
Variable syntax
Word too long
Words not ()'ed
You have %smail.
end not found
endif not found
endsw not found
label not found
non-ascii shell script
source: Output redirection not allowed
then/endif not found

B-10 Zilog

C SHELL

B-10

THE ZEUS I.INE-ORIENTED TEXT EDITOR, ed*

* This information is based on articles originally written
by Brian w. Kernighan, Bell Laboratories.

ED Zilog ED

ii Zilog ii

ED Zilag ED

Pref ace

Although most text manipulation on the ZEUS Operating System
is done with the screen-oriented editor, vi, some special
circumstances warrent the use of the line editor, ed. This
document is a tutorial guide to help beginners get started
with ed and to introduce experienced users to its more com­
plex options.

Sections 1-12 are oriented mostly for beginners. These sec­
tions cover basic commands or basic uses of more complex
commands. When a subsection of a command is for experienced
users, it is labeled as such. Beginners should be aware
that more information is presented in these subsections than
they need for basic tasks and that concepts are used in
these explanations that have not yet been introduced in the
regular text. Sections 13-23 offer experienced users more
complex commands and describe ways that commands act on each
other. Basic commands are summarized in the Appendix.

The recommended way for both beginners and experienced users
to learn ed is to read this document, simultaneously using
ed to folloW-the examples, then to read the description in
Section 1 of the ZEUS Reference Manual. Experiment with ed.
The only sure way--of-see1ng.how a command works is to try
it. The exercises cover material not completely discussed
in the text. A learn(l) script, %learn editor, is also
available for ed-.~--

The end-of-line character varies between
character is the RETURN key on most
referred to in this text as RETURN.

terminals. This
terminals, and is

This document is an introduction and a tutorial. For this
reason, no attempt is made to cover more than a part of the
facilities that ed offers. Also, there is not enough space
to explain basicZEUS procedures; read ZEUS for Beginners to
learn how to log in to ZEUS and what a file is.

iii Zilog iii

ED Zilog ED

iv Zilog iv

ED Zilog

Table of Contents

SECTION l GETTING STARTED •••••••••••••••••••• • •••••••

SECTION 2 READING TEXT FROM A PILE WITH 'e'
2.1.
2.2.

Basic Uses •••••••••••••••••••••••••••.• , •••••••
Advanced Uses •••••••••••••••••••••··~·••••••••

SECTION 3 READING TEXT FROM A PILE WITH 'r' • • • • • • • • •

SECTION 4 PRINTING THE CONTENTS OF THE BOPPER . '
4 .1.
4.2.
4.3.
4.4.

Print Command •••••••••••••••••••••••••••••••••
Specific Lines •••••••••••••••••••••···~~······
Current Line ••••••••••••••••••••••••···~······
Advanced Commands •••••••••••••••••••• , ••••••••

SECTION 5 DELETING LINES .
SECTION 6 MOD I FY ING TEXT •••••••••••••••••••••••••••••

6.L
6.2.
6.3.

Substitute Command ••••••••••••••••••••••••••••
Basic Modification ••••••••••••••••••••••••••••
Advanced Modification •••••••••••••••••••••••••

SECTION 7 CONTEXT SEARCHING .
SECTION 8 CHANGING AND INSERTI'NG TEXT ••••••••••••••••

v Zilog

ED

1-1

2-1

2-1
2-2

3-1

4-1

4-1
4-1
4-2
4-4

5-1

6-1

6-1
6-1
6-3

7-1

8-1

v

ED Zilog

SECTION 9 MOVING TEXT .

SECTION Ht USING SPECIAL CHARACTERS

10 .1. General
10.2. Period
10.3. Backslash
10.4. Dollar Sign
10.5. Circumflex
10.6. Asterisk :
lQJ.7. Brackets
10.8. Ampersand . . .

SECTION 11 USING GLOBAL COMMANDS

11.1. Global .9. • • • • • e • • • • •

11. 2. Global v
11. 3. Advanced Global Commands
11. 4 .• Advanced Multiline Global

SECTION 12 SUBSTITUTING NEW LINES

SECTION 13 MANIPULATING LINES

13 .1.
13.2.

Join Lines ••••••••••
Rearrange Lines •••••

SECTION 14 MANIPULATING ADDRESSES

14 .1.
14.2.

Line Addressing •••••
Address Arithmetic

......
.
.

Commands
.

.
.

SECTION 15 DOING REPEATED SEARCHES ·- •-

ED

9-1

10-1

10-1
10-1
10-2
10-3
10-4
10-4
10-6
10-7

11-1

11-1
11-1
11-1
11-2

12-1

13-1

13-1
13-1

14-1

14-1
14-1

15-1

SECTION 16 USING DEFAULT LINE REFERENCES••••••••••••• 16-1

vi Zilog vi

ED Zilog ED

SECTION 17 USING THE SEMICOLON . 17-1

SECTION 18 INTERRUPTING THE EDITOR 18-1

SECTION 19 MANIPULATING FILES . 19-1

19 .1. General •• 0 ••••••••••••••• 19-1
19.2. Change the Name of a File 19-1
19.3. Copy a Fi lE~ ~ 19-1
19.4. Remove a File . 19-2
19.5. Put Two or More Files Together 19-2
19.6. Adding Text to the End of a File 19-2
19.7. Insert One File into Another 19-3
19.8. Write Part of a File 19-3
19.9. Move Lines 19-4
19.10. Mark a Line 19-5
19.11. Copy Lines 19-5
19.12. Temporary Escape 19-6

SECTION 20 SUPPORTING TOOLS 20-1

20 .1. General • • 0 • • • • • • • 20-1
20.2. Grep .. ~~ 20-1
20.3. Editing Scripts 20-2
20.4. Sed • • • • • • ft •••••• 20-2

APPENDIX A SUMMARY OF COMMANDS AND LINE NUMBERS A-1

vii Zilog vii

ED Zilog

SECTION 1
GETTING StARTED

ED

Ed is a line-oriented text editor--an interactive program
for creating and modifying text on a line-by-line basis,
using directions typed at a terminal. The text is often a
document like this one, a program, or data for a program.

In ed terminology, the text being worked on is said to be
"kept in a buffer." Think of the buffer as a work space, or
as the information to be edited.

Tell ed what to do to the text by typing instructions called
"commands." Most commands consist of a single letter that
must be typed in lowercase. Type each command on a separate
line. Ed makes no response to most commands, it simply car­
ries them out. Enter a RETURN after every ed command line.

The prompt character, either a $ or a %, appears after log­
ing into the system. Invoke ed by typing

ed (followed by a RETURN)

after the prompt. Ed is now waiting for commands.

When ed starts, it is like a blank piece of paper--there is
no text or information present. Text must be supplied by
typing it into ed, or by reading it into ed from a file.

The first command is app~nd, written as the letter

a

by itself. It means "append (add) text lines to the buffer,
as they are typed in." Appending is like writing fresh
material on a piece of paper.

To enter lines of text into the buffer, type an a (followed
by a RETURN), followed by the lines of text, like this:

1-1

a
Now is the time
for all good men
to come to the aid of their party.

Zilog 1-1

ED Zilog ED

The only way to stop appending is to type a line that con­
tains only a period. If ed is not responding, it is prob­
ably because the • was omitted.

After the append command, the buffer contains the three
lines

Now is the time
for all good men
to come to the aid of their party.

The a and • are not there because they are not text.

To add more text, issue anoth~r a command and continue typ­
ing.

An error in the commands typed to ed results in the response

?

This is a cue to look for an error.

To save text for later use, write the contents of the buffer
into a file. Use the write command

w

followed by the file name to be written on. This copies the
buffer's contents into the specified file and destroys any
previous information in the file. To save the text in a
file named junk, for example, type

w junk

Leave a space between w and the file name. Ed responds by
printing the number of characters it wrote out. In this
case, ed responds with

68

Blanks and the return character at the end of each line are
included in the character count.

1-2 Zilog 1-2

ED Zilog ED

Writing a file makes a copy of the text. The contents of
the buffer are not disturbed, so lines can be added to it.
This is an important point. Ed always works on the buffer
copy of a file, not the file-itself. No change in the con­
tents of a file takes place until ed receives a w command.
Writing out the text to a file f~om time to time as it is
being created is a good idea. If the system crashes, only
the text in the buffer is lost, but any text written in a
file is safe.

To terminate a session with ed, save the text by writing it
into a file, using the w command. Then type the command

q

which stands for quit. The shell responds with the prompt
character $ or %u At this point, the buffer with all its
text is no longer present. To protect the buffer from an
accidental erasure, ed displays ? if it receives a quit com­
mand that was not pre~eded by a w command. At that point,
either write the file or type an~ther q to get out of ed.

Exercise 1

Enter ed and create some text using

a
text

Write it out using w. Then leave ed with the q command, and
print the file t~ see that everything worked. To print a
file, type

pr filename

or

cat filename

in response to the prompt character. Try both.

1-3 Zilog 1-3

ED Zilog

SECTION 2
READING TEXT FROM h FILE WITH 'e'

2.1. Basic Uses

The most common way to get text into the buffer is to
it from a file in the file system. This is done to
text saved with the w command in a previous session.
edit command e fe1:ches the entire contents of a file
the buffer.

If the three lines "Now is the time II hav.e been
with a w command, thH ed command

E~ junk

fetches the entire contents of the file junk into
buffer, and responds

68

ED

read
edit

The
into

saved

the

which is the number <>f characters in ju~k. Remember that if
anything was already in the buffer, it is deleted first.

Using the e command to read a file into the buffer elim­
inates the-need to use a file name after a subsequent w com­
mand; ed retains the last file name ·used in an e command,
and w-writes on this file. Thus, a good way to-operate is
with the following set of commands:

ed
e file
[editing session]
w
q

Simply enter w from time to time; the file name used at the
beginning is updated with w. ·

To find out what file name ed is working on, type the file
command f. In this E!Xample-,-an

f

prompts ed to reply

junk

2-1 Zilog 2-1

ED Zilog ED

2.2. Advanced Uses

The command

e newfile

says "edit a new file called newfile without leaving the
editor." The e command clears the buffer and reads in
newfile. It is-the same as the q command followed by a
reentry of ed with a new file name, except that if ed
retained a pattern, then a command like // still W()rks.

Entering ed with the command

ed file

has ed read file into the buffer and hold the name of the
file-.- Any subsequent e, r, or w commands that do not con­
tain a file name refer to this file. Thus, the commands

ed file!
• • • (editing)

w (writes back in filel)
e file2 (edit new file, without leaving editor)

••• (editing on file2) •••
w (writes back on file2)

do a series of edits on various files without leaving ed; it
is not necessary to type the name of any file morethan
once.

To change the name of the hold file, use f as follows:

ed precious
f junk

(editing)
w

This reads the file precious into the buffer, then changes
the name of the hold file junk. The w command applies the
editing changes to the junk file, leaving the preci1ous file
untouched.

2-2 Zilog 2-2

ED Zilog ED

SECTION 3
READING TEXT FROM A FILE WITH 'r'

To read a file into the buffer without destroying anything
that is already there, use the read command r. The command

r junk

reads the file junk into the buffer by adding it to the end
of whatever is already in the buffer. Doing a read after an
edit, that is, entering

e junk
r junk

puts a duplicate copy of the text after the current copy.
The buffer now contains the following six lines:

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

The r command displays the number of characters read in
afte~ the reading operation is complete.

Exercise 2

Experiment with the e command. Try reading and printing
various files. Ed may respond with ?name, where name is the
name of a file. This means that the file does not exist,
typically because the file name is spelled wrong, or reading
the file is not allowed. Try alternately reading and
appending to see that they work similarly. Verify that

ed filename

is equivalent to

ed
e filename

3-1 Zilog 3-1

ED Zilog ED

SECTIO~ 4
PRINTING THE CONTENTS OF THE BUFFER

4.1. Print Command

Use the print command p to display the entire or partial
contents of the buffer at the terminal.

4.2. Specific Lines

Specify the lines where printing is to begin and end,
separated by a comma, and followed by the letter p. Thus,
to print the first two lines of the buffer (that is~ lines 1
through 2), enter

l,2p (starting line=!, ending line=2 p)

Ed responds with.

Now is the time
for all good men

To print all the lines in the buffer, ed provides a short­
hand symbol for "line number of the last line in the
buffer"--the dollar sign ($). Use the command:

l,$p

to print all the lines in the buffer, line 1 to last line.
To stop the printing before it is finished, push the DEL
(delete) key. Ed responds with

?

and waits for the next command.

To print the last line of the buffer, it would be possible
to use

$,$p

However, ed lets this be abbreviated to $p. Any single line
can be printed by typing the line number followed by a p.
Thus,

lp

4-1 Zilog 4-1

ED Zilog ED

produces the response

Now is the time

which is the first line of the buffer.

It is possible to abbreviate even further by entering the
line number without the letter p. So $ causes ed to print
the last line of the buffer.

The $ can be used in combinations such as

$-l,$p

which prints the last two lines of the buffer~

Exercise 3

Create some text using the a command and experiment with the
£ command. Verify that line 0 or a line beyond the end of
the buffer cannot be printed and that attempts to print a
buffer in reverse order by typing

3,lp

also fail.

4.3. Current Line

Suppose the buffer contains the six lines as above, that the
command l,3p was issued, and that ed has printed the three
lines. Typing

p (no line numbers)

causes ed to print

to come to the aid of their party.

which is the third line of the buffer. It is also the
or most recent line that had actions performed on it.
E command can be repeated without line numbers, and ~~
tinues to print line 3.

last
This
con-

Ed maintains a record of the last line that had actions per­
formed on it so that it can be used instead of an explicit
line number. This most recent line is referred to by the
shorthand symbol dot (.).

4-2 Zilog 4-2

ED Zilog ED

., Dot is a line number in the same way that $ is. It means
"the current line" or "the line that most recently had
action on it," and can be used in several ways. One possi­
bility is to type

This prints all the lines from and including the current
line through the end line of the buffer. In this example,
these are lines 3 through 6.

Some commands change the value of dot, and others do not.
The p command sets dot to the number of the last line
printed; the last command sets dot to six.

Dot is most useful in combinations such as:

This means "print the next line" and is a handy way to step
slowly through a buffer.

The command

means "print the line before the current line." This allows
the line number to go backwards. Another useful command is

which prints the previous three lines.

Remember that all these commands change the value of dot.
To find out what dot is at any time, type

Ed responds by printing the value of dot.

To summarize, £ can be preceded by zero, one, or two line
numbers. If there is no line number given, ed prints the
current line; that i:s, the line that dot refers to. If
there is one line number given with or without the letter £ 1

it prints that line and sets do~ there. If there are two
line numbers, it prints all the lines in that range and sets
dot to the last line printed. If two line numbers are
specified, the first cannot be bigger than the second (Exer­
cise 2).

Typing a single return prints the next line and is
equivalent to Typing ~ - is equivalent to .-lp.

4-3 Zilog 4-3

ED Zilog ED

4.4. Advanced Commands

For the experienced user, the list command (!) gives
s 1 i g ht 1 y mo re i n format i on than p-. --In pa rt i c u 1 a r ,, 1 makes
characters visible that are normally invisible, such is tabs
and backspaces. With 1, each tab appears as ~ and each
backspace appears as ~. This command makes it much easier
to correct typing mistakes that insert extra spaces adjacent
to tabs, or insert a backspace followed by a space.

The 1 command also provides for displaying long lines on
shor~ terminals. Any line that exceeds 72 characters is
displayed on multiple lines, and each folded line, except
the last, is terminated by a backslash.

Occasionally, the 1 command prints a string of numbers pre­
ceded by a backslash, such as \07 or \16. These combina­
tions make visible characters that normally do not print,
such as form feed. Each such combination is a single char­
acter value of the nonprinting character in octal. Delete
these characters unless they produce the desired result on
the specific device used for ed output.

4-4 Zilog 4-4

ED Zilog

SECTION 5
DELETING LINES

ED

Suppose the buffer contains two copies of junk as in Section
6. To get rid of the three extra lines in the buffer, use
the delete command d The lines to be deleted are specified
for ~ exactly as they are for p:

starting line, ~ending line d

Thus the command

4,$d

deletes line 4 through the end. There are now three lines
left, which can be checked by entering l,$p The $ now is
line 3. Dot is set to the next line after the last line
deleted, unless the last line deleted is the last line in
the buffer. In that case, dot is set to $.

Exercise 4

Experiment with a, e, r, w, p, and d. Be sure to understand
how dot, $, and lin~e numbers-are used.

Next, try using line numbers with a, ~' and w as well. Ver­
ify that:

$ a appends lines after the line number specified rather
than after dot

$ r reads a file in after the line number specified and
not the end of the buffer

$ w writes out exactly the lines specified, not the whole
buffer

These variations are sometimes handy. For instance, a file
can be inserted at the beginning of a buffer by entering

0r filename

Lines can be inserted at the beginning of the buffer by
entering

0a

5-1 Zilog 5-1

ED Zilog

SECTION 6
MODIFYING TEXT

6.1. Substitute Command

ED

One of the most important commands is the substitute command

s

which changes individual words or letters within a line or
group of lines. It is useq, for example, for correcting
spelling mistakes and typing errors. This command has the
most complexity of any ed command and can provide the
greatest use.

6. 2. Basic Modi fica1tion

Suppose that line 1 reads

Now is th time

The e has been left off the. Use s to fix this as follows:

ls/th/the/

This says: "in line 1, substitute for the characters th the
characters the." To verify that it works, type

p

and get

Now is the time

Dot must have been set to the line where the substitution
took place, since the £ command printed that line. Dot is
always set this way with the s command.

The general way to use the substitute command is

starting-line, ending-line s/change this/to this/

A string of characters between the first pair of slashes is
replaced by a string between the second pair in all the
lines between starting-line and ending-line. Only the first
occurrence on each line is changed. To change every
occurrence, see Exercise 5. The rules for line numbers are

6-1 Zilog 6-1

ED Zilog ED

the same as those for p, except that dot is set to the last
line changed. If no suEstitution took place, dot is not
changed. This causes ? to appear as a warning.

Thus, enter

l,$s/speling/spelling/

to correct the first spelling mistake on each line in the
text.

If no line numbers are given, the s command assumes "make
the substitution on line dot," so it makes changes only on
the current line. This leads to the very common sequence

s/something/something else/p

which makes some correction on the current line, and then
prints it.

It is also possible to type

s/something//

to change the first string of characters to nothi_!!.9., that
is, remove them. This is useful for deleting extra words in
a line or for removing extra letters from words. For
instance, in the line

Nowxx is the time

type

s/xx//p

to get

Now is the time

In ed, two adjacent slashes (//) mean no characters, not a
blank.

Exercise 5

Experiment with the substitute command. Verify that the
substitute command changes only the first occurrence of the
first string. For example, enter:

a
the other side of the coin

s/the/on the/p

6-2 Zilog 6-2

ED Zilog ED

to get

on the other side of the coin

To change all occurrences, add a ~ (for "global") to the s
command, like this:

s/ • • • I . . . /gp

Try other characters instead of slashes to delimit the two
sets of characters in the s command. Any character except
blanks or tabs will work. &.Ip The following characters
have special meanings:

$ [] * \ &

Read Section 13 for an explanation of their use.

6.3. Advanced Modification

Either form of the s command can be followed by p or 1 to
print or list the cc)ntents of the line. The commands'

s/this/that/p
s/this/that/l
s/this/that/gp
s/this/that/gl

are all legal, and mean slightly different things. Also, ed
does not recognize I~ as being equivalent to .9..E.·

Any s command can be preceded by one or two line numbers to
specTfy that the substitution is to take place on a group of
lines. Thus, the command

l,$s/mispell/misspell/

changes the first occurrence of mispell to misspell in every
line of the file, but the command

l,$s/mispell/misspell/g

changes every occurrence in every line.

Adding a £ or ! to the end of any of these substitute com­
mands prints only the last line that was changed.

The undo command (u) "undoes" the last substitution: the
last line that was-substituted can be restored to its previ­
ous state by typing the command

6--3 Zilog 6-3

ED Zilog

SECTIOf'I 7
CONTEXT SEARCHING

ED

Suppose the original three lines of text are in the buffer:

Now is the time
for all good men
to come to the aid of their party.

To find the line that contains their, use context searching.
This specifies a line, regardless of what its number is, by
specifying some of its contents.

Say "search for a line that contains this particular string
of characters" by typing

/string of characters/

For example, the ed command

/their/

is a context search to find the next occurrence of the char­
acters between slashes (their). It also sets dot to that
line and prints the line for verification:

to come to the aid of their party.

"Next occurrence" means that ed starts looking for the
string at line .+l, searches tO-the end of the buffer, then
continues at line 1 and searches to line dot. That is, the
search "wraps around" from $ to 1. It scans all the lines
in the buffer until it either finds the desired line or gets
back to dot again. If the given string of characters cannot
be found in any line, ed types the error message

?

To search for the desired line and substitute with one com­
mand, enter

/their/s/their/the/p

which yields

to come to the aid of the party.

There are three parts to that command: context search for

7-1 Zilog 7-1

ED Zilog ED

the· desired line, make the substitution, and print the line.

Context searches are interchangeable with line numbers and
can be used by themselves to find and print a desired line,
or as line numbers for some other command, like s. They
were used both ways in the previous examples.

With the buffer lines

Now is the time
for all good men
to come to the aid of their party.

the ed line numbers

/Now/+l
/good/
/party/-1

are all context search expressions, and all refer to the
same line (line 2). To make a change in line 2, enter

/Now/+ls/good/bad/

or

/good/s/good/bad/

or

/party/-ls/good/bad/

The choice is dictated by convenience. To print all three
lines, enter

/Now/,/party/p
or
/Now/,/Now/+2p

or by any number of similar combinations. The first of
these is better if the number of lines involved is unknown.

Ed also provides a shorthand for repeating a context search
for the same string. For example, the ed line number

/string/

finds the next occurrence of string. If this is not the
desired line, the search must be repeated. This can be done
by typing

7-2 Zilog 7-2

ED Zilog ED

II

This shorthand stands for the most recently used context
search expression. It can also be used as the first string
of the substitute command, as in

/stringl/s//string2/

which finds the next occurrence of string! and replaces it
with string2.

Exercise 6

Experiment with context searching. Try a body of text with
several occurrences of the same string of characters, and
scan through it using the same context search.

Use context searches as line numbers for the substitute,
print, and delete commands. Context searches are used less
frequently with £ 1 ~' and ~' but try them.

Try context searching using ?text? instead of /text/. This
scans lines in the buffer Tn-reverse order cena-to begin­
ning). This is useful when a desired string of characters
is passed while going forward.

Again, the followin~J characters have special meaning:

$ * \ &

Read Section 13 for an explanation of their use.

7-3 Zilog 7-3

ED Zilog ED

SECTI9N 8
CHANGING AND INSERTING TEXT

This section discusses the change command and the insert
command. Both of these commands operate on a gr.cup of one
or more lines.

The change command is written as

c

and replaces a number of lines with different lines that are
typed in at the terminal. For example, to change lines .+l
through $ to something else, type

.+l,$c
••• type the lines of text here ...

The lines t~ped between the c command and the take the
place of the originatl lines between start line and end line.
This is useful for replacing a line or several lines that
have errors in them. It is possible to replace a single
line with several lines.

If only one line is specified in the c command, just that
line is replaced. ·rhe dot ends the input and works like the
dot in the append command; it must appear by itself on a new
line. If no line number is given, line dot is replaced and
the value of dot is set to the last line typed in.

Insert <!> is similar to append. For instance

/string/i
••• type the lines to be inserted here •••

inserts the given text before the next line that contains
the string. The text between i and dot is inserted before
the specified line. If no line number is specified, dot is
used and dot is set to the last line inserted.

Exercise 7

The change command is rather like the combination delete
followed by insert. Experiment to verify that

8-1 Zilog 8-1

ED

start, end d _i ___ --

text •••

is like

start, end c
--text:" ..

Zilog ED

These are not precisely the same if line $ gets deleted.
Check this. What is dot?

Experiment with a and i to see that they are. similar, but
not the same. For instance,

line-number a
:-::-·text • : •

appends after the given line, while

line-number :i
text •••

inserts before it. If no line number is given, i inserts
before line dot, but a appends after line dot.

8-2 Zilog 8-2

ED Zilog

SECTION 9
MOVING TEXT

ED

The move command (m) moves a group of lines from one place
to another in the buffer. To put the first three lines of
the buffer at the end, enter:

l,3m$

The general format is

start line, en(l lin~. m after this line

where after this lin~ specifies where to put the text.

The lines to be moved can also be specified by context
searches. To reverse the two paragraphs

First paragraph

end of first paragraph.
Second paragraph

end of second paragraph.

type:

/Second/,/end of second/m/First/-1

The -1: moves the text before the line specified.
set to the last line moved.

9-1 Zilog

Dot is

9-1

ED Zilog ED

SECTION HJ
USING SPECIAL

1

CHARACTERS

HJ.I. General

The following characters have special meaning to ed when
used in context searches and in the substitute command:

$ [] * \ &

HJ .. 2. Period

On the left side of a substitute command or in a search with
I /, the period (.) stands for any single character.
Thus, the search

/x.y/

finds any line where x and X occur and are separated by a
single character, as in

x+y
x-y
x y
x.y

This is useful in conjunction with the repetition character
(*). Thus, a* is a shorthand for any number of a's, and.*
matches any number of any characters. The expression

s/.*/stuff/

changes an entire line and

s/.*,//

deletes all characters in the line up to and including the
last comma (.*finds the longest possible match).

Since the period matches a single character, there is a way
to deal with previously invisible characters printed by 1.

Suppose there is a line that, when printed with the 1 com­
mand, appears as

th\07is

10-1 Zilog 10-1

ED Zilog ED

The character string \07 really represents a single charac­
ter (Section 7. 4), so typing

s/th.is/this/

matches the character set between the h and the i, whatever
it is. Since the period matches any-single character, the
command

s/./,/

converts the first character on a line into a comma.

The period has several meanings, depending on its context.
The command

.s/././

shows all three.

The first period is the number of the line being edited,
also called line dot. The second period is a special char­
acter that matches any single character on that line. The
third period is the only one that is a literal period. On
the right side of a substitution, a period is not special.
Applying this command to the line

Now is the time.

results with

.ow is the time.

10.3. Backslash

The backslash (\) turns off any special meaning that the
next character might have. In particular, \. converts •
from a "match anything" into a period, so it can be used to
replace the period in

Now is the time.

with a question mark like this:

s/\./?/

The pair of characters \. is interpreted by ed as a single
period.

10-2 Zilog 10-2

ED Zilog ED

The backslash can also search for lines that contain a spe­
cial character. To look for a line that contains

.PP

the search

/.PP/

is not adequate, because it finds a line

THE APPLICATION OF •••

since the • matches the letter A. However, the command
/\.PP/ finds only lines that contain .PP.

The backslash can also turn off special meanings for charac­
ters other than period. For example, to find a line that
contains a backslash, precede one backslash with another as
in /\\/ Similarly, search for a forward slash (/) with /\//

The backslash turns off the meaning of the immediately fol­
lowing /, so that it does not terminate the/ ••• / construc­
tion prematurely.

Any character can be used inste,ad of slash to delimit the
elements of an s command, but slashes must be used for con­
text searching. For instance, in a line that contains many
slashes, such as //exec //sys.fort.go// etc ••• a colon can
be used as the delimiter. To delete all the slashes, type
s:/::g

Exercise 8

Find two substitute commands to convert the line \x\.\y into
the line \x\y

Here are several solutions to verify.

s/\\\.//
s/x •• /x/
s/ .. y /y I

10.4. Dollar Sign

Dollar sign ($) stands for the end of the line. To add the
word time to the end of the line

Now is the

10-3 Zilog 10-3

ED Zilog ED

use the dollar sign s/$/ time/ to get

Now is the time

A space must appear before time in the substitute command,
or the result is

Now is thetime

To convert the line

Now is the time, for all good men,
into
Now is the time, for all ·good men.

the command needed is s/,$/./ The $ sign here provides con­
text to make specific which comma is meant. Without it, the
s command operates on the first comma, to produce

Now is the time. for all good men,

As another example, to convert

Now is the time.
into
Now is the time?

use s/.$/?/

The dollar sign has multiple meanings depending on context.
In the line $s/$/$/ the first dollar sign refers to the last
line of the file, the second refers to the end of that line,
and the third is a literal dollar sign to be added to that
line.

10.5. Circumflex

The circumflex (A) stands for the beginning of the line. To
look for a line that begins with the, use /Athe/ to narrow
the context and arrive at the desirecr-word more easily.

The other use of A inserts text at the beginning of a line.
Th~ command s/A/ I places a space at the beginning of the
current line.

Special characters can be combined. To search
that contains only the characters .PP use
/A\.PP$/

10-4 Zilog

for a line
the command

10-4

ED Zilog ED

10.6. Asterisk

A character followed by an asterisk (*) stands for a vari­
able number of consecutive occurrences of that character. A
line can look like this:

text x y text

where text stands for a lot of text and there is an undeter­
mined number of spaces between the x and the y.

To replace all the spaces at once, use

s/x *y/x y/

Thus x *X means "an x, as many spaces as there are then a
y."

The asterisk can be used with any character, not just space.
If the original example were

text x--------y text

then all - signs can be replaced by a single space with the
command

s/x-*y/x y/

To change a line entered as text x ••••••• y text

turn off the special meaning of dot (a match of any single
character) with a backslash, as in

s/x\.*y/x y/

The because \.* means "as many periods as possible."

There are times when the pattern
needed. For example, to change

* is exactly what is

Now is the time for all good men ••••
into
Now is the time.

use .* to remove everything after the for with the command
s/ for.*/./

Zero is a legitimate number of possible occurrences. For
example, for a line

text xy text x y text

10-5 Zilog 10-5

ED Zilog ED

the command s/x *y/x y/ was entered. The first ~ matches
this pattern, since it consists of an x, zero spaces, and a
y_. The result is that the substitute acts on the f:irst ,!Yr
and does not touch the later one, which actually contains
some intervening spaces.

The way around this is to specify a pattern like /x *y/
which describes an x, a space, then as many more spaces as
possible, that is, one or more spaces, then a y.

The command to convert an x into y s/x*/y/g when applied to
the line abcdef produces yaybycydyeyfy This is because zero
is a legal number of matches. There are no x's at the
beginning of the line, and no-x gets converted to a y.
There are no x's between a and b, so the non-x (zero charac­
ters) is converted into y. This process continues down the
string. To solve the problem, write s/xx*/y/g where xx* is
one or more x's. ~

18.7. Brackets

The brackets ([]) match any element of the character class
within them.

To delete any numbers that appear at the beginning of all
lines of a file, use the construction

[0123456789]*

This matches zero or more digits. Thus, the command

l,$s/A[0123456789]*//

deletes all digits from the beginning of all lines.

Any characters can appear within a character class. The
only special characters inside the brackets are A in the
initial position and between characters; even the
backslash does not have a special meaning.

To search for special characters, for example, use

Within [•••],the [is not special. To get a] into a char­
acter class, make it the first character.

To abbreviate the digits, use [0-9]. Similarly, [a-z]
stands f~r the lowercase letters, and [A-Z] for uppercase
letters.

10-6 Zilog 10-6

ED Zilog ED

Specify a class that means "none of the following charac­
ters" by beginning the class ~ith a circumflex. For exam­
ple,

["'0-9]

stands for any character except a digit. To find the first
line that does not begin with a tab or space, search with
command

/"'["'(space) (tab)]/

Within a character class, the "' has a special meaning only
if it occurs at the beginning. As an exercise, verify that

F'["'"J/

finds a line that does not begin with a circumflex.

The ampersand (&) is used to save typing. Suppose the line

Now is the time

must be changed to

Now is the best time

The command s/the/the best/ can be used, but it is redundant
to repeat the the.. The ampersand eliminates that repeti­
tion. On the riglit side of a substitute, the ampersand
means "whatever was just matched," so the command s/the/&
best/ && stands for the. For example, to parenthesize a
line, regardless of 1ts length, use s/.*/(&)/

The ampersand can occur more than once on the right side:
s/the/& best and & worst/ makes the original line into

Now is the best and the worst time

ands/.*/&?&!!/ converts the original line into

Now is the time? Now is the time!!

To get a literal ampersand, use the backslash to turn off
the special meaning. The command

s/ampersand/\&/

10-7 Zilog 10-7

ED Zilog ED

converts the word into the symbol. Ampersand has its spe­
cial meaning only on the right side of a substitute command,
not on the left side.

10-8 Zilog 10-8

ED

11.1. Global 9.

Zilog

SECTION 11
USING GLOBAL COMMANDS

ED

Global commands operate on the entire buffer instead of an
individual line.

The global command (9_) executes one or more ed commands on
all lines in the buffer that match some specified string.
For example

g/peling/p

prints all lines that contain peling. More usefully,

g/peling/s//pelling/gp

makes the substitution everywhere on the line, then prints
each corrected line. Compare this to

l,$s/peling/pelling/gp

which prints only the last line substituted. Another
difference is that the ~ command does not give a ? if it
does not find peling., but the s command does.

Use these examples to see the difference between the
command ~ and the ~ following a substitute command.
9.'s occur at different places in the command line and
different meanings.

11.2. Global v

global
These

have

The v command is the same as ~' except that the commands are
executed on every line that does not match the string fol­
lowing v. For example:

v/ /d

deletes every line that does not contain a blank.

11.3. Advanced Global Commands

The global commands g and v perform one or more editing com­
mands on all lines that-either contain (with ~) or do not

11-1 Zilog 11-1

ED Zilog ED

contain (with v) a specified pattern.

The pattern that goes between the slashes can be anything
used in a line search or in a substitute command; the same
rules and limitations apply.

The command g/A\./p prints all the formatting commands in a
file because these lines begin with a dot. (Section 13
describes use of backslash to escape dot~)

The command that follows ~or v can be anything. So g/A\./d
deletes all lines that begin with • and g/A$/d deletes all
empty lines.

Probably the most useful command that can follow a global is
the substitute command to change and print each affected
line for verification. For example, to change the word zeus
to ZEUS everywhere and verify that it worked, enter
g/zeus/s//ZEUS/gp The // in the substitute command means
"the previous pattern," in this case, zeus. The .E. command
is done on every line that matches the pattern, not just
those on which a substitution took place.

The global command operates by making two passes over the
file. On the first pass, all lines that match the pattern
are marked. On the second pass, each marked line is exam­
ined, dot is set to that line, and the command executed.
This means that it is possible for the command that follows
a ~ or v to use addresses or set dot. The command g/A\.PP/+
prints the line that follows each .PP command. Remember
that + means "one line past dot." The command
g/topic/?A\.SH?l searches for each line that contains topic,
scans backwards until it finds a line that begins .SH~(a
section heading) and prints the line that follows that, thus
showing the section headings under which topic is mentioned.

Finally, g/A\.EQ/+,/A\.EN/-p prints all the lines between
lines beginning with .EQ and .EN formatting commands.

The ~ and ~ commands can also be preceded by line numbers to
search only those in the range specified.

11.4. Advanced Multiline Global Commands

It is possible to do more than
of a global command, although
operation is often cumbersome.
task is to change x to y and
tain th~. Then the commands

one command under the control
the syntax for expressing the

As an example, suppose the
a to b on all lines that con-

11-2 Zilog 11-2

ED

g/thing/s/x/y/\
s/a/b/

Zilog ED

are sufficient. The backslash (\} signals the ~ command
that the set of commands continues on the next line and ter­
minates on the first line that does not end with \. A sub­
stitute command cannot be used.to insert a new line within a
g command.

To match the last pattern that was actually executed, use:

g/x/s/x/y/\
s/a/b/

To execute a, c, and i commands under a global command, add
a backslash at the end of each line except the last. Thus,
to add a .nf and .SJ~ command before each .EQ line, type

g/"\.EQ/i\
.nf\
.sp

There is no need for a final line containing a to ter­
minate the i command unless there are further commands under
the global.

11-3 Zilog 11-3

ED Zilog

SECTION 12
SUBSTITUTING NEW LINES

ED

Ed provides a facility for splitting a single line into two
or more shorter lines by substituting a new line. As the
simplest example, suppose a line is unmanageably long. If
it looks like

text xy

it can be broken between the x and the y like this:

s/xy/x\
y/

This is actually a single command, although it is typed on
two lines. The \ at the end of a line makes the following
new line there no longer special.

Make a single line into several lines with this same mechan­
ism@ The word v1~ry in a long line can be underlined by
splitting very onto a separate line and preceding it with
the roff formatting command .ul.

text a very big text

The command

s/ very /\
.ul\
very\
I

converts the line into four shorter lines, preceding the
word very by the line .ul, and eliminating the spaces around
the very.

When a new line is substituted, dot points at the last line
created.

12-1 Zilog 12-1

ED

13.1. Join Lines

Zilog

SECTION 13
MANIPULATING LINES

ED

Lines can be joined together with the j command. If dot is
set to the first of the lines

Now is
the time

The j command joins them. A blank has been added at the
beginning of the second line because the command itself does
not cause blanks to be added.

By itself, a j command joins line dot to line dot+l. Any
contiguous set of lines can also be joined by specifying the
starting and ending· line numbers. For example, l,$jp joins
all the lines into one line and prints it.

13.2. Rearrange Lines

Lines can be rearranged by tagging the pieces of the pattern
by enclosing them between \(and \) and then rearranging the
pieces. On the left side of a substitution, whatever
matched that part is remembered and available for use on the
right side. On the right side, the symbol \1 refers to
whatever matched the first pair, \2 to the second pair, and
so on.

For example, to convert a file of lines that consist of
names in the form

Smith, A. B.
Jones, C.

to a file in the form

A. B. Smith
C. Jones

use the command l,$s/A\([A 1]*\), *\(.*\)/\2 \1/ The first
\(••• \) matches the last name (any string up to the comma)
and is referred to on the right side with \1. The second
\(••• \) is whatever follows the comma and any spaces, and is
referred to as \2.

13-1 Zilog 13-1

ED Zilog ED

When this type of editing is performed, use the global com­
mands ~ or v followed by E to print each substitution as it
is made.

13-2 Zilog 13-2

ED Zilog

SECTION 14
MANIPULATING ADDRESSES

14.1. Line Addressjing

ED

Line addressing is the method used to specify what lines are
to be affected by editing commands. Constructions like
l,$s/x/y/ start on line 1 and specify a change on all lines.

14.2. Address Arithmetic

Line numbers such as • and $ can be combined with + and - in
a process called address arithmetic. For example, $-1 is a
command to print the next-to-last line of the current file
(that is, one line before line$). To see how much was
entered in a previous editing session, use $-5,$p to print
the last six lines.

The command .-3,.+3p prints from three lines before the
current line to three lines after. The + can be omitted, so
the command .-3,.3p is identical in meaning.

The - and + can be used as line numbers by themselves. The
by itself is a command to move up one line in the file.

Several minus signs can be strung together to move back that
many lines. For example, --- moves up three lines, as does
-3. Thus -3,+3p is also identical to the previous examples.

Since is shorter than -1, constructions such as
-,.s/bad/good/ are useful. This changes bad to good on the
previous line and on the current line.

The + and - can be used in combination with searches using
/~ •• /and? ••• ?, and with $. The search /thing/-- finds the
line containing thi1:!9_, and positions dot two lines before
it.

14-1 Zilog 14-1

ED Zilog ED

SECTION 15
DOING REPEATED SEARCHES

The construction // is a shorthand for "the previous thing
that was searched for," whatever it was. This can be
repeated as many times as necessary. The search can also go
backwards. The command ?? searches for the same thing, but
in the reverse direction.

The // can also be used as the left side
command to mean the most recent pattern.

/horrible thing/
s//good/p

of a substitute
The command

finds the line containing horrible thing, prints the line,
changes horrible thing to good, and prints the changed line.

To go backwards and change a line, enter

??s//good/

The & can be used on the right side of
stand for the character that was matched.

//s//& &/p

a substitute
The command

to

finds the next occurrence of whatever was searched for last,
replaces it with two copies of itself, then prints the line.

15-1 Zilog 15-1

ED Zilog ED

SECTI9N 16
USING DEFAULT LINE REFERENCES

One of the most effective ways to speed up editing is always
knowing what lines will be affected by a command and the
value of dot when a command finishes.

If a search command

/thing/

is issued, dot points at the next line that contains thing.
No address is required with commands

s

E.

1

d

a

c

i

to

to

to

to

to

to

to

make a substitution on that line

print it

list it

delete it

append text after it

change it

insert text before it

If no match occurs, the position of dot is unchanged. This
is also true if dot is at the only thing when the command is
issued. The same rules hold for searches that use ? ••• ?;
the only difference is the direction of the search.

The delete command d leaves dot pointing at the line that
followed the last- deleted line. If line $ gets deleted,
however, dot points at the new last line.

The line-changing commands a,c, and i all affect the current
line. If no line number is given with them, a appends text
after the current line, c changes the current -line, and i
inserts text before the current line.

Commands a,c, and i move dot to the last line entered. For
example, the commands

16-1 Zilog 16-1

ED

a
text •••
botch •••

s/botch/correct/
a

••• more text •••

Zilog ED

(minor error)

(fix line)

can be given without specifying any line number for the sub­
stitute command or for the second append command. Alterna­
tively, use

a
text •••
horrible botch ••• (major error)

c (replace entire line)
fixed line

The r command reads a file into the text being edited,
either at the end if no address is given, or after the
specified line if there is an address. In either case, dot
points at the last line read. Remember that 0r reads a file
in at the beginning of the text.

The w command writes the entire file. If the command is
prec~ded by one lirie number, that line is written. If it is
preceded by two line numbers, that range of lines is writ­
ten. The w command does not change dot; the current line
remains the same, regardless of what lines are written.
This is true even if there is a command such as

involving a context search.

The s command positions dot on the last line that changed.
If there were no changes, then dot is unchanged.

With the text

xl
x2
x3

the command

-,+s/x/y/p

prints the third line, which is the last one changed.
the three lines

16-2 Zilog

With

16-2

ED

xl
y2
y3

Zilog ED

the same command changes and prints only the first line and
positions dot there.

16-3 Zilog 16-3

ED Zilog

SECTIOJ') 17
USING THE SEMICOLON

ED

In ed, the semicolon (;) can be used like comma, except that
a semicolon forces dot to be set where the line numbers are
being evaluated. In effect, the semicolon moves dot. &.lp
Searches with/ ••• / and? ••• ? start at the current line and
move forward or backward until they either find the pattern
or return to the current line. Suppose, for example, that
the buffer contains lines like this:

ab

be

Starting at line 1, the command

/a/,/b/p

would be expected to print all the lines from the ab to the
be. Instead, both searchs start from the same point and
tney both find the lJlne that contains ab. The result is to
print a single line. Worse, if there had been a line with a
b in it before the ab line, the print command would be in
~rror, since the second line number would be less than the
first; it is illegal to try to print lines in reverse order.

The comma separator for line numbers does not set dot as
each address is processed. Instead, each search starts from
the same place. Thus, in this example, the command

/a/;/b/p

prints the range of lines from ab to be. After the a is
found, dot is set to that ITne, then b is searched-for,
starting beyond that line.

To find the second occurrence of thing, enter

/thing/;//

17-1 Zilog 17-1

ED Zilog ED

This finds the first occurrence of thing, sets dot to that
line, then finds the second and prints only that.

Closely related is searching for the second
occurrence of something, as in

?something?;??

previous

As an exercise, try printing the third or fourth occurrence
in either direction.

To find the first occurrence of something in a file, start­
ing at an arbitrary place within the file, use 0;/thing/
This starts the search at line 1.

17-2 Zilog 17-2

ED Zilog

SECTION 18
INTERRUPTING THE EDITOR

ED

Pressing the INTERRUPT, DELETE, RUBOUT, or BREAK key while
ed is doing a command restores the state in effect before
the command began. An interrupt during reading or writing a
file, making substitutions, or deleting lines stops the com­
mand in an unpredictable state and does not always change
dot.

Printing does not change dot until the printing is done.
Thus, if the DELETE key is pressed while a file is being
printed, dot is still where it was when the E command was
started.

18-1 Zilog 18-1

ED

19.1. General

Zilog

SECTIO~ 19
MANIPULATING FILES

ED

In addition to editor commands, other commands exist to
manipulate files. Manipulating files includes changing the
name of a file, making a copy of a fil·e somewhere else, mov­
ing a few lines from one place to another in a file, insert­
ing one file in the middle of another, splitting a file into
pieces, and splicing two or more files together.

19.2~ Change the Name of a File

To change a file name, use mv.

mv oldname newname

This program moves the file from the old name to the new
name~ For example, to change a file named memo into one
called paper, enter

mv memo paper

NOTE

If there is already a file with the new name, its
present conten1t:s are overwritten by the informa­
tion from the old file. Also, a file cannot be
moved to itself. So

mv x x

is illegal.

19.3. Copy a File

Copy a file with the cp command. The format of cp is

cp original _£opy_

to copy original into copy. To save a file called good
choose a name (here !>a'Ve90od) then type

19-1 Zilog 19-1

ED Zilog ED

cp good savegood

This copies _good onto savegood, so that there are two ident­
ical copies of the file good. If savegood previously con­
tained something, it is overwritten.

To restore the original state of gE_o£, enter

mv savegood good

which erases savegood, or

cp savegood good

to retain a safe copy.

19.4. Remove a File

To remove a file forever, use the rm command. The entry

rm savegood

permanently erases the file called savegood.

19.5. Put Two or More Files Together

Collecting two or more files into one is performed with cat
(short for concatenate).

To combine the files filel and file2 into a single file
called bigfile, enter

cat file! file2 >bigfile

The > before bigf ile means to take the output of the cat
command and .put it into bigfile. As with .£E_ and mv, any­
thing that was already in bigfile is destroyed.

More than two files can be combined. The command

cat filel file2 file3 >bigf ile

collects many files.

19.6. Adding Text to the End of a File

To add one file to the end of another, use the >> construc­
tion. This is identical to >, except that instead of

19-2 Zilog 19-2

ED Zilog ED

overwriting the old file, it simply adds text at the end.
Thus, enter

cat goodl >>good

to add goodl to the end of good. If good did not previously
exist, this makes a copy of 9_oodl called good.

19.7. Insert One File into Another

Suppose that a file called memo needs the file called
to be inserted just after the reference to Table 1.
is, in memo somewhere is a line that says

table
That

Table 1 shows that ••• and the data contained in table
goes there.

Edit memo, find Table~ li and add the file table by entering

ed memo
/Table 1/
Table 1 shows tha1t ••• [response from ed]
.r table

The critical line is the last one; the r command reads the
file table and i nse! rts it immediately-after the referenced
line.

19.8. Write Part of a File

It is possible to split into a separate file the table from
the previous example. In the file being edited, there are
the lines

• 'rs
••• [lots of stuff:]
.TE

To isolate the table in a separate file called table, first
find the start of the table (the .TS line), then write out
the table

19-3

/"'\.TS/
.TS [ed prints the line it found]
.,/"'\.TE/w table
& •) 1
All these steps can be consolidated with

Zilog 19-3

ED Zilog ED

The w command can write out a group of lines instead of
the whole file.
In fact, a single line can be written by giving
one line number instead of two. For example, if there is
complicated line that is going to be needed later, save
to avoid retyping it.
Enter

a
••• lots of stuff •••
••• complicated line •••

• w temp
a
••• more stuff •••

• r temp
a
••• more stuff •••

19.9. Move Lines

To move a paragraph from its present position in a paper to
the end, use the editor move command (~).

The m command takes up to two line numbers in front that
tell what lines are to be affected. It is also followed by
a line number that tells where the lines are to go. Thus

linel, line2 m line3

says to move all the lines between
1ine3.

line! and line2 after

If dot is at the first line of the paragraph beginning with
.PP, type

.,/"\.PP/-m$

The order of two adjacent lines can be reversed by position­
ing the first one after the second. If dot is at the first
line, the command

m+

moves line dot to a position one line after the first line.
If dot is at the second line, the command m-- interchanges
the two lines.

19-4 Zilog 19-4

ED Zilog ED

The m command is more succinc~ and direct than writing,
deleting, and rereading. The main difficulty with the m
command is that if patterns are used to specify both th~
lines being moved and the target, they must be specified
properly. Doing the job a step at a time makes it easier to
verify at each step that the desired result is accomplished.
Issue a w command before doing any complicated commands. If
there is-an error, it is easy to back up.

19.18. Mark a Line

Ed provides a facility for marking a line with a particular
name to later reference it· by name, regardles~ of its line
number. This ~an be handy for moving lines and for keeping
track of them as they move. The mark command is k. The
command kx assigns the name x to the current line, where x
is any single lowercase letter. (To mark a line for whicn
the line number is known, precede the k with the line
number.) Refer to the marked line with the address

'x

For example, to move a block of text, find the first line
of the block to be moved, and mark it with ka.
Then find the last 1 ine and mark it with kb-.-
Now position dot where the :text is to go and enter
'a, 'bm.

Only one line can have a particular mark name associated
with it at any given time.

19.11. Copy Lines

Ed provides another command, called t (for transfer) for
making a copy of a group of one or more lines. This is
often easier than writing and reading.

The t command is identical to the m command, except that in­
stead of moving lines it duplicates them at the place named.
Thus l,t duplicates the entire file that is being edited.

A more common use for t is for creating a series of lines
that differ only sli9htly. For example, type

19-5 Zilog 19-5

ED

a

t.
s/x/y/
t.
s/y/z/

and so on.

Zilog

x (long line)

(make a copy)
(change it a bit)
(make third copy)
(change it a bit)

19.12. Temporary Escape

ED

The escape command (!) provides a way to temporarily leave
the editor for a ZEUS command and immediately return to the
editor.

Entering

!any ZEUS command

suspends the current editing state and exe~utes the command
asked for. When the command finishes, ed prints another
prompt and editing can be resumed. Any ZEUS command, in­
cluding another ed, can be entered following the escape.

19-6 Zilog 19-6

ED

2e .. 1.. General

Zilog

SECTION 20
SUPPORTING TOOLS

ED

There are several tools and techniques based on the editor.
In this section are some introductory examples of these
tools.

28 .• 2. Grep

To find all occurrences of some word or pattern in a set of
files, use the program grep. The search patterns described
in the document are often called "regular expressions," and
"grep" stands for

g/re/p (get / regular expr~ssion I print)

That describes exactly what grep does--it prints every line
in a set of files that contains a particular pattern. Thus
grep 'thing' file! file2 file3 finds thing wher­
ever it occurs in any of the files listed. Grep also indi­
cates the file in which the line was found for-any further
file manipulation.

The pattern represented by thin~ can be any pattern that can
be used in ed. Always enclose the pattern in single quotes
if it contains any nonalphabetic characters. These charac­
ters carry special meaning in the ZEUS command interpreter
(Section 15).

There is also a way to find lines that do not contain a pat­
tern. The command

g rep -v 'thing 11 fi lel fi le2

finds all lines that do not contain thing. The -v must
occur in the position shown. Given g_E.ep and grep -v, it is
possible to do things like selecting all lines that contain
some combination of patterns. For example, to get all lines
that contain x but not y, use grep x file... I grep -v
y The notation I is a pipe command, which causes the output
of the first command to be used as input to the second com­
mand.

20-1 Zilog 20-1

ED Zilog ED

20.3. Editing Scripts

To execute a complicated set of editing operations on a set
of files, make up a script, that is, a file that contains
the operations to perform. Then apply this script to each
file.

For example, to change every Zeus to ZEUS and every bad to
good in a large number of files, put into the file""Seript
the lines

g/Zeus/s//ZEUS/g
g/bad/s//good/g
w
q

Now enter

ed f ilel <script
ed f ile2 <script

This causes ed to take its commands from the prepared
script.

20.4.· Sed

S~d (stream editor) processes unlimited amounts aif input.
Sed copies its input to its output, applying one or more
edTting commands to each line of input.

As an example, to change Zeus to ZEUS as in the previous
example without rewriting the file5;-use the command

sed 's/Zeus/ZEUS/g' filel file2

This applies the command s/Zeus/ZEUS/g to all lines from the
files specified and copies all lines to the output. The
advantage of using sed is that it handles input too large
for ed. All the output can be collected in one place, and
eithersaved in a file or piped into another progra:m.

If the editing transformation is so complicated that more
than one editing command is· needed, commands can be supplied
from a file with a slightly more complex syntax. To take
commands from a file, for example, use sed -f cmdfile
input-files •••

20-2 Zilog 20-2

ED Zilog ED

APPENDIX A
SUMMARY OF COMMANDS AND LINE NUMBERS

The general form of ed commands is the command name, perhaps
preceded by one or two line numbers, and, in the case of e,
r, and w, followed by a file name. Only one command is
illowed- per line, but a p command can follow commands other
than e, ~' w, and q.

a: Append (add) lines to the buffer at line dot unless a
different line is specified.· Appending continues until dot
is typed on a new line. Dot is set to the last line
appended.

c: Change the specified lines to the new text that follows.
The new lines are terminated by a dot, as with a. If no
lines are specified, line dot is changed. Dot is set to the
last line changed.

d: Delete the lines specified. If none are specified,
delete line dot. Dot is set to the first undeleted line,
unless $ is deleted, in which case dot is set to $.

e: Edit new file.
deleted.

Previous contents of the buffer are

f: Print current filename. If a name follows f, the current
name is set to it.

g_: The command

g/---/commands

executes the commands on those lines that contain
can be any context search expression.

, which

i: Insert lines before specified line or dot until a dot is
typed on a new line. Dot is set to the last line inserted.

m: Move lines specified to a position after the line speci­
fied after m. Dot is set to the last line moved.

p: Print specified lines. If none are specified, print line
dot. A single lince number is equivalent to line number p.
A single return prints .+!(the next line).

q: Quit ed. Deletes all text in buffer if it is given twice
in a row-Without first giving a w command.

A-1 Zilog A-1

ED Zilog ED

r: ·Read a file into the end of the buffer unless a different
Tocation is specified. Dot is set to last line read.

s: The command

s/stringl/string2/

substitutes the characters !tring2 for stringl in the speci­
fied lines. If no lines are specified, it makes the substi­
tution in line dot. Dot is set to the last line in which a
substitution took place (if no substitution took place, dot
is not changed). s changes only the first occurrence of
stringl on a line. To change all occurences, type a ~
after the final slash.

v: The command

v/---/commands

executes commands on those lines that do not contain ---,
which can be any -context search expression.

w: Write out buffer onto a file. Dot is not changed.

. - . Print value of dot • The = by itself prints the value of
$.

!: The line

!command-line

causes command-line to be executed as a ZEUS command.

/-----/: Context search. Search for next line that contains
this string of characters and print it. Dot is set to the
line where string was found. Search starts at .+l, wraps
around from $ to !r and continues to dot, if necesiiry.

?-----?: Context search in reverse direction. Start search
at .-!, scan to !' and wrap around to $.

A-2 Zilog A-2

•Ex REFERENCE MANUAL•

This information is based on an article written by
William Joy and revised for versions 3.5/2.13 by

Mark Horton.

EX Zilog EX

ii Zilog ii

EX Zilog

Table of Contents

SECTION 1 INTROOucrr I ON .
1.1. Starting ex •••••••••••••••••••••••••••••••••••
1.2. File Manipulation •••••••••••••••••••••••••

1.2.1. Current File •••••••••••••••••
1.2.2. Alternate File ••••••••••••••••••
1.2.3. Filename Expansion ••••••••••••••••••••
1.2.4. Multiple Files and Named Buffers •••
1.2.5. Read only ••••••••••••••••••••••••••

1.3. Exceptional Conditions ••••••••••••••••••
1.3.1. Errors and Interrupts ••••••••••••••
1.3.2. Recovering from Hangups and Crashes ••••••

1.4. Editing Modes •••••••••••••••••••••••••••••••••
1.5. Command Structure •• • • • • • ••••••••••••

lft5.l. Command Parameters •••••••••••••••••
1.5.2. Command variants ••••••••••••••••
1.5.3. Flags after Commands •••• • ••••••••••
1.5.4. Comments •••••••••••••••• • ••••••
1.5.5. Multiple Commands per Line •••••••••••••••
1.5.6. Reporting Large Changes ••••••••••••••

1.6. Command Addressing ••••••••••••••••••••••
1. 6.1. Addressing Primiti.ves ••••••••••••••••••••
1.6.2. Combining Addressing Primitives ••••••••••

SECTION 2 EDIT COMMANDS .
2.1. Command Descriptions ••••••••••••••••••••••••••
2.2. Regular Expressions and
Substitute Replacement Patterns ••••••••••••••••••••

2. 2.1. Regular Expr.essions ••••••••••••••••••••••
2. 2.2. Magic and Nomagic •• • • • •••••••••••••••
2.2.3. Basic Regular Expression Summary •••••••••
2.2.4. Combining Regular Expression Primitives
2.2.s. Substitute Replacement Patterns ••••••••••

SECTION 3 OPTIONS

iii

3.1. Option Descriptions
3.1.1. Autoindent
3.1.2. Autoprint
3.1.3. Autowrite
3.1.4. Beautify

...

Ziloq

EX

1-1

1-1
1-2
1-2
1-2
1-3
1-3
1-3
1-4
1-4
1-4
1-4
1-5
1-5
1-5
1-6
1-6
1-6
1-6
1-7
1-7
1-7

2-1

2-1

2-14
2-14
2-14
2-15
2-15
2-16

3-1

3-1
3-1
3-1
3-2
3-2

iii

EX

3.1.5.
3.1.6.
3.1.7.
3.1.8.
3.1.9.
3.1.10.
3.1.11.
3.1.12.
3.1.13.
3.1.14.
3.1.15.
3.1.16.
3.1.17.
3.1.18.
3.1.19.
3.1.20.
3.1.21.
3.1.22.
3.1.23.
3.1. 24.
3.1. 25.
3.1.26.
3.1.27.
3.1. 28.
3. 1. 29.
3.1.30.
3. 1. 31.
3.1.32.
3.1.33.
3.1.34.
3.1.35.
3.1.36.

Zilog

. Director.y
Error Bells
Hard Tabs ••••••••
Ignore Case
Lisp

.
List
Magic
Number •••
Open
Optimize
Pa rag r.aphs
Pr, om pt
Read Only
Redraw

.
.

Report
Scro 11 •••
Sections ••••••••••
She 11 •••••••

. . .

.
.

.

.
.

. Shi ft width
Showmatch •••
Slowopen •••••
Tabs top
Tag length
Ttytype

.
Te rm •••••••••
Terse
Warn
Window
Wrapscan
Wrapmargin
Writeany
Limitations

. • •
. . . .

SECTION 4 EX/EDIT COMMAND SUMMARY
4.1. The Edi tor Buff er
4. 2. Edi ting: Command and Text Input Modes
4.3. Line Numbers and Command Syntax
4.4. Open and Visual Modes
4.5. Special Characters

SECTION 5 COMMAND. SUMMARY ••••••••••••••••••••••••••••

iv Zilog

EX

3-2
3-2
3-3
3-3
3-3
3-3
3-3
3-4
3-4
3-4
3-4
3-4
3-4
3-5
3-5
3-5
3-5
3-6
3-6
3-6
3-6
3-6
3-6
3-7
3-7
3-7
3-7
3-7
3-8
3-8
3-8
3-8

4-1

4-1
4-1
4-2
4-2
4-3

5-1

iv

EX

lol. Sta~ting ex

Zilog

SECTION 1
INTRODOCTION

EX

Each instance of the editor has a set of options which can
be set to tailor it to your liking. The command edit
invokes a version of ex designed for more casual or begin­
ning users by changing-the default settings of some of these
options. To simplify the description which follows, we
assume the default settings of the options.

When invoked, ex determines the terminal type from the TERM
variable in the-envj~ronment. If there is a TERMCAP variable
in the environment, and the type of terminal described
matches the TERM variable, that description is used. Also
if the TERMCAP variable contains a pathname (beginning with
a /) the editor will seek the description of the terminal in
that file (rather than the default /etc/termcap).

If there is a va~iable EXINIT in the environment, then the
editor will execute the commands in that variable; other­
wise, if there is a file .exrc in your HOME directory ex
reads commands from that trfe, simulating a C shell ("Csh"f
source command. Option setting commands placed in EXINIT or
.exrc will be executed before each editor session.

A command to enter f Iex has the following format

ex [-] [-v] [-t ~] [-r]
[-1] [-wn] [-x] [-R] [+
command]-name •••

where parameters within"[]" are optional.
case edits a single file with no parameters;

ex name

The most common
that is,

The - command line option
feedback (eg. prompts)
scripts in command files.

suppresses all interactive-user
and is useful in processing editor

The -v option is is equivalent to using vi rather than ex.

The -t option is equivalent to an initial ~ command, edit­
ing the file containing the ~ and positioning the editor
at its definition.

1-1 Zilog 1-1

EX Zilog EX

The -r option is used for recovery after an editor or system
crash, retrieving the last saved version of the named file
ot, if no file is specified, typing a list of saved files.
(See Section 1.3.2.)

The -1 option sets up for editing LISP, setting the
showmatch and lisE options.

The -R option sets the readonly option at the start. (See
Section 1..2.5.)

Name arguments indicate files to be edited.

A +command argument indicates that the editor should begin
by executing the specified command. If command is omitted,
it defaults to "$", positioning the editor at the last line
of the first file initially. Other useful commands here are
scanning patterns of the form "/pat" or line numbers, e.g.
"+100" starting at line 100.

1.2. File Manipulation

i.2.1. Current File:

Ex is normally editing the contents of a single file, whose
name is recorded in the current file name. Ex performs all
editing actions in a buffer (actually a temporary file) into
which the text of the file is initially read. Changes made
to the buffer have no effect on the file being edited unless
and until the buffer contents are written to the file with a
write command. After the buffer contents are written, the
previous contents of the written file are no longer accessi­
ble. When a file is edited, its name becomes the current
file name, and its contents are read into the buffer.

The current file is almost always considered to be edited.
This means that the contents of the buffer are logically
connected with the current file name, so that writing the
current buffer contents to that file, even if it exists, is
a reasonable action. If the current file is not edited then
ex will not normally write on it if it already exu;ts.

1.2.2. Alternate File:

Each time a new value is given to the cur.rent file name, the
previous current file name is saved as the alternate file
name. Similarly if a file is mentioned but does not become
the current file, it is saved as the alternate file name.

1-2 Zilog 1-2

EX Zilog EX

1.2.3. Filename Expansion:

Filenames within the editor can be specified using the nor­
mal shell expansion conventions. In addition, the character
'%' in filenames is replaced by the current file name and
the character 'I' by the alternate file name. This makes it
easy to deal alternately with two files and eliminates the
need for retyping the name supplied on an edit command after
a No write since last change diagnostic is received.

1.2.4. Multiple Files and Named Buffers:

If more than one file is given on the command line, the
first file is edited as described above. The remaining
arguments are placed with the first file in the argument
list. The current argument list can be displayed with the
args command. The next file in the argument list can be
edited with the next command. The argument list can also be
redefined by spec i f:iing a 1 ist of names to the next command.
These names are expanded, the resulting l~ of names
becomes the new argument list, and ex edits the first file
on the list. ~

Ex has a group of named buffers for saving blocks of text
while editing, and especially when editing more than one
file. These are similar to the normal buffer, except that a
limited number of operations are available on them; the
buffers have names a through z. It is also possible to
refer to A through "2"; the upper case buffers are the same as
the lower-; but comma"nds append to named buffers rather than
replacing, if upper case names are used.

1.2.5. Read Only:

It is possible to use ex in readonly mode to look at files
that you have no intention of modifying. This mode protects
you fr.om accidently overwriting the file. Read only mode is
on when the reado!!..!.Y option is set. It can be turned on
with the -R command line option by the view command line
invocation, or by setting the readonly option. It can be
cleared by setting noreadonly. It is possible to write,
even while in read only mode, by indicating that you really
know what you are doing. You can write to a different file,
or can use the •w!" command even while in read only mode.

1-3 Zilog 1-3

EX Zilog EX

l.·3. Exceptional Conditions

1.3.1. Errors and Interrupts:

When errors occur, ex (optionally) rings the terminal bell
and, in any case,prints an error diagnostic. However, if
the primary input is from a file, (as in editor script),
editor processing terminates.

If an interrupt signal is received, ex prints "Interrupt"
and returns to its command level. If~he primary input is a
file, then ex exits when this occurs.

1.3.2. Recovering from Hangups and Crashes:

If a hangup signal is received and the buffer has been modi­
fied since it was last written out, the editor attempts to
preserve the buffer.

Also, if the system crashes, the system attempts to preserve
the buffer. The next time you log in you should be able to
recover the work you were doing, losing at most a few lines
of changes from the last point before the hangup or editor
crash. To recover a file use the -r option. If editing the
file resume, change to the directory where you were when the
crash occurred, giving the command

ex -r resume

After checking that the retrieved file is indeed ok, you can
write it over the previous contents of that file.

You will normally get mail from the system telling you when
a file has been saved after a crash. The command

ex -r

will print a list of the files which have been saved for
you. In the case of a hangup, the file will not appear in
the list, although it can be recovered.

1.4. Editing Modes

Ex has five distinct modes. The primary mode is command
mode. Comman~s are entered in command mode when a':•
prompt is present, and ar.e executed each time a complete
line is sent.

1-4 Zilog 1-4

EX Zilog

In· text input mode, ex gathers input lines and
in the file. Theappend, insert, and change
text input mode. No prompt is printed in text
This mode is left by typing a'.• alone at the
a line, and command mode resumes.

EX

places them
commands use
input mode.
beginning of

The last three modes are open ~nd visual modes, entered by
the commands of the same name, and, within open and visual
modes, text insertion mode. Open and visual modes allow
local editing opera1tions to be performed on the text in the
file. The open command displays one line at a time on any
terminal w'fiTTe visual works on CRT terminals with random
positioning cur.sors,--USing the screen as a (single) window
for file editing changes. These modes are described in
Introduction to Disp~ Editing with Vi.

1.5. Command Structure

Most command names are English words, and initial prefixes
of the words are acceptable abbreviations. The ambiguity of
abbreviations is resolved in favor of the more commonly used
commands. As an example, the command substitute can be
abbreviated 's' while the shor~test available abbreviation
for the set command is 'se'.

1.5.1. Command Parameters:

Most commands accept prefix addresses specifying the lines
in the file upon which they are to have effect. The for.ms
of these addresses are discussed below. A number of com­
mands also can take a trailing count specifying the number
of lines to be involved in the ~ommand. Thus, the command
"10p" prints the tenth line in the buffer while "delete 5"
will delete five lines from the buffer, starting with the
current line. Some commands take other information or
parameters; this information is given after the command
name ..

1.5.2. Command variants:

A number of commands have two distinct variants. The vari­
ant form of the command is invoked by placing an'!' immedi­
ately after the command name. Some of the default variants
can be controlled by options; in this case, the'!' serves
to toggle or override the default.

1-5 Zilog 1-5

EX Zilog EX

1.5.3. Flags After Commands:

The flag commands "'f' (abbr.eviation for the "'nu' command),
"' p' (pr i n t co mm and) , and "' 1 ' (1 i st co mm and) can be p 1 aced
after many commands. In this case, the flag command is exe­
cuted after the primary command completes. Since ex nor­
mally prints the new current line after each changE~, 'P' is
rarely necessary.

Any number of "'+• or ... _, characters can also be given with
these flags. If they appear, the specified offset is
applied to the current line value before the flag command is
executed.

1.5.4. Comments:

It is possible to give editor commands which are ignored.
This is useful when making complex editor scripts for which
comments are desired. The comment character is the double
quote: "'• 1

• Any command line beginning with '•• is ignored.
Comments beginning with "'"' can also be placed at the ends
of commands, except in cases where they could be confused as
part of text as in shell escapes or the substitute and map
commands.

1.5.5. Multiple Commands per Line:

More than one command can be placed on a line by separating
each pair of commands by a "' I' character. However 1, the glo­
bal ("'g') commands, comments, and the shell escape"'!' must
~the last command on a line, as they are not terminated by
a "' I ' •

1.5.6. Reporting Large Changes:

Most commands which change the contents of the editor buffer
give feedback if the scope of the change exceeds a threshold
given by the report option (Section 3.1.19). This feedback
helps to detect undesirably large changes so that they can
be quickly and easily reversed with an undo. command.
After commands with more global effect such as global or
visual, you will be informed if the net change in the number
of lines in the buffer during this command exceeds this
threshold.

1-6 Zilog 1-6

Ex· Zilog EX

1.6. Conunand Addressing

1.6.1. Addressing Primitives:

The current line. Most conunands leave the current line
as the last line which they affect. The default
address for most commands is the current line, thus '.•
is rarely used alone as an address.

n The nth line in the editor's buffer, lines being num­
bered sequentially from 1.

$ The last line in the buffer.

% An abbreviation for ''1,$'', the entire buffer.

+n -n
An offset relative to the current buffer line. The
forms '.+3' '+3' and'+++' are all equivalent; if the
current line is line 100, they all address line 103.

/pat/ ?pat?
-- Scan forward and backward respectively for a line con­

taining pat, a regular expression (Section 2.2.1). The
scans normally wrap around the end of the buffer. If
all that is desired is to print the next line contain­
ing pat, then the trailing / or ? can be omitted. If
pat is omitted or explicitly empty, the last regular
expression specified is located. The forms '/' and '?'
scan using the last regular expression used in a scan;
after a substitute, '//' and '??' would scan using the
substitute's regular expression.

Marking with quotes
Before each non--relati ve motion of the current line is
marked with a tag, subsequently referred to as ' 111 (two
forward quotes) .. This makes it easy to refer or return
to this previous context. Marks can also be esta­
blished by the mark command, using single lower case
letters x and tile!narked lines referred to as '•x.'

1.6.2. Combining Addressing Primitives:

Addresses to conunands1 consist of a series of addressing
primitives, separated by , or :. Such address lists are
evaluated left-to-rigrht. When addresses are separated by
addressing expression before the next address is inter­
preted. If more addresses are given than the command
requires, all but the last one or two are ignored. If the
corrunand takes two addresses, the first addressed line. must

1-7 Zilog 1-7

EX Zilog EX

N~ll address specifications are permitted in a list of
addresses. The default in this case is the current line .;
thus ',100' is equivalent to '.,100 1

• It is an error to
give a prefix address to a command when none is required.

1-8 Zilog 1-8

EX Zilog

SECTION 2
I

EDIT COMMANDS

2.1. Command Descriptions

The following form is a prototype for all ex commands:

[address] command [I] [parameters]
[count] [flags] fR [!] [parameters]
[count] [flags]

EX

All parts within the brackets"[]" are optional; the degen­
erate case is the empty command which prints the next line
in the file. For sanity with use from within visual mode,
ex ignores a : preceding any command.

In the following command descriptions, the default addresses
are shown in parentheses. The parentheses are~, however,
part of the command.

(•) append
text

abbr: a

reads the input text and places it after the specified line.
After the command, '.• addresses the last line input or the
specified line if no lines were input. If address '0' is
given, text is placed at the beginning of the buffer.

a!
text

The variant flag to append toggles the setting for the
autoindent option during the input of text.

args

The file names from the "ex" command line are printed. The
current file name is delimited by'[' and']'.

cd directory

The cd command is a synonym for chdir.

2-1 Zilog 2-1

EX Zilog

(• , •) change count abbr: c
text

EX

Replac~s the specified lines with the input text. The
current line becomes the last line input, if no-lines were
input; the command is the same as delete.

c!
text

The variant toggles autoindent during the change.

chdir directory

The specified directory becomes the current directory. If
no directory is specified, the current value of the home
option is used as the target directory. After a chdir tne
current file is not considered to have been editid so that
write restrictions on pre-existing files apply.

(• , •) copy addr flags abbr: co

A copy of the specified lines is placed after addr, which
can be '0 1

• The current line'.• addresses the la:st line of
the copy. The command t is a synonym for copy.

Cshell abbr: cs

A new C shell is created; when it terminates, editing
resumes

(• ,.) delete buffer count flags
abbr: d

removes the specified lines from the buffer. The line after
the last line deleted becomes the current line; if the lines
deleted were originally at the end, the new last line
becomes the current line. If a named buffer is specified by
giving a letter., the specified lines are saved in that
buffer, or appended to it if an upper case letter is used.

2-2

edit file
ex fire-

abbr: e

Zilog 2-2

EX Zilog EX

Used to begin an editing session on a new file. The editor
first checks to see if the b'uffer has been modified since
the last write command was issued. If it has been, a warn­
ing is issued and the command is aborted. The command oth­
erwise deletes the entire contents of the editor buffer.,
makes the named file the current file and prints the new
filename. After insuring that this file is not a binary
file such as a directory, a block or character special file
other than /dev/~, a terminal., a binary, or executable
file the editor reads the file into its buffer.

If reading the file produces no errors, the number of lines
and characters read is typed. If there were any non-ASCII
characters in the file they are stripped of their non-ASCII
high bits, and any null characters in the file are dis­
carded.

If none of these errors occurred, the file is considered
edited. If the last line of the input file is missing the
trailing newline character, it will be supplied and a com­
plaint will be issued. This command leaves the current line
'.• at the last line read. If this command is executed from
within open or visual, the current line is initially the
first line of the rTie:-

e! file

The variant form suppresses the complaint about modifica­
tions having been made and not written from the editor
buffer, thus discarding all changes which have been made
before editing the new file.

e +n file

causes the editor to begin at line n rather than at the last
line; n can also be an editor commind containing no spaces;
for example, "+/pat" (to search for the pattern, pat).

file abbr: f

prints the current file name, whether it has been '[Modi­
fied]' since the last write command, or whether it is read
on 1 y In add i t i on , th E~ c u r. r. en t l in e , the n umber o f 1 in es --rI1
the buffer., and the percentage of the way through the buffer
of the current line is printed.

In the rare case that the current file is '[Not edited]'
this is also noted; in this case use the form w! to write to

2-3 Zilog 2-3

EX Zilog EX

the file, since the editor is not sure that a write will not
destroy a file unrelated to the current contents of the
buffer..

file file

The current file name is changed to file which is considered
'[Not edited]'.

1 , $) global /pat/ cmds abbr: g

fir.st marks each line among those specified which matches
the given regular expression. Then the given command list
is executed with'.• initially set to each marked line.

The command list consists of the remaining commands on the
current input line and can continue to multiple lines by
ending all but the last such line with a'•. If cmds (and
possibly the trailing '/' delimiter) is omitted,· each line
matching ~ is printed. Append, insert, and change com­
mands and associated input are permitted; the'.• terminat­
ing input can be omitted if it would be on the last line of
the command list. Open and visual commands are permitted in
the command list and take input from the terminal.

The global command itself can not appear in cmds. The undo
command is also not permitted there, as undo instead can be
used to reverse the entire global commana:- The options
autoprint and autoindent are inhibited during a 9..!_obal, (and
possibly the trailing / delimiter) and the value of the
report option is temporarily infinite, in deference to a
report for the entire global. Finally, the context mark '••
is set to the value of'.• before the global command begins
and is not changed during a global command, except perhaps
by an open or visual within the global.

g! /~/ cmds abbr: v

The variant form of global runs cmds at each line not match­
ing~·

(•)insert
text

abbr: i

places the given text before the specified line. The
current line is left at the last line input; if there were

2-4 Zilog 2-4

EX Zilog EX

no· lines input, it is left at the line before the addressed
line. This command differs from append only in the place­
ment of text.

i!
text

The variant toggles autoindent during the insert.

(• , .+l) join count fl~gs
j

abbr:

places the text from a specified range of lines together on
one line. White space is adjusted at each junction to pro­
vide at least one blank character, two if there was a'.• at
the end of the line, or none if the first following charac­
ter is a')'. If there is already white space at the end of
the line, the white space at the start of the next line is
discarded.

j!

The variant causes a simpler join with no white
cessing; the characters in~e lines are
catenated •

•) k x

space
simply

pro­
con-

The k command is a synonym for mark. It does not require a
blank or tab before the following letter.

(• , •) list count flags

prints the specified lines so that tab and end-of-line char­
acters are represented; tabs are printed as 'AI' and the end
of each line is marked with a trailing '$'. The current
line is left at the last line printed •

•) mark x

gives the specified line mark x, a single lower case letter.
The x must be preceded by a blank or a tab. The addressing
form Tx (forward quote followed by the tag) addresses this
line; The current line is not affected by this command.

2-5 Zi log 2-5

EX Zilog EX

(• , •) move addr. abbr.: m

The move command repositions the specified lines to be after
addr-.--The fir.st of the moved lines becomes the current
line.

next abbr: n

The next file fr.om the command line argument list is edited.

n!

The variant suppresses warnings about the modifications to
the buffer not having been written out, discarding (irre­
tr.ievably) any changes which may have been made.

n f ilelist
n +command filelist

The specified filelist is expanded and the resulting list
replaces the current argument list; the first file in the
new list is then edited. If command is given (it must con­
tain no spaces), it is executed after editing the first such
file.

(• , •) number count
flags abbr: I or nu

prints each specified line preceded by its buffer. line
number.. The cur.rent line is left at the last line printed.

(•) open flags abbr.: o
(•) open /pat/ flags

enters editing in open mode at each addressed line. If pat
is given, the cursor. placed initially at the beginning of
the string matched by the pattern. To exit this mode use Q
(see Introduction to Display Editing with Vi for more
details).

preserve abbr: pre

The current editor buffer is saved as though the system had
just er.ashed. This command is for use only in emergencies
when a writ~ command has resulted in an error. Following a

2-6 Zilog 2-6

EX Zilog EX

preserve you will receive mail which explains how to recover
your file.

(• , •)print count abbr: p or P

prints the specified
printed as control
repr.esented as 'A?'.
line printed.

lines with non-printing char.acters
characters 'Ax'; delete (octal 177) is
The current lTne is left at the last

(•)put buffe~ abbr: pu

puts back previously deleted or yanked lines. Normally used
with delete to effect movement of lines, or with yank to
effect duplication of lines. If no buffer is specifi~the
last deleted or yanked text is restored. By using a named
buffer, text can be restored that was saved there at any
previous time.

No modifying commands can intervene between the delete or
yank and the put. Lines are moved between files only by
li.'Sli1g a named buffe~r.

quit abbr.: q

causes ex to terminate. No automatic write of the editor
buffer to a file is performed. However, ex issues a warning
message if the file has changed since the-rast write command
was issued, and does not quit. Normally, to save changes,
give a write command. To dTSCard them, use the q! command
variant.

Ex also issues a diagnostic if there are more files in the
argument list.

q!

quits from the editor, discarding changes to the buffer
without complaint.

(•) read f i 1 e. ab b r : r

places a copy of the text of the given file in the editing
buffer after the specified line. If no file is given the
current file name is used. The current fire----name is not
changed unless there is none, in which case file becomes the

2-7 Zilog 2-7

EX Zilog EX

cu~rent name. The sensibility restrictions for the edit
command apply here also. If the file buffer is empty and
there is no current name, ex treats this as an edit command.

Address '0 1 is legal for this command and causes the file to
be read at the beginning of the buffer. Statistics are
given as for the edit command when the read successfully
terminates. After a read the current line is the last line
read in ex. Within open and visual the current line is set
to the first line read rather. than the last •

•) read !command

reads the output of the command command into the buffer
after. the specified line. This is not a variant for.m of the
command; rather, this is a read specifying a command instead
of a filename; a blank or tab before the 1 is mandafory.

recover file

recovers file from the system save area. Used after a
accidentar-llangup of the phone, or a system crash or
preserve command. However, the system saves a copy of the
file being edited, only changes have been made to the file.
You will be notified by mail when a file is saved.

rewind abbr: rew

The argument list is rewound, and the first file in the list
is edited.

rew!

Rewinds the argument list discarding any rewinds made to the
current buffer.

set parameter

With no arguments, prints those options whose values have
been changed from their defaults; with parameter all it
prints all of the option values.

Giving an option name followed by a '?' causes the current
value of that option to be printed. The '?' is unnecessary
unless the option is Boolean valued. Boolean options are
given values either by the form 'set option' to turn them on

2-8 Zilog 2-8

EX Zilog EX

o~ 'set nooption' to turn them off; string and numeric
options are assigned via the form 'set option=value'.

More than one parameter. can be given to set;
interpreted left-to-right.

shell abbr: sh

they are

A new Bourne shell is created; when it terminates, editing
resumes.

source file abbr: so

reads and executes commands from the specified file. Source
commands can be nested.

(• , •) substitute /pat/repl/ options count flags

On each specified line, the first instance of pattern pat is
replaced by replace~ment pattern repl. If the global indica­
tor option characte~r 'g' appears-;-aTI instances are substi­
tuted.

If the confirm indicatior 'c' appears, the line is typed
with the pat string marked with with 'T' characters; typing
a 'y' causes the substitution to be performed and any other
input causes no change to take place. After a substitute,
the current line is the last line substituted.

Lines can be split by substituting new-line characters into
them. The newline in repl must be escaped by preceding it
with a'': Other metacharacters available in pat and repl
are described below.

a • , •) substitute options count flags abbr: s

If pat and
repeated.
tion 2. 2. 5)

repl are omitted, the last substitution is
This is a synonym for the '&' command. (See Sec-

• , •) t add! flags

The t command is a synonym for .££.El·

ta~

2-9 Zilog 2-9

abbr: s

EX Zilog EX

The focus of editing switches to the location of ~'
switching to a different line in the current file where it
is defined or, if necessary, to another file. If you have
modified the current file before giving a ~ command, write
it out; giving another !!9_ command, specifying no ta9_ reuses
the previous tag.

The tags file is normally created by a program such as
ctags, and consists of a number of lines with three fields
separated by blanks or tabs. The first field gives the name
of the tag, the second the name of the file where the tag
resides, and the third gives an addressing form which can be
used by the editor to find the tag; this field is usually a
contextual scan using '/pat/' to be immune to minor changes
in the file. Such scans-are always performed as if nomagic
was set.

The tag names in the tags file must be sorted alphabeti­
cally.

undo abbr: u

reverses the changes made in the buffer by the last buff er
editing command. Note that global commands are considered a
single command for the purpose of undo {as are open and
visual). Also, the commands write--ana edit, which-interact
with the file system, cannot be undone;---uri'do is its own
inverse.

Undo always marks the previous value of the current line'.•
as-'•• (two forward quotes). After an undo the current line
is the first line restored or the line be!Ore.the first line
deleted if no lines were restored. For commands with more
global effect such as global and visual the current line
regains it's pre-command value after an undo.

(1 , $) v /pat/ cmds

A synonym for the global command variant 'g!', running the
specified cmds on each line which does not match pat.

version abbr: ve

prints the current version number of the editor as well as
the date the editor was last changed.

(•) visual ~ype count flags abbr: vi

2-10 Zilog 2-10

EX Zilog EX

Enters visual mode at the specified line. Type is optional
and can be'-• , 'f' or'.• as in the z command to specify
the placement of the specified line on the screen. By
default, if type is omitted, the specified line is placed as
the first on the screen. A count specifies an initial win­
dow size; the default is the value of the option window. To
exit this mode, type 'Q'. See the document Introduction to
Display Editing with Vi for more details.

visual file
visual +n file

From visual mode, this command is the same as edit.

(1 , $) write file abbr: w

writes changes made back to file, printing the number of
lines and characters wr.itten:--Normally file is omitted and
the text goes back where it came from. I-ra-file is speci­
fied, text is written to that file. If the-rlle does not
exist, it is created. The current file name is changed only
if there is no current file name; the current line is never
changed.

The editor writes to a file only if it is the current file
and is edited, if the file does not exist, or if the file is
actually a teletype (/dev/tty) or (/dev/null). Otherwise to
force the write, give the variant form w!.

If an error occurs while writing the current and edited
file, the editor considers that there has been "No write
since last change" even if the buffer had not previously
been modified.

(1 , $) write>> file abbr: w>>

writes the buffer contents at the end of an existing file.

w! name

overrides the checking of the normal write command, and
writes to any file which the system permits.

(1 ' $ w !command

writes the specified lines into command. Note the

2-11 Zilog 2-11

EX Zilog EX

di·fference between w! which overrides checks and w ! which
writes to a command.

wq name

Similiar to a write and then a quit command.

wq! name

The variant overrides checking on the sensibility of the
write command, as w! does.

xit name

If any changes have been made and not written, writes the
buffer out; then, in any case, quits.

(• , •) yank buffer count abbr: y

Places the specified lines in the named buffer, for later
retrieval via ~· If no buffer name is specified, the
1 in es go to a more v o 1 at i 1 e p 1 ace ; (see the ~ command
description) •

• +l) zcount:_

print the next count lines, default window.

(•) z type count

prints a window of text with the specified line at the top.
If type is '-' the line is placed at the bottom; a'.•
causes the line to be placed in the center. A count gives
the number of lines to be displayed rather thai100uble the
number specified by the scroll option. On a CRT the screen
is cleared before display begins unless a count which is
less than the screen size is given. The current line is
left at the last line printed. Forms 'z=' and 'zf' also
exist; 'z=' places the current line in the center, surrounds
it with lines of '-• characters and leaves the current line
at this line. The form 'zf' prints the window before 'z-'
would. The characters'+•, 'T' and'-• can be repeated for
cumulative effect.

2-12 Zilog 2-12

EX Zilog EX

! command

The remainder of the line after the'!' character is sent to
a shell to be executed. Within the text of command the
characters '%' and '#' are expanded as in filenames and the
character'!' is replaced with the text of the previous com­
mand. Thus, in particular, '!!' repeats the last such shell
escape. If any expansion is performed, the expanded line is
echoed. The current line is unchanged by this command.

If there has been "[No write]" of the buffer contents since
the last change to the editing buffer, then a diagnostic is
printed before the command is executed as a warning. A sin­
gle'!' is printed when the command completes.

addr , addr) ! command

takes the specified address range and supplies it as stan­
dard input to command; the resulting output replaces the
input lines.

($) =

prints the line number of the addressed line.
line is unchanged.

(• , •) > count flags
(• , •) < count flags

The current

performs intelligent shifting on the specified lines: <
shifts left and > shifts right. The quantity of shift is
determined by the shiftwidth option and the repetition of
the specification- character. Only white space (blanks and
tabs) is shifted; no non-white characters are discarded in a
left-shift. The current line becomes the last line changed
due to the shifting.

An end-of-file from a terminal input scrolls through the
file. The scroll option specifies the size of the scroll,
normally a half scieen of text •

2-13

• +l , .+l)
.+l , .+l)

Zilog 2-13

EX Zilog EX

An address alone causes the addressed lines to be printed.
A blank line prints the next line in the file.

(• , •) & options count flags

repeats the previous substitute command.

(• , •) - options count flags

replaces the previous regular expression with the previous
replacement pattern from a substitution.

2.2. Regular Expressions and Sub~titute Replacement Pat­
terns

2.2.1. Regular Expressions:

A regular. expression specifies a set of strings of charac­
ters. A member. of this set of strings is said to be matched
by the regular expression. Ex remembers two previous regu­
lar expressions: the previous regular expression used in a
substitute command and the previous regular expression used
elsewhere (referred to as the previous scanning regular
expression). The previous regular expression can always be
referred to by a null re, e.g.'//' or'??'.

2.2.2. Magic and Nomagic:

The regular expressions allowed by ex are constructed in one
of two ways depending on the setting of the magic option.
The ex and vi default setting of magic gives quick access to
a powerfui'-set of regular expression metacharacters. The
disadvantage of magic is that the user must remember that
these metacharacters are magic and escape them (precede
them with the character ' ') to use them as ''ordinary''
characters.

With nomagic, the default for edit, regular expressions are
much simpler.; there are only two metacharacters. The power
of the other. metacharacters is still available by preceding
the ordinary character. with a'• Note that'• is always a
metachar.acter.

The remainder of the discussion of regular expressions
assumes that that the setting of this option is magic. To
discern what is true with nomagic, remember. that the only
special characters in this case will be 'T' at the beginning

2-14 Zilog 2-14

EX Zilog EX

of a regular expression, '$' at the end of a regular expres­
sion, and'•. With nomagic ~he characters'-• and '&' also
lose their special meanings r.elated to the replacement pat­
tern of a substitute.

2.2.3. Basic Regular Expression Summary:

The following basic constructs are used to construct magic
mode regular expressions.

t At the beginning of a pattern forces the match to
succeed only at the beginning of a line.

$ At the end of a regular expression forces the match to
succeed only at the end of the line.

Matches any single character except the new-line char­
acter.

\< Forces the match to occur only at the beginning of a
"var. iable" or "wor.d' '; that is, either. at the beg in­
ning of a line, or just before a letter, digit, or
underline and after a character not one of these.

\> Similar to'<', but matching the end of a "variable" or
"word", i.e. either the ~nd of the line or before char­
acter which is neither a letter, nor a digit, nor the
underline character.

[string]
Matches any (single) character in the class defined by
string. Most characters in string define themselves.
A pair of characters separated by '-• in string defines
the set of characters collating between the specified
lower and upper bounds, thus '[a-z]' as a regular
expression matches any (single) lower-case letter. If
the first character of string is an 'T' the construct
matches those characters that otherwise would not be
matched; thus 'cra-z]' mqtches anything but a lower­
case letter (and of course a newline). To place any of
the characters 't•, '[',or '-• in string you must
escape them with a preceding '•

2.2.4. Combining Jlegular Expression Primitives:

The concatenation of two regular expressions matches the
leftmost and the longest string which can be divided with
the first piece matching the first r~gular expression and
the second piece matching the second. Any of the (single

2-15 Zilog 2-15

EX Zilog EX

character matching) regular expressions mentioned above can
be followed by the character '*' to form a regular. expres­
sion which matches any number of adjacent occurrences
(including 0) of characters matched by the regular expres-
sion it follows.

The character '-• can be used in a regular expression, and
matches the text wh~ch defined the replacement part of the
last substitute command. A r.egular expression can be
enclosed between the sequences' and')' with side effects
in the substitute replacement patterns.

2.2.s. Substitute Replacement Patterns:

The basic metacharacters for the replacement pattern are '&'
and '-•; these are given as'\&' and '\-• when nomagic is
set. Each instance of '&' is replaced by the Cfiaracters
matched by the regular expression. The metachar.acter '-•
stands, in the r.eplacement pattern, for. the defining text of
the previous replacement pattern.

Other metasequences possible in the replacement pattern are
always introduced by the escaping character '\'. The
sequence '\n' is replaced by the text matched by the n-th
regular subexpression enclosed between'\(' and'\)'. When
nested, parenthesized subexpressions are present, n is
determined by counting occurrences of '\(' starting from the
left.

The sequences '\u' and '\l' cause the immediately following
character in the replacement to be converted to upper- or
lower-case, respectively, if this character is a l~tter.
The sequences '\U' and '\L' turn such conversion on, either
until 'E' or '\' is encountered or until the end of the
replacement pattern.

2-16 Zilog 2-16

EX

3.1. Option Descriptions

3.1.1. Autoindent:

Zilog

SECTION 3
OPTIONS

autoindent, ai default: noai

EX

can be used to ease the preparation of structured program
text. At the beginning of each append, change or insert
command or when a new line is opened or created by an
append, change, insert, or substitute operation within open
or visual mode, ex looks at the line being appended after,
the first line cnanged or the line inserted before and cal­
culates the amount of white space at the start of the line.
It then aligns the cursor at the level of indentation so
deter.mined.

If the user enters lines of te~t, they continue to be justi­
fied at the displayed indenting level. If more white space
is typed at the beginning of a line,, the following line
starts aligned with the first non-white character of the
previous line. To back the cursor up to the preceding tab
stop enter AD. The tab stops, going backwards, are defined
at multiples of the shiftwidth option. You cannot backspace
over the indent, except by typing a AD.

Specially processed in this mode is a line with no charac­
ters added to it, which turns into a completely blank line
(the white space provided for the autoindent is discarded).
Also specially processed in this mode are lines beginning
with an 'T' and immediately followed by a AD. This reposi­
tions the input at the beginning of the line, but retaining
the previous indent for the next line. Similarly, a '0'
followed by a ~D repositions at the beginning but without
retaining the previous indent.

Autoindent is not meaningful in global commands or when the
input is not a terminal.

3.1.2. Autoprint:

autoprint, ap default: ap

Causes the current line to be printed after
c~, join, move, substitute, !, undo or

3-1 Zilog

each delete,
shift command.

3-1

EX Zilog EX

This has the same effect as supplying a trailing 'p' to each
such command. Autoprint is suppressed in globals, and only
applies to the last of many commands on a line.

3.1.3. Autowrite:

autowrite, aw default: noaw

Causes the contents of the buffer to be written to the
current file if it has been modified and gives a next,
rewind, stop, ~, or '1' command, or a '""T' (switch fITe'S)
or '"'] '---rta"g goto) command in visual. The edit and ex com­
mands do not autowrite. In each case, there is an
equivalent way of switching when autowrite is set to avoid
the autowrite (edit for next, rewind! for rewind, stop!
for stop, tag-!--fo r 7ag, shel 1 for ' ! ', and ' :e ., , and a
':ta!~mmand from within visual).

3.1.4. Beautify:

beautify, bf default: nobeautify

causes all control characters except tab, newline and form­
feed to be discarded from the input. A complaint is
registered the first time a backspace character is dis­
carded. Beautify does not apply to command input.

3.1.5. Directory:

directory, dir default: dir=/tmp

specifies the directory in which ex places its buffer file.
If this directory is not writable-,-the editor exits abruptly
when it cannot create its buffer there.

3.1.6. Error Bells:

errorbells, eb default: noeb

Error messages are preceded by a bell tone. If possible the
editor always places the error message in a standout mode of
the terminal (such as inverse video) instead of ringing the
bell.

Bell ringing in open and visual on errors is not suppressed
by setting noeb.

3-2 Zilog 3-2

EX Zi log EX

3.1.7. Hard Tabs:

hardtabs, ht default: ht=a

gives the boundaries on which terminal hardware tabs are set
(or on which the system expands tabs).

3.1.8. Ignore Case:

ignorecase, ic default: noic

All upper case characters in the text are mapped to lower
case in regular expression matching. In addition, all upper
case characters in regul~r expressions are mapped to lower
case except in character class specifi~ations.

3.1.9. Lisp:

lisp default: nolisp

Autoindent indeQts appropriately for lisp code, and the {)
T } [[and]] commands in open and:Vlsual are modified to
have meaning for lisp. -

3.1. HJ. List:

list default: nolist

All printed lines are displayed showing tabs and end-of­
lines as in the list command.

3.1.11. Magic:

magic default: magic for ex and vi+
Nomagic for-edit.~

If nomagic is set, the number of regular expression meta­
characters is greatly reduced, with only 'j• and '$' having
special effects. In addition the metacharacters '-• and '&'
of the replacement pattern are treated as normal characters.
All the normal metacharacters can be made magic when nomagic
is set by preceding them with a'\'.

3-3 Zilog 3-3

EX Zilog EX

1.1.12. Humber:

number, nu default: nonumber

causes all output lines to be printed with their line
numbers. In addition, each input line prompts with the line
number it will have.

3. 1. 13. Open:

open default: open

If noopen, the commands open and visual are not permitted.
This is set for edit~pr.event confusion resulting from
accidental entry to open or visual mode.

3.1.14. Optimize:

optimize, opt default: no optimize

Throughput of text is expedited by setting the terminal to
not do automatic carriage returns when printing more than
one {logical) line of output. This speeds output on termi­
nals without addressable cursors when text with leading
white space is printed.

3.1.15. Paragraphs:

paragraphs, para default: para=IPLPPPQPP Libp

specifies the paragraphs for the'{' and'}' operations in
open and visual. The pairs of characters in the option's
value are the names of the macros which start paragraphs.

3.1.16. Prompt:

prompt default: prompt

Command mode input is prompted for with a

3.1.17. Read Only:

read only default: noreadonly

' • I . .

puts the editor in "read only" mode {as discussed in Section
1.2.5) to protect files from being overwritten. This option

3-4 Zilog 3-4

EX ZilQg EX

is set when involving the editor with the '-R' command line
option.

3.1.18. Redraw:

redraw default: noredraw

The editor simulates (using great amounts of output), an
intelligent terminal on a dumb terminal. (For example, dur­
ing insertions in visual the characters to the right of the
cursor. position are refreshed as each input character is
typed.) This option is useful only at very high speeds.

3.1 .. 19. Report:

report default: report=S for ex and visual
report=2 for edit.

specifies a threshold for feedback from commands. Any com­
mand which modifies more than the specified number of lines
provides feedback as to the scope of its changes. For com­
mands such as ~:>bal, open, undo, and visual, which have
potentially more lir t"each~scope, the net change in the
number of lines in the buffer ls presented at the end of the
command, subject to this same threshold. Thus notification
is suppressed during a global command on the individual com­
mands performed.

3.1.28. Scroll:

scroll default: scroll=l/2 window

determines the number of logical lines scrolled when an
end-of-file is received from a terminal input in command
mode, and the number of lines printed by a command mode z
command (double the value of scroll).

3.1.21. Sections:

sections default: sections=SHNHH HU

specifies the section macros for the'[[' and ']]' opera­
tions in open and visual. The pairs of characters in the
option's value are the names of the mact"os which start para­
graphs.

3-5 Zilog 3-5

EX Zilog EX

3.1.22. Shell:

shell, sh default: sh=/bin/csh

gives the path name of the shell forked for the shell escape
comm~nd '1 1

, and by the shell command. The default is taken
from SHELL in the environment, if present.

3.1.21. Shiftwidth:

shiftwidth, sw default: sw=8

gives the width for a software tab stop; this is used in
reverse tabbing with AD when using autoindent to append text
and by the shift commands.

3.1.24. Showmatch:

showmatch, sm default: nosm

In open and visual mode, when a) or } is typed, move the
cursor. to the matching (or { for one second if this match­
ing character is on the screen; this is extremely useful
with lisp.

3.1.25. Slowopen:

slowopen, slow terminal dependent

affects the display algorithm used in visual mode, holding
off display updating during input of new text to impr.ove
throughput when the terminal in use is both slow and unin­
telligent (see Introduction to Display Editing wit~ Vi for
more details).

3.1.26. Tabstop:

tabstop, ts default: ts=8

The editor expands tabs in the input file to be on tabstop
boundaries for the purposes of display.

3.1.27. Taglength:

taglength, tl default: tl=0

3-6 Zilog 3-6

EX Zilog EX

Tags are not significant beyond this many characters. · A
value of zero (the default)' means that all characters are
significant.

3.1.28. Ttytype:

ttytype from environment TERM

The terminal type of the output device.

3.1.29. Term:

te~m from environment TERM

The terminal type of the output device.

3.1.30. Terse:

terse default: noterse

Shorter error diagnostics are produced for the experienced
use~.

3.1.31. Warn:

warn default: warn

Warn if there has been '[No write since last change]' before
a'!' command escape.

3.1.32. Window:

window default: speed dependent

The number of lines in a text .window in the visual command.
The default is 8 at slow speeds· (600 baud or less), 16 at
medium speed (1200 baud), and the full screen (minus one
line) at higher speeds.

w301, wl201, w9611

These are not true options but set window only if the speed
is slow (300), medium (1200), or high (9600), respectively.
They are suitable for EXINIT ~n the C shell environment and
make it easy to change the 8/16/full screen rule.

3-7 Zilog 3-7

EX Zilog EX

3.(.33. Wrapscan:

wrapscan, ws default: ws

searches using the regular expressions in addressing wrap
around past the end of the file.

3.1.34. Wrapmargin:

wrapmargin, wm default: wm=0

defines a margin for automatic wrapover of text during input
in open and visual modes. (See " Introduction to Display
Edit~with Vi for details.)

3.1.35. Writeany:

writeany, wa default: nowa

inhibits the checks normally made before write commands
allowing a write to any file which the system protection
mechanism will allow.

3.1.36. Limitations:

Editor limits that the user is likely to encounter are as
follows:

(1) 1024 characters per line

(2) 256 characters per global command list

(3) 128 characters per file name

(4) 128 characters in the previous inserted and deleted
text in open or. visual

(5) 100 charactets in a shell escape command

(6) 63 characters in a string valued option

(7) 30 characters in a tag name

3-8 Zilog 3-8

EX Zilog EX

(8) 250000 lines in the file is silently enforced.

3-9 Zilog 3-9

EX Zilog EX

SECTION 4
I

gx/EDIT COMMAND SUMMARY

Ex and edit are text editors, used for creating and modify-
1ng files of te><:t on the UNIX computer system. Edit is a
variant of ex with featur,es designed to make it less compli­
cated to !earn atnd use. In terms of command syntax and
effect, the editors are essentially identical; this command
summary applies to both.

The summary is a quick reference for users already
acquainted with edit or ex. Fuller explanations of the edi­
tors are availabTeTn the documents Edit: A Tutorial (a
self-teaching introduction), and the--E°x Reference Manual
(the comprehensive reference sour-ce for both edit and ex).

In the examples included with the summary, commands and text
entered by the user are printed in boldface to distinguish
them from responses printed by the computer.

4.1. The Editor Buffer

In order to perform its tasks the editor sets aside a tem­
porary work space, called a buffer., separate from the usel'."'s
permanent file. Before starting to work on an existing file
the editor makes a copy of it in the buffer, leaving the
original untouched. All editing changes are made to the
buffer copy, which must then be written back to the per-­
manent file in order to update the old ver-sion. The buffer
is erased at the end of the editing session.

4.2. Editing: Command and Text Input Modes

During an editing session there are two usual modes of
operation: command mode and text input mode. In command
mode, the editor issues a colon prompt (:) to show that it
is ready to accept and execute a command. In text input
mode, on the other hand, there is no prompt and the editor
merely accepts text to be added to the buffer. Text input
mode is initiated by the commands append, insert, and
change, and is terminated by typing a period as the first
and only character on a line.

4-1 Zilog 4-1

EX Zilog EX

4.3. Line Numbers and Command Syntax

The editor tracks lines of text in the buffer by numbering
them consecutively starting with 1 and renumbering as lines
ar.e added or deleted. At any given time the editor is posi­
tioned at one of these lines; this position is called the
current line. Generally, commands that change the contents
of the buffer. print the new current line at the end of their
execution.

Most commands can be preceded by one or two line-number
addresses which indicate the lines to be affected. If one
number is given, the command operates on that line only; if
two, on an inclusive range of lines. Commands that can take
line-number prefixes also assume default prefixes if none
are given. The default assumed by each command is designed
to make it convenient to use in many instances without any
line-number prefix. For the most part, a command used
without a prefix operates on the current line, though excep­
tions to this rule should be noted. The print command by
itself, for instance, causes one line, the cur.rent line, to
be printed at the terminal.

The summary shows the number of line addresses that can be
prefixed to each command as well as the defaults assumed if
they are omitted. For example, (.,.) means that up to 2
line-numbers can be given, and that if none is given the
command operates on the current line.

In the address prefix notation, "·" stands for the current
line and "$" stands for the last line of the buffer. If no
such notation appears, no line-number prefix can be used.

Some commands take trailing information; only the more
important instances of this are mentioned in the summary.

4.4. Open and Visual Modes

Besides command and text input modes, ex and edit provide on
some CRT terminals, other modes of editing, open and visual.
In these modes the cursor can be moved to individual words
or characters in a line. The commands then given are very
different from the standard editor commands; most do not
appear on the screen when typed. The document, Introduction
to Display Editin9 with Vi provides a full discussion.

4-2 Zilog 4-2

EX Zilog EX

4.5. Special Characters

Some characters takE~ on special meanings when used in con­
text searches and in patterns given to the substitute com­
mand. For edit, these are "A" and "$", meaning the begin­
ning and endOt a line, respectively.

Ex has the following additional special characters:

* & • [1

To use one of the special characters as its simple graphic
representation rather than with its special meaning, precede
it by a backslash (\). The backslash always has a special
meaning.

4-3 Zilog 4-3

(.)append abbr:a

Zilog

SECTION 5
COMMAND SUMMARY

EX

begins text input mode, adding lines to the buffer after the
line specified. Appending continues until''·'' is typed
alone at the beginning of a new line, followed by a carriage
return. 0a places lines at the beginning of the buffer.

:a
Three lines of text
are added to the buffer
after the current line.

(.,.)change abbr:c

places a copy of the specified lines.after the line indi­
cated by addr. The example places a copy of lines 8 through
12, inclusive, after line 25.

:8,12co 25
Last line copied is printed

(.,.)delete abbr:d

removes lines fr.om the buffer and prints the current line
after the deletion.

:13,lSd
New current line is printed

ex or edit file abbr:e
ex! or edit! file abbr:e!

clears the editor buffer and copies into it the named file,
which becomes the current file. This is a way of shifting
to a different file without leaving the editor. The editor
issues a warning message if this command is used before sav­
ing changes made to the file already in the buffer; using
the form "e!" overrides this protective mechanism.

5-1 Zilog 5-1

EX Zilog

:e chl8
No write since last change (:edit! overrides)
:el chle
"chl0" 3 lines, 62 characters

file name abbr:f

EX

If followed by a name, renames the current file to name. If
used without name~----prints the name of the current file.

:f ch9
"ch9" [Modified] 3 lines
:f
"ch9" [Modified] 3 lines

(l,$)global abbr:g

global/pattern/commands

searches the entire buffer (unless a smaller range is speci­
fied by line-number prefixes) and executes commands on every
line with an expression matching pattern.

:g/nonsense/d

(!,$)global! abbr:gl or v

executes commands on lines that do not contain the expres­
sion pattern.

(.)insert abbr:i

inserts new lines of text immediately before the specified
line. Differs from append only in that text is placed
before, rather than after, the indicated line. ·In other
words, Ii has the same effect as ea.

:li
These lines of text will
be added before line 1.

(.,.+l)join abbr:j

5-2 Zilog 5-2

EX Zilog EX

Join lines together, adjusting white space (spaces and tabs)
as necessary.

:2,Sj
Resulting line is printed

{.,.)list abbr:l

prints lines marking the end of a line with a "$" and tabs
as ""I".

: 91
This is line 9$

(~,.)move addr abbr:m

moves the specified lines to a position after the line indi­
cated by addr.

:12,lSm 25
New current line is printed

(.,.)number abbr:nu or I

prints each line preceded by its buffer line number.

:nu
10 This is line 10

(.)open abbr:o

enters open mode; see Introduction ~ ;!)isplay Editing with
Vi for more details. Type 'Q' to get ~ack into normal edi­
tor command mode. E:dit is designed to pt"event accidental
use of the open command.

preserve abbr:pre

saves a copy of the current buffer contents as though the
system had just crashed. This is for use in an emergency
when a write command has failed.

5-3 Zilog 5-3

EX Zilog

:preserve
File preserved.

(.,.)print abbr:p

Prints the text of line(s).

:+2,+3p
The second and third lines
after the current line.

quit
quit!

abbr:q
abbr:q!

EX

ends the editing session. You will receive a warning if you
have changed the buffer since last writing its contents to
the file. In this event you must either type "w" to write,
or type "q!" to exit from the editor without saving your
changes.

:q
No write since last change
:ql
%

(.)read file abbr:r

places a copy of file in the buffer after the specified
line. Address 0--rs-permissible and causes the copy of file
to be placed at the beginning of the buffer. The read com­
mand does not erase any text already in the buffe1r.- If no
line number is specified, file is placed after the current
line.

:er newfile
"newfile" 5 lines, 86 characters

recover file addr:rec

Retrieves a copy of the editor buffer after a system crash,
editor crash, phone line disconnection, or preserve command.

(.,.)substitute abbr:s

5-4 Zilog 5-4

EX Zilog EX

substitute/pattern/replacement/
substitute/pattern/replacement/gc
replaces the first occurrence .of pattern on a line with
replacement. Including a g after, the command changes all
occurrences of pattern on the line. The "c" option allows
the user to confirm each substitution before it is made; see
the Ex Reference Manual for. details.

:3p
Line 3 contains a misstake
:s/misstake/mistake/
Line 3 contains a mistake

undo abbr:u

reverses the changes made in the buffer by the last buffer­
ed it i ng command. Note that this example contains a notifi­
cation about the number of lines affected.

:l,15d
15 lines deleted
new line number I is printed
:u
15 more lines in file •••
old line number 1 is printed

(l,$)write file
(l,$)write!file

abbr:w
abbr:w!

copies data from the buffer onto a permanent file. If no
file is named, the current filename is used. The file is
automatically created if it does not yet exist. A response
containing the number of lines and characters in the file
indicates that the write has been completed successfully.
The editor's built-in protections against overwriting exist­
ing files will in some circumstances inhibit a write. The
form "w!" forces the write, confirming that an existing file
is to be overwritten.

5-5

:w
"file7" 64 lines, 1122 characters
:w file8
"file8" File exists •••
:w! file8
"file8" 64 lines, 1122 characters

Zilog 5-5

EX Zilog EX

(.)z count abbr:z

prints a screen full of text starting with the line indi­
cated; or, if count is specified, prints that number of
lines. Variants of the z command are described in the Ex
Reference Manual.

!command

executes the remainder. of the line after "I" as a UNIX com­
mand. The buffer is unchanged by this, and control is
returned to the editor when the execution of command is com­
plete.

:!date
Fri Jun 9 12:15:11 PDT 1978

control-a

prints the next scroll of text, normally half of a screen.
See the Ex Reference Manual for details of the scroll
option.

(.+l)<cr>

An address alone followed by a carriage return causes the
line to be printed. A carriage return by itself prints the
line following the current line.

:<er>
the line after the current line

/pattern/

Searches for the next line in which pattern occurs and
prints it.

:/This pattern/
This pattern next occurs here.

II

repeats the most recent sear.ch.

5-6 Zilog 5-6

EX Zilog EX

://
This pattern also occurs here.

?.e .. ~ttern?

searches in the reverse direction for pattern.

??

repeats the most recent search, moving in the reverse direc­
tion through the buffer.

5-7 Zilog 5-7

FILE SYSTEM CHJ-:CK PROGRAM (FSCK) REFERENCE MANUAL

FSCK Zilog FSCK

ii Zilog ii

FSCK Zilog FSCK

Pref ace

This document describes how the file system check program
(fsck) maintains file system integrity. More broadly, this
document presents the normal updating of the file system,
discusses the possible causes of file system corruption, and
describes the corrective actions used by fsck. Both internal
functions of the fsck program and the interaction between
the program and the operator appear in this document.

Section 1 gives a brief introduction to fsck, and Section 2
discusses normal updating of the file system. File system
corruption is described in Section 3. Section 4 presents
the set of corrective actions used by fsck. Error condi­
tions and operator actions are explained in the Appendix.

In this document, the sentence structure "fsck can "
often appears; for example, "Fsck can clear the inodes."
This is a shorthand notation for the process of fsck prompt­
ing the operator, the operator respohding to continue fsck,
and fsck actually performing the action, in this case,
clearing the inodes (setting its contents to zero).

Additional information on fsck,appears in the System 8000
ZEUS Reference Manual (part number 03-3255) under fsck(l-)-.~

iii Zilog iii

FSCK Zilog FSCK

iv Zilog iv

FSCK Zilog

Table of Contents

SECTION 1 INTRODUC'I'I ON ~ .

SECTION 2 UPDATE OF THE FILE SYSTEM ~
2 .1. General
2.2. Super-Block . .
2.3. Inodes • • • • 0
2.4. Indirect Blocks
2.5. Data Blocks
2.6. Free-List Blocks . . • • • . . . •

SECTION 3 CORRUPTION OF THE FILE SYSTEM
3 .1.
3.2.
3.3.

General
Improper
Hardware

....................... • .•
System Shutdown and Startup
Failure ••••••••••••••••••••••

SECTION 4 DETECTION: AND CORRECTION OF CORRUPTION

v

. 4.1. General
4.2. Super-Block,

4.2.1. File-System Size and Inode~List Size
4.2.2. Free-Block List . .
4.2.3. Free-Block Count •••••••••••••••••
4.2.4. Free-Inode Count

4. 3. !nodes ••••••••••••••••
4.3.1. Format and Type
4.3.2. Link Count ••••••
4.3.3. Duplicate Blocks
4.3.4. Bad Blocks
4.3.5. Size Checks

4.4. Indirect Blocks
4.5. Data Blocks •••••••••••
4.6. Free-List Blocks

Zilog

.

.
• •

FSCK

1-1

2-1

2-1
2-1
2-1
2-1
2-2
2-2

3-1

3-1
3-1
3-1

4-1

4-1
4-1
4-1
4-1
4-2
4-2
4-2
4-2
4-3
4-3
4-3
4-4
4-4
4-4
4-5

v

FSCK Zilog

APPENDIX A FSCK ERROR CONDITIONS .

vi

A. 1 • Conventions
A. 2. Initialization •••• o •••••••••••••••••••••••••••

A.3. Phase 1: Check Blocks and Sizes ••••••••••••••
A.4. Phase lB: Rescan for More Duplicates •••••••••
A.5. Phase 2: Check Path Names ••••••••••••••••••••
A.6. Phase 3: Check Connectivity ••••••••••••••••••
A.7. Phase 4: Check Reference Counts ••••••••••••••
A.8. Phase 5: Check Free List •••••••••••••••••••••
A.9. Phase 6: Salvage Free List •••••••••••••••••••
A.10. Cleanup ••••••••••••••••••••••••••••••••••••••

Zilog

FSCK

A-1

A-1
A-1
A-4
A-7
A-7
A-9

A-10
A-14
A-16
A-16

vi

FSCK Zilog

SECTION 1
INTRODUCTION

FSCK

When the ZEUS Operating System is brought up, the file sys­
tem check program (fsck) must be run. Fsck is an interac­
tive file system program that uses the redundant structural
information in the ZEUS file system to perform consistency
checks. Fsck detects file inconsistencies and reports them
to an operator who elects to fix or ignore them. This pre­
cautionary measure helps to ensure a reliable environment
for file storage on disk.

Every file activity (creation, modification, or deletion)
updates at least one of the five data blocks that ZEUS uses
to monitor files. Fsck checks for matches in the contents
of redundant fields among these blocks, and for matches
between information in the blocks and the files themselves.
When any error is found, fsck reports it to an operator.
Most errors allow for operator intervention to continue run­
ning fsck or to terminate it. Serious errors, such as ille­
gal options, cause fsck to terminate.

1-1 Zilog 1-1

FSCK Zilog FSCK

SECTION 2
UPDATE OF THE FILE SYSTEM

2.1. General

Every time a file is created, modified, or removed, the ZEUS
Operating System performs a series of file system updates on
the super-block, inodes, indirect blocks, data blocks
(directories and files), and free-list blocks. Update
requests are honored in a specific order to yield a con­
sistent file system. Knowing this order makes it easier to
understand what happens when a problem occurs, and to repair
a corrupted file system.

2.2. Super-Block

The super-block contains information about the size of the
file system, the size of the inode list, part of the free­
block list, the count of free blocks, the count of free
inodes, and part of the free-inode list.

The root file system is always mounted, and the super-block
of a mounted file system is written to the file system when­
ever the file system is unmounted or a sync command is
issued.

2.3. !nodes

An inode contains information about the type of inode
(directory, data, or special), the number of directory
entries linked to the inode, the list of blocks claimed by
the inode, and the size of the inode.

An inode is written to the file system on closure of the
file associated with the inode, and when a sync command is
issued.

2.4. Indirect Blocks

There are three types of indirect blocks: single-indirect,
double-indirect, and triple-indirect. A single-indirect
block contains a list of some of the block numbers claimed
by an inode. Each of the 128 entries in an indirect block
is a data-block number. A double-indirect block contains a
list of single-indirect block numbers, and a triple-indirect
block contains a list of double-indirect block numbers.

2-1 Zilog 2-1

FSCK Zilog FSCK

Indirect blocks are written to the file system when the
operating system modifies them and queues them for writing.
Actual I/O is deferred until ZEUS needs the buffer or a sync
command is issued.

2.5. Data Blocks

A data block contains file information or directory entries.
Each directory entry consists of a file name and an inode
number.

Data blocks are written to the file system when the ope~at­
ing system modifies them and queues them for writing.
Actual I/O is deferred until ZEUS needs the buffer or a sync
command is issued.

2.6. Free-List Blocks

The free-list blocks list all blocks that are not allocated
to the super-block (only the first free-list block), inodes,
indirect blocks, or data blocks. Each free-list block con­
tains a count of the entries in this free-list block, a
pointer to the next free-list block, and a partial list of
free blocks in the file system.

Free-list blocks are written to the file system when the
operating system modifies them and queues them for writing.
Actual I/O is deferred until ZEUS needs the buffer or a sync
command is issued.

2-2 Zilog 2-2

FSCK

3 .. 1. General

Zilog

SECTI<)N 3
CORRUPTION OF THE FILE SYSTEM

FSCK

The most common reasons for corruption of a file system are
improper shutdown and hardware failure.

3~2. Improper System Shutdown and Startup

Improper shutdown procedures ihclude forgetting to sync the
system prior to halting the CPU, physically write-protecting
a mounted file system, and taking a mounted file system
off-line.

Improper startup procedures include not checking a file sys­
tem for inconsistencies and not repairing inconsistencies.

3.3o Hardware Failure

Any piece of hardware can fail at any time. Failures range
from a bad block of a disk pack to a nonfunctional disk con­
troller.

3-1 Zilog 3-1

FSCI< Zilog FSCK

SECTION 4
DETECTION[AND CORRECTION OF CORRUPTION

4.1. General

A quiescent file system (one that is unmounted and not being
written on) can be checked for structural integrity by per­
forming consistency checks of the redundant data that is
part of the file system. A quiescent state is important
during the file system check because of the multipass nature
of the fsck program. Fsck discovers each file incon­
sistency, reports it to the operator, and allows for
interactive corrective action.

This section discusses how to discover inconsistencies and
take corrective actions for super-blocks, inodes, indirect
blocks, data blocks containing directory entries, and free­
list blocks.

4.2. Super-Block

The super-block is most prone to corruption because every
change to the file system's block or inodes modifies the
super-block. Corruption most frequently occurs when the
computer is halted and the last command involving the output
of the file system was not a sync command.

Check the super-block for inconsistencies involving file­
system size, inode-list size, free-block list, free-block
count, and the free-inode count.

4.2.1. File-System Size and Inode-List Size: These sizes
are critical because all other checks of the file system
depend on them, and because fsck can only check for them
being within reasonable bounds. The file system size must
be larger than both the number of blocks used by the super­
block and the number of blocks used by the list of inodes.
The number of inodes must be less than 65,535.

4.2.2. Free-Block List: The free-block list starts in the
super-block and continues through the free-list blocks of
the file system. Each free-list block is checked for a list
count out of range, for block numbers out of range, and for
blocks already allocated within the file system. A check is
made to see that all the blocks in the file system were

4-1 Zilog 4-1

FSCK Zilog FSCK

found. If anything is wrong with the free-block list, fsck
can rebuild it, excluding all blocks in the list of allo­
cated blocks.

Fsck checks the list count for the first free-block for a
value of less than zero or greater than 50. It also checks
each block number for a value of less than the first data
block in the file system. Then it compares each block
number to a list of already allocated blocks. If the free­
list block pointer is nonzero, the next free-list block is
read in, and the process is repeated.

When all the blocks have been accounted for, a check is made
to see if the number of blocks used by the free-block list
plus the number of blocks claimed by the inodes equals the
total number of blocks in the file system.

4.2.3. Free-Block Count: The super-block contains a count
of the total number of free blocks within the file system.
Fsck compares this count to the number of blocks it found
free within the file system and, if they do not agree,
replaces the count in the super-block with the actual free­
block count.

4.2.4. Free-Inode Count: The super-block contains a count
of the total number of free inodes within the file system.
Fsck compares this count to the number of inodes it found
free within the file system and, if they do not agree,
replaces the count in the super-block with the actual free­
inode count.

4.3. !nodes

A large quantity of active inodes increases the likelihood
of corruption. Fsck sequentially checks the list of inodes
for inconsistencies involving format and type, link count,
duplicate blocks, bad blocks, and inode size.

4.3.1. Format and Type: Each inode contains a mode word
that describes the type and state of the inode. Valid inode
types are regular, directory, special block, and special
character. Valia inode states are unallocated, allocated,
and neither allocated nor unallocated (incorrectly formatted
as a result of bad data being written into the inode list
through hardware failure). Fsck can clear the inod~.

4-2 Zilog 4-2

FSCK Zilog

4.3.2. Link Count: A count of the total number of
tory entries linked to the inode is contained in each
Fsck verifies this count by traversing down the total
tory structure starting from the root directory and
lating an actual link count for each inode.

FSCK

direc­
inode.
direc­
calcu-

If the stored link count is nonzero and the actual link
count is zero, no directory entry appears for the inode.
Fsck can link the disconnected file to the lost+found direc­
tory.

If the stored and actual link counts are nonzero and
unequal, a directory entry may have been added or removed
without the inode being updated. Fsck can replace the
stored link count with the actual link count.

4.3.3. Duplicate Blocks: Each inode contains a list, or
pointers to lists, (indirect blocks) of all the blocks
claimed by the inode. Fsck compares each block number
claimed by an inode to a list of already allocated blocks.
If there are any inconsistencies, fsck can clear both
inodes.

If a block number is already claimed by another inode, the
block number is added to a list of duplicate blocks. Other­
wise, the list of allocated blocks is updated to include the
block number.

If there are any duplicate blocks, fsck makes a partial pass
of the inode list to find the duplicate block. Fsck needs
to examine the files associated with these inodes to deter­
mine which inode is corrupted and should be cleared (most
frequently, this is the inode with the earlier modify time).
This error condition occurs when using a file system with
blocks claimed by both the free-block list and by other
parts of the file system.

A large number of duplicate blocks in an inode is often due
to an indirect block not being written to the file system.

4.3.4. Bad Blocks: Each inode contains a list, or pointer
to lists, of all the blocks claimed by the inode. Fsck
checks each block number claimed by an inode for a value
within the range bounded by the first data block (minimum)
and the last block (maximum) in the file system. A block
number outside the range is called a bad block number.

A large number of bad blocks in an inode can be due to an
indirect block not being written to the file system.

4-3 Zilog 4-3

FSCK Zilog FSCK

4.3.5. Size Checks: Each inode contains a 32-bit (four­
byte) size field that contains the number of characters in
the file associated with the inode. Fsck checks this field
for inconsistencies such as directory sizes that are not a
multiple of 16 characters, and for the number of blocks
actually used not matching the number indicated by the inode
size.

A directory inode in the ZEUS file system has the directory
bit set on in the inode mode word. The directory size must
be a multiple of 16 because a directory entry contains 16
bytes of information, two bytes for the inode number and 14
bytes for the file or directory name. Fsck warns of direc­
tory misalignment, but cannot gather sufficient information
to correct the problem.

Fsck calculates the number of blocks that there should be in
an inode by dividing the number of characters in an inode by
the number of characters per block (512), rounding up, and
adding one block for each indirect block associated with the
inode. If this computed number does not match the actual
number of blocks, fsck warns of a possible file-size error,
but does not correct it because ZEUS does not insert blocks
into files that are created in random order.

4.4. Indirect Blocks

Since indirect blocks are owned by an inode, inconsistencies
in the indirect blocks affect the inode. Fsck checks that
blocks are not already claimed by another inode, and that
block numbers are not outside the range of the file system.
The procedures discussed in Sections 4.3.3 .and 4.3.4 are
iteratively applied to each level of indirect blocks.

4.5. Data Blocks

The two types of data blocks are plain data blocks and
directory blocks. Plain data blocks contain the information
stored in a file and are not checked by fsck.

Directory data blocks contain directory entries and are
checked for inconsistencies involving directory inode
numbers pointing to unallocated inodes, directory inode
numbers greater than the number of inodes in the file sys­
tem, incorrect directory inode numbers for • (current direc­
tory) and (parent directory), and directories that are
disconnected from the file system.

4-4 Zilog 4-4

FSCK Zilog FSCK

If a directory entry inode number points to an unallocated
inode, fsck can remove that directory entry. This condition
usually occurs when the data block containing the directory
entries are modified and written to the file system, and the
inode is not yet written.

If a directory entry inode number is pointing beyond the end
of the inode list, fsck can remove that directory entry.
This condition occurs if bad data is written into a direc­
tory data block.

The directory inode number entry for • must be the first
entry in the directory data block. Its value must equal the
inode number for the parent of the directory entry (or the
inode number of the directory data block if the directory is
the root directory). If the directory inode numbers are
incorrect, fsck can replace them with the correct values.

Fsck checks the general connectivity of the file system. If
directories are not linked into the file system, fsck links
the directory back into the file system in the lost+found
directory. This condition can be caused by inodes being
written to the file system without the corresponding direc­
tory data blocks being written.

4.6. Free-List Blocks

Free-list blocks are owned by the super-block, and incon­
sistencies in free-list blocks directly affect the super­
block.

Fsck can check for a list count outside of range, block
numbers outside of range, and blocks already associated with
the file system.

Section 4.2.2 contains a discussion of detection and correc­
tion of the inconsistencies associated with free-list
blocks.

4-5 Zilog 4-5

FSCK Zilog FSCK

APPENDIX A
F1SCK ERROR CONDITIONS

A.I. Conventions

Fsck is a multipass file system check program with each file
system pass invoking a different phase of the fsck program.
After the initial setup, fsck performs successive phases on
each file system, checks blocks and sizes, path names, con­
nectivity, reference counts, and the free-block list (which
might be rebuilt), and performs some cleanup.

When an inconsistency is detected, fsck reports it to the
operator. If a response is required, fsck prints a prompt
message and waits for a response. This appendix explains
the meaning of each error condition, the possible responses,
and the related error conditions.

The error conditions are organized by the phase of the fsck
program in which they occur. The error conditions that
occur in more than one phase are discussed in the Initiali­
zation Section.

A.2. Initialization

Before a file system check can be performed, certain tables
must be set up and certain files must be opened. This sec­
tion lists error conditions resulting from initializing
tables and opening files; specifically, it lists error con­
ditions resulting from command line options, memory
requests, opening of files, status of files, file system
size checks, and creation of the scratch file.

C OPTION ?

C is not a legal option of fsck; legal options are -y, -n,
-s, -s, and -t. Fsck terminates on this error condition
(f sck (.!_)) •

BAD -t OPTION

The -t option is not followed by a file name.
minates on this error condition (fsck (.!_)).

A-1 Zilog

Fsck ter-

A-1

FSCK Zilog FSCK

INVALID -s ARGUMENT, DEFAULTS ASSUMED

The -s option is not suffixed by 3, 4, blocks-per-cylinder,
or blocks-to-skip. Fsck assumes a default value of 400
blocks-per-cylinder and nine blocks-to-skip (fsck(_±)).

INCOMPATIBLE OPTIONS: -n and -s

It is not possible to salvage the free-block list without
modifying the file system. Fsck terminates on this error
condition (fsck(!)).

CAN'T GET MEMORY

Fsck's request for memory for its virtual memory tables
failed. This should never happen. Fsck terminates on this
error condition. See an experienced fsck user.

CAN'T OPEN CHECKLIST FILE: F

The default file system checklist file F (usually
/etc/checklist) cannot be opened for reading. Fsck ter­
minates on this error condition. Check access modes of F.

CAN'T STAT ROOT

Fsck's request for statistics about the root directory /
failed. This should never happen. Fsck terminates on this
error condition. See an experienced fsck user.

CAN'T STAT F

Fsck's request for statistics about the file system F
failed. Fsck ignores this file system and continues check­
ing the next file system given. Check access modes of F.

F IS NOT A BLOCK OR CHARACTER DEVICE

Fsck has a wrong regular file name that it ignores, and it
continues checking the next file system given. Check file
type of F.

A-2 Zilog A-2

FSCK Zilog FSCK

CAN'T OPEN F

The file system F
ignores this file
file system given.

cannot be opened for reading. Fsck
system and continues checking the next

Check access modes of F.

SIZE CHECK: fsize X isize Y

More blocks are used for the inode list Y than there are
blocks in the file system X, or there are more than 65,535
inodes in the file system. Fsck ignores this file system
and continues checking the next file system given (Section
4.2.1).

CAN'T CREATE F

Fsck's request to create a scratch file F failed. Fsck
ignores this file system and continues checking the next
file system given. Check access modes of F.

CANNOT SEEK: BLK B (CONTINUE?)

Fsck's request for moving to a specified block number
the file system failed. This should never happen.
experienced fsck user.

Possible responses to the CONTINUE? prompt are:

B in
See an

YES Attempt to continue to run the file system check.
Often, however, the problem persists since this error
condition does not allow a complete check of the file
system. A second run of fsck must be made to recheck
this file system. If the block is part of the virtual
memory buffer cache, fsck terminates with the message
FATAL I/O ERROR .•

NO Terminate the program.

CANNOT READ: BLK B (CONTINUE?)

Fsck's request for reading a specified block number B in the
file system failed. This should never happen. See an
experienced fsck user.

Possible responses to the CONTINUE? prompt are:

A-3 Zilog A-3

FSCK Zilog FSCK

YES Attempt to continue to run the file system check.
Often, however, the problem persists since this error
condition does not allow a complete check of the file
system. A second run of fsck must be made to recheck
this file system. If the block is part of the virtual
memory buffer cache, fsck terminates with the message
FATAL I/O ERROR.

NO Terminate the program.

CANNOT WRITE: BLK B (CONTINUE?)

Fsck's request for writing a specified block number B in the
file system failed. The disk is write-protected. See an
experienced fsck user.

Possible responses to the CONTINUE? prompt are:

YES Attempt to continue to run the file system check.
Often, however, the problem persists since this error
condition does not allow a complete check of the file
system. A second run of fsck must be made to recheck
this file system. If the block is part of the virtual
memory buffer cache, fsck terminates with the message
FATAL I/O ERROR.

NO Terminate the program.

A.3. Phase 1: Check Blocks and Sizes

This phase concerns itself with the inode list. This
tion lists error conditions resulting from checking
types, setting up the zero-link-count table, examining
block numbers for bad or duplicate blocks, checking
size, and checking inode format.

UNKNOWN FILE TYPE I=I (CLEAR?)

sec­
inode
inode
inode

The mode word of the inode I indicates that the inode is not
a special character inode, regular inode, or directory !node
(Section 4.3.1).

Possible responses to the CLEAR? prompt are:

YES Continue with the program. This error condition does
not allow a complete check of the file system. A
second run of fsck must be made to recheck this file
system. If another allocated inode with a zero link

A-4 Zilog A-4

FSCK Zilog FSCK

count is found, this error condition is repeated.

NO Terminate the program.

LINK COUNT TABLE OVl~RFLOW (CONTINUE?)

An internal table for fsck containing allocated inodes with
a link count of zero has no more room. Recompile fsck with
a larger value of MAXLNCNT.

Possible responses to the CONTINUE? prompt are:

YES Continue with the program. This error condition does
not allow a complete check of the file system. A
second run of fsck must be made to recheck this file
system. If another allocated inode with a zero link
count is found, this error condition is repeated.

NO Terminate the program.

B BAD I=I

!node I contains block number B with a number lower than the
number of the first data block in the file system, or
greater than the number of the last block in the file sys­
tem. This error condition invokes the EXCESSIVE BAD BLKS
error condit~on in Phase 1 if inode I has too many block
numbers outside the file system range. This error condition
always invokes the BAD/DUP error condition in Phase 2 and
Phase 4. See Section 4.3.4.

EXCESSIVE BAD BLKS I=I (CONTINUE?)

There is more than a tolerable number (usually 10) of blocks
with a number lower than the number of the first data block
in the file system, or greater than the number of last block
in the file system associated with inode I (Section 4.3.4).

Possible responses to the CONTINUE? prompt are:

YES Ignore the rest of the blocks in' this inode and con­
tinue checking with the next inode in the file system.
This error condition does not allow a complete check of
the file system. A second run of fsck must be made to
recheck this file system.

NO Terminate the program.

A-5 Zilog A-5

FSCK Zilog FSCK

B DUP I=I

!node I contains block number B which is already claimed by
another inode. This error condition invokes the EXCESSIVE
DUP BLKS error condition in Phase 1 if inode I has too many
block numbers claimed by other inodes. This err~r condition
always invokes Phase lB and the BAD/DUP error condition in
Phase 2 and Phase 4 (Section 4.3.3).

EXCESSIVE DUP BLKS I=I (CONTINUE?)

There is more than a tolerable number (usually 10) of blocks
claimed by other inodes (Section 4.4.3).

Possible responses to the CONTINUE? prompt are:

YES Ignore the rest of the blocks in this inode and con­
tinue checking with the next inode in this file system.
This error condition does not allow a complete check of
the file system. A second run of fsck must be made to
recheck this file system.

NO Terminate the program.

DUP TABLE OVERFLOW (CONTINUE?)

An internal table in fsck containing duplicate block numbers
has no more room. Recompile fsck with a larger value of
DUPTBLSIZE.

Possible responses to the CONTINUE? prompt are:

YES Continue with the program. This error condition does
not allow a complete check of the file system. A
second run of fsck must be made to recheck this file
system. If another duplicate block is found, this
error condition repeats.

NO Terminate the program.

POSSIBLE FILE SIZE ERROR I=I

The inode I size does not match the actual number of blocks
used by the inode. This is only a warning (Section 4.3.5).

A-6 Zilog A-6

FSCK Zilog FSCK

DIRECTORY MISALIGNED I=I

The size of a directory inode is not a multiple of the size
of a directory entry (usually 16). This is only a warning
(Section 4.3.5).

PARTIALLY ALLOCATED INODE I=I (CLEAR?)

!node I is neither allocated nor unallocated (Section
4 .. 3.1).

Possible responses to the CLEAR? prompt are:

YES Deallocate inode I by zeroing its contents.

NO Ignore this error condition.

Ao4. Phase 18: Rescan for More Duplicates

When a duplicate block is found in the file system, the sys­
tem is rescanned to find the inode that previously claimed
that block. This section lists the error condition when the
duplicate block is found.

B DUP I=I

!node I contains block number B, which is already claimed by
another inode. Ehis error condition always invokes the
BAD/DUP error condition in Phase 2. !nodes that have over­
lapping blocks can be determined by examining this error
condition and the DUP error coridition in Phase 1 (Section
4 .. 3.3).

A .. 5. Phase 2: Chec::k Pa th Names

This phase removes directory entries pointing to inodes with
error conditions from Phase 1 and Phase lB. This section
lists error conditions resulting from root inode mode and
status, directory inode pointers in range, and directory
entries pointing to bad inodes.

ROOT !NODE UNALLOCA'rED. TERMINATING.

The root inode (usually inode number 2) has no allocate mode
bits. This should never happen. The program terminates
(Section 4.3.1).

A-7 Zilog A-7

FSCK Zilog FSCK

ROOT !NODE NOT DIRECTORY {FIX?)

The root inode (usually inode number 2) is not a directory
inode (Section 4.3.1).

Possible responses to the FIX? prompt are:

YES Make the root inode's type a directory. If the root
inode's data blocks are not directory blocks, a very
large number of error conditions are produced.

NO Terminate the program.

DUPS/BAD IN ROOT !NODE {CONTINUE?)

Phase 1 or Phase 18 found duplicate blocks or bad blocks in
the root inode (usually inode number 2) for the file system
(Sections 4.3.3 and 4.3.4).

Possible responses to the CONTINUE? prompt are:

YES Ignore the DUPS/BAD error condition in the root inode
and attempt to continue to run the file system check.
If the root inode is not correct, this results in a
large number of other error conditions.

NO Terminate the program.

I OUT OF RANGE I=I NAME=F (REMOVE?)

A directory entry F has an inode number I which is greater
than the end of the inode list (Section 4.5).

Possible responses to the REMOVE? prompt are:

YES The directory entry F is removed.

NO Ignore this error condition.

UNALLOCATED I=I OWNER=O MODE=M SIZE=S
{REMOVE?)

MTIME='I' NAME=F

A directory entry F has an inode I without allocate mode
bits. The owner o, mode M, size s, modify time T, and file
name Fare printed (Section 4.5).

Possible responses to the REMOVE? prompt are:

A-8 Zilog A-8

FSCK Zilog FSCK

YES The directory entry F is removed.

NO Ignore this error condition.

DUP/BAD I=I OWNER=O MODE=M SIZ~=S MTIME=T DIR=F (REMOVE?)

Phase 1 or Phase lB found duplicate blocks or bad blocks
associated with directory entry F, directory inode I. The
owner o, mode M, size s, modify time T, and directory name F
are printed (Sections 4.3.3 and 4.3.4).

Possible responses to the REMOVE? prompt are:

YES The directory entry F is removed.

NO Ignore this error condition.

DUP/BAD I=I OWNER=O MODE=M SIZ~=S MTIME=T FILE=F (REMOVE?)

Phase 1 or Phase lB have found duplicate blocks or bad
blocks associated with direQtory entry F, inode I. The
owner O, mode M, size s, modify time T, and file name F are
printed (Sections 4u3.3 and 4.3.4).

Possible responses to the REMOVE? prompt are:

YES The directory entry F is removed.

NO Ignore this error condition.

Ao6. Phase 3: Chec::k Connectivity

This phase checks the directory connettivity seen in Phase
2o This section lists error conditions resulting from
unreferenced directories, and missing or full lost+found
directories.

UNREF DIR I=I OWNER==O MODE=M SIZE=S MTIME=T (RECONNECT?)

The directory inode I was not connected to a directory entry
when the file system was checked. The owner O, mode M, size
S, and modify time T of directory inode I are printed (Sec­
tions 4.5 and 4.3.2).

Possible responses to the RECONNECT? prompt are:

A·-9 Zilog A-9

FSCK Zilog FSCK

YES Reconnect directory inode I to the file system in the
directory for lost files (usually lost+found). This
invokes the lost+found error condition in Phase 3 if
there are problems connecting directory inode I to
lost+found. This also invokes thee CONNECTED error
condition in Phase 3 if the link was successful.

NO Ignore this error condition. This always invokes the
UNREF error condition in Phase 4.

SORRY. NO lost+found DIRECTORY

There is no lost+found directory in the root directory of
the file system; fsck ignores the request to link a direc­
tory in lost+found. This always invokes the UNREF error
conditio~n Phase 4. Check access modes of lost+found
(fsck(l)).

SORRY. NO SPACE IN lost+found DIRECTORY

There is no space to add another entry to the lost+found
directory in the root directory of the file system; fsck
ignores the request to link a directory in lost+found. This
always invokes the UNREF error condition in Phas~-.- Remove
unnecessary entries in lost+found or make lost+founQ larger
(fsck(l)).

DIR I=Il CONNECTED. PARENT WAS I=I2

This is an advisory message indicating that a directory
inode Il is successfully connected to the lost+found direc­
tory. The parent inode !2 of the directory--inode- Il is
replaced by the inode number of the lost+found directory
(Sections 4.5 and 4.3.2).

A.7. Phase 4: Check Reference Counts

This phase checks the link count information seen in Phase 2
and Phase 3. This section lists error conditions resulting
from unreferenced files, missing or full lost+found direc­
tory, incorrect link counts for files, directorTeS~ or spe­
cial files, unreferenced files and directories, bad and
duplicate blocks in files and directories, and incorrect
total free-inode counts.

A-10 Zilog A-10

FSCK Zilog FSCK

UNREF FILE I=I OWNER=O MODE=M SIZE=S MTIME=T (RECONNECT?}

!node I was not connected to a directory entry when the file
system was checked. The owner o, mode M, size S, and modify
time T of inode I are printed (Section 4.3.2).

Possible responses to the RECONNECT? prompt are:

YES Reconnect inode I to the file system in the directory
for lost files (usually lost+foUnd). This invokes the
lost+found error condition in Phase 4 if there are
problems connecting inode I to lost+found.

NO Ignore this error condition. This always invokes the
CLEAR error condition in Phase 4.

SORRY. NO lost+found DIRECTORY

There is no lost+found directory in the root directory of
the file system; fsck ignores the request to link a file in
lost+found. This always invokes the CLEAR error condition
in Phase 4. Check access modes of lost+found.

SORRY. NO SPACE IN lost+found DIRECTORY

There is no space to add another entry to the lost+found
directory in the root directory of the file system; fsck
ignores the request to link a file in lost+found. This
aiways invokes the clear error condition in Phase 4. Check
size and contents of lost+found.

(CLEAR?)

The inode mentioned in the immediately previous error condi­
tion cannot be reconnected (Section 4~3.2).

Possible responses to the CLEAR? prompt are:

YES Deallocate the inode mentioned in the immediately pre­
vious error condition by setting its contents to zero.

NO Ignore this error condition.

LINK COUNT FILE I=I OWNER=O MODE=M SIZE=S MTIME=T COUNT=X

The link count for the file inode I is X but should be Y.
The owner o, mode M, size S, and modify time T are printed

A-11 Zilog A-11

FSCK Zilog FSCK

(Section 4.3.2).

Possible responses to the ADJUST? prompt are:

YES Replace the link count of file inode I with Y.

NO Ignore this error condition.

LINK COUNT DIR I=I OWNER=O MODE=M SIZE=S MTIME=T COUNT=X

The link count for directory inode I is X but should be Y.
The owner O, mode M, size S, and modify time T of directory
inode I are printed (Section 4. 3. 2).

Possible responses to the ADJUST? prompt are:

YES Replace the link count of inode I with Y.

NO Ignore this error condition.

LINK COUNT F I=I OWNER=O MODE=M SIZE=S MTIME=T COUNT=X

The link count for F inode I is X but should be Y. The name
F, owner O, mode M, size s, and modify time T are printed
(Section 4.3.2).

Possible responses to the ADJUST? prompt are:

YES Replace the link count of inode I with Y.

NO Ignore this error condition.

UNREF FILE I=I OWNER=O MODE=M SIZE=S MTIME=T (CLEAR?)

File inode I was not connected to a directory entry when the
file system was checked. The owner o, mode M, size s, and
modify time T of inode I are printed (Sections 4.3.2 and
4. 5) •

Possible responses to the CLEAR? prompt are:

YES Deallocate inode I by zeroing its contents.

NO Ignore this error condition.

A-12 Zilog A-12

FSCK Zilog FSCK

UNREF DIR I=I OWNER==O MODE=M SlZE=S MTIME=T (CLEAR?)

Directory inode I was not connected to a directory entry
when the file system was checked. The owner O, mode M, size
s, and modify time T of inode I are printed (Section 4.3.2
and 4.5).

Possible responses to the CLEAR? prompt are:

YES Deallocate inode I by zeroing its contents.

NO Ignore this error condition.

BAD/DUP FILE I=I OWMER=O MODE=M SIZE=S MTIME=T (CLEAR?)

Phase 1 or Phase lb have found duplicate blocks or bad
blocks associated with file inode. The owner o, mode M,
size s, and modify time T of inode I are printed (Sections
4. 3. 3 and 4. 3. 4) •

Possible responses to the CLEAR? prompt are:

YES Deallocate inode I by setting its contents to zero.

NO Ignore this error condition.

BAD/DUP DIR I=I OWNER=O MODE=M SIZE=S MTIME=T (CLEAR?)

Phase 1 or Phase lB have found duplicate blocks or bad
blocks associated with directory inode 1. The owner O, mode
M, size S, and modify time T of inode I- are printed (Sec­
tions 4.3.3 and 4.3.,4).

Possible responses to the CLEAR? prompt are:

YES Deallocate inode I by setting its contents to zero.

NO Ignore this error condition.

FREE INODE COUNT WRONG IN SUPERBLK (FIX?)

The actual count of the free inodes does not match the count
in the super-block of the file system (Section 4.2.4).

Possible responses to the FIX? prompt are:

YES Replace the count in the super-block by the actual
count.

A--13 Zilog A-13

FSCK Zilog FSCK

NO Ignore this error condition.

A.8. Phase 5: Check Free List

This section lists error conditions resulting from bad
blocks in the free-block list, bad free-blocks count, dupli­
cate blocks in the free-block list, unused blocks from the
file system not in the free-block list, and an incorrect
total free-block count.

EXCESSIVE BAD BLKS IN FREE LIST (CONTINUE?)

The free-block list contains more than a tolerable number
(usually 10) of blocks with a value of less than the first
data block in the file system or greater than the last block
in the file system (Sections 4.2.2 and 4.3.4).

Possible responses to the CONTINUE? prompt are:

YES Ignore the rest of the free-block list and continue the
execution of fsck. This error condition always invokes
the BAD BLKS IN FREE LIST error condition in Phase 5.

NO Terminate the program.

EXCESSIVE DUP BLKS IN FREE LIST (CONTINUE?)

The free-block list contains more than a tolerable number
(usually 10) of blocks claimed by inodes or earlier parts of
the free-block list (Section 4.2.2 and 4.3.3).

Possible responses to the CONTINUE? prompt are:

YES Ignore the rest of the free-block list and continue the
execution of fsck. This error condition always invokes
the DUP BLKS IN FREE LIST error condition in Phase 5.

NO Terminate the program.

BAD FREEBLK COUNT

The count of free blocks in a free-list block is greater
than 50 or less than zero. This error condition always
invokes the BAD FREE LIST condition in Phase 5 (Section
4.2.2).

A-14 Zilog A-14

FSCK Zilog FSCK

X BAD BLKS IN FREE LIST

X blocks in the free-block list have a block number lower
than the first data block in the file system or greater than
the last block in the file system. This error condition
always invokes the BAD FREE LtST condition in Phase 5 (Sec­
tions 4.2.2 and 4.3.4).

X DUP BLKS IN FREE LIST

X blocks claimed by inodes or earlier parts of the free-list
block were found in the free-block list. This error condi­
tion always invokes the BAD FREE LIST condition in Phase 5
(Sections 4.2.2 and 4.3.3).

X BLK(S) MISSING

X blocks unused by the file system were not found in the
free-block list. This error condition always invokes the
BAD FREE LIST condition in Phase 5 (Se~tion 4.2.2).

FREE BLK COUNT WRONG IN SUPERBLOCK (FIX?)

The actual count of free blocks does not match the count in
the super-block of the file system (Section 4.2.3).

Possible responses to the FIX? prompt are:

YES Replace the count in the super-block with the actual
count.

NO Ignore this error condition.

BAD FREE LIST (SALVJ~GE?)

Phase 5 has found bad blocks in the free-block list, dupli­
cate blocks in the free-block list, or blocks missing from
the file system (Sections 4.2.2, 4.3.3, and 4.3.4).

Possible responses to the SALVAGE? prompt are:

YES Replace the actual free-block list with a new free­
block list. The new free-block list will be ordered to
reduce time spent by the disk waiting for the disk to
rotate into position.

A-·15 Zilog A-15

FSCK Zilog FSCK

NO Ignore this error condition~

A.9. Phase 6: Salvage Free List

This phase checks the free block list reconstruction. This
section lists error conditions resulting from the blocks­
to-skip and blocks-per-cylinder values.

DEFAULT FREE-BLOCK LIST SPACING ASSUMED

This is an advisory message indicating the blocks-to-skip is
greater than the blocks-per-cylinder, the blocks-to-skip is
less than one, the blocks-per-cylinder is less than one, or
the blocks-per-cylinder is greater than 500. The default
values of nine blocks-to-skip and 400 blocks-per-cylinder
are used (_fsck(_!_)).

A.le. Cleanup

Once a file system has been checked, cleanup functions are
performed. This section lists advisory messages about the
file system and modify status of the file system.

X FILES Y BLOCKS Z FREE

This is an advisory message indicating that the file system
checked contained X files using Y blocks, leaving Z blocks
free in the file system.

*****BOOT ZEUS (NO SYNC!)*****

This is an advisory message indicating that a mounted file
system or the root file system has been modified by fsck.
If ZEUS is not rebooted immediately, the work done by fsck
may be undone by the in-core copies of tables ZEUS keeps.

*****FILE SYSTEM WAS MODIFIED*****

This is an advisory message indicating that the current file
system was modified by fsck. If this file system is mounted
or is the current root file system, fsck must be halted and
ZEUS rebooted. If ZEUS is not rebooted immediately, the
work done by fsck may be undone by the in-core copies of
tables ZEUS keeps.

A-16 Zilog A-16

FSCK Zilog

INDEX OF MESSAGES

(Alphabetically within each section)

INTIALIZATION

BAD -t OPTION... • A-1
C 0 PT I ON? ••••••••••••••••••••• ,• A-1
CANNOT READ: BLK B (CONTINUE?) ••••••••••••••••••••• ~-3

CANNOT SEEK: BLK B (CONTINUE?) .••••••••••••••••••••• A-3
CANNOT WRITE: BLK B (CONTINUE?) •••••••••••••••••••• A-4
CAN'T CREATE F•••••••••••••••••••••&••••••••••••••• A-3
CAN'T GET MEMORY ••••••••••••••••••••••••••••••••••• A-2
CAN'T OPEN CHECKLIS'r FILE: F ••••••••••••••••••••••• A-2
CAN'T OPEN F •••••••••••••••••• , ••••••••••••••••••••• A-3
CAN'T STAT F •••••••••••••••••• ie •••••••••••••••••••• A-2
CAN'T S'rAT ROOT.. • • • . • A-2
F IS NOT A BLOCK OR CHARACTER DEVICE ••••••••••••••• A-2
INCOMPATIBLE OPTIONS: -n and -s •••••••••••••••••••• A-2
INVALID -s ARGUMEWr,, DEFAULTS ASSUMED •••••••••••••• A-2
SIZE CHECK: FSIZE X !SIZE Y •••••••••••••••••••••••• A-3

PHASE 1: CHECK BLOCKS AND SIZES

B BAD I=I••••••••••••••••••••e!9•••••••••••••••••••• A-5
B DUP I=I••••••••••·•••••••••••~•••••••••••••••••••• A-6
DIRECTORY MISALIGNED I=I •••••.••••••••••••••••••••• A-7
DUP TABLE OVERFLOW (CONTINUE?) ••••••••••••••••••••• A-6
EXCESSIVE BAD BLKS I=I (CONTINUE?)••••••••••••••••• A-5
EXCESSIVE DUP BLKS I=I (CONTINUE?) ••••••••••••••••• A-6
LINK COUNT TABLE OVERFLOW (CONTINUE?)•••••••••••••• A-5
PARTIALLY ALLOCATED !NODE I=I (CLEAR?)••••••••••••• A-7
POSSIBLE FILE SIZE 18RROR I=I ••••••••••••••••••••••• A-6
UNKNOWN FILE TYPE I==I (CLEAR?) ••••••••••••••••••••• A-4

PHASE 18: RESCAN FOR MORE DUPS

B DUP I=I •••••••••• ,, ••••••••••••••••••••••••••••••• A-7

PHASE 2: CHECK PATH-NAMES

DUP/BAD I=I OWNER=O MODE=M SIZE=S MTIME=T DIR=F
REMOVE?) ••••••••••• !• A-9
DUP/BAD I=I OWNER=O MODE=M SIZE=S MTIME=T FILE=F
(REMOVE?) •••••••••• l" ••••••••••••••••••••••••••••••• A-9
DUPS/BAD IN ROOT !NODE (CONTINUE?) ••••••••••••••••• A-8
I OUT OF RANGE I=I NAME=F (REMOVE?) • • • • • • • • • • • • • • • • A-8
ROOT !NODE NOT DIRECTORY (FIX?)•••••••••••••••••••• A-8

A-17 Zilog

FSCK

A-17

FSCK Zilog

UNALLOCATED I=I OWNER=O MODE=M SIZE=S MTIME=T
NAME=F (REMOVE?)••••••••••••••••••••••••••••••••••• A-8
ROOT !NODE UNALLLOCATED TERMINATING •••••••••••••••• A-7

PHASE ~: CHECK CONNECTIVITY

DIR I-Il CONNECTED PARENT WAS I=I2 •••••••.•••••••• A-10
SORRY. NO SPACE IN lost+found DIRECTORY ••••••••••• A-10
SORRY. NO lost+found DIRECTORY •••••••••••••••••••• A-10
UNREF DIRE I=I OWNER=O MODE=MM SIZE=S MTIME=T
(RECONNECT?)••••••••••••••••••••••••••••••••••••••• A-9

PHASE 4: CHECK REFERENCE COUNTS

BAD/DUP DIR I=I OWNER=O MODE=M SIZE=S MTIME=T
(CL EAR?) • A-1 3
BAD/DUP FILE I=I OWNER=O MODE=M SIZE=S MTIME=T
{CLEAR?) •••••••• <I •••••••••••• , •••••••••••••••••••• A-13
(CL EAR?) •••••••• " • T\-11
FREE !NODE COUNT WRONG IN SUPERBLK (FIX?) ••••••••• A-13
LINK COUNT DIR I=I OWNER=O MODE=M SIZE=S MTIME=T
COUNT=X SHOULD BEY (ADJUST?) ••••••••••••••••••••• A-12
LINK COUNT FILE I=I OWNER=O MODE=M SIZE=S MTIME=T
COUNT=X SHOULD BEY (ADJUST?)••••••••••••••••••••• A-11
LINK COUNT F I=I OWNER=O MODE=M SIZE=S MTIME=T
COUNT=X SHOULD BE Y (ADJUST?) ••••••••••••••••••••• A-12
SORRY. NO SPACE IN lost+found DIRECTORY ••••••••••• A-11
SORRY. NO lost+found DIRECTORY •••••••••• ~ ••••••••• A-11
UNREF DIR I=I OWNER=O MODE=M SIZE=S MTIME=T
(C LEAR?) • A-1 3
UNREF FILE I=I OWNER=O MODE=M SIZE=S MTIME=T
(C L EAR?) • • • • • • • • • • • • • • • • • • • .. • A - 1 2
UNREF FILE I=I OWNER=O MODE=M SIZE=S MTIME=T
(RECONNECT?)•••••••••••••••••••••••••••••••••••••• A-11

PHASE 5: CHECK FREE LIST

BAD FREE LIST (SALVAGE?) •••••••••••••••••••••••••• A-15
BAD FREEBLK COUNT••••••••••••••••••••••••••••••••• A-14
EXCESSIVE BAD BLKS IN FREE LIST (CONTINUE?)••••••• A-14
EXCESSIVE DUP BLKS IN FREE LIST (CONTINUE?)••••••• A-14
FREE BLK COUNT WRONG IN SUPERBLOCK (FIX?) ••••••••• A-15
X BAD BLKS IN FREE LIST........................... A-15
X BLK(S) MISSING•••••••••••••••••••••••••••••••••• A-15
X DUP BLKS IN FREE LIST ••••••••••••••••••••••••••• A-15

A-18 Zilog

FSCK

A-18

FSCK Zilog

PHASE 6: SALVAGE FHEE LIST

DEFAULT FREE-BLOCK LIST SPACING ASSUMED ••••••••••• A-16

CLEANUP

*****BOOT ZEUS (NO SYNC!)*****•••••••••••••••••••• A-16
*****FILE SYSTEM WAS MODIFIED*****•••••••••••••••• A-16
X FILES Y BLOCKS Z FREE ••••••••••••••••••••••••••• A-16

A-19 Zilog

FSCK

A-19

LEARN
COMPUTEH-AIDED INS'l'RUCTION ON ZEUS

* This information is based on an article originally written
by Brian W. Kernighan and Michael E. Lesk, Bell Laboratories.

LEARN Zilog LEARN

ii Zilog ii

LEARN Zilog LEARN

Preface

This document describes the LEARN program and its seven
Computer-Aided Instruction (CAI) scripts that provide les­
sons on the ZEUS Operating System. Since LEARN is a self­
explanatory program, this document gives the theoretical
background instead of detailed instructions on how to use
it. The purpose of this document is to guide people prepar­
ing programs similar to LEARN, not to assist them in learn­
ing basic computer skills.

Section 1 contains a general introduction to LEARN and Sec­
tion 2 states educational assumptions and design. The topic
of each script appears in Section 3, and Section 4 describes
how the LEARN program interprets the scripts. Conclusions
about the LEARN experience are in Section 5.

iii Zilog iii

LEARN Zilog LEARN

iv Zilog iv

LEARN Zilog

Table of Contents

SECTION 1 INTRODUCTION

SECTION 2 EDUCATION,~L ASSUMPTIONS AND DESIGN

2 .1. Theoretical .~s sum pt ions
2 .. 2. Types of Lessons
2. 3. Sample Lesson Display
2 .. 4. Track Levels

SECTION 3 SCRIPTS

3 .1.
3 .. 2.
3 .. 3.
3. 4.
3 .. 5.
3. 6.
3.7.
3.8.

General Information ••••••••••••
First-Time User Script ••••••••••
Basic File Handling Script
Context Editor Script ••••••
Advanced File Handling Script •••••••
Eqn Language Script
-ms Script ••••••••
CLanguage Script

SECTION 4 THE SCRIPT INTERPRETER

4 .1.
4 .. 2.
4. 3.
4 .. 4.
4.5.

General Information
File Structure
Requirements
Sequence of Events
Interpreted Script

SECTION 5 CONCLUSIONS

v Zilog

LEARN

1-1

2-1

2-1
2-2
2-2
2-3

3-1

3-1
3-1
3-1
3-2
3-2
3-2
3-2
3-2

4-1

4-1
4-1
4-2
4-2
4-3

5-1

v

LEARN Zilog

SECTION 1
INTRODUCTION

LEARN

The system that teaches computer skills has two main parts:
a driver called LEARN that interprets the scripts, and the
scripts themselves. At present, there are seven Computer
Aided Instruction (CAI) scripts:

1. first-time user introduction

2. basic file handling commands

3.. ZEUS text editor (ed)

4. advanced file handling commands

5. eqn language for mathematical typing

6. the -ms macro package for document formatting

7. C programming language

The advantages of CAI scripts include the following:

• students are forced to perform the exercises

• students receive immediate feedback and confirmation of
progress

• students progress at their own rate

• no schedule requirements are imposed

• lessons can be individually improved

• the computer is accessible to the student at the
student's convenience.

usage of high technology motivates students and main­
tains management interest

Since there is no one the student can question, CAI is com­
parable to a textbook, lecture series, or taped course
rather than to a seminar. CAI has been used for many years
in a variety of educational areas. Using the computer as a
self-teaching device offers unique advantages; the skills
developed to go through the script are exactly those needed
to operate the computer; therefore, no effort is wasted.

1-1 Zilog 1-1

LEARN Zilog LEARN

SECTION 2
EDUCATIONAL ASSUMPTIONS AND DESIGN

2.1. Theoretical Assumptions

The best way to teach people how to do something is to have
them do it. Scripts should not contain long explanations,
but instead should frequently ask the student to do a task.
Teaching is always by example; the typical lesson shows a
small example of some technique and then asks the student to
either repeat that example or produce a variation of it.
All lessons are intended to be easy enough so that most stu­
dents get most questions right, reinforcing the desired
behavior.

After each correct response, the computer congratulates the
student and indicates the lesson number that has just been
completed, permitting the student to restart the script
after that lesson. If the answer is wrong, the student is
offered a chance to repeat the lesson.

It is assumed that there is no foolproof way to determine if
the student truly "understands" what he or she is doing; the
LEARN scripts measure performan~e, not comprehension.

The computer provides an immediate check of the correctness
of what the student does. Unlike many CAI scripts, these
scripts provide few facilities for dealing with wrong
answers. In practice, if most of the answers are not right,
the script is a failure. The solution to the problem of
excessive student error is to provide a new, easier script.
Anticipating possible wrong answers is an endless job; it is
easier and better to provide a simpler script.

LEARN also provides a mechanical check on performance. If a
student is unable to complete one lesson, that should not
prevent access to the rest. The current version of LEARN
allows the student to skip a lesson that he or she cannot
pass. For example, a "no" answer to the "Do you want to try
again?" question in Section 2-3 causes the program to go on
to the next lesson.

There are valid objections to these assumptions, since some
students object to not understanding what they are doing.
Since writing a CAI script is more tedious than writing
ordinary manuals, there are always alternatives to the
scripts as a way of learning.

2-1 Zilog 2-1

LEARN Zilog LEARN

2.2. Types of Lessons

Most lessons are one of three types. The simplest lesson
asks for a yes or no answer to a question. The student is
given a chance to experiment before replying, and the lesson
checks for the correct reply. Problems of this form are used
sparingly.

The second type asks for a word or number as an answer. For
example, a lesson on files might say

How many files are there in the current directory?
Type "answer N," where N is the number of files.

The student is expected to enter (perhaps after experiment­
ing) a response similar to

answer 17

The idea of a substitutable argument (replacing N by 17) is
difficult for nonprogrammer students, so the first few such
lessons require special attention.

The third type of lesson is open-ended. A task is set for
the student, appropriate parts of the input or output are
monitored, and the student types:

ready

when the task is done.

2.3. Sample Lesson Display

The following sample is from the script that teaches file
handling. It incorporates the open-ended and the word or
number answer types of lessons. Most LEARN lessons are of
this form. Student responses are shown in italics. The "$"
is the system prompt.

A file can be printed on your terminal by using the "cat"
command. Just say "cat file" where "file" is the file name.
For example, there is a file named "food" in this directory.
List it by saying "cat food"; then type "ready".

$ cat food
th1s---rs-the file
named food.

$ ready

Good. Lesson 3.3a (1)

2-2 Zilog 2-2

LEARN Zilag LEARN

Of course, you can print any fi.le with "cat". In particu­
lar, it is common to first use "ls" to find the name of a
file and then "cat" to print it. Note the difference
between "ls", which tells you the name of the file, and
"cat", which tells you the contents. One file in the
current directory is named for a President. Print the file,
then type "ready".

$ cat President
ca~can't open President
$ ready

Sorry, that's not right. Do you want to try again?~ Try
the problem again.

$~
.ocopy
Xl
roosevelt
$ cat roosevelt

this file is named roosevelt
and contains three lines of
text.

$ ready

Good. Lesson 3.3b (0)

The "cat"
fact, it

command can also print several files at once. In
is named "cat" as an abbreviation for "concaten-

ate" ••••

2.4. Track Levels

In the files and editor scripts there are three tracks,
differing in degrees of difticulty. The fastest script
(sequence of lessons), roughly the_bulk and speed of a typi­
cal tutorial manual, should be adequate for review and for
well-prepared students. The next track, intended for most
users, is about twice as long. The third and slowest track,
which is often three or four times the length of the fast
track, is intended for the most basic instruction. For
example, the fast track present$ an idea and asks for a
variation on the example shown. The normal track first asks
the student to repeat the example that was shown before
attempting a variation. The lesson in Section 2.3 is from
the third track.

The LEARN driver combines lessons in different ways to pro­
duce scripts in each track. For example, the fast track is

2-3 Zilog 2-3

LEARN Zilog LEARN

produced by skipping lessons from the slower track. The
driver can also switch tracks, depending on the number of
correct answers the student has given for the last few les­
sons.

2-4 Zilog 2-4

LEARN

3.1. General Information

Zilog

SECTION 3
SCRIPTS

LEARN

The present scripts follow a three-track theory. Care must
be taken in lesson construction to see that every necessary
fact is presented in every possible path throughout the
scripts. In addition, it is desirable that every lesson
have alternate successors to deal with student errors.

There are some preliminary skills that the student must know
before any scripts can be tried. In particular, the student
must know how to connect a ZEUS system, set the terminal
properly, log in, and execute simple commands (for example
LEARN itself). In addition, the character erase and line
kill conventions (control-h and control-x) should be known.
The student will need assistance for a few minutes to gain
familiarity with these skills.

In existing scripts, the first few lessons are devoted to
checking prerequisites. For example, before the student is
allowed to proceed through the editor script, the script
verifies that the student understands files and is able to
type. Anyone proceeding through the scripts should get
correct answers; otherwise, the system will be unsatisfac­
tory both because the wrong habits are being learned and
because the scripts make little effort to deal with wrong
answers. Therefore!, unprepared students should not be
encouraged to continue with scripts.

3.2. First-Time User Script

The first-time user script covers a few important features
of the system in very brief lessons. Here, I/O redirection,
pipes, make files, the C compiler, and the ZEUS text editor
(~d) are introduced.

3.3. Basic File Handling Script

It is assumed that the user of this script has basic
knowledge of Script l; it teaches the student about the ls,
cat, mv, rm, .£E. and diff commands. It also deals with tne
abbreviatTOn characters *, ?, and [] in file names. It
does not cover pipes or I/O redirection, nor does it present
the many options of the ls command.

3-1 Zilog 3-1

LEARN Zilog LEARN

3.4. Context Editor Script

This script trains students in the use of the ZEUS context
editor, ed, a sophisticated editor using regular expressions
for searching. All editor features except encryption, mark
names, and ; in addressing are covered.

3.5. Advanced File Handling Script

The advanced file handling script, assuming the basic file
handling script as a prerequisite, deals with ls options,
I/O diversion, pipes, and supporting programs like- pr, we,
tail, spell, and grep.

3.6. Eqn Language Script

This script covers the eqn language for typing mathematics
and must be run on a terminal capable of printing mathemati­
cal symbols (for instance the DASI 300 and similar Diablo­
based terminals). Most advanced lessons provide additional
practice for students who are having trouble in the basic
track.

3.7. -ms Script

The -ms script for formatting macros is a short, one-track
script. However, the linear style of a single LEARN script
is inappropriate for the macros, since the macro package is
composed of many independent features, and few users need
all of them.

3.8. C Language Script

The script on the language C has been partially converted to
follow the order of presentation in The C Programming
Language. The C script was never intended to teach C;
rather it is a series of exercises for which the computer
provides checking and a suggested solution.

3-2 Zilog 3-2

LEARN Zilog LEARN

SECTION 4
THE SCRIPT INTERPRETER

4.1. General Information

The LEARN program interprets scripts. It provides facili­
ties to capture student responses and their effects, and
simplifies the job of passing control to and recovering con­
trol from the student. This section describes the operation
and use of the driver program, and indicates what is
required to produce a new script. Readers interested only
in the existing scripts should skip this section.

4.2. File Structure

The file structure used by LEARN is shown below. There is
one parent directory named lib containing the script data.
Within this directory are subdirectories, one for each sub­
ject where a course is available, one for logging (named
log), and one where user subdirectories are created (named
play). The subject directory contains master copies of all
lessons, plus any supporting material for that subject. In
a given subdiiectory, each · lesson is a single text file.
Lessons are usually named systematically; the file that con­
tains lesson n is called Ln~

lib

4-1

play

files

editor

studentl
files for studentl •••

student2

L0.la
L0.lb

files for student2 •••

lessons for files course

(other courses)

log

Zilog 4-1

LEARN Zilog LEARN

Directory Structure for LEARN

When LEARN is executed, it makes a private directory for the
user to work in, within the LEARN portion of the file sys­
tem. A fresh copy of all the files used in each lesson is
usually made by the lesson script each time a student starts
a lesson. The student directory is deleted after each ses­
sion; any permanent records must be kept elsewhere.

4.3. Requirements

Each lesson must contain the following basic items:

~ the text of the lesson

~ the set-up commands to be executed before the user ·gets
control

~ the data, if any, that the user is supposed to edit,
transform, or otherwise process

~ the evaluating commands to be executed after the user
has finished the lesson, which decide whether the
answer is right

~ a list of possible successor lessons

LEARN minimizes the work of bookkeeping and installation, so
that most of the effort involved in script production is in
planning lessons, writing tutorial paragraphs, and coding
tests of student performance.

4.4. Sequence of Events

LEARN first creates the working directory. Then, for each
lesson, LEARN reads the text for the lesson and processes it
a line at a time. The lines in the text are commands to the
text interpreter to print something, to create a files, or
to test something, text to be printed or put in a file, and
other lines that are sent to the shell to be executed. One
line in each lesson turns control over to the user, who can
run any ZEUS command. The user mode terminates when the
user types ~' ok, no, ready, or answer. At this point,
the user's work is tested; if the lesson is passed, a new
lesson is selected; if not, the old one is repeated.

4-2 Zilog 4-2

LEARN Zilog LEARN

4.5. Interpreted Script

To illustrate the flow of LEARN, the sample script from Sec­
tion 2.3 is interpreted here.

Lines that begin with # are commands to the learn script
interpreter. For example,

#print

causes printing of any text that follows, up to the next
line that begins with a sharp. The command

#print file

prints the contents of file; it is the same as catfile.
Both forms of #print have the added property that ifa° les­
son is failed, the-#print is not executed the second time;
this avoids annoying the student by repeating the preamble
to a lesson. The command

#create file name

creates a file of the specified name and copies any subse­
quent text up to a # in the file. This creates and initial­
izes working files and reference data for the lessons. The
command

#user

gives control to the student; each line typed is passed to
the shell for execution. The #user mode is terminated when
the student types one of the special keywords ~, ok, no,
ready, or answer. At that time, the driver resumes
interpretation of the script.

The ~ and no responses return control to the script, where
the answer can be evaluated with #match. Since ok is an
alias for ~, the script writer can also use #match---Ok when
an indication to proceed with the course is the only
response needed.

The ready response returns control to the script but cannot
be evaluated with #match. Instead, the user's previous
responses are evaluated in some way. The answer response
prepares for evaluation of the answer given. For instance,
if the correct answer is 3, and the user responds with
answer 3 then #match3 is used in the script to process that
response. Anything the student types between the commands

4-3 Zilog 4-3

LEARN

#copy in
#uncopyin

Zilog LEARN

is copied onto a file called ·~· This allows for inter­
rogation of the student's responses upon regaining control.
Between the commands

#copyout
#uncopyout

any material typed by the student for any program is copied
to the file .ocopy. This allows interrogation of the effect
of what the student typed.

Normally the student's input and the script commands are fed
to the ZEUS command interpreter (the shell) one line at a
time. A sequence of editor commands does not work, since
the input to the editor must be handed to the editor, not to
the shell. Accordingly, the material between the commands
#~ and #unpipe is fed continuously through a pipe! so that
such sequences work. If copyout is also desired, the copy­
out brackets must include the pipe brackets.

There are several commands for setting status after the stu­
dent has attempted the lesson.

#cmp filel f ile2

is an in-line implementation of crop that compares two files
for identity.

Following the command

#match stuff

the last line of the student's input is compared to stuff,
and the success or fail status is set according to this com­
parison. Extraneous things like the word answer are
stripped before the comparison is made. There-) -can be
several #match lines; this provides a convenient mechanism
for handling multiple "right" answers. Any text up to a I
on subsequent lines after a successful #match is printed, as
shown next.

4-4 Zilog 4-4

LEARN Zilog

#print
What command will move the current line
to the end of the file? Type

LEARN

"answer COMMAND", where COMMAND is the command.
#copyin
#user
#uncopyin
#match m$
#match .m$
"m$" is easier.
#log
#next
63.ld 10

#bad stuff

This is similar to #match, except that it corresponds to
specific failure answers; this produces hints for particular
wrong answers that have been anticipated by the script
writer. The commands

#succeed
#fail

print a message upon success ot failure (as determined by
some other mechanism).

When the student types one of the "commands" ~,ok, or
answer, the driver terminates the #user command, and evalua­
tion of the student's work can begin.. This can be done
either by the buil t·-in commands, such: as #match and #crop, or
by status returned by normal ZEUS commands, typicallY--~
and test. The last command should return status true (0) if
the task is done successfully and false (nonzero) otherwise;
this status return tells the driver whether or not the stu­
dent has successfully passed the lesson.

Performance can be logged:

#log file

writes the date, lesson, user name and speed rating, and a
success/failure indication on file. The command

#log

by itself writes the logging
directory within the LEARN
form. The commands

information
hierarchy,

4·-5 Zilog

in the logging
and is the normal

4-5

LEARN Zilog LEARN

cleanup
nocleanup

are for directing the LEARN driver to clean up or ignore the
temporary files created in a lesson. By default, learn
cleans out the temporary files after each lesson. Specifi­
cally, all files that begin with a lowercase letter and are
not ".c" files are deleted before the next lesson. The
tnocleanup directive enables following lessons to depend on
files already created or changed by the user, and #cleanup
restores the default action at any time. The command

#next

is followed by a few lines, each with a successor lesson
name and an optional speed rating on it. A typical set
reads

25.la 10
25.2a 5
25.3a 2

indicating that unit 25.la is a suitable follow-on lesson
for students with a speed rating of 10 units, 25.2a for stu­
dent with a speed rating of 5 units, and 25.3a for students
with a speed rating of 2 units. Speed ratings are main­
tained for each session per student; the rating is increased
by one each time the student gets a lesson right and
decreased by four each time the student gets a lesson wrong.
Thus, the driver maintains a level at which the users get
80% right answers. The maximum rating is limited to 10, and
the minimum is zero. The initial rating is zero unless the
student specifies a different rating when starting a ses­
sion.

If the student passes a lesson, a new lesson is selected,
and the process repeats. If the student fails, a false
status is returned, and the program reverts to the previous
lesson and tries another alternative. If it cannot find
another alternative, it skips forward a lesson.

If the student is unable to answer one of the exercises
correctly, the driver searches for a previous lesson with a
set of alternatives as successors (following the #next
line). The program selects an alternative different from
the one tried in the previous lesson.

Sophisticated scripts can be written to evaluate the
student's speed of response, estimate the subjective merits
of the answer, or to provide detailed analysis of wrong
answers.

4-6 Zilog 4-6

LEARN Zilog LEARN

The driver program depends heavily on features of ZEUS that
are not available on many other operating systems. Although
some parts of LEARN might be transferable to other systems,
some generality will be lost.

4-7 Zilog 4-7

LEARN Zilog

SECTiiON 5
CONCLUSIONS

LEARN

The following are observations about nonprogrammers using
LEARN.

A novice must have assistance with the mechanics of communi­
cating with the computer to get through the first or second
lesson. Once the first few lessons are passed, people can
proceed on their own. Most students enjoy the system, and
motivation matters a great deal.

The terminology used in the first few lessons is obscure to
those inexperienced with computers. It would help if there
were a low-level reference card to supplement the existing
manual and reference card. The concept of "substitutable
argument" is hard to grasp and requires help.

It takes an hour or two for a novice to get through the
script on file handling. The total time for a novice to
create new files and manipulate old ones is a few days, with
perhaps half of each day spent on the machine.

The normal way of proceeding has been to have students in
the same room with someone who knows ZEUS and the scripts.
Thus, the student is not brought to a halt by difficult
questions. The burden on the counselor is much lower than
that on a teacher of a course. The students should be
encouraged to proceed with instruction immediately prior to
their actual use of the computer. They should exercise the
scripts on the same computer and the same kind of terminal
that they will later use for their real work, and their
first few jobs with the computer should be relatively easy
ones.

One disadvantage of training with LEARN is that students
come to depend completely on the CAI system and do not try
to read manuals or use other learning· aids. This is unfor­
tunate, not only because of the increased demands for com­
pleteness and accuracy of the scripts but because the
scripts do not cover all of the ZEUS system. New users
should have manuals (appropriate for their level) and read
them; the scripts ought to be altered to recommend suitable
documents and to urge students to read them.

From the student's viewpoint, the most serious difficulty is
that there are lessons that simply cannot be passed. Some­
times this is due to poor expl~nations, but just as often it

5-1 Zilog 5-1

LEARN Zilog LEARN

is some error in the lesson itself, a wrong setup, a missing
file, an invalid test for correctness, or some system facil­
ity that does not work on the local system as on the
development system. It takes knowledge and a certain
healthy arrogance on the part of the users to recognize that
the fault is not theirs. Permitting the student to continue
with the next lesson regardless does alleviate this, and the
logging facilities make it easy to watch for lessons that no
one can pass.

The biggest problem with some scripts, notably eqn, is that
they are very slow. Another potential problem rs-that it is
possible to break LEARN by pushing interrupt at the wrong
time, by removing critical files, or any number of similar
slips. The defenses against such problems have steadily
been improved to the point where most students should not
notice difficulties.

One area is more fundamental: LEARN currently does not allow
ZEUS global commands to be executed. The most obvious is
cd, which changes to another directory. The prospect of a
student who is learning about directories movin9 to some
random directory and removing files has prevented lE~ssons on
ed.

5-2 Zilog 5-2

WRITING PAPERS WITH NROFF USING -ME *

*This information is based on an article written by Eric Allman,
Electronics Research Laboratory,

University of California at Berkeley.

-ME Zilog -ME

ii Zilog ii

-ME Zilog -ME

Pref ace

This document describes the text processing facilities
available on the ZEUS operating system via NROFF and the -me
macro package. It is assumed that the reader already is
generally familiar with the ZEUS operating system and a text
editor such as ex. This is intended to be a casual intro­
duction, and as such not all material is covered. In par­
ticular, many variations and additional features of the -me
macro pabkage are not explained. For a complete discussion
of this and other issues, see The -me Reference Manual and
The NROFF/TROFF RefE~rence ManuiI:"

NROFF, a computer program that runs on the ZEUS operating
system, reads an input file prepared by the user and outputs
a formatted paper suitable for publication or framing. The
input consists of text, or words to be printed, and
requests, which givE~ instructions to the NROFF program tel­
ling how to format the printed copy.

Section 1 describes the basics of text processing. Section
2 describes the basic requests. Section 3 introduces
displays. Annotations, such as footnotes, are handled in
Section 4. The more complex requests which are not dis­
cussed in Section 2 are covered in Section 5. Section 6
discusses things you will need to know if you want to
typeset documents. And Section 7 provides a more complete
reference section. If you are a novice, you probably won't
want to read beyond Section 4 until you have tried some of
the basic features out.

When you have your raw text ready, call the NROFF formatter
by typing as a request to the ZEUS shell:

nroff -me -T !fl>e files

where type describes the type of terminal you are outputting
to. Common values are dtc for a DTC 300s (daisy-wheel type)
printer and lpr for the line printer. If the -T flag is
omitted, a lowest common denominator terminal is assumed;
this is good for previewing output on most terminals. A
complete description of options to the NROFF command can be
found in The NROFF/'l'ROFF Reference Manual.

The word argument is used in this manual to mean a word or
number which appears on the same line as a request which
modifies the meaning of that request. For example, the
request

iii Zilog iii

-ME Zilog

.sp

spaces one line, but

.sp 4

spaces four lines. The number 4 is an argument to
request which spaces four lines instead of one.
are separated from the request and from each
spaces.

iv Zilog

-ME

the .sp
l~rguments

other by

iv

-ME Zilog

Table of Contents

SECTION 1 BASICS •'•
LL Paragraphs
1. 2. Headers and Footers
1. 3. Double Spacing
1. 4. Page Layout
1. 5. Underlining

SECTION 2 DISPLAYS

2. 1. Major Quotes
2.2. Lists
2. 3. Keeps
2.4. Fancier Displays

S.ECTION 3 ANNOTATIONS .
3. 1.
3. 2.
3.3.

Footnotes
Delayed Text
Indexes

. ~
SECTION 4 FANCIER FEATURES .

4. 1. More Paragraphs . . .
4. 2. Section Headings
4.3. Parts of thE~ Basic Paper
4. 4. Two Column Output
4.5. Defining Macros . . .
4.6. Annotations Inside Keeps

SECTION 5 TROFF AND THE PHOTOtYPESETTER

v

5.1.
5.2.
5. 3.

Fon ts
Point Sizes
Quotes ••••. ,

. ...

Zilog

. . . .

-ME

1-1

1-1
1-2
1-3
1-3
1-5

2-1

2-1
2-1
2-2
2-3

3-1

3-1
3-2
3-2

4-1

4-1
4-4
4-5
4-6
4-7
4-7

5-1

5-1
5-1
5-2

v

-ME Zilog

SECTION 6 -ME REFERENCE MANUAL ~ . . .

vi

6 .1.
6.2.
6.3.

Paragraphing •••••••••••••••••••• . Section Headings
Headers and Footers • e e e II e • e

6.4.
6.5.
6.6.
6.7.
6.8.

Displays •••••••••••••••
Annotations •••••
Columned Output ••••
Fonts and Sizes

.

. .
Roff Support

6.9. Preprocessor Support
6.10. Miscellaneous ••••••
6.11. Standard Papers
6.12. Predefined Strings

. II e • e

• • • • • • • • • • • • • • • • 0 • • • . • • . . .
• • • • • • • • • • • • 0 • • • ~ . . .

6.13. Special Characters and Marks

Zilog

-ME

6-1

6-2
6-3
6-4
6-6
6-7
6-8
6-9

6-10
6-10
6-11
6-12
6-13
6-14

vi

-ME Zilog

SECTipN 1
BASICS

-ME

NROFF collects words from input lines, fills output lines
with those words, justifies the right hand margin by insert­
ing extra spaces in the line, and outputs the result. For
example, the input:

Now is the time
for all good men
to come to the aid
of their party.
Four score and seven
years ago, •••

is read, packed onto output lines, and justified to produce:

Now is the time for all good men to come to the aid of
their party. Four score and seven years ago, •••

Not all input lines are text to be formatted. Some of the
input lines are requests describing how to format the text.
Requests always have a period or an apostrophe ("'") as the
first character of the input line.

The text formatter also does more complex things, such as
automatically numbering pages, skipping over page folds,
putting footnotes in the correct place, and so forth.

Keep the input lines short. Short input lines are easier to
edit, and NROFF packs words onto longer lines. It is helpful
to begin a new line after every period, comma, or phrase,
since common corrections are to add or delete sentences or
phrases. Do not put spaces at the end of lines, since this
can sometimes confuse the NROFF proce~sor. Do not hyphenate
words at the end of lines (except words that should have
hyphens in them, such as "mother-in-law"); NROFF is smart
enough to hyphenate words as needed, but cannot take hyphens
out and join a word back togethet. Also, words such as
"mother-in-law" should not be broken over a line, since then
you will get a space where not wanted, such as "mother- in­
law".

1.1. Paragraphs

Paragraphs are begun by using the .pp request. For example,
the input:

1-1 1-1

-ME Zilog

.pp
Now is the time for all good men
to come to the aid of their party.
Four score and seven years ago, •••

-ME

produces a blank line followed by an indented first line.
The result is:

Now is the time for all good men to come to the
aid of their party. Four score and seven years ago, •••

Notice that the sentences of the paragraphs must not begin
with a space, since blank lines and lines begining with
spaces cause a break. For example, if the input is:

.pp
Now is the time for all good men

to come to the aid of their party.
Four score and seven years ago, •••

The output will be:

Now is the time for all good men
to come to the aid of their party.
seven years ago, •••

Four si:ore and

A new line begins after the word "men" because the second
line began with a space character.

Fancier types of paragraphs, are described later.

1.2. Headers and Footers

Arbitrary headers and footers can be put at the top and bot­
tom of every page. Two requests of the form .he title and
.fo title define the titles to put at the head and ~he foot
of every page, respectively. The titles are called three­
part titles, that is, there is a left-justified part, a cen­
tered part, and a right-justified part. To separate these
three parts the first character of title (whatever it may
be) is used as a delimiter. Any character can be used, but
avoid backslash and double quote marks. The percent sign is
replaced by the current page number whenever found in the
title. For example, the input:

.he"%"

.fo 'Jane Jones"My Book'

results in the page number centered at the top ~f each page,
"Jane Jones" in the lower left corner, and "My Book" in the

1-2 Zilog 1-2

-ME Zilog -ME

lower right corner.

1.3. Double Spacing

NROFF double
request .ls
1.

spaces output text a,utomatically with the
2. Revert to single spaced mode by typing .ls

1.4. Page Layout

Several requests change the way the printed copy looks.
(Sometimes called the layout of the output page.) Most of
these requests adjust the placing of "white space" (blank
lines or spaces). In these explanations, characters in
italics can be replaced with any values required; bold char­
acters represent characters which should actually be typed.

The .bp request starts a new page.

The request .sp N leaves N lines of blank space. N can be
omitted (meaning skip a-single line) or can be of the form
Ni (for N inches) or Ne c (for'N centimeters). For example,
the input:

.sp I.Si
My thoughts on the subject
.sp

leaves one and a half inches of space, followed by the line
"My thoughts on the subject", followed by a single blank
line.

The .in +N request changes the amount of white space on the
left of the page (the indent). The argument ~ can be of the
form +N (meaning leave N spaces more than you are already
leavin~), -N (meaning l~ave less than you do now), or just N
(meaning leave exactly N spaces) • N can be of the form NT
or Ne also. For exampl~, the inputT

initial text
.in 5
some text
• in +li
more text
• in -2c
final text

produces "some text" indented exactly'five spaces from the
left margin, "more text" indented five spaces plus one inch

1-3 Zilog 1-3

-ME Zilog -ME

from the left margin (fifteen spaces on a pica typewriter),
and "final text" indented five spaces plus one inch minus
two centimeters from the margin. That is, the output is:

initial text
some text

more text
final text

The .ti +N (temporary indent) request is used like .in +N
when the indent applies to one line only; after which it
reverts to the previous indent. For example, the input:

• in li
.ti 0
Ware, James R. The Best of Confucius,
Halcyon House, 1950.
An excellent book containing translations of
most of Confucius' most delightful sayings.
A definite must for anyone interested in the early
foundations of Chinese philosophy.

produces:

Ware, James R. The Best of Confucius, Halcyon House, 1950.
An excellent book containing translations of-most
of Confucius' most delightful sayings. A definite
must for anyone interested in the early founda­
tions of Chinese philosophy.

Text lines can be centered by using the .ce request. The
line after the .ce is centered (horizontally) on the page.
To center more than one line, use .ce N (where N is the
number of lines to center), followed by the N Tines. To
center many lines but not count them, type:

.ce 1000
lines to center
.ce 0

The .ce e request tells NROFF to center zero more lines. In
other words, stop centering.

All of these requests cause a break; that is, they always
start a new line. To start a new line without performing
any other action, use .br.

1-4 Zilog 1-4

-ME Zilog -ME

1.5. Underlining

Text can be underlined using the .ul request. The .ul
request causes the next input line to be underlined when
output. To underline multiple lines state a count of input
lines to underline, followed by those lines (as with the .ce
request). For example, the input:

.ul 2
Notice that these two input lines
are under.lined.

underlines those eight words in NROFF.
set in italics.)

1-5 Zilog

(In TROFF they are

1-5

-ME Zilog

SECTipN 2
DISPLAYS

-ME

Displays are sections of text to be set off from the body of
the paper. Major quotes, tables, and figures are types of
displays, a~ are all the examples used in this document.
All displays except centered blocks are output single
spaced.

2.lu Major Quotes

Major quotes are quotes which are several lines long, and
hence are set in from the rest of the text without quote
marks around them. These can be generated using the
commmands .(q and .)q to surround the quote. For example,
the input:

As Weizenbaum points out:
• (q
It is said that to explain is to explain away.
This maxim is nowhere so well fulfilled
as in the areas of computer programming, •••
•) q

generates as output:

As Weizenbaum points out:

It is said that to explain is to explain away.
This maxim is nowhere so well fulfilled
as in the areas of computer programming, •••

2 .. 2. Lists

A list is an indented, single spaced, unfilled display.
Lists should be used when the material to be printed should
not be filled and justified like normal text, such as
columns of figures or the examples used in this paper.
Lists are surrounded by the requests .(1 and .)1. For exam­
ple, type:

2--1 Zilog 2-1

-ME Zilog

Alternatives to avoid deadlock are:
• (1
Lock in a specified order
Detect deadlock and back out one process
Lock all resources needed before proceeding
•) 1

to produce:

Alternatives to avoid deadlock are:

Lock in a specified order
Detect deadlock and back out one process
Lock all resources needed before proceeding

2.3. Keeps

-ME

A keep is a display of lines kept on a single page if possi­
ble:-- An example of using a keep might be a diagram. Keeps
differ from lists in that lists can be broken over a page
boundary whereas keeps cannot.

Blocks are the basic kind of keep. They begin with the
request .(b and end with the request .)b. If there is not
room on the current page for everything in the block, a new
page is begun. This has the unpleasant effect of leaving
blank space at the bottom of the page. Where this is not
appropriate, use the alternative, called floating kc~eps.

Floating keeps move relative to the text. Hence, they are
good for things referred to by name, such as "See Figure 3".
A floating keep appears at the bottom of the current page if
it fits; otherwise, it appears at the top of the next page.
Floating keeps begin with the line .(z and end with the line
.)z. For an example of a floating keep, see Figure 1.

1 "Example of a Floating Keep"
• (z
.hl
Text of keep to be floated •
• sp
.ce
Figure 1. Example of a Floating Keep •
• hl
•) z

The .hl request is used to draw a horizontal line so that
the figure stands out from the text.

2-2 Zilog 2-2

-ME Zilog -ME

2.4. Fancier Displays

Because keeps and lists are normally collected in nofill
mode. They are good for tables and such. For a display in
fill mode (for text), type .(1 F (Throughout this section,
comments applied to .(1 also apply to .(band .(z). This
display is indented from both margins. For example, the
input:

• (1 F
And now boys and girls,
a newer, bigger, better toy than ever before!
Be the first on your block to have your own computer!
Yes kids, you too can have one of' these modern
data processing devices.
You too can produce beautifully formatted papers
without even batting an eye!
•) 1

is output as:

And now boys and girls,
a newer, bigger, better toy than ever before!
Be the first on your block to have your own computer!
Yes kids, you too can have· one of these modern
data processing devices. .
You too can produce beautifully formatted papers
without even batting an eye!

Lists and blocks are also normally indented (floating keeps
are normally left justified). To get a left-justified list,
type .(1 L. To get a list centered line-for-line, type .(1
c. For example, to get a filled, left justified list,
enter:

• (1 L F
text of block
•) 1

The input:

• (1
first line of unfilled display
more lines
•) 1

produces the indented text:

2-3

first line of unfilled display
more lines

Zilog 2-3

-ME Zilog -ME

Typing the character L after the .(1 request produces the
left justified result:

first line of unfilled display
more lines

Using C instead of L produces the line-at-a-time centered
output:

first line of unfilled display
more lines

Sometimes it is desireable to center several lines as a
group, rather than centering them one line at a time. To do
this use centered blocks, which are surrounded by the
requests .(c and .)c. All the lines are centered as a unit.
The longest line is centered and the rest are lined up
around that line. Notice that lines do not move relative to
each other using centered blocks, whereas they do using the
C argument to keeps.

Centered blocks are not keeps, and can be used in conjunc­
tion with keeps. For-example, to center a group of lines as
a unit and keep them on one page, use:

• (b L
• (c
first line of unfilled display
more lines
•) c
•) b

to produce:

first line of unfilled display
more lines

If the block requests (.(band .)b) had been omitted the
result would have been the same, but with no guarantee that
the lines of the centered block would have all been on one
page. Note the use of the L argument to .(b; this causes
the centered block to center within the entire line rather
than within the line minus the indent. Also, the center
requests must be nested inside the keep requests.

2-4 Zilog 2-4

-ME Zill.og

SECTJON 3
ANNOTATIONS

-ME

There ar.e a number of requests that save text for later
printing. Footnotes are printed at the bottom of the
current page. Delayed text is a var.iant form of footnote;
the text is printed onlyw'fien explicitly called for, such as
at the end of each chapter.. Indexes are a type of delayed
text having a tag (usually the page number) attached to each
entry after a row of dots. Indexes are also saved until
explicitly called.

:3.1. Footnotes

Footnotes begin with the request .(f and end
request .)£. The cur.rent footnote number. is
automatically, and can be used by typing **, to
footnote number.I The number. is automatically
after every footnote. For example, the input:

with the
maintained
produce a

incremented

• (q
A man who is not upr. ight
and at the same time is presumptuous;
one who is not diligent and at the same time is ignorant;
one who is untruthful and at the same time is incompetent;
such men I do not count among acquaintances.**
• (f
**James R. Ware,
.ul
The Best of Confucius,
Halcyon House, 1950.
Page 77 •
•) f
•) q

generates the result:

A man who is not upright and at the same time is
presumptuous; one who is not diligent and at the
same time is ignorant; one who is untruthful and at
the same time is incom~etent; such men I do not
count among acquaintances.

~Like this.
-James R. Ware, The Best of Confucius, Halcyon House,

1950. Page 77.

3-1 Zilog 3-1

-ME Zilog -ME

It is important that the footnote appears inside the quote,
to ensure that the footnote appears on the same page as the
quote.

3.2. Delayed Text

Delayed text is similar to a footnote except that it is
printed when explicitly called. This allows a list of
references to appear (for. example) at the end of each
chapter, as is the convention in some disciplines. Use *I
on delayed text instead of ** as on footnotes.

If you are using delayed text as your standard reference
mechanism, you can still use footnotes, except that you may
want to reference them with special characters* rather than
numbers.

3.3. Indexes

An "index" (actually more like a table of contents, since
the entries are not sor.ted alphabetically) resembles delayed
text, as it is saved until called for.. However, each entry
has the page number (or some other tag) appended to the last
line of the index entry after. a row of dots!

Index entries begin with the request .(x and end with .)x.
The .)x request can have a argument, which is the value to
print as the "page number". It defaults to the current page
number. If the page number given is an underscore (" ") no
page number or line of dots is printed at all. To get the
line of dots without a page number, type .)x ••, which
specifies an explicitly null page number..

The .xp request pr.ints the index.

For example, the input:

*Such as an asterisk.

3-2 Zilog 3-2

-ME Zilog -ME

• (x
Sealing wax
•) x
• (x
Cabbages and kings
•) x
• (x
Why the sea is boiling hot
•) x 2. 5a
• (x
Whether. pigs have wings
•) x ""
• (x
This long index entry might be used
for a list of illustrations, tables, or. figures; I expect it to
take at least two lines •
•) x
.xp

generates:

Sealing wax • 9
Cabbages and kings
Wh y th e s e a i s b o i 1 i n g ho t • 2 • 5 a
Whether pigs have wings ••••••••••••••••••••••••••
This is a terribly long index entry, such as might
be used for a list of illustrations, tables, or
figures; I expect it to take at least two lines. ••• 9

The .(x request can have a single character argument, speci­
fying the "name" of the index; the normal index is x. Thus,
sever.al "indicies" can be maintained simultaneously (such as
a list of tables, table of contents, etc.).

The index must be printed at the end of the paper., rather.
than at the beginning where it will probably appear (as a
table of contents); the pages may have to be physically
rear.ranged after printing.

•'

3-3 Zilog 3-3

-ME Zilog

SECTION 4
FANCIER tEATURES

-ME

A large number of fancier requests exist, notably requests
to provide other sorts of paragraphs, numbered sections of
the form 1.2.3 (such as used in this. document), and mul­
ticolumn output.

4 .. 1. More Paragraphs

Paragraphs generally start with a blank line and with the
first line indented. To get lef~-justified block-style
paragraphs use .lp instead of .pp, as demonstrated by the
next paragraph.

To use paragraphs that have the body indented,
line exdented (opposite of indented) with a
the .ip request. A word specified on the same
is printed in the margin, and the body is
prespecif ied position (normally five spaces).
the input:

• ip one
This is the first paragraph.
Notice how the first line
of the resulting paragraph lines UP
with the other lines in the paragraph •
• ip two

and the first
label. Enter
line as .ip
lined up at a
For example,

And here we are at the second paragraph already.
You may notice that the argument to .ip
appears
in the margin •
• lp
We can continue text •••

produces as output:

one This is the first paragraph.
of the resulting paragraph
lines in the paragraph.

Notice how the first line
lines up with the other

two And here we are at the second paragraph already. You
may notice that the argument to .ip appears in the mar­
gin.

We can continue text without starting a new indented para­
graph by using the .lp request.

4-1 Zilog 4-1

-ME Zilog

If there are spaces in the label of a .ip request,
"unpaddable space" instead of a regular space.
typed as a backslash character ("\") followed by a
For example, to print the label "Part l", enter:

.ip "Part\ l"

-ME

use an
This is
space.

If a label of an indented paragraph (that is, the argument
to .ip) is longer than the space allocated for the label,
the label is not separated from the text, and the rest of
the text is lined up at the old margin (and not with the
first line of text). For example, the input:

.ip longlabel
This paragraph had a long label.
The first character of text on the first line
will not line up with the text on second and subsequent lines,
although they will line up with each other.

produces:

longlabel
This paragraph had a long label. The first character
of text on the first line will not line up with the
text on second and subsequent lines, although they will
line up with each other.

It is possible to change the size of the label by
second argument which is the size of the label.
ple, the above can be done correctly by saying:

using a
For exam-

.ip longlabel 10

to make the paragraph indent 10 spaces for this paragraph
only. If there are many paragraphs to indent all the same
amount, use the number register ii. For example, to leave
one inch of space for the label, type:

.nr ii li

somewhere before the first call to .lp. Refer to Section 7
for more information.

If .ip is used with no argument, no hanging tag will be
printed. For example, the input:

4-2 Zilog 4-2

-ME Zilog

.ip [a]
This is the first paragraph of the example.
We have seen this sort of example before •
• ip

-ME

This paragraph is lined up with the previous paragraph,
but it has no tag in the m~rgin.

produces as output:

[a] This is the first paragraph of the example.
seen this sort of example before.

We have

This paragraph is lined up with the previous paragraph,
but it has no tag in the margin.

A special case of .ip is .np, which automatically numbers
paragraphs sequentially from 1. The numbering is reset at
the next .pp, .lp, or .sh (to be described in the next sec­
tion) request. For example, the input:

.np
This is the first point •
• np
This is the second point.
Points are just regular paragraphs
which are given sequence numbers automatically
by the .np requesto
.pp
This paragraph will reset numbering by .np •
• np
For example,
we have reverted to numbering from one now.

generates:

(1) This is the first point.

(2) This is the second point. Points are just regular
paragraphs wh:ich are given sequence numbers automati­
cally by the .np request.

This paragraph will reset numbering by .np.

(1) For example, we have revetted to numbering from one
now.

4--3 Zilog 4-3

-ME Zilog -ME

4.2. Section Headings

Section numbers (such as the ones used in this document) can
be automatically generated using the .sh request. You must
tell .sh the depth of the section number and a section
title. The depth specifies how many numbers are to appear
(separated by decimal points) in the section number. For
example, the section number 4.2.5 has a depth of three.

Section numbers are incremented in a fairly intuitive
fashion. If you add a number (increase the depth), the new
number starts out at one. If you subtract section numbers
(or keep the same number) the final number is incremented.
For example, the input:

.sh 1 "The Preprocessor"

.sh 2 "Basic Concepts"

.sh 2 "Control Inputs"

.sh 3

.sh 3

.sh 1 "Code Generation"

.sh 3

produces as output the result:

1. The Preprocessor
1.1. Basic Concepts
1.2. Control Inputs
1.2.1.
1.2.2.
2. Code Generation
2.1.1.

To specify the section number to begin, place the section
number after the section title, using spaces instead of
dots. For example, the request:

.sh 3 "Another section" 7 3 4

begins the section numbered 7.3.4; all subsequent .sh
requests will number relative to this number.

There are more complex features which cause each section to
be indented proportionally to the depth of the section. For
example, if you enter:

.nr si N

each section will be indented by an amount N. N must have a
scaling factor attached, that is, it must be of-the form Nx,
where x is a character telling what units ~ is in. Common

4-4 Zilog 4-4

-ME Zilog -ME

values for x are i for inches, c for centimeters, and n for
ens (the width of a single character). For example, to
indent each section one-half inch, type:

.nr si 0.5i

After this, sections will be indented by one-half inch per
level of depth in the section number. For example, this
document was produced using the request

.nr si 3n

at the beginning of the input file, giving three spaces of
indent per section depth.

Section headers without automatically generated numbers can
be done using:

.uh "Title"

which will do a section heading, but will put no number on
the section.

4.3. Parts of the Basic Paper

Some requests assist in setting up papers. The .tp request
initializes for a title page. There are no headers or
footers on a title page, and unlike other pages you can
space down and leave blank space at the top. For example, a
typical title page might appear as:

.tp

.sp 2i
• (1 c
THE GROWTH OF TOENAILS
IN UPPER PRIMATES
.sp
by
.sp
Frank N. Furter
•) 1
.bp

The request .th sets up the environment of the NROFF proces­
sor to do a thesis, using the rules established at Berkeley.
It defines the correct headers and footers (a page number in
the upper right hand corner only), sets the margins
correctly, and double spaces.

4-·5 Zilog 4-5

-ME Zilog -ME

The .+c T request can be used to start chapters. Each
chapter is automatically numbered from one, and a heading is
printed at the top of each chapter with the chapter number
and the chapter name T. For example, to begin a chapter
called "Conclusions", use-the request:

.+c "CONCLUSIONS"

which produces, on a new page, the lines

CHAPTER 5
CONCLUSIONS

with appropriate spacing for a thesis. Also, the header is
moved to the foot of the page on the first page of a
chapter. Although the .+c request was not designed to work
only with the .th request, it is tuned for the format
acceptable for a PhD thesis at Berkeley.

If the title parameter T is omitted from the .+c request,
the result is a chaptir with no heading. This can also be
used at the beginning of a paper; for example, .+c was used
to generate page one of this document.

Although papers traditionally have the abstract, table of
contents, and so forth at the front of the paper, it is more
convenient to format and print them last when using NROFF.
This is so that index entries can be collected and then
printed for the table of contents (or whatever). At the end
of the paper, issue the .++ P request, to begin the prelim­
inary part of the paper. After issuing this request, the
.+c request begins a preliminary section of the paper. Most
notably, this prints the page number restarted from one in
lower case Roman numbers. .+c can be used repeatedly to
begin different parts of the front material for example, the
abstract, the table of contents, acknowledgments, list of
illustrations, etc. The request .++ B may also be used to
begin the bibliographic section at the end of the paper.

4.4. Two Column Output

To get two column output automatically, use the request .2c.
This causes everything after it to be output in two-column
form. The request .be starts a new column; it differs from
.bp in that .bp may leave a totally blank column when it
starts a new page. To revert to single column output, use
.le.

4-6 Zilog 4-6

-ME Zilog -ME

4.5. Defining Macrc:>s

A macro is a collection of requests and text which can be
used by stating a simple request. Macros begin with the
line .de xx (where xx is the name of the macro to be
defined) ----:ind end --With the line consisting of two dots.
After defining the macro, stating the line xx is the same as
stating all the oth(~r lines. For example, to define a macro
that spaces 3 lines and then centers the next input line,
enter:

.de SS

.sp 3

.ce . .
and use it by typing:

.SS
Title Line
(beginning of text)

Macro names can be one or two characters. In order to avoid
conflicts with names in -me, always use upper case letters
as names. The only names to avoid are TS, TH, TE, EQ, and
EN.

406. Annotations Inside Keeps

Sometimes a footnote or index entry is required inside a
keep. For example, to maintain a "list of figures" enter:

• (z
• (c
text of figure
•) c
.ce
Figure 5 •
• (x f
Figure 5
•) x
•) z

which hopefully will give a figure with a label and an entry
in the index f (presumably a list of figures index). Unfor­
tunately, the index entry is read and interpreted when the
keep is read, not when it is printed, so the page number in
the index is likely to be wrong. The solution is to use the
magic string \! at the beginning of all the lines dealing
with the index. In other words, you should use:

4-7 Zilog 4-7

-ME

• (z
• (c
Text of figure
•) c
.ce
Figure 5.
\!.(x f
\!Figure 5
\ ! •) x
•) z

Zilog -ME

This defers the processing of the index until the figure is
output. This guarantees that the page number in the index
is correct. The same comments apply to blocks (with .(band
•) b) •

4-8 Zilog 4-8

-ME Zilog -ME

SECTIQN 5
TROFI~ AND THE PHOTOTYPESETTER

With a little care, documents can be prepared that will
print nicely on either a regular terminal or when photo­
typeset using the TROFF formatting program.

5 .. 1. Fonts

A font is a style .of type. Three fonts that are available
simultaneously, Times Roman, Times Italic, and Times Bold,
plus the special math font. The normal font is Roman. Text
underlined in NROFF with the .ul request is set in italics
in TROFF.

There are ways of switching between fonts. The requests .r,
.i, and .b switch to Roman, italic, and bold fonts respec­
tively. A single word can be set in some font by typing
(for example):

i word

This sets word in italics but does not affect the surround­
ing text. --rn-NROFF, italic and bold text are underlined.

When setting more than one word in whatever font, surround
that word with double quote mark~ ('"') so that it will
appear to the NROFF processor as a single word. The quote
marks will not appear in the formatted text. If a quote
mark is to appear, quote the entire string (even if a single
word), and use two quote marks where one is to appear. For
example, to produce the text:

"Master Control"

in italics, type

.i """Master Control\!"""

The \I produces a very narrow space so that the "I" does not
overlap the quote sign in TROFF.

5.2. Point Sizes

The phototypesetter supports different sizes of type, meas­
ured in points. The default point size is 10 points for

5-1 Zilog 5-1

-ME Zilog -ME

most text, 8 points for footnotes. To change the pointsize,
type:

.sz +N

where N is the size wanted in points. The vertical spacing
(distance between the bottom of most letters (the baseline)
between adjacent lines) is set to be proportional- to the
type size.

WARNING

Changing point sizes on the phototypesetter is a
slow mechanical operation. Size changes should be
considered carefully.

5.3. Quotes

It is conventional when using the typesetter to use pairs of
grave and acute accents to generate double quotes, rather
than the double quote character ('"'). This is because it
looks better to use grave and acute accents; for example,
compare "quote" to ''quote''·

In order to make quotes compatible between the typesetter
and terminals, use the sequences *(lq and *(rq to stand
for the left and right quote respectively. These both
appear as ••on most terminals, but are typeset as'' and 11

respectively. For example, use: ·

*(lqSome things aren't true
even if they did happen.*(rq

to generate the result:

"Some things aren't true even if they did happen."

As a shorthand, the special font request:

.q "quoted text"

generates "quoted text".
surrounded with double
word.

The material to be quoted must be
quote marks if it is more than one

5-2 Zilog 5-2

-ME Zilog -ME

SECTl9N 6
-ME REFERENCE MANUAL

This section describes the features of the -me macro package
for ZEUS. The reader should understand breaks, fonts,
pointsizes, the use and definition of number registers and
strings, how to define macros, and scaling factors for ens,
points, v's (vertical line spaces), etc.

There are a number of macro param~ters that can be adjusted.
Fonts can be set to a font number only. In NROFF font 8 is
underlined, and is set in bold font in TROFF (although font
3, bold in TROFF, is not underlined in NROFF). Font 0 is no
font change; the font of the surrounding text is used
instead. Notice that fonts 0 and 8 are "pseudo-fonts"; that
is, they are simulated by the macros. This means that
although it is legal to set a font register to zero or
eight, it is not legal to use the escape character form,
such as:

\f 8

All distances are in basic units, so it is nearly always
necessary to use-a~;caling factor. For example, the request
to set the paragraph indent to eight one-en spaces is:

.nr pi 8n

and not

.nr pi 8

which would set the paragraph indent to eight basic units,
or about 0.02 inch. Default parameter values are given in
brackets in the remainder of this document.

Registers and strings of the form $ x can be used in expres­
sions but should not be changed. Macros of the form $ x
perform some function (as described) and can be redefined to
change this function. This can be a sensitive operation;
look at the body of the original macro before changing it.

All names in -me follow a rigid naming convention. The user
can define number registers, strings, and macros, provided
that s/he uses single character upper case names or double
character names consisting of letters and digits, with at
least one upper case letter. In no case should special
characters be used in user-defined names.

6-1 Zilog 6-1

-ME Zilog -ME

On daisy wheel type printers in twelve pitch, the -rxl flag
can be stated to make lines default to one eighth inch (the
normal spacing for a newline in twelve-pitch). This is nor­
mally too small for easy readability, so the default is to
space one sixth inch.

This documentation was NROFF'ed on June 4, 1979 and applies
to Version 1.1/20 of the -me macros.

6.1. Paragraphing

These macros are used to begin paragraphs. The standard
paragraph macro is .pp; the others are all variants to be
used for special purposes.

The first call to one of the paragraphing macros defined in
this section or the .sh macro (defined in the next session)
initializes the macro processor. After initialization it is
not possible to use any of the following requests: osc, .lo,
.th, or .ac. Also, the effects of changing parameters which
will have a global effect on the format of the page (notably
page length and header and footer margins) are not well
defined and should be avoided •

• lp Begin left-justified paragraph. Centering and
underlining are turned off if they were on, the
font is set to \n(pf [l] the type size is set to
\n(pp [10p], and a \n(ps space is insertE~d before
the paragraph [0.35v in TROFF, lv or 0.5v in NROFF
depending on device resolution]. The indent is
reset to \n($i [0] plus \n(po [0] unless the para­
graph is inside a display. (see .ba). At least
the first two lines of the paragraph are kept
together on a page •

• pp Like .lp, except that it puts \n(pi [Sn] units of
indent. This is the standard paragraph macro •

• lp T I

• np

6-2

Indented paragraph with hanging tag. The body of
the following paragraph is indented } spaces (or
\n(ii [Sn] spaces if I is not specified) more than
a non-indented paragraph (such as with .pp) is.
The title T is exdented (opposite of indented) •
The resul~ is a paragraph with an even left edge
and T printed in the margin. Any spaces in T must
be unpaddable. -

A variant of .ip which numbers paragraphs •
Numbering is reset after a .lp, .pp, or .sh. The
current paragraph number is in \n($p.

Zilog 6-2

-ME Zilog -ME

6.2. Section Headings

Numbered sections are similiar to paragraphs except that a
section number is automatically generated for each one. The
section numbers are of the form 1.2.3. The depth of the
section is the count of numbers (separated by decimal
points) in the section number.

Unnumbered section headings are similar, except that no
number is attached to the heading •

• sh +N T a b c d e f
-BegTn-ntimbered section of depth N. If N is

missing the current depth (maintained in the
number register \n($0) is used. The values of
the individual parts of the section number are
maintained in \n($1 through \n($6. There is a
\n(ss [lv] space before the section. T is
printed as a section title in font \n(sf [8]-and
size \n{sp [10p].

The "name" of the section can be accessed via *($n.
If \n(si is non-zero, the base indent is set to \n(si
times the section depth, and the section title is
exdented. (See .ba.) Also, an additional indent of
\n(so [0] is added to the section title (but not to the
body of the section) • Th~ font is set to the paragraph
font, so information can occur on the line with the
section number and title. .sh insures enough room to
print the section head plus the beginning of a para­
graph (about 3 lines total).

If a through f are specified, the section number is set
to -that numEer rather than incremented automatically.
If any of a through f are a hyphen, that number is not
reset. II T is a single underscore (" ") the section
depth and numbering is reset, the base Tndent is not
reset and nothing is printed out. This is useful to
automatically coordinate section numbers with chapter
numbers.

.sx +N Go to section depth N [-1], but do not print the
number and title, and do not increment the sec­
tion number at level N. This starts a new para­
graph at level N.

.uh T

6-·3

Unnumbered section heading. The title T is
printed with the same rules for spacing, Iont,
etc., as for .sh.

Zilog 6-3

-ME

.Sp ! _!! ~

• $0 T B N

• $1 - .$6

Zilog -ME

Print section heading. May be redefined to get
fancier headings. T is the title passed on the
.sh or .uh line; B is the section number for
this section, and N is the depth of this sec­
tion. These parameters are not always present;
in particular, .sh passes all three, .uh passes
only the first, and .sx passes three, but the
first two are null strings. Care should be
taken if this macro is redefined; it is quite
complex and subtle •

This macro is called automatically after every
call to .$p. It is normally undefined, but can
be used to automatically put every section title
into the table of contents or for some similiar
function. T is the section title for the sec­
tion title- just printed, B is the section
number, and N is the section depth •

Traps called just before printing that depth
section. Can be defined to (for example) give
variable spacing before sections. These macros
are called from .$p, so in redefining that
macro, this feature can be lost.

6.3. Headers and Footers

Headers and footers are put at the top and bottom of every
page automatically. They are set in font \n(tf [3] and size
\n(tp [10p]. Each of the definitions apply as of the next
page. Three-part titles must be quoted if there are two
blanks adjacent anywhere in the title or more than eight
blanks total.

The spacing of headers and footers is controlled by three
number registers. \n(hm [4v] is the distance from the top
of the page to the top of the header, \n(fm [3v] is the dis­
tance from the bottom of the page to the bottom of the
footer, \n(tm [7v] is the distance from the top of the page
to the top of the text, and \n(bm [6v] is the distance from
the bottom of the page to the bottom of the text (nominal).
The macros .ml, .m2, .m3, and .m4 are also supplied for com­
patibility with ROFF documents.

.he 'l'm'r'

.fo 'l'm'r'

6-4

Define three-part header, to be printed on
the top of every page.

Define footer, to be printed at the bottom of
every page.

Zilog 6-4

-ME

.eh

.oh

.ef

.of

.bx

.ml

.m2

.m3

.m4

.ep

• $h

• $f

.$H

6·-5

'l 'm' r' - - -

'l'm'r' - - -

'l'm'r' - - -

'l'm'r' - - -

+N

+N

+N

+N

Zilog -ME

Defi.ne header, to be printed at the top of
every even-numbered page.

Def i.ne header, to be printed at the top of
every odd-numbered page.

Define footer, to be printed at the bottom of
every even-numbered page.

Define footer, to be printed at the bottom of
every odd-numbered page.

Suppress headers and footers on the next
page~.

Set the space between the top of the page and
the header [4v] •

Set the space between the header and the
first line of text [2v] •

Set the space between the bottom of the text
and the footer [2v] •

Set the space between the footer and the bot-
tom of the page [4v] •

End this page, but do not begin the next
page. Useful for forcing out footnotes, but
other than that hardly every used. Must be
followed by a .bp or the end of input.

Called at every page to print the header •
Can be redefined to provide fancy (e.g.,
multi-line) headers, but doing so loses the
function of the .he, ·.fo, .eh, chapter-style
title feature of .+c.

Print footer; same comments apply as in .$h .

A normally undefined macro which is called at
the top of each page (after outputing the
header, initial saved floating keeps, etc.);
in other words, this macro is called immedi­
ately before printing text on a page. It can
be used for column headings and the like.

Zilog 6-5

-ME Zilog -ME

6.4. D.isplays

All displays except centered blocks and block quotes are
preceeded and followed by an extra \n(bs [same as \n(ps]
space. Quote spacing is stored in a separate register; cen­
tered blocks have no default initial or trailing space. The
vertical spacing of all displays except quotes and centered
blocks is stored in register \n($R instead of \n($r.

• (1 m f

•) 1

.(q LIST

•)q

.(b m f BLOCK

6-6

Begin list. Lists are single spaced,
unfilled text. If f is F, the list will be
filled. If m [I] is-I the list is indented
by \n(bi [4n]; if M the list is indented to
the left margin; if L the list is left jus­
tified with respect to the text (different
from M only if the base indent (stored in
\n($i and set with line-by-line basis. The
list is set in font \n(df [0]. Must be
matched by a .)1. This macro is similiar
.(b except that no attempt is made to keep
the display on one page.

End list •

Begin major quote. These are single spaced,
filled, moved in from the text on both sides
by \n(q [4n], preceeded and followed by
\n(qs [same as \n(bs] space, and are set in
point size \n(qp [one point smaller than
surrounding text].

E!nd major quote •

Begin block. Blocks are a form of keep,
where the text of a keep is kept together on
one page if possible. (Keeps are useful for
tables and figures which should not be bro­
ken over a page.) If the block will not fit
on the current page, a new page is begun,
unless that would leave more than \n(bt [0]
~hite space at the bottom of the text. If
\n(bt is zero, the threshold feature is
turned off. Blocks are not filled unless f
is F, when they are filled. The block is
left-justified if m is L, indented by \n(b
[4n] if m is I or absent, centered (line­
for-line) if m is C, and left justified to
the margin (not-to the base indent) if m is
M. The block is set in font \n(df [0].-

Zilog 6-6

-ME

•) b

.(z m f KEEP

•) z

.(c CENTER

•) c

Zilog -ME

End block •

Begin floating keep. Like .(b except that
the keep is floated to the bottom of the
page or the top of the next page. There­
fore, its position relative to the text
changes. The floating keep is preceeded and
followed by \n(zs [lv] space. Also, it
defaults to mode M.

End floating keep •

Begin centered block. The next keep is cen­
tered as a block, rather than on a line-by­
line basis as with .(b c. This call can be
nested inside keeps.

End centered block •

6.5. Annotations

.(d DELAYED TEXT

.)d n DELAYED TEXT

.pd DELAYED TEXT

.(f FOOTNOTE

.)f n FOOTNOTE

6-7

Begin delayed text. Everything in the
next keep is saved for output later with
.pd, in a manner similar to footnotes.

End delay~d text. The delayed text
number register \n($d and the associated
string *I are incremented if *I has
been referenced.

Print delayed text. Everything diverted
via .{d is printed and truncated. This
can used at the end of each chapter.

Begin footnote. The text of the foot­
note is floated to the bottom of the
page and set in font \n{ff [l] and size
\n(fp [8p]. Each entry is preceeded by
\n{fs [0.2v] space, is indented \n(fi
[3n] on the first line, and is indented
\n{fu [0] from the right margin. Foot­
notes line up underneath two columned
output. If the text of the footnote
does not fit on one page it is carried
over to the next page.

End footnote. The number register \n($f
and the associated string ** are incre­
mented if they have been referenced.

Zilog 6-7

-ME

.$s FOOTNOTE

.(xx INDEX

Zilog -ME

The macro to output the footnote sepera­
tor. This macro can be redefined to
give other size lines or other types of
separators. Currently it draws a l.Si
line.

Begin index ~ntry. Index entries are
saved in the index x [x] until called up
with .xp. Each entry is preceeded by a
\n(xs [0.2v] space. Each ientry is
"undented" by \n(xu [0.Si]; this regis­
ter tells how far the page number
extends into the right margin.

.)x P A INDEX End index entry. The index entry is
finished with a row of dots with A
[null] right justified on the last line
(such as for an author's name), followed
by P [\n %] • If A is specified, P must

.xp x INDEX

be specified; \n% can be used to print
the current page number. If P is an
underscore, no page number and ~o row of
dots are printed.

Print index x [x]. The index is for­
mated in the-font and size, in effect at
the time it is printed, rather than at
the time it is collected.

6.6. Columned Output

.2e +s N

• le

.be

6-8

Enter two-column mode. The column separation is
set to +s [4n, 0.Si in ACM mode] (saved in
\n($s). The column width, calculated to fill
the single column line length with both columns,
is stored in \n($1. The current column is in
\n($e. You can test register \n($m [l] to see
if you are in single column or double column
mode. Actually, the request enters N [2]
columned output.

Revert to single-column mode •

Begin column. This is like .bp except that it
begins a new column on a new page only if neces­
sary, rather than forcing a whole new page if
there is another column left on the current
page.

Zilog 6-8

-ME Zilog -ME

6.7. Fonts and Sizes

.sz +P

.r W X

.1 w x

.b w x

.rb W x

.u w x

.q w x

.bi w x

.bx W X

6-9

The point size is set to P [10p], and the line
spacing is set proportTonally. The ratio of
line spacing to point size is stored in \n($r.
The ratio used internally by displays and anno­
tations is stored in \n($R (although this is not
used by .sz) •

Set W in roman font, appending X in the previous
font7 To append different fonE requests, use X
= \c. If no parameters, change to roman font.

Set W in italics, appending X in the previous
font: If no parameters, change to italic font.
Underlines in NROFF.

Set W in bold font and append X in the previous
font7 If no parameters, switch to bold font.
In NROFF, underlines.

Set W in bold font and append X in the previous
font: If no parameters, swTtch to bold font •
• rb differs from .b in that .rb does not under­
line in NROFF.

Underline W and append X. This is a true under­
lining, as opposed to the .ul request, which
changes to "underline font" (usually italics in
TROFF). It won't work correctly if Wis spread
or broken (including hyphenated). - In other
words, it is safe in nofill mode only.

Quote W and append X. In NROFF this surrounds W
with double quote marks ('"'), but in TROFF uses
directed quotes. ·

Set W in bold italics and append X. Actually,
sets W in italic and overstrikes-once. Under­
lines in NROFF. It won't work correctly if W is
spread or broken (including hyphenated).- In
other words, it is safe in nofill mode only.

Sets W in a box, with X appended. Underlines in
NROFF: It won't work correctly right if W is
spread or broken (including hyphenated). - In
other words, it is safe in nofill mode only.

Zilog 6-9

-ME Zilog -ME

6.8. Roff Support

.ix +N

.bl N

.pa +N

• ro

.ar

• nl

• n2 N

.sk

Indent, no break. Equivalent to 'In ~·

Leave N contiguous white space, on the next page
if no~ enough room on this page. Equivalent to
a .sp ~ inside a block.

Equivalent to .bp.

Set page number in roman numerals •
to .af % i.

Equivalent

Set page number in arabic. Equivalent to .af %
1.

Number lines in margin from one on each page •

Number lines from ~, stop if N = 0 •

Leave the next output page blank, except for
headers and footers. This is used to leave
space for a full-page diagram which is produced
externally and pasted in later. To get a
partial-page paste-in display, say .sv N, where
N is the amount of space to leave; tKis space
~ill be output immediately if there is room, and
will otherwise be output at the top of the next
page. However, if N is greater than thE~ amount
of available space on an empty page, no space
will ever be output.

6.9. Preprocessor Support

.EQ m T

.EN c

6-10

Begin equation. The equation is centered if m
is C or omitted, indented \n(bi [4n] if m is 1;
and left justified if m is L. T is a- title
printed on the right margin next to the equa­
tion. See Typesetting Mathematics User'~
Guide by Brian w. Kernighan and Lorinda L.
Cherr·y.

End equation. If c is C the equation must be
continued by immediately following with another
.EQ, the text of which can be centered along
with this one. Otherwise, the equation is
printed, always on one page, with \n(es [0.Sv in
TROFF, lv in NROFF] space above and below it.

Zilog 6-10

-ME

.TS h

.TH

Zilog -ME

Table start. Tables are single spaced and kept
on one page if possible. For a large table
which will not fit on one page, use h = H and
follow the header part (to be printed on every
page of the table) with a .TH. See Tbl - A Pro­
gram to Format Tables by M. E. Lesk.

With .TS H, ends the header portion of the
table •

• TE Table end. Note that this table does not float,
in fact, it is not even guaranteed to stay on
one page if requests such as .sp are intermixed
with the text of the table. To float it (or if
using requests inside the table), surround the
entire table (including the .TS and .TE
requests) with the requests .(z and .)z.

6.18. Miscellaneous

.re

• ba +N

.xl N

• 11 +N

• bl

.lo

6-11

Reset tabs. Set to every 0.Si in TROFF and
every 0.8i in NROFF.

Set the base indent to +N [0] (saved in \n($i) .
All paragraphs, sections, and displays come out
indented by this amount. Titles and footnotes
are unaffected. The .sh request performs a .ba
request if \n(si [0] is not zero, and sets the
base indent to \n(si*\n($B.

Set the line length to N [6.0i]. This differs
from .11 because it -only affects the current
environment.

Set line length in all environments to N [6.0i] •
This should not be used after output has begun,
and particularly not in two-columned output.
The current line length is stored in \n($1.

Draws a horizontal line the length of the page •
This is useful inside floating keeps to dif­
ferentiate between the text and the figure.

This macro loads another set of macros (in
/usr/lib/me/local.me) which is intended to be a
set of locally defined macros. These macros
should all be of the form .*X, where X is any
letter (upper or lower case) or-digit.

Zilog 6-11

-ME Zilog -ME

6.11. Standard Papers

.tp Begin title page. Spacing at the top of the
page can occur, and headers and footers are
supressed. Also, the page number is not incre­
mented for this page •

• th Set thesis mode. This defines the modes accept­
able for a doctoral dissertation at Berkeley.
It double spaces, defines the header to be a
single page number, and changes the margins to
be 1.5 inch on the left and one inch on the top •
• ++ and .+c should be used with it. This macro
must be stated before initialization, that is,
before the first call of a paragraphing macro or
.sh.

.++ m H

l.+c T

6-12

This request defines the section of the paper
which we are entering. The section type is
defined by m. C means that we are entering the
chapter po~tion of the paper, A means that we
are entering th~ appendix portion of the paper,
P means that the material following should be
the preliminary portion (abstract, table of con­
tents, etc.) portion of the paper, AB means that
we are entering the abstract (numbered indepen­
dently from 1 in Arabic numerals), and B means
that we are entering the bibliographic portion
at the end of the paper. Also, the variants RC
and RA are allowed, which specify renumbering of
pages from one at the beginning of each chapter
or appendix, respectively.

The H parameter defines the new header. If
ther~ are any spaces in it, the entire header
must be quoted. For the header to have the
chapter number in it, use the string \\\\n{ch.
For example, to number appendixes A.l etc., type
.++ RA '''\\\\n{ch.%'. Each section (chapter,
appendix, etc.) should be preceeded by the .+c
request.

It should be mentioned that it is easier when
using TROFF to put the front material at the end
of the paper, so that the table of contents can
be collected and output; this material can then
be physically moved to the beginning of the
paper.

Begin chapter with title T.
is maintained in \n(cli.

Zilog

The chapter number
This register is

6-12

-ME

• $c T

• $C K N T

.ac A N

Zilog -ME

incremented every time .+c is called with a
parameter. The title and chapter number are
printed by .$c. The header is moved to the
footer on the first page. of each chapter. If T
is omitted, .$c is not called; this is usefuT
for doing your own "title. page" at the beginning
of papers without a title page proper. .$c
calls .$C as a hook so that chapter titles can
be inserted into a table of contents automati­
cally •

Print chapter number (from \n(ch) and T. This
macro can be redefined: to your liking. It is
defined by default to be acceptable for a PhD
thesis at Berkeley. This macro calls $C, which
can be defined to make index entries, or what­
ever •

This macro is called by ~$c. It is normally
undefined, but can be : used to automatically
insert index entries, or whatever. K is a key­
word, either "Chapter" or "Appendixw (depending
on the~++ mode); N is the chapter or appendix
number, and ! is the chapter or appendix title.

This macro (short for .acm) sets up the NROFF
environment for photo-r~ady papers as used by
the ACMo This format is 25% larger, and has no
headers or footers. The author's name A is
printed at the bottom of the page (but off the
part which will be printed in the conference
proceedings), together with the current page
number and the total number of pages N. Addi­
tionally, this macro loads th~ file
/usr/lib/me/acm.me, which can later be augmented
with other macros useful for printing papers for
ACM conferences. It should be noted that this
macro does work correctly in TROFF, since it
sets the page length wider than the physical
width of the phototypesetter roll.

6.12. Predefined Strings

**

*I

*[

6-·13

Footnote number, actually *l\n($f*I. This
macro is incremented after each call to .)f.

Delayed text number. Actually [\n($d].

Superscript. This string gives upward movement
and a change to a smaller point size if

Zilog 6-13

-ME

*]

*<

*>

*{dw

*{mo

*{td

*(lq

Zilog -ME

possible, otherwise it gives the left bracket
character (' [') •

Unsuperscript. Inverse to *[. For example, to
produce a superscript you might type x*12*1
which will produce x(2).

Subscript. Defaults to ... <' if half--carriage
motion not possible.

Inverse to *<.

The day of the week, as a word.

The month, as a word.

Today's date, directly printable. The date is
of the form June 4, 1979. Other forms of the
date can be used by using \n(dy (the day of the
month; for example, 4), *(mo (as noted above)
or \n(mo (the same, but as an ordinal number;
for example, June is 6), and \n(yr (the last two
digits of the current year).

Left quote marks. Double quote in NROFF.

*(rq Right quote.

*- 3/4 em dash in TROFF; two hyphens in NROFF.

6.13. Special Characters and Marks

There are a number of special characters and
marks (such as accents) available through -me.
these characters, call the macro .sc to define
ters before using them.

di.:icritical
To :reference
the charac-

.sc Define special characters and dia~ritical marks,
as described in the remainder of this section.
This macro must be stated before initialization.

The special characters available are listed below.

Name Usage Example

Acute accent *' a*' 'a
Grave accent *' e*' e'
Umlat *: u*: u
Tilde *- n*- n

6-14 Zilog 6-14

-ME Zilog -ME

Caret *A e*A e
Cedilla *, c*, c
Czech *v e*v e
Circle *o A*o A
There exists *(qe
For all *(qa

6-15 Zilog 6-15

MM -- Memorandum Macros

based on an article originally written by:
D. W. Smith
J. R. Mashey

E. C Pariser (January 1980 Reissue)

10/14/83

MM

ii

Zilog

Zilog
10/14/83

MM

ii

MM Zilog MM

Table of Contents

SECTION 1 INTRODUCTION ••••••• I •••••••••••••••••••••••• 1-1

1.1.
1. 2.
1. 3.
1. 4.

Description . . . • . • . . . • • . ••.....•••.
Conventions • . • . • • • • • • • •••.••••.•..
Document Structure •..••.•.••....•......•..
Definitions .•.•••.••.•••.••.•.••.•........•...

1-1
1-1
1-2
1-3

SECTION 2 INVOKING THE MACROS 2-1

2. 1.
2. 2.
2. 3.
2. 4.
2. 5.

The mm Command ••••••• •1• •••••••••••••••••••••••

The -cm or -rmn Flag .•..•••..•.•••..•.•.....••.
Typical Command Lines .•••••...•.•...•..•••....
Command Line Parameters ••••••••••.......•.•••.
Om i s s i o n o f - cm o r - rmn , •

2-1
2-2
2-2
2-4
2-6

SECTION 3 FORMATTING CONCEPTS 3-1

3.1. Basic Terms . . • . • • . • • • . • • • • • • • • • . . • • • • • . • . 3-1
3. 2. Arguments and Double Quotes • • • . • • . • • . • 3-2
3.3. Unpaddable Spaces •••.•..•.•..•.....•.... 3-2
3.4. Hyphenation•.•...••••••....•........ 3-3
3 . 5 • Tab s • • . • . • • • • • . . • . • . . •, . . • • • 3 - 4
3.6. Special Use of the BEL Character ...•.•.•.•.•.. 3-4
3 • 7 • B u 11 e t s • • • • • • • • • • • • • • •, • 3 - 4
3. 8. Dashes, Minus Signs, and Hyphens • . • . • • • • . 3-5
3.9. Trademark String ••.•••••••••••••..•.•..•....•. 3-5
3.10. Use of Formatter Requests ••••••••..••.....••. 3-5

SECTION 4 PARAGRAPHS AND HEADlNGS 4-1

iii

4. 1. Paragraphs
4.2. Numbered Headings•.•..••..•..••...••.••...

4.2.1. Normal Appearance •.••.•••.••.••••••.••.••
4.2.2. Altering Appearance of Headings •...••....

4.3. Unnumbered Headings •.•••.•...••..•.•..•••••••.
4.4. Headings and the Table of Contents .••.•••.•..•
4.5. First-Level Headings and the
Page Numbering Style ••.•.•••••••.•••••.•....••.••.•
4.6. User Exit Macros$ ••• , •••••.•.•••.••••.•••••••
4. 7. Hints for L<:irge Documents •••••••..•••.••••••.•

Zilog
10/14/83

4-1
4-2
4-3
4-3
4-7
4-8

4-9
4-9

4-11

iii

MM Zilog MM

SECTION 5 LISTS 5-1

5.1. Basic Approach .••••.•.•..••.•.•••••••.••..•••. 5-1
5.2. Sample Nested Lists ..•..•.••...........•••.... 5-1
5.3. Basic List Macros••......•..•.•...•••.••.• 5-3

5. 3.1. List Item • • . • • . . • . . . • • • 5-3
5. 3. 2. List End • • • • • • • • • • • . • • • • • • • • • . • • • . • • . • . • . 5-4
5.3.3. List Initialization Macros•....• 5-4

5.4. List-Begin Macro and Customized Lists e 5-8

SECTION 6 MEMORANDUM AND RELEASE-PAPER STYLES 6-1

6.1. Title ,
6. 2. Author (s) ••••••••••••••••••••••••••••••••
6.319 TM Number(s)•.•••.........•...•.••... ,•
6. 4. Abstract•.....•...•..•••••......•..•. 1• ••••

6. 5.. Other Keywords•..................... "
6.6. Memorandum Types ·························o•···
6.7. Date and Format Changes ···············•••o••••

6.7.1. Changing the Date ···············••••o••••
6.7.2. Alternate First-Page Format••...•...

6.8 .. Release-Paper Style •..•...........•..••.......
6.9. Order of Invocation of 'Beginning' Macros•

6.10. Example ·······························••o••••
6.11. Macros for the End of a Memorandum

6.11.1. Signature Block
6.11. 2. 'Copy To' and Other Notations

6.12. Approval Signature Line
6.13. Forcing a One-Page Letter

6-1
6-2
6-3
6-3
6-4
6-4
6-5
6-6
6-6
6-6
6-7
6-8
6-8
6-8
6-9

6-11
6-11

SECTION 7 DISPLAYS ······························~···· 7-1

7 .1.
7.2.
7.3.
7.4.
7.5.
7.6.

Static Displays .•••••....•.•..•..•..•.........
Floating Displays
Tables ••••••••••••••••.•••••.••••••.••.••.•.••
Equations ••.•.•••••..•••.••••••.•.•••.•.•.....
Figure, Table, Equation, and Exhibit Captions .
List of Figures, Tables,

7-1
7-3
7-6
7-7
7-8

Equations, and Exhibits .•••••.....•..•............. 7-9

SECTION 8 FOOTNOTES 8-1

iv

8.1. Automatic Numbering of Footnotes •...•.•.•••... 8-1
8.2. Delimiting Footnote Text ..••.••••.•..••••.•... 8-1
8.3. Format of Footnote Text e• 8-2
8.4. Spacing Between Footnote Entries ••..•.•••.••.. 8-4

Zilog
10/14/83

iv

MM Zilog MM

S.ECTION 9 PAGE HEADERS AND FOOTERS 9-1

9.1. Default Headers and Footers . • . • . . • • . . . • • . . • . . . 9-1
9. 2. Page Header • • • . • . • . . • .. • • • . . • • . . • . . . • . • • . 9-1
9.3. Even-Page Header ..•....•.•.•.......•...•••.•.• 9-2
9.4. Odd-Page Header••••.•..••.•••.••.••.•.• 9-2
9. 5. Page Footer . • • • • • . • • . • • • . . • • • . • . . • • • 9-2
9.6. Even-Page Footer •••....•...••••..•.....••..•.. 9-3
9.7. Odd-Page Footer •...........•••••.••••..•.•••.. 9-3
9.8. Footer on the First Page••••.•...•........ 9-3
9.9. Default Header and Footer
with Section-Page Numbering .•••.•••...••••.•.•..... 9-3
9.10. Use of Strings and Registers in
Header and Footer Macros$...••..•..•.•••.•••.••... 9-3
9 .11. Header and Footer Example $ • • • • • • • • • • • • • • • • • • 9-4
9.12. Generalized Top-of-Page Processing$ •.••..... 9-5
9.13. Generalized Bottom-of~Page Processing 9-6
9.14. Top and Bottom Margins••••••..•........• 9-6
9.15. Proprietary Markings ..••..•.••••••••.••..••.. 9-6
9.16. Private Documents ••.••••....••..•............ 9-7

SECTION 10 TABLE OF CONTENTS .AND COVER SHEET • • 10-1

10.1. Table of Contents ..••••••••.••....•..•....••• 10-1
10.2. Cover Sheet······~··························· 10-4

SECTION 11 REFERENCES ..•......•...................... 11-1

11.1. Automatic Numbering of References ...•.••....• 11-1
11.2. Delimiting Reference Text .••••••..••••••.•... 11-1
11.3. Subsequent References ••.•••.•••••..•.•....... 11-1
11.4. Reference Page •.•.•.••.••.••.•..••..........• 11-2

SECTION 12 MISCELLANEOUS FEATURES .•..•.•............• 12-1

v

12.1. Bold, Italic, and Roman •.•••.•..•............ 12-1
12 • 2 • Ju s ·t i f i ca t i on o f R i g ht Ma r g i n • . • 1 2 - 2
12. 3. SCCS Release Identification••••........• 12-3
12.4. Two-Column Output •.....••.••.••....••.•.•.••• 12-3
12.5. Column Headings for Two-Column Output$ 12-4
12.6. Vertical Spacing ••.••.•..•.•.•..•...•........ 12-5
12.7. Skipping Pages •••.•••.•..•..•..•••.•..•..•... 12-6
12.8. Forcing an Odd Page ...•...••....•.......••••. 12-6
12.9. Setting Point Size and Vertical Spacing ..•.•. 12-6
12.10. Producing Accents •........•••••.•....•.••••• 12-7
12.11. Inserting Text Interactively••.••.•••• 12-8

Zilog
10/14/83

v

MM Zilog MM

SECTION 13 ERRORS AND DEBUGGING 13-1

13.1. Error Terminations·······················~··· 13-1
13.2. Disappearance of Output ··················~··· 13-1

SECTION 14 EXTENDING AND MODIFYING THE MACROS•··~··· 14-1

14.1. Naming Conventions····················•••@••• 14-1
14~1~1. Names Used by Formatters ··········••O••• 14-1
14.1.2. Names Used by MM····················~··· 14-1
14.1.3. Names Used by EQN/NEQN and TBL ······~··· 14-2
14.1.4. User-Definable Names 14-2

14.2~ Sample Extensions•................... 14-2
14.2.1. Appendix Headings 14-3
14.2.2. Hanging Indent with Tabs•........... 14-3

APPENDIX A DEFINITIONS OF LIST MACROS e A-1

APPENDIX B USER-DEFINED LIST STRUCTURES• ...•.......• B-1

APPENDIX C SAMPLE FOOTNOTES ·~························ C-1

APPENDIX D SAMPLE LETTER D-1

APPENDIX E ERROR MESSAGES ••••n••····················· E-1

E.l. MM Error Messages E-1
E.1.1. Formatter Error Messages E-4

APPENDIX F SUMMARY OF MACROS, STRINGS,

vi

AND NUMBER REGISTERS F-1

F.l. MM Macro Names•. F-1
F.2. Strings F-6
F.3. Number Registers F-8

Zilog
10/14/83

vi

MM

1.1. Description

Zilog

SECTION 1
IHTRODUCTION

MM

Memorandum Macros, MM, is a general-purpose package of text
formatting macros for use with the ZEUS text formatters
nroff and troff. The purpose of MM is to provide a unified,
consistent, and flexible tool for producing many types of
documents. Although the ZEUS operating system provides
macro packages for specialized formats, MM is a general­
purpose macro package suitable for most documents.

The uses of MM range from single-page letters to documents
of several hundred pages in length. Some of the uses of MM
are to create:

$ Letters

$ Reports

$ Technical Memoranda

$ Release-Papers

$ Manuals

$ Books

1.2. Conventions

Each section explains a function of MM. In general, the
earlier a section occurs, the more common its use. Some of
the later sections can be completely ignored if the MM
defaults are adequate. Likewise, each section progresses
from normal-case to special-case fuctions. Try reading a
section in detail until obtaining enough information for the
desired format, then skim the rest of it. Some details may
be of use to just a few people.

Numbers enclosed in curly brackets ({}) refer to section
numbers within this document. For example, this is {1.2}.

Sections that require knowledge of the formatters {l.4} have
a bullet ($) at the end of the section heading.

1-1 Zilog
10/14/83

1-1

MM Zilog MM

In the synopses of macro calls, square brackets ([]) sur­
rounding an argument indicate that it is optional. Ellipses
(•••) show that the preceding argument may appear more than
once.

A reference of the form name(N) points to the command name
in Section N of the ZEUS Reference Manual

This manual is produced by nroff; troff output would look
somewhat different. When the output of the two formatters
is different, nroff is described first, and troff follows in
parentheses. For example:

The title is underlined (italicized).

means that the title is underlined in nroff and italicized
in troff.

1.3. Document Structure

The input for formatting a document in MM can contain four
major components, any of which can be omitted. If present,
they must occur in the following order:

$ Parameter-setting - This sets the general style and
appearance of a document. The user can control page
width, margin justification, numbering styles for head­
ings and lists, page headers and footers, and many
other elements of the document. The user can also add
macros or redefine existing ones. This segment can be
omitted entirely if one is satisfied with default
values; it produces no actual output, but performs the
setup for the rest of the document.

1-2

Beginning - This segment defines those items that occur
only once, at the beginning of a document, e.g., title,
author's name, date.

Body - The body can be as small as a single paragraph,
or as large as hundreds of pages. It may have a
hierarchy of headings up to seven levels deep. Head­
ings are automatically numbered (if desired) and can be
saved to generate the table of contents. Five addi­
tional levels of subordination are provided by a set of
list macros for automatic numbering, alphabetic
sequencing, and marking list items. The body may also
contain various types of displays, tables, figures,
references, and footnotes.

Zilog
10/14/83

1-2

MM Zilog MM

Ending - The ending contains those items that occur
only at the end of a document. Included here are
signature{s) and list notations {e.g., "Copy To"
lists). Certain macros can be invoked here to print
information that is wholly or partially· derived from
the rest of the document, such as the table of contents
or the cover sheet.

The existence and size of these four segments varies widely
among different document types. Although a specific item
(such as date, title, author name{s), etc.) may be printed
differently for several document types, there is a uniform
method of entering commands.

1~4. Definitions

The term formatter refers to either of the text-formatting
programs nroff or troff.

Requests are built-in commands recognized by the formatters.
Although one seldom needs to use these requests directly
{3.10}, this document contains references to some of them.
Full details are given in the NROFF User's Manual in the
ZEUS Utilities Manual. For example, the request:

.sp

inserts a blank line in the output.

A macro is a group of requests shortened to one command.
Each macro is an abbreviation for a collection of requests
that would otherwise require repetition. MM supplies many
macros, and the user can define additional ones. Macros and
requests share the same set of names and are used in the
same way.

Strings provide character variables, each of which names a
string of characters. Strings are often used in page
headers, page footers, and lists. They share the pool of
names used by requests and macros. A string can be given a
value with the .ds {define string) request, and its value
can be obtained by referencing its name, preceded by "*"
{for !-character n~mes) or "*{" {for 2-character names).
For example, the string OT in MM normally contains the
current date, so that the input line:

Today is *{OT.

may result in the following output:

1-3 Zilog
10/14/83

1-3

MM Zilog MM

Today is January 22, 1980.

The current date can be replaced, e.g.:

.ds DT 01/01/79

or by invoking a macro designed for that purpose {6.7.1}.

Number registers fill the role of integer variables. They
are used for flags, for arithmetic, and for automatic
numbering. A register can be given a value using a .nr
request, and be referenced by preceding its name by "\n"
(for 1-character names) or "\n (" (for 2-charactE~r names) .
For example, the following sets the value of the register d
to 1 more than that of the register dd:

.nr d l+\n(dd

See {14.1} regarding naming conventions for requests, mac­
ros, strings, and number registers.

1-4 Zilog
10/14/83

1-4

MM Zilog

SECTION 2
IllVOKING THE MACROS

MM

This section tells how to access MM, shows MM command lines
appropriate for various output devices, and describes
command-line flags for MM.

2.1. The mm Command

The _!!!!!!(l) command can be used to print documents using nroff
and MM; this command invokes nroff with the -cm flag {2.2}.
It has options to specify preprocessing by tbl(l) and/or by
neqn(l), and for postprocessing by variousoutput filters.
Any arguments or flclgs that are not recognized by mm(l),
e .. g. -rC3, are passed to nroff or to MM, as appropriate.
The options, which can occur in any order but must appear
before the file names, are:

-e
-t
-c
-E
-mm
-12

-T450

-T450-12
-T300
-T300-12
-T300S
-T300S-12
-~r 37
-T382
-T4000A
-TX
-T2631

-Tlp

invokes 11eqn (1)
invokes 1:bl(l)
invokes ~~ol (1)
invokes the 'e' option of nroff
(uncompacted macros) used instead of -cm
uses 12-pitch mode
(Be sure that the pitch switch on the terminal
is set t<> 12.)
output is to a DASI450. This is the default
terminal type (unless $TERM is set).
It is also equivalent to -Tl620.
output is to a DASI450 in 12-pitch mode
output is to a DASI300 terminal
output is to a DASI300 in 12-pitch mode
output is to a DASI300S
output is to a DASI300Srin 12-pitch mode
output is to a TELETYPE Model 37
output is to a DTC-382
output is to a Trendata 4000A
output· is prepared for an EBCDIC lineprinter
output is prepared for a HP2631 printer (where
-T2631-e and -T2631-ch can be used for expanded and
compress•~d modes, respectively) (implies -c) •
output is to a device with no reverse or partial
line motions or other special features (implies -c).

Any other -T option given does not produce an error; it is
equivalent to -Tlp.

2-1 Zilog
10/14/83

2-1

MM Zilog MM

A similar command is available for use with troff (see
mmt(l)).

2.2. The -cm or -mm Flag

The MM package can also be invoked by including the -cm or
-mm flag as an argument to the formatter. The -cm flag
loads the pre-compacted version of the macros. The -mm flag
reads and processes the file /usr/lib/tmac/tmac.m before any
other files. This action defines the MM macros, sets
default values for various parameters, and initializes the
formatter for processing the files of input text.

2.3. Typical Command Lines

The prototype command lines are as follows (with the various
options explained in { 2 ~ 4} and in the NROFF User'!! Manual

e Text without tables or equations:

2-2

mm [options] filename •.•
or nroff [options] -~~ filename

mmt [options] filename
or troff -mm [options]

Text with tables:

or

or

mm -t [options] filename •••
tbl filename •.• I nroff [options]
mmt -t [options] rilename .••
tbl filename •• ·I troff [options]

Text with equations:

mm -e [options] filename ••.

--cm

-cm

or neqn filename ••• I nroff [options] -cm
mmt -e [options] filename ..•

or eqn filename I troff [options] -cm

Text with both tables and equations:

mm -t -e [options] filename
or tbl filename ••• I neqn I nroff [options] -cm

mmt [options] -t -e filename •.•
or tbl filename .•. I eqn I troff [options] -cm

Zilog
10/14/83

2-2

MM Zil.og MM

When formatting a document with nroff, the output should
normally be processed for a specific type of terminal,
because the output may require some features that are
specific to a given terminal, e.g., reverse paper motion or
half-line paper motion in both directions. Some commonly­
used terminal types and the command lines appropriate for
them are given below. See {2.4} as well as 300(1), 450(1),
col(l), and terminals(?) for further information.

$ DASI450 in 10-pitch, 6 lines/inch mode, with .75 inch
offset, and a line length of 6.0 inches (60 characters)
where this is the default terminal type so no -T option
is needed (unless $TERM is set to another value):

mm filename
or nroff -T450 -h -cm filename ...

DASI450 in 12-pitch, 6 lines/inch mode, with .75 inch
offset, and a line length of 6.0 inches (72 charac­
ters) :

mm -12 filename ...
or n r o f f -T 4 5 0 -1 2; h - cm f i 1 en am e

or, to increase the line length to 80 characters and
decrease the offset to 3 characters:

mm -12 -rW80 -r03
nroff -T450-12 -rW80 -r03 -h -cm filename ...

Invoke tbl(l) and ~~(l) or neqn(l), if needed, as shown in
the command line prototypes at the beginning of this sec­
tion.

If two-column processing {12.4} is used with nroff, either
the -c option must be specified to mm(l) (note that mm(l)
uses col(l) automatically for many of the terminal types
{2.1}) or the nroff output must be postprocessed by col(l).
In the latter case, the -T37 terminal type must be specified
to nroff, the -h option must not be specified, and the out­
put of col(l) must be process~d by the appropriate terminal
filter -re.g., 450(1)); mm(l) with the -c option handles all
this automatically. ~

2-3 Zilog
10/14/83

2-3

MM Zilog MM

2.4. Command Line Parameters

Number registers hold parameter values that control the
various output styles. Many of these can be changed within
the text files with .nr requests. In addition, some of
these registers can be set from the command line itself; a
useful feature for those parameters that should not be per­
manently embedded within the input text itself. If used,
these registers (with the possible exception of the register
P, see below) must be set on the command line (or before the
MM macro definitions are processed). Their meanings are:

-rAln n = 1 has the effect of invoking the .AF macro
without an argument {6.7.2}. If n = 2, allows for
usage of the Bell Logo, if available, on a printing
device (currently available for the Xerox 9700 only).

-rBn defines the macros for the cover sheet and the table
of contents. If n is 1, table of contents processing
is enabled. If n is 2, then cover sheet processing
will occur. If n is 3, both will occur. That is, B
having a value greater than 0 defines the .TC {10.1}
and/or .CS {10.2} macros. To have any effect, these
macros must also be invoked.

-rCn n sets the type of copy (e.g., DRAFT) to be printed
at the bottom of each page. See {9.5}.
n = 1 for OFFICIAL FILE COPY
n = 2 for DATE FILE COPY
n = 3 for DRAFT with single-spacing and default para­
graph style
n = 4 for DRAFT with double-spacing and 10 space
paragraph indent

-rDl sets debug mode. This flag requests the formatter to
attempt to continue processing even if MM detects
errors that would otherwise cause termination. It
also includes some debugging information in the
default page header {9.2, 12.3}.

-rEn controls the font of the Subject/Date/From fields.

2-4

If n is 0, these fields are bold (default for troff),
and if n is 1, these fields are regular text (default
for nroff) m

Zilog
10/14/8 3

2-4

MM

B-4

-rLk

-rNn

-rOk

Zilog MM

sets the length of the physical page to k lines.* The
default value is 66 lines per page. This parameter
is used, for example, when directing output to a Ver­
sa tee pr in te:c.

specifies the page numbering style. ·When n is 0
(default), all pages get the (prevailing) header
{9.2}. When n is 1, the page header replaces the
footer on page 1 only. When n is 2, the page header
is omitted from page 1. When n is 3, section-page
numbering {4.5} occurs (see .FD {8.3} and .RP {11.4}
for footnote and reference numbering in sections).
When n is 4, the default page header is suppressed;
however, a user-specified header is not affected.
When n is 5, section-page and section-figure number-
ing occurs.

I n Page 1 Pages 2 ff. I
0 header header
1 header replaces footer header
2 no header header
3 section-page as footer
4 no header no header

unless PH defined

The contents of the prevailing header and footer do
not depend on the value of the number register N; N
only controls whether and where the header (and, for
N = 3 or 5, the footer) is printed, as well as the
page numbering style. In particular, if the header
and footer are null {9.2, 9.5}, the value of N is
irrelevant.

offsets output k spaces to the right.** It is helpful
for adjusting output positioning on some terminals.
If this register is not set on the command line, the
default offset is .75 inches. NOTE: The register
name is the capital letter "O", not the digit zero
(0) •

* For nroff, k is an unscaled number representing lines
or character positions; for troff, k must be scaled.

** For nroff, these values are unscaled numbers
representing lines or character positions. For troff, these
values must be scaled.

2-5 Zilog
10/14/83

2-5

MM Zilog MM

-rPn specifies that the pages of the document are to be
numbered starting with n. This register may also be
set with a .nr request in the input text.

-rSn sets the point size and vertical spacing for the
document. The default n is 10, i.e., 10-point type
on 12-point leading (vertical spacing), giving 6
lines per inch {12.9}. This parameter applies to
troff only.

-rTn provides register settings for certain devices. If n
is 1, then the line length and page offset are set to
80 and 3, respectively. Setting n to 2 changes the
page length to 84 lines per page and inhibits under­
lining; it is meant for output sent to the Versatec
printer. The default value for n is 0. This parame­
ter applies to nroff only.

-rUl controls underlining of section headings. This flag
causes only letters and digits to be underlined.
Otherwise, all characters (including spaces) are
underlined {4.2.2.4}. This parameter applies to
nroff only.

-rWk page width (i.e., line length and title length) is
set to k.** This can be used to change the page width
from the default value of 6.0 inches (60 characters
in 10 pitch or 72 characters in 12 pitch).

2.5. Omission of -cm or -mm

If a large number of arguments is required on the command
line, it may be convenient to set up the first (or only)
input file of a document as follows:

zero or more initializations of registers listed in {2.4}
.so /usr/lib/tmac/tmac.m
remainder of text

** For nroff, k is an unscaled number representing lines
or character positions; for troff, k must be scaled.

2-6 Zilog
10/14/83

2-6

MM Zilog MM

In this case, one must not use the -cm or -mm flag (nor the
mm(l) or mmt(l) command); the .so request has the equivalent
effect, but the re1g i st er s in { 2. 4} must be initialized
before the .so request, because their values are meaningful
only if set before the macro definitions are processed.
When using this method, it is best to lock into the input
file only those parameters that are seldom changed. For
ex ample:

.nr W 80

.nr 0 10

.nr N 3

.so /usr/lib/tmac/tmac.m

.H 1 "INTRODUCTION"

specifies in characters for nroff, a line length of 80, a
page offset of 10; section-pag,e numbering, and table of con­
tent processing.

2-7 Zilog
10/14/83

2-7

MM Zilog MM

3.2. Arguments and Double Quotes

For any macro call, a null argument is an argum~ent whose
width is zero. Such an argument often has a special mean­
ing; the preferred form for a null argument is "" Note
that omitting an argument is not the same as supplying a
null argument (for example, see the .MT macro in {6.6}}.
Furthermore, omitted arguments can occur only at the end of
an argument list, while null arguments can occur anywhere.

Any macro argument containing ordinary (paddable) spaces
must be enclosed in double quotes (") .* Otherwise, it will
be treated as several separate arguments.

Double quotes (") are not permitted as part of the value of
a macro argument or of a string that is to be used as a
macro argument. If you must, use two grave accEmts ('')
and/or two acute accents ('')·instead. This restriction is
necessary because many macro arguments are processed (inter­
preted) any number of times; for example, headings printed
in the text can be (re)printed in the table of contents.

3.3. Unpaddable Spaces

When output lines are justified to give an even right mar­
gin, existing spaces in a line can have additional spaces
appended to them. This can harm the desired alignment of
text. To avoid this problem, it is necessary to be able to
specify a space that cannot be expanded during justifica­
tion, i.e., an unpaddable space. There are several ways to
accomplish this.

First, one can type a backslash followed by a space ("\ ").
This pair of characters directly generates an unpaddable
space. Second, one can sacrifice some seldom-used character
to be translated into a space upon output. Because this
translation occurs after justification, the chosen character
can be used anywhere an unpaddable space is desired. The
tilde (-) is often used for this purpose. To use it in this
way, insert the following at the beginning of the document:

.tr -

If a tilde must actually appear in the output, it can be
temporarily recovered by inserting:

* A double quote (") is a single character that must not
be confused with two apostrophes or acute accents (' '), or
with two grave accents ('').

3-2 Zilog
10/14/83

3-2

MM Zilog MM

.tr --

before the place whE~re it is needed. Its previous usage is
restored by repeating the .tr -, but only after a break or
after the line containing the tilde has been forced out.
Note that the use of the tilde in this fashion is not recom­
mended for documents in which the tilde is used within equa­
tions.

3~4. Hyphenation

The formatters do not perform hyphenation unless the user
requests it. Hyphenation can be turned on in the body of
the text by specifying:

.nr Hy 1

once at the beginning of the document. For hyphenation con­
trol within footnote text and across pages, see {8.3}.

If hyphenation is requested, the formatters will automati­
cally hyphenate words where needed. However, the user can
specify the hyphenation points for a specific occurrence of
any word by the use of a special character known as a
hyphenation-indicator, or can specify hyphenation points for
a small list of words (about 128 characters).

If the hyphenation-indicator (initially, the two-character
sequence "\% ") app 1ears at the beg inning of a word, the word
is not hyphenated. Alternatively, it can be used to indi­
cate legal hyphenation point(s) inside a word. In any case,
all occurrences of the hyphenation-indicator disappear on
output.

The user can specify a different hyphenation-indicator:

.HC [hyphenation-indicator]

The circumflex (A) is often used for this purpose; this is
done by inserting the following at the beginning of a docu­
ment:

.HC

Note that any word containing hyphens or dashes, also known
as em dashes, will be hyphenated immediately after a hyphen
or dash if it is necessary to hyphenate the word, even if
the formatter hyphenation function is turned off.

3-3 Zilog
10/14/83

3-3

MM Zilog MM

.af . br .ce .de .ds

.fi .hw .ls .nf .nr

.nx .rm .rr . rs .so

.sp .ta .ti .tl .tr

The .fp, .lg, and .ss requests are also sometimes useful for
troff. Use of other requests without fully understanding
their implications can lead to disaster.

3-6 Zilog
10/14/83

3-6

MM Zilog

SECTION 4
PARAGRAPHS AND HEADINGS

MM

This section describes simple paragraphs and section head­
ings. Additional paragraph and list styles are covered in
{ 5}.

4.1. Paragraphs

• P [type]
one or more lines of text.

This macro is used to begin two kinds of paragraphs. In a
left-justified paragraph, the first line begins at the left
margin, and is indented five spaces with an indented para­
graph (see below).

A document possesses a default paragraph style obtained by
specifying .P before each paragraph that does not follow a
heading {4.2}. The default style is controlled by the
register Pt. The initial value of Pt is 0, which always
provides left-justified paragraphs. All paragraphs can be
forced to be indented by inserting the following at the
beginning of the document:

.nr Pt 1

All paragraphs will be indented except after headings,
lists, and displays if the following:

.nr Pt 2

is inserted at the beginning of the document.

The amount a paragraph is indented
register Pi, whose default value is 5.
by 10 spaces, insert:

.nr Pi 10

is contained in the
To indent paragraphs

at the beginning of the document. Of course, both the Pi
and Pt register values mu~t be greater than zero for any
paragraphs to be indented.

The number register Ps controls the amount of spacing
between paragraphs. By default, Ps is set to 1, yielding
one blank space (1/2 a vertical space).

4-1 Zilog
10/14/83

4-1

MM Zilog

WARNING

Values that specify indentation must be unscaled
and are treated as character positions, i.e., as a
number of ens. In troff, an en is the number of
points (1 point = 1/72 of an inch) equal to half
the current point size. In nroff, an en is equal
to the width of a character.

MM

Regardless of the value of Pt, an individual paragraph can
be forced to be left-justified or indented. ". P 0" always
forces left justification; ".P 1" always causes indentation
by the amount specified by the register Pi. If .P occurs
inside a list, the indent (if any) of the paragraph is added
to the current list indent {5}.

Numbered paragraphs can be produced by setting the register
Np to 1. This produces paragraphs numbered within first
level headings, e.g., 1.01, 1.02, 1.03, 2.01, etc.

A different style of numbered paragraphs is obtained by
using the .nP macro rather than the .P macro. This produces
paragraphs that are numbered within second level headings
and contain a double-line indent so the text of the second
line is indented to align with the text of the first line.
This causes the number to stand out .

. H 1 "FIRST HEADING"

.H 2 "Second Heading"

.nP
one or more lines of text

4.2. Numbered Headings

.H level [heading-text] [heading-suffix]
zero or more lines of text

The .H macro provides seven levels of numbered headings.
Level 1 is the most major or highest; level 7 the lowest.

The heading-suffix is appended to the heading-text and can
be used for footnote marks which should not appear with the
heading text in the table of contents.

4-2 Zilog
10/14/83

4-2

MM Zilog MM

In this case, one must not use the -cm or -mm flag (nor the
mm{l) or mmt(l) command); the .so request has the equivalent
effect, butthe re!gisters in {2. 4} must be initialized
before the .so request, because their values are meaningful
only if set before the macro definitions are processed.
When using this method, it is best to lock into the input
file only those parameters that are seldom changed. For
example:

.nr W 80

.nr O 10

.nr N 3

.so /usr/lib/tmac/tmac.m
• H 1 "INTRODUCT1 ION"

specifies in characters for nroff, a line length of 80, a
page offset of 10; section-page numbering, and table of con­
tent processing.

2-7 Zi l 1og
10/14/83

2-7

MM Zilog

SECTION 3
FORMATTING CONCEPTS

MM

3.1. Basic Terms

The most common function of the formatters is to fill output
lines from one or more input lines. The output lines can be
justified so that both the left and right margins are
aligned. As the lines fill the page they can be hyphenated
{3.4} as needed. It is possible to turn any of these modes
on and off (see .SA {12.2}, Hy {3.4}, and the formatter .nf
and .fi requests). Turning off fill mode also turns off
justification and hyphenation.

Certain formatting commands (requests and macros) introduce
a break in the output line currently printing which causes
the subsequent text to begin a new output line. This print­
ing of a partially filled output line is known as a break.
A few formatter requests and most of the MM macros cause a
break.

While formatter requests can be used with MM, one must fully
understand the consequences and side-effects that each
request might have. Actually, there is little need to use
formatter requests; the macros described here should be used
in most cases because:

it is much easier to cont~ol (and change at any later
point in time) the overall style of the document.

complicated functions (such as footnotes or tables of
contents) can be obtained with ease.

the user is insulated from the peculiarities of the
formatter language.

It is a good rule to use formatter requests only when abso­
lutely necessary {3.10}.

In order to make it easy to revise the input text at a later
time, input lines ·should be kept short and should be broken
at the end of clauses~ each new full sentence must begin on
a new line.

3-1 Zilog
10/14/83

3-1

MM Zilog MM

3.2. Arguments and Double Quotes

For any macro cal 1, a nul 1 argument is an argumEmt whose
width is zero. Such an argument often has a special mean­
ing; the preferred form for a null argument is "" Note
that omitting an argument is not the same as supplying a
null argument (for example, see the .MT macro in {6.6}).
Furthermore, omitted arguments can occur only at the end of
an argument list, while null arguments can occur anywhere.

Any macro argument containing ordinary (paddable) spaces
must be enclosed in double quotes (") .* Otherwise, it will
be treated as several separate arguments.

Double quotes (") are not permitted as part of the value of
a macro argument or of a string that is to be used as a
macro argument. If you must, use two grave accemts ('')
and/or two acute accents ('')·instead. This restriction is
necessary because many macro arguments are processed (inter­
preted) any number of times; for example, headings printed
in the text can be (re)printed in the table of contents.

3.3. Unpaddable Spaces

When output lines are justified to give an even right mar­
gin, existing spaces in a line can have additional spaces
appended to them. This can harm the desired alignment of
text. To avoid this problem, it is necessary to be able to
specify a space that cannot be expanded during justifica­
tion, i.e., an unpaddable space. There are several ways to
accomplish this.

First, one can type a backslash followed by a space ("\ ").
This pair of characters directly generates an unpaddable
space. Second, one can sacrifice some seldom-used character
to be translated into a space upon output. Because this
translation occurs after justification, the chosen character
can be used anywhere an unpaddable space is desired. The
tilde (-) is often used for this purpose. To use it in this
way, insert the following at the beginning of the document:

.tr -

If a tilde must actually appear in the output, it can be
temporarily recovered by inserting:

* A double quote (") is a single character that must not
be confused with two apostrophes or acute accents (''),or
with two grave accents ('').

3-2 Zilog
10/14/83

3-2

MM Zilog MM

.tr --

before the place where it is needed. Its previous usage is
restored by repeating the .tr -, but only after a break or
after the line containing the tilde has been forced out.
Note that the use of the tilde in this fashion is not recom­
mended for documents in which the tilde is used within equa­
tions.

3~4. Hyphenation

The formatters do not perform hyphenation unless the user
requests it. Hyphenation can be turned on in the body of
the text by specifying:

.nr Hy 1

once at the beginning of the document. For hyphenation con­
trol within footnote text and across pages, see {8.3}.

If hyphenation is requested, the formatters will automati­
cally hyphenate words where needed. However, the user can
specify the hyphenation points for a specific occurrence of
any word by the use of a special character known as a
hyphenation-indicator, or can specify hyphenation points for
a small list of words (about 128 characters).

If the hyphenation-indicator (initially, the two-character
sequence "\% ") appE~ars at the beg inning of a word, the word
is not hyphenated. Alternatively, it can be used to indi­
cate legal hyphenation point(s) inside a word. In any case,
all occurrences of the hyphenation-indicator disappear on
output.

The user can specify a different hyphenation-indicator:

.HC [hyphenation-indicator]

The circumflex (A) is often used for this purpose; this is
done by inserting the following at the beginning of a docu­
ment:

• HC

Note that any word containing hyphens or dashes, also known
as em dashes, will be hyphenated immediately after a hyphen
or dash if it is necessary to hyphenate the word, even if
the formatter hyphenation function is turned off.

3-3 Zilog
10/14/83

3-3

MM Zilog MM

Using the .hw request, the user can compose a small list of
words with the proper hyphenation points indicated. For
example, to indicate the proper hyphenation of the word
printout, one can specify:

.hw print-out

3. 5. Tabs

The macros .MT {6.6}, .TC {10.1}, and .CS {HJ.2} use the
formatter .ta request to set tab stops, and then restore the
default values of tab settings.* Thus, setting tabs to other
than the default value is the user's responsibility.

Note that a tab character is always interpreted with respect
to its position on the input line rather than its position
on the output line. In general, tab characters should
appear only on lines processed in no-fill mode {3.1}.

Also note that tbl(l) {7.3} changes tab stops, but does not
restore the default tab settings.

3.6. Special Use of the BEL Character

The non-printing character BEL is used as a delimiter in
many macros where it is necessary to compute the width of an
argument or to delimit arbitrary text, e.g., in headers and
footers {9}, headings {4}, and list marks {5}. Users who
include BEL characters in their input text (especially in
arguments to macros) will receive mangled output.

3.7. Bullets

A bullet (~) is often obtained on a typewriter terminal by
using an o overstruck by a +. For compatibility with troff,
a bullet string is provided by MM. Rather than overstrik­
ing, use the sequence:

*(BU

wherever a bullet is desired. Note that the bullet list
(.BL) macros {5.3.3.2} use this string to automatically gen­
erate the bullets for the list items.

* Every eight characters in nroff; every 1/2 inch in
troff.

3-4 Zilog
10/14/83

3-4

.MM Zilog MM

3. 8. Dashes, Minu.s Signs, and Hyphens

Troff has distinct graphics for a dash, a minus sign, and a
hyphen, while nroff does not. Those who intend to use nroff
only, can use the minus sign ("- ") for al 1 three.

Those who wish mainly to use troff should follow the escape
conventions of the NROFF User's Manual.

Those who want to use both formatters must take care during
text preparation. Unfortunately, these characters cannot be
represented in a way that is both compatible and convenient.
We suggest the following approach:

Dash Type "*(EM" for each text dash for both nroff and
troff. This string generates an em dash (-) in
troff and generates -- in nroff. Note that the dash
list (.DL) macros {5.3.3.3} automatically generates
the em dashes for the list items.

Hyphen Type "-" and use as is for both formatters. Nroff
will print it as is, and troff will print a true
hyphen.

Minus Type "\-" for a true minus sign, regardless of for­
matter. Nroff will effectively ignore the \, while
troff will print a true minus sign.

3. 9. Trademark Sti:: ing

A trademark string "*(Tm" is now available with MM. This
places the letters TM one-half line above the text that it
follows. For example, the string

System 8000 *(TM ZEUS Reference Manual

places the TM mark after System 8000.

3.10. Use of Formatter Requests

Most formatter requests should not be used with MM. MM pro­
vides the corresponding formatting functions in a much more
user-oriented and surprise-free fashion than the basic for­
matter requests {3.1}. However, some formatter requests are
useful with MM, namely:

3-5 Zilog
10/14/83

3-5

MM Zilog MM

.af .br .ce .de .as

.fi .hw .ls .nf .nr

.nx • rm .rr . rs .so

.sp .ta .ti .tl .tr

The .fp, .lg, and .ss requests are also sometimes useful for
troff. Use of other requests without fully understanding
their implications can lead to disaster.

3-6 Zilog
10/14/83

3-6

MM Zilog

SECTION 4
P'ARAGRAPHS AND HEADINGS

MM

This section describes simple paragraphs and section head­
ings. Additional paragraph and list styles are covered in
{5}.

4.1. Paragraphs

• P [type]
one or more lines of text.

This macro is used to begin two kinds of paragraphs. In a
left-justified paragraph, the first line begins at the left
margin, and is indented five spaces with an indented para­
graph (see below).

A document possesses a default paragraph style obtained by
specifying .P before each paragraph that does not follow a
heading {4.2}. The default style is controlled by the
register Pt. The initial value of Pt is 0, which always
provides left-justified paragraphs. All paragraphs can be
forced to be indented by inserting the following at the
beginning of the document:

.nr Pt 1

All paragraphs will be indented except after headings,
lists, and displays if the following:

.nr Pt 2

is inserted at the beginning of the document.

The amount a paragraph is indented
register Pi, whose default value is 5.
by 10 spaces, insert:

.nr Pi 10

is contained in the
To indent paragraphs

at the beginning of the document. Of course, both the Pi
and Pt register values mu~t be greater than zero for any
paragraphs to be indented.

The number register Ps controls the amount of spacing
between paragraphs. By default, Ps is set to 1, yielding
one blank space (1/2 a vertical· space).

4-1 Zilog
10/14/83

4-1

MM Zilog

WARNING

Values that specify indentation must be unscaled
and are treated as character positions, i.e., as a
number of ens. In troff, an en is the number of
points (1 point = 1/72 of an inch) equal to half
the current point size. In nroff, an en is equal
to the width of a character.

MM

Regardless of the value of Pt, an individual paragraph can
be forced to be left-justified or indented. ". P 0" always
forces left justification; ".P l" always causes indentation
by the amount specified by the register Pi. If .P occurs
inside a list, the indent (if any) of the paragraph is added
to the current list indent {5}.

Numbered paragraphs can be produced by setting the register
Np to 1. This produces paragraphs numbered within first
level headings, e.g., 1.01, 1.02, 1.03, 2.01, etc.

A different style of numbered paragraphs is obtained by
using the .nP macro rather than the .P macro. This produces
paragraphs that are numbered within second level headings
and contain a double-line indent so the text of the second
line is indented to align with the text of the first line.
This causes the number to stand out •

• H 1 °'FIRST HEADING"
.H 2 nsecond Heading"
.nP
one or more lines of text

4.2. Numbered Headings

.H level [heading-text] [heading-suffix]
zero or more lines of text

The .H macro provides seven levels of numbered headings.
Level 1 is the most major or highest; level 7 the lowest.

The heading-suffix is appended to the heading-text and can
be used for footnote marks which should not appear with the
heading text in the table of contents.

4-2 Zilog
10/14/83

4-2

MM Zilog

WARNING

There is no need for a .P macro after a .H (or .HU
{4~3}), because the .H macro also performs the
function of the! • P macro. In fact, if a· • P fol­
lows a .H, the .P is ignored. {4.2.2.2}.

MM

4. 2.1. Normal Appearance

The effect of .H varies according to the level argument.
First-level headings are preceded by two blank lines (one
vertical space); all others are preceded by one blank line
(1/2 a vertical space) •

• H 1 heading-text

• H 2 heading-text

• H n heading-text

gives a bold heading followed by a sin­
gle blank line (1/2 a vertical space).
The following text begins on a new line
and is indented according to the current
paragraph type. Full capital letters
should normally be used to make the
heading stand out .

yields a bold heading followed by a sin­
gle blank line (1/2 a vertical space).
The following text begins on a new line
and is indented according to the current
paragraph type. Normally, initial capi­
tals are used .

for 3<n<7, produces an underlined
(italic)-heading followed by two spaces.
The following text appears on the same
line, i.e., these are run-in headings.

Appropriate numbering and spacing (horizontal and vertical)
occur even if the heading text is omitted from a .H macro
call.

4.2.2. Altering Appearance of Headings

Users satisfied with the default appearance of headings can
skip to {4.3}. One can modify the appearance of headings
quite easily by setting certain registers and strings at the
beginning of the document. This permits quick alteration of
a document's style, because this style-control information
is concentrated in a few lines, rather than being distri­
buted throughout the document.

4-3 Zilog
10/14/83

4-3

MM Zilog MM

4.2.2.1 Pre-Spacing and Page Ejection

A first-level heading normally has two blank lines (one
vertical space) preceding it, and all others have one blank
line (1/2 a vertical space). If a multi-line heading were
to be split across pages, it is automatically moved to the
top of the next page. Every first-level heading can be
forced to the top of a new page by inserting:

.nr Ej 1

at the beginning of the document. Long documents can be
made more manageable if each section starts on a new page.
Setting Ej to a higher value causes the same effect for
headings up to that level, i.e., a page eject occurs if the
heading level is less than or equal to Ej.

4.2.2.2 Spacing After Headings

Three registers control the appearance of text immediately
following a .H call. They are Hb (heading break level), Hs
(heading space level), and Hi (post-heading indent).

If the heading level is less than or equal to Hb, a break
{3.1} occurs after the heading. If the heading level is
less than or equal to Hs, a blank line (1/2 a vertical
space) is inserted after the heading. Defaults for Hb and
Hs are 2. If a heading level is greater than Hb and also
greater than Hs, then the heading (if any) is run into the
following text. These registers permit headings to be
separated from the text in a consistent way throughout a
document, while allowing easy alteration of white space and
heading emphasis.

For any stand-alone heading (a heading not run into the fol­
lowing text), the alignment of the next line of output is
controlled by the register Hi. If Hi is 0, text is left­
justified. If Hi is 1 (the default value), the text is
indented according to the paragraph type as specified by the
register Pt {4.1}. Finally, if Hi is 2, text is indented to
line up with the first word of the heading itself, so that
the heading number stands out more clearly.

For example, to cause a blank line (1/2 a vertical space) to
appear after the first three heading levels, to have no
run-in headings, and to force the text following all head­
ings to be left-justified (regardless of the value of Pt),
the following should appear at the top of the document:

4-4 Zilog
10/14/83

4-4

MM

.nr Hs 3

.nr Hb 7

.nr Hi 0

4.2.2.3 Centered Headings

Zilog MM

The register He can be used to obtain centered headings. A
heading is centered if its level is less than or equal to
He, and if it is also stand-alone {4.2.2.2}. He is 0 ini­
tially (no centered headings).

4.2.2.4 Bold, Italic:, and Underlined Headings

Control by Level

Any heading that is underlined by nroff is made italic by
troff. The string HF (heading font) contains seven codes
that specify the fonts for heading levels 1-7. The legal
codes, their interpretations, and the defaults for HF are:

Formatter

nroff
troff

1
HF Code

2

no underline underline
roman. italic

3

underline
bold

Default
HF

3 3 2 2 2 2 2
3 3 2 2 2 2 2

Thus, levels 1 and 2 are bold; levels 3 through 7 are under­
lined in nroff and italic in troff. Reset HF as desired.
Any value omitted from the right end of the list is taken to
be 1. For example, the following results in five bold lev­
els and two non-underlined (roman) levels:

.as HF 3 3 3 3 3

Nroff Underlining Style

Nroff can underline in two ways. The normal style (.ul
request) is to underline only letters and digits. The con­
tinuous style (.cu request) underlines all characters,
including spaces. By default, MM attempts to use the con­
tinuous style on any heading that is to be underlined and is
short enough to fit on a single line. If a heading is to be
underlined, but is too long, it is underlined the normal way
(i.e., only letters and digits are underlined).

4-5 Zilog
10/14/83

4-5

MM Zilog MM

All underlining of headings can be forced to the normal way
by using the -rUl flag when invoking nroff {2.4}.

Heading Point Sizes

The user can also specify the desired point size for each
heading level with the HP string (for use with troff only) .

• d s HP [ps 1] [ps 2] [ps 3] [ps 4] [ps 5] [ps 6] [ps 7]

By default, the text of headings (.Hand .HU) is printed in
the same point size as the body, except bold stand-alone
headings are printed one point smaller than the body. The
string HP, similar to the string HF, can be specified to
contain up to seven values, corresponding to the seven lev­
els of headings. For example:

.ds HP 12 12 10 10 10 10 10

specifies that the first and second level headings are to
be printed in 12-point type, with the remainder printed in
10-point. Note that the specified values can also be rela­
tive point size changes, e.g.:

.ds HP +2 +2 -1 -1

If absolute point sizes are specified, then those sizes will
be used regardless of the point size of the body of the
document. If relative point sizes are specified, then the
point sizes for the headings ~ill be relative to the point
size of the body, even if the latter is changed.

Omitted or zero values imply that the default point size
will be used for the corresponding heading level.

4-6

WARNING

Only the point size of the headings is affected.
Specifying a large point size without providing
increased vertical spacing (with .HX and/or .HZ)
can cause overprinting.

Zilog
10/14/83

4-6

MM Zilog MM

4.2.2.S Marking Styles - Numerals and Concatenation

• HM [a r g 1] • • • [a r g 7]

The registers Hl through H7 are used as counters for the
seven levels of headings. Their values are normally printed
using Arabic numerals. The .HM macro (Heading Mark) over­
rides this choice, thus providing outline and other document
styles. This macro can have up to seven arguments; each
argument is a string indicating the type of marking to be
used. Legal values and their meanings are shown below;
omitted values are interpreted as 1, while illegal values
have no effect.

Value Interpretation
- - - -- - - - ---- - -- --- - -- - - - - _,_ - --- ------ - -- - - -- -- - -

1
0001

A
a
I
i

Arabic (default for all levels)
Arabic with enough leading zeroes to get

the specified number of digits
Upper-case alphabetic
Lower-case alphabetic
Upper-case Roman
Lower-case Roman

By default, the complete heading mark for a given level is
built by concatenating the mark for that level to the right
of all marks for all levels of higher value. To inhibit the
concatenation of heading level marks, i.e., to obtain just
the current level mark followed by a period, set the regis­
ter Ht (heading-mark type) to 1.

For example, a commonly-used outline style is obtained by:

.HM I A 1 a i
.. nr Ht 1

4.3. Unnumbered Headings

.HU heading-text

.HU is a special case of .H; it is handled in the same way
as ~H, except that no heading mark is printed. In order to
preserve the hierarchical structure of headings when .H and
.HU calls are intermixed, each .HU heading is considered to

4-7 Zilog
10/14/83

4-7

MM Zilog MM

exist at the level given by register Hu, whose initial value
is 2. Thus, in the normal case, the only difference
between:

.HU heading-text

and

.H 2 heading-text

is the printing of the heading mark for the latter. Both
have the effect of incrementing the numbering counter for
level 2, and resetting to zero the counters for levels 3
through 7. Typically, the value of Hu should be set to make
unnumbered headings (if any) be the lowest-level headings in
a document .

• HU can be especially helpful in setting up Appendices and
other sections that do not fit well into the numbering
scheme of the main body of a document {14.2.1}.

4.4. Headings and the Table of Contents

The text of headings and their corresponding paige numbers
can be automatically collected for a table of contents.
This is accomplished by doing the following three things:

$ specifying in the register Cl what level headings are
to be saved;

invoking the .TC macro {10.1} at the end of the docu­
ment;

$ and specifying -rBn {2.4} on the command line.

Any heading whose level is less than or equal to the value
of the register Cl (Contents level) is saved and later
displayed in the table of contents. The default value for
Cl is 2, i.e., the first two levels of headings are saved.

Due to the way the headings are saved, it is possible to
exceed the formatter's storage capacity, particularly when
saving many levels of many headings, while also processing
displays {7} and footnotes {8}. If this happens, the "Out
of temp file space" diagnostic {Appendix E} will be issued;
the only remedy is to save fewer levels and/or to have fewer
words in the heading text.

4-8 Zilog
10/14/83

4-8

MM Zilog MM

4.5. First-Level Headings and the Page Numbering Style

By default, pages are numbered sequentially at the top of
the page. For large document,s, it is desirable to use page
numbering of the form section-page, where section is the
number of the current first-level heading. This page
numbering style can be achieved by specifying the -rN3 or
-rNS flag on the command line {9.9}. As a side effect, this
also has the effect of setting Ej to l, i.e., each section
begins on a new page. In this style, the page number is
printed at the bottom of the page, so that the correct sec­
tion number is printed.

406. User Exit Macros •

WARNING

This section is intended only for users who are
accustomed to writing formatter macros •

• HX dlevel rlevel heading-text
.HY dlevel rlevel heading-text
.HZ dlevel rlevel heading-text

The .HX, .HY, and .HZ ~acros are the means by which the user
obtains a final level of control over the previously­
described heading mechanism. MM does not define .HX, .HY,
and .HZ; they are intended to be defined by the user. The
.H macro invokes .HX shortly before the actual heading text
is printed; it calls .HZ as its last action. After .HX is
invoked, the size of the heading is calculated. This pro­
cessing causes certain feature$ that may have been included
in .HX (such as .ti for temporary indent), to be lost.
After the size calculation, .HY is invoked so that the user
can respecify these features. All the default actions occur
i f these macros a 1: e not d e f i n ed • I f the • HX , • HY , or • Hz
are defined by the user, the user-supplied definition is
interpreted at the appropriate point. These macros can
therefore influence the handling of all headings, because
the .HU macro is a6tually a special case of the .H macro.

If the user originally invoked the .H macro, then the
derived level (dlevel) and the real level (rlevel) are both
equal to the level given in the .H invocation. If the user
originally invoked the .HU macro {4.3}, dlevel is equal to
the contents of register Hu, and rlevel is 0. In both
cases, heading-text is the text of the original invocation.

4-9 Zilog
10/14/83

4-9

MM Zilog MM

By the time .H calls .HX, it has already incremented the
heading counter of the specified level {4.2.2.5}, produced
blank line(s) (vertical space) to precede the heading
{4.2.2.l}, and accumulated the heading mark, i.e., the
string of digits, letters, and periods needed for a numbered
heading. When .HX is called, all user-accessible registers
and strings can be referenced, as well as the following:

string }0

register ; 0

string }2

register ;3

If rlevel is non-zero, this string contains
the heading mark. Two unpaddable spaces (to
separate the mark from the heading) have been
appended to this string. If rlevel is 0,
this string is null.

This register indicates the type of spacing
that is to follow the heading {4.2.2.2}. A
value of 0 means that the heading is run-in.
A value of 1 means a break (but no blank
line) is to follow the heading. A value of 2
means that a blank line (1/2 a vertical
space) is to follow the heading.

If register ;0 is 0, this string contains two
unpaddable spaces that will be used to
separate the (run-in) heading from the fol­
lowing text. If register ;0 is non-zero,
this string is null.

This register contains an adjustment factor
for a .ne request issued before the heading
is actually printed. On entry to ~HX, it has
the value 3 if dlevel equals 1, and 1 other­
wise. The .ne request is for the following
number of lines: the contents of the register
;0 taken as blank lines (halves of vertical
space) plus the contents of register ;3 as
blank lines (halves of vertical space) plus
the number of lines of the heading.

The user can alter the values of }0, }2, and ;3 within .HX
as desired. The following are examples of actions that
might be performed by defining .HX to include the lines
shown:

4-10

Change first-level heading mark from format n. to n.0:
.if \\$1=1 .ds }0 \\n(Hl.0\(\{

(stands for a space

Separate run-in heading from the text with a period
and two unpaddable spaces:

Zilog
10/14/83

4-10

MM Zilog

.if \\n(;0=0 .ds }2 .\(\(

Assure that at least 15 lines are left on the page
before printing a first-level heading:
.if \\$1=1 .nr ;3 15-\\n(;0

Add 3 additional blank lines before each
first-level heading:
.if \\$1=1 .sp 3

Make varying indent for outline style:
.in \\$1*2-2

Indent level 3 run-in headings by 5 spaces:
.if \\$1=3 .ti Sn

MM

If temporary string or macro names are used within .HX, care
must be taken in the choice of their names {14.1} •

• HY is called after the .ne is issued. Certain features
requested in .HX must be repeated. For example:

.de HY

.if \\$1=3 .ti Sn

.HZ is called at the end of .H to permit user-controlled
actions after the heading is produced. For example, in a
large document, sections can correspond to chapters of a
book, and the user may want to change a page header or
footer. For example:

.. de HZ

.if $1=1 .PF Section $3

4. 7. Hints for Larg1e Documents

A large document is often organized for convenience into one
file per section. If the files are numbered, it is wise to
use enough digits in the names of these files for the max­
imum number of sections, i.e. , use suffix numbers 01 through
20 rather than 1 through 9 and 10 through 20.

4-11 Zilog
10/14/83

4-11

MM Zilog MM

Users often want to format individual sections of long docu­
ments. To do this with the correct section numbers, it is
necessary to set register Hl to 1 less than the number of
the section just before the corresponding .H 1 call. For
example, at the beginning of Section 5, insert:

4-12

.nr Hl 4

WARNING

This is a dangerous practice: it defeats the
automatic (re)numbering of sections when sections
are added or deleted. Remove such lines as soon
as possible.

Zilog
10/14/83

4-12

MM Zilog

SECTION 5
LISTS

MM

This section describes many different kinds of lists:
automatically-numbeired and alphabetized lists, bullet lists,
dash lists, lists with arbitrary marks, and lists starting
with arbitrary strings, e.g., with terms or phrases to be
defined.

5 .. 1. Basic Approach

In order to avoid repetitive typing of arguments to describe
the appearance of items in a list, MM provides a convenient
way to specify lists. All lists are composed of the follow­
ing parts:

$ A list-initialization macro that controls the appear­
ance of the list: line spacing, indentation, marking
with special symbols, and numbering or alphabetizing.

One or more List Item (.LI) macros, each followed by
the actual text of the corresponding list item.

The List End (.LE) macro that terminates the list and
restores the previous indentation.

Lists can be nested up to five levels. The list­
initialization macro saves the previous list status (inden­
tation, marking style, etc.); the .LE macro restores it.

With this approach, the format of a list is specified only
once at the beginning of that list. In addition, by build­
ing on the existing structure, it is possible to create cus­
tomized sets of list macros with relatively little effort
{5.4, Appendix A}.

5.2. Sample Nested Lists

The input for several lists and the corresponding output are
shown below. The .AL and .DL macro calls {5.3.3} contained
therein are examples of the list-initialization macros.
This example will help us to explain the material in the
following sections. Input text:

5-1 Zilog
10/14/83

5-1

MM

•. l\L A
• LI

Zilog

This is an alphabetized ite~.

MM

This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog's back •
• AL
• LI
This is a numbered item.
This text shows the alignment of the second line of the item •

. The quick brown fox jumped over the lazy dog's back .
• DL
• LI
This is a dash item.
This text shows the alignment of the second line of the ite~.
The quick brown fox jumped over the lazy dog's back .
• LI + 1
This is a dash item with a "plus" as prefix.
This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog's back .
• LE
• LI
This is numbered item 2 .
• LE
• LI
This is another alphabetized ite~, B.
This text shows the alignment of the second line of the ite~.
The quick brown fox jumped over the lazy dog's back .
• LE
• p
This paragraph appears at the left margin.

Output:

A.

5-2

This is an alphabetized item. This text
alignment of the second line of the item.
brown fox jumped over the lazy dog's back.

shows the
The quick

1. This is a numbered ite~. This text shows the
alignment of the second line of the item. The
quick brown fox jumped over the lazy dog's back.

This is a dash item. This text shows the
alignment of the second line of the item.
The quick brown fox jumped over the lazy
dog's back.

+ - This is a dash item with a "plus" as prefix.
This text shows the alignment of the second
line of the item. The quick brown fox jumped
over the lazy dog's back.

Zilog
10/14/83

5-2

MM

B.

Zilog

2. This is numbered ite~ 2.

This is another alphabetized item, B. This text
the alignment of the second line of the item.
quick brown fox jumped over the lazy dog~s back.

This paragraph appears at the left margin.

5.3. Basic List Macros

MM

shows
The

Because all lists share the same overall structure except
for the list-initialization macro, we first discuss the mac­
ros common to all lists. Each list-initialization macro is
covered in {5.3.3}.

5.3.1. List Item

.LI [mark] [l]
one or more lines of text that make up the list item.

The .LI macro is used with all lists. It normally causes
the output of a single blank line (1/2 a vertical space)
before its item, although this can be suppressed. If no
arguments are given, it labels its item with the current
mark, which is specified by the most recent list­
initialization macro. ·If a single argument is given to .LI,
that argument is output instead of the current mark. If two
arguments are given, the first argument becomes a prefix to
the current mark, thus allowing the user to emphasize one or
more items in a list. One unpaddable space is inserted
between the prefix and the mark. For example:

.BL 6

.LI
This is a simple bullet item •
• LI +
This replaces the bullet with a plus •
• LI + 1
But this uses plus as prefix to the bullet •
• LE

yields:

$ This is a simple bullet item.

+ This replaces the bullet with a plus.

5-3 Zilog
10/14/83

5-3

MM Zilog

+ e But this uses plus as prefix to the bullet.

WARNING

The mark must not contain ordinary (paddable)
spaces, because alignment of items will be loist if
the right margin is justified {3.3}.

MM

If the current mark (in the current 1 ist) is a nul 1 string,
and the first argument of .LI is omitted or null, the
resulting effect is a hanging indent, i.e., the first line
of the following text is outdented, starting at the same
place where the mark would have started {5.3.3.6}.

5.3.2. List End

• LE [1]

List End restores the state of the list back to that exist­
ing just before the most recent list-initialization macro
call. If the optional argument is given, the .LE outputs a
blank line (1/2 a vertical space). This option should gen­
erally be used only when the .LE is followed by running
text, but not when followed by a macro that produces blank
lines of its own, such as .P, .H, or .LI.

.H and .HU automatically clear all list information, so one
can legally omit the .LE(s) that would normally occur just
before either of these macros. Such a practice is not
recommended, however, because errors will occur if the list
text is separated from the heading at some later time (e.g.,
by insertion of text).

5.3.3. List Initialization Macros

The following are the various list-initialization macros.
They are actually implemented as calls to the more basic .LB
macro {5.4}.

5.3.3.l Automatically-Numbered or Alphabetized Lists

5-4

.. AL [type] [text-indent] (l]

Zilog
10/14/83

5-4

MM Zilog MM

The .AL macro is used to begin sequentially-numbered or
alphabetized lists. If there are no arguments, the list is
numbered, and text is indented Li, (initially 6) (5)* spaces
from the indent in force when the .AL is called, thus leav­
ing room for a space, two digits, a period, and two spaces
before the text.

Spacing at the beginning of the list and between the items
can be suppressed by setting the Ls (List space) register.
Ls is set to the innermost list level for which spacing is
done. For example:

.nr Ls 0

specifies that no spacing will occur around any list items.
The default value for Ls is 6 (which is the maximum list
nesting level).

The type argument can be given to obtain a different type of
sequencing, and its value should indicate the first element
in the sequence desired, i.e., it must be 1, A, a, I, or i
{4.2.2.5}.** If type is omitted or null, then 1 is assumed.
If text-indent is non-null, it is used as the number of
spaces from the current indent to the text, i.e., it is used
instead of Li for this list only. If text-indent is null,
then the value of Li will be used.

If the third argument is given, a blank line (1/2 a vertical
space) will not separate the items in the list. A blank
line (1/2 a vertical space) will occur before the first
item, however.

5o3.3.2 Bullet List

.BL [text-indent] [l]

.BL begins a bullet list, in which each item is marked by a
bullet (~) followed by one space. If text-indent is non­
null, it overrides the default indentation, the amount of
paragraph indentation as given in the register Pi {4.1}.***

* Values that sp~cify indentation must be unscaled and
are treated as character positions, i.e., as the number of
ens.

** Note that the 0001 format is not permitted.
*** So that, in the defaul~ case, the text of bullet and

dash lists lines up with the first line of indented para­
graphs.

5-5 Zilog
10/14/83

5-5

MM Zilog MM

If a second argument is specified, no blank lines will
separate the items in the list.

5.3.3.3 Dash List

.DL [text-indent] [l)

.DL is identical to .BL, except that a dash is used instead
of a bullet.

5.3.3.4 Marked List

.ML mark [text-indent] [l]

.ML is much like .BL and .DL, but expects the user to
specify an arbitrary mark, which can consist of more than a
single character. Text is indented text-indent spaces if
the second argument is not null; otherwise, the text is
indented one more space than the width of mark. If the
third argument is specified, no blank lines will separate
the items in the list.

WARNING

The mark must not contain ordinary {paddable)
spaces, because alignment of items will be loist if
the right margin is justified {3.3}.

5.3.3.5 Reference List

.RL [text-indent] [l]

A .RL call begins an automatically-numbered list in which
the numbers are enclosed by square brackets ([]). Text­
indent can be supplied, as for .AL. If omitted or null, it
is assumed to be 6, a convenient value for lists numbered up
to 99. If the second argument is specified, no blank lines
will separate the items in the list.

5.3.3.6 Variable-Item List

5-6

.VL text-indent [mark-indent] [l]

Zilog
10/14/83

5-6

MM Zilog MM

When a list begins with a .VL, there is effectively no
current mark; it is expected that each .LI will provide its
own mark. This form is typically used to display defini­
tions of terms or phrases. Mark-indent gives the number of
spaces from the current indent to the beginning of the mark,
and it defaults to 0 if omitted or null. Text-indent gives
the distance from the current indent to the beginning of the
text. If the third argument is specified, no blank lines
will separate the items in the list. Here is an example of
.VL usage:

.tr -

.VL 20 2

.LI mark-1
Here is a description of mark l;
mark 1 of the .LI line contains a tilde translated to an
unpaddable space in order to avoid extra spaces between
mark and 1 {3.3}.
eLI second-mark
This is the second mark, also using a tilde translated to
an unpaddable space •
• LI third-mark-longer-than-indent:
This item shows the effect of a long mark; one space
separates the mark from the text .

. LI -
This item effectively has no mark because the
tilde following the .LI is translated into a space .
• LE

yields:

mark 1

second mark

Here is a description of mark l; mark 1
of the .LI line contains a tilde
translated to an unpaddable space in
order to avoid extra spaces between mark
and 1 {3.3}.

This is the second mark, also using a
tilde translated to an unpaddable space.

third mark longer than indent: This item shows the effect of

5-7

a long mark; one space separates the
mark from the text.

This item effectively has no mark
because the tilde following the .LI is
translated into a space.

Zilog
10/14/83

5-7

MM Zilog MM

The tilde argument on the last .LI above is required; other­
wise a hanging indent would have been produced. A hanging
indent is produced by using .VL and calling .LI with no
arguments or with a null first argument. For example:

• VL 10
• LI
Here is some text to show a hanging indent.
The first line of text is at the left margin.
The second is indented 10 spaces .
• LE

yields:

Here is some text to show a hanging indent. The first line of
text is at the left margin. The second is indented
10 spaces.

WARNING

The mark must not contain ordinary (paddable)
spaces, because alignment of items will be lost if
the right margin is justified {3.3}.

5.4. List-Begin Macro and Customized Lists •

.LB text-indent mark-indent pad type [mark]
[LI-space] [LB-space]

The list-initialization macros described above suffice for
almost all cases. However, if necessary, one can obtain
more control over the layout of lists by using the basic
list-begin macro .LB, which is also used by all the other
list-initialization macros. Its arguments are as follows:

Text-indent gives the number of spaces that the text is to
be indented from the current indent. Normally, this value
is taken from the register Li for automatic lists and from
the register Pi for bullet and dash lists.

The combination of mark-indent and pad determines the place­
ment of the mark. The mark is placed within an area (called
mark area) that starts mark-indent spaces to the right of
the current indent, and ends where the text begins (i.e.,
ends text-indent spaces to the right of the current

5-8 Zilog
10/14/83

5-8

MM Zilog MM

indent).* Within the mark area, the mark is left-justified
if pad is 0. If pad is greater than 0, say n, then n blanks
are appended to the mark; the mark-indent value is ignored.
The resulting string immediately precedes the text. That
is, the mark is effectively right-justified pad spaces
immediately to the left of the text.

Type and mark interact to control the type of marking used.
If type is 0, simple marking is performed using the mark
character(s) found in the mark argument. If type is greater
than 0, automatic numbering or alphabetizing is done, and
mark is then interpreted as the first item in the sequence
to be used for numbering or alphabetizing, i.e., it is
chosen from the set (1, A, a, I, i) as in {5.3.3.1}. That
is:

I Type

0
0

>0
<0

Ma:rk

omi ttE~d
string
omitted
one of:

l,A,,a,I,i

Result

hanging indent
string is the mark
arabic numbering
automatic numbering or
alphabetic sequencing

Each non-zero value of type from 1 to 6 selects a different
way of displaying the items. The following table shows the
output appearance for each value of type:

I Type

1
2
3
4
5
6

Appearance I
x •
x)

(x)
[x]
<x>
{x}

where x is the generated number or letter.

5-9

WARNING

The mark must not contain ordinary (paddable)
spaces, because alignment of items will be lost if
the right margin is justified {3.3}.

* The mark indent argument is typically 0.

Zilog
10/14/83

5-9

MM Zilog MM

LI-space gives the number of blank lines {halves of a verti­
cal space) that should be output by each .LI macro in the
list. If omitted, LI-space defaults to l; the value 0 can
be used to obtain compact lists. If LI-space is greater
than 0, the .LI macro issues a .ne request for two lines
just before printing the mark.

LB-space, the number of blank lines {1/2 a vertical space)
to be output by .LB itself, defaults to 0 if omitted.

There are three reasonable combinations of LI-space and LB­
space. The normal case is to set LI-space to 1 and LB-space
to 0, yielding one blank line before each item in the list;
such a list is usually terminated with a .LE 1 to end the
list with a blank line. In the second case, for a more com­
pact list, set LI-space to 0 and LB-space to 1, and, again,
use .LE 1 at the end of the list. The result is a list with
one blank line before and after it. If you set both LI­
space and LB-space to 0, and use .LE to end the list, a list
without any blank lines will result.

Appendix A illustrates how the user can build upon the sup­
plied list macros to obtain other kinds of lists.

5-10 Zilog
10/14/83

5-10

MM Zilog MM

SECTION 6
MEMORANDUM AND RELEASE-PAPER STYLES

MM can be used to prepare memoranda and release-papers which
require special formats for the first page and the cover
sheet. The information needed for the memorandum or
release-paper (title, author., date, case numbers, etc.) is
entered in the same way for both styles; an argument to one
macro indicates which style is be used. The following sec­
tions describe the macros used to provide this data. The
required order is shown in {6.9}.

If neither the memorandum nor release-paper style is
desired, the macros described below should be omitted from
the input text. If these macrqs are omitted, the first page
will simply have the page header {9} followed by the body of
the document.

6.1. Title

• TL [charging-case] [fi 1 ing-case]
one or more lines of title text

1rhe arguments for the .TL macro are the charging case
number{s) and filing case number{s) .* The title of the
memorandum or paper follows the .TL macro and is processed
in fill mode {3.1}. Multiple charging case numbers are
entered as sub-arguments by s1eparating each from the previ­
ous with a comma and a space, and enclosing the entire argu­
ment within double quotes. Multiple filing case numbers are
entered similarly. For example:

.TL "12345, 67890" 987654321
On the construction of a table
of all even prime numbers

The .br request can break the title into several lines.

When output, the title appears after the word "Subject" in
the memorandum style. In the release-paper style, the title
is centered and bold.

* The charging case is the case number to which time was
charged for the development of the project described in the
memorandum. The filing case i.s a number under which the
memorandum is to be filed.

6-1 Zilog
10/14/83

6-1

MM Zilog MM

If only a charging case number, or a filing case number is
given, then it will be separated from the title in the
memorandum style by a dash and will appear on the same line.
If both cases are given, and the numbers are the same, then
"Charging and Filing Case" followed by the number will
appear on a line following the title. If the cases are dif­
ferent then separate lines for "Charging Case" and "File
Case" will appear following the title.

6.2. Author(s)

.AU name [initials] [loc] [dept] [ext] [room] [arg]
[arg] [arg]

Information that describes an author is contained in the .AU
macro arguments. If any argument contains blanks, it must
be enclosed within double quotes. The first six arguments
must appear in the order given. A separate .AU macro is
required for each author.

The .AT macro is used to specify the author's title. Up to
nine arguments can be given. Each will appear in the Signa­
ture Block for memorandum style {6.11.1} on a separate line
following the signer's name. The .AT must immediately fol­
low the .AU for the given author. For example:

.AU "J. J. Jones" JJJ PY 9876 5432 lZ-234

.AT Director "Materials Research Laboratory"

In the "From" portion in the memorandum style, the author's
name is followed by location and department number on one
line and by room number and extension number on the next.
The "x" for the extension is added automatically. The
printing of the location, department number, extension
number, and room number can be suppressed on the first page
of a memorandum by setting the register Au to 0; the default
value for Au is 1. Arguments 7 through 9 of the .AU macro,
if present, will follow this normal author information in
the "From" portion, each on a separate line. Certain organ­
izations have their own numbering schemes for memoranda,
engineer's notes, etc. These numbers are printed after the
author's name. This can be done by providing more than six
arguments to the .AU macro, e.g.:

6-2

.AU "S. P. Lename" SPL IH 9988 7766 SH-444 3322~11AB

Zilog
10/14/83

6-2

MM Zilog MM

The name, initials, location, and qepartment are also
included in the Signature Block {6.11.1}. The author infor­
mation in the "From" portion, as well as the names and ini­
tials in the Signature Block appear in the same order as the
.AU macros.

The names of the authors in the release-paper style are cen­
tered below the title. After the name of the last author,
"Bell Laboratories" and the location are centered. For
authors in different locations, see {6.8}.

6.3. TM Number(s)

• TM [number]

If the memorandum is a Technical Memorandum, the TM numbers
are supplied via the .TM macro. Up to nine numbers can be·
s~ecified. Example:

.TM 7654321 77777777

This macro call is ignored in the release-paper and
external-letter styles {6.6}.

61»4.. Abstract

.AS [arg] [indent]
text of the abstract
.AE

Three styles of cover sheet are available: Technical
Memorandum, Memorandum for File, and release-paper. On the
cover sheet, the text of the abstract follows the author
information and is preceded by the centered and underlined
(italic) word "ABSTRACT."

The .AS (Abstract Start) and .AE (Abstract End) macros
define the ·abstract: (which is optional). When producing the
Memorandum for File, no cover sheet will be produced unless
an abstract is given.

6-3 Zilog
10/14/83

6-3

MM Zilog MM

Combining the first argument to .AS and the .CS macro will
produce the cover sheet. If the first argument is 2, a
Memorandum for File cover sheet is generated automatically.
Any other value for the first argument causes the text of
the abstract to be saved until the .CS macro is invoked and
then the appropriate cover sheet (either Technical Memoran­
dum or release-paper, depending on the .MT type} is gen­
erated. Thus, .CS is not needed for Memorandum for File
cover sheets.

Notations {6.11. 2}, such as a "Copy To" list, are allowed on
Memorandum for File cover sheets. The .NS antl .NE macros
are given following the .AS 2 and .AE.

The abstract is printed with the standard text margins. An
indentation for both margins can be specified as the second
argument for .AS.* Note that headings {4.2, 4.3} and
displays {7} are not permitted within an abstract.

6.5. Other Keywords

.OK [keyword]

Topical keywords should be specified on a Technical Memoran­
dum cover sheet. Up to nine such keywords or keyword
phrases can be specified as arguments to the .OK macro; if
any keyword contains spaces, it must be enclosed within dou­
ble quotes.

6.6. Memorandum Types

.MT [type] [addressee]

The .MT macro controls the format of the top part of the
first page of a memorandum or a release-paper, as well as
the format of the cover sheet. Legal codes for type and the
corresponding values are:

* Values that specify indentation must be unscaled and
are treated as characte~ positions, i.e., as the number of
ens.

6-4 Zilog
10/14/83

6-4

MM Zilog

Code Value

--------------------------~----------------------
.MT ""
.MT 0
.MT
.MT 1
.MT 2
.MT 3
.MT 4
.MT 5
.MT "string"

no memorandum type is printed
no memorandum type is printed
MEMORANDUM FOR FILE
MEMORANDUM FOR FILE
PROGRAMMER'S NOTES
ENGINEER'S NOTES
Release-Paper style
External-Letter style
string

---------------·----------------------------------

MM

If type indicates a memorandum style, then value will be
printed after the last line of author information. If type
is longer than one character, then the string, itself, will
be printed. For example:

.MT "Technical Note #5"

A simple letter is produced by calling .MT with a null (but
not orni tted !) or zei::o argument.

The second argument to .MT is used to give the name of the
addressee of a lE!tter. Th~ name and page number will be
used to replace the ordinary page header on the second and
following pages of the·letter. For example,

• MT 1 "John Jone~s"

produces

John Jones - 2

This second argument type can not be used if the first argu­
ment is 4 (i.e., for the releaS°e-paper style) as explained
in {6.8}.

In the external-letter style (.MT 5), only the title
(without the word "Subject:") and the date are printed in
the upper left and right corners, respe9tively, on the first
page. It is expected that preprinted stationery will be
used, providing the author's company logotype and address.

6.7. Date and Format Changes

Dates and formats are changed with the following macros.

6-5 Zilog
10/14/83

6-5

MM Zilog MM

6.7.1. Changing the Date

By default, the current date appears in the "Date" part of a
memorandum. This can be overridden by using:

.ND new-date

The .ND macro alters the value of the string DT, which is
initially set to the current date.

6.7.2. Alternate First-Page Format

One can specify that the words "Subject," "Date," and "From"
(in the memorandum style) be omitted and that an alternate
company name be used:

.AF [company-name]

If an argument is given, it replaces "Bell Laboratories,"
without affecting the other headings. If the argument is
null "Bell Laboratories" is suppressed; and e:<tra blank
lines are inserted to allow room for stamping the document
with the company logo stamp. .AF with no argument
suppresses "Bell Laboratories" and the "Subject/Date/From"
headings, allowing output on preprinted stationery. The use
of .AF with no arguments is equivalent to the use of -rAl
{2.4} except the latter must be used if it is necessary to
change the line length and/or page offset (which default to
5.8i and li, respectively, for preprinted forms). The com­
mand line options -rOk and -rWk are not effective with .AF.

The only .AF option appropriate for troff is to specify an
argument to replace "Bell Laboratories" with another name.

6.8. Release-Paper Style

The release-paper style is obtained by specifying:

.MT 4 [l]

This results in a centered, bold title followed by centered
names of authors. The location of the last author is used
as the location following "Bell Laboratories" (unless .AF
{6.7.2} specifies a different company). If the optional
second argument to .MT 4 is given, then the name of each
author is followed by the respective company name and loca­
tion.

Information necessary for the memorandum style but not for
the release-paper style is ignored.

6-6 Zilog
10/14/83

6-6

MM Zilog MM

If the release-paper style is utilized, most BTL location
codes* are defined as strings that are the addresses of the
corresponding BTL locations. These codes are needed only
until the .MT macro is invoked. Thus, following the .MT
macro, the user can re-use these string names .. In addition,
the macros described in {6.11} and their associated lines of
input are ignored when the release-paper style is specified.

Authors from non-BTL locations can include their affilia­
tions in the release-paper style by specifying the appropri­
ate .AF and defining a string (with a 2 character name such
as XX) for the address before each .AU. For example:

.TL
A Learned Treatise
.AF "Getem Inc."
.ds XX "22 Mapl1e Avenue, Sometown 09999"
• AU "F. Swatter'"
.AF "Bell Laboratories"
• AU "Sam P. Lename" " " CB
.MT 4 1

609. Order of Invocation of 'Beginning' Macros

The macros described in {6.1-6.7}, if present, must be given
in the following order:

.ND new-date

.TL [charging-case] [filing-case]
one or more lines of text
.AF [company name]
.AU name [initials] [loc] [dept] [ext] [room] [arg]

[arg] [arg]
.AT [title] .•.
• TM [number] . . .
• AS [arg] [indent]
one or more lines of text
.AE
• NS [arg]
one or more lines of text
.NE
. OK [keyword] • • .
• MT [type] [add r·essee]

* The complete li°st is: AK, CP, CH, CB, DR, HO, HOH, HP,
IN, IH, MV, MH, PY, RR, RD, WB, WV, and WH.

6-7 Zilog
10/14/83

6-7

MM Zilog MM

The only required macros for a memorandum or a release-paper
are .TL, .AU, and .MT; all the others (and their associated
input lines) can be omitted if the features they provide are
not needed. Once .MT has been invoked, none of the above
macros can be re-invoked because they are removed from the
table of defined macros to save space.

6. 10. Example

The input text for a manual title page could begin as fol­
lows:

.TL
MM-Memorandum Macros
.AU "D. W. Smith" DWS PY •••
• AU "J. R. Ma shey" JRM WH • • •
• AU 18 E. C. Pariser (January 1980 Revision)" ECP PY •
• AU 19 N. W. Smith (April 1980 Revision)" NWS PY .•.
• MT 4

6.11. Macros for the End of a Memorandum

At the end of a memorandum (but not of a release-paper) , the
signatures of the authors and a list of notations can be
requested. The following macros and their input are ignored
if the release-paper style is selected.

6.11.1. Signature Block

• FC [c 1 o s i n g]
• SG [arg] [l]

.FC prints "Yours very truly", as a formal closin9. It must
be given before the .SG which prints the signer's name. A
different closing can be specified as an argument to .FC .

• SG prints the author name(s) after the formal closing (or
the last line of text). Each name begins at the center of
the page. Three blank lines are left above each name for
the actual signature. If no argument is given, the line of
reference data* will not appear following the last line.

A non-null first argument is treated as the
tials, and is appended to the reference data.

typist's ini­
Supply a null

* The following information is known as reference data:
location code, department number, author's initials, and
typist's initials, all separated by hyphens.

6-8 Zilog
10/14/83

6-8

MM Zilog MM

argument to print reference data without the typist's ini­
tials or the preceding hyphen.

If there are several authors and if the second argument is
given, then the reference data is placed on the same line as
the name of the first author, rather than on the line that
has the name of the last author.

The reference data contains only the location and department
number of the first author. Thus, if there are authors from
different departments and/or from different locations, the
reference data should be supplied mahually after the invoca­
tion (without arguments) of the .SG macro. For example:

• SG
.rs
.sp -lv
PY/MH-9876/5432-JJJ/SPL-cen

6.11.2. 'Copy To' and Other Notations

• NS [arg]
zero or more lines of the notation
.NE

After the signature and reference data, many types of nota­
tions can follow, such as a list of attachments or "Copy To"
lists. The .NS macro provides the proper spacing and break­
ing of notations across pages, if necessary.

6-·9 Zilog
10/14/83

6-9

MM Zilog MM

The codes for arg and the corresponding notations are:

Code Notations

• NS II II Copy To
• NS 0 Copy To
• NS Copy To
• NS 1 Copy (with a tt.) To
.NS 2 Copy (without a tt.) To
• NS 3 Att.
• NS 4 At ts.
• NS 5 Enc.
• NS 6 Encs.
• NS 7 Under Separate Cover
• NS 8 Letter To
• NS 9 Memorandum To
• NS "string" Copy (string) To

--
If arg consists of more than one character, it is placed
within parentheses between the words Copy and To. For exam­
ple:

. NS " w i th a t t • 1 on 1 y"

will generate "Copy (with att. 1 only) To" as the notation.
More than one notation can be specified before the .NE
occurs, because a .NS macro terminates the preceding nota­
tion, if any. For example:

• NS 4
Attachment 1-List of register names
Attachment 2-List of string and macro names
• NS 1
J. J. Jones
• NS 2
S. P. Lename
G. H. Hurtz
.NE

would be formatted as:

6-10 Zilog
10/14/83

6-10

MM Zilog

At ts.
Attachment 1-List of register names
Attachment 2-List of string and macro names
Copy (with att.) To
J. J. Jones

Copy (without att.) To
S. P. Lename
G. H. Hurtz

MM

The .NS and .NE macros can also be used at the beginning,
following .AS 2 and .AE, to place the notation list on the
Memorandum for File cover sheet {6.4}. If notations are
given at the beginning without .AS 2, they will be saved and
output at the end of the document.

6. 12. Approval S i~Jnature Line

.AV approver's name

The .AV macro can be used after the last notation block to
automatically generate a line with spaces for the approval
signature and date. For example,

.AV "Jane Doe"

produces:

APPROVED:

Jane Doe Date

6.13. Forcing a One-Page Letter

To lengthen a single-page letter to accommodate the signa­
ture or notations that would otherwise be on the next page,
use the -rLn option, e.g. -rL90. This _changes the format
command to-90 lines. This will only work for a single-page
letter or memo.

6-11 Zilog
10/14/83

6-11

MM Zilog

SECTlON 7
DISPLAYS

MM

Displays are blocks of text that are to be kept together,
not split across pages. MM provides two styles of
displays:* a static (.DS) style and a floating (.DF) style.
In the static style, the di$play appears in the same rela­
tive position in the output text as it does in th~ input
text; this can result in extra white space at the bottom of
the page if the display is too big to fit there. In the
floating style, the display floats through the input text to
the top of the next page if there is not enough room for it
on the current page; thus the input text that follows a
floating display can precede it in the output•text. A queue
of floating displays is mai~tained so that their relative
order is not disturbed.

By default, a display is processed in no-fill mode, with
single-spacing, and is not indented from the existing mar­
gins. The user can specify indentation or centering, as
well as fill mode processing.

Displays and footnotes {8} can never be nested, in any com­
bination whatsoever. Although lists {5} and paragraphs
{4.1} are permitted, no headings (.Hor .HU) {4.2, 4.3} can
~ccur within displays or footnotes.

7.1~ Static Displays

.DS [format] [fill] [rindent]
One or more lines of text
• DE

A static display is started by the .DS macro and terminated
by the .DE macro. With no arguments, .DS will accept the
lines of tex~ exactly as they are typed {no-fill mode) and
will not indent them from the prevailing left margin inden­
tation or from the right margin. The indent argument is ~he
number of characters** that the line length should be
decreased, i.e., an indentation from the right margin.

* Displays are piocessed in an environment that is dif­
ferent from that of the body of the text. (See the .ev re-
quest in the Nroff User's Manual.) ·

** This number-must-be unscaled in nroff and is treated
as ens. It can be scaled in troff or else defaults to ems.

7-1 Zilog
10/14/83

7-1

MM Zilog MM

The format argument to .DS is an integer or letter used to 1
control the left margin indentation and centering with the
following meanings:

I Code

"
0 or L
1 or I
2 or c
3 or CB

Meaning

no indent
no indent
indent by standard amount
center each line
center as a block

The fill argument is also an integer or letter and can have
the following meanings:

I Code

II

0 or N
1 or F

Meaning

no-f i 11 mode
no-fill mode
fill mode

Omitted arguments are taken to be zero.

The standard amount of indentation is taken from the regis­
ter Si, which is initially 5. Thus, by default, the text of
an indented display aligns with the first line of indented
paragraphs, whose indent is contained in the Pi register
{4.1}. Even though their initial values are the same, these
two registers are independent of one another.

The display format value 3 (CB) centers the entire display
as a block (as opposed to .DS 2 and .DF 2, which center each
line individually). That is, all the collected lines are
left-justified, and then the display is centered, based on
the width of the longest line. This format must be used in
order for the egn(l)/neqn(l) "mark" and "lineup" feature to
work with centered equations (see {7.4}).

By default, a blank line (1/2 a vertical space) is placed
before and after static and floating displays. These blank
lines before and after static displays can be inhibited by
setting the register Ds to 0.

The following example shows the usage of all three arguments
for displays. This block of text will be filled and

7-2 Zilog
10/14/83

7-2

MM Zilog MM

indented 5 spaces from both the left and the right margins
(i.e., centered) •

• DS I F 5
"We the people of the United States, in order to
form a more perfect union, establish justice,
ensure domestic tranquility, provide for the
common defense, and secure the blessings of
liberty to ourselves and our posterity, do ordain
and establish this Constitution to the United
States of America."
• DE

7.2. Floating Displays

.DF [format] [fill] [rindent]
one or more lines of text
.DE

A floating display is started by th~ .DF macro and ter­
minated by the .DE macro. The arguments have the same mean­
ings as • DS { 7 • 1 } , ex c e pt f 1 oat i n g d i s p 1 a ys , i n dent , no
indent, and centering are alW?YS calculated from the initial
left margin, because the prevailing indent can change
between the time when the formatter first reads the floating
display and the time that the display is printed. One blank
line (1/2 a vertical space) always occurs both before and
after a floating display.

The user can exercise great control over the output posi­
tioning of floating display~ through the use of two number
registers, De and Df. When a floating display is encoun­
tered by nroff or troff, it is processed and placed onto a
queue of displays waiting to be output. Displays are always
removed from the queue and printed in the order that they
were entered on the queue, which is the order that they
appeared in, the input file. If a new floating display is
encountered and the queue of ~isplays is empty, then the new
display is a candidate for immediate output on the current
page. Immediate output is governed by the size of the
display and the setting of the Df register (see below). The
De register (see below) controls whether or not text will
appear on the current page after a floating display has been
produced.

As long as the queue contains one or more displays, new
displays will be automatically entered there, rather than
being output. When a new page is started (or the top of the
second column when in two-column mode) the next display from

7-3 Zilog
10/14/83

7-3

MM Zilog MM

the queue becomes a candidate for output if the Df register
has specified top-of-page output. When a display is output
it is also removed from the queue.

When the end of a section (when using section-page: number­
ing) or the end of a document is reached, all displays are
automatically removed from the queue and output. 'rhi s wi 11
occur before a .SG, .CS, or .TC is processed.

A display is said to "fit on the current page" if there is
enough room to contain the entire display on the page, or if
the display is longer than one page in length and less than
half of the current page has been used. Also note that a
wide (full page width) display will never fit in the second
column of a two-column document.

The registers, their settings, and their effects are as fol­
lows:

7-4 Zilog
10/14/83

7-4

MM

7-5

Zilog MM

-- - --- ---- -- -- - - --- ---- - -~---- ---- --- --- ---- - ---- --- - - - --
Values for De Register I

--- - -- ----------- - -- - - - - _1 __ - - - - --- -- - ---------- --- ------

I Value Action I
-------------------------~--------------~---------------

0 DEFAULT: No special action occurs.
1 A page eject will always follow the output of

each floating display, so only one floating
display will appear on a page and no text
will follow it.

NOTE: For any other values the action per­
formed is for the value 1.

--------------·-----------~------------------------------

--------------·--
Values for Df Register

--------------·-----------~------------------------------I Value Action I
--------------·-----------·------------------------------

0 Floating displays will not be output until
end of section (When section-page numbering)
or end of document.

1 Output the new f1oating display on the cur­
rent page if there is room, otherwise hold it
until the end of the section or document.

2 Output exactly o6e floating display from the
queue at the top of a new page or column
(when in two-column mode).

3 Output one floating display on current page
if there is room. Output exactly one floating
display at the top of a new page or column.

4 Output as many displays as will fit (at least
one) , starting at the top of a new page or
column. Note that if register De is set to 1,
each display will be followed by a page eject,
causing a new top of page to be reached where
at least one more display will be output.
(This also applies to value 5, below.)

5 DEFAULT: Output a new floating display on the
current page if there is room. Output at
least one, but as many displays as will fit
starting at the top of a new page or column.

NOTE: For any value greater than 5 the action
performed is for the value 5.

Zilog
10/14/83

7-5

MM Zilog MM

The .WC macro {12.4} can also be used to control handling of
displays in double-column mode and to control the break in
the text before floating displays.

7.3. Tables

• TS [H]
global options;
column descriptors.
title lines
[.TH [N]]
data within the table .
• TE

The .TS (Table Start) and .TE (Table End) macro use the
tbl(l) processor. They are used to delimit the text to be
examined by tbl(l) as well as to set proper spacing around
the table. --rrhe display function and the tbl(l) delimiting
function are independent of one another, however, to keep
together blocks that contain any mixture of tables, equa­
tions, filled and unfilled text, and caption lines, the
.TS-.TE block should be enclosed within a display (.DS-.DE).
Floating tables can be enclosed inside floating displays
(• DF-. DE) •

The macros .TS and .TE also permit the processing of tables
that extend over several pages. If a table heading is
needed for each page of a multi-page table, specify the
argument "H" to the • TS macro as above. Following the
options and format information, the table heading is typed
on as many lines as required and followed by the uTH macro.
The .TH macro must occur when ".TS H" is used. Note that
this is not a feature of tbl(l), but of the macro defini-
tions provided by MM. ~-

The table header macro .TH can take as an argument the
letter N. This argument causes the table header to be
printed only if it is the first table header on the page.
This option is used \Yhen it is necessary to build long
tables from smaller .TS H/.TE segments. For example:

7-6

• TS H
global options;
column descriptors.
Title lines
.TH
data
.TE
• TS H

Zilog
10/14/83

7-6

MM

global options;
column descriptors.
Title lines
.TH N
data
.TE

Zilog MM

causes the table heading to appear at the top of the first
table segment, without appearing at the top of the second
segment when both appear on the same page. However, the
heading will still appear at the top of each page that the
table continues onto. Use this feature when a single com­
plex table must be broken into segments (for example, too
many blocks of filled text). Each segment having its own
.TS H\.TH sequence, would have its own header. However, if
each table segment after the first uses .TS H\.TH N, then
the table header will only appear at the beginning of the
table and the top of each new page or column that the table
continues onto.

For nroff, the -e option (-E for mm(l) {2.1}) can be used
for terminals, such as the 450-,-that are capable of finer
printing resolution. This causes better alignment of
features such as the lines forming the corner of a box.
Note that -e is not effective with col(l).

7.4. Equations

. DS

.EQ [label]
equ at i on (s)
.EN
• DE

The equation setters eqn(l) and neqn(l) [6.7] can use the
.EQ (Equation Start) and .EN (Equation End) macros as delim­
iters in the same way that tbl(l) uses .TS and .TE; however,
.EQ and .EN must occur inside-a .DS-.DE pair.

7-7

WARNING

There is an e~ception to this rule: if .EQ and .EN
are used only to specify the delimiters for in­
line equations or to specify eqn/neqn defines, .DS
and .DE must not be used; otherwise extra blank
lines will appear in the output.

Zilog
10/14/83

7-7

MM Zilog MM

The .EQ macro takes an argument that will be used as a label
for the equation. By default, the label will appear at the
right margin in the vertical center of the general equation.
The Eq register can be set to 1 to change the labeling to
the left margin.

The equation will be centered for centered displays; other­
wise the equation will be adjusted to the opposite margin
from the label.

7.5. Figure, Table, Equation, and Exhibit Captions

.FG
• TB
• EC
.EX

[title]
[title]
[title]
[title]

[override]
[override]
[override]
[override]

[flag]
[flag]
[flag]
[flag]

The .FG (Figure Title), .TB (Table Title), .EC (Equation
Caption) and .EX (Exhibit Caption) macros are normally used
inside .DS-.DE pairs to automatically number and title fig­
ures, tables, and equations. They use registers Fg, Tb, Ee,
and Ex, respectively (see {2.4} on -rN5 to reset counters in
sections). As an example, the call:

.FG "This is an illustration"

yields:
Figure 1. This is an illustration

.TB replaces Figure with TABLE; .EC replaces Figure with
Equation, and .EX replaces Figure with Exhibit. Output is
centered if it can fit on a single line; otherwise, all
lines but the first are indented to line up with the first
character of the title. The format of the numbers can be
changed using the .af request of the formatter. The format
of the caption can be changed from "Figure 1. 'l1i tle" to
"Figure 1 - Title" by setting the Of register to 1.

The override string is used to modify the normal numbering.
If flag is omitted or 0, override is used as a prefix to the
number; if flag is 1, override is used as a suffix; and if
flag is 2, override replaces the number. If -rNS {2.4} is
given, section-figure numbering is set automatically and
user-specified override string is ignored.

7-8 Zilog
10/14/83

7-8

MM Zilog MM

As a matter of style, table headings are usually placed
ahead of the text of the tables, while figure, equation, and
exhibit captions usually occur after the corresponding fig­
ures and equations~

7.6. List of Figures, Tables, Equations, and Exhibits

A List of
List of
after the
ters Lf,
Lt, and Lx

Figures, List of Tables, List of Exhibits, and
Equations can be obtained. They will be printed
Table of Contents is printed if the number regis-
Lt, Lx, and Le (r~spectively) are set to 1. Lf,
are 1 by default; Le is 0 by default.

The titles of these lists can be changed by redefining the
following strings which are shown here with their default
values:

7-9

.as Lf LIST OF FIGURES

.as Lt LIST OF TABLES

.ds Lx LIST OF EXHIBITS

.as Le LIST OF EQUATIONS

Zilog
10/14/83

7-9

MM Zilog

SECTION 8
FOOTNOTES

MM

There are two macros that delimit the text of footnotes;* a
string used to automatically number the footnotes, and a
macro that specifies the style of the footnote text.

8.1. Automatic Numbering of Footnotes

Footnotes are automatically numbered by typing the three
characters "*F" immediately after the text to be footnoted,
without any intervening spaces. This will place the next
sequential footnote number (in a smaller point size) a
half-line above the text to be footnoted.

8.2. Delimiting Footnote Text

There are two macros that delimit the text of each footnote:

.FS [label]
one or more lines of footnote text
.FE

The .FS (Footnote Start) marks the beginning of the text of
the footnote, and the .FE marks its end. The label on the
~FS, if present, will be used to mark the footnote text.
Otherwise, the number retrieved from the string F will be
used. Note that automatically-numbered and user-labeleQ
footnotes can be intermixed. If a footnote is labeled (.FS
label), the text to be footnoted must be followed by label,
rather than by "*F". The text between .FS and .FE is pro­
cessed in fill mode. Another .FS, a .OS, or a .OF are not
permitted between the .FS and .FE macros. Automatically­
numbered footnotes cannot be used for information such as
title and abstract placement on the cover sheet, but labeled
footnotes are allowed. Similarly, only labeled footnotes
can be used with tables {7.3}. Examples:

* Footnotes are processed in an environment that is dif­
ferent from that of the body of the text (see the .ev re­
quest in the Nroff User'~ Manual).

8-1 Zilog
10/14/83

8-1

MM Zilog

1. Automatically-numbered footnote:

This is the line containing the word*F
.FS
This is the text of the footnote •
• FE
to be footnoted.

2. Labelled footnote:

This is a labeled*
• FS *
The footnote is labeled with an asterisk .
• FE
footnote.

MM

The text of the footnote (enclosed within the .FS-.FE pair)
should immediately follow the word to be footnoted in the
input text, so that "*F" or label occurs at the end of a
line of input and the next line is the .FS macro call. It
is also good practice to append a unpaddable space {3.3} to
"*F" or label when they follow an end-of-sentenc 1e punctua­
tion mark (i.e., period, question mark, exclamation point).

Appendix C illustrates the various available footnote styles
as well as numbered and labeled footnotes.

8.3. Format of Footnote Text •

• FD [arg] [l]

The user can control the formatting style within the foot­
note text by specifying text hyphenation, right margin jus­
tification, and text indentation. The user can also specify
left- or right-justification of the label when text indent­
ing is used. Invoke the .FD macro to select the appropriate
style. The first argument is a number from the left column
of the following table. The formatting style for each
number is determined by the remaining four columns. For
further explanation of the first two of these columns, see
the definitions of the .ad, .hy, .na, and .nh requests {9}.

8-2 Zilog
10/14/83

8-2

MM Zilog MM

0 .nh .ad text indent label left justified
1 .hy .ad text indent label left justified
2 .nh .na text indent label le~t justified
3 .hy .na text indent label left justified
4 .nh .na no text indent label left justified
5 .hy .ad no text indent label left justified
6 .nh .na no text indent label left justified
7 .hy .na no text indent label left justified
8 .nh .ad text indent label right justified
9 .hy .ad text indent label right justified

10 .nh .na text indent label right justified
11 .hy .na text indent label right justified

--------------·-----------~------~----------~----~-------

If the first argument to .FD is out of range, the effect is
as if .FD 0 were specified. If the first argument is omit­
ted or null, the effect is equivalent to .FD 10 in nroff and
to .FD 0 in troff; these are also the respective initial
defaults.

If a second argument is specified, automatically-numbered
footnotes will begin again with 1 when a first-level heading
is present. This is useful with the section-page page
numbering scheme. As an example, the input line:

. FD "II 1

maintains the default formatting style and causes footnotes
to be numbered afresh after each first-level heading.

For long footnotes that must continue onto the following
page, the last line of the footnote on the current page is
hyphenated. Except for this case (over which the user has
control by specifying an even argument to .FD), hyphenation
across pages is inhibited by MM.

Footnotes are separated from the body of the text by a short
rule. Footnotes that continue to the next page are
separated from the body of the text by a full-width rule.
In troff, footnotes are set in type that is two points
smaller than the point size used in the body of the text.

8-3 Zilog
10/14/83

8-3

MM Zilog MM

8.4. Spacing Between Footnote Entries

Normally, one blank line (a three-point vertical space)
separates the footnotes when more than one occurs on a page.
To change this spacing, set the register Fs to the desired
value. For example:

.nr Fs 2

will cause two blank lines (a six-point vertical space) to
occur between footnotes.

8-4 Zilog
10/14/83

8-4

MM Zilog MM

SECTION 9
PAGE HEADERS AND FOOTERS

Text that occurs at the top of each page is known as the
page header. Text printed at the bottom of each page is
called the page footer. There can be up to three lines of
text associated with the header: every page, even page only,
and odd page only. Thus, the page header can have up to two
lines of text: the line that occurs at the top of every page
and the line for the even- or odd-numbered page. The same
is true for the page footer.

This section first describes the default appearance of page
headers and page footers, and then the ways to change them.
We use the term header (not qualified by even or odd) to
mean the line of the page header that occurs on every page,
and similarly for the term footer.

9.1. Default Headers and Footers

By default, each page has a centered page number as the
header {9.2}. There is no default footer and no even/odd
default headers or footers, except as specified in {9.9}.

In a memorandum or a release-paper, the page header on the
first page is automatically suppressed provided a break does
not occur before ~MT is called. The macros and text of
{6.9} and of {9} as well as .nr and .ds requests do not
cause a break and are permitted before the .MT macro call.

9.2. Page Header

• PH [arg]

For this and for the .EH, .OH, .PF,
a r gum en t i s o f the~ form :

.EF,

"'left-part' cemter-part' right-part'"

.OF macros, the

If it is inconvenient to use the apostrophe (') as the del­
imiter (i.e., because it occurs within one of the parts), it
can be replaced uniformly by any other character. On out­
put, the parts are left-justified, centered, and right­
justified, respectively. See {9.11} for examples.

9-1 Zilog
10/14/83

9-1

MM Zilog MM

The .PH macro specifies the header that is to appear at the
top of every page. The initial value (as stated in {9.1})
is the default centered page number enclosed by hyphens.
The page number contained in the P register is an Arabic
number. The format of the number can be changed by the .af
request.

If debug mode is set using the flag -rDl on the command line
{2.4}, additional information, printed at the top left of
each page, is included in the default header. This consists
of the Source Code Control System (SCCS) release and level
of MM (thus identifying the current version {12.3}), fol­
lowed by the current line number within the current input
file.

9.3. Even-Page Header

• EH [arg]

The .EH macro supplies a line to be printed at the top of
each even-numbered page, immediately following the header.
The initial value is a blank line.

9.4. Odd-Page Header

.OH [arg]

This macro is the same as .EH, except that it applies to
odd-numbered pages.

9.5. Page Footer

• PF [arg]

The .PF macro specifies the line that is to appear at the
bottom of each page. Its initial value is a blank line. If
the -rCn flag is specified on the command line {2.4}, the
type of copy follows the footer on a separate line. In par­
ticular, if -rC3 or -rC4 (DRAFT) is specified, t:he footer
also is initialized to contain the date {6.7.1}, instead of
being a blank line.

9-2 Zilog
10/14/83

9-2

MM Zilog MM

9.6. Even-Page Footer

• EF [arg]

The .EF macro supplies a line to be printed at the bottom of
each even-numbered page, immediately preceding the footer.
The initial value is a blank line.

9.7. Odd-Page Footer

.OF [arg]

This macro is the same as .EF, except that it applies to
odd-numbered pages.

9.8. Footer on the First Page

By default, the footer is a blank line. If, in the input
text, one specifies • PF and/or .:op before the end of the
first page of the document, then these lines will appear at
the bottom of the first page.

The header (whatever its contents) replaces the footer on
the first page only. if the -rNl flag is specified on the
command line {2.4}.

9.9. Default Header and Footer with Section-Page Number­
ing

Pages can be numbered sequentially within sections {4.5}.
To obtain this numbering style, specify -rN3 or -rNS on the
command line. In this case, the default footer is a cen­
tered section-page number, e.g. 7-2, and the default page
header is blank.

9.10. Use of Strings and Registers in Header and Footer
Macros •

String and register names are placed in the arguments to the
header and footer macros. If the value of the string or
register is to be computed when the respective header or
footer is printed, the invocation must be escaped by four
backslashes. This is because the string or register invoca­
tion will be processed three times:

9-3 Zilog
10/14/83

9-3

MM Zilog MM

~ as the argument to the header or footer macro;

e in a formatting request within the header or footer
macro;

e in a .tl request during header or footer processing.

For example, the page number register P must be escaped with
four backslashes in order to specify a header in which the
page number is to be printed at the right margin, e.g.:

• PH " ' ' ' Page \ \ \ \ n P ' "

creates a right-justified header containing the word Page
followed by the page number. Similarly, to specify a footer
with the section-page style, one specifies (see {4.2.2.5}
for meaning of Hl):

. PF " ' ' ' - \ \ \ \ n (H 1-\ \ \ \ n P- ' "

As another example, suppose that the user arranges for the
string a] to contain the current section heading which is to
be printed at the bottom of each page. The .PF macro call
would then be:

. PF n 1 1 \ \ \ \ * (a] , , "

If only one or two backslashes were used, the footer would
print a constant value for a], namely, its value when the
.PF appeared in the input text.

9.11. Header and Footer Example •

The following sequence specifies blank lines for the header
and footer lines, page numbers on the outside edge of each
page (i.e., top left margin of even pages and top right mar­
gin of odd pages), and "Revision 3" on the top inside margin
of each page:

9-4

• PH "II

• PF ""
.EH "'\\\\nP''Revision 3'"
.OH "'Revision 3''\\\\nP'"

Zilog
10/14/83

9-4

MM Zilog

9Gl2. Generalized Top-of-Page Processing •

WARNING

This section is intended only for users accustomed
to writing formatter macros.

MM

During header processing, MM invokes two user-definable mac­
ros. One, the .TP macro, is invoked in the environment (see
.ev request) of the header; the other, .PX, is a user-exit
macro that is invoked (without arguments) when the normal
environment has been restored, and with no-space mode
already in effect~

The effective initial definition of .TP (after the first
page of a document) is:

.de TP

.sp 3

.tl *(}t

.if e 'tl *(}e

.if o 'tl *(}o

.sp

The string }t contains.the header, the string }e contains
the even-page header, and the string }o contains the odd­
page header, as defined by the .PH, .EH, and .OH macros,
respectively. To obtain more specialized page titles, the
user can redefine the .TP macro to cause any desired header
processing {12.5}. Note that formatting done within the .TP
macro is processed in an environment different from that of
the body.

For example, to obtain a page header that includes three
centered lines of data, say, a document's number, issue
date, and revision date, one could define .TP as follows:

9-5

.de TP

.sp

.ce 3
777-888-999
Iss. 2, AUG 1977
Rev. 7, SEP 1977
.sp

Zilog
10/14/83

9-5

MM Zilog MM

The .PX macro is used to provide text that is to appear at
the top of each page after the normal header and that have
tab stops to align it with columns of text in the body of
the document.

9.13. Generalized Bottom-of-Page Processing

.BS
zero or more lines of text
.BE

Lines of text that are specified between the .BS (Bottom­
block Start) and .BE {Bottom-block End) macros will be
printed at the bottom of each page,* after the footnotes (if
any), but before the page footer. This block of text is
removed by specifying an empty block, i.e.:

.BS

.BE

9.14. Top and Bottom Margins

• VM [top] [bottom]

.VM (Vertical Margin) allows the user to specify E~xtra space
at the top and bottom of the page. This space precedes the
page header and fol lows the page footer. . VM takes two uns­
caled arguments and treats each as a v. For example:

.VM 10 15

adds 10 blank lines to the default top of page margin, and
15 blank lines to the default bottom of page margin. Both
arguments must be positive (default spacing at the top of
the page can be decreased by re-defining .TP).

9.15. Proprietary Markings

• PM [code]

* The bottom-block will appear on the table of contents
pages and the cover sheet for Memorandum for File, but not
on the Technical Memorandum or Release-Paper cove1: sheets.

9-6 Zilog
10/14/83

9-6

MM Zilog MM

• PM, for Propr ieta:ry Marking, appends to the page footer a
PRIVATE, NOTICE, BELL LABORATORIES PROPRIETARY, or BELL
LABORATORIES RESTRICTED disclaimer. The code is:

+-------------·---------------------------~------------+
Code Meaning

• PM
• PM P
• PM N
• PM BP
• PM BR

no proprietary marking
PRIVATE disclaimer
NOTICE disclaimer
BELL LABORATORIES PROPRIETARY disclaimer
BELL LABORATORIES RESTRICTED disclaimer

+-------------·-----------~----------------------------+

The disclaimers are in a form approved for use by the Bell
System.

9.16. Private Documents

.nr Pv value

The word PRIVATE can be printed centered and underlined on
the second line of a document (preceding the page header).
This is done by setting the Pv register:

+--+
Value Meaning

.nr Pv 0 do not print PRIVATE (default)

.nr Pv l PRIVATE on first page only

.nr Pv 2 PRIVATE on all pages

+--+
If Pv is 2, the user definable .TP can not be used because
.TP is used by MM to print PRIVATE on all pages except the
first page of a memorandum on which .TP is not invoked.

9-7 Zilog
10/14/83

9-7

MM Zilog MM

SECTION 10
TABLE OF CONTENTS AND COVER SHEET

The table of contents and the cover sheet for a document are
produced by invoking the .TC and .cs macros, respectively.

WARNING

This section will refer to cover sheets for Techn­
ical Memoranda and Release-Papers only. The
mechanism for producing a Memorandum for File
cover sheet was discussed earlier {6.4}.

These macros should normally appear only once at the end of
the document, after the Signature Block {6.11.l} and Nota­
tions {6.11.2} macros. They can occur in either order.

The table of contents is produced at the end of the document
because the entire document must be processed before the
table of contents can be generated. Similarly, the cover
sheet is often not needed, and is therefore produced at the
end.

10.1. Table of Contents

.TC [slevel] [spacing] [tlevel] [tab] [headl] [head2]
[head3] [head4] [head5]

The .TC macro generates a table of contents containing the
headings that were saved for the table of contents as deter­
mined by the value of the Cl register {4.4}. The arguments
to .TC control the spacing before each entry, the placement
of the associated p.age number, and additional text on the
first page of thie table of contents before the word "CON­
TENTS."

Spacing before each entry is controlled by the first two
arguments; headings whose level is less than or equal to
slevel will have spacing blank lines (halves of a vertical
space) before them. Both sl~vel and spacing default to 1.
This means that first-level headings are preceded by one
blank line (1/2 a vertical ~pace). Note that slevel does
not control what levels of heading have been saved; the sav­
ing of headings is the function of the Cl register {4.4}.

10-1 Zilog
10/14/83

10-1

MM Zilog MM

The third and fourth arguments control the placement of the
page number for each heading. The page numbers can be jus­
tified at the right margin with either blanks or dots
(leaders) separating the heading text from the page number,
or the page numbers can follow the heading text. For head-
ings whose level is less than or equal to tlevel (default
2), the page numbers are justified at the right margin. In
this case, the value of tab determines the character used to
separate the heading text from the page number. If tab is 0
(the default value), leaders are used; if tab is greater
than 0, spaces are used. For headings whose level is
greater than tlevel, the page numbers are separated from the
heading text by two spaces (i.e., they are ragged right).

All additional arguments (e.g., headl, head2, etc.), if any,
are horizontally centered on the page, and precede the
actual table of contents itself.

If the .TC macro is invoked (with at most four arguments),
then the user-exit macro .TX is invoked (without arguments)
before the word ''CONTENTS" is printed; or the user-exit
macro .TY is invoked and the word "CONTENTS" is not printed.
By defining .TX or .TY and invoking .TC with at most four
arguments, the user can specify what needs to be done at the
top of the (first) page of the table of contents. For exam­
ple, the following input:

.de TX

.ce 2
Special Application
Message Transmission
.sp 2
.in +10n
Approved: '\1'3i'
.in
.sp

.TC

yields:

10-2 Zilog
10/14/83

10-2

MM

Approved:

Zilog

Special Application
Message Transmission

CONTENTS

MM

If this macro were defined as .TY rather than .TX, the word
ncoNTENTS" would not appear. Defining .TY as an empty macro
wi 11 suppress "CON'.rENTS" with no replacement:

.de TY

By default, the fir.st level headings will appear in the
table of contents at the left margin. Subsequent levels
will be aligned with the text'of headings at the preceding
level. These indentations can be changed by defining the Ci
string which takes a maximum Of seven arguments correspond­
ing to the heading levels. It must be given at least as
many arguments as are set by the Cl register. The arguments
must be scaled. For e~ample, with Cl =5,

.as Ci .25i .Si .75i li li

or

.ds Ci 0 2n 4n Gn 8n

Two other registers are available to modify the format of
the table of contents, Oc and Cpk. By default, table of
contents pages will have lowercase Roman numeral page
numbering. If the Oc register is set to 1, the .TC macro
will not print any page number but will instead reset the P
register to 1. It is the u~er's responsibility to give an
appropriate page footer to place the page number. Ordi­
narily the same .PF used in the body of the document will be
adequate.

The List of Figures, Tables, etc. pages will be produced
separately unless Cp is set to 1 which causes these lists to
appear on the same page as the table of contents.

10-3 Zilog
10/14/83

10-3

MM Zilog MM

10.2. Cover Sheet

.cs [pages] [other] [total] [figs] [tbls] [refs]

The .CS macro generates a cover sheet in either the Techni­
cal Memorandum or release-paper style. See {6.4} for
details on the Memorandum for File style cover sheet. All
of the other information for the cover sheet is obtained
from the data given before the .MT macro call {6.9}. If a
Technical Memorandum style is used, the .CS macro generates
the cover sheet for Technical Memorandum. The data that
appears in the lower left corner of the Technical Memorandum
cover sheet (the number of pages of text, the number of
other pages, the total number of pages, the number of fig­
ures, the number of tables, and the number of references) is
generated automatically. These values can be changed by
supplying the appropriate arguments to the .cs macro. Any
values that are omitted will be calculated automatically (0
is used for other pages) . If the release-paper style is
used, all arguments to .cs are ignored.

10-4 Zilog
10/14/83

10-4

MM Zilog

SECTION 11
REFERENCES

MM

There are two macros that delimit the text of references, a
string used to a1LJtomatical ly number the references, and an
optional macro to produce reference pages within the docu­
ment.

11.1. Automatic Numbering of References

Automatically numbE~red references can be obtained by typing
*(Rf immediately after the text to be referenced. This
places the next sequential reference number (in a smaller
point size) enclosed in brackets a half-line above the text
to be referenced.

11.2. Delimiting Reference Text

The .RS and .RF macros are us~d to delimit text for each
reference.

A line of text to be referenced.*(Rf
.RS [string-name]
reference text
.RF

11.3. Subsequent References

.RS takes one argument, a string-name. For example:

.RS AA
reference text
.RF

The string AA is assigned the current reference number. It
can be used later in the document, as the string call,
*(AA, to reference text which must be labeled with a prior
reference number. The refe~ence is output enclosed in
brackets a half-line above the text to be referenced. No
.RS/.RF is needed for subsequent references.

11-1 Zilog
10/14/83

11-1

MM Zilog MM

11.4. Reference Page

An automatically generated reference page is produced at the
end of the document before the table of contents and the
cover sheet are output. The reference page is entitled
'References'. This page contains the reference text
(RS/RF). The user can change the reference page title by
defining the Rp string. For example,

.ds Rp "New Title"

The optional .RP (Reference Page) macro can be used to pro­
duce reference pages anywhere within a document (i.e.,
within heading sections) •

•. RP [argl] [arg2]

These arguments allow the user to control resetting of
reference numbering, and page skipping.

+---+
argl Meaning

0 reset reference counter (default)
1 do not reset reference counter

arg 2 Meaning

0 cause a following .SK (default)
1 do not cause a following .SK

+--+
.RP need not be used unless the user wishes to produce
reference pages elsewhere in the document.

11-2 Zilog
10/14/83

11-2

MM Zilog

SECTION 12
MISCELLANEOUS FEATURES

12.1. Bold, ItaliC', and Roman

.B [bold-arg] [previous-font-arg]

.I [italic-arg] [previous-font-arg]

.R

MM

When called without arguments, .B changes the font to bold
and .I changes to underlining (italic). This condition con­
tinues until the occurrence oe a .R, when the regular roman
font is restored. Thus,

• I
here is some text •
• R

yields:

here is some text.

;1£ .B or .I is called with on~ argument, that argument is
printed in the appr6priate font (underlined in nroff for
.I). Then the previous font is restored (underlining is
turned off in nroff). If two or more arguments (maximum 6)
are given to a .B or .I, the second argument is then con­
catenated to the first with nq intervening space (1/12 space
if the first font is italic), but is printed in the previous
font; and the remaining pairs of arguments are similarly
altetnated. For example:

• I i ta 1 ic
text
.I right -justified

produces:

italic text riqht-justifi~d

These macros alternate with t~e prevailing font at the time
they are invoked. To alternate specific pairs of fonts, the
following macros are availabl~:

12-1 Zilog
10/14/83

12-1

MM

• IB
.BI
• IR
.RI
.RB
.BR

Zilog MM

Each takes a maximum of 6 arguments and alternates the argu­
ments between the specified fonts.

Note that font changes in headings are handled separately
{4.2.2.4}.

Anyone using a terminal that cannot underline might wish to
insert:

• rm ul
.rm cu

at the beginning of the document to eliminate all underlin­
ing.

12.2. Justification of Right Margin

.SA [arg]

The .SA macro is used to set right-margin justification for
the main body of text. Two justification flags are used:
current and default. .SA 0 sets both flags to no justifica­
t i on , i. e . , i t acts 1 i k e the • n a request • . SA 1 i s the
inverse: it sets both flags to cause justification, just
like the .ad request. However, calling .SA without an argu­
ment causes the current flag to be copied from the default
flag, thus performing either a .na or .ad, depending on what
the default is. Initially, both flags are set for no jus­
tification in nroff and for justification in troff.

In general, use .na to ensure that justification is turned
off, but .SA should be used to restore justification, rather
than the .ad request. In this way, justification, or lack
thereof, for the remainder of the text is specified by
inserting .SA 0 or .SA 1 once at the beginning of the docu­
ment.

12-2 Zilog
10/14/83

12-2

MM Zilog MM

12.3. SCCS Release Identification

The string RE contains the secs release and level of the
current version of MM. For example, typing:

This is version *(RE of the macros.

produces:

This is version 15.103 of the macros.

This information is useful in analyzing suspected bugs in
MM. The easiest way to have ~his number appear in your out­
put is to specify -rDl {2.4} on the command line, which
causes the string IRE to be output as part of the page
header {9.2}.

12.4. Two-Column Output

MM can print two columns on a page:

• 2e
text and formatting requests (except another .2e)
. le

The . 2C macro beg ins two-col um.n processing which continues
until a .le macro is encountered. In two-column processing,
each physical page is thought .of as containing two columnar
pages of equal (but smaller) page width. Page headers and
footers are not affected by two-column processing. The .2C
macro does not balance two-column output.

It is possible to have full-page width footnotes and
displays when in two columb mode, although the default
action is for footnotes and displays to be narrow in two
column mode and wide in o~e column mode. Footnote and
display width is controlled by~ a macro, .we (Width Control),
which takes the following arguments:

12-3 Zilog
10/14/83

12-3

MM Zilog

N Normal default mode (-WF, -FF, -WD)
WF Wide Footnotes always (even in two

column mode)
-WF DEFAULT: turn off WF (footnotes

follow column mode, wide in lC
mode, narrow in 2C mode, unless FF
is set)

FF First Footnote; all footnotes have
the same width as the first foot­
note encountered for that page

-FF DEFAULT: turn off FF (footnote
style follows the settings of WF
or -WF)

WD Wide Displays always (even in two
column mode)

-WD DEFAULT: Displays follow whichever
column mode is in effect when the
display is encountered

MM

For example: .WC WD FF will cause all displays to be wide,
and all footnotes on a page to be the same width, while .we
N will reinstate the default actions. If conflicting set­
tings are given to .we the last one is used. That is, .we
WF -WF has the effect of .we -WF.

12.5. Column Headings for Two-Column Output•

WARNING

This section is intended only for users accustomed
to writing formatter macros.

In two-column output, it is sometimes necessary to have
headers over each column, as well as headers over the entire
page {9}. This is accomplished by redefining the .TP macro
{9.12} to provide header lines both for the entire page and
for each of the columns. For example:

12-4

.de TP

.sp 2

.tl \\nP'OVERALL''

.tl I 'TITLE''
• s·p
.nf
.ta 16C 31R 34 50C 65R

Zilog
10/14/83

12-4

MM Zilog

left--center--right--left--center--right

(where -- stands for the tab character)

--first column------second column
.fi
.sp 2

MM

The above example will produce two lines of page header text
plus two lines of headers over each column. The tab stops
are for a 65-en overall line length.

12 .. 6. Vertical Spiac ing

.SP [lines]

There are several ways of obtaining vertical spacing, all
with different effects.

The .sp request spaces the number of lines specified, unless
no space (.ns) :mode is on, in which case the request is
ignored. This mode is typically set at the end of a page
header in order to eliminate spacing by a .sp or .bp request
that just happens to occur at the top of a page. This mode
can be turned off with.the restore spacing (.rs) request.

The .SP macro is used to avoid the accumulation of vertical
space by successive macro calls. Several .SP calls in a row
produce not the sum of their arguments, but their maximum;
i.e., the following produces only 3 blank lines:

.SP 2

. s p 3

. s p

Many MM macros ut i 1 i ze • SP for spacing. For example, ".LE
l" {5.3.2} immediately followed by .P {4.1} produces only a
single blank line (1/2 a vertical space) between the end of
the list and the following paragraph. An omitted argument
defaults to one blank line (one vertical space). Negative
arguments are not permitted. The argument must be unscaled
but fractional amounts are permitted. Like .sp, .SP is also
inhibited by the .ns request.

12-5 Zilog
10/14/83

12-5

MM Zilog MM

12.7. Skipping Pages

. s K [pages]

The .SK macro skips pages, but retains the usual header and
footer processing. If pages is omitted, null, or 0, .SK
skips to the top of the next page unless it is currently at
the top of a page, in which case it does nothing. .SK n
skips n pages. That is, .SK always positions the text that
follows it at the top of a page, while .SK 1 always leaves
one page that is blank except for the header and footer.

12.8. Forcing an Odd Page

.OP

This macro is used to ensure that the following text begins
at the top of an odd-numbered page. If currently at the top
of an odd page, no motion takes place. If currently on an
even page, text resumes printing at the top of the next
page. If currently on an odd page (but not at the top of
the page) one blank page is produced, and printing resumes
on the page after that.

12.9. Setting Point Size and Vertical Spacing

In troff, the default point size (obtained from the register
s {2.4}) is 10, with a vertical spacing of 12 points (i.e.,
6 lines per inch). The prevailing point size and vertical
spacing can be changed by invoking the .s macro:

.s [point size] [vertical spacing]

The mnemonics, D for default value, C for current value, and
P for previous value, can be used for both point size and
vertical spacing arguments.

Arguments can be signed or unsigned. If an argument is
negative, the current value is decremented by the specified
amount. If the argument is positive, the current value is
incremented by the specified amount. If an argument is
unsigned, it is used as the new value. .s without arguments
defaults to previous (P). If the first argument is speci­
fied but the second argument (vertical spacing) is not, then
the default (D) value is used. The default value for verti­
cal spacing is always 2p greater than the current point size

12-6 Zilog
10/14/83

12-6

MM Zilog MM

value selected.* A null ("") argument for either the first
or second argument defaults to the current (C) value. For
example (where n is a numeric value):

.s = .SPP

.S""n = .sen

.Sn"" = .snc

.Sn = .SnD

.S"" = .SCD

.S"" " " = .sec

.Snn = . Snn

If a point size argument is greater than 99, the default
point size (D) 10 is restored. If a vertical spacing argu­
ment is greater than 99, the default vertical spacing (D)
+2p is used. For example:

.s 12 111

. s 110
=>
=>

12.10. Producing Accents

. s 12 14

. s 10 12

The following strings can be used to produce accents for
letters when using the troff processor:

Input Output

Grave accent a*' a
Acute accent a*' A

Circumflex a*A
,...
a

Tilde n*- -n

Cedilla c*, 9

Lower-case umlaut a*: ~ .
Upper-case umlaut A*; A

* Footnotes {8} are printed in a size two points smaller
than the point size of the body, with an additional vertical
spacing of three points between footnotes.

12-7 Zilog
10/14/83

12-7

MM Zilog MM

· 12.11. Inserting Text Interactively

.RD [prompt] [diversion] [string]

.RD (ReaD insertion) allows a.user to stop the standard out­
put of a document and to read text from the standard input
until two consecutive newlines are found. When the newlines
are encountered, normal output is resumed .

• RD follows the formatting conventions in effect. Thus, the
examples below assume that the .RD is invoked in no fill
mode (. n f) .

The first argument is a prompt which will be printed at the
terminal. If no prompt is given, .RD signals the user with
a BEL on terminal output.

The second argument, a diversion name, allows the user to
save all the entered text typed after the prompt. The third
argument, a string name, allows the user to save for later
reference the first line following the prompt. For example:

.RD Name aa bb

produces

Name: (user types) J. Jones
16 Elm Rd.,
Piscataway

The diversion aa will contain:

J. Jones
16 Elm Rd.,
Piscataway

The st r i n g b b " (" \ * (b b) cont a i n s "J . Jones " .

A newline followed by a control-D (EOF) also allows the user
to resume normal output.

12-8 Zilog
10/14/83

12-8

MM Zil:eg

SECTION 13
ERRORS AND DEBUGGING

MM

13.1. Error Terminations

When a macro discovers an error, the following actions
occur:

$ A break occurs.

$ To avoid confusion regarding the location of the error,
the formatter output buffer (which can contain some
text) is printed.

A short message is printed giving the name of the macro
that found the error, the type of error, and the
approximate line number (in the current input file) of
the last processed input line. (All the error messages
are explained in Appendix E.)

Processing terminates, unless the register D {2.4} has
a positive value. In the latter case, processing con­
tinues even though the output is guaranteed to be
deranged from that point on.

WARNING

The error me,ssage is printed by writing it
directly to the user's terminal. If an output
filter, such as 309(1) or 451(1) is being used to
post-process nroff output, the message can be gar­
bled by being intermixed with text held in that
filter's output buffer. If either tbl(l) or
eqn(l)/neqn(l), or both are being used, and if the
-olist option of the formatter causes the last
page of the do1cument not to be printed, a harmless
broken pipe message results.

13.2. Disappearance of Output

This usually occurs because of an unclosed diversion (e.g.,
missing .FE or .DE). Fortunately, the macros that use
diversions are careful about it, and they check to make sure
that illegal nestings do not occur. If any message is
issued about a missing .DE or .FE, the appropriate action is

13-1 Zilog
10/14/83

13-1

MM Zilog MM

to search backwards from the termination point looking for
the corresponding .DS, .DF, or .FS.

The following command:

g rep - n " ""\ • [EDF T] [E F N QS] " f i 1 es • • •

prints all the .DS, .DF, .DE, .FS, .FE, .TS, .TE, .EQ, and
.EN macros found in files •.. ,each preceded by its file
name and the line number in that file. This listing can be
used to check for illegal nesting and/or omission of these
macros.

13-2 Zilog
10/14/83

13-2

MM Zilog MM

SECTION 14
EXTENDII~G AND MODIPYING THE MACROS •

1·4 .1. Naming Conveintions

In this section, the following conventions are used to
describe legal names:

n: digit
a: lower-case letter
A: upper-case letter
x: any letter or digit (any alphanumeric character)
s: special character (any non-alphanumeric character)

All other characters are literals (Le., stand for them­
selves).

Note that request, macro, and string names are kept by the
formatters in a single internal table, so that there must be
no duplication among such names. Number register names are
kept in a separate table.

14.1.1. Names Used by.Formatters

requests: aa (most common)
an (only one, currently: .c2)

registers: aa (normal)
.x (normal)
.s (only one, currently: • $)
% (page number)

14 .1. 2. Names Used! by MM

macros: AA (most common, accessible to user)
A (less common, accessible to user)
) x (internal, constant)

strings:

>x (internal, dynamic)

AA (most common, accessible to user)
A (less common, accessible to user)
]x (internal, usually allocated to specific
functions throughout)

14-1

}x (internal, more dynamic usage)

Zilog
10/14/83

14-1

MM Zilog MM

registers: Aa (most common, accessible to users)
An (common, accessible to user)
A (accessible, set on command line)
:x (mostly internal, rarely accessible, usually
dedicated)
;x (internal, dynamic, temporaries)

14.1.3. Names Used by EQH/NEQN and TBL

The equation preprocessors, eqn(l) and neqn(l), use regis­
ters and string names of the form nn. The table preproces­
sor, _tbl (1) , uses names of the form:

a- a+ nn #a ## #- a TW

14.1.4. User-Definable Names

After the above, what is left for user extensions? To avoid
problems, we suggest using names that consist either of a
single lower-case letter, or of a lower-case letter followed
by anything other than a lower-case letter. ThE~ following
is a sample naming convention:

macros: aA
Aa

strings: a
a) (or a], or a}, etc.)

registers a
aA

14.2. Sample Extensions

The following paragraphs explain formatting of Appendix
headings and hanging extensions.

14-2 Zilog
10/14/83

14-2

MM Zilog MM

14.2.1. Appendix Headings

The following gives a way of ge!'lerating and numbering appen­
dices:

.nr Hu 1

.nr a 0

.de aH

.nr a +l

.nr P 0
• PH " ' ' 'Append h \ \na - \ \ \ \ \ \ \ \n P' "
.SK
• HU "\ \$1"

After the above initialization and definition, each call of
the form ''.aH "title"'' begins a new page (with the page
header changed to Appendix a - n) and generates an unnum­
bered heading of title, which, if desired, can be saved for
the table of contents. Those who wish Appendix titles to be
centered must, in addition, set the register He to 1
{4.2.2.3}.

14.2.2. Hanging Indent with 'l'abs

The following example illustrates the use of the hanging­
indent feature of vatiable-item lists {5.3.3.6}. First, a
user-defined macro is built to accept four arguments that
make up the mark. Each arguMent is separated from the pre­
vious one by a tab character; tab settings are defined
later. Since the first argument can begin with a period or
apostrophe, the "\6«" is used so that the formatter will not
interpret such a line as a formatter request or macro.* The
"\t" is translated by the formatter into a tab character.
The "\c" is used to concatenate the line of text that fol­
lows the macro to the line of text built by the macro. The
macro definition and an example of its use follow:

* The two-character sequence "\&" is understood by the
formatters to be a zero-width space; it causes no output
characters to appear.

14-3 Zilog
10/14/83

14-3

MM Zilog

.de ax
• LI
\&\\$1\t\\$2\t\\$3\t\\$4\t\c

.ta 9n 18n 27n 36n
• VL 36
.ax .nh off \- no
No hyphenation.
Automatic hyphenation is turned off.
Words containing hyphens
(e.g., mother-in-law) can still be split across lines •
• ax .hy on \- no
Hyphenate.
Automatic hyphenation is turned on •
• ax .hc\[]c none none no

MM

Hyphenation indicator character is set to "c" or removed.
During text processing the indicator is suppressed
and will not appear in the output.
Prepending the indicator to a word has the effect
of preventing hyphenation of that word .
• LE

The resulting output is:

• nh off no No hyphenation . Automatic hyphen a-
ti on is turned off. Words containing
hyphens (e.g., mother- in-- law) can
still be split across lines.

.hy on no Hyphenate. Automatic h yp h E? n at i on is
turned on .

• he c none none no Hyphenation indicator character is
set to c or removed. During text
processing the indicator is
suppressed and will not appear in the
output. Prepending the indicator to
a word has the effect of preventing
hyphenation of that word.

14-4 Zilog
10/14/83

14-4

MM Zilog

APPENDIX A
DEFINITIONS OF LIST MACROS •

WARN I HG

This appendix is intended only for users accus­
tomed to writing formatter macros.

MM

Here are the definitions of the list-initialization macros
{5.3.3}:

A-1

.de AL
• nr ! D 0
.if !@\\$1@@ .if !@\\$1@1@ .if !@\\$l@a@ .if !@\\$l@A@

\&.if !@\\$1@!@ .if !@\\$l@i@ .)D "AL:bad arg:\\$1"
.if \\n(.$<3 \{.ie \w@\\$2@=0 .)L \\n(Lin 0 2n 1 "\\$1"
• e 1 • LB 0\ \$ 2 0 2 1 "\ \$1" \}
.if \\n(.$>2 \{.ie \w@\\$2@=0 .)L \\n(Lin 0 2n 1 "\\$1" 0 1
.el .LB 0\\$2 0 2 1 "\\$1" 0 1 \}

.de BL

.nr ;0 \\n(Pi
• i f (\ \ n (. $ > 0) & (\ w@\ \ $1@>0) • n r ; 0 0 \ \ $1
.ie \\n(.$<2 .LB \\n(;0 0 1 0 *(BU
.el .LB \\n(;0 0 1·0 *(BU 0 1
. rr ; 0

.de DL

.nr ;0 \\n(Pi

. i f (\ \ n (• $ > 0) & (\ w@\ \ $1 @> 0) • n r ; 0 0 \ \ $1

. i e \ \ n (• $ < 2 • LB \ \ n (; 0 0 1 0 \ (em

.el .LB \\n(;0 0 1 0 \(em 0 1

. rr ; 0

.de ML

.if \\n(.$<1 .)D "ML:missing arg"

.nr ;0 \w@\\$l@u/3u/\\n(.su+lu\" get size in n's

.ie \\n(.$<2 .LB \\n(;0 0 1 0 "\\$1"
• e 1 . i f \ \ n (• $ = 2 • LB 0 \ \ $ 2 0 1 0 "\ \ $1 "
• i f \ \ n (• $ > 2 \ { • i f ! \ w@ \ \ $ 2 @ • LB \ \ n (; 0 0 1 0 "\ \ $1 " 0 1

if \w@\\$2@ .LB 0\\$2 0 1 0 "\\$1" 0 1 \}

.de RL

. nr ; 0 6

.if (\\n(.$>0)&(\w@\\$1@>0).nr ;0 0\\$1

.ie \\n(.$<2 .LB \\n(;0 0 2 4

.el .LB \\n(;0 0 2 4 1 0 1

Zilog
10/14/83

A-1

MM Zilog

• rr ; 0

.de VL

.if \\n(.$<1 .)D "VL:missing arg"

.ie \\n(.$<3 .LB 0\\$1 0\\$2 0 0

.el .LB 0\\$1 0\\$2 0 0 \& 0 1

MM

Any of these can be redefined to produce different behavior:
e.g., to provide two spaces between the bullet of a bullet
item and its text, redefine .BL as follows before invoking
it:

A-2

.de BL

.LB 3 0 2 0 *(BU

Zilog
10/14/83

A-2

MM Zilog

APPENDIX B
USE:&~-DEFINED LIST STRUCTURES •

WARNING

This appendix is intended only for users accus­
tomed to writi.ng formatter macros.

MM

If a large document requires complex list structures, it is
useful to be able to define the appearance for each list
level only once, instead of having to define it at the
beginning of each list. This permits consistency of style
in a large document. For example, a generalized list­
initialization macro might be defined in such a way that
what it does depends on the list-nesting level in effect at
the time the macro is called. Suppose that levels 1 through
5 of lists are to have the following appearance:

A.
[11

a)
+

The following code defines a macro (.aL) that always begins
a new list and determines the type of list according to the
current list level. To understand it, you should know that
the number register :g is used by the MM list macros to
determine the current list level; it is 0 if there is no
currently active list. Each call to a list-initialization
macro increments :gr, and each .LE call decrements it .

• de aL
'\" register g is used as a local temporary to
'\" save~ :g before it is changed below
.nr g \ \n (:g
.if \\ng=0 • AL A \" give me an A •
.if \\ng=l • LB \\n(Li 0 1 4 \" give. me a [11
.if \\ng=2 .BL \" give me a bullet
.if \\ng=3 • LB \\n(Li 0 2 2 a \" give me an a)
.if \\ng=4 .ML + \" give me a +

This macro can be used (in conjunction with .LI and .LE)
instead of .AL, .RL, .BL, .LB, and .ML. For example, the

B-1 Zilog
10/14/83

B-1

MM

following input:

.aL
• LI
first line •
• aL
• LI
second line •
• LE
• LI
third line •
• LE

will yield:

A. first line.

[l] second line.

B. third line.

Zilog MM

There is another approach to lists that is similar to the .H
mechanism. The list-initialization, as well as the .LI and
the .LE macros are all included in a single macro. That
macro (called .bL below) requires an argument to tell it
what level of item is required: it adjusts the list level by
either beginning a new list or setting the list level back
to a previous value, and then issues a .LI macro call to
produce the item:

.de bL

.ie \\n(.$.nr g \\$1 \" if there is an argument,
'\" that is the level
.el .nr g \\n(:g \" if no argument, use current level
.if \\ng-\\n(:g>l .)D "**ILLEGAL SKIPPING OF LEVEL"
'\" increasing level by more than 1
.if \\ng>\\n(:g \{.aL \\ng-1 \"if g > :g, begin new list

nr g \\n(:g\} \"and reset g to current level
(.aL changes g)
.if \\n(:g>\\ng .LC \\ng \" if :g > g, prune back
'\" to correct level
'\" if :g = g, stay within current list
.LI \" in all cases, get out an item

For .bL to work, the previous definition of the .aL macro
must be changed to obtain the value of g from its argument,
rather than from :g. Invoking .bL without arguments causes

B-2 Zilog
10/14/83

B-2

MM Zilog MM

it to stay at the current list level. The MM .LC macro
(List Clear) removes list descriptions until the level is
less than or equal to that of its argument. For example,
the .H macro includes the call ".LC 0". If text is to be
resumed at the Emd of a list, insert the call ".LC 0" to
clear out the lists completely. The example below illus­
trates the relatively small amount of input needed by this
approach. The input text:

The quick brown fox jumped over the lazy dog's back .
• bL 1
first line .
• bL 2
second line .
. bL 1
third line •
• bL
fourth line .
• LC 0
fifth line.

yields:

The quick brown fox jumped over the lazy dog's back.

A. first line.

[l] second line.·

B. third line.

C. fourth line ..

fifth line.

B-3 Zilog
10/14/83

B-3

MM Zilog

APPENDIX C
SAMPLE FOOTNOTES

MM

This appendix lists several footnote styles for both labeled
and automatically-numbered footnotes. As shown below, nroff
produces one style of footnotes; troff would produce five
different styles. The actual input for the immediately fol­
lowing text and for the footnotes at the bottom of this page
is shown on the following page.

With the footnote style set to the nroff default, we process
a footnote* followed by another one.** Using the .FD macro,
we changed the footnote style to hyphenate, right margin
justification, indent, and left justify the label. Here is
a footnote,*** and another.**** The footnote style is now
set, again via the .FD macro, to no hyphenation, no right
margin justification, no ind$ntation, and with the label
left-justified. Here comes the final one.*****

*This is the first footnote text example (.FD 10). This
is the default style for nroff. The right margin is not
justified. Hyphenation is not permitted. The text is in­
dented, and the automatically generated label is right­
justified in the text-indent space.

**This is the second footnote text example (.FD 10).
This is also the default nroff style but with a long foot­
note label provided by the user.

*** This is the third footnote example (.FD 1). The
right margin is justified, the footnote text is indented,
the label is left-justified in the text-indent space.
Although not necessarily illustrated by this example, hyphe­
nation is permitted. The quick brown fox jumped over the
lazy dog's back.

****This is the fourth footnote example (.FD 1). The
style is the same as the third footnote.

***** This is the fifth footnote example (.FD 6). The
right margin is not justified, hyphenation is not permitted,
the footnote text is not indented, and the label is placed
at the beginning of the first line. The quick brown fox
jumped over the lazy dog's back. Now is the time for all
go6d men to come to the aid of their country.

C-1 Zilog
10/14/83

C-1

MM

C-2

Zilog

.FD 10
With the footnote style set to the
.I nroff
default, we process a footnote*F
.FS
This is the first footnote text example (.FD 19).
This is the default style for
.I nroff.
he right margin is
.I not
justified.
Hyphenation is
.I not
permitted.

MM

The text is indented, and the automatically generated label is
.I right -justified
in the text-indent space •
• FE
followed by another one.*****\[([this stands for a space)

.FS *****
This is the second footnote text example (.FD 10).
This is also the default
.I nroff
style but with a long
footnote label provided by the user •
• FE
.FD 1
Using the .FD macro, we 6hanged the footnote style to
hyphenate, right margin justification,
indent, and left justify the label.
Here is a footnote,*F
.FS
This is the third footnote example (.FD 1).
The right margin is justified,
the footnote text is indented, the label is
.I left -justified
in the text-indent space.
Although riot necessarily illustrated by this example,
hyphenation is permitted.
The quick brown fox jumped over the lazy dog's back .
• FE
and another.\(dg\
.FS \(dg
This is the fourth footnote example (.FD 1).
The style is the same as the third footnote •
. FE
.FD 6
The footnote style is now set, again via the .FD macio,
to no hyphenati-0n, no right margin justification,

Zilog
10/14/83

C-2

MM

C-3

Zilog

no indentation, and with the label left-justified.
Here comes the final one.*F\
• FS
This is the fifth footnote example (.FD 6).
The right margin is
.I not
justified, hyphenation is
.I not
permitted, the footnote text is
.I not
indented, and the label is placed at the beginning
of the first line.
The quick brown1 fox jumped over the lazy dog's back.
Now is the time for all good men to come to the aid
of their country •
• FE

Zilog
10/14/83

MM

C-3

MM

D-1

Zilog

APPENDIX D
SAMPLE LETTER

NOTE

This appendix gives the input for a sample letter
which can be e>utput in nroff, troff, or both .

. ND "May 31, 1979"

.TL 33445S
Out-of Hours Course Description
.AU "D. W .. Stevenson" DWS PY 9876 5432 lX-123
.MT 0
• DS
J. M. Jone~s:

• DE
.P
Please use the following description for the
Out-of-Hours course "Document Preparation on
the UNIX*
.FS *
UNIX is a Trademark
of Bell Laboratories •
• FE
Time-sharing System:"
• p

MM

The course is intended for clerks, typists, and others
who intend to use the UNIX system
for preparing documentation.
The course will cover such topics as:
.VL 18
.LI Environment:
utilizing a time-sharing computer system;
accessing the system;
using appropriate output terminals .
• LI Files:
how text is stored on the system;
directories;
manipulating files •
• LI "Text editing:"
how to enter text so that subsequent revisions are easier
to make;
how to use the editing system to
add, delete, and move lines of text;
how to make corrections .
. LI "Text processing:"
basic concepts;
use of general-purpose formatting packages.

Zilog
10/14/83

D-1

MM

D-2

Zilog MM

.LI "Other facilities:"
additional capabilities useful to the typist such as theJ
~I "typo, spell, diff,"
and
.I grep
commands and a desk-calculator package .
.• LE
.• SG jrm
• NS
S. P. Lename
H. O. Del
M. Hill
.NE

Zilog
10/14/83

D-2

MM

E. 1. MM Error Mes!;ages

Zilog

APPENDIX E
ERROR MESSAGES

MM

Each MM error message consists of a standard part followed
by a variable part~ The standard part is of the form:

ERROR:input line n:

The variable part consists of a descriptive message, usually
beginning with a macro name. The variable parts are listed
below in alphabetical order by macro name, each with a more
complete explanation:*

Check TL, AU, AS, AE, MT sequence The proper sequence of
macros for the beginning
of a memorandum is shown
in {6.9}. Something has
disturbed this order.

AL:bad arg:value The argument to the .AL
macro is not one of 1, A,
a, I, or i. The
incorrect argument is
shown as value.

CS:cover sheet too long The text of the cover
sheet is too long to fit

DS:too many displays

on one page. The
abstract should be
reduced or the indent of
the abstract should be
decreased {6.4}.

More than 26 floating
displays are active at
once, i.e., have been
accumulated but not yet
output.

* This list is set up by ".LB 37 0 2 0" {5.4}.

E-1 Zilog
10/14/83

E-1

MM

OS : mi s s in g FE

DS :missing DE

DE:no DS or OF active

FE:no FS

FS:missing FE

FS:missing DE

H:bad arg:value

H:missing FE

H:missing DE

H:missing arg

E-2

Zilog

Zilog
10/14/83

MM

A display starts inside a
footnote. The likely
cause is the omission (or
misspel 1 ing) of a • FE to
end a previous footnote.

.DS or .OF occurs
a display, iue.,
has been omitted or
typed.

within
a • DE
mis-

• DE has been E:?ncountered
but there has not been a
previous .OS or .DF to
match it .

• FE has been encountered
with no previous .FS to
match it.

A previous .FS was not
matched by a closing .FE,
i.e., an attempt is being
made to begin a footnote
inside another one.

A footnote starts inside
a d i s p 1 a y , i . e • , a • DS or
.OF occurs without a
matching .DE.

The first argument to .H
must be a single digit
from 1 to 7, but value
has been supplied
instead.

A heading macro (.H or
.HU) occurs inside a
footnote.

A heading macro (.H or
.HU) occurs inside a
display •

• H needs at least 1 argu­
ment.

E-2

MM

HU:missing arg
!'

LB:missing arg(s)

LB:too many nested lists

LE:misrnatched

LI:no lists active

ML:missing arg

ND:missing arg

SA:bad arg:value

SG:missing DE

SG:missing FE

SG:no authors

vr,,:missing arg

E-3

Zilog

Zilog
10/14/83

MM

.HU needs 1 argument.

.LB requires at least 4
arguments.

Another list was started
when there were already 6
active lists.

.LE has occurred without
a previous .LB or other
list-initialization macro
{5.3.3}. Although this
is not a fatal error, the
message is issued because
there almost certainly
exists some problem in
the preceding text.

.LI occurs without a
pteceding list-initia­
lization .macro. The
latter has probably been
omitted, or has been
separated from the .LI by
an intervening .H or .HU •

• ML requires at least 1
argument •

• ND requires l argument.

The argument to .SA (if
any) must be either 0 or
1. The incorrect argu­
ment is shown as value.

.SG ·occurs
display .

inside a

• SG occurs inside a foot­
note •

• SG ·occurs without any
previous .AU macro(s) •

• VL requires at least 1
argument.

E-3

MM Zilog MM

E.1.1. Formatter Error Messages

Most messages issued by the formatter are self-ex.planatory.
Those error messages over which the user has (some) control
are listed below. Any other error messages should be
reported to the local system-support group.

Cannot do ev
is caused by (a) setting a page width that is negative
or extremely short, (b) setting a page length that is
negative or extremely short, (c) reprocessing a macro
package (e.g. performing a .so to a macro package that
was requested from the command line) , and (d) request­
ing the -sl option to troff on a document that is
longer than ten pages.

Cannot execute filename
is given by the .! request if it cannot find the
filename.

Cannot open filename
is issued if one of the files in the list of files to
be processed cannot be opened.

Exception word list full
indicates that too many words have been specified in
the hyphenation exception list (via .hw requests).

Line overflow
means that the output line being generated was too long
for the formatter's line buffer. The excess was dis­
carded. See the Word overflow message below.

Non-existent font type
means that a request has been made to mount an unknown
font.

Non-existent macro file
means that the requested macro package does not exist.

Non-existent terminal type

E-4

means that the terminal options refers to an unknown
terminal type.

Zilog
10/14/83

E-4

MM Zilog MM

Out of temp file space
means that additional temporary space for macro defini­
tions, diversions, etc. cannot be allocated. This mes­
sage often occurs because of unclosed diversions (miss­
ing .FE or .DE), unclosed macro definitions (e.g.,
missing " •. "), or a huge table of contents.

Too many page numbers
is issued when the list of pages specified to the for­
matter -o option is too long.

Too many string/macro names
is issued when the pool of string and macro names is
full. Unneeded strings and macros can be deleted using
the .rm request.

Too many number registers
number register names is full. Unneeded registers can
be deleted by using the .rr request.

Word overflow
means that
formatter's
discarded.

a word being generated exceeded the
word buffer. The excess characters were

A likely cause for this and for the "Line
message above are very long lines or words

through the misuse of \c or of the .cu
or very long equations produced by eqn(l)

E-5

overflow"
generated
request,
neqn(l).

Zilog
10/14/83

E-5

MM Zilog

APPENDIX F
SUMMARY OF MAC'ROS, STRINGS,

AND NUMBER REGISTERS

F.1. MM Macro Names

MM

The following is an alphabetical list of macro names used by
MM. The first line of each item gives the name of the
macro, a brief description, and a reference to the section
in which the macro is described. The second line gives a
prototype call of the macro.

Macros marked with an asterisk are not, in general, invoked
directly by the user. Rather, they are user exits called
from inside header, footer, or other macros.

lC One-column processing {12.4}
.1c

2C Two-column processing {12.4}
• 2C

AE Abstract End {6.4}
.AE

AF Alternate Format of Subject/Date/From block {6.7.2}
.AF [company-name]

AL Automatically-incremented List start {5.3.3.1}
.AL [type] [text-indent] [l]

AS Abstract Start {6.4}
.AS [arg] [indent]

AT Author's Title {6.2}

AU

.AT [title] •••

Author information {6.2}
• AU name [in i t i a 1 s] [1 o c]
[arg] [arg]

AV Approval signature {6.11.3}
.AV [name]

B Bold {12.1}

[dept] [ext] [room]

.B [bold-arg] [previous-font-arg] [bold] [prev]
[prev]

F-1 Zilog
10/14/83

[arg]

[bold]

F-1

MM

BE Bottom End {9.13}
.BE

BI Bold/Italic {12.1}

Zilog

.BI [bold-arg] [italic-arg]
[italic]

BL Bullet List start {5.3.3.2}
.BL [text-indent] [l]

BR Bold/Roman {12.1}
.BR [bold-arg] [Roman-arg]
[Roman]

BS Bottom Start {9.13}
.BS

CS Cover sheet {10.2}

[bold] [italic]

[bold] [Roman]

.cs [pages] [other] [total] [figs] [tbls] [refs]

DE Display End {7.1}
• DE

DF Display Floating start {7.2}
.DF [format] [fill] [right-indent]

DL Dash List start {5.3.3.3}
.DL [text-indent] [l]

DS Display Static start {7.1}
• DS [f o rm a t] [f i 11] [r i g ht - ind en t]

EC Equation Caption {7.5}
• EC [t i t 1 e] [over r id e] [f 1 a g]

EF Even-page Footer {9.6}
• EF [arg]

EH Even-page Header {9.3}
.EH [arg]

EN End equation display {7.4}
.EN

EQ Equation display start {7.4}
.EQ [label]

EX Exhibit caption {7.5}
.EX [title] [override] [flag]

F-2 Zilog
10/14/83

MM

[bold]

[bold]

F-2

MM

FC Formal Closing {6.11}
.FC [closing]

Zilog

FD Footnote Default format {8.3}
.FD [arg] [l)

FE Footnote End {8.2}
.FE

FG Figure title {7.5}
.FG [title] [override] ![flag]

FS Footnote Start {8.2}
.FS [label]

H Heading-numbered {4.2}
.H level [heading-text] [heading-suffix]

HC Hyphenation Character {3.4}
.HC [hyphenation-indicator]

MM

HM Heading Mark style (Arabic or Roman numerals, or
letters) {4.2.2.5}
• HM [a r g 1] • • • [a r g 7]

HU Heading-Unnumbered {4.3}
• HU heading- t:ex t

HX * Heading user exit x (before printing
.HX dlevel rlevel heading-text

HY Heading user exit y (before printing
.HY dlevel rlevel head irig- text

·HZ * Heading user exit z (after printing
.HZ dlevel rlevel heading-text

I Italic (underline in nroff) {12.1}

heading) { 4. 6}

heading) { 4. 6}

heading) {4.6}

.I [italic-arg] [previous-font-arg]
[italic] [prev]

[italic] [pr ev]

IB

IR

F-3

Italic/Bold {12.1}
.IB [italic-arg] [bold-arg] [italic] [bold]
[bold]

Italic/Roman {12.1}
.IR [italic-arg] [Roman-arg] [italic] [Roman]
[Roman]

Zilog
10/14/83

[italic]

[italic]

F-3

MM Zilog

LB List Begin {5.4}
.LB text-indent mark-indent pad type [mark]
[LB-space]

LC List-status Clear {Appendix A}
. LC [1 is t- 1eve1]

LE List End {5.3.2}
• LE [1]

LI List Item {5.3.1}
• LI [mark] [1]

ML Marked List start {5.3.3.4}
.ML mark [text- indent] [l]

MT Memorandum Type {6.6}
.MT [type] [addressee] or .M'l' [4] [1]

ND New Date {6.7.1}
.ND new-date

NE Notation End {6.11.2}
.NE

NS Notation Start {6.11.2}
.NS [arg]

nP Double-line indented Paragraphs {4.1}
. nP

OF Odd-page Footer {9.7}
• OF · [arg]

OH Odd-page Header {9.4}
.OH [arg]

OK Other Keywords for TM cover sheet {6.5}
.OK [keyword] ...

OP Odd Page {12.8}
.OP

P Paragraph .{4.1}
.P [type]

PF Page Footer {9.5}
• PF [arg]

F-4 Zilog
10/14/83

MM

[LI-·space]

F-4

MM Zilog MM

PH Page Header { 9. 2}
• PH [arg]

PM Proprietary Marking {9.15}
• PM [code]

PX * Page-header user exit {9.12}
.PX

R Return to regular (roman) font (end underlining in
nroff) {12.1}

RB

.R

Roman/Bold {12.1}
.RB [Roman-airg] [bold-arg]
[bold]

[Roman]

RD Read insertion from terminal {12.11}
.RD [prompt] [diversion] [string]

RF Reference end {11.2}

RI

.RF

Roman/Italic {12.1}
.RI [Roman-arg] [italic-arg] [Roman]
[italic]

RL Reference List start {5.3.3.5}
.RL [text-indE:mt] · [l]

RP Produce Reference Page {11.4}
.RP [arg] [arg]

RS Reference Start {11.2}
.RS [string-name]

[bold]

[italic]

s Set troff point size and vertical spacing {12.9}
.s [size]· [spacing]

[Roman]

[Roman]

SA Set adjustment (right-margin justification) default
{12.2}
.SA [arg]

SG Signature line {6.11.1}
.SG [arg] [l]

SK Skip pages {12.7}
• SK [pages]

SP Space-vertically {12.6}
.SP [lines]

F-5 Zilog
10/14/83

F-5

MM Zilog

TB Table title {7.5}
.TB [title] [override] [flag]

TC Table of Contents {10.1}
.TC [slevel] [spacing] [tlevel] [tab]
[head3] [head4] [heads]

TE Table End {7.3}
.TE

TH Table Header {7.3}
• TH [N]

TL Title of memorandum {6.1}
.TL [charging-case] [filing-case)

TM Technical Memorandum number(s) {6.3}
. TM [number] . • .

TP *Top-of-Page macro {9.12}
.TP

TS Table Start {7.3}
• TS [H]

TX* Table-of-contents user exit {10.1}
.TX

MM

[headl] [head2]

TY* Table-of-contents user exit (suppresses ''CONTENTS'')
{10.1}
.TY

VL Variable-item list start {5.3.3.6}
. VL text- indent [mark-indent] [1]

VM Vertical Margins {9.14}
• VM [top] [bottom]

WC Width Control {12.4}
.we [format]

F. 2. Strings

The following is an alphabetical list of string names used
by MM, giving for each a brief description, section refer­
ence, and initial (default) value(s). See {1.4} for notes
on setting and referencing strings.

F-6 Zilog
10/14/83

F-6

MM

BU Bullet {3.7}
nroff: e
troff: e

Zilog MM

Ci Contents indent up to seven args for heading levels
(must be scal1ed) {10.1}

F Footnote numberer {8.1}
nroff: \u\\n+(p\d
troff:\v'-.4m'\\n+(:p\s0\v' .4m'

DT Date (current date, unless overridden) {6.7.1}
Month day, year (e.g., May 20, 198~)

EM Em dash string, produces an em dash for both nroff and
troff {3.8}.

HF Heading font list, up to seven codes for heading levels
1 through 7 {4.2.2.4.1}

HP

Le

Lf

Lt

Lx

RE

Rf

Rp

Tm

3 3 2 2 2 2 2 (levels 1 and 2 bold, 3-7 underlined in
noff, and italic in troff)

Heading point size list, up to seven codes for heading
levels 1 through 7 {4.2.2.4.3}

Title for LIS'T OF EQUATIONS {7.6}

Title for LIS'T OF· FIGURES { 7. 6}

Title for LIST OF TABLES {7. 6}

Title for LIS'T OF EXHIBITS { 7. 6}

SCCS Release and Level of MM {12.3}
Release.Level (e.g., 15.103)

Reference numberer {11.1}

Title for References {11. 4}

Trademark string places the letters "TM" one half-line
above the text that it follows {3.9}

Note that if the release-paper style is used, then, in addi­
tion to the above strings, certain BTL location codes are
defined as strings; these location strings are needed only
until the .MT macro is called {6.8}.

Also accent strings are available {12.10}.

F-7 Zilog
10/14/83

F-7

MM Zilog MM

F.3. Number Registers

This section provides an alphabetical list of register
names, giving for each a brief description, section refer­
ence, initial (default) value, and the legal range of values
(where [m:n] means values from m to n inclusive).

Any register having a single-character name can be set from
the command line. An asterisk attached to a register name
indicates that that register can be set only from the com­
mand line or before the MM macro definitions are read by the
formatter {2.4, 2.5}. See {1.4} for notes on setting and
referencing registers.

A* Handles preprinted forms and the Bell Logo {2.4}
0, [0:2]

Au Inhibits printing of author's
room, and extension in the
memo rand um { 6. 2}

location, department,
"From" portion of a

1, [0:1]

C * Copy type (Original, DRAFT, etc.) {2.4}
0 (Original) , [0: 3]

Cl Contents level (i.e., level of headings saved for
table of contents) {4.4}
2, [0:7]

Cp Placement of List of Figures, etc. {10.1}
1 {on separate pages), [0: l]

D * Debug flag {2.4}
0, [0:1]

De Display eject register for floating dislays {7.2}
0, [0:1]

Df Display format register for floating displays {7.2}
5, [0:5]

Ds Static display pre- and post-space {7.1}
1, [0:1]

Ee Equation counter, used by .EC macro {7.5}
0, [0:?], incremented by 1 for each .EC call.

Ej Page-ejection flag for headings {4.2.2.1}
0 (no eject) , [0: 7]

F-8 Zilog
10/14/83

F-8

MM Zilog

Eq Equation label placement {7.4}
0 (right-adjusted), [0: l]

Ex Exhibit counter, used by .EX macro {7.5}
0, [0:?], incremented by 1 for each .EX call.

Fg Figure counter, used by .FG macro {7.5}
0, [0:?], incremented by 1 for each .FG call.

MM

Fs Footnote space (i.e., spacing between footnotes)
{8.4}
1, [0:?]

Hl-H7 Heading counters for levels 1-7 {4.2.2.5}
0, [0:?], incremented by .H of corresponding level or
.HU if at level given by register Hu. H2-H7 are
reset to 0 by any heading at a lower-numbered level.

Hb Heading break level (after .Hand .HU) {4.2.2.2}
2, [0:7]

He Heading centering level for .Hand .HU {4.2.2.3}
0 (no centerE~d headings), (0:7]

Hi Heading temporary indent (after .H and .HU) {4. 2. 2. 2}
1 (indent as paragraph), [0: 2]

Hs Heading space~ level (after .H and .HU) {4. 2. 2. 2}
2 (space only after .H 1 and .H 2), [0:7]

Ht Heading type (for .H: single or concatenated numbers)
{4. 2. 2. 5}
0 (concatenated numbers: 1.1.1, etc.), [0:1]

Hu Heading level for unnumbered heading (.HU) {4.3}
2 (.HU at the same level as .H 2), [0: 7]

Hy Hyphenation control for body of document {3.4}
0 (automatic hyphenation off), [0:1]

L * Length of page {2.4}
66, [20:?] (lli, [2i:?] in troff**

Le List of Equations {7.6}
0 (1 i st no t pro a u c ed) [0 : 1]

** For nroff, these values are unscaled numbers
representing lines or character positions; for troff, these
values must be scaled.

F-9 Zilog
10/14/83

F-9

MM Zilog

Lf List of Figures {7.6}
1 { 1 i st prod u c ed) [0 : 1]

Li List indent {5.3.3.l}
6, [0:?]

Ls List spacing between items by level {5.3.3.1}
5 (spacing between all levels) [0:5]

Lt List of Tables {7.6}
1 (1 i st pr o d u c ed) [0 : 1]

Lx List of Exhibits {7.6}
1 (1 i st produced) [0 : 1]

N * Numbering style {2.4}
0, [0:5]

Np Numbering style for paragraphs {4.1}
0 (unnumbered) [0:1]

O * Offset of page {2.4}
.75i, [0:?] (0.5i, [0i:?] in .nr :p -1 troff**

Oc Table of Contents page numbering style {10.1}
0 (lowercase Roman), [0:1]

Of Figure caption style {7.5}
0 (per i od se par a tor) , [0: 1]

P Page number, managed by MM {2.4}
0, [0:?]

Pi Paragraph indent {4.1}
5, [0:?]

Ps Paragraph spacing {4.1}
1 (one blank space between paragraphs), [0:?]

Pt Paragraph type {4.1}
0 (par a g r a ph s a 1 ways 1 e ft- just i f i ed) , [0 : 2]

Pv "PRIVATE" header {9.16}
0 (not printed) , [0 : 2]

MM

** For nroff, these values are unscaled numbers
representing lines or character positions; for troff, these
values must be scaled.

F-10 Zilog
10/14/83

F-10

MM Zilog

S * Troff default point size {2.4}
10, [6:36]

Si Standard indent for displays {7.1}
5, [0:?]

T * Type of nroff output device {2.4}
0, [0:2]

Tb Table counter {7.5}
0, [0:?], incremented by 1 for each .TB call.

U * Underlining style (nroff) for .Hand .HU {2.4}
0 (continuous underline when possible), [0:1]

W * Width of page (line and title length) {2.4}

MM

6i, [10:1365] (6i, [2i:7.54i] in .nr :p -1 troff**

** For nroff, these values are unscaled numbers
representing lines or character positions; for troff, these
values must be scaled.

F-11 Zilog
10/14/83

F-11

TYPING DOCUMENTS ON THE ZEUS SYSTEM
USING THE -MS MACROS WITH TROFF AND NROFF*

* This information is based on an article originally
written by M.E. Lesk, Bell Laboratories.

MS Zilog MS

ii Zilog ii

MS Zilog MS

Preface

This document describes a set of macros for preparing docu­
ments using the ZEUS troff and nroff formatting programs.
Documents can be output using either a phototypesetter or a
computer terminal without changing the input.

Section 1 describes procedures for creating document files.
Section 2 tells how to print the doctiments. Section 3 out­
lines the use of macros for producing tables and special
symbols. The appendix summarizes the -ms commands.

Refer to the sections on nroff and troff for further infor­
mation on producing documents.

iii Zilog iii

MS Zilog MS

iv Zilog iv

MS Zilog

Table of Contents

SE:CTION 1 PREPARING THE FILE

1.1. Text •••••••••••••••••••••••••
1. 2. Front Matter .

Pages 1. 3.
1. 4.
1. 5.
1. 6.
1. 7.
1. 8.

Cover Sheets and First
Page Headings ••••••
Multicolumn Formats
Section Headlings
Indented Paragraphs

.
.

Emphasis •••••••••••
1.9. Footnotes •••••••••••
1. 10.
1. 11.
1.12.
1.13.
1.14.
1.15.
1.16.
1.1 7.

Displays and Tables
Boxing Words or Lines
Keeping Blocks Together
Nroff/Troff Commands ••••••
Date ••••••••••
Signature Line

.
. . . .

Registers
Accents

.

. .

SECTION 2 PRINTING THE DOCUMENT .

SECTION 3 USING ADVANCED FORMAT OPTIONS

3.1.
3. 2.

Special
Tables

Symbols
APPENDIX A LIST OF COMMANDS .

v Zilog

MS

1-1

1-1
1-1
1-2
1-2
1-3
1-3
1-4
1-6
1-7
1-7
1-8
1-9
1-9
1-9
1-9

1-10
1-10

2-1

3-1

3-1
3-1

A-1

v

MS

1.1. Text

Zilog

SECTION 1
PREPARING THE FILE

MS

Type normally, except that instead of indenti~g for para­
graphs, place the line

.PP

before each paragraph. This produces indenting after an
extra line space.

Alternatively, the
(block) paragraph.
(Section 1.16).

command .LP produces a left-aligned
The paragraph spacing CAn be changed

1.2. Front Matter

Start front matter as follows:

[optional overall format .RP, Section 1.3]
.TL
Title of document (one or more lines)
.AU
Author (s) (one or mor~ lines)
.AI
Author's institution(s)
.AB
Abstract; to be placed on the cover sheet of a document.
Line length is 5/6 of normal; use .11 here to change •
• AE (abstract end)
text ••• (begins with .lp,.Section 1.1)

To omit some of the standard headings (such as abstract or
author's institution), omit the fields and corresponding
command lines. Several interspersed .AU and .AI ·lines can
be used for multiple authors. The headings are not compul­
sory; beginning with a .lp command starts the document with
an ordinary paragraph.

1-1

NOTE

Do not begin a document with a line of text. Some
-ms command must precede any text input. When in
doubt, use .LP to get proper initialization. The

Zilog 1-1

MS Zilog

commands .lp, .LP, .TL, .SH, and .NH are also
allowed.

1.3. Cover Sheets and First Pages

MS

The first line of a document signals the general format of
the first page. In particular, if the first command is .RP,
a cover sheet with title and abstract is generated. The
default format of no cover sheet is useful for scanning
drafts.

In general, -ms is arranged so that only one form of a docu­
ment need be stored. The first command gives the format,
and unnecessary items for that format are ignored.

NOTE

Do not put extraneous material between the .TL and
.AE commands. Processing of the titling items
is special, and other data placed between them may
not be processed as expected. Some -ms command
must precede any input text.

1.4. Page Headings

The -ms macros, by default, print a page heading containing
a page number. A default page footing is provided only in
nroff, where the date is used. Minor adjustments to the
page headers/footers are made by redefining the strings LH,
CH, and RH (which are the left, center, and right portions
of the page headers), and the strings LF, CF, and RF (the
left, center, and right portions of the page footer). To
get the proper page number in these strings, use a backslash
(\) as in:

.ds CH "\- \\n(PN \-

which defines a center header of the form

- 5 -

For page number, the number register PN should be used in
preference to the register %.

For more complex formats, redefine the macros PT and BT,
which are invoked (respectively) at the top and bottom of
each page. The margins, taken from registers HM and for the
top margin FM for the bottom margin, are normally one inch.
The page header/footer is in the middle of that space. If
these macros are redefined, be careful with parameters such

1-2 Zilog 1-2

MS Zilog MS

as point size or font.

1. 5. Multicolumn Fo1 rmats

The command

.MC [column width [gutter width]]

makes multiple columns with the specified column and gutter
width. The maximum is as many columns as fit across the
page. Whenever the number of columns is changed (except
going from full width to some larger number of columns), a
new page is started.

This feature is more useful for typeset output than for out­
put to the terminal. Placing the command .2C in your docu­
ment causes it to be printed in double-column format begin­
ning at that point. The command .lC produces one-column
format. Changing column format causes a page break.

1.6. Section Headings

Two commands, .NH and .SH, are used to produce section head­
ings.. Entering

.. NH
type section heading here
can be several lines

produces a numbered section heading in boldface.
command produces an unnumbered heading.

The • SH

Every section heading must be followed by a paragraph begin­
ning with .lp or .LP to indicate the end of the heading.
Headings can contain more than one line of text.

The .NH
schemes.
be a level
generated.
sections.

1-3

command also supports more complex numbering
If a numerical argument is given, it is taken to
number, and an appropriate subsection number is

Larger level numbers indicate deeper sub­
For example,

Zilog 1-3

MS

.NH
Erie-Lackawanna
.NH 2

Zilog

Morris and Essex Division
.NH 3
Gladstone Branch
.NH 3
Montclair Branch
.NH 2
Boonton Line

generates:

2. Erie-Lackawanna

2.1. Morris and Essex Division

2.1.1 Gladstone Branch

2.1.2 Montclair Branch

2.2. Boonton Line

1.7. Indented Paragraphs

MS

Paragraphs with hanging numbers, such as references, are
often handled with indented paragraphs.

Example 1. Simple Indentation

.IP [l]
Text for first paragraph, typed
normally for as long as necessary
on as many lines as needed •
• IP [2]
Text for second paragraph, •••

produces

[l] Text for first paragraph, typed normally for as long as
necessary on as many lines as needed.

[2] Text for second paragraph, . . .

1-4 Zilog 1-4

MS Zilog MS

A series of indented paragraphs can be followed by an ordi­
nary paragraph by entering .Ip or .LP.

Example 2. Block Indentation

More sophisticated uses of .ip are also possible. If the
label is omitted, for example, a plain block indent is pro­
duced. The lines

.IP
This material will
just be turned into a
block indent suitable for quotations •
• LP

produce

This material will just be turned into a block indent
suitable for quotations.

Example 3. Nonstandard Indentation

If a nonstandard amount of indenting is required, it is
specified after the label (in character positions} and
remains in effect until the next .Ip or .LP. Thus, the gen­
eral form of the .ip command contains two additional fields:
the label and the indenting length. For example,

.ip first: 9
Notice the longer label, requiring larger
indenting for these paragraphs •
• ip second:
And so forth •
• LP

produces the following:

first: Notice the longer label, requiring larger indenting
for these paragraphs.

second:
And so forth.

Example 4. Multiple Nested Indentations

It is also possible to produce multiple nested indents. The
command .RS indicates that the next .ip starts from the
current indentation level. Each .RE takes one level of
indenting, so .RS and .RE commands must be balanced. The
.RS command can be thought of as "move right" and the .RE
command as "move left~" For example,

1-5 Zilog 1-5

MS

.IP 1.
Customer Corporation
.RS
• IP 1.1
Murray Hill
.IP 1.2
Holmdel
.IP 1.3
Whippany
.RS
.IP 1.3.1
Madison
.RE
.IP 1.4
Chester
.RE
.LP

results in

1. Customer Corporation

1..1 Murray Hill
1.2 Holmdel
1.. 3 Whippany

1. 3. 1 Mad is on
1. 4 Chester

Zilog

Example 5. Right Indentation

MS

All of these variations on .LP leave the right margin
untouched. Sometimes, for purposes such as setting off a
quotation, a paragraph indented on both right and left is
required.

A single paragraph like this is obtained by preceding
it with .QP. More complicated material (several para­
graphs) is bracketed with .QS and .QE.

1.8. Emphasis (

To produce italics on the typesetter or underlining on the
terminal, use

1-6

.I
as much text as you want
can be typed here
.R

Zilog 1-6

MS Zilag MS

as was done for these three words. The .R command restores
the normal (usually Roman) fon.t. If .only one word is to be
italicized or underlined, it can be input on a separate line
with the .I command,

.I word

In this case, no .R is needed to restore the previous font.

Boldface output on the typesetter ls produced by

.B
Text to be set in boldface
goes he rE~
.R

This is also underlined on the terminal or line printer. As
with .I, a single word can be placed in boldface by placing
it on a separate line with the .B command.

Size changes can be specified with the commands .LG (make
larger), .SM (make smaller), and .NL (return to normal
size). The size change is two points; the commands can be
repeated for increased effect.

To specify an underlined word on the typesetter, use the
command

.UL word

There is no way to underline multiple words on the
typesetter.

1.9. Footnotes

Material placed between lines with the commands .FS for
footnote and .FE for footnote end is collected and placed at
the bottom of the curr~nt page after an asterisk (*) • By
default, footnotes are ll/12th the length of normal text,
but this can be changed using the FL register (Section
1. 16).

I.le. Displays and Tables

To prepare displays whose lines are not to be rearranged
(such as tables), enclose the text in the commands .DS and
.DE as follows:

1-7 Zilog 1-7

MS Zilog

table lines, like the
examples here, are placed
between .os and .DE

MS

By default, lines between .DS and .DE are indented and
left-adjusted. It is also possible to center lines, or
retain the left margin. Lines bracketed by .OS C and .DE
commands are centered and not rearranged. Lines bracketed
by .os L and .DE are left-adjusted, not indented, and not
rearranged. The command .os is equivalent to .DS I, which
indents and left-adjusts. For example,

whereas

these lines were preceded
by .OS C and followed by

a • DE command;

These lines were preceded
by .OS L and followed by
a • DE command.

There is also a variant,
a left-adjusted block
block.

.DS B, that makes the display into
of text, then centers that entire

Normally, a display is kept on one page. To produce a long
display split across page boundaries, use .CD, .LO, or .ID
in place of the commands .cs C, .DS L, or .OS I, respec­
tively. An extra argument to the .DS I or .DS command
specifies the amount to indent. There is no command to
right-adjust lines.

1.11. Boxing Words or Lines

To draw a rectangular box around a word, use the command

.BX word

Longer pieces of text can be boxed by enclosing them with
.Bl and .B2, as with

.Bl
text .••
• B2

Italics are preferred to boxes because boxes are not printed
neatly on a terminal. However, col may be used to improve
such terminal output. See ZEUS Rererence Manual, Section 1.

1-8 Zilog 1-8

MS Zilog MS

1.12. Keeping Blocks Together

To keep a table or other block of lines together on a page,
use the keep - release commands. If a block of lines pre­
ceded by .KS and followed by .KE does not fit on the
remainder of the current page, it begins on a new page.
(Lines bracketed by .DS and .DE commands are automatically
kept together this way.) There is also a keep floating {.KF}
command. If a block preceded by .KF {instead of .KS} does
not fit on the current page, it is moved down through the
text until the top of the next page. Thus, no large blank
space is introduced in the document.

1.13. Nroff/Troff Commands

The following commands from the. basic formatting programs
work for both typesetter and computer terminal output:

.bp begin new page

.br "break" stop running text from line to line

.sp n insert n blank lines

.na do not adjust right margins

1.14. Date

By default, documents produced on computer terminals have
the date at the bottom of each page, and documents produced
on the typesetter do note To force the date, use the .DA
command. To force no date, use the .ND command. To force a
fixed date, enter the date after the .DA command; for exam­
ple,

.DA July 4, 1776

The command ".ND May 8, 1945" in .RP format places the
specified date on the cover sheet and nowhere else. Place
this line before the title.

1.15. Signature Line

To obtain a signature line, use the command .SG. The
author's name is output in place of the .SG line. An argu­
ment to .SG is used as a typing identification line, and
placed after the signatures. The .SG command is ignored in
released paper format.

1-9 Zilog 1-9

MS Zilog MS

1.16. Registers

Certain of the registers used by -ms can be altered to
change default settings using commands beginning with .nr.
For example,

/.nr PS 9

makes the dafault point size 9 point. If the effect is
needed immediately, use the normal troff command in addi­
tion to changing the number register.

Reg. Defines Takes Effect Default

PS point size next paragraph 10
vs line spacing next paragraph 12 pts
LL line length next paragraph 6 inches
LT title length next paragraph 6 inches
PD para. spacing next paragraph 0.3 vs
PI para. indent next paragraph 5 ens
FL footnote length next FS 11/12 LL
cw column width next 2C 7/15 LL
GW intercolumn gap next 2C 1/15 LL
PO page offset next page 26/27 inc:hes
HM top margin next page 1 inch
FM bottom margin next page 1 inch

It is also possible to alter the strings LH, CH, and RH
(left, center, and right headers), and LF, CF, and RF
(strings in the page footers). The page number on output is
taken from register PN to permit changing its output style.
For more complicated headers and footers, the macros PT and
BT can be redefined as explained, in Section 1.4.

1.17. Accents

To simplify typing certain foreign words, strings represent­
ing common accent marks are defined for use on photocomposi­
tion systems and terminals on which strikeover characters
have been defined.

Input

*'e
*'e
*:u

1-10

Output
Character with:

accute accent
grave accent
umlaut (diaeresis)

Zilog 1-10

MS

*"'e
* ... a
*Ce
*,c

1-11

circumflex
tilde
hacek (wedge)
cedilla

Zilog MS

Zilog 1-11

MS Zilog

SECTION 2
PRINTING THE DOCUMENT

MS

After the document is prepared and stored on a file, it can
be displayed on a terminal with the command

nroff -ms file

If double-column format (2C) is being used, pipe the nroff
output through col by making the first line of the input

.pi /z/bin/col

The document can be printed on the typesetter with the com­
mand

troff -ms file

Many options are possible. In each case, if the document is
stored in several files, list all the file names used. If
equations or tables are used, eqn and/or tbl must be
invoked as preprocessors.

2-1 Zilog 2-1

MS Zilog MS

SECTION 3
USING ADVANCED FORMAT OPTIONS

3.1. Special Symbols

To use Greek or mathematics symbols, see eqn for equation
setting. To aid eqn users, -ms provides definitions of .EQ
and .EN, which normally center~he equation and set it off
slightly. An argument on .EQ is taken to be an equation
number and placed in the right margin near the equation. In
addition, there are three special arguments to EQ; the
letters C, I, and L indicate centered (default), indented,
and left-adjusted equations. If there is both a format argu­
ment and an equation number, give the format argument first,
as in

.EQ L (l.3a)

for a left-adjusted equation numbered (l.3a).

3.2. Tables

The macros .TS and .TE are defined to separate tables from
·text with white space. A very long table with a heading can
be broken across pages by beginning it with .TS H instead of
.TS, and placing the line .TH in the table data to repeat
the heading. If the table has no heading repeated from page
to page, use the ordinary .TS and .TE macros.

3-1 Zilog 3-1

MS Zilog

APPENDIX A
LIST OF COMMANDS

Return to single-column format

2C Start double-column format
AB Begin abstract
AE End abstract
AI Specify author's institution
AU Specify author
B Begin boldface
DA Provide the date on each page
DE End display
DS Start display (also CD, LD, ID)
EN End equation
EQ Begin equation
FE End footnote
FS Begin footnote
I Begin italics
IP Begin indented paragraph
KE Release keep
KF Begin floating keep
KS Start keep
LG Increase type size
LP Left aligned block paragraph
ND Change or cancel date
NH Specify numbered heading
NL Return to normal type size
PP Begin paragraph
R Return to regular font (usually Roman)
RE End one level of relative indenting
RP Use released paper format
RS Relative indent increased one level
SG Insert signature line
SH Specify section heading
SM Change to smaller type size
TL Specify title
UL Underline one word

A-1 Zilog

MS

A-1

MS Zilog MS

Register Names

The following register names are used by -ms internally.
Independent use of these names in one's own macros may pro­
duce incorrect output. No lowercase letters are used in any
-ms internal name.

FC H4
#T FL H5
lT FM HM
i·r FP HT
AV GW IF
cw Hl IK
ow H2 IM
EF H3 IP

AI cs
AU CT
B D
BG DA
BT DE

, c DS
lC Cl DW
2C C2 DY
Al CA El
A2 CB E2
A3 cc E3
A4 CD E4
AS CF ES
AB CH EE
AE CM EL

A-2

Number Registers Used in -ms

IQ MF
IR MM
IT MN
KI MO
Ll NA
LE NC
LL ND
t.·r NF

String

EM I
EN Il
EQ I2
EZ !3
PA I4
F'E !5
FJ ID
PK IE
FN IM
FO IP
FQ IZ
E'S KE
FV KF
FY KQ
HO KS

NS PO
or PQ
OJ PS
PD PX
PE RO
PF ST
PI Tl
PN TB

Registers

LB OK
LD pp
LG PT
LP PY
ME QF
MF R
MH Rl
MN R2
MO R3
MR R4
ND RS
NH RC
NL RE
NP RF
OD RH

Zilog

TC
TD
TN
TQ
TV
vs

Used

RP
RQ
RS
RT
so
Sl
S2
SG
SH
SM
SN
SY
TA
TE
TH

in

yy
ZN

WF
YE

-ms

TL
TM
TQ
TS
TT
UL
WB
WH
WT
XO
XF
XK

A-2

NROFF USER'S MANUAL*

* This information is based on an article originally written by
Joseph F. Ossanna, Bell Laboratories.

NROFF Zilog NROFF

ii Zilog ii

NROFF Zilog NROFF

Preface

This document is a reference manual for the nroff text pro­
cessors. The reader is exp$cted to have some experience
with these text processors before using this manual. For an
introductory text, see Troff Tutorial.

Each section of this document covers an nroff command or set
of related command~;, and sections appear in order of use;
that is, frequently used commands appear first. At the end
of this documment are several summaries and appendixes.

Numerical parameters are indicated in this manual in two
ways. +N means that the argument can take the forms N, +N,
or -N and that the corresponding effect is to set the
affected parameter to N, to increment it by N, or to decre­
ment it by N. N means that an initial algebraic sign is not
an increment indicator, but merely the sign of N. Gen­
erally, unreasonable numerical input is either ignored or
truncated to a reasonable value. For example, most requests
expect to set parameters to non~negative values; exceptions
are sp, wh, ch, nt·, and if. The requests ps, ft, po, vs,
ls, 11, in, and lt restore the previous parameter value in
the absence of an argument.

Single character arguments are indicated by single lowercase
letters and one/two character arguments are indicated by a
pair of lowercase letters. Character string arguments are
indicated by multicharacter mnemonics.

iii

NOTE

The version of troff pn ZEUS produces output for a
Graphic Systems Inc. C/A/T phototypesetter. This
device is not presently supported by ZEUS. Since
the device is not present, it will always appear
to be busy to troff.

Zilog iii

NROFF Zilog NROFF

iv Zilog
iv

NROFF Zilog

Table of Contents

SECTION 1 BASIC INJ~ORMATION .
1.1. Introduction
1. 2. Usage • • • • • ti • •••
1. 3. Form of Input
1. 4. Formatter and Device Resolution
1. 5. Numerical Parameter Input
1. 6. Numerical Expressions

SECTION 2 FONT AND CHARACTER SIZE CONTROL
2 .1.
2. 2 ~
2.3.

Character Se!t
Fonts ••••••••
Character Size

.
SECTION 3 PAGE CON'l'ROL

SECTION 4 TEXT FILL.ING, ADJUSTING, AND CENTERING

Adjusting 4.1.
4. 2.

Filling and
Interrupted Text •••••

SECTION 5 VERTICAL SPACING

5.1.
5. 2.
5.3.
5.4.

Base-Line Spacing •••••••
Extra-Line Spacing ••••••
Blocks of Vertical Space
Line Length and Indenting

.

SECTION 6 MACROS, STRINGS, DIVERSIONS,

.

AND POSITION TRAPS •••••••••••••••••••••••••

v

6 .1.
6. 2.
6. 3.
6.4.
6.5.

Macros and Strings ••••••••••••
Copy Mode Input Interpretation
Arguments
Diversions ••••••
Traps • • • • • • • • • • • •'•

Zilog

. ..

NROFF

1-1

1-1
1-1
1-3
1-4
1-4
1-5

2-1

2-1
2-1
2-2

3-1

4-1

4-1
4-2

5-1

5-1
5-1
5-1
5-3

6-1

6-1
6-1
6-2
6-3
6-3

v

NROFF Zilog NROFF

SECTION 7 NUMBER REGISTERS • 7-1

SECTION 8 TABS, LEADERS, AND FIELDS••••••••••••••••••

8 .1.
8.2.

Tabs and Leaders ••••••••••••••••••••••••••••••
Fields

SECTION 9 I/O CONVENTIONS AND CHARACTER TRANSLATIONS •

9 .1.
9.2.
9.3.
9.4.
9.5.
9.6.
9.7.

Input Character Translation •••••••••••••••••••
Ligatures ••••••.••••••••••••••••••••••••••••••
Backspacing, Underlining, and Overstriking
Control Characters ••••••••••••••••••••••••••••
Output Translation ••••••••••••••••••••••••••••
Transparent Throughput ••••••••••••••••••••••••
Comments and Concealed New Lines ••••••••••••••

8-1

8-1
8-1

9-1

9-1
9-1
9-2
9-3
9-3
9-4
9-4

SECTION Hf LOCAL MOTIONS AND WIDTH FUNCTION•••••••••• 10-1

10.1. Local Motions •••••••••••••••••••••••••••.
10.2. Width Function •••••••••••••••••••••••••••
10.3. Mark Horizontal Place ••••••••••••••••••••••••

SECTION 11 OVERSTRIKE, LINE-DRAWING,
AND ZERO-WIDTH FUNCTIONS••••••••••

11.1.
11. 2.
11. 3.

Ov e r s t r i k i n g • .. • • • •
Line Drawing
Zero-Width Characters

SECTION 12 HYPHENATION . ~

SECTION 13 THREE-PART TITLES . ~

SECTION 14 OUTPUT LINE NUMBERING .

vi Zilog

10-1
10-2
10-2

11-1

11-1
11-1
11-2

12-1

13-1

14-1

vi

NROFF Zilog NROFF

SECTION 15 CONDITIONAL ACCEPTANCE OF INPUT••••••••••• 15-1

SECTION 16 ENVIRONMENT SWITCHING ••••••••••••••••••••• 16-1

SECTION 17 INSERTIONS FROM THE STANDARD INPUT•••••••• 17-1

SECTION 18 INPUT/OUTPUT FILE SWITCHING ••••••••••••••• 18-1

SECTION 19 MISCELLL.1'HEOUS • 19-1

SECTION 20 OUTPUT AND ERROR MESSAGES••••••••••••••••• 20-1

SECTION 21 EXAMPLES • 21-1

21.1. Introduction ••••••••••••••••••••••••••••••••• 21-1
21.2. Page Margins •••••••••••• ; •••••••••••••••••••• 21-1
21.3. Paragraphs and Headings •••••••••••••••••••••• 21-3
21.4. Multiple Column Output ••••••••••••••••••••••• 21-4
21.5. Footnote Processing •••••••••••••••••••••••••• 21-5
21.6. Last Page •••••••••••••••••• > ••••••••••••••••• 21-7

APPENDIX A SUMMARY AND INDEX••••••••••••••••••••••••• A-1

A. l. Summary • A-1
A.2. Alphabetical Request,
Section Number Cross Reference ••••••••••••••••••••• A-8
A.3. Escape Sequences for Characters,
Indicators, Functions •••••••••••••••••••••••••••••• A-9
A.4. Predefined General Number Registers ••••••••••• A-10
A.5. Predefined Read-only Number Registers ••••••••• A-11

APPENDIX B SUMMARY OF RECENT CHANGES TO NROFF/TROFF •• B-1

vii Zilog vii

NROFF

I.I. Introduction

Zilog

SECTI~N 1
BASIC INFORMATION

NROFF

Nroff and troff are text processors under the ZEUS Time­
sharing System that format text for typewriter-like termi­
nals and for phototypesetters, respectively. They accept
lines of text interspersed with lines of format control
information and format the text into a printable, paginated
document with a user-designed style. Nroff and troff offer
great freedom in document styling, including:

$ Arbitrarily styled headers and footers

& Arbitrarily styled footnotes

$ Multiple automatic sequence numbering for paragraphs,
sections, etc.

$ Multiple column output

• Dynamic font and point-size control

• Arbitrary horizontal and vertical local motions at any
point

A family of automatic overstriking, bracket construc­
tion, and line drawing functions

Nroff and troff are compatible with each other; it is possi­
ble to prepare input acceptable to both. Conditional input
is provided that enables the user to embed input destined
for either program. Nroff can prepare output directly for a
variety of terminal types and is capable of utilizing the
full resolution of each terminal.

1.2. Usage

The general form of invoking nroff or troff at ZEUS command
level is

nroff options files (or troff options files)

where options represents any of a number of option arguments
and files represents the list of files containing the docu­
ment to be formatted. An argu~ent consisting of a single

1-1 Zilog 1-1

NROFF Zilog NROFF

minus (-) is taken to be a file name corresponding to the
standard input. If no file names are given, input is taken
from the standard input. The following options can appear
in any order as long as they appear before the files:

Option

-olist

-~

-SN

-mname

-raN

-i

-q

-Tname

-e

1-2

Effect

Print only pages whose page numbers appear in
a list that consists of comma-separated
numbers and number ranges. A number range
has the form N-M and means pages N through M;
an initial -N means from the beginning to
page N; a final N- means from N to the end.

Number first generated page N.

Stop every N pages. Nroff halts prior to
every N pages (default N=l) to allow paper
loading or changing, and resumes upon receipt
of a new line. Troff stops the photo­
typesetter every N pages, produces a trailer
to allow changing cassettes, and resumes
after the phototypesetter START button is
pressed.

Prepends the macro file /usr/lib/tmac.name to
the input files.

Register a (one-character) is set to N.

Read standard input after the input files are
exhausted.

Invoke the simultaneous input-output mode of
the rd request.

NROFF ONLY

Specifies the name of the output terminal
type. Currently defined names are:
37 for the Model 37 Teletypewriter
TN360 (default) for the GE TermiNet 300 (or
any terminal without half-line capabilities),
3115 for the DASI-300S,
300 for the DASI-300,
459 for the DASI-450 (Diablo Hyterm) •

Produce equally-spaced words in adjusted
lines, using full terminal resolution.

Zilog 1-2

NROFF

-t

-f

-b

-a

-~

Zilog NROFF

TROFF ONLY

Direct output to the standard output instead
of the phototypesetter.

Ref rain from feeding out paper and stopping
phototypesetter at the end of the run.

Troff reports whether the phototypesetter is
busy or available. No text processing is
done. (See NOTE in preface.)

Send a printable (ASCII) approximation of the
results to the standard output.

Print all characters in point size ~' while
retaining all prescribed spacings and
motions, to reduce phototypesetter elasped
time.

Each option is invoked as a separate argument; for example,

nroff -oi,~-_!! -T300S -mabc filel file2

requests formatting of pages 4, 8, 9, and 10 of a document
contained in the files named fflel and file2, specifies the
output terminal as a DASI-300S, and invokes the macro pack­
age abc.

1.3. Form of Input

Input consists of text lines that are destined to be
printed, interspersed with control lines that control subse­
quent processing. Control lines begin with a control char­
acter, normally a period (.) or acute accent (') followed by
a one or two-character name that specifies a basic request
or the substitution of a user-defined macro in place of the
control line. The control character ' suppresses the break
function (the forced output of a partially filled line)
caused by certain requests. The control character can be
separated from the request/macro name by white space (spaces
and/or tabs). Names must be followed by either a space or a
new line. Control lines with unrecognized names are
ignored.

Various special functions can be introduced anywhere in the
input by means of an escape character, normally a backslash
(\). For example, the function \nR, causes the interpola­
tion of the contents of the number register R in place of

1-3 Zilog 1-3

NROFF Zilog NROFF

the function; here R is either a single-character name as in
\nx, or a left-parenthesis-introduced, two-character name as
in \n(xx.

1.4. Formatter and Device Resolution

For internal processing, troff uses 432 units per inch,
corresponding to the Graphic Systems phototypesetter, which
has a horizontal resolution of 1/43/. inch and a vertical
resolution of 1/144 inch. Nroff uses 240 units per inch,
corresponding to the least common multiple of the horizontal
and vertical resolutions of various typewriter-like output
devices. Troff rounds horizontal/vertical numerical parame­
ter input to the actual horizontal/vertical resolution of
the Graphic Systems typesetter. Nroff rounds numerical
input to the actual resolution of the output device indi­
cated by the -T option (default Model 37 Teletype).

1.5. Numerical Parameter Input

Both nroff and troff accept num~rical input with the
appended scale indicators shown in the following table,
where S is the current type size in points, V is the current
vertical line spacing in basic units, and C is a nominal
character width in basic units.
Scale
Indicator

i
c
p

m
n
p
u
v
Default,

Meaning

Inch
Centimeter
Pica = 1/6 inch
Em ·- S points
En = Em/2
Point = 1/72 inch
Basic unit
Vertical line space

see below

Number of Basic Units
TROFF NROFF

432 240
432x50/127 240x50/127
72 240/6
6xS c
3xS c
6 240/72
1 1
v V none

In nroff, both the em and the en are taken to be equal to
the C, which is output-device dependent; common values are
1/10 and 1/12 inch. Actual character widths in niroff need
not be the same, and constructed characters such as -> are
often extra wide. The default scaling is ems for the
horizontally-oriented requests and functions 11, in, ti, ta,
It, po, me, \h, and \l; the default is VS for the
vertically-oriented requests and functions pl, wh, ch, dt,
sp, sv, ne, rt, \v, \x, and \L; the default is p for the vs
request; the default is u for the requests nr, if, and ie.
All other requests ignore any scale indicators. When a

1-4 Zilog 1-4

NROFF Zilog NROFF

number register containing an already appropriately scaled
number is interpolated to provide numerical input, the unit
scale indicator u needs to be appended to prevent an addi­
tional inappropria~e default scaling. The number (N) can be
specified in decimal-fraction form, but the parameter
finally stored is rounded to an integer number of basic
units.

The absolute position indicator (I) can be prepended to a
number N to· generate the distance to the vertical or hor­
izontal place N. For vertically-oriented requests and func­
tions, IN becomes the distance in basic units from the
current vertical place on the page or in a diversion (Sec­
tion 6.4) to the the vertical place N. For all other
requests and functions, IN becomes the distance from the
current horizontal place on the input line to the horizontal
place N. For example,

• sp I 3. 2c

spaces in the required direction to 3.2 centimeters from the
top of the page.

1.6. Numerical Expressions

Wherever numerical input is expected, the following can be
used: an expression involving parentheses, the arithmetic
operators +, -, /, *, % (mod), and the logical operators <,
> , < = , >= , = (c• r ==) , & (and) , and : (o r) • Except w he r e
controlled by parentheses, evaluation of expressions is
left-to-right; there is no operator precedence. In the case
of certain requests, an initial + or is stripped and
interpreted as an increment or decrement indicator. In the
presence of default scaling, the desired scale indicator
must be attached to every number in an expression for which
the desired scaling differs from the default scaling. For
example, if the number register x contains 2 and the current
point size is 10, then

.11 (4.25i+\nxP+3)/2u

sets the line length to 1/2 the sum of 4.25 inches + 2 picas
+ 30 points.

1-5 Zilog 1-5

NROFF Zilog NROFF

SECTION 2
FONT AND CHARACTER SIZE CONTROL

2.1. Character Set

The troff character set consists of the Graphics Systems
Commercial II character set plus a Special Mathematical Font
character set. Each set has 102 characters. These charac­
ter sets are shown in the Appendix. All ASCII characters
are included, with some on the Special Font. With three
exceptions, the ASCII characters are input as themselves,
and non-ASCII characters are input in the form \(xx where xx
is a two-character name given in the Appendix. The three
ASCII exceptions are mapped as follows:

ASCII Input:

Character Na.me

acute accent
grave accent
minus

Printed by troff:

Character Name

close quote
open quote
hyphen

The characters ' ',and - can be input by\',\', and \-,
respectively, or by their names (Section 2). The ASCII
characters @, #, •, ', ', <, >, \, {, }, -, ", and exist
only on the Special Font and are printed as a 1-em space if
that font is not mounted.

Nroff recognizes the entire troff character set, but can
print only ASCII characters, additional characters as are
available on the output device, such characters as are able
to be constructed by overstriking or other combination, and
those that can reasonably be mapped into other printable
characters. The exact behavior is determined by a driving
table prepared for each device. The characters ', ',and
print as themselves.

2.2. Fonts

The default mounted fonts are Times Roman (R), Times Italic
(I), Times Bold (B), and the Special Mathematical Font (S)
on physical typesetter positions 1, 2, 3, and 4, respec­
tively. The current font can be chang.ed (among the mounted
fonts) by use of the ft request, or by embedding at any
desired point either \fx, \f(xx, or \fN, where x or xx is
the name of a mounted font and N is a numerical font

2-1 Zilog 2-1

NROFF Zilog NROFF

position. It is not necessary to change to the special
font; characters on that font are automatically handled. A
request for a font that is named but not mounted is ignored.
Troff can be informed that any particular font is mounted by
use of the fp request. The list of known fonts is
installation-dependent. In the subsequent discussion of
font-related requests, F represents a one or two-character
font name or the numerical font position, 1-4. The current
font is available (as numerical position) in the read-only
number register .f.

Nroff recognizes font control and (normally) underlines
Italic characters.

2.3. Character Size

Character point sizes available on the Graphic Systems
typesetter are 6, 7, 8, 9, HJ, 11, 12, 14, 16, lB, 20, 22,
24, 28, and 36. This is a range of 1/12 inch to 1/2 inch.
The ps request changes or restores the point size. Alterna­
tively, the point size is changed between any two characters
by embedding a \sN at the desired point to set the size to
N, or a \s+N to increment/decrement the size by N; \s0
restores the previous size. Requested point s:lze values
that are between two valid sizes yield the larger of the
two. The current size is available in the .s register.
Nroff ignores type size control.

Request
Form

.ps ±_N

Initial If No
Value Argument

10 point previous

Explanation: Point size set to +N. Alternatively, embed \sN
or \s+N. Any positive size value can be requested; if
invali~, the next larger valid size results, with a maximum
of 36. A paired sequence +N, -N works because the previous
requested value is also remembered, but ignored in nroff.
Relevant parameters are a part of the current environment

Request
Form

.ss N

Initial
Value

If No
Argument

12/136 em ignored

Explanation: Space-character size is set to N/36 ems. This
size is the minimum word spacing in adjusted text. Ignored
in nroff. Relevant parameters are a part of the current
environment.

2-2 Zilog 2-2

NROFF

Request
Form

.cs

Initial
Value

F N M

Zilog

If No
Argumen:t

off

NROFF

Explanation: Constant character space (width) mode is set on
for font F (if mounted); t~e width of every character is
taken to be N/36 ems. If M is absent, the em is that of the
character's point size; if M is given, the em is M-points.
All affected characters are centered in this space, includ­
ing those with an actual width larger than this space. Spe­
cial Font characters occurring while the current font is F
are also so treated. If N is absent, the mode is turned
off. The mode must be sti 11 or. again in effect when the
characters are physically printed. Ignored in nroff.

Request
Form

.bd

Initial
Value

F N

If No
Argument

off

Explanation: The characters in font F are artificially made
boldface by printing each one twice, separated by NA-1 basic
units. A reasonable value for N is 3 when the character
size is in the vicinity of 10 points. If N is missing the
bold mode is turned off. The mode must be still or again in
effect when the characters are physically printed. Ignored
in nroff.

Request
Form

.bd

Initial
Value

S F N

If No
Argument

off

Explanation: The characters in the Special Font are made
boldface whenever the current. font is F. The mode must be
still or again in effect when the characters are physically
printed.

Request
Form

.ft F

Initial
Value

Roman

If No
Argument

previous

Explanation: Font changed to F.
The font name P is reserved
Relevant parameters are a part of

2-3 Zilog

Alternatively, imbed \fF.
to mean the previous font.
the current environment.

2-3

NROFF

Request
Form

.fp N F

Initial
Value

R,I,B,S

Zilog

If No
Argument

ignored

NROFF

Explanation: Font position. This is a statement that a font
named F is mounted on position N (1-4). It is a fatal error
if F is not known. The phototypesetter has four fonts phy­
sically mounted. Each font consists of a film strip that
can be mounted on a numbered quadrant of a wheel. The
default mounting sequence assumed by troff is R, I, B, and S
on positions 1, 2, 3 and 4.

2-4 Zilog 2-4

NROFF Zilog

SECTION 3
PAGE CONTROL

NROFF

Top and bottom margins are not automatically provided; it is
conventional to define two macros and to set traps for them
at vertical positions 0 (top) and -N (N from the bottom) •
(See Sections 6 and 21.) A pseudo-page transition onto the
first page occurs either when the first break occurs or when
the first non-diverted text processing occurs. Arrangements
for a trap to occur at the top of the first page must be
completed before this transition. In the following, refer­
ences to the current diversion (Sectioh 6.4) mean that the
mechanism being described works during both ordinary and
diverted output.

The usable page width on the Graphic Systems phototypesetter
is about 7.54 inches, beginning about 1/27 inch from the
left edge of the 8 inch wide, continuous roll paper. The
physical limitations on nroff output are output-device
dependent.

Request
Form

.pl ±_N

Initial
Value

11 in

If No
Argument

11 in

Explanation: Page length set to +N. The internal limitation
is about 75 inches in troff an~ about 136 inches in nroff.
The current page length is available in the .p register.
The default scale indicator is v (ignored if not specified).

Request
Form

Initial
Value

.. bp +N=l

If No
Argument

Explanation: Begin page. The current page is ejected and a
new page is begun. If +N is given, the new page number is
+N. Also see request ns. The default scale indicator is v
Tignored if not specified). This request normally causes a
break. The use of " ' " as control character (instead of .)
suppresses the break function.

3-1

Request
Form

.pn +N

Initial
Value

N=l

If No
Argument

ignored

Zilog 3-1

NROFF Zilog NROFF

Explanation: Page number. The next page (when it occurs}
has the page number +N. A pn must occur before the initial
pseudo-page transition to effect the page number of the
Eirst page. The current page number is in the % register.

Request
Form

.po ±_N

Initial
Value

If No
Argument

0;26/127in* previous

Explanation: Page offset. Values separated by ; are for
nroff and troff, respectively. The current left margin is
set to (+-N. The troff initial value provides about one
inch of paper margin including the physical typesetter mar­
gin of 1/27 inch. In troff the maximum (line length)+(page
offset) is about 7.54 inches (Section 5). The current page
offset is available in the .o register. The default scale
indicator is v (ignored if not specified).

Request
Form

.ne N

Initial
Value

If No
Argument

N=l V

Explanation: Need N vertical space. If the distance, D, to
the next trap position (Section 6.5) is less than N, a for­
ward vertical space of size D occurs, which springs the
trap. If there are no remaining traps on the page, D is the
distance to the bottom of the page. If D < v, another line
could still be output and spring the trap. In a diversion,
D is the distance to the diversion trap, if any, or is very
large. The default scale indicator is v (ignored if not
specified).

Request
Form

.mk R

Initial
value

none

If No
A··~g umen t

internal

Explanation: Mark the current vertical place in an internal
register (both associated with the current diversion level),
or in register R, if given. See rt request.

Request
Form

.rt +N

Initial
value

none

If No
Argument

internal

Explanation: Return upward only to a marked vertical. place
in the current diversion. If +N (with respect to current
place) is given, the place is +N from the top of the page or

3-2 Zilog 3-2

NROFF Zilog NROFF

diversion or, if N is absent, to a place marked by a previ­
ous mk. The sp request (Section 5.3) can be used in all
cases instead of rt by spacing to the absolute place stored
in a explicit register; for example using the sequence .mk R
. . . • sp I \nRu.

3-3 Zilog 3-3

NROFF Zilog NROFF

SECTION 4
TEXT FILI:. ING, ADJUST ING, AND CENTERING

4.1. Filling and Adjusting

Normally, words are collected from input text lines and
assembled into an output text line until some word does not
fit. An attempt is then made the hyphenate the word in an
effort to assemble a part of it into the output line. The
spaces between the words on the output line are then
increased to spread out the line to the current line length
minus any current indent. A word is any string of charac­
ters delimited by the space character or the beginning/end
of the input line. Any adjacent pair of words that must be
kept together (neither split across output lines nor spread
apart in the adjustment process) can be tied together by
separating them with the unpaddable space character "\ "
(backslash-space). The adjusted word spacings are uniform
and the minimum interword spacing can be controlled with the
ss request. In nroff, they are normally nonuniform because
of quantization to character-size spaces; however, the com­
mand line option -e causes uniform spacing with full output
device resolution. Filling, adjustment, and hyphenation can
all be prevented or controlled~ The text length on the last
line output is available in the .n register, and text base­
line position on the page for this line is in the nl regis­
ter. The text base-line (low~st place) on the current page
is in the .h register.

An input text line ending with ., ?, or ! is taken to be the
end of a sentence, and an additional space character is
automatically provided during filling. Multiple interword
space characters found in the input are retained, except for
trailing spaces; initial spaces also cause a break.

When filling is in effect, a \p can be embedded or attached
to a word to cause a break at the end of the word and have
the resulting output line spread out to fill the current
line length.

A text input line that begins with a control character can
be made to look like a regular text line by prefacing it
with the nonprinting, zero-width filler character \&.
Another way to do this is to specify output translation of
some convenient character into the control character using
tr.

4-1 4-1

NROFF Zilog NROFF

4.2. Interrupted Text

The copying of an input line in nofill (non-fill) mode can
be interrupted by terminating the partial line with a \c.
The next encountered input text line is considered to be a
continuation of the same line of input text. Similarly, a
word within filled text is interrupted by terminating the
word (or line) with \c; the next encountered text is taken
as a continuation of the interrupted word. If the interven­
ing control lines cause a break, any partial line is forced
out along with any partial word.

Request
Form

.br

Initial
Value

If No
Argument

Explanation: Break. The filling of the line currently being
collected is stopped and the line is output without adjust­
ment. Text lines beginning with space characters and empty
text lines (blank lines) also cause a break.

Request
Form

Initial
value

.fi fill on

If No
Argument

Explanation: Fill subsequent output lines. The re~Jister .u
is 1 in fill mode and 0 in nofill mode. This request nor­
mally causes a break. Relevant parameters are a part of the
current environment.

Request
Form

Initial
Value

.nf fill on

If No
Argument

Explanation: No fill. Subsequent output lines are neither
filled nor adjusted. Input text lines are copied directly
to output lines without regard for the current line length.
This request normally causes a break. Relevant parameters
are a part of the current environment.

Request
Form

.ad c

Initial If No
Value Argument

adj,both adjust

Explanation: Line adjustment is begun. If fill mode is not
on, adjustment is deferred until fill mode is back on. If
the type indicator c is present, the adjustment type is

4-2 Zilog 4-2

NROFF Zilog

changed as shown in the following table:

Indicator

1
r
c
b or n
absent

Request
Form

.na

Initial
Value

adjust

Adjust Type

adjust left margin only
adjust right margin only
center
adjust both margins
unchanged

If No
Argument

NROFF

Explanation: No adjust. Adjustment is turned off; the right
margin is ragged. The adjustment type for ad is not
changed. Output line filling still occurs if fill mode is
on. Relevant parameters are a part of the current environ­
ment.

Request
Form

.ce N

Initial
Value

off

If No
Argument

N=l

Explanation: Center the next N input text lines within the
current (line length minus indent). If N=0, any residual
count is cleared. A break occurs after each of the N input
lines. If the input line is too long, it is left adjusted.
Relevant parameters are a part of the current environment.

4-3 Zilog 4-3

NH OFF Zilog

SECTION 5
VERTICAL SPACING

5.1. Base-Line Spacing

NROFF

The vertical spacing (V) between the base-lines of succes­
sive output lines is set using the vs r~quest with a resolu­
tion of 1/144 inch = 1/2 point in troff, and to the output
device resolution in nroff. V must be large enough to
accommodate the character sizes on the affected output
lines. For the common type sizes (9-12 points), usual
typesetting practice is to set v to 2 points greater than
the point size; troff default is 10-point type on 12-point
spacing. The current V is available in the .v register.
Multiple-V line separation (for example, double spacing) is
requested with ls.

5.2. Extra Line-Space

If a word contains a construct that r~quires the output line
containing it to have extra vertical space before and/or
after it, the extra-line-space function (\x'N') can be
embedded in or attached to that word. In this and other
functions that have a pair of delimiters around their param­
eter (here '), the delimiter choice is arbitrary, except
that it cannot look like the continuation of a number
expression for N. If N is negative, the output line con­
taining the word is preceded by N extra vertical spaces~ if
N is positive, the output line containing the word is fol­
lowed by N extra vertical spaces. If successive requests
for extra space apply to the same line, the maximum values
are used. The most recently utilized post-line extra line­
space is available in the .a register.

5.3. Blocks of Vertical Space

A block of vertical space is ordinarily requested using sp,
which honors the no-space mode and which does not space past
a trap. A contiguous block of vertical space can be
reserved using sv.

5-1

Request
Form

.vs N

Initial If No
Value Argument

l/6in; previous
12 pts

Zilog 5-1

NROFF Zilog NROFF

Explanation: Set vertical base-line spacing size v. Tran­
sient extra vertical space available with \x'N'. Relevant
parameters are a part of the current environment. The
default scale indicator is p (ignored if not specified).

Request
Form

.ls N

Initial
Value

N=l

If No
Argument

previous

Explanation: Line spacing set to +N. N-1 vs (blank lines)
are appended to each output text line. Appended blank lines
are omitted if the text or previous appended blank line
reached a trap position. Relevant parameters are a part of
the current environment.

Request
Form

.sp N

Initial
Value

If No
Argument

N=lV

Explanation: Space vertically in either direction. If N is
negative, the motion is backward (upward) and is limited to
the distance to the top of the page. Forward (downward)
motion is truncated to the distance to the nearest trap. If
the no-space mode is on, no spacing occurs (see ns, and rs
below). This request normally causes a break. The default
scale indicator is v (ignored if not specified).

Request
Form

.sv N

Initial
Value

If No
Argument

N=lV

Explanation: Save a contiguous vertical block of size N. If
the distance to the next trap is greater than N, N vertical
space is output. No-space mode has no effect. If this dis­
tance is less than N, no vertical space is immediately out­
put, but N is retained for later output (see os)@ Subse~
quent sv requests overwrite any retained N. The default
scale indicator is v (ignored if not specified).

Request
Form

.os

Initial
Value

If No
Argument

Explanation: Output saved vertical space.
no effect. Used to output a block
requested by an earlier sv request.

5-2 Zilog

No-space mode has
of vertical space

5-2

NROFF

Request
Form

.ns

Initial
Value

space

Zilog

If No
Argument

NROFF

Explanation: No-spac:e mode turned on. When on, the no-space
mode inhibits sp requests and bp requests without a next
page number. The no-space mode is turned off when a line of
output occurs, or with rs. Relevant parameters are associ­
ated with the current diversion level.

Request
Form

.rs

Initial
Value

space

If No
Argument

Explanation: Restore spacing. The no-space mode is turned
off. Relevant parameters are associated with the current
diversion level.

Request
Form

Ini tiatl
Value

Blank text line.

If No
Argument

Explanation: Causes a break and output of a blank line
exactly like sp 1.

5.4. Line Length and Indenting

The maximum line length for fill mode is set with 11. The
indent is set with in; an indent applicable to only the next
output line is set with ti. The line length includes indent
space but not page offset space. The line length minus the
indent is the basis for centering with ce. If a partially
collected line exists, the effect of 11, in, or ti is
delayed until after that line is output. In fill mode, the
length of text on an output line is less than or equal to
the line length minus the indent. The current line length
and indent are available in registers .1 and .i respec­
tively. The length of three-part titles produced by tl is
independently set by lt.

Request
Form

.11 +N

Initial
Value

6.5 in

If No
Argument

previous

Explanation: Line length is set to • In troff the
(line length)+(page offset) is about 7.54 inches.

5-·3 Zilog

maximum
Relevant

5-3

NROE'F Zilog NROFF

parameters are a part of the current enviroment. The
default scale indicator ism (ignored if not specified).

Request
Form

.in +N

Initial
Value

N=0

If No
Argument

previous

Explanation: Indent is set to +N. The indent is prepended
to each output line. This reijuest normally causes a break.
Relevant parameters are a part of the current environment.
The default scale indicator is m (ignored if not specified).

Request
Form

.ti +N

Initial
Value

If No
Argurnen t

ignored

Explanation: Temporary indent. The next output text line
will be indented a distance +N with respect to the current
indent. The resulting total indent cannot be negative. The
current indent is not changed. This request normally causes
a break. Relevant parameters are a part of the current
environment. The default scale indicator is m (i~Jnored if
not specified).

5-4 Zilog 5-4

NROFli' Zilog NROFF

SECTION 6
MACROS, STRINGS, DIVERSIONS, AND POSITION TRAPS

6~1. Macros and Strings

A macro is a named set of arbitrary lines that can be
invoked by name or with a trap. A string is a named string
of characters, not including a new line character, that can
be interpolated by name at any point. Request, macro, and
string names share the same name list. Macro and string
names can be one or two characters long and can use previ­
ously defined request, macro, or string names. Any of these
entities can be renamed with rn or removed with rm. Macros
are created by de and di, and appended to by am and da; di
and da cause normal output to be stored in a macro. Strings
are created by ds and appended to by as. A macro is invoked
in the same way as a request; a control line beginning .xx
interpolates the contents of macro xx. The remainder of the
line can contain up to nine arguments. The strings x and xx
are interpolated at any desired point with *x and *(xx,
respectively. String references and macro invocations can
be nested.

6.2. Copy Mode Input Interpretation

During the definition and extension of strings and macros
(not by diversion), the input is read in copy mode. The
input is copied without interpretation except that:

di- The contents of number registers indicated by \n are
interpolated

$ Strings indicated by * are interpolated

$ Arguments indicated by \$ are interpolated

$ Concealed new lines indicated by \(new line) are elim­
inated

$ Comments indicated by \" are eliminated

& \t and \a are interpreted as ASCII horizontal tab and
SOH, respectively

$ \\ is interpreted as \

6-1 Zilog 6-1

NROFF Zilog NROFF

$ \. is interpreted as •

These interpretations can be suppressed by prepending a \.
For example, since \\ maps into a \, \\n copies as \n, which
is interpreted as a number register indicator when the macro
or string is reread.

6.3. Arguments

When a macro is invoked by name, the remainder of the line
is taken to contain up to nine arguments. The argument
separator is the space character, and arguments can be sur­
rounded by double quotes to permit embedded space charac­
ters. Pairs of double quotes can be embedded in double
quoted arguments to represent one double quote. If the
desired arguments do not fit on a line, a concealed new line
can be used to continue on the next line.

When a macro is invoked, the input level is pushed down and
any arguments available at the previous level become una­
vailable until the macro is completely read and the previous
level is restored. A macro's own arguments can be interpo­
lated at any point within the macro with \$N, which interpo­
lates the Nth argument (l<IN<9). If an invoked argument
does not exist, a null string- r~sults. For example, the
macro xx is defined by

.de xx \"begin definition
Today is \\$1 the \\$2.

\"end definition

and called by

.xx Monday 14th

to produce the text

Today is Monday the 14th.

Note that the \$ is concealed in the definition with a
prepended \. The number of currently available arguments is
in the .$ register.

No arguments are available at the top (nonmacro) level in
this implementation. Because string referencing is imple­
mented as an input-level push down, no arguments are avail­
able from within a string. No arguments are available
within a trap-invoked macro.

6-2 Zilog 6-2

NROFF Zilog NROFF

Arguments are copied in copy mode onto a stack where they
are available for reference. The mechanism does not allow
an argument to contain a direct reference to a long string
that is interpolated at copy time. It is advisable to con­
ceal string references with an extra \ to delay interpola­
tion until argument reference time.

6.4. Diversions

Processed output can be diverted into a macro for purposes
such as footnote processing (Section 21.5) or determining
the horizontal and vertical size of some text for condi­
tional changing of pages or columns. A single diversion
trap can be set at a specified vertical position. The
number registers dn and dl contain the vertical and horizon­
tal size of the most recently ended diversion. Processed
text that is diverted into a macro retains the vertical size
of each of its lines when reread in nofill mode, regardless
of the current v. Constant-spaced (cs) or bold (bd) text
that is diverted can be reread correctly only if these modes
are again or still in effect at reread time. One way to do
this is to embed in the diversion the appropriate cs or bd
requests with the transparent mechanism described in Section
9.6.

Diversions can be nested, and certain parameters and regis­
ters are associated with the current diversion level. The
top nondiversion level can be thought of as the 0th diver­
sion level. These are the diversion trap and associated
macro, no-space mode, the internally-saved marked place (mk
and rt), the current vertical place (.d register), the
current text base-line (.h register), and the current diver­
sion name (.z register).

6.5. Traps

Three types of trap mechanisms are available: page traps, a
diversion trap, and an input-line-count trap. Macro­
invocation traps can be planted using wh at any page posi­
tion including the top. This trap position is changed using
ch. Trap positions at or below the bottom of the page have
no effect unless or until moved within the page or rendered
effective by an increase in page length. Two traps can be
planted at the same position only by first planting them at
different positions and then moving one of the traps; the
first planted trap conceals the second unless and until the
first one is moved (Appendix). If the first one is moved
back, it again conceals the second trap. The macro associ­
ated with a page trap is automatically invoked when a line

6-3 Zilog 6-3

NROFF Zilog NROFF

of text is output whose vertical size reaches or sweeps past
the trap position. Reaching the bottom of a page springs
the top-of-page trap, if any, provided there is a next page.
The distance to the next trap position is available in the
.t register; if there are no traps between the current posi­
tion and the bottom of the page, the distance returned is
the distance to the page bottom.

A macro-invocation trap effective in the current diversion
can be planted using dt. The .t register works in a diver­
sion; if there is no subsequent trap, a large distance is
returned. The following table describes the input-line­
count traps:

Request
Form

Initial
value

.de xx yy -

If No
Argument

.yy= ••

Explanation: Define or redefine the macro xx. The contents
of the macro begin on the next input line. Input lines are
copied in copy mode until the definition is terminated by a
line beginning with .yy, whereupon the macro yy is called.
In. the absence of yy, the definition is terminated by a line
beginning with two periods (••). A macro can contain de
requests, provided the terminating macros differ or the con­
tained definition terminator is concealed. The •• can be
concealed as \\ •• (which copies as \ ••) and be reread as ••
itself.

Request Initial
Form Value

• am xx yy -

If No
Argument

.yy= ••

Explanation: Append to macro (append version of de).

Request
Form

.ds xx string

Initial
Value

ignored

If No
Argument

Explanation: Define a string xx containing string. Any ini­
tial double quote in string is stripped off to permit ini­
tial blanks.

6-4

Request
Form

.as xx string

Initial
Value

ignored

Zilog

If No
Argument

6-4

NROFF Zilog NROFF

Explanation: Append string to string xx (append version of
ds) •

Request
Form

.rm xx

Initial
value

If No
Argument

ignored

Explanation: Remove request, macro, or string. The name xx
is removed from the name list and any related storage space
is freed. Subsequent references have no effect.

Request
Form

.rn xx

Initial
Value

yy -

If No
Argument

ignored

Explanation: Rename request, macro, or string xx to yy. If
yy exists, it is first removed.

Request
Form

.di xx

Initiatl
Value

If No
Argument

end

Explanation: Divert output to macro xx. Normal text pro­
cessing occurs during diversion except that page offsetting
is not done. The diversion ends when the request di or da
is encountered without an argument; extraneous requests of
this type should not appear when nested diversions are being
used. Mode or relevant parameters are associated with the
current diversion level.

Request
Form

.da xx

Initial
Value

If No
Argument

end

Explanation: Divert, appending to xx (append version of di).
Mode or relevant parameters are associated with the current
diversion level.

Request
Form

.wh N xx

Initial
Value

If No
Argument

Explanation: Install a trap to invoke xx at page position; a
negative N is interpreted with respect to the page bottom.
Any macro previously planted at N is replaced by xx. A zero
N refers to the top of a page. In the absence of xx, the

6-5 Zilog 6-5

NROFF Zilog NROFF

first found trap at N, if any, is removed. The default
scale indicator is v (ignored if not specified).

Request
Form

.ch xx N

Initial
Value

If No
Argument

Explanation: Change the trap position for macro xx to be N.
In the absence of N, the trap, if any, is removed. The
default scale indicator is v (ignored if not specified).

Request
Form

.dt N xx

Initial
Value

If No
Argument

off

Explanation: Install a diversion trap at position N in the
current diversion to invoke macro xx. Another dt redefines
the diversion trap. If no arguments are given, the diver­
sion trap is removed. Mode or relevant parameters are asso­
ciated with the current diversion level. The default scale
indicator is v (ignored if not specifi~d).

Request
Form

.it N xx

Initial
value

If No
Argument

off

Explanation: Set an input-line-count trap to invoke the
macro xx after N lines of text input have been read (control
or request lines do not count). The text can be in-line
text or text interpolated by in-line or trap-invoked macros.
Relevant parameters are a part of the current environment.

Request
Form

.em xx

Initial
Value

none

If No
Argument

none

Explanation: The macro xx is invoked when all input has
ended. The effect is the same as if the contents of xx had
been at the end of the last file processed.

6-6 Zilog 6-6

NROFF Zilog

SECTI<;>N 7
NUMBER REGISTERS

NROFF

A variety of parameters are available to the user as prede­
fined, named number registers (Summary and Index). In addi­
tion, named registers can be user-defined. Register names
are one or two characters long and do not conflict with
request, macro, or string names. Except for certain prede­
fined read-only rE!gisters, a number register can be read,
written, automatically incremented or decremented, and
interpolated into the input in a variety of formats. One
common use of user-defined registers · is to automatically
number sections, paragraphs, lines, etc. A number register
can be used any time numerical input is expected or desired
and can be used in numerical expressions.

Number registers are! created and modified using nr, which
specifies the name, numerical value, and the auto-increment
size. Registers are also modified if accessed with an
auto-incrementing s:equence. !f the registers ~ and xx both
contain N and have the auto-increment size M, the following
access sequences have the effect shown:

Effect. on Value
Sequence Register Interpolated

0 none N
0 none N
\n+x x incremented by M N+M
\n-x x decremented by M N-M
\n+{xx xx incremented by M N+M
\n-{xx xx decremented by M N-M

When interpolated, a. number register is converted to decimal
(default), decimal with leading zeros, lowercase Roman,
uppercase Roman, lowercase sequential alphabetic, or upper­
case sequential alphabetic, according to the format speci­
fied by af.

Request
Form

Initia.l
Value

.nr R+N M

If No
Argument

Explanation: The number register R is assigned the value +N
with respect to the previous value, if any. The increment
for auto-incrementing is set to M. The default scale indi­
cator is u {ignored if not specified).

7-1 Zilog 7-1

NROFF

Request
Form

.af R c

Initial
Value

arabic

Zilog

If No
Argument

NROFF

Explanation: Assign format c to register R.
formats are:

The available

Numbering
Format

1
001
i
I
a
A

Sequence

0,l,2,3,4,5, •••
000,001,002,003,004,0~5, •••
0·,i,ii,iii,iv,v, •••
0,I,II,III,IV,V, •••
0,a,b,c, ••• ,z,aa,ab, ••• ,zz,aaa, •••
0,A,B,c, ••• ,z,AA,AB, ••• ,zz,AAA, •••

An arable format having N digits specifies a field width of
N digits (second example above). The read-only registers
and the width function are always arabic.

Request
Form

.rr R

Initial
Value

- If No
Argument

ignored

Explanation: Remove register R. If many registers are being
created dynamically, it is necessary to remove unused regis­
ters to recapture internal storage space for newer regis­
ters.

7-2 Zilog 7-2

NROFF Zilog NROFF

SECTIQN 8
TABS, LEADERS, AND FIELDS

8.1. Tabs and Leaders

The ASCII horizontal tab character and the ASCII SOH (leader
character) can both generate either horizontal motion or a
string of repeated characters. The length of the generated
entity is governed by internal tab stops specified with ta.
The default difference is that tabs generate motion, and
leaders generate a string of periods; tc and le offer the
choice of repeated character or motion. There are three
types of internal tab stops: left adjusting, right adjust­
ing, and centering. In the following table, D is the dis­
tance from the current position on the inpuE line (where a
tab or leader was found) to the next tab stop; next-string
consists of the input characters following the tab (or
leader) up to the next tab (or leader) or end of line; W is
the width of next-string.

Tab
Type

Left
Right
Centered

Length of Motion or
Repeated Characters

D
D-W
D-W/2

Location of
Next-String

Following D
Right adjusted with D
Centered on right end of D

The length of generated motion is allowed to be negative,
but that of a repeated character string cannot be. Repeated
character strings contain an integer number of characters,
and any residual distance is prepended as motion. Tabs or
leaders found after the last tab stop are ignored, but can
be used as next-string terminators.

Tabs and leaders are not interpreted in copy mode. \t and
\a always generate a noninterpreted tab and leader respec­
tively, and are equivalent to actual tabs and leaders in
copy mode.

8.2. Fields

A field is contained between a pair of field delimiter char­
acters, and consists of substrings separated by padding
indicator characters. The field length is the distance on
the input line from the position where the field begins to
the next tab stop. The difference between the total length
of all the substrings and the field length is incorporated

8-1 Zilog 8-1

NROFF Zilog NROFF

as horizontal padding space that is divided among the indi­
cated padding places. The incorporated padding is allowed
to be negative. For example, if the field delimiter is I
and the padding indicator is A' fAxxxArightl specifies a
right-adjusted string with the string xxx centered in the
remaining space.

Request
Form

.ta Nt ...
Initial
value

0.8;
e.s in

If No
Argument

none

Explanation: Set tab stops and types. t=R, right adjusting;
t=C, centering; t absent, left adjusting. Troff tab stops
are preset every 0.Sin.; nroff every 0.8in. The stop values
are separated by spaces, and a value preceded by + is
treated as an increment to the previous st~p value.
Relevant parameters are a part of the current environment.
The default scale indicator ism (ignored if not specified).

Request
Form

.tc c

Initial
Value

none

If No
Argument

none

Explanation: The tab repetition character becomes c, or is
removed specifying motion. Relevant parameters are a part
of the current environment.

Request
Form

.le c

Initial
Value

If No
Argument

none

Explanation: The leader repetition character becomes c, or
is removed specifying motion. Relevant parameters are a
part of the current environment.

Request
Form

.fc a b

Initial
Value

off

If No
Argument

off

Explanation: The field delimiter is set to a; the padding
indicator is set to the space character or to b, if given.
In the absence of arguments, the field mechanism is turned
off.

8-2 Zilog 8-2

NROFF Zilog

S.ECTI,ON 9
INPUT/OUTPUT dONVENTIONS AND

CHARACTER TRANSLATIONS

9.1. Input Character Translations

NROFF

The new line delimits input li.nes. In addition, STX, ETX,
ENQ, ACK, and BEL are accepted, and can be used as delim­
iters or translated into a graphic with tr. All others are
ignored.

The escape character (\) introduces escape sequences and
causes the following character to mean another character, or
to indicate some function. (A complete list of such
sequences is given in the Summary and Index.) The \ is not
the ASCII control character ESC of the same name. The
escape character can be input with the sequence \\. The
escape character can be changed with ec, and all that has
been said about the default \ becomes true for the new
escape character. \e prints whatever the current escape
character is. If necessary or convenient, the escape
mechanism can be turned off with eo, and restored with ec.

Request
Form

.ec c

Initial
Value

\

If No
Argument

\

Explanation: Set escape character to \, or to c, if given.

Request
Form

.eo

Initial
Value

on

If No
Argument

Explanation: Turn escape mechanism off.

9.2. Ligatures

Five ligatures are available in the current troff character
set : f i , f 1 , ff , ff i , and ff 1 • They a re i n put by \ (f i ,
\(fl, \(ff, \(Fi, and \(Fl respectively. The ligature mode
is normally on in troff, and automatically invokes ligatures
during input.

9-1 Zilog 9-1

NROFF

Request
Form

.lg N

Initial
Value

off; on

Zilog

If No
Argument

on

NROFF

Explanation: Ligature mode is turned on if N is absent or
non-zero, and turned off if N=0. If N=2, only the two­
character ligatures are automatically invoked. Ligature
mode is inhibited for request, macro, string, register, or
file names, and in copy mode. No effect in nroff.

9.3. Backspacing, Underlining, and Overstriking

Unless in copy
replaced by a
space character.

mode, the ASCII backspace character is
backward horizontal motion the width of the

Nroff automatically underlines characters in the underline
font, specifiable with uf, normally that on font position 2
(normally Times Italic, Section 2.2). In addition to ft and
\fF, the underline font is selected by ul and cu. Underlin­
ing is restricted to an output-device-dependent subset of
reasonable characters.

Request
Form

.ul N

Initial
Value

off

If No
Argument

N=l

Explanation: Underline in nroff (italicize in troff) the
next N input text lines. Actually, switch to underline
font, saving the current font for later restoration; other
font changes within the span of a ul take effect, but the
restoration undoes the last change. Output generated by tl
is affected by the font change, but does not decrement N.
If N>l, there is the risk that a trap interpolated macro may
provide text lines within the span; environment switching
prevents this. Relevant parameters are a part of the
current environment.

Request
Form

.cu N

Initial
Value

off

If No
Argument

N=l

Explanation: A variant of ul that causes every character to
be underlined in nroff. Identical to ul in troff. Relevant
parameters are a part of the current environment.

9-2 Zilog 9-2

NROFF

Request
Form

.uf F

Initial
Value

Italic

Zilog

If No
Argument

Italic

NROFF

Explanation: Underline font set to F. In nroff, F may not
be on position 1 (initially Times Roman).

9.4. Control Characters

Both the control character • and the no-break control char­
acter ' can be changed, if desired. Such a change must be
compatible with the design of any macros used in the span of
the change, and particularly of any trap-invoked macros.

Request
Form

.cc c

Initial
Value

If No
Argument

Explanation: The basic control character is set to c, or
reset to • • Relevant parameters are a part of the current
environment.

Request
Form

.c2 c

Initial
Value

If No
Argument

Explanation: The nobreak control character is set to c, or
reset to ' • Relevant parameters are a part of the current
environment.

9.5. Output Translation

One character can be made a stand-in for another character
using tr. All text processing takes place with the input
(stand-in) character which appears to have the width of the
final character. The graphic translation occurs at the
moment of output (including diversion).

Request
Form

Initial
Value

.tr abed •••• none

If No
Argument

Explanation: Translate a into b, c into d, etc. If an odd
number of characters is given, the last one is mapped into
the space character. To be consistent, a particular

9-3 Zilog 9-3

NROFF Zilog NROFF

translation must stay in effect from input to output time.

9.6. Transparent Throughput

An input line beginning with a \1 is read in copy mode and
transparently output without the initial \I; the text pro­
cessor makes no other response based on the line's presence.
This mechanism is used to pass control information to a
post-processor or to embed control lines in a macro created
by a diversion.

9.7. Comments and Concealed New Lines

A long input line that must stay one line (for example, a
string definition, or nofilled text) can be split into many
physical lines by ending all but the last one with the
escape \. The sequence \(new line) is always ignored-­
except in a comment. Comments can be embedded at the end of
any line by prefacing them with \". The new line at the end
of a comment cannot be concealed. A line beginning with \•
appears as a blank line and behaves like .sp l; a comment
can be placed on a line by itself by beginning the line with
.\•.

9-4 Zilog 9-4

NROFF Zilog NROFF

SECT~ON 10
LOCAI. MOTIONS AND WIDTH FUNCTION

18.1. Local Motions

The functions \v 1 N 1 and \h'N' are used for local vertical
and horizontal motion respectively. The distance N can be
negative; the positive directions are rightward and down­
ward. A local motion is one contained within a line. To
avoid unexpected vertical dislocations, it is ~ecessary that
the net vertical local motion within a word in filled text
and otherwise within a line balance to zero. The above and
certain other escape sequences providing loqal motion are
summarized in the following table.

10-1

Command

\v'N'

\u

\r

\d

Vertical
Local
Motion

Effect in
TROFF

Effect in
NROFF

Move distance N Move distance N

1/2 em up 1/2 line up

1 em up 1 line up

1/2 em down 1/2 line down

Zilog 10-1

NROFF

Conunand

\h'N'

\space

\0

\I

\ "

Zilog

Horizontal
Local ,
Motion

Effect in
TROFF

Effect in
NROFF

Move distance N Move distance N

Unpaddable space-size ,space

Digit-size space

1/6 em space ignored

1/12 em ignored

HJ. 2. Width Function

NROFF

The width function \w'string' generates the numeric:al width
of string (in basic units). Size a~d font changes can be
safely embedded in string, and do not affect the current
environment. For example, .til-\w'l.l'u can temporarily
indent leftward a distance equal to the size of the "1.I"
string.

The width function also sets three number registe!rs. The
registers st and sb are set (respectively) to the highest
and lowest extent of string relative to the baseline; then,
for example, the total height of the s~tring is
\n(stu-\n(sbu. In troff the number register ct is set to a
value between 0 and 3. 0 means that all of the c:haracters
in string are short, lowercase characters without descenders
(like e); 1 means that at least one character has a des­
cender (like y); 2 means that at least one charactE!r is tall
(like H)i and 3 means that both tall characters and charac­
ters with descenders are present.

10.3. Mark Horizontal Place

The escape sequence \kx causes the current horizontal
tion in the input line to be stored in register x.
example, the construction \kxword\h'l\nxu+2u'word
"word" bold by backing up to almost its beginning and
printing it, resulting in word.

10-2 Zilog

posi­
As an
makes
over-

10-2

NROFF Zilog NROFF

SECTION 11
OVERSTRIKE, LI:NE-DRAWING,

1

AND ZERO-WIDTH FUNCTIONS

11.1. Overstriking

Automatically centered overstriking of up to nine characters
is provided by the overstrike function (\o •string•). The
characters in string are overprinted with centers aligned;
the total width is that of the widest character. The string
must not contain local vertical motion. For example,
\o'e\• 1 produces 6.

11.2. Line Drawing

The function \1 "Ne" draws a string of repeated e's for a
distance N. (\1 is \(lowercase L). If c looks like a con­
tinuation of an expression for N, it can be insulated from N
with a \&. If c is not specified, the (baseline rule or
underline character) is used. If N is negative, a backward
horizontal motion of size N is made before drawing the
string. Any space resulting from N/(size of c) having a
remainder is put at the beginnirig (left end) of the string.
In the case of characters that are designed to be connected,
such as baseline-rule , underrule , and root-en, the
remainder space is covered by overlappTng. If N is less
than the width of c, a single c is centered on a distance N.
As an example, a macro to underscore a string can be written

.de us
\\$1\l' 10\(ul'

such that

.us "underlined words"

yields

underlined words.

The function \L'Nc' draws a vertical line consisting of the
(optional) character c stacked vertically apart lem (1 line
in nroff), with the first two characters overlapped, if
necessary, to form a continuous line. The default character
is the box rule I (\(br); the other suitable character is
the bold vertical I (\(bv). The 1 ine is begun without any
initial motion relative to the current base line. A

11-1 Zilog 11-1

NROFF Zilog NROFF

positive N specifies a line drawn downward and a negative N
specifies a line drawn upward. After the line is drawn, no
compensating motions are made; the instantaneous base line
is at the end of the line.

The horizontal and vertical line-drawing functions can be
used in combination to produce large boxes. The zero-width
box-rule and the 1/2-em wide underrule were designed to form
corners when using 1-em vertical spacings. For example the
macro

.de eb

.sp -1

.nf

.fi

\"compensate for next automatic base-line spacing
\"avoid possibly overflowing word buffer

draws a box around some text whose beginning vertical place
was saved in number register a (that is, using .mk a).

11.3. Zero-Width Characters

The function \zc outputs c without spacing over it, and is
used to produce left-aligned overstruck combinations. As
examples, \z\(ci\(pl produces $, and \(br\z\(rn\(ul\(br pro­
duces the smallest possible constructed box.

11-2 Zilog 11-2

NROFF Zilog

SECTION 12
HYPHENATION

NROFF

The automatic hyphenation dan be switched off and on. When
switched on with hy, several variants can be set. A hyphe­
nation indicator character can be embedded in a word to
specify desired hyphenation points,· or can be prepended to
suppress hyphenation. In addition, the user can specify a
small exception word list.

Only words that consist of a central alphabetic string sur­
rounded by (usually null) nonalphabetic strings are con­
sidered candidates for automatic hyphenation. Words that
are input containing hyphens (minus), em-dashes (\(em), or
hyphenation indicator characters, are always subject to
splitting after those characters, whether or not automatic
hyphenation is on or off.

Request
Form

.nh

Initial
Value

If No
Argument

hyphenate -

Explanation: Automatic hyphenation is turned off.
parameters are a part of the current environment.

Request
Form

.by N

Initial If No
Value Argument

on,N=lon, N=l

Relevant

Explanation: Automatic hyphenation is turned on for N >l, or
off for N=0. If N=2, last lines (ones that cause a-trap)
are not hyphenated. For N=4 and 8, the last and first two
characters of a word are not split off. These values are
additive; for example, N=l4 invokes all three restrictions.
Relevant parameters are a part of the current environment.

Request
Form

.he c

Initial
Value

\%

If No
Argument

\%

Explanation: Hyphenation indicator character is set to c or
to the default \%. The indicator does not appear in the
output. Relevant parameters are a part of the current
environment.

12-1 Zilog 12-1

NROFF

Request
Form

.hw

Initial
Value

wordl

Zilog

If No
Argument

ignored

NROFF

Explanation: Specify hyphenation points in words with embed­
ded minus signs. Versions of a word with terminal s are
implied; for example, dig-it implies dig-its. This list is
examined initially and after each suffix stripping. The
space available is small--about 128 characters.

12-2 Zilog 12-2

NROFF Zilog

SECTION 13
THREE-PART TITLES

NROFF

The titling function tl provides for automatic placement of
three fields at the left, center, and right of a line with a
title-length specified with lt. tl can be used anywhere,
and is independent of the normal text collecting process. A
common use is in header and footer macros.

Request
Form

Initial
value

.tl 'left'center"right' -

Explanation: The strings left, center, and right are respec­
tively left-adjusted, centered, and right-adjusted in the
current title-length.. Any of the strings can be empty, and
overlapping is permitted. If the page-number character
(initially %) is found within any of the fields, it is
replaced by the current page numbet. The format is assigned
to register %. Any character can be used as the string del­
imiter.

Request
Form

.pc c

Initial
Value

%

If No
Argument

off

Explanation: The page number character is set to c, or
removed. The page-number register remains %.

Request
Form

.It +N

Initial
Value

6.5 in

If No
Argument

previous

Explanation: Length of title set to +N. The line-length and
the title-length are independent. -Indents do not apply to
titles; page-offsets do. Relevant parameters are a part of
the current environment. The default scale indicator is m
(ignored if not specified).

13-1 Zilog 13-1

NROFF Zilog

SECTION 14
OUTPUT LINE NUMBERING

NROFF

Automatic sequence numbering of output lines can be
requested with nm. When in effect, a three-digit, ara-

3 bic number plus a digit-space is prepended to output
text lines. The· text lines are thus offset by four
digit-spaces, and otherwise retain their line length; a

6 reduction in line length can be used to keep the right
margin aligned with an earlier margin. Blank lines,
other vertical spaces, and lines generated by tl are not

9 numbered. Numbering can be temporarily suspended with
nn, or with an .nm followed by a later .nml+0. In addi­
tion, a line number indent I, and the number-text

12 separation S can be specified in digit-spaces. Further,
it can be specified that only those line numbers that
are multiples of some number M are to be printed. The

15 others appear as blank number fields.

Request
Form

Initial
Value

.nm +N M S I M=l, S=l, I=0

If No
Argument

off

Explanation: Line number mode. If +N is given, line number­
ing is turned on, and the next out~ut line numbered is num­
bered +N. Default values are M=l, S=l, and I=0. Parameters
corres~onding to missing arguments are unaffected; a non­
numeric argument is considered missing. In the absence of
all arguments, numbering is turned off; the next line number
is preserved for possible further use in number register ln.
Relevant parameters are a part of the current environment.

Request
Form

.nn N

Initial
Value

If No
Argument

N=l

Explanation: The next N text output lines are not numbered.
Relevant parameters are a part of the current environment.

As an example, the paragraph portions of this section
are numbered with M=3: .nm I 3 was placed at the begin-

18 ning; .nm was placed at th• end of the first paragraph;
and .nm +e was placed in front of this paragraph; and
.nm finally placed at the end. Line lengths were also

21 changed (by \w•eeee•u) to keep the right side aligned.
Another example is .nm +5 5 x 3, which turns on

14-1 Zilog 14-1

NROFF Zilog NROFF

numbering with the line number of the next line to be 5
24 greater than the last numbered line, with M=S, with

spacing S untouched, and with the indent I set to 3.

14-2 Zilog 14-2

NROFF Zilog

SECTION 15
CONDITIONAL ACCEPTANCE OF INPUT

NROFF

In the following, c is a one-character, built-in condition
name, ! signifies not, N is a numerical expression, string!
and string2 are strings delimited by any nonblank, non­
numeric character not in the strings, and anything
represents what is conditionally accepted.

Request
Form

.if c anything

Explanation: If condition c true, accept anything as input;
in multi-line case use ~{anything\}.

Request
Form

.if !c I anything

Explanation: If condition c false, accept anything.

Request
Form

.if N anything

Explanation: If expression N > 0, accept anything. The
default scale indicator is u (ignored if not specified).

Request
Form

.if !N anything

Explanation: If expression N < 0, accept anything. The
default scale indicator is u (Ignored if not specified).

Request
Form

.if 'stringl'string2'anything

Explanation: If string! is identical to string2, accept any­
thing.

15-1 Zilog 15-1

NROFF

Request
Form

Zilog

.if !'stringl'string2'anything

NROFF

Explanation: If stringl is not identical to string2, accept
anything.

Request
Form

.ie c anything_

Explanation: If portion of if-else; all above forms (like
if). The default scale indicator is u (ignored if not
speci~ied).

Request
Form

.el anything

Explanation: Else portion of if-else.

The built-in condition names are:

Condition
Name True If

0 Current page number
e Current page number
t Formatter is troff
n Formatter is nroff

is odd
is even

If the condition c is true, or if the number N is greater
than zero, or if the strings compare identically (including
motions and character size and font), anything is accepted
as input. If a ! precedes the condition, number, or string
comparison, the sense of the acceptance is reversed.

Any spaces between the condition and the beginning of any­
thing are skipped over. The anything is either a single
input line (for example, text or macro) or a number of input
lines. In the multiline case, the first line must begin
with a left delimiter (\{) and the last line must end with a
right delimiter (\}).

The request ie (if-else) is identical to if, except that the
acceptance state is remembered. A subsequent and matching
el (else) request then uses the reverse sense of that state.
iel-lel pai~s can be nested.

15-2 Zilog 15-2

NROFF Zilog

Some examples are:

.if e .tl 'Even Page%'''

which outputs a title if the page number is even; and

.ie \n%>1 \{\
'sp 0.Si
.tl 'Page %'''
'sp l1.2i \}
.el .spl2.5i

which treats page 1 differently from other pages.

15-3 Zilog

NROFF

15-3

NROFF Zilog

SECTION 16
ENVIRONMENT SWITCHING

NROFF

A number of the parameters that control the text processing
are gathered together into an environment that can be
switched by the user. The environment parameters are those
associated with requests noting E in their Notes column; in
addition, partially collected lines and words are in the
environment. Everything else is global; examples are page­
oriented parameters, diversion-oriented parameters, number
registers, and macro and string definitions. All environ­
ments are initialized with default parameter values.

Request
Form

.ev N

Initial
Value

N=0

If No
Argument

previous

Explanation: Environment switched to environment 0 < N < 2.
Switching is done in push-down fashion so that restorTng a
previous environment must be done with .ev rather than
specific reference.

16-1 Zilog 16-1

NROFF Zilog NROFF

SECTION 17
INSERTIONS FROM THE STANDARD INPUT

The input can be temporarily switched to the system standard
input with rd, which switches back when two new lines in a
row are found (the extra blank line is not used). This
mechanism is intended for insertions in form-letter types of
documentation. On ZEUS, the standard input is the user's
keyboard, a pipe, or a file.

Request
Form

.rd prompt

Initial
Value

If No
Argument

prompt=BEL

Explanation: Read insertion from the standard input until
two new lines in a row are found. If the standard input is
the user's keyboard, prompt (or a BEL) is written onto the
user's terminal. rd behaves like a macro, and arguments can
be placed after prompt.

Request
Form

.ex

Initial
Value

If No
Argument

Explanation: Exit from nroff/troff. Text processing is ter­
minated exactly as if all input had ended.

If insertions are taken from the terminal keyboard while
output is being printed on the terminal, the command line
option -q turns off the echoing of keyboard input and
prompts only with BEL. The regular input and insertion
input cannot simultaneously come from the standard input.

As an example, multiple copies of a form letter are prepared
by entering the insertions for all the copies in one file
used as the standard input, and causing the file containing
the letter to reinvoke itself using nx; the process is ended
by an ex in the insertion file.

17-1 Zilog 17-1

NROFF

Request
Form

.so

Zilog

SECTION 18
INPUT/OUTPUT FILE SWITCHING

Ini.tial
Value

filename

If No
Argument

NROFF

Explanation: Switch source file. The top input (file read­
ing) level is switched to filename. A so encountered in a
macro does not take effect until the inpu~level returns to
the file level. When the new file ends, input is again
taken from the original file. so's can be nested.

Request
Form

.. nx filename

Initial
Value

If No
Argument

end-of-file

Explanation: Next file is filename. The current file is
considered ended, and the input is immediately switched to
filename.

Request
Form

.pi program

Initial
Value

If No
Argument

Explanation: Pipe output to program (nroff
request must occur before any printing occurs.
are transmitted to program.

18-1 Zilog

only). This
No arguments

18-1

NROFF

Request
Form

.me c N

Zilog

SECTION 19
MISCELLANEOUS

Initial
Value

If No
Argument

off

NROFF

Explanation: Specifies that a margin character c appear a
distance N to the right of the right margin after each
nonempty text line (except those produced by tl). If the
output line is too long (as can happen in nofill mode) the
character is appended to the line. If N is not given, the
previous N is used. The initial N is 0.2 inches in nroff
and 1 em in troff. Relevant parameters are a part of the
current environment. The default scale indicator is m
(ignored if not specified).

Request
Form

.tm string

Initial
Value

If No
Argument

newline

Explanation: After skipping initial blanks, string (rest of
the line) is read in copy mode and written on the user's
terminal.

Request
Form

.ig YY

Initial
Value

If No
Argument

.yy= ••

Explanation: Ignore input lines. Ig behaves like de except
that the input is discarded. The input is read in copy
mode, and any auto-incremented registers are affected.

Request
Form

.pm t

Initial
Value

If No
Argument

all

Explanation: Print macros. The names and sizes of all of
the defined macros and strings are printed on the user's
terminal; if t is given, only the total of the sizes is
printed. The size is given in blocks of 128 characters.

19-1 Zilog 19-1

NROFF

Request
Form

.fl

Explanation:
debugging to
break.

19-2

Initial
Value

Zilog

If No
Argument

NROFF

Flush output
force output.

buffer. Used in interactive
This request normally causes a

Zilog 19-2

NROFF Zilog NROFF

SECTION 29
OUTPUT AND ERROR MESSAGES

The output from tmv pm, and the prompt from rd, as well as
various error messages are written onto the standard message
output. The standard message output is different from the
standard output, where nroff formatted output goes. By
default, both are written onto the user's terminal, but they
can be independently redirected.

Various error conditions can occur during the operation of
nroff and troff. Certain less serious errors that have only
local impact do not cause processing to terminate. Two
examples are word overflow, caused by a word that is too
large to fit into the word buffer (in fill mode), and line
overflow, caused by an output line that grows too large to
fit in the line buffer; in both cases, a message is printed,
the excess is discarded, and the affected word or line is
marked at the point of truncation with a * in nroff and a <=
in troff. Processing continues, if possible, sfnce output
useful for debugging may be produced. If a serious error
occurs, processing terminates, and an appropriate message is
printed. Examples are the inability to create, read, or
write files, and the exceeding of certain internal limits
that make future output unlikely to be useful.

20-1 Zilog 20-1

NROFF

21.1. Introduction

Zilog

SECTI,ON 21
EXA.MPLES

NROFF

It is almost always necessary to prepare at least a small
set of macro definitions to describe most documents. Such
common formatting needs as page margins and footnotes are
deliberately not built into nroff and troff. Instead, the
macro and string definition, number register, diversion,
environment switching, page-position trap, and conditional
input mechanisms provide the basis for user-defined imple­
mentations. (Most documents can be prepared with either the
-ms or -man macro sets.)

The following examples are intended to be useful and realis­
tic, but do not cover all relevant contingencies. Explicit
numerical parameters are used in the examples to make them
easier to read and to illustrate typical values. In many
cases, number registers are used to reduce the number of
places where numerical information is kept, and to concen­
trate conditional parameter initialization.

21.2. Page Margins

Header and footer macros are defined to describe the top and
bottom page margin areas. A trap is planted at page posi­
tion 0 for the header, and at -N (N from the page bottom)
for the footer. The simplest such definitions are

.de hd \"define header
'sp 1i

\"end definition
.de f o \"define footer
'bp

\"end definition
.wh 0 hd
.wh -li f o

which provide blank one-inch top and bottom margins. The
header only occurs on the first page if the definition and
trap exist prior to the initial pseudo-page transition. In
fill mode, the output line that springs the footer trap is
forced out because some part or whole word does not fit on
it. If anything in the footer and header that follows
causes a break, that word or part word is forced out. In
this and other examples, requests like bp and sp, which

21-1 Zilog 21-1

NROFF Zilog NROFF

normally cause breaks, are invoked using the no-break con­
trol character ' to avoid this problem. When the
header/footer design contains material requiring independent
text processing, the environment can be switched, avoiding
most interaction with the running text.

Another

.de

.if
• if
'sp
.tl
.ps
.ft
.vs
'sp
.ns

.de

.ps
• Et
.vs
.if
'sp
.tl
'bp

.wh

.wh

example is

hd
t .tl '\(rn' '\(rn'
\\n%>1 \{\
l0.5i-l
I I_ % - I I

\}
11. 0i

f o
10
R
12p
\\n%=1 \{\
l\\n(.pu-0.Si-l
' ' - % - ' ' \}

0 hd
-li f o

\"header
\"troff cut mark

\"tl base at 0.Si
\"centered page number
\"restore size
\"restore font.
\"restore vs
\"space to 1. 0i
\"turn on no-space mode

\"footer
\"set footer/header size
\"set font
\"set base-line spacing

\"tl base 0.Si up
\"first page number

which sets the size, font, and base-line spacing for the
header/footer material, and ultimately restores them. The
material in this case is a page number at the bottom of the
first page and at the top of the remaining pages. If troff
is used, a cut mark is drawn in the form of root-ens at each
margin. The sps refer to absolute positions to avoid depen­
dence on the base-line spacing. Another reason for this in
the footer is that the footer is invoked by printing a line
whose vertical spacing sweeps past the trap position by as
much as the base-line spacing. The no-space mode is turned
on at the end of hd to render ineffective and accidental
occurrences of sp at the top of the running text.

This method of restoring size, font, etc. presupposes that
such requests that set previous value are not used in the
running text. A better scheme is to save and restore both
the current and previous values for size as shown in the
following:

21-2 Zilog 21-2

NROFF

.de fo
• n r s 1 \ \n (• s
.ps
.nr s2 \\n(.s

.de hd

.ps \\n(s2

.ps \\n(sl

Zilog

\"current size

\"previous size
\"rest of footer

\"header
\"restore previous size
\"restore current size

NROFF

Page numbers are printed in the bottom margin by a separate
macro triggered during the footer's page ejection:

.de bn
• tl I I - % - I I

.wh -0.Si-lv bn

\"botto~ number
\"centered page number

\"tl base 0-Si up

21. 3. Paragraphs smd Headings

The housekeeping associated with starting a new paragraph is
collected in a paragraph macro that, for example, does the
desired preparagraph spacing, forces the correct font, size,
base-line spacing, and indent, checks that enough space
remains for more than one line, and requests a temporary
indent.

.de pg \"paragraph

.br \"break

.ft R \"force font,

.ps 10 \"size,

.vs 12p \"spacing,
• in 0 \"and indent
.sp 0.4 \"prespace
.ne l+\ \n (.Vu \"want more than 1 line
.ti 0. 2i \"temp indent

The first break in pg forces out any previous partial lines,
and must occur before the vs. The forcing of font, etc. is
a defense against prior error and permits things like sec­
tion heading macros to set parameters only once. The
prespacing parameter is suitable for troff; a larger space,
at least as big as the output device vertical resolution, is
more suitable in nroff. The choice of remaining space to
test for in ne is the smallest amount greater than one line.

21-3 Zilog 21-3

NROFF Zilog NROFF

A macro to automatically number section headings looks like:

.de SC

.sp 0.4
• ne 2. 4+\ \n (• Vu
• f i
\\n+S.

.11r S 0 1

\"section
\"force font, etc.
\"prespace
\"want 2.4+ lines

\"init S

The usage is .sc, followed by the section heading text, fol­
lowed by .pg. The ne test value includes one line of head­
ing, 0.4 line in the following pg, and one line of the para­
graph text. A word consisting of the next section number
and a period is produced to begin the heading line. The
format of the number is set by af.

Another common form is the labeled, indented paragraph,
where the label protrudes left into the indent space.

.de lp

.pg

.in 0.Si

.ta 0.2i 0.5i

.ti 0
\t\\$1\t\c

\"labeled paragraph

\"paragraph indent
\"label, paragraph

\"flow into paragraph

The intended usage is ".lp label"; label begins at 0.2 inch,
and cannot exceed a length of 0.3 inch without intruding
into the paragraph. The label is right-adjusted against 0.4
inch by setting the tabs instead with .ta 8.4iR I.Si. The
last line of lp ends with \c so that it becomes a part of
the first line of the text that follows.

21.4. Multiple Column Output

The production of multiple column pages requires the footer
macro to determine whether it was invoked by other than the
last column, so that it begins a new column rather than pro­
duce the bottom margin. The header initializes a column
register that the footer increments and test. The following
is arranged for two columns, but is easily modified for
more.

21-4 Zilog 21-4

NROFF

.de

.nr

.mk . .,

. de

. i e

.po

.rt

.ns

.el

.po

'bp

.11

.nr

hd

cl 0 1

f o
\\n+(cl<2
+3. 4i

\}
\{\
\\nMu

\}

3. 1 i
M \ \n (.o

\{\

Zilog

\"header

\"init column count
\"mark top of text

\"footer

\"next column; 3.1+0.3
\"back to mark
\"no-space mode

\"restore left margin

\"column width
\"save left margin

NROFF

Typically, a portion of the top of the first page contains
full-width text; the request for the narrower line length,
as well as another .mk is made where the two-column output
begins.

21.5. Footnote Processing

The footnote mechanism is used by embedding the footnotes in
the input text at the point of reference, demarcated by an
initial .fn and a terminal .ef:

• fn
Footnote text and control lines •••
• ef

In the following, footnotes are processed in a separate
environment and diverted for later printing in the space
immediately prior to the bottom margin. There is provision
for the case where the last collected footnote does not com­
pletely fit in the available space.

21-5 Zilog 21-5

NROFF Zilog

21-6

.de hd

.nr x 0 1

.nr y 0-\\nb

.ch f o -\\nbu

.if \\n(dn .fz

.de f o

.nr dn 0

.if \\nx \{\

.ev 1

.nf
• FN
.rm FN
.if "\\n(.z"fy"
.nr x 0
.ev \}

'bp

.de f x

.if \\nx .di f y

.de f n

.da FN

.ev 1
• if \\n+x=l .fs
.fi

.di

\"header

\"init footnote count
\"current footer place
\"reset footer trap
\"leftover footnote

\"footer
\"zero last diversion size

\"expand footnotes in evl
\"retain vertical size
\"footnotes
\"delete it
\"end overflow diversion
\"disable fx
\"pop environment

\"process footnote overflow
\"divert overflow

\"start footnote
\"divert (append)- footnote
\"in environment 1
\"if first, include separator
\"fill mode

.de ef \"end footnote

.br \"finish output

.nr z \\n(.v\"save spacing

.ev \"pop ev

.di \"end diversion

.nr y -\\n(dn \"new footer position,

.if \\nx=l .nr y -(\\n(.v-\\nz) \
\"uncertainty correction

.ch fo \\nyu \"y is negative

.if (\\n(nl+lv)>(\\n(.p+\\ny) \

.ch fo \\n(nlu+lv \"it didn't fit

.de fs
\l'li'
.br

.de fz
• fn
.nf
.fy
.ef

\"separator
\"l inch rule

\"get leftover footnote

\"retain vertical size
\"where fx put it

Zilog

NROFF

21-6

NROFF

.nr b l.QJi

.wh 0 hd
• wh l 2i fo
.wh -\\nbu fx
.ch fo -\\nbu

Zilog

\"bottom margin size
\"header trap
\"foote~ trap, temp position
\"fx at footer position
\"conceal fx with fo

NROFF

The header hd initializes a footnote count register x, and
sets both the current footer trap position register y and
the footer trap itself to a nominal position specified in
register b. In addition, if the register dn indicates a
leftover footnote, fz is invoked to reprocess it. The foot­
note start macro fn begins a diversion (append) in environ­
ment 1, and increments the count x; if the count is one, the
footnote separator fs is interpolated. The separator is
kept in a separate macro to p~rmit user redefinition. The
footnote end macro ef restores the previous environment and
ends the diversion after saving the spacing size in register
z. y is then decremented by the size of the footnote,
available in dn; then on the first footnote, y is further
decremented by the difference in vertical base-line spacings
of the two environments to prevent the late triggering of
the footer trap from causing the last line of the combined
footnotes to overflow. The footer trap is then set to the
lower (on the page) of y or the current page position (nl)
plus one line, to allow for printing the reference line. If
indicated by x, the footer fo rereads the footnotes from FN
in nofill mode in environment 1, and deletes FN. If the
footnotes are too large to fit, the macro fx is trap-invoked
to redivert the overflow into fy, and the register dn later
indicates to the header whether fy is empty. Both fo and fx
are planted in the nominal footer trap position in an order
that causes fx to be concealed unless the fo trap is moved.
The footer then terminates the overflow diversion, if neces­
sary, and zeros x to disable fx, because the uncertainty
correction together with a not-too-late triggering of the
footer can result in the footnote rereading and finishing
before reaching the fx trap.

A good exercise is to combine the multiple-column and foot­
note mechanisms.

21.6. Last Page

After the last input file has ended, nroff and troff invoke
the end macro, if any, and when it finishes, eject the
remainder of the page. During the eject, any traps encoun­
tered are processed normally. At the end of this last page,
processing terminates unless a partial line, word, or par­
tial word remains. To start another page, use the end-macro

21-7 Zilog 21-7

NROFF

.de en
\c
'bp

.em en

Zilog NROFF

\"end-macro

to deposit a null partial word, and effect another last
page.

21-8 Zilog 21-8

NROFF

A.I. Summary

Zilog

APPENDIX A
SUMMARY AND INDEX

NROFF

* Values separated by
tively.

are for nroff and troff, respec-

Notes are explained at the end of this Summary and
Index.

+ No effect in nroff.

The use of as control character (instead of .)
suppressess the break functon.

1. General Explanation

2. Font and Character Size Control

Request Initial If No
Form Value Argument Notes

.ps±_N 10 point previous E

.ss N 12/36 em ignored E

.cs F N M off p

.bd .F N off p

.bd s F N off p

.ft F Roman previous E

.fp N F R,I,B,S ignored

A-1 Zilog

Explanation

Point size; also
\s+N.
Space-character
size set to
N/36 em.+
Constant character
space (width) mode
(font F) .+
Embolden font F
by N-1 units.+
Embolden Special
Font when current
font is F.+
Change to font
F=x, xx, or 1-4.
Also \fx,\f (xx,
\fN.
Font named F
mounted on physical
position l<N<4.

A-1

NROFF Zilog NROFF

3. Page Control

Request Initial IfNo
Form Value Argument Notes Explanation

.pl +N llin llin v Page length.

.bp +N N=l B,v Eject current
page; next page
number N.

.pn +N N=l ignored Next page ntJmber
N.

.po +N 0;26/27in previous v Page offset.

.ne N N=lV D,v Need N ver-
ti cal space (V=ver-
tical spacing).

.mk none internal D Mark current ver-
ti cal place in reg-
ister R.

.rt +N none internal D,v Return (upward only)
to marked vertical
place.

4. Text Filling, Adjusting, and Centering

Request Initial
Form Value

• br
.fi fill

.nf no fill

.ad c adj,both

.na adjust

.ce N off

5. Spacing

Request
Form

.vs N

A-2

Initial
Value

l/6in;

If No
Argument

adjust

N=l

If No
Argument

previous

Notes

B
B,E

B,E

E

E

B,E

Notes

E,p

Zilog

Explanation

Break •
Fill output
lines.
No filling or
adjusting of
output lines.
Adjust output lines
with mode c.
No output line
adjusting.
Center following N
input text lines.

Explanation

Vertical base line

A-2

NRO.PF Zilog NROFF

12pts spacing (V) •
.ls N N=l previous E Output N-1 vs after

each text output
line.

.sp N N=lV B,v Space vertical
distance N in
either direction.

.sv N N=lV B,v Save vertical
distance N.

.os Output saved ver-
ti cal distance.

.ns space D Turn no-space
mode on.

.rs D Restore spacing;
turn no-space mode
off.

.11 +N 6.Sin previous E,m Line length.

.in +N N=0 previous B,E,m Indent.

.ti +N ignored B,E,m Temporary indent.

60 Macros, Strings, Diversion, and Position Traps

Request
Form

.de xx yy

• am xx yy
• ds xx string

.as xx string

.rm xx

.rn xx yy

.di xx

.da xx

.wh N xx

.ch xx N

A-3

Initial
Value

If No
Argument

• yy= ••

• yy= ••
ignored

ignored

ignored

ignored

end

end

Zilog

Notes

D

D

v

v

Explanation

Define or redefine
macro xx; end at
call of yy.
Append to a macro •
Define a string xx
containing string.
Append string to
string xx.
Remove request,
macro, or string.
Rename request,
macro, or string
xx to yy.
Divert output to
macro xx.
Divert and append
to xx.
Set location trap;
negative is with re­
spect to page bottom.
Change trap loca­
tion.

A-3

NROFF Zilog

.dt N xx off

.it N xx off

• em xx none none

7. Nwnber Registers

Request
Form

.nr R

.af R c

• rr R

8. Tabs,

Request
Form

.ta Nt . . .

.tc c

• le c

• fc a b

9. Input
tions

Request
Form

.ec c

A-4

Initial
Value

If No
Argument Notes

+N M u

arabic

Leaders, and Fields

Initial If No
Value Argument

0.8;0.Sin none

none none

none

off off

and Output Conventions

Initial If No
Value Argument

\ \

Zilog

NROFF

D,v Set a d:iversion

E
trap.
Set an input-line
count trap.
End macro is

Explanation

Define and set
number reg i st 1er
R; auto-increment
by M.
Assign format to
register R (c=l,
i-, I, a, A) •
Remove register R •

xx •

Notes Explanation

E,m Tab settings;
left type, unless
t=R(right), C(cen-
tered) •

E Tab repetition
character •

E Leader repetition
character •
Set field de-
limiter a and pad
character b.

and Character Transl a-

Notes Explanation

Set escape char-

A-4

NROFF

Request
Form

.eo

.lg N

.ul N

.cu N

.uf F

.cc c

.c2 c

• tr abed ••••

Ut. Hyphenation

Request
Form

.. nh

.hy N

• he c

• hw wordl •••

Initial
Val U•~

on

-; on

off

off

Italic

none

Initial
Val UE~

hyphenate
hyphe~nate

\%

11. Three Part Titles.

Request
Form

Initial
Value

Zilog

If No
Argument

on

N=l

N=l

Italic

If No
Argument

hyphenate

\%

ignored

Notes

E

E

E

E

0

Notes

E
E

E

If No
Argument

• t. l 'left'center'right'-

.pc c % off

A-5 Zilog

NROFF

Explanation
acter.
Turn off escape
character me ch-
an ism.
Ligature mode on
if N>0.
Underline (i ta 1-
icize in troff) N
input lines.
Continuous under-
line in nroff; like
ul in troff.
Underline font set
to F (to be
switched to by ul) •
Set control char-
acter to c.
Set nobreak con-
trol character to c.
Translate a to b,
etc. on output.

Explanation

No hyphenation.
Hyphenate; N =
mode •
Hyphenation indi­
cator character
c •
Exception words.

Notes Explanation

Three-part
title.
Page number
character.

A-5

NROFF

Request
Form
.1 t +N

Initial
Value
6.Sin

Zilog

12. Output Line Numbering.

Request Initial If No
Form Value Argument

.nm +N M s I off

.nn N N=l

If No
Argument
previous

Notes

E

E

13. Conditional Acceptance of Input

Request
Form

.if

• if

.if

• if

.if

.if

.ie

Initialif No
Value

c anything

le anything

N anything

!N anything

'string l'
string2' anything

! 'string 1
'string2'anything

c anything

• el anything

A-6

Argument

Zilog

Notes
E,m

NROFF

Explanation
Leng th o f t i t 1 e •

Explanation

Number mode! on or
off, set pa1rameters.
Do not number next
N lines.

Notes Explanation

u

u

u

If condition c
true, accept any­
thing as input,
for multi-line use
\{anything\}.
If condition c
false, accept any­
thing.
If expression N>0,
accept anything.
If expression N <0,
accept anything.­
If string 1 iden­
tical to string2,
accept anything.
If string 1 not
identical to
strin92, accept
anything.
If portion of if­
else; all above
forms (like if) •

if-else.

A-6

NROFF Zilog NROFF

14. Environment Switching

Request
Form

Initial
Value

If No
Argument Notes Explanation

.ev N N=0 previous Environment
switched
{pushed down) •

15. Insertions from the Standard Input

Request
Form

• rd prompt
.ex

Initial
Value

If No
Argument

prompt=BEL

16. Input/Output File Switching

Request
Form

.so filename

• nx filename
.pi program

Initial
Val UE~

17. Miscellaneous

Request
Form

.me c N

.tm string

• ig yy

A-7

Initial
Value

If No
Argument

EOF

If No
Argument

off

newline

• yy= ••

Zilog

Notes

Notes

Notes

E,m

Explanation

Read insertion •
Exit from nroff/
troff.

Explanation

Switch source
file
(push down) •
Next file •
Pipe output to
program (nroff
only).

Explanation

Set margin char­
acter c and sep­
aration N.
Print string on
terminal (ZEUS
stand ard message
output).
Ignore till call

A-7

NROFF

Request
Form

.pm t

• fl

Initial
Value

Zilog

If No
Argument

all

Notes

B

Explanation
of yy.

NROFF

Print macro names
and sizes; if t
present, print
only total of
sizes •
Flush output buf­
fer.

18. Output and Error Messages

NOTES

B

D

E

0

p

v,p,m,u

Request normally causes a break.

Mode or relevant parameters
current diversion level.

associated with

Relevant parameters are a part of the current
environment.

Must stay in effect until logical output.

Mode must be still or again in effect at the time
of physical output.

Default scale indicator; if not specified, scale
indicators are ignored.

A.2. Alphabetical Request and Section Number Cross Ftefer­
ence

Request Initial If No
Form Value Argument Notes Explanation
ad 4 dt 6 ig 19 nn 14 rs 5
af 7 ec 9 in 5 nr 7 rt 3
am 6 ei 15 it 6 ns 5 so 18
as 6 em 6 le 8 nx 18 sp 5
bd 2 eo 9 lg 9 OS 5 SS 2
bp 3 ev 16 li 9 pc 13 sv 5
br 4 ex 17 11 5 pi 18 ta 8
c2 9 f c 8 ls 5 pl 3 tc 8
cc 9 f i 4 lt 13 pm 19 ti 5
ce 4 fl 19 me 19 pn 3 tl 13
ch 6 f p 2 mk 3 po 3 tm 19

A-8 Zilog A-8

NROFF Zilog NROFF

cs 2 ft 2 na 4 Pp 2 tr 9
cu 9 he 12 ne 3 rd 17 uf 9
da 6 hw 12 nf 4 rm 6 ul 9
de 6 hy 12 nh 12 rn 6 vs 5
di 6 ie 15 nm 14 rr 7 wh 6
ds 6 if 15

A.3. Escape Sequem:es for Characters, Indicators, and Func­
tions

Section
Reference

9.1

9.1

2.1

2.1

2.1
6

10.1

10.1
10.1

10.1

4.1
9.6
9.7
6.3

12

2.1
6.1
8.1

11. 2
4.2

10.1

2.2

10.1

10.3

A-9

Escape
Sequencce
\\

\e

\'

\'

\-
\.
\(space)

\0
\I

\A

\&
\!
\"
\$N
\%

\(xx 1
*x,\ (:!CX
\a
\b'abc •.• '
\c
\d

\fx,\f (xx,\fN

\h'N'

\kx

Meaning
\ (to prevent or delay the inter­
pretation of \)
Printable version of the current
escape character.
\' (acute accent); equivalent to
\(aa
' (grave accent); equivalent to
\(ga
- Minus sign in the current font
Period (dot) (see de)
Unpaddable space-size space char­
acter
Digit-width space
1/6 em narrow space character (zero­
width in nroff)
1/12 em half-narrow space character
(zero width in nroff)
Nonprinting, zero width character
Transparent line indicator
Beginning of comment
Interpolate argument l<N<9
Default optional hyphenation charac­
ter
Character named xx
Interpolate string x or xx
Noninterpreted leader character
Bracket building function
Interrupt text processing
Forward (down) 1/2 em vertical
motion (1/2 line in nroff)
Change to font named x or xx or
position N
Local horizontal motion; move right
N (negative left)
Mark horizontal input place in reg­
ister x

Zilog A-9

NROFF

11. 3

11. 3

8
11.1
4.1

10.1

2.3
8.1

10.1

10.l

10.2
5.2

11.4

15
15
9.7

\l'Nc'

\L'Nc'

\nx,\n(xx
\o'abc '
\p
\r

\sN,\s+N
\t --
\u

\v'N'

\w'string'
\x'N'

\zc

\{
\}
\(newline)
\X

Zilog NROFF

Horizontal line drawing function
(optionally with c)
Vertical line drawing function (op­
tionally with c)
Interpolate number register x or xx
Overstrike characters a, b, c,
Break and spread output line
Reverse 1 em vertical motion (re­
verse line in nroff)
Point-size change function
Noninterpreted horizontal tab
Reverse (up) 1/2 em vertical motion
(1/2 line in nroff)
Local vertical motion; move down N
(negative up)
Interpolate width of string
Extra line-space function (negative
before, positive after)
Print c with zero width (without
spacing)
Begin conditional input
End conditional input
Concealed (ignored) new line
X, any character not listed above

The escape sequences\\, \., \", \$, *, \a, \n, \t, and
(new line) are interpreted in copy mode (Section 7.2).

A.4. Predefined General Number Registers

Section
Reference

3
10.2
6.4

6.4

10.3
14

4.1

10.2

l(?J. 2

A-10

Register
Name

%
ct
dl

dn

dw
dy
hp
ln
mo
nl

sb

st

Description

Current page number
Character type (set by width function)
Width (maximum) of last completed diver­
sion
Height (vertical size) of last completed
diversion
Current day of the week (1-7)
Current day of the month (1-31)
Current horizontal place on input line
Output line number
Current month (1-12)
Vertical position of last printed text
base-line
Depth of string below base line (gener­
ated by width function)
Height of string above base line (gen-

Zilog A-10

NROFF Zilog NROFF

erated by width function)
yr Last two digits of current year

A.5. Predefined Read-Only Number Registers

Section
Reference

6 .. 3

10 .. 1

HJ .. 1

5 .. 2

6 .. 4

2 .• 2
4

5
5
4

3
3
2 ,. 3
6.5
4 ,. 1
5.1

10" 2

6.4

A-11

Register
Name

$

A

H

T

v

a

c
d

f
h

i
1
n

0

p
s
t
u
v
w
x
y
z

Description

Number of arguments available
at thecurrent macro level
Set to 1 in troff if -a option used;
always 1 in nroff
Available horizontal resolution in
basic units
Set to 1 in nroff, if -T option used;
always 0 in troff
Available vertical resolution in basic
units
Post-line extra line-space most recently
utilized using ex "N"
Number of lines read from current input file
Current vertical place in current diversion;
equal to nl, if no diversion
Current font as physical quadrant (1-4)
Text base-line mark on current page or
diversion
Current indent
Current line length
Length of text portion on previous output
line
Current page offset
Current page length
Current point size
Distance to the next trap
Equal to 1 in fill mode and 0 in nofill mode
Current vertical line spacing
Width of previous character
Reserved version-dependent register
Reserved version-dependent register
Name of current diversion

Zilog 1-\-11

NROFF Zilog NROFF

APPENtHX ·B
SUMMARY OF RECENT CHANGES TO NROFF/TROFF

B.l. Command Line Options

Removed Options

+n, -n Use the -o option instead.

Modified Options

-sn As well as stopping the output every n pages,
this option also causes the bell contiol char­
acter to be output to the terminal when stop­
ping between pages. {In troff, a message,
"page stop", is output to the terminal).

Additional Options

-h

-z

-cnarne

-kname

B-1

(nroff only) Use output tabs during horizontal
spacing to speed up output as well as to reduce
output byte count. Device tabs settings are
assumed to be every 8 nominal character widths.
The default settings of input (logical) tabs is
also initialized to every 8 nominal character
widths.

Efficiently suppresses formatted output. Only
message! output wi 11 occur (from • tm requests
and diagnostics).

Use the compacted version of macro package
name, if it exists. If it doesn't, nroff/troff

. will try the equivalent ~mname option instead.
This ciption should be used instead of -m
because it makes nroff/troff execute signifi­
cantly faster.

Produce a compacted macro package from this
invocation of nroff/troff. This option has no
effect if no .co request is used in the
nroff/troff input. Otherwise, the compacted
output-is produced in files d.name and t.name.

Zilog
10/7/83

B-1

NROFF Zilog NROFF

-un (nroff only) Set the emboldening factor (number
of character overstrikes in nroff) for the
third font position (bold) to be n (zero if n
is missing) .

B.2. Requests

Removed Requests

.li The transparent input mode request has been
removed.

Modified Requests

.ad c

.so name

.bd

The adjustment type indicator c may now also be
a number obtained from the-.j register (see
Appendix B.3).

The contents of file name will be interpolated
at the point the .S"Orequest is encountered.
Previously, the interpolation was done upon
return to the file-reading input level.

The emboldening request now works in nroff, and
causes overprinting of bold characters. The
default setting for font position 3 (the bold
font) is 3 (causing each bold character to be
printed 4 times in the same position). The -u
command line option may be used to change the
emboldening factor for the bold font.

Additional Requests

.ab text

.co

.I cmd args

B-2

Prints text on the message output and ter­
minates without further processing. If text is
missing, "User Abort." is printed. This
request does not cause a break. The output
buffer is flushed.

If the -k name command line option was given,
compact the current state of nroff/troff. If
the -k name wasn't used, .co has no effect.

The UNIX command cmd is executed and its out­
put becomes nroff/troff input. The standard
input for cmd is closed.

Zilog
10/7/83

B-2

NROFF Zilog NROFF

B.3. Additional Predefined Number Registers

.k Read-only. Contains the horizontal size of the text
portion (without indent) of the current partially­
collected output line, if any, in the current environ­
ment •

. j Read-only. Indicates the current adjustment mode and
type. Can be saved and later given to the .ad request
to restore a previous mode .

• P Read-only. Contains the value 1 if the current page is
being printed, and is zero otherwise, i.e., if the
current page did not appear in the -o option list .

• L Read-only. Contains the current line-spacing parameter
(the value of the most recent .ls request).

.c Provides general register access to
number in the current input file.
value as the read-only .c register •

the input line­
Contains the same

• R Number of number registers that remain available for
use •

• b Emboldening factor of the current font (nroff and
troff).

B. 4. Additional l~scape Sequences

\j~ 1 \j(xx Mark the current horizontal output position in
register x or xx.

\g~,\g(xx Return the .af -type format of the register x
or >~x. Returns nothing if x (xx) has not yet
been-referenced.

B.5. New Feature - Compacted Macros

A. User Information

B-3

The time required to read a macro package by
nroff/troff may be g(eatly lessened by using a pre­
processed version of that macro package, called com­
pacted macros. The compacted version of a macro pack­
age is completely equivalent to the non-compacted ver­
sion, except that a compacted macro package cannot be
read by the .so request.

Zilog
10/7 /83

B-3

NROFF Zilog NROFF

A compacted version of a macro package, name, is used
by the -cname command line option, while the uncom­
pacted versTOrlis used by the -mname option. Because
-cname defaults to -mname if the name macro package
hasn't been compacted, the user shou1cr-a1ways use -c
rather than -m.

The next section describes how to build a compacted
version of a macro package.

B. Building a Compacted Macro Package

B-4

If one has a macro package and wishes to make a com­
pacted version of it, the following simple steps should
be followed:

1. Separate the Compactable
Parts

from Non-compactable

Only the following nroff/troff entities can be
compacted: macro, string, diversiori, number regis­
ter and trap settings and definitions. For exam­
ple, the following are not compactable: environ­
ment settings, end macro setting, or any commands
that interact (during package interpretation) with
command line settings, (like a reference to \nP,
which could be set on the command line).

All the non-compactable material should be placed
at the end of the macro package, with a .co
request separating the compactable from non­
compactable parts:

Compactable Material

.co
Non-Compactable Material

The .co request indicates to nroff/troff when to
compact its current internal state.

2. Produce Compacted Files

Once compactable and non-compactable segments have
been set up as above, nroff/troff may be run with
the -kname option to build the compacted files.

Zilog
10/7/83

B-4

NROFF

B-5

Zilog NROFF

For example, if the macro file produced by step 1
is called mac, then the following can be used to
build the compacted files:

$ nroff -kmac mac
or
$ troff -kaac mac

Each of these commands causes nroff/troff to
create two files in the current directory, d.mac
and t.mac.

3. Install Compacted Files

The two compacted files produced in step 2 must be
installed into the system macro library
(/usr/lib/macros) with the proper names.

If the files were produced by nroff, cmp.n. must
be prepended to their names. If produced by
troff, cmp.t. must be prepended to their names.

Still assuming that the macro package with which
we are dealing is called mac, the two (nroff) com­
pacted files may be installed by:

$ cp d.mac /usr/lib/macros/cmp.n.d.mac
$ cp t.mac /usr/lib/macros/cmp.n.t.mac

4. Install Non-compactable Segment

The non-compactable segment from the original
macro package must also be installed on the system
as

/usr/lib/macros/ucmp.[nt].name

where n of [nt] means the
means the troff version.
ment must ~e produced by.
using the editor.

nroff version, and t
The non-compactable seg­
hand, for example, by

Again using the mac package
following could be used
non-compactable segment:

as an example, the
to install the (nroff)

$ ed mac
/A\.co$/+,$w /usr/lib/macros/ucmp.n.mac

Zilog
10/7 /83

B-5

NROFF Zilog NROFF

C. Warnings

Compacted macro packages depend heavily on the particu­
lar version of nroff/troff that produced them. This
means that each package needs to be compacted
separately by both nroff and troff. It also means that
any compacted macro packages must be recompacted when a
new version of nroff or troff is installed.

If nroff/troff discovers that a macro package was pro­
duced by a different version of nroff/troff than that
attempting to read it, the -c will be abandoned, and
the equivalent -m option attempted instead.

If nroff/troff actually reads a compacted package that
was produced by a different version of nt~off/troff
(because the version number of nroff/troff was not
updated), very peculiar action will result.

B.6. Other New Features

A. nroff/troff now accepts multiple -m/-c macro package
requests on the command line.

B. The ASCII esc and bel characters are treated as regular
characters.

C. The third font position (bold) causes overprinting in
nroff.

D. Hyphenation is off by default.

B.7. Notable Changes

A. The conditionally accepted part of an .ie. or .if
request is now completely ignored if the test failed,
rather than being read in copy mode, as was previously
the case.

B~ The .cu request has been enhanced to provide up to
about three lines of continuously underlined text, and
the underlining is not lost when the .cu is used inside
a diversion ..

B-6 Zilog
10/7/83

B-6

SOURCE CODE CONTROL SYSTEM USER'S GUIDE

SCCS Zilog secs

ii Zilog ii

secs Zilog

Table of Contents

SECTION 1 INTRODUCTION •••••••••• ! •••••••••••••••••••••

SECTION 2 SCCS FOR BEGINNERS .
2 .1.
2.2.
The
2.3.
The
2. 4.
The
2.5.
2.6.

Termi11olo·gy •••••••••••••••••••••••••••••••••••
Creating an SCCS File -

'admin' Command ••••••••••
Retrieving a File -

.
' g et ' Co mm and • ·• • • • • • • • • • •
Recording Changes

'delta' Command
More about the 'get' Command •••••••••••••••
The 'help' Command ·········~····~·············

SECTION 3 HOW DELTAS ARE NUMBERED .

SECTION 4 SCCS COMMAND CONVENTIONS

SECTION 5 SCCS COMMANDS .

iii

5 .1. get .
5.1.1. ID Keywords ••••••••••••••••••••••••••••••
5.1.2. Retrieval of Different Versions ••••••••••
5.1.3. Retrieval with Intent
to Make a Del ta •••••••••••••••••••••••••••••••••
5.1.4. Concurrent Edits of Different SIDs ••••
5.1.5. Concurrent Edits of the Same SID
5.1.6. Keyletters That Affect Output

5.2. delta •••••..••••••••••••••••••••••
5.3. admin •••••••••

5.3.1. Creation of SCCS Files •••••••••••••••••••
5.3.2. Inserting Commentary
for the Initial Delta •••••••••••••••••••••••••••
5.3.3. Initialization & Modification
of SCCS File Parameters •• •••••••••

5.4. prs •••••••••••
5.5. help .

Zilog

SCCS

1-1

2-1

'2-1

2-1

2-2

2-3
2-4
2-6

3-1

4-1

5-1

5-2
5-3
5-4

5-6
5-8

5-10
5-11
5-13
5-16
5-16

5-17

5-17
5-19
5-20

iii

secs Zilog

5. 6. rmde l •••••••••••••••
5. 7. cdc ••••••••••••
5.8. what .
5.9. sccsdiff ••• .
5.10. comb
5.11. val •••
5.12. sact
5.13. unget .

SECTION 6 secs FILES .
6.1.
6. 2.
6.3.

Protection
Format ••••
Auditing

.
.

APPENDIX A FUNCTION AND USE OF AN
SCCS INTERFACE PROGRAM

iv

A.l.
A.2.
A. 3.
A.4.
A. 5.

.
Introduction ••••••••••••
Function . A Basic Program
Linking and Use ••••

. ...
Conclusion ••••••••••• .

Zilog

SCCS

5-21
5-22
5-23
5-23
5-24
5-25
5-26
5-26

6-1

6-1
6-2
6-3

A-1

A-1
A-1
A-2
A-2
A-3

iv

secs

Figure
3-1
3-2
3-3

v

Zilog

List of Illustrations

Evolution of an SCCS File
Tree Structure with Branch Deltas
Extending the Branching Concept

Zilog

secs

3-1
3-3
3-4

v

SCCS Zilog SCCS

vi Zilog vi

secs

Table
5-1

A-1

vii

Zilog secs

List of Tables

Determination of New SIDs ••••••••••••••••••• 5-9

SCCS Interface Program 'inter.c' •••••••••••• A-4

Zilog vii

secs Zilog

SECTION 1
INTRODUCTION

SCCS

The Source Code Control System SCCS is a system for control-
1 ing changes to files of text (typically, the source code
and documentation of software systems). It provides facili­
ties for storing, updating, and retrieving any version of a
file of text, for controlling updating privileges to that
file, for identifying the version of a retrieved file, and
for recording who made each change, when and where it was
made, and why. SCCS is a collection of programs that run
under the ZEUS system.

This document, is a user's guide to SCCS.
topics are covered:

The following

$ How to get started with SCCS.

$ The scheme used to identify versions of text kept in an
SCCS file.

Basic information needed :for day-to-d~y use of SCCS
commands, including a discussion of the more useful
arguments.

Protection and auditing of SCCS files, including the
differences between the use of SCCS by individual users
on one hand, and groups of users on the other.

Neither the implementation of SCCS nor the installation pro­
cedure for SCCS are described here.

The Source Code Control System SCCS is a collection of com­
mands developed under the UNIX Tm based PWB (Programmers
Workbench) timesharing system that help individuals or pro­
jects control and account for changes to-files of text (typ­
ically, the source code and documentation of software sys­
tems). It is convenient to conceive of SCCS as a custodian
of files; it allows retrieval of particular versions of the
files, administers changes to them, controls updating
privileges to them, records who made each change, when and
where it was made, and why. This is important in environ­
ments in which programs and documentation undergo frequent
changes (because of maintenance and/or enhancement work),
inasmuch as it is sometimes desirable to regenerate the ver­
sion of a program or document as it was before changes were
applied to it. Obviously, this could be done by keeping
copies (on paper or other media), but this quickly becomes

1-1 Zilog 1-1

SCCS Zilog SCCS

unmanageable and wasteful as the number of programs and
documents increases. SCCS provides an attractive solution
because it stores on disk the original file and, whenever
changes are made to it, stores only the changes; each set of
changes is called a "delta".

This manual contains the following sections:

$ SCCS for Beginnars: How to make an SCCS file, how to
update-It, and how to retrieve a version thereof.

1-2

How Deltas Are Numbered: How versions of SCCS files
are numbereda'nd named.

SCCS Command Conventions: Conventions and rules gen­
erally applicable to all SCCS commands.

SCCS Commands: Explanation of all SCCS commands, with
discussions of the more useful arguments.

SCCS Files: Protection, format, and auditing of SCCS
files, including a discussion of the differences
between using SCCS as an individual and using it as a
member of a group or project. The role of a "project
SCCS administrator" is introduced.

Zilog 1-2

SCCS Zilog SCCS

SECTION 2
SCCS FOR BEGINNERS

It is assumed that the reader knows how to log onto a PWB
system, create files, and use one of ·the available text edi­
tors {see vi{l), ex{l), or ed(l) in the System 8000 ZEUS
Reference Manual). A number of terminal-session fragments
are presented below. All of them should be tried: the best
way to learn SCCS is to use it.

To supplement the material in this manual, the detailed SCCS
command descriptions in Section 1 of the System 8000 ZEUS
Reference Manual should be consulted. Section 5 below con­
tains a list of all the SCCS commands. For the time being,
however, only basic concepts will be discussed.

2.1. Terminology

Each secs file is composed of one or more sets of changes
applied to the null {empty) version of the file, with each
set of changes usually depending on all previous sets. Each
set of changes is called a "delta" and is assigned a name,
called the secs IDentif ication string SID, composed of at
most four components, only the first two of which will con­
cern us for now; these are the "release" and "level"
numbers, separated by a period. Hence, the first delta is
called "1.1", the second "1.2", the third "1.3", etc. The
release number can also be changed allowing, for example,
deltas "2.1", "3.19", etc. The change in the release number
usually indicates a major change to the file.

Each delta of an secs file defines a particular version of
the file. For example, delta 1.5 defines version 1.5 of the
secs file, obtained by applying to the null (empty) version
of the file the changes that constitute deltas 1.1, 1.2,
etc., up to and including delta 1.5 itself, in that order.

2.2. Creating an SCCS File - The 'admin' Command

Consider, for example, a file called "lang" that contains a
list of programming languages:

2-1

c
pascal
fort ran
cobol

Zilog 2-1

SCCS Zilog SCCS

algol

We wish to give custody of this file to SCCS. The following
admin command (which is used to administer SCCS files)
creates an secs file and initializes delta 1.1 from the file
"lang":

admin -ilang s.lang

All SCCS files must have names that begin with "s.", hence,
"s.lang". The -i keyletter, together with its value "lang",
indicates that admin is to create a new SCCS file and ini­
tialize it with the contents of the file "lang". This TnT=
tial version is a set of changes applied to the null SCCS
file; it is delta 1.1.

The admin command replies:

No id keywords (cm7)

This is a warning message (which may also be issued by other
SCCS commands) that is to be ignored for the purposes of
this section. Its significance is described in Section 5.1
below. In the following examples, this warning message is
not shown, although it may actually be issued by the various
command.

The file "lang" should be removed (because it can be easily
reconstructed by using the ~ command, below):

rm lang

2.3. Retrieving a File - The 'get' Command

The command:

get s.lang

causes the creation (retrieval) of the latest version of
file "s.lang", and prints the following messages:

1.1
5 lines
No id keywords (cm7)

This means that ~ retrieved version 1.1 of the file, which
is mad~ up of 5 lines of text. The retrieved text is placed
in a file whose name is formed by deleting the "s." prefix
from the name of the SCCS file; hence, the file "lang" is

2-2 Zilog 2-2

SCCS Zilog SCCS

created.

The above ~ command simply creates the file "lang" read­
only, and keeps no information whatsoever regarding its
creation. On the other hand, in order to be able to subse­
quently apply changes to an SCCS file with the delta command
(see below) , the ~!:. command must be informed of your inten­
tion to do so. This is done as follows:

get -e s.lang

The -e keyletter causes ~ to create a file "lang" for both
reading and writing (so that it may be edited) and places
certain information about the secs file in another new file,
called the £-file, that will be read by the delta command.
The ~ commandprlnts the same messages as before, except
that the SID of the version to be created through the use of
delta is also issued. For example the command:

get -e s.lang

outputs:

1.1
new delta 1.2
5 lines

The file "lang" may now be changed, for example, by:

ed lang
29
$a
snobol
ratfor

w
43
q

2.4. Recording Changes - The 'delta' Command

In order to record within the SCCS file the changes that
have been applied to "lang", execute:

delta s.lang

Delta prompts with:

comments?

2-3 Zilog 2-3

SCCS Zilog SCCS

the response to which should be a description of why the
changes were made; for example:

comments? added more languages

Delta then reads the p-file, and determines what changes
were made to the file-"lang". It does this by doing its own
~ to retrieve the original version, and by applying
diff (l) to the original version and the edited versiono

NOTE

All references of the form name(N) refer to an
entry for the command name found in section N of
the System 8000 ZEUS Refereilce Manual.

When this process is complete, at which point the changes to
"lang" have been stored in "s.lang", delta outputs:

No id keywords (cm7)
1. 2
2 inserted
0 deleted
5 unchanged

The number "1.2" is the name of the delta just created, and
the next three lines of output refer to the number of lines
in the file "s.lang".

2.5. More about the 'get' Command

As we have seen:

get s.lang

retrieves the latest version (now 1.2) of the file "s.lang".
This is done by starting with the original version of the
file and successively applying deltas (the changes) in
order, until all have been applied.

For our example, the following commands are all equivalent:

get s.lang

get -rl s.lang

get -rl.2 s.lang

The numbers following the -r keyletter are SIDs (see Section

2-4 Zilog 2-4

secs Zilog secs

2.1 above). Note that omitting the level number of the SID
(as in the second example above) is equivalent to specifying
the highest level number that exists within the specified
release. Thus, the second command requests the retrieval of
the latest version in release 1, namely 1.2. The third com­
mand specifically requests the retrieval of a particular
version, in this case, also 1.2.

Whenever a truly major change is made to a file, the signi­
ficance of that change is usually indicated by changing the
release number (first component of the SID) of the delta
being--made. Since normal, automatic, numbering of deltas
proceeds by incrementing the level number (second component
of the SID), we must indicate to SCCS that we wish to change
the release number. This is done with the ~ command:

get -e -r2 s.lang

Because release 2 does not exist, ~ retrieves the latest
version before release 2; it also interprets this as a
request to change the release number of the delta we wish to
create to 2, thereby causing it to be named 2.1, rather than
1.3. This information is conveyed to delta via the £-file.
Get then outputs:

1.2
new delta 2.1
7 lines

which indicates that version 1.2 has been retrieved and that
2.1 is the version delta will create. If the file is now
edited, for example, .by:

ed lang
43
/cobol/d
w
37
q

and delta executed:

delta s.lang
comments? deleted cobol from list of languages

we will see, by delta's output, that version 2.1 is indeed
created: --- -

2-5

No id keywords (cm7)
2.1
0 inserted

Zilog 2-5

SCCS Zilog SCCS

1 deleted
6 unchanged

Deltas may now be created in release 2 (deltas 2.2, 2.3,
etc.), or another new release may be created in a similar
manner. This process may be continued as desired.

2.6. The 'help' Command

If the command:

get abc

is executed, the following message will be output:

ERROR [abc] : not an SCCS file (col)

The string "col" is a code for the diagnostic message, and
may be used to obtain a fuller explanation of that message
by use of the hele command:

help col

This produces the following output:

col:
"not an SCCS file"
A file that you think is an SCCS file
does not begin with the characters "s.".

Thus, help is a useful command to use whenever there is any
doubt about the meaning of an secs message. Fuller explana­
tions of almost all SCCS messages may be found in this
manner.

2-6 Zilog 2-6

secs Zilog SCCS

SECTION 3
HOW DELTAS ARE NUMBERED

It is convenient to conceive of the deltas applied to an
secs file as the nodes of a tree, in which the root is the
initial version of the file. the root delta (node) is nor­
mally named "1.1" and successor deltas (nodes) are named
"1.2", "1.3", etc. The components of the names of the del­
tas are called the "release" and the "level" numbers,
respectively. Thus, normal naming of successor deltas
proceeds by incrementing the level number, which is per­
formed automatically by SCCS whenever a delta is made. In
addition, the user may wish to change the release number
when making a delta, to indicate that a major change is
being made. When this is done, the release number also
applies to all successor deltas, unless specifically changed
again. Thus, the evolution of a particular file may be
represented as in Figure 3-1.

1.2
2.2 '1

RELEASE 1 RELEASE 2

00436

Figure 3-1 Evolution of an SCCS File

Such a structure may be termed the "trunk" of the SCCS tree.
It represents the normal sequential development of an SCCS
file, in which changes that are part of any given delta are
dependent upon all the preceding deltas.

However, there are situations in which it is necessary to
cause a branching in the tree, in that changes applied as

3-1 Zilog 3-1

SCCS Zilog SCCS

part of a given delta are not dependent upon all previous
deltas. As an example, consider a program which is in pro­
duction use at version 1.3, and for which development work
on release 2 is already in progress. Thus, release 2 may
already have some deltas, precisely as shown in Figure 3-1.
Assume that a production user reports a problem in version
1.3, and that the nature of the problem is such that it can­
not wait to be repaired in release 2. The changes necessary
to repair the trouble will be applied as a delta to version
1.3 (the version in production use). This creates a new
version that will then be released to the user, but will not
affect the changes being applied for release 2 (i.e., deltas
1.4, 2.1, 2.2, etc.).

The new delta is a node on a "branch" of the tree, and its
name consists of four components, namely, the release and
level numbers, as with trunk deltas, plus the "branch" and
"sequence" numbers, as follows:

release.level.branch.sequence

The branch number is assigned to each branch that is a des­
cendant of a particular trunk delta, with the first such
branch being 1, the next one 2, and so on. The sequence
number is assigned, in order, to each delta on a "_E2rticular
branch". Thus, 1.3.1.2 identifies the second delta of the
first branch that derives from delta 1.3. This is shown in
Figure 3-2.

3-2 Zilog 3-2

SCCS Zilog SCCS

1.3.1.2

BRANCH 1

~-- I .. I ~-,··
00437

Figure 3-2 Tree Structure with Branch Deltas

The concept of branching may be extended to any delta in the
tree; the. naming of the resulting deltas proceeds in the
manner just i 11 ustrate'd.

Two observations are of importance with regard to naming
deltas. First, the' names of trunk deltas contain exactly
two components, and the n~mes of branch deltas contain
exactly four components. Second, the first two components
of the name of branch deltas are always those of the ances­
tral trunk delta, and the branch component is assigned in
the order of creation of the branch, independently of its
location relative to the trunk delta. Thus, a branch delta
may always be identified as such from its name. Although
the ancestral trunk delta may be identified from the branch
delta's name, it is not possible to determine the entire
path leading from the-trunk delta to the branch delta. For
example, if delta 1.3 has one branch emanating from it, all
deltas on that branch will be named 1.3.1.n. If a delta on
this branch then has another branch emanating from it, all
deltas on the new branch will be named 1.3.2.n (see-Figure
3-3). The only information that may be derived from the
name of delta 1.3.2.2 is that it is the chronologically
second delta on the chronologically ~econd branch whose
trunk ancestor is delta 1.3. In particular, it is not pos­
sible to determine from the name of delta 1.3.2.2 all()f the

3-3 Zilog 3-3

SCCS Zilog SCCS

deltas between it and its trunk ancestor (1.3).

BRANCH 1 BRANCH 2

1.3. 2.1 ~ 1.3.2.2 l
r 1.1 H 1.2 1.4 I ij 2.1] ~ 2.2 1

00438

Figure 3-3 Extending the Branching Concept

It is obvious that the concept of branch deltas allows the
generation of arbitrarily complex tree structures. Although
this capability has been provided for certain specialized
uses, it is strongly recommended that the SCCS tree be kept
as simple as possible, because comprehension of its struc­
ture becomes extremely difficult as the tree becomes more
complex.

3-4 Zilog 3-4

secs Zilog SCCS

SECTION 4
SCCS COMMAND CONVENTIONS

This section discusses the conventions and rules that apply
to SCCS commands. These rules and conventions are generally
applicable to all SCCS commands, except as indicated below.
SCCS commands accept two types of arguments: keyletter argu­
ments and file arguments.

Keyletter arguments (hereafter called simply "keyletters"}
begin with a minus sign (-},followed by a lower-case alpha­
betic character, and, in some cases, followed by a value.
These keyletters control the execution of the command to
which they are supplied.

File arguments (which may be names of files and/or direc­
tories} specify the file(s} that the given SCCS command is
to process; naming a directory is equivalent to naming all
the SCCS files w:ithin the directory. Non-SCCS files and
unreadable (because of permission modes (see chmod(l}) files
in the named directories are silently ignored.

In general, file arguments may not begin with a minus sign.
However, if the name "-" (a lone minus sign} is specified as
an argument to a command, the command reads the standard
input for lines and takes each line as the name of an secs
file to be processed. The st~ndard input is read until
end-of-file. This feature is often used in pipelines with,
for example, the find(l} or ls(l} commands. Again, names of
non-SCCS files and of unreadable files are silently ignored.

All keyletters specified for a given command apply to all
file arguments of that command. All keyletters are pro­
cessed before any file arguments, with the result that the
placement of keyletters is arbitrary (i.e., keyletters may
be interspersed with file arguments}. File arguments, how­
ever, are processed left to right~

Somewhat different argument conventions apply to the help,
what, sccsdiff, and val commands (see Sections 5.5,5:8,
5.9; and 5.11).

Certain actions of various SCCS commands are controlled by
flags appearing in SCCS files. Some of these flags are dis­
cussed below. For a complete description of all such flags,
see adm in(_!} •

4-1 Zilog 4-1

SCCS Zilog SCCS

The distinction between the "real user" (see passwd (_!)) and
the "effective user" of a ZEUS system is of concern in dis­
cussing various actions of secs commands. For the present,
it is assumed that both the real user and the effective user
are one and the same (i.e., the user who is logged into a
ZEUS system); this subject is further discussed in Section
6.1.

All sccs commands that modify an secs file do so by writing
a temporary copy, called the x-file, which ensures that the
SCCS file will not be damaged -should processing terminate
abnormally. The name of the x-f ile is formed by replacing
the "s." of the SCCS file name witli""x." When processing
is complete, the old SCCS file is removed and the x-file is
renamed to be the secs file. The x-file is created- ~the
directory containing the SCCS file-;-IS given the same mode
(see chmod(l)) as the SCCS file, and is owned by the effec­
tive user. -

To prevent simultaneous updates to an SCCS file, commands
that modify SCCS files create a lock-file, called the z­
file, whose name is formed by replacrng-the "s." of the secs
file name with "z.". The z-file contains the "process
number" of the command that creates-ft, and its existence lS

an indication to other commands that that SCCS file is being
updated. Thus, other commands that modify SCCS files will
not process an secs file if the corresponding z-file exists.
The z-file is created with mode 444 (read-on~ in the
directory containing the SCCS file, and is owned by the
effective user. This file exists only for the duration of
the execution of the command that creates it. In general,
users can ignore x-files and z-files; they may be useful in
the event of system crashes or similar situations.

secs commands produce diagnostics (on standard output) of
the form:

ERROR [name-of-file-being-processed] : message text (code)

The code in parentheses may be used as an argument to the
help----COmmand (see Section 5.5) to obtain a further explana­
tion of the diagnostic message.

Detection of a fatal error during the processing of a file
causes the secs command to terminate processing of that file
and to proceed with the next file, in order, if more than
one file has been named.

4-2 Zilog 4-2

SCCS Zilog

SECTION 5
secs COMMANDS

SCCS

This section describes the major features of all the SCCS
commands. Detailed descriptions of the commands and of all
their arguments are given in the System 8000 ZEUS Reference
Manual, and should be consulted for further information.
The discussion below covers only the more common arguments
of the various secs commands.

Because the commands ~ and delta are the most frequently
used, they are presented first. The other commands follow
in approximate order of importance.

The following is a summary of all the SCCS commands and of
their major functions:

get

delta

admin

prs

help

rmdel

cdc

what

Retrieves versions of secs files.

Applies changes (deltas) to the text of SCCS
files, i.e., creates new versions.

Creates SCCS files and applies changes to parame­
ters of secs files.

Prints portions of an secs file in user specified
format.

Gives explanations of diagnostic messages.

Removes a delta from an SCCS file; allows the
removal of deltas that were created by mistake.

Changes the commentary associated with a delta.

Searches file(s) for all occurrences of a special
pattern and prints out what follows it; is useful
in finding identifying information inserted by the
~ command.

sccsdiff Shows the differences between any two versions of
an secs f i.le.

comb

5-·l

Combines two or more consecutive deltas of an secs
file into a single delta; often reduces the size
of the secs file.

Zilog 5-1

SCCS Zilog secs

val V~lidates an SCCS file.

sact Prints current SCCS file editing activity.

unget Undoes a previous get of an SCCS file.

5.1. get

The ~ command creates a te}ct file that contains a particu­
lar version of an SCCS file. The particular version is
retrieved by beginning with the initial version, and then
applying deltas, in order, until the desired version is
obtained. The created file is called the g-file; its name
is formed by removing the "s." from the SCCS file name. The
g-f ile is created in the current directory and is owned by
the real user. The mode assigned to the g-file depends on
how the ~ command is invoked, as discussed below.

The most common invocation of ~ is:

get s.abc

which normally retrieves the latest version on the trunk of
the SCCS file tree, and produces (for example) on the stan­
dard output:

1.3
67 lines
No id keywords (cm7)

which indicates that:

1. Version 1.3 of file "s.abc" was retrieved (1.3 is the
latest trunk delta}.

2. This version has n7 lines of text.

3. No ID keywords were substituted in the file (see Sec­
tion 5.1.1 for a discussion of ID keywords}.

The generated g-file (file "abc"} is given mode 444 (read­
only} , since tnis particular way of invoking ~ is intended
to produce g-files only for inspection, compilation, etc.,
and not for editing (i.e., not for making deltas}.

In the case of several file arguments (or directory-name
arguments}, similar information is given for each file pro­
cessed, but the secs file name precedes it. For example:

get s.abc s.def

5-2 Zilog 5-2

SCCS

produces:

s.abc:
1. 3
67 lines
No id keywords (cm7)

s.def:
1. 7
85 lines
No id keywords (cm7)

Zilog SCCS

5.1.1. ID Keywords:: In generating a .9_-file to be used for
compilation, it is useful and informative to record the date
and time of creation, the version retrieved, the module's
name, etc., within the .9_-file, so as to have this informa­
tion appear in a load module when one is eventually created.
SCCS provides a convenient mechanism for doing this automat­
ically. "Identification (ID) .keywords" appearing anywhere
in the generated file are replaced by appropriate values
according to the definitions of these ID keywords. The for­
mat of an ID keyword is an upper-case letter enclosed by
percent signs (%). For example:

%!%

is defined as the ID keyword that is replaced by the SID of
the retrieved version of a file. Similarly, %8% is defined
as the ID keyword for the current date (in the form
"mm/dd/yy"), and %M% is defined as the name of the _g_-file.
Thus, executing ~on an SCCS file that contains the PL/I
declaration:

static char Version[] = "%M% %P'£ %$;

gives (for example) the following:

static char Version[] = "filename 2.3 7/07/77";

When no ID keywords are substituted by ~, the following
message is issued:

No id keywords (cm7)

This message is normally treated as a warning by ~,
although the presence of the i flag in the SCCS file causes
it to be treated as an error (see Section 5.2 for further
information).

5-3 Zilog 5-3

SCCS Zilog secs

For a complete list of the approximately twenty ID keywords
provided, see ~(!).

5.1.2. Retrieval of Different Versions: various keyletters
are provided to allow the retrieval of other than the
default version of an SCCS file. Normally, the default ver­
sion is the most recent delta of the highest-numbered
release on the trunk of the SCCS file tree. However, if the
SCCS file being processed has a d (default SID) flag, the
SID specified as the value of this e1ag is used as a
default. The default SID is interpreted in exactly the same
way as the value supplied with the -r keyletter of ~·

The -r keyletter is used to specify an SID to be retrieved,
in which case the d (default SID) flag (if any) is ignored.
For example:

get -rl.3 s.abc

retrieves version 1.3 of file "s.abc", and produces (for·
example) on the standard output:

1. 3
64 lines

A branch delta may be retrieved similarly:

get -rl.5.2.3 s.abc

which produces (for example) on the standard output:

1.5.2.3
234 lines

When a two- or four-component SID is specified as a value
for the -r keyletter (as above) and the particular version
does not exist in the SCCS file, an error message results.
Omission of the level number, as in:

get -r3 s.abc

causes retrieval of the trunk delta with the
number within the given release, if the
exists. Thus, the above command might output:

3.7
213 lines

highest level
given release

If the given release does not exist, ~ retrieves the trunk
delta with the highest level number within the highest-

5-4 Zilog 5-4

secs Zilog SCCS

numbered existing release that is lower than the given
release. For example, assuming release 9 does not exist in
file "s.abc", and that release 7 is actually the highest­
numbered release below 9, execution of:

get -r9 s.abc

might produce:

7.6
420 lines

which indicates that trunk delta 7.6 is the latest version
of file "s.abc" below release 9. Similarly, omission of the
sequence number, as in:

get -r4.3.2 s.abc

results in the retrieval of the branch delta with the
highest sequence number on the given branch, if it exists.
If the given branch. does not exist, an error message
results. This might result in the following output:

4.3.2.8
89 lines

The -t keyletter is used to retrieve the latest ("top") ver­
sion in a particular release (i.e., when no -r keyletter is
supplied, or when its value is simply a release number).
The latest version is d~f ined as that delta which was pro­
duced most recently, independent of its location on the SCCS
file tree. Thus, if the most recent delta in release 3 is
3.5,

get -r3 -t s.abc

might produce:

3.5
59 lines

However, if branch delta 3.2.1.5 were the latest delta
(created after delta 3.5), the same command might producei

5-5

3.2.1.5
46 lines

Zilog 5-5

SCCS Zilog SCCS

5.1.3. Retrieval with Intent to Make a
Delta: Specification of the -e keyletter to the ~ command
is an indication of the intent to make a delta, and, as
such, its use is restricted. The presence of this keyletter
causes ~et to check:

1. The "user list" (which is the list of login names
and/or "group IDs" of users allowed to make deltas (see
Section 6.2)) to determine if the login name or group
ID of the user executing ~ is on that list. Note
that a null (empty) user list behaves as if it con­
tained all possible login names.

2. That the release (R) of the version being retrieved
satisfies the relation:

floor <= R <= ceiling

to determine if the release being accessed is a pro­
tected release. The floor and ceiling are specified as
flags in the secs file.

3. That the release (R) is not locked against editing.
The lock is specified as a flag in the SCCS file.

4. Whether or not "multiple concurrent edits" are allowed
for the SCCS file as specified by the j flag in the
SCCS file (multiple concurrent edits are described in
Section 5.1.5).

A failure of any of the first three conditions causes the
processing of the corresponding SCCS file to terminate.

If the above checks succeed, the -e keyletter causes the
creation of a g-file in the current directory with mode 644
(readable by everyone, writable only by the owner) owned by
the real user. If a writable g-file already exists, ~
terminates with an error. This is to prevent inadvertent
destruction of a g-f ile that already exists and is being
edited for the purpose of making a delta.

Any ID keywords appearing in the g-f ile are not substituted
by ~when the -e keyletter is specified, because the gen­
erated .9_-f ile is to be subsequently used to create another
delta, and replacement of ID keywords would cause them to be
permanently changed within the SCCS file. In view of this,
~ does not need to check for the presence of ID keywords
within the .9_-file, so that the message:

No id keywords (cm7)

5-6 Zilog 5-6

secs Zilog SCCS

is never output when ~ is invoked with the -e keyletter.

In addition, the -e keyletter causes the creation (or updat­
ing) of a £-file, which is used to pass information to the
delta command (see Section 5.1.4).

The following is an example of the use of the -e keyletter:

get -e s.abc

which produces (for example) on the standard output:

1. 3
· new de 1 ta 1. 4

67 lines

If the -r and/or -t keyletters are used together with the -e
keyletter, the version retrieved for editing is as specified
by the -r and/or -t keyletters.

The keyletters -i and -x may be used to specify a list (see
~Cl) for the syntax of such a list) of deltas to be
included and excluded, respectively, by ~· Including a
delta means forcing the changes that constitute the particu­
lar delta to be included in the retri~ved version. This is
useful if one wants to apply' the same changes to more than
one version of the SCCS file. Excluding a delta means forc­
ing it to be not applied. This may be used to undo, in the
version of the SCCS file to be created, the effects of a
previous delta. Whenever de.ltas are included or excluded,
get checks for possible interference between such deltas and
those deltas that are normally used in retrieving the par­
ticular version of the SCCS file (two deltas can interfere,
for example, when each one changes the same line of the
re tr i eve d s_- f i 1 e) • Any inter f ;e re n c e is ind i cat e d by a warn -
ing that shows the range of lines within the retrieved 9_­
file in which the problem may ~xist. The user is expected
~examine the s_-file to determine whether a problem actu­
ally exists, and to take whatever corrective measures (if
any) are deemed necessary (e.g., edit the file).

The -i and -x keyletters should be used with extreme care.

The -k keyletter is provided to facilitate regeneration of a
s_-f ile that may have been accidentally removed or ruined
subsequent to the execution of~ with the -e keyletter, or
to simply generate a 9_-file in which the replacement of ID
keywords has been suppressed. Thus, a 9_-file generated by
the -k keyletter is identical to one produced by ~ exe­
cuted with the -e keyletter. However, no processing related
to the £-file takes place.

5-7 Zilog 5-7

secs Zilog SCCS

5.1.4. Concurrent Edits of Different SIDs: The ability to
retrieve different versions of an secs file allows a number
of deltas to be "in progress" at any given time. This means
that a number of ~ commands with the -e keyletter may be
executed on the same file, provided that no two executions
retrieve the same version (unless multiple concurrent edits
are allowed, see Section 5.1.5).

The £-file (which is created by the ~ command invoked with
the -e keyletter) is named by replacing the "s." in the secs
file name with "p.". It is created in the directory con­
taining the secs file, is given mode 644 (readable by every­
one, writable only by the owner), and is owned by the effec­
tive user. The £-file contains the following information
for each delta that is still "in progress":

$ The SID of the retrieved version.

& The SID that will be given to the new delta when it is
created.

$ The login name of the real user executing ~·

The first execution of "get -e" causes the creation of the
£-file for the corresponding SCCS file. Subsequent execu­
tions only update the E-f ile by inserting a line containing
the above information. Before inserting this line, however,
~ checks that no entry already in the E-f ile specifies as
already retrieved the SID of the version to be retrieved,
unless multiple concurrent edits are allowed.

Lf both checks succeed, the user is informed that other del­
tas are in progress, and processing continues. If either
check fails, an error message results. It is important to
note that the various executions of ~ should be carried
out from different directories. Otherwise, only the first
execution will succeed, since subsequent executions would
attempt to over-write a writable ~-file, which is an SCCS
error condition. In practice, such multiple executions are
performed by different users, (see Section 6.1 for a discus­
sion of how different users are permitted to use secs com­
mands on the same files) so that this problem does not
arise, since each user normally has a different working
directory.

Table 5-1 shows, for the most useful cases, what version of
an SCCS file is retrieved by ~' as well as the SID of the
version to be eventually created by delta, as a function of
the SID specified to get.

5-8 Zilog 5-8

secs Zilog SCCS

Table 5-1. Determination of New SIDs

Case

SID
speci­
fied @

-b Key-
1 et te r
Used %

1. none # no

2. none # yes

3.

4.

s.

6.

7.

8.

9.

R

R

R

R

R

R

R.L

10. R.L

11. R. L

12. R.L.B

13. R.L.B

no

no

yes

yes

no

yes

no

yes

14. R. L.B. S no

5-9

Other
Condit io'ns

SID SID of Delta
Retrf eved· ~be-created

R defaults mR.mL
to mR

R defaults mR.mL
to mR

R > mR mR.mL

R = mR mR.mL

R > mR mR.mL

R = mR mR.mL

R < mR and hR.mL **
R does not
exist

-:-

Trunk suc­
cessor in
release >
R and R
exists

No trunk
successor

No trunk
successor

Trunk
successo'r
in release
> R

No branch
successor

No branch
successor

No branch
successor

Zilog

R.mL

R.L

R • t.

R.L

R.L.B.mS

R.L.B.mS

R.L.B.S

mR. (mL+l)

mR.mL. (mB+l) .1

R.l &

mR. (mL+l)

mR.mL. (mB+l) .1

mR.mL. (mB+l) .1

hR.mL. (mB+l) .1

R.mL. (mB+l) .1

R. (L+l)

R.L.(mB+l).l

R. L. (mB+l). 1

R.L.B. (mS+l)

R. L. (mB+ 1) • 1

R. L.B. (S+ 1)

5-9

secs Zilog SCCS

15. R.L.B.S yes No branch
successor

R.L.B.S R. L. (mB+l) .1

16. R.L.B.S Branch
successor

R.L.B.S R. L. (mB+l). 1

@ "R", "L", "B", and "S" are the "release", "level",
"branch", and "sequence" components of the SID, respec­
tively; "m" means "maximum". Thus, for example, "R.mL"
means "the maximum level number within release R";
"R.L.(mB+l) .l" means "the first sequence number on the
new branch (i.e., maximum branch number plus 1) of
level L within release R". Note that if the SID speci­
fied is of the form "R.L", "R.L.B", or "R.L.B.S", each
of the specified components must exist.

% The -b keyletter is effective only if the b flag (see
admin(l)) is present in the file. In this table, an
entry of "-" means "irrelevant".

This case applies if the d (default SID) flag is not
present in the file. If the d flag is present in the
file, then the SID obtained from the a--r1ag is inter­
preted as if it had been specified on the command line.
Thus, one of the other cases in this table applies.

& This case is used to force the creation of the first
delta in a new release.

** "hR" is the highest existing release that is lower than
the specified, nonexistent, release.

5.1.5. Concurrent Edits of the Same SID: Under normal con­
ditions, ~s for editing (-e keyletter is specified) based
on the same SID are not permitted to occur concurrently.
That is, delta must be executed before a subsequent get for
editing is executed at the same SID as the previous ~·
However, multiple concurrent edits (defined to be two or
more successive executions of ill for editing based on the
same retrieved SID) are allowed if the j flag is set in the
SCCS file. Thus:

get -e s.abc
1.1
new delta 1. 2
5 lines

may be immediately followed by:

5-10 Zilog 5-10

SCCS

get -e s.abc
1.1
new delta 1.1.1.1
5 lines

Zilog SCCS

without an intervening execution of delta. In this case, a
delta command corresponding to the first ~ produces delta
1.2 (assuming 1.1 is the latest (most recent) trunk delta),
and the delta command corresponding to the second ~ pro­
duces delta 1.1.1.1.

5~1.6. Keyletters That Affect Output: Specification of the
-p keyletter causes ~ to write the retrieved text to the
standard output, rather than to a ~-file. In addition, all
output normally dire!cted to the standard output (such as the
SID of the version retrieved and the number of lines
retrieved) is directed instead to the diagnostic output.
This may be used, for example, to create ~-files with arbi­
trary names:

get -p s.abc > arbitrary-filename

The -s keyletter suppresses all output that is normally
directed to the standard output. Thus, the SID of the
retrieved version, the number of lines retrieved, etc., are
not output. This does not, however, affect messages to
standard error. This keyletter is used to prevent non­
diagnostic messages from appearing on the user's terminal,
and is often used in conjunction with the -p keyletter to
"pipe" the output of ~' as in:

get -p -s s.abc nroff

The -g keyletter is supplied to suppress the actual
retrieval of the text of a version of the SCCS file. This
may be useful in a number of Wqys. For example, to verify
the existence of a particular SID in an secs file, one may
execute:

get -g -r4.3 s.abc

This outputs the given SID if it exists in the SCCS file, or
it generates an error message~ if it does not. Another use
of the -g keyletter is in regenerating a p-file that may
have been accidentally destroyed:

get -e -g s.abc

The -1 keyletter causes the creation of an 1-file, which is
named by replacing the "s." of the SCCS file name with "l.".

5-11 Zilog 5-11

SCCS Zilog SCCS

This file is created in the current directory, with mode 444
(read-only), and is owned by the real user. It contains a
table (whose format is described in .s.;.!Cl)) showing which
deltas were used in constructing a particular version of the
SCCS file. For example:

get -r2.3 -1 s.abc

generates an 1-file showing which deltas
retrieve version---2.3 of the SCCS file.
of "p" with the -1 keyletter, as in:

get -lp -r2.3 s.abc

were applied to
Specifying a value

causes the generated output to be written to the standard
output rather than to the 1-f ile. Note that the -g
keyletter may be used with the =i keyletter to suppress the
actual retrieval of the text.

The -m keyletter is of use in identifying, line by line, the
changes applied to an SCCS file. Specification of this
keyletter causes each line of the generated .s,-f ile to be
preceded by the SID of the delta that caused that line to be
inserted. The SID is separated from the text of the line by
a tab character.

The -n keyletter causes each line of the generated .s,-file.to
be preceded by the value of the %M% ID keyword (see Section
5.1.1) and a tab character. The -n keyletter is most often
used in a pipeline with !i!!£(1). For example, to find all
lines that match a given pattern in the latest version of
each SCCS file in a directory, the following may be exe­
cuted:

get -p -n -s directory grep pattern

If both the -m and -n keyletters are specified, each· line of
the generated ~-file is preceded by the value of the %M% ID
keyword and a tab (this is the effect of the -n keyletter),
followed by the line in the format produced by the -m
keyletter. Because use of the -m keyletter and/or the -n
keyletter causes the contents of the .s,-file to be modified,
such a ~-file must not be used for creatrng-a delta. There­
fore, neither the -m keyletter nor the -n keyletter may be
specified together with the -e keyletter.

See ~(!) for a full description of additional ~
keyletters.

5-12 Zilog 5-12

secs Zilog secs

5.2. delta

The delta command is used to i~corporate the changes made to
a ~-file into the corresponding secs file, i.e., to create a
delta, and, therefore, a new version of the file.

Invocation of the delta command requires the existence of a
p-file (see Sections 5.1.3 and 5.1.4). Delta examines the
_e-file to verify the~ presence of an entry containing the
user's login name. If none is found, an error message
results. Delta also performs the same permission checks
that ~ performs when invoked with the -e keyletter. If
all checks are successful, delta determines what has been
changed in the ~-file, by comparing it (via diffCl>> with
its own, temporary copy of the ~-file as it was before edit­
ing. This temporary copy of the ~-file is called the d-file
(its name is formed by replacing then5." of the secs- file
name with "d.") and is obtained by performing an internal
~ at the SID specified in the _£-file entry.

The required _£-file entry is the one containing the login
name of the user executing delta, because the user who
retrieved the ~-file must be the one who will create the
delta. However, if the logi 1n name of the user appears in
more than one entry (i.e., the same user executed ~ with
the -e keyletter more than once on the same SCCS file), the
-r keyletter must be used with delta to specify an SID that
uniquely identifies the _£-file '.entry. The SID specified may
be either the SID retrieved by 1~, or the SID delta is to
create. This entry is the one 1used to obtain the SID of the
delta to be created.

In practice, the most common invocation of delta is:

delta s.abc

which prompts on the standard output (but only if it is a
terminal):

comments?

to which the user replies with a description of why the
delta is being made, terminating the reply with a newline
character. The user's response may be up to 512 characters
long, with newlines not intended to terminate the response
escaped by "\". --

If the SCCS file has a v flag (see Section 5.3.2), delta
first prompts with:

MRs?

5-13 Zilog 5-13

secs Zilog SCCS

on the standard output {again, this prompt is printed only
if the standard output is a terminal). The standard input
is then read for MR numbers, separated by blanks and/or
tabs, terminated in the same manner as the response to the
prompt "comments?". In a tightly controlled environment, it
is expected that deltas are created only as a result of some
trouble report, change request, trouble ticket, etc. {col­
lectively called here Modification Requests, or MRs) and
that it is desirable or necessary to record such MR
number{s) within each delta.

The -y and/or -m keyletters are used to supply the commen­
tary {comments and MR numbers, respectively) on the command
line, rather than through the standard input. For example:

delta -y"descriptive comment" -m"mrnuml mrnum2" s.abc

In this case, the corresponding prompts are not printed, and
the standard input is not read. The -m keyletter is allowed
only if the SCCS file has a v flag. These keyletters are
useful when delta is executed from within a "~hell pro­
cedure" {see sh{l)).

The commentary {comments and/or MR numbers), whether soli­
cited by delta or supplied via keyletters, is recorded as
part of the entry for the delta being created, and applies
to all SCCS files processed by the same invocation of delta.
This-Implies that if delta is invoked with more than one
file argument, and the first file named has a v flag, all
files named must have this flag. Similarly, if the first
file named does not have this flag, then none of the files
named may have it. Any file that does not conform to these
rules is not processed.

When processing is complete, delta outputs {on the standard
output) the SID of the created delta {obtained from the £­
file entry) and the counts of lines inserted, deleted, and
left unchanged by the delta. Thus, a typical output might
be:

1. 4
14 inserted
7 deleted
345 unchanged

It is possible that the counts of lines reported as
inserted, deleted, or unchanged by delta do not agree with
the user's perception of the changes applied to the ~-file.
The reason for this is that there usually are a number of
ways to describe a set of such changes, especially if lines
are moved around in the ~-file, and delta is likely to find

5-14 Zilog 5-14

secs Zilqg secs

a description that differs from the user's perception. How­
ever, the total number of lines of the new delta (the number
inserted plus the number left unchanged) should agree with
the number of lines in the edited ~-file.

If, in the process of making a,delta, delta finds no ID key­
words in the edited ~-file, the message:

No id keywords (cm7)

is issued after the prompts for commentary, but before any
other output. This indicates that any ID keywords that may
have existed in the secs file have been replaced by their
values, or deleted during the editing process. This could
be caused by creating a delta from a ~-file that was created
by a ~without the -e keyletter (recall that ID keywords
are replaced by ~ in that case), or by accidentally delet­
ing or changing the ID keywords during the editing of the
~-file. Another possibility is that the file may never have
had any ID keywords. In any case, it is left up to the user
to determine what remedial action is necessary, but the
delta is made, unless there is an i flag in the secs file,
indicating that this should be treated as a fatal error. In
this last case, the delta is not created.

After processing of an SCCS file is complete, the
corresponding E-~ entry is removed from the E-f ile. All
updates to the E-f1le are made :to a temporary copy, the g­
file, whose use is similar to the use of the x-file, which
lS d·escribed in Section 4 above. If there is only one entry
in the £-file, then the £-file .itself is removed. ~-

In addition, delta removes the edited ~-file, unless the -n
keyletter is specified. Thus:

delta -n s.abc

will keep the ~-file upon completion of processing.

The -s ("silent") keyletter suppresses all output that is
normally directed to the standard output, other than the
prompts "comments?" and "MRS?". Thus, use of the -s
keyletter together with the -y keyletter (and possibly, the
-m keyletter) causes delta neither to read the standard
input nor to write the standard output.

The differences between the ~-file and the d-file (see
above), which constitute the delta, may be prTnted on the
standard output by using the -p keyletter. The format of
this output is similar to that produced by diff(!)·

5-15 Zilog 5-15

secs Zilog secs

5.3. admin

The admin command is used to administer secs files, that is,
to create new SCCS files and to change parameters of exist­
ing ones. When an SCCS file is created, its parameters are
initialized by use of keyletters or are assigned default
values if no keyletters are supplied. The same keyletters
are used to change the parameters of existing files.

Two keyletters are supplied for use in conjunction with
detecting and correcting "corrupted" SCCS files, and are
discussed in Section 6.3 below.

Newly-created SCCS files are given mode 444 (read-only) and
are owned by the effective user.

Only a user with write permission in the directory contain­
ing the secs file may use the admin command upon that file.

5.3.1. Creation of SCCS Files: An secs file may be created
by executing the command:

admin -ifirst s.abc

in which the value ("first") of the -i keyletter specifies
the name of a file from which the text of the initial delta
of the SCCS file "s.abc" is to be taken. Omission of the
value of the -1 keyletter indicates that admin is to read
the standard input for the text of the initial delta. Thus,
the command:

admin -i s.abc < first

is equivalent to the previous example. If the text of the
initial delta does not contain ID keywords, the message:

No id keywords (cm7)

is issued by admin as a warning. However, if the same invo­
cation of the command also sets the i flag (not to be con­
fused with the -i keyletter) , the message is treated as an
error and the secs file is not created. Only one secs file
may be created at a time using the -i keyletter-.-

When an secs file is created, the release number assigned to
its first delta is normally "1", and its level number is
always "1". Thus, the first delta of an SCCS file is nor­
mally "1.1". The -r keyletter is used to specify the
release number to be assigned to the first delta. Thus:

5-16 Zilog 5-16

secs Zilog SCCS

admin -ifirst -r3 s.abc

indicates that the first delta should be named "3.1" rather
than "1.1". Because this keyletter is only meaningful in
creating the first delta, its use is only permitted with the
-i keyletter.

5.3.2. Inserting Commentary fqr the Initial Delta: When an
secs file is created, the user may choose to supply commen­
tary stating the reason for creation of the file. This is
done by supplying comments using the -y keyletter and/or MR
numbers using the -m keyletter (the creation of an secs file
may sometimes be the direct result of an MR) in exactly the
same manner as for delta. If comments (-y keyletter) are
omitted, a comment line of the form:

date and time created YY/MM/DD HH:MM:SS by logname

is automatically generated.

If it is desired to supply MR numbers (-m keyletter), the v
flag must also be set (using the -f keyletter described
below). The v flag simply determines whether or not MR
numbers must be supplied when using any SCCS command that
modifies a "delta commentary" (see sccsfile(S)) in the SCCS
f i 1 e • Thus : -

admin -ifirst -mmrnuml ~fv s.abc

Note that the -y and -m keyletters are only effective if a
new SCCS file is being created.

5.3.3. Initialization & Modification of SCCS File
Parameters: The portion of the SCCS file reserved for
"descriptive text" (see Section 6.2) may be initialized or
changed through the use of the -t keyletter. The descrip­
tive text is intended as a summary of the contents and pur­
pose of the SCCS file, although its contents may be arbi­
trary, and it may be arbitrarily long.

When an SCCS file is being created and the -t keyletter is
supplied, it must be followed by the name of a file from
which the descriptive text is to be taken. For example, the
command:

admin -ifirst -tdesc s.abc

specifies that the descriptive text is to be taken from file
"desc".

5-17 Zilog 5-17

secs Zilog SCCS

When processing an existing SCCS file, the -t keyletter
specifies that the descriptive text (if any) currently in
the file is to be replaced with the text in the named file.
Thus:

admin -tdesc s.abc

specifies that the descriptive text of the secs file is to
be replaced by the contents of "desc"; omission of the file
name after the -t keyletter as in:

admin -t s.abc

causes the removal of the descriptive text from the SCCS
file.

The flags (see Section 6.2) of an SCCS file may be initial­
ized and changed, or deleted through the use of the -f and
-d keyletters, respectively. The flags of an SCCS file are
used to direct certain actions of the various commands. See
admin(l) for a description of all the flags. For example,
the 1-flag specifies that the warning message stating there
are no ID keywords contained in the SCCS file should be
treated as an error, and the d (default SID) flag specifies
the default version of the secs file to be retrieved by the
~ command. The -f keyletter is used to set a flag and,
possibly, to set its value. For example:

admin -ifirst -fi -fmmodname s.abc

sets the i flag and the m (module name) flag. The value
"modname" specified for the m flag is the value that the ~
command will use to replace the %M% ID keyword. In the
absence of the m flag, the name of the ~-file is used as the
replacement for the %M% ID keyword. Note that several -f
keyletters may be supplied on a single invocation of admin,
and that -f keyletters may be supplied whether the command
is creating a new SCCS file or processing an existing one.

The -d keyletter is used to delete a flag from an SCCS file,
and may only be specified when processing an existing file.
As an example, the command:

admin -dm s.abc

removes the m flag from the SCCS file. Several -d
keyletters may be supplied on a single invocation of admin,
and may be intermixed with -f keyletters.

SCCS files contain a list ("user list") of login names
and/or group IDs of users who are allowed to create deltas

5-18 Zilog 5-18

secs Zil¢g SCCS

(see Sections 5.1.3 and 6.2J. This list is empty by
default, which implies that:anyone may create deltas. To
add login names and/or group. IDs to the list, the -a
keyletter is used. For example:

admin -axyz -awql -al234 s.abc

adds the login names "xyz" and "wql" and the group ID "1234"
to the list. The -a keylette~ may be used whether admin is
creating a new SCCS file or processing an existing one, and
may appear several times. The -e keyletter is used in an
analogous manner if one wishes to remove ("erase") login
names or group IDs from the li$t.

5 .. 4. prs

Prs is used to print on the standard output all or parts of
an SCCS file (see Section 6.2) in a format, called the out­
put "data specification", suppiied by the user via the -d
keyletter. The data specification is a string consisting of
SCCS file data keywords (not to be confused with "~ ID"
keywords) interspersed with optional user text.

Data keywords are replaced by appropriate values according
to their definitions. For example:

:I:

is defined as the data keyword that is replaced by the SID
of a specified delta. Similarly, :F: is defined as the data
keyword for the secs file name currently being processed,
and :C: is defined as the comment line associated with a
specified delta. All parts of an secs file have an associ­
ated data keyword.. For a complete list of the data key­
words, see ~(l).

There is no limit to the number of times a data keyword may
appear in a data specification. Thus, for example:

pr s -d " : I : th i s i s the top de 1 ta f o r : F : : I : " s • a be

may produce on the standard output:

2.1 this is the top delta for s.abc 2.1

Information may be obtained frqm a single delta by specify­
ing the SID of that delta using the -r keyletter. For exam­
ple:

pr s -d " : F : : : I : co mm en t 1 in e i s : : C : " - r 1 • 4 s • a be

5-19 Zilog 5-19

SCCS Zilog SCCS

may produce the following output:

s.abc: 1.4 comment line is: THIS IS A COMMENT

If the -r keyletter is not specified, the value of the SID
defaults to the most recently created delta.

In addition, information from a range of deltas may be
obtained by specifying the -1 or -e keyletters. The -e
keyletter substitutes data keywords for the SID designated
via the -r keyletter and all deltas created earlier. The -1
keyletter substitutes data keywords for the SID designated
via the -r keyletter and all deltas created later. Thus,
the command:

prs -d: I: -rl.4 -e s.abc

may output:

1.4
1. 3
1.2.1.1
1. 2
1.1

and the command:

prs -d: I: -rl. 4 -1 s.abc

may produce:

3.3
3.2
3.1
2.2.1.1
2.2
2.1
1. 4

Substitution of data keywords for all deltas
file may be obtained by specifying both
keyletters.

S.S. help

of the SCCS
the -e and -1

The help command prints explanations of secs commands and of
messages that these commands may print. Arguments to help,
zero or more of which may be supplied, are simply the names
of SCCS commands or the code numbers that appear in
parentheses after SCCS messages. If no argument is given,

5-20 Zilog 5-20

secs Zilog SCCS

help prompts for one. Hele has no concept of keyletter
arguments or file arguments. Explanatory information
related to an----argument, if it exists, is printed on the
standard output. If no information is found, an error mes­
sage is printed. Note that each argument is processed
independently, and an error resulting from one argument will
not terminate the processing of the other arguments.

Explanatory information related to a command is a synopsis
of the command. For example:

help ge5 rmdel

produces:

ge5:
"nonexistent sid"
The specified sid does not exist in the
given file.
Check for typos.

rmdel:
rmdel -rSID file

5.6. rmdel

The rmdel command is provided to allow removal of a delta
from an SCCS file, though its use should be reserved for
those cases in which incorrect, global changes were made a
part of the delta to be removed.

The delta to be removed must be a "leaf" delta. That is, it
must be the latest (most recently created) delta on its
branch or on the trunk of the SCCS file tree. In Figure 3,
only deltas 1.3.1.2, 1.3.2.2,: and 2.2 can be removed; once
they are removed, then delt~s 1.3.2.1 and 2.1 can be
removed, and so on.

To be allowed to remove a delta, the effective user must
have write permission in the directory containing the SCCS
file. In addition, the real user must either be the one who
created the delta being removed, or be the owner of the SCCS
file and its directory.

The -r keyletter, which is mandatory, is used to specify the
complete SID of the delta to be removed (i.e., it must have
two components for a trunk delta, and four components for a
branch delta). Thus:

rmdel -r2.3 s.abc

5-21 Zilog 5-21

secs Zilog SCCS

specifies the removal of (trunk) delta "2.3" of the SCCS
file. Before removal of the delta, rmdel checks that the
release number (R) of the given SID satisfies the relation:

floor <= R <= ceiling

Rmdel also checks that the SID specified is not that of a
version for which a ~ for editing has been executed and
whose associated delta has not yet been made. In addition,
the login name or group ID of the user must appear in the
file's "user list", or the "user list" must be empty. Also,
the relea"Se specified can----not---i:>e locked against editing
(i.e., if the 1 flag is set (see admin(l)), the release
specified must not be contained in the list). If these con-
ditions are not satisfied, processing is terminated, and the
delta is not removed. After the specified delta has been
removed, its type indicator in the "delta table" of the SCCS
file (see Section 6.2) is changed from "D" (for "delta") to
"R" (for "removed").

5.7. cdc

The cdc command is used to change a delta's commentary that
was supplied when that delta was created. Its invocation is
analogous to that of the rmdel command, except that the
delta to be processed is not required to be a leaf delta.
For example:

cdc -r3.4 s.abc

specifies that the commentary of delta "3.4" of the SCCS
file is to be changed.

The new commentary is solicited by cdc in the same manner as
that~-of delta. The old commentary associated with the
specified delta is kept, but it is preceded by a comment
line indicating that it has been changed (i.e., superseded),
and the new commentary is entered ahead of this comment
line. The "inserted" comment line records the login name of
the user executing cdc and the time of its execution.

Cdc also allows for the deletion of
associated with the specified delta.
preceding the selected MR numbers by
Thus:

cdc -rl.4 s.abc
MRs? mrnum3 lmrnuml

selected MR numbers
This is specified by
the character "!".

comments? deleted wrong MR number and inserted
correct MR number

5-22 Zilog 5-22

secs Zilog SCCS

inserts "mrnum3" and deletes "mrnuml" for delta 1.4.

5.8. what

The what command is used to ~ind identifying information
withrn--any ZEUS file whose name is given as an argument to
what. Directory names and a name of "-" (a lone minus sign)
are not treated specially, as they are by other SCCS com­
manas-;-and no keyletters are accepted by the command.

What searches the given file(s) for all occurrences of the
string "@(#)",which is the r~placement for the %Z% ID key­
word (see ~(l)), and prints (on the standard output) what
follows that string until the first double quote ("),
greater than (>),backslash (\),newline, or (non-printing)
NUL character. Thus, for .example, if the SCCS file
"s.prog.c" (which is a C program), contains the following
line (the %M% and %!% ID keywords were defined in Section
5.1.1):

char id[] = "%Z%%M%:%I%";

and then the command:

get -r3.4 s.prog.c

is executed, and finally the resulting ~-file is compiled to
produce "prog.o" and "a.out", then the command:

what prog.c prog.o a.out

produces:

prog.c:
prog.c:3.4

prog.o:
prog.c:3.4

a.out:
prog.c:3.4

The string searched for by what need not be inserted via an
ID keyword of ~) it may be inserted in any convenient
manner.

5.9. sccsdiff

The sccsdiff command determines (and prints on the standard
out~ut) the differences between two specified versions of
one or more secs files. The versions to be compared are

5-23 Zilog 5-23

SCCS Zilog SCCS

specified by using the -r keyletter, whose format is the
same as for the .9_et command. The two versions must be
specified as the first two arguments to this command in the
order in which they were created, i.e., the older version is
specified first. Any following keyletters are interpreted
as arguments to the .E!_(..!_) command (which actually prints the
differences) and must appear before any file names. SCCS
files to be processed are named last. Directory names and a
name of "-" (a lone minus sign) are not acceptable to
sccsdiff.

The differences are printed in the form generated by
diff(l). The following is an example of the invocation of
S'CCs'diff:

sccsdiff -r3.4 -rS.6 s.abc

s.11. comb

Comb generates a "shell procedure" (see sh(l)) which
attempts to reconstruct the named SCCS files so that the
reconstructed files are smaller than the originals. The
generated shell procedure is written on the standard output.

Named SCCS files are reconstructed by discarding unwanted
deltas and combining specifi~d other deltas. The intended
use is for those secs files that contain deltas that are so
old that they are no longer useful. It is not recommended
that comb be used as a matter of routine; its--USe should be
restricted to a very small number of times in the life of an
secs file.

In the absence of any keyletters, comb preserves only leaf
deltas and the minimum number of---arieestor deltas necessary
to preserve the "shape" of the SCCS file tree. The effect
of this is to eliminate "middle" deltas on the trunk and on
all branches of the tree. Thus, in Figure 3, deltas 1.2,
1.3.2.1, 1.4, and 2.1 would be eliminated. Some of the
keyletters are summarized as follows:

The -p keyletter specifies the oldest delta that is to be
preserved in the reconstruction. All older deltas are dis­
carded.

The -c keyletter specifies a list (see .s.!.:!:.Cl) for the syntax
of such a list) of deltas to be preserved. All other deltas
are discarded.

5-24 Zilog 5-24

secs Zilog SCCS

The -s keyletter causes the generation of a shell procedure,
which, when run, produces only a report summarizing the per­
centage space (if any) to be saved by reconstructing each
named SCCS file. It is recommended that comb be run with
this keyletter (in addition to any others desired) before
any actual reconstructions.

It should be noted that the shell procedure generated by
comb is not guaranteed to s~ve any space. In fact, it is
possible for-the reconstructed file to be larger than the
original. Note, too, that the shape of the SCCS file tree
may be altered by the reconstruction process.

5 .. 11. val

Val is used to determine if a file is an SCCS file
the characteristics specified by an optional
keyletter arguments. Any characteristics not met
sidered errors.

meeting
list of

are con-

Val checks for the existence of a particular delta when the
SID for that delta is explicitly specified via the -r
keyletter. The string following the -y or -m keyletter is
used to check the value set by the t or m flag respectively
(see admin(l) for a description of the flags).

Val treats the special argument "-" differently from other
secs commands (see Section 4) • This argument allows val to
read the argument list from the standard input as opposed to
obtaining it from the command line. The standard input is
read until end-of-file. This capability allows for one
invocation of val with different values for the keyletter
and file arguments. For example:

val
-ye -mabc s.abc
-mxyz -ypll s.xyz

first checks if file "s.abc" has a value "c" for its type
flag and value "abc" for the "module name" flag. Once pro­
cessing of the first file is completed~! then processes
the remaining files, in this case "s.xyztr, to determine if
they meet the characteristics specified by the keyletter
arguments associated with them.

Val returns an 8-bit code which is a disjunction of the pos­
sible errors detected. That is, each bit set indicates the
occurrence of a specific error (see val(l) for a description
of the possible errors and their codes). In addition, an
appropriate diagnostic is printed unless suppressed by the

5-25 Zilog 5-25

secs Zilog SCCS

-s keyletter. A return code of "0" indicates all named
files met the characteristics specified.

s.12. sact

Sact checks for secs files currently being edited. This
means that a "get -e" was performed without a subsequent
execution of delta. For example, if the SCCS file, s.abc
was being edited, the command

sact s.abc

would output information similar to the following (the data
is from the p-file):

1.1 1.2 bill 82/11/24 15:02:00

The first field is the SID of the latest delta made for
s.abc, the second field specifies the SID for the new delta,
the third field contains the logname of the user who per­
formed the "get -e", the fourth and fifth fields contain the
date and time that the "get -e" was executed.

5.13. unget

If a "get -e" has been executed on an secs file, this can be
"undone" by the unget command. Of course, this is executed
before the delta command. The simplest form of the unget
command is:

unget s.abc

The program responds with the SID of the delta that would
have been created. So, for the above example, unget would
output

1.2

The keyletter, -s, suppresses the output of the intended
delta's SID. Another keyletter, -n, retains the file being
edited; otherwise, the file is removed. A specific SID can
be indicated by using the -r keyletter.

5-26 Zilog 5-26

secs Zilog

SECTION 6
SCCS FILES

SCCS

This section discusses several topics that must be con­
sidered before extensive use is made of secs. These topics
deal with the protection mecha~isms relied upon by secs, the
format of SCCS files, and the recommended procedures for
auditing SCCS files.

6o1.. Protection

secs relies on the capabilities of the ZEUS operating system
for most of the protection mechanisms required to prevent
unauthorized changes to SCCS files (i.e., changes made by
non-SCCS commands). The only protection features provided
directly by SCCS are the "release lock" flag, the "release
floor" and "ceiling" flags, and the "user list" (see Section
5 .. 1.3).

New SCCS files created by the admin command are given mode
444 (read only). It is recommended that this mode not be
changed, as it prevents any di~ect modification of the-rfles
by non-SCCS commands. It is further recommended that the
directories containing secs fiies be given mode 755, which
allows only the owner of the directory to modify its con-
tents. -

secs files should be kept in directories that contain only
SCCS files and any temporary files created by SCCS commands.
This simplifies protection and auditing of SCCS files (see
Section 6.3). The contents of~directories should correspond
to convenient logical groupin9s, e.g., sub-systems of a
large project.

SCCS files must have only one link (name). The reason for
this is that those commancrs-that modify SCCS files do so by
creating a temporary copy of the file (called the x-file,
see Section 4) and, upon completion of processing,-remove
the old file and rename the x-file. If the old file has
more than one link, removing--it and renaming the x-file
would break the link. Rather than process such files,- SCCS
commands produce an error mess~ge. All SCCS files must have
names that begin with "s.".

When only one user uses secs, the real and effective user
IDs are the same, and that user ID owns the directories con­
taining secs files. Therefore, SCCS may be used directly

6-1 Zilog 6-1

SCCS Zilog secs

without any preliminary preparation.

However, in those situations in which several users with
unique user IDs are assigned responsibility for one SCCS
file (for example, in large software development projects),
one user (equivalently, one user ID) must be chosen as the
"owner" of the SCCS files and be the one who will "adminis­
ter" them (e.g., by using the admin command). This user is
termed the "SCCS administrator" for that project. Because
other users of SCCS do not have the same privileges and per­
missions as the SCCS administrator, they are not able to
execute directly those commands that require write permis­
sion in the directory containing the SCCS files. Therefore,
a project-dependent program is required to provide an inter­
face to the ~, delta, and, if desired, rmdel and cdc com­
mands.

The interface program must be owned by the SCCS administra­
tor, and must have the set user ID on execution bit on (see
chmod(l)), so that the effective userID is the user ID of
the administrator. This program's function is to invoke the
desired SCCS command and to cause it to inherit the
privileges of the interface program for the duration of that
command's execution. In this manner, the owner of an SCCS
file can modify it at will. Other users whose l_ogin names
or group IDs are in the "user list" for that file (but who
are not its owners) are given the necessary permissions only
for toe duration of the execution of the interface program,
and are thus able to modify the SCCS files only through the
use of delta and, possibly, rmdel and cdc. The project­
dependent interface program, as its name implies, must be
custom-built for each project.

For more information on this interface program, see Appendix
A "Function and Use of an secs Interface Program".

6.2. Format

SCCS files are composed of lines of ASCII text. Previous
versions of SCCS used non-ASCII files. Therefore, files
created by earlier versions of secs are incompatible with
this version of secs. The SCCS files are arranged in six
parts, as follows:

Checksum

Delta Table

6-2

A line containing the "logical" sum of all
the characters of the file (not including
this checksum itself). ~-

Information about each delta, such as its
type, its SID, date and time of creation,

Zilog 6-2

secs Zilog SCCS

and commentary.

User Names List of login names and/or group IDs of
users who are allowed to modify the file
by adding or removing deltas.

Flags Indicators that control certain actions of
various SCCS commands.

Descriptive Text Arbitrary text provided by the user; usu­
ally a summary of the contents and purpose
of the file.

Body Actual text that is being administered by
secs, intermixed with internal secs con­
trol lines.

Detailed information about the contents of the various sec­
tions of the file may be found in sccsfile(5); the checksum
is the only portion of the file which is of interest below.

It is important to note that because SCCS files are ASCII
files, they may be processed by various ZEUS commands, such
as vi(l), ed(l), gre~(l), and ¢at(l). This is very con­
venTent iO-- those instances -rn which an secs file must be
modified manually (e.g., when the time and date of a delta
was recorded incorrectly because the system clock was set
incorrectly), or when it is desired to simply "look" at the
file.

NOTE

Extreme care should be exercised when modifying
SCCS files with non-SCCS commands.

6.3. Auditing

On rare occasions, perhaps due to an operating system or
hardware malfunction, an secs file, or portions of it (i.e.,
one or more "blocks") can be destroyed. secs commands (like
most ZEUS commands) issue an error message when a file does
not exist. In addition, SCCS commands use the checksum
stored in the SCCS file to determine whether a file has been
corrupted since it was last accessed (possibly by having
lost one or more blocks, or by having been modified with,
for example, ed(l)). No SCCS command will process a cor­
rupted SCCS file except the admin command with the -h or -z
keyletters, as described below.

6-3 Zilog 6-3

secs Zilog SCCS

It is recommended that secs files be audited (checked) for
possible corruptions on a regular basis. The simplest and
fastest way to perform an audit is to execute the admin com­
mand with the -h keyletter on all SCCS files:

admin -h s.filel s.file2
or

admin -h directoryl directory2

If the new checksum of any file is not equal to the checksum
in the first line of that file, the message:

ERROR [s.filename]: corrupted file (co6)

is produced for that file. This process continues until all
the files have been examined. When examining directories
(as in the second example above), the process just described
will not detect missing files. A simple way to detect
whether ~ files are missing from a directory is to period­
ically execute the ls(l) command on that directory, and com­
pare the outputs of~he most current and the previous execu­
tions. Any file whose name appears in the previous output
but not in the current one has been removed by some means.

Whenever a file has been corrupted, the manner in which the
file is restored depends upon the extent of the corruption.
If damage is extensive, the best solution is to contact the
system administrator to request a restoral of the file from
a backup copy. In the case of minor damage, repair through
use of the editor ed(l) may be possible. In the latter
case, after such repaif"-;- the following command must be exe­
cuted:

admin -z s.file

The purpose of this is to recompute the checksum to bring it
into agreement with the actual contents of the file. After
this command is executed on a file, any corruption which may
have existed in that file will no longer be detectable.

6-4 Zilog 6-4

secs Zilog

APPENDIX A
FUNCTION ANO USE OF AN
SCCS INTERFACE PROGRAM

ABSTRACT

SCCS

This appendix discusses the use of a Source Code Control
System Interface Program to allow more than one user to use
SCCS commands upon the same set of files.

A.l. Introduction

In order to permit ZEUS users with different user identifi­
cation numbers (user IDs) to use SCCS commands upon the same
files, an SCCS interface program is provided to temporarily
grant the necessary file access permissions to these users.
This memorandum discusses the creation and use of such an
interface program.

A .. 2. Function

When only one user uses secs, the real and effective user
IDs are the same, and that user ID owns the directories con­
taining SCCS files. However, there are situations (for
example, in large software development projects) in which it
is practical to allow more than one user to make changes to
the same set of SCCS files. ·In these cases, one user must
be chosen as the "owner" of the secs files and be the one
who will "administer" them (e.g., by using the admin com­
mand). This user is termed the "SCCS administrator" for
that project. Since other users of SCCS do not have the
same privileges and permissions as the SCCS administrator,
they are not able to execute directly those commands that
require write permission in the directory containing the
SCCS files. Therefore, a project-dependent program is
required to provide an interface to the~' delta, and, if
desired, rmdel, cdc, and unvet commands. Other SCCS com­
mands either do not require write permission in the direc­
tory containing SCCS files or are generally reserved for use
only by the administrator.

The interface program must be owned by the SCCS administra­
tor, must be executable by non-owners, and must have the set
user ID on execution bit on (see chmod(l)), so that, when
executed-,- the "effective" user ID is the user ID of the
administrator. This program's function is to invoke the

A-1 Zilog A-1

secs Zilog SCCS

desired SCCS command and to cause it to inherit the
privileges of the secs administrator for the duration of
that command's execution. In this manner, the owner of an
secs file (the administrator) can modify it at will. Other
users whose login names are in the "user list" (this is the
list of login names of users who are allowed to modify an
SCCS file by adding or removing deltas; the login names are
specified using the admin(l) command) for that file (but who
are not its owners) are given the necessary permissions only
for the duration of the execution of the interface program,
and are thus able to modify the SCCS files only through the
use of delta and, possibly, rmdel and cdc.

A.3. A Basic Program

When a ZEUS program is executed it is passed (as argument 0)
the name by which it is invoked, followed by any additional
user-supplied arguments. Thus, if a program is given a
number of links (names), it may alter its processing depend­
ing upon which link is used to invoke it. This mechanism is
used by an SCCS interface program to determine which SCCS
command it should subsequently invoke (see exec(2)).

A generic interface program ("inter.c", written in C) is
shown in Attachment I. Note the reference to the (unsup­
plied) function "filearg". This is intended to demonstrate
that the interface program may also be used as a pre­
processor to SCCS commands. For example, function "filearg"
could be used to modify file arguments to be passed to the
SCCS command by supplying the full pathname of a file, thus
avoiding extraneous typing by the user. Also, the program
could supply any additional (default) keyletter arguments
desired.

A.4. Linking and Use

In general, the following demonstrates the steps to be per­
formed by the SCCS administrator to create the SCCS inter­
face program. It is assumed, for the purposes of the dis­
cussion, that the interface program "inter.c" resides in
directory "/z/xyz/sccs". Thus, the command sequence:

cd /z/xyz/sccs
cc inter.c -o inter ••• -lpw

compiles "inter.c" to produce the executable module "inter"
(the ellipses represent other arguments that may be
required}. The proper mode and the set user ID on execution
bit are set by executing:

A-2 Zilog A-2

SCCS Zilog secs

chmod 4755 inter

Finally, new links are created (names of the links may be
arbitrary, provided the interface program is able to deter­
mine from them the names of SCCS commands to be invoked) by
(for example):

ln
ln
ln

inter
inter
inter

get
delta
rmdel

Subsequently, ~user whose C shell parameter, path (see
csh(l)) or Bourne shell parameter PATH (see sh(l)) specifies
directory "/z/xyz/sccs" as the one to be searched first for
executable commands, may execute, for example:

get -~ /z/xyz/sccs/s.abc

from any directory to invoke the interface program (via its
link "get"). The interface program then executes
"/usr/bin/get" (the actual SCCS ~ command) upon the named
file. As previously rnentioned,~e interface program could
be used to supply the pathname "/z/xyz/sccs", so that the
user would only have to specify:

get -e s.abc

to achieve the same results.

A.5. Conclusion

An SCCS interface program (Table A-1) is used to permit
users having different user IDs to use SCCS commands upon
the same files. Although this is its primary purpose, such
a program may also be used as a pre-processor to SCCS com­
mands since it can perform operations upon its arguments.

A-3 Zilog A-3

secs

1\-4

Zilog

Table A-1. SCCS Interface Program •inter.c•

#define LENGTH 80
main(argc, argv)
int argc;
char *argv[];
{

register int i;
char cmdstr[LENGTH]
char *filearg (), *sname ();

/*

SCCS

Process file arguments (those that don't begin with'-').
*I
f o r (i = 1 ; i < a r g c ; i ++)

if (a rgv [i] [0] 1 = • - •)
argv[i] = filearg(argv[i]);

I*
Get 'simple name' of name used to invoke this program
(i.e., strip off directory-name prefix, if any).
*I
argv[0] = sname(argv[0]);

I*
Invoke actual SCCS command, passing arguments.
*I
sprintf(cmdstr, "/usr/bin/%s", argv[0]);
execv(cmdstr, argv);

}

char
*filearg(s)
char *s;
{

}

Zilog A-4

SEO

A Noninteractive Text Editor*

* This information is based on an article originally
written by Lee E. McMahon, Bell Laboratories.

SED Zilog SED

ii Zilog ii

SEO Zilog SEO

Preface

This document is for users of sed, a noninteractive context
editor that runs on the zEtJS Operating System. It is
assumed that the user has some familiarity with string
matching and substitution features of vi, the interactive
screen-oriented editor of ZEUS.

Section 1 provides an introduction to sed. The format of
sed editing commands appears in Section 2. Section 3 gives
the available sed commands and use of arguments.

Examples appear throughout the text. Except where otherwise
noted, the examples use the following input text:

iii

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

Zilog iii

SED Zilog SEO

iv Zilog iv

SED Zilog

Table of Contents

SECTION 1 INTRODUCTION .

SECTION 2 COMMAND OPERATION

2 .1. General Operation
2.2. Command Line Flags
2.3. Flow of Edit Commands
2.4. Pattern Space .

SECTION 3 LINE SELECTION .
3 .1.
3.2.
3. 3.
3.4.

Selecting Lines for Editing
Line Number Addresses ••
Context Addresses ••
Number of Addresses ••

SECTION 4 FUNCTIONS .

v

4 .1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4. 8.

General Information •••
Whole Line Functions ••••••••••••••
Substitute Functions ••••
Input/Output Functions •••
Patterns with New Line •••••
Hold and Get Functions ••••
Flow-of-Control Functions

.

.

.
Miscellaneous Functions

Zilog

SED

1-1

2-1

2-1
2-1
2-1
2-2

3-1

3-1
3-1
3-1
3-3

4-1

4-1
4-1
4-3
4-6
4-7
4-8
4-9

4-10

v

SED Zilog

SECTION 1
INTRODUCTION

SED

Sed is a noninteractive context editor designed for three
cases:

1. Editing files too large for efficient interactive edit­
ing.

2o Editing any size file when the sequence of editing com­
mands is too complicated to be efficiently typed in
interactive mode.

3e Performing multiple "global" editing functions effi­
ciently in one pass through the input.

Sed is a descendant of the editor, ed. Because of the
differences between interactive and noninteractive opera­
tion, considerable changes have been made between ed and
sed. Even experienced users of ed will be surprised Tr they
use sed without reading Sections~ and 4 of this document.
The Ii\Ost striking resemblance between the two editors is in
the class of patterns or regular expressions they recognize.
The code for matching patterns is copied almost verbatim
from the code for ed, and the description of regular expres­
sions in Section~3 is copied almost verbatim from the
writeup for ed in the ZEUS Reference Manual (03-3255).

1-1 Zilog 1-1

SED Zilog

SECTION 2
COMMAND OPERATION

2.1. General Operation

SED

Sed copies the standard input to the standard output, and
can perform one or more editing commands on each line before
writing it to the output. This action can be modified by
flags on the command line (Section 2.2).

The general format of an editing command is:

[address 1, address 2] [fun ct ion] [arguments]

One or both addresses can be omitted. Any number of blanks
or tabs can separate the addresses from the function. The
function must be present. The arguments can be required or
optional, according to which function is given. Tab charac­
ters and spaces at the beginning of lines are ignored.

2.2. Command Line Flags

Three flags are recognized on the command line:

-n: tells sed not to copy all lines, but only those speci­
fied by p functions or p flags after s functions (Sec­
tion 4.4)-

-e: tells sed to take the next argument as an editing com­
mand

-f: tells sed to take the next argument as a file name; the
file should contain one editing command to a line

2o3. Flow of Edit Commands

For more efficient execution, all the editing commands are
first compiled in the order they are encountered. This is
generally the order in which they are attempted at execution
time. During the execution phase, the commands are applied
one at a time, and the input to each command is the output
of all preceding commands.

The linear order of application of editing commands can be
changed by the flow-of-control commands, t and b (Section
4.7). Even when the order of application is clianged by

2-1 Zilog 2-1

SEO Zilog SEO

these commands, the input line to any command is the output
of any previously applied command.

2.4. Pattern Space

The range of pattern matches is called the pattern space.
Ordinarily, the pattern space is one line of the input text,
but more than one line can be read into the pattern space by
using the N command (Section 4.5).

2-2 Zilog 2-2

SED Zilog

SECTION 3
LINE SELECTION

3.1. Selecting Lines for Editing

SED

Lines in an input file can be selected by addresses.
Addresses can be either line numbers or context addresses.

The application of a group of commands can be controlled by
one address or address-pair by grouping the commands with
braces ({ }) (Section 4.7).

3.2. Line Number Addresses

A line number is a decimal integer. As each line is read
from the input, a line number counter is incremented. A
line number address matches the input line, which causes the
internal counter to equal the address line number. The
counter runs cumulatively through multiple input files; it
is not reset when a new input file is opened.

As a special case, the character $ matches the last line of
the last input file.

3.3. Context Addresses

A context address is a pattern "regular expression" enclosed
in slashes (/). The following regular expressions are
recognized by sed:

1. An ordinary character (not one of the special characters
discussed in this section) is a regular expression, and
matches itself.

2. A circumflex (A) at the beginning of a regular expres­
sion matches the null character at the beginning of a
line.

3. A dollar sign ($) at the end of a regular expression
matches the null character at the end of a line.

4. The characters \n match an embedded new line character,
but not the new line at the end of the pattern space.

5. A period (.) matches any character except the terminal
new line of the pattern space.

3-1 Zilog 3-1

SED Zilog SED

6. A regular expression followed by an asterisk {*) matches
any number (including none) of adjacent occurrences of
the regular expression it follows.

7. A string of characters in square brackets ([]) matches
any character in the string, and no others. If the
first character of the string is circumflex {~), the
regular expression matches any character except the
characters in the string and the terminal new line of
the pattern space.

8. A concatenation of regular expressions is itself a regu­
lar expression. It matches the concatenation of strings
that match the components of the regular expression.

9. A regular expression between the sequences \{ and \) is
identical to the regular expression, but has side­
effects described in Section 4.3.

10. The expression \d means the same string of characters
matched by an expression enclosed in \{ and \) earlier
in the same pattern. Here d is a single digit. The
string specified begins with the dth occurrence of \{,
counting from the left. For example, the expression
A\(.*\)\l matches a line beginning with two repeated
occurrences of the same string.

11. The null regular expression standing alone {for example,
//) is equivalent to the last regular expression com­
piled.

To use one of the special characters:

$

*
(
\
I

as a literal to match an occurrence of itself in the input,
precede the special character with a backslash {\).

If a context address is to match the input, the whole pat­
tern within the address must match some portion of the pat­
tern space.

3-2 Zilog 3-2

SED Zilog SED

3.4. Number of Addresses

The commands in the next section can have zero, one, or two
addresses. Two addresses are separated by a comma. Under
each command, the maximum number of allowed addresses is
given. It is an error for a command to have more addresses
than the maximum allowed.

If a command has no addresses, it is applied to every line
in the input.

If a command has one address, it is applied to all lines
that match that address.

If a command has two addresses, it is applied to the first
line that matches the first address, and to all subsequent
lines until and including the first subsequent line that
matches the second address. An attempt is made on subse­
quent lines to again match the first address, and the pro­
cess is repeated.

Examples:

3-3

/an/
/an.*an/
/"an/
/./
/\./
/r*an/
/\(an\) .*\l/

matches lines 1, 3, 4 in the sample text
matches line 1
matches no lines
matches all lines
matches line 5
matches lines 1,3, 4 (number= zero!)
matches line 1

Zilog 3-3

•

SEO

4.1. General Information

Zilog

SECTION 4
FUNCTIONS

SEO

All functions are named by a single charact~r. In this sec­
tion, the command format shows the maximum number of allow­
able addresses enclosed in parentheses, the single character
function name, and possible arguments enclosed in angle
brackets (< >) • The angle brackets around the arguments are
not part of the argument and must not be typed in actual
editing commands. An expanded English translation of the
single character name and a description of each function
also appear.

4. 2. Whole Line Fun.ct ions.

Within the text output by these' functions, leading blanks
and tabs disappear. To include leading blanks and tabs in
the output, precede the first desired blank or tab with a
backslash. The backslash does not appear in the output.

(2)d -- delete lines

The d function deletes from the file all those lines matched
by its address(es).

It also has the effect that no further commands are
attempted on the deleted lines. As soon as the d function
is executed, a new line is read from the input, and the list
of editing commands ·is restarted from the beginning on the
new line.

(2)n -- next line

The n function reads the next line from the input, replacing
the current line. The current line is written to the output
if it should be. The list of editing commands is continued
following the n command.

4-1

(l)a\
<text> append lines

Zilog 4-1

SEO Zilog SEO

The a function writes the argument <text> to the output
after the line matched by its address. The a command is
inherently multiline; ~ must appear at the end of a line,
and <text> can contain any number of lines. The interior
new lines must immediately follow a backslash character {\).
The <text> argument is terminated by the first new line not
immediately preceded by a backslash.

Once an a function is successfully executed, <text> is writ­
ten to -the· output. The triggering line can be deleted
entirely, but <text> is still written to the output.

The <text> is not scanned for address matches, and no edit­
ing commands are attempted on it. It does not cause any
change in the line number counter.

{l)i\
<text> -- insert lines

The i function behaves like the a function, exc~pt that
<texI> is written to the output before the matched lin~.
All other comments about the a function apply to the ! func­
tion.

{2)c\
<text> -- change lines

The c function deletes the lines selected by its
address{es) and replaces them with the lines in <text>.
Like a and i, c must be followed by a new line entered after
a backslash. Interior new lines in <text> must follow
backslashes.

The c command can have two addresses, and thereby select a
range of lines. If it does, all the lines in the range are
deleted, but only one copy of <text> is written to the out­
put. As with a and i, <text> is not scanned for address
matches, and no editing commands are attempted on it. It
does not change the line number counter.

After a line has been deleted by a c function, no further
commands are attempted on it.

If text is appended after a line by a or r functions, and
the line is subsequently changed, the text-inserted by the c
function is placed before the text of the a or r functions.-

4-2 Zilog 4-2

SEO Zilog

NOTE

Within the text put in the output by these func­
tions, leading blanks and tabs will disappear, as
always in sed commands~ To get leading blanks and
tabs into~he output, precede the first desired
blank or tab by a backslash; the backslash will
not appear in the output.

Example:

The list of editing commands:

n
a\
xx xx
d

applied to the standard input produces:

In Xanadu did Kubhla Khan
xx xx
Where Alph, the sacred river, ran
xx xx
Down to a sunless sea.

SEO

In this particular case, the same effect is produced by
either of the two following command lists:

n
i\
xx xx
d

n
c\
xx xx

4.3. Substitute Functions

A substitute function changes parts of lines selected by a
context seaich within the line.

(2)s<pattern><replacement><flags> -- substitute

The s function replaces the pa~t of a line selected by <pat­
ter~~ with <replacement>. It is also read:

Substitute for <pattern>, <replacement>

The <pattern> argument contains a pattern, exactly like the
patterns in addresses (Section 3.3). The only difference
between <pattern> and a context address is that the context

4-3 Zilog 4-3

SEO Zilog SEO

address must be delimited by slash (/) characters and <pat­
tern> can be delimited by any character other than space or
new line.

By default, only the first string matched by <pattern> is
replaced.

The <replacement> argument begins immediately after the
second delimiting character of <pattern> and must be fol­
lowed immediately by another instance of the delimiting
character. Thus, there are three instances of the delimit­
ing character.

The <replacement> is not a pattern, and the characters that
are special in patterns do not have special meaning in
<replacement>. Instead, other characters are special:

& is replaced by the string matched by <pattern>

\d (where d is a single digit) is replaced by the dth sub-
string matched by parts of <pattern> enclosed in \(and
\). If nested substrings occur in <pattern>, the dth
string is determined by counting opening delimiters.
As in patterns, special characters can be made literal
by preceding them with a backslash (\).

The <flags> argument can contain the following flags:

4-4

g -- substitute <replacement> for all nonoverlapping
instances of <pattern> in the line. After a successful
substitution, the scan for the next instance of <pat­
tern> begins just after the end of the inserted charac­
ters. Characters put into the line from <replacement>
are not rescanned.

p -- print the line if a successful replacement was
done. The E flag prints the line to the output if a
substitution was actually made by the s function. If
several ~ functions, each followed by a E flag, suc­
cessfully substitute in the same input line, multiple
copies of the line are written to the output--one for
each successful substitution.

w <filename> -- write the line to a file if there was a
successful replacement. The w flag causes lines that
are actually substituted by the-s function to be writ­
ten to a file named by <filename>. If <filename>
exists before sed is run, it is overwritten; if not, it
is created.

Zilog 4-4

SEO Zilog SEO

A single space must separate w and <filename>.

The possibilities of multiple, somewhat different
copies of one input line being written are the same as
for p.

A maximum of ten different file names can be mentioned
after w flags and w functions.

Examples:

Applied to the standard input, the following command,

s/to/by/w changes

produces, on the standard output:

In Xanadu did Kubhla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and, on the file "changes":

Through caverns measureless by man
Down by a sunless sea.

If the nocopy option is in effect, the command:

s/[.,;?:]/*P&*/gp

produces:

A stately pleasure dome decree*P:*
Where Alph*P,* the sacred river*P,* ran
Down to a sunless sea*P.*

In nocopy mode, the command:

/X/s/an/AN/p

produces

In XANadu did Kubhla Khan

and the command:

/X/s/an/AN/gp

produces:

4-5 Zilog 4-5

SED Zilog SED

In XANadu did Kubhla KhAN

4.4. Input/Output Functions

(2)p -- print

The print function writes the addressed lines to the
standard output file. They are written at the time the

p function is encountered, regardless of what subse­
quent editing commands do to the lines.

(2)w <filename> -- write on <filename>

The write function writes the addressed lines to the
file named by <filename>. If the file previously
existed, it is overwritten; if not, it is created. The
lines are written exactly as they exist when the write
function is encountered for each line, regardless of
what subsequent editing commands do to them.

One space must separate the w and <filename>. A max­
imum of ten different files can be mentioned in write
functions and ~ flags after ~ functions.

(l)r <filename> -- read the contents of a file

The read function reads the .contents of <filename> and
appends them after the line matched by the address.
The file is read and appended regardless of what subse­
quent editing commands do to the line that matched its
address. If r and a functions are executed on the
same line, the text from the a functions and the r
functions is written to the output in the order that
the functions are executed.

One space must separate the r and <filename>. If a
file mentioned by an r functTon cannot be opened, it is
considered a null fil~, not an error, and no diagnostic
is given.

Since there is a limit to the number of files that can be
opened simultaneously, take care not to mention more than
ten files in w functions or flags. The number is reduced to
nine if any r-functions are present.

Examples:

Assume that the file note! has the following contents:

4-6 Zilog 4-6

SED Zilog SED

Note: Kubla Khan (more properly Kublai Khan; 1216-1294)
was the grandson and most eminent successor of Genghiz
(Chingiz) Khan, and founder of the Mongol dynasty in China.

The following command:

/Kubla/r notel

produce~:.

In Xanadu did Kubla Khan
Note: Kubla Khan (more properly Kublai Khan; 1216-1294)
was the grandson and most eminent successor of Genghiz
(Chingiz) Khan, and founder of the Mongol dynasty in China.

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

4.5. ~atterns with New Line

Three functions, all entered as
specifically with pattern spaces
lines. They provide pattern matches
input.

capital letters, deal
containing embedded new
across lines in the

(2)N Next line

The next input line is appended to the current line in
the pattern space and the two inpu~ lines are separated
by an embedd~d new line. Pattern matches can extend
across the embedded new line(s).

(2)0 -- Delete first part of the pattern space

Delete up to and including the first new line character
in the current pattern space. If the pattern space
becomes empty (the only new line is the terminal new
line), read another line from the input9 Begin the
list of editing commands again from its beginning.

(2)P -- Print first part of the pattern space

Print up to and including the first new line in the
pattern space.

The P and D functions are equivalent to their lowercase
counterparts if there are no embedded new lines in the pat­
tern space.

4-7 Zilog 4-7

SED Zilog SED

4.6. Hold and Get Functions

Four functions save and retrieve part of the input for later
use.

(2)h -- hold pattern space

The h function copies the contents of the pattern space
into- a hold area, destroying the previous contents of
the hold area.

(2)H -- Hold pattern space

The H function appends the contents of the pattern
space to the contents of the hold area. The former and
new contents are separated by a new line.

(2)g -- get contents of hold area

The ~ function copies the contents of the hold areq
into the pattern space, destroying the previous con­
tents of the pattern space.

(2)G -- Get contents of hold area

The G function appends the contents of the hold area to
the -contents of the pattern space. The former and new
contents are separated by a new line.

(2)x -- exchange

The exchange command interchanges the contents of the
pattern space and the hold area.

Example:

The commands

lh
ls/ did.*//
lx
G
s/\n/ :/

applied to the standard example, produce:

4-8

In Xanadu did Kubla Khan :In Xanadu
A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

Zilog 4-8

SEO Zilog SEO

4.7. Flow-of-Control FunctiQns

These functions control the application of functions to the
lines selected by the address portion. They do no editing
on the input lines.

(2)! -- Don't

The Don't command causes the next command written on
the same-line to be applied to input lines not selected
by the address part.

(2){ Grouping

The grouping command, a left brace ({), causes the next
set of commands to be applied (or not applied) as a
block to the input lines selected by the addresses of
the grouping command. The first of the commands under
control of the grouping. command can appear on the same
line as the {,or on the next line.

The group of commands is terminated by a right brace
(}) standing on a line by itself.

Groups can be nested.

(0) :<label> place a label

The label function marks a place in the list of editing
commands that can be referred to by b and t functions.
The <label> can be any sequence of eight or-fewer char­
acters. If two different colon functions have identi­
cal labels, a compile-time diagnostic is generated, and
no execution is attempted.

{2)b<label> -- branch to label

4-9

The branch function causes the sequence of editing
commands being applied to the current input line to be
restarted immediately after a colon function with the
same <label> is encountered. If no colon function with
the same label can be found after all the editing com­
mands have been compiled, a compile-time diagnostic is
produced, and no execution is attempted.

A b function with no <label> is a branch to the end of
the list of editing commands; whatever should be done
with the current input line is done, and another input
line is read. The list of editing commands is res­
tarted from the beginning on the new line.

Zilog 4-9

SEO Zilog SEO

(2)t<label> -- test substitutions

The t function tests whether any successful substitu­
tions have been made on the current input line. If so,
it branches to <label>; if not, it does nothing. The
flag indicating that a successful substitution has been
executed is reset by:

1. reading a new input line, or
2. executing a t function.

4.8. Miscellaneous Functions

(l)= -- equals

The = function writes to the standard output the line
number of the line matched by its address.

(l)q -- quit

4-10

The q function writes the current line to the output,
writes any appended or read text, and terminates execu­
tion.

Zilog 4-10

An Introduction to the ZEUS Shell*

* This information is based on an article originally written by
S.R. Bourne, Bell Laboratories.

10/14/83

SHELL

ii

Zilog

Zilog
10/14/83

SHELL

ii

SHELL Zilog SHELL

Preface

The shell is both a command language and a programming
language that provides an interface to the ZEUS operating
system. This document describes, with examples, the ZEUS
shell.

This version of the shell is also referred to as the "Bourne
Shell" after its original author, s. R. Bourne of Bell
Laboratories. There are at least four other shell programs
in moderately widespread use. Users can select the shell
they feel most comfortable with. Most of Zilog's internal
users use the C Shell, which has additional features for
interactive work.

The first section covers most require~ents of terminal
users. Some familiarity with ZEUS is an advantage when
reading this section. ZEUS for Beginners in this manual
provides the basis for this familiarity.

Section 2 describes features of the shell primarily intended
for use within shell procedures. These include control-flow
primitives and string-valued variables. Knowledge of a pro­
gramming language is helpful when reading this section.

The last section describes more advanced features of the
shell. References of the form "~ (2)" refer to a section
of the ZEUS Reference Manual.

iii Zilog
10/14/83

iii

SHELL Zilog SHELL

APPENDIX A GRAMMAR . • . • • • A-1

APPENDIX 8 BOURNE SHELL MESSAGES •••••••••••••••••••9• B-1

B.l. The Full List •.•.•..••.......••.......•....•.. B-1

APPENDIX C METACHARACTERS AND RESERVED WORDS C-1

vi Zilog vi
10/14/83

SHELL

Figure
2-1

3-1
3-2
3-3

vii

Zilog SHELL

List of Illustrations

A Version of the man Command ••••••••.•.•••.• 2-15

ZEUS Signals •..•.•.••.•.••••••••••...••..•••
The touch Command ••.•.•••.••••...•.••••...•.
The scan Command

Zilog
10/14/83

3-8
3-10
3-10

vii

SHELL Zilog SHELL

cc pgm.c &

calls the C compiler to compile the file .2.9.!!!·E· The trail­
ing & is an operator that instructs the shell to run the
command in the background. To help keep track of such a
process, the shell reports its process number following its
creation. A list of currently active processes can be
obtained using the~ command.

1.4. Input/Output Redirection

Most commands produce output on the standard output device
(the terminal). This output can also be sent to a file by
writing, for example,

ls -1 >file

The notation >file is interpreted by the shell and is not
passed as an- argument to ls. If file does not exist, the
shell creates it; otherwise,~he origlrial contents of file
are replaced with the output from ls. Output can be
appended to a file using the notation

ls -1 >>file

The standard input of a command can be taken from a file
instead of the terminal by entering

WC (file

The command wc reads its standard input (in this case
redirected from file) and prints the number of characters,
words, and lines found. If only the number of lines is
required,

WC -1 (file

is used.

1.5. Pipelines and Filters

The standard output of one command can be connected to the
standard input of another by entering the pipe operator,
(j), as in,

ls -1 I wc

Two commands connected in this way constitute a pipeline and
the overall effect is the same as

1-2 Zilog
10/14/83

1-2

SHELL Zilog SHELL

ls -1 >file; wc <file

except that no file is used. Instead, the two processes are
connected by a £i.E.~ (2) and are run in parallel. Pipes are
unidirectional and synchronization is achieved by halting wc
when there is nothing to read and halting ls when the pipe
is full.

A filter is a command that reads its standard input,
transforms it in some way, and prints the result as output.
One such filter, -9_£~, selects from its input those lines
that contain some specified string. For example,

ls I grep old

prints those lines of the output from ls that contain the
string old. Another useful filter is sort. For example,

who I sort

prints an alphabetically sorted list of logged-in users.

A pipeline can consist of more than two commands. For exam­
ple,

ls grep old I wc -1

prints the number of file names in the current directory
containing the string old.

1.6. File Name Generation

Many commands accept arguments that are file names. For
example,

ls -1 main.c

prints information relating to the file main.c.

The shell provides a mechanism for benerating a list of file
names that match a pattern. For ex6mple,

ls -1 *.c

generates, as arguments to ls, all file names in the current
directory that end in .c. The character * is a pattern that
matches any string including the null string. Patterns are
specified as follows:

1-3 Zilog
10/14/83

1-3

SHELL Zilog SHELL

* Matches any string of characters including the null
string.

? Matches any single character.

[•..] Matches any one of the characters enclosed; a pair
of characters separated by a minus matches any char­
acter lexically between the pair.

[! •••] Matches all but the specified character(s).

For ex ample,

[a-z]*

matches all names in the current
one of the letters a through z.

ls *[!o]

directory beginning
For ex ample,

lists all files not ending in 1 0 1
•

/usr/fred/test/?

with

matches all names in the directory /usr/fred/test that con­
sist of a single character. If no file name is found that
matches the pattern, the pattern is passed unchanged as an
argument.

This mechanism saves typing, selects names according to some
pattern, and finds files. For example,

echo /usr/fred/*/core

finds and prints the names of all core files in sub­
directories of /usr/fred. (Echo is a standard ZEUS command
that prints its arguments, separated by blanks.) This last
feature can be expensive, requiring a scan of all sub­
directories of /usr/fred.

There is one exception to the general rules given for pat­
terns. A single period (.) at the start of a file name must
be explicitly matched. For example,

echo *

echoes all file names in the current directory not beginning
with".".

echo .*

1-4 Zi log
10/14/83

1-4

SHELL Zilog SHELL

echoes all those file names that begin with " " This
avoids matching the name "." (the current directory) with
" •• " (the parent directory). The ls command suppresses
information for the "." and " "files unless a user is
logged in as "zeus".

1. 7. Quoting

Characters that have a special meaning to the shell, such as
<, >, *, ? , I, & , and , are called metacharacters. (A com­
plete list of metacharacters is given in Appendix B.) Any
character preceded by a backslash (\) is quoted and loses
its special meaning. The \ itself is not echoed, so

echo \?

echoes a single ? and

echo \\

echoes a single \. To allow long strings to be continued
over more than one line, the sequence \new line is ignored.

The \ is convenient for quoting single characters, but
clumsy and error prone when more than one character needs
quoting. A string of characters can be quoted by enclosing
the string between single quotes. For example,

echo xx'****'xx

echoes

xx****xx

The quoted string can contain new lines,
preserved; it cannot contain a single quote.
mechanism is t~e simplest and is recommended.

which are
This quoting

A third quoting mechanism uses double quotes (Section 3.5).

1. 8. Prompting

When the shell is used from a terminal, it issues a prompt
before reading a command. By default, this prompt is a dol­
lar sign ($); it can be changed by the PSl command. For
ex ample,

PS l=yesdear

1-5 Zilog
10/14/83

1-5

SHELL Zilog SHELL

sets the prompt to be the string yesdear.

If a new line is typed and further input is needed, the
shell issues the > prompt. Sometimes this can be caused by
mistyping a quote mark. If it is unexpected, an interrupt
(DEL) returns the shell to read another command. This
prompt can be changed by the PS2 command. For example,

PS 2=more

1.9. The Shell and Login

Following login (1), the shell is called to read and execute
commands typed at the terminal. If an /etc/profile file
exists and if the user's login directory contains the file
.profile, those files are assumed to contain commands and
are read by the shell before any commands are read from the
terminal.

In addition, the shell will execute the commands contained
in both /etc/profile and .profile whenever invoked with an
argument zero (that is, $0) containing a"-" as the first
character. An example is

su - name

When invoked, the shell searches the environment for the
variable SHELL.. If SHELL is found, and has an "r" in the
simple part of its value (the part after the last "/"), then·
the shell becomes restricted. Restricted logins, such as
games, should include the following in their .profile files:

SHELL=/usr/rsh
export SHELL

1.10. Summary

ls
Print the names of files in the current directory.

ls >file
Put the output from ls into file.

ls I we -1
Print the number of files in the current directory.

ls I grep old

1-6 Zilog
10/14/83

1-6

SHELL Zilog SHELL

Print those file names containing the string old.

ls I grep old I we -1
Print the number of files whose names contain the string
old.

cc pgm.c &
Run cc in the background.

1-7 Zilog
10/14/83

1-7

SHELL Zilog SHELL

Pref ace

The shell is both a command language and a programming
language that provides an interface to the ZEUS operating
system. This document describes, with examples, the ZEUS
shell.

This version of the shell is also referred to as the "Bourne
Shell" after its original author, S. R. Bourne of Bell
Laboratories. There are at least four other shell programs
in moderately widespread use. Users can select the shell
they feel most comfortable with. Most of Zilog's internal
users use the C Shell, which has additional features for
interactive work.

The first section covers most require~ents of terminal
users. Some familiarity with ZEUS is an advantage.when
reading this section. ZEUS for Beginners in this manual
provides the basis for this familiarity.

Section 2 describes features of the shell primarily intended
for use within shell procedures. These include control-flow
primitives and string-valued variables. Knowledge of a pro­
gramming language is helpful when reading this section.

The last section describes more advanced features of the
shell. References of the form"~ (2)" refer to a section
of the ZEUS Reference Manual.

iii Zilog
10/14/83

iii

SHELL

iv

Zilog

Zilog
10/14/83

SHELL

iv

SHELL Zilog

Table of Contents

SECTION 1 BAS IC TASKS

1.1.
1. 2.
1. 3.
1. 4.
1. 5.
1. 6.
1. 7.
1. 8.

Introduction ••••••••
Simple Commands
Background Commands
Input/Output Redirection
Pipelines and Filters
File Name Generation
Quoting
Prompting

1.9. The Shell and Login
1.10. Summary •.•••••••••.

SECTION 2 SHELL PROCEDURES

2. 1.
2. 2.
2. 3.
2.4.
2. 5.
2.6.
2.7.
2. 8.

Introduction ..•.••
Control Flow--For
Control Flow--Case
Here Documents
Shell Variables
Test Command
Control Flow--While
Control Flow--If

2.9. Command Grouping
2. 10.
2. 11.

Debugging Shell Procedures
The man Command •..••••••.•

SECTION 3 KEYWORD PARAMETERS

v

3. 1.
3.2.
3. 3.
3. 4.
3. 5.
3.6.
3.7.
3. 8.
3.9.

Introd'uction .••..••••.
Parameter Transmission
Parameter Substitution
Command Substitution
Evaluation and Quotation
Error Handling
Fault Handling
Command Execution
Invoking the Shell

Zilog
10/14/83

SHELL

1-1

1-1
1-1
1-1
1-2
1-3
1-3
1-5
1-5
1-6
1-6

2-1

2-1
2-2
2-3
2-5
2-6
2-9

2-10
2-11
2-13
2-13
2-14

3-1

3-1
3-1
3-2
3-3
3-4
3-7
3-9

3-11
3-13

v

SHELL Zilog SHELL

APPENDIX A GRAMMAR • . • • A-1

APPENDIX B BOURNE SHELL MESSAGES••...•..•••.•... B-1

B.l. The Full List •.•.••..•..•.•••••.••.••••••••••• B-1

APPENDIX C METACHARACTERS AND RESERVED WORDS ..•..•... C-1

vi Zilog vi
10/14/83

SHELL

Figure
2-1

3-1
3-2
3-3

vii

Zilog SHELL

List of Illustrations

A Version of the man Command •••••••••••••••• 2-15

ZEUS Signals
The touch Command •••••••••••••••••••••••••••
The scan. Command ••••••••••••••••••••••••••••

Zilog
10/14/83

3-8
3-10
3-10

vii

SHELL

1.1. Introduction

Zilog

SECTION 1
BASIC TASKS

SHELL

The shell is a command programming language that provides an
interface to the ZEUS operating system. Its features
include control-flow primitives, parameter passing, vari­
ables, and string substitution. Constructs such as while,
if-then-else, case, and for are available. Two-way communi­
cation is possible between the shell and commands. String­
valued parameters, typically file names or flags, can be
passed to a command. A return code that is set by commands
can be used to determine control flow, and the standard out­
put from a command can be used.as shell input.

The shell modifies the environment in which commands . run.
Input and output can be redirected to files, and processes
that communicate through pipes can be invoked. Commands are
found by searching directories in the file. Commands can be
read either from the terminal or from a file.

1.2. Simple Commands

Simple commands consist of one or more words separated by
blanks. The first word is the name of the command to be
executed; any remaining words are passed as arguments to the
command. For example,

who

is a command that prints the names of users logged in. The
command

ls -1

prints a list of files in the current directory. The argu­
ment -1 tells ls to print status information, size, and the
creation date for each file.

1.3. Background Comtnands

To execute a command, the shell normally creates a new pro­
cess and waits for it to finish. A command can also be run
in the background, that is, without waiting for the process
to finish. For example,

1-1 Zilog
10/14/83

1-1

SHELL Zilog SHELL

cc pgm.c &

calls the C compiler to compile the file ~-~· The trail­
ing & is an operator that instructs the shell to run the
command in the background. To help keep track of such a
process, the shell reports its process number following its
creation. A list of currently active processes can be
obtained using the ~ command.

1.4. Input/Output Redirection

Most commands produce output on the standard output device
{the terminal). This output can also be sent to a file by
writing, for example,

ls -1 >file

The notation >file is interpreted by the shell and is not
passed as an argument to ls. If file does not exist, the
shell creates it; otherwise,~he origI"Oal contents of file
are replaced with the output from ls. Output can be
appended to a file using the notation

ls -1 >>file

The standard input of a command can be taken from a file
instead of the terminal by entering

WC (file

The command wc reads its standard input (in this case
redirected from file) and prints the number of characters,
words, and lines found. If only the number of lines is
required,

WC -1 <file

is used.

1.5. Pipelines and Filters

The standard output of one command can be connected to the
standard input of another by entering the pipe operator,
{I>, as in,

ls -1 I wc

Two commands connected in this way constitute a pipeline and
the overall effect is the same as

1-2 Zilog
10/14/83

1-2

SHELL Zilog SHELL

ls -1 >file; we <file

except that no file is used. Instead, the two processes are
connected by a~ (2) and are run in parallel. Pipes are
unidirectional and synchronization is achieved by halting wc
when there is nothing to read and halting ls when the pipe
is full. ~

A filter is a command that reads its standard input,
transforms it in some way, and prints the result as output.
One such filter, .9.!~' selects from its input those lines
that contain some specified string. For example,

ls I grep old

prints those lines of the ou~put from ls that contain the
string old. Another useful filter is sort. For example,

who I sort

prints an alphabetically sorted list of logged-in users.

A pipeline can consist of more than two commands. For exam­
ple,

ls grep old I wc -1

prints the number of file names in the current directory
containing the string old.

1.6. File Name Generation

Many commands accept arguments that are file names. For
ex ample,

ls -1 main.c

prints information relating to the file main.c.

The shell provides a mechanism for generating a list of file
names that match a pattern. For example,

ls -1 *.c

generates, as arguments to ls, all file names in the current
directory that end in .c. The character * is a pattern that
matches any string including the null string. Patterns are
specified as follows:

1-3 Zilog
10/14/83

1-3

SHELL Zilog SHELL

* Matches any string of characters including the null
string.

? Matches any single character.

[••.] Matches any one of the characters enclosed; a pair
of characters separated by a minus matches any char­
acter lexically between the pair.

[! •••] Matches all but the specified character(s) ~

For example,

[a-z]*

matches all names in the current
one of the letters a through z.

ls *[!o]

directory beginning
For ex ample,

lists all files not ending in 'o'.

/usr/fred/test/?

with

matches all names in the directory /usr/fred/test that con­
sist of a single character. If no file name is found that
matches the pattern, the pattern is passed unchanged as an
argument.

This mechanism saves typing, selects names according to some
pattern, and finds files. For example,

echo /usr/fred/*/core

finds and prints the names of all core files in sub­
directories of /usr/fred. (Echo is a standard ZEUS command
that prints its arguments, separated by blanks.) This last
feature can be expensive, requiring a scan of all sub­
directories of /usr/fred.

There is one exception to the general rules given for pat­
terns. A single period (.) at the start of a file name must
be explicitly matched. For example,

echo *

echoes all file names in the current directory not beginning
with".".

echo .*

1-4 Zilog
10/14/83

1-4

SHELL Zilog SHELL

echoes all those file names that begin with " " This
avoids matching the name "·" (the current directory) with
"··" (the parent directory). The ls command suppresses
information for the "." and " •• "files unless a user is
logged in as "zeus".

1.7. Quoting

Characters that have a special meaning to the shell, such as
< , > , * , ? , I , & , and , are ca 11 ed met a ch a r act er s • (A com­
p let e list of metacharacters is given in Appendix B.) Any
character preceded by a backslash (\) is quoted and loses
its special meaning. The \ itself is not echoed, so

echo \?

echoes a single ? and

echo \\

echoes a single \.
over more than one

To allow
line, the

long strings
sequence \new

to be continued
line is ignored.

The \ is convenient for quoting single characters, but
clumsy and error prone when more than one character needs
quoting. A string of characters can be quoted by enclosing
the string between single quotes. For example,

echo xx'****'xx

echoes

xx****xx

The quoted string can contain new lines,
preserved; it cannot contain a single quote.
mechanism is tpe simplest and is recommended.

which are
This quoting

A third quoting mechanism uses double quotes (Section 3.5).

1. 8. Prompting

When the shell is used from a terminal, it issues a prompt
before reading a command. By default, this prompt is a dol­
lar sign ($); it can be changed by the PSl command. For
example,

PS l=yesdear

1-5 Zilog
10/14/83

1-5

SHELL Zilog SHELL

sets the prompt to be the string yesdear.

If a new line is typed and further input is needed, the
shell issues the > prompt. Sometimes this can be caused by
mistyping a quote mark. If it is unexpected, an interrupt
(DEL) returns the shell to read another command. This
prompt can be changed by the PS2 command. For example,

PS 2=more

1.9. The Shell and Login

Following login (1), the shell is called to read and execute
commands typed at the terminal. If an /etc/profile file
exists and if the user's login directory contains the file
.profile, those files are assumed to contain commands and
are read by the shell before any commands are read from the
terminal.

In addition, the shell will execute the commands contained
in both /etc/profile and .profile whenever invoked with an
argument zero (th a t i s , $ 0) cont a in in g a " - " as the f i r st
character. An example is

su - name

When invoked, the shell searches the environment for the
variable SHELL. If SHELL is found, and has an "r" in the
simple part of its value (the part after the last "/"), then
the shell becomes restricted. Restricted logins, such as
games, should include the following in their .profile files:

SHELL=/usr/rsh
export SHELL

1. HJ. Summary

ls
Print the names of files in the current directory.

ls >file
Put the output from ls into file.

ls I we -1
Print the number of files in the current directory.

ls I grep old

1-6 Zilog
10/14/83

1-6

SHELL Zilog SHELL

Print those file names containing the string old.

ls I grep old I wc -1
Print the number of files whose names contain the string
old.

cc pgm.c &
Run cc in the background.

1-7 Zilog
10/14/83

1-7

SHELL

2.1. Introduction

Zilog

SECTION 2
SHELL PROCEDURES

SHELL

The shell reads and executes commands contained in a file.
For ex ample,

sh file [args •••]

calls the shell to read commands from file. Such a file is
called a command procedure or shell procedure. Arguments
can be supplied with the call and are referred to in file
using the positional parameters such as $1. For example:-Tf
the file ~ contains

who I grep $1

then

sh wg fred

is equivalent to

who I grep fred

ZEUS files have three independent attributes: read, write,
and execute. The ZEUS command chmod (1) can be used to make
a file executable. For example,

chmod +x wg

ensures that the file ~ has execute status.
this, the command

wg fred

is equivalent to

sh wg fred

Following

This allows shell procedures and programs to be used inter­
changeably. In either case, a new process is created to run
the command.

2-1 Zilog
10/14</83

2-1

SHELL Zilog SHELL

In addition to providing names for the positional parame­
ters, the number of positional parameters in the call is
available as $1. The name of the file being executed is
available as $1.

A special shell parameter, $*,
tional parameters except $1.
arguments, as in

substitutes for all posi­
This provides some default

nroff -T450 -ms $*

which prepends some arguments to those already given.

2.2. Control Flow--For

A frequent use of shell procedures is to loop
arguments ($1, $2 •••), executing commands
argument.

through the
once for each

An example of such a procedure is tel, which searches the
file /usr/lib/telnos, which contai~lines of the form

fred mh0123
bert mh0789

The text of tel is

for i
do grep $i /usr/lib/telnos; done

The command

tel fred

prints those lines in /usr/lib/telnos that contain the
string fred.

tel fred bert

prints those lines containing fred followed by those for
bert.

The for loop notation is recognized by the shell and has the
general form

2-2

for name in wl w2
do command-list~
done

Zilog
10/14/83

2-2

SHELL Zilog SHELL

A command-list is a sequence of one or more simple commands
separated or terminated by a new line or semicolon.
Reserved words like do and done are only recognized follow­
ing a new line or semicoloO:--Name is a shell variable that
is set to the words wl w2 .•• in turn each time the command­
list following do is executed. If in wl w2... is omitted,
the loop is executed once for each~positional parameter,
th a t i s , " in $ * " i s a s s um ed .

Another example of the loop is the create command, for which
the text is

for i do >$i; done

The command

create alpha beta

ensures that two files, alpha and beta, exist and are empty.
The notation >file can be used on its own to create or clear
the contents or-a-file. A semicolon (or a new line) is
required before done.

2.3. Control Flow--Case

The case notation provides a multiple branch. For example,

case $# in
1) cat > > $1 ; ;
2) cat > > $ 2 <$1 , ,
*) echo 'usage: append [from] to' ;;

esac

is an append command. When called with one argument as

append file

$# is the string 1 and the standard input is copied onto the
end of file using-the cat command. The command

append filel file2

appends the contents of filel to file2. If more than two
arguments are supplied to append, a message is printed indi­
cating improper usage.

2·-3 Zilog
10/14/83

2-3

SHELL Zilog SHELL

The general form of the case command is

case word in
patter~) command-list;;

esac

The shell attempts to match word with each pattern in the
order in which the patterns appear. If a match is found,
the associated command-list is executed, and execution of
the case is complete.---slnce * is the pattern that matches
any string, it can be used for the default case.

No check is made to ensure that only one pattern matches the
case argument. The first match found defines the set of
commands to be executed. In the next example, the commands
following the second * are never executed.

case $# in
*)

' ' *) ..
' ' esac

Another example of the case construction
between different forms of an argument.
ple is a fragment of a cc command.

is distinguishing
The following exam-

for i
do case $ i in

- [ocs])

done

-*)
*.c)
*) echo
esac

' ' echo 'unknown flag $i' ,,
/lib/c0 $i ... , ,

'unexpected argument $i' ;;

To allow the same commands to be associated with more than
one pattern, the case command provides for alternative pat­
terns separated by a I. For example,

case $i in
-x I -y >

esac

is equivalent to

2-4

case $i in
- [xy])

esac

Zilog
10/14/83

2-4

SHELL Zilog

The usual quoting conventions apply so that

case.$i in
\ ?)

matches the ? character.

2.4. Here Documents

SHELL

The shell procedure tel in Section 2.2 uses the file
/usr/lib/telnos to supply the data for ~· An alternative
includes this data within the shell procedure as a here
document, as in,

for i
do grep $i <<

!
done

fred mh0123
bert mh0789

In this example, the shell takes the lines between <<! and !
as the standard input for ~· The string ! is arbitrary;
the document is terminated by a line that consists of the
string following <<,·whatever that is.

Parameters are substituted in the document before it is made
available to grep, as illustrated by the following procedure
called edg.

ed $3 <<%
g/$1/s//$2/g
w
%

The call

edg stringl string2 file

is then equivalent to the command

2-5

ed file <<%
g/stringl/s//string2/g
w
%

Zilog
_l~/14/83

2-5

SHELL Zilog SHELL

and changes all occurrences of stringl in file to string2.
Substitution is prevented if \ is used to quote the special
character $, as in

ed $3 <<+
1,\$1/$2/g
w
+

This version of edg is equivalent to the first except that
ed prints a ? iT"there are no occurrences of the string $1.
Substitution within a here document is prevented entirely by
quoting the terminating string. For example,

grep $i <<\#

The document is presented without modification to grep. If
parameter substitution is not required in a here document,
this latter form is more efficient.

2.5. Shell Variables

The shell provides string-valued variables. Variable names
begin with a letter and consist of letters, digits, and
underscores8 Variables can be given values with commands
such as

user=fred box=m000 acct=mh0000

which assigns values to the variables user, box, and acct.
A variable can be set to the null string by entering, for
ex ample,

null=

The value of a variable is substituted by preceding its name
with $; for example,

E!cho $user

echoes fred.

Variables can be used interactively to provide abbreviations
for frequently used strings. For example,

2-6

b=/usr/fred/bin
rnv pgm $b

Zilog
10/14/83

2-6

SHELL Zilog SHELL

moves the file ~ from the current directory to the direc­
tory /usr/fred/bin. A more general notation is available
for parameter (or variable) substitution, as in,

echo ${user}

which is equivalent to

echo $user

and is used when the parameter nama is followed by a letter
or digit. For example,

tmp=/tmp/ps
ps -a >${tmp}a

directs the output of ~ to the file /tmp/psa, whereas,

ps -a >$tmpa

substitutes the value of the variable tmpa.

Except for $?, the following are set initially by the shell.
$? is set after executing each command.

$? The exit status (return code) of the last command
executed as a decimal string. Most commands return
a zero exit status if they complete successfully~
otherwise, a nonzero exit status is returned. Test­
ing the value of return codes is dealt with under if
and while commands.

$# The number of positional parameters in decimal.
Used, for example, in the append command to check
the number of parameters.

$$ The process number of this shell in decimal. Since
process numbers are unique among all existing
processes, this string is frequently used to gen­
erate unique temporary file names. For example,

ps -a >/tmp/ps$$

rm /tmp/ps$$

$! The process number of the last process run in the
background (in decimal).

$- The current shell flags, such as -x and -v.

2-7 Zilog
10/14/83

2-7

SHELL Zilog SHELL

The following variables have a special meaning to the shell
and must be avoided for general use.

$MAIL

$HOME

$PATH

2-8

When used interactively, the shell looks at the file
specified by this variable before it issues a
prompt. If the specified file has been modified
since it was last looked at, the shell prints the
message you have mail before prompting for the next
command. This variable is typically set in the file
.profile, in the user's login directory. For exam­
ple,

MAIL=/usr/spool/mail/fred

The default argument for the cd command. The
current directory resolves file name references that
do not begin with a /, and is changed using the cd
comrnanda For example,

cd /usr/fred/bin

makes the current directory /usr/fred/bin.

cat wn

prints on the terminal the file wn in this direc­
tory. The command cd with no argument is equivalent
to

cd $HOME

This variable is generally set in the user's login
profile.

A list of directories that contain commands (the
search path). Each time a command is executed by
the shell, a list of directories is searched for an
executable file. If $PATH is not set, the current
directory, /bin, and /usr/bin are searched by
default. Otherwise, $PATH consists of directory
names separated by ":". For example,

PATH=:/usr/fred/bin:/bin:/usr/bin

Zilog
10/14/83

2-8

SHELL

$PS1

$PS2

$IFS

Zilog SHELL

specifies that the current directory (the null
string before the first ":") /usr/fred/bin, /bin,
and /usr/bin, are to be searched, in that order.
Individual users can have their own private commands
that are accessible independently of the current.
directory. If the command name contains a /, this
directory search is not used. A single attempt is
made to execute the command.

The primary shell prompt string, by default, $.

The shell prompt when further input is needed, by
default, >.

The set of characters used by blank interpretation
(Section 3. 5).

2.6. Test Command

The test command is generally used by shell programs. For
ex ample,

test -f file

returns zero exit status if file exists and nonzero exit
status otherwise. In general, test evaluates a predicate
and returns the result as its exit status. Some of the more
frequently used test arguments are given here. (Test (1)
contains a complete specification.)

test s true

test -f file true
test -r file true
test -w file true
test -d file true

2-9

if the argument s is not -string
if file exists
if file is readable
if file is writable
if file is a directory

Zilog
10/14/83

the null

2-9

SHELL Zilog SHELL

2.7. Control Flow--While

The actions of the for loop and the case branch are deter­
mined by data available to the shell. A while or until loop
and an if then else branch are also provided; their actions
are determined---sy the exit status returned by commands. A
while loop has the general form

while command-list!
do command-1Tst2 done __ _

Loops such as:

while echo hi
do

continue
done

echo an infinite number of hi's.

The value tested by the while command is the exit status of
the last simple command following while. Each time around
the loop, command-list is executed. If a zero exit status
is returned,--Cornmand-list is executed; otherwise, the loop
terminates. For example-;---

while test $1
do

shift
done

is equivalent to

for i
do
done

Shift is a shell command that renames the positional parame­
ters $2, $3 ••• as $1, $2 ••• and loses $1.

2-10 Zilog
10/14/83

2-10

SHELL Zilog SHELL

Another use use for the while/until loop is to wait until
some external event occurs and then run some commands. In
an until loop, the termination condition is reversed. For
example,

until test -f file
do sleep 300; done
commands

loops until file exists. Each time around the loop, it
waits for five minutes before trying again.

2.8. Control Flow--If

Also available is a general conditional branch of the form,

if command-list
then command-list
else command-list
f i

which tests the value returned by the last simple command
following if.

The if command can be used in conjunction with the test com­
mandto test for the existence of a file as in

if test -f file
then proces~ file
else do something else
f i

A multiple test if command of the form

2-11

if •...
then
else

f i

if, ...
then
else

f i

if •..

f i

Zilog
10/14/83

2-11

SHELL Zilog SHELL

can be written using an extension of the if notation as,

if
then
el if
then
el if

f i

The following example is the touch command, which changes
the "last modified" time for a list of files. The command
can be used in conjunction with make (1) to force recompila­
tion of a list of files.

flag=
for i
do case $i in

-c)
*)

esac
done

then
el if
then
else
f i

flag=N ;;
if test -f $i
ln $i junk$$; rm junk$$
test $flag
echo file \'$i\' does not exist
>$i

The -c flag in this command forces subsequent files to be
created if they do not already exist. Otherwise, if the
file does not exist, an error message is printed. The shell
variable _flag is set to some non-nul 1 string if the -c argu~
ment is encounte~ed. The commands

1 n ••• , rm

make a link to the file and then remove it, thus causing the
last modified date to be updated.

The sequence

if commandl
then command2

can be written

commandl && command2

Conversely,

command! I I command2

2-12 Zilog
10/14/83

2-12

SHELL Zilog SHELL

executes command2 only if commandl fails. In each case, the
value returned is that of the last simple command executed.

2.9. Command Grouping

Commands can be grouped in two ways,

{ command-list ; }

and

(command-list)

In the first form, command-list is simply executed. The
second form executes command-list as a separate process.
For example,

(cd x ; rm j un k)

executes rm junk in the directory x without changing the
current directory of the invoking shell.

The commands

cd x; rm junk

have the same effect, but leave the invoking shell in direc­
tory x.

2. HJ. Debugging Shell Procedures

The shell provides two tracing
shell procedures. The first
cedure, as with

set -v (v. for verbose)

mechanisms to help debug
is invoked within the pro-

and causes lines of the procedure to be printed as they are
read. This is useful to help isolate syntax errors. It can
be invoked without modifying the procedure by using

sh -v proc ...

where proc is the name of the shell procedure. This flag
can be used in conjunction with the -n flag, which prevents
execution of subsequent commands. (Using set -n at a termi­
nal renders the terminal useless until---ari" end-of-file is
typed.)

2-13 Zilog
10/14/83

2-13

SHELL Zilog

The command

set -x

produces an execution trace. Following parameter
tion, each command is printed as it is executed.
can be turned off by entering

set -

SHELL

substitu­
Both flags

The current setting of the shell flags is available as $-.

The command

set --

indicates that the flags are to remain unchanged and is
useful in setting $1 to a string beginning with a minus {-).

2.11. The man Command

The man command can be used used to print sections of a
document. It is called, for example, as

man sh
man -t ed
man 2 fork

In the first line, a section of the sh manual is printed.
Since no section is specified, Section 1 is used. The
second example typesets (-t option) a section of the manual
ed. The last prints the fork manual page from Section 2.

A more elaborate example of the man command appears in Fig­
ure 2-1.

2-14 Zilog
10/14/83

2-14

SHELL Zilog SHELL

2-15

cd /usr/man

: 'colon is the comment command'
'default is nroff ($N), section 1 {$s)'

N=n s=l

for i
do case $ i in

[1-9*]

-t)

-n)

-*)

*)

s=$ i ; ;

N=t ; ;

N=n ; ;

echo unknown flag \'$i\' ,,

if test -f man$s/$i.$s

then ${N}roff man0/${N}aa rnan$s/$i.$s

done

else : 'look through all manual sections'
found= no
for j in 1 2 3 4 5 6 7 8 9
do if test -f man$j/$i.$j

done

then man $j $i
found= yes

f i

case $found in
no) echo '$i: manual page not found'

esac

esac
f i

Figure 2-1 A Version of the man Command

Zilog
10/14/83

2-15

SHELL

3.1. Introduction

Zilog

SECTION 3
KEYWORD PARAMETERS

SHELL

Shell variables are given values by assignment or by invok­
ing a shell procedure. An argument to a shell procedure of
the form name=value that precedes the command name causes
value to---iJe assigned to name before execution of the pro­
cedure begins. The value ofriame in the invoking shell is
not affected. For example, ~~

user=fred command

executes command with user set to fred. The -k flag for the
set command causes arguments of the form name=value to be
interpreted in this way anywhere in the argument list. ·such
names are called keyword parameters. If any arguments
remain, they are available as positional parameters $1, $2,
and so on.

The set command can also be used to set positional parame­
ters--rrom within a procedure. For example,

set - *

sets $1 to the first file name in the current directory, $2
to the next, and so on. The first argument (-) ensures
correct treatment when the first file name begins with a -

3.2. Parameter Transmission

When a shell procedure is invoked, both positional and key­
word parameters can be supplied with the call. Keyword
parameters are implicitly available to a shell procedure by
specifying in advance that such parameters are to be
exported. For example, the command

export user box

marks the variables user and box for export. When a shell
procedure is invoked, copies are made of all exportable
variables for use within the invoked procedure. Modifica­
tion of such variables within. the procedure does not affect
the values in the invoking shell. A shell procedure cannot
modify the state of its caller without explicit request on

3-1 Zilog
10/14/83

3-1

SHELL Zilog SHELL

the part of the caller.
exception to this rule.

Shared file descriptors are an

Names whose value is intended to remain constant can be
declared readonly. The form of this command is the same as
that of the export command,

readonly name ..•

Subsequent attempts to set readonly variables are illegal.

3.3. Parameter Substitution

If a shell parameter is not set, the null string is substi­
tuted for it. For example, if the variable d is not set

echo $d

or

echo $ {d}

echoes nothing. A default string can be given as in

echo ${d-.}

which echoes the value of the variable d if it is set and
" " otherwise. The default string is evaluated using the
usual quoting conventions so that

echo ${d-'*'}

echoes * if the variable d is not set. Similarly,

echo ${d-$1}

echoes the value of d if it is set and the value (if any) of
$1 otherwise. A variable can be assigned a default value
using the notation

echo ${d=~}

which substitutes the same string as

echo ${d-.}

and if d was not previously set, then it is set to the
st r i n g " " The no ta t i o n $ { • • • = • • • } i s no t av a i 1 ab 1 e f o r
positional parameters.

3-2 Zilog
10/14/83

3-2

SHELL Zilog SHELL

If there is no default, the notation

echo ${d?message}

echoes the value of the variable d if it has one; otherwise,
message is printed by the shell, and execution of the shell
procedure is abandoned. If message is absent, a standard
message is printed. An example of a shell procedure that
requires some parameters to be set starts as follows:

: ${user?} ${acct?} ${bin?}

Colon (:) is a command built into the shell and does nothing
once its arguments have been. evaluated. If any of the vari­
ables user, acct, or bin are not set, the shell abandons
execution of the p1~ocedure.

3.4. Command Substitution

The standard output from a command can be substituted in a
manner similar to parameter substitution. The command pwd
prints on its standard output the name of the current direc­
tory. For example, if the current directory is
/usr/fred/bin, the command

d= 'pwd'

is equivalent to

d=/usr/fred/bin

The entire string between grave accents is taken as the com­
mand to be executed and is replaced with the output from the
command. The command is written using the usual quoting
conventions, except that a ' must be escaped using a \. For
ex ample,

1 s ' echo "$1 "'

is equi v.3lent to

ls $1

Command substitution occurs in all contexts where parameter
substitution occurs, including here documents, and the
treatment of the resulting text is the same in both cases.
This mechanism allows string processing commands to be used
within shell procedures. An example of such a command is
basename, which removes a specified suffix from a string.

3-3 Zilog
10/14/83

3-3

SHELL Zilog SHELL

For example,

basename main.c

prints the string main. Its use is illustrated by the fol­
lowing fragment from a cc command.

case $A in

*.c)

esac

B= 'basename $A ' .c

Here, B is set to the part of $A with the suffix .c
stripped.

Here are some composite examples:

$ for i in 'ls -t'; do •••
The variable i is set to the names of files in time
order, most recent first.

set 'date'; echo $6 $2 $3, $4
prints, for example, 1981 Nov !, .£l:59:59

3.5. Evaluation and Quotation

The shell is a macroprocessor that provides parameter sub­
stitution, command substitution, and file name generation
for the arguments to commands. This section discusses the
order in which these evaluations occur and the effects of
the various quoting mechanisms.

Commands are parsed initially according to the grammar given
in Appendix A. Before a command is executed, the following
substitutions occur:

e parameter substitution; for example, $user

$ command substitution; for example, 'pwd'

Only one evaluation occurs, so that if the value of the
variable X is the string $~, then

echo $X

echoes $~.

blank interpretation

3-4 Zilog
10/14/83

3-4

SHELL Zilog SHELL

Following the above substitutions, the resulting char­
acters are broken into nonblank words (blank interpre­
tation) • For this purpose "blanks" are the characters
of the string $IFS. By default, this string consists
of blank, tab, and new line. The null string is not
regarded as a word unless it is quoted. For example,

echo "

passes the null string as the first argument to echo,
whereas

echo $null

calls echo with no arguments if the variable null is
not set or set to the null string.

file name generation

Each word is then scanned for the file pattern charac­
ters comma, question mark, and [•••], and an alphabeti­
cal list of file names is generated to replace the
word. Each such file name is a separate argument.

The evaluations just described also occur in the list of
words associated with a for loop. Substitution occurs in
the word used for a case branch.

In addition to the quoting mechanisms described previously,
a third quoting mechanism is provided that uses double
quotes. Within double quotes, parameter and command substi­
tution occurs, but file name generation and the interpreta­
tion of blanks does not. The following characters have a
special meaning within double quotes and are quoted using \.

$
....

II

\

For example,

parameter substitution
command substitution
ends the quoted string
quotes the special characters $ ' " \

echo "$x"

passes the value of the variable x as a single argument to
echo. Similarly,

echo "$*"

passes the positional parameters as a single argument and is
equivalent to

3-5 Zilog
10/14/83

3-5

SHELL Zilog SHELL

echo "$1 $2 "
The notation $@ is the same as $* except when it is quoted.

The command

echo "$@"

passes the positional parameters, unevaluated, to echo and
is equivalent to

echo "$1" "$2"

The following chart gives, for each quoting mechanism, the
shell metacharacters that are evaluated.

metacharacter

\ $ * "
n n n n n t
y n n t n n

" y y n y t n

t terminator
y interpreted
n not interpreted

Where more than one evaluation of a string is required, the
built-in command eval is used. If the variable X has the
value $y, and if y has the value £9..E.1 then

eval echo $X

echoes the string £9!.·

The eval command evaluates its arguments and treats the
resu~as input to the shell. The input is read and the
resulting command(s) executed. For example,

wg='eval who I grep'
$wg fred

is equivalent to

who I grep f red

In this example, eval is required since there is no
interpretation- of metacharacters, such as I, following sub­
stitution.

3-6 Zilog
10/14/83

3-6

SHELL Zilog SHELL

3.6. Error Handling

The treatment of errors detected by the shell depends on the
type of error and on whether the shell is being used
interactively. An interactive shell is one whose input and
output are connected to a terminal (as determined by ~
(2)). A shell invoked with the -i flag is also interactive.

Execution of a command (Section 3.8) can fail for any of the
following reasons:

e Input/output redirection fails, for example, if a file
does not exist or cannot be created

e The command itself does not exist or cannot be executed

e The command terminates ab~ormally, for example, with a
"bus error" or "memory fault" (see Figure 3-1 for a
complete list of ZEUS signals)

The command terminates normally but returns a nonzero
exit status

In all of these cases, the shell goes on to execute the next
command. Except for the last case, an error message is
printed by the shell. All remaining errors cause the shell
to exit from a command procedure. An interactive shell
returns to read another command from the terminal. Such
errors include the following:

$ Syntax errors; for example, if ••• then .•. done

$ A signal such as interrupt; the shell waits for the
current command, if any, to finish execution and then
either exits or returns to the terminal

$ Failure of any of the built-in commands such as cd

The shell flag -e causes the shell to terminate if any error
is detected.

3-7 Zilog
10/14/83

3-7

SHELL Zilog SHELL

3-8

1 hangup

2 interrupt

3* quit

4* illegal instruction

5* trace trap

6* IOT system call

7* Unused (formerly EMT instruction)

8* floating point exception

9 kill (cannot be caught or ignored)

10* Unused (formerly bus error)

11* segmentation violation

12* bad argument to system call

13 write on a pipe with no one to read it

14 alarm clock

15 software termination (from kill (1))

16 unassigned

Signals marked with an asterisk produce a core dump if not
caught. However, the shell itself ignores quit, which is
the only external signal that causes a dump. The signals in
this list of potential interest to shell programs are 1, 2,
3, 14, and 15.

Figure 3-1 ZEUS Signals

Zilog
10/14/83

3-8

SHELL Zilog SHELL

3.7. Fault Handling

Shell procedures normally terminate when an interrupt is
received from the terminal. The trap command is used if
some cleaning up is required, such as removing temporary
files. For example,

trap 'rm /tmp/ps$$; exit' 2

sets a trap for signal 2 (terminal interrupt) , and if this
signal is received, executes the commands

rm /tmp/ps$$; exit

Exit is another built-in command that terminates execution
o-r--a shell procedure. The exit is required; otherwise,
after the trap has been taken, the shell resumes executing
the procedure at the place where it was interrupted.

ZEUS signals can be handled in one of three ways. They. can
be ignored, in which case the signal is never sent to the
process. They can be caught, in which case the process must
decide what action to take when the signal is received.
They can be left to cause termination of the process without
any further action. If a signal is being ignored on entry
to the shell procedure, for example, by invoking it in the
background (Section 3.8), trap commands and the signal are
ignored.

The use of trap is illustrated by the modified version of
the touch command in Figure 3-2. The cleanup action is to
remove the file junk$$.

The trap command appears before the creation of the tem­
porary file; otherwise, it would be possible for the process
to terminate without removing the file.

Since there is no signal 0 in ZEUS, it is used by the shell
to indicate ~he commands executed on exit from the shell
procedure.

A procedure can itself ignore signals by specifying the null·
string as the argument to trap. The following fragment is
taken from the nohuE command:

trap " 1 2 3 15

which causes hangup, interrupt, quit, and kill to be ignored
both by the procedure and by invoked commands.

3-9 Zilog
10/14/83

3-9

SHELL Zilog

flag=
trap 'rm -f junk$$; exit' 1 2 3 15
for i
do case $i in

-c)
*)

esac
done

then
el if
then
else

flag=N ;;
if test -f $i
ln $i junk$$; rm

test $flag
echo file \'$i\'
>$i

junk$$

does not exist

Figure 3-2 The touch Command

d= ., pwd'
for i in *
do if test -d $d/$i

then cd $d/$i

f i
done

while echo "$i:"
trap exit 2
read x

do trap : 2; eval $x; done

Figure 3-3 The scan Command

Traps can be reset by entering

trap 2 3

SHELL

which resets the traps for signals 2 and 3 to their default
values. A list of the current values of traps can be
obtained by entering

trap

The procedure scan (Figure 3-3) is an example of the use of

3-10 Zilog
10/14/83

3-10

SHELL Zilog SHELL

trap where there is no exit in the trap command. Scan takes
each directory in the current directory, prompts with its
name, and then executes commands typed at the terminal until
an end-of-file or an interrupt is received. Interrupts are
ignored while executing the requested commands but cause
termination when ~can is waiting for input.

Read x is a built-in command that reads one line from the
standard input and places the result in the variable x. It
returns a nonzero exit status if an end-of-file is read or
an interrupt is received.

3.8. Command Execution

To run other than a built-in command, the shell first
creates a new process using the system call fork. The exe­
cution environment for the command includes input, output,
and the states of signals, and is established in the child
process before the command is executed. The built-in com­
mand exec, used in the rare cases when no fork is required,
replaces the shell with a new command. For example, a sim­
ple version of the nohup command looks like

trap " 1 2 3 15
exec $*

The trap turns off the signals specified so that they are
ignored by subsequently created commands, and exec replaces
the shell with the command specified.

In the following, word is subject only to parameter and com­
mand substitution:-- No file name generation or blank
interpretation takes place so that, for example,

echo • • • > *. c

writes its output into a
Input/output specifications
they appear in the command.

file whose name is *.c.
are evaluated left to right as

> word

>> word

< word

3-11

The standard output (file descriptor 1) is sent
to the file word, which is created if it does
not already exist":-

The standard output is sent to file word. If
the file existsr output is appended by seeking
to the end; otherwise, the file is created.

The standard input (file descriptor 0) is taken
from the file word.

Zilog 3-11
10/14/83

SHELL

<< word

>& digit

<& digit

<&-

>&-

Zilog SHELL

The standard input is taken from the lines of
shell input that follow, up to but not including
a line consisting only of word. If word is
quoted, no interpretatioO-O-f the document
occurs. If word is not quoted, parameter and
command substitution occur and \ is used to
quote the characters \, $, and ', and the first
character of word. In the latter case, \new
line is ignored-.---

The file descriptor digit is duplicated using
the system call dup (2), and the result is used
as the standard output.

The standard input is duplicated from file
descriptor digit.

The standard input is closed.

The standard output is closed.

Any of the above can be preceded by a digit
file descriptor specified by the digit
default 0 or 1. For example,

to create the
instead of the

2>file

runs a command with message output (file descriptor 2)
directed to file. Also,

• . • 2>&1

runs a command with its standard output and message output
merged. File descriptor 2 is created by duplicating file
descriptor 1, but the effect is usually to merge the two
streams.

The environment for a command run in the background such as

1 i st *. c I lpr &

is modified in two ways. First, the default standard input
for such a command is the empty file /dev/null. This
prevents two processes (the shell and the command), which
are running in parallel, from trying to read the same input.
For example,

ed file &

allows both the editor and the shell to read from the same
input at the same time.

3-12 Zilog
10/14/83

3-12

SHELL Zilog SHELL

The other modification to the environment of a background
command is to turn off the QUIT and INTERRUPT signals so
they are ignored by the command. This allows these signals
to be used at the terminal without causing background com­
mands to terminate. For this reason, the ZEUS convention
for a signal is that if it is set to 1 (ignored) then it is
never changed. The shell command trap has no effect for an
ignored signal.

3.9. Invoking the Shell

The following flags are interpreted by the shell when it is
invoked. If the first character of argument zero is a
minus, commands are read from the file .profile.

-c string
If the -c flag is present, commands are read from
string.

-s If the -s flag is present or if no arguments remain,
commands are read from the standard input. Shell out­
put is written to standard error (file descriptor 2).

-i If the -i flag is present or if the shell input and
output are attached to a terminal (as told by .9.!!l~,
this shell is interactive. In this case, TERMINATE is
ignored so that kill I does not kill an interactive
shell, and INTERRUPT is caught and ignored so that wait
is interruptable. In all cases, QUIT is ignored by the
shell.

3-13 Zilog
10/14/83

3-13

SHELL

item:

simple-command:

command:

pipeline:

andor:

command-list:

input-output: .

file:

case-part:

pattern:

A-1

Zilog

APPENDIX A
GRAMMAR

word
TriP\it-output
name = value

item
"SI"i1\Ple-command item

simple-command
(command-list)
{ command-list }
for name dO-COmmand-list done

SHELL

for name in word ---do command-list
done--
while command-list do command-list done
until command-list do command-list done
case word 1n case-part •.• esa_c __ _
if command-list then command-list else­
part f i

command
pipeline I command

pipeline
andor && pipeline
andor II pipeline

and or
command-list ;
command-list &
command-list ; andor
command-list & andor

> file
< file
>> word
<< word

word
&CITgit
& -

pattern) command-list ;;

word
pattern word

Zilog A-1

SHELL

else-part:

empty:

word:

name:

digit:

A-2

Zilog

elif command-list
else-part'
else command-list
empty

SHELL

then command-list

a sequence of nonblank characters

a sequence of letters, digits, or under­
scores starting with a letter

g 1 2 3 4 5 6 7 8 9

Zilog A-2

SHELL Zilog

APPENDIX B
BOURNE SHELL MESSAGES

B.l. The Full List

- arg list too long
- argument expected
- bad directory
- bad file number
- bad number
- bad option(s)
- bad substitution
- bad trap
- cannot create
- cannot execute
- cannot fork: too many processes
~ cannot fork: no swap space
- cannot make pipe
- cannot open
- cannot shift
- core dumped
- illegal io
- invalid shell script
- is not an identifier

is read only
- Node may not be removed

SHELL

- no more processes, waiting for current ones to complete
- no space
- not a login shell
- not found
- not in environment
- parameter not set
- parameter null or not set
- restricted
- syntax error
- text busy
- too big
- you have mail

B-1 Zilog B-1

SHELL

Syntactic

&&

11

;

; ;

&

()

<

<<

>

>>

Patterns

1r

?

[...]
Substitution

${ ••• }

Quoting

\

C-1

Zilog

APPENDIX C
HETACHARACTERS AND RESERVED WORDS

pipe symbol

"andf" symbol

"orf" symbol

command separator

case delimiter

background commands

command grouping

input redirection

input from a here document

output creation

output append

match any character(s) including none

match any single character

match any of the enclosed characters

substitute shell variable

substitute command output

quote the next character

SHELL

quote the enclosed characters except for '

Zilog C-1

SHELL

I I I I

Zilog SHELL

quote the enclosed characters except for $,
', \, or "

Reserved Words

C-2

if then else elif fi
case in esac
for while until do done
{ }

Zilog C-2

TBL - A PROGRAM TO FORMAT TABLES*

*This information is based on an article written by M. E. Lesk

10/14/83

TBL

ii

Zilog

Zilog
10/14/83

TBL

ii

TBL Zilog

Table of Contents

SECTION 1 INTRODUCTION

iii

1.1.
1. 2.
1. 3.
1. 4.
1. 5.

Options
Format
Data
Additional
Usage

....
Command Lines

Zilog
10/14/83

TBL

1-1

1-1
1-2
1-7
1-9

1-10

iii

TBL Zilog

SECTION 1
INTRODUCTION

TBL

Tbl is a document formatting preprocessor for troff or nroff
which makes even fairly complex tables easy to specify and
enter. Tables are made up of columns which can be indepen­
dently centered, right-adjusted, left-adjusted, or aligned
by decimal points. Headings can be placed over single
columns or groups of columns. Horizontal or vertical lines
can be drawn as desired in the table, and any table or ele­
ment can be enclosed in a box.

The input to tbl is text for a document, with tables pre­
ceded by a .TS (table start) command and followed by a .TE
(table end) command. Tbl processes the tables, generating
nroff formatting commands, and leaves the remainder of the
text unchanged. The .TS and aTE lines are copied, too, so
that nroff page layout macros (such as the memo formatting
macros) can use these lines to delimit and place tables as
they see fit. In particular, any arguments on the .TS or
.TE lines are copied but otherwise ignored, and can be used
by document layout macro commands.

The format of the input is as follows:

.TS
options;
format.
data
.TE

Each table is independent, and must contain formatting
information followed by the data to be entered in the table.
The formatting information, which describes the individual
columns and rows of the table, can be preceded by a few
options that affect the entire table. A detailed descrip­
tion of tables is given in the next section.

1.1. Options

There can be a single line of options affecting the whole
table. If present, this line must follow the .TS line
immediately and must contain a list of option names
separated by spaces, tabs, or commas, and must be terminated
by a semicolon. The allowable options are:

1-1 Zilog
10/14/83

1-1

TBL Zilog

center
center the table (default is left-adjust);

expand ·
make the table as wide as the current line length;

box
enclose the table in a box;

all box
enclose each item in the table in a box;

doublebox
enclose the table in two boxes;

tab(!_)
use x instead of tab to separate data items.

linesize(~)
set lines or rules (e.g. from box) in n point type;

delim(~_y) .
Recognize x and y as the eqn delimiters.

1. 2. Format

The format section of the table specifies the layout of
columns. Each line in this section corresponds to one
of the table (except that the last line corresponds to
following lines up to the next .T&, if any, and each
contains a key-letter for each column of the table.)

It is good practice to separate the key letters for
column by spaces or tabs. Each key-letter is one of
following:

1 or L to indicate a left-adjusted column entry;

r or R to indicate a right-adjusted column entry;

c or c to indicate a centered column entry;

TBL

the
line
all

line

each
the

n or N to indicate a numerical column entry, to be aligned
with other numerical entries so that the units
digits of numbers line up;

a or A to indicate an alphabetic subcolumn; all correspond­
ing entries are aligned on the left, and positioned
so that the widest is centered within the column;

1-2 Zilog
10/14/83

1-2

TBL Zilog TBL

s or s to indicate a spanned heading, i.e. to indicate that
the entry from the previous column continues across
this column (not allowed for the first column, obvi-

· ously); or

to indicate a vertically spanned heading, i.e. to
indicate that the entry from the previous row con­
tinues down through this row. (Not allowed for the
first row of the table, obviously).

When numerical alignment is specified, a location for the
decimal point is sought. The rightmost dot (.) adjacent to a
digit is used as a decimal point; if there is no dot adjoin­
ing a digit, the rightmost digit is used as a units digit;
if no alignment is indicated, the item is centered in the
column. However, the special non-printing character string
\& can be used to override unconditionally dots and digits,
or to align alphabetic data; this string lines up where a
dot normally would, and then disappears from the final out­
put.

1-3

NOTE

If numerical data are used in the same column with
wider L or r type table entries, the widest number
is centered relative to the wider L or r items (L
is used instead of 1 for readability; they have
the same meaning as key-letters).

Alignment within the numerical items is preserved.
This is similar to the behavior of a type data, as
explained above. However, alphabetic subcolumns
(requested by the a key-letter) are always
slightly indented relative to L items; if neces­
sary, the column width is increased to force this.
This is not true for n type entries.

WARNING

The n and a items should not be used in the same
column.

Zilog
10/14/83

1-3

TBL Zilog TBL

For readability, the key-letters describing each column
should be separated by spaces. The end of the format sec­
tion is indicated by a period. The layout of the key­
letters in the format section resembles the layout of the
actual data in the table. A simple format might appear as:

c s s
1 n n

which specifies a table of three columns. The first line of
the table contains a heading centered across all three
columns; each remaining line contains a left-adjusted item
in the first column followed by two columns of numerical
data.

Horizontal lines

A key-letter can be replaced by (underscore) to
indicate a horizontal line in place of the correspond­
ing column entry, or by '=' to indicate a double hor­
izontal line.

If an adjacent column contains a horizontal line, or if
there are vertical lines adjoining this column, this
horizontal line is extended to meet the nearby lines.
If any data entry is provided for this column, it is
ignored and a warning message is printed.

Vertical lines

A vertical bar can be placed between column key­
letters. This will cause a vertical line between the
corresponding columns of the table. A vertical bar to
the left of the first key-letter or to the right of the
last one produces a line at the edge of the table. If
two vertical bars appear between key-letters, a double
vertical line is drawn.

Space between columns

1-4

A number can follow the key-letter. This indicates the
amount of separation between this column and the next
column. The number normally specifies the separation
in ens (one en is about the width of the letter 'n').

If the "expand" option is used, then these numbers are
multiplied by a constant such that the table is as wide
as the current line length. The default column separa­
tion number is 3. If the separation is changed the
worst case (largest space requested) governs.

Zilog
10/14/83

1-4

TBL Zilog TBL

Vertical spanning

Normally, vertically spanned items extending over
several rows of the table are centered in their verti­
cal range. If a key-letter is followed by t or T, any
corresponding vertically spanned item will begin at the
top line of its range.

Font changes

A key-letter can be followed by a string containing a
font name or number preceded by the letter f or F.

This indicates that the corresponding column should be
in a different font from the default font {usually
Roman). All font names are one or two letters; a one­
letter font name should be separated from whatever fol­
lows by a space or tab. The single letters B, b, I,
and i are shorter synonyms for fB and fI. Font change
commands given with the table entries override these
specifications.

Point size changes

A key-letter can be followed by the letter p or P and a
number to indicate the point size of the corresponding
table entries. The number can be a signed digit, in
which case it is taken as an increment or decrement
from the current point size.

If both a point size and a column separation value are
given, one or more blanks must separate them.

Vertical spacing changes

1-5

A key-letter can be followed by the letter v or V and a
number to indicate the vertical line spacing to be used
within a multi-line corresponding table entry. The
number can be a signed digit, in which case it is taken
as an increment or decrement from the current vertical
spacing.

A column separation value must be separated by blanks
or some other specification from a vertical spacing
request. This request has no effect unless the
corresponding table entry is a text block.

Zilog
10/14/83

1-5

TBL Zilog TBL

Column width indication

A key-letter can be followed by the letter w or W and a
width value in parentheses. This width is used as a
minimum column width. If the largest element in the
column is not as wide as the width value given after
the w, the largest element is assumed to be that wide.
If the largest element in the column is wider than the
specified value, its width is used.

The width is also used as a default line length for
included text blocks. Normal nroff units can be used
to scale the width value; if none are used, the default
is 'ens'. If the width specification is a unitless
integer the parentheses can be omitted. If the width
value is changed in a column, the last one given con­
trols.

Equal width columns

A key-letter can be followed by the letter e or E to
indicate equal width columns. All columns whose key­
letters are followed by e or E are made the same width.
This permits the user to get a group of regularly
spaced columns.

NOTE

The order of the above features is immaterial;
they need not be separated by spaces, except as
indicated above to avoid ambiguities involving
point size and font changes. Thus a numerical
column entry in italic font and 12 point type with
a minimum width of 2.5 inches and separated by 6
ens from the next column could be specified as

npl2w(25i)f! 6

Alternative notation

1-6

Instead of listing the format of successive lines of a
table on consecutive lines of the format section, suc­
cessive line formats can be given on the same line,
separated by commas, so that the format for the example
above might have been written:

c s s, 1 n n .

Zilog
10/14/83

1-6

TBL Zilog TBL

Default

Column descriptors missing from the end of a format
line are assumed to be L. The longest line in the for­
mat section, however, defines the number of columns in
the table~ extra columns in the data are ignored
silently.

1.3. Data

The data for the table are typed after the format. Nor­
mally, each table line is typed as one line of data. Very
long input lines can be broken: any line whose last charac­
ter is \ is combined with the following line (and the \ van­
ishes). The data for different columns (the table entries)
are separated by tabs, or by whatever character has been
specified in the option tabs. There are a few special
cases:

Nroff commands within tables

An input line beginning with a '.' followed by anything
but a number is assumed to be a command to nroff and is
passed through unchanged, retaining its position in the
table. So, for example, space within a table can be
produced by ".sp" commands in the data.

Full width horizontal lines

An input line containing only the character (under­
score) or-= (equal sign) is taken to be a single or
double line, respectively, extending the full width of
the table.

Single column horizontal lines

An input table entry containing only the character or
= is taken to be a single or double line extending the
full width of the column. Such lines are extended to
meet horizontal or vertical lines adjoining this
column. To obtain these characters explicitly in a
column, either precede them by \& or follow them by a
space before the usual tab or newline. ·

Short horizontal lines

1-7

An input table entry containing only the string _ is
taken to be a single line as wide as the contents of
the column. It is not extended to meet adjoining
lines.

Zilog
10/14/83

1-7

TBL Zilog TBL

Repeated characters

An input table entry containing only a string of the
form \Rx where x is any character is replaced by
repetitions of the-character x as wide as the data in
the column. The sequence -of x's is not extended to
meet adjoining columns.

Vertically spanned items

An input table entry containing only the character
string \A indicates that the table entry immediately
above spans downward over this row. It is equivalent
to a table format key-letter of 'A'

Text blocks

1-8

In order to include a block of text as a
precede it by T{ and follow it by
sequence

" • • T {
block of
text
~ ..

table entry,
T}. Thus the

is the way to enter, as a single entry in the table,
something that cannot conveniently be typed as a simple
string between tabs. Note that the T} end delimiter
must begin a line; additional columns of data can fol­
low after a tab on the same line.

If more than twenty or thirty text blocks are used in a
table, various limits in the nroff program are likely
to be exceeded, producing diagnostics such as 'too many
string/macro names' or 'too many number registers.'

Text blocks are pulled out from the table, processed
separately by nroff, and replaced in the table as a
solid block~ If no line length is specified in the
block of text itself, or in the table format, the
default---rs to use L x C/(N+l) where L is the current
line length, C is the number of ta~le columns spanned
by the text, and N is the total number of columns in
the table. The- other parameters (point size, font,
etc.) used in setting the block of text are those in
effect at the beginning of the table (including the
effect of the ".TS" macro) and any table format specif­
ications of size, spacing and font, using the p, v and
f mndifiers to the column key-letters. Commands within
the text block itself are also recognized, of course.

Zilog
10/14/83

1-8

TBL Zilog TBL

However, nroff commands within the table data but not
within the text block do not affect that block.

WARNING

Although any number of lines can be present in a
table, only the first 290 lines are used in calcu­
lating the widths of the various columns. A
multi-page table, of course, can be arranged as
several single-page tables if this proves to be a
problem. Other difficulties with formatting can
arise because, in the calculation of column widths
all table entries are assumed to be in the font
and size being used when the n.Ts• command was
encountered, except for font and size changes
indicated (a} in the table format section and (b)
within the table data.

Therefore, although arbitrary nroff requests can
be sprinkled in a table, care must be taken to
avoid confusing the width calculations; use
requests such as '.ps' with care.

1.4. Additional Command Lines

If the format of a table must be changed after many similar
lines, as with sub-headings or summarizations, the ".T&"
(table continue) command can be used to change column param­
eters. The outline of such a table input is:

.TS
options;
format .
data

. T&
format .
data
.T&
format .
data
.TE

Using this procedure, each table line can be close to its
corresponding format line.

1-9 Zilog
10/14/83

1-9

TBL Zilog

WARNING

It is not possible to change the number of
columns, the space between columns, the global
options such as box, or the selection of columns
to be made equal width.

1. 5. Usage

TBL

On ZEUS, tbl can be run on a simple table with the command

tbl input-file I nroff

but for more complicated use, where there are several input
files, and they contain equations and ms memorandum layout
commands as well as tables, the normal command would be

tbl f ile-1 f ile-2 .. I eqn I troff -ms

and, of course, the usual options can be used on the nroff
and ~ commands~

For the convenience of users employing line printers without
adequate driving tables or post-filters, there is a special
-TX command line option to tbl which produces output that
does not have fractional line motions in it. The only other
command line options recognized by tbl are -ms and -mm which
are turned into commands to fetch the corresponding macro
files; ususlly it is more convenient to place these argu­
ments on the troff part of the command line, but they are
accepted by tb_! as well.

Note that when e~ and tbl are used together on the same
file tbl should be used first. If there are no equations
within-tables, either order works, but it is usually faster
to run tbl first, since eqn normally produces a larger
expansion of the input than tbl. However, if there are
equations within tables (using the delim mechanism in eqn),
tbl must be first or the output will be scrambled. Users
must also beware of using equations in n-style columns; this
is nearly always wrong, since tbl attempts to split numeri­
cal format items into two parts and this is not possible
with equations. Use the delim(xx) table option to prevent
splitting of numerical columns within the delimiters.

Tbl limits tables to twenty columns; however, use of more
than 16 numerical columns can fail because of limits in
nroff, producing the 'too many number registers' message.
Nroff number registers used by tbl must be avoided by the

1-10 Zilog
10/14/83

1-10

TBL Zilog TBL

user within tables; these include two-digit names from 31 to
99, and names of the forms I~, ~+, ~I, A~, and ~-, w~ere ~
is any lower case letter. The names ##, and #- and # are
also used in certain circumstances. To conserve number
register names, the n and a formats share a register, so
they cannot be used in the same column.

For aid in writing layout macros, tbl defines a number
register TW which is the table width;it is defined by the
time that the ".TE" macro is invoked and can be used in the
expansion of that macro. More importantly, to assist in
laying out multi-page boxed tables the macro T# is defined
to produce the bottom lines and side lines of a boxed table,
and then invoked at its end. By use of this macro in the
page footer a multi-page table can be boxed. In particular,
the ms macros can be used to print a multi-page boxed table
with~a repeated heading by giving the argument H to the
".TS" macro.

If the table start macro is written

• TS H

a line of the form

.TH

must be given in the table after any table heading (or at
the start if none). Material up to the ".TH" is placed at
the top of each page of tab~e; the remaining lines in the
table are placed on seve~al pages as required. Note that
this is not a feature of tbl, but of the ms layout macros.

1-11 Zilog
10/14/83

1-11

TBL

1-12

Zilog

List of Tbl Command Characters and Words

Command

a A
allbox
b B
box
c c
center
doublebox
e E
expand
f F
i I
1 L
n N
nnn
p p
r R
s s
t T
tab (x)
T{ 'I'}
v v
WW
.xx

i-1
\A
=

\
\R!_

Meaning

Alphabetic subcolurnn
Draw box around all items
Boldface item
Draw box around table
Centered column
Center table in page
Doubled box around table
Equal width columns
Make table full line width
Font change
Italic item
Left justified column
Numerical column
Column separation
Point size change
Right adjusted column
Spanned item
Vertical spanning at top
Change data separator character
Text block ·
Vertical spacing change
Minimum width value
Included troff command
Vertical line
Double vertical line
Vertical span
Vertical span
Double horizontal line
Horizontal line
Short horizontal line
Repeat character

Zilog
10/14/83

TBL

1-12

A TROFF TUTORIAL*

* This information is based on an article originally
written by Brian W. Kernighan, Bell Laboratories.

TROFF Zilog TROFF

ii Zilog ii

TROFF Zilog TROFF

Pref ace

This document is an introduction to the most basic use of
troff. It presents enough information to enable the user to
do simple formatting tasks like making viewgraphs, and to
make incremental changes to existing packages of troff com­
mands.

This document also serves as a tutorial on nroff, the ZEUS
formatter for text printed on a character or line printer.
Nroff commands are a subset of troff commands, and nroff
ignores commands specific to troff. Only those parts of
Sections 2, 3, and 6 that cover functions specific to photo­
typesetting are irrelevant to nroff.

iii Zilog iii

TROFF Zilog TROFF

iv Zilog iv

TROFF Zilog TROFF

Table of Contents

SECTION 1 GENERAL INFORMATION•••••••••••••••••••••••• 1-1

SECTION 2 POINT SIZES AND LINE SPACING••••••••••••••• 2-1

SECTION 3 FONTS AND SPECIAL CHARACTERS 3-1

SECTION 4 INDENTS AND LINE LENGTHS ••••••••••••••••••• 4-1

SECTION 5 TABS • 5-1

SECTION 6 LOCAL MOTIONS:
DRAWING LINES AND CHARACTERS••••••••••••••• 6-1

SECT I ON 7 STRINGS • 7 -1

SECTION 8 INTRODUCTION TO MACROS ••••••••••••••••••••• 8-1

SECTION 9 TITLES, PAGES, AND NUMBERING ••••••••••••••• 9-1

SECTION 10 NUMBER REGISTERS AND ARITHMETIC ••••••••••• 10-1

v Zilog v

TROFF Zilog TROFF

SECTION 11 MACROS WITH ARGUMENTS••••••••••••••••••••• 11-1

SECTION 12 CONDITIONALS•••••••••••••••••••••••••••••• 12-1

SECTION 13 ENVIRONMENTS•••••••••••••••••••••••••••••• 13-1

SECTION 14 DIVERSIONS•••••••••••••••••••••••••••••••• 14-1

vi Zilog vi

TROFF Zilog

SECTION 1
GENERAL INFORMATION

TROFF

Nroff and troff are text-formatting programs for producing
high quality printed output. Nroff produces output for dev­
ices such as line printers and hardcopy terminals, and troff
produces output for a Graphic Systems C/A/T phototypesetter
with other typesetter interfaces being developed.
Presently, the C/A/T is not supported under ZEUS, although
troff output files can be transferred to other UNIX systems
with C/A/T support.

The phototypesetter itself normally runs with four fonts,
containing Roman, Italic, and Bold letters, a full Greek
alphabet, and a number of special characters and mathemati­
cal symbols. Characters can be printed in a range of sizes,
and can be placed anywhere on the page.

Troff allows full control over fonts, sizes, and character
pos.itions, as well as the usual features of a formatter,
such as right-margin justification, automatic hyphenation,
page titling, and numbering. It also provides macros,
arithmetic variables and operations, and conditional testing
for complicated formatting tasks.

The most important rule is to use troff through some
intermediary. In many ways, troff resembles a remarkably
powerful and flexible assembly language that requires many
operations to be specified at a level of detail and in a
form that is hard for most people to use effectively.

For two special applications there are programs that provide
an interface to troff. The eqn program provides an easy­
to-learn language for typesetting mathematics; the eqn user
does not need to know troff to typeset mathematics. The tbl
program provides the same convenience for producing complex
tables.

For producing text that contains mathematics or tables,
there are a number of macro packages that define formatting
rules and operations for specific styles of documents, and
reduce the amount of direct contact with troff. In particu­
lar, the -ms and PWB/MM packages provide most facilities
needed for a wide range of document preparation. There are
also packages for viewgraphs, for simulating the older raff
formatters on ZEUS, and for other special applications.
These packages are easier to use than direct use of troff
and should be considered first. In the cases where existing

1-1 Zilog 1-1

TROFF Zilog TROFF

packages do not do what is needed, small changes can be made
to adapt packages that already exist.

To use troff, prepare the actual text to be printed and some
information that tells how it is to be printed. Most com­
mands to troff start with a period and appear one command
per line, separate from the text itself. For example,

Some text •
• ps 14
Some more text.

Many troff commands use
introduce the commands
within a line of text.

1-2

the
and

backslash character (\) to
separate special characters

Zilog 1-2

TROFF Zil:0g TROFF

SECTI~ON 2
POINT SIZES AN:O LINE SPACING

The command .ps sets the point size. One point is 1/72
inch, so 6-point characters are 1/12 inch high, and 36-point
characters are 1/2 inch. There are 15 available point
sizes, shown in Figure 2-1.

If the number after .ps is not one of these sizes, it is
rounded up to the next valid value, with a maximum of 36.
If no number follows .ps, troff reverts to the previous size
given. Troff begins with point size 10.

The point size can also be changed in the middle of a line,
or even a word, with the in-line command \s followed by a
legal point size. For example, \sl0 stands for point size
10. An exception to legal point size is \s0, which causes
the size to revert to its previous value.

Relative size changes are also useful. For example,

\s-2ZEUS\s+2

temporarily decreases the size, whatever it is,
points, then restores it. Relative size changes
advantage that the size difference is independent
starting size of the document. The amount of the
change is restricted to a single digit.

by two
have the
of the

relative

The other parameter that determines what the type looks like
is the spacing between lines. This is set independently of
the point size. Vertical spacing is measured from the bot­
tom of one line to the bottom of the next. The command to
control vertical spacing is .vs. For running text, the
vertical spacing should be about 20% bigger than the charac­
ter size. By default, troff uses 10 as a vertical space on
12-point type, referred to as "10 on 12."

Point size and vertical spacing make a substantial differ­
ence in the amount of text per square inch. For example, 10
on 12 uses about twice as much space as 7 on 8. When used
without arguments, .ps and .vs revert to the previously
defined size and vertical spacing.

The command .sp is used to get extra vertical space. It
generates one extra blank line (one .vs, whatever that has
been set to). To alter that space, use the .sp command.
So,

2-1 Zilog 2-1

TROFF Zilog TROFF

.sp 2i

means "two inches of vertical space,"

.sp 2p

means "two points of vertical space," and

.sp 2

means "two vertical spaces," that is, two of whatever .vs is
set to. Troff also uses decimal fractions. For example,

.sp 1. 5i

is a space of 1.5 inches. These same scale factors can be
used after .vs to define line spacing, and after most com­
mands that deal with physical dimensions.

2-2 Zilog 2-2

TROFF Zilog TROFF

SECTION 3
FONTS AND SPECIAL CHARACTERS

With troff and the typesetter~ four different fonts can be
on-line at one time. Norma[ly, three fonts (Times Roman,
Italic, and Bold) and one collection of special characters
are permanently mounted.

The Greek mathematical symbols and miscellany of the special
font are listed in the Appendix.

Troff prints in Roman unless told otherwise. To switch into
bold, use the .ft command

.ft B

and for italics,

.ft I

To return to Roman, use .ft R; to return to the previous
font, whatever it was, use either .ft P or just .ft. The
underline command

.ul

causes the next input line to be printed in italics. If .ul
is followed by a number, it indicates how many lines are to
be italicized.

Fonts can also be changed within a line or word with the
in-line command \f. To keep the previous font undisturbed,
insert extra .ft commands. Only the immediately previous
font remains in memory, so it is necessary to restore the
previous font after each change. The same is true of .ps
and .vs when used without an argument.

The command .fp tells troff what fonts are physically
mounted on the typesetter:

.fp 3 H

indicates that the Helvetica font is mounted on position 3.
(For a complete list of fonts, see the troff manual.)
Appropriate .fp commands appear at the beginning of the
document if the standard fonts are not being used.

3-1 Zilog 3-1

TROFF Zilog TROFF

To make a document independent of the actual fonts, use font
numbers instead of names. For example, \f3 and .ft 3 mean
"whatever font is mounted at position 3," and thus work for
any setting. Normal settings are Roman font on 1, Italic on
2, Bold on 3, and Special on 4.

Special characters have four-character names beginning with
\(. In particular, Greek letters are all of the form\(*-,
where - is an upper or lowercase Roman letter similar to the
Greek. A complete list of these special names appears in
the Appendix.

Some characters are automatically translated into others.
For example, the grave ' and acute accents (apos­
trophes) become open and close single quotes. Similarly, a
typed minus sign becomes a hyphen (-). To print an explicit
minus sign, use backslash minus (\-).

3-2 Zilog 3-2

TROFF Zilog TROFF

SECTION 4
INDENTS AND LINE LENGTHS

Troff starts with a line length of 6.5 inches. To reset the
line length, use the .11 command, as in

.11 6i

As with .sp, the actual length is specified in several ways.

The maximum line length provided by the typesetter is 7.5
inches. To use the full width, reset the default physical
left margin (page offset), which is normally slightly less
than one inch from the left edge of the paper. This is done
with the .po command. For example,

.po 0

sets the offset to the leftmost point.

The indent command (.in) idents the left margin by some
specified amount from the page offset. Using .in to move
the left margin in, and .11 to move the right margin to the
left, makes offset blocks of text. For example,

.in 0.3i

.11 -0.3i
text to be set into a block
.11 +0.3i
.in -0.3i

creates a block that looks like this:

Pater nester qui est in caelis sanctificetur
nomen tuum; adveniat regnum tuum; fiat voluntas
tua, sicut in caelo, et in terra.
Amen.

The "+" and "-" change the previous setting by the specified
amount rather than overriding it. The distinction is quite
important: .11 +li makes lines one inch longer; .11 li makes
them one inch long.

With .in, .11, and .po, the previous value is used if no
argument is specified.

To indent a single line, use the temporary indent command
.ti. The default unit for .ti, as for most horizontally

4-1 Zilog 4-1

TROFF Zilog TROFF

oriented commands (.11, .in, .po), is ems; an em is roughly
the width of the letter "m" in the current point size.
(Precisely, an em in size p is p points.) Although inches
are usually clearer than erns, ems measure size that is pro­
portional to the current point size. For text that keeps
its proportions regardless of point size, use ems for all
dimensions. Ems can be specified as scale factors, as in
.ti 2.5m.

Lines can also be indented negatively
currently positive. The command

if the

moves the next line back three-tenths of an inch.

4-2 Zilog

indent is

4-2

TROFF Zilog

SECTION 5
TABS

TROFF

Tabs (the ASCII "horizontal tab" character) produce output
in columns or set the horizontal position of output. Typi­
cally, tabs are used only in unfilled text. Tab stops are
set by default every half inch from· the current indent, but
can be changed with the .ta command. To set stops every
inch, for example, use

.ta li 2i 3i 4i Si 6i

For numeric columns, precede every number by enough blanks
to make it line up when typed. For example,

.sp

.nf

.ta li 2i 3i
1 tab 2 tab 3

40 tab 50 tab 60
700 tab 800 tab 900
• f i

Then change each leading blank into the string \0. This is
a character that does not print, but has the same width as a
digit. When printed, this produces

1
40

700

2
50

800

3
60

900

To fill up tabbed-over space with some character other than
blanks, set the "tab replacement character" with the .tc
command. For example,

.ta I.Si 2.5i

.tc \(ru (\(ru is " ")
Name tab Age tab

produces

Name Age ------
To reset the tab replacement character to a blank, use .tc
with no argument.

5-1 Zilog 5-1

TROFF Zilog

SECTION 6
LOCAL MOTIONS:

DRAWING LINES AND CHARACTERS

TROFF

Troff has a host of commands for placing characters of any
size at any place, making it possible to draw special char­
acters or arrange output for a particular appearance.

If eqn is not used, subscripts and superscripts are most
easily done with the half-line local motions \u and \d. To
go back up the page half a point-size, insert a \u at the
desired place; to go down, insert a \d. \u and \d must
always be used in pairs.

The \v command requests an arbitrary amount of vertical
motion. The in-line command

\v' (amount)'

causes motion up or down the page ·by the amount specified in
(amount).

There are many other ways to specify the amount of motion.
The commands

\v'0.li'
\v'3p'
\v'-0.Sm'

are all legal. The scale specifier i, p, or m goes inside
the quotes.

Since troff does not take within-the-line vertical motions
into account when figuring where it is on the page, output
lines can have unexpected positions if the left and right
ends are not at the same vertical position. Thus \v, like
\u and \d, must always balance upward vertical motion in a
line with the same amount in the downward direction.

Arbitrary horizontal motions can be generated using \h. The
default scale factor, however, is ems instead of line
spaces. As an example,

\h'-0.li'

causes a backward motion of a tenth of an inch.

6-1 Zilog 6-1

TROFF Zilog TROFF

Frequently, \h is used with the width function \w to gen­
erate motions equal to the width of some character string.
The construction

\w'thing'

is a number equal to the width of "thing" in machine units
(1/432 inch or 1/6 point). All troff computations are done
in these units. To move horizontally the width of x, enter

\h'\w'x'u'

There are also several special-purpose troff commands for
local motion. The \0 is an unpaddable white space of the
same width as a digit. "Unpaddable" means that it is never
widened or split across a line-by-line justification and
filling. There is also the slash-blank (\),an unpaddable
character the width of a space. The \I is half that width,
\A is one-quarter of the width of a space, and \& has zero
width. This last command is useful in entering a text line
that otherwise begins with a period (.).

The command \o , used in

\o'set of characters'

causes up to nine characters to be overstruck, centered on
the widest. (See Accents, Section 15.)

Overstrikes can be generated with another special conven­
tion, \z, the zero-motion command. \zx suppresses the nor­
mal horizontal motion after printing the single character x,
so another character can be printed on top of it. Although
sizes change within \o, it centers the characters on the
widest. There is no horizontal or vertical motion, so \z is
the only way to achieve this.

Troff also has a convenient facility for drawing horizontal
and vertical lines of arbitrary length with arbitrary char­
acters. The \l'li' draws a line one inch long,
(). The length can be followed by any character.
For example, \1'0.Si.' draws a half-inch line of dots
(•••••). The construction \L is entirely analogous, but
draws a vertical line instead of a horizontal one.

6-2 Zilog 6-2

TROFF Zilog

SECTION 7
STRINGS

With troff, ·it is possible to store
of text in a "string," and use the
for its contents. A reference to a
whatever text defined the string.
the command .ds. The line

.ds e \o"e\'"

TROFF

an arbitrary collection
string name as shorthand
string is replaced by
Strings are defined with

defines the string e to have the value \o"e\'"

String names can be either one or two characters long. They
are referred to by* for one-character names or *(xy for
two-character names.

If a string must begin with blanks, define it as

.ds xx " text

The double quote signals the beginning of the definition.
There is no trailing quote; the end of the line terminates
the string.

A string can be several lines long; if troff encounters a \
at the end of any line, it is deleted and the next line is
added to the current one. So, to define a long string, end
each line except the last with a backslash:

7-1

.ds xx this \
is a very \
long string

Zilog 7-1

TROFF Zilog

SECTION 8
INTRODUCTION TO MACROS

TROFF

In its simplest form, a macro is a shorthand notation simi­
lar to a string. To start every paragraph with a space and
a temporary indent of two ems, use

.sp

.ti +2m

To save typing, collapse these into one shorthand line. A
troff "command"

.lp

is treated by troff exactly as

.sp

.ti +2m

The .lp is called a macro. Tell troff what .lp means by
defining it with the .de command:

.de PP

.sp

.ti +2m

The first line names the macro (.lp for paragraph). The
last line (••) marks the end of the definition. In between
is the text that is inserted whenever troff sees the "com­
mand" or macro call .lp.

A macro can contain any combination of text and formatting
commands.

The definition of .lp has to precede its first use; unde­
fined macros are simply ignored. Names are restricted to
one or two characters.

Using macros for commonly occurring sequences of
important. Not only does it save typing, but it
changes much easier.· Suppose that the paragraph
too small, the vertical space is too big, and
should be forced. Instead of changing the whole
change the definition of .lp to

8-1 Zilog

commands is
makes later

indent is
Roman font

document,

8-1

Zilog

.de PP \" paragraph macro

.sp 2p
• ti +3m
.ft R

TROFF

and the change takes effect everywhere .lp appears.

The \" is a troff command that causes the rest of the line
to be ignored. It is used here to add comments to the macro
definition.

Another example of macros starts and ends a block of offset,
unfilled text. The following commands define the amount of
indentation:

.de BS \" start indented block

.sp

.nf

.in +0.3i

.de BE \" end indented block

.sp
• f i
.in -0.3i

Using .BS and .BE to surround the text

Copy to
John Doe
Richard Roberts
Stanley Smith

produces an indented and aligned block.
indented by .in +0.3i instead of .in 0.3i.
sible to nest uses of .BS and .BE to get
blocks.

The text is
Thus it is pos­

blocks within

To change the indent to 0.5i, change only the definitions of
• BS and • BE.

8-2 Zilog 8-2

TROFF Zilog TROFF

SECTION 9
TITLES, PAGES, AND NUMBERING

Suppose that an application calls for a title with the fol­
lowing format at the top of each page:

left top center top right top

It is necessary to define what the actual title is and how
and when to print it. Taking these in reverse order, first
define a macro .NP (for new page) to process titles at the
end of one page and the beginning of the next:

.de NP
'bp
'sp 0.Si
.tl 'left top'center top'right top'
'sp 0.3i

To make sure this starts at the top of a page, issue a
"begin page" command ('bp) to skip to top-of-page. Space
down half an inch, print the title, and space another 0.3
inches.

To ask for .NP at the bottom of each page, use the "when"
command (. wh) :

.wh -li NP

No "." is used before NP because this is simply the name of
a macro, not a macro call. The minus sign means "measure up
from the bottom of the page," so "-li" means "one inch from
the bottom."

The .wh command appears in the input outside the definition
of .NP; typically the input is

.de NP . . .
• wh -li NP

As text is actually being output, troff keeps track of its
vertical position on the pag~, and after a line is printed
within one inch from the bottom, the .NP macro is activated •
• NP causes a skip to the top of the next page (activated by
the 'bp), then prints the title with the defined margins.

9-1 Zilog 9-1

TROFF Zilog TROFF

The commands .sp and .bp cause a break. That is, all the
input text collected but not yet printed is flushed out as
soon as possible, and the next input line is guaranteed to
start a new line of output. Using ' for a command tells
troff that the output line currently being filled should not
be forced out before the space or new page.

Here is a list of commands that cause a break •

.bp .br .ce .fi .nf .sp .in • ti

Be careful when inserting breaks near changes of fonts or
point sizes to prevent the special font or size from being
carried over to the new page (Section 13). The length of a
title is independent of the current line length, so titles
come out at the default length of 6.5 inches unless the
length is changed with the .lt command.

There are several ways to solve the problems of point sizes
and fonts in titles. For the simplest applications, change
.NP to set the proper size and font for the title, then
restore the previous values, as follows:

.de NP
'bp
'sp 0.Si
.ft R \" set title font to roman
.ps 10 \" and size to 10 point
.lt 6i \" and length to 6 inches
.tl 'left'center'right'
.ps \" revert to previous size
.ft P \" and to previous font
'sp 0.3i

This version of .NP does not work if the fields in the .tl
command contain size or font changes. To solve that problem
requires troff's environment mechanism (Section 13).

To get a footer at the bottom of a page, modify .NP to do
some processing before the 'bp command. Alternatively,
split the job into a footer macro invoked at the bottom mar­
gin and a header macro invoked at the top of the page.

Output page numbers start at one and are computed automati­
cally as each page is produced. No numbers are printed
unless they are explicitly requested. To get page numbers
printed, include the character % in the .tl line at the
position where the number is to appear, for example,

.tl "- % -"

9-2 Zilog 9-2

TROFF Zilog TROFF

Set the page number at any time with either .bp n, which
immediately starts a new page numbered n, or with .pn n,
which sets the page number for the next page but does not
skip to the new page. Again, .bp +n sets the page number to
n more than its current value; .bp means .bp +l.

9-3 Zilog 9-3

TROFF Zilog TROFF

SECT~ON 10
NUMBER REGISTERS AND ARITHMETIC

Troff has a facility called number registers for doing
arithmetic and for defining and using variables with numeric
values. Number registers, like strings and macros, can be
useful in setting up a document in addition to serving for
arithmetic computation.

Like strings, number registers have one or two-character
names. They are set by the .nr command and are referenced
anywhere by \nx (one-character name) or \n(xy (two-character
name).

Among the predefined number registers maintained by troff
are

% for the current page number

nl for the current vertical position on the page

dy, mo, and yr
for the current day, month and year

.s and .f
for the current size and font. The font is a number
from 1 to 4. Any of these can be used in computations,
and all except .s and .f 'can be changed with .nr.

As an example of how to use the number registers, the -ms
macro package defines most ~ignif icant parameters in terms
of the values of number regis~ers. These include the point
size for text, the vertical ~pacing, and the line and title
lengths. To set the point siie and vertical spacing for the
following paragraphs, for example, enter:

.nr PS 9

.nr VS 11

The paragraph macro .lp is defined as follows:

.de pp

.ps \\n(PS \" reset size

.vs \\n(VSp \" spacing

.ft R \" font

.sp 0.Sv \" half a line

.ti +3m

10-1 Zilog 10-1

TROFF Zilog TROFF

This sets the font to Roman and the point size and line
spacing to whatever values are stored in the number regis­
ters PS and vs.

Two backslashes are required to quote a quote. When troff
originally reads the macro definition, it uses one
backslash. To ensure that another is left in the definition
when the macro is used, put two backslashes in the defini­
tion. If only one backslash is used, point size and verti­
cal spacing are frozen at the time the macro is defined, not
when it is used.

An extra layer of backslashes is required for \n, *, \$
(Section 12), and \ itself; \s, \f, \h, \v do not need an
extra backslash because they are immediately converted by
troff to an internal code.

Arithmetic expressions can appear anywhere that a number is
expected. For example,

.nr PS \\n(PS-2

decrements PS by 2. Expressions can use the arithmetic
operators +, , *, /, % (mod), the relational operators>,
>=, <, <=, =, and I= (not equal), and parentheses.

The arithmetic examples given thus far have been straight­
forward. More complicated expressions have inherent compli­
cations. First, number registers hold only integers, and
troff arithmetic uses truncating integer division. Second,
in the absence of parentheses, evaluation is done left-to­
right, without any operator precedence (including relational
operators). Thus,

7*-4+3/13

becomes -1. Number registers and scale indicators such as
p, i, and m can occur anywhere in an expression. Although
integer division causes truncation, each number and its
scale indicator is converted to machine units before any
arithmetic is done. This means that li/2u evaluates to 0.5i
correctly.

The scale indicator u often has to appear when arithmetic is
being done in a context that implies horizontal or vertical
dimensions. For example,

appears to mean 3 1/2 inches. However, when translated into
machine units, it becomes zero because the default units for

10-2 Zilog 10-2

TROFF Zilog TROFF

horizontal parameters are ems. The correct entry for 3 1/2
inches is:

.11 7i/2u

Attach a scale indicator to every number, even constants,
and avoid problems such as this.

For arithmetic done within an .nr command, there is no
implication of horizontal or vertical dimension, so the
default units are "units," and 7i/2 and 7i/2u mean the same
thing. Thus

.nr 11 7i/2

.11 \\n(llu

is interpreted as expected, so long as the u is put on the
.11 command.

lQJ-3 Zilog lQJ-3

TROFF Zilog

SECTION 11
MACROS WITH ARGUMENTS

TROFF

Macros can change from one use to the next according to
parameters supplied as arguments. To do this, two things
are required. First, when the macro is defined, indicate
that some parts of it will be provided as arguments.
Second, when the macro is called, provide actual arguments
to be plugged into the definition.

As an illustration, define a macro .SM that prints its argu­
ment two points smaller than the surrounding text. The
definition of .SM is

.de SM
\s-2\\$1\s+2

Within a macro definition, the symbol \\$n refers to the nth
argument that the macro was called with. Thus \\$1 is the
string to be placed in a smaller point size when .SM is
called.

The following definition of .SM permits optional second and
third arguments that are printed in the normal size:

.de SM
\\$3\s-2\\$1\s+2\\$2

Arguments not provided when the macro is called are treated
as empty. It is convenient to reverse the order of argu­
ments because trailing punctuation is much more common than
leading punctuation.

The number register .$ contains the number of arguments that
a macro was called with.

Two backslashes are needed with the \\$n commands.
tects the other when the macro is being defined.
ple, a macro called .SH produces section headings
sections numbered automatically, and the title in
smaller size. The format is

.SH "Section title ••• "

One pro­
Fo r exam­
wi th the
bold in a

If the argument to a macro is to contain blanks, it must be
surrounded by double quotes, unlike a string, where only one

11-1 Zilog 11-1

TROFF Zilog

leading quote is permitted.

The following is the definition of the .SH macro:

.nr SH 0

.de SH

.sp 0.3i

.ft B

.nr SH \\n(SH+l

.ps \\n(PS-1
\\n(SH. \\$1
.ps \\n(PS
.sp 0.3i
.ft R

\" initialize section number

\" increment number
\" decrease PS
\" number. title
\" restore PS

TROFF

The section number is kept in number register SH, which is
incremented each time, just before it is used. (A number
register can have the same name as a macro without conflict,
but a string cannot.)

In this example, the command \\n(SH is used instead of
\n(SH, and \\n(PS is used instead of \n(PS. If \n(SH had
been used, the value of the register would be determined at
the time the macro is defined, not at the time it is used.
Similarly, by using \\n(PS, the point size is determined at
the time the macro is called.

As an example that does not involve numbers, use the .NP
macro from Section 9:

.tl 'left'center'right'

Make these into parameters by using

.tl '*(LT'*(CT'*(RT'

The title comes from three strings called LT, CT, and RT.
If these strings are empty, the title is a blank line. Nor­
mally, CT is set with

.ds CT - \% -

to give the page number between hyphens. The strings can be
defined according to the requirements of the application.

11-2 Zilog 11-2

TROFF Zilog

SECTION 12
CONDITIONALS

TROFF

To leave two extra inches of space before Section 1 but
nowhere else, use a conditional (.if) to test the .SH macro.
The following command causes space to be added only if the
section number is one •

• if \\n(SH=l .sp 2i \" first section only

The condition after the .if can be any arithmetic or logical
expression. If the condition is logically true, or arith­
metically greater than zero, the rest of the line is treated
as if it were text. If the condition is false, zero, or
negative, the rest of the line is skipped.

It is possible to do more than one command if a condition is
true. Suppose several operations are to be done before Sec­
tion 1. One possibility is to define a macro Sl and invoke
it before Section 1 •

• de Sl
processing for section 1 ---

.de SH

.if \\n(SH=l .Sl

~n alternate method is to use the extended form of .if, as
follows:

.if \\n(SH=l \{--- processing
for section 1 ----\}

The braces \{ and \} must occur in the positions shown.

A condition can be negated by preceding it with !; thus

.if !\\n(SH>l .Sl

produces the same output as the previous commands.

There are several other conditions that can be tested with
.if. For example, .if can determine whether the current
page is even or odd. The command

12-1 Zilog 12-1

TROFF Zilog

.if e .tl "even page title"

.if o .tl "odd page title"

TROFF

gives facing pages different titles when used inside an
appropriate new page macro.

Two other conditions are t and n, which indicate whether the
formatter is trGff or nroff •

• if t troff stuff
.if n nroff stuff

Finally, string comparisons can be made with .if. The com­
mand

.if 'stringl'string2' stuff

does "stuff" if stringl is the same as string2. The charac­
ter separating the strings can be anything that is not con­
tained in either string. The strings themselves can refer­
ence strings with * and arguments with \$.

12-2 Zilog 12-2

Zilog

SECTION 13
ENVIRONMENTS

There is a potential problem when page boundaries are
crossed. Parameters like size and font for a page title can
be different from those in effect in the text when the page
boundary occurs. Troff provides a very general method of
dealing with this and similar situations. Three "environ­
ments" allow parameters to be set independently. Thus, the
titling problem can be solved by processing the main text in
one environment and titles in a separate one with its own
parameters.

The command .ev n shifts to environment n; n must be 0, 1,
or 2. The command .ev with no argument returns to the pre­
vious environment. Environment names are maintained in a
stack, so calls for different environments can be nested and
unwound.

In the titling problem, process the main text in environment
0, where troff begins by default. Modify the new page macro
.NP to process titles in environment one, as follows:

.de

.ev

.lt

.ft

.ps

.ev

NP
1
6i
R
10
any

\" shift to new environment
\" set parameters here

other processing
\" return to previous environment

The following parameters are part of an environment:

13-1 Zilog 13-1

Zilog

.ps point size

.ss space size

.ft current font

.fi output line filling enabled

.nf output line filling disabled

.aa output line adjustment enabled

.na output line adjustment disabled

.ce output line centering

.vs vertical spacing

.ls line space

.11 line length

.in indentation

.ti temporary indent

.it input line trap

.ta tab settings

.tc tab character

.le leader character

.ul underline

.cu continuous underline

.cc control character

.c2 no break control character

.nh no hypenation mode

.hy hypenation mode

.he hypenation indicator char •
• lt length of title
.nm number mode on/off
.nn number mode no number
.me margin character

13-2 Zilog 13-2

TROFF Zilog

SECTION 14
DIVERSIONS

TROFF

When doing page layout, it is often necessary to store some
text for a period of time without actually printing it.
Footnotes are the most obvious example; the text of the
footnote usually appears in the input before its place on
the page is reachede

A troff mechanism called a diversion determines the size of
a footnote and allows room for it on the p~ge. Any part of
the output can be diverted into a macro instead of being
printed, and the macro can be put back into the input.

The command .di xy begins a diversion. All subsequent out­
put is collected into the macro xy until the command .di
with no arguments is encountered. This terminates the
diversion. The processed text is available at any time
thereafter, simply by giving trie command

.xy

The vertical size of the last complete diversion is con­
tained in the built-in number register dn.

The example that follows implements a "keep-release" opera­
tion so that text between the commands .KS and .KE is not
split across a page boundary (as for a figure or table).
When a .KS is encountered, the output is diverted and its
size is determined. When a .KE is encountered, the diverted
text is evaluated and is printed on the current page if it
fits, or at the top of the next page if it does not.

14-1 Zilog 14-1

TROFF Zilog TROFF

.de KS \" start keep

.br \" start fresh line

.ev 1 \" collect in new environment

.fi \" make it filled text

.di xx \" collect in xx

.de KE \" end keep

.br \" get last partial line

.di \" end diversion

.if \ \n (dn>=\ \n (.t .bp \" bp if doesn't fit

.nf \" bring it back in no-fill

.xx \" text

.ev \" return to normal environment

Number register nl is the current position on the output
page. Since output is being diverted, this remains at the
value it had when the diversion started. dn is the amount
of text in the diversion; .t is another built-in register to
show the distance to the next bottom margin of the page
(trap). If the diversion is large enough to go past the
trap, the .if is satisfied, and a .bp is issued. In either
case, the diverted output is then brought back with .xx. It
is essential to bring it back in no-fill mode so troff does
no further processing on it.

14-2 Zilog 14-2

UUCP INSTALLATION*

* This information is based on an article originally
written by D. A. Nowitz, Bell Laboratories.

10/14/83

UUCP

ii

Zilog

Zilog
10/14/83

UUCP

ii

UUCP Zilog UUCP

Preface

This document gives the system administrator/installer a
detailed description of uucp. The operation of each program
in the uucp system, the installation of the system, the
security aspects of the system, the files required for exe­
cution, and the administration of the system are discussed
in this document.

iii Zilog
10/14/83

iii

UUCP

iv

Zilog

Zilog
10/14/83

UUCP

iv

UUCP Zilog

Table of Contents

SECTION 1 INTRODUCTION
1.1.
1. 2.

General
Security

SECTION 2 THE UUCP PROGRAMS

2.1. Uucp ••••.•.•••••.
2.1.1.
2.1.2.
2.1.3.

Options ••.•••
Sources and Destinations
Types of Work

2. 2. Uux •••••••••••••••
2.2.1.
2.2.2.
2.2.3.
2. 2. 4.
2.2.5.

User Line
Required File Line •••••••••
Standard Input Line
Standard Output Line .••••
Command Line

2.3. Uucico
2. 3. 1. Scan for Work
2. 3. 2. Cal 1 Remote System ...••

Line Protocol Selection
Conversation Termination

2. 3. 3.
2.3.4.

2.4.
2. 5.
2. 6.

Uuxqt
Uulog
Uuclean

.....
....

SECTION 3 UUCP INSTALLATION

v

3.1. General
3.2. Files Required for Execution

3.2.1. L-cmds •••.•••••••
3.2.2. L-devices
3.2.3. L-dialcodes
3.2.4. SEQF u••••••

3.3. Login/System Names
3. 3. 1. US ER FILE
3.3.2. L.sys

.

. . .

Zilog
10/14/83

UUCP

1-1

1-1
1-2

2-1

2-1
2-1
2-2
2-3
2-4
2-5
2-5
2-6
2-6
2-6
2-7
2-8
2-8
2-9

2-10
2-11
2-11
2-11

3-1

3-1
3-1
3-1
3-2
3-2
3-3
3-3
3-3
3-5

v

UUCP

SECTION

4. 1.
4.2.
4.3.
4.4.
4. 5.
4.6.
4.7.
4.8.
4.9.
4.10.
4. 11.

vi

Zilog

4 UUCP ADMINISTRATION
General
Sequence Check File
Temporary Data Files
Log Entry Files
System Status Files
Lock Files
Error
Audit
Shell

Login
File

Log
File
Files

Entry
Modes

.........

.......

Zilog
10/14/83

.

........

.

UUCP

4-1

4-1
4-1
4-1
4-2
4-2
4-2
4-3
4-3
4-3
4-4
4-4

vi

UUCP Zilog

SECTION 1
INTRODUCTION

UUCP

1.1. General

Uucp is a group of programs that permit communication
between ZEUS systems using either dial-up or hardwired com­
munication lines. It is used for file transfers and remote
command execution.

Each system participating in the uucp network has a spool
directory (/usr/spool/uucp) that stores work to be done.
There are three types of files used for the execution of
work: data files, copy command files, and execution files.
Data files contain data to be transferred to remote systems.
Copy command files contain the directions for file transfers
between systems. Execution files contain the directions for
ZEUS command executions that involve the resources of one or
more systems.

The uucp system consists of four primary and several secon­
dary programs. The following are primary programs:

uucp(l)

uux{l)

uucico

uuxqt

Creates copy command files and gathers data files
in the spool directory for the transmission of
files.

Creates copy command files, executes files, and
gathers data files for the remote execution of
ZEUS commands.

Executes the copy command files for data transmis­
sion.

Executes ZEUS execution files.

The secondary programs are:

uulog(l) Updates the log file with new entries, reports the
status of uucp requests.

uuclean(l)
Removes old files from the spool directory.

uusub(M) Defines a uucp subnetwork, monitors traffic and
connection statistics.

1-1 Zilog
10/14/83

1-1

UUCP Zilog UUCP

uustat(l) Uucp job status inquiry and control.

uuname(l) Lists the names of known uucp systems.

uuto(l) Public file copy to specific user.

uupick(l) Accepts or reviews files sent to user by uuto.

1.2. Security

The uucp system, if left unrestricted, lets anyone execute
any command and copy in or out any file that is
readable/writable by the uucp login user. Necessary precau­
tions should be taken as required by the local implementa­
tion.

There are security features available other than the normal
file-mode protections that must be set up by the installer
of the uucp system.

$ The login for uucp does not spawn a standard shell;
instead, the uucico program is started. The work can
be done only through uucico.

1-2

A path check is performed on file names that are to be
sent or received. The USERFILE supplies the informa­
tion for these checks. The USERFILE can also be set up
to require call-back for certain login IDs. (See Sec­
tion 3.3.1 for file description.)

A conversation sequence count can be set up so that the
called system can verify the caller's identity (See
Section 4.2 for file description).

The uuxqt program comes with a file of commands (L­
cmds) that it allows remote systems to execute. A path
shell statement (PATH=/bin:/usr/bin;) is prepended to
the command line by uuxqt.

The L.sys file must be owned by uucp and have mode 0400
to protect the phone numbers and login information for
remote sites. Programs uucp, uucico, uux, and uuxqt
must also be owned by uucp and have the setuid bit set.

L-cmds specifies those commands that may be executed by
uux from remote systems. L-cmds should be owned by uucp
and have mode 0444 to protect against unauthorized
modification (see Section 3.2.1 of this manual entry
for file description).

Zilog
10/14/83

1-2

UUCP Zilog

SECTION 2
THE UUCP PROGRAMS

UUCP

2.1. Uucp

The uucp command is the primary interface with the system.
It sets up file copying and is similar to the ZEUS copy com­
mand, cp(l). Uucp is invoked by the command line

uucp [options] ••. source ••• destination

where source and destination contain the pref ix system name
specifying the system on which files reside or the system on
which the files will be copied.

2.1.1. Options: The following options are valid for the
uucp command:

-d When necessary, make directories for copying the file
(default).

-f Do not make intermediate directories for the file copy.

-c Use the specified .source for the transfer. Do not copy
source files to the spool directory (default).

-C Copy the source file to the spool directory.

-esystem
Send this job to system to execute. (Note that this
will only work when the system allows uuxqt to execute
a uucp command (See Section 3.2.1).

-gletter
Insert letter as the grade in the name of the copy com­
mand file. - Lower letters are higher priority. This
can be used to change the order of work for a specified
system (default value is 'n').

-m Send mail on completion of the work.

-nuser
~~Notify user on the remote system that a file has been

sent.

The following options are used primarily for debugging:

2-1 Zilog
10/15/83

2-1

UUCP Zilog UUCP

created. The file is transmitted from the indi­
cated source. The entry fields are as follows:

$ s

$ The full path name of the source file.

The full path name of the destination or
-user/filename.

The user's login name.

A. minus sign (-) followed by an option list.

The name of the data file in the spool directory.

The file mode bits of the source file in octal print
format (mode 1666) .

The user on the remote system to be notified if -n
option was used.

Types 4 and 5
Uucp generates a uucp command and sends it to the
remote machine; the remote uucico executes the
uucp command.

Type 6 This occurs when the -e option is used. The uux
facility is used to create and send the request.

2.2. Uux

The uux command sets up the execution of a command if the
execution system and some of the files are remote~ The syn­
tax of the uux command is

uux [- J [option J ... command-string

where command-string is composed of one or more arguments.
All special shell characters such as "'<"', "'>"', 'I', and ""''
must be quoted, either by quoting the entire command string
or by quoting the character as a separate argument. Within
command-stri~, the command and file names can contain a
system-name! prefix. All arguments must contain an exclama­
tion point (!) if they are to be treated as files and copied
to the execution system. The minus sign (-) indicates that
the standard input for command-string must come from the
standard input of the uux command. The options, which are
for debugging, are the following:

2-4 Zilog
10/15/83

2-4

UUCP Zilog UUCP

-r Do not start uucico or uuxqt after queuing the
job.

-xnum Num is the level of debugging output desired.

The command

pr abc I uux - usg!lpr -c

sets up the output of pr abc as standard input to a
printer (lpr(l)) command to be executed on system usg.
the use of the -c option to lpr.

line
Note

Uux generates an execute file containing the names of the
files required for execution, the user's login name, the
destination of the standard output, and the command to be
executed. The execute file is placed in the spool directory
for local execution or is sent to the remote system using a
generated send command (Type 3 in Section 2.1.3).

Uux generates receive command-files (Type 2) for files that
are not on the execution system. These command files are
placed on the execution machine and executed by the uucico
program if the local system has permission to place files in
the remote spool directory.

The execute file is processed by the uuxqt program on the
execution system. It is composed of several lines, each
containing an identification character and one or more argu­
ments. There is no set order for the lines and not all must
be present. The following sections describe each line.

2.2.1. User Line: The user line is as follows

U user system

where user and system are the requester's login name and
system.

2.2.2. Required File Line: The required file line is

F filename realname

where filename is the generat~d name of an execut'ion system
file and realname is the last part of the file name, which
contains no path information. Zero or more of these lines
are present in the execute file. The uuxqt program checks
for the existence of all required files before the command
is executed.

2-5 Zilog
10/15/83

2-5

UUCP Zilog UUCP

2.2.3. Standard Input Line: The standard input line is

I filename

The standard input is either specified by a < in the
command-string or obtained from the standard input of the
uux command if the - option is used. If the standard input
is not specified, /dev/null is used.

2.2.4. Standard Output Line: The standard output line is

o filename system-~

The standard output is specified by a > within the command
string. If the standard output is not specified, /dev/null
is used. The use of >> is not implemented.

2.2.5. Command Line: The command line is

C command arguments

The arguments are specified in the command string. The
standard input and standard output do not appear on this
line. All required files are moved to the execution direc­
tory (a subdirectory of the spool directory) and the ZEUS
command is executed using sh(l) (/bin/sh). An execution
system- checks the command against its L-cmds file to see if
it is allowable. In addition, a shell path statement
(PATH=/bin:/usr/bin;) is prepended, to the command line as
specified in the uuxqt program.

To determine what commands are allowed by a remote system,
use uucp to copy the L-cmds file from the remote system's
program directory to the local system. This copy will fail
if the remote system's USERFILE restricts access to its pro­
gram directory.

After execution, the standard output is copied or set up to
be sent to the designated place.

2.3. Oucico

The copy in, copy out (uucico) program performs the follow­
ing communications functions between two systems:

$ Scans the spool directory for work.

2-6 Zilog
10/15/83

2-6

UUCP Zilog UUCP

$ Places a call to a remote system.

$ Negotiates a line protocol to be used.

$ Executes all requests from both syste~s.

$ Logs work requests and work completions.

Uucico can be started by a system daemon, by one of the
uucp, uux, uuxqt, or uucico programs, directly by the user,
or by a remote system. The uucico program must be specified
as the shell field in the /etc/passwd file for the uucp
logins.

When started by a remote system, the local program is in
"'SLAVE" mode. When started: by any other method, the local
program is in "MASTER" mode, ~nd a connection is made to a
remote system.

The MASTER mode operates in one of two ways. If a system
name is specified, that system is called and work is done
only for that system. If a system name is not specified,
the program scans the spool directory for systems to call.

The uucico program is generally started by another program.
There are several options used for execution:

-rl

-s~

2-7

Start the program in MASTER mode. This is used
when uucico is started by a program or cron(M)
shel 1.

Do work only for system ~· If -s is specified,
a call to the specified system is made even if
there is no work for system ~ in the spool
directory. This program is useful for polling
systems that do not have the hardware to initiate
a connection.

Zilog
10/15/83

2-7

UUCP Zilog

The following options are used primarily for debugging:

-ddir

-xnum

Use directory dir for the spool directory.

Num is the desired level of debugging output.

UUCP

The following subsections describe the major steps within
the uucico program.

2.3.1~ Scan for Work: The names of the work-related files
in the spool directory have the format

type . system-name grade number

where type is an uppercase "c' (copy command file), 'o"
(data file), or "x' (execute file); system-name is the
remote system, grade is a character, and number is a padded
four-digit sequence number obtained from /usr/lib/uucp/SEQF.
For example, the file

C.res45nB931

is a copy command file for a file transfer.between the local
machine and the res45 machine.

The scan for work is done by looking through the spool
directory for copy command files (files with prefix C.). A
list is created for all systems to be called; uucico then
calls each system and processes all copy command files.

2.3.2. Call Remote System: The call is made using informa­
tion from several files that reside in the uucp program
directory (/usr/lib/uucp). At the beginning of the call
process, a lock is set on the system being called to prevent
multiple conversations between the two systems in
/usr/spool/uucp (see section 4.6).

The system name is found in the L.sys file. The information
contained for each system is the system name, the time to
call the system (days-of-week and times-of-day), the device
or device type to be used for the call, the line speed, the
phone number if the device or device type is an automatic
call unit (ACU) or the device name if the device or device
type is not ACU, and the login information.

The time field is checked against the present time to see if
the call should be made. The time field can alternately
contain the string "passive" to denote that the remote sys­
tem must initiate the conversation and cannot be called. In

2-8 Zilog
10/15/83

2-8

UUCP Zilog UUCP

SECTION 2
THE UUCP PROGRAMS

2.1. Uucp

The uucp command is the primary interface with the system.
It sets up file copying and is similar to the ZEUS copy com­
mand, cp(l). Uucp is invoked by the command line

uucp [options] •.• source ••• destination

where source and destination contain the pref ix system name
specifying the system on which files reside or the system on
which the files will be copied.

2.1.1. Options: The following options are valid for the
uucp command:

-d When necessary, make directories for copying the file
(default).

-f Do not make intermediate directories for the file copy.

-c Use the specified .source for the transfer. Do not copy
source files to the spool directory (default).

-C Copy the source file to the spool directory.

-e.system
Send this job to system to execute. (Note that this
will only work when the system allows uuxqt to execute
a uucp command (See Section 3.2.1).

-gletter
Insert letter as the grade in the name of the copy com­
mand file. · Lower letters are higher priority. This
can be used to change the order of work for a specified
system (default value is 'n').

-m Send mail on completion of the work.

-nuser
~~Notify user on the remote system that a file has been

sent.

The following options are used primarily for debugging:

2-1 Zilog
10/15/83

2-1

UUCP

-r

Zilog UUCP

Queue the job, but do not start the uucico pro­
gram.

-sdir Use directory dir for the spool directory.

-xnum Num is the desired level of debugging output. Num
ranges from one through nine; higher numbers give
more information.

2.1.2. Sources and Destinations: If the destination is a
directory name, the file name is taken from the last part of
the source name. If the directory exists, it must be writ­
able by everybody. If the destination is a directory and
the -g option is used, then the directory name must be fol­
lowed by a '/'. The source name can contain special shell
characters such as '?', '*', '[', and ']'. If a source
argument has a system-name! pref ix indicating a remote sys­
tem, the file name expansion is performed on the remote sys­
tem.

The command

uucp *.c usg!/usr/dan

copies all files with names ending in .c to the /usr/dan
directory on system usg. The exclamation point must be
escaped when using the cshell, e.g.:

usg\!/usr/dan

The source and destination names can also contain a user
prefix to refer to the login directory on the specified sys­
tem. Filenames beginning with ,_, refer to the public
directory (/usr/spool/uucppublic) on the remote system. The
current directory is prepended to the file name for names
with partial path names. File names with' .• /' are not per­
mitted.

The command

uucp usg!-dan/*.h -aan

copies to dan's local login directory files in dan's login
directory on system usg whose names end with '.h'.

2-2 Zilog
10/15/83

2-2

UUCP Zli.log UUCP

2.1.3. Types of Work: For each source file, the uucp pro­
gram checks the source and destination file names and the
system-part of each to classify the work into one of five
types:

1. Copy source to destination on local system.

2. Receive files from other systems.

3. Send files to remote systems.

4. Send files from a remote system to another remote sys­
tem.

5. Receive files from remote systems when the source con­
tains special shell characters, such as '?' '*', '[',
and '] ' •

After the work has been set up in the spool directory, the
uucico program contacts the Qther system to execute the work
unless the -r option is specified or the system is desig­
nated "passive" (see Section 3.3.2).

Type 1

Type 2

$ R

Copy source to destination on the local system.
The -d and the -m options are not valid in type-1
operations.

A one-line copy command file is created for each
file requested arid is placed in the spool direc­
tory with the following fields, each separated by
a blank. All copy command files and execution
files use a blank as the field separator.

$ The full path name of the source or a -user/pathname;
the '-user' part is expanded on the remote system.

The full path name of the destination file; if the
'-user' notation is used, it is immediately expanded to
the user's login directoiry.

$ The user's login name.

$ A minus sign (-) followe~ by an option list; only the
-m and -d options appear: in this list.

Type 3

2-3

For each source file, a copy command file is
created. The soutce file is copied into a data
file in the spool d~rectory. A -c option on the
uucp command prevents the data file from being

Zil.og
10/il.5/83

2-3

UUCP Zilog UUCP

created. The file is transmitted from the indi­
cated source. The entry fields are as follows:

$ s

$ The full path name of the source file.

The full path name of the destination or
-user/filename.

The user's login name.

A minus sign (-) followed by an option list.

The name of the data file in the spool directory.

The file mode bits of the source file in octal print
format (mode 1666).

The user on the remote system to be notified if -n
option was used.

Types 4 and 5
Uucp generates a uucp command and sends it to the
remote machine; the remote uucico executes the
uucp command.

Type 6 This occurs when the -e option is used. The uux
facility is used to create and send the request.

2.2. Uux

The uux command sets up the execution of a command if the
execution system and some of the files are remote. The syn­
tax of the uux command is

uux [-] [option] • • • command-string

where comman~-string is composed of one or more arguments.
All special shell characters such as"<','>', 'I', and""''
must be quoted, either by quoting the entire command string
or by quoting the character as a separate argument. Within
command-string, the command and file names can contain a
system-name! prefix. All arguments must contain an exclama­
tion point (!) if they are to be treated as files and copied
to the execution system. The minus sign (-) indicates that
the standard input for command-string must come from the
standard input of the uux command. The options, which are
for debugging, are the following:

2-4 Zilog
10/15/83

2-4

UUCP Zilog UUCP

-r Do not start uucico or uuxqt after queuing the
job.

-xnum Num is the level of debugging output desired.

The command

pr abc I uux - usg!lpr -c

sets up the output of pr abc as standard input to a
printer (lpr(l)) command to be executed on system usg.
the use of the -c option to lpr.

line
Note

Uux generates an execute file containing the names of the
files required for execution, the user's login name, the
destination of the standard output, and the command to be
executed. The execute file is placed in the spool directory
for local execution or is sent to the remote system using a
generated send command (Type 3 in Section 2.1.3).

Uux generates receive command-files (Type 2) for files that
are not on the execution system. These command files are
placed on the execution machine and executed by the uucico
program if the local system has permission to place files in
the remote spool directory.

The execute file is processed by the uuxqt program on the
execution system. It is composed of several lines, each
containing an identification character and one or more argu­
ments. There is no set order for the lines and not all must
be present. The following sections describe each line.

2.2.1. User Line: The user line is as follows

U user system

where user and system are the requester's login name and
system.

2.2.2. Required File Line: The required file line is

F filename realname

where filename is the generated name of an execuiion system
file and realname is the last part of the file name, which
contains no path information. Zero or more of these lines
are present in the execute file. The uuxqt program checks
for the existence of all required files before the command
is executed.

2-5 Zilog
10/15/83

2-5

UUCP Zilog UUCP

2.2.3. Standard Input Line: The standard input line is

I filename

The standard input is either specified by a < in the
command-string or obtained from the standard input of the
uux command if the - option is used. If the standard input
is not specified, /dev/null is used.

2.2.4. Standard Output Line: The standard output line is

O .filename system-name

The standard output is specified by a > within the command
string. If the standard output is not specified, /dev/null
is used. The use of >> is not implemented.

2.2.5. Command Line: The command line is

C command arguments

The arguments are specified in the command string. The
standard input and standard output do not appear on this
line. All required files are moved to the execution direc­
tory (a subdirectory of the spool directory) and the ZEUS
command is executed using sh(l) (/bin/sh). An execution
system checks the command against its L-cmds file to see if
it is allowable. In addition, a shell path statement
(PATH=/bin:/usr/bin;) is prepended, to the command line as
specified in the uuxqt program.

To determine what commands are allowed by a remote system,
use uucp to copy the L-cmds file from the remote system's
program directory to the local system. This copy will fail
if the remote system's USERFILE restricts access to its pro­
gram directory.

After execution, the standard output is copied or set up to
be sent to the designated place.

2. 3. Oucico

The copy in, copy out (uucico) program performs the follow­
ing communications functions between two systems:

$ Scans the spool directory for work.

2-6 Zilog
10/15/83

2-6

UUCP Zilog UUCP

$ Places a call to a remote system.

$ Negotiates a line protocol to be used.

$ Executes all requests from both syste~s.

$ Logs work requests and work completions.

Uucico can be started by a system daemon, by
uucp, uux, uuxqt, or uucico programs, directly
or by a remote system. The uucico program must
as the shell field in the /etc/passwd file
logins.

one of the
by the user,
be specified
for the uucp

When started by a remote system, the local program is in
"SLAVE'' mode. When started by any other method, the local
program is in "MASTER" mode, and a connection is made to a
remote system.

The MASTER mode operates in one of two ways. If a system
name is specified, that system is called and work is done
only for that system. If a system name is not specified,
the program scans the spool directory for systems to call.

The uucico program is generally started by another program.
There are several options used for execution:

-rl

-s~

2-7

Start the program in MASTER mode. This is used
when uucico is started by a program or cron(M)
shell.

Do work only for system ~· If -s is specified,
a call to the specified system is made even if
there is no work for system ~ in the spool
directory. This program is useful for polling
systems that do not have the hardware to initiate
a connection.

Zilog
10/15/83

2-7

UUCP Zilog

The following options are used primarily for debugging:

-ddir

-xnum

Use directory dir for the spool directory.

Num is the desired level of debugging output.

UUCP

The following subsections describe the major steps within
the uucico program.

2.3.1. Scan for Work: The names of the work-related files
in the spool directory have the format

type . system-name grade number

where type is an uppercase 'c' (copy command file), 'o'
(data file), or 'x' (execute file); system-name is the
remote system, grade is a character, and number is a padded
four-digit sequence number obtained from /usr/lib/uucp/SEQF.
For example, the file

C.res45n8931

is a copy command file for a file transfer.between the local
machine and the res45 machine.

The scan for work is done by looking through the spool
directory for copy command files (files with prefix C.). A
list is created for all systems to be called; uucico then
calls each system and processes all copy command files.

2.3.2. Call Remote System: The call is made using informa­
tion from several files that reside in the uucp program
directory {/usr/lib/uucp). At the beginning of the call
process, a lock is set on the system being called to prevent
multiple conversations between the two systems in
/usr/spool/uucp {see section 4.6).

The system name is found in the L.sys file. The information
contained for each system is the system name, the time to
call the system (days-of-week and times-of-day), the device
or device type to be used for the call, the line speed, the
phone number if the device or device type is an automatic
call unit (ACU) or the device name if the device or device
type is not ACU, and the login information.

The time field is checked against the present time to see if
the call should be made. The time field can alternately
contain the string "passive" to denote that the remote sys­
tem must initiate the conversation and cannot be called. In

2-8 Zilog
10/15/83

2-8

UUCP Zilog UUCP

this case, the remaining fields are ignored.

The phone number field can contain abbreviations (for exam­
ple, 'mh', 'py', or 'boston'), that get translated into dial
sequences using the L-dialcodes file. The same phone number
can then be stored at every site, despite local variations
in telephone services and dialing conventions.

The L-devices file is scanned using the device and line
speed from the L.sys file to find an available device for
the call. The program tries all devices that satisfy the
device types and line speed unti1 the call is made, or until
no more devices can be tried. If a device is successfully
opened, a lock file is created so that another copy of
uucico does not attempt to use it. If the call is complete,
the login information from the L.sys file is used to log in
to the remote system. A command is then sent to the remote
system to start the uucico program.

The conversation between the two uucico programs begins with
a handshake started by the called (SLAVE) system. The SLAVE
sends a message to let the MASTER know it is ready to
receive the system identification and conversation sequence
number. The response from the MASTER is verified by the
SLAVE and, if acceptable, protocol selection begins. The
SLAVE can also reply with a 'call-back required' message and
the current conversation is terminated. -

2.3.3. Line Protocol Selection: The remote system sends
the message

Pproto-list

where proto-list is a string of characters, each represent­
ing a line protocol.

The calling program
corresponding to an
use-protocol message.

Uc ode

checks proto-list for a letter
available line protocol and returns a
The use-protocol message is

where code is either a one-character protocol letter or ~,
which means there is no common protocol.

2-9 Zilog
10/15/83

2-9

UUCP Zilog UUCP

The initial role (MASTER or SLAVE) for the work processing
is the mode in which each program starts. The MASTER is
specified by the -rl uucico option.

There are five messages used during the work processing,
each specified by the first character of the message. They
are

's' Send a file

'R' Receive a file

'c' Copy complete

'x' Execute a uucp command

'H' Hangup

The MASTER sends 'R', 's', and 'x' messages until all work
from the spool directory is complete. It then sends an 'H'
message. The SLAVE replies with 'sy', 'SN', 'RY', 'RN',
'HY', 'HN', 'xy', or 'XN', corresponding to "yes" or "no"
for each request.

The basis for the send and receive replies is the access
permission for the requested file/directory obtained by
using the userfile and read/write permissions of the
file/directory. A copy-complete message is sent by the
receiver of the file after each file is copied into the
spool directory of the receiving system. The message 'cy'
is sent if the file has been successfully copied from the
temporary spool file to the actual destination. Otherwise,
a 'CN' message is sent. In the case of 'CN', the transferred
file is in the spool directory with a name beginning with
'TM'. The requests and results are logged on both systems.

The SLAVE program determines the hangup response by a work
scan of the spool directory. If work for the remote system
exists in the SLAVE's spool directory, an 'HN' message is
sent, and the programs switch roles. If no work exists, an
'HY' response is sent.

2.3.4. Conversation Termination: When an 'HY' message is
received by the MASTER, it is echoed back to the SLAVE and
the protocols are turned off. Each program sends a final
'oo' message to the other. The original SLAVE program
cleans up and terminates. The MASTER calls other systems
and processes work, or terminates if a -s option is speci­
fied.

2-10 Zilog
10/15/83

2-10

UUCP Zilog UUCP

2. 4. Uuxqt

The uucp command execution (uuxqt) program executes execute
files generated by uux. The uuxqt program is started by
either the uucico or uux programs. The program scans the
spool directory for execute files {prefix 'x'.). Each exe­
cute file is checked to see if all the required files are
available. If so, the command line or send line is exe­
cuted.

Uuxqt is initiated by executing the shell with the -c option
after the appropriate standard input and standard output
have been opened. If the standard output is specified, the
program creates a send command or copies the output file as
designated.

2.5. Uulog

The uucp programs
gram invocation.
append these files
logging minimizes
gram execution.

create individual log files for each pro­
Periodically, uulog can be executed to

to the system log file. This method of
file locking of the log file during pro-

The uucp log inquiry (uulog) program merges the
log files and outputs specified log entries.
request is specified by the following options:

individual
The output

-s~ Print entries where ~ is the remote system name.

-uuser Print entries for user user.

The intersection of lines satisfying the two options is out­
put. A null ~ or user means all system names or users.

2.6. Uuclean

The uucp spool directory cleanup (uuclean) program is typi­
cally started by the cron process. It removes files that
are more than three days old from the spool directory.
These are usually files for work that could not be com­
pleted.

The uuclean program should be owned by uucp with the setuid
bit set (mode 04700).

2-11 Zilog
10/15/83

2-11

UUCP Zilog UUCP

The options available for uuclean are:

-ddir

-nhours

-pp re

-xnum

-m

2-12

The directory to be scanned is dir (default is
/usr/spool/uucp) •

Change the aging time from 72 hours to hours
hours.

Examine files with prefix ~ for deletion. Up to
ten file prefixes can be specified.

Num is the desired level of debugging output.

Send mail to the owner of each file being removed.

Zilog
10/15/83

2-12

UUCP Zilog

SECTION 3
UUCP INSTALLATION

UUCP

3.1. General

Installing uucp under ZEUS requires little effort. The uucp
files and directories are described here to facilitate
tailoring uucp to a specific environment.

The following three directories are required for execution
(default values appear within parentheses):

program

spool

xgtdir

(/usr/lib/uucp) This directory contains the exe­
cutable system programs and the system files.

(/usr/spool/uucp) This spool directory is used
during uucp execution.

(/usr/spool/uucp/.XQTDIR) This directory is used
during execution of execute files.

The names program, spool, and xgtdir are used in this sec­
tion as a shorthand form to represent their corresponding
directory path names.

The modes of spoo! and xgtdir should be mode 0777; that is,
readable, writable, and executable by everyone. The mode of
~ogram should be 0775.

3.2. Files Required for Execution

The five files required for execution must reside in the
program directory. The field separator for all files is a
space unless otherwise specified.

3. 2.1. L-cmds: T'his file contains the list of commands
that the local system will allow a remote system to use via
uuxqt. If the string 'Any' appears first in the file, then
no restrictions are imposed. This file should be owned by
uucp with mode 0444 to prevent unauthorized changes.

3.2.2. L-devices: This file contains call-unit device and
hardwired connection information. The special device files
are assumed to be in the /dev directory. The format for
each entry is

3-1 Zilog
10/15/83

3-1

UUCP Zilog UUCP

line call-unit speed

where

line

is a device type such as ACU or DIR. ACU
refers to a connection that needs to be
dialed. DIR implies a direct connection, but
can also be used for automatic dialing units.

is the device for the line (e.g., tty3).

call-unit is the automatic call unit associated with ---- line (e.g., cua0). Hardwired lines have the

speed

The line

number "0" in this field.

is the line speed.

ACU cul0 cua0 300

is set up for a system that has device cul0 connected to a
call unit cua0 for use at 300 baud.

The line

DIR tty3 0 1200

is set up for a system that has a hardwired connection to
terminal line 3 for use at 1200 baud or one that has an
autodialer for use at 1200 baud connected to terminal line
3.

3.2.3. L-dialcodes: This file contains entries with loca­
tion abbreviations used in the L.sys file (for example,
'py', 'mh', or 'boston'). The entry format is

where abb is the abbreviation and dial-~ is the dial
sequence to call that location.

The line

PY 165-

is set up in L.sys so that entry 'py7777' in L-dialcodes
sends 165-7777 to the dial-unit.

3-2 Zilog
10/15/83

3-2

UUCP Zilog UUCP

3.2.4. SEQF: This file contains the four digit sequence
number used to create unique names for uucp work files. This
file should have mode 666 and reside in the program direc­
tory. It can be initialized with the command

echo -n gggg > SEQF

3.3. Login/System Names

The login name used by a remote computer to call a local
computer must not be the same as the login name of a local
user. However, several remote computers can employ the same
login name.

Each computer has a unique system name that is transmitted
at the start of each call. This name identifies the calling
machine to the called machine. The system name transmitted
is the name specified during sysgen in response to the "net­
work node" prompt. This name is revealed with either the
'uuname -1' or 'uname -n' commands. See The ZEUS Administra­
tor Manual, -section 5.11 and ZEUS Reference Manual entries
uuname(l) and uname(l).

3.3.1. USERFILE: This file contains user accessibility
information. It specifies four types of constraints:

1. Which files can be accessed by a normal user of the
local machine.

2. Which files can be accessed from a remote computer.

3. Which login name is used by a particular remote com­
puter.

4. Whether a remote computer should be called back to con­
firm its identity.

Each line in the file has the following format

user,~ [c] pathname [pathname]

where user is the login name of a user on a remote computer,
~ is--"the system name for a remote computer, c is the
optional call-back flag, and pathname is a path name prefix
that is acceptable for user. Pathname must occur once; it
can occur more than once (This is indicated by the notation
'pathname [pathname] •.• ').

3-3 Zilog
10/15/83

3-3

UUCP Zilog UUCP

The constraints are implemented as follows:

1. When the program is obeying a command stored on the
local machine (MASTER mode) the path names allowed are
those given for the first line in the user file that
has a login name matching the login name of the user
who entered the command. If no such line is found, the
first line with a null login name is used.

2. When the program is responding to a command from a
remote machine (SLAVE mode) the path names allowed are
those given for the first line in the file that has a
system name matching the system name of the remote
machine. If no such line is found, the first one with
a null system name is used.

3. When a remote computer logs in, the login name that it
uses must appear in the user file. There can be
several lines with the same login name, but one of them
must either have the name of the remote system or must
contain a null system name.

4. If the line matched contains a c, the remote machine is
called back before any transactions take place.

The line

~'~ /usr/xyz

allows machine m to log in with name u and request the
transfer of files whose names start with-/usr/xyz.

The line

dan, /usr/dan

allows the ordinary user, dan, to issue commands for files
whose names start with /usr/dan.

The lines

u,m /usr/xyz /usr/spool
~,-/usr/spool

allow any remote machine to log in with name u,. If its
system name is not m, it can only ask to transfer files
whose names start with 7usr/spool.

The lines

3-4 Zilog
10/15/83

3-4

UUCP

zeus, I
, /usr

Zilog UUCP

allow any user to transfer files beginning with /usr. The
user with login zeus can transfer any file.

3.3.2. L.sys: Each entry in this file represents one sys­
tem that can be called by the local uucp programs. The
fields are described below.

SYSTEM NAME

The name of the remote system.

TIME

This field indicates the days-of-week and times-of-day when
the system is called (for example, MoTuTh0800-1730). Alter­
natively, the field can contain the string "passive", indi­
cating that only the remote system can initiate a conversa­
tion. If the field contains "passive", the remaining fields
are ignored.

The day portion can be a list containing

'Su' 'Mo' 'Tu' 'We' 'Th' 'Fr' 'Sa'

or it can be 'wk' for any week-day or 'Any' for any day.

The time must be a range of times (for example, 0800-1230).
If no time portion is specified, any time of day can be used
for the call. Note that a t1me range that spans 0000 is
permitted. For example, 2100~0800 allows calls between 11:00
p.m. and 8:00 a.m.

An optional subfield is available to indicate the minimum
time in minutes before a retry following a failed attempt.
The subfield separator is a c,omma. (e. g: 'Any, 5' means cal 1
any time but wait at least 5 minutes after a failure.)

DEVICE

This is either ACU or the hardwired device to be used for
the call. For hardwired devices, the last part of the spe­
cial file name is used (for example, tty0).

3-5 Zitl.og
10/lS/83

3-5

UUCP Zilog UUCP

SPEED

This is the line speed for the call (for example, 300).

PHONE The phone number is made up of an optional alphabetic
abbreviation and a numeric part. The abbreviation is one
that appears in the L-dialcodes file (for example, 'mh5900',
'boston995-9980').

For hardwired devices (ie: direct-connect systems), this
field contains the same string as the device field.

LOGIN

The login information is given as a series of fields and
subfields in the format

expect send [expect send]

where expect is the string expected to be read and send is
the string to be sent when the expect string is received.
Note that the null string, "", is a valid expect st:ring.

The expect field is made up of subfields of the form

expect[-send-expect] ..•

where the send is sent if the prior expect is not success­
fully reacr-and the expe~t following the send is the next
expected string.

There are two special names available to be sent during the
login sequence. The string 'EQT' sends 2 EOT characters and
the string 'BREAK' tries to send a BREAK character. The
BREAK character is simulated using line speed changes and
null characters and may not work on all devices and systems.

Typical entries in the L.sys file are

sysA Any ACU 300 rnh7654 login: uucp ssword: word
sysB Wk,10 tty2 1200 tty2 login: uucp ssword: word
sysC Wk 2300-0800 tty3 1200 tty3 login: uucp sword: word
sysD passive

The expect algorithm looks at the last part of the string as
illustrated in the password field.

Some example expect-send strings for autodialers are:

"" "'M"'M $ K DIAL: rnh7654 LINE! login: uucp sword: word

3-6 Zilog
10/15/83

3-6

UUCP Zilog UUCP

"" ATTD mh7654 CONNECT login: uucp ssword: word

The first example is for a Ventel MD212+ and the second is
for a Hayes Smartmodern 1200.

Note that the autodialer must be connected to one of the
serial ports with a null modem cable. The serial I/O port
must be disabled in the /etc/inittab file (see inittab(5));
it must be configured as a modem (see ttyconfig(M)).

3-7 Zilog
10/15/83

3-7

UUCP Zilog UUCP

SECTION 4
UUCP ADMINISTRATION

4. 1. General

This section describes some events and files that must be
administered for the uucp system. Some administration can
be accomplished by shell files initiated by crontab entries.
Others require manual intervention. Some sample shell files
are given toward the end of this section.

4.2. Sequence Check File

The Sequence Check File (SQFILE) in the program directory
contains an entry for each remote system with which conver­
sation sequence checks are to be performed. The initial
entry is the system name of the remote system. The first
conversation adds two items to the line: the conversation
count, and the date/time of the most recent conversation.
These items are updated w1th each conversation. If a
sequence check fails, the entry must be adjusted and the
corresponding system status file must be removed (see Sec­
tion 4. 5) .

4.3. Temporary Data Files

Temporary Data Files (TM) are created in the spool directory
while files are being copied from a remote machine. Their
names have the form

TM.~.ddd

where pid is a process-id and ddd is a sequential three­
digit number starting at zero for each invocation of uucico
and incremented for each file received.

After the entire remote file is received, the TM file is
moved or copied to the requested destination. If processing
is abnormally terminated or if the move or copy fails, the
file remains in the spool directory. These unused files
must be removed periodically with the uuclean program. The
command

uuclean -pTM

removes all TM files more than three days old.

4-1 Zilog
10/14/83

4-1

UUCP Zilog UUCP

4.4. Log Entry Files

During execution of programs, individual Log Entry Files
(LOG files) are created in the spool directory with informa­
tion about queued requests, calls to remote systems, execu­
tion of uux commands, and file copy results. These files
must be combined into the LOGFILE by using the uulog pro­
gram. The command

uulog

puts the new LOG files at the end of the existing LOGFILE.
Options are available to print some or all the log entries
after the files are merged. The LOGFILE must be removed
periodically since it is copied each time new log entries
are put into the file.

The log files are created with mode 0222. If the program
that creates the file terminates normally, it changes the
mode to 0666. Aborted runs can leave the files with mode
0222 and the uulog program does not read or remove them. To
remove them, use either rm(l) or uuclean, or change the mode
to 0666 and let uulog merge them with the logfile.

4.5. System Status Files

System Status Files (STST) are created in the spool direc­
tory by the uucico program. They contain information of
failures such as login, dialup, or sequence check. They
contain a TALKING status when two machines are conversing.
The form of the file name is

STST.~~

where ~ is the remote system name.

For ordinary failures, such as dialup and login, the file
prevents repeated tries for about one hour. For sequence
check failures, the file must be removed before any future
attempts to converse with that remote system.

If the file is left due to an aborted run, it contains a
talking status. In this case, the file must be removed
before a conversation is attempted.

4.6. Lock Files

Lock files (LCK) are created in the spool directory for each
device in use; e.g., the automatic calling unit and each

4-2 Zilog
10/14/83

4-2

UUCP Zilog UUCP

system conversing. This prevents duplicate conversations
and multiple attempts to use the same devices. The form of
the lock file name is

LCK •• str

where str is either a device or system name. The files can
be left in the spool directory if runs abort. They are
ignored (reused) after 24 hours. When runs abort and calls
are desired before the time limit, the lock files must be
removed.

4.7. Error Log

The ERRLOG file is created in the spool
uucp system e~rors. Entries in this
Wrong modes on files or directores,
read/write system call failures on the
may cause entries in ERRLOG.

4.8. Audit File

directory to record
file should be rare.
missing files, and
transmission channel

The AUDIT file is created in the remote system's spool
directory whenever uucico is run with the -x option. This
file contains the debug information from the remote uucico
process.

4.9. Shell Files

The uucp program spools work and attempts to start the
uucico program, but the starting of uucico sometimes fails
due to communication lines being busy or the presence of
lock files or status files. Therefore, the uucico program
must occasionally be started. The command to start uucico
can be put in a shell file with a command to merge log files
and started by a crontab entry on an hourly basis. The file
contains commands such as

program /uulog
program /uucico -rl

The -rl option is required to start the uucico program in
MASTER mode.

Another shell file can be set up on a regular basis to
remove TM ST, and LCK files, and C., X., or D. files for
work that cannot be accomplished. Use a shell file contain­
ing commands such as

4-3 Zilog
10/14/83

4-3

UUCP

program /uuclean
program /uuclean

Zilog UUCP

-pTM -pc. -po. -px.
-pST -pLCK -nl2

The -nl2 option causes the ST and LCK files older than 12
hours to be deleted. If there is no -n option, a three-day
limit is used.

A daily or weekly shell must also be created to remove or
save old logfiles. Use a shell such as

cp spool /LOGFILE
rm spool /LOGFILE

4.19. Login Entry

spool /o.LOGFILE

One or more logins must be set up for uucp. Each of the
/etc/passwd entries must have program/uucico as the shell to
be executed. The login directory is not used, but if the
system has a special directory for use as a sending or
receiving file, it must be the login entry. The various
logins are used in conjunction with the user file to res­
trict file access. Specifying the shell argument limits the
login to the use of uucp (uucico) only.

4.11. File Modes

The owner and file modes of various programs and files are
to be set as follows.

The programs uucp, uux, uucico, and uuxqt must be owned by
uucp with the setuid bit set and execute only permissions
(mode 04111). This prevents outsiders from modifying the
programs to get at a standard shell from the uucp login.

The L.sys, SQFILE, and the USERFILE that are in the program
directory must be owned by uucp and set with mode 0400.

The L-cmds file in the program directory must be owned by
uucp and set with mode 0444.

4-4 Zilog
10/14/83

4-4

Introduction to Display Editing with vi*

* This information is based on an article written by
William Joy and revised by Mark Horton.

VI Zilog VI

ii Zilog ii

VI Zilog

Table of Contents

SECTION 1 INTRODUCTION
General •••••••••••
Command Notation
Special Characters
Invoking vi •••••••
Operating Modes •••
Escape to the Shell •••
Leaving vi ••••••••••
vi and ex •••••••••••••

....

.

1.1.
1. 2.
.1. 3.
1. 4.
1. 5.
1. 6.
1. 7.
1.8.
1. 9. Using vi on Hardcopy Terminals and

Glass TTYS •••••••••
1.10. Uppercase Terminals
1.11. Slow Terminals
1.12. Abbreviations
1.13. Line Numbers

. . . .
.

1.14. Line Representation in the Display
1.15. End of File Indicators
1.16. Counts

SECTION 2 vi DISPLAY CONTROL .
2 .1. Scroll Control
2.2. Page Control
2.3. String Searches
2.4. Cursor Position Control
2.5. Tags .
2.6. File Status .
2.7. Clearing the Display
2.8. Window Size

SECTION 3 EDIT COMMANDS .

iii

3 .1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.

General •••••••••••••••••••••
Insert Text •••••••••••••••••
Delete and Insert Characters
Delete Operator •••••••••
Undo Operator
Program Editing Features •••••••
Erase and Line Kill Characters

Zilog

VI

1-1

1-1
1-1
1-2
1-3
1-5
1-6
1-6
1-7

1-8
1-9
1-9
1-9

1-10
1-10
1-10
1-11

2-1

2-1
2-1
2-1
2-3
2-6
2-7
2-7
2-8

3-1

3-1
3-2
3-4
3-5
3-8
3-9

3-10

iii

VI Zilog

SECTION 4 REARRANGING AND DUPLICATING TEXT

4. 1.
4. 2.
4. 3.

General •••••••••••••••
Buffers ••••••••••
Text Manipulation

..........

SECTION 5 FILE MANIPULATION
5. 1.
5. 2.

Writing, Quitting and Editing New Files
File Manipulation Commands •••••••••••••••••

SECTION 6 OPTIONS
6. 1. General •••••••••••••••••••••••••••••••••••••••
6.2. Editing on Slow Terminals •••••••••••• • •••••
6.3. Ignor~e Case ••••••••••••••••••••••• • •••• .., •••
6.4. Magic Characters •••••••••••••••••••••••••
6.5. Autoindent and Shiftwidt~ •• • •••
6. 6. Continuous Text Input • • • • • • • • • • •..•••
6.7. LISP Editing Options and Commands •••••••••
6.8. Line Numbers ••••••••••••••••••••••••••••••••••
6.9. Tabs and End of Line Indicators •••••••••••
6.10. Automatic Writing of Files •••••••
6.11. Defining Paragraphs and Sections •••••••
6.12 .. Terminal Type • • • • • • ••••••••••
6.13. Scroll •••••••
6.14.
6.15.
6.16.

Terse ••••••••••••••
Window ••••••••••••
Wrapping Around the

. • •••••••••• 0 •

.
End of Files

APPENDIX A SPECIFYING TERMINAL TYPE • • • • • • • • • • • • • • 0 • • •

APPENDIX B vi CORRECTION CHARACTERS •••••••••••••• 0 •••

APPENDIX C vi SYMBOL DICTIONARY ~ . . .

APPENDIX D vi QUICK REFERENCE

iv Zilog

VI

4-1

4-1
4-2
4-2

5-1

5-1
5-2

6-1

6-1
6-3
6-3
6-4
6-5
6-5
6-6
6-7
6-7
6-7
6-8
6-8
6-9
6-9
6-9
6-9

A-1

8-1

C-1

D-1

iv

VI

Table
5-1

v

6-1
6-2

8-1

Zilog VI

List of Tables

File Manipulation Commands •••••••••••••••••• 5-2

Frequently Used Options • 6-1
Magic Option Extended Operators ••••••••••••• 6-4

Operators Used for Corrections and Changes •• 8-1

Zilog v

VI

1.1. General

Zilog

SECTION 1
INTRODUCTION

VI

Vi (Visual) is a display oriented interactive text editor in
which the display acts as a window into the file being
edited. Changes are reflected in the display, and this sim­
plifies modifications. The regularity and the mnemonic
assignment of commands makes the editor command set easy to
remember and use. The full command set of the more tradi­
tional, line-oriented editor ex is available with vi, and it
is easy to switch between the two editing modes.

Vi can be used on a wide variety of display terminals. New
terminals are easily driven after editing a terminal
description file. While it is advantageous to have an
"intelligent" terminal that can insert and delete lines and
characters from the local display, the editor functions well
on "dumb" terminals with low-bandwidth telephone lines. The
editor optimizes response time by using a smaller window and
a different display updating algorithm. The command set of
vi can be used as a one-line-window editor on hard-copy ter­
minals and storage tubes.

This document was written on the assumption that the system
being used is a Zilog System 8000, that the system console
is a Lear Siegler ADM-31, and that the system software is
Zilog ZEUS, a super-set of UNIX.

1.2. Command Notation

In this document, the following notation is used in command
descriptions.

< > Angle brackets enclose
data or item to
<filename>.

descriptive names
be entered. For

Square brackets enclose optional data.

Bar denotes an OR function.

for the
example,

ESC denotes the escape key (ALT on some keyboards)

RUB denotes the delete key (DEL on some keyboards)

1-1 Zilog 1-1

VI Zilog VI

CTRL denotes the CONTROL key. On certain terminals, CTRL
is echoed as the circumflex symbol (A). Do not con­
fuse the echo with the symbol used in this document
for the up arrow (shown below).

1 denotes an up arrow

1.3. Special Characters

ESC key: this key cancels partially entered commands. It
also terminates text mode operations. If the terminal is
already quiescent this key may also trigger a bell or audio
annunciator.

RETURN key: this key initiates execution of most commands.
It also initiates the csh (C Shell) commands.

RUB key: this key interrupts and stops the editor.

Interrupting the editor while it is redrawing or otherwise
updating large portions of the display, might cause a con­
fused display. If this occurs, it is still possible to con­
tinue editing by:

a. Entering the command

b.

CTRL-z

redraws the display.

Ignoring the state of the display and either
ing or searching again.

mov-

For the purposes of this document, the use of RUB is
equivalent to an interrupt.

Slash (/): This symbol specifies a string for a search. When
this key is pressed, the cursor moves to the bottom line of
the display, where it acts as a prompt. To return the cur­
sor to the current position, press RUB. Backspacing over
the slash will also cancel the search.

The line kill and erase characters are user programmable.
They can be changed with the program sfty (refer to STTY(l)
in the System 8000 ZEUS Reference Manua, 03-3255). ~~

Line kill: the line kill character is usually the character

@

1-2 Zilog 1-2

VI Zilog VI

Character erase: the erase character is usually

CTRL-h

1.4. Invoking vi

When the system is up and running, set the terminal type, as
shown:

%setenv TERM <code> (RETURN)

where: % is the system prompt
setenv is the command for setting the environment
TERM ie a required keyword
<code> is the terminal type code to be entered
For the Lear Siegler terminal, <code> is adm31
(RETURN) is the RETURN key

For other terminals, and additional information relevant to
setting the terminal type, refer to Appendix A.

For the VTZ-2/10 terminal, <code> is vtz. The command for­
mat is

% vi [-t <tag>] [-r [<filename>]] [+[<command>]]
[+<n>] [+/<string>] [-1] [<filename>] (RETURN)

where: % is the system prompt.

1-3

vi is the command to invoke the visual display edi­
tor.

-t <tag> is the option to edit the file containing
the tag <tag> at <tag> (see Section 5.2).

-r [<filename>] is the option used to recover a file
after an editor or system crash (see Section 7.2).

+[<command>] executes the ex command <command> prior
to entering visual mode. Without <command> the
visual editor starts at the end of file (see also
Section 5.2).

+<n> starts the visual editor at line number <n>.

+/<string> causes vi to search for and start at the
string <string>.

Zilog 1-3

VI Zilog VI

-1 is the option to set editing options for LISP
(see Section 6).

<filename> is the name of the file to be edited.

NOTE

Do not include the square brackets ([]) and the
angle brackets (<>) in the command.

Examples:

1. The simplest vi command is to invoke vi for editing a
single file:

%vi <filename> <RETURN>

where: <filename> is the name of the file to be edited.

NOTE

All entries must be terminated by a RETURN. For
the remainder of this document, neither RETURN nor
the system prompt is shown in the system commands;
however, it is assumed that each command is ter­
minated by RETURN.

2. To start vi at line number n, use the form

vi [+<n>] <filename>

3. To start vi at some string <string>, use the form

1-4

vi [+/<string>] <filename>

vi searches for <string> and, if found, starts at
<string>. For additional details, see Section 5.2.
After the command is entered, the file name is echoed on
the screen. The editor does not directly modify the
file being edited. Rather, the editor copies the file
in a buffer, and then remembers the file name. The con­
tents of the file are not affected until the changes are
written back to the original file. After a file has
been copied, vi edits that file. The display clears,
and the text of the file appears on the display. If it
does not

Zilog 1-4

VI Zilog VI

1. Check for the correct terminal type code. An
incorrect type code entry produces an unusable
display. To check exit vi, enter

:q

Following the RETURN, control
shell (command interpreter).
correct terminal code, enter:

printenv TERM

returns to the
To verify the

and reenter it as described above.

2. Check for the correct filename. An incorrect
filename can result in the display of an error
diagnostic. If this occurs, return to the
shell (as shown in 1. above) and restart.

3. If the editor does not respond, interrupt it
with the delete key DEL (or RUB). Then, return
to the shell (as shown in 1. above).

1.5. Operating Modes

Vi has four operating modes:

1. Command mode. This is the initial state and the normal
operating mode. The other modes return to this mode.
The escape key (ESC) cancels any partially entered com­
mand.

2. Text mode. This mode is entered by one of the following
operators:

a A i I o 0 c C s S R

Any desired text can be entered in this mode. Text
entry is normally terminated with the ESC. Text entry
can also be terminated (abnormally) with RUB.

3. Last line mode. This mode is initiated by the following
operators:

1-5

I ?

Commands or string searches are executed after a RETURN
or ESC. Commands are canceled with DEL (or RUB). When
the editor is in this mode, commands are echoed on the
last line. If the cursor is in the first position of

Zilog 1-5

VI Zilog VI

the last line, the editor is performing a computation
such as computing a new position in the file after a
search, or running a command to reformat part of the
buffer. While this is happening, it is possible to stop
(interrupt) the editor with RUB. On some systems, when
the cursor is on the bottom line, and the editor has
been interrupted, the operator cannot type ahead.

4. Open mode. This is described in Section 1.9.

1.6. Escape to the Shell

To execute a shell command, while in vi, use a command of
the form

:!<command>

where <command> is the shell command. The system runs the
<command> and returns to vi when the command is completed.
The operator is prompted

Hit RETURN to continue

After RETURN is entered, the editor clears and redraws the
display; vi resumes control, and editing can continue. How­
ever, if another : command is entered prior to the RETURN,
the display is not redrawn.

To execute more than one command in the shell, enter the
command

:sh

When all necessary shell commands are completed, return to
vi by entering

CTRL-d

Vi clears the display and editing can continue. Or, to exe­
cute more than one command in the C shell, enter the command

:csh

1.7. Leaving vi

To leave vi and return to the shell, use the command

zz

1-6 Zilog 1-6

VI Zilog VI

If changes have been made to the text, the contents of the
vi buffer are written back into the original file, and the
editor exits. If no changes have been made, the editor
exits.

It is also possible to write the changes to the file without
leaving vi by using the command

:w

To exit vi (quit) without writing the changes, use the com­
mand

:q!

This discards all text changes. This command is convenient
when changes have been made to the contents of the buffer
and the original file must remain unchanged. Do not use
this command for changes that must be saved.

1.8. vi and ex

Vi is one mode of editing within the line-oriented editor
ex. Some operations are easier in ex than in vi, such as
systematic changes in line-oriented material. Experienced
users often mix vi and ex commands to facilitate their work.

When vi is running, it is possible to escape to ex with the
command

Q

Ex prompts with a colon (:). 'The vi commands prefaced with
a colon (:) that are described in this document are avail­
able in ex. Similarly, most of the ex commands are avail­
able in vi when prefaced with a colon.

In rare instances, an internal error may occur in vi. In
this case, a diagnostic is displayed, vi exits, and control
returns to the command mode of ex. It is then possible to
either:

1. Save the work in progress and quit by entering the com­
mand

x

or,

1-7 Zilog 1-7

VI Zilog VI

2. Re-enter vi with the command

vi

1.9. Using vi on Hardcopy Terminals and Glass TTYs

It is possible to use vi on a hardcopy terminal, or a termi­
nal with a cursor that cannot move from the bottom line. On
these terminals, vi runs in "open" mode. In this mode, when
a vi command is entered, the editor states that it is in
open mode. This name comes from the open command in ex
which invokes the open mode. With a "dumb" terminal, vi
automatically enters open mode.

To invoke open mode manually, enter ex, and then, from ex,
enter the command

open

to return to ex from open mode, enter the command

Q

To return to vi from ex, enter

vi

The differences between visual and open mode are:

1. The way the text is displayed. In open mode, the editor
uses a single-line window into the file. Moving back­
ward and forward in the file displays new lines, which
are always below the current line.

2. The command

z

takes no parameters, but draws a window of context
around the current line and returns to the current line.

3. On a hardcopy terminal, the command

1-8

CTRL-R

retypes the current line. On these terminals, the edi­
tor usually uses two lines to represent the current
line. The first line is a copy of the original line,
and the second line is the work line; that is, it shows

Zilog 1-8

VI Zilog VI

any editorial changes. When characters are deleted, the
editor displays a number of backslashes {\) to show
what characters were deleted. The editor also reprints
the current line soon after such changes so that they
are visible.

1.10. Uppercase Terminals

The editor also reprints the current line soon after such
changes so that they are visible. All characters are con­
verted to lowercase characters. However, each upper case
character must be preceded with a backslash. The combina­
tion "\character" does not echo until the backslash is fol­
lowed by the second character~

The following characters are not available on uppercase­
only-terminals:

{ }

These characters can be entered as shown below:

For { use \(
For } use \)
For use \A
For use \!
For use \'

1.11. Slow Terminals

The vi editor minimizes the delay time required for display
updates by limiting the output to the display. For slow and
for "dumb" terminals, vi optimizes screen updates during
text mode, and it replaces deleted lines with the symbol
"@".

On slow terminals that can support vi in the full screen
mode, it is useful to use "open" mode.

Vi has an operating option {slowopen) that is convenient
when a slow terminal is being used. For additional informa­
tion, see Section 6.2.

1.12. Abbreviations

Vi has a number of short commands that abbreviate longer
commands that have been introduced above. These commands

1-9 Zilog 1-9

VI Zilog

are listed on the quick reference card.

1.13. Line Numbers

The vi editor, if desired, can number each line.
editor option, "number" (line number option)
described in Section 6.8.

1.14. Line Representation in the Display

VI

Use the
which is

The vi editor folds long logical lines into shorter physical
lines on the display. Commands that advance lines also
advance logical lines. Hence they skip over all segments of
a line in one motion. The command

moves the cursor to a specific column, and it can be useful
for getting near the middle of a long line to split it.
(This command is a vertical bar, not a numeral one or a
lowercase 1). For example, the command

801

places the cursor on the 80th column in a long sentence.

On a "dumb" terminal, the editor puts only full lines on the
display; if there is not enough room on the display to fit a
logical line, the editor leaves the physical line empty and
places an @ on the line as a place indicator. When lines
are deleted, the editor often just clears each text line and
displays an "@" to save time, rather than rewriting the
entire display. To maximize the information on the display
enter:

CTRL-R

1.15. End of File Indicators

When the end of the file is displayed, and the last line is
not at the bottom of the display, the vi editor displays the
tilde (-) at the left end of each remaining line. This
indicates that the 1st line of the file is shown in the
display, and that those lines with the tilde are past the
end of the file.

1-10 Zilog 1-10

VI Zilog VI

1 .. 16. Counts

A count is an argument that affects the number of times the
command is executed, or the number of lines affected.
Several vi commands use a preceding count that affects the
operation of the command. Some of the most common are the
following:

1. For the following commands, a preceding count affects
the amount of scroll:

CTRL-d CTRL-u

2. For the following commands, the count affects the line
or column number:

z G I (vertical bar)

3. For most vi commands, a preceding count affects the
number of times the command is repeated. For example,
the command

SRETURN

advances 5 words. The command

Sdw

deletes 5 words

3.

deletes 3 more words.

1-11 Zilog 1-11

VI Ziil.og

SECT[ON 2
DISPLAY' CONTROL

2.1. Scroll Control

Use the following commands to scroll the display:

[<n>]CTRL-u to scroll up n lines.
[<n>]CTRL-d to scroll down n lines.

If n is omitted the default is half the window size.

NOTE

Certain "dumbw terminals cannot scroll up. In
this case, CTRL-U clears the display and refreshes
it with a line that is farther back in the file
(towards the top).

2.2. Page Control

VI

The functions CTRL-F and CTRL-B move the viewing window for­
ward and backward one page, respectively. Both commands
retain a few lines of text from the previous page for con­
tinuity. It is possible to read through a file using the
page commands rather than the scroll commands. The primary
difference is that the scroll commands move the text
smoothly and leave more of the previous text, whereas the
page commands change a page at a time, leaving only a few
lines of text for continuity.

2.3. String Searches

The search function also positions the display within a
file. This function searches the text file for a particular
string of characters and positions the cursor at the next
occurrence of the specified string. ·The search command is:

/<string>

To search backwards from the location of the cursor, use the
command

?<string>

2-1 Zilog 2-1

VI Zilog VI

To repeat the forward or backward string search to the next
occurrence of <string>, use the command

n

To repeat the string search in the reverse direction enter

N

If <string> is not present in the text file, vi prints the
message "Pattern not found" on the last line of the screen,
and returns the cursor to its original position. String
searches normally wrap around the end of the file, and to
find the string even if it is not in the direction origi­
nally specified in the command (provided the string is
indeed in the file). The wraparound function can be dis­
abled by the editor option "nowrapscan" (or nows). The no­
wrapscan option is one of the options described briefly in
Section 6. Refer to the "Ex Reference Manual."

If the search is to match a string at the beginning of a
line, then precede the search string with an up arrow CT>.
To match only at the end of a line, end the search string
with $.

Examples:

/T search

searches for the word "search" at the beginning of a line,
and

/last$

searches for the word "last" at the end of a line.

If the search string contains a slash (/), it must be pre­
ceded by a backslash (\). This is also true if the editor
option, "magic," is set (see Section 6).

At the end of the string search, vi places the cursor at the
next or the previous occurrence of the string, as appropri­
ate.

Whole lines of text can be affected up to the line prior to
the line containing the string. To do so, use a search com­
mand with the form

/<string>/-<n>

2-2 Zilog 2-2

VI Zilog VI

where: <string> is part of the search command, and <n> is
the number of lines preceding the line containing
the string.

A"+" can be substituted for the "-". The result is that
the search locates the string <n> lines after the line con­
taining <string>. If no line offset is included, the editor
affects characters up to the point of the string match,
rather than whole lines. Thus, use "+0" to affect the line
that matches.

The editor, if commanded, ignores the case of words in the
string search. This is briefly described in the ignore case
option in Section 6.

String searches can also be used in conjunction
operators "d" and "c" (see Section 3.4), and "y"
tion 4.3).

2.4. Cursor Position Control

with the
(see Sec-

To position the cursor at any particular line, where the
lines are identified by number, use the command

[<n>]G

where n is a line number.
first line in the file.
the last line of the file.

Thus, lG moves the cursor to the
If <n> is omitted, the default is

The cursor can be moved up, down, forward and back by the
following keys:

up: k, CTRL-p, or CTRL-k
down: j, CTRL-n, or CTRL-j

back: h, CTRL-h, or backspace
forward: space bar, or 1

Some terminals have arrow keys (four or five keys with
arrows going in various directions) that have the same func­
tions. (On the HP 2621 the function keys must be shifted.)

To advance the cursor to the first non-white position of the
next line in the file, strike RETURN or "+" key. Similarly,
strike "-" to move the cursor back to the first non-white
position on the preceding line. These keys can also be used
to scroll when the cursor is at the top or bottom of the
display, as appropriate.

2-3 Zilog 2-3

VI Zilog VI

Vi also has commands to position the cursor at the top, mid­
dle, or tQe bottom of the display. For the top, strike the
H key. Striking

<n>H

moves the cursor n lines down from the top of the display.
The <n> is optional; the default position is the top of the
display. Similarly, the command "M" positions the cursor in
the middle of the display. The command

<n>L

positions the cursor either on the last line of the display,
or the nth line from the bottom. If the <n> is omitted, the
default is the bottom of the display.

The cursor can also be moved within a line with any of the
following commands. To position the cursor on some word
other than the first word, use the command

[<n>] w

which moves the cursor right to the beginning of the nth
word on the line. The default is one word. The command

[<n>]b

moves the cursor back n words. The default is one word.
The command

[<n>]e

advances the cursor right to the end of the nth word, rather
than the beginning of the word. The default is one word.

The commands "b", "w" and "e" stop at punctuation marks. To
move the cursor forward or backward without stopping at
punctuation, use the characters "W", "B" or "E", respec­
tively. The word keys wrap around the end of the line, and
continue to the next line.

After the cursor has been moved for any reason, it can be
returned to its previous position with the command (two
back single quotation marks). The command '' (two forward
single quotation marks) moves the cursor to the first non­
white character of the line containing the previous position
mark (' ') •

This is often more convenient than the command G because it
requires no line count or other preparation.

2-4 Zilog 2-4

VI Zilog VI

To move the cursor to the first non-white position on the
current line of text, use either "0" or the up arrow (f).
To move the cursor to the end of the current line, use "$."

The command

[<n>]f<c>

moves the cursor to the nth subsequent occurrence
character <c>. The default is the next occurrence.
by using the semicolon (;). The inverse command is

[<n>]F<c>

of the
Repeat

This performs the same function# but moves the cursor back­
ward (into the preceding text). Repeat with a semicolon.

To move the cursor to the character preceding the nth
occurrence of the character <c>, enter:

[<n>]t<c>

To move the cursor backwards to the character following the
nth occurrence of the character <c>, enter:

[<n>]T<c>

The commands (f, F, t, and T) can be repeated with the semi­
colon, or the direction can be reversed with the comma.

To move th~ cursor to the matching parenthesis in a pair,
place the 6ursor at either an opening or closing parenthesis
and strike the perceht (%) key. This featuie also works for
braces ({}) and square brackets ([]).

To advance the cursor to the beginning of the nth sentence
following, use the command:

[<n>])

where the default for n is one. Similarly, to move the cur­
sor back to the beginning of a sentence, use the command

[<n>]

where the default for n is one. A sentence is defined as
ending with a period, a question mark or an exclamation
point, followed either by two spaces or by an end of line.
Sentences also begin at paragraph and section boundaries.
For example, the command

2-5 Zilog 2-5

VI Zilog VI

2)

advances the cursor one sentence beyond the end of the
current sentence.

To move the cursor forward to the beginning of the next
paragraph, use the closing brace (});similarly, to move the
cursor back to the beginning of the preceding paragraph, use
the opening brace ({). To move the cursor additional para­
graphs, precede the brace with a count, n. For example, the
command

3}

advances three paragraphs. A paragraph begins after an empty
line or at a section boundary.

Finally, to move the cursor to the beginning of the next
section, use a double closing square bracket:

]]

Use a double opening square bracket:

[[

to move the cursor back to the previous section boundary.

2.s~ Tags

It is possible to mark a position in the editor file with a
single letter tag, and then to return to any particular tag.
To tag a position in text, use the command

m<tag>

where the tag is any letter of the alphabet.

To return to the tag, use the command

'<tag>

When using operators (such as the delete operator) with a
tagged line, it may be convenient to operate on entire lines
(for example, to delete entire lines), rather than to the
exact position of the tag. In this case, use the form

'<tag>

2-6 Zilog 2-6

VI Zilog VI

rather than the form

'<tag>

For example, the command

d'<tag>

deletes entire lines from the position of the cursor to the
line with the tag.

2.6. File Status

To find out the file status, enter the command

CTRL-g

The editor displays the name of the file being edited, ·the
number of the current line, the number of lines in the
buffer, and the relative position in the buffer as a percen­
tage.

2.7. Clearing the Display

If, for any reason, the terminal display is garbled, it is
often possible to obtain a correct display by using the com­
mand:

CTRL-1

or

CTRL-z

depending on the terminal. On a "dumb" terminal, when one
or more lines have been deleted, it is possible to eliminate
the "@" symbols with the command

CTRL-R

or

CTRL-r

This redraws the display and closes the deleted line(s).

2-7 Zilog 2-7

VI Zilog VI

2.8. Window Size

The window size is the number of lines written on the
display. Vi maintains the current or default window size.
On terminals that run at speeds greater than 1200 baud, the
editor uses the full terminal display. On slower terminals
(most dialup lines are in this group) the editor uses eight
lines as the default window size. On terminals that run at
1200 baud, the default window size is 16 lines.

The appropriate window size is used when the editor clears
and refills the display after a search or other motion that
moves beyond the edge of the current windqw. Commands that
take a new window size as count (see Section 1.16) often
cause the display to be redrawn. With some of these com­
mands, a smaller window size may be equally convenient, and
it may be expedient to specify a smaller window size with
the appropriate command. In any case, the number of lines
displayed increases when:

1. Commands such as "-" are used; these move the window up.

2. Commands such as "+", RETURN or CTRL-d are used; these
move the window down.

The scroll commands CTRL-d and CTRL-u "remember" the amount
of scroll last specified. The default is half the window
size.

The editor makes editing easier at low speeds by starting
with a small window and expanding as the editing progresses.
The editor can expand the window easily when inserts are
placed in the middle of the display on intelligent termi­
nals.

The window can be enlarged or reduced, and the current line,
or any desired line, can be placed anywhere in the window
with the command

2-8

<m>z<n><suff ix>

where: <m> is the line number. The default is the
current line z is the command operator
<n> is the number of lines in the window <suffix> con­
trols the position of the desired line within the win­
dow, and is any of the following:

<RETURN> places the line at the top
• places the line at the center
- places the line at the bottom

Zilog 2-8

VI Zilog VI

For example, the command

z5.

redraws the display with the current line in the center of a
five line window, while the command

5z5.

places line five in the center of a five line window.

2-9 Zilog 2-9

VI

3.1. General

Zilog

SECTION 3
EDIT COMMANDS

VI

In general, the edit commands use text mode. Text mode is
initiated by entering of one of the various insert commands.
Following the entry of the insert command, all subsequent
keystrokes become text insertions. The text insert mode is
always terminated by striking the (ESC) key.

Many related editor commands are invoked by the same alpha
key and differ only in that one is given by a lowercase key,
and the other is given by an uppercase key. The uppercase
key usually differs from the lowercase key only in the sense
of direction: the uppercase key operates backward and/or up
and the lowercase key operates forward and/or down.

Using any of the text mode commands, it is possible to
insert one letter, or many lines of text. To insert more
than one line of text, strike the RETURN key in the middle
of the input. A new line is then created for text and the
insertion can continue. For slow or "dumb" terminals, the
editor may wait to redraw the tail of the screen. In this
case, the new text overwrites existing lines on the display.
This avoids delays that occur if the editor attempts to keep
the tail of the display up to date. The display is updated
correctly when text mode is terminated.

Those characters normally used at the system command level
for character or line deletion can also be used in text mode
(e.g., CTRL-h or #; and@, CTRL-x or CTRL-u, as appropri-
ate). CTRL-H always erases the last input character,
regardless of the erase character.

Backspacing (while in text mode) does not erase characters.
The cursor moves backwards, but the characters remain on the
display. This is useful for entering similar text. The
display is updated after the escape. To correct the display
immediately, use the ESC, and reenter text mode.

It is not possible to backspace around the end of a line.
To back up for a correction on a previous line, use ESC and
then move the cursor back to the previous line. Make the
correction, return and then reenter the appropriate text
command.

3-1 Zilog 3-1

VI Zilog

NOTE

The character CTRL-W erases a whole word and
leaves a space after the previous word. This is
useful for backing up quickly for an insert.

It is not possible to erase characters with CTRL-W
unless these characters were entered in text mode.

3.2. Insert Text

The general form of the text mode command is

<n><command><string>ESC

VI

where: <n> is a preceding count; the default is one
<command> is one of the insert mode commands listed
below
<string> is the inserted text string
ESC is the escape key

The effect of the preceding count is to repeat the inserted
string n times. All one of the following command operators
can be used to enter insert mode:

a A i I o 0 c C s S R

These commands and their variations are described below.

To insert text in the file, use one of the insert mode com­
mands. For example,

i

Following the "i" (or other insert mode operator), all sub­
sequent string of characters or text entered on the terminal
are inserted in the file, until insert mode is terminated.
To terminate insert mode, strike ESC (escape). On certain
"dumb" terminals, when text is inserted, the display appears
to overwrite the original text. When insert mode is ter­
minated, all inserted and previous text is displayed prop­
erly.

A variation of the "i" command is

which inserts text at the beginning of a line. The command

3-2 Zilog 3-2

VI Zilog VI

I

is equivalent.

In general, most of the insert commands can have a preceding
count. For example, the command

Si apple

repeats the word "apple" five times:

appleappleappleappleapple

In the following description the preceding count is not
always shown.

The command

a

also enters the vi text mode. The difference between the
two commands is that with the command "i," text is inserted
before the cursor (to the left), whereas with "a," text is
inserted after the cursor (to the right). The command "a"
is sometimes convenient for appending one or more letters to
a word. The append operation is also terminated with the
ESC key.

A variation of the command "a" uses the dollar sign,

$a

to move the cursor to the end of the current line and append
text. An equivalent command is

A

Another way to add one or more lines of text to the file is
to use the command

0

This opens the existing text and adds new text below the
current line. Similarly, the command

0

opens and adds new text above the current line. Both com­
mands are terminated with ESC. A preceding count opens n

3-3 Zilog 3-3

VI Zilog VI

lines.

It is also possible to insert non-printing characters in the
text. Refer to Section 8.2.

3.3. Delete And Insert Characters

To delete a character or characters, place the cursor on the
character to be deleted. Use the following command

[<n>]x

where: <n> is the number of characters and spaces to be
deleted; the default is one.
x is the character delete command.

To delete a character or characters preceding the cursor,
use the command

[<n>]X

where: <n> is the number of characters and spaces to be
deleted; the default is one.
X is the character delete command.

To replace (change) one or more characters, use the command

[<n>]r<c>

where: <n> is the number of characters to be changed,
r is the replace command,
<c> is limited to one character which is rep~ated n
times in place of n deleted characters.

To replace (change) one or more characters with a string,
use the command

[<n>]R<string>

where: <n> is the number of times the replacement is per­
formed,

3-4

R is the replace command,
<string> is the string used for replacement. The
string can be any length.

Zilog 3-4

VI Zilog VI

To replace a number of characters with more than one char­
acter, use the command:

[<n>]s<string>

where: <n> is the number of characters to be replaced,
s is the substitute command,
<string> is the string that is substituted for the
deleted characters. The string can be any length.

Use ESC to terminate string input.

3.4. Delete Operator

The command

d

acts as the delete operator.

To delete n words, position the cursor, and then enter

[<n>]dw

or

d[<n>]w

The default is one word.

To delete a word backwards (to the left of the cursor) ,
enter

[<n>]db

or

d[<n>]b

The default is one word.

To delete n single characters, position the cursor on the
appropriate starting character, and enter the command

[<n>]d<space>

This is equivalent to the x command.
space.

3-5 Zilog

The default is one

3-5

VI Zilog VI

A variation of the "d" command is

d$

which deletes the rest of the text on the current line. An
equivalent command is

D

The operator "c" changes entire words. To change n words,
enter the command

[<n>]cw

When the commmand is entered, the end of the text to be
changed is marked with the symbol "$". Enter the replace­
ment text, and terminate text entry with ESC. The default
is one word.

A variation of the "c" command is

c$

which changes the rest of the text on the current line. An
equivalent command is

c

When operating on a line of text, it is often desirable to
delete the characters up to the first instance of a charac­
ter. To do so, use the command

[<n>]df<x>

where f <x> locates the nth occurrence of the character <x>
following the cursor. The default is the first occurrence
of <x>. This command deletes the text up to--and
including--the character <x>. A variant is the command

[<n>]dt<x>

where the operator f is replaced by the t. In this
instance, the text is deleted up to--but not including--the
character <x>. The command

T

is similar, but it operates in the reverse of the t

3-6 Zilog 3-6

VI Zilog VI

operator--that is, it operates in the preceding text.

To delete n entire lines, use the delete operator twice:

[<n>]dd

The default is one line.

On a "dumb" terminal, the editor may sometimes erase the
entire line on the screen and replace it the symbol "@" at
the far left. This does not correspond to any line in the
file, but is a place indicator; it helps avoid a lengthy
redraw of the display, which would be required in order to
close up the deleted lines.

The operator

[<n>]cc

is similar to the command "dd", but it leaves vi in text
mode, whereas dd does not. The command "cc" is convenient
for changing an entire line. Position the cursor as
appropriate, enter the command, and then enter the replace­
ment text. Terminate text mode operation with ESC. The
command

[<n>]S

is synonymous to the command "cc", and it is analogous to
the command "s". Think of the "s" as a character substitute
and the "S" as a line substitute.

There are several other variations on the line delete com­
mands. The command

d<n>L

deletes all of the lines from the cursor
line from the botttom of the display.
lines to the bottom of the display.

down to the nth
The default is all

It is also possible to use a string search with the delete
operator:

d/<string>

This command deletes characters from the cursor position to
the point of the string match. Similarly, the command

d/<string>/-n

3-7 Zilog 3-7

VI Zilog VI

deletes characters from the cursor position to the nth line
preceding the string match. The command

d/<string>/+n

deletes characters from the cursor to the nth line following
the string match. Similar commands can be used to change
entire lines in relation to a string:

c/<string>/-n

and

c/<string>/+n

In editing a document, it is usually easiest to edit in
terms of sentences, paragraphs and sections. The operators
"(" and")" can be used with the delete operator. For
example, the command

[<n>]d)

deletes the rest of n sentences. The default is from the
cursor position to the end of the current sentence. Simi­
larly,

[<n>]d

performs one of two deletions:

With the cursor at the beginning of a sentence, the
command deletes the previous n sentences, or

When the cursor is not at the beginning of a sentence,
the command deletes the text from the cursor back to
the beginning of n sentences. The default is the
beginning of the current sentence. The editor displays
the extent of the change; it also indicates when a
change will affect text that is not shown on the
display.

To repeat the command more than once, use the period (.)
key.

3.5. The Undo Operator

Vi has an undo operator

u

3-8 Zilog 3-8

VI Zilog VI

that reverses the last change made. The undo command can
undo the preceding undo command--that is, the first undo
command can return the text to its original state, and the.
second command can reinsert the change, but it can involve
several lines. The undo command reverses only a single
change. However, after having made more than one change to
a line, the line can be restored to its original state with
the command U.

Deleted text can be recovered even when the undo operator
does not recover it. Recovering lost text is discussed in a
separate section.

3.6. Program Editing Features

The editor has a number of commands for program editing.
One of the most convenient is the autoindent option, which
helps generate correctly indented programs. Another is the
shiftwidth option, which is used to reset the backtab value.
Both are discussed in Section 6.5.

The operators "<" and ">" are used to shift individual lines
left or right, respectively, by one shiftwidth. To shift a
line, use the double operators, as shown: [<n>]<< shifts the
line to the left one shiftwidth, and [<n>]>> shifts the line
to the right one shiftwidth.

Where n specifies a number of lines; the default is one
line.

It is also possible to.shift all lines from the cursor to
the bottom of the display, either to the left or to the
right, respectively. Use the command

<L

or

>L

respectively.

Another feature is useful for matching the, opening and clos­
ing parenthesis in complicated expressions. To see the
matching parenthesis, place the cursor at either an opening
or a closing parenthesis and strike the percent key (%).
This feature also works for braces ({}) and brackets ([]
) .

3-9 Zilog 3-9

VI Zilog VI

For editing programs in C, the double brackets (([and]]
) advance and retreat, respectively, to a line starting with
a brace ({)--that is, one function declaration at a time.
When the closing double brackets (]]) are used with an
operator, it stops after a after a line that starts with a
brace ({) • This is sometimes useful with the command "y",
as shown:

y]]

where the y operator yanks a line, and stores it in a
buffer.

3.7. Erase and Line Kill Characters

The most common way to correct input text is to strike
CTRL-H to delete an incorrect character, or to strike
CTRL-W to delete incorrect words. If the normal system uses
the crosshatch as the character erase (#), it works like
CTRL-H in vi.

The line kill character is normally one of the following:

@
CTRL-X
CTRL-U

which erases all input on the current line. In general, the
kill character does not erase back around an end of line,
nor will it erase characters that were not inserted with
the current text mode command. To make corrections on the
previous line--after a new line has been started--use the
following procedure:

1. Strike ESC to terminate input mode.

2. Move the cursor as appropriate to make the correction.

3. Return and continue in input mode. When continuing, the
operator "A" is often convenient for appending the
current line.

3-10 Zilog 3-10

VI Zilog VI

SECTION 4
REARRANGING AND DUPLICATING TEXT

4.1. General

By definition, a sentence ends with a period (.), an excla­
mation point (!),or a question mark (?);and is followed by
either the end of a line, or two spaces. Any number of
closing parens, brackets, or quotation marks may appear
after the closing punctuation marks, but before the spaces
or new line.

The operators (and) move the cursor to the beginning and
the end of the previous and next sentences, respectively.
Similarly, the operators { and }, and the operators [[and
]] move over paragraphs and sections, respectively. The
square bracket operators require a double operator entry
because they can move the cursor an appreciable distance.
While it is easy to return with the back quotation marks 11

these commands could still be frustrating if they were easy
to execute accidentally.

By definition, a paragraph begins after each empty line, and
also at each of a set of paragraph macros. (Refer to the
NROFF and TROFF documentation in the System 8000 ZEUS Refer­
ence Manual.) The paragraph macros can be changed or
extended by assigning a different string to the the para­
graphs option in EXINIT. The sentence and paragraph com­
mands can be given counts to operate over groups of sen­
tences and paragraphs. Sections in the editor begin after
each macro in the sections option. Section boundaries are
always line and paragraph boundaries.

It is possible to look through a large document by using the
section commands. It is also possible to use a preceding
count with each of the section and paragraph commands. The
section commands interpret a preceding count as a different
window size in which to redraw the screen display at the new
location. This window size is the base size for newly drawn
windows until another size is specified. This is useful
when looking for a particular section on a slow terminal.
It is possible to give the first section command a small
count, and then see each successive section heading in a
small window.

4-1 Zilog 4-1

VI Zilog VI

4.2. Buffers

Vi has the following buffers:

1. A single, unnamed buffer, where the last delete or
changed text is saved.

2. A set of named buffers--a through z--that can be used
to save or move text, either within a file, or between
files.

The buffers are used by the "yank" and "put" operators
described in section 4.3.

4.3. Text Manipulation

The operator (for "yank") is used to place text into the
unnamed buffer, or any of the named buffers. The command
syntax is

" [<buff e r >] [< n >] yw

where: " indicates that the following character is a
buffer, and not a command
<buff er> is a buf fername a through z; default is the
unnamed buffer
<n> is the number of words to yank; default is one
word
y is the yank operator
w is the word operator

This command does not delete the yanked text. Punctuation
marks are counted as words. To yank a complete word, the
cursor must be on the first letter of the word. If the cur­
sor is not on the beginning of the word then all characters
from the cursor position to next white space (at the end of
the word) are yanked.

The operator "yy" is eqivalent to "Y"; the command

"[<buffer>] [<n>]Y

yanks the entire line on which the cursor rests, and places
it in a buffer, as described above. The count <n> preceding
the Y operator yanks n lines of text. The default is one
line.

Examples:

4-2 Zilog 4-2

VI Zilog VI

The command

yw

yanks the word on which the cursor is located. The command

4yw

yanks the word on which the cursor is located, and the fol­
lowing three words into the unnamed buffer. The command

"al2yw

yanks 12 words into buffer a.

An ordinary delete command saves the text in the unnamed
buffer, so that an ordinary put command (p or P, described
below) can move it elsewhere. However, the unnamed buffer
contents are lost when files are changed; therefore, to
change text from one file to another, be sure to use a named
buffer.

Text that has been yanked can be reinserted (put) in the
text with the operators p or P, where the command syntax is

"[<buffer>]p

where quotation marks and <buffer> indicate the buffername,
where the yanked text was stored. The operator "p" rein­
serts the yanked text after or below the cursor, and the
operator "P" reinserts the text before or above the cursor.
Command syntax is identical for both P and p operators. If
a buffer is not specified, the default is the unnamed
buffer.

The text being yanked can be part of a line, or an object
such as a sentence that spans more than one line. In this
case, when the text is replaced, it is replaced after (or
before) the cursor, depending on the command. If the text
forms whole lines, then it is returned in whole lines,
without changing the current line.

The command

[<n>]YP

yanks a copy of n lines, and then reinserts the same text
immediately prior to the current line. The result is that
there are two identical text lines and the cursor moves to
the top line. The command

4-3 Zilog 4-3

VI Zilog VI

(<n>]Yp

is similar, but it copies n lines and places them after
(below) the current line, so that there are two identical
lines. For example, the command 3YP repeats the line of
text three times. The default is one line of text.

The yank command, like the delete and change commands, can
be used with a string search. The command

y/<string>/-<n>

yanks the characters from the cursor position to the nth
line preceding the string match. Similarly, the command

y/<string>/+<n>

yanks characters from the cursor to the nth line following
the string.

The same buffers can be used with the delete operators to
move blocks of text within the file or to another file.
Moving a block of text requires three operations:

1. Delete and store n lines.

2. Move cursor to the new location.

3. "Put" the text.

Example:

Delete five lines of text and temporarily store them in
buffer a:

"a5dd

The quotation marks indicate a buffername, not the "a" com­
mand. Next, move the cursor to the new text location, and
enter the command

"ap

or the command

"aP

to insert the text in the new location.

4-4 Zilog 4-4

VI Zilog VI

To switch to another file for editing before restoring the
yanked text use a command of the form

:e <filename>

where <filename> is the other file to be edited.
commands are described in a later section.)

(These

4-5

NOTE

If the contents of the current editor buffer have
been changed, they must be either written back or
discarded prior to switching to the other file.

Zilog 4-5

VI Zilog

SECTION 5
FILE MANIPULATION

5.1. Writing, Quitting and Editing New Files

VI

The basic write and quit commands are described in Section
1.7.

If the text has been changed, but the changes are not to be
written to the file, the quit command (:q!) discards the
changes. To re-edit the same file (starting over) enter the
command:

: e !

This command is seldom used, because the changes cannot be
made after they have been discarded.

To edit a different file without leaving the vi editor enter

:e <filename>

If the changes have not been written to the file {prior to
this command), vi displays the message

No write since last change (:edit! overrides)

and delays editing the other file. Respond by entering the
command

:w

to save the changes in .the first file. After the changes
are written, repeat the command ":e <filename>" or use the
command

: e !

to discard the changes in the first file and call the second
file. To save changes automatically set the autowrite
option. When autowrite is set, use the command

:n

rather than

:e

5-1 Zilog 5-1

VI Zilog VI

5.2. File Manipulation Commands

Table 5-1 contains the vi file manipulation commands. These
commands are followed by a carriage return (RETURN) or an
escape (ESC). Most of the commands are self explanatory;
however, the following describes how to use these commands.

Table 5-1 File Manipulation Commands

:w
:wq

:x

COMMAND

:e<name>

: e !
:e+<name>

:e+<n><name>

:e#

:e%
:w <name>
:w! <name>

:<x>,<y>w <name>

:r <name>

:r!<cmd>
:n

:n!

:n <arglist>

:ta <tag>

FUNCTION

Write changes back to file
Write changes back and quit

Write, if necessary, and quit
Edit file <name>

Discard changes and re-edit
Edit file <name>, starting at end

Edit file <name> starting at
line n or with command n
Edit alternate file, which is
designated by the last filename typed
before the current filename

Edit current file
Write file <name>
Overwrite file <name>

Write lines <x>
through <y> to <name>
Read file <name> into buffer

Read output of <cmd> into buffer
Edit next file in argument list

Discard changes to current file,
and edit next file
Specify new list of arguments <arglist>

Edit the file containing the tag <tag>, at <tas

The basic write command is

:w

which writes changes to the file. When editing is completed

5-2 Zilog 5-2

VI Zilog VI

for a single file, write the changes back and terminate vi
with the command

zz

For editing long text, it is convenient to write back the
changes more frequently with the command ":w" and terminate
with the command "ZZ".

When editing more than one file, write back the changes with
the command ":w" and start editing a new file with an ":e"
command. Another way is to set the autowrite option (see
Section 6) and use the command

:n <file>

to fetch the next file for editing. This command is ino­
perative unless the changes to the current file have been
written back.

Whenever changes have been made to the editor's copy of a
file, but they are not to be written back, then the exclama­
tion point (!) is added to the command being used. The
result is that thE~ editor discards any changes that have
been made. For best results, use this command carefully.

The various ":e" commands can be given arguments. The argu­
ment "+" starts editing at the end of the file, and the
argument

+<n>

starts the editor at line n. Moreover, n can also be any
editor command not containing a space, such as a scan like

+/<string>

or

+?<string>

where the editor searches for <string>.

Other arguments for ":e" include the character "%", which,
when used in the command, is interpreted as the current file
name. Another argument is "#", which is interpreted as an
alternate filename, where the alternate filename is the last
filename typed other than the current filename. For exam­
ple, suppose the command

5-3 Zilog 5-3

VI Zilog VI

:e

has been entered, and a diagnostic is
that the file has not been written.
enter the command

returned indicating
One possibility is to

:w

which writes the file, and then the command

:e#

to redo the previous ":e". The command

CTRL-T

performs the same function.

To write a part of a buffer to a file, first determine the
line numbers that bound the portion to be written. Use the
command

CTRL-g

to display the line number where the cursor is located or
set the option number. Then enter the command

:<x>,<y>w <name>

where: <x>,<y> specify the top and bottom line numbers
<name> is the file name of the destination file.

If the destination file does not exist, it will be created;
otherwise vi prints the diagnostic message

"<name>" File exists - use "w! <name>" to overwrite

command. Then, instead of line numbers, use the address
marks in the command. For example, the command

ma

marks the first line in register a, and

mb

marks the last line in register b. The command

W!

5-4 Zilog 5-4

VI Zilog VI

writes these lines to the file <name>.

It is possible to read another file into the buffer after
the current line. Use the command

:r <name>

To edit a set of files in succession, first enter all of the
filenames as arguments in the command

:n <namel> <name2> •••• <namex>

then edit each one, in turn, using the command

:n

It is also possible to use the command ":n" and specify a
pattern to be expanded, such as with an asterisk (*) or a
set of characters to match. This can also be done with the
initial vi command.

The command

:ta

is very useful for editing large programs. It uses a data
base of function names and their locations (which can be
created by the program ctags(l). See the System 8000 ZEUS
Reference Manual) for finding a function with a name. If
the ":ta" command requires the editor to switch files, any
current work must be written to a file or abandoned prior
to switching files. To relocate a tag, repeat this command
without any arguements.

To read in the output from a shell command, use an exclama­
tion point with a shell command <cmd>, as shown:

:!<cmd>

5-5 Zilog 5-5

VI Zilog

SECTION 6
OPTIONS

VI

6.1. General

As noted previously, the options in the editor ex are also
available and easy to use with Vi. The most useful ones are
listed in Table 6-1 below.

Option

auto indent
autowrite

ignorecase
lisp
list

magic

number

paragraphs

redraw

scroll
sections
shiftwidth

showmatch

slowopen

term
terse
window
wrapmargin
wraps can

Table 6-1. Frequently Used Options

Default

noai
no aw

noic
nolisp
nolist

magic

no nu

para=
IPLPPPQPP Libp
no re

1/2
sect=NHSHH HU
sw=8

nosm

nos low

vtz
no terse
speed de!pendent
wm=0
ws

Function

Automatic indentation
Automatic write before :n, :ta,
CTRL-j, and !
Ignore case in searching
Commands deal with S-expressions
Tabs print as CTRL-I;
end of lines are marked with $
The characters • [and * a re
special in scans
Lines are displayed prefixed with
line numbers
Macro names that start
paragraphs
Simulate a smart terminal on a
dumb one
Number of lines scrolled
Macro names that start new sections
Shift distance for <, > and
input CTRL-d and CTRL-t
Show matching (or { as) or }
is typed
Postpone display updates during
inserts
The type of terminal being used
Shorter error diagnostics
Number of lines in display window
Bring right margin in from the right
Wrapping around end-of-file

In general, there are three kinds of options: numeric
options, string options, and toggle options. Numeric and
string options are set by commands of the form:

6-1 Zilog 6-1

VI Zilog VI

set <opname>=<val>

where: <opname> is the name of the option

6-2

<val> is the appropriate string or numeric value for
the option. Toggle options can be set or reset,
respectively, with the following commands:

set <opname>
set no<opname>

These options can be entered while in vi by preced­
ing the set command with a colon, and the command
can be abbreviated as shown:

:se <opname>=<value>

or

:se <opname>

To display a list of those options that have been
set, enter the set command without any option name,
as shown:

:set

To display the value of a single option enter the
command:

:set <opname>?

Similarly, to display a list of all possible
options and their current values, enter the command

:set all

Note that the above commands can also be abbrevi­
ated, and that multiple options can be placed set
using only one option command:

:se ai as nu

The options that are set during an editing session
last only until the editor is exited. However, it
may be convenient to have a list of options that are
set whenever the editor is used. This can be accom­
plished by creating a list of ex commands--that is,
commands used by the text editor ex--that are to be
run every time the programs ex, edit, or vi are
invoked. (Note that all commands that start with a

Zilog 6-2

VI Zilog VI

colon are ex commands.) It is good practice to list
these commands on a single line.

It is possible to put any number of the option commands in
the environment variable EXINIT. When options are set in
the environment, then they are automatically set at each
entry to vi. For example, to set autoindent, autowrite and
terse, the command would be (using csh):

setenv EXINIT 'set ai aw terse'

6.2. Editing on Slow Terminals

The slow terminal text mode is controlled by the slowopen
option. This option is set by the command

:se slow

On slow systems this option limits the output to the termi­
nal. It is also possible to force the editor to use this
option even on faster terminal by using this option. To
disable the slowopen option, use the command

:se noslow

It is also possible to simulate an intelligent terminal with
the redraw option. This simulation generates a great deal
of output, and is generally tolerable only on lightly loaded
systems and fast terminals. This option is set with the
command

:se redraw

and it is cancelled with the command

:se noredraw

6.3. Ignore Case

The editor will, if commanded, ignore the case of words in
the string search. The appropriate command is:

:se ic

To turn off the ignore case option, use the command

6-3 Zilog 6-3

VI Zilog VI

:se noic

6.4. Magic Characters

Strings used in a string search can contain characters that
have "magic" meanings to vi. If this capability is not
desired, then reset the magic option with the command

:se nomagic

With nomagic, only the characters "A" and "$" are special in
patterns. The character "\" is also special (as it is
almost everywhere in the system) , and may be used for an
extended pattern matching capability.

With either magic or nomagic, it is necessary to use a "\"
(backslash) before a "/" in a forward string search or a "?"
in a backward string search. That is, i-f the string search
is for either a"/" (forward) or a"?" (backward), then the
character must be preceded by a backslash. Table 6-2
lists the extended forms that are used when the magic option
is set.

Table 6-2. Magic Option Extended Operators

Operator Function

i

$

<
>
[str]
[Astr]
[x-y]

*

At the beginning of a pattern,
matches the beginning of a line
At the end of a pattern, matches the end of a line
Matches any character
Matches the beginning of a word
Matches the end of a word
Matches any single character in the string str
Matches any single character not in the string str
Matches any character between x and y,
where x and y are alphanumeric characters
Matches any number of the preceding pattern

Note that in the nomagic mode the primitives

and *

are used with a preceding "\".

6-4 Zilog 6-4

VI Zilog VI

6.5. Autoindent and Shiftwidth

The autoindent option is convenient for generating correctly
indented programs. To set the autoindent option, use the
command

:se ai

To demonstrate the operation of the option, open a new line
with the letter "o", enter a few tabs, type some characters,
and then start another line. The editor supplies white space
at the start of the new line, so that it is lined up with
the previous line of text. Note that it is not possible to
backspace over the automatic indentation.

When the autoindent option is being used, it is sometimes
convenient to return to the margin--for example, to place a
label at the margin. To defeat the autoindent, use the com­
mand

CTRL-d

which then backspaces over the automatic indent. Each time
this command is entered, the cursor backs up one shiftwidth.
If the shiftwidth is set to eight, the cursor backs up eight
columns. Note that this only works immediately after the
supplied autoindent.

To stop all indent, including the next line, strike:

0CTRL-d

An easy way to place a label at the left margin is to strike
the up-arrow (A) and then CTRL-D. The editor moves the
cursor to the left margin for one line, and then restores
the indent on the next .line.

There is normally an eight column left boundary. To reset
this boundary, use the shiftwidth option, which is entered
by the command

:se sw=<n>

where <n> is the number of columns that sets the width of
the boundary.

6.6. Continuous Text Input

When large amounts of text are being entered,
convenient to have lines broken near the

6-5 Zilog

it is often
right margin

6-5

VI Zilog VI

automatically. To have the text broken n columns from the
right margin, use the command

:se wrn=<n>

If the editor breaks an input line, it can be rejoined with
the command

[<n>]J

where n is the number of lines to be joined. The default is
to move the following line to the end of the current line.
The editor supplies white space, as appropriate, at the
juncture of the joined lines, and leaves the cursor at this
white space. To delete the white space use the command "x".

6.7. LISP Editing Options and Commands

The vi editor has some convenient options for editing pro­
grams in LISP. The first is the lisp option which is set
with the command

:se lisp

This option changes the parenthesis commands"(" and ")" so
that they move backward and forward over s-expressions. The
braces-- "{" and "}"--are like the parenthesis commands, but
they do not stop at atoms. These commands can be used to
skip quickly through a comment, or to the next list.

The autoindent option works differently for LISP. It sup­
plies indent to align at the first argument to the last open
list. If there is no such argument, then the indent is two
spaces more than the last level.

The showmatch option is convenient for typing in LISP. Pro­
viding that the opening parenthesis is showing on the
display, if a closing parenthesis is typed, the cursor then
briefly moves to the position of the opening parenthesis.
To set this option, use the command

:se sm

The vi editor also uses the operator

=

which realigns existing lines as though they had been typed
with the lisp and the autoindent options set. For example,

6-6 Zilog 6-6

VI Zilog VI

the command

=%

at the beginning of a function realigns all the lines of the
function declaration.

Finally, when editing LISP, the double brackets "[[" and
"]]" cause the cursor to advance or retreat, respectively,
to lines beginning with an opening parenthesis. This is use­
ful for dealing with entire function definitions.

6.8. Line Numbers

If desired, the editor can place line numbers before each
line of text on the display. Use the command

:se nu

To disable the line number option, use the command

:se nonu

6.9. Tabs and End of Line Indicators

It is possible to have the display represent tabs as CTRL-I
and represent the ends of lines with the symbol "$" by
using the list option. Give the command

:se list

This option can be disabled with the command

:se nolist

6.10. Automatic Writing of Files

When a file has not been written out prior to changing to a
new file, vi prints the diagnostic

"No write since last change (edit! overrides)".

To have the editor automatically save changes, set the
"autowrite" option

:se aw

6-7 Zilog 6-7

VI Zilog VI

To change files, use the command

:n

instead of

:e

To disable this opti-0n use the command

:se noaw

6.11. Defining Paragraphs and Sections

There are editor options available to define a paragraph
and/or section for NROFF macros (see Section 7 of the System
8000 ZEUS Reference's Manual). A paragraph normally begins
after----eacfi empty lTne; these paragraph boundaries are used
by the operators "{" and "}" (see Section 2.4). By setting
the "paragraph" option

set para=<macro name>

where <macro name> is an nroff macros(s) that defines the
start of a paragraph. Similarly, sections can be redefined
by using

set sections=<macro name>

By definition, a section begins after each line with a
formfeed CTRL-L in the first column; section boundaries are
also line and paragraph boundaries. These boundaries are
used by the operators"[[" and"]]" (see Section 2.4).

6.12. Terminal Type

The terminal type is determined from the environment when

% setenv TERM <type>

was executed (see Section 1.4). This option

:se term

simply outputs 'the terminal type.

6-8 Zilog 6-8

VI Zilog VI

6.13. Scroll

The amount of scroll when using the CTRL-d, CTRL-u and "z"
commands can be altered by issuing

:se scroll=<val>

where: <val> is the amount of scroll (number of lines).

6.14. Terse

The error diagnostics can be shortened with the command

:se terse

and lengthened again_with

:se noterse

This is desirable for the more experienced user.

6.15. Window

The number of lines in a text window can be altered with
this command

:se window=<val>

For slow terminals (600 baud or less), the window size is 8;
for medium terminals (1200 baud), the size is 16; and for
high speed terminals, the full screen size minus 1 is
assigned.

6.16. Wrapping Around the End of Files

String searches normally proceed through a file and then
continue to search at the beginning. This capacity can be
disabled with

:se nows

6-9 Zilog 6-9

VI Zilog

APPENDIX A
SPECIFYING TERMINAL TYPE

VI

Before calling vi, the correct terminal type must be
entered. The following is an incomplete list of terminals
and terminal type numbers that can be entered in vi, as
appropriate. Unless indicated by an asterisk (*), the ter­
minals listed here are all intelligent.

Terminal

VTZ-2/10
C .. Itoh 101

Hewlett-Packard 2621A/P
Hewlett-Packard 264x

Microterm ACT-IV
Microterm ACT-V

Lear Siegler ADM-3a
Lear Siegler ADM-31

Human Design Concept 100
Datamedia 1520

Datamedia 2500
Datamedia 3025

Perkin-Elmer Fox
Hazeltine 1500

Heathkit hl9
Infoton 100

Teleray 1061
Dec VT-52

Code

vtz
cit *
2621
2645

act4 *
acts *
adm3a *
adm31

cl00
dml520 *

dm2500
dm3025

fox *
hl500

hl9
il00

tl061
vt52 *

To enter the type of terminal, use the command

setenv TERM <code>

where <code> is the terminal type code listed above.

A-1 Zilog A-1

VI Zildg VI

APPENDIX C
vi SYMBOL DICTIONARY

This appendix gives the uses the editor makes of each char­
acter. The characters are presented in their order in the
ASCII character set: control characters come first, then
most special characters, then the digits, upper and then
lowercase characters.

The information for each character includes the meaning it
has as a command, and any mea~ning it has during an insert.
If it has only meaning as a command, then only this is dis­
cussed.

CTRL-@

CTRL-A

CTRL-B

CTRL-C

CTRL-D

CTRL-E

c·rRL-F

CTRL-G

C-1

Not a command character. If typed as the
first character of an insertion it is
replaced with the last text inserted, and the
insert terminates. Only 128 characters are
saved from the last insert; if more charac­
ters were inserted the mechanism is not
available. A "'@ cannot be part of the file
due to the edito~ implementation.

Unused.

Backward window. A count specifies repeti­
tion. Two lines of continuit~ are kept if
possible.

Unused.

As a command, scrolls down a half-window of
text. A count gives the number of (logical)
lines to scroll, and is remembered for future
CTRL-D and CTRL-U commands. During an
insert, backtabs over autoindent white space
at the beginning of a line; this white space
cannot be backspaced over.

Unused.

Forward window. A
tion. Two lines
possible.

count specifies repeti­
of continuity are kept if

Equivalent to :fCR, printing the current file
name, whether it has been modified, the
current line number and the number of lines

Zilog C-1

VI

CTRL-H (BS)

CTRL-I (TAB)

CTRL-J (LF)

CTRL-K

CTRL-L

CTRL-M (RETURN)

CTRL-N

CTRL-0

CTRL-P

CTRL-Q

CTRL-R

C-2

Zilog VI

in the file, and the percentage of the way
through the file that you are.

Same as left arrow. (See h.) During an
insert, eliminates the last input character,
backing over it but not erasing it; it
remains so you can see what you typed if you
wish to type something only slightly dif­
ferent.

Not a command character. When inserted
prints as some number of spaces. When
cursor is at a tab character it rests at
last of the spaces which represent the
The spacing of tabstops is controlled by
tabstop option.

Same as down arrow (see j).

Same as up arrow (seek).

it
the
the

tab.
the

Same as right arrow. The ASCII formfeed
character, this causes the screen to be
cleared and redrawn on dumb terminals. This
is useful after a transmission error, if
characters typed by a program other than the
editor scramble the screen, or after output
is stopped by an interrupt.

A carriage RETURN advances to the next line,
at the first non-white position in the line.
Given a count, it advances that many lines.
During an insert, a RETURN causes the insert
to continue onto another line.

Same as down arrow (see j).

Unused.

Same as up arrow (see k) •

Not a command character. In input mode,
CTRL-Q quotes the next character, the same as
AV, except that some teletype drivers eat the
CTRL-Q so that the editor never sees it.

Same as replacement operator (see r) • On
hardcopy terminals in open mode, retypes the
current line.

Zilog C-2

VI

CTRL-S

CTRL-T

CTRL-U

CTRL-V

CTRL-W

CTRL-X

CTRL-Y

CTRL-Z

CTRL-[(ESC)

CTRL-\

C-3

Zilog VI

Unused. Some teletype drivers use CTRL-S to
suspend output until CTRL-Q is typed.

Not a command character. During an insert,
with autoindent set and at the beginning of
the line, inserts shiftwidth white space.

Scrolls the screen up, inverting CTRL-D,
which scrolls down. Counts work as they do
for CTRL-D, and the previous scroll amount is
common to both~ On a dumb terminal, CTRL-U
will often necessitate clearing and redrawing
the screen further back in the file.

Not a command character. In input mode,
quotes the next character so that it is pos­
sible to insert non-printing and special
characters into the file.

Not a command character. During an insert,
backs up as b would in command mode; the
deleted characters remain on the display (see
CTRL-h).

Unused.

Unused.

Redraws the screen.

Cancels a partially formed command, such as a
z when no following character has yet been
given; terminates inputs on the last line
(read by commands such as : I and?); ends
insertions of new text into the buffer. If
an ESC is given when quiescent in command
state, the editor rings the bell or flashes
the screen. Thus, ESC can be used to stop
any function and reenter command mode. The
flash or ring indicates that all functions
have been stopped, and vi has returned to
command mode. Prior to entering insert mode,
if there is any doubt about what mode is
currently in effect, then press ESC, followed
by an insert mode command, such as a. the
result is that vi enters insert mode, regard­
less of the previous mode.

Goes to ex.

Zilog C-3

VI

CTRL-]

CTRL-l

CTRL-

SPACE

$

%

C-4

Zilog VI

Searches for the word which is after the cur­
sor as a tag. Equivalent to typing :ta, this
word, and then a RETURN. Mnemonically, this
command is "go right to"

Equivalent to :e #. Display returns to the
previous position in the last edited file.
To edit a file that was specified by this
command, and the system response was the
diagnostic "No write since last change",
enter the command :w. This allows CTRL-T to
operate. To change files without writing the
current underscore file, use the command :e!
instead.

Unused9 Reserved as the command character
for the Tektronix 4025 and 4027 terminal.

Same as right arrow (see 1).

An operator that processes lines from the
buffer with reformatting commands. Follow !
with the object to be processed, and then the
command name terminated by RETURN. Doubling
! and preceding it by a count causes count
lines to be filtered; otherwise the count is
passed on to the object after the !. Thus
2!}sort sorts the next two paragraphs by run­
ning them through the program sort. To read
a file or the output of a command into the
buffer use :r. To simply execute a command
use : ! •

In input mode, if this is the erase charac­
ter, it deletes the last character typed in
input mode. It must be preceded with a \ to
insert it, since it normally backs over the
last preceding input character.

Moves the cursor to the end of the current
line. With a count <n>, the cursor advances
to the nth end of line following. For exam­
ple, 2$ advances the cursor to the end of the
following line. With the list option, the
end of each line is indicated by a $.

Moves to the parentheses or
balances the parentheses
current cursor position.

Zilog

brace {}
or brace

which
at the?

C-4

VI

&

"

*
+

'

C-5

Zilog VI

Same as :& RETURN; repeats a previous substi­
tution.

Precedes a named buffer specification. There
ar.e named buffers 1-9 that save deleted text,
and named buffers a-z that store "yanked"
text.

The ' can be used the following ways: (a)
When followed by another , the cursor
returns to its previous position, but at the
beginning of the line. The previous position
is set whenever the cursor is moved from the
current line. (b) When the ' is followed by a
letter a-z, the cursor returns to the line
that was marked with this letter (by the m
command), at the first non-white character in
the line. (c) When ' is used with a second '
and an operator such as d, the operation
takes place over complete lines. Example:
d'' deletes the lines between the appropriate
marks. Similarly, when used with a ', the
operation takes place from the exact marked
place to the current cursor position within
the line. Retreats to the beginning of a
previous sentence, or to the beginning of a
LISP s-expression if the lisp option is set.
Any number of closing)] " and ' characters
may appear after the • ! or ?, and before the
spaces or end of line. A count <n> advances
n sentences.

Advances to the beginning of the next
tence~ A count repeats the effect.
above for the definition of a sentence.

Unused.

Same as RETURN when used as a command.

sen­
See (

Reverse of the last f F t or T command, look­
ing the other way in the current line. Espe­
cially useful after hitting too many ; char­
acters. A count repeats the search.

Retreats to the previous line at the first
non-white character. This is the inverse of
+ and RETURN. If the line moved to is not on
the screen, the screen is scrolled, or
cleared and redrawn if this is not possible.
If a large amount of scrolling would be

Zilog C-5

VI

I

1-9

C-6

Zilog VI

required the screen is also cleared and
redrawn, with the current line at the center.

Repeats the last command which changed the
buffer. Especially useful when deleting
words or lines; use "." to delete more and
more words or lines. A count is passed on to
the command being repeated. Thus, after 2dw,
3. deletes three words.

Reads a string from the last line on the
screen, and scans forward for the next
occurrence of this string. The normal input
editing sequences may be used during the
input of the bottom line; an (ESC) returns to
command state without searching. The search
begins with the RETURN which terminates the
pattern. The cursor moves to the beginning
of the last line to indicate that the search
is in progress; the search may then be ter­
minated with a DEL or RUB, or by backspacing
when at the beginning of the bottom line.
The cursor returns to its initial position.
Searches normally wrap end-around to find a
string anywhere in the buffer.

When used with an operator the enclosed
region is normally affected. By mentioning
an offset from the line matched by the pat­
tern, whole lines are affected. To do this,
give a pattern with a closing I and then an
offset +n or -n.

To include the character / in the search
string, escape it with a preceding \. A T at
the beginning of the pattern forces the match
to occur at the beginning of a line only;
this speeds the search. A $ at the end of
the pattern forces the match to oc~ur at the
end of a line only. More extended pattern
matching is available. Unless nomagic is set
in the .exrc file, the characters ., [, *,
and - in the search pattern must be preceded
with a \ to get them to work as expected.

Moves to the first character of the current
line. Also used to form numbers after an
initial 1-9.

Used to form numeric arguments to commands

Zilog C-6

VI

<

=

>

?

@

A

B

c

D

E

F

G

C-7

Zilog VI

A pref ix for the ·commands for file and
option manipulation, and for escapes to the
system. Input is given on the bottom line
and terminated with a RETURN; and the command
then executed. If the colon (:) is hit
accidentally, return by hitting DEL (or RUB).

Shifts lines left one shiftwidth (normally 8
spaces). Like all operators, affects lines
when repeated, as in <<. Counts are passed
through to the basic object, thus 3<< shifts
three lines.

Reindents line for LISP, as though they were
typed in with lisp and autoindent set.

Shifts lines right one shiftwidth (normally 8
spaces). Affects lines when repeated as in
>>. Counts repeat the basic object.

Scans backwards; the opposite of /.
details see the / description above.

fur

If this is the kill character, escape it with
a \ to type it in during input mode, as it
normally backs over input on the current
line.

Appends at the end of line, a synonym for $a

Backs up a word, where words are composed of
non-blank sequences, placing the cursor at
the beginning of the word. A count repeats
the effect.

Changes the rest of the text on the current
line; a synonym for c$.

Deletes the rest of the text on the current
line; a synonym for d$.

Moves forward to the end of a word, defined
as blanks and non-blanks, like B and w. A
count repeats the effect.

Finds a single following character, backwards
in the current line. A count repeats this
search that many times.

Goes to the line number
argument, or the end

Zilog

given as preceding
of the file if no

C-7

VI

H

I

J

K

L

M

N

0

p

C-8

Zilog

preceding count is given. The
redrawn with the new current
center if necessary.

VI

screen is
line in the

Home arrow. Homes the cursor to the top line
of the screen. If a count <n> is given, then
the cursor moves to the nth line of the
screen. In any case, the cursor moves to the
first non-whita character on the line. If
used as the target of an operator, full lines
are affected.

Inserts at the beginning of a line; a synonym
for l i.

Joins together lines, supplying appropriate
white space; one space between words, two
spaces after a ., and no spaces at all if the
first character of the joined line is) • A
count causes that many lines to be joined
rather than the default two.

Unused.

Moves the cursor to the first non-white char­
acter of the last line on the screen. With a
count <n> to the first non-white character on
nth line from the bottom. Operators affect
whole lines when used with L.

Moves the cursor to the middle line on the
screen, at the first non-white character on
the line.

Scans for the next match of the last pattern
given to / or ?, but in the reverse direc­
tion; this is the reverse of n.

Opens a new line above the current line and
inputs text there. Terminate with (ESC). A
count can be used on dumb terminals to
specify a number of lines to be opened; this
is generally obsolete, as the slowopen option
works better.

Puts the last deleted text back before/after
the cursor. The text goes back as whole
lines above the cursor if it was deleted as
whole lines. Otherwise, the text is inserted
between the characters before and at the cur­
sor. May be preceded by a named buffer

Zilog C-8

VI

Q

R

s

T

u

v

w

x

y

zz

C-9

Zilog VI

specification "x to retrieve the contents of
the buffer; buffers 1-9 contain deleted
material, buffers a-z are available for gen­
eral use.

Quits from vi to ex command mode. In this
mode, whole lines form commands, ending with
a RETURN. For all commands; the editor ex
prompts with the colon.

Replaces characters on the screen with char­
acters you type (overlay fashion). Terminate
with (ESC).

Changes whole lines, a synonym for cc. A
count substitutes for that many lines. The
lines are saved in the numeric buffers, and
erased on the screen before the substitution
begins.

Takes a single following character, locates
the character, · before the cursor in the
current line, and places the cursor just
after that character. A count <n> repeats
the effect n times. Most useful with opera­
tors such as d.

Restores the current line to its state
before you started changing it.

Unused.

Moves forward to the beginning of a word in
the current line, where words are defined as
sequences of blank/non-blank characters. A
count <n> repeats the effect n times.

Deletes the character before the cursor. A
count repeats the effect, but only characters
on the current line are deleted.

Yanks a copy of the current line into the
unnamed buffer, to be put back by a later p
or P; a very useful synonym for yy. Count
<n> yanks n lines. May be preceded by a
buffer name to put lines in that buffer.

Exits the editor (Same as :xRETURN). If any
changes have been made, the buffer is written
out to the current file. Then the editor
quits.

Zilog C-9

VI

[[

\

]]

T

a

b

c

C-HJ

Zilog VI

Backs up to the previous section boundary. A
section begins at each macro in the sections
option, normally a ".NH" or ".SH" and also at
lines which start with a formfeed AL. Lines
beginning with { also stop [[; this makes it
useful for looking backwards, a function at a
time, in C programs. If the option ~isp is
set, stops at each (at the beginning of a
line, and is thus useful for moving backwards
at the top level LISP objects.

Unused

Forward to a section boundary; see [[for a
definition.

Moves to the first non-white position on the
current line.

Unused.

When the ' is followed by another ' the cur­
sor returns to the previous context. The
previous context is set when the cursor is
moved from the line. When followed by a
letter a-z, returns to the position which was
marked with this letter by the m command.
When used with an operator such as d, the
operation takes place from the exact marked
place to the current position within the
line. When is used, the operation takes
place over complete lines. See forward quote
(') ..

Appends arbitrary text after the current cur­
sor position; the insert can continue onto
multiple lines by using RETURN within the
insert. A count causes the inserted text to
be replicated, but only if the inserted text
is all on one line. The insertion terminates
with (ESC) •

Backs up to the beginning of a word in the
current line. A word is a sequence of
alphanumerics, or a sequence of special char­
acters. A count <n> repeats the effect n
times.

An operator that changes the following object
and replaces it with following input text.
The c command must take an object, such as

Zilog C-10

VI

d

e

f

9

h

i

j

k

1

C-11

Zilog VI

the operator w. Terminated by (ESC). If
more than one line is affected, then the pre­
vious text is saved in the numeric named
buffers. If only part of the current line is
affected, then the last character to be
changed is marked by $. A count <n> affects
n objects. For example, both 3c) and c3)
change the following three sentences.

An operator d deletes the following object;
an object is an operator like w. If more
than part of a line is affected, the text is
saved in the numeric buffers. A count <n>
affects n objects. Thus 3dw is the sames as
d3w.

Advances to the end of the next word, defined
as for b and w. A count <n> repeats the
effect n times.

Finds the first instance of the next charac­
ter following the cursor on the current line.
A count <n> repeats n times.

Unused.

Arrow keys h, j, k, 1, and H.

Left arrow. Moves the cursor one character
to the left. h and CTRL-H have the same
effect. On terminals that send escape
sequences (such as vt52, cl90, or hp), the
arrow keys cannot be used. A count repeats
the effect.

Inserts text before the cursor; otherwise
like a.

Down arrow. Moves the cursor one line down
in the same column. If the position does not
exist, vi comes as close as possible to the
same column. synonyms include AJ (linefeed)
and ftN.

Up arrow. Moves the cursor one line up.
is a synonym.

Right arrow.
to the right.

Moves the cursor one
SPACE is a synonym.

character

Zilog C-11

VI

m

n

0

p

q

r

s

t

u

v

w

x

C-12

Zilog VI

Marks the current position of the cursor in
the mark register, which is specified by the
next character a-z. Return to this position
or use with an operator using' or '·

Repeats the last string search command.

Opens new lines below the current line; oth­
erwise like o.

Puts texts after/below the cursor; otherwise
like P ..

Unused.

Replaces the single character at the cursor
with another single character. The new char­
acter may be a RETURN; this is the easiest
way to split lines. A count replaces each of
the following count characters with the sin­
gle character given; see R, which is usually
more useful.

Changes the single character under the cursor
to the text that is inserted. Terminate with
(ESC}. With a count, the count characters on
the current line are changed. The last char­
acter to be changed is marked with $ (as in
c} •

Advances the cursor up to the character
before the next character typed. Most useful
with operators such as d and c to delete the
characters up to a following character. Use
• to delete more.

Undoes the last change made to the current
buffer. If repeated, will alternate between
these two states. When used after an insert
which inserted text on more than one lineu
the lines are saved in the numeric named
buffers.

Unused.

Advances to the beginning of the next word,
as defined by b.

Deletes the single character under the cur­
sor. With a count deletes that many charac­
ters forward from the cursor position, but

Zilog C-12

VI

y

z

{

}

CTRL-? (DEL)

C-·13

Zilog VI

only on the current line.

An operator, yanks the following object into
the unnamed temporary buffer. If preceded by
a named buffer specification, "x, the text is
placed in that buffer also.- Text can be
recovered by a later p or P.

Redraws the screen with the current line
placed as specified by the following charac­
ter; RETURN specifies the top of the screen,
• the center of the screen, and - at the bot­
tom of the screen. A count may be given
after the z and before the following charac­
ter to specify the new screen size for the
redraw. A count before the z gives the
number of the line to place in the center of
the screen instead of the default current
line.

Retreats to the beginning of the preceding
paragraph. A paragraph begins at each macro
in the paragraphs option, normally, '.ip',
'.lp,' '.pp,' '.QP,' and '.bp.' A paragraph
also begins after a completely empty line,
and each section boundary (see [[above).

Places the cursor on the character in the
column specified by the count.

Advances to the beginning of the next para­
graph.

Unus~~d.

Interrupts the editor, returning it to com­
mand accepting state.

Zilog C-13

VI Zilog

APPENDIX D
vi QUICK REFERENCE

Interrupting and Canceling

File manipulation

:w
:wq
:q
:q!
:e name
:e!
:e f
:w name
:w!
: !cmd
:n
:f
:sh

write back changes
write and quit
quit
quit; discard changes
edit file name
reedit, d i's card chang,es
edit alternate file (also CTRL-A)
write file name
overwrite file name
run cmd, then return
edit next file in arglist
show current file and line number (also CTRL-g)
escape to shell {CTRL-d for return)

Cursor Positioning within File

CTRL-f
CTRL-b
CTRL-d
CTRL-u
G
/<string>
?<string>
n
N
/<string>/+n
?<string>?-n
11
[[
%

D-1

forward screenful
backward screenful
scroll down half screen
scroll up half screen
goto line (end default)
next line matching <string>
previous line matching <string>
repeat last I or ?
reverse last I or ?
n'th line after <string>
n'th line before <string>
next section/function
previous section/function
find matching parenthesis or brace

Zilog

VI

D-1

VI Zilog

Marking and Returning

......
I I

mx
'x
'x

return to previous position in text
cursor moves to first non-white character
on the line at the previous position
mark position with letter x
to mark x at position within line
to mark x at first non-white character in line

Line Positioning

H
L
M
+

RETURN

j
k

home window line
last window line
middle window line
next line, at first non-white
previous line, at first non-white
same as carriage return; moves cursor to
beginning of next line
next line, same column
previous line, same column

Cursor Positioning within Line

t
e
$
h or ->
1 or <­
CTRL-H
space
f x
Fx
tx
Tx
;
,
I

first non white
beginning of line
end of line
forward
backwards
same as <-
same as ->
find x forward
.f backward
upto x forward
back upto x
repeat last f F t or T
inverse of ;
to specified column

Words, Sentences, Paragraphs

w word forward
b back word
e end of word

D-2 Zilog

VI

D-2

VI Zilog

) beginning of next sentence
} beginning of next paragraph
(beginning of previous sentence
{ beginning of previous paragraph
W blank delimited word
B back W
E to end of W

Corrections During Insert

CTRL-H
CTRL-W
erase
kill

erase last character
erases last word
your erase; same as CTRL-h

\
ESC
CTRL-?
CTRL-D
""CTRL-D
0CTRL-D
CTRL-V

your kill; erase input this line
escapes CTRL-h; your erase and kill
ends insertions, back to command
interrupt, terminates insert
backtab over autoindent
kill autoindent, for one line only
kills all autoindent
quote non-pr1nt1ng character

Insert and Replace

a append after cursor
i insert before cursor
A append at end of line
I insert before first non-blank
o open line below
O Open above
rx replace single character with x
R replace characters

Operators (double to affect lines)

d delete
c change
< left shift
> right shift
I filter through command
= indent for LISP
y yank lines to buffer

D-3 Zilog

VI

D-3

VI

Miscellaneous Operations

C change rest of line
D delete rest of line
s substitute characters
S substitute lines
J join lines

Zilog

x delete character at cursor
X delete character before cursor
Y yank lines

Yank and Put

p put back line(s) after current line
P put back line(s) before current line
xp put from buff er x
"xd del~te into buffer x
"xy yank to buffer x

Undo, Redo, Retrieve

u undo last change
U restore current line

repeat last change
•np retrieve nth last delete

Entering/Leaving vi

%vi name
zz

The display

Last line

edit name at top
exit from vi, saving changes

error messages, echoing input to :, /, ?,
and !, feed back about i/o and large
changes

VI

@lines
-1ines
CTRL-x
tabs

on screen only, not in file (on dumb terminals)
lines past end of file

D-4

control characters, CTRL-? is delete
expand to spaces, cursor at last

Zilog D-4

VI Zilog

Simple Commands

dw
de
dd
3dd
itextESC
cwnewESC
easESC
xp

D-5

delete a word
delete a word, leave punctuation
delete a line
delete 3 lines
insert text text
change word to new
pluralize word
transpose characters

Zilog

VI

D-5

ZEUS FOR BEGINNERS*

* This information is based on an article originally
authored by Brian w. Kernighan, Bell Laboratories.

ZEUS Zilog ZEUS

ii Zilog ii

ZEUS Zilog ZEUS

Pref ape

This manual introduces the ZEUS operating system. It
includes the basic procedures and commands needed for day­
to-day use of the system. The major formatting programs and
macro packages used for document preparation and hints on
preparing documents are discussed. Descriptions of support­
ing software and ZEUS programming are also included.

This manual is divided into four sections. Section 1
describes how to log in, how to enter data, what to do about
typing errors, and how to log out. Some of this information
is dependent on the system and terminal that are being used,
so this section must be supplemented by local information.
Information required for day-to-day use of the system (such
as commonly used commands) is found in Section 2. Section 3
describes some of the formatting tools used in preparing
manuscripts. Some of the tools used for developing programs
are described in Section 4.

For further information, refer to the System 8000 ZEUS
Reference Manual and the System 8000 ZEUS Utilities Manual.

iii Zilog iii

ZEUS Zilog ZEUS

iv Zilog iv

ZEUS Zilog

Table of Contents
I

SECTION 1 GETTING STARTED .
. 1.1.

1.2.
1.. 3.
1.4.
1.. 5.
1 .. 6.
L 7.
1.. 8.

Logging In •••••••••••••••
Typing Commands •••••••••••
Unusual Terminal Behavior •••••

.
Typing Errors ••••• .. •,
Read-Ahead
Stopping a Program
Logging Out •••••••• . .

. . .
. .

Mai 1 ••••..••••••••• : 109. Writing to Other Users •••••
1010. On-Line Manual •••••••••••
1.11. Computer-Aided Instruction •••

. . . .

. . . .

.
.

SECTION 2 DAY-TO-DAY USE .
2.1. The Editor •••••••
2.2. The List Commands

. . . .
2.3. Displaying Files ••••••••
2.4. Rearranging Files ••••••
2.5. File Names

...

2.5.1. Directories and Path
2.5.2. Current Directory ••
2.5.3. Subdirectories

Names

2.6. Using Files Instead of
Terminal Input and Output
2.7. Pipes f) •• . . .
2.8. The Shell •••••

.

.
• • . . . • •

.
.

• •
SECTION 3 DOCUMENT PREPARATION .

3 .1. Introduction • • •
3.2. Formatting Programs ...
3.3. Supporting Tools
3.4. Hints for Pre!paring Documents . .

v Zilog

ZEUS

1-1

1-1
1-1
1-2
1-2
1-3
1-3
1-3
1-3
1-4
1-5
1-5

2-1

2-1
2-2
2-3
2-4
2-5
2-7
2-9
2-9

2-10
2-11
2-12

3-1

3-1
3-1
3-2
3-3

v

ZEUS Zilog

SECTION 4 PROGRAMMING .

vi

4 .1.
4. 2.
4.3.

Introduction ••••••••••
Programming the Shell
Programming in C •••••

Zilog

. . .

ZEUS

4-1

4-1
4-2
4-2

vi

ZEUS

I.I. Logging In

Zilog

SECTION 1
GETTING STARTED

ZEUS

Terminals are connected to the system by a high-speed asyn­
chronous line. Log in when the message login: appears on
the terminal. If this message ls not on the screen, press
the RETURN key. If the message still does not appear, con­
tact the system administrator for assistance.

When login: is displayed, enter the login name in lowercase,
followed by a RETURN. For terminals that have only upper­
case, it is possible to type commands in uppercase. If the
login name is typed in uppercase, the entire terminal ses­
sion must be performed in uppercase. The system does not
respond until a RETURN is entered. If a password is
required, the message Password: appears. Enter the pass­
word, followed by a RETURN. The password, which protects
files from unauthorized access, is not echoed on the screen.

When a prompt character appears on the screen, the system is
ready to accept commands. The prompt character is usually a
dollar sign ($) or a percent sign (%) •. (Messages of the day
or notifications that mail is being held can appear on the
screen before the prompt character.)

1.2. Typing Commands

Once the prompt appears, commands (requests that the system
do something) can be entered. Type the command

date

followed by a RETURN. A response similar to

Mon Jan 16 14:17:10 EST 1978

is displayed.

Always press RETURN after every command line; the system
does not respond unless RETURN is pressed.

The command who specifies everyone who is currently logged
in to the system. Entering

who

1-1 Zilog 1-1

ZEUS Zilog ZEUS

causes a response similar to the following:

ski tty05 Jan 16 09:33
gam ttyll Jan 16 13:07

The time specifies when the user logged in; ttyxx indicates
the terminal being used.

If a typing mistake is made when a command is entered,
thereby referencing a nonexistent command, the system
responds with an error message. For example, typing

whom

results in the response

whom: not found

If the name of some other command is inadvertently typed,
that command is run.

If the terminal does not have tabs, type the command

stty -tabs

The system then converts each tab into the correct number of
spaces when printing. If the terminal does have computer­
settable tabs, the command tabs sets the stops. Refer to
stty(l) in the System 8000 ZEUS Reference Manual. (The
notation sttY-_(_!) refers to the command stty in Section 1 of
the System ~00 ZEUS Reference Manual).

1.3. Unusual Terminal Behavior

Sometimes the terminal functions incorrectly. For example,
each letter may be typed twice, or RETURN may not cause a
line feed or a return to the left margin. Logging out and
logging back in may correct this.

1.4. Typing Errors

A typing error that is discovered before RETURN is typed can
be corrected in one of two ways. Control-h (hitting "h"
while holding down the control key) erases the last charac­
ter typed. Control-h can be repeated to erase characters
back to the beginning of the line (but not beyond).

Control-x erases the current input line. If a line of text
has several errors, type control-x and then retype the line.

1-2 Zilog 1-2

ZEUS Zilog ZEUS

The system always echoes a new line after the control-x
character.

The stty(l) command can be used to change the erase and kill
characters. Backspace can also be used as an erase charac­
ter, and control-x can be used as a kill character.

1.5. Read-Ahead

Read-ahead capability allows typing to be done as fast as
possible, even while the system is responding to a command.
If typing is done while the system is outputting text, the
input characters appear intermixed with the output charac­
ters; however, they are interpreted in the correct order.
Several commands can be typed one after another without
waiting for each one to execute~

1.6. Stopping a Program

Most programs can be stopped by typing the character RUB
(usually the delete or rubout k~y on the terminal). On most
terminals, the "interrupt" or "break" key can also be used.
In a few programs, such as the text editor, RUB stops what­
ever the program is doing but does not stoP---the program
itself. Hanging up the phone also stops most programs, but
this is not a recommended method of exiting a program.

1.7. Logging Out

To log out, type a control-d or type

logout

It is not sufficient to turn off the terminal because ZEUS
does not use a time-out mechanism. When using a phone, it
is possible to log out by hanging up, but this is not recom-
mended. ·

1.8. Mail

After logging in, the message

you have mail.

may appear. ZEUS provides a postal system, allowing for
communication with other users on the system. To read the
mail, type the command

1-3 Zilog 1-3

ZEUS Zilog ZEUS

mail

Mail appears, one message at a time, with the most recent
message given first. After each message, mail waits for a
user response. Typing a d deletes the message. Typing
RETURN causes mail to continue, leaving the message on the
system; it will appear again the next time mail is read.
Other responses are described in mail(l) of the System 8000
ZEUS Reference Manual.

To send mail to "joe" (a user whose login name is joe), type

mail joe

Then enter the text of the letter, using as many lines as
necessary. After the last line of text, type control-d.

There are other ways to send mail. Mail can be sent to one­
self as a handy reminder mechanism. Previously prepared
mail can be sent to a number of people simultaneously. For
more details, see mail(l)·

1.9. Writing to Other Users

A message like

message from joe tty07 •••

may appear on the terminal, accompanied by a beep. This
indicates that Joe is on line and wants to send a message.
To respond, type the command

write joe

This establishes a two-way communication path, and messages
can be exchanged via the terminals. This path is slow com­
pared to system response in general. It is necessary to
terminate any program that is being run before messages can
be received. (It is possible to temporarily escape from the
editor. Refer to the editor tutorial in the System 8000
ZEUS Utilities Manual.)

To keep the messages from becoming intermixed, care should
be taken to ensure that both users do not type messages at
the same time. A common way of doing this is to type an o
on a line by itself at the end of the message to indicate
that the message is over. To terminate a conversation, each
side must type a control-d or a delete character on a line
by itself.

1-4 Zilog 1-4

ZEUS Zilog ZEUS

If an attempt is made to write to someone who is not logged
in, the system responds with the message

person not logged in

If an attempt is made to write to someone who does not want
to be disturbed, the system responds with the message

permission denied

If the target person is logged in but does not answer, type
control-d to obtain a prompt.

1.10. On-Line Manual

The System 8000 ZEU~ Reference Manual is usually kept on
line, and sections of it can be displayed at the terminal.
The manual also contains the most up-to-date information on
commands. To print a manual section, type

man command-name.

For example, to read about the who command, type

man who

1.11. Computer-Aided Instruction

The ZEUS system has a program called learn that provides
computer-aided instruction on the file system and basic com­
mands, the editor, document preparation, and programming in
C. Enter the command

learn

for further information.

1-5 Zilog 1-5

ZEUS

2.1. The Editor

Zilog

SECTIO~ 2
DAY-TO-DAY USE

ZEUS

The ZEUS text editor, ed, is usually used to type papers,
letters, programs, and~o store information in the computer.
Refer to edCl> and E~ in the System 8000 ZEUS Reference
Manual for in-depth explanations on how to usetl.1e editor.

To create a file called junk containing some text, enter

ed junk

a
text

(invokes the text editor; the system
responds by listing the number of
characters in the file)

(command to ed, to add text)

(signals the end of adding text)

A period (.) typed by itself at the beginning of a line
indicates the end of text addition. Until it is entered,
everything typed is treated as text to be added, and no
other ed commands are recognized,.

To store the information that has been typed into a file,
use the editor command w. The editor responds by listing
the number of charactiers in the file junk. Until the w com­
mand is entered, nothing is stored permanently. Therefore,
if the user hangs up or logs out, the information is lost.
(There is, however, a special feature of ZEUS that saves the
edited data in a file called ed.hup.k) After a w command is
issued, the stored :informat1on can be accessed at any time
by typing

ed junk

To exit from the editor, type a quit (q) command. If the q
command is entered before the text has been stored, ed
prints a ? as a reminder. Entering a second q followed by
an exclamation point (!) causes the exit to take place.

Now create a second file called temp in the same manner.
Two files, junk and tE~mp, should--riO'W exist.

2-1 Zilog 2-1

ZEUS Zilog ZEUS

2.2. The List Commands

The list (ls) command lists the names (not contents) of all
files in the directory. If

ls

is typed~ the response is

junk
temp

These are the two files just created. Unless an optional
argument is added to the ls command, the names are listed
alphabetically. Other variations are possible. For exam­
ple, the command

ls -t

lists the files
changed, with
Typing

in the order in which they were last
the most recently changed file listed first.

ls -1

produces a long listing similar to the following:

-rwxrwxrwx 1 bwk
-rwxrwxrwx 1 bwk

41 Jul 22 2:56 junk
78 Jul 22 2:57 temp

The date and time indicate when the last changes to the file
were made. The 41 and 78 refer to the number of characters
in the file. The initials bwk indicate the owner of the
file, that is, the person who created it. The -rwxrwxrwx
specifies who has permission to read, write, and execute the
file. The first dash in each line indicates an ordinary
file; a d instead of a dash indicates a directory. The
left-most rwx indicates the read, write, and execute permis­
sions for the owner of the file. The middle rwx pertains to
the read, write, and execute permissions for~e user group
to which the owner belongs. The right-most rwx pertains to
everyone else. In this example, everyone has read, write,
and execute permission. For more information, refer to
chmod(!} and chmod(~).

Listing options can be combined. For example, the command
ls -lt gives a long listing (-1) in time order (-!). More
information is found in ~s<!>· -

The use of optional arguments that begin with a dash (like
-t and -1 t) i s a co mm on convent ion for ZEUS pro g rams • In

2-2 Zilog 2-2

ZEUS Zilog ZEUS

general, if a program accepts such optional arguments, they
precede any file name arguments. The various arguments must
be separated with a blank space (ls-.!_ is not the same as
ls -.!_).

2.3. Displaying Files

Use the editor to display a file of text on the screen. Type

ed junk
l,$p

and ed lists the number of characters in junk and then
displays the entire file on the screen.

It is not always feasible to use the editor for displaying
files. There is a limit to the size of files that ed can
handle, and only one file can be displayed at a time. There
are alternate programs suitable to specific applications.

The cat command displays the contents of all the files named
in a-list. For example,

cat junk

displays the file jun~, and

cat junk temp

displays the files ~nk and temp. The files are simply con­
catenated (hence the name cat) onto the screen.

The pr command produces formatted displays of files. As
with-cat, E!. displays all the f,i les named in a 1 ist, but .E!.
displays text in formatted form, including· headings with
date, time, page number, and file name at the top of each
page. The command

pr junk temp

displays junk, then skips to the top of a new page and
displays temp.

The pr command can also produce multicolumn output. For
example,

pr -3 junk

prints the file junk in three-column format. Any number of
columns can be printed. See .E!_(_!) for more information.

2-3 Zilog 2-3

ZEUS Zilog ZEUS

The command 9-29. displays the contents of a specified file
one page at a timeo For example,

dog junk

displays the first page of the file junk on the terminal.
Pressing the RETURN key causes the text to scroll forward,
displaying the next page.

There are also programs that print ZEUS files on a high­
speed printer. See .!.E!_ in the ZEUS Reference Manual. The
nroff and troff programs are more complete text formatters.
They are discussed in Section 3 and in the ZEUS Utilities
Manual.

2.4. Rearranging Files

A file can be moved from one place to another (which amounts
to changing the name) using the mv command. For example,
typing

mv junk stuff

moves the contents of the file junk into the file stuff. If
the ls command is entered, the response is now

stuff
temp

NOTE

If a file is moved to another file that already
exists, the already existing contents are lost
forever~

To make a copy of a file, use the cp command.

cp stuff templ

makes a duplicate copy of stuff in templ.

The rm command removes (deletes) files from a directory.
For example,

rm temp templ

2-4 Zilog 2-4

ZEUS Zilog

deletes the files !_emp and temp!.

NOTE

Be very careful when using the rm command. Once
files are removed with the rm command, they no
longer exist in the directory and can never be
recovered.

ZEUS

A warning is displayed if one of the named files does not
exist. Otherwise r~, like most ZEUS commands, does its work
silently.

2.5. File Names

File names can be no longer than 14 characters. Although
almost any character can be used in a file name, it is
recommended that only letters, numbers, and the period be
used. This is to avoid characters that might have other
meanings. For example, if a file were created with the name
-t, listing it by name would be difficult, if not impossi­
bTe, because -t is an optional argument for requesting a
time-order listing.

If a large manual is being typed, it must be divided into
several smaller sections because the size of files that ed
can handle is limited. The document should therefore be
typed as a number of smaller files. Each chapter can be in
a separate file named chap!, chap2, etc., or each chapter
can be broken into several files named chapl.l, chapl.2,
chapl.3, chap2.l, chap2.2, etc. This naming system makes
the relationship between the files obvious.

One advantage to a systematic naming convention is that the
entire book can be displayed with one command, such as

pr chap*

The asterisk (*) is a pattern matching character that means
"anything at all," so this command prints in alphabetical
order all files whose names begin with chap. This shorthand
notation is used system-wide, not just with .E.!:.· For exam­
ple, to list all the names of the files in the manual, enter

ls chap*

This lists

chapl.l

2-5 Zilog 2-5

ZEUS

chapl.2
chapl.3

Zilog ZEUS

The * is not limited to the last position in a file name--it
can be anywhere and can occur several times. For example,

rm *junk* *temp*

removes all files that contain junk or t:mp as any part of
their name. As a special case, * by itself matches every
filename, so

pr *
prints all the user's files in alphabetical order; and

rm *
removes all !iles in the current directory.

The * is not the only pattern-matching feature available.
It is possible to match a group of characters by enclosing
them in brackets ([]) • For example, if only Chapters 1
through 4 and Chapter 9 are to be printed, type

pr chap[l2349]*

A range of consecutive letters or digits can be abbreviated.

pr chap[l-49]*

A range of letters can also be specified with brackets. For
example, [~-~] matches any character in the range ~ through
z.

The question mark (?) pattern matches any single character.
For example,

ls ?

lists all files that have single-character names, and

ls -1 chap?.l

lists the first file of each chapter (chapl.l, chap2.l).

To cancel the special meaning of * or ?, enclose the argu­
ment in single quotes.

ls '?'

2-6 Zilog 2-6

ZEUS Zilog ZEUS

2.5.1. Directories and Path Names: Generally, each user
has a private directory containing only the files that
belong to that user. When logged in, the user is in his/her
private directory, and unless special action is taken when a
new file is created, it is created in the directory the user
is currently in. This is most of.ten the user's own direc­
tory, and therefore, the file is unrelated to any other file
of the same name that exists in someone else's directory.

All files are organized in sets located in a tree, with the
individual user's files located several branches outward
from the root. Any file in the system can be found by
starting at the root of the tree and moving along the proper
set of branches. It is also possible to move inward toward
the root.

The command pwd (print working directory) prints the path
name of the directory the user is currently in.

The response to the pwd command is something similar to

/z/your-name

This indicates that the user is currently in the directory
your-name, which is in the directory /~, which is, in turn,
in the root directory, called /.

Typing

ls /z/your-name

lists the same file names obtained from the ls command
alone. With no arguments, ls lists the contents of the
current directory; given the name of a directory, it lists
the contents of that directory.

Typing

ls /z

prints a series of names, among which is your-name. In many
installations, z is a directory that contains the direc­
tories of all us~rs of the system.

Typing

ls I

gives a response something like:

bin

2-7 Zilog 2-7

ZEUS

dev
etc
lib
tmp
usr

Zilog ZEUS

These are the basic directories of files--the root of the
tree.

The full name of the path to be followed from the root
through the tree of directories to get to a particular file
is the path name. The path name of the file junk is

/z/your-name/junk

It is a universal rule in the ZEUS system that anywhere an
ordinary file name can be used, a path name can be used.

Here is a picture of the tree used in this document:

(root)
I I \

I I \
I I \

bin etc z dev tmp
I I \/ I \ I I \ I I \ I I \

I I \
I I \

adam eve
I I \

I
junk

mary
\

\
temp

junk

Observe that mary's junk file is unrelated to eve's junk
file.

To obtain a listing of files in another user's directory,
type

ls /z/neighbor-name

To copy of one of these files, type

cp /z/your-neighbor/his-file yourfile

If users do not want other people examining these files,
privacy can be arranged. Each file and directory has read­
write-execute permissions for the owner, a group, and every­
one else, which control file access. (See ls(l) and
chmod(l) for details.) For an executable file, tne- owner
generally has read, write, and execute permission; other

2-8 Zilog 2-8

ZEUS Zilog ZEUS

people in the ownerws group might have read or execute per­
mission; everyone else might h•ve only execute permission.

As a final experiment with path names# try

ls /bin /z/bin

2.5.2. Current Directory: When the name of a file (com­
mand) is entered in response to the prompt character, the
system looks for an executable file of that name in the
current directory. If the file is not found in the current
directory, the system searches /bin, and finally /usr/bin.
The search path, which is normally the current directory,
/bin, and /usr/bin can be changed. (See sh(_!) and csh(_!) in
the ZEUS Reference !~anual.)

If a user works regularly with.someone else on common infor­
mation in the other's direct9ry, the user could simply log
in under the other's login name each time the information is
needed. It is also possible to change directories. Type

cd /z/your-friend

and a file name used with a command like cat or E.!. refers to
the file in your·-friend directory. Changing directories
does not affect any permissions associated with a file.
That is, if a file could not be accessed from the user's own
directory, changing to another directory does not alter that
fact.

Type

pwd

to find out which directory is the current directory.

2.5.3. Subdirectories: It is convenient to arrange files
so that all files on a related subject are in a directory
that is separate from other projects. For example, when
writing a manual, it might be helpful to keep the text in a
directory called book. To make the directory, use the com­
mand

mkdir book

This creates the directory called book.
directory, type

cd book

2-9 Zilbg

To go to that

2-9

ZEUS Zilog ZEUS

Separate files can now be established in this directory.
The path name of this directory is:

/z/your-name/book

To move back up to the login directory (one level up in the
tree), type

cd

The double period (••) indicates the parent of the currently
accessed directory. A single period (.) is an alternate name
for the working directory.

To remove the directory book, type

rm book/*
rmdir book

The first command removes all files from the directory, and
the second removes the empty directory.

2.6. Using Files Instead of Terminal Input and Output

Most of the commands discussed so far produce output on the
terminal. Some, like the editor, also take their input from
the terminal. In ZEUS systems, input, output, or both can
go to or from files rather than the terminal. For example,

ls

lists all files on the terminal screen. However, entering

ls >filelist

places a list of files in the file filelist, which is
created if it does not exist or is overwritten if it does.
The symbol > means that the output should go to the follow­
ing file rather than the terminal screen. Several files can
be combined into one by capturing the output of cat in a
file. For example,

cat fl f2 f3 >temp

This concatenates !..!_, !±i and _fl into the file temp.

The symbol >> operates very much like > does. It means add
the listed files to the end of the file that follows the
symbol. That is,

2-10 Zilog 2-10

ZEUS Zilog ZEUS

cat fl f 2 f3 >>temp

means to add fl, f2, and f3 to the end of whatever is
already in temp 1[insteaa-of overwriting the existing con­
tents of temp). As with >, if temp does not exist, it is
created.

The symbol < means take the input for a program from the
following file instead of from the terminal. For example,
it is possible to create a file called script containing a
group of editing commands that produces a specified set of
changes. Typing

ed file <script

causes the set of editing commands to be executed throughout
the file.

As another example, ed can be used to prepare a letter in
the file let. Then-,-the letter can be sent to several peo­
ple with

mail adam eve mary joe <let

2~7~ Pipes

A pipe is a means of connectin9 the output of one program to
the input of another program so that the two run as a
sequence of processes. A command line that uses pipes is
called a pipeline.

For example,

pr f g h

displays the files f, ~' and h, beginning each on a new
page. It is possible to display them together without page
breaks by entering

cat f g h >temp
pr <temp
rm temp

A simpler way to do this is to take the output of cat and
connect it to the input of .E!_ by using a pipe.

cat f g h I pr

The vertical bar (I), which is the pipe command, means take
the output from Ci3t, which would normally have gone to the

2-11 Zilog 2-11

ZEUS Zilog

terminal, and put it into pr to be formatted.

The pipeline

ls I pr -3

displays a list of files in three columns.

ZEUS

Any program that reads from the terminal can also read from
a pipe. Any program that writes to the terminal can also
drive a pipe. Any number of elements can be used in a pipe­
line.

Many ZEUS programs are written so that they can take their
input from one or more files if file arguments are given.
If no arguments are given, the programs read from the termi­
nal and can be used in pipelines. One example is pr.

pr -3 a b c

prints files~, ~, and c in order, in three-column format.
The command

cat a b c I pr -3

produces the same output; £!: prints the information coming
down the pipeline in three-column format.

2.8. The Shell

The shell is the program that interprets the commands and
arguments entered at the terminal. (See sh(l) and csh(l).)
It also interprets characters that have special meaning- in
ZEUS. For example, two programs can be run with one command
line by separating the commands with a semicolon (;). The
shell recognizes the semicolon and breaks the line into two
commands. In the command line

date; who

the shell executes the date and who commands before return­
ing with a prompt character.

More than one program can be run simultaneously. For exam­
ple, if something time consuming, like the editor script, is
being run, type

ed file <script &

The ampersand at the end of a command line means start the

2-12 Zilog 2-12

ZEUS Zilog ZEUS

command running in the background and then take further com­
mands from the terminal immedi~tely. To prevent the output
from interfering with what is being done on the terminal,
type

ed file <script >script.out &

which saves the output lines in a file called script.out.

When initiating a command with.&, the system replies with a
number called the process number, which identifies the com­
mand so that it can be stopped later. To stop the command
from executing, type

kill process-number

If the process number is forgotten, the command ps lists the
process numbers of: everything that ls is running. (It is
possible to use the command kill 0, which kills all the user
processes that are running. This-command should, of course,
be used with caution.) The command ps -a lists all programs
in the system that are currently running.

The command

(command-!; command-2; command-3) &

can be used to start three commands in the background. A
background pipeline can be started with

command-I I command-2 &

Just as the editor or some similar program can take its
input from a file~ instead of from the terminal, the shell
can read a file to get commands. For instance, suppose the
tabs on the terminal are to be set, and the date and who is
on the system are to be displayed every time the user logs
in. The three necessary commands (tabs, date, who) can be
put into a file called startup. To run this program, type

sh startup

The shell then runs with the file startup as input. This
has the same effect as entering the contents of startup on
the terminal.

To eliminate the need to type sh each time, use the command

chmod +x startup

The chmod command marks the file as executable; the shell

2-13 Zilog 2-13

ZEUS Zilog ZEUS

recognizes this and runs it as a sequence of commands.
Thereafter, type only

startup

to run the sequence of commands.

If star~ is to be run automatically after every login,
place its contents in the current home directory in a file
called .profile (if running in shell), or .cshrc (f the
shell runnTng-rs the C shell). When the shell gains control
after the login, it looks for and executes the .profile or
.cshrc file.

2-14 Zilog 2-14

ZEUS

3.1. Introduction

Zilog

SECTION 3
DOCUMENT PREPARATION

ZEUS

The ZEUS system has two major formatting programs for docu­
ment preparation: nroff, which produces output on terminals
and line printers-, and troff, which drives a photo­
typesetter.

3o2. Formatting Programs

Formatting programs use commands tha;t are entered along with
the text that is to be formatted. The commands indicate in
detail how the formatted text is to look. For example,
there ace commands that specify how long lines should be,
whether to use single or double spacing~ and what running
titles are to be used on each page.

For nroff and troff, several packages of canned formatting
requests called macro packages are available. These allow
specification of formatting elements such as paragraphs,
r u n n i ng ti t 1 es , f o o t no t es , and mu 1 tic o l um n o u t put • It i s
not necessary to learn nroff and troff to use these macro
packages. Formatting requests typically consist of a period
and two uppercase letters; for example, .TL is used to
introduce a title, and .PP is used to begin anew paragraph.

A document is typed so that it looks something like this:

.TL
title of document
.AU
author name
.SH
section heading
.PP
paragraph •••
• PP
another paragraph
.SH
another section heading
.PP

The precise meaning of .PP depends on whether the output
device being used is a typesetter or terminal. For example,
a paragraph is normally preceded by a space {one line in

3-1 Zilog 3-1

ZEUS Zilog ZEUS

nroff, one half line in troff), and the first word is
indented. These rules can be changed as r.equired.

To print a document in standard format using -ms, use the
command

troff -ms files

for the typesetter and

nroff -ms files

for a terminal. The -ms argument tells troff and nroff to
use the manuscript package of formatting requests. (Refer
to ms<z> for more information.)

There are several similar packages; see the information on
text formatting in the System 8000 ZEUS Utilities Manual.

3.3. Supporting Tools

In addition to the basic formatters, there are other sup­
porting programs for document preparation.

Any spelling errors in a document can be detected by the
programs spell and ~· The spell program compares the
words in the document to a dictionary, then prints those
that are not in the dictionary. The !YEQ_ program searches
for words that are unusual, then prints~m. .

The ~ program examines a set of files for lines that con­
tain a particular text pattern. For example,

grep 'ing$' chap*

finds all lines that end with the letters ing in the files
chap*. (It is always good practice to put single quotes
around the pattern being searched for, in case it contains
characters like * or $ that have a special meaning to the
shell.) The gr7p program is useful for discovering which set
of files contains the misspelled words detected by spell.

A list of the differences between two files is printed by
diff. Two versions of something can be compared automati­
caITy, eliminating the necessity of proofreading.

The words, lines, and characters in a set of files are
counted by we.

3-2 Zilog 3-2

ZEUS Zilog ZEUS

The tr program translates characters into other characters.
For example, it converts uppercase to lowercase and vice
versa. The following command translates uppercase into
lowercase:

tr A-Z a-z <input >output

Files can be sorted in a variety of ways by sort.

The ptx program makes a permuted index (keyword-in-context
1 is ting) •

The sed program provides many of the editing facilities of
ed, but can apply them to arbitrarily long inputs.

For more information on these programs, see the System 8000
ZEUS Reference Manual.

3m4. Hints fqr ~reparing Documents

Most documents go through several drafts before they are
finished. The following hints make the process of revising
drafts easier..

When the text is being typed, start each sentence on a new
line, make lines short, and break lines at natural places,
such as after commas and semicolons. Since most people
change documents by rewriting phrases and adding, deleting,
and rearranging sentences, these precautions will simplify
any editing done to the document.

Keep the individual files of a document short (perhaps ten
to fifteen thousand characters). Larger files edit more
slowly, and of course, if an error is made, it is better to
have destroyed a small file rather than a big one. Split
documents into files at natural boundaries.

Refrain from deciding formatting details too early. One of
the advantages of the formatting packages is that they per­
mit decisions to be delayed until the last possible moment.
As long as the text has been entered in some systematic way,
it can always be cleaned up and reformatted by a judicious
combination of editing commands and request definitions.

3-3 Zilog 3-3

ZEUS

4.1. Introduction

Zilog

SECTION 4
PROGRAMMING

ZEUS

The ZEUS system is a productive programming environment
because it offers a rich set of programming tools. Facili­
ties such as pipes, I/O redirection, and the capabilities of
the shell make it possible to do a job by pasting together
programs that already exist instead of writing from scratch.

The pipe mechanism allows fabrication of complicated opera­
tions out of spare parts that already exist. For example,
an early version of the spell program was

cat • • . I tr I t r • • • I sort I u n i q I co mm

where cat collected the files, the first tr put each word on
a new~-line, and the second tr deletecr-punctuation. The
information was then sorted intodictionary order. The uniq
command discarded duplicates, and comm printed words that
were in the text but: not found in the dictionary.

The editor can be made to do things that
require special programs on other systems.
list the first and last lines for each file
files, the following can be laboriously typed

ed
e chapl.l
lp
$p
e cha pl. 2
lp
$p
etc.

An easier way is to type

ls chap* >temp

would normally
For example, to

in a set of

This lists the file names in the temp file. Then this file
can be edited to incorporate the necessary series of editing
commands (using the global commands of ed). When- these com­
mands have been written into script, thecommand

ed <script

4-1 Zilog 4-1

ZEUS Zilog ZEUS

produces the same output as the laboriously typed list of
commands. Alternately, since the shell performs loops, it
is possible to repeat a set of commands over and over again
for a set of arguments. For example,

for. i in chap*
do

ed $i <script
done

sets the shell variable i to each file name in tur.n, then
does the command@ This command can be typed at the terminal
or put in a file for later execution.

4.2. Programming the Shell

The shell itself is a programming language with variables,
control flow (if-else, while, for, case), subroutines, and
interrupt handling.---sfnce ther-e--are-ffiany building-block
programs, a new program can sometimes be created by piecing
together some of the building blocks with shell command
files.

Examples and rules for running the shell and the C shell can
be found in SHELL~ and CSHELL in the System 8000 ZEUS Utili-
ties Manual.~~- --~ --~

4.3. Programming in c

ZEUS and most of the programs that run on it are written in
C. C is an easy language to learn and use. It is intro­
duced and fully described in The ~ Programming Language by
B. W. Kernighan and D. M. Ritchie (Prentice-Hall, 1978).
See the System ~000 ZEUS Reference Manual for additional
information.

4-2 Zilog 4-2

Systems Publications

Reader's Comments

Your feedback about this document helps us ascertain your needl and fulfill them in the future. Pl•
take the time to fill ciut this questionaire and retum it to us. this information will be helpful to UI ud,
time, to future users of Zilao products.

YourName:~------------~--~~
Company Name:

Address:

Title of this document:

Briefly describe applic.ation:

Does this publication meet your needs? D Yes D No If not, why not?

How are you usino fthis publication?

D As an introduction to the subject?

D As a reference manual?

D As an instructor or student?

How do you find thtt material?

Technicality

Organization

Completenes:s

Excellent

D

0

D

Good

D

D

D

Poor

0

D

D

What would have improved the material? ----------------------

Other comments andl suggestions:

If you found any mistakes in this document, please let us know what and where they are:

l(f/ furrm & ('flYt"lollf'\ (-108) llHH-&

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 35 CAMPBELL, CA.

POSTAGE WILL BE PAID BY ADDRESSEE

Zilog
Systems Publications

1315 Dell Avenue
Campbell, California 95008
Attn: Publications Manager

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Zilog, Inc. 1315 Dell Ave., Campbell, California 95008 Telephone (408)370-8000 TWX 910-338-7621

